[INTERNATIONAL |

CONFERENCE ON |
PARALLEL

Pnocgssmc /

PROCEEDINGS

OF THE

1981 INTERNATIONAL CONFERENCE

ONISSII0Ud TITTVHV.

~ JONIYIINOD TYNOILYNHILNI L

ON
PARALLEL PROCESSING

August 25-28, 1981

;sq;ou smoxar phé nrj 131?!“

Japun paisi| os|e
816€-0610 NSSI

LLEOV9-6L Joquiny ssa1Bu0) Jo Ateiqry UID
G-£9 LHD 18 Joquiny Bojeled 333|

B
3
®

PROCEEDINGS

OF THE

1981 INTERNATIONAL CONFERENCE
ON
PARALLEL PROCESSING

Ming T. Liu and Jerome Rothstein

Ohio State University
Editors

Papers presented on
August 25-28, 1981

Co-Sponsored by

Department of Computer and Information Science
OHIO STATE UNIVERSITY
Columbus, Ohio

and the

ISSN 0190-3918
also listed under
IEEE Catalog Number 81CH1634-5
Library of Congress Number 79-640377
®

IEEE Computer Society

In Cooperation with the

=

Association for Computing Machinery

IEEE Catalog No. 81CH1634-5
ISSN 0190-3918

International Conference on Parallel Processing.
Proceedings of the International Conference on Parallel
Processing. 1972—
(New York, Institute of Electrical and Electronics Engi-
neers; available from the IEEE Computer Society,

v. ill. 29 cm. annual.

Title varies slightly.

Conferences: for 1972- co-sponsored by the Dept. of Elec-
trical and Computer Engineering, Wayne State University, Detroit,
and the IEEE Computer Society in cooperation with the Association
for Computing Machinery.

Key title: Proceedings of the International Conference on Parallel
Processing, ISSN 0190-3918.

1. Parallel processing (Electronic computers) I. Institute of
Rlectrical and Electronics Engineers. II. Wayne State University,
Detroit. Dept. of Electrical and Computer Engineering. III. IEEE
Computer Soclety. IV. Association for Computing Machinery, V.

Title.

QA76.6.1 548a 001.64 79-640377
MARC-S

Library of Congress 79

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for pri-
vate use of patrons those articles in this volume that carry a code at the bottom of
the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish-
ing Services, IEEE, 345 E. 47 St.,, New York, NY 10017. All rights reserved. Copy-
right © 1981 by The Institute of Electrical and Electronics Engineers, Inc.

|IEEE Catalog Number 81CH1634-5
Library of Congress Number 79-640377
Computer Society Number 354

ISSN 0190-3918

Order from: IEEE Computer Society IEEE Service Center
Post Office Box 80452 ' 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

The Institute of Electrical and Electronics Engineers, Inc.

ii

PREFACE

Tenth anniversaries are traditional occasions for reflecting on the past, evaluating
trends in the current situation, and speculating on the shape of things to come. The last ten
years have seen the growth and maturation of the International Conference on Parallel
Processing from a two-day invitational meeting of RADC contractors (1972) at which seventeen
papers on diverse aspects and applications of the Rome Air Development Center Associative
Processor (RADCAP) were presented, to a truly international meeting covering all phases of
parallel and distributed processing. There were 136 papers submitted to this conference, an
all-time record, compared to 117 in 1980, 93 in 1979 and 1978, and over 80 in 1977 and 1976.
The number of papers from abroad has also grown, being 34, 31, and 23 in 1981, 1980, and 1979
respectively, from 16, 10, and 10 countries. As in previous years, the high quality of the
papers submitted made final selection extremely difficult. We wish to thank the 214 referees,
including 87 non-authors, for their indispensable aid in selecting the 66 finalists for the 14
sessions of contributed papers. Each manuscript submitted was sent to three referees; only
their prompt and conscientious help, despite their other obligations, made it possible to have
the proceedings available on time.

An innovation this year, replacing the traditional keynote speech of the ceremonial
session the evening before regular sessions begin, is the panel of five invited speakers on the
history of parallel processing. Professor Tse-yun Feng organized it, for which we are most
grateful. He 1is acutely aware that much important history is inevitably hidden from those
participating in it, and therefore requests help from attendees and others, in compiling as
complete a record as possible. Now is the time to do it, before memories fade and pioneers
pass on.

Another innovation is the tutorial on parallel processing the day before the conference.

Such tutorials have become increasingly popular adjuncts of many meetings, and this one was set

p in response to suggestions made by attendees of previous conferences. We hope it
establishes a new tradition of excellence.

A special issue of the IEEE Transactions on Computers on Parallel and Distributed
Processing 1s planned for December 1982. Professors Ming T. Liu and Jerome Rothstein are the
guest editors. Papers presented at this conference or modifications thereof will be considered
for inclusion as will others submitted by respondents to this and other calls for papers
appearing elsewhere. The closing date for submission of manuscripts is Jamuary 1, 1982, One -
hundred pages have been allocated to the special issue; we hope it will be of permanent
reference value.

The growth of interest in parallel and distributed processing in the last decade has been
explosive, and will doubtlessly continue unabated. This conference could easily have grown
very large, with parallel sessions and many more papers. However, the attendees have voted,
year after year, against departing from the traditions of no parallel sessions, emphasis on
attendance by active workers in the field, and of holding the conference far from the competing
attractions of a metropolitan or resort milieu. The opportunities for prolonged, intense,
personal interactions with established and upcoming researchers were felt to outweigh
disappointments like being put on a waiting list and not being able to attend because of the
rarity of cancellations. All this can change in the future, but only if the attendees wish it
to.

We would like to thank Dean Donald D. Glower, College of Engineering, The Ohio State
University for his constant encouragement, and Professor Tse—yun Feng for his sage advice and
counsel about the endless details of managing this enterprise. The assistance of Professor
Chuan-lin Wu is also appreciated. Last, but not least, we appreciate the devoted assistance of
Jy-jine Lin in computerizing so much of the routine involved.

Ming T. Liu and Jerome Rothstein
Technical Program Co-Chairmen

.
[N

TABLE OF CONTENTS

SESSION 1: HISTORY OF PARALLEL PROCESSING

Parallelism in Computing « « « ¢ o o o ¢ o o o o o o o o ¢ o o o o o o o o o o
S. Fernbach

History of Parallel Processing at Goodyear Aerospace « » o o s ¢ o o o o o o »
W. C. Meilander

Centrally—-Controlled Parallel ProcesSOIS o « o o o ¢ o o o o o o o o o o s o o
D. L. Slotnick

The History of Parallel Processing at Burroughs « « ¢« « ¢ ¢ ¢ o ¢ ¢ ¢ o o o @
R. Stokes and R. Cantarella

Control Data 6600 and STAR-100 &+ « o « o o o o o o o & o s o s o s o o o o o o
J. E. Thornton

SESSION 2: LANGUAGES AND COMPILERS

Programming Distributed Applications in Ada: A First Approach « « ¢ ¢« ¢« ¢ & &
S. A. Schuman, E. M. Clarke Jr., and C. N. Nikolaou

SALAD: A Distributed Compiler for Distributed Systems « o« « o o o o o ¢ o o »
T. W. Christopher, O. El-Dessouki, M. Evens, H. Harr, H. Klawans,
P. Krystosek, R. Mirchandani, and Y. Tarhan

Measurements of an Optimizing Compiler for a Vector Computer « o« o« ¢ o o o« o &
J. C. Knight and D. D. Dunlop

The Symbolic High-Level Language Programming of an MIMD Machine « « « ¢« & « &
D. Klappholz

A Parallel Heterarchical Machine for High Level Language Processing « « . « «
A. Guzman

SESSION 3: DISTRIBUTED SYSTEMS AND NETWORKS

Distributed Processing Approach for the International Public Telegrams Message
Switching System
J. T. Wang and Y. S. Lee

Multiterminal Reliability Analysis of Distributed Processing Systems « o ¢ . »
A. Grnarov and M. Gerla

Open Queueing Networks with Finite Capacity Queues « « « ¢ ¢ o o« o o o 5 + o o
A. A. Nilsson and T. Altiok

SESSION 4: NUMERICAL ALGORITHMS

Block Tridiagonal System Solution on Reconfigurable Array Computers « « « o »
R. N. Kapur and J. C. Browne

On Mapping Non-uniform P.D.E. Structures and Algorithms onto Uniform Array . .
Architectures
D. Gannon

A Practical Algorithm for the Solution of Lower Triangular Systems on a Parallel

Processing System
R. Montoye and D. Lawrie

-

Page

16

25

33

38

50

58

61

64

72

79

87

92

100

106

A Pipelined Digital Architecture for Computing a Multi-dimensional Convolution 109
K. Y. Liu

SESSION 5: ASSOCIATIVE PROCESSORS AND PROCESSING

Real-Time LISP Using Content Addressable MEmMOTY e « o o o o o o ¢ o ¢ o o o o o o o o o 112
Jo. G. Bonar and S. P. Levitan

The M.A.P. Project = An Associative Processor for Speech Processing « « ¢« ¢« ¢ « o« « o« « 120
V. Cordonnier and L. Moussu

Airborne Associative Processor (ASPRO) « o« o o ¢ o o o o o o o o o @ e e e e e e e e . 129
Je. M. Surprise

Modelling of Large—Scale Markov Chains with Associative Pipelining . « « o+ ¢ o ¢ &« o o o 131
S. Y. Berkovich

SESSION 6: MULTIPROCESSOR ARCHITECTURES

Reconfiguration of Dynamic Architecture into Multicomputer Networks « « o« o ¢ o o o « & 133
S. P. Kartashev and S. I. Kartashev

Design of a General-Purpose Multiprocessor with Hierarchical Structure « « ¢« ¢ ¢ o o« o o 141
J. Sasidhar and K. G. Shin

SESSION 7: RECENT RESULTS I

A Block-Driven Data—~Flow ProcesSOT « o« o o o o o o o o o o o o s o o o s o s » o » o o o 151
T. L. Chang and P. D. Fisher

Processor Allocation in Data Driven Systems — Two Approaches « « « o « o ¢ ¢ ¢ o o o o o 156
K. J. Mundell, M. W. Linder, and S. E. Conry

Dataflow Approach to Discrete Simulation « « ¢ o o o o o o o ¢ o o o o o s o o o o o o o 158
B. Jayaraman

Architecture of a Multiprocessor Using Data Flow at a Program Block Level « ¢« « «. & « & 160
M. Lecouffe

High Level Specification of Resource Sharing « « « « o ¢ ¢ o ¢ o ¢ o o o ¢ ¢ o ¢ o o o o 162
D. Leinbaugh

Exploitation of Concurrency by Virtual Elimination of Branch Instructions « « « « o« o & 164
N. Magid, G. Tjaden, and H. Messinger

Experiment in Parallel Processing of a Large Scientific Code ¢« o « ¢« o o ¢ ¢ ¢ o o o« o« o 166
I. Y. Bucher, B. L. Buzbee, and P, O. Frederickson

Iterators and CONCULTENCY o o o s o o o o 6 o o o o o o s o o 6 o o o o6 ¢ s o s s o o o 168
A. T. Berztiss

' SESSION 8: NON-NUMERICAL ALGORITHMS

Optimal Parallel Algorithms for the Connected Component Problem « « « ¢ ¢ ¢ ¢ o o o o & 170
F. Y. Chin, J. Lam, and I. N. Chen

Speedup Bounds for Continuous System Simulation on a Homogeneous Multiprocessor 176
E. H. D’Hollander

Analytical Models to Explain Anomalous Behavior of Parallel Algorithms . « o« « « o o o o 183
B. W. Weide

Parallel Algorithms for the Minimum Spanning Tree Problem « « o ¢« o ¢ ¢ ¢ o o o o o o o 188
N. Deo and Y. B. Yoo

SESSION 9: SPECIAL-PURPOSE PROCESSORS

Parallel Image COrrelation « « « o o o o o o o o o o o o s s ¢ o o o o o s o o o o o o = 190
L. J. Siegel, H. J. Siegel, and A. E. Feather

Parallel Computer Architectures for Image Processing « « ¢ o ¢ ¢ ¢ o o o o o o o o s o 199
A. P. Reeves

Signal Processing with Systolic Arrays o« « o « o ¢ o ¢ ¢ o o o o o o ¢ o s o o o o o o o 207
R. W. Priester, H. J. Whitehouse, K. Bromley, and J. B. Clary

Parallel Processing of the Kalman Filter « « o« o ¢ « o o o o o o s o s s o o o o o o o o 216
A. Andrews

SESSION 10: INTERCONNECTION NETWORKS

On the Rearrangeability of a (2logN-1) Stage Permutation Network . « « « « ¢ o o o o o o 221
K. Y. Lee

Performance and Implementation of 4x4 Switching Nodes in an Interconnection « « « « o« « 229
Network for PASM

R. J. McMillen, G. B. Adams III, and H. J. Siegel

On Non—equivalent Multistage Interconnection Networks « « « ¢ ¢ « ¢« o & o &
D. P. Agrawal and S. C. Kim

e o e s e o 234

Interconnection Topologies for Fault-Tolerant Parallel and Distributed Architectures .
D. K. Pradhan

. 238

Fault Diagnosis and Design of Fault-Tolerant Concentrators « « o o o o o o
S. Sowrirajan and S. M. Reddy

e s e o s e« 243

SESSION 11: VLSI ARCHITECTURES

An Algorithm for Efficient Layouts of Parallel Suffix Solutions « « ¢« ¢« ¢ ¢« ¢« o o o« « o 245
A. Bilgory and D. D. Gajski

Pin Limitations and VLSI Interconnection Networks « « o « o o o o o o o s o o o o o o o 253
M. A. Franklin and D. F. Wann

Linear Recurrence Systems for VLSI: The Configurable, Highly Parallel Approach . « « . « 259
D. B. Gannon and L. Snyder

Embedding a Tree in the Nearest Neighbor Array « . « ¢ « o o o o o s o o o « o o ¢« o o o« 261
A. Mukhopadhyay and R. K. Guha

A Constructive Approach to Fault Tolerance in VLSI-based Systems « « « « o« o o o « o o o 264
S. E. Butner

SESSION 12: ARRAY PROCESSORS AND PROCESSING

Synchronous Nets for Single Instruction Stream - Multiple Data Stream Computers . o « o 266
A. J. Krygiel

Minimization of Interprocessor Communication for Parallel Computation « « o o o o o o & 274
K. B. Irani and K. W. Chen

SESSION 13: Recent Results IT

Parallel Hashing Hardware for Text Scanning Applications « o« o o ¢ o o« o o o o o o o o o 282
F. J. Burkowski

A Parallel Processor Electronic Térget Signal Generator for Electro-Optical Seekers . . 287
T. N. Long, J. T. Randolph, and M. J. Sinclair

Design of a Mixed Voice/Data Computer Network for Packet—Switching Communication 289
J. D. Kao, J. T. Wang, T. S. Kuo, and G. C. Chow

A New Type of MIMD-Organized Multiprocessor Handling Two-Stage Parallelism by Means .« . 292
of a Dynamically Configurable Architecture
R. Buhrer

Parallel Processing in Computer Communications ¢ o o o o o o o ¢ o o s ¢ o o o o o o o o 29%
A. Faro and G. Messina

Process Synchronization in the Parallel SIMULA Machine « « o« ¢ o o o o o ¢ o o o o o o o 297
M. P. Papazoglou, P. I. Georgiadis, and D. G. Maritsas

Architecture of the First Vector Computer of China « « ¢ « o o ¢ s ¢ ¢ o o o s o o « o o 300
Q. S. Gao and X. Zhang

MAX: An Algorithm for Finding Maximum in an Array Processor with'a Global Bus « + « + « 302
S. H. Bokhari

A Practical Parallel Algorithm for Reporting Intersections of Rectangles « « « ¢« « « « o 304
A. L. Chow

SESSION 14: PERFORMANCE EVALUATION

Cache Effectiveness in Multiprocessor Systems with Pipelined Parallel Memories « . « « « 306
F. A. Briggs and M. Dubois

A Performance Model for Multiprocessors with Private Cache Memories + « « o o ¢ o o o & 314
J. He Patel

An Analysis on a New Memory System for Conflict—free Access + « « « o o ¢ s o« o o ¢« s » 318
Y. K. Tzu, S. T. Yang, and C. H. Yue

Modeling of Shared-Resource Systems Using the Central—-Server Queueing Model . . « & o & 325
N. C. Strole and P. N. Marinos

Approximate Models for Multiple Bus Multiprocessor SySLEms « « « o o o o s o o o o « o o 329
M. A. Marsan and M. Gerla

SESSION 15: SCHEDULING

The Analysis of a Decentralized Control Algorithm for Job Scheduling Utilizing . « « . . 333
Bayesian Decision Theory
J. A. Stankovic

Coordinating Large Numbers of ProceSSOTS « « o o o o o ¢ o o o o o o o o s o o o o o o o 341
A. Gottlieb, B. D. Lubachevsky, and L. Rudolph

Parallel Scheduling ALgorithms . « « « o + o o ¢ ¢ o o o o s o o s o o so o o o « o » o« 350
E. Dekel and S. Sahni

Optimal Load Balancing Strategies for a Multiple Processor System « o« o o o o o o o o o 352
L. M. Ni and K. Hwang

Task Assignment in Distributed Multiprocessor Systems « « ¢« o ¢ o o s o o o o o o o o o 358
V., Lo and J. W. S. Liu

ADAMS III, G.B.
AGRAWAL, D.P.
ALTIOK, T.
ANDREWS, A.
BERKOVICH, S.Y.
BERZTISS, A.T.
BILGORY, A.
BOKHARI, S.H.
BONAR, J.G.
BRIGGS, F. A.
BROMLEY, K.
BROWNE, J.C.
BUCHER, I.Y.
BUHRER, R.
BURKOWSKI, F.J.
BUINER, S.E.
BUZBEE, B.L.
CANTARELLA, R.
CHANG, T.L.
CHEN, I.N.
CHEN, K.W.
CHIN, F.Y.
CHOW, A.L.
CHOW, G.C.
CHRISTOPHER, T.
CLARKE, JR., E.M.
CLARY, J.B.
CONRY,S.E.
CORDONNIER, V.
DEKEL, E.

DEO, N.
D’HOLLANDER, E.H.
DUBOIS, M.
DUNLOP, D.D.
EL-DESSOUKI
EVENS, M.

FARO, A.
FEATHER, A.E.
FERNBACH, S.
FISHER, P.D.
FRANKLIN, M.A.
FREDERICKSON, P.O.
GAJSKI, D.D.
GANNON, D.

GAO, Q.S.
GEORGIADIS, P.I.
GERLA, M.
GOTTLIEB, A.
GRNAROV, A.
GUHA, R.K.
GUZMAN, A.
HARR, H.

HWANG, K.
IRANI, K.B.
JAYARAMAN, B.
KAO, J.D.
KAPUR, R.N.
KARTASHEV, S.I.
KARTASHEV, S.P.
KIM, S.C.
KLAWANS, H.
KLAPPHOLZ, D.
KNIGHT, J.C.
KRYGIEL, A.J.
KRYSTOSEK, P.

AUTHOR INDEX

229
234

87
216
131
168
245
302
112
306
207

92
166
292
282
264
166

25
151
170
274
170
304
289

50

38
207
156
120
350
188
176
306

KUO, T.S.

LAM, J.

LAWRIE, D.H.
LECOUFFE, M.P.
LEE, K.Y.

LEE, Y.S.
LEINBAUGH, D
LEVITAN, S.P.
LINDER, M.W.
LIU, J.W.S.
LIU, K.Y.

Lo, V

LONG, T.N.
LUBACHEVSKY, B.D.
MAGID, N.
MARINOS, P.N.
MARITSAS, D.G.
MARSAN, M.A.
MCMILLEN, R. J.
MEILANDER, W.C.
MESSINA, G.
MESSINGER, H.
MIRCHANDANI, R.
MONTOYE, R.K.
MOUSSU, L.
MUKHOPADHYAY, A.
MUNDELL, K.J.
NI, L.M.
NILSSON, A.A.
NIKOLAOU, C.N.
PAPAZOGLOU, M.P.
PATEL, J.H.
PRADHAN, D.K.
PRIESTER, R.W.
RANDOLPH, J.T.
REDDY, S.M.
REEVES, A.P.
RUDOLPH, L.
SAHNI, S.
SASIDHAR, J.
SCHUMAN, S.A.
SHIN, K.G.
SIEGEL, H.J.
SIEGEL, L.J.
SINCLAIR, M.J.
SLOTNICK, D.L.
SNYDER, L.
SOWRIRAJAN, S.
STANKOVIC, J.A.
STOKES, R.
STROLE, N.C.
SURPRISE, J.M.
TARHAN, Y.
THORNTON, J.E.
TJADEN, G

TZU, Y.K.

WANG, J.T.
WANN, D.F.
WEIDE, B.W.
WHITEHOUSE, H.J.
YANG, S.T.

Y00, Y.B.

YUE, C.H.
ZHANG, X.

289

M.A. Abidi
W.B. Ackerman
S. Afshar

D. Agrawal

A. Andrews
Arvind

J.L. Baer

E.E. Balkovick
B.W. Ballard
U. Baner jee
J.A. Bannister
T.P. Barnwell
K.E. Batcher
H.K. Berg

T.S. Berk

S.Y. Berkovich
B Berra

A.T. Berztiss
B. Bhargava

L. Bic

A. Bilgory
J«.G. Bonar
F.A. Briggs
M.E. Brown
R.E. Bryant
F.J. Burkowski
S.E. Butner

P. Chan

K.M. Chandy
T.L. Chang
I.N. Chen

K.W. Chen

F. Chin

J.C. Chou

W. Chou

A. Chow

Y.C. Chow

T.W. Christopher
W.W. Chu

H. Chang

E.M. Clarke, Jr.
D. Cohen

S. E. Conry
F.C. Crow

K. Culik

D. Degroot

E. Dekel

N. Deo

N. Dimopoulos
P.J. Drongowski
M. Dubois

D.D. Dunlop
R.L. Earle
C.S. Ellis

LIST OF REFEREES

M Evens

G.M. Fachs

K.M. Falavar jani
J. Fawcett

D. Fisher

B.E. Flinchbaugh
C.C. Foster

C.R. Foulk

M.A. Franklin

. P. Frederickson

M. Freeman
H.C. Fu

D. Fussell
L.W. Fung
D.D. Gajski
D. Gannon
O.N. Garcia
H. Gerhauser
M. Gerla
B.K. Gilbert

M.J. Gonzalez, Jr.

R. Gordon

A. Gottlieb
P. Greene
J.P. Hayes
C.J.M. Hodges
L.A. Hollaar
P. Hsia

T.C. Hu

J.C. Huang

K. Hwang

K.B. Irani
R.C. Jaeger
R. Jain

B. Jayaraman
S.F. Jennings
A.K. Jones
H.F. Jordan
R.N. Kapur
S.P. Kartashev
J.L. Kennedy
D.S. Kerr

D. Klappholz
J.C. Knight
H. Kobayashi
H.S. Koch

M. Krieger

R. Kuhn

J. Kuo

A.J. La Salle
D.H. Lawrie
C.C. Lee

H. Lee

K.Y. Lee

D. Leinbaugh
S.P. Levitan
R. Lian

L. Lilien

S.L. Lillevic
J.J. Lin

M W. Linder
G.J. Lipovski
J.W.S. Liu
K.Y. Liu

T.S. Liu

V. Lo

T.N. Long

B.D. Lubachevsky
N. Magid

S. Makam

M. Malek

B. Malm

P.N. Marinos
R.C.0. Martins
R.J. McMillen
R.E. Merwin
J.H, Mirza

S. Mittal

C. Mohan

R.K. Montoye
W.W. Myre

A. Mukhopadhyay
K.J. Mundell
W. Murphy

V.P, Nelson
L.M. Ni

C.N. Nikolaou
A.A. Nilsson
E.D. Nugent
M.J. 0’Donnell
W.F. Ogden

Y. Oh

A.E. Oldehoeft
E. Oliver

T. Ozsu

D.A. Padua
E.W. Page

J.H. Patel

D. Paulish
D.J. Pease
C.E. Perkins
D.K. Pradhan
F.P. Preparata
R.W. Priester
C.S. Raghavendra
C.V. Ramamoorthy
J. Ramanathan
C.C. Reames

S.M. Reddy
A,P. Reeves
H.K. Reghbati
L. Rudolph
S.K. Sahni

A. Sameh

D.H. Schaefer
S.A. Schuman
K.G. Shin

S.G. Shiva
H.J. Siegel
L.J. Siegel
D.P. Siewioriek
A. Silbershatz
M.L. Skinner
B.W. Smith
C.H. Smith
D.R. Smith

L. Snyder

S. S. Soo

S. Sowrirajan
J. Spragins
V.P. Srini
J.A. Stankovic
N.C. Strole

S. Su

C. Sunshine
J.M. Surprise
P.H. Swain

E. Swartzlander
A.Y. Teng

G.S. Tjaden
H.C. Torng
W.N. Toy

R.H. Travassos
S.K. Tripathi
D.P. Tsay

L. Uhr

L.D. Umbaugh
A.V. Veidenbaum
P.S. Wang

D.F. Wann

R.G. Wedig

Y. Wei

B.W. Weide
H.0. Welch
L.D. Wittie
M. Wolfe

C.L. Wu

S.S. Yau

P.C. Yew

M. Yuschik

PARALLELISM IN COMPUTING

Sidney Fernbach
Control Data Corporation
Livermore, California 94550

Abstract. The parallelism in computers is
reviewed from the early systems, such as the
Univac I to the present day systems. Some degree
of parallelism has always existed, sometimes for
reliability, at other times for improved perfor-
mance. With the highly reliable components
currently in production, the main reason for
today's parallelism is to obtain as high a
performance as possible for the dollar.

There has always been a degree of parallel-
ism in digital computers as we know them today.
At first it was for reliability purposes, later
to achieve greater performance as well as for
reliability.

The first commercially available computer was
the Univac I designed initially for Census Bureau
work. It was designed as a decimal machine, hav-
ing 6 bits to represent alphanumeric characters.
Because of the fact that it used mercury delay
lines, the machine was highly serial, sending
bits down the delay lines one by one. On the
other hand, there was more duplication of curcuits
in Univac I than in most machines built since.
Checking was provided by automatic comparison
of results coming out of duplicate arithmetic
circuits. This of course was done for reliabil-
ity purposes, there being 5600 vacuum tubes in the
system. Incidentally this structure was also true
of the BINAC which was conceived earlier than the
Univac.

Other computers of the same vintage, (late
40's and early 50's) used either relays, drums
or delay lines and were in the most part serial
in nature. When the electrostatic tube came into
use, soon thereafter, most machines were binary in
nature; fetching, storing and operating on words
in a parallel mode. The earliest of these seem to
have been the Bureau of Standards SEAC and MIT
Whirlwind. Others soon followed -- mostly the IAS
family of computers as well as some of interna-
tional flavor such as those built in Manchester,
England. The commercial vendors quickly came out
with their version; IBM with the 701 and ERA with
the 1103. These were 36 bit binary computers.
For the most part these machines were highly
serial.

It was recognized even in the early 50's that
performance could be gained through more parallel
operations, but few designers or manufacturers
thought it imgortant enough to go all out for
performance. Early machines were pushed strongly
by the Department of Defense for use in crypto-
graphic work. Later the AEC, needing much high-
er performance than that made available with the
701/704 or 1103/1103A started to stir the pot with
specially built systems incorporating parallel
design. One of the first of these was the LARC.

A version of this was specified by the Lawrence
Livermore National Laboratory in early 1955.

0190-3918/81/0000/0001$00.75 © 1981 IEEE

It called for a number of processors sharing a
common memory. The initial specs were far more
demanding then those that ended up in the machine
that was finally built. They required both
binary and decimal arithmetic units, for example.
The final version was an all decimal machine
allowing for two CPU's and an I/0 processor

to function concurrently. Unfortunately there
never was enough money in the budget to acquire

a 2 CPU system, although hardware allowances

were made for the addition of a second unit. The
two LARC's eventually built and delivered (in
1960) had but one CPU and the one I/0 processor.
The memory of the system could have up to 39
independently addressable parts each of 2500
words for a total of 97,500 words. The delivered
systems had only 30,000 words. Input-output was
taken care of by the issuance of summary commands
to the processor unit. The CPU's alerted the I/0
Processor to their presence and also checked for
completion. Memory overlapping allowed for one
instruction to be executed while the operand
address was being transferred to/from memory

and the operand address of another instruction
was being indexed. The memory bus was time slot-
ted so that systems had access to one or more of
the 8 time slots of 0.5 sec. each.

The main back-up memory in this system con-
sisted of up to 24 magnetic drums which allowed
for 3 read and 2 write operations to take place
concurrently.

The IBM 7030 or STRETCH was designed and
built at the same time as LARC. It also incor-
porates a great deal of parallelism. The most
interesting is the look-ahead feature. While
one instruction is being executed several more
may be fetched and interpreted. Unfortunately
branching, if it occurs, forces the look-ahead
to undo what it had already done.

Another interesting machine designed in the
50's was the Gamma 60, designed by Compagnie
des Machines Bull in Paris. This system con-
sisted of a variable number of independent
and different processors, sharing common two-way
distribution busses. The processors did not have
to be identical; as a matter of fact there were
four different types. The Central Control Unit
had 2 major subunits, the Transfer Distributor
(TD) and the Program Distributor (PD). Priority
decisions were made in this unit, data transfer
requests being handled by the TD and instruction
requests by the PD.

Another interesting machine of the same
vintage was the RW-400 or Polymorphic Data
System. This was built by Ramo-Wooldrich
Computers. It used a large cross bar switch
to interconnect computer Modules/Buffer
Modules with peripheral device modules. One
of the computer modules acts as master and the

others as slaves. Any data from peripherals may be
requested, stored in a buffer module until needed
then moved directly to the requested computer
module.

The National Bureau of Standards also built
a multiprocessor called PILOT. It had 3 process-
ors, each different from the others. One process-
or was the arithmetic unit, another the house-
keeping unit and the third the I/0 processor.

The LARC and STRETCH served the scientific
world well for a number of years, despite the
fact that each had its problems and was delivered
late (1960-1961). By that time the transistor
generation was upon us and numerous highly capable
machines were on the market. None of them matched
the LARC and STRETCH in performance, but their
levels were gradually being reached. Some of
the features in these two systems crept into
others.

During this same period of time there were
non-general purpose commercial machines that were
also being built with parallel features, but I
am not going to discuss these here. For example,
FAA had a unique requirement for utmost reliabil-
ity and hence multiple systems usually were built
for this agency. Also the seismic industry had
great need for high performance 'vector'" type
of operations performed on Array Processors
attached to standard equipment.

The first big jump in performance by way of
concurrency after LARC/STRETCH was found in the
CDC 6600. This machine had 10 functional units
as well as 10 peripheral processors. Each
peripheral processor had its own memory for
programs and for buffer space. Each can interrupt
the central processor and monitor the central pro-
gram address. Each PP takes one minor cycle (100
ns) or 1/10 of the major cycle as its slot to per-
form one of its steps.

The functional units consist of 2 multiple,
2 add, 1 divide, 1 shift, 1 branch, 1 Boolean,
and 2 increment units which can be operating con-
currently, each being initiated at the start of a
minor cycle.

The 7600 was a follow on the 6600 with high-
er speed components. In organization it was very
similar. The chief difference was in the memory
organization, a high speed memory of 64K words
was backed up by a large 512K word slower memory.
Again parallelism came to the rescue. Eight word
"swords" could be read out of large core with one
instruction. There was also a high speed swap
that enabled communication between the two memor-
ies to permit operations at high speeds. The 7600
was about 5 times the 6600 in performance. IBM
had less parallelism in its equivalent level mach-
ines named 360/91(95) and 370/195.

Even as these machines were being designed
and built, there were other efforts to provide
even greater parallelism. Dan Slotnick, from
whom you will hear the historical background in
more detail and with more accuracy, had designed a

system he called SOLOMON. This was accomplished
while he was at Westinghouse, although the ideas
had been percolating in his mind while he was
still at IBM.

This system was to have 1000 processors,
each with its own memory operating in unison
at commands of a central instruction issuing
unit. They worked in lock-step fashion, such
that, when an add instruction came along, each
did its add using operands in its own memory,
concurrently with the others. Thus a factor
of 1000 could be achieved in performance over
a single processor (if all could be in operation
simultaneously). There was a lockout feature,
so that if 1000 pairs of operands were not
available, some processing elements would remain
idle. To handle certain types of mathematical
problems more effectively, each processor was
enabled to communicate with its 4 nearest
neighbors.

The Lawrence Livermore Laboratory initiated
attempts to have DOE (then AEC) order a system
from Westinghouse. Unfortunately, when the
top management at Westinghouse learned how much
money IBM and Univac were supposed to have lost
on STRETCH and LARC, respectively, the corporation
got cold feet and backed out. LLL, being still
interested in the concept of parallel processors
tried to find other manufacturers to build a
system. IBM showed some interest and had one
of its excellent architects, Jim Pomerene design
a SOLOMON-like machine. It incorporated all the
latest technology IBM had come up with for the
360/90 system. Instead of 1000 processors,
only 32 were proposed, but these were each very
powerful units in their own right. This PNDC,
as it was called also never saw the light of day.
Other computer researchers and designers at IBM
decided that pipelined structures were better
than a parallel network of processors. They con-
vinced the IBM management to give up PNDC. For
a time this seemed like the end of the road. DOE
(AEC), NSF, and ARPA representatives met to dis-
cuss the situation and to decide whether it might
be possible to join forces in having a SOLOMON-
like machine built. ‘Before either AEC or NSF
could collect its resources, ARPA, with Ivan
Sutherland in the lead was off and running.

John Foster, who was head of D.D.R. and E. in-
vited a group of "experts' in to decide on
whether or not to fund such a computer. The
decision was "go'". The resulting machine was
ILLIAC IV, originally intended for Dan Slotnick's
lab at the University of Illinois, but installed
upon completion at NASA/Ames in California in-
stead. The initial intent in this system was to
have 256 processors, each with 2000 words of
memory. Because of rising costs, the number of
P.E.'s was reduced to 64.

One interesting feature of the ILLIAC IV
which does not usually get much attention is the
high performance disk associated with it. Early
in the actual operation of ILLIAC IV, it was found
that the 2000 word memory was too small, so the
disk-file subsystem actually was made the main8
memory. There were dual files, each with 5X10

bits of storage capacity and each being to sustain
a data flow rate of 500 megabits/sec. Since the
data path to the array was 1 billion bits wide,
it was possible with proper synchronization to
obtain a very high band width interchange with

the processor memories. Used this way, the

Illiac IV, for certain problems demonstrated
performance not yet matched by more modern
computers.

When Illiac IV was contracted for and got
under way, it was considered an experimental ma-
chine. The intent was to learn to use such a
system for solving large scale problems which kept
growing in size. Since there was the chance for
failure and since other concepts like '"pipelining"
were being proposed, LLL with the consent of AEC
decided to try the alternate route of the pipe-
lined machine. Again this was to be experimental.
A contract was negotiated between LLL and Control
Data Corporation which resulted in the STAR-100
computer system. Simultaneously, Texas Instru-
ments which was involved in the early work on
Illiac IV became interested in building a
"pipelined' machine. With internal customers
initially, T.I., went ahead with the project that
resulted in the Advanced Scientific (or Seismic)
Computer (ASC). Both of these machines had
multiple pipe capabilities; the STAR relied
on external processors to handle I/0, the ASC had
its own peripheral processor. Performance on
these machines for highly vectorized problems
was very good. Scalar capabilities were very
poor.

Overall impressions left with the computing
community concerning the vector computing systems
of the late 60's - early 70's were bad. Only
one Illiac IV, 4 STAR - 100's, and 7 - T.I. -
ASC's were delivered. It wasn't until the late
70's that faith was restored in high performance
machines. Seymour Cray, now of Cray Research,
Inc., was able to build a high performance scalar
system thoroughly integrated with a vector system
into a beautiful package. Now, scalar problems
could run faster than on any other system, and if
any degree of vectorization was possible, the
additional parallelism improved performance
substantially. Each, the scalar and vector
processor had functional parallelism as well.
Chaining of vector operations was also possible.

The realization of the need for scalar
processing did not go unnoted by CDC. A new
machine was designed to replace STAR-100. This
was done in two steps. The first, resulting
in Cyber 203 added a scalar unit to the two-pipe
vector system and at the same time replaced the
original core memory with a speeded-up semi-con-
ductor memory. The second step resulting in the
Cyber 205, replaced the vector unit with a faster
LSI unit, now with up to 4 identical pipes.

Not to be outdone by the others, Burroughs
Corporation, who had built the Illiac IV now
decided to build a much superior version, named
the Burroughs Scientific Processor (BSP). This
machine was designed to have 16 processors. A new
algorithm was employed in this system to permit

access to memory with no conflict. This time the
memory was accessible to all processors. Two
levels of memory were employed; 524 K words of
parallel processor memory and 4 M words of file
memory. There were in addition to the central
processor, an I/0 processor and maintenance
processor also. It was even possible to have two
BSP systems tied together with a system manager.
Actually the system manager was the front-end
standard B7800 computer system. In this pro-
cessing system there was no real scalar processor;
one had to rely on the frontend. In this descrip-
tion I have used the past tense, because as of
this time the BSP has been abandoned as a

product.

Burroughs is not quite out of the large
scale parallel processor design completely,
as yet. There is an on-going effort to design
a 1 Gigaflop machine for NASA/Ames to carry
out Navier-Stokes calculations. This machine
as described in earlier papers has 512 processors
working concurrently. This may change, of course
in this final year of preliminary design. Bur-
roughs is competing with Control Data for this
NASA contract; the Control Data design is more
along the lines of the Cyber 200 series of
machines. Burroughs has had much more experience
in parallel systems. Besides the above mentioned
systems, the Corporation built a PEPE prototype.
This was a machine originally designed by the
Bell Telephone Laboratory for use in Ballistic
Missile Defense systems. Whether there will be
a follow-on to PEPE is hard to say at this time.
This was also a multiprocessor.

Other parallel processors have been designed
and built primarily for special purposes such as
image processing. One is currently being con-
structed by Goodyear for NASA/Goddard. This is
a follow-on to a bit oriented machine called
the STARAN. ICL ‘in England also built a similar
machine with 4096 processors. This one is
called DAP -~ one is in operation at St. Mary's
College in London.

Because of the great strides made in
microprocessor development, performancewise as
well as costwise, there are any number of
attempts to assemble numerous microprocessors
in a multiprocessor system. As with most computer
concepts, multiprocessing is rather an old one.
Some early versions have already been mentioned.
Dual processors are commonplace, most manufac-
turers having tried their hands at these at
some time.

The most ambitious attempts have been made
by Carnegie-Mellon University, first with its
C.MMP having 16 minicomputers tied together
and later with its CM*, with 50 processors tied
together in a number of modules. The hardware
configurations are relatively easy to provide.

The software provided the rub. Good system
software and efficient algorithms for applications
are much harder to devise.

Other recent attempts to provide high
performance systems are those of CDC, Denelcor,

and the Lawrence Livermore Laboratory. CDC was
built and delivered and Advanced Flexible Process-
or (AFP) made of the same LSI components used in
Cyber 205. This system consists of 4 modules
each with variable functional units structured
in a ring type architecture. The initial system
was to be used for a special application and did
not need floating point. The Denelcor system,
also at this point in time designated in a 4
processor configuration is being constructed

for the Aberdeen Proving Ground to be used in
Ballistic Calculations. :

The Livermore system called S-1 is being
sponsored by the U.S. Navy to be used for signal
processing. In this case 16 memories are being
tied to 16 processors by a cross-bar switch.

Whether the parallelism being put into a
multiprocessor is capable of being effectively
utilized has yet to be demonstrated. Certainly

the availability of a large number of processors
at low cost implies that many can remain idle if
the overall performance can be increased. It
seems plausible that the future designs should
incorporate '"pipelined" processing in multi-
processing elements.

As for the future, we seem not to be making
as much headway as we should. Kung and his
systolic approach, Dennis and Company and their
Data-Flow concepts seem to have much merit. It
is too early to say that we will see such systems
before the 90's -~ but it seems unlikely. The
more ingenious young people in their experiments
with microprocessors no doubt will dream up
better ways of designing parallelism into
computers. Our main hope, however, is that
the problem designers and software experts will
help make it possible to take advantage of all
these concepts in the not too distant future.

HISTORY OF PARALLEL PROCESSING AT GOODYEAR AEROSPACE

W. C. Meilander
Digital Systems Marketing
Goodyear Aerospace Corporation
Akron, Ohio 44315

Abstract

Associative memories have been talked about
in scientific circles for a long time. This paper de-
scribes some of the first efforts to bring that talk
into the realm of reality. At Goodyear Aerospace,
we continue to develop techniques for fabricating
and using associative memories. The techniques
used in associative memories are presented, and
the disadvantages of the methods used at any time
are discussed. The associative memory (AM) logic-
ally leads to the associative processor (AP). Most
of the advantages of AM's are retained in AP's, and
many new capabilities are added. In fact, the AP
is becoming a very powerful tool in handling the
highly dynamic data bases of air surveillance and
command and control systems.

The associative processing effort is augmented
by the endeavors associated with the microcomputer
array processor (MAP) and the massively parallel
processor (MPP). The MAP and MPP broaden the
capabilities of parallel processing into the fields of
electronic warfare and image processing.

Background

Vannevar Bush made a strong case for asso-
ciative processors in 1945 1): "There is a growing
mountain of research. But there is increased evi-
dence that we are being bogged down today as
specialization extends. The investigator is stag-
gered by the findings and conclusions of thousands
of other workers - many of which he cannot find
time to grasp, much less to remember - as they
appear. Yet specialization becomes increasingly
necessary for progress, and the effort to bridge
between disciplines is correspondingly superficial."

Dr. Bush continues: "But there are signs of
change as new and powerful instrumentalities come
into use." He then discusses many of the discov-
eries made in the past few centuries that have led
to the increased activity of the 20th century. He
cites the importance of communication in the scien-
tific world with: "Mendel's concept of the laws of
genetics was lost to the world for a generation be-
cause his publication did not reach the few who
were capable of grasping and extending it; and
this sort of thing is undoubtedly being repeated
all about us, as truly significant attainments become
lost in the mass of the inconsequential."

Dr. Bush considers the applicdation of machines
to "logical processes" with "formal logic used to be
a keen instrument in the hands of the teacher in
his trying of students' souls." He then describes
approaches for selecting pertinent information from
the mass of data available. His discussion of "memex

0190-3918/81/0000/0005$00.75 © 1981 IEEE

instead of index" states: "Our ineptitude in get-
ting at the record is largely caused by the artifi-
ciality of systems of indexing. When data of any
sort are placed in storage, they are filed alphabet-
ically or numerically, and information is found
(when it is) by tracing it down from subclass to
subclass. It can be in only one place, unless dup-
licates are used; one has to have rules as to which
path will locate it, and the rules are cumbersome.

-Having found one item, moreover, one has to emerge

from the system and re-enter on a new path.

"The human mind does not work that way. It
operates by association. With one item in its grasp,
it snaps instantly to the next that is suggested by
the association of thoughts, in accordance with
some intricate web of trails carried by the cells of
the brain. It has other characteristics, of course;
trails that are not frequently followed are prone to
fade, items are not fully permanent, memory is
transitory. Yet the speed of action, the intricacy
of trails, the detail of mental pictures, is awe in-
spiring beyond all else in nature.

"Man cannot hope to fully duplicate this mental
process artificially, but he certainly ought to be
able to learn from it."

Early Effort

Many have agreed with Dr. Bush. Activity
has continued since 1945 to develop the concepts
espoused by him. These efforts, at best, only
scratch the surface of the thoughts in Dr. Bush's
paper. Yet, they appear to offer relief from some
of the laborious indexing tasks that are bogging
down our present endeavors to retrieve relevant
data from an ever-increasing data base. An asso-
ciative memory offers a system that allows retrieval
of related data from a memory based on the data
content in the memory. This can be understood
when it's realized that an associative memory can
directly implement a relational data base. In this
context, the machine appears to emulate capabilities
of the human mind.

Slade and McMahon d?igribed a cryotron cata-
log memory system in 1956'“/. This paper is gen-
erally accepted as the earliest record of a hardware
approach to the problem of searching memory by
content instead of address. The Western Reserve
University (WRU) search selector, discussed below,
may be an earlier effort.

In 1958, Goodyear Aerospace - while working
with the concepts of associative memories - held a
number of discussions with Dr. Jim Perry and Dr.
Allen Kent. Perry and Kent were working with
the techniques of information retrieval at the School

of Library Sciences at Western Reserve University.
Their work covered one of the earliest associative
processors fabricated. The concepts of their ap-
proach were presented in 1955. The machine de-
veloped was called the WRU search selector. It
was designed to search a document data base.

The search selector(3) (Figure 1) was design-
ed and built by Perry in 1956. It was a relay ma-
chine and used a Flexowriter tape reader to input
the data base to be searched.

Fig. 1 - Western Reserve's Search Selector

The data base was formed from information ab-
stracted from documents by knowledgeable review-
ers. Keywords of the abstract were encoded (often
by the same reviewers) via a dictionary into four
character groups. The encoded information along
with the document accession number was stored on
punched paper tape.

Queries were encoded using the same diction-
ary. The queries were stored in the search selec-
tor. Ten independent queries could be entered at
one time. The system provided for queries using
logical AND, OR, and EXCLUSIVE-OR operators
and combinations of these operators. The search
selector program was entered through the patch
cord system shown in Figure 1. After the query
was programmed, the punched paper tape data file
was passed through the system. Whenever a query
was satisfied, the document accession number was
read from the tape and typed along with the num-
ber of the query. The machine was used for sev-
eral years in searching a file of documents for mem-
bers of the American Society of Metals. A General
Electric 225 computer replaced the WRU search
selector about 1960.

Why Associative Memories?

The concept of associative memories derived
from many different requirements. In the WRU

machine, it was used for evaluating a coded re-
quest against a file of coded documents. In many
other cases, the requirement, similarly, stemmed
from the desire to search unordered data. At
Goodyear, efforts were underway to find a method
for locating items in memory on the basis of mem-
ory contents. This early activity was prompted by
a desire to examine the present position of a large
number of simulated targets being updated through
a digital differential analyzer. The goal was to lo-
cate and display each target at the proper time as
a simulated antenna scanned the space. The store
would be searched in the azimuth field for the cur-
rent azimuth and the associated target range read
for display. The search needed to be completed in
a few microseconds. We wanted a faster approach
than software could provide.

Software Approaches

Software associative searches were performed
in sequential machines when the amount of data
stored was small. Breakthroughs in list processing
were achieved when such techniques as hash cod-
ing, chained lists, and inverted files were imple-
mented. These techniques eliminated the need for
laborious searches of unorganized data (unless the
field you were searching was not a key field).
They also generated the complex file structures in
use today, with their attendant complex update
problems. The user does not realize the extent of
the management software, since these complex file
management structures are often a part of today's
operating system.

Hardware Approaches

The desire to break away from the limitations
of the sequential processor prompted much effort in
the early 1960's. At that time, hardware techniques
were advancing, and a variety of associative de-
vices were suggested. Prominent among these were
cryotrons, tunnel diodes, magnetic cores, magnetic
films, and multiaperture magnetic devices.

In 1959, Goodyear Aerospace began using
multiaperture magnetic devices in associative mem-
ories. Several problems existed in the application
of magnetic devices to associative memories:

1. A non-destructive method for evaluating
the storage state must exist. (When magnetic cores
are used for storage, a chosen word was destruc-
tively read and rewritten. If one were to interro-
gate an entire core memory, as is necessary in an
associative memory, all data must be read and re-
written simultaneously, which would be impractical.)

2. A low signal~to-noise level exists when a
magnetic device is non-destructively interrogated
(pulses of short duration must be amplified and
distinguished from noise).

3. High energy is required to change the de-
vice state. This is true of all ferrite storage sys-
tems.

4. Switching times of the storage elements are
relatively slow compared with other devices such as
the cryotron.-

To evaluate multiaperture magnetic devices
for associative memories, transfluxors were pur-
chased from RCA. Limitations of the transfluxor
led to the development of a multiaperture logic
element (MALE) (see Figure 2) and a model content
addressable memory using the MALE.

The MALE(4) provided for storage of data in
a word direction. A simultaneous exact match
search of all stored words in memory could be re-
alized. The MALE could be interrogated non-de-
structively and provided an EXCLUSIVE-OR oper-
ation. Initially, a response store was set for each
word. The interrogation was made and reset the
searched word that did not match the.query word.
The words that remained matched the query. In-
terrogation time of the MALE was about five micro-
seconds. Limit searches in the MALE proceeded on
a bit serial basis (five microseconds per bit).
Greater than or less than search used the EXCLU-
SIVE-OR logic, at the stored bit level, to test the
memory state for either greater than or less than
the input argument.

“
.
< a
<<
——o
RE

w
it

SET Dl

g{azsn} ! ' H
:.L— 8 g

B
o-»

—
.
u]'._
o—r]
@
p-]
]

0N MAJOR LOOP
A
A
A
3

1IN MAJOR LOOP
A
]
m
n
a3
3

3

m

=

3-‘
— Q|+ > —>->D|>
— - | > —>cD3—> |0

Dh D |- BD G|
QD - t— o | — ¢ +— @ o |o

Fig. 2 - MALE Flux-State Diagram

Search Memory

The MALE was used to implement an associa-
tive memory for evaluation with the U. S. Navy's
USQ-20. The search memory(5) (Figure 3) had
256 words with 30 bits per word. A block diagram
of the search memory is shown in Figure 4. The
machine instructions included write, erase, exact
match search, greater than search, less than search
and a number of optional instructions, no response
required, response required, mask, no mask,
count responders, etc. The memory was delivered
in 1963.

Fig. 3 - Search Memory

1 | | 4
i Lo i
! INPUT/OUTPUT Jo- : .
| 1
i ' !]
v ¥ y v 3 i
[INsTRUCTION REGISTER | [COMPARISON REGISTER| [MASK REGISTER] i
i
1
CONTROL i
]
1
——»{mEMORY]
ADDRESS | i lpgrs—s| | |RESPONSE| ' |RESPONSE [
SELECTION ! [256 WORDS « |STORE | |RESOLVER
MATRIX H ; N

Fig. 4 - Search Memory Block Diagram

The MALE elements used in the NTDS search
memory were difficult to fabricate; thus, a search
was conducted for more readily available elements
to implement the EXCLUSIVE-OR function. As a
result, it was found that a conventional toroidal
core could be interrogated without destroying its
state.

BILOC

A toroid can be non-destructively interrogated
using cross field switching techniques (6,7). How-
ever, the high cross field current, low signal level,
and critical wire alignment mitigate against good
performance. Apicella and Franks(8) discovered
that applying a transverse bias field to the core
reduces problems.

The static bias field results in:

1. A reduction of core switching time to about
one-third of the unbiased switching time.

2. An order of magnitude increase in the
cross field non-destructive output voltage.

3.. The ability to achieve a logical EXCLU-
SIVE-OR function in the core.

Thus, a storage/logic element is produced
that (1) can store a state, (2) be non-destructively
interrogated, and (3) can provide a match or no-
match comparison between the stored state and the
interrogation. That is, the Boolean expression
AB + AB produces zero output, and the expression
AB + AB produces a one output. A is the query
state, and B is the stored state.

This element, a biased logic core, was named
BILOC. BILOC required very fast rise time pulses
since the output voltage existed only during the
pulse rise (or fall) time. Pulse rise times of the
order of 20 nanoseconds and currents of about one
ampere were used. The transverse bias field was
of the order of 100 oersteds.

RADC Associative Memory

BILOC was used in implementing and deliver-
ing an associative memory in 1966 to the Rome Air
Development Center.2 The RADC associative mem-
ory had 2048 words of storage. Each word was 48
bits long. The associative memory was coupled via
DMA to a CDC 1604B host computer. In operation,
data to be searched was moved from the 1604B to
the associative memory. The queries were then
moved from the 1604B to the associative memory
along with a response request. Results were trans-
ferred from the associative memory to the host
1604B.

A comprehensive set of instructions provided
for conventional read/write of the memory and a
set of logical interrogations, which included:

1. Input interrogand, equal, not equal,
greater than, greater than or equal, less than,
less than or equal, next higher value, and next
lower value.

2. Find the maximum or minimum value.

3. Resolve instructions such as read first/
next responder address or data, count responders,
jump on no response (or its inverse).

4. Write next available location or write at
given address.

5. The capability of concatenating searches
to implement complex searches.

The RADC associative memory brought out
several facts. Among these were:

1. The desirability of dropping the parallel
search capability since only exact match searches
could use this feature.

2. The desirability of processing selected
entries in memory. Since transferring them to the
host required time, the associative memory could

2Contract AF30(602)-3549.

operate at only 35 percent of its capability because
of the necessity for input/output.
3. The desirability of a wide band I/O path.
4. The desirability for an internal program
store to minimize I/O with the host machine.

Associative Processing

These facts led to a goal at GAC; namely, to
achieve full parallel processing within the associa-
tive memory. That is, make it a true associative
processor. The associative processor would accept
unprocessed data at its input and produce pro-
cessed results at the output, thus greatly reducing
the input/output requirements and making greater
use of the machine's capability.

However, the extremely high energy demands
for the simultaneous write of 2048 cores needed to
realize associative processing necessitated a search
for a storage medium that was more easily alter-
able. The search led to plated wire. Plated wire
offered the features of relatively low interrogate
and write currents and was easily fabricated in our
laboratories. Goodyear Aerospace conducted plated
wire R&D from 1965 until 1969.

Plated Wire Associative Processor

In 1969, Goodyear Aerospace examined an air
interceptor processing task and demonstrated a
plated wire associative processor(lovll»lz:B) .
The machine used a bit slice-oriented organization
(Figure 5). The bit slices could be interrogated
at a 100-nanosecond rate. Input was either to a
bit slice or to any 16-bit word location in the ar-
ray. Output from a selected word in the array was
bit serial. In addition to conventional read and
write operations, the array performed a large set
of search, logic, and arithmetic operations at high
speeds.

TO/FROM CONTROL UNIT
INTERROGATE A
DRIVERS 7~ \

1]2]3]a] [5[5]
l -

WORD 1

2 PARALLEL

» INPUT/
OUTPUT

WORD 2

f
Ve VAVAN

]‘l.-__ LI

t
| PLATED WIRE ARRAY

WORD 128

Fig. 5 - Bit Slice-Oriented Organization

Search operations are exact match with com-
parand, mismatch with comparand, greater than
comparand, less than comparand, between limiting
comparands, search flag, maximum value, and
minimum value.

Logic operations are set response toggles,
reset response toggles, complement toggles, shift
response toggles, write flag from response, and
write common to selected words.

Arithmetic operations are add common argu-
ment, subtract common argument, add memory
fields, subtract memory fields, multiply memory
fields, divide memory fields, multiply by common
argument, and divide by common argument.

The Knoxville Experiment. The plated wire
associative processor, under contract to Univac,
was programmed and installed at the Knoxville,
Tennessee, air traffic control terminal. Several
firsts were realized for this FAA installation. They
were: automatic track initiation and update on bea-
con and primary radar reports, automatic turn de-
tection, Mode C altitude tracking, air-to-air con-
flict prediction, conflict resolution, and automated
voice advisory warning against other aircraft and
terrain.

The plated wire associative processor had
several drawbacks. Among these were the lack of
production wire for the memory, the small signal
output from the wire, and the requirement for bit
serial readout of data from the array.

Early Integrated Circuit Efforts

About 1970, LSI content addressable memories
(CAM) began to appear from companies that had
integrated circuit capability. These CAM's offered
advantages over plated wire such as low switching
current, high speed, and parallel readout. But
there were problems.

A study by Shore and Polkinghorn(14) con-
sidered a word-parallel, bit-parallel LSI associative
processor. This cellular organization required
about 130 transistors at each bit of storage and
would provide parallel limit search and arithmetic
operations (this is in contrast with the serial oper-
ations Goodyear Aerospace had been using). Later,
Shore concluded in a paper(15) entitled "Second
Thoughts on Parallel Processing" that parallel com-
puters would be extremely expensive and could
never compete with the conventional processor.

His results seem correct when based on the cellu-
lar organization he had earlier studied. The gen-
eral conclusions reached in Shore's "Second
Thoughts" paper apparently assumed that all paral-
lel processing hardware would require logic at the
bit level.

If processing hardware in a parallel machine
is implemented within storage at the bit level, then
system cost increases nearly linearly with the
amount of storage as Shore's paper indicates.
Further difficulties ensue because of the necessity
to access each stored bit in both the word and bit
direction. Figure 6 shows an organization for a
content addressable memory. The cost of imple-
mentation was quite high. For example, wiring a
CAM using a typical CAM chip of 64 bits required
3b+2w+8c connections, where b is the number of
bits, w is the number of words, and c is the number

| auery/iNPUT REGISTER
BIT—{BIT
ware [L] 12 QUERY
SELECT BIT Bnr—-— RESPONSE
—{ 21| {22]
REGISTER| || REGISTER

BIT

—{nm

l

| ReAD REGISTER |

Fig. 6 - Content Addressable Memory Organization

of chips needed. Then, making an array of 256
words by 256 bits would require 2304 leads. Good-
year Aerospace concluded that this would be an
unsatisfactory approach. A search for a method to
use conventional memory devices in a bit or word
mode was realized in Batcher's invention of the MDA
memory and flip network(16,17) | These inven-
tions had their genesis in Batcher's work on sorting
networks .

Integrated Circuit Associative Processor

The MDA memory and flip network allowed con-
ventional memory chips to be written in a word mode
and read in a bit slice mode or vice versa. The in-
ventions yielded an associative memory capability
with only slightly greater amounts of hardware than
a conventional memory. An associative processor
was easily realized with a simple bit serial process-
ing element (PE). One PE configuration is shown
in Figure 7. The PE logic functions are given in
Table 1.

SHIFT NETWORK

PROCESSING ELEMENT
|

——i MDA STORAGE '———'

| ASSOCIATIVE ARRAY

Fig. 7 - Associative Array Block Diagram

TABLE 1 - LOGIC FUNCTIONS

COL 24 | 25] 26 24 [25|26 | 24 |25 | 26 24 |25 26 24 [25 | 26
Common Register Bit=1 16 | 17] 18] 19| K3X |K3Y| K4 | K3X |K3Y| K4 | K3X |K3Y| K4 | K3X |K3Y| K4 | K3X |K3Y| K4
Common Register Bit=0" 20 | 21
Logic Function NI |NK
Exclusive OR Complement F ojlojo]o X YoF | XoF Y XOF | YOF XOYF Y X@OYF |YOF
Inclusive OR Complement F ojojo|1 X YvF XvF Y XvF YvF XvYF Y XvYF YVF
Logical AND ojoj1]o X YF XF Y XF YF YXvXF Y] YXvwXF | YF
NO-Op ojof1]1 X Y X Y X Y X Y X Y
Load Complement F oj1]0]o0 X F F Y F F IXvYEF | Y| YXvYF | F |
NOT-Inclusive OR of1jo}1 X YF XF Y XF YF YXvYXE | Y| YXvYXF | YF |
AND Complement F oj1{1]o0 ‘X YF XF Y XF YF YXvXF Y TXvXF YF
Clear to Zero oj1|1]1 X 0) Y 0 0 < Y X 0
Input (F) 1lofo]o X F F Y F F YXvYF Y] WXvYF F
Inclusive OR 1{0j0}1 X YvF XvF Y XvF YVF XvYF Y XvYF YvF
NOT AND Complement F 1{oj1]o0 X YvF | XvF Y XvF YvF | ¥XvYFvYX| Y [¥XvYFvYX |YvF
SET to One 110]1¢1 X 1 1 Y 1 1 XvY Y XvY 1
Exclusive OR . 1l1fo]o X YOF |XoF Y XOF | YOF XOYF Y XOYF |YOF
NOT Inclusive OR Complement F| 1] 1] 0| 1 X YF XF Y XF YF YXvYXF Y | YXvYXF YF
NOT AND 1110 X YvF |XvF Y XvF YvF JYXvYXVvYF | Y |¥XvYXVvYF [IvF
NEGATE 111}t X Y X Y X Y YoOX Y YOX ¥

@ Exclusive OR
v Inclusive OR

- Complementation

Design of a solid-state associative processor
began in 1971. The first STARAN system(19) was
completed in April 1972 and was demonstrated at
the International Air Exposition "Transpo 72" at
Dulles International Airport. A STARAN B system
is shown in Figure 8.

Fig. 8 - STARAN B System

The demonstration showed the capability of an
associative processor to handle the air traffic control
(ATC) processing requirement. Figure 9 shows the
program flow in the STARAN S-500 programmed to
operate with up to 500 aircraft tracks. In this sys-
tem, digitized radar reports were received via data
link from an ARSR radar site. This was supplement-

10

F :Bit from input network (Source determined by bits 29-31 of Associative Instruction Format)
X :0ld State of X - Response Store Register
Y :01d State of Y - Response Store Register

ed by the generation of 250 simulated tracks based
on 250 four-leg flight plans entered into the machine.

The ATC operations performed are listed below.

Radar input processing
Primary 2D tracking
Secondary 2D tracking
Altitude tracking (Mode C)
Flight plan update

Target simulation
Maneuver detection

. Conflict prediction

.~ Conflict resolution
Automatic voice advisory
Keyboard processing

Full digital display processing

DA

O 0= WIN

The system was set up and demonstrated with
live radar in six locations in the United States and
Canada. The demonstration could be speeded up,
in simulation, by a factor of 30 times. This yielded
effective performance as if:

e 7500 flight plans were updated per 10-second
scan

e The new flight plan position generated 7500
radar reports, which were used to update 7500
tracks

e 30 displays were being driven by the system.

In 1972; another R&D effort - a "real" rela-
tional data base - was implemented in STARAN.
The system used a parallel head disc and retrieved
and ent?red data based on the content of the stor-
ed data 20)

STARAN B installations were made at Rome
Air Development Center, Defense Mapping Agency,
Engineering Topographic Laboratories, Johnson
Space Flight Center, and Goodyear Aerospace.

I
DATA
LINE

DATA PATH

DATA LINE ——— CONTROL PATH
SC SEQUENTIAL
EXECUTIVE CONTROL PROCESSOR
-== TeLeTvee SCq SCle on-Line SC AP e
: CONTROLLER DEBUG AND
l TAPE s¢ —» e -|- ») uriLity ® EXTERNAL DEVICE
A | READER/PUNCH PACKAGE
1
! 1 CLOCK
; | INTERRUPT
|
sC sc sc @
DATA LIVE DATA KEYBOARD
RECEIVER |- — INTERRUPT |4 ATC < INTERRUPT ¢ -~ ARTS IO
ASSEMBLY HANDLER HANDLER KEYBOARD
T 1
r _______ P | | I 1
1
! = ava SC€ H F
!
: ————— ;f::L.EATnoN < AUTOMATIC SB?ETEALK | ART 1T
v ROUTINE VOICE ADVISORY | [yiT 1 DISPLAY
| | DRIVER |
| i x 7'y 1
\ 2 [L o — A 2 | DMA
AP k -]l pispLAY AP
TRACKING T 1 DRIVER
| 1
r=——=-==-"" [A |
: | 1 A 4 1 T
| AP AP AvA AP H
o CONFLICT ___al conFLicT | |
I P crepicTION P RresoLuTioN P MESsAGE |
I SELECTOR !
|
| T T T 1
N, Y Yy Y _ -

Fig. 9 - STARAN S-500 Program Flow

(1) AWACS pa551ve(24) and
(2) data base mana%ement

processing

Many applications were studied or were programmed.
Some of them are for the space environment; catalog
maintenance; detection and surveillance; weapons

support o
status

b};ect

identification; and sensor systems
A number of suggestions about
STARAN B were incorporated in the STARAN E:

ajctlve(ZS) tracking,
, and (3) image

STARAN E

STARAN B was followed by STARAN E in 1975.
STARAN E provided improvement over the earlier
STARAN B in several areas (Table 2).

TABLE 2 - STARAN B/STARAN E COMPARISON

Item STARAN B STARAN E

Array page size 256x256 256x256
Max storage/array 1 page 64 pages
0.008 Mbytes 0.5 Mbytes

Parallel I/O data rates
Cycle steal
Host interface
Proc-to-memory bandwidth
Processing rate (ops/sec)
16-bit add

16-bit search

80 Mbytes/sec

No

Slow

80 Mbytes/sec

ll.5x106

48. 0x106

Yes

Fast

80 Mbytes/sec

215 Mbytes/sec

6

15.4x10

60. 6x106

11

Microcomputer Array Processor (MAP)

Goodyear Aerospace's activities in electronic
warfare led to a number of studies of parallel
processing for the EW requirement. These efforts
led to the MAP digital processing system designed
for electronic warfare applications. This system
is comprised of two major subsystems: a preproces-
sor that is a digital tracking device and a multi-
processor that is a programmable computer sub-
system. The preprocessor compares each digitally
encoded radar pulse intercepted by the receiver
system against a file of emitters being tracked by
the preprocessor. Limit searches of frequency,
pulse width, and angle of arrival as well as PRI
tracking are used in the association process be-
tween intercept and emitter. The current feasibil-
ity model of the preprocessor is a microprogram-
mable device that can process in excess of 300,000
intercepts per second from several hundred emit-
ters in real time. Expansion to several million in-
tercepts per second from a thousand emitters is
possible.

The multiprocessor subsystem finds emitters
among the intercepts that fail association in the
preprocessor. This subsystem (Figure 10) con-
sists of a number of independent processors that
concurrently work on the emitter establishment
problem. Each processor is a 32-bit programmable
computer with its own dedicated memory and a
capability to execute approximately four million
instructions a second. In addition to the dedicated
memory, each processor can communicate with
numerous banks of global memory. The various
global memory modules and their communication
structure serve to tie the individual processors
together in a symmetrical multiprocessor computer
architecture. The multiprocessor system is modu-
lar and can contain as few as two and as many as

MICROPROCESSOR-1

ol
! [PrROGRAM |
i cPu1 [
i | MEmoRY I ¥
g =
,.{ PORT I
remm s -
]]
| [PROGRAM 1
MEMORY cru2 X
L]
[]
> L]
e o0
PROGRAM .
MEMORY CPUn
PREPROCESSOR
l::. ¥ ¥
PORT PORT J PORT
I INPUT/OUTPUT } J
GLOBAL
MEMORY
BANK-1 BANK-2 BANK-i

Fig. 10 - MAP Architecture

12

eight processors coupled with from 1 to 16 banks
of global memory. A 32-million instructions per
second execution rate is achieved. Expansions
beyond these limits are possible if every proces-
sor does not have to access every global memory
module. A four-processor system (with three
banks of global memory) was installed at Wright
Patterson AFB in 1979 for use by the Air Force
Avionics Laboratory. This system can execute
approximately 16 million instructions per second
and support a memory access rate of 20 million
words per second.

Airborne Surveillance

The capabilities of associative processing led
to a study of its potential in the airborne surveil-
lance environment. The study showed that the
associative processor could augment a conventional
airborne processor. Many of the inherently paral-
lel functions such as report correlation, tracking,
and display processing could be performed in the
associative processor. Processing throughput
could be increased by more than an order of mag-
nitude.

A second study demonstrated the expected
benefits. This was accomplished by interfacing
a STARAN E to the host computer and by pro-
gramming the machine to carry out many surveil-
lance functions. A parallel effort was conducted
to develop a processing element chip. The chip
development was necessary to realize the associa-
tive processor capability within the very limited
space (less than 0.5 cu ft) and power (less than
320 watts). The chip, using CMOS/SOS technol-
ogy, was successfully fabricated by Rockwell
International and demonstrated 11 months after
the development was started.

Goodyear Aerospace is currently under con-

tract from Grumman Aerospace to design and build
a number of prototype ASPRO units.

ASPRO Organization

A block diagram of ASPRO(21) is shown in
Figure 11. ASPRO is divided into five function-
al subsystems:

1. Control memory contains both program
and buffer memory and is also connected to a host
computer to allow for data, control word, and
status transfer.

2. Program execution control is responsible
for maintaining the correct program flow by execu-
ting program branches and returns as required
and establishes correct timing and interlocking of
the operation to be performed as defined by the
instructions.

3. Data path contains the working registers
and an arithmetic unit. All data to and from the
control memory and/or the array is passed through
this portion.

4. Array control identifies the array oper-
ation to be performed and supplies correctly syn-
chronized control signals to the array.

DATA DATA
MEMORY CONTROL MEMORY
BUS A GC= wemonv -— BUS B
£ DATA
©
z
-
o
z 13
=y -
£ £
ARRAY PROGRAM o DATA
CONTROL < | EXECUTION — PaTH
CONTROL
"
o
= <
z -
IE I
S o
=]
U
ARRAY UNIT

Fig. 11 - Block Diagram of ASPRO

5. Array unit is made up of 17 array mod-
ules. Sixteen modules of 128 words each make up
the 2048-word array. The spare module may be
switched in should one of the basic modules be
found in error. Each module includes a 128-word
by 4096-bit array of solid-state multidimensional
access (MDA) storage and 128 processing elements
(PE's).

The array consists of four basic components:
array memory, flip or permutation network, pro-
cessing elements, and resolver. Access can be
made in either the bit or word direction, depend-
ing on the mode bit of the instruction.

Massively Parallel Processor (MPP)

In December 1979, NASA Goddard awarded a
contract to Goodyear Aerospace to construct a
massively parallel processor (MPP) to be delivered
in the fourth quarter of 1982. The MPP was de-
veloped for image processing satellite data. The
expected workload is between 109 and 1010 opera-
tions per second.

The major components of MPP are shown in
Figure 12. The array unit (ARU) processes ar-
rays of data at high speed and is controlled by the
array control unit (ACU), which also performs
scalar arithmetic. The program and data manage-
ment unit (PDMU) controls the overall flow of data
and programs through the system and handles
certain ancillary tasks such as program develop-
ment and diagnostics. Three staging memories
buffer and reorder data between the ARU, PDMU,
and external (host) computer.

13

==t =
Saad Ry
=] —=3
128-31T
128-BIT |, 2 | louteur
INPUT w RRAY UN ARU) P INTERFACE
INTERFACE | & ARRAY UNIT (5
S 3
]
4 e
Tt
} =5 = |
(= =5
STAGING l STAGING
MEMORY CONTROL * STATUS MEMORY

ARRAY CONTJROL
UNIT (Acu
PROGRAMS] I
U DATA controL Y| STATUS A

| PROGRAM AND DATA ==
‘ ?ANAG;MENT UNIT

PDMU
DISK ALPHA- LINE

¥:ggETlC NUMERIC PRINTER
TERMINAL

\———————— EXTERNAL COMPUTER :::'JJ

Fig. 12 - MPP Block Diagram

Array Unit 1

Logically, the array unit (ARU) contains
16,384 processing elements (PE's) organized as a
128 by 128 square. Physically, the ARU has an
extra 128 by 4 rectangle of PE's that is used to re-
configure the ARU when a PE fault is detected.
The PE's are bit-serial processors for efficiently
processing operands of any length. The ARU has
a very high processing speed (Table 3). The
bandwidth between PE's and memory is 1.6 x 1011
bits per second.

A study showed the desirability of making
edge-connectivity a programmable function. The
top bottom and right-left edges can either be con-
nected or left open. A spiral mode connects the
16,384 PE's together in one long linear array.

1/O for the array is up to 160 Mbytes per
second and can be transferred through the ARU
I/0 ports. Processing is interrupted for 100 nano-
seconds for each bit plane of 16,384 bits trans-
ferred - less than one percent of the time. The
96 boards of the ARU are packaged in one cabinet.
Forced-air cooling is used.

Array Control Unit

Like the control units of other parallel pro-
cessors, the array control unit (ACU) performs

TABLE 3 - SPEED OF TYPICAL OPERATIONS

Execution
Operations Speed*
Addition of Arrays
8-bit integers (9-bit sum) 6553
12-bit integers (13-bit sum) 4428
32-bit floating-point numbers 430
Mulitiplication of Arrays
(Element-by-Element)
8-bit integers (16-bit product) 1861
12-bit integers (24-bit product) 910
32-bit floating-point numbers 216
Multiplication of Array by Scalar
8-bit integers (16-bit product) 2340
12-bit integers (24-bit product) 1260
32-bit floating-point numbers 373

*Million operations per second

scalar arithmetic and controls the PE's. It has
three sections that operate in parallel: PE control,
I/0 control, and main control. PE controls per-
forms all array arithmetic of the application pro-
gram. I/O control manages the flow of data in and
out of the ARU. Main control performs all scalar
arithmetic of the application program. This ar-
rangement allows array arithmetic, scalar arith-
metic, and input/output to be overlapped for mini-
mum execution time.

Program and Data Management Unit

The program and data management unit
(PDMU) controls the overall flow of programs and
data in the system (Figure 12). Control is from an
alphanumeric terminal. The PDMU is a minicom-
puter (DEC PDP-11) with custom interfaces to the
ACU memories and registers and to the staging
memories. The operating system is DEC's RSX-
11M real-time multiprogramming system.

The PDMU also executes the MPP program-
development software package. The package in-
cludes a PE control assembler to develop array
processing routines for PE control, a main assem-
bler to develop application programs executing in
main control, a linker to form load modules for the

14

ACU, and a control and debug module that loads
programs into the ACU, controls their execution,
and facilitates debugging. This package is written
in Fortran for easy movement to the host computer.

Staging Memories

The staging memories reside between the wide
I/0 ports of the ARU and the PDMU. They also
have a port to an external (host) computer. Be-
sides acting as buffers for ARU data being input
and output, the memories reorder arrays of data.

Arrays of data are transferred through the
ARU ports in bit-seéquential order. That is, the
most (or least) significant bit of 16,384 elements
followed by the next bit of 16,384 elements, follow-
ed by the next bit of 16,384 elements, etc. Re-
ordering is required to fit the normal order of sat-
ellite imagery in the PDMU or the host. Thus the
staging memories are given a reordering capabil-
ity.

The large multidimensional access staging
memory uses 1280 dynamic RAM circuits for data
storage and 384 RAM's for error-correcting-code
(ECC) storage (a 6-bit ECC is added to each 20-
bit word). Initially, the boards will be populated
with 16K bit RAM's for a capacity of 2.5 Mbytes.
The memory can be programmed to input and out-
put imagery in a wide variety of formats.

The Future

Current efforts in ASPRO, MPP, and MAP
will yield improved processing systems in those
areas where parallelism can be effectively applied.
The breadth of application seems quite wide. A
number of users have effectively converted "clear-
ly sequential processes" into parallel algorithms
for parallel solution.

We see smaller, more powerful parallel pro-
cessors occupying less space and using less power
being developed in the near future. We see the
parallel processing technology as a most cost ef-
fective tool for real-time command and control,
and other data base management tasks.

We haven't satisfied all the thoughts posed by
Dr. Bush, but a first step is readily implemented
in today's parallel processors. That step is the
virtual elimination of the elaborate indexing struc-
ture required in today's processing systems.
We've reduced "our ineptitude in getting at the
record . . . largely caused by the artificiality of
systems of indexing."

(1)

(2)

(3)

(4)

(5)

(6)

(N

(8)

(9

(10)

{11)

(I2)

(13)

(14)

(15)

References
Bush, Vannevar: Science - The Endless
Frontier: A Report to the President, Govern-

ment Printing Office, 1945, Office of Scientif-
ic Research and Development.

A. E. Slade and H. O. McMahon, "A Cryotron
Catalog Memory System," Proc. EJCC, Volume
10, pp 115-120, December 1956.

Allen Kent, "A Machine That Does Research,"
Harpers Magazine, April 1959, Vol 218, No.
1307, pp 67-71.

G. T. Tuttle, "How to Quiz a Whole Memory
At Once, " Electronics, Vol 36, pp 43-46,
Nov. 15, 1963.

Russell G. Gall, "A Hardware-Integrated
GPC/Search Memory, Proc. FJCC, 1964.

Tellman, R. M., IRE Transactions on Electron-
ic Computers, Vol EC9Y, page 323 (1960).

Winter, H. M., 1964 Proceedings of the Inter-
magnetics Conference, page 8-2-1.

Apicella, A. and Franks, J., "BILOC-A High
Speed NDRO One Core Per Bit Associative
Element," Proceedings of Intermagnetics Con-
ference, 1965.

Costanzo, A., Garrett, J., "Application of
an Associative Processor to an Interceptor
Radar System, Proceedings of NAECON,
1969.

W. C. Meilander, M. Bialer, and J. Garrett,
"A Mission Oriented Associative Processor
Using Plated Wire." Chapter 7 of Parallel Pro-

cessor Systems, Technologies and Applications,

SPARTAN Books, 1970; p 153.

Fulmer, L. C. and Meilander, W. C., "A
Modular Plated Wire Associative Processor,"
IEEE Computer Group Annual Conference,
1970.

Rudolph, J. A., Fulmer, L. C., Meilander,
W. C., "With Associative Memory, Speed
Limit is No Barrier," Electronics, June 22,
1970.

Rudolph, J. A., Fulmer, L. C., Meilander,
W. C., "The Coming of Age of the Associa-
tive Processor," Electronics, Feb. 15, 1971.

Shore, J. E., and Polkinghorn, F. A., "A
Fast, Flexible, Highly Parallel Associative
Processor," Report 6961. Naval Research
Lab., Washington, D. C., Nov. 28, 1969.

Shore, J. E., "Second Thoughts on Parallel
Processing," Proc. 1972, IEEE, Intercon,
pp 358-359.

15

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Pat. No. 3,800,289 dated Mar. 26, 1974,
Multi-Dimensional Access Solid State Memory,
Kenneth E. Batcher.

Pat. No. 3,812,467, May 21, 1974, Per-
mutation Network, Kenneth E. Batcher.

Batcher, K. E., "Sorting Networks and Their
Applications," Proceedings, The Spring Joint
Computer Conference, 1968.

Batcher, K. E., "Flexible Parallel Processing
and STARAN, " Wescon, Sept. 1972.

Moulder, Richard, "An Implementation of a
Data Management System on an Associative
Processor," Proceedings, National Computer
Conference, 1973.

Smit, J., "Architecture Descriptions for the
Massively Parallel Processor (MPP) and the
Airborne Associative Processor (ASPRO)
Very High Speed Computing Symposium."

P. A. Gamelin, STARAN as a Space Compu-
tation Center (SCC) Processing Alternative.
MITRE Report MTR 2836, June 1974.

D. L. Baldauf, "Experiences with an Opera-
tional Associative Processor". MITRE Report
MTR 2879, June 1974,

Prentice, Brian W., "Implementation of the
AWACS Passive Tracking Algorithms on a
Goodyear STARAN", International Parallel
Processing Conference, 1974, pp 250-270.

Summers, Lt. Michael W., An Assocative
Processor Application Study, RADC report
RADC-TR-75-318, January 1976.

Creswell, C. T.; Peters, Carol; Young,
Brian R., "SACWARDANS ASSOCIATIVE
PROCESSOR STUDY, PRC Information
Sciences Co., RADC Report RADC-TR-74~
341, January 1975.

Rohrbacher, Donald, and Potter, J. L.,
Image Processing with the STARAN Parallel
Computer, August 1977, pp 54-59.

Gambino, Lawrence A., and Boulis, Roger L.,
"STARAN Complex" Defense Mapping Agency,
USARMY Engineer Topographic Laboratories".
Proc. 1975 Sagamore Computer Conference

on Parallel Processing.

Sherwin Ruben, John Lyon, Rudolf Faiss
and Mathew Quinn Application of Parallel
Processings of the International Conference
on Parallel Processing, 1976.

CENTRALLY-CONTROLLED PARALLEL PROCESSORS*

D.L.

Urbana, Illinois

Abstract

The circumstances surrounding the conception
and development of centrally-controlled array
processors are described. The period of time
involved is from 1953 to 1975. It brackets the
Westinghouse SOLOMON systems, their precursors and
the University of 1Illinois ILLIAC IV, Some
reflections on past and possible future interplay
between university and government laboratories on
the one hand and industry on the other are made at
the conclusion.

The First Stirrings

In June 1952, with a new bride and new
Masters degree in Mathematics, I took a job as a
programmer with the Electronic Computer Project at
The Institute for Advanced Study in Princeton. I
had no idea what a programmer was expected to do
but a school friend, Adolph Nussbaum, who was
already working there and had arranged —my
apparently successful interview with Herman (H.H.)
Goldstine, assured me that it was interesting and
honest work and I did need a job. I left
Princeton in February 1954 to return to school for
a Ph.D. and though my stay at the Institute had
been for only twenty months it played a
significant role in my development. First, it was
my initial contact with what became and remains my
profession and it was the place where my vision
broadened from the myopia of a young, partially
cooked mathematician to encompass my still-
enduring interests in physical science and
technology. In particular, I had the good fortune
to learn the rudiments of logic and hardware
design from members of one of the most capable
engineering staffs ever assembled. I remember,
particularly, Leon Harmon, Hugh (Hewitt D.) Crane
and Julian Bigelow as tutors. It was also at
Princeton. that I first thought of building a
parallel processor. The idea was stimulated by
the physical appearance of the magnetic drum that
was being built to augment the 1,024 word primary
memory of the IAS machine. The disposition of
heads and amplifiers over the drum’s 80 tracks (2

banks of 1,024,40-bit -words) suggested to me the
notion of, first, inverting the bit/word
relationship so that each track stored -the

successive bits of a single word (in fact, of
several words) and, second, associating a ten tube
serial adder with each track so that in a single
drum revolution an operation could be executed on
the contents of the entire drum. The idea was to
do, in parallel, an iterative step in a mesh
calculation. I remember, probably under the
influence of the 1,024 word Williams tube memory,
desiring to build a 1,024 track drum to represent

(a) *To appear in Annals of the History of Com-
puting.

0190-3918/81/0000/0016$00.75 © 1981 IEEE

Slotnick
) Computer Science Department
University of Illinois at Urbana-Champaign

16

61801

in this fashion a 32 by 32 mesh. I even had the
temerity to make it the subject of the only
conversation I had with von Neumann that didn’t
concern itself with one of the mundane programming
chores that I occasionally did for him. He
considered the idea for perhaps half a minute when

he said that he thought it would require too many
tubes. It was not a devestating personal setback
because it had been the work of only a few

evenings and some casual conversation with Harmon
and Crane. I essentially considered final
judgement to have been rendered and didn't
seriously take up the idea again for roughly five
years. During those five years I completed a
Ph.D. degree (in applied math at what is now
called The Courant Institute in New York) spent a
year on a post-doc at Princeton (the University
this time) and succumbing to the lure of action

and regular meals took a job at IBM in
Poughkeepsie.

I don’t recall the immediate stimulus to
taking up the idea again but know that it was
early in 1958 as a member of the Computer

Organization Department in the Research Labs.
This Department, under W.J. Lawless and M. Clayton
Andrews, was an enviromment that invited, in fact
demanded, far ranging frontier exploration. The
technological scene had by this time totally
turned over; from receiving tubes and CRT stores
to transistors and cores. My serial adder now
became a small circuit board and the PE memory a

core plane. I did some designs working on my own
and began to think more generally about how one
would need to modify algorithms to wutilize
parallelism. These thoughts and a few corridor
conversations with my friend and colleague John

Cocke resulted in my writing up [Cocke 1958].
This report describes, in some detail, including a
derivation of the O0(log,n) speed up where n, the
degree of the polynomial, is assumed to be less
than the number of processors. It also suggests
parallel algorithmic approaches to the solution of
ordinary and partial differential equations. My
efforts in parallel computation never amounted to
much at IBM and it was partly, but by no means
exclusively, for this reason that I left IBM in
June 1960 for what was to be a strange but

important interlude lasting only 8 months at the
newly formed Baltimore Aerospace Division of an

old airplane manufacturer, Aeronca Manufacturing
Corporation. What lured me to Aeronca was the
promise that I could pursue my own ideas on

parallel computers, the well-chronicled IBM

frustration syndrome and a large raise in pay.

It would be wrong to say that IBM played no

role in the development of my ideas but the role
was largely indirect. It was at IBM, while
working for Rex Rice on the design of a small

general-purpose computer, that I really learned
the trade. My debt to Rex is great, though when I
talked to him about parallel computers, although
he listened, it was not always overly patiently.
He even witnessed some of my drawings
then as always, to the great good fortune of the
computer field, had his own fish to fry- and I got
paid to help him fry his fish, not conversely.
Rex will appear again, in an important way, much
later in this story. Of the IBMers, Lawless alone
showed some interest in my ideas and was the
first, in 1959, to alert me to the work of Konrad
Zuse, which to my only mild embarassment I confess
I have still never looked at, who described a
drum-based equation solver (perhaps similar to the
machine I had thought about in Princeton) which is
described in [Zuse 1958]. Regretably, I am here
engaging in the dubious scholarly practice of
quoting a non-primary source, for the only work I
have even seen that refers to this Zuse paper (it
gives a 1 line description) is [Kuck 1978] and my
attempts to get the reference, it is in German,
from the 4 libraries in the U.S. which allegedly
possess it or from a colleague who is "looking for
his copy" have thus far been unsuccessful.

almost-real world.

Now for Aeronca and the

Two people stand out from this interlude. One is
Dr. Gordon J.F. MacDonald, who as a visiting
scientist at the Goddard Institute for Space

Studies, then in Silver Spring, Md., gave me both
my first real encouragement and my first research
contract; both were important. Moreover, Gordon
understood critically and in precise detail what I
was talking about. His support was thus
particularly meaningful. With the help of this
contract I did the first, fairly complete overall
design and detailed an enriched Processing Element
(PE) (I started calling them "elements" because

large numbers of "elements" seemed somehow easier
to take than large numbers of 'units") to gate
level. As a consequence of this contract,

unforeseen to me, the government acquired a
permanent license which permitted me to continue
the work, under government sponsorship, after I

left Aeronca.
the two people 1is Chuck

Chuck was the salesman who
trying to help

The second of
(Charles N.) Valenti.
was given the responsibility of

this innocent Ph.D. find an agency that would
recognize some sort of stake in my research.
Chuck had, particularly for a salesman, a rare

combination of attributes. He was a true believer
in the capitalist system, a patriot, very smart
and essentially honest. He believed, and
convinced me, that if you couldn’t sell it then it
probably wasn’t worth all that much. He also knew
the DOD 1like the back of his hand (it was Chuck
who first revealed to me, for example, that every
fourth door in the Pentagon was the entrance to a
men’s room). Trailing Chuck around and giving my
pitch while he opened doors, watched, criticised
and schemed gave me my first glimpse of how things
worked in the complement of 1IBM, which I had
previously considered barely non—empty.

The reason I left Aeronca still strikes me as

but Rex,

17

amusing. The Technical Director, to whom I
reported, had singularly eclectic interests
comprehending the importing of spaghetti making
machines and marble, a housing development
corporation, ESP and a process developed by a
retired colonel in Pennsylvania for ridding crops
of all manner of blights by simply placing, for
example, a leaf from a plant in the troubled field
on top of a very special box of the venerable

colonel’s design. I was assigned the task of
investigating this phenomenon for possible
commercial exploitation. I examined the circuit

schematic and found that, among its many unusual
features, it seemed to function without a power

supply and no detectable closed circuit. I
reported that I thought the whole business
preposterous nonsense and took the opportunity to
also express my dim view of ESP as a means of
secure battlefield communication. Although I
wasn’t fired on the spot the strain in the
situation grew worse rapidly and I soon left,

having arranged for a job with the nearby Air Arm
Division of Westinghouse at Friendship Airport,
Maryland (all the names of nearly everything have
long since changed). It was at Westinghouse that
things finally began to take off and I will
discuss my four years there in some detail.

SOLOMON

I was hired by the Engineering Manager, Harry
B. Smith, a first-rate radar man and an excellent
manager. We agreed that I would be based in an
existing computer development group that had some
good people in it and some substantial
accomplishments to its credit- primarily in the
area of airborne analog computers. I was, from
the beginning, however, given the freedom and
wherewithal to pursue my own ideas. I followed up
some of the contacts Valenti and I had initiated
and quickly secured support from the Rome Air
Development Center (RADC) and the United States
Army Signal Corps Laboratory at Fort Monmouth, New
Jersey. The principals I dealt with were Al (Alan
A.) Barnum, Morris (A.) Knapp, and Bill (William)
Moore at Rome and Dave (David) Haratz, Milt (M.A.)
Lipton and Dr. Ed (Edward) Reilley at Fort
Monmouth. Within 3 or 4 months from the time I
joined Westinghouse I had started a small group
with 2 young engineers who were the first to work

with me on developing the SOLOMON design. They
were Carl (W.C.) Borck and Bob (Robert C.)
McReynolds. Carl, Bob and I then spent a most

productive and gratifying year working out the
design and some programming details which we
reported first in a Workshop on Computer
Organization [Slotnick 1963] held at Westinghouse,
under RADC and Westinghouse Sponsorship in October
1962. Carl, Bob and I 1later presented a more
detailed design article [Slotnick 1962] at the
1962 Fall Joint Computer Conference which to our
surprise and pleasure won the first AFIPS Prize
and which, together with a companion report on

applications [Ball 1962], became the standard
citations for SOLOMON. A word about the name
SOLOMON before discussing the design; it was

suggested to me because of both the (wise as) King
Solomon connotation and his 1000 wives (servants,

in a ruder and éimpler era). SOLOMON was designed

to have 1000 (OCTAL) Processing Elements (PE’s).
I had no acronym in mind. Much later the tortured
Simultaneous Operation Linked Ordinal MOdular

Network was devised by a creative salesman, Jerry
McKindles with, I must shamefacedly confess, my
help. The final design of SOLOMON (later, as we
shall see, to be called SOLOMON I) was reported in
[Gregory 1963]. By then I had a group of 12
engineers, under John (J.G.) Gregory, who "so
creatively and energetically supervised the later
Westinghouse design and development work. Some of
the others who figured prominently were Bill
(W.W.) Beydler, Art (A.B.) Carroll, Marv (M.G.)
Graham, Ed (E.R.) Higgins, Jim (J.R.) Hudson, Bill
(W.H.) Leonard, George Shapiro, Dave (D.K.) Sloper
and Bob (R.M.) Trepp.

In discussing the design I will wutilize
figures from both [Slotnick 1962] and [Gregory
1963]. The main ideas remained the same
throughout the SOLOMON and, in fact, the ILLIAC IV
program. These were of a PE array controlled from
a central source, as shown in Figure 1. The
program store was associated with the central
control while operand storage was in the array as
shown in the Processing Element block diagram of
Figure 2. Each PE possessed a memory composed of
two core frames. The two-address system employed,
used a frame for each operand and wrote the result
over one of then. Operands could also be
broadcast from the central memory or come from
(and results go to) the 4 nearest neighbors of any
PE. This was essentially the drum design of the
Institute days with the drum tracks replaced by
the core frames. The connectivity was the same
but I added the ability to wrap around the extreme
rows and/or columns under program control. Also
new were the Geometric Control Registers, shown in
Figure 3, which permitted the selection of rows,
columns or row/column intersections by number. A
special buffer, the L-buffer did matching between
the conventionally organized word-oriented
processor of the central control unit and the
serial-by-bit PE’s. That is, words were handled
in parallel (serial by word, or block of words)
between L-buffer and central control but serial by
bit (all the kth bits of a column of PE words)
between L-Buffer and array. The core frames were
assembled into stacks, as shown in Figure 4, which
shared address decoding and drivers. Thus, the
same address was selected for all the frames in a
stack. In ILLIAC IV the technology was by then,
as we’ll see, able to permit independent PE memory
addresses. .

What Carl Borck named Mode Logic was to
remain the main "local" (applicable to a PE, as
opposed to ''global"-applicable to the whole array
via central control- terms I borrowed from
mathematics because they fit so well) logical
capability in all subsequent array computers.
Each PE had a Z bit register in which a local
data-dependent "mode value" could be set. Each
instruction had a corresponding 4 bit field
specifying any subset of the 4 possible mode

states which were "allowed" to participate in that
instruction. That is, only PE’s in one of the
mode states specified in the instruction could

18

change states during that instruction cycle. PE’s
in an "off" mode state could still provide
operands to a neighbor if called upon to do so,
and thus could influence the state of an "on" PE
but an off PE could not itself change state. This
very simple, almost irreducible residue of 1local

control usually functions adequately as the
principle array conditionmal branch. Word 1length
was variable wunder the control of a setable
register. This was easy in a bit serial system
and necessary during this era of expensive memory.

The PE’s were grouped into subarrays of 32x8.
A system could contain up to 8 subarrays (2,048
PE’s). We did many design studies with
independent subarray controllers as we did with
numer ous redundant (for reliability)
configurations of PE rows, columns and subarrays.
The optimistic 4 quadrant ILLIAC IV design

‘resulted from these efforts.

We never built a full-scale SOLOMON but did
build significant experimental models; a 3 by 3
model with complete PE‘s, a 10 by 10 model with a
somewhat different PE and numerous special
breadboards to measure electrical characteristics
in order to optimize signal distribution within
the array and between the array, the central
control and I/0 units.

During 1962 and 1963 the PE evolved, with
continued integrated circuit evolution, from the
simple bit-serial element to a 24 bit element with
24 bit registers and byte—oriented PE arithmetic
hardware. We built experimental PE’s which added
24 bit numbers in 3.4 psecs and multiplied them in
less than 20 ysecs (using 10 mh circuits). Even
programmed floating point times became reasonably
respectable. The basic PE system module became
smaller (256 to 32 PE’s) as the PE itself became
larger (1 to 24 bits). In ILLIAC IV this was to
become modules of 64, 64 bit floating point PE’s.
For reasons soon to be clear the details of these
later SOLOMONS (by mnow called by us at
Westinghouse, SOLOMON II) were never published.

They can be found, however, in [Westinghouse
1964a] and [Westinghouse 1964b].
Problem analysis and programming tried

breathtakingly to keep pace over this thirty
months or so of evolution of designs and models
and simulations but except for some particular
problems in partial differential equations, matrix
inversion and a significant group in signal
processing, never really managed it. We convinced
ourselves early that the problem space for which
this computer organization excelled was large
enough to justify development of the full-scale
machine, and, indeed, it nearly did. In
programming we designed some new language
constructs to overlay on a standard higher-ievel
language, such as DO TOGETHER, but these likewise
were to remain incompletely implemented.

At the beginning of 1964 RADC was pushing
hard and with apparent success for a DOD program
to build a full-scale SOLOMON but in March the
situation turned totally sour. Our principal DOD
Washington sponsor drowned in a tragic accident

and the program’s chief ' opponent, an old-line
affiliate of an industrial competitor who was soon
to leave DOD under something of a cloud, acted
quickly to kill our chances. By this time I had
assembled a group of 100 or so mouths to feed,
about half of whom were working on SOLOMON (I had
taken on additional responsibilities) and had to
shift gears quickly to avert a total wipe-out.

Thus began the visits to the Atomic Energy
Commission’s Lawrence Radiation Labs at Livermore,

California and Dr. Sid (Sidney) Fernbach. Sid
labored mightily to stave off a disaster at
Westinghouse. He wanted to see the technique

tried on a decent scale but failing to squeeze the
development cash out of Washington, he managed
only a contract offer to lease a system were
Westinghouse to develop it on its own funds and ' I
couldn’t argue Westinghouse into accepting it.
The 6 months between the shut-off of most of our
DOD funds and the AEC’s unacceptable contract
offer remain a frenzied blur with Sid’s lasting
encouragement and friendship as its only redeeming
feature.

When the Group Vice-President at Westinghouse
turned the contract down I, of course, instantly
submitted my resignation which he turned aside in
a speech so full of understanding and concern that
I managed not to kill him. The Westinghouse
Baltimore executives acting with their typical
very considerable skill had me dismantle my group
and then offered me the job of manager of Advanced
Development, a group of 1,000 engineers plus a big
support operation, which included the offer of a
home for most of the people in my SOLOMON group.
I accepted it as a means to resettle my group. I
also tried for several months after the debacle to
start my own company and raise the venture capital
to build a machine for Sid but I couldn’t quite
pull it off although I had pledges for about three
quarters of the money when I took another turn.

I had gotten to know John (R.) Pasta, head of
the Computer Lab at the University of Illinois,
when he invited me to join an informal group that
met periodically to discuss directions in the
computer field. He knew what was happeriing to me
and encouraged me in many ways to reflect on the

abiding nature of intellectual achievement as
opposed to the transient goals I was becoming
obsessed with. The academic 1life looked good,
"indeed, and after checking the other academic

possibilities I decided to join John at Illinois
because of their outstanding reputation in having
not only used but built machines and because of my
friendship and respect for John. In May of 1965 I
moved my family to Urbana.

ILLIAC IV

The SOLOMON work had essentially come to an
end at Westinghouse a year before I left for
I1linois and that year was spent frantically and
unsuccessfully looking for ways to get it going
again while simultaneously taking on a tough new
job assigmnment. When I arrived in Illinois I was
anxious to do something else, in fact, anything

19

else. Ivan Sutherland, whom I had visited at
ARPA, where he headed the Information Processing
Techniques Group, called and asked to visit me
about a month or so after I came to Illinois.
Without really expecting anything to come out of
it other than a pleasant visit with a very bright
and genial colleague, I of course happily set it
up. As it turned out, what was on his mind was to
see if I would be interested in developing a big
parallel computer at Illinois. I thought about
it, talked with John Pasta who was more than
agreeable and, not without some "here we go again"
trepidation, I told Ivan yes.

Ivan wanted to start the project with a small
study phase but I absolutely refused. I wanted a
two million dollar payment at the outset and a
contract for a total of ten million. I did this
to make sure that the ARPA committment was real
and had passed the highest levels of review. Ivan
agreed. I wrote the proposal and a few weeks
later we had our contract. John and I decided
with much regret that the days when a university
could design and fabricate a big machine, by
itself, were over and we decided that while we
would do the architectural design and most of the
software and applications work, we would rely on
industry for detail design and fabrication.

For nearly a year I gathered a nuclear staff
and worked to develop design specifications for a
study phase procurement to be followed by the
fabrication phase. I outlined the major
approaches in [Slotnick 1966] and we incorporated
them in a bid set. In August 1966, after many
months of intensive contacts with industry, three
8-month contracts were awarded to RCA, Burroughs
and UNIVAC. 1In April 1967 Burroughs was selected
to go on to do the final design and development.
The selection of Burroughs, while not quite by
default, was hardly hotly-contested. Burroughs had

teamed with Texas Instruments, who were to develop
the integrated circuits for the PE. even though
they were, at ﬁbe same time, building their own
high-performance pipelined system. They (TI) had,
in fact, tried to interest us in abondoning the
parallel approach in favor of a pipeline. Control
Data also had a whack at this. But it seemed
pointless, from any point of view and, in fact
impossible from mine, to think of developing three
pipeline processors and no parallel processors.

The technical details of ILLIAC IV are quite
well known; the standard citation is [Barnes
1968]. I will thus concentrate here on those

surrounding circumstances and issues which most

influenced the program.

My original intention was to build a system
consisting of four subarrays (quadrants) of 64
PE’s each; a PE now being a 12,000 gate floating
point (48 bit mantissa-16 bit exponent) processor.
The 4 quadrants could each operate independently;
the system thus acting as a 4 unit multiprocessor.
The system could also operate as 2-2quadrant units
or as a single 4 quadrant (256 PE) unit. Each PE,
moreover, could function as a single 64 bit
floating point element as. 2 =— 32 bit floating

point elements (24 bit mantissa- 8 bit exponent)
or as 8 - 8 bit character-oriented fixed point
elements; this last operating mode being directed

toward signal and image processing applications.
As we will see, by 1969 cost overruns made it
necessary to reduce the size of the system to the

single quadrant, described in [Slotnick 1971],
that was built. (It is a quaint observation that
the space still exist in the ILLIAC IV back panels

"to plug in the connectors to the missing three
quadrants) The PE, however, underwent no
significant change in logical organization.

There were two main contributions to the
early overruns and consequent retrenchment. The
first was the inability of Texas Instruments to

produce the 64 pin ECL packages around which we
had designed the PE. A great deal of inconclusive
mutual finger pointing went on between TI and
their suppliers but the upshot was the 1loss of
somewhat more than a year of time and, all related
and consequent expenses considered, perhaps 4
million dollars. The second severe setback was
the inability of Burroughs to produce the magnetic
thin film PE memories. In time and dollars this
amounted to the loss of roughly an additional 2
million dollars and a year further delay.

We retreated from the 64 pin packages to
standard 16 pin dual in 1line packages. In so
doing, however, everything got bigger and more

expensive. A lot of the logic design was
salvageable as a consequence of making the 16 pin
packages logically derivative of the abondoned 64
pin packages but board layout, back-panel wiring
and all system—level hardware had, of course, to
restart from scratch. The memory situation was
even messier. Burroughs had a large investment in
their thin films and didn’t want to give up on
them even after my own and independent review had

concluded that they still represented an
intolerable development risk. Semiconductor
manufacturers were just beginning to gear up for

memory chip manufacture; the manufacturing means
were clearly at hand, or at least so it seemed to
me, but the chips were not. I made the painful
decision to drop films and go with semiconductors.
After making the rounds of all the possible
qualified suppliers I recommended the selection of
Fairchild Semiconductors, whose memory systems

operation was then headed by Rex Rice, under whom
in a former 1life I had, as I have already
discussed, learned the tricks of the trade. This

selection met with considerable opposition from
Burroughs and others. Such was the furor in fact,
that ARPA, convened a panel of independent experts
who carefully reviewed the situation and sustained
my decision. It turned out that when Fairchild
delivered their memory it was still the only
high-speed semiconductor memory being delivered
and that ILLIAC IV was the first large system to
employ a semiconductor primary store.

By this time Ivan Sutherland had sought other
if not greener pastures and the combination of

Larry (Lawrence G.) Roberts and Bob (Robert)
Taylor had replaced him in the ARPA computer
operation. To Larry, without doubt, goes the

20

distinction (however dubious) of having shed the
second greatest amount of blood for ILLIAC 1IV.
Larry had several set of interests in the machine.
First there were the direct applications that had

been identified including numerical weather
prediction, sonar, radar and seismic signal
processing and the, by now, usual 1list of

computations that array computers do efficiently.
Larry also shared my sick attachment to really big
pieces of hardware. But in ILLTIAC IV Larry also
had the interest of the father of computer
networks. Particularly, as the program’s costs
escalated from my initial 10 million dollar guess
(the sometime alleged relationship to the Sonny
Liston-Cascius Clay (now Muhammed Ali) fight gate
receipts is neither totally true nor totally
apocryphal) to the more than 30 million it ended
up costing for one fourth of the initial system.
To justify these escalated costs the ultimate
availability of the machine to an ever larger
community of users became mandatory and ILLIAC IV
and the ARPANET became inseparably linked.

In 1969 the strains of
dollar per month project within an academic
department were operating destructively. The
relations between John Pasta and me and between
ILLIAC IV and non-ILLIAC IV faculty generally had

running a million

degraded beyond the point of repair and the
project was made a free-standing Center in the
Graduate College of the university. It was a

terrible mess, due mostly to circumstances but in
no small part to me, and I regret to this day the
human hardships that resulted and the deep human
relationships that were destroyed.

By the beginning of 1970 the hardware program
had been marginally restabilized; the PE had been
redone with the new lower level T.I. integrated
circuits, PE memory chips were being delivered by
Fairchild, boards were being produced at a decent
rate, cabinets and cables existed and our internal
depar tmental conflicts were coming to a head on a
campus and in a country that was becoming unglued
by the Vietnam War. In May of 1970 both the U.S.
action in Cambodia and the Kent State shootings
took place and my generally conservative position
with regard to the war became untenable to me. I
informed the university administration and ARPA
that I thought it wrong for the ILLIAC IV to be
installed and operated on the campus and that if
it was I would play no part in it. The reaction
by campus administrators was consistent with all
my previous observations: They ranged from the
proposal that the future location of the machine
be decided by a binding student election, to
delivering the machine to a profit company to be
set up mnear campus and protected both by high
walls and armed guards. In the presence of
continuing demonstrations, frequently violent, by
as many as 6 or 7 thousand students which were
sharply focused at the project, these suggestions
by my "superiors" only supported my conviction.

Due mainly to the efforts of Dr. Hans Mark,
then Director of Ames, ARPA decided to ship the
machine to the NASA Ames Research Center in
Moffett Field, California, announcing their

decision on 29 January 1971. In April 1972
Burroughs delivered the system to Ames. It was
plagued by a variety of serious hardware problems.
Some of the early circuit batches failed both at
‘high rates and in modes troublesome to detect.
Moreover, huge numbers of back-panel connections
~and of terminating resistors were equally bad.
‘Although some successful runs were made as early
as 1973, the machine wasn’t running reliably until
1975. The story of ILLIAC at Ames is, however,
not mine to tell.

The story of the ILLIAC IV hardware is,
however, only a part of the ILLIAC IV story and
perhaps not the most important parts From :1965
on, as a result of the ILLIAC IV program, first
the Urbana campus and subsequently many other
university, government and industrial laboratories
have undertaken. the analysis of the relations
between computer architecture, algorithms, both
numerical and non—-numerical, and their expression
in programming languages. The problems posed so
long ago in [Cocke 1958] have begun to receive the
attention that I believe they merit. Moreover, as
I will presently discuss, parallel computation (or
pipelined computation with which it shares many of
its benefits and burdens) will not be the sole
beneficiary of this attention. My own opinion is
that the greatest advances in the efficient use of
new architectures will accrue from research in
numerical algorithms and that the benefits yielded
by new languages will continue to primarily
benefit the sanity and efficiency of the
programmer and be of only secondary concern to the
programee.

This orientation certainly influenced my
priorities in running the ILLIAC IV program.
While I think the ILLIAC IV language development
work of Dave (David J.) Kuck and Duncan (H.)
Lawrie has had lasting value and has influenced
many other researchers, my main concern remains
with the part of the problem solution process
that, though cognizant of the machine logical
structure, goes on before the programming starts.
The research of Ahmed Sameh, whose distinguished
career also started with ILLIAC IV, exemplifies
this position. We have discussed these matters at
some length in [Slotnick 1978].

It is time, in concluding this section, for
the pleasurable business of acknowledging some of
the ILLIAC IV principals. It is also a risky
business because there are doubtless some 1711
forget and others I’d just like to forget. I’ve
already mentioned Kuck, who launched the language
and application programming efforts and the one
man gang Duncan Lawrie who produced GLYPNIR, which
for ten years was the only working ILLIAC IV
higher-level language, and did it by himself as a
lowly graduate assistant.’ I’ve also mentioned
Sameh who essentially initiated, and remains a
principal contributor to, the field of parallel
algorithms for calculations in linear algebra.
Bob (Robert S.) Northcote made contributions in
software as did a group of some of the brightest
kids (many of whom now as middle-aged men remain
among my friends and collaborators) I‘ve ever

21

known, including Pete (Peter A.) Alsberg, Gary
(G.) Grossman, Dave (David M.) Grothe, Nelson
Machado, Jimmy (James M.) Madden and Jim (James
E.) Stevens.

the

On the hardware side there was constant

support of the many-sided Art Carroll and Dave
(David E.) McIntyre. Masao Kato’s energy and
skill was an inspiration to all of wus. For

several of the early years Dick (Richard M.) Brown
helped hold things together and there was always,
at the center of the storm, Frieda Anderson. At
Burroughs (E.) Gary Clarke, with whom I share 20
years of richly varied memories, started things
off and remained the Godfather, the only one I
could always talk to was Vern (Vernon Z.) Smith
who also knew the best jokes. Dick (Richard A.)
Stokes and George (H.) Barnes did creative
technical work. At T.I. Harvey (H.C.) Cragon and
Joe Watson led my good list and (J.) Fred Bucy was
on it I also had another list.

Reflections

I have a bit more to say about parallel

computers. First, one of the most interesting
directions remains insufficiently explored. In
[Slotnick 1970] I outlined the simple notion of

associating with each track of a rotating store
some minimal logic capacity, much like the SOLOMON
I PE. The resulting system I called a logic per
track disk in evident generalization of the head
per track disk. Such a system could, like my drum
of o0ld, search or process the complete contents of

a rotating store every revolution and thus
function as a calculating, and/or associative
store. Figure 5 shows the general idea. The PE

logic which looks at the tracks (I used a pair, in
strict analogy to the SOLOMON frames and 2-address
scheme) is just a ‘simple serial bit stream (pair)"
processor with mode and routing logic. Nowadays
one would want to include a few characters of RAM
in the PE instead of the revolvers that were then
appropriate. One could also think of replacing
the disk tracks altogether by CCD’s or bubbles.
The optimal parameters of a modern serial memory
hierarchy for such a system would depend strongly

on the overall system size and application scope.
My student Stu (Stewart A.) Schuster and his
Toronto colleagues continued this line of
investigation, which they described in a sequence

starting with [Ozkarahan 1975],
far

of publications
but only some small scale models have thus
been built.

SOLOMON-1like machines have been built by ICL
[Parkinson 1976] and others. Even now, the MPP
[Fung 1977] currently being built is a larger (128
by 128) machine of this same general class. It
remains to be seen whether parallel machines with
floating point PE’s are a dead end. I don’t,
however, consider the question to be of the first
importance for reasons I will presently get to.

I believe it has value to reflect on the
aetiology of some of the major problems that
occurred during the ILLIAC IV development. First
and foremost, trying to provide technical

leadership as well as administrative direction to
a program of this magnitude from a base in a
traditional academic unit or from anywhere on any
university campus made all the sense of trying to
build a battleship in a bathtub. We had neither
the facilities nor personnel to manage from a
distance and even if we did, our temperaments, as
intellectunally driven monomaniacs, demanded being
in the middle of every significant decision and
altogether too many insignificant ones. It was
only at great personal cost that, several years

into the program, I disciplined myself to the
slightly lesser of the evils: more global
management .

We also took on too much. Some of the

battles were unnecessary. I obsessively wanted
every bit of speed we could get from any source.
My hindsight is clear, I should have used more
comfortable technology; our role there was not
indispensable. By sacrificing a factor of roughly
3 in circuit speed it’s possible we could have
built a more reliable multi-quadrant system in
less time, for no more money and with a comparable
overall performance level. This same concern for
the last drop of performance hurt us as well in
the secondary (parallel disk) and tertiary (laser)
stores. But this is all looking backward which
violates my nature. I would rather conclude by
looking ahead, at new directions suggested by
current technology, with the benefit of these
experiences.

Let me say first that it will probably be
quite a while before even every Cub Scout Troop

much less every household has 1its own design
automation system with direct 1links to its
companion, computer-controlled electron beam
lithography VLSI fabrication system. In the

interim such systems will remain the possessions
of a relative handful of manufacturers. These
manufacturers will use them to manufacture only
those systems for which they believe there is a
sizable market. This 1is counterpeised to the
first twenty years of the computer era; when the
relatively simply attainable state-of-the-art
development capabilities were shared by industry
with both university and government labs. The
result 1is that technology which intrinsically has
the capability to launch an unparalleled era of
system experimentation shows 1little sign of
fulfilling this potentiality. While no single
university can afford the many millions of dollars
required to create and operate a facility that
would be capable of turning out strange and
occasionally wonderful prototypes, it would not bé
too much for an appropriately backed consortium.
The technology is nearly at hand to permit serious
experimentation with dozens of new and promising
computing structures. It is with ¢this in mind
that I earlier said it didn’t really matter
whether centrally-controlled arrays with floating
point PE’s are or aren’t a dead end. There can,
in the near future, be many special-purpose
systems developed to solve this or that particular
class of large-scale computational problems; on a
bad afternoon I can think of a dozen myself. The
question is only whether the capability will

22

become a reality. We must ask ourselves would we
‘have charcoal-broiled steaks today had Prometheus
given fire only to the Chrysler Corporation.

I don’t want to finish without an explicit
statement of my view of the field’s evolutionary
potential. First, to think of supplanting the
primary role of the conventionally organized
(Babbage-von Neumann) computer is - nonsense. It
is, literally, an epoch-making concept. What can,
however, take place 1is the evolution of large
systems (and I, of course, have reference only to
large systems) to comprehend entire families of
special- purpose '"peripheral devices" in a way not
different .in principle than the way they now
comprehend their library of programs.

References

Ball, J.R., Bollinger, R.C., Jeeves, T.A.,
McReynolds, R.C., and Shaffer, D.H., 1962, "On the
Use of the SOLOMON Parallel-Processing Computer",
Proc. 1962 Fall Joint Computer Conference.

Barnes, G.H., Brown, R.M., Katd, M., Kuck, D.J,,
Slotnick, D.L., and Stokes, R.A. 1968, "The ILLIAC
IV Computer", IEEE Trans. on Electronic Computers,
17, August 1968 also in Bell, G. and Newell, A.,
"Computer Structures: Readings and Examples",
McGraw-Hill, 1971.

Cocke, John and Slotnick, D.L., 1958, "The Use of
Parallelism in Némerical Calculations", IBM
Research Memorandum RC-55, July 21, 1958.

1977, "A Massively Parallel
Proc. of the Urbana Sympesium on High

Fung, Lai-Wo,
Processor",

Speed Computer and Algorithm Organization, April
1977.
Gregory, John, and McReynolds, R.C., 1963, "The

SOLOMON Computer", IEEE Transactions on Electromic
Computers, Vol. EC-12, No. 5, Dec. 1963.

Ruck, D.J., 1978, "The Structure of Computers and
Computations", Volume 1, p. 263, Wiley, 1978.

Ozkarahan, E.A., Schuster, S.A., and Smith, K.C.,
1975, "RAP-An Associative Processor for Data Base
Management", Proc. National Computer Conference,
1975.

Parkinson, Dennis, 1976, '"Computers by the
Thousand", New Scientist, 17, June 1976+

Slotnick, D.L., 1966, "ILLIAC 1V Design
Questions~Preliminary List"” File No. 63?, Dept. of
Computer Science, Univ, of Illinois, April, 1966.

Slotnick, D.L., 1970, "Logic per Track Devices" in
Alt, F.L. and Feiberger, W.F., (Editors), "Advances
in Computers", Vol. 10, Academic, 1970,

Slotnick, D.L., 1971, "The Fastest Computer",
Scientific American Magazine, Vol, 224, No. 2,
Feb, 1971,

Slotnick, DiL., Borck, C.W. and McReynolds, R.C.,
1962, "The SOLOMON Computer", Proc. 1962 Fall

Joint Computer Conference, also in Swar tzlander,
E.A. Jr. (Editor) '"Computer Design Development-
Principal Papers", Hayden, 1976.

Slotnick, D.L., Borck, C.W. and McReynolds, R.C.,
1963, "The SOLOMON Computer-A Preliminary Report”,
Proc. 1962 Workshop on Computer Organizationm, A.A.
Barnum and M.A. Knapp, editors, Spartan, 1963.

Slotnick, D.L., and Sameh, Ahmed, 1978, "Numer ical
Caleculation and Computer Design", Computers and

Mathematics with Applications, Vol. 4, No. 3,
1978,

Westinghouse Defense and Space Center, 1964a,
Computer and Data Systems Technology Group, Final
Contract Report AF 30(602) 3417, "Multiple
Processing Techniques", Submitted to RADC,

Griffiss AFB, N.Y., 10 April 1964.

Westinghouse Defense and Space Center, 1964b,

Aerospace Division, "Proposal for Parallel Network
Processor", Negotiation No. JO417, for Univ. of
Cal. Lawrence Radiation Lab, 14 August 1964.

Zuse, K. "Die Feldrechenmaschine", 1958,
Mathematik, Technik, Wirtschaft-Mittelungen, Vol.
4, pp. 213-220, 1958.

CENTRAL CONTROL

+

PROGRAM
STORAGE

v

BRANCHING LEVEL

I

1

!

!

L_

]
il

I
H

r
HHHHEHH~H
i
HHHHEHHHH
i
3]

1

!
H

!
H

I
H
q

I

J
U
2]
R
i

I

H

!

e |

—> | . |

!
H

1
I
3]
i
HHHqHH
i

I
i

1
i
L E e BT BNl

L

W

Figure 1. PE Array Under Central Control

e — =
i |
| CENTRAL CONTROL |
LM_od_e Control Cv Cw Cx Cy Cz :
________________ U AR
1
Buffer 1
Control =T
! ! :
A »N1
iy Read v -
giv?'TTRclﬁ . 1 FRAME | MEMORY > @ »N
.-, 1 BUFFER 4 N2
1 [¢ 1 ..°~ hb,
. Write >N
L ———— N4
-Fr--- | MODE M
| Control ¢ [A]
svee : CONTROL 1 Signals |
(I
1 <]
! ‘____J CARRY
RING 1 i] [N !
\ FRAME LoOGIC | Operation
N - | + | Signals 1
—
CENTRAL j SELECT - 1' -
CONTROL €2 ——g—>
i SWITCH
RING 2 : < SUM P OPERATION| _
] Loaic | SELECTION|
h <
s
1
[
—— Read
MATRIX |-———p | MEMORY
sWiTcH Lo | FRAME BUFFER
e 1 l l
L} Write 2 N2 N3
R N1 N4
[—
Buffer ! T
Controf = - From Neighbors
1

Figure 2. Processing Element (PE) Block Diagram

] PE SEQUENCER J z 3 1
o ~ SENSE AMPLIFIER,
ES 4 STACK | FLIP FLOP
....... -------_----i_-....-_---.___-..--..N.?E- 23 2 FRAME | BUFFER
] 5 1 DIGIT DRIVER | ¢—nr|
x
—— e
5——’ Y DRIVER (32)
H
B
D ﬁ —_— 5| YDRIVER (32)
)
o I é TO L-BUFFER
et -
9 — — a S b el
“‘_‘.“ l::] [__—l 3 g§ « STACK 1l SENSE AMPLT FLIP FLOP
» 2 Qu E FRAME | BUFFER
2 I 3 MEMORY o 5 | DIGIT DRIVER | ¢———|
o f x
|::l D
I COLUMN SELECT REG. } Figure 4. PE Memory Organization
Figure 3. PE Network Organization
a
T . - . m
] 4 3
: = Io
' f—— N1
[-— r p » | ROUTING > N2
1 | L LOGIC .
' EAD/WRITE RIW |, .
1 Iﬁ HEAD I‘_’| amp | p— —— NP
1 o
m
! | :
' <
' RAC VYMODE REGISTER @
1 INHIBIT e Sl el | m
] i | 1
, P G
'
, b
| v v
. ’. i LocaL ! r }
| ADDRESS | ADD | BUFFER L ___pi DATA (o .- seieor PROCESS swronna| | |
| SELECT | | ADDRESS | | BUFFER | SWITCH
! , | SELECT | ! , D E— D —
[[H [4
£ A) a FROM
1 ' 1 r— M
Lo LR s s it R ¢ N2
.
.
.
RIW RIW | NP
HEAD amp |
RN TO LOCAL ELEMENTS
CToh
& ¢ L, TO I/0 BUFFER
[
READ READ TO CENTRAL
AMP | HEAD . ELEMENTS .

7
/ﬁh\
TRACK

Figure 5. Logic Per Track System

24

1svoavousg

THE HISTORY OF PARALLEL PROCESSING
AT BURROUGHS

Richard Stokes and Robert Cantarella
Federal and Special Systems Group

Burroughs Corporation
Paoli, PA 19301

Introduction

Parallel processing in the context of the
Burroughs experience has been synonomous with
the development of the “supercomputer”. While it
is accurate to claim that, throughout the
Burroughs standard product line, the application
of parallel processing design is in ample evidence,
the main stream of the work on supercomputers is
centered in the Federal and Special Systems
Group, Paoli, Pa. For almost two decades, the
challenge of the parallel machine has been actively
pursued without interruption. In that time a series
of major systems have been developed, starting
with ILLIAC IV, then PEPE, followed by BSP; and
this paper describes the historical events in the
development of these systems. A new parallel
design currently under study for NASA called the
Flow Model Processor (FMP) is not discussed here.

These machines as a group represent some of
the most ambitious undertakings in the industry
(Table 1). With the exception of the FMP, all have
been completed in a fully working sense, and all
substantially met their original design objectives.

As a group they are certainly a tribute to the
designers whose skills harnessed enormous quan-
tities of logic and memory circuits in concerted
processing functions. Their contribution to com-
puter science has been made, but perhaps not fully
realized. The design rationale of these machines as
a machine class (SIMD) provides the only
demonstrable performance response for that class
of large scientific applications that have veec-
torizable programs.

This 19-year history is intended as a synopsis
of the plans, events and results of three major
engineering experiences at the Burroughs Great
Valley Laboratories. Unfortunately history, like
art, is seen through the mind of the beholder and
where serious omissions or errors occur they are
certainly not intentional. The lessons learned and
the experience derived from these endeavors are
continuing to serve our engineering staff in the
development of the FMP.

0190-3918/81/0000/0025$00.75 © 1981 IEEE

25

Table 1. Comparison of Parallel Processor Capabilities

PEPE ILLIAC IV BSP

Data Word Size 32 bits 64 bits 48 bits

Instruction 32 bits 32 bits 24-48 bits

Word Size

Backing Store In host Paged to PE N-Mos RAM

Memory Cycle 100 ns 250 ns 160 ns

Number of Up to 288 64 16

Processing Elements

Processing Element 32-bit floating 66-bit floating 48-bit floating
point accumu- point accumu- point memory
lator oriented lator oriented oriented.

Microprogrammed Yes Yes Yes

Processing Element Linear array 4 nearest Cross Bar

Connections neighbors

Parallel Operation Yes Yes Yes

Within Arithmetic Unit

Associative Yes Pseudo No

Addressing

High Order Language PFOR GLYPNIR FORTRAN

Processing Speed 1 1

Add 300 nsy 500 ns} 160

Multiply 1.9 us 700 ns™? 320

1. Time for one PE; all PEs may operate in parallel
2, Two operations may complete in this time

3. May be computed as N2 times 0.85 s, where each operand is assumed to
consist of N bits.

ILLIAC IV

The ILLIAC IV computer was a product of the
mid-sixties, its original goals reflecting the prevail-
ing optimism in the country and particularly in the
young computer industry. It was the era of the
“main frame houses” that continued to
demonstrate Groche’s Law with regular ease.

Illiac IV Installed at NASA Ames Research Center,
Mountain View, California

The seeds of the ILLIAC IV program evolved
from a project called Solomon developed at the
Westinghouse Corporation in Baltimore,
Maryland. The circumstance that marked the of-
ficial beginning of the ILLIAC IV program was the
move by Dr. Daniel Slotnick, a Solomon principal,
from Westinghouse to the University of Illinois
and the subsequent designation of that institution
as the prime contractor by the Advanced Research
Projects Agency of the Department of Defense.

The program plan was to have the University
develop the system software and subcontract the
hardware development on the basis of a com-
petitive proposal. Study definition -contracts
awarded to Burroughs, Control Data Corporation
and RCA resulted in three proposals in which
Burroughs was awarded the hardware develop-
ment contract in 1967.

The central objective of the system was 10°
operations per second. This, of course, placed con-
siderable emphasis on hardware component
speeds and parallel architectural design [1]. The
proposed system contained 4 independent
quadrants of 64 Processing Elements (PE) each, for
a total of 256 PE’s. Each PE contained an
arithmetic element and a data memory and was in-
terconnected to other PE’s which were a distance
of +8 and *1 in designated value. Thusina 8 x 8
array, a nearest neighbor connection pattern was
realized.

Each quadrant was driven by a Control Unit
decoding a single instruction stream and broad-
casting the microstep for array instruction execu-
tion. The Control Unit has a program memory and
a separate station for executing CV instructions
concurrently with array instruction. ILLIAC IV
was a classical SIMD design.

The Hardware

The key components of the system design
were: plainer thin film memories and multichip
ECL logic circuit packages. Later events were to
show that both choices were not realizable in the
final system.

Thin film memories had been in development
in Burroughs and elsewhere for several years prior
to the start of ILLIAC IV. Thin film was con-
sidered the performance successor technology to
magnetic cores and Burroughs was actively en-
gaged in the process of moving this technology
from the laboratory into production. Two factors
conspired to preclude this expectation before pro-
duction was realized: the tenacity of magnetic

26

ILLIAC 1V Backplane

cores and the pace of semiconductor memories.
When this situation became apparent, thin films
were discontinued, as a product and, in turn, for
ILLIAC IV.

Upon the demise of thin film memory at
Burroughs, a contract was awarded to Fairchild
Semiconductor for the PE memory system using a
64-bit bipolar component. This contract was one of
the more successful projects of ILLIAC IV, calling
for the design and production of 70 memory units,
each with a capacity of 4K words. Considering the
tight schedule and the new technology, many
things that might have gone wrong did not: the
memories were delivered on schedule and to
specification.

The total capacity of 250K words, limited by
cabinet volume, was a performance disadvantage
for the growing application programs that were
run on the system.

As part of the Burroughs proposal, Texas
Instrument Corporation, acting as a subcontractor
to Burroughs, agreed to provide the Processing
Elements (PE) of the system, fully assembled and
tested. A PE was a 64-bit floating point arithmetic
[2]. The design was based upon a multichip package
in which four (up chips) were mounted on a common
substrate and interconnected by wire bonding. The
circuit packages, 24-pin ceramic, were to be con-
nected on a multilayer printed circuit board, one
per PE.

The published reason for the termination of
the multichip development by the contractor was
low production yield. The design process contained
the fundamental weakness of the multichip ap-
proach by postponing testing to a complexity level
not justified by the value added and not repairable.

The fall-back position was the use of the more

conventional 14-pin DIP packaged ECL on smaller,
2-signal-layer, printed circuit boards, connected by
a wired backplane. The logic circuits used were the
TI2500 circuit family, implying that the fault of the
initial design was the package scheme.

The foregoing component problems were the
major ones and contributed to schedule delays and
cost increases for redesign. In time, the program
scope had to be reduced from four to one quadrant
(256 PE’s to 64 PE’s) where the 10’ operations per
second would not be possible.

The Software

The system software development was the
responsibility of the University of Illinois, which
undertook the development of a new Algol-like
compiler called TRANQUIL [3]. In addition, an
assembly language development called GLYPNIR
[4] commenced at about the same time.

TRANQUIL was, of course, a major undertak-
ing dealing with a parallel structure unlike any
previous experience in compiler design. It con-
tained language extensions to allow the users to
identify parallel (vector) constructs and to manage
the conditional states of the PE array. A
preliminary version of TRANQUIL was completed
and compared against the available GLYPNIR for
object code performance.

The results were disappointing but not
necessarily unreasonable for the early stage of the
compiler. TRANQUIL, however, was discontinued
and GLYPNIR became the principal language for
programming ILLIAC IV. Later, after the system
was installed at NASA Ames, another language
emerged called CFDL (Computational Fluid
Dynamic Language). CFDL was based on Fortran
and supported the principal applications for that
agency.

The Completion

The ILLIAC IV system was shipped to NASA
Ames in April 1972 and was accepted by the
customer that December. The selection of the
NASA site in lieu of the original one at the Univer-
sity of Illinois was due in part to the campus unrest
of that era and the possible target the system
presented. The system has been operational now
for almost a decade and is considered an effective
and productive resource in the mission of that
agency.

To the people who designed and built the
ILLIAC 1V, it was certainly a triumph of skill and

27

ILLIAC IV Control Unit

determination. The size and complexity of the
system (250 thousand, dual, in-line components) is a
challenge by today’s standard. ILLIAC IV also
made its contribution to the science:
a) It demonstrated that a SIMD architec-
ture could be used effectively on some
important applications.
It showed that a system of that size and
complexity could be used productively
and reliably.
It made the user community “vector con-
scious” and motivated the work toward
vectorizing compilers and the inclusion
of vector operations in later product
designs.
A major drawback to a wider use of ILLIAC
IV was the evolution in user environment. Modern
compilers and operating systems removed the user

from the hardware details of programming. The
programming pioneering days were coming to a
close.

b)

PEPE (Parallel Element Processing Ensemble)

The history of PEPE development discloses a
number of different corporations that contributed
in varying measure to the final delivered product.
PEPE as an architectural concept began in the
mid-sixties at Bell Laboratories, New Jersey,
under the auspices of the Army Ballistic Missile
Defense Agency (ABMDA). An early prototype
was assembled there at the time AT&T decided to
divest itself of military development contracts. As
a result, the System Development Corporation

took charge of PEPE and, in turn, engaged
Honeywell in support of the hardware design.

In March, 1973 Burroughs was awarded a con-
tract by SDC to build a revised and enhanced ver-
sion of PEPE for ABMDA, Huntsville, Alabama.
The system Burroughs was contracted to build was
specified in detail, focusing primarily on the prob-
lem of radar data processing for missile defense
systems.

The execution of the contract by Burroughs is
considered an industry paragon and Burroughs
was singled out for an outstanding performance
award by the U.S. Army for this achievement. The
completed PEPE system was shipped from Bur-

roughs Great Valley Laboratories, Paoli, Pa. to

Huntsville in May 1970 and accepted by the
customer by November of that year. The only
significant change from the original contract was
the reduction of the number of processing
elements from 36 to 11 due to a program funding
reduction.

The Design

The PEPE design is considered special pur-
pose because it is driven by the single application
of radar target correlation and tracking. This ap-
plication naturally lends itself to parallel process-
ing since the processing functions are identical for
multiple target returns and predictions. The
PEPE is really three distinct linear arrays, each of
which performs the parallel functions of correla-
tion, tracking, and radar control, respectively. A
Processing Element is a single orthogonal slice of
these hardware elements, including a common
memory and incorporating each of the three
functions.

Another important aspect of the PEPE ap-
plication is that there is no requirement for inter-
PE communication. This permits the PE’s to
associate in a loosely coupled “ensemble,” with a
significant reliability advantage as a result. Multi-
ple failures in PE would degrade but not fail the
system. The system was packaged with 36 PEs in a
cabinet and a maximum of 288 PEs was permitted.

The logic component family used in PEPE was
the Motorola 10K ECL Family. MECL 10K was a
mix of MSI and SSI completely packaged in
ceramic DIPs. The memory was a 1K bipolar RAM
produced by Fairchild Inc. The novel design of the
printed circuit boards featured a combination of
printed wiring and wrapped post wiring that
avoided the problems of multilayer boards. This
design, called the composite board, was used suc-
cessfully on the BSP.

28

The Epilog

The PEPE system was interfaced with a CDC
7600 host system in the Huntsville complex and
used to develop application programs. Later the
system was shipped to MecDonnell-Douglas,
Huntington Beach, California for its intensive
benchmark testing. These activities are classified
and the results cannot be published here. It can be
reported, however, that the hardware performed
exceedingly well and the system was returned to
Huntsville.

The PEPE contribution might have been more
formidable if the world political climate had war-
ranted it so it may be assumed that it fulfilled a
vital need. From an engineering viewpoint, it was
simply a job well done.

PEPE Cabinet, Front View

BSP (Burroughs Scientific Processor)

The Burroughs Scientific Processor (BSP) was
the result of an effort to develop a standard prod-
uct supercomputer that would serve the scientific
user community with massive computational re-
quirements. This application requires machines
with special architectures that can perform at
levels beyond those achievable by circuit speed
alone.

Fortunately, the programs often exhibit an in-
ternal structure in which the same operator can be
applied to arrays or vectors of data. This had led to
the development of several SIMD supercomputers
of either an arithmetic pipelined or parallel pro-
cessor design (e.g. ASC, STAR, and ILLIAC IV [1).
Both techniques had resulted in vector computers

PEPE Backplane

whose effective computational rates on suitable ap-
plications were one to two orders of magnitude
greater than that of serial processors constructed
of equivalent speed circuitry.

The generality of these machines was limited
by restraints on the application programs. Due to
pipeline start-up time, very long vectors of data
were often required. A small scalar content could
seriously degrade performance levels. Finally,
they were difficult to program, often requiring
assembly language coding and memory residency
analysis in order that the speed of the machine be
fully realized.

For these and other reasons, the only
machines that had achieved commercial success by
the early 1970’s were the CDC 6600 and 7600
series which achieved their performance levels
primarily by the use of very high speed circuitry
and multiple function arithmetic processors.

Given the recently completed ILLIAC IV pro-
gram and ongoing PEPE program, Burroughs had
- developed expertise in parallel processing which
could be applied to developing a commercial super-
computer. This, coupled with the Corporation’s
desire to field a FORTRAN processor to comple-
ment the product line and provide a test bed for a

29

new generation of high speed current-mode logic
(BCML), provided the impetus for the
development.

Although the BSP was not commercially suc-
cessful, prototype and production models of the
BSP were built, made operational, and in fact, met
most of their design goals. The state of the com-
puting art was advanced in several areas.

Design Goals

The beginnings of the program can be traced
to a feasibility study on repackaging ILLIAC IV
which was conducted in 1972. A survey of the user
community clearly showed that a more refined,
easier to use machine was required. This led to the
development of the set of design goals listed
below.

Standard Product. The BSP was to be a stan-
dard product. This implied that it was to conform
to the corporate standards for manufacturability,
testibility, reliability, maintainability, high level
language programmability, ease of use and cost. It
would be developed and manufactured by a stan-
dard M&E (Manufacturing and Engineering) plant.
Corporate standard hardware technology was to
be employed, providing a volume basis for material
costs and manufacturing tooling.

Attached Processor. The BSP was to be at-
tached to a large scale commercial computer
system such as the B7700. This provided the
capability to extend the FORTRAN performance
of these machines and provided the user with ac-
cess to the sophisticated system software
developed for commerecial large systems.

Technology Driver. The Corporation was cur-
rently engaged in the development of a high speed
current mode logic family and its associated liquid
cooled packaging technology, intended for use in
Burroughs commercial plants. The BSP was to be a
driver for this program. Thus it would provide
schedule pressure on the components plants in ad-
vance of commercial requirements and be a test
bed to shake down the technology.

Programmability. The BSP was to be effi-
ciently programmable exclusively in a high order
language. In practice, this meant that FORTRAN
was the obvious choice. Any extensions were to be
application oriented and machine independent. A
vectorizer was to be provided as a means of effi-
ciently executing existing codes.

Ease of Use. The machine was to be easy to
use. This was motivated by users’ desire to
minimize the cost of developing and maintaining

application codes.

Performance. The BSP was to be capable of
sustaining 20 to 40 MOPS on typical application
codes in weather forecasting, nuclear reactor
design, structural analysis, and other similar
fields. This was to be measured on such standard
benchmarks as the Livermore Loops.

In order to achieve these goals, several key
technical problems had to be solved.

Scalar Problem. Some means had to be found
to minimize the impact of scalar processing. This
had been a bottleneck in then-current designs.

Pipeline Start-up and Short Vector Perform-
ance. A method had to be found for ameliorating
the effect of pipe-start-up time so that high
performance could be achieved on relatively short
vectors.

Memory Conflicts and Residency. A memory
structure had to be devised that would minimize
the effect of memory conflicts which occurred
when elements of operand vectors resided in the
same memory bank. This structure could not re-
quire the user programmer to exhaustively study
the application and specify special residency
requirements.

Automatic Bit Vector Control. Bit vector con-
trol for data dependent branching and sparse vec-
tor operations had to be built into the machine and
made easy to use.

Generalized Parallel Processing. The parallel
processor had to be generalized so that it could be
effectively employed in more applications.
Research in parallel processing had resulted in
many parellel algorithms for speeding up opera-
tions previously thought to be serial (e.g. linear
recurrences [8]).

Balanced I/O Structure. High performance
secondary store was required and had to be ac-
cessible without excessive operating system
overhead.

Self-checking and Fault Tolerance. Extensive
self-checking and fault tolerant mechanisms were
to be built into the machine so that high reliability
and trustworthiness could be achieved. This was to
be done without seriously degrading the perform-
ance of the system.

Architectural Design

The solution of these problems was under-
taken during the preparation of the PDA (Product
Development Authorization — an internal pro-
posal). This effort was completed in June, 1974.

30

The first issue to be decided was whether a
pipelined or parallel processing approach would be
taken. The latter was chosen because of the ease of
implementing many of the sophisticated
algorithms which had been discovered and the ex-
pertise which had developed during the ILLIAC
IV program. Finally, the iterative nature of
parallel processors made them more suitable for
VLSI implementation in the future.

Once this had been decided, the memory con-
flict problem was then attacked. Although many
skewing techniques were known for minimizing
conflicts, none had the generality and uniformity
that was desired. The result of this effort was a
scheme [9] which offered conflict-free access to any
linear vector whose skip distance was not a multi-
ple of the prime number of memory banks. Even
more importantly, the memory mapping was ap-
plication independent.

The use of microprogramming was explored
as a method of simplifying the programming of the
machine and as a means of directly executing many
common FORTRAN constructs such as nested DO
loops with embedded assignment statements. This
resulted in the development of the template con-
cept, which allowed the overlapping of vector
operations within the temporal pipeline of the
parallel processor and solved the pipeline start-up
problem. (Parallel processors do exhibit another

BSP Cabinet

start-up phenomenon in that full speed is not
achieved until the vectors are at least as long as
the width of the array.)

The scalar problem was attacked with an eye
to minimizing the number of scalar operations and
overlapping their execution with that of the
parallel processor rather than relying solely upon
raw circuit speed. Scalar operations were reduced
by the application of parallel algorithms,
automating memory indexing and parallel pro-
cessor control operations in hardware, and off-
loading I/O operations to a smart controller.

The remaining problems were solved in an ex-
hilerating rush of discovery that culminated in a
design which is remarkably similar to the final
design documented in C. Jensen’s paper [6]. The
one major difference is that there were 67 slower
dynamic memory banks which fetched vectors of
length 64. The 16 arithmetic processors then ex-
ecuted the operation in 4 steps. Thus, the machine
reached full speed at vectors of length 64. This
allowed the use of low cost main memory.

BSP Demonstrating Class 6 Qualification

Detailed Design

In the detailed design phase of the program
(June, 1974 to August, 1976) the implementation of
the concepts developed during the proposal was
pursued. It had not been clear that the alignment
network and automatic indexing hardware could
be built out of a reasonable number of IC’s or that
there would not be a combinatorial explosion of
microcode. These problems were overcome and the
design had successfully incorporated the features
of the architecture.

The applications group had found that length
of vectors in many codes were shorter than 64. It

31

would be desirable to improve the short vector
performance of the machine. The advent of low
cost high speed static NMOS memories such as the
2147 made it possible to do this. The number of
memory modules was reduced to 17 and the
memory cycle time speeded up by a factor of 4.
This allowed the parallel processor to come up to
speed at vector lengths of 16 while providing the
additional benefit of simplifying the design.

This had the result of throwing the design into
imbalance. The scalar processor had to prepare
descriptors four times as fast as before. The scalar
unit had to be speeded up in order to fully take ad-
vantage of the faster parallel processor.

The Turning Point
e

A related sequence of events occurring in
1977 had a large effect on the program. It had been
observed that the scalar unit was, itself, functional-
ly complete and could be offered as a lower cost At-
tached FORTRAN Processor (AFP). This product
appeared to be relatively free and was adopted.
However, it resulted in two releases, two sets of
software, the development of a DISK version of
the I/O system, and an interface to the B 6800. This
represented a significant additional workload on
the project.

The BCML development was very late and did
not meet the original performance goals. A pro-
posal to implement the first machine in the proven
hardware of the PEPE system was rejected
because the objective of driving the technology
was deemed essential.

It was becoming clear that the performance of
the scalar unit would not support application pro-
grams that did not contain a sufficiently high con-
tent of vector operations. The design of the scalar
unit was straightforward, to minimize the overall
development risks to the program. The perfor-
mance on the Livermore Logics benchmarks (a
scalar-vector mix) reinforced our strategy, but a-
broader product approach would require a
performance enhancement of the unit. At this
point, with limited time and resources, it was felt
the problem could be addressed in a subsequent
product upgrade after the production start of the
present design.

Making It Work

The machine was debugged during 1977 to
1980. There were many problems to overcome. In-
itially, late deliveries of circuits delayed the pro-

gram. When sufficient quantities were available,
the hardware was built and put into system test.

The hardware technology was completely
new, from the circuits to all three levels of packag-
ing. In addition, the emerging CCD technology was
to be employed for a second level store. Given the
number of new items, it perhaps is not surprising
that some design problems surfaced.

The first design of the sockets exhibited loose
contacts, the proms speeds drifted, and there was
a damaging latent fault in the zinc pillow blocks.
These blocks were screwed in to hold the PWB
assembly together and were under high pressure.
They exhibited a cold flow phenomenon which
caused the screws to slowly pull out. The
assemblies were literally pulling themselves apart.
A third of the machine had to be reworked in the
midst of debugging. The CCD devices exhibited a
- high soft failure rate and were difficult to
manufacture.

These problems were overcome and the pro-
duction hardware was fully qualified, very reliable,
and exceptionally stable. There were practically
no electrical intermittents reported. The CCD
memory was replaced by a dynamic RAM system.
While this process of shaking down the hardware
technology fulfilled one of the main objectives of
the program, it delayed getting the machine into
the marketplace at a critical time when CRAY was
making deliveries for almost 2 years.

The software set was new and fully featured.
The maturization of this amount of software took a
long time and prevented us from routinely running
customer benchmarks. This was aggravated by the
temporary loss of all 7700’s for customer
shipments, which resulted in no system manager
to debug the deliverable software (the alternate,
but different, 6800 software was used instead).
Nonetheless, by 1979, limited benchmarks could be
run to measure the performance characteristics of
the system.

Performance Measurement and Marketing. In
the codes that were tested, the design lived up to
its promise as an excellent vector processor. The
livermore loops ran at over 20 MOPS. In general,
most comparisons showed that the machine was
equivalent in performance to the CRAY I for many
vectorizable codes. This was true even though the
short vector performance of the parallel processor
was only being partially realized and the hardware
components were considerably slower.

32

Although the large main memory and fast
secondary store was an advantage in large prob-
lems, users preferred the CRAY due to the
guaranteed performance levels that could be
achieved on existing non-vectorized and scalar
codes.

Conclusion. The cancellation of the BCML and
CCD programs, the attendant cost increases, the
loss of an appropriate marketing window, and the
lack of a dominant scalar speed led to the cancella-
tion of the product. The design proved that it was
possible to configure a parallel processor which
was competitive in vector applications and con-
siderably more general than those that had been
designed in the past. This drive for generality is
expected to continue into the next generation of
MIMD architectures.

References

(1) Barnes, G. et al. “ILLIAC IV Arithmetic Ele-
ment,” IEEE Transactions on Computers
(August 1968), Vol. C 17, No. 8, pp. 746-757.

(2) Davis, R. L. “ILLIAC IV Arithmetic Element,”
IEEE Transactions on Computers (September
1969), Vol. C-18, pp. 800-816.

(3) Abel, N. et al. “TRANQUIL - A Language for
an Array Processing Computer,” Proceedings
AFIPS Joint Computer Con-
ference , Vol. 34, pp. 57-73.

(4) Lawrie, D. “GLYPNIR - A Programming
Language for ILLIAC IV,” Communications of
ACM (March 1975), Vol. 18, No. 3, pp. 157-164.

(6) Stokes, R. A. “Burroughs Scientific
Processor,” Proceedings of the Symposium on
High Speed Computation , University
of Illinois.

(6) Jensen, C. “Taking Another Approach to
Supercomputing,” Datamation (February
1978), pp. 159-172.

(1) Kuck, D. J. “A Survey of Parallel Machine
Organization and Programming,” ACM Com-
puting Surveys (March 1977), Vol. 9, No. 1, p. 29.

(8) Chen, S. C. and Kuck, D. “Time and Parallel
Processor Bounds for Linear Recurrence
Systems,” IEEE Transactions on Computers
(July 1975), Vol. C 14, No. 7, pp. 701-717.

(9) Lawrie, D. “Access and Alignment of Data in
an Array Processor,” IEE Transactions on
Computers (December 1975), Vol. C 24, No. 12,
pp. 1145-1155.

CONTROL DATA 6600 AND STAR-100

James E. Thornton
Network Systems Corporation

Brooklyn Park,

Abstract -- This paper reviews
some of the starting point assumptions
and considerations for two design pro-
jects at Control Data Corporation; namely
the CDC 6600 and CDC STAR-100. Each of
these has had follow-on computer families,
CYBER 70/170/700 for the former and
CYBER 203/205 for the latter. Both pro-
jects were very ambitious and plowed new
ground in the use of parallelism in large
scale computer design.

The CDC 6600

The design of the CDC 6600 began in
1960 [1]. The first transistor computers
had just been delivered to the field that
year. Ideas having to do with parallel
processing were presented at a short-
course conference at UCLA in which STRETCH,
LARC, ATLAS, ILLIAC-II and GAMMA 60 were
examined. These machines were in develop-
ment in the United States, England and

Minnesota 55428

France. Each attempted to exploit ways
to reduce the idle activity within parts
of the computer waiting for other parts
to complete a sequential action. Since
access to memory was often the biggest
delay of this kind, many of the ideas had
to do with relieving this burden. An
example was the "instruction lookahead"
of STRETCH.

In 1960 it had already become apparent
(as it has grown more important over the
years) that brute force circuit perfor-
mance or parallel operation were the two
main approaches to any advanced computer
[2]. The 6600 project attempted a fast
version of the building block circuit in
use at the time only to fail early on in
the project. This resulted in a restart
with a more complex packaging and cooling
scheme providing a significantly higher
density of parts. Discrete transistors
were used since integrated circuit
families had not become available.

PERIPHERAL AND
RAL PR R
CONTROL PROCESSORS CENTRAL PROCESSO
) ml ADD
]
=
<y .
T
BOUNDARY
| L5
R o
2 LONG ADD
- OPERATING
e
hing CENTRAL
MEMORY
-] ED “’l BOOLEAN |
]
I LOWER INCREMENT
- BOUNDARY
> I ! INCREMENT
“ |- L]
12 INPUT
OUTPUT CHANNELS

Figure 1. Block diagram of 6600

33

0190-3918/81/0000/0033%00.75 © 1981 IEEE

OPERANDS

OPERANDS
(60-BIT)
X0
X1
X2
X3
X4

OPERAND

CENTRAL

0 T

MEMORY

ADDRESSES

RESULT 1 Ab

ADDRESSES —{ A7

INSTRUCTIONS

X5 e
RESULTS 0
ADDRESSES (18-BIT) X7
A0
Al
A2
A3 10 FUNCTIONAL
Al UNITS
A5
INCREMENT INSTRUCTION
(18-8IT) REGISTERS
80
Bl
82 INSTRUCTION
83 STACK
o (UP TO 8 WORDS
83 60-BIT)
86 .
87 ﬂ

Figure 2.

The first area of parallel operation
began as a separation of input/output op-
erations from the CPU, (Figure 1). It
was felt that independent small processors
with direct access to central memory
could be dynamically assigned to control
peripheral devices and transfer data
between each device and central memory.
These peripheral processing units (PPUs)
would contend with each other for the
channels to the devices and for the access
to central memory. In the latter, the
PPUs would also contend with the CPU for
access to central memory. With the excep-
tion of this latter factor, the PPUs
could be designed separately from the CPU
and represented a very convenient separa-
tion of design duties for the design team.
The resulting design was an innovative
"barrel" of registers together with a
single arithmetic unit implementing ten
small processors each having its own
memory. Later implementations in follow-
on CYBER products included physically
independent PPUs as integrated circuit
versions were introduced.

In the CPU additional areas of par-
allel operation were applied to instruc-
tion loockahead, multiple working registers
and functional units. See Figure 2.
Taking the registers first, the idea of
inserting registers between the execution
logic and central memory provided a means
to optimize and overlap read and write
references to central memory. At the

34

Central processor operating registers

beginning of the execution of a CPU pro-
gram (or at a restart following interrup-
tion) a single simultaneous exchange is’
made of the contents of the 24 registers
and a prepared location in central memory.
This action provided very rapid exchange
of jobs (or operating system routines)
enhancing the ability to support multi-
programming.

During execution of the CPU program
instructions are fetched from central
memory into an instruction stack capable
of containing 8 60-bit words, see Figure 3.
Each new instruction word is immediately
fed to the functional units from execution
but is also retained and "pushed up" for
possible re-use in certain loop routines
or the like without the further require-
ment of fetching from central memory. In
certain follow-on CYBER products of lower
performance the instruction stack was not
utilized nor were separate functional
units. The instruction stack was a
principal important ingredient in estab-
lishing a high degree of concurrent
operation in the functional units.

A further important ingredient in
supporting concurrent operation in the
functional units was a control unit called
the SCOREBOARD [3]. 1In essence, this unit
kept track of reservations of the working
registers allowing functional units to
reserve each register it needed for either

INSTRUCTION
REGISTERS

INSTRUCTION
STACK

8 60-BIT
WORDS

BUFFER REGISTER

FROM CENTRAL MEMORY [y

Figure 3.

reading out or writing into the register.
Instructions could be "issued" to a func-
tional unit in order, could be executed
out of order, but would return results to
registers in order. As a result, no
functional unit would block the issuance
of instructions unless a unit was busy

or a register reservation could not be
made.

Optimization of short program loops
in the instruction stack could produce
dramatic overlap of functions. Alsosimply
the implicit use of this control technique
and the existence of ten functional units
provided a degree of natural concurrency.

From a design point of view each func-
tional unit was specially designed to
execute its narrow group of instructions
interfacing only to the registers and
minimal control signals. As a result
several of the units achieved very high
performance avoiding "impediments" of
sharing logic with other functions.
CYBER products incorporated further
"pipeline" arithmetic design to such
functional units.

Later

Two principal criticisms were leveled
at the CDC 6600. The first was that it
was not a time sharing machine. This
criticism has been hotly contested and
arose from the lack of interrupt on the
PPUs and the lack of virtual memory for
memory management. A second criticism was
the lack of variable length string arith-
metic and instructions for character
handling anddecimal numbers. Software
routines to accomplish these requirements
proved slow in relation to the IBM 360 for
example. For scientific and binary

35

6600 Instruction stack operation

oriented computing though, this machine
was superior for its day and for many
years even to today.

The CDC STAR-100

Control Data began this project in
response to a request for proposal (RFP)
from Lawrence Livermore Laboratory (LLL).
Preceding this were requests for informa-
tion (RFI) and other interaction with the
LLL people as to the possibility of CDC
being the manufacturer of an ILLIAC IV
type of machine. Management response to
that suggestion was negative. Also our
technical response was that we had a
different idea. The essence of this
different idea was to build on our growing
knowledge of "pipeline" architecture ip
response to the requirement.

The CDC 7600 (follow-on to the CDC
6600) utilized an improved functional
arithmetic unit design which allowed each
unit to be entered with new input operands
well before previous operands were pro-
cessed and results obtained. This added
pipelining of the execution units along
with the instruction stack and control
brought additional concurrency to the
machine. It was felt that this could be
enhanced further by explicit pipeline
instructions for the CDC STAR-100.

During 1965 and 1966 Control Data
faced significant competitive pressure
from IBM in particular and was attempting
to expand the role of the CDC 6600 into
commercial (non-scientific) markets.
Principal competitive factors were the
lack of variable length byte oriented

instructions, decimal arithmetic and
virtual memory. Interal strategies in CDC
were pressing for new machines stressing
these properties. Thus the STAR-100 pro-
ject moved to respond. The variable
length and 8-bit byte STRING oriented
instructions were a somewhat natural fit
with the idea of ARRAY instructions
utilizing highly parallel pipeline execu-
tion. The name STAR-100 was formed from
STRING and ARRAY with the objective of

100 million operations per second. STRING
operations were assumed to be executed in
a separate functional unit and thus were
not considered an impediment to the high
performance end of the machine.

Moving to the eight-bit world from
the octal and six-bit environment was a
major learning experience and further
complicated by a shift from one's comple-
ment to two's complement representation
of binary numbers. But the fundamental
new area of design was the processing of
vectors and arrays through pipeline
arithmetic.

The CDC STAR-100 computer was
structured around a 4-million to 8-million
byte high-bandwidth magnetic core memory.
Instructions specify operations on vari-
able length streams of data allowing full
use of the memory bandwidth and the
arithmetic pipelines [4]. In streaming
mode the system has the capability of
producing 100 million 32-bit floating
point results per second. See Figure 4.
Memory has 32 interleaved banks, each
bank containing 2048 512-bit words (for
the 4-million byte capacity). The memory
was an outgrowth of previous extended core
storage (ECS) systems built for the CDC
6600. The long word length and relatively
slow cycle of 1.28 microseconds with
interleaved banks was suitable for
streaming use. Working registers in
local storage include 256 sixty-four bit
general registers. Operands could enter
the multiple pipeline arithmetic either
from the general registers or from
central memory; similarly, results could
return to the general registers or
central memory.

' MULTI- l
PURPOSE 1
WRITE BUS WRITE FLOATING POINT
FANOUT - BUFFER : ADD PIPE '
Banks 128 Bits
o- 3| 3 0 X 8 |
128 Bits I REGISTER |
4- 7 4 | DIVIDE
8-11
8 EIPELINE PROCESSOR 2|
12-15
12 READ BUS READ
- AN-IN — — —
16-19 16 ‘ BUFFER I._
128 Bits)
20-23 20 l> FLOATING POINT I
> > ADD PIPE
24-27 | 24 ' l
28-31}31 28 I MULTIPLY I
128 Bits '
Memory x 8 1/0 lPlPELINE _PROCESSOR 1|
(4 Million Bytes)
INSTRUCTION
= STACK & CONTROL
VECTOR

Figure 4. STAR-100 Memory-Pipeline data paths

Vector instructions perform operations
on ordered scalars. Such instructions are
64 bits in length and contain the instruc-
tion code and three pairs of eight-bit
designators. These designators provide the
means to support a three address environ-
ment. In general two input streams and
one result stream are defined. for the two
input streams each pair of designators
defines working registers (of the 256
general registers) which contain the base
address, vector length and an offset to
the base address. Length and offset are
also held in defined working registers
together with the base address of a
control vector. The control vector is a
bit string in which each unique bit is
associated with the storing of each result
element in the result stream. A bit in
the control vector can prohibit the storing
of a result element, thus providing for
certain masking and boundary controls.

Thus a single explicit instruction can
direct the execution of many floating
point operations in a highly organized
fashion. In practice, the preparation and
synchronization of the three streams was
very complicated and required a longer
"start up" period than had been expected.
As a result, the CDC STAR-100 was more
efficient the longer the vectors were.
Also with a slow central memory, scalar
operations were not competitive although
offset somewhat by the high speed general
registers.

Both projects suffered delays with the
CDC STAR-100 being the longer and
several years in duration. Problems with

37

6600 occurred very early and cost only
about a year. Problems with the STAR-100
occurred very late in the planned schedule
and resulted in an extended delay. Both
projects were exceedingly aggressive

and far reaching. The properties of the
CDC 6600 have enabled a long lasting
product line. The properties of the

CDC STAR-100 are only now being exploited
in the CYBER-200 machines.

References-

[1] Thornton, J.E., "The CDC 6600 Pro-
ject," Annals of the History of
Computing, October 1980, Volume 2,
Number 4, pp. 338-348.

[2] Thornton, J.E., "Parallel Operation
In the Control Data 6600," October
1964. AFIPS Proceedings FJCC, pt 2
Volume 26, pp. 33-40.

[3] Kuck, D.J., "The Structure of
Computers and Computation," 1978,
Volume 1, pp. 312, 328.

[4] Hintz, R.G. and Tate, D.P., "Control
Data STAR-100 Processor Design,"
September 1972, COMPCON 72 Pro-
ceedings, pp.1-4.

PROGRAMMING DISTRIBUTED
APPLICATIONS IN ADA:
A FIRST APPROACH!

by

Stephen A.

Schuman

Massachusetts Computer Associates, Inc.

Wakefield, Mass.

01880

and

Edmund M. Clarke, Jr.

Christos N.

Center for Research in

Nikolaou
Computing Technology

Harvard University

Abstract -- This paper addresses the problem
of programming distributed systems within the
framework of the Ada language, which provides
primitives for interprocess communication based
upon the model of Communicating Sequential Proc-
esses. We first discuss our basic assumptions
concerning the underlying target configuration,
the physical communication medium which is to sup-
port that application and pattern of the logical
communication within the application proper. We
then develop a first approach for constructing
such applications using the separate compilation
facilities of Ada. Finally, we consider two pos-
sible protocols for implementing the requisite
distributed interprocess communication, referred
to as the Remote Entry Call and the Remote Proce-
dure Call, respectively.

1. Introduction

This paper addresses the problem of program-
ming distributed applications within the framework
of the Ada language [3,2,5]. Our ambitions here
are confined to outlining a first approach in this
area, whence a number of significant issues asso-
ciated with the construction of such software are,
of necessity, deferred. We begin in Section 2 by
setting forth the basic assumptions which underly
the overall approach described herein. Section 3
is concerned with establishing an appropriate com~
pile-time framework, within which the programming
of an application destined for amulti-processor
target configuration can be carried out in much
the same way as one intended for a uni-processor
target. In the final section, we turn to the
development of protocols to support the requisite
"interprocessor procedure call" capability, so
that the applications of interest can then be

lAt Massachusetts Computer Associates, Inc., this
research was supported in part by the U.S. Army
CORADCOM, through the Scientific Services Program
under Delivery Order No. 1704 from Battelle Colum-
bus Laboratories.

At Harvard University, this research was supported
in part by NSF Grant MCS-7908365 and by Contract

NO0039078-G~0020 with the Naval Electronics Systems
Command .

38

0190-3918/81/0000/0038$00.75 © 1981 IEEE

programmed without further regard to the distribu-
ted nature of the underlying target configuration.
Two successive versions of such a protocol are
defined. These are referred to as the Remote Entry
Call and Remote Procedure Call, respectively.

2. Basic Assumptions

This section outlines our basic assumptions
concerning the nature of.the distributed applica-
tion systems to be programmed in Ada. Abstractly,
we wish to conceive of some given target configur-
ation, onto which a certain application is ulti-
mately to be mapped, as a network of communicating
"Ada Virtual Machines" (AVMs). Every such config-
uration may therefore be characterized in first
instance by an undirected graph, as depicted for
example in Fig. 2-1:

FIGURE 2-1:

A network of communicating Ada Virtual Machines.

The individual nodes of a particular network.
correspond to fully independent (autonomous) proc-
essors, each of which is capable of e§ecuting a
complete Ada program. Accordingly, ag Ada Virtual
Machine is to be viewed as an idealized single-
processor environment that directly implements the
run—-time facilities required to support the seman-
tics of the full Ada language. Thus the concept
of an AVM embodies an abstract object machine for
which Ada source programs might conventionally be
compiled (but disregarding all dependencies upon
a specific hardware architecture and/or host oper-
ating system); concretely, it may be thought of as
providing its own address space, scheduler and ’
real-time clock, together with a certain set of

external interrupts, low-level device interfaces,
etc. We refer to this environment as a "virtual"
(rather than "actual") machine so as to also eli-
minate considerations arising from the fact that
several such machines might sometimes be multipro-
grammed on the same physical processor (e.g., in
the context of an underlying time-sharing system).

The connecting edges appearing in a given
network represent possible paths of bidirectional
communication between distinct processor nodes.
(Non~connecting edges, like those shown in Fig.
2-1, are meant to suggest additional paths of com-
munication, for instance with various devices
attached to the individual virtual machines; how-
ever, interactions with purely local resources of
this sort are of no direct interest here, and so
will not be further discussed.) The connectivity
of such a network is assumed to be sufficient for
supporting the intended pattern of interprocessor
communication, meaning that each edge corresponds
to a path whereby both the requisite data and any
appropriate control signals can be physically
transmitted between the two connected nodes; more-
over, the bandwidth of these connections is pre-
sumed to be adequate for the application at hand.

We shall assume that the target configuration
for any specific application is always statically
defined--i.e., that the number of virtual (and
even actual) processors is established once and
for all, and that the necessary paths of communi-
cation exist from the outset. The primary stipu-
lation which we impose is that all interactions
between separate nodes of the network thereby
defined must be achieved by explicit communication
across these more or less "thin wire" connections.
In other words, we preclude interactions based
upon the existence of shared memory or any form
of centralized control. This implies that the
application in question must be formulated from
the beginning as a distributed system. The issue
we wish to address is how one might go about pro-
gramming such applications in Ada, so as to be
able to effectively map those programs onto the
given multiprocessor configuration.

Ada provides an adequate basis for program-
ming systems of communicating sequential processes
[1], and for supporting synchronous communication
between these processes. Once some desired pat-
tern of logical communication has been established
(for example, that depicted in Fig. 2-2), there
is no particular difficulty involved in formula-
ting the specifications and subsequent definitions
for the corresponding caller and server processes
(or subsystems). Insofar as the resultant pro-
gram is destined to be executed on a single proc-
essor configuration (as represented by the Ada
Virtual Machine considered here), the job is
effectively done once all of the separate compi-
lation units comprised by that program have been
successfully compiled (since an AVM is assumed to
be capable of directly executing any complete Ada
program, regardless of its textual decomposition).

However, when the target configuration is a
network of interconnected AVMs (e.g., Fig. 2-3),
then it is far less obvious how to proceed. The

39

Ql...)
R(...)

P(...) M

D(...)

a1 E

F1(...)
Fa(... 7
k] |

FIGURE 2-2: Example Application, in terms of

Avmy

avm, avmy

FIGURE 2-3: Example Target Configuration, in terms of interconnected Ada Virtual Machines

effect that we should like to achieve is to be able
to essentially "superimpose" the intended pattern
of communication upon the underlying network (as
suggested by Fig. 2-4), thereby preserving the
overall logical structure of the application.

While the ability to do so presupposes. that the
application in question was formulated as a distri-
buted system in the first place (i.e., based solely
upon communicating sequential processes), it
should then be possible to map that structure onto
any appropriate target configuration, whether cen-
tralized or distributed. This is the premise of
the approach outlined in the present paper.

P(...) R(...)

A

cl

A 2] s x

AvM,

FIGURE 2-4: Superposition of Example Application upon the given Target Configuration

3. Overall Framework

In this section, we shall outline a basic ap-
proach to constructing a distributed application,
such as that depicted in Fig. 2-4, by making exten-
sive use of the separate compilation facilities in
Ada (and also of the related capabilities for
generic program units). The framework to be devel-
oped here must be regarded as simply a first
approach to the problem whence many practical
aspects associated with building distributed soft-
ware will have to be glossed over (or neglected
entirely) in the present context. (In particular,
we shall be concerned solely with constructing a
definition for the steady-state operation of a
given application, even though it is well known
that the issues involved in startup and shutdown
of a distributed system are far more difficult to
address.) This approach nonetheless provides a
number of important insights into the nature of
the problem itself.

The package declaration that follows shows,
in skeleton form, an initial specification for the

application as a whole:

package Config is

type NODE is (NN$1, NN$2, ..., NNS$n);
-- Node Names
type NSET is array (NODE) of BOOLEAN;

-~ Set of Nodes

package Node$l is ... end;

package Node$h is

type OPER is (OP$1l, OP$2, ..., OPSk);
—= Op Codes for Remote Services
-- other type definitions ...

Host:
Conn:

constant NODE :
constant NSET :

NN$h;

(...=> True,
others => Falge);
-- other constant declarations ...

generic
Site: in NODE;
package Service is
procedure P$1 (...);
procedure P$k (...);
end Service;

end Node$h;

package Node$n is ... end;
end Config;

In order to formulate such definitions, we have
adopted the (purely lexical) convention of writing
names with an embedded dollar sign, so as to be
able to refer to unique identifiers as if they were
elements of a set distinguished by means of sub-
scripts. For instance, the declaration of the enu-
meration type NODE is meant to suggest a range of

40

values NNj, NNy, ..., NN,, whereas in practice the
individual values would correspond to application-
specific mnemonic names (e.g., NNy, might be writ-
ten as the Ada identifier "FileServer"). Also,
P$1l, ..., P$k denote the particular procedural
services which that individual node provides.

This first specification consists primarily of
package specifications for the constituent nodes
of the overall configuration. The logical inter-
face of each separate node comprises, in addition
to various type and constant declarations, the
declaration for a generic package Service, which
will ultimately be instantiated within the defi-
nition of other (caller) nodes.

The associated body for the package Config,
shown below, serves to establish the overall con-~
ventions which are common to all nodes. As such,
it is primarily concerned with defining the under-
lying communications interface, by which informa-
tion will be physically interchanged between dis-
tinct (virtual) machines within the configuration.
These conventions are embodied firstly in a series
of data type definitions, including:

- XREC, corresponding to a “transaction record"
that contains at least an indication of the
respective source and destination nodes for
each transmission, .as well as an encodement
of the particular "operation code" for that
particular transmission;

XMIT, corresponding to a complete transmis-
sion, as delivered to or received from a
local communications interface, which
includes both an XREC component and an asso-
ciated buffer (whereby argument or result
data may be forwarded).

Two different types of transmission are dis-
tinguished at the communications level, namely
Transmit Call (XC) and Transmit Response (XR),
and the corresponding subtypes of XMIT are also
defined (CALL and RESP, respectively).

Finally, the actual communications interface
is specified in the form of two distinct generic
packages, ChnDriver and ChnServer. Each of these
have a number of generic parameters, in particular,
an operation Request and an operation Deliver
which will be bound in the context of their sub-
sequent instantiations in order to carry out the
necessary acquisition and disposition of trans-
missions over the underlying medium. This inter-
face is assumed to take full responsibility for
setting and using the Orig and Dest Fields of the
transaction record part of such transmissions.
The details of these interfaces will not be fur-
ther specified here.

with Medium;
package body Config is

function Card(N:in NSET) return INTEGER range
0..NODE'POS (NODE'LAST)+1...;

subtype OPID is INTEGER range O.....;
-— Max Op Code

type XREC is record
Orig, Dest: NODE;
Code:

end record;

OPID;

type BUFF is
type XTYP is

cee §

(XC, XR);

type XMIT(T:
X: XREC;
B: BUFF;

end record;

XTYP) is record

subtype CALL
subtype RESP

is XMIT (XC);
is XMIT(XR);

generic
From, To: in NODE;
with procedure Request(C:
with procedure Deliver (R:
package ChnDriver;

in out CALL);
in RESP);

generic
From: in NSET;
To : in NODE;
with procedure Request (R:
with procedure Deliver (C:
package ChnServer;

in out RESP);
in CALL);

package body ChnDriver
coe en@;

package body ChnServer
... end;

is ... use Medium;
is ... use Medium;
package body NodeS$l is

oo

package body Node$n is

separate;
separate;
end Config;

We now introduce analogous definitions for
each separate node of our distributed configura-
tion (the outline for that representing the Node$h
is shown below). In this instance, however, such
a step no longer constitutes an "extra" level of
abstraction; rather, it is essential -- for this
is the first place in which we permit actual in-
stantiations (of code or data), since we have only
now reached a level that corresponds to some phy-
sical machine environment.

The definition of such a shell serves to
establish what might be construed as an "Applica-
tion Virtual Machine," in terms of which the con-
stituent subsystems of the actual application
(e.g., the modules AS$l...A$m) may then be pro-
grammed without further regard to the distributed
nature of the underlying target configuration.
This definition serves to provide:

41

- An indication of the target environment for
this particular node (pragma SYSTEM);

- The specification of the application modules
to be hosted within this node (the package
declarations for AS$l...ASm);

- A mapping of the remotely callable services
provided by this node onto the operations
defined by those modules (e.g., renaming of
P$i);

- Definition of both sides of the higher-level
protocol required to support such remote
calls, namely the driver side (the body of
the generic package Service) and the server
side (the body of the non-generic package
Support) ;

~ Finally, instantiations of the remote serv-
ices needed to implement the application
modules of this node (package NodeS$u,
Node$v, etc.).

separate (Config)

package body Node$h is

pragma SYSTEM(...);
~- Specify local application modules:

package A$l is
procedure Q$1(...);
procedure Q$f(...);

end AS$l

package AS$m is
procedure Q$1(...);
procedure Q$g(...);

end AS$m;

-- Local (re)definition of services:
procedure P$i(...) renames A$a.Q$b;

-- Support services called remotely:

package Support;
package body Support is -- Server side of Protocol

end Support;

package body Service is -- Driver side of Protocol

.
oo

end Service;
-- Provide services needed locally:

package Node$u is new Config.Node$u.Service
(Site => Host);

package Node$v is new Config.Node$v.Service
(Site => Host);

package body A$l is separate;

package body AS$m is separate;
end Node$h;

Within the framework of this shell, the appli-
cation modules would again be defined as separately
compiled subunits:

separate (Config.Node$h)
package body AS$l is

... Node$u.P$i(...) ...

end AS1;

separate (Config.Node$h)
package body A$m is

... Node$v.P$j(...) ...
end AS$m;

The approach outlined above effectively makes
use of the Ada "Program Library" to establish the
context in which individual components of a distri-
buted application may be defined in terms of a
purely procedural interface to services which are
nonetheless hosted on different nodes of a distri-
buted target configuration. The possible proto-
cols by which such an “interprocessor procedure
call" capability might be realized are the subject
of Section 4 of this paper.

It must be pointed out, however, that the
usage of the Ada separate compilation facilities
described above, while legitimate in every respect,
may nonetheless cause a potential problem in the
context of overly "naive" implémentations of those
facilities. Specifically, the issue arises in
conjunction with circular dependencies (wherein
Nodej calls Node,, and so must instantiate its
Service package which is defined in' the body of
Nodez, and vice versa). Whereas this,too, could
be "programmed around" (at the cost of considerable
effort and obscurity), in this instance it would
seem preferable to wait for more mature implemen-
tations.

4. Possible Protocols

In this section, we shall be concerned with
possible protocols by which the desired interproc-
essor procedure call capability might be implemen-
ted for a particular distributed application.

Thus, at this point, we shall elaborate upon actual
definitions for the driver side (which serves to
map such calls onto the communications interface)
and the server side (which acts to carry out such
calls on behalf of any remote caller); these imple-
mentations correspond to the bodies of the packages
Service and Support, respectively, which are
defined within the body for the node wherein those
remotely callable services are to be hosted.

42

For purposes of exposition, we shall consider
only one instance of such a definition, that asso-
ciated with the virtual machine Node$h (which
makes available the operations P$l...P$k) and,
moreover, we shall sketch out the detailed imple-
mentation for only one of the operations in ques-
tion, identified throughout as P$i. This involves
no loss of generality, since the structure for all
other operations and nodes is essentially the
same. Accordingly, the overall goal for the imple-
mentations that will be described here is to pro-
vide the capability suggested by Fig. 4-1, namely
to permit application processes such as Ay, A,,
B...C, residing on separate (virtual) machines, to
invoke the operation P; hosted by Nodey (corre-
sponding to yet another such virtual machine) as
though by a simple (local) procedure call.

M ooy

Module providing
am, operation P, (...)

I

7/

Node

FIGURE 4-1: Overview of the Required Capability, to Support Remote Calls on the operation Py |

To simplify the presentation, we shall assume
that the operation of interest has the following
specification:

procedure P$i (Al:in TAl;...;Ax:in TAx;
Rl:out TR1;...;Ry:out TRy); where Aj stands out
for the jth input argument (of type TAj) and Rk
stands for the kth output result (of type TRK);
formal parameters of mode "in out" are thus pre-
sumed to have been decomposed into separate input
and output objects. We note that some restric-
tions must be imposed upon the types of parameters
in the present context. Specifically, it must be
possible to copy the associated objects from one
machine to another, which apparently precludes
the passage of task or "limited private" types
(for which assignment is not defined). Similarly,
it must be possible to meaningfully refer to such
objects both locally and remotely, which precludes
the passage of access types (except when declared
as "private").)

In the subsections which follow, we shall
develop two alternative definitions for the
desired protocol, referred to as the Remote Entry
Call and the Remote Procedure Call, respectively.

In the first (and simpler) version, we impose
the property that, from each distinct caller node, |
there is at most one remote call to any given |
operation in progress at a time. Such an imple-
mentation would be appropriate, for example, in
cases where the operations to be invoked are known
to be entries (i.e., serviced in a purely I

sequential fashion), whence there is no advantage
to be gained by forwarding more than one poten-
tially concurrent call from some particular node
(since these would then have either to be buffered
within the communications medium or enqueued by
the corresponding server node).

The second version relaxes this restriction,
allowing a (bounded) number of calls on the same
operation to proceed concurrently from within each
separate caller node. This somewhat more compli-
cated strategy might be adopted in situations
where there is some optimization to be achieved
(on the server side) by recognizing new calls
before all previous ones have been completely serv-
iced (as for instance in the context of a disk
scheduler) .

It must be stressed that there is no semantic
distinction between these alternative implementa-
tion strategies. The choice affects only system
throughput and thus the overall performance of the
application in question; it should therefore be
made on that basis alone.

We shall now proceed to develop Ada defini-
tions for these two alternative protocols,
expressed primarily in terms of the synchronous
communication primitives embodied in the tasking
facilities of that language. Each of the imple-
mentations to be described consists of the driver
side (the body of the generic package Service,
which is to be instantiated within one or more
remote caller nodes), and the corresponding server
side (the body of the package Support, which
resides within the Ada Virtual Machine that hosts
the operations in question).

4.1 The Remote Entry Call

As stated above, the first strategy is based
on the property that no more than one remote call
on each operation is in progress from the same node
at any given time, so as to avoid saturation of
the communications medium or overloading of the
corresponding server node. As such, this property
is necessarily established on the driver side of
the protocol defined below.

4.1.1. Driver Side. The overall structure
and associated data-flow for the driver side are
depicted in Fig. 4-2. Calls on the operation P$i,
originating from application tasks Ta...Tz are
fielded by an Agent which is specific to that oper-
ation (AGTi); this latter acts to acquire the input
arguments for each individual call (Al...Ax) and to
subsequently deliver the corresponding output
results (Rl...Ry). These two separate transactions
for every operation hosted by Nodey, (PS$1...PSk) are
dispatched via distinct processes, the Driver Call
Handler (DCH) and the Driver Response Handler (DRH),
which respectively act to forward calls and
retrieve responses from the Local Channel Driver
(LCD) for Nodep. These handlers are formulated as
independent (concurrent) processes so that the
order in which LCD requests calls or delivers
responses will not be unnecessarily constrained by
this protocol.

43

DCH

(Call Handler)

-~ (Resp Handler)

FIGURE 4-2: Overall Structure and Data-Flow on the Driver Side for the Remote Entry Call Protocol.

The outline of (generic) package body for the

driver side is shown below:

package body Service is

-- Driver Side, defined in Config.Node$h:

task DCH is
entry ReqgCall(C: in out CALL);
entry DC$1(...);:
entry DC$i(Al: in TALl; ...; Ax: in TAx);
entry DC$k(...);
end;

task DRH is
entry DelResp(R: in RESP);
entry RR$1(...);
entry RR$i($1: out Trl; ...; Ry: out TRy);
entry RRSk(...);
end;

package LCD is new ChnDriver (
From => Site, To => Host,
Request => DCH.RegCall,
Deliver => DRH.DelResp);

package D$1 is ... end;
package D$i is
procedure P(Al: in TAl;...;Ax: in TAX;
Rl: out TRl;...;Ry: out TRy);
procedure PutArg(B: in out BUFF;
Al: in TAl: ...; Ax: in TAX);
procedure GetRes (B: in BUFF; Rl: out TR1;
...; Ry: out TRy);
end D$i;

package D$k is .. end;

procedure P$S1 (...) renames D$1.P;

procedure P$k (...) renames D$k.P;
... + bodies of DCH, DRH, D$1, ..., Ds$k

end Service;

The handler processes DCH and DRH are directly

specified in terms of Ada tasks, with entries to
be called by the channel driver and by the agents

for the remote operations to be invoked. LCD is
obtained by instantiation of the generic defini-
tion associated with the overall configuration.
For each operation, there is then a corresponding
Driver package, D$l...D$k, which provides an oper-
ation P to be called by an application process

(as P$i) along with operations for moving argu-
ments into and results out of the actual transmis-
sion buffers.

The definition of the Driver Call Handler is
as follows: .

task body DCH is
begin
‘loop
accept ReqCall(C: in out CALL) do
select
accept DC$1(...) do ... end;
or
accept DC$i(Al:in TAl;...; Ax:in TAx) do
C.X.Code := OPER'POS(OP$i);
D$i.PutArg(C.B, Al,..., BAX);
end DCS$i;
or
accept DCSk(...) do ... end;
end select;
end ReqCall;
end loop;
end DCH;

Each time the channel driver requests a call
(entry ReqgCall), DCH makes a (non-deterministic)
choice among the Agents waiting to deliver a call
for one particular operation (entry DC$i), where-
upon it sets the OpCode of the transaction record
for that CALL and transfers the arguments into the
associated data buffer.

The definition of the Server Response Handler
shows the other side of this interface with the
Local Channel Driver for Nodeh:

task body DRH is
begin
loop
accept DelResp(R: in RESP) do
case OPER'VAL(R.X.Code) is
when OPS$1 => ...;
when OP$i =>
accept RR$i(R1l: out TR1,...,
Ry: out TRy) do
D$i.GetRes(R.B, Rl,..., Ry);
end RR$i;

when OP$k = ...;
end case;
end DelResp;
end loop;
end DRH;

Each time LCD delivers a response (entry DelResp),
DRH decodes the Opcode appearing in the transaction
record of that RESP and then accepts the pending
response request from the agent for that operation
(entry RR$i), transferring the corresponding result
data.

The outline of the body for a Driver package
is shown below:

package body D$i is

task AGT is
entry Exec(Al: in TAl;...;Ax: in TAx;
Rl: out TRl;...; Ry: out TRy);
end;

procedure P(Al: in TAl;...;Ax: in TAx;
Rl: out TRl;...; Ry: out TRy)
renames AGT.Exec;

procedure PutArg(...) is ... end;
procedure GetRes(...) is ... end;

... + body of AGT
end D$i;

The (sole) Agent for the operation P$i is simply
defined as a task having an entry Exec (with the
same signature), and the operation is renamed to
be a call to this entry (which is sufficient to
ensure the desired property--that calls from the
application tasks of each node will be serviced
sequentially). In addition, the low-level opera-
tions PutArg and GetRes are defined herein (pre-
sumably in terms of representation specifications
and/or untyped conversions).

Finally the body of the agent task for P$i is
defined as follows:

task body AGT is
begin
loop
accept Exec(Al:in TAl;...;Ax:in TAX;
Rl:out TRl;...;Ry:out TRy) do
DCH.DC$i(Al,..., AX);
DRH.RR$i(Rl,..., Ry);
end Exec;
end loop;
end AGT;

For each successive external call to the entry
Exec (while the calling process is held in rendez-
vous), the Agent first delivers the call to DCH
and then requests the response from DRH. Because
these transactions take place within the rendez-
vous itself, arguments and results need only be
copied once (via the operations PutArg and GetRes)
upon actual transmission.

4.1.2. The Server Side. The server side of
the Remote Entry Call protocol is essentially sym-
metric to the driver side. The overall structure
and associated data-flow for this side are shown
in Fig. 4-3. The Local Channel Server (LCS) for-
wards incoming calls. from connected nodes to the
Server Call Handler (SCH), and transmits the cor-
responding responses as dispatched by the Server
Response Handler (SRH). As before, these handlers
are formulated as independent processes (so as not
to constrain the order of transactions with the
underlying communications medium) and play a purely
intermediary role. The actual calls to a locally
supported operation P$i are performed by one of a

FIGURE 4-3: Ovexall Structure and Data-Flow on the Server Side for the Remote Entry

Call Protocol.

number of Surrogate processes (SGTi), which act as
stand-ins for the original calling processes within
some other node. Thus, there exist multiple surro-
gates for each remotely callable operation, which
serve both to "buffer" incoming calls and outgoing
responses (along with their associated transaction
records) as well as to invoke the actual operation
in question (as provided by one of the application
modules Al...Am supported by Nodey).

side for
package body

The implementation of the server
Nodey, is defined in the (non-generic)
Support, shown in outline form below:

package body Support is)
—— Server Side, defined in Config.Node$h;

task SCH is
entry DelCall(C: in CALL);
entry RCS1(...);

oo

entry RCS1i(XR: out XREC; Al: out TAl;...;
Ax: out TAX);
entry RCSk(...);
end;
task SRH is
entry RegResp(R: in out RESP);
entry DRSL(...);
entry DRSL(XR: in XREC; Rl: in TRL;...;
Ry: in TRy):
entry DRSk(...);
end;

package LCS is new ChnServer(

From => Conn, To => Host,
Deliver => SCH.DelCall,
Request => SRH.RegResp);

package S$1 is ... end;

package S$i is
procedure GetArg(B: in BUFF; Al: out TAl; ...,
Ax: out TAX);
procedure PutRes (B: in out BUFF;
Rl: in TRl;...; Ry: in TRy);
end S$i;

package S$k is ... end;
... + bodies of SCH, SRH, S$1, ..., S%k
end Support;

The handler processes are again directly spec%fied
as Ada tasks (SCH and SRH) and the communications

45

interface is obtained by generic instantiation of
the definition ChnServer for the overall configur-
ation. As on the driver side, separate Server
packages S$1...S$k are introduced here for each
individual operation P$l...P$k that can be called
remotely.

The definition of the Server Call Handler is
as follows:

task body SCH is
begin
loop
accept DelCall(C: in CALL) do
case OPER'VAL(C.X.Code) is
when OP$1 =

accept RC$i(XR:out XREC; Al:out TAl;...;

ceei

Ax:out TAx) do
XR := C.X;
S$i.PutArg(C.B, Al, ..., AX);
end RCS$i;
when OP$k = ...;
end case;
end DelCall;
end loop;
end SCH;

Upon delivery of a new call from LCS (entry Del-
Call), SCH switches on the OpCode and accepts a
request for a call to the speécified operation
(entry RC$i) from the next of the (possibly many)
Surrogates which are queued up on the corresponding
entry. This dispatching consists simply of copy-
ing the transaction record contained within this
particular CALL and transferring the associated
arguments (via the operation PutArg provided by
S$i).

The definition of the Server Response Handler
is like that of the Call Handler on the driver

side:

task body SRH is

begin
loop
accept RegResp(R: in out RESP) do
select
accept DR$1(...) do...end;
or
accept DR$i(XR: in XREC; Rl: in TRl;...;
Ry: in TRy) do
R.X := XR;
PutRes(R.B, Rl,..., Ry);
end DRS$i;
or

accept DR$k(...) do...end;
end select;
end RegResp;
end loop;
end SRH;

Each time LCS requests a new response (entry
RegResp) , SRH makes an arbitrary choice among pen-
ding responses ready to be delivered for any oper-
ation (entries DR$1...DR$k), whereupon the original

transaction record and corresponding output results
are copied into the RESP, to be transmitted back
to the node from which that particular call ori-
ginated.

The definition of a Server package S$i has
the following form:

package body S$i is
subtype SID is NATURAL range 1l..Card(Conn);
task type SGT;
ST: array (SID) of SGT; -- surrogate tasks

procedure GetArg(...) is ... end;
procedure PutRes(...) is ... end;

... + body of SGT
end SS$i;

The Surrogates for the operation P$i are introduced
as an array of tasks, the range of which is set

to the cardinality of the incoming connections
(which would be the maximum number needed if

every connected node did indeed call the operation
in question). The operations GetArg and PutRes
are presumably the inverses of PutArg and GetRes,
which were present on the driver side.

Finally, each individual surrogate for P$i is
defined as follows:

task body SGT is

XR: XREC;

Al: TAl

Ax: TAXx;

Rl: TR1;

Ry: TRy;
begin

loop

SCH.RC$i(XR, Al,..., AX);
Nodes$h.P$i(Al,..., A%, Rl,..., Ry);
SRH.DR$1i(XR, Rl,..., Ry);
end loop;
end SGT;

In a cyclic fashion they simply request a call
from SCH, invoke the local operation provided by
Nodey,, and deliver the corresponding response
(along with the original transaction record) to be
dispatched by SRH. Once again, because the dis-
patching is handled within a rendezvous, informa-
tion is copied directly between the individual
Surrogates and an incoming CALL or outgoing RESP.

It should be noted that no special precautions
are taken on the server side to ensure the basic
property of the Remote Entry Call protocol (at most
one call in progress to each operation from any
given node); this is solely a concern on the driver
side. The servers simply invoke the local opera-
tions in question. If these have been specified
as entries, then those calls will indeed be serv-
iced sequentially; otherwise they will proceed con-
currently.

46

What is of significance on the server side,
however, is the fact that there are exactly as
many Surrogates for each operation as there are
Adents in total (distributed among the possible
caller nodes). This property, referred to as load
balancing, is fundamental to the solutions devel-
oped here, in that it ensures that this protocol
does not require any additional storage capacity
within the underlying communications medium nor
any other form of buffering than that provided by
the Surrogates themselves. This same property also
guarantees that the communications interface will
never be unduly tied up (since there will always
be an available Surrogate ready to proceed).

4.2 The Remote Procedure Call

In this section, we develop an alternative to
the Remote Entry Call protocol, wherein we allow
a (bounded) number of calls to the same operation
to be in progress concurrently within a given
caller node (while still maintaining the overall
load balancing that characterized our first solu-
tion). This somewhat more general strategy is
described as a modification to the approach devel-
oped initially.

The point of departure for this strategy is
to slightly extend the initial specification for
the application as a whole:

package Config is

type NODE is (NN$1, NN$2, ..., NN$n);
type NSET is array (NODE) of BOOLEAN;
subtype CONC is INTEGER range O.....;
-- Max Concurrency
package Node$l is ... end;

package Node$h is

type OPER is (OP$1, OP$2, ..., OPSk);
type MPLX is array (OPER) of CONC;
-- other type definitions ...

Host: constant NODE := NN$h;

Conn: constant NSET := (... => True, others
=> False);

Load: constant MPLX := ...;

-- other constant declarations ...

generic
Site: in NODE;
Usag. in MPLX;
package Service is
procedure P$1 (...);
procedure P$k (...);
end Service;

end Nodesh;

package Node$n is ... end;

end Config;

The changes are wholly concerned with this added
(potential) concurrency:
- A subtype CONC is introduced, whereby the
maximum degree of concurrency anywhere
within the system is specified;

- Within the package specifying each Nodep, a
type MPLX is defined, values of which indi-
cate a degree of concurrency on an opera-
tion-by-operation basis;

~ A constant load (of type MPLX) is defined
for each Node}, whereby the limits on the
overall concurrency (from all callers) are
established for every such node;

- An additional generic parameter Usag (of
type MPLX) is introduced for the Service
package, so that the degree of concurrency
for individual caller nodes may be set upon
subsequent instantiation.

Minor modifications are also introduced into
the body of the package Config, wherein the over-
all communications conventions are established:

with Medium;
package body Config is

subtype OPID is INTEGER range O..... i
subtype RCID is CONC range l..CONC'LAST;

type XREC 1is record
Orig, Dest: NODE;
Code: OPID;
Iden: RCID;

end record;

BUFF is ... ;
XTYP is (XC, XR)
XMIT(T: XTYP) is record
X: XREC;
B: BUFF;
end record;
subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

type
type
type

generic
From, To: in NODE;
with procedure Request(C: in out CALL);
with procedure Deliver (R: in RESP);
package ChnDriver;
generic
From: in NSET;
To in NODE;
with procedure Request(R: in out RESP);
with procedure Deliver (C: in CALL);

package ChnServer;

package body ChnDriver is ... use Medium; ... end;

package body ChnServer is ... useMedium; ... end;

package body Node$l is separate;

package
end Config;

body Node$n is separate;

47

The changes are to define an additional subtype
RCID, which will serve to identify a particular
remote call originating from a given node (since
the OpCode alone will no longer be sufficient for
this purpose), and to add a new component Iden
(of type RCID) to all transaction records.

The only changes within the definitions of the
separate nodes of the application would be to sui-
tably set the generic parameter Usag upon each
instantiation of the package Service:

separate (Config)
package body Node$h is

pragma SYSTEM(...);
--- Specify local application modules:

package A$l is
procedure Q$1(...);
procedure Q$f(...);

end AS$l

package A$m is
procedure Q$1(...);
procedure Q$g(...);

end AS$m;

-- Local (re)definition of services:

procedure P$i(...) renames A$a.Q$b;

-- Support services called remotely:

package Support;
package body Support is -- Server side of Protocol

end Support;

package body Service is -- Driver side of Protocol

end Service;
-- Provide services needed locally:

package Node$u is new Config.Node$u.Service
(Site => Host, Usag => ...);

package Node$v is new Config.Node$v.Service
(Site => Host, Usag => ...);

package body A$l is separate;
package body A$m is separate;
end Node$h;

4.2.1. The Driver Side. The changes on the
driver side in going from the Remote Entry Call to
the Remote Procedure Call are concerned with keep-
ing track of the identity of calls in progress.

At the first level, this involves adding and addi-
tional ID parameter to the DC$i entries of the
Driver Call Handler (DCH), and of introducing a
Post Response procedure (PR) to each of the Driver
packages D$1...DSk:

package body Service is
-- Driver Side, defined in Config.Node$h:

task DCH is
entry ReqCall(C: in out CALL);
entry DC$1(...);
entry DC$i(ID: in RCID; Al: in TAl;
Ax:

in TAX);
entry DC$k(...);
end;

taskaRH is .
entry DelResp(R: in RESP);
entry RR$1(...);
entry RR$i(R1l: out TRL;
entry RRSk(...);

end;

...; Ry: out TRy);

package LCD is new ChnDriver (

From => Site, To => Host,
Request => DCH.ReqgCall,
Deliver => DRH.DelResp);

package D$1 is ... end;
package D$i is
procedure P(Al: in TAl;...;AX: in TAx;
Rl: out TRl;...;Ry: out TRy)
procedure PutArg(B: in out BUFF;
Al: in TAl: ...; AX: in TAx);
procedure GetRes(B: in BUFF; Rl: out TRl;...;
; Ry: out TRy);
procedure PR(ID: in
end D$i;

package D$k is .. end;

RCID)

procedure P$1 (...) renames D$1.P;

coe

procedure P$k (...) renames D$k.P;

... + bodies of DCH, DRH, D$l, ..., DSk

end Service;

The definition of DCH is then modified to store
the identity of each call as part of the transac-
tion record which it forwards:

task body DCH is
begin
loop
accept RegCall(C: in out CALL) do
select
accept DC$1(...) do ... end;
or
accept DC$i(ID:in RCID; Al:in TAl;...;
: Ax:in TAx) do
C.X.Code := OPER'POS(OP$i);
C.X.Iden := ID;
D$i.PutArg(C.B,
end DCS$i;

or

Al,..., AX);

48

accept DCS$k(...) do ... end;
end select;
end ReqCall;
end loop;
end DCH;

The corresponding modifications to DRH involve
its passing that identity to the appropriate PR
procedure prior to accepting a request to dispose
of ‘each incoming response:

task body DRH is
begin
loop
accept DelResp(R: in RESP) do
case OPER'VAL(R.X.Code) is
when OP$1 => ...;
when OP$i =>
D$i.PR(R.X.Iden);
accept RR$i(Rl: out TR1,...,
Ry: out TRy)
D$i.GetRes(R.B, Rl,..., Ry);
end RR$i;

do

when OP$k => ...;
end case;
end DelResp;
end loop;
end DRH;

Within a Driver package D$i, the modifications
consist primarily of introducing a multiplicity
of Agents for the same operation (whereas there
was only one heretofore). As shown on the next
page, this is accomplished by defining an array of
agent tasks (AT), the range of which is esta-
blished by the Usag generic parameters. Thus, the
index in this array (of type AID) will serve to
uniquely identify a particular call-in-progress
for the operation P$i. At the same time, addi-
tional entries have to be provided for the AGT
task: these are Init (whereby an Agent acquires
its own identity) and Done (whereby it may be no-
tified that the response for the call it is car-
rying out has been received). The procedure PR
is essentially a call to this latter entry. A
further task, the Agent Manager (AM) is now needed
to establish the initial correspondence between
the original call (from some application process)
and the particular agent which will perform that
transaction. This correspondence is created by
the procedure P, which is called (concurrently) by
every application process seeking to invoke the
remote operation P$i.

package body D$i is
subtype AID is RCID range l..Usag(OP$i);

task type AGT is
entry Init(A: in AID);
entry Exec(Al: in TAl;...;Ax: in TAx;
Rl: out TRl;...; Ry: out TRy);
entry Done;
end;

AT: array (AID) of AGT;

task AM is
entry Ready(A: out AID);
entry Avail (ID: in AID);
end;

procedure P(Al: in TAl;...;Ax: in TAx;
Rl: out TRl;...; Ry: out TRy) is
A: AID;
begin
AM.Ready (A) ;
AT(A) .Exec(Al,...,Ax, Rl,...,Ry);
end;

procedure PutArg(...) is ... end;
procedure GetRes(...) is ... end;

procedure PR(ID: in RCID) is
begin

AT(AID; (ID)) .Done;
end;

... + bodies of AGT, AM
end D$i;

The initialization and actual allocation of agents
is handled by the Agent Manager:

task body AM is
begin
for A in AID loop
AT (A) .Init(A);
end loop;
-~ main cycle:
loop
accept Ready(A: out AID) do
accept Avail (ID: in AID) do
A := ID;
end;
end;
end loop;
end AM;

Each of the agent tasks of the array AT is then
defined as follows:

task body AGT is

ID: AID;
begin
accept Init (A: in AID) do
ID := A;
end;
-- main cycle:
loop
AM.Avail (ID) ;

accept Exec(Al:in TAl;...;Ax:in TAx;
Rl:out TR1l;...;Ry:out TRy) do

DCH.DC$i (ID, Al,..., AX);
accept Done;
DRH.RR$1i(Rl,..., Ry);

end Exec;

end loop;
end AGT;

After initialization an Agent enters its main cycle,
wherein it first makes itself available to AM prior
to accepting the resultant call via its entry Exec.
Within the corresponding rendezvous, it delivers
its own identity to SCH along with the arguments

for the call in progress, it then awaits notifica-
tion (via the entry Done) that the response for
that particular call has been received before pro-
ceeding to request the results on behalf of the
original caller.

4.2.2, The Server Side. 1In passing from the
Remote Entry Call to the Remote Procedure Call
protocol, essentially no modifications are
required on the server side (since this latter
already provided for some degree of concurrency,
insofar as it had to handle incoming calls from
more than one caller node). The only provision
that must be made is to possibly increase the num-
ber of Surrogates for each operation P$i, which
would be specified within the corresponding Server
package S$i as follows:

subtype SID is CONC range 1l..Load (OP$i);
thereby fixing the number of elements in the array
of surrogate tasks. This will presumably preserve
the overall load balancing (number of Surrogates =
total number of Agents, for each operation Pi) upon
which both of the protocols developed in this sec-
tion have been based.

6. Conclusion

This paper has addressed the problem of pro-
gramming distributed applications in Ada and out-
lined a first approach in this area. Essentially
two aspects have been considered: the provision
of a suitable compile-time framework for defining
such applications in the first place (which was
achieved by exploiting the possibilities of the
separate compilation facilities in Ada); and the
support of a suitable "interprocessor procedure
call" protocol, whereby the application itself
could then be programmed without further regard to
the distributed nature of the underlying hardware
configuration (a capability which was defined in
terms of the multi-tasking facilities of Ada).
Several such protogols were in fact developed here,
beginning with the relatively simple Remote Entry
Call, which was then extended to yield the Remote
Procedure Call strategy. In [4] we further exten-
ded this approach so as to take into account the
unreliability of the transmission medium in ques-
tion, while still assuming that the nodes within
the overall configuration were perfectly reliable.

References

[1] Hoare, C.A.R., Communicating Sequential Proc-
esses, CACM, August 1978, Vol. 21, 8.

[2] Ichbiah, J.D. et al., Rationale for the Design
of the ADA Programming Language, SIGPLAN No-
tices, June 1979, Vol. 14, 6, B.

[3] -- Reference Manual for the ADA programming
language, U.S. Dept. of Defense, July 1980.

[4] Schuman, S.A., Clarke, E.M., Nikolaou, C.N.,
Programming Distributed Applications in ADA:
A First Approach, Massachusetts Computer Asso-
ciates, Inc., CADD-8103-3102.

[5] Schuman, S.A., Tutorial on ADA Tasking, Vol.I:
Basic Interprocess Communication, Massachusetts
Computer Associates, Inc., CADD-8103-3101.

SALAD - A DISTRIBUTED COMPILER FOR DISTRIBUTED SYSTEMS*

T. Christopher, 0. E1-Dessouki, M. Evens,
H. Harr, H. Klawans, P. Krystosek, R. Mirchandani, Y. Tarhan
Computer Science Department, I11inois Institute of Technology
Chicago, I1linois 60616

Abstract --- A procedural single assignment
language, SALAD, is presented, and its implemen-
tation on a distributed, multicomputer system is
discussed. A procedure is executed not by a
single task, but by a collection of cooperating
tasks (threads of control) that share the pro-
cedure's activation record and synchronize with
event variables and semaphores. Procedure calls
and returns are handled with message passing,
permitting the called procedures to be executed
on remote machines. SALAD includes state-main-
taining objects, e.g. queues, which violate the
spirit of single assignment languages, but pro-
vide more usual multitasking facilities. Not
only is a SALAD program to be able to run distri-
buted over a computer network, but the compiler
itself is to be able to execute on such a system.
The compiler tries to optimize both the code for
SALAD procedures and the distribution of the code
over the network.

Introduction

The proliferation of distributed computing
systems has intensified the software crisis. The
development of distributed hardware has far out-
stripped the development of the necessary soft-
ware. We are primarily concerned with systems
composed of microcomputers connected in a net-
work. There is a strong need for compilers which
can both run on a distributed system and generate
code for that same system. The development of
compilers for such systems presents two novel
problems: distributed compiler organization and
distributed code generation. Since different
components of the compiler will run on separate
microcomputers it must be organized into small
modules which can function independently and ex-
change information only by messages. This com-
piler must also be capable of generating distri-
buted code. First it must partition the code
into clusters of tasks small enough to fit on the
separate computers of the distributed system.
Then run time routines are added to control the
run time system, to handle error conditions, and
to make each cluster capable of standing alone.
Finally, the compiler inserts message-passing
primitives in each cluster to provide the
exchange of values between the clusters at run
time. The problem of automatic partitioning is

*This research was supported by the Nationa
Science Foundation under grant MCS-80-04114.

0190-3918/81/0000/0050$00.75 © 1981 IEEE

50

a central issue in the design of these new com-
pilers, but the problems of partitioning conven-
tional general-purpose programming languages are
tremendously complex. Single-assignment lan-
guages (languages in which no variable is assign-
ed a value more than once) seem to be much
easier to handle. This paper describes the de-
sign and the implementation of a simple but non-
trivial single assignment language (SALAD). The
compiler is organized as a pipeline of small
modules each of which can reside on a separate
microcomputer; it includes a crude partitioning
module which divides the intermediate code into
self-contained clusters which are then converted
into separate load modules for separate com-
puters.

There is a strong relationship between our
work and current work on dataflow computers
(1, 2. In fact, we are motivated by the belief
that it is possible to obtain the advantages of
data-flow architecture without the expense of
specialized hardware. There are important dif-
ferences, however, in our methods. We have not
simply programmed microcomputers to behave like
data-flow computer components. Instead we have
encoded data-flow operations as multiple com-
municating processes.

Our model of a distributed computing system
is a collection of many independent computers
with no shared memory, so that all communication
is by means of messages only. Why assume that

‘there is no shared memory? While systems exist

with multiple processors accessing a common
memory, systems without shared memory are easier
and cheaper to build, since they can be produced
by adding communication channels to existing
machines. When those with shared memory systems
want to link them together, they will be sub-
ject to these constraints as well. Furthermore,
compilers designed for systems without common
memory can be made to run on shared memory
systems, but the reverse is not true.

Our interest in the twin problems of dis-
tributed compiler organization and the genera-
tion of distributed code began with the TECHNEC
project, a very successful project which was
funded by the National Science Foundation
(NSF-MCS76-01310). TECHNEC, the Illinois
Institute of Technology Network Computer, is a
ring network of LSI/11's [3, 4]. It was design-
ed to support Greene's experiments in heuristic
control [5]. The first step was a distributed
operating system [6, 7]. We have also designed
and implemented a ‘demon language for TECHNEC,
but the current implementation is not truly a

distributed compiler, it is a cross-compiler run-
ning on the PRIME 400 but generating code for
TECHNEC. Demons do, however, present particu-
larly exciting problems in the design of the run
time environment.

Our first true distributed compiler was the
DYNAMO compiler [8] and [9]. This lanquage was
chosen because we needed a continuous simulation
language for work on robotics and we were fasci-
nated with the challenge of simulating parallel
processes on a network of parallel processors.
This compiler was designed from the beginning to
run on our distributed system and to generate
automatically partitioned code for that system.

We have experimented with four different
partitioning algorithms for this compiler (10,
117. DYNAMO is a nonprocedural lanquage with no
explicit control structures; this makes it rela-
tively easy to partition. It can even be viewed
as a single assignment language, although it does
not resemble pure LISP and those applicative
languages which are usually called single assign-
ment lanquages [12, 13]. Ye felt that the next
step toward our goal of eventually developing
mechanisms for conventional programming languages
ought to be a compiler for a language that com-
bines the constraints of a sinale assignment
lanocuage with procedures, explicit control struc-
tures, and at least some multiple data structures.
Since we did not know of such a language we de-
cided to design one ourselves; the result is
SALAD.

Description of the Lanquage SALAD

A program consists of a collection of pro-
cedures. (See Figure 1 for grammar.) A proce-
dure declaration consists of -a header line, zero
or more declaration lines, one or more command
lines, and -an END line. The procedure header is
of the form

PROC outputs = procedure-name inputs
where either outputs or inputs may be a single
jdentifier or a list of identifiers in
parentheses.

The declarations in SALAD are optional. If
an identifier is not declared, it may be of any
type, and its type may be different on different
executions of the procedure. If a name is de-
clared, the code will check that the type of the
value assigned to it is correct at run time. The
form of a declaration is an identifier or a list
of identifiers in parentheses followed by a colon
followed by the name of the type they are being
declared to be.

There are three primitive types in SALAD:
integer, real and Boolean. There are two pure
structured types: strings and tuples. A string
is a sequence of characters. Once created, it
cannot be modified. There is no theoretical 1imit
on the length of a character string.

51

proc ::= prochd declare* command+ END newline
prochd ::= PROC 1hs = procid 1hs newline
declare ::= lThs : type newline
type is one of INTEGER, REAL, BOOLEAN, TUPLE,
STRING, FILE, QUEUE, ANY
command ::= Ths = rhs newline)
lhs ::= id
Ths ::= (idlist)
idlist ::= id
idlist ::= id , idlist
rhs ::= e3
rhs ::= IF id THEN e3 ELSE e3
e3 ::= e2
e3 ::= op e2
e2 ::=el
e2 ::= (ellist)
e2 ::= ()
ellist ::=el
ellist ::= el , ellist
el ::=id
el ::= constant
Figure 1. SALAD Grammar.
A tuple is a sequence of values. Each value
in a tuple may be of any type. As with strings,

once created, a tuple cannot be modified.
play a central role in the SALAD language.

Tuples

There are two kinds of executable statements

in SALAD: simple assignments and conditional
assignments. Simple assignments have the form
lhs = rhs

The left hand side, lhs, can be either a single
identifier or a list of identifiers in paren-
theses. If the'lhs is a single identifier, then
the value produced by the rhs may be of any type.
If, however, the lhs is of the form (idl, id2,
.., idn) then the value of the rhs must be a
tuple of length n. Each element of the tuple is
g;signed to the corresponding identifier in the
S.

If the rhs is a single identifier, then its
value is used. If the rhs is a list of identi-
fiers (idl, id2, ..., idm), then the value of the
rhs is a tuple of length m with the value of
identifier idj in position j.

The right hand side could also be an opera-
tor or function applied to either a single iden-
tifier or a 1ist of identifiers in parentheses.
The single identifier form, F A, causes the
function F to be applied to A's value. The
form F (Al, A2, ..., An) causes function F to
be applied to a tuple with the values of the
identifiers Al through An.

A conditional assignment has the form

lhs = IF b THEN rhsl ELSE rhs2

where b 1is an identifier that will have a
Boolean value at run time, and lhs and rhsl and
rhs2 have the forms discussed immediately above
for simple assignment statements.

a=1IF B THEN c¢ ELSE d

requires B be a Boolean-valued identifier. If

B 1is true, the statement behaves as if it were
a=c

If, however, B 1is false, then the statement

behaves as if it were written

a=d

The simple and conditional assignment state-
ments are required to obey the single assignment
nature of the language. An identifier may appear
only once in a lhs within a procedure. An iden-
tifier in the inputs section of a procedure
header may not appear in the lhs of any assign-
ment in the procedure.

Like conditional assignments, procedure
calls may be defined by substitution rules. The
definition of procedure calls in SALAD is very
similar to the copy rule for Algol 60 procedures.
Given the procedure definition

PROC plhs = procid prhs
body
END
and the call of the procedure
clhs = procid crhs
the call behaves as if it had been written

prhs' = crhs
body'
clhs = plhs'

where the prime (') indicates that all the iden-
tifiers are renamed uniquely to avoid conflict
with the identifiers in use at the place of call.

There are two other data types in SALAD that
have not been mentioned before. They violate the
spirit of single assignment languages in that
they maintain an internal state, can be modified,
and are not pure values.

One of the two types is FILE. Since files
encapsulate the interface to the outside, state-
maintaining world, they must be forgiven for be-
ing that way themselves.
Queues are the objects used for synchronization.
Any kind of object may be added to a queue. An
attempt to remove an object from an empty queue
will cause a delay until an object becomes pre-
sent. There is no such thing as a full queue.
Queues are generally handled in FIFO order, but
simultaneous attempts to add or remove items from
a queue will be serviced in an unspecified order.

The operations on queues are as follows:

The other type is QUEUE.

52

q = QUEUE ()
ql = PUT(q,val)
(g2, vall) = GET ql

The operation q = QUEUE () creates a new
queue object and return a pointer to it in q.
The operation ql = PUT(q, val) puts the value of
val in the queue pointed to by q and returns a
new pointer to q in ql.

The operation (g2, vall) = GET ql removes an item
from the queue pointed to by ql and returns that
value as vall. It also returns another pointer
to the queue in q2.

The reason for returning new pointers to a queue
is to permit sequencing of queue operations in the
calling program. For example,

q = QUEUE ()
ql = PUT (g,a)
q2 = PUT (ql1,b)

(q3, c) = GET q2
(a4, d) = GET q3

will accomplish much the same as
q = QUEUE ()
(a1, 92, q3, q4) = (a, q, 9, Q)
(c, d) = (a, b)
However,
q = QUEUVE ()
ql = PUT (q,a)
q2 = PUT(q,b)
(g3, c) = GET q
(g4, d) = GET q
will not necessarily accomplish the same thing.

Sometimes it will behave as the example above;
sometimes it will do the assignment

(c,d)=(b,a)

Calls and Messages

Since the network hardware we envision has
no shared memory, the implementation must use
message passing to pass data and coordinate the
execution. Procedures are called by sending a
call message. The results of a procedure call
are returned in a2 return message. If a procedure
needs to examine a tuple located on another ma-
chine, it sends a message requesting a copy of
the tuple. Operations on state-maintaining ob-
jects, files and queues, are handled via a mes-
sage to the computer where the object is located.

Node Structure

The software structure on each computer con-
sists of the programs for the procedures located
on that computer; tables used by the system;
input queues for receipt of messages from the
computers connected to this one; output queues to

the connected computers; an "available operations
queue" containing call messages for procedures
that could be involked here; and a heap, or dyna-
mic storage area, that contains tuples, strings,
queues, and local storage for active procedures.

Activation Records and Threads of Control

An "activation record" contains the local
storage for a procedure. In a conventional lan-
guage, a single process, or task, would have a
stack of activation records. Every procedure
call would push an activation record on the stack.
Every return would pop one off. Our implementa-
tion does just the reverse. There are not multi-
ple activation records per task. There are
multiple tasks, which we call threads, per acti-
vation record.

Each thread is associated with a thread
control block which contains only 1) a pointer to
the activation record the thread is associated
with, 2) the address of the next instruction the
thread is to execute, and 3) a link field so the
thread control block can be placed on queues.

The system in each separate computer in the
network maintains a run queue of threads. A
piece of code, the dispatcher, removes the first
thread control block from the run queue, loads a
register with the activation record pointer, and
jumps to the next instruction the thread is to
execute.

A simple form of coordination between
threads uses "event variables." An event vari-
able is initialized to require a particular num-
ber of "signals" before the event occurs. Only
a single thread may wait on an event variable.
If the event has not yet occurred, the waiting
thread is suspended until it does occur. If the
event has already occurred, the thread continues
executing. Another thread may signal the event
variable. If the signal is the last one required
before the event occurs, and another thread is
waiting for the event, the waiting thread is
linked on the run queue.

We have implemented the synchronization
primitives in PDP-11 assembly language. To wait
on an event variable requires at most five
instructions, whether or not the thread executing
the wait must be suspended. To signal an event
variable without waking up a thread requires only
two instructions. If a signal wakes up a thread,
that thread must be linked on the run queue.
Linking a thread on the run queue requires less
than a dozen instructions.

The system also provides semaphores, which
in addition to the usual synchronization and
mutual exclusion functions, are used to permit
control of the degree of concurrency at run time.
This is mentioned again below in the section on
optimizations the compiler can perform.

See Figure 2

53

THREAD CONTROL BLOCK

LNK : 1ink field

PC : program counter field
FP : frame pointer field

EVENT VARIABLE
CNT : count field
THRP : thread pointer (to THCB of Waiting Thread)

READY QUEUE

RQLCK : lock byte on ready queue (init 1)
RQ1ST : pointer to head of ready queue
ROLST : pointer to end of ready queue

READY LIST MANIPULATION
dispatch: -- Just a normal label
while RQ1ST = NULL do diddle
seize rq
if RQIST = NULL then
{ release_rq
goto dispatch}
else
{T := RQIST
RQ1ST := RQISTA.LNK
release_rq
FP_REG := T@.FP
JUMP T@.PCR}

procedure
{ t@.LNK := NULL
seize_rq
if RQIST

{ RQ1ST :

NULL then
t

else
{ RQLSTR.LNK := ¢t
RQLST := t}
release_rq}
return
end readyl

SIGNAL OPERATION ON EVENT VARIABLE
signalevent s
-- is translated into
decr s.CNT
if zero then
ready1(s.THRP)

WAIT OPERATION ON EVENT VARIABLE s BY THREAD t
waitevent s
-- by a thread with thread with
-~ thread control block t
-- 1is translated into

t.PC := QL

s.THRP :=@t

decr s.CNT

if positive then

goto dispatch
L:

INITIALIZE EVENT VARIABLE
initevent s,c
-- is translated into
S.CNT := c+l

Figure 2. Threads and Events

Distributed Garbage Collection

Tuples, strinas, queues and files are dyna-
mically created during the course of the program.
Their bodies occupy memory on the heap on the

computer they were created on. When they are no
longer needed, the storage they occupy must be
reclaimed for other uses. Tuples and strings
cannot be created with cycles of containment, e.q.
if tuple A 1is created with tuple B as a com-
ponent, then since B was created first, it can-
not contain A as a component. Moreover, B
cannot be modified to contain A. At most, a
copy, C, of B can be created with a component
changed to be A.

Thus, the containment graphs for tuples are
directed, acyclic graphs, and reference count
storage reclamation is adequate. The state-main-
taining objects, files and queues, might cause
problems.

Files do not, in fact, cause problems since
neither files nor queues nor tuples containing
files or queues may be written into them. Queues
may cause problems; a queue can be placed into
itself, e.q.:

= QUEUE ()
ql = PUT (q.q)

It is, therefore, possible to creat c1rcu1ar1y
11nked, inaccessible structures which will not be
reclaimed with a reference count scheme.

Such structures are likely to be rare. So
we are considering implementing a reference count
storage management algorithm. We do have, in
addition, a full garbage collection algorithm
that will mark all accessible structures and re-
claim those that are inaccessible. It works in
two phases: 1) it marks all accessible struc-
tures by having each computer mark those that are
accessible locally and send messages to the com-
puters containing those that are remote; after
all computers have finished the mark phase.

2) it has each computer reclaim the unused stor-
age in its own heap.

We have no plans to make the garbage collec-
tion algorithm run concurrently with normal
processing. There are thoughts that a single
computer can do some local garbage collection
independently of the others. Objects on the heap
can be marked when pointers to them are sent to
other computers in messages. Unmarked objects
are only pointed to locally, if at all, and can
be collected by the computer on which they are
contained.

Structure of the Compiler

The compiler for SALAD is composed of four
sections. The first section translates from the
source language into intermediate code. The se-
cond section optimizes the intermediate code and
translates procedures into parallel cooperating
threads of control. The third section allocates
the procedures to separate computers. The fourth
section converts into assembly-like code which it
optimizes and assembles. Each section is com-
posed of several phases which can be run as sepa-
rate passes or, in some cases, as a pipeline.

54

Code optimization and allocation are described
in more detail below.

Translating Procedures into Parallel Threads

When control enters a procedure it is exe-
cuting a single, main thread associated with the
procedure. The main thread creates the other
threads in the procedure to execute concurrently
with it. See Figure 3a for a collection of
procedures and Figure 3b for an example of the
code that could be generated for that collection.

Figure 3a below:

PROCC =F N
€ = F1(1,1,N)
END

PROC D = F1(I,J,M)
T1 = +(1,J)

= GT(T1,M)

= IF Bl THEN I ELSE F2(I,J,M)
END

PROC
T2
T3
T4
T5
E-
END
Figure 3a.

2(X,Y,Z)
(

»7)

E = F2
*(Y,2
+(X Y)
F1(X,T
Fl(T3, »2)
(T4,75)

*ﬂllllll

SALAD code for factorial Function F.

The compiler must partition the operations
in a procedure into a collection of threads.
There are two main rules for placing operations
into threads: 1) Two operations may be placed
in the same thread only if one is dependent on
data from the other; 2) The operations must be
placed in the thread in the order they must be
executed. The first rule is to prevent one
operation that could be executed from being de-
layed waiting for completion of an operation
that does not have to precede it. The second
rule is obvious.

If an operation, A, in one thread requires
as input a name computed by a operation, B, in
another thread, the first thread must wait on a
event variable, EA, before executing A, and the
other thread must signal EA after finishing
operation B.

The compiler performs the following optimi-
zations on threads where applicable:

1) Recursion removal -- a tail-end recur-
sive call to the procedure that includes the call
can sometimes be replaced with an assignment to
the input parameters and a jump back to the
beginning.

2) Code incorporation -- a procedure called
in only one place may be incorporated into the
place of the call. Recursion removal, by elim-
inating a place of call may make more code incor-
poration possible, which may in turn permit fur-
ther recursion removal. Also, small, non-recur-

sive procedures may be incorporated into several
places of call.

3) Within the constraints mentioned above
about the placement of operations in threads of
control, the compiler tries to minimize the
number of threads generated for a procedure. The
constraint that two operations may be placed in
the same thread only if there is a data depend-
ency between them makes the minimization of the
number of the. threads an NP-hard problem: it
can be shown equivalent to graph coloring.

4) It will often be possible to eliminate
some event variables and signals. In particular,
an operation A that defines a value used by
operation B need not signal an event for B if
there is an operation C that uses a value sup-
plied by A and supplies data to B.

5) For those procedures where it is permis-
sible, the compiler will generate code that will
choose at run time whether to execute only one
operation in the procedure at a time or to exe-
cute with as much concurrency as possible. We
hope this code will keep the system from becoming
swamped by concurrent operations. The trick is
to protect the activation record with a semaphore
and let the threads compete for it. See Figure 4
for a picture of the desired behaviour.

6) "Sending off" tail-end calls -- Some-
times it is possible for a procedure call as the
last operation of a procedure A to tell the
called procedure to return its values to the
caller of A, not to A itself. After sending
off this call, A's activation record may be
deleted.

The Partitioning Module

The purpose of the partitioning module is to
specify how the code should be partitioned and
assigned to the different computers of the net-
work in order to achieve load balancing, while
minimizing the communication overhead. The out-
put from the partitioning module includes not
only code clusters but enough information about
runtime data flow so that the code generation
routines can produce runtime modules capable of
standing alone on separate computers and communi
cating via messages.

The basic requirements for partitioning
module design are considered to be:

1. The module can be incorporated as an
integral part of a pipelined compiler i.e. it
should accept information concerning source pro-
gram in the form of a stream of messages each of
them containing information regarding one source
statement. The messages arrive one at a time.
The format of the messages and their contents
should be compatible with the output of the front
end of the compiler. The last stage of the par-
titioning module should produce aroups of state-
ments of intermediate language (partially com-

55

piled code) compatible with the input language of
the back end stage(s) of the compiler.

2. The partitioning module can run on the
same network computer for which the distributed
compiler is designed. So the same limitations on
the size of every compiler phase apply to the
partitioning module also. However, the parti-
tioning module may consist of a number of phases
distributed over the network and cooperating to-
gether to perform the function of that module.
In this case, the general requirements for dis-
tributed software apply also to the distributed
partitioning e.g. minimizing the communication
overhead and balancing the network load.

Figure 3b below:

; code for F
Fmain: send off_call F1(1,1,N)
terminate
:code for F1's main thread
Flmain: T1 = +(1,J)
B1 = GT(T1,M)
if not Bl goto L1
return 1
L1: (X,Y,Z) = (I,J,M)
;code for F2's main thread, incorporated into F1
F2main: Choose_concurrency CS

;initialize semaphore CS
; to 1 or infinity
initevent el,l
initevent e2,1
fork F2T2, F2ThCB2
waitsema CS
T2 = *(Y,2)
signalevent el
T4 = F1(X,T2,Z)
signalsema CS
waitevent e2
waitsema CS

E =*(T4,T5)

return E
;code for F2's dther thread, T2
F2T2: waitsema CS

T3 = +(X,Y)
signalsema CS
waitevent el
waitsema CS

T5 = F1(T3,T2,2)
signalevent e2
signalsema CS
die

Translation of code for factorial into
optimized pseudo-code.

Figure 3b.

In our design, the partitioning module (PM)
is composed of three phases:

Phase I: Data structure builder
Phase II: Partitioner
Phase I1I: Allocator

The data structure building phase serves as
a functioning part of the front end pipe during

compile time, i.e. it processes one statement at
a time. It builds a standard representation of
programs using such things as data dependency
among statements. The kind of data structure
built during this phase will be discussed in de-
tail in the following paragraphs. Transforming
known programming constructs to this standard
representation is a major part of this research
and will be discussed in detail in the next
sections. The partitioner and the allocator deal
with the representation of the whole program in
two separate passes. They must collect global
information about dependency among statements and
interactions among various parts of the program
in order to segment that program and insert com-
munication primitives in it. For example, when
a program is partitioned into several nodes of
the system, a value may be needed in a node other
than the one in which it is calculated. The
allocator must detect such a situation and pro-
vide for the sending and receiving of the re-
quired value. Since a node will probably be
receiving values for many variables, the name of
the variable must be included with the value so
that the receiving node can identify it. The
data structure builder stores the program repre-
sentation on a file for the partitioner to oper-
ate on it in a new pass. The graphs which are
used as standard representation for programs are
described elsewhere [14, 15].

The partitioning problem can be divided into
two basic strategies: verticle vs. horizontal
partitioning. Imagine you have program listing
and you draw horizontal lines on it. All the
code between a pair of lines is placed in the
same computer. This we call horizontal parti-
tioning.

The easiest place to draw these lines is at
subroutine boundaries. An entire subroutine is
placed in a single computer. A subroutine is
called by the arrival of a message providing its
parameters, and it sends back a message when it's
done. Since we assume parallelism is provided,
or at least permitted, by the language being
implemented, there may be several calls to the
subroutine concurrently. Thus the activation
record for the subroutine is allocated on a heap,
rather than a stack, because the calls will not
obey a strict LIFO discipline.

If the horizontal lines cut through the
midst of subroutines, then when the flow of con-
trol reaches such a cut the activation record
must be sent to the computer containing the next
section of code. Note that addresses must have a
computer name associated with them, and fetches
or stores of anything other than components of
the activation record require (potentially) mes-
sage passing. Note also that an activation re-
cord cannot be sent to another computer while
there is a reference to one of its components
outstanding.

As an alternative to horizontal partitioning,

imagine you take a program listing and draw
vertical lines on it making several columns be-

56

side the program. Each column represents a dif-
ferent computer. Beside the statements you make
check marks in one or more of the columns. A
check mark in a column beside a statement indi-
cates that the statement is to be placed in the
computer the column represents. The statements
of the program have been partitioned among the
several computers so that the computers work in
parallel on the program, sending messages to each
other when a value is computed in one that is
needed in the other. Some statements may be re-
presented in all of the computers, e.g. loop
control. Each computer contains a part of the
activation record of the routine being executed.
We call this vertical partitioning.

The partitioning heuristics developed for
the DYNAMO compiler assigned each statement to
precisely one computer. We noticed that in de-
signing the DYNAMO compiler as a large distri-
buted program we found that the high communication
overhead made it more efficient to repeat some
portions of the code in several different com-
puters.

For the SALAD compiler we have developed a
simple divide-and conquer style algorithm, where
a procedure divides a problem into several small-
er problems and calls itself recursively and in
parallel for each. To get any speed-up from this,
copies of the procedure must be located in
several computers.

Our past work on partitioning has assumed
that all partitioning should be done at compile
time. Now that we have copies of some procedures
in several computers, it seems that we may be
abie to baiance the ioad better by delaying until
run time the decision of where to execute a
particular procedure call.

Future Plans

The obvious next step is further experiments
with the partitioning of SALAD. We would like to
write at least some part of the SALAD compiler in
SALAD and compare the compiler output with what
we have done by hand. In the long run more
theoretical work on the partitioning is certainly
necessary. In the next year we hope to design a
distributed partitioning compiler for a subset of
Pascal.

References

f1] Arvind, "A Dataflow Architecture with
Tagged Tokens," Laboratory for Computer
Science; MIT, June, 1980.

[2] J. Dennis and D. Misunas, "A Preliminary
Architecture for a Basic Data-flow

Processor," Proc. 2nd Annual Symposium
on Computer Architecture, (December,
1974), pp. 126-13:

2.

3]

4]

sl

6]

7]

R:3

W,

Huen, P. Greene, R. Hochsprung, and 0. El-
Dessouki, "A Network Computer for
Distributed Processing, COMPCON, (Fall,
1977), pp. 326-330.

. Huen, P. Greene, R. Hochsprung, and O.

E1-Dessouki, "TECHNEC, a Network
Computer for Distributed Task Control,"
Proceedings of the First Rocky Mountain

Sympos fum _on Microcomputers: Systems,
Software, and Architecture. Fort

Collins, Colorado. 1977.

Greene, "Strategies for Heterarchical
Control," Computer Science Dept.,
I1linois Institute of Technology,
Chicago, 1978.

Christopher, 0. El-Dessouki, M. Evens,
P. Greene, A. Hazra, W. Huen, A.
Rastogi, R. Robinson, W. Wojciecowski,
"Uniprogramming a network Computer,"
Proceedings Eighth International
Conference on Parallel Processing,
(August, 1978), pp. 132-138.

. Christopher, "The Operating System for

TECHNEC", COMPSAC, November 1979.

. Huen, 0. E1-Dessouki, E. Huske, and M.

Evens, "A Pipelined DYNAMO Compiler,
"Proceedings of the Seventh
International Conference on Parallel

Computing. Traverse City, Michigan.
1977.
/
Computer 2

Circ]es -- activation records
Straight lines -- procedure calls

Computer 1

(9]

[10]

[mj

f12]

[13]

[14]

[15]

. E1-Dessouki,

. Evens, E. Huske, J. Pomes, 0. E1l-

Dessouki, C. Gerlach, M. Samanta,
W. Huen, "Synchronization Issues in
Network Compilers," Proc. 2nd
Annual Rocky Mountain Symposium on

Microcomputers, Fort Collins,
CoTorado, (August, 1978), pp. 358-397.

. E1-Dessouki, and W. Huen, 1977.

"Automatic Partitioning for a Network
Computer," Technical Report 77-6,
Computer Science Department, I1linois
Institute of Technology.

. Emrich, Partitioning Heuristics.
M. S. Thesis, Iiiinois Institute of

Technology, 1978.

. McCarthy, "Recursive Functions of

Symbolic Expressions and their
Computation by Machine," CACM
3, 4, (April, 1960) pp. 184-195.

. Backus, "Can Programming Be Liberated

From the von Neumann Style?
A Functional Style and its Algebra
of Programs," CACM, 21, 8,
(August, 1978), pp. 613-641.

Program Partitioning and
Load Balancing on Network Computers,
Ph.D. Dissertation, Computer Science
Department, I11inois Institute of
Technology. Chicago, December, 1978/
pp. 160.

. E1-Dessouki, W. Huen, and M. Evens,

“Towards a Partitioning Compiler for
a Distributed Computing System."

Journal of Digital Systems,
vol. 1V, issue 4, 1981.

Computer 3

Curved lines -- density at which system chooses sequential execution

Figure 4.
of concurrency.

Procedure call tree resulting from dynamic choice of degree

MEASUREMENTS OF AN OPTIMIZING COMPILER
FOR A VECTOR COMPUTER

John C. Knight
NASA Langley Research Center
Hampton, Virginia, 20606

Summary

The Control Data Corporation STAR-100 is a
very-high performance vector processor[l]. A
language known as SL/1 [2] that is oriented to
scientific applications programming and which
allows good program structure was designed and
implemented by the authors for the STAR-100, and
is now being used for many applications. SL/1 is
also used with the CDC CYBER-203 but the work
reported here was done wusing the STAR-100. In
this paper we discuss the optimizations performed
by the SL/1 compiler and report a series of
measurements of the effects of these
optimizations. The advent of vector processors
and = vector oriented. languages such as SL/1
produces a new enviromment for scientific
computation. Programs written for vector
computers will be sufficiently different from
their scalar - counterparts that the effects of
optimization in a compiler may be different. The
primary optimizations of interest in the SL/1
compiler are common subexpression elimination, the
movement of invariant code out of loops, and the
elimination of unecessary vector temporaries. In
order to get some information about the effect of
optimizing programs written in a vector language,
the performance of the optimizer in the SL/1
compiler was measured. :

There are two hardware characteristics of the
STAR-100 which are of importance in optimization.
First, the hardware supports vector instructions
with vector lengths between zero and 65,535, and
the execution time of a vector instruction is

proportional to its length after an initial-

start-up delay. For floating point addition, the
longest vector instruction requires approximately
one and one third milliseconds while the shortest
requires only approximately three microseconds; a
ratio of about 400 to one. Under ideal
circumstances, a scalar floating point addition
requires only 0.16 microseconds; a ratio of almost
10,000 to one compared to the longest vector
instruction but only about 20 to one compared to
the shortest. These ratios are important because
the optimization techniques to be discussed are
only applied to scalar operations. Vector
operations are always included in SL/1 programs
explicitly by programmers and there is usually
nothing redundant that can be removed. Similarly,
vector instructions are rarely inside loops in
which they are invariant.

The second hardware characteristic of
importance is the set of 256 general purpose
registers. Variables which are used frequently

*Work performed wunder NASA contract number
NAS1-14900 while the author was with Computer
Sciences Corporation, -Hamptonm, Virginia.

0190-3918/81/0000/0058$00.75 © 1981 IEEE

Douglas D. Dunlop*
Department of Computer Science
University of Maryland
College Park, Maryland, 20742

can be stored in registers permanently [3], and
the values of common subexpressions which appear
in separate parts of a program can reside in
registers between uses.

The SL/1 language structure is modelled after
SIMPL T [4]. Variables can be declared as
scalars, vectors, or arrays. Arrays of scalars
are mnot allowed and all array elements must be
vectors. A matrix is therefore represented by a
one dimensional array of vectors, and for a given
matrix, the user may interpret these vectors as
rows or columns.

As well as basic vector arithmetic, the
STAR-100 . hardware provides a variety of
sophisticated macro operations. For example,
forming the inner product of two vectors is a
single machine instruction, as is the evaluation
of a polynomial for a vector of coefficients and a
vector of "arguments. All of these macro
instructions are available in SL/1 as special
operators which can be used freely in building
expressions. The compiler makes no attempt to
recognize implicit vector operations in 1loops
containing scalar computations since the language
provides access to all the hardware vector
facilites.

Key elements of the language are the array
and vector referencing notations. Variables
deciared as vectors or arrays can be indexed im
the normal way yielding a vector in the array case
and a scalar in the vector case. It is also
possible to select a range of elements, known as a
subvector, from a vector variable or array element
using notations which specify the index of the
first element and length, or the indices of the
first and last elements.

The SL/1 compiler is organised into three
phases.” The first phase translates the given SL/1
module into a series of quadruples (quads). The
second phase optimizes the quads, and the third
phase translates these optimized quads into a
relocatable object module. In the rest of this
paper, the term quad is used to mean an operator
of the intermediate form and all (possibly zero)
of its associated operands.

There are two important characteristics of
the quadruple intermediate form. First the
sequence contains quads which represent the
control structure of the program in terms of the
control statements of the language. This enables
the optimizer to detect explicit program loops and
control flow very easily. Secondly, some
high-level operations such as indexing and forming
subvectors translate into sequences of low-level
quads which represent single instructions. This
enables the optimizer to detect redundant

~ computations in these high-level operations.

58

For common-subexpression analysis and code
motion, the design of the optimizer is similar to
the quad improver described by Hecht [5].

SL/1 allows arbitrarily complex vector
expressions. This may result in the creation of

temporary vectors, and these vector temporaries
may be of different lengths. Building a temporary
necessitates the execution of several scalar

instructions to allocate space in virtual memory

and increases the program’s working set size by
the size of the vector temporary. The compiler
attempts to minimize the number of vector
temporaries required to evaluate an expression in
order to reduce this overhead. One technique
employed is to use a single vector temporary in
place of a number of equal length vector
temporaries whose life spans are disjoint. This

technique is a generalization of the algorithm
described by Dantzig and Reynolds [6] which has
been shown to minimize the necessary number of
temporaries. A second technique is used only when
the expression constitutes the right hand side in
a vector assignment. In this case the compiler
attempts to use the left hand side wvariable in
place of one of the vector temporaries.

Five SL/1 programs which were considered
typical were measured by an instrumented version
of the SL/1 compiler. Table 1 shows the total
number of quads and words of machine code with and
without all optimizations, and the length of each
program in lines. On average 27% of the quads,
and 28% of the machine code were removed.

TABLE 1 - Overall Quad and Code Reductions

Program Number

1 2 3 4 5
Source Lines 255 691 986 603 1647
Quads Without Opt. 641 2894 1910 1665 3741
Quads With Opt. 491 1710 1688 1196 2516
Reduction 23.47% 40.9% 11.67% 28.2% 32.7%
Code Without Opt. 554 3567 2638 1835 3680
Code With Opt. 462 2168 2229 1079 2656
Reduction 16.6% 39.2% 15.5% 41.2% 27.8%

Several quad operations had a relatively high
probability of being redundant. Sixty-four
percent of the scalar addition quads and 577 of
the subvector quads were removed by common
subexpression elimination. An optimizer which
considered only these two quad operations would
detect 867 of the total number of redundant quad
operations for the five sample programs.

Table 2 shows the static frequency of
occurrence of certain SL/l statements. Assignment
represents at least 747 of the total number of
executable statements and the average proportion
is 85%. As well as occurring in large numbers,
assignment statements occur in groups and large
basic blocks tended to dominate. Table 3 shows
the largest basic block observed for each program
and the proportion of each program which was made
up of basic blocks which were ten or more lines
long.

TABLE 2 - Statement Frequencies

Program Number

1 2 3 4 5
Assignment 115 357 357 244 757
Procedure Call 9 3 34 8 69
IF Statement 13 1 11 7 26
FOR Statement 7 19 12 7 5
WHILE/REPEAT Statements 2 0 6 0 1
GO TO Statement 2 0 1 0 2

TABLE 3 - Basic Block Sizes

Program Number

1 2 3 4 5
Largest (In Lines) 19 110 139 176 293
Ten or More Lines 40% 70% 77% 88% 667

From Tables 2 and 3 it can be seen that

relatively little use is made of control
structures. A simpler optimizer 1is possible if
common subexpression analysis 1is performed only

across basic blocks. The SL/1 optimizer was
modified to operate in this way and the five
sample programs were recompiled. Table 4 shows
the total number of quads and words of machine
code with this less powerful optimization and with
no optimization.

TABLE 4 - Quad and Code Reductions

Program Number

1 2 3 4 5
Quads Without Opt. 641 2894 1910 1665 3741
Quads With Opt. 537 1710 1767 1200 2617
Reduction 16.2% 40.9% 7.5% 27.9% 30.0%
Code Without Opt. 554 3567 2638 1835 3680
Code With Opt. 491 2168 2320 1082 2721
Reduction 11.4% 39.2% 12.1% 41.0% 26.1%

The effectiveness of eliminating unnecessary
vector temporaries was measured and the results
are shown in Table 5. The average reduction in
code volume is 10.37%. These measurements were
made without common subexpression elimination. By
comparing Table 5 with Table 1 it can be seen that

in terms of code volume reduction, eliminating
unnecessary vector temporaries made a large
contribution to the total optimizer’s performance

on three of the sample programs.
TABLE 5 - Vector Temporary Elimination
Program Number

1 2 3 4 5

Code Without 554 3567 2638 1835 3680

Code With 549 3061 2384 1372 3623
Reduction 0.9% 14.2% 9.6% 25.2% 1.5%

Table 6 shows the measurements of code motion
on the sample programs. No candidate quad was
found to be invariant inside two or more nested
loops in any of the programs. The performance of
code motion is rather poor due partly to the
caution which is exercised in selecting operations
to move, and partly to the relatively small
numbers of explicit program loops.

TABLE 6 - Code Motion Effect

Program Number
1 2 3 4 5

Total Quads 491 1710 1688 1196 2516
Quads Considered 60 74 230 50 31
Quads Moved 10 7 194 2 20

For the majority of users, the most important
benefit from ' optimization is the reduction in
program execution time which it 1is expected to
produce. The five SL/1 programs used in this
study were each executed with no optimization and
with full optimization using data supplied by the
programmer and regarded as typical. The
percentage reductions in execution times produced
by the optimizations were:

Program Number
2 3

1 4 5

1.0% 28.87% 1.79% 3.6% 0.4%
Except for program 2, these reductions are hardly
of any wvalue. Notice that program 2 also
experienced the largest quad volume reduction.
The reason for these poor results 1is that the
optimizer removes scalar operations only and the
five programs were heavily vectorized; their
execution times were dominated by very long
duration vector instructions. The execution of
10,000 scalar instructions must be prevented in
order to have an effect comparable in execution
time with a single vector instruction operating on
long vectors. The performance of the optimizer in
the critical area of execution time is thus very
dependent on the vector lengths used and the
degree of vectorization of the program.

In order to assess the effect of different
vector lengths on optimizer performance, program 1
was executed with vectors ranging in length from
64 to 16,128. The. percentage reduction in
execution time for the various vector lengths
resulting from use of the optimizer are:

Length Reduction Length Reduction

64 31.0% 5888 3.0%
128 26.0% 7168 2.5%
256 25.0% 8448 3.6%
320 20.0% 9278 2.2%
640 17.0% 11008 1.7%
768 15.67% 12288 1.8%

2048 10.27% 13568 0.7%
3328 5.0% 14848 1.3%
4608 3.7% 16128 1.0%

60

For very short vectors, the optimizer’s
performance is considerably better than with long
vectors.

In the SL/1 optimizer, a very small subset of
the quad operators was responsible for most of the
code removal, and analysis of common
subexpressions across control structures and code
motion both proved relatively ineffective. In
addition, the ratio of instruction execution times
means that the effects of optimization are
extremely program dependent and in terms of
execution time, optimization was of almost no
benefit 1in many cases because of the dominance of
long vector instructions. This problem 1is
significantly worse with the CYBER-203 where the
instruction execution time ratio is much higher.
The CRAY-1 [7], on the other hand, has a maximum
vector length of 64 and the instruction execution
time ratio is orders of magnitude less than that
of the STAR-100 and CYBER-203. The optimizations
attempted by the SL/1 compiler would probably be
much more effective on programs which are executed
on the CRAY-1.

A very simple optimizer is probably most
appropriate ' for vector-oriented languages on
machines like the STAR-100.

References
1. CDC STAR-100 Hardware Reference Manual,

CDC Publication Number 60256000, Control
Data Corporation, Minneapolis, Minnesota.

2. SL/1 Llanguage Reference Manual, Analysis
and Computation Division, NASA Langley
Research Center, Hampton, Virginia 23665.

3. Dunlop, D. D., J. C. Knight, '"Register
Allocation in the SL/1 Compiler®,
Proceedings of _a rksh on Vector
Progcessors, Los Alamos, New Mexico, 1978.

4. Basili, V. R., A. J. Turner, "Simpl T, A
Structured Programming Language",
Computer Note CN-l4.1, University of

Maryland, College Park, Maryland.

5. Hecht, M. S., "Data Flow Analysis of
Computer Programs", American Elsevier,
New York, N. Y.

6. Dantzig, G. B., G. Reynolds, "Optimal

Assignment of Computer Storage By Chain
Decomposition of Partially Ordered Sets",

Report No ORC-66-6, University of
California at Berkeley, O. R. Center,
March 1966.

7. Cray-1 S Series Hardware Reference
Manual, CRAY Publication No HR-0808, CRAY
Research Inc., Mendota Heights,
Minnesota.

THE SYMBOLIC, HIGH-LEVEL LANGUAGE PROGRAMMING OF AN MIMD MACHINE

David Klappholz
Department of EE/CS
Polytechnic Institute of New York

Brooklyn, NY

1. Introduction

The present work is concerned with the high
level language programming of a large-scale,
tightly-coupled, speedup-oriented MIMD machine of
the type proposed in [1] or [2].

We will assume a high level language which
differs from traditional high level languages only
in that it contains constructs for:

+ dynamic (run-time) spawning of parallel
processes

* run-time communication between processes
* dynamic (run-time) identification of one
process by another for the purpose of estab-
lishing communication.
What we have in mind for the first of these
constructs is something on the order of a SPAWN
statement of the following type:

SPAWN <name of code>(<parameter 1> ...,<parameter k>)

What we have in mind for the second of these
constructs is statements of the following type:

a) WRITE BUFFER <buffer name> FROM
<private variable>

b) READ BUFFER <buffer name> INTO
<private variable>

where <buffer name> is the identifier of a shared
variable.

We will be concerned with:.
i) showing that if direct interprocess com-
munication is limited to communication be-
tween processes which bear the parent-child
relationship, with all other communication
constructed indirectly from parent-child
communications, then the speedup promised
by parallelism will, in general, be
vitiated
ii) proposing a construct for the dynamic (run-
time) identification of an arbitrary process
by another process for the purpose of
establishing communication.

2, Parent-Child Communication

We define the "spawning tree' of a system of
cooperating sequential processes to be that graph:

« whose nodes represent the processes

0190-3918/81/0000/0061$00.75 © 1981 IEEE

61

11201

* whose directed arcs represent the spawning re-
lation. I.e., a directed arc from node A to
node B represents the fact that A spawned B.

Different systems of cooperating processes
will, of course, have their own idiosyncratic
communication patterns. In order to get a handle
on the general case, we will assume a random pat-
tern of necessary communication. I.e., we will
assume that wherever a process might "sit" on the
spawning tree:

* each time a process needs to communicate with
another process it will choose the latter
process at random from a uniform distribution
over all the processes (including itself for
the sake of simplicity) in the system of
cooperating processes

+ different communications from the same (source)
process will be directed at destination proc-
esses chosen independently of one another

» different (source) processes will choose the
destinations of their communications inde-
pendently of one another.

These assumptions, are, in one important
sense, very optimistic. That is, in the long run
they ensure uniformity of spread of the total vol-
ume of communication traffic over the set of all
pairs of processes rather than possibly skewing
that same total volume of traffic. What we will
see, however, is that the spawning tree, because
of its structure, will still form a very ineffi-
cient base for carrying communications; i.e., we
will see that uniformity of traffic over the set
of all pairs of processes when superimposed on the
hierarchical structure of the spawning tree creates
intolerable speedup-vitiating bottle-necking.

To start, then, let us take as our unit of
time the time within which a process - on the aver-
age - sends a communication to some (randomly
chosen) process. To simplify matters, and without
loss of generality, we will assume that each proc-
ess sends exactly one communication to some process
during each unit of time.

We will assume, then, that once per unit of
time each node (process) of a full binary (spawn-
ing) tree containing N = 2™ -1 nodes will generate
one communication addressed to some node chosen at
random from among all N nodes. For each arc, a, of
the tree we will be interested in the amount of
traffic, Ty, - i.e., the number of communications -
generated during one unit of time and destined to
traverse the arc o at some noint in its journey
from its sourceto its destination. More precisely we
will be interested in E(T,), the expectationof T,.

Now a full binary tree with N = 2®-1 nodes
is, of course, of depth d=m-1. For some & then,
1<% <m-1, let the arc a be £ levels up from the
leaf nodes of the tree as in Figure 1. If we let:

* a be the number of nodes in the subtree tj,
of Figure 1 (including the root node of tjy)

* b be the number of nodes in that part of the
tree of Figure 1 (clearly not a subtree)
labeled ty (i.e., all the nodes of the entire
tree except those in tj)

. Tgp be the number of communications (gener-
ated during one unit of time) destined to
traverse o in the upward direction

. Tgown be the number of communications (gener-
ated during one unit of time) destined to
traverse o in the downward direction

then:
up| - ab = down
ofxop] - 2 - pfad
But a =2 -1, and b = 2®-1-a=2"-2% we
thus have:
E[TupJ _ @-nE™2Y
* 2™
]
d=m- 1
t2 levels of
2-1 arcs
levels
of \\\
arcs N
(FULL BINARY SPAWNING TREE OF DEPTH d)
Figure 1
or

2(2%-1) (2"-2%)
E(Ta) = om_q

If we now let o be either of the arcs for
which & = m - 1, i.e., either of the arcs directly
emanating from the root of the full binary tree we
see that

2(2™ 1) (2™

E(Ta) = 2m—l_l
- (2™2) zm—l ‘
o1y

2m—l

= (N-1) |
[zm‘l—l]

What this means is that, subject to our opti-
mistic statistical assumptions, each period during

62

which every process generates one communication
causes the process at the root of the tree to per-
form O(N) units of work sequentially. (The root
process is, after all, as are all the processes, a
sequential procegs, and it is expected to have to
handle (N—l)(2m"1/2m_l—l) communications.) What
this means, among other things, is that an N-
process system of parallel processes is not ex-
pected to terminate in less than O(N) time.

3. Process Identification

Given, then, that in general implementing an
arbitrary inter-process communication as a sequence
of parent-child communications leads to intolerable
loss of speedup, it is necessary for communicating
processes to be able to directly identify one an-
other for the purpose of establishing direct com-
munication.

In the simplest case, i.e., that of two spe-
cific processes which are known at compile-time
(actually, at the time the program is written) to
have to communicate with one another, there is no
problem. For example, suppose that procedures
PROCA and PROCB are each to be activated exactly
once, and that the one activation of PROCA is to
communicate to the one activation of PROCB a re-
sult which the former will compute and store in its
private variable RESULTA; the programmer need
simply invent a buffer name, say BUFFAB, and a name
for a private variable, say RESULTFROMA, and then
write the code for PROCA and PROCB as in Figure 2.

PROCEDURE PROCA;
SHARED BUFFAB;

RESULTA: = ... ;
WRITE BUFFER BUFFAB FROM RESULTA;

END

PROCEDURE PROCB;
SHARED BUFFAB;

.

READ BUFFER BUFFAB INTO RESULTFROMAj;

.

END;

(EXAMPLE OF COMMUNICATION CODE WHEN COMMUNICATION
PATTERN IS KNOWN EXPLICITLY AT TIME OF PROGRAM-
WRITING)

Figure 2

Suppose, though, that the situation is more
complicated, i.e., suppose that for the application
of interest, processes must dynamically - i.e., on
the basis of results which they will compute rather
than on the basis of criteria explicitly known at
compile time - '"develop the need" to communicate

with one another. How, in this case, are proce-
dures to be coded in such way that processes which
"develop the need" may establish a means of com-
munication with one another?

For the purpose of enabling such communica-
tion, we propose constructs for the dynamic crea-
tion of variable names. To wit, the notion of a
schematic variable name is defined as follows:

<schematic variable name>:: = (<schema>) ;
<schema>:: <character>
<arithmetic expression> |

<schema><schema>;

Note that in the above definition of <schema>,
<arithmetic expression> denotes an arithmetic ex-
pression each of whose characters is underlined.

The semantics of schematic variable names is
as follows:

* an underlined arithmetic expression is to be
evaluated, and the numeric value translated
into the character string representing that
value

+ a character not underlined represents itself.

Thus, for example, if

WRITE BUFFER (JOE/I*%2/J+8)FROM <private-variable>

is executed at a time at which I has the value 5
and J has the value 3, then the statement which
will effectively be executed will be

WRITE BUFFER (JOE/25/11)FROM <private-variable>

The manner in which processes which dynam-
ically develop the need to communicate establish a
means of communication is clear. Before the intro-
duction of dynamically-created names two processes
communicates with one another if and only if one
executes a statement of the form READ BUFFER
<buffer-name 1> INTO <private-variable 1>, the
other executes a statement of the form WRITE BUFFER
<buffer-name 2> FROM <private-variable 2> and
<buffer-name 1> happens to be identical to
<buffer-name 2>. This is still of course true,
but now the name of the buffer may itself be com-
puted at run time.

The specific details of the proposed construct
for the dynamic creation of buffer names, however,
is not the important point. Rather, what is of
consequence is that once large-scale, tightly-
coupled, speedup~oriented MIMD computation becomes
a widespread reality, algorithms will be developed
which will require the dynamic establishment of
communication on the basis of computed results.
This will be the case, for example, in the solution
of PDE's over dynamically varying grid structures
and in such AI applications as natural language
understanding. In such applications, some means
for the dynamic creation of buffer names or some
alternative means for the dynamic identification

of one process by another will be of critical
importance.

63

(1]

References

Sullivan, H. and Bashkow, T. R., "A Large
Scale Homogeneous, Fully Distributed Parallel
Machine, I" in Proc. Fourth Annual Symposium
on Computer Architecture, March, 1977.

Klappholz, D., "An Improved Design for a
Stochastically Conflict-Free Memory/Inter-
connection System," in Proc. Fourteenth
Asilomar Conference on Circuits, Systems, and
Computers, Nov., 1980.

A PARALLEL HETERARCHICAL MACHINE
FOR HIGH LEVEL LANGUAGE PROCESSING

Adolfo Guzman

Computing Systems Dept.,|I1MAS

National University of Mexico
Apdo. Postal 20-726
México 20, D.F,

Abstract

A computer architecture is presented that
processes in parallel programs written in high lev
el languages capable of being expressed in the
lambda notation (applicative languages).

Internally, it is a collection of weakly-cou-
pled general purpose processors, without a hierar-
chy among them. Each processor evaluates a part of
a program, thus permiting asynchronous computation.

The architecture here exposed has been devel-
oped for the Lisp language, although other appli-
cative languages are also possible. The hardware
implements the function calls, argument passing
and sequencing of tasks. Each processor is a Z-80
microprocessor that is programmed to execute the
Lisp primitive operations.

The AHR machine operates as a slave of a
general purpose minicomputer. This avoids doing
1/0 in the AHR machine. In addition, all interac-
tions with the user(s) are done by the normal
operating systems of the mini.

The machine is being built at the Computing
Systems Dept. (IIMAS).

I. Introduction and Project Status

This paper presents the architecture of a
parallel general purpose computer that has Lisp as
its main programming language. It is built of
several dozens of microprocessors (Z-80's), each
of them executing a part of the program.

Goals

The goals of the Project AHR (Arquitecturas
Heterarquicas Reconfigurables) are:

*

To explore new ways to perform parallel proces-

sing.

* To have a machine in which it will be possible
to develop parallel processing languages and
software

* To have a tool for students to learn and practice
parallel concepts in hardware and software.

Project Status

Version 0 [3] of the machine has been de-
signed and simulated. This produced Version 1[12]
which was simulated using SIMULA. Results of the
simulation are not to be found here, but in[8, 9,

0190-3918/81/0000/0064$00.75 © 1981 IEEE

12] instead.

We are building Version 1 of the machine, ex-
pected to be operational [5] in 1981. Subsequently,
a faster version will be built, possibly incorpo-
rating changes and ideas sprung from our experience
with the first machine. Finally, this fast version
will be used to try to attain the goals mentioned
above.

About six people full time are involved in
the project.

The expected uses of the machine also include
picture processing, finite element methods, engi-
neering calculations, and distributed processing.

Main Features

The AHR machine has the following character-
istics:

general purpose.

parallel processor.

* heterarchical. It means that there is no
hierarchy among the processors; there is no
"'"master' processor, or controller. All the
processors are at the same level.

« asynchronous operation.

it has Lisp as its main programming language

processors do not communicate directly

among themselves. They only ''leave work'
for somebody else to do it.

no input/output. This is handled by a mini-

computer to which the AHR machine is

attached.

* no operating system (software). Most of the

Lisp operations, as well as the garbage

collector, are written in Z-80 machine

language

the AHR machine works as a slave of a gen-

eral purpose computer (a mini or micro).

gradually expandible. More microprocessors
can be added as additional computing power

is needed.[9]

E

b

Functional Notation

The AHR machine obtains its parallelism by
parallel evaluation of the arguments of functions.
For instance, in f(a,b, g(u,g(x,b))), first x and
b are evaluated; then g of them, in paraltel with
u; then g of the result, in parallel with a and b.
That is, evaluation occurs from bottom up, or from
the inside to the outside of the expression. This
is in accordance with the rule for evaluation of a

function: ''to evaluate a function, the arguments
have to be already evaluated'.

Recursion is handled [3] by substituting the
function name (''FACTORIAL'") by its function defi-
nition (LAMBDA (N) (IF (EQ N 0) 1...)) when eval-
uating it.

The machine works with pure Lisp, without
SETQ's, GOTO's, Label's, RPLACA.

11. The Parts of the AHR Machine

In this section the constituents of the ma-
chine are described; section 11l explains how the
machine works. Refer to figure 2.

Passive Memory

This memory holds lists and atoms; it holds
partial results and parts of programs that are
not being executed at the moment.

Originally, the programs to be executed re-
side here, and they are copied to the grill for
their execution. As new data structures are built
as partial results of the evaluation, they come to
the passive memory to reside.

The Grill

This memory holds the programs that are being
executed. A program, once in the grill, is being
transformed into results, as the result of its
evaluation.

Programs reside in the grill in the form of
nodes, as figure 1 illustrates. Each node is
pointed at by its sons (its arguments), and its
nane field contains the number of nonevaluated
arguments. Nodes with nane = 0 are ready for eval-
uation.

The Lisp Processors

These active units are microprocessors (about
several dozens of Z-80's) that obtain from the
grill nodes ready for evaluation, and, after eval-

uation, return results (s-expressions) to the grill.

Each Lisp processor knows how to execute every
Lisp primitive. Each of them works asynchronously,
without communicating with other processors.

The processors obtain new work to be done
from the distributor, through the high speed bus.
This work comes as a node ready to be evaluated.

Only nodes with nane = 0 come up to the Lisp
processors for evaluation. So, for instance,
(CAR "(A B C)') will evaluate to A. The node
(CAR '(A B C)') has become the result A. The Lisp

processor has to do, after evaluation, the follow-
ing things:

1.- Insert the new result A in the cell (in
the grill) pointed to by the node (CAR
"(A B C)'). That is, insert such result in
a slot of the father of the evaluated
node (see such slots in figure 1).

65

2.- Release the grill space occupied by node (CAR

‘(A BC)').
3.- Substract ‘1 to the nane of the father.
4.- If the new nane (of the father) is zero, in-

scribe the father in the fifo: the father is
now ready for evaluation.

(LIST (CONS (CAR A)
(CDR B))
Y)
LIST 3
VAR |0 VAR[O CONS I2
" xu n Y“

car[t | [oor] 1
VAR ! 0 VAR IO
IIA" IlBll
Figure 1

NODES IN THE GRILL

Above, the Lisp expression to be
evaluated. Below, how Lt is Atruc-
tured into nodes, each node being

a function on a variable. Each rode
shows a number: its nane, or number
04 non-evaluated arguments. When a
node has a nane of zerno, Lt means
that such node 45 neady fon eval-
uation.

Empty wonds are sfLots where the
nesults o4 evaluation will be insen-
ted. For instance, the nesults o4
(COR B) will be insented in the slot
marked "*",

These steps are initiated by the processor
simply by signaling to the distributor that the
processor has finished, and that its results
should be handled in mode ''"normal end" (burocracia
de salida, in Spanish [12]); the distributor
itself performs the requested steps.

Notice that in this form nobody has to search
the grill 1looking for nodes with nane=0, because
as soon as they appear, they are inserted into the
tail of the fifo.

The Lisp processors have access to the pas-
sive memory (where lists and atoms reside), and to
the variable memory, where we have the values of
variables.

A Lisp processor is either busy (evaluating
" a node) for it is ready to accept more work (an-
other node).

The high speed bus

Connecting each Lisp processor with the dis-
tributor is a high speed bus that goes into the
private memory of each processor. The new node
that the distributor throws is inserted (through
the high speed bus) into the memory of the selec-
ted processor. Then, the processor is signaled to
proceed.

The slow speed bus

This bus runs from the i/o processor (the
mini or micro to which the AHR machine is connect-
ed) to each bos. It is not shown in the diagrams,
nor it is explained furthermore in this article
(See [51). Through this bus each processor is
loaded with programs, prior to starting the ma-
chine. Also, in the debugging stage, the slow bus
is used to pass statistical information to the i/o
processor. The slow speed bus is not used during
normal execution of Lisp programs.

Variable Memory

This memory contains pairs of {variable,value),
and it is organized as a tree, or a collection of
a-lists, where each pair (variable,value) points
to older pairs. It is accessed by the Lisp proces-
sors, and it is augmented (a branch of the tree
grows) after each LAMBDA binding.

Since the evaluations are.made in parallel,
the a-lists could grow in parallel, too. For in-
stance, consider the following expression

BODYO: (1ist ((1ambda(x) BODY1) 3) ((lambda(X)
BODY2) 4)). :

Then, if when evaluating BODYO the a-list is
ALISTO: ((x,A) (v,B) (z,9))

Then, when evaluating BODY1, the a-list is
ALIST1: ((x,3) (x,pn) (v,8) (z,9));

and when evaluating BODY2, the a-list is
ALIST2: S (A (v,B) (2,9).

But since the evaluation of BODY1 and BODY2
can be carried in parallel (by two different Lisp
processors), this means that ALIST1 and ALIST2
coexist at the same time in variable memory, but
BODY1 points to ALIST1 and BODY2 points to ALIST2.

So, each processor has its "appropriate' a-list to
work with.

66

Both ALIST1 and ALIST2 share ((X,A) (Y,B)
(2,9)) between them. That is, they ''share'' ALISTO.
ALISTO grew in two directions, like a tree, giving
rise to ALIST1 and ALIST2 simultaneously. This
explains the affirmation that ''the variable mem-
ory contains a tree of a-lists'',

The Distributor

This piece of hardware communicates the grill
with the Lisp processors. The distributor keeps
in the fifo (a memory) an array of nodes ready to
be evaluated; these nodes are thrown, one in each
cycle of the distributor, to the Lisp processors
that are ready to accept new work. An arbiter
decides which Lisp processor obtains the node; an
exchange is done (through the high speed bus)
between that Lisp processor and the distributor,
the processor accepting the node and releasing the
result of the previous evaluation. The distributor
stores the result in the grill, in the address
indicated within the result. Generally, this re-
sult is stored in a slot of the node which is fa-
ther of the node just evaluated.

An overall view of the machine is shown in
figure 2.

1
&
a e 9
VARIABLE Ul'ﬂ) 2 — g 8
MEMORY 8 . g & a ;Uql
e mL—] [~13,
o [M| O
[+ 4 LAl
anl n-1 [
[w
H o &
- e V4
Re
n o]
PASSIVE
MEMORY

GRILL

FIGURE 2
THE AHR MACHINE

Lisp processon 2 is neady to accept monre
work. The distributorn fetches a node (to
be evaluated) from the §ifo and sends it
to processorn 2, while accepiing the ne-
Aults of the previous evaluation performed
by such processon. That nesult s stored
in the ghikk, in a place indicated in the

destination address of the result.

Such exchange of new wonk--
previous result £s performed at
each cycle of the distributon.

Version 2 of the AHR machine
will gain speed overn Vernsion 1,
mainly by building a faster distri-
buton.

The Lisp processons also have
access (connections not shown) to
the variable and passive memonies.

The Fifo.

The fifo is a first in-first out memory that holds
pointers to nodes (in the the grill) ready to be
evaluated. The distributor fetches such nodes
through the head of the fifo, while new nodes to
be evaluated are inserted through its tail [51].

The arbiter.

If several Lisp processors become ready to accept
more work, the arbiter (a hardware) selects one of
them, which will receive the node thrown by the
distributor.

If every processor is busy, the cycle of the

distributor is wasted, since no processor accepts
the node that the distributor is offering.

The 1/0 Processor

It has been said that the AHR machine can be
seen as a peripheral of a general purpose mini-
computer. But this mini can also be considered as
a peripheral of the AHR machine; we thus talk of
such mini as the 1/0 processor.

Input/output will be described in next sec-
tion.

I11. How The Machine Works

Input

The user uses a terminal of the mini or mi-
cro (i/o processor) which is master of the AHR ma-
chine. He uses a common editor, disks and the
normal operating system of the mini. When he is
ready to run a program, he loads it from disk into
a part of the address space of the mini which is
really the passive memory of the AHR machine (see
figure 3 . In this way, the program is loaded (al-
ready as list cells) in the passive memory. A sig-
nal from the i/o processor to the AHR machine
signifies that Lisp execution should begin. Togeth-
er with this signal an address is passed, indicat-
ing where in passive memory resides the program to
be evaluated.

67

1
' 2
: 2
] Q
\ g
E ° ,
\ o - =
: : .
\ = .
&3]
- 2
\ @]
A S
\ a1}
N)
N |
N\ .
ALY
TERMINALS DLSK AN \!
- l\
| TN
. .~
] -
) ~
! MAIN N -
S MEMORY
CPU
MINICOMPUTER

(I/0 PROCESSOR)

FIGURE 3
""THE AHR MACHINE ‘AS A SLAVE"

The AHR computern 45 shown as another
periphenal of a general pwipose
minicomputern. The addness space of
the mind compnis es the passive memony
of AHR, through a movable window of 4k
address es .

Starting

It is assumed that each Lisp processor already
has its programs loaded in its private memory.

When the AHR machine receives the ''start"
signal, the distributor throws a node (called the
RUN node) to some Lisp processor. This node points
to the program which will start.

The program (in passive memory) is copied (i.
e., transformed from its passive-memory representa-
tion, which is in list notation, to its grill-rep-
resentation, which is composed of nodes) by more
and more Lisp processors (the more leaves or
branches a program has, the more processors help to
copy it. Each processor copies a branch of the
program)into the grill. Nodes with nane=0 are
inserted by the Lisp processors into the fifo, so
that some other Lisp processorswill execute them,

Finally, the program has been copied into the ng].

Notice that at the same time of copying, some nodes
with nane=0 could have been evaluated by some
other Lisp processors.

Evaluation

When a Lisp processor is idle, it signals to
the distributor, meaning that it is ready to ac-
cept more work.

The distributor chooses (with the help of an
arbiter) one of several idle processors, and
through the high speed bus it injects a new node
[taken from the grill through the head of the fifol
into its private memory. It then signals such
processor to start.

The Lisp processor ''discovers'' the node in
its own memory, with all the arguments already
evaluated. The Lisp processor proceeds to perform
the evaluation that the node demands. Suppose it
is LIST, and its arguments are (A B), M and N. It
then has to address the passive memroy in the mode
""give a new cell'. Such cell is given by a cell
dispatcher (hardware attached to passive memory).
Three new cells have to be requested. Then the
Lisp processor forms the result: ((A B) M N). For
this, it has to store pointers to (A B), to M and
to N, into passive memory, .in the new cells al-
ready obtained. Then, it stores the result (which
is a pointer to passive memory) into a special
place (''results place") of its private memory, It
has finished. It signals to the distributor that
it is ready to accept more work. The distributor
will insert new work {another node with nane=0)
into the private memory of the processor, but it
will also collect (through the high speed bus;
see figure 2)from the ''results place' in private
memory, the result ((A B) M N). The distributor
will store this result into a slot in a node in
the grill, The address inthe grill of this slot
was known to the (LIST (A B) M N) node, because
each node points to its father. Thus, the distri-
butorhas no problem in finding where to store the
result: such address is found also in the ''results
place', together with the result ((A B) M N).

The distributor has to do one more thing: it
has to substract one from the nane of the father
(which has just received the result ((A B) M N).
And if such nane becomes zero, then a pointer to
the father is inserted by the distributor into the
fifo through its tail.

One last thing: the distributor has to free
the cell of the node (LIST (A B) M N), so that
this grill space could be reused [10] ,

The distributor is very fast compared with
the speed of the Lisp processor. This will be even
more true if we code ''Complicated'" Lisp functions
(such as MEMBER OF FACTORIAL) in Z-80 machine lan-
guage, instead of ''simple'" Lijsp functions, such as
CDR.

Due to such difference in speed, the distrib=
utor can keep many Lisp processors working; if the
distributor is 100 times faster than the (average)

68

Lisp function, it could keep 100 Lisp processors
functioning. It pays to make a fast distributor.

Output

Finally, the whole program has been converted
into a single result (let us say, a list) deposit-
ed in passive memory. The AHR machine now signals
the mini (or i/o processor), giving it also the
address in passive memory where the result lays.
The mini now accesses the passive memory as if it
were part of its own memory (remember, their ad-
dress spaces overlap), and proceeds to the (serial)
printing process.

Execution has finished.

IV. Hardware Considerations

Lisp Processors

The first version of the machine will have 5
Lisp processors, and the i/o processor is another
Z-80. Each Lisp processor will have 4K bytes of
private memory, where a pure-Lisp interpreter will
reside [81].

The maximum number of Lisp processors is 6k4.
It could be increased further, but a new arbiter
needs to be designed in that case.

The high speed bus

The distributor inserts a node (7 words of 32
bits) into the private address space of the select-
ed Lisp processor, through the high speed bus. It
does this in 0.5 microseconds. The high speed bus
runs from the distributor to all Lisp processors.
It carries nodes and results.

The low speed bus

A 16 bits lTow speed bus; 8 of them indicate
which Lisp processor is addressed, the other 8

‘bits carry data. It runs from the i/o processor to

the Lisp processors.

An additional use of the low speed bus is to
broadcast to the Lisp processors the number of a
program that needs to be stopped or aborted.

Passive Memory

It consists of up to 220 words of 22 bits; it
contains the input ports, list space, output ports
and atom space.

Version 1 will have only 64K words.

Access time is 150 nanoseconds, It has a parity
bit,

The Grill

It consists of up to 2 2words of 32 bits. It
is divided logically in nodes, each with 7 words.

Version 1 will have 8K words. Access time is
55 nanoseconds. The grill contains the nodes that

are about to be evaluated.
Variable Memory

It consists of up to 219 words of 32 bits,
This memory contains names of variables and their
values at a given time, The variable memory contains
also real numbers, in its lower half. In its upper
half it has '"environments'', which are lists of
cells of 5 words each.

Version 1 will have 16K words. Access time is
150 nanoseconds.

The Distributor

The distributor passes nodes from the grill
to the Lisp processors, and stores in the grill
the results coming from the Lisp processors. There
are two versions of the distributor.

First versionof the distributor:

This first version [10] is implemented through a
z-80, using a program that performs all the func-
tions of the distributor, It runs slowly, in the

sense that distributes nodes at low speed, It is

further described in Section V-Software conside-

rations.

Second version: fast distributor:

Not yet built, it will become part of version 1 of
the machine. It will be built either from bit-slice
microprocessors, of from PAL's.

The fifo

0f a maximum size of 219 words of 19 bits, it con-
tains pointers to the nodes in the grill. Version
1 will be of 4K words. Its access time is 55 nano-
seconds,)

The arbiter

There are really three arbiters, for passive memory,
variable memory and for the grill.

Each arbiter takes 400 nanoseconds to respond,
and it may handle up to 64 processors. Each proces-
sor has a fixed priority, varying from 1 to 64,
Each processor has a different (unique) priority.
The assignment of priorities to processor really
does not matter, since all of them are equal (they
are able to perform exactly the same tasks). Of
course, if there are too may processors, those with
lowest priorities will never obtain work (nodes) to
do.

The 1/0 Processor

It is actually built around a Z-80 that works
as a general purpose computer. lts main functions

are:
* to talk to the users; to read their input and
to print their results.
* to store user files in its disk.
* to initialize the AHR machine.
* to load into passive memroy, through the

window, the programs loaded from disk.

69

b

To begin garbage collection.

To end garbage collection.

Actually, the garbage collector runs in the
i/o processor.

=

s

V. Software Considerations

The Lisp Interpreter

A Lisp interpreter runs in each Lisp proces-
sor. It interprets pure Lisp (only evaluations;
no setq's, rplacd's or other operators). The
garbage collection is not done, at this moment,
by the Lisp processors.

For the first version, the Lisp interpreter
will do argument checking of the Lisp functions.
This will reamin as an option in the second ver-
sion of the AHR machine.

The Garbage Collector

For the first version of the machine, it will
be a '""normal' serial garbage collector, running
in the i/o processor. While it works, the Lisp
processors remain idle. For the second version, it
will be a parallel incremental garbage collector,
running in the Lisp processors.

Garbage collection is done for passive memory
(list cells) and for the real numbers region of
variable memory (where it compactifies memory).

In the "environments'' zone of variable memory and
in the grill (nodes), there is no need to recol-
lect garbage, because used space, as soon as it
is abandoned in these two places, it is inserted
(by hardware) into a list of free environment
cells (for variable memory) or into a list of
free nodes (for the grill).

The Distributor (First Version)

This is a piece of software [10] running in
a Z-80, that emulates all the functions that the
"'real' (hardware) distributor performs. It is
slow in this sense, but it is flexible and helps
in the debugging of the AHR machine; it may be
run ''step by step' to see the flow of information.
It also keeps statistics of use of hardware and
software.

Editing

Editing of Lisp programs 'is done outside the
AHR machine, using the operating system and editor
of the i/o processor. After editing, the program
is filed on disk. From here, a loader (running
in the i/o processor) converts it into list cells
and brings the program to passive memory. See
figure 3.

Performance of the Machine

No figures can be given at this time, since
the AHR machine is not yet completed.

New Advances as of June 1981.

The hardware is now working; the software is

about to be completed.

V1. Related Work and Machines

Greenblatt's Lisp Machine

This is a single processor machine [14] built
for high speed Lisp computations. It does not pre-
tend to be an experiment in parallel hardware; it
gains its speed and power from careful design of
the software and machine architecture, as well as
from the experience of the builders with the Lisp
language.

Parallel Lisp Machine

The machine [7] is a loosely coupled multi-
processor for applicative languages such as Lisp.
It is the machine most closely resembling ours, in
its application.

Data Flow Machines

These machines [13] resemble the AHR archi-
tecture in that data is directed through '"boxes'
that process them. The flow of executions is
controlled, like in our design, by what previous
results are ready (available). The cited article
describes a machine that uses different colors of
tokens to mark '"'this result'', '"previous result",
and so on.

Zmob

A collection of z-80's around a conveyor belt,
this machine [11] may be applied to image pro-
cessing and numerical calculations. Each micro-
processor has its own private memory. They do not
have direct access to a common memory (as AHR
does), but behind one of the micros, a huge central
memory or mass memory may reside.

s

This is a machine [2] suitable for iamge
processing. It is a dynamically reconfigurable
mul timicroprocessor-based machine. It can be par-
titioned into several groups of processors which
may be assigned to execute multiple independent
SIMD processes and MIMD processes.

The Language ''L'"' for Image Processing

""" is a language suitable for processing of
images. It is mentioned here because it may be im-
plemented in a parallel machine [41 , such as the
AHR computer, The language is described elsewhere
[11 It was designed mainly as a
result of our experience in picture processing of
multispectral images [6] . "L'" has not been im-
plemented.

Vii. Conclusions

The architecture of the AHR computer shows
that it is possible to build a multiprocessor of
the MIMD type, where each processor does not

explicitly communicate with other processors. In

70

The AHR design, a processor does not know how
many other processors are there, or what they
are doing. 1t is not possible to address a pro-
cessor: '"here | have a message for processor
number 4. :

The construction of new software has been
kept low by connecting the machine to a general
purpose computer, thus being able to use already
available operating systems for time sharing,
text editors and loaders.

Once the machine is built, experimentation
will begin in the design of parallel languages
and ways to express ''powerful'' commands in
heterarchical fashion. Also, if the amount of
access to memories for each processor is low, it
may be possible to place each micro in a remote
place, thus achieving some class of distributed
computing. That is, a micro can process local
work (through Basic, for instance) as well as
remote (Lisp) work.

Finally, the AHR machine shows how it is
possible to design a heterarchical system, where
none of the processors tells the others what to
do, in what order to do it, or what resources
are available to whom.

Acknowledgements

The AHR machine is being built by the members
of the AHR Project, to whom | express my apprecia-
tion for their time, effort and enthusiasm.

Work herein described has been partially
supported by Grant 1632 from CONACYT, the National
Council for Science and Technology (México).

References

1. Barrera, R., Guzman, A., Jinich, A., and
Radhakrishnan, T. Design of a highlevel lan-
guage for image processing. 1979. Technical
Report PR-78-22, H{MAS, Nattonal Univ. of
Mexico.

2. Briggs, F.A., Fu, K.S., Hwang, K., and Patel,
J.H. PMh: a reconfigurable multiprocessor
system for pattern recognition and image pro-
cessing. 1979. Technical report TH-EE-79-11.
School of Electr. Eng., Purdue University (USA)

. Guzmin, A., and Segovia, R. A parallel recon-
figurable LISP machine. 1976. Proceedings of
the International Conference on Information
Sciences and Systems. Univ. of Patras, Greece.
207-211.

L, Guzman, A. Heterarchical architectures for
parallel processing of digital images. 1979.
Technical report AHR-79-3, |IMAS, National
University of Mexico.

5. Guzmdn, A., Lyons, L., et al. The AHR Computer: i
construction of a multiprocessor with LISP as
its main language. (in Spanish). 1980. Techmical
report AHR~80-10. |IMAS, National University
of Mexico.

10.

11.

12.

13.

1k,

. Guzman, A., Seco, R., and Sanchez, V. Computer

Analysis of LANDSAT images for crop identifica-
tion in Mexico. 1976. Proceedings of the Inter-
national Conference on Information Sciences and

Systems. University of Patras, Greece. 361-366.

Keller, R.M., Lindstrom, G., and Patil, S. A
loosely-coupled applicative multi-processing

system. AFIPS 1979 Conference Proceedings, Vol.
48, 613-622.

. Norkin, K., and Gémez, D. A new description for

data transformations in the AHR computer., 1979.
Technical report AHR-79-4, [IMAS, National
University of Mexico.

. Norkin, K., and Rosenblueth, D. Towards opti-

mization in AHR. Technical report AHR-79-5,
11MAS, National Univ. of Mexico. 1979

Pefiarrieta, L. Error detection in the AHR
computer. (In Spanish). 1980. Technical report
AHR-80-9. 1IMAS, National Univesity of Mexico.

Rieger, C., Bane, J., and Trigg, R. ZMOB: a
highly parallel multiprocessor. 1980. Technical
report TR-911, Dept. of Comp. Science, Univ. of
Maryland (USA).

Rosenblueth, D., and Velarde, C. The AHR ma-
chine for parallel processing: Tst stage.

(In Spanish). 1979. Technical Report AHR-79-2,
I IMAS, National University of Mexico.

Watson, lan, and Gurd, John. A prototype data-
flow computer with token labeling. AFIPS 1979
Conference Proceedings, 48, 623-628.

Weinreb, C., and Moon, D. Lisp machine manual.
1979. M.1.T.A.1. Laboratory, Cambridge, Mass.
(usA)

71

DISTRIBUTED PROCESSING APPROACH FOR THE INTERNATIONAL PUBLIC TELEGRAMS
MESSAGE SWITCHING SYSTEM

Jin-tuu Wang

Yen-son Lee

International Telecommunications Adm1n1strat1on
Taipei, Taiwan, Republic of China

Abstract -- International Telecommunications
Adminstration (ITA) in Taipei, Taiwan, Republic
of China, recently has completed the application
software development for its International Tele-
gram Automatic Processing System (ITAPS). This
system adopts an in-house computer network archi-
tecture that includes four closely coupled mini-
computers and more than two dozens of micropro-
cessors. Two of the minis serve as the front-
end communication processors and others as the
host message switching processors. These minis
are interconnected using the SDLC protocol. The
microprocessors are connected to the front of the
communication processors using the RS-232C proto-
col to handle Telex signalling for those telegrams
to be delivered/accepted to/from the Telex net-
work. The ITAPS is configured to provide full
redundancy so that the hot-standby processors
will take over the on-line task should any failure
occur in the on-line system. One of the special
characteristics of the ITAPS is to print-out
Chinese address information automatically on the
received international telegrams to facilitate
messenger's delivery. Besides hardware architec-
ture of the system, this paper also describes the
functional characteristics of the system, software
design and the integrating testing result. This
system is one of the large scale software develop-
ment projects that are carried on in this country.

Introduction

The recent advent of minicomputer technology
prompted the prevailing applications of using
minicomputer systems for various types of tran-
saction processing [1,2,3 1. Message switching

is one of such applications to automize the handl-

ing of message records. Although CCITT has set
certain recommendations for these type of services,
such as F.31 message format, various systems very
often differ from one another due to different
operational requirements of record carriers.

The International Telecommunications Administration
(ITA) has called an international open tender for
the international telegram message switching
system in 1974, however, the bid was unsuccessful
because none of the venders could propose a system
that could meet the user's operational require-
ments. Furthermore, a non-standard project always
requires tremendous man-hours to write the specific
application software in order to meet these re-
quirements, and the cost for developing such a
non-standard software package is always very high.
After few times of unsuccessful open tender on the
turn-key basis, ITA decided to develop the nece-
ssary application software to meet its own oper-
ational requirements. A system appended with on-
Tine handling of Chinese address information and

0190-3918/81/0000/0072$00.75 © 1981 IEEE

72

with inter-connection to the Telex network is pro-
bably not available in the market. Therefore,

it is worthwhile to develop such a non-standard
system by yourselves not only to meet your own
requirements but also to gain some practical
experiences in the field of software engineering
technology.

Hardware Architecture

Fig. 1 shows the hardware configuration of
ITAPS. Two GA-16/440 minicomputers with 112 KW
core memory and Memory Management System (MMS)

“serve as the host message switching processors,

while two GA-16/440 minicomputers with 64 KW core
memory and Memory Parity and Protection (MPP)
option serve as the front-end communication pro-
cessors. These four processors are connected
with SDLC Tinks in such a way that each host has
a front-end processor through a link and is the
standby of the other on-line host.

In order to facilitate automatic delivery/
acceptance of incoming/outgoing telegrams to/from
the Telex subscribers, Z-80 microprocessors are
used to handle Telex signalling information with
the Telex exchange. Each microprocessor is de-
signed to handle four trunks of call setup and
clear down signalling to/from the Telex exchange
using 2K-byte EPROM and 256-byte RAM. These
intelligent hardware interface boards were designed
and manufactured locally to response to the CCITT
No. 2 signalling protocol. Therefore, they serve
as the protocol conventers between the CCITT No. 2
and the RS-232C protocols.

A1l the peripheral devices are attached to
the message switching host processors. These
peripheral devices include 2 head-per-tracks
(drums), 4 moving head disks, 8 magnetic tape
drives, 2 card readers, 2 line printers and 2 CRT
terminals as console. 16 CRT terminals are atta-
ched to the on-line host processor for manual
assistance of the intercepted messages while 10
CRT terminals are connected in distance through
modem to facilitate telegram entering directly
from ITA branch offices. These CRT terminals are
always connected to the on-line processors through
Automatic Bus Transfer Unit (ABTU). The function
of the head-per-track is to serve as the transit
storage for each telegram entering the system,
while that of the moving head disk is to serve as
the short-term journaling of telegrams for later
retrieval and as the storage space for operational
files and programs. The magnetic tape drives are
for the Tong-term journaling of telegrams, automa-
tic ticketing of outgoing telegrams, system and
file backup. The card reader and line printer are
for system software development. The head-per-
tracks are all connected to the on-line host
through ABTU while moving head disks are connected
to the dual port disk formatters and can be

accessed by either host processor. The magnetic
tape drives, card reader and line printer are all
dedicatedly connected to each host processor.

A11 the communication lines are connected to
the ITAPS communication processors via two types
of asynchronous communication multiplexors, one
for the slow speed trunk-lines or teletype ter-
minals, and the other to the modems for the re-
mote CRTs. The former is the GA-1595 multiple-
xors that provides 64 lines PI0O capability to
input/output message character and line status
one at a time after interrupt request. The latter
is the GA-1535 multiplexors that provide 16 lines
DMA capability to input/output message characters,
line or page depending on the operational mode of
CRT terminal. These multiplexors generate three
types of interrupt to the communication processor,
namely, the input buffer full, the output buffer
empty and the status change of line so that the
CPU can serve the respective type of interrupt to
input, output character or sense the status of
Tines. The 1595 multiplexors are further connec-
ted to two types of line adaptors, one is the
current Toop line adaptors that provide neutral
current loop interfaces to trunk-lines, the other
is the RS-232C line adaptors that provide EIA in-
terface to trunk-lines for the Telex exchange.
Portion of the current Toop line adaptors are con-
nected to a neutral/bipolar current converter for
those lines that are in bipolar characteristics.
Four serial-type graphic printers are connected
via RS-232C 1line adaptor to the 1535 multiplexor
for printing Chinese address information on the
received telegrams. A line monitor and patch
panel is also installed to provide signal monitor-
ing, line cross-patching, and trunk line interfa-
cing for all the low speed lines and trunks.

Major Functions and Special Characteristics

The major functions of the ITAPS are to per-
form a store-and-forward message switching which
automatically processes and routes both interna-
tional incoming/outgoing telegrams to/from this
country, stores the processed telegrams for later
retrieval, and provides traffic relevant reports.
Remote and local CRT positions are also provided
to facilitate direct editing of outgoing telegrams
at branch offices and manual assistance of the
intercepted telegrams at the telegraph operation
center (see Fig. 2). Detail functions are descri-
bed as follows:

Automatic Classification of Incoming Telegrams

For the incoming telegrams, the ITAPS auto-
matically classifies the telegrams into ten deli-
very classes. ' Four major classes are: (1) to be
delivered through the Telex network; (2) to be
delivered by messengers, (3) to be routed to the
domestic network, and (4) to be printed on the
Tocal teletype terminals.

By using the cable address in the received
telegram as keyword, the ITAPS looks up the Telex
number and the Automatic Answer Back (AAB) from
the database, if there is any, and gives the num-
ber to the microprocessor interface for automatic
dial-out. If the circuit connection is success-

73

ful, the communication front-end processor will
send "WHO ARE YOU" (Figure D) signal to the
connected Telex terminal for obtaining an Automa-
tic Answer Back Code. If a complete match occured
between the returned AAB and that gotten out from
the database, the ITAPS sends out the incoming
telegrams to the Telex subscriber who has regis-
tered using this cable address. If a Telex num-
ber is not found under this cable address, the
ITAPS Tooks up the Chinese address information in
another file. This file consists of over 20,000
records, each of which contains the Chinese
address of the telegram recipient in terms of
Chinese character internal codes. Each one-word
internal code is then translated into its binary
graphic pattern. A group of these binary graphic
patterns, lead by a graphic control code, are then
sent down to a graphic printer which will print
the Chinese address information including the
company's full name and address in front of the
English (ASCII) telegrams (see Fig. 3).

For those telegrams routed to the domestic
network, the city name on the telegrams will be
verified against the city-name file. It will be
routed to the respective line based on the infor-
mation from the file. Local Teletype terminals
include "Full Address" positions, "Service Tele-
grams" positions, "Inter-office Communication"”
positions, and the "Intercept" positions for the
abnormal telegrams that require manual assistance.

Automatic Editing and Routing of Qutgoing Telegrams

For the outgoing telegrams, the ITAPS accepts
the telegrams from the following four major sour-
ces: (1) ITA's branch offices can send telegrams
either by Teletype keyboard/paper tape reader, or
by remote CRTs; (2) Telex subscribers can send
public telegrams using simple format; (3) ITA's
Telegram Operation Center can send telegrams
either by Teletypes keyboard/paper tape reader, or
by local CRTs; (4) domestic network can handover
its international outgoing telegrams to ITAPS.

Telex subscribers can dial up "923" reques-
ting a direct connection to the ITAPS through
the microprocessor interface. If there is buffer
available in the Communication Processor, the
ITAPS, after obtaining subscriber's ID, will send
"GO AHEAD CABLE". The subscriber then send his/
her prepared paper tape or type in telegrams.
After receiving End of Message (NNNN), the ITAPS
will again verify the same ID to make sure that
the same circuit has been connected throughout
the entire period of telegram transmission. If a
match occurred in the verification, the sending
subscriber is then given a receipt number on which
a later inquiry of the telegram may be made. For
the convenience of the customers, the telegrams
sent by the Telex subscribers are in simple format.
The ITAPS will edit the simple format into the
CCITT F.31 format by automatically filling in the
numbering line, pilot line, word count, destina-
tion indicator, and origin indicator, etc. to
become an internationally compatible interchange
format. Based on the destination indicators or
geographical indicator, the telegram is then routed
onto the required destination international trunks.

For those telegrams sent from ITA's branch

offices, there is no dialing-up procedure needed,
instead, the prepared paper tape can be sent
directly from Teletype paper tape reader or key-
board into the ITAPS, or telegrams can be edited
on the CRT screen and sent to ITAPS by a single
key action. The remote CRTs are connected to
the Communication Processor through modems using
asynchronous RS-232C protocol at 1200 bauds.
Telegrams may also be input to the ITAPS using
Tocal CRTs which are directly connected to the
Message Switching Processor using asynchronous
protocol at 9600 bauds.

Journaling and Retrieval of Telegrams

‘Telegrams input/output into/from ITAPS are
properly recorded or journaled into the short-
term input/output journal file in the moving head
disks. Input journal file contains telegrams that
are originally input into the system with their
arrival time stamps and system numbers from which
the respective telegram can be retrieved. Output
journal file contains telegrams that may have been
automatically edited into the F.31 format or man-
nually corrected some erroneous fields in the
message header, together with their leaving time
stamps, system numbers and other information ex-
tracted from the telegram header. For retrieval
and report-printing purpose, many inverted files
are built at the time of output journaling such
as DELINV (delivery number), ICPINV/OCPINV (Input/
Output Circuit Prefix), TIMINV (Time), TIGINV (Te-
Tegram ID Group) to facilitate multi-directional
retrieval from other keys. The on-line retrieval
commands can be entered from 5-unit Teletypes
locally and remotely, and from local CRTs.

Two 80-megbyte disks are installed to allow
telegrams in two days to be journaled, while mag-
netic tapes are used to transcribe telegrams for
Tong-term filing. The retrieval of telegrams from
magnetic tape can be made off-line.

System Switchover and Recovery

ITAPS is designed to have dual configuration.
During normal operation one system serves as on-
line and the other as hot-standby. The on-Tine
system does all work including telegram reception,
assembly, storing, analysis, routing, dispatching
and disassembly while the standby system does only
the telegram reception and assembly. The on-line
message processor continously sends information
to the standby message processor ordering it to
release those buffers whose contents have been
safely written (stored) into the transit storage
by the on-line Message Processor. Also, in the
on-Tine system, a snapshot program periodically
saves system operational data and tables onto the
drum (head-per-track) snapshot area including the
current queue transactions, data and tables in
common area. If the on-line system fails, or
either side receives a switchover command, the
hot-standby system will immediately loads the
last snapshot area into its core memory, changes
its own processor state to on-1ine, and then take-
over the on-line task without having to load the
on-line programs from the system disk. During
normal operation, the same set of real-time pro-

grams are running or stationary both in the on-line
and in the standby system respectively, but the
input processing program is running in on-line
state or in standby state depending on whether the
respective processor is in which state. This
arrangement allows fast switchover action to be
taken place.

After the switchover, the standby processor
backs up its processing starting from the last
snapshot of the system which preserves all the
necessary information to start over from the last
mile-stone record. Such arrangement will guarantee
that no telegram message or character will be Tost
during the switchover transition.

The system can also be restarted using a
restart procedure LJ(RESTART) to recover all the
necessary data which have been saved in the snap-
shot area.

A Chinese Computer System for File Building

One of the requirements of ITAPS is to print
Chinese address information on the received tele-
grams to facilitate messenger's delivery. This
requirement motivated the invention of a Chinese
computer system for file building purpose. This
system uses an ordinary graphic CRT terminal
to input and display the selected Chinese characters.
This is accomplished by assigning key positions for
Chinese character roots and any Chinese character
can be defined according to the normal writing
sequence as a one-dimensional spelling sequence of
its constituent roots. Such a system can be built
in a general purpose computer system as part of
the file handling process. Besides building cable
address file with Chinese address information, the
system can be used for general purpose Chinese
information storage and retrieval purposes. The
special characteristics of the input method are
described as follows:

1. Use ordinary small CRT keyboard without
special interface,

2. The number of roots approaches theoretical
optimum value, which means minimum average key
strokes, speedy operation and high uniqueness of
the selected characters.

3. The arrangement of roots is on the one
hand according to the statistical occurent fre-
quency of roots, which makes the average operation
speed faster; and on the other hand according to
the connotational meaning of root to key-position
alphabets, thus to facilitate beginners' memorizing.

4, Spelling sequence can be defined dynami-
cally by users, thus make the selection operation
more flexible and multi-directional, for exam-
ple, normal character being selected from the
abbreviated writing sequence; multiplication of
a number and a root to denote the repetition of the
same root; subtraction of roots can be performed
for similar roots.

5. Processing program is very simple, within
2K words, and the additions of spelling sequences
and character patterns are independant of the
processing program.

6. It may also be used for English, Japanese,
Korean and other ideographic languages.

Local and Remote CRTs

Local positions are installed at the Telegraph
Operation Center to manually assist the system for
the handling of the intercepted telegrams either
having format, routing, spelling errors, or un-
identifiable name or field in the telegram header,
owing to which the telegrams cannot be properly
routed or delivered. After human intervention for
the proper correction, these intercepted telegrams
will be routed to their proper destination or be
diverted to a specified printer for further ana-
lysis.

The functions of the local CRTs are categori-
zed by pressing the different function keys. These
functions keys are built-in to each CRT in the
right hand neighboring of the normal keyboard area.
Each of them can trigger a pre-defined process in
the CRT Processing Module.

Another block of key area further right hand
side of the special function keys allows operator
to edit the telegram in a page mode. By "page"
mode, it means that the purchased CRTs have a
local buffer and the limited intelligence to allow
operator editing telegrams locally or without inter-
vening the host computer, thus leaving the host
computer with more CPU time to process other on-
Tine tasks.

The remote CRTs have limited functional capa-
bilities. The use of function keys are limited to
send out a newly-edited telegram and to log-in and
log-off.

Operational Commands and Reports

Various user's designed commands can be en-
tered at the console CRTs, local CRTs, and the
remote Teletype positions either to control or
regulate the system operation, or to obtain the
current operational status of the system. Commands
entered from console CRTs are honored by the
Executive of the Operating System while those
entered from local CRTs and the 5-unit-code TTYs
are interpreted and executed by a user's designed
command interpreter and its associated subroutines
working in the foreground environment.

The command entered from the remote TTY posi-
tions resemble those used in the network access
operation because they are relayed by the Communi-
cation Processor to the Message Switching Processor
for the proper responses. Each command response
must be returned to the respective TTY that has
issued the command. The technique used is in fact
a "packet switching" type transmission of both
command and the response. These commands can be used
to obain operational reports or retrieve telegrams.

Software Design and the Parallel Running Result

The design of the application software for
ITAPS uses the top-down and modular concepts L[4].
Each module has its pre-defined functions and the
related mudules have their interfaces. In Message
Switching Processor, there are Dispatching Module,
Input Processing Module, Message Analysis and Route
Selection Module, Output Processing Module, CRT
Processing Module, Telex Editing Module, Journaling

75

Module, and Command Processing Module. These
modules are assigned different priority level
according to the degree of urgency of each module.
The main interfaces are previded using the "admin-
nistrative block" appended to the first sector of
each telegram in the transit storage, and the
interface tables in high core common area.
Transactions are passed around in core memory
using the self-implemented queue manager. There
are two types of queue, one is the cyclic type
FIFO queue and the other is the multi-Tine multi-
priority queue for output processing module. The
same approach is also carried on in the Communica-
tion Processor in which three receiving modules
and three transmitting modules are implemented
except without using the drum transit storage as
the interface among modules, instead, the packet
buffers being used as such. The receiving modules
include Input Interrupt Handling Routing, Input
Processing Program, and SDLC Qutput Interrupt
Handling Routine. The transmitting modules include
SDLC Input Interrupt Handling Routing, Output
Processing Program, and the Qutput Interrupt
Hand1ling Routines (see Fig. 4).

The software for the communication Tines,
such as the SDLC, CRT multiplexor, low speed
multiplexor, and RS-232C multiplexor, is imple-
mented inside the Input Output System (IOS) as
Handling Routines (Handlers) which is device
dependant and user-oriented portion of programs
Tinking closely to the respective drivers.

ITAPS has passed various phases of testing
including the modular testing, integrating testing,
functional verification testing, and the stability
testing. Up to now (June 1981), the system has
been running as the parallel running with the
manual processing system for more than ten weeks.
During the testing period, the real traffic as
well as the simulated traffic are both applied to
the system. For the modular testing and the inte-
grating testing, the simulated traffic helped
prove the correctness of the normal processing
path of each module, while for the functional
verification testing, stability testing and paral-
lel running, the real traffic helped prove the
correct treatment of the abnormal cases. The
overall availability of the system within the
parallel running period is above 99.9%.

This system is one of the large scale software
development project in this country. This is one
way of achieving self-reliance in the brain-inten-
sive industry in this country.

References
L1l Philips, Message Data Switching System --
DS 714, Engineering Consideration, 1973.
[21 Rockwell International, C900/180 Message
Switching System, Product Description, 1974.
L31 Kokusai Denshin Denwa, Co. Ltd., The Telegraph
Automation System -- TAS, Mar. 1973.
[4) James Martin, Programming Real-time Computer

System, Prentice-Hall, Inc. Englewood Cliffs,
New Jersey, 1973.

Input Eines

Output<4y Lines

—

Lipe Switches

N —
\
. ¥

J

Processor (CP)
GA-16/440 MPP 64 KW

SDLC

Link

GA-16/440 MMS 112 KW

1319

Message Switching

LINE MONITOR | AND PATCH PANEL
<% | R » =S
TLXSIH emote >~
LXS1 ﬁ : CRTs for Graphic H TLXSTH
. : | Branch Printers for
Telex Signalling | Offices Chinese Addr. Telex Signalling
Interface Hard- | $ __I I“$ Interface Hard-
ware Z-80 AP 1 K S ware Z-80 MP
I 1535 '
ﬁ : Multiplexor II
\/7 I l <$}
1595 |___;7/k\\ 1595
Multiplexors ¢ ABTU ¥ Multiplexors
Local CRTs for
Communication Manual Assistance Communication

Processor (CP)

1535 GA-16/440 MPP 6AKW
Multiplexor
Automatic
////\\ X 2| Bus SbLC
A Y
o ABTU Trqnsfer Link
Unit

Message Switching

Processor (MP)

SDLC Link X 2

Processor (MP)

Magtape
X 4

Disk Formatter

Long-term
Journaling
& Ticket- 80

Bytes 80M | Bytes

Diin(ng» .' —

Storage
Module

(«

System Short-term
Disk & Journaling
Files

L_____"““--—-.
—

GA-16/440 MMS 112 KW

ABTU £
2

Transit
Storage & Snapshot

Fig. 1. Hardware Cpnfiguration of the ITAPS.

76

I
I

Magtape
Disk Formatter X 4
Long-term
Journaling
80 M| Bytes 80 M |Bytes & Ticket-
ing
DSM DSM Disk
Storage
Module
Short-term System
Journaling Disk &
Files

Down Up
Link International International Link
Telegraph Telegraph
. Incoming __| Hot Standby Outgoing .
Terrestrial Terrestrial
Trunks on-1i Trunk
Link \ n-line Link
/ - X32 X32 >
Earth Earth Station
Station ITAPS
- Taipei
::f\<——————————9 T§16X < >|Domestic Suburb
Telex Sw1tch- ‘Y16 X 4 |Message Tai
Subscribers | "9 —> Switch- -
System International ing Sys. Province
X 10000
M Ordinary & Urgent
-
Branch Offices X 12 Telegrams A
—/ Letter
—J
Full Address X 2 T
ASR Automatic F
TTVs Branch Office TTYs "X 8 sve Tig x2 = t—
I . A RO
Operation Rooms Intercept Tlg. X 2 (IN)Jtif:J TTYs
Processing i
Intercept \?:::3
Tigm X2(OUTY[T
Telex Intercept X 8 Intercept Tlgm X 4 o -
@ : (Telex) 7l X
[.] J Incoming Intercept X 8 System Xq MsG * 2 :_S>l
.; Service Positions Telex Delivery Report {?—'
X 2
Manual Assistance _J
CRT Positions

Fig. 2 Functional Block Diagram of ITAPS.

Lo Ry T /N 35 25

B OE— 183
A'Fr-E)LT:::f l

ZCZC DOO22 GCNO31
CNTP CO DPHX 010
MUENCHEN TELEFHONED FROM PLANEGG 10 14 1322

SHIHFONG
TAIPEL

RYL 7/4/80 ELUE COLOR O. K. QUANTITY AS USUAL ORDER

ROESCHIMP

COoL 7/4/86 BLUE

77

Fig. 3. Chinese Address Information
Is Automatically Printed on the
Received International Telegrams

to Facilitate Messenger's Delivery.

Communication Processor (CP)

Input

Output

Dispatch-
ing

Module

Switch-
Over

Processing
M.

Module

Processin

ETPUt Processing Processing | Output
nes Program Program Lines
=@ controL 11
/SDLC Input C SDLC Output)
\Unterupt Routine Interupt Routine/
Message
Telex Q6
Switching nggnﬂ—
Processor Editing ’
Module
(vp) @

Process1ng
Module

Processing
Module

CONTROL IV

Fig. 4.

\
!

To Local CRT

Software Configuration of ITAPS.

78

MULTITERMINAL RELIABILITY ANALYSIS
OF DISTRIBUTED PROCESSING SYSTEMS*

Aksenti Grnarov and Mario Gerla
Computer Science Department
University of California
Los Angeles, California 90024

Abstract -- Distributed processing system reliability has been
measured in the past in terms of point-to-point terminal reliabil-
ity, or more recently, in terms of the ‘survivability index’ or
‘team behavior.” While the first approach leads to oversimplified
models, the latter approaches imply excessive computational
effort. A novel, computationally more attractive measure based
on multiterminal reliability is proposed. The measure is the pro-
bability of true value of a Boolean expression whose terms denote
the existence of connections between subsets of resources. The
expression is relatively straightforward to derive, and reflects
fairly accurately the survivability of distributed systems with
redundant processor, data base and communications resources.
Moreover, the probability of such Boolean expression to be true
can be computed using a very efficient algorithm. This paper
describes the algorithm in some detail, and applies it to the relia-
bility evaluation of a simple distributed file system.

1. Introduction

Distributed processing has become increasingly popular in recent
years, mainly because of the advancement in computer network
technology and the falling cost of hardware, particularly of
microprocessors. Intrinsic advantages of distributed processing
include high throughput due to parallel operation, modular growth,
fault resilience and load leveling.

In a distributed processing system (DPS), computing facilities and
communications subnetwork are interdependent of each other.
Therefore, a failure of a particular DPS computer site will have a
negative effect on the overall DP system. Similarly, failure of the
communication subsystem will lead to overall performance degrada-
tion.

Recently, considerable attempts have been made to systematically
investigate the survival attributes of distributed processing systems
which are subject to failures or losses of processing or communica-
tion components. Two main approaches to DPS survivability
evaluation have emerged:

a) In [MER 80] the term survivability index is used as a perfor-
mance parameter of a DDP (distributed data processing) system.
An objective function is defined to provide a measure of survivabil-
ity in terms of node and link failure probabilities, data file distribu-
tion, and weighting factors for network nodes and computer pro-
grams. This objective function allows the comparison of alternative
data file distributions and network architectures. Criteria can be
included such as the addition or deletion of communication links,
allocation of programs to nodes, duplication of data sets, etc.

79

0190-3918/81/0000/0079$00.75 © 1981 IEEE

Constraints can be introduced which limit the number and size of
files and programs that can be stored at a node. The main disad-
vantage of the survivability index is its computational complexity,
which makes it practical only to DDP systems with, say, less than
20 nodes or links.

b) The second approach is a ‘team’ approach in which the overall
system performance is related to both the operability and the com-
munication connectivity of its ‘member’ components [HIL 80].
The performance index, defined axiomatically on the connectivity
state space of the graph, captures the essentials of the ‘team effect’
and allows survivability cost/performance trade-offs of alternate
network architectures. The basic advantage of the team approach is
that performance degradation beyond the connected/disconnected
state is measured. One disadvantage of the approach is that of being
restricted to the homogeneous case and of ignoring other important
details of real DPS’s.

In this paper we propose a novel measure of DPS survivability,
namely multiterminal reliability. We recall that in a communications
network terminal reliability relative to node pair (/) is the proba-
bility that node / is connected to node j. We extend this notion to
DPS’s by defining the multiterminal reliability as follows:

Definition 1. The multiterminal reliability of a DPS consisting of a
set of nodes (processors) ¥=1,2,...,N is defined as
PS = Prob Cllv‘,l @1 CIZaJZ @2 ek——l Clk\']k (1)

where:
11,J1,13,J9,....1;.,J) are subsets of V

C,j’J/_ denotes the existence of connections between all the
nodes of the subset 1; and all the nodes of subset J;

and
®; has a meaning of OR or AND.

The choice of the subsets 1,Jy,...,/;,J; as well as the interpretation
of the operator @; (j =1, -+ ,K~1) depend on the event (task)
whose survivability is being evaluated. Priority between operators
is determined by parentheses in the same way as in standard logical
expressions. '

* This research was supported by the Office of Naval Research
under contract N00014-79-C-0866. Aksenti Grnarov is currently
on leave from the University of Skopje, Yugoslavia.

As an example, let us assume that the successful completion of a
given task requires node A to communicate with node B or node C;
and node D and E to communicate with node F and G. The mul-
titerminal reliability of such task is given by

Pm = Prob (C]la‘ll OR CIl’Ji;) AND CI}J}
where]1 = {A}, .]1 ={B}, .12 = {C}, [3 = {D,E} and .13 = {F,G}

The general definition of multiterminal reliability can be specialized
to characterize the survivability of the following systems:

(A) Distributed Data Base System: For given link and computer
center reliabilities, determine the reliability of a specific file alloca-
tion including redundant copies.

(B) Teamwork: Given link and processing node reliability, deter-
mine what distribution of the members will result in highest proba-
bility of a connection.

(C) Distributed Data Processing System: Given link and processing
node reliability and (redundant) distribution of programs and data,
determine the probability of successfully completing a specific appli-
cation.

(D) Computer-Communication Network: Given link and node relia-
bility, determine the probability of the network becoming parti-
tioned.

Note that in all the above applications, system (or application) sur-
vivability is best characterized by some multiterminal reliability
measure. In fact, terminal reliabilities alone could not be used to
compute systems survivability because of the dependencies existing
between the various events.

In this paper, an efficient algorithm for multiterminal reliability
analysis is presented. The algorithm can be applied to oriented and
non-oriented graph models of DPS’s and can produce numerical
results as well as symbolic reliability expressions.

The paper is organized in five sections. In Section 2, the applica-
tion of Boolean algebra to multiterminal reliability is considered.
Derivation of the algorithm is presented in Section 3. An example
for determination of the multiterminal reliability is given in Section
4 . Some comments and concluding remarks are presented in the
final section.

2. Boolean Algebra Approach

For reliability analysis a DPS is usually represented by a probabilis-
tic graph G(V,E) where V=1,2,..,N and E = a; a,,..,ap are
respectively the set of nodes (representing the processing nodes)
and the set of directed or undirected arcs representing the com-
munication links. To every DPS component i (processing node or
link), a stochastic variable y; can be associated. The weight
assigned to the i" component represents the component reliability

pi=Pr(y;=1

i.e., the probability of the existence of the i™" component. 'Vari-
ables are supposed to be statistically independent.

There are two basic approaches for compqting terminal reliability
[FRA 74]. The first approach considers elementary events and the
terminal reliability of a connection from source s to termination ¢,
by definition, is given by
Py = 2 P,
F(e)=1
where P, is probability which corresponds to the event e and
F(e)=1 means that the event is favorable, i.e., it includes a path

80

from s to ¢.

The second approach considers larger events corresponding to the
simple paths between terminal nodes. These events however are
no longer disjoint and the terminal reliability is given by the proba-
bility of the union of the events corresponding to the existence of
the paths.

The complexity of these approaches is caused in the first case by
the large number of elementary events (of the order 2” where n =
the number of elements which can fail) and in the second case by
the difficult computation of the sum of the probabilities of nondis-
joint events (the number of joint probabilities to be computed is of
the order 2" where m = the number of paths between node pairs).

Fratta and Montanari [FRA 74] chose to represent the connection
between nodes s and ¢ by a Boolean function. This Boolean func-
tion is defined in such a way that a value of 0 or 1 is associated
with each event according to whether or not it is favorable (i.e., the
connection Cs,, exists). Since the Boolean function corresponding
to the connection C;, is unique, this means that the connection
C;,; can be completely defined by its Boolean function. Represent-
ing a connection by its Boolean function, the problem of terminal
reliability can be stated as follows: Given a Boolean function Fgr,
find a minimal covering consisting of nonoverlapping implicants.
Once the desired Boolean form is obtained, the arithmetic expres-
sion giving the terminal reliability is computed by means of the fol-
lowing correspondences i

X; = pi

;=g =1-p

Boolean sum — arithmetic sum
Boolean product — arithmetic product

A drawback of the algorithms based on the manipulation of impli-
cants is the iterative application of certain Boolean operations and
the fact that the Boolean function changes at every step (and may
be clumsy). The Boolean function may be simplified using one of
the following techniques: absorption law, prime implicant form,
irredundant form or minimal form. Any one of these procedures
however requires a considerable computational effort. Therefore, it
can be concluded that these algorithms are applicable only to net-
works of small size.

Recently, efficient algorithms based on the application of Boolean
algebra to terminal reliability computation and symbolic reliability
analysis were proposed in [GRN 79] and [GRN 80a] respectively.
The algorithms are based on the representation of simple paths by
‘cubes’ (instead of prime implicants), on the definition of a new
operation for manipulating the cubes, and on the interpretation of
resulting cubes in such a way that Boolean and arithmetic reduction
are combined.

The proposed algorithm for multiterminal reliability analysis is
based on the derivation of a Boolean function for multiterminal
connectivity and the extension of the algorithm presented in [GRN
80b] to handle both multiterminal reliability computation and sym-
bolic multiterminal reliability analysis.

3. Derivation of the Algorithm

Before presenting the algorithm for multiterminal reliability
analysis, it is useful to recall the definition of the path identifier
from [GRN 79]:

Definition 2. The path identifier IP, for the path - « is defined as a
string of n binary variables

IP, = X{Xp...X;... X,

where
x,=1 if the i" component of the DPS is included
in the path

X; = X otherwise
and n is the number of DPS components that can fail, i.e:

n = N in the case of perfect links and imperfect nodes

n = E in the case of perfect nodes and imperfect links

n = N+E in the case of imperfect links and nodes.
As an example, let us consider a four node, five link DPS given in
Figure 1, in which nodes are perfectly reliable and links are subject

to failures. The sets of path identifiers for the connections Cs 4
and Cg 7 are given in Table 1 and Table 2 respectively.

TABLE 1
PATH 1P
S xA Ixxxx
S x3B x5A xx1x1
S x3B x4T %A | x111x
TABLE 2
PATH 1P
S x;A x,T 11xxx
S x;A xsB x4T | 1xx11
S x3B x4T xx11x
S x3B x5A x,T | x11x1

Figure 1. Example of DPS

Boolean functions corresponding to Cs 4 and Cs 1 given by their
Karnaugh maps, are shown in Figure 2.

Instead of the cumbersome determination of elementary (or com-
posite) events which correspond to a multiterminal connection, the
multiterminal reliability can be determined from the Boolean func-
tion representing the connection. Moreover, the corresponding
Boolean function can be obtained from path identifiers (Boolean

81

x3xg 00 01 11 10 X3 00 01 11 10
oo | * |1]1] 0o | | 1]
oo | | 1]1] o | | 1|
nl Ju] || mfr]|
w| | Ju]] w1
x5 =0 xs =1
Fs,a
X1Xp XX

x4 00 01 11 10 X3 00 01 11 10

of | vl | oof [Jr] |

ool [[v] b T Jufu]

nfrfr o] ool

of [vl ool Toje] |
x5 =0 X5 =1

Figure 2. Karnaugh Map Representation of the Connections
CS_ A and CS,T

functions) representing terminal connections. For example, the
Boolean function corresponding to the multiterminal connection
Cpor =Cs.4 OR Cs r
can be obtained as
Fror =Fsa U Fs 1

where U is the logical operation union. Karnaugh map of F,, is

shown in Figure 3.

nor

X)Xz X1X2
x3x4 00 Ol 11 10 x3X4 00 01 11 10

o[T FT]
|

[1
o | |

Vo
n Tou EI Y 1y
o TR o
X5 =‘0—- x5 =1
EY.H

Figure 3. Karnaugh map representation of the connection
Cimor =Cs A OR Cg 1

Covering the Karnaugh map with disjoint cubes, we can obtain F,,
as

Fior= X1 T X1X3Xs + X|X3X4Xs

i.e., multiterminal reliability is given by

Por = P14 1p3ps + a1p3p4ds

Analogously, the Boolean function corresponding to the multitermi-
nal connection
Conand = CS,A AND CS,T

can be obtained as

Frnana — Fs 4 A Fg 1

where ‘A is the logical operation intersection.

According to the Karnaugh map representation (Figure 4), F, ., is
given by

X1Xp X1%2
X3X¢ 00 01 11 10 x3x4 00 01 11 10
oo | |1 | oo iy
o [Jii 1 ol [_t1fi]
w RO v ECIET
10 i1 o0 (1A,
x5 =0 » x5 =1
FS,I

Figure 4. Karnaugh Map Representation of the connection
Cmand = Cs,a AND Cs,t

the following set of cubes
IP = (11xxx,xx111,1xx11,x11x1,x111x,1x11x)

Applying the algorithm REL [GRN 80b] we obtain that the mul-
titerminal reliability is given by

Prana = P12 + p3pips(1—-p1p))

+ P1PaPsq293 + 4102039405 T 4102P3P4

Since the logical operations union and intersection satisfy the com-
mutative and associative laws, previous results can be generalized
as follows.

1 Multiterminal connection of OR type Cs,T
(T=1y, ty, - - -, ;) is equal to
Cor= CS’,l OR CS’,2 OR --- OR Cs’,k

and the corresponding Boolean function FS'T can be
obtained as
F, r=F

s, 5,4

U F,

sy Y

U F,

S, 1

2) Multiterminal ~ connection of AND type Csp
(T =A{t,t5, . .., 1)) is equal to

Cy.r = Cy,, AND C; , AND - - - AND C

Syl
and the cdrresponding Boolean function F; r can be
obtained as

For=F AF A AF

5.t LN St

In the case when all nodes from the set S have connections of the
same type with all nodes from the set T, multiterminal connection
can be written as Cg p.

4. Determination of Fg r

The determination of Fg r by Boolean expression manipulation or’

by determination of elementary events is a cumbersome and time
consuming task. Hence, these methods are limited to DPS’s that
are very small in size.

However, since path identifiers can be interpreted as cubes, the
Boolean function Fg r can be more efficiently obtained by manipu-
lating path identifiers. In the sequel we present the OR-Algorithm

82

and the AND-Algorithm for the determination of Fy 1 of type OR
and AND respectively. Both algorithms are based on the applica-
tion of the intersection operation [MIL 65]. Since the path
identifiers have only symbols x and 1 as components, the intersec-
tion operation can be modified as follows:

Definition 3: The intersection operation between two cubes, say
c"=ajay---a; - a,and ¢’ =byb, - b; - b,,is defined as

" At =1layAb),(ayAby,....(a;Ab;, ..., (a, Aby]

where the coordinate A operation is given by

A 1 x
1 1 1
X 1 x

It can be seen that the intersection operation between two cubes
¢" and ¢® produce a cube which is common to both ¢” and ¢®. If
¢” A ¢% = ¢" this means that the cube ¢” is completely included in
the cube ¢’. The modified intersection operation produces a cube
which has only symbols x and 1 as coordinates, so the modified
intersection operation can be applied again and again. Also, the pre-
vious fact allows us to apply the REL-Algorithm on the set of cubes
obtained by the application of the modified intersection operation.

Let us suppose that the cubes corresponding to . connections
Cs, 1, and Cy p, are stored in lists Ly and L; of length & and &,

respectivg:ly. Let c/ denote the j th element of the list L,
The OR-Algorithm for the computation of Fg follows:
OR-Algorithm

STEP 1.

for i from 1 to ky do
for j from 1 to k, do

begin
c=c| Acl;ifc=c| then
begin)
delete ¢ from list L, ;
end
else if ¢ = ¢f then delete ¢f from list L, ;
end
STEP 2.
Store undeleted elements from the lists L and L, as new list
Ly
END

As an example, the OR - algorithm is applied to the detefmination
of Fgp=F;, VU F;, for the DPS given in Figure 1. The lists
Lyand L, are

! lxxxx cy 11xxx
e xxlxl c? 1xx11
3 xllix 023 - xxllx

ed xllxl

STEP I:
STEP 1: ¢f A ¢} =c] delete ¢
c,l A 022=c22 delete 022

cll A c23¢cll¢cz3'
cll A cf?fcll#cf
c12 A cg?fcf;écg

clz A =cf delete ¢}
¢t A c23=c13 delete ¢}
STEP 2:
L,
cll Ixxxx
e xxlxt
¢f xxllx

It can be seen that the OR - Algorithm produces a list with minimal
number of elements which are cubes of the largest possible size.
The same result could have been obtained from the identification
of disjoint cubes directly in Fig. 3. Our method allows for the
efficient generation of all disjoint cubes necessary for reliability
analysis [GRN 79]. Next, we introduce the AND algorithm.

AND-Algorithm

STEP 1.
for i from 1 to ky do
begin
for j from 1 to k, do
clep =ci Ach;
for k from 1 to k,-1 do
begin
m = k+1
while ¢k, #=cky A, and
m<k2 do
begin
c=chy Ay
if ¢ = ' then delete ¢/”
from list L;
m = m+1
end
if m < k, then delete X, from
list L/+2
end
end
STEP 2
Store undeleted elements from lists L, . .., Ly 1)
as a new list L
END

As an example, the AND-Algorithm is applied to the determination
of Fy v = F; , A Fy , for the DPS in Fig. 1.

83

STEP 1.

i=1

Step 1.1
cf =cf A} =1lxxx
c? =c] A} =1xxl1l

L, =

37 led =cl A 023 = Ix11x
e =cl Acf =111x1

Step 1.2

C}Ac32¢c31¢c32
c31Ac§'¢c3l¢c§’

e} Acf =c} delete cf

11xxx
L3 =lxxl1
1x11x

Step 1.1

¢} =111x1
c} = 1x111
La= ¢ =xx111

¢t =xllx1

Step 1.2

xx111
Ly= x11x1

Step 1.1

1111x
11111
x111x
x1111

Step 1.2
Ly =xl11x

STEP 2.

ci Ilxxx

7 Ixxil
§ 1xlix
ef xx111
? xlixl
§ xllix

It can be seen that the AND - Algorithm also produces a list with
minimal number of elements which are cubes of the largest possi-
ble size.)

In the general case, the Boolean function corresponding to the con-
nection Cg y where S={s; s, ...5,} and T = {11 1 ...,1,,}, can be
obtained using the multiterminal Algorithm (m @®-Algorithm)
described below:

md-Algorithm

STEP 1:

Find the path identifiers for terminal connection s; ¢; and store
them in the list Lq 5 i—1.

STEP 2:

Sort the path identifier in L; according to increasing number of
symbols 1 (i.e. increasing path length);

STEP 3:

if i € k continue. Otherwise go to step 5

STEP 4:
for j = jy ... m (jy=2if i =1, otherwise j; =1)

Step 4.1
Find the path identifiers for terminal connection s; #; and
store them in the list L,

Step 4.2
Sort the path identifiers in L, according to the increasing
number of symbols "1"

Step 4.3
Perform & -Algorithm on the lists L and L,

Step 4.4
i < i+1; go to step 2.

END

In the algorithm, ® denotes OR or AND depending on the connec-
tion type. The sorting of the lists allows faster execution of the
algorithm (starting with the largest cubes results in earlier deletion
of covered cubes, i.e., faster reduction of the lists during the execu-
tion of Step 4.3).

Based on the previous results we can propose the following algo-
rithm for multiterminal reliability analysis:

MUREL-Algorithm

STEP 1:
Derive the multiterminal connection expression
corresponding to the event which has to be analyzed.
STEP 2:
Determine the Boolean function corresponding to the
multiterminal connection by repetitive application of

84

the m @ - Algorithm.

STEP 3:
Apply the REL -Algorithm to obtain the multiterminal
reliability expression or value.

Regarding the computational complexity of the MUREL-Algorithm,
the following observations can be made:

i The © -Algorithm can be implemented using only logical
operations which generally belong to the class of the fastest
instructions in a computer system. 7

ii) The m @ -Algorithm produces a minimal set of maximal
cubes (i.e., minimal irredundant form of the Boolean fumc-
tion).

iii) The REL-Algorithm is the fastest algorithm for the deter-
mination of the reliability expression or for the reliability
computation from the set of cubes (path identifiers).

From the above considerations we conclude that the proposed algo-
rithm can be applied to DPS of significantly larger size than was
possible with other existing techniques.

In the following section, the algorithm is illustrated with an applica-
tion to a small distributed system.

5. Example of Application of the Algorithm

As an example of the application of the algorithm we compute the
survivability index for the simple DPS system shown in Figure 5
(the example is taken from [MER 80]). Assignment of files and
programs to nodes.is shown in figure 5.

NODE x,
FA: 3,5,7
PMS: PM;, PM,
45 FN3: 2,4
FNg 3,4
NODE x NODE x;
FA: 1,2 Xg FA: 4,6,7
PMS: PM;, PM, PMS: PM;, PM¢, PM;
FNge 1,2,3 " FNg: 1,5,4
FN2: 2, 3 FN6: 6, 2
FN;: 7,13
+.
- NODE x4
+
\FA: 5,3,4
PMS: PMg
FNg: 1,2, 6,7

Figure 5. Four Node DDP

FA denotes the set of files available at a given node, FN; denotes
the files needed to execute program PM; and PMS designates tine
set of programs to be executed at that node.

Let us assume that for a given application, we are interested in the
survivability of program PMj. Likewise, for another application,
we need both programs PM3 and PMg to be operational. We
separately analyze these two cases using as a measure for surviva-
bility the multiterminal reliability (probability of program execu-
tion). The two problems can be stated as follows:

Given: node and link reliability, and file and program assign-
ments to nodes.

Find: The survivability of:
1) Program PM3

2) Both programs PM; and PMy

Survivability of PM;

The survivability PM; is equal to the multiterminal reliability of
connection

Cm3=Cy4, OR Cy
where I} = {1,3} and I, = {1,4} The connections C, and C,
are equal to

C2’Il = C2,l AND C2’3

Paths and corresponding path identifiers for the connections
Cy1, Cy3and Cy 4 are shown in Figure 6.

Caa
palhs F2~1
X1 X5X) Ixx1xxx
C23
paths Fy3
X[X5XpXgX3 111x11xx
X]X5XpX7X4Xg 11x11x11
Cra
paths Fyq
X1X5X2X7X4 11X11X1X
X1X5XyXgX3XgXg4 111111x1

Figure 6. Path and Path Identifiers Representing Connections
Cz,l’c2,3) and C2‘4

Applying the AND - Algorithm on F,j and F 3, and F j and Fy 4
we obtain

Far, £y,
111x11xx 11x11x1x
11x11x11 111111x1

85

Applying the OR - algorithm on Fz,,1 and Fz,,2 we obtain
F

m3

111x11xx
11x11x1x
Applying the REL - Algorithm on F,,; we obtain

P3 = p1PP3PaPsPs T P1Papapsp7(1 — p3pe)
Assuming p; = .95V i, we have: p,3 = .85

5.2. Survivability of both PM; and PMg

The survivability of PMyg is equal to the multiterminal reliability of
connection

Cms = Cay
where I3 = {1,3}. The connection Cy j, is €qual to

C4,l3 = C4,l AND C4,3

Paths and corresponding path identifiers for the connections
C,41 and Cy 5 are shown in Figure 7.

Can
paths Fy
X4X7X1 Ixxlxxlx
X4X8X3X6X1 1X11X1X1
Cs3
paths Fy3
X4XgX3 xx11xxx1
X4X7X1X6X3 Ix11x11x

Figure 7. Paths and Path identifiers for Connections
C4,1 and C4’3

Applying the AND - Algorithm on Fy4 and Fy 3 we obtain
Fm8

IxI11xx11

I1x11x11x

Ix11x1x1

Applying the AND - Algorithm on F, 3 and F,g we obtain

m
1111111x
111111x1
11111x11

Applying the REL - Algorithm on F,, we obtain

P,, = p1P2P3PaPsPeP7 + P1P2P3PaPsPeq1P8 t+ P1P2P3P4P5q6PIPY
Assuming p;=0.95 ¥, we have: p,, = 0.778

6. Conclusion

In the paper, the multiterminal reliability is introduced as a meas-
ure of DPS survivability and the MUREL-Algorithm for multiter-
minal reliability analysis of DPS.is proposed. First, the event under
study is expressed in terms of its multiterminal connection. Then
the m & -Algorithm is used to translate the multiterminal connec-
tion into a Boolean function involving all the relevant system com-
ponents. Finally, the multiterminal reliability is obtained from the
Boolean function by application of the REL-Algorithm.

Preliminary corpputational complexity considerations show that the
MUREL-A]gonthm permits the survivability analysis of DPS of
considerably larger size than using currently available techniques.

References

[GRN 79] A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Network Reliability Computation”,
Computer Networking Symposium, Gaithersburg,
Maryland, December 1979.

[GRN 80al A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Symbolic Reliability Analysis of
Computer Communication Networks", Pacific
Telecommunications Conference, Honolulu, Hawaii,
January 1980.

[GRN 80b] A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Reliability Analysis of Computer
Communication Networks", UCLA Computer Sci-
ence Quarterly, Spring 1980.

[HIL 80] G. Hilborn, "Measures for Distributed Processing
Network Survivability, Proceedings of the 1980
National Computer Conference, May 1980.

[MER 80] R. E. Merwin, M. Mirhakak, "Derivation and use
of a survivability criterion for DDP systems”,
Proceedings of the 1980 National Computer Confer-
ence, May 1980.

[MIL 65] R. Miller, Switcﬁing Theory, Volume I: Combina-
tional Circuits, New York, Wiley, 1965.

86

OPEN QUEUEING NETWORKS WITH FINITE CAPACITY QUEUES*

A. A. Nilsson and T. Altiok
North Carolina State University
Raleigh, North Carolina 27650

Abstract -- This paper discusses the problem
of blocking in open exponential queueing networks.
It is pointed out that such networks can be viewed
as queueing network models of message-switched
data communication networks with local flow- or
congestion-control. Analysis is done by perform-
ing a node-by-node decomposition, and it is argued
that an "off-1ine" analysis can be made, where the
main problem is to analyze a single-server finite
capacity queueing system with Markovian arrivals
and a Coxian service time distribution. The
method is applied to a number of example networks
and evaluated by comparing the results obtained
with those results obtained through exact analysis,
simulation, or other approximate methods. We find
that the method provides a good approximation
procedure for obtaining system performance measures
such as blocking-probabilities, throughput rates,
etc.

Introduction

An open queueing network is a collection of
nodes or servers that offer some form of service
to customers in the network. A customer may enter
the network at some node, receive service, and
then immediately go to another node for additional
service or he may leave the network. At any given
time the number of customers in the network is a
stochastic variable. In this paper we concentrate
on exponential queueing networks where at any time
the number of customers in a node may not exceed a
certain number. This implies that customers
currently not in that node and who want to go to
that node are prohibited from doing so and will be
held in their current nodes until the congestion
is resolved. The interest in such a queueing net-
work model was generated by an interest in gaining
a better knowledge with regard to the influence of
local flow control in a message- or packet-switched
data communication network. Therefore, we prefer
to present the detailed queueing network model
thrﬁugh the terminology of data communication net-
works.

Flow control or congestion control in data
communication networks are protocols that regulate
the traffic flow input to the network or a switch
node. The reason for introducing such control
mechanisms is to try to minimize the impact of
possible congestion and overflow due to the conten-
tion of a smaller number of resources by a large
number of users [GERL 80]. Often flow control
strategies are characterized as global control and
Tocal control. The global control refers to a

* This work was supported by National Science
foundation Grant No. ECS 77-24110.

0190-3918/81/0000/0087$00.75 © 1981 IEEE

control of the number of messages currently out-
standing in the network between end users. The
Tocal control refers to a 1imit placed upon the
number of messages currently residing in one node
of the network. The impact of global flow control
is fairly well understood, and there exists a
number of excellent publications dealing with this
subject, see the references in [GERL 80]. The
local control strategy is much more difficult to
analyze and very few results can be found in the
existing Titerature. Some very useful results can
however be found in [PENN 75]. We intend to
present an approximate method that allows us to
better understand the impact of a local flow
control mechanism. For simplicity we will assume
a network operating with a fixed routing algo-
rithm. Consequently, it is possible to identify
a number of fixed source-destination paths in the
network. We will analyze a path consisting of M
nodes that the messages have to pass through from
the source to the destination. We will assume
that the local control allows a maximum number Ni
of messages in node i of our path.

The local control implies that a message
arriving to the head of the queue in node i when
there are N1+1 messages in node i+1, i.e., node

i+l is filled to its capacity, is blocked and has
to wait until one of the messages in node i+1 is
transmitted. When the blocking is resolved, the
message can be transmitted immediately. In order
to evaluate such a scheme, we need to analyze a
queueing network model consisting of M finite
capacity queues in tandem.

The tandem network of finite capacity queues
is extremely difficult to analyze except for
certain trivial cases. It is however always
possible to use a numerical procedure in order to
find interesting quantities. This is accomplished
by generating a Markovian system possibly by
approximating the arrival process and service
process by Coxian processes [KLEI 75]. A Coxian
arrival process is a stochastic process where the
interarrival time distribution is Coxian and
successive interarrival times are independent.

The numerical method has certain advantages,
but it very quickly becomes impractical if the
number of states in the Markov chain is large.

A purely analytical approach is very diffi-
cult again due to the fact that the dimensionality
of the state-space is often too large.

Consequently, an approximate method that
allows us to obtain almost accurate results for
the steady-state probabilities and associated
quantities such as network throughput and message
delay seems to be a viable alternative,

Approximate analyses of exponential queueing
networks of the type we are interested in have
appeared in the existing literature. The classi-
cal paper by Hunt [HUNT 56] provides the first
introduction to this difficult problem. More
recent papers are those by Hillier, et. al.,

[HILL 67] that concentrates on finding the network
throughput, and the paper by Takahashi, et. al.,
[TAKA 80] in which an approximative method based
upon an M/M/1 queueing model with adjusted arrival
rates and effective service rates is given. 1In
the next section we will present a method that we
believe and also show to be better and more effec-
tive than other existing methods.

Approximate Analysis

Our queueing model of the Togical link with
Tocal control is a tandem network with finite
capacity queues. The service time distribution in
the i:th node is exponential with parameter 3 and

the arrival process to the queueing network is
Poissonian with rate A. The capacity in the i:th
node is Ni messages; included in this is the

message currently under transmission if any and
the messages waiting to be transmitted. We also
assume that messages arriving to node 1 when the
node is filled to its capacity are lost from the
system and the last node, node M, cannot have any
blocked messages.

Let ne = the number of messages in node k and
define a = P{nk = Nk} as the "blocking" proba-
bility for the k:th node. Clearly if a is known,

the total throughput for the tandem Tink is
A{T - a]), since we do not allow messages to be

lost or destroyed once they have been given access
to the tandem link. This being the case, it
follows that the throughput for each finite queue
in the tandem is A(1 - a]).

The idea behind our approximation is to
decouple the tandem network into M individual
queues with arrival rates and service times given
such that the analyses of the individual queues,
an off-line analysis, will give relatively accu-
rate results for the total queueing model. The
approach we follow is to define a new service time
distribution and an effective arrival rate.

The service time distribution for the i:th
node is found by observing that as long as the
following node is not filled to capacity the
service time is exponential with parameter My If

the i+1:st node is filled to capacity, the effec-
tive service time of the message at the head of
the queue in node i is taken to be the sum of two
independent exponential random variables with rates
Hi4] and M respectively. The probability for the

Tatter event is Ai47- The service time distribu-

tion can thus be represented as a two-stage Coxian
distribution, see Figure 1.

1.5

Figure 1: Service Mechanism for the i:th Node

In the above service time representation we
have ignored the cases where subsequent nodes,.
i.e., nodes i+2, i+3, also are filled to capacity.

The arrival rate to the i:th node in the off-
line analysis is set to

M1 -ap) /(0 -ay) . (1

The i:th node is a finite capacity single-seyver
queueing system and according to our assumptions
a fraction 1 - a; of the arriving messages will

be served by this queue. By using the arrival

rate as defined in (1) we ensure that the through-
put obtained by the off-line analysis of the node
is the correct one, namely A(1 - a]). We approxi-

mate the arrival process to the node with a
Poisson process with the correct arrival rate.
Each off-1line single-server queue is now analyzed
as an M/C0X2/1 finite capacity queue.

An M/COXK/1 finite capacity queue can be
analyzed by defining a Markov chain [MARI 80] with
a state-space given by the number of customers, n,
in the queue and the service stage j in which the
customer in service, if any, is currently
residing. The steady-state probabiiity of this
event is denoted by p(n,j) and the following
balance equation can easily be written down.

K K
I (=ryduy p(nyg) =2 1 pln-1.5) (2)
3= 3=
where Y is the exponential service rate in the
j:th service stage, and r; the Coxian branching
probability. K is the number of stages in the
Coxian distribution.

The conditional throughput of an M/COX-K/1
finite capacity system can be expressed as
[MARI 80] K

JZ](] rj)“j p(naJ)
v(n) = (3)
p(n)

where

K
p(n) = } p(n,J) (4)
j=1

provided that n # 0. Using (3) the balance equa-
tion can be written as

v(n)p(n) = xp(n-1) . (5)
For a two-stage Coxian distribution the condi-

tional throughput v(n) can be determined
recursively by the following formulas [MARI 80]:

A U](]'r1)+U]U2

v(n) = <n<N (6)
)\+u-l +u2-v(n-])
oy = —12 o ()
U]+UZ'V(N’])
and
1-
sy =l

Mugtriy
where N is the system capacity. Using (6), (7),
and (8) we easily find p(n).

In our off-line analysis every node except
the Tast node is modelled as an M/COX-2/1 finite
capacity queue. The last node is modelled as an
M/M/1 finite capacity queue. This last queue is
easily analyzed, and we find that

- piny =) = 2(1ze) (9)
am MT M Ny 1
1-p
where
A(]-a])
T "

The blocking probabilities Aps Aps +ees Ay

are not known but can be computed iteratively by
using the following observation. If I is

known, a; can be computed, for i = M-1, M-2, ...,T.

ay is by our construction a function of a and by
choosing an initial value for ay the blocking

probabilities can be computed iteratively to any
desired accuracy.

Numerical Examples

In this section we present numerical examples
in which we compare the results by the approximate
method to exact results if such are available or
to other approximate methods or to results
obtained by simulation.

In the first simple example we consider a
tandem network consisting of two exponential
servers each with the same service rate u and each
with the same finite capacity Ni =1, Figure 2.

The exact results for the blocking probabilities
are easily obtained by solving the Markov chain
problem that can be formulated. In Table I we
compare the exact and approximate blocking proba-
bilities for different values of the ratio A/p.

——— L)
N, =1 N,=1
1 2
Figure 2: Network For Example 1

We note that the blocking probabilities in
node 1 are consistently overestimated and the
blocking probabilities in node 2 underestimated.
Subsequent examples will show that this is always
the case. The reason for this behavior is that we
approximate the arrival process to the nodes with
a Poisson process. This is not a serious problem,
since it implies that the approximative method
gives a lower bound for the network throughput.

Table I: Comparison of the Exact and Approximate
Results for the Blocking Probabilities
in Example 1
A u P(n1=1) P(n2=1)
Exact | Approximate | Exact | Approximate
0.2 {0.178 0.189 0.164 0.162
0.3 {0.251 0.269 0.225 0.220
0.4 |0.314 0.336 0.275 0.266
0.5 | 0.369 0.39% 0.316 0.303
0.6 |0.416 0.446 0.350 0.334
0.7 |0.458 0.488 0.380 0.359
0.8 |0.49% 0.525 0.405 0.380
0.9 | 0.527 0.557 0.426 0.399

In our second example we investigate a three-
node tandem queue where the first server is
always kept busy, i.e., an overload situation.
Obviously of interest here is to find the blocking
probabilities of the second and third queue. In
order to be able to make a comparison between
exact results obtained from a Markovian analysis
and the approximate method, we again select a
fairly simple system with node capacities equal
to one message, Figure 3.

M ¥2 3
—J
N,=1 N,=1
2 3
Figure 3: Tandem Network For Example 2

In Table II we show how the exact and approximate
methods compare for different values of Hys Hos
and 3.

Table II: Comparison of the Exact and Approximate

Results for Blocking Probabilities in

Example 2
Parameters
Blocking
My Hp Mg Probabilities | Exact | Approximate
1.1 1.2 1.3 P(ny=1) 0.754 0.776
P(n3=1) 0.517 0.494
1.2 1.4 1.6 P(n,=1) | 0.723 0.735
P(n3=1) 0.484 0.460
1.3 1.6 1.9 P(n2=1) 0.697 0.704
P(n3=]) 0.458 0.435

With minor modifications the approximate
method can also be used in a network with random
routing. In order to test the robustness of our
method, we have used it on a simple sample net-
work, see Figure 4.

\ g a3 3
—O—
12
Un
Figure 4: Three-node Network for Example 3

After completion of service at node 1, a
message is routed to node 2 with probability o

independent of the current state of the network
and with probability %3 to node 3, (a]2+a]3=1).

The reason for choosing this network is that
it was used in [TAKA 80] to illustrate another
approximate method for analyzing queueing networks
with blocking. In Table III we compare the
results for the blocking probability at node 1
obtained by an exact Markovian analysis, the
approximate analysis due to Takahashi, et. al.,
and the method presented in this paper.

Our fourth and final example brings us to a
data communication network with local control and
also external traffic imposed on the tandem 1ink.
In order to be able to compare our results with
others we choose exactly the same configuration
as the one chosen in [PENN 75]. We assume
accordingly that the external traffic is only
allowed to use one server in the tandem network
and then leave the tandem, see Figure 5

M) A3

M A2 A3
Figure 5: Queueing Network Model of a Path
According to the Model Used in
[PENN 75]

We use a similar approach as in [PENN 75] to
account for the external traffic. We do however
use our method for computing the blocking proba-
bilities and the loading factor. The loading
factor is by definition in [PENN 75] the frac-
tional increase in queueing time suffered by
external messages due to the presence of 1ink

Table III: Comparison Between Exact and Approximate Methods for Computing the
Blocking Probability (PB]) at node 1 (a12 =03 = 0.5)
Arrival Service Takahashi Our
Rates Rates Capacities Exact Approximate Method
1.0 1.011.1 1.2 1 1 1 0.560 0.587 0.566
1.0 1.011.3 1.6 | 1 1 1 0.537 0.563 0.543
1.0 1.0{1.5 (2.0 1 1 1 0.525 0.549 0.530
1.0 1.0]1.7 |2.4 1 1 1 0.517 0.540 0.522
1.0 1.012.0 (3.0 1 1 1 0.511 0.531 -0.514

90

messages averaged over all external messages. The
effect of local control as a function of the node
capacities can be shown by plotting the loading
factor as a function of blocking probability as in
Figure 9, in [PENN 75]. We show in Figure 6 the
lToading versus blocking probability. If we had
superimposed the curve presented in [PENN 75] in
our diagram, the result would have been an almost
overlap. Due to the fact that we do not have
access to simulation data for this example, we
cannot make a judgement about how accurate the
method is. The previous examples have however
shown that the method presented in this paper is
more accurate than other approximate methods.

Conclusion

We have presented an approximate method for
the analysis of open exponential queueing networks
with finite capacity. It has been demonstrated
through several examples that the method produces
results that are quite accurate. In particular
we showed that the impact of local flow control in
message-switched data communication networks can
be analyzed by this method. We have in this paper
constrained ourselves to open exponential queueing
networks. The results obtained are certainly use-
ful, but we would 1ike to be able to extend them
to more general networks. This is possible as
long as the arrival processes can be modelled with

LOADING
N],NZ,N3 = (5,5,5)

].0—- (4,4,4)

(3,3,3)

0.5 —

Coxian interarrival times and the service time
distribution with a Coxian distribution. Note
that the Poisson arrival process is a special case
of a renewal input process with Coxian inter-
arrival time distribution. The resulting "off-
line" queueing system can then be modelled as a
finite capacity queue with Coxian input and out-
put. Further work in this area is currently being
carried out. The main obstacle, however, is to
check the accuracy of the result, since no exact
results seem to be available and simulation
results are scarce.

References

GERL 80 Gerla, M. and L. Kleinrock, "Flow Con-
trol: A Comparative Survey," IEEE Trans.
on Comm., COM-28, 1980, pp. 553-574.
HILL 67 Hillier, F. S. and R. W. Boling, "Finite
Queues in Series With Exponential or
Erlang Service Times - A Numerical
Approach," Oper. Res., Vol. 15, 1967,
pp. 286-303.

HUNT 56 Hunt, G. C., "Sequential Arrays of Wait-
ing Lines," Oper. Res., Vol. 4, 1956,
pp. 674, 683.

KLEI 75 Kleinrock, L., Queueing Systems, Vol. I:
Theory, Wiley-Interscience (New York),
1975.

MARI 80 Marie, R., "Calculating Equilibrium
Probabilities for A(n)/Ck/l/N Queues,"
Proc. of Performance 80, International
Symposium on Computer Performance
Modelling, Measurement and Evaluation,

May 28-30, 1980, pp. 117-125.

PENN 75 Pennotti, M. C. and M. Schwartz, "Con-
gestion Control in Store and Forward
Tandem Links," IEEE Trans. on Comm.,

COM-23, 1975, pp. 1434-1443.

TAKA 80 Takahashi, Y., H. Miyahara, and T.
Hasegawa, "An Approximation Method for
Open Restricted Queueing Networks," Oper.

Res., Vol. 28, 1980, pp. 594-602.

(1,1,1)

0.1 0.2 0.3 0.4

' et
0.5

Figure 6: Local Control: Loading Versus Blocking Probability

91

BLOCK TRIDIAGONAL SYSTEM SOLUTION ON RECONFIGU?ABLE ARRAY COMPUTERS

RAJAN N. KAPUR
DEPT. OF ELECT. ENGG.

JAMES C. BROWNE

DEPT. OF COMPUT. SCI.,

THE UNIVERSITY OF TEXAS AT AUSTIN,
TEXAS, 78712.

ABSTRACT

Reconfigurable array computer architectures
give the application designer power to define an
execution architecture or architectures and an
interaction geometry appropriate to the
computational architecture of the algorithm under
consideration. Accurate estimation of execution
times for reconfigurable architectures requires
determination of appropriate computational
structures for the algorithm and analysis of the
cost of interprocess data movement,
synchronization delays and reconfiguration faults
as well as actual execution time for the algorithm
in the architecture selected. This paper reports
such a formulation of an algorithm whose
instruction count has previously been well
characterized, even/odd elimination of block
tridiagonal linear systems. The algorithm
naturally decomposes into three steps each of
which requires a different computational structure
and displays a different natural degree of
parallelism. It gives a speed up 1linear in the
number of processors when degrees of parallelism
appropriate to each step are employed. Data
movement , sSynchronization and reconfiguration
fault costs are found to be about 10% of the
computation costs.

1.0 INTRODUCTION

The practical formulation of parallel
algorithms is 1limited by the interconnection
geometry of the multi-processor architecture which
is to host the computation. Any fixed geometry of
processor interconnection 1limits the class of
algorithms which can be implemented. A full cross
bar network removes all restrictions on algorithm
formulation, but is prohibitively expensive for
even a moderately 1large number of processing
elements. A common memory architecture will
suffer performance degradation from interference
as the number of processors becomes large. The
solution to this dilemma is being sought with the
development of reconfigurable interconnection
networks to link arrays of processing elements
(processors and memories). A variety of
reconfigurable network architectures have been
proposed [LIP77,SIET9]. The common elements of
these interconnection networks include:

1. 1implementation costs which grow at a rate

of n log n where n 1is the number of
elements to be connected [GOKT73].

2. the ability to establish resource

0190-3918/81/0000/0092$00.75 © 1981 IEEE

partitions which execute independently
except for interactions through specified
communication and data channels.,

3. the ability to implement a wide spectrum
of interconnection geometry.

The availability of such reconfigurable
architectures opens new dimensions for the
formulation of parallel algorithms. The

arrangement of computations can be based upon the
structure of the algorithm rather than upon a
specific available architecture, Resource
partitions can be tailored to the computation and
data movement requirement of the algorithm. The
importance of problem specific interconnection
geometry is noted by Gentleman [GEN78]. He
demonstrates that fixed geometries can easily lead
to data movements dominating execution time for
matrix multiplication and matrix inversion.

Problems can be formulated as sets of tasks
or sequences of sets of tasks (MIMD/SIMD mode of
computation) rather than merely sequences of tasks
as 1is the case on the uni-processor. Each task
set may have a different degree of parallelism
and/or a different interconnection geometry.

The execution time of an algorithm on a
parallel computational structure depends not only
upon the operation count of the computation, but
also the time required for data movement and the
time 1lost to synchronization delays. For an
algorithm or process with disjoint phases which
require different computational structures to give
an optimal execution time for each phase, then the
time for reconfiguration of the architecture must
be included in the total execution time. This
paper defines an algorithm for the odd/even
elimination of block tridiagonal systems on a
reconfigurable array computer. The algorithm is
resolved into three distinct steps, each of which
uses a different degree of parallelism and has a
different interconnection geometry. This
formulation displays advantages for the use of
reconfigurable array systems with SIMD computers
assigned to blocks for the odd-even algorithm.
These are

1. Each SIMD machine operates independently,
therefore independent pivoting is
possible.

2. Each SIMD machine can be tailored to the
size of the block it is handling so that
synchronization waits are minimized.

3. The synchronized nature of the shared

data access is well suited to
intercommunication mechanisms
characteristic of reconfigurable
computers.

2.0 RECONFIGURATION

the
for

This section defines and describes
concepts of an MIMD/SIMD execution mode
‘reconfigurable arrays of processing elements and
describes the modes of data movements which
characterize reconfigurable network architecture
computer systems.

2.1 MIMD/SIMD

Reconfigurable
implemented as
memory modules
network. This

computers are generally
arrays of processor modules and
with a modular interconnection
definition of reconfiguration is
quite different from the instruction set 1level
reconfiguration as in the Burrough's B1700 [ORGT8,
RAU78]. The interconnection network can establish
resource partitions consisting of a subset of
processor modules and memory modules. A partition
can be configured to implement SISD or SIMD modes
of operation (figure 1). A job then consists of a
number of partitions (a task 1is a partition)
interconnected according to the data flow of the
job. Processors within a partition are under
lock-step control of one instruction stream;
processors from different partitions are under the
control of different instruction streams.

2.2 Communication And Synchronization

Two distinct kinds of data transfer
requirements arise from the MIMD/SIMD mode of
operation. Data transfers between partitions are
needed both with a computation structure and
between the structures of different phases or
stages. A synchronization mechanism is needed to
control the data transfers. Additionally SIMD
machines implemented as arrays of processor
modules must deal with the problem of data
alignment. Consider as an illustration row and
column access of matrices. In a pipeline vector
processor, e.g. [HINT2,WAT72,RUST8], it is
possible to organize data in interleaved memories
so that row and column access can be performed
equally efficiently. The ILLIAC IV [BAR68] on the
other hand 1is considerably harder to program for
simultaneous row and column access for two
reasons:

1. the physically distributed nature of the
sources and targets of data.
2. a static and limited linkage network.

The Burroughs BSP [BUR77] avoids this problem
by the brute force solution of using a cross point

interconnection network between processor and
memory modules.

We give here an outline of the pertinent
features of the communication subsystem
[PRE79,SEJ81] in TRAC, a representative
reconfigurable computer and show hcew they provide

capability for the movement of data both within
and between SIMD partitions.
TRAC provides two kinds of physical channels

for communication: packets and shared memories.

93

Packets are continuous streams of bytes and are
memory-to-memory transfers. A data vector and a
realignment vector are specified. Packet movement
through the network is used to create a realigned
result vector.

The concept of shared memory in resource
partitioned architectures such as TRAC is not the
same as in multiple processors sharing access to a
common physical memory address space such as C.MMP
[WUL72]. 1In these latter architectures sharing is
on a cycle by cycle basis with a possibility of
interference when more than one processor
endeavors to access a given memory module.
Synchronization mechanisms for access to memory
are commonly implemented in software or firmware.
The execution of these sychronization mechanisms
consumes memory bandwidth and themselves interfere
with the performance of the sharing resources

(e.g. the spin-lock mechanism as described in
[OLE78]). In reconfigurable network architectures
such as TRAC, sharing may be combined with

synchronization by altering the interconnection
network to move a physical memory module from one
task address space to a different task address
space. TRAC accomplishes this extended sharing
concept by a hardware configuration with a shared
module at the root of a tree whose leaves are
processors (figure 2). To obtain a shared memory
a processor must execute an ACQUIRE instruction.
The processor blocks if the module has already
been acquired by another processor. Retry effects
only the acquisition circuitry, not access by
other processors.

3.0 BLOCK TRIDIAGONAL SYSTEMS

Block tridiagonal systems of linear equations
occur frequently in scientific computations, often
forming the core of more complicated problems.
Numerical methods for the solution of such systems
are well understood and techniques tailored to the
solution of such systems on pipelined
supercomputers have been studied extensively
[TRAT6,MAD75,HELT7T].

The linear system is represented as Ax=v with

T b(1) (1) I
I a(2) b(2) c(2) I
I a(3) b(3) c(3) I
I ceeene I
A = I ceeeen I
I P I
I a(N-1) b(N-1) c¢(N-1) I
I a(N) Db(N) I
= (a(3),b(3),c(d))
N
where b(i) is a n, x n, matrix and a(1) = 0 and
i i
c(N) = 0.
The odd/even elimination method (and the

odd/even reduction method which can be regarded as

a compact version of the former) is widely
regarded as an efficient direct method for the
case where the n, x n, blocks are small enough to
be stored explic%tly tHELT7].

Consider odd/even elimination as described in
Heller [HEL77], section U4: pick three consecutive
block equations from Ax = v, A = (a(3j),b(j),c(i))N

a(k=1)x(k=2) + b(k=1)x(k=1) + c(k=1)x(k) = v(k-1)
T ¢ S D)

a(k)x(k=1) + b(k)x(k) +c(k)x(k+1) = v(k)
I ¢ 9

a(k+1)x(k) + b(k+1)x(k+1) + c(k+1)x(k+2) = v(k+1)

N S D

If we multiply equation k-1 by -a(k)b™ (k-1),
equation k+1 by -c(k)b (k+1), and add, the result

is: ’
-1
(-a(k)b (k-1)a(k-1))x(k-2)
-1 -1
+ (b (k) - a(k)b (k-1)c(k-1)
-1
- c¢(k)b (k+1)a(k+1))x(k)
-1
+ (=c(k)b (k+1)e(k+1))x(k+2)
-1
= (v(k) - a(k)b (k=1)v(k-1)
-1
-c(k)b (k+1)v(k+1)).

For k=1 or. N there are only two equations
involved and the modifications should be obvious.
This operation eliminates the odd unknowns for k
even and the even unknowns for k odd. By
collecting the new equations into the block

pentadiagonal system H.2x =v.z2, (with A defined as
H.1) it is seen that row elimination has preserved
the fact that the matrix has only three non zero
block diagonals, but they are further apart. A
similar set of operations 1is applied combining
equations k-2, k and k+2 in H.2 to produce
H.3x=v.3 system. This process is repeated until
only one block diagonal remains (or in the case of
semi direct methods, some accuracy criteria are
fulfilled). The initial coefficient matrix H.1
contains 3N-2 non zero blocks while the final
matrix consists of N non zero blocks along the
main diagonal.

Solving the N blocks independently gives
required solution.

Figure 3 shows the effect of 5 steps
elimination on a 16x16 block tridiagonal system.

the

of

4,0 DATAFLOW AND IMPLEMENTATION

In this section we will look at the
characteristics of odd/even algorithms. The
computational aspects, such as operation counts
are well understood; the communication geometry is
studied herein and found to be regular and simple.
-1 Computationally, instead of determining
b (i) explicitly, LU factorization of b(i) is
generally resorted to:
compute LU factors of b(k), (1<=k<=N)

dataflow

94

solve b(k) [a(k) c(k) v(k)] =
[a(k) e(k) v(k) 1 , 1<=k<=N
b(k).2 <— b(k).1 - a(k).1 c(k-1) - c(k).1 alk+1)
ceeeesaesss 1<zk<=N -
v(k).2 <== v(k).1 = a(k).1 v(k-1) - c(k).1 v(k+1)
cescesseees 1<=k<=N
a(k).2 <— a(k).1 _a_(k-1) , 3<=k<=N
c(k).2 <== c(k).1 gﬂk+1) , 1<=k<=N-2

4.1 Intertask Dataflow

The sequence of actions that results in the
computation of H.i+1 from H.i is referred to as a
stage: in this case each stage is shown to
consist of three steps and the steps further
consist of substeps.

Consider the input dataflow for computing H.2
and v.2. In the first step, the first substep
results in the LU factorization of b(k) ; this is
then used in the next substep for computing a(k),
c(k) and v(k). N way parallelism is displayed in
this step.

In the second step the computation of
a(k) .i+land c(k).i+1 requires a(k).i, a(k-1).i and
c(k).i, c(k+1).i respectively; b(k) .i+1 and
v(k).i+1 require data from the (k-1), (k) and
(k+1)th row equations. Binary operations are
performed on the blocks - pairwise access to
blocks is sufficent giving rise to upto (N/2) way
parallelism.

Figure 4a shows the interconnection geometry
needed for the second step for an 8x8 system. The
blocks are stored in separately accessible shared
memories one block row per shared memory. The
system
pattern with circles

diagram to the right of the 8x8 tridiagonal
is the inter connection
representing processors and squares shared
memories. The edges represent potential links
that are activated as U4 separate patterns as shown
further to the right. The new blocks computed at
the end of substep 2 are shown in curly brackets
between the patterns of substep 2 and 3 ; the
remaining new blocks are completed at the end of
substep 4.

The crucial observation here 1is that while
the datasets are shared across processors, the
sharing is conflict free within a substep. The
connection pattern cycles through the states of a
2-pole 3 position switch.

H.2 is a pentadiagonal matrix - the
application of an inverse perfect shuffle [ST071]
partitions this matrix into two tridiagonal
matrices, one consisting of the odd numbered
coefficient blocks and the other of even numbered
ones (Figure 4b).

If the matrix A contains N=2%*m blocks then
the dataflow geometry for the next step 2 is
represented by a graph that is a proper subset of
the graph used in the earlier step 2 (Figure 5).
This inclusion property is seen in every step 2
until the block diagonal is computed.

Thus we use the precisely same dataflow
template in the generation of every H.i+1 from H.i
; three steps with different connection geometries
are needed - a direct connection, a 2-pole

3-position switch based connection followed by an
inverse perfect shuffle,

A number of proposed reconfigurable computers
can implement these and other communication
behavior quite efficiently. Note that if we were
tto hardwire the interconnect pattern we would be
using a special purpose machine of limited
applicability to other problems (Eg. the shuffle
exchange network [STO71] in high performance FFT
boxes).

An implementation based on the use of shared
meémory in TRAC is now sketched briefly. The
processors are scheduled as SIMD partitions with
width commensurate with the block size under
consideration. The shared datasets are stored in
shared memory modules - each circle of figure 4 is

realized as an array of shared memories of width
conformal with the processor width. The time to
switch the 2-pole 3-position based switch is a

critical parameter in the performance of the
algorithm. On the basis of a 10 microsecond
acquire time for an unacquired module this
parameter is estimated at between 50 and 100
microseconds for TRAC, ’
4.2 Performance Estimation

The mode of operation described in the
previous subsection consists of asynchronously

executing processes which synchronize periodically
to transfer data. Operations on different blocks
may require different computation times. There
may be, for example, different search times for
the choice of pivot rows. Thus for a performance
model to accurately represent this kind of
behavior, it must be based on non deterministic
time parameters.

We will now present a niave analysis based on
average time parameters as a first step towards
developing a performance model of reconfigurable
computer operation.

The time for data movement depends upon the
width of the processors and the width of the
arithmetic. We choose a definite configuration to
illustrate the magnitude of the communication
costs. A 16 bit wide SISD partition will be
assigned to each block. (If blocks are of uneven
size a more powerful partition could be assigned
to larger blocks.) Arithmetic will be on floating
point numbers with 64-bit mantissas and 8-bit
exponents.

Let the system be 16x16 blocks and each block
be 8x8 (total matrix dimension 128x128). Each 8x8
block requires about 600 words of storage. A
block row consisting of three 8x8 non zero blocks

and a 8x1 vector requires about 2000 words of
storage.
The following notation is used for

representing operation times:

T.fpa: floating point addition

T.fpm: floating point multiply/divide

T.xfer: memory to memory transfer time for one
word.
acquisition and setup time to obtain

T.swi:
© shared memory.
The evaluation of H.5 from H.1 proceeds in 4
stages with each stage evaluating H.i+1 form H.i.

95

The first step of a stage consists of the LU
factorization of b which is used to evaluate a,c
and v. The second step consists of three substeps
that correspond to the three positions of the
2-pole, 3-position switch. The final step
performs the inverse perfect shuffle to position
data for the next stage. From the discussion of
the previous subsection it is evident that the
first and last step display 16 way parallelism and
the second step 8 way parallelism.

H.5 is finally solved as 16 uncoupled 1linear
systems to obtain the required solution,

We will wuse the notation Pi(k,l,m..) to
represent the state where partition Pi is
connected to datasets k,1,m.. and dataset k
contains a(k),b(k),c(k) and v(k). This is the

timing for the implementation with shared memory.
The results of this analysis are discussed at the
end of the section and can be directly skipped to
without loss of continuity.

STAGE 1:Compute H.2 from H.1
Step 1:

Configuration: Pa(1), Pb(2),....
Setup time ~. T.swi.

, Pp(16)

Substep 1.1

Computation: Pa: b(1) (LU decomposition)
Pb: b(2)
Pp: b(16)

Compute time
Substep 1.2

200%*T.fpm + 200%*T.fpa

Computation: Pa: a(1), c(1), v(1)
Pb: a(2), c(2), v(2)
Pa: a(16), c(16), v(16)

Compute time ~ 1200*¥T,.fpm + 1200%*T.fpa

Step 2
Substep 2.1
Configuration: Pa(1), Pc(2,3), Pe(H,5)
eeee., Po(14,15)

Setup Time ~ 2¥T.swi

Substep 2.2
Configuration: Pa(1,2), Pc(3,4), Pe(5,6),
ceseess,PO(15,16)

Setup time ~ 2¥T.swi,

Computation: Pa: b(1).2, a(1).2,
e(1).2, v(1).2

Pc: b(3).2, a(3).2,

e(3).2, v(3).2

Compute time ~ 2000*T.fpm + 2000¥T.fpa

Substep 2.3
Configuration: Pa(1,2), Pc(3,4), Pe(5,6)
ceeve.., P0(15,16)

Setup time ~ O¥T.swi

Substep 2.4
Configuration: Pa(2,3), Pec(4,5), Pe(6,7),
teesessy PO(16)

Setup Time: A~ 2¥T.swi

Computation: Pa: b(2).2, a(2).2,

c(2).2, v(2).2

Pc: b(4).2, a(4).2,
c(l4).2, v(4).2

Compute Time ~ 2000*T.fpm + 2000%T.fpa
Step 3

Substep 3.1

Configuration: Pa(1), Pb(2), Pe(3), Pd(4),
Pe(5), Pf(6), Pg(7), Ph(8),
Pi(9), Pj(10), Pk(11), P1(12),
Pm(13), Pn(14), Po(15), Pp(16)

Setup time ~ T.swi

Transfer source dataset contents
to local buffer.
Compute time ~ 2000*T.xfer

Computation:

Substep 3.2

Configuration: Pa(1), Pb(9), Pe(2), Pd(10),
Pe(3), Pf(11), Pg(4), Ph(12),
Pi(5), Pj(13), Pk(6), Pp(16),
P1(14), Pm(7), Pn(15), Po(8)

Setup time ~ T.swi

Computation: Copy local buffer contents to

target dataset.

Compute time ~ 2C00¥*T,.xfer

The important concern is the ratio of direct
computation time to the sum of the total non
computation time (this consists of the various
T.swi, T.xfer, synchronization times etc.). Let
us make reasonable assumption that the ratio of
execution time for T.xfer|T.fpa|T.fpm|{T.swi are
11101100}1000 and let T.xfer be one microsecond.
Estimate the set-up time for T.fpa,T.fpm and
T.xfer be equal to the arithmetic execution time.

For the shared memory implementation the
total direct computation time is 1034 milliseconds
(ms), total reconfiguration time is 9 ms and data
transfer time is 8 ms. Thus, if synchronization
time is zero, then the overhead associated with
mapping the odd/even elimination to a parallel
basis is about 17/1034 or about 2%.
Synchronization delays result solely from the
differences in processing time for each block.
For uniform size blocks, processing time
differences between blocks will result from
differing effort for pivot selection. This should
not exceed 1%. Reconfigurable architectures can
assign processing partitions with power
proportional to block size. (SISD partitions with
a factor of 8 variation in power for 64-bit
floating point numbers can be constructed on
TRAC.) Thus synchronization delays should be not
more than 10% of direct execution time. Using
this as an upper bound the total overhead cost in
this formulation is approximately 12%.

96

4,3 Intratask Dataflow

The use of an SISD partition for each block
avoids the problem of alternate row/column
addressing. Row and column accessing is necessary
because the block matrices a(k) and c(k) are
involved in both pre multiplication and post
multiplication. The use of SIMD partitions would
introduce efficiences in the computational part of
the formulation. Data distribution, would however
become more complex. Packet movement would be
used to realign data between pre- and
post-multiplication stages. This problem will be
approached in a subsequent publication.

5.0 CONCLUSIONS

Reconfigurable array computers have been
proposed as a candidate architecture for the VLSI
implementation of supercomputers. A crucial
motivation is that such machines provide a
programmable rather than a fixed geometry
communication subsystem. The ability to adapt
communication geometry to the requirements of the
algorithm is supposed to minimize
non-computational execution costs on parallel
architectures. A parallel formulation of odd/even
elimination of block tridiagonal systems is used
to illustrate the effectiveness of
reconfigurability. The mechanisms of TRAC which
are representative of such architectures are used
in the formulation, Data movement,
reconfiguration and synchronization costs are

found to be small with respect to direct
computation costs.

The development of parallel algerithms for
reconfigurable architectures is shown to be

tractable. This analysis of a parallel
formulation of odd/even algorithms is intended to
display a paradigm for the formulation of
algorithms on reconfigurable array computers.

6.0 ACKNOWLEDGEMENT

We wish to thank Nancy Eatman for preparing
the diagrams for this paper and Ashok Adiga for
the text processing code that was used in the
preparation of this manuscript.

This research was funded by NSF Grant

MCS-77-15968.

7.0 REFERENCES

[BAR68] Barnes G. H., etal, 'The Illiac IV
Computer', IEEE Trans on Comput, Vol C-17, 1968,
pp. TU6-T57

[BUR77] Burroughs, 'BSP:
Architecture', 1977

Overview, Perspective,

[GEN78] Gentleman, W.M., 'Some Complexity Results
for Matrix Computations on Parallel Processors',
JACM 25, 112-115 (1978)

[GOK73] Goke R. L. and Lipovski G.

J., 'A Architecture via Microprogramming', IEEE TC C(C-29,

Banyan Network for Partitioning Multiprocessor 1006-1014 (1978)
Systems', 1st Symp on Comput Arch 1973, pp. 21-28

[HEL77] Heller D., 'Direct and Iterative methods

[RUS78] Russel R. B., 'The Cray-1
System', CACM, Vol 21-1, Jan 1978, pp.

for Block Tri Diagonal Linear Systems', PhD

dissertation, CS Dept, CMU, Pittsburgh,

[HIN72] Hintz R. G. and Tate D. P.,

1977 [SEJ80] Sejnowski M. C., etal, 'An
the Texas Reconfigurable Array Computer', AFIPS

'Control NCC 1980, pp. 631-6u42

Data STAR-100 Design', 6th Ann IEEE Comput Soc

Conf, COMPCON 1972, pp. 1-4

[LIP77] Lipovski G. J. and Tripathi A.

[SEJ81] Sejnowski, M.C., 'Packet Architecture

TRAC', MA Report, Comput. Sei.
R., 'A Austin, May '81.

Reconfigurable Varistructured Array Processor',
Proc Intl Par Proc Conf, 1977,pp. 165-1T4. [SIET9] Siegel H. J., etal, 'PASM'

[MAD75] Madsen, N. and Rodrigue,

Comparison of Direct Methods for Tridiagonal

System Solution on the STAR-100"',
Livermore Laboratory, 1975

Lawrence [STOT71] Stone H. S., ‘'Parallel Processing with
the Perfect Shuffle', IEEE Trans on Comput, Vol

c-20, 1971, pp. 153-161

[OLE78] Oleinick, P., 'The Implementation and

Evaluation of Parallel Algorithms on the C.mmp', [TRAT6] Traub J. F., etal. 'Accelerated
PhD Dissertation, Dept. of Comput. Sei., CMU, Iterative Methods for the Solution of Tridiagonal
Nov. 1978 Systems on Parallel Computers', JACM,

1976, pp. 636-654
[ORG78] Organick E. and Hinds, J.A.,
'Architecture and Programming of the E1700/B1800 [WAT72] Watson W. J.y, 'The TI ASC-

Series', (North Holland, Amsterdam, 1978)

Modular and Flexible Supercomputer Architecture!',
AFIPS FJCC, Vol 41, 1972, pp. 221-228

[PRE79] Premkumar U. V., etal, 'Interprocessor

Communication in TRAC', 1st 1Intl Conf on Disti [WUL72] Wulf W. and Bell C. G., 'C.mmp- A Multi
mini processor', AFIPS FJCC, Dec

Comput and Systems, 1979, pp. 51-62

765-7177

[RAU7T8] Raucher, T.M. and Aggarwala, AK.,
'Dynamic Problem Oriented Redefinition of Computer

« PROCESSOR MODULES *

2-PROCESSOR
SIMD PARTITION

PR

INTERCONNECTION NETWORK

. .MEMORY MODULES, lil E:]

FIGURE 1: PARTITION ON A RECONFIGURABLE ARRAY COMPUTER

97

Overview of

TR.EE-79-40,
School of Electrical Engineering,
G., 'A University, W.Lafayette, IN. 47907, Aug.

A B
SHARED MODULE SHARED MODULE SHARED MODULE' i

POTENTIAL LINKS ACTIVE CHAIN TO 'A' ACTIVE CHAIN TO 'B'

FIGURE 2: SHARED MEMORY

H

Hy g

FIGURE 3: 5 STEPS IN THE ELIMINATION OF A 16x16 SYSTEM
(FROM HELLER [HEL77] pp. 39)

98

x1 x2 .-~“--‘ :::::::::20
x1 x2 x3 % ¥
x2 x3 x4 A‘
x3 x4 x5 :>{3} > 7
x4 x5 x6 A
x6 x7 x& k
FIGURE 4A: INTERCONNECTION FOR STAGE 1 STEP 2 OF 8x8 TRIDIAGONAL SYSTEM
x1 x3 » - x1 x3
x2 x4

x1 x3 x5

x2 x4 %6

x1 x3 x5
x3 x5 x7
x5 x7
x2 x4
x2 x4 x6
i x4 x6 x8
.- - |

x3 x5 x7
x4 x6 x8
x5 x7
x6 x8 x6 x8
FIGURE 4B: INVERSE PERFECT SHUFFLE TO FORM 2 TRIDIAGONAL SYSTEMS
x1 x3

x1 x3 x5
x3 x5 x7
x5 x7
x2 x4
x2 x4 x6
x4 x6 x8
x6 x8

=
=

FIGURE 5:>INTERCONNECTION FOR STAGE 2 STEP 2 OF 8x8 TRIDIAGONAL SYSTEM

99

ON MAPPING NON-UNIFORM P.D.E. STRUCTURES AND ALGORITMHS
ONTO UNIFORM ARRAY ARCHITECTURES.

by Dennis Gannon*
- Department of Computer Sciences, Purdue University
West Lafayette, Indiana.

ABSTRACT_ Adaptive algorithms for solving partial
differential equation are studied as a means of provid-
ing improved speed-up when, in limited processor
situations, traditional ‘"uniform’" grid parallel
methods are inefficient. The difficulty with these
methods is that the non-uniform data structures may
not be well suited to parallel architectures designed
for array and vector problems. In this paper the
data-flow problems associated with a class of Multi-
Grid algorithms are studied. It is shown that, in spite
of non-uniform grid structures, a SIMD machine with
an () network connection provides a good environment
for adaptive computation. Time estimates that
include interprocessor communications are derived.

1. INTRODUCTION

While most studies in parallel computation are
based on algorithms designed around regular data
arrangements like arrays and vectors, many important
applications are more efficiently treated with some
form of irregular or non-uniform adaptive structures.
A simple example is the improvements in serial
efficiency obtained for large sparse matrix problems
by using linked lists and list algorithms rather than
large two dimensional arrays. A second example is
given by adaptive methods for solving partial
differential equations. One of the fastest parallel algo-
rithm (Sameh, Chen, and Kuck [2]) for solving the Pois-
son problem

Pu | *u
VPu = F‘i‘ ? = f(:r.y)
requires a uniform n by n grid defined on a rectangular
domain D as shown in figure 1.

! Research supported by the National Science Founda-
tion Grant MCS-8109512.

With p® processors this method requires
O((n/p)?log(n)) time to solve for the unknown u at
each of the n? grid points given the "data” f at each
point. When p=n this algorithm is the best known, but
when n is much larger than p one may wish to con-
sider other methods. In many cases, the data f
represents very localized activity that can be
optimally approximated on a irregular grid as illus-
trated in figure 2.

Figure 1. Uniform Grid

The advantage of this "adaptive" grid is that its granu-
larity is fine only where needed and the overall number
of node points is greatly reduced.

The savings generated by these techniques extend
to parallel computation only if the architecture is rich
enough to permit a programming of the algorithm so
that the irregular processor communications do not
add to theoretical complexity of the method. There

Figure 2. Non-uniform Grid Adaptive Solution.

0190-3918/81/0000/0100$00.75 © 1981 IEEE

100

are two approaches to solving this problem. For rela-
tively small numbers of processing elements, one
attractive solution is to use data flow machines where
regularity of structure is of smaller significance than
volume of computation. In the case of sparse matrix
problems recent work includes the experiments by
Lord, Kowalik, and Kumar [6] with the HEP architec-
ture. For the P.D.E. problem described above Rhein-
boldt and Zave [11] have shown that the adaptive

approach can be decomposed at the process level in a
manner suitable for limited processor data flow com-
putation.

For more structured, highly parallel computation,
the solution is to endow a regular SIMD or MIMD pro-
" cessor array with a connection network capable of
accomodating the irregular data requests generated
by these adaptive algorithms. Indeed, most designs
for architectures devoted to solving partial differential
equations, such as the Flow Model Processor (FMP)
proposed by Burroughs for NASA, are large multipro-
cessors equipped with a highly structured interconnec-
tion switch. The natural question is if adaptive compu-
tation can be shown to produce a real parallel speed-
up, then which interconnection method provides the
most efficient implementation?

In the following paragraphs we illustrate that the
problem of computing the solution to the partial
differential equation on the adaptive grid can be
"mapped" naturally onto a SIMD architecture consist-
ing of an array of p? processors and p? memory
modules interconnected by the well known Q switch (a
key component of the Burroughs FMP). Furthermore,
when applicable, the method can run as fast as

O(k®log ()
including inter processor communication where k is
the number of levels of grid 'refinement”. In the
optimal setting a uniform grid of size n by n
corresponds to a value of k¥ = O(log(n/p) which, for
the sake of comparison, yields an asymptotic estimate
of

ouag%g—)zag ®))

2. Grid Relaxations and the Mapping Problem.

The mapping problem can be formally defined as
follows. Let z; i=1,,N be the set of nodes at which we
seek solution values u; to the PDE given the data f;.
Let CG represent the the directed data flow graph of
the algorithm. That is, the nodes of CG correspond to
binary operations and the edges represent the flow of
data between computations. A program of the algo-
rithm for a P-processor parallel machine M is a
decomposition of CG into disjoint sets of nodes
{CG, i=1..T} each of size |CG|=<P such that if
(z,¥)€CG is an edge and z€CG; and Yy €CG; then i < j.
If we assume the machine is equipped with an inter-
connection switch capable of some set parallel data
transfers between processors, then the mapping prob-
lem is that of choosing a set of processor assignments
§f¢:CG, » M,i=1..T} that minimize the the number of

switch settings required between the T computation
stages.

101

Frequently the algorithm dictates the appropriate
switch to give an optimal result to the mapping prob-
lem. For example, Grosch [4] has observed that a
large class of P.D.E. techniques can be mapped onto a
p by p array of processors interconnected by the fol-
lowing three level network. At the first level let each
processor be connected to its nearest neighbor in a
square mesh lattice. The second level connects each
column of p processors with a shuffle connection, and
the third level connects each row with a shuffle.
Because separable partial differential equations can be
easily solved by combinations of Fourier transforms
and odd-even reductions aligned along rows and along
columns, this Perfect Shuffle, Nearest Neighbor (PSNN)
network is well suited for most uniform grid algorithms
like the Sameh-Kuck poisson solver described above.

By analyzing the data-flow of the basic com-
ponents of an algorithm for self adaptive P.D.E. compu-
tation we shall see how to extend the PSNN network to
an more complex interconnection switch appropriate
for the irregular adaptive grids. The resulting network
'ts then shown to be equivalent to the (switch of Lawrie

5)].

The algorithm studied here is a parallel version of
an adaptive Multi-grid method designed by Van Rosen-
dale [10]. The method is based, in part, on the work of
Brandt [1] who has studied both parallel and serial
implementations of the Multi-Grid idea. The guiding
principle of these algorithms is to use a sequence of
grids, each finer than its predecessor, to accelerate
the convergence of more standard iterative 'relaxa-
tion" schemes. In the adaptive algorithm, the
sequence of grid structures is defined by constructing
a nested sequence of subdomains of the problem
domain D,

D=D¢g>D;>D; ...2D

A uniform subgrid G is placed over each domain D; so
that G; refines G;_; by quartering certain rectangles.
Figure 3 illustrates a simple three level refinement.
From the sequence of uniform grids {G; i=0..k} the
algoritihm works on the sequence of composite grids

G = UG for i=0.k to obtain succesively better
k=0

approximations to the solution starting from an exact
solution on the coarsest grid Gy To simplify the
description of the algorithm and its programming we
shall assume we have P = p? processors with p a power
of 2 and that each subgrid G is a rectangle of dimen-
sion k by ¢ with both k and ! beirig <p. (A more gen-
eral algorithm is derivable without meodifying the
connection network constructed below, but the added
detail provides little illumination of the basic result.)

The algorithm (described completely in the next
section) is built on 3 basic operations, injection, pro-
jection, relaxation, which provide both the setting and
a solution to the mapping problem.

2.1 Injection.

Given a piecewise linear solution u®*) on grid G
there exists a natural interpolate w®*! on grid G,,.
The injection operation is this interpolation process
denoted by

w®*t) = Injec (u®), G, Gesr).

The computation to be carried out is simple. The
values of u®) define u®*1) at the nodes of all subgrids

Figure 3. Level Decomposition of Adaptive Refinement.

of G+, except the last fine grid Ge.;. At the nodes of
G +1 that correspond to nodes of the coarser subgrid
G, the value of u(*1) is well defined by u(*). The
remaining nodes of G**1 are created by the quarter-
section of rectangles of G* and therefore the value of
u®*1) is determined by the average of the values at
the corners of the quartersected square. The logical
choice for mapping the grid structure is to assume for
the moment that the p? processors are configured as a
square array interconnected by a square mesh net-
work. In this way each subgrid can be mapped into the

processor array, and the various stages of the data
flow graph can be viewed as processes interacting
between the various subgrids. In this setting, the
interpolation operator can be seen as taking values
from subgrid G, to values in Ge,;. The interconnection
switch should map the nodes of G, that lie in the
embedding of Gy to the embedding of Gy;. This is
most readily understood by considering a one-column
or one-row slice. In figure 4 the one dimensional view
shows G along the bottom

(i—OwT—O“O”OO
\/JU

Figure 4. Subgrid Expansion.

row of processors. The same set of processors are
shown along the top row but this time represénting the
embedding of Gy;. The lines connecting the two
represent the identification of equivalent nodes in
Ge+1. Call the process of making this identification
"subgrid expansion”. In this one dimensional case, a
connection network that provides the required map-
ping is a bidirectional omega switch on p processors
(,. This switch is constructed from logs{p) shuffle-

102

exchange operations. Figure 5 illustrates its perfor-
mance on the case shown in Figure 4.

LEMMA 2.1. Let z,,.., z, denote the sequence of p pro-
cessors and let z;, ...Zx+:, £<p/ 2 denote the indices
of a subgrid, then the (), network can map the subse-
quence to any even or odd subsequence of z,,..,z,.

PROOF, This result follows from the equivalence of
(O, and the Batcher bitonic merge network (see for
example the thesis of Parker [B]). To wuse this
equivalence, one need only construct the appropriate
bitonic sequence that, when merged, maps the subse-
quence to the appropriate place. Suppose z;, must
map to z,. It follows that zz4 » Ty, for L <t. Define
the remainder of the bitonic sequence by mapping the
remaining processors Z(gss mod(p)) LOF S=i+1l,.p-1
according to

Z(k+s mod(p)) ~ Ty+zs LOrY+RS =P
and

Z(k+s mod(p)) ~ Tap-1-y-zs LOr Y+2s > p.

The effect is to extend the increasing subsequence to a
permutation consisting of one increasing set of indices
and one decreasing set.

vFigure 5. Subgrid Expansion via (), Shufile-Exchange.

To carry out the complete two dimensional
subgrid expansion observe that it suffices to "expand”
first along rows and then along columns. Furthermore,
the averaging computation can be carried out by data
transmissions along the square nearest neighbor net-
work assumed to underlay the embedding of Gy, In
other words, each node in G4, not lying on G is either
the bisector of an edge or the center of a square in G.
By first transmitting values along edges from those
nodes in G, Gg+; one can compute values along
bisected edges. As illustrated in figure 6, a second
broadcast pass is sufficient to propagate values to
determine w®**1 at those node in Gg,; forming the
centers of squares in G,. Summarizing we have

Proposition 2.1. Let 20, be the networlk composed of
p Qp switch networks aligned along rows and con-
nected to an identical set of (), networks along the
columns of a p by p processor array. If we assume
data transmission through an) network can be done
in cne major clock cycle the time for the subgrid
cxpansion is two cycles. With the addition of a
nearest neighbor connection capable of broadcasts
this combined 2(,~NN network permits the injec
operator to be completed in a time of 4 clock cycles.
(A more strict interpretation of the (), switch as a
log (p) cycle device and the NN netvmr;: capable of
only parallel horizental and parallel vertical data
transmissions yields a time bound of 2log (p)+8).

2.2 Projection.

Given a function f®&*1) corresponding to the data
for an elliptic P.D.E. problem on GkH the projection
operator determines a function f corresponding to
areduced problem on G;. The operator, denoted by

F® = proj(f*+D, G .\, G)

has been interpreted by various authors to mean vari-
ous things, but Nicolaides [7] has shown that the

Q 1-—-—>Te— 1-O

&~ 2—0
N

1

Figure 6. Local Data Flow for Injec.

103

correct interpretation is that of the transpose of the
injection operator. 'If we permit Q, to be bidirectional,
the projection operator requires the same data flow
patterns as does injection only reversed.

2.3 Relaxation.

At each node z; of a grid G the differential equa-

tion can be replaced by a difference equation

2 As;Uj = fs

JESy
where u; is the approximate solution value at z;, S; is
the set of nodes of G serving as vertices of squares
containing z, as a vertex, and as; are the coefficients
of the finite difference approximation (the exact form
of which will be of no concern here). The classic
parallel relaxation step starts with an approximate
solution u. to the difference equations above an com-

putes an improved solution u'. by a formula of the
form

) A
Us = us + p (fs"'z asjuj)
S8 jeSy

for some constant A known as the relaxation factor.
The parallel complexity of this computation is depen-
dant on the structure of the set S;. For the non-
uniform grids described above S; can take two forms
as shown in figure 7.

ISl

P R e

[

:
oo —
!) !
c 5
K
O—F— —O

Figure 7. §; Structures.

In the simplest form z; is not on the boundary of two
subgrids. In this case the nearest neighbor network is
adequate to provide all data transmission. In the other
case the node is on the boundary of subgrid G, and the
computation should be split with a partial result
passed between G and G-, via the 20, network. More

- formally, let

S5k = (z; € Sg such that z;€G,)

and let int G, denote the nodes in the interior of G, and

extG, = G —intGeyy

The relaxation procedure becomes

Proc Relax(u', u, G);
begin
For ! := k downto 0 do
begin
For each node zg feztGl pardo
ws = U+ —{fs =) ayy);
'S8 €Sy
For each z,€G NG, pi\rdo
wy = proj(u’, G, G-1);

end;
end;

The exact amount of computation required
depends on the form of the finite difference operator.
Using the definition of S given above and the strict
interpretation of) network timing the bound is
approximately (& +1)(log (p)+16)

24 Network Equivalence.

By analyzing the data flow of the basic grid opera-
tors we have constructed a network 20, -NN which
can be viewed as an extension of the PS-NN connection
introeduced earlier. We now show

Proposition 2.2. By numbering the P = p? processors
by columns, the networks 2(), and Qp are equivalent.
Furthermore, The Nearest Neighbor connections (NN)
can each be routed in one pass of the ()p network. In
terms of the time required to route an item of data
through the network and complete one multiply and
add operation ¥/ processors interconnected by a
bidirectional (), have the upper bounds

1. Injec(.,.,.) in 9 Qp-compute stages."

2. Projt(...,.) in 9 Qp-compute stages.

. 8. Relaz (u',u,G*) in 17k Qp-compute stages.

Proof. Number the processor in row 7 and column
J as Zysp(j-1)- To prove the stated network equivalence
we again exploit the equivalence of the Batcher Merge
network B(P) to Qp. The former can be described as
log (P) stages with the k** stage defined by the proces-
sor connections

Bk(P)le Lmm==> x”P,zk, k=1.,..P/2

used to execute P/R2 compare-exchange steps in
parallel. Observe that for [=i+p(j—1) we have z; is
mapped to the processor with index

P , , 2
I+ '2—,;—-'—‘ 'L+p(]—1) + gk—‘
=i +p(j—1+2%)

which for k < log(p) represents the index of B(p) in
row i. For k > log (p), we have

P _ . ,
L+ 2—k'=1. + ZT_%G-)—-I-})(]'-].)

which represents Bi_pg(p)(p) in column j. Hence the
log (P) stages of B(P) can be decomposed into the
log (p) stages of B(p) organized along rows followed by
the same number of stages of B(p) organized along

104

columns.

In other words, ‘
Qp = B(P) = 2B(p) = 2

To complete the mapping of 20p—NN to Qp observe
that the nearest neighbor network connection in
column order has "horizontal shift" equivalent to "shift
by p or —p; and "vertical shift" is the same as a shift
by 1 or -1. But each of the latter uniform shifts are
well known to be executable with the Q connection (see
[6]). The set of upper bounds follow from the bounds
derived earlier by replacing R2log (p) and each unit
time NN data move with one (p transmission.

3. MULTI-GRID ANALYSIS.

A parallel version of the "locally refined” Multi-
Grid algorithm of van Rosendale is given by an iterative
application of the recursive procedure below.

Proc MG(u, f, k);
begin :
1 fori:=1tot do
begin _
Relax(u', u, G);
end;
if & > 0 then
begin
2 fori :=1 to N, pardo
o= -) aguy
JES;

u=u';

F* Y = proj(f' G, Ge-1hi

MGu', f%*1, k-1);
u :=u + Injec(uw' G-y, Ge):
fori :=i+1 to M do
begin _
Relax(u', v, G); wuw:=u';
end;
7 end else solve exactly on G,
end;

[N 9]

begin
(* main *) _
8 wu := exact solution on Go;
k :=index of finest grid;
9 fori:=1tokdo

begin
u := Injec(u, G, Gi4y):
MG(u, f.1);

end;

end.

The number N is the total number of nodes in G,
and the loop bounds £ and M in lines 1 and 6 are con-
stants depending only on the partial differential equa-
tion in a manner discussed below. By starting with an
exact solution of the finite difference equations on grid
Gy (obtained for example, by the Sameh-Chen-Kuck
fast Poisson solver) the method produces a sequence
of approximate solutions for each grid G for I=1..k.
The running time for this algorithm is derived as fol-
lows. Let Tp be the time for one call to MG(.,.k) in
terms of network communication-computation steps,

where in this section we assume one pass through the
() switch is log (P) steps and the computation step as
unity. From our previous analysis we obtain the
recurrence relation

Ty := t((k+1)(log (P)+16)) + S + (log (P)+B)
+ Ty + (log (P)+8) + (M —t)((k +1)(log (P)+186))

where the summands on the right come from lines 1
through 6 of the program and the residual computa-
tion (time S) is similar to /njec. Solving the
recurrence gives

T, = Mzﬁt};g(zv) + O(klog (P))

The main block calls MG(*) as indicated above and
resulting in a total time of O(Mk3log (P))

In order to arrive at an upper bound on the time
required to compute a "final” solution, one must ask
when an approximate solution to a set of finite
difference gquations that approximate a PDE is an ade-
quate approximation to a true solution to the PDE. For

a given grid structure G let g; denote the difference
(in the mean square sense) between the true solution
of the partial differential equation and the exact solu-
tion to the differential equation. Simply stated, the
main result of the numerical analysis [10] is that there
exists a constant C independent of G, such that if ¥ >
C then the difference between the approximate solu-
tion produced by the MG algorithm and the true solu-
tion of the PDE is less than 2:. To compare two
methods we must compare the computation time to
produce solutions of comparable accuracy. While the
comparison of this version of parallel Multi-Grid to the
fast Poisson solver is the currently the subject of
several numerical experiments that will be reported on
later, it is possible to give a rudimentary analysis of
expected performance.

Under optimal conditions on the initial data f and
the PDE being solved, the truncation error g, is for a
non-uniform grid G, is comparable to a n by n uni-
form grid when k& = c(log (n/p)) for a small constant
¢ < 2. In such favorable circumstances we expect per-
formance of

O(k®log (P)) = O(log®(n/ p)log (P))

which compares well with the bound of
O((n/p)?log (P)) for a fast Poisson solver on the uni-
form grid.

105

REFERENCES

(1]

(]

(3]

(4]

(8]

(7]

(8]

(¢]

(10]

[11]

A. Brandt, "Multigrid Solvers on Parallel Com-
puters”, ICASE NASA Langley Research Center,
Hampton, Vi. Report No. 80-23, 1980.

A, Brandt, N._Dinar, "Multigrid Solutions to
Elliptic Flow Problems”, Numerical Methods
for Partial Differential Equations, S. V. Parter
ed., Academic Press, 1979, pp.53-148.

D. B. Gannon, "Self Adaptive Methods for Para-
bolic Partial Diflerential Equations”, Depart-
ment of Computer Science, University of Illi-
nois, Urbana, UIUCDCS-R-80-1020, 1980.

C. Grosch, "The Effect of the Data Transfer
Pattern of an Array Computer on the
Efficiency of Some Algorithms for the Tri-
Diagonal and Poisson Problem", Array Archi-
tectures for Computing In the BO’s and 90’s,
ICASE Workshop, April 1980, Hampton, Vir-
ginia,

D. H. Lawrie, "Access and Alignment of Data in
an Array Processor,”" IEEE Trans. on Comput-
ers, Vol. C-24, No. 12, pp. 1145-1155, Dec. 1975.

R. E. Lord, J. S. Kowalik, and S. P. Kumar,
"Solving Linear Algebraic Equations on a MIMD
Computer,"” Proceedings of the 1980 Interna-
tional Conference on Parallel Processing, 205-
210, IEEE 1980.

R. A. Nicolaides, "On the L? convergence of an
algorithm for solving finite element equa-
tions," Math. Comp. 31, 1977, B92-9086.

D. S. Parker, Jr. "Studies in Conjugation:
Huffman Tree Construction, Nonlinear
Recurrences, and Permutation Networks,"”
Department of Computer Science, University
of Illinois, Urbana, UIUCDCS-R-78-930, 1978.

A H. Sameh, S. C. Chen, and D. J. Kuck, "Paral-
lel Poisson and Biharmonic Solvers', Comput-
ing 17 (1976), 219-230.

J. R. Van Rosendale, "Rapid Solution of Finite
Element Equations on Locally Refined Grids by
Multi-Level Methods", Department of Computer
Science, University of Illinois, UTUCDCS-R-80-
1021, Urbana, Illinois, 1980.

P. Zave, W. Rheinboldt, "Design of an Adaptive,
Parallel Finite-Element System", ACM Trans.
on Math. Software, vol. 5(1), 1979, pp.1-17.

A PRACTICAL ALGORITHM FOR THE SOLUTION OF LOWER TRIANGULAR SYSTEMS ON A PARALLEL PROCESSING SYSTEM

Robert K. Montoye and Duncan H. Lawrie

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

ABSTRACT

An algorithm is presented for a more efficient
and implementable solution of lower triangular sys—
tems on a parallel (SIMD) computer. Additionally,
this algorithm has been mapped to a hypothetical
machine with as many memory units as processors, an
Q alignment network, and a control unit that can
generate P-ordered memory addresses. Assuming that
L is a unit lower triangular system of order N, the
system can be solved in T arithmetic operations:

using P = processors,
£ ox <%, T = o(»:z‘r)3
12 <r <3, = o 3x10g23).

The data is directly accessible in the evalua-
tion step and can be moved to a location where all
required data for the inversion step can be
accessed. The memory/processor connections are Q
passable and the processor/memory connections are

Q_l passable. Preliminary error results of a FOR-
TRAN simulation indicate correlation between this
and the serial algorithm for both stable and
unstable problems.

1. Introduction

This paper shall discuss the limited processor

solution of unit lower triangular systems:
(Lxx = f with L of order N).

Time (T) is measured in terms of the number of
operations that can be performed using up to P pro—
cessors performing a single operation on different
data and is proportional to the time required for a
system to execute the algorithm considering both
access and alignment penalties.

In previous papers on this topic:
Chen & Kuck’s [ChKu74] "product form" proved:
L x x = £ could be computed with
P = o) T = 0(log 2(N)). (1)
Hyfial & Kung [HyKu74] used this with problem par-

titioning to show that using P = processors,
with % <r<3 T = O(Nl-r/3><(log2(N))))
with <3 T = O(Nz‘rxlog(N)). @)

Also of interest is the results of "column sweep"
or direct forward substitution method [Kuck76]:
P = O(N) T = O(N) 3)

This research was supported in part by:
National Science Foundation grant MCS-81-00512
and Dept. Energy grant US DOE DE-AC02-81ER10822

106

0190-3918/81/0000/0106$00.75 © 1981 IEEE

To produce a limited processor algorithm, the
system is parti&ioned into s=N/w blocks of width w:

L ooxx,=f; Ii<s

1 1,3 =]
=1 i-1
This has the form L, . x x.- Z L, .xx. 1< 1i<s,
i,i = =1 i, =]
x5 and £j are w element vectors and L, j is wxw.
>
[Ll,l | 1%, 1 1£,1
Ly Loy : IIEZ:]I_f_z:
"Li,l Liabig : x lléill = :_f_ill
lLs,l LS,Z L esee L | IESI |£s|

s, S,S
Figure 1 - Hyfial & Kung’s Partitioning
The partitioned system can be solved by seri-
ally producing each new f., = f -L., . X x., then
—i —i "i,j /§j 1/3
solving the recurrence for X using w= N =P

and the "product form" [ChKu74] producing (2).

Considering that the product ffrm is performed
by explicit calculation of X = Li ixii’ inversion
b

o
(which adds an 0(log“(N)) delay) can be performed

for all Li 1 in parallel, increasing the utiliza-
bl

tion by moving the 0(log2(N)) term outside the loop
on s. The evaluation phase is then a matrix multi-
plication, producing an O(log(N)) delay.

Solve for all the L;li in parallel ;
D0 i=1ls _; ’

2=l f

DO j = it+l,s (* in parallel *)
EFefLL % s
END; j j j’l
END;

-1
a) The s Li,i

their constituent elementary matrices in:

can be produced by products of

3
TSI + 0(log” ().

b) The resulting system can be solved in:
T < 2xsxlog(w) + O(Nz—r).
¢) Choosing w,= (N 3x10g1234N)) produces:
)

if r < 23 T = O(N

if 3cr <3, 1=om! T ka0 a
which compares favorably with (2) above.
Additionally, its limiting cases are:

4)

N
the results of (1) at P = (Isgwaij) and
the results of (3) at P = O(N).

2. Storage Scheme

The data for the problem is modeled as a two
dimensional array stored across the P memories in
column major order. Thus elements within a column
are in consecutive memories and elements in adja-
cent rows are in memories that differ by the column
length. The processor assignment will be described
in this same 1light. Assuming A is dimensioned
A(N,N), any two elements A(R ’Ca) and A(Rb’cb)’ are
both accesible if and only if:

(c —Cb)x N + (Ra-Rb)) mod P # O.
A sufficient condition is that:
1(C_-C,)x N + (R -R,)| < P

as X and X + & must be diffefent mod P if [6] < P.
Any set of elements whose linearized distance
between all pairs is less than P is accessble.

3. Alignment Network

The neqy?rks used for data alignment (f for
input and Q for output) have been extensively
studied in [Lawr75], [Wen 77], [Yew 81]. The
results needed in terms of the source-destination
pairs that will pass a given network of P input and
output ports will be listed here.

1) A mapping will pass an Q network if for all
i,j: (si - s5.,) mod P < (di - d.) mod P.
2) A mapping will pass an Q network if for all
i,j: (si - s,)mod P > (di - dj) mod P.
3) Both networks are partitionable.
If the source and destination logations are
partitioned into blocks of size 23, the map-
ping is passable if both the mapping within
each partition is passable and the mapping of
the partitions in the system 1s passable.
4. Matrix Multiplication

The matrix-matrix multiplication operator per-
forms all the arithmetic for the algorithm. This
operator can be scheduled to maximize efficiency
and minimize memory and alignment conflicts. The
matrix multiplication of A (¢ by B) x B (B by y)
producing C (o by y) requires the summation of a
dot product of length B for each element of C. If
@, B and y are all powers of two and B<q, the
operation can be aligned using the Q and @ net-
work. Further details are in [Mont81].

5. Parallel Inverse Calculation

Inversion is accomplished using the identity
from [Hous64] that the inverse of a unit lower tri-
angular system is expressable as a product of the
inverses of its constituent elementary matrices.

Mi = Mi,i = I-(L-1I) Xe o

- MR xe s e X e MM, XM
There are s such systems of order w to be
inverted. ©Each system will be fanned in with a
binary tree similar to the technique used by Sameh
& Brent [SaBr77] in which each level (R) of the

tree doubles the number of elementary matrices in

one product (21) and halves the number of products
log(w)-2

(2) being formed. Each elementary matrix
product involves the multiplication of a matrix of
size w by ZJL_1 by a square matrix of size Z’Q_1 and

the addition of a (w by anl) matrix to the result.
To efficiently implement this operation, the
matrices to be inverted are extracted to a (w by N)

array. This allows the data for the inversion to
be accessed in at most two passes.

Step & should take

logw—-2 -1
(sx(2 Ix(wx2”) 2

T, < 2f 5] + log(2%).

The time to solve for all inverses is
log(w)

2
T < I Ty <55t 0(log™(w))

6. Sol¥iig the Partitioned System

3
sXW

After the inverses have been computed, the
next w elements of the x-vector can be solved and
the rest of the f-vector can be updated in two
matrix multiplications:

-1
X< L

is a matrix (w by w% vector (w by 1) product.

Assuming that P > , T =2+ log(w).
The most processor ‘intensive step of:

f.=f-L, .xx,
—J =3 i

is a matrix (N by w) vector (w by 1) product:
This should take: T < ZFH%E1 + log(w).
The total over all s,
T < 25 x (2 + log(w)) + 2xN
Since both the inverted submatrices and the
matrix for wupdating are stored in column major

2-r

order in partitions of their own dimension, they
are accessible and alignable.
7. Total Solution Time
By choosing w = pl/3x log1/3(N), the unit

lower triangular system with L of order N can be
solved using P = processors in time:

L T <5 T = o T)

if 3¢ <3, T = o T 31062 3N)

using the algorithm previously discussed. The fol-
lowing graph compares Hyfial & Kung’s algorithm,
product form with folding [Kuck76], and the current
algorithm for N = 500 with processing time = 2,
alignment time = 1, and memory time = 1.

6000 .

Folded
Product
\ Form

[HyKu74]+\
5000 . \

Current
>

4000 . Algorithm

3000.

MI——

2000 .

1000 .

2.
1292 121 122 1085 124 125 128 107
PROCESSORS
Figure 2 - Comparison between various algorithms.
8+ Numerical Experiments

A program that simulated the arithmetic
involved in this algorithm was written in FORTRAN.
The array indices on the most parallel steps were
linear combinations of 5 do—loop indices in paral-
lel (indicating that a control unit that could gen-—
erate P-ordered vectors of depth 5 could produce

107

the results shown here). The results are obtained
by comparing double precision serial solutions with
the results derived with this algorithm. The par-
tition width was reduced to w=1 at P=N to force
"column sweep" [Kuck76], known to be computation—
ally equivalent to the serial algorithm, to allow
comparison with serial algorithms.

The graphs that follow are generated in the
following manner. Using a specific lower triangu-
lar matrix, an x-vector is generated using a uni-
form distribution (#1). The matrix is multiplied
by this vector to produce an f vector. The differ-
ence between the solution generated using the pre-
vious algorithm and double precision column sweep
is the error. This value is plotted for N = 64,
comparing single precision column sweep (using w =
1, P = 64), inverting matrices of size 8 with P =
256, inverting matrices of size 16 with P = 1024,
and inverting matrices of size 64 with P = 16384.
The number of digits of accuracy 1is then
-logjg(relative error). The number of digits of
accuracy is then averaged for each element for 25
cases of random x-values with the same matrix. The
first matrix represents the 3-term recurrence of
the Chebyshev polynomial t(x) for x=2.

16 X, = fi + 4 x Xy T Eyge
D :; —— P=64,w=1
1 ——— P=256,w=8
110 +HH+ P=1024,w=16
LA - P=16384,w=64
o 6
F o4
E 2
? 2
pe -2
5 4 20 40 60
2
N 10 30 50 70
COMPONENT

Figure 3 - Comparison of errors for unstable matrix.

The second example is the solution to:

X, = fi - 1.9Xxi_1 + 0.9Xxi_2.

It is a well-conditioned problem as its character-
istic roots lie within the unit circle.

14
g
? 12
T 10
S
o 8
F 6 — P=64,w=1
P ———— P=256,w=8
E 4 ++ P=1024,w=16
c 2 ——— P=16384,w=64
1
I @
g 2 20 40 60
10 50 (=Y7/] 70
COMPONENT

Figure 4 - Comparison of errors for a stable matrix.
9. Conmclusion

The method of problem partitioning (first

appearing in [HyKu74]) has substantial potential

when the additional parallelism that such a method

allows is exploited. The parallel inverse calcula-

108

tion places the 0(log2(N)) delay associated with
matrix inversion outside of the seriality of solv-
ing the partitioned system. This allows: 3/2

a) The dominance of the O(Nz—r) term for P<N

b) The selection of wider partitions
_ P1/3x1 2/3 : .
= og " '"(N) and as a result:

T = 0@ ™ 3x10g2 3 i)

This technique should allow more practical
solution of larger general unit lower triangular
systems with 1limited processors. However, of
greater concern is the fact that the alorithm can
be implemented on a parallel processing system with
as many memories as processors and an efficient
alignment network connecting them. Additionally,
the control requires only generation of P-ordered
vectors for memory accesses and lockstep (SIMD)
processing. A data storage scheme that allows the
algorithm to be executed and data accessed in the
same order of time as the theoretical result, by
using a scratch data area to store the matrices to
be inverted, has been shown. Finally, a small set
of experimental error results have been shown to be
close to the serial results. In conclusion, a
practical, limited processor algorithm for the
solution of unit lower triangular matrices has been
demonstrated.

w

10. References

[ChKu75] Chen, S. C. and Kuck, D. J., "Time and
Processor Bounds for Linear Recurrence
Systems," IEEE Transactions on Computers,
Vol. C-24 (1975), pp.701-717.

[Hous64] Householder, A. S., The Theory of
Matrices in Numerical Analysis,
Blaisdell,New York,1964.

[HyKu74] Hyfial, L. and H. T. Kung, "Parallel
Algorithms for Solving Triangular Linear
Systems with Small Parallelism,"” CDS
Report, Carnegie-Mellon University,
Pittsburgh, December, 1974.

[Kuck76] Kuck, D. J., "Parallel Processing of
Ordinary Programs,” 'in Advances in Com-
puters, M. Rubinoff and M. C. Youvits
eds., Academic Press, New York, 119-179,
1976. November, 1975.

[Lawr75] Lawrie, D. H., "Access and Alignment of
Data in an Array Processor," IEEE Tran-
sactions on Computers, Vol. C-24, No. 12,
1975, pp. 1145-1155.

[Mont81] Montoye, R. K., "Simulation of the Solu-
tion of Recurrence on a Parallel Process-—
ing System," M.S. Thesis, May, 1981.

[SaBr77] Sameh, A. H. and R. P. Brent, "Solving
Triangular Systems on a Parallel Com—
puter," SIAM Journal of Numerical
Analysis, Vol. 14 #6 December 1977,
pp.1101-1113.

[Wen 76] Wen, K. Y., "Interprocessor Connections-—
-Capabilities, Exploitation, and Effec-
tiveness," PhD Thesis, University of
Illinois, October, 1976.

[Yfew 81] Yew, P. C., "On the Design of Intercon-
nection Networks for Parallel and Mul-

tiprocessor Systems," PhD Thesis, Univer-
sity of Illinois, May 1981.

A PIPELINED DIGITAL ARCHITECTURE FOR COMPUTING
A MULTI-DIMENSIONAL CONVOLUTION*

K. Y. Liu
Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA.

Summary

Two-dimensional (2-D) cyclic convolutions
have found many applications such as image pro-
cessing [1] and synthetic aperture radar (SAR)
processing [2], etc. The major problem when one
uses the conventional FFT technique to compute the
2-D convolutions is that complicated matrix trans-
pose operation must be performed. To alleviate
this problem, several authors [3], [4] have sug-
gested that efficient algorithms using polynomial
transforms can be used to compute a 2-D convolu-
tion. Recently Reed et al. [5] extended the
results given in [3], [4] and developed an effi-
cient algorithm using the radix-2 fast polynomial
transform (FPT), the fast Fourier transform (FFT),
and the Chinese Remainder Theorem (CRT) to compute
a 2-D cyclic convolution. This FPT-FFT-CRT algo-
rithm requires fewer multiplications and about the
same number of additions as the conventional FFT
approach for computing a 2-D convolution. In [6],
the author and Reed et al. proposed a parallel,
pipeline architecture to implement this new algo-
rithm for real-time SAR processing application.

In this paper, the work in [5], [6] is further
extended to derive a pipelined digital architecture
composed of modular FPT, FFT, and CRT computational
units for efficiently computing a 2-D convolution.
The extension of this machine concept to effi-
ciently compute a multi-dimensional cyclic convolu-
tion is also presented in this paper.

Let aty ¢, and btl’tZ be two dj x dp arrays,

where 0 < tj <dy - 1 for i = 1,2. Then the 2-D
cyclic convolution of aty,to and btl,tz can be

expressed as a one-dimensional polynomial convo-
lution [3]

d. -1
S-, (’ >
_ 2
Cnl(Z) = Atl(Z) B(nl'tl)(Z) mod \Z © - 1/ (1)

tl=0

for 0 < nj < dy - 1, where (nl - t7) denotes the
residue of (nl - tl) modulo dl.

*This paper presents one phase of research
conducted at the Jet Propulsion Laboratory,
California Institute of Technology under Con-
tract No. NAS7-100 sponsored by the National
Aeronautics and Space Administration.

109
0190-3918/81/0000/0109$00.75 © 1981 IEEE

91109

In (1) the polynomial (t), At,(Z) and
1 1

B(nl_tl)(z) are of the form
d2-1 .
A (2) = E a A 2 (2)
t t,,t
L -0 L 2
2
m dz
If dp = 2, then one can express Z ~ - 1 as

a product of (Zdz/2 + 1) and(Zdz/2 - 1).

Since these two factors are relatively prime, by
the Chinese Remainder Theorem (CRT) for polynomial
[7], the polynomial congruences

d
C(l)(Z) = C_ (Z) mod <Z 2/2 + l> (3a)
1 nl
and
(1) d2/2
C2 (2) = C_ (Z) mod VA -1 (3b)
1
have a unique solution
C zZ) = C(l) z 1 <Zd2/2 l>
@ =@ (-5 -
1
155 1,<d2/2)
+ C2 (Z) <§> Z +1
d
mod <Z 2 l) (4)

Thus we have decomposed a dp-point 1-D polynomial
convolution into two dp/p-point 1-D polynomial
convolutions. Note that in (4) the arithmetic
required to compute Cpp(Z) from C1(1)(Z) and

C2(1) (2) requires only cyclic shifts and additions.

Applying the same technique to the factor

d2/2 - .
(z - 1) yields the following congruences
d
i) = ofP (2) mod (z 2/4 1) (52)
22y = ¢!V (2) mod (zd‘z/4 1) (5b)
Cyy (z) = c, (Z) mo -

which can be solved by an equation similar to (4).

If one uses the transformation Z = wyu; given in
[4], where w) is a d2/2th root of -1, on cl(l)(z),
then (3a) can be expressed as

1>
Thus 611)(u1) can be computed similar to the case
given for Cg(l)(Z). Cl()(Z) can be obtained by
the inverse transformation uj wl'lz on Cl(l)(ul).
Thus we have decomposed a dy-point 1-D polynomial

convolution into four d2/4-point 1-D polynomial
convolutions.

Y2

~(1) _ D
C1 (ul) = Cl (wlu 1

1) = Cnl(wlul) mod (u
(

If one repeats the above procedures, then one
can decompose a dp-point 1-D polynomial convolution
into 21, dp/2i-point 1-D polynomial convolutions,
where i is the level of decomposition. Thus in the
computation of a 2-D convolution, the input poly-
nomial Atl(Z) is decomposed into 21 polynomials
At,(l)(Z) by moduloing the appropriate polynomials.
Each of these polynomials is then convolved with the
corresponding polymial B(n;-t)(i)(Z) obtained like-
wise from B(nl_tl)(Z). The résults of these poly-
nomial convolutions are then combined using the
Chinese Remainder Theorem to form the final result
Cnl(Z). Since the above technique uses 1-D poly-
nomial convolutions of identical size, modular
polynomial convolution and Chinese Remainder
Theorem computational circuits can be used as basic
building blocks to implement a 2-D convolution sys-
tem. Moreover, since the computation of these 1-D
polynomial convolutions are independent, these con-
volutions can be done in parallel.

Theoretically, one can decompose a long 2-D
convolution into many small and identical poly-
nomial convolutions. However, fast algorithms may
not exist when computing a small polynomial convo-
lution of arbitrary size. It was shown in [4] - [6]
that when dp = 2M and dj = 2m-r+l for some r, 1<t
<m, a fast polynomial transform can be used to
compute the 1-D polynomial convolutions. Thus when
the decomposition level is equal to k, where 1<k
< r, one can use the fast algorithm presented
above involving FPT and FFT to compute the 2K,
d2/2k—point polynomial convolutions. Of course,
when k = r, one can use 1-D polynomial convolutions
of the smallest size to compute a dy x dyp-point 2-D
convolution.

As an example the computational flow diagram
of a d1 x dp-point 2-D convolution, where d1 =
om-t+l7ang dy = 2m with r = 2, is shown in Fig. 1.
Note that the maximum possible decomposition level
r = 2 is used. Hence this 2-D convolution is
decomposed into 4, d2/4—point polynomial convolu-
tions, where each of the polynomial convolutions
is computed using the fast algorithm discussed
above. A pipelined architecture to implement this
example is shown in Fig. 2. A detailed description
of this architecture is given as follows.

110

In Fig. 2 the input data is coming in serial
word-by-word along the d2 direction, i.e., consecu-
tive d2 words are considered as one line along the
dp dimension in a djxdy array. The input is con-
trolled by a switch. During the first half of the
d2 points, the switch is in position 1. During the
second half of the dj points, the switch is switched
to position 2. Thus the second half of the d2-point
data is added and subtracted with the first half of
the dgp-point data to perform the polynomial modulo

(Zdz/z—-l) and (Zdz/zﬁ-l) operations required by
the first level of the convolution decomposition.
The same technique is applied to the two branches
of the second level of the convolution decomposi-
tion except now a delay of d2/4 is needed to per-

form the modulo (Zdz/a—-l) and (Zd2/4+~1) opera-
tions. Also at proper branch of the second level
of the convolution decomposition, multiplication
by WIQI’ where 47 = 1,2, ..., dy/2, is performed
on the input data to perform the transformation

Z = wixul. The output of the second level decom-
position is fed into the 1-D polynomial convolu-
tion which consists of a pipelined FPT [6], a pipe-
lined FFT [1], a multiplier, an inverse FFT, and
a pipelined inverse FPT. The constant filter
coefficients Btl(k)(z) is read out from a table

and multiplied with the FFT outputs.

The Chinese Remainder Theorem (CRT) computa-
tional units shown in Fig. 2 to compute an equation
of the form given in (4) can easily be implemented
by delay lines and adders. From Fig. 2 one can
see that a FFT butterfly type of circuit [1] and
serial memories can be used as the basic building
blocks to implement the system. With the advent
of VLSI technology, such building blocks can easily
be implemented on VLSI chips.

The about technique and architecture for com-
puting a 2-D convolution can easily be generalized
to compute a multi-dimensional convolution of
dimension greater than 2. Let the input data be
dy x d2 x -- x dp arrays, Then it can be shown
that a fast algorithm similar to the FPT-FFT-CRT
algorithm discussed above exists if dq, d2,
dn satisfy the following condition:

’

ml—rl+l

=2 Th2™l = 9
-, dy=2

) 2mn_l-rn_l+l

where 1 < T f_mi for i = 1,2,...,n-1.

[1]

[2]

(3]

(4]

[5]

[e]

(71

References

L.R. Rabiner and B. Gold, Theory and Applica-
tion of Digital Signal Processing, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1975.

C. Wu, "A Digital System to Produce Imagery
from SAR Data,'" AIAA Systems Design Driven by
Sensors Conf., Pasadena, California, Oct. 18-
20, 1976.

H.J. Nussbaumer, and P. Quandalle, '"Computa-
tion of Convolutions and Discrete Fourier
Transforms by Polynomial Transforms.'" IBM
J. Res. Develop., Vol. 22, No. 2, Mar. 1978.

B. Arambepola, and P.J.W. Rayner, "Efficient
Transforms for Multi-dimensional Convolutions"
Electronic Letters, 15 March 1979, Vol. 15,
No. 6, pp. 189-190.

T.K. Truong, I.S. Reed, R. Lipes, and C. Wu,
"On the Application of a Fast Polynomial
Transform and the Chinese Remainder Theorem

to Compute a Two-Dimensional Convolution."

IEEE Trans. Acoust., Speech, Signal Processing,
Feb., 1980.

I.S. Reed, T.K. Truong, and K.Y. Liu, "A
Parallel, Pipeline Architecture of the Fast-
Polynomial Transform for a Real-Time Synthetic
Aperture Radar Processor," Proc. of Interna-
tional Computer Symposium, . Dec. 18, 1980,
Taipei, Taiwan, Republic of China, pp. 1028-
1042.

m
B
"

wort
= WITH RESPECT

INPUT DATA IN POLYNOMIAL FORM

A@ T
MOD MOD
d. d,
R 2/2*I 2 /2_,
| . ——
w, 7. A1
Z=WU, MOD MoD
TRANSFOR- 4 d
MATION FILTER 274 27
COEFFICIENTS
)
I B 2)
'l l 1
MOD MOD 1-D Z=W, V
dy/y 4/, L C NVOLUTION N
u, 24 v, T4a wart, MATION

a4/,
%4,
_ W? 2
Ul = Wz\/2
TRANSFOR-
MATION
8, @ (vy) 1
1-D POLY 1-D POLY
Ly CONVOLUTION CONVOLUTION
w. rrUI w. ot V)

|

|

1-D POLY
Uy'—p{ CONVOLUTION

.t vy,

!

I
VT W,
TRANSFOR-
MATION

z

V2=W

Bl

2 Y !
TRANSFOR- :
MATION

l

CRT

CHINESE REMAINDER
THEORM (CRT) COMPUTATION

10

w.!
Uy =w "'z
TRANSFOR-
MATION

}

2-D CONVOLUTION
RESULT

c
™

@)

Figure 1. Flow Diagram of a dj x d2, 2-D
: : i i = om
E.R. Berlekamp, Algebraic Coding Theory, COHVOl;t%_?_Tll with d2 = 20 and
McGraw-Hill Book Company, New York, 1968. dp =2 » where r=2
2-D DATA POINT
-1 \ o m
(z) —zA Lz MOD @22, 1)y 11 yeoom MOD U, 2/4”)l~—|-b POLYNOMIAL CONVOLUTIONS ¢ (U)
0", "2 Vooz=wu FAST POLYNOMIAL TRANSFORM
1Y%
PPELINED PIPELINED
Lyl 4y, - POINT dy/ - POINT I TN
- DELAY LINE DELAY LINE I et Y, COEFF. OF POLY,
SWITCH NO. 1 SWITCH NO., 2 | ;”TE'-'NED PIPELINED
- FFT
2 B D=A+B XFORM _) XORM w312 wer.t-Vy
oD (Z"z/z_') Yz =W,y Yy w,!? XFORMU, =W,V (z)(v)
do-1 W | INVERSE PIPELINED 2
_ : n FPT le— INVERSE
OUTPUT—Cn] () nE=OC"| "22 2 I worhVy FFT
€ 2 2 CRT CRT
| INVERSE PIPELINED
FPT INVERSE FFT ON
I wortiU; COEFF. OF POLY.
o, |
CHINESE REMAINDER 2" "2 |
THEOREM | TNIVERSE FIFELINED
COMPUTATION | Fer INVERSE [
CIRCUIT [AXEA FFT
CRT
| INVERSE PIPELINED
FPT E
W.R.T. = WITH RESPECT TO | Wt Z :::TVEKS
| 5,%2)
Mop (z 4 I !
a7y PIPELINED PIPELINED
DELAY LINE XFORM | worat, Z FFT
Z= W2V2 l
INED
SWITCHNO, 3 PIPELINE Ly PieLNED
FFT
"2/ ' worot Uy
MOD 12
@ Wy | ‘rw‘”z)

Figure 2. Detailed Implementation of a Pipelined Fast Polynomial Tree for

Computing a d

where r=2 1

111

x d,, 2-D Convolution with d, =2m T+l ang 4
2- 1 2 -

= 2"

REAL-TIME LISP USING CONTENT ADDRESSABLE MEMORY *

Jeffrey G. Bonar and Steven P. Levitan
Department of Computer and Informatior Science
~ University of Massachusetts
Amherst, Massachusetts 01003

Abstract -- The dynamic data structures of
LISP require periodic garbage collection,
prohibiting the use of most LISP implementations
for real-time applications. We propose a scheme
for implementing a real-time LISP system which

uses Content Addressable Memory (CAM) to allow
incremental garbage collection. In our scheme,
all basic LISP operations, notably including

retrieving a free cell for CONS, the list building
function, and retrieving a current name-value
binding, can be implemented with four or fewer CAM
searches and very 1little other computation.
Furthermore, CAMs are well suited for sufficiently
inexpensive implementation with VLSI technology.
Our system is not suitable if a virtual memory
environment is needed, and becomes considerably
more complex with CDR-coding. We are currently
implementing a version of our scheme on a
microcomputer.

Introduction

There are many real-time tasks which 1lend
themselves to Artificial Intelligence (AT)
solutions, Examples include assembly line robots,
rapid transit system controllers, many complex
scheduling tasks, and intelligent assistants for
interactive devices. Such systems will most
likely be designed and tested in LISP. The
flexibility and expressibility of LISP have made
it the "work-horse" language of the AI community.
Can the prototype systems, still written in LISP,
then be transferred to the final "production
model"? We feel they can, but not with a standard
LISP implementation.

The dynamic data structures of LISP require
the use of "garbage collection" to reclaim memory
as the data structures of the program grow and
shrink. Garbage collection is typically done in a
two phase process of first tracing and marking all
active data, and then collecting all unmarked
data. Depending on the size of the memory this
operation can cause serious delays in processing.
These delays can occur any time the program needs
a new free cell., 1In particular they could occur
during time-critical applications. An alternative
space management scheme, reference counting, is
unacceptable because it allows unbounded delays
whenever a cell is released to the free list.
This is because all successors of the released
cell could become garbage and would have to be put

* Support for this work was partially provided by
the Army Research Office under grant
DAAG29-79-G-00U6.

0190-3918/81/0000/0112$00.75 © 1981 IEEE

112

on the free list at the same time. For these
reasons a standard LISP implementation 1is not
considered acceptable for real-time environments.

In this paper we discuss a real-time LISP
implementation. Various LISP machines (e.g.
Greenblatt [7] and Deutsch [4]) -- although
usually presented as personal computing tools --

have shown that special purpose processors can
vastly increase the speed and utility of LISP
programs. Our paper shows how special purpose

associative memory can be used to gain additional

bernefits.

Following Baker [2] we define a real-time
list processing system as having "the property
that the time required by each of the elementary
operations is bounded by a constant independent of
the number of cells in use". Baker's real-time
LISP system involves incrementally compactifying
and. linearizing active cells by moving them
between two memory partitions while leaving the
garbage behind. Wadler [11] analyzes and
summarizes a real-time scheme involving two
processes running in parallel: the mutator is the
application program while the collector keeps the
free-list from becoming empty.

Our scheme uses specialized hardware, Content
Addressable Memory (CAM), to create a very fast
real-time LISP system, using a very simple set of
algorithms, This speed and simplicity, which are
the advantages of our scheme, are due directly to
our use of CAM to examine all cells in memory in

parallel.

discussion of CAM, After
presenting our real-time LISP scheme, its
limitations are discussed. Finally, we discuss
our implementation of this scheme.

We begin with a

Content Addressable Memory

General Description

Content Addressable Memory
organized such that each word can compare its
contents, rather than its address as in random
access memory (RAM), with a value broadcast by the
central processor [5]. This comparison process is
done by all CAM words simultaneously. The
processor can then interrogate the CAM to discover
which words, if any, match the broadcast value.

(CAM) is memory

Each word of a CAM memory has an associated
responder bit (see figure 1). This single bit is
reset if the contents of the word do not match the
broadcast value, held in a register called the

[COMPARAND]

[WASK | REi;?:DER

CONTENT
ROORESSALLE
HENORY

J HORDS LONS

N—— 1 BITS WIDE ——— "

SOME-NOKE
BIT

Figure 1. CAM Organization

comparand. All responder bits are typically OR'ed
together and their disjunctior is available to the
processor as the signal SOME-NONE. Using
SOME-NONE the processor can determine if there are
any words that match the comparand. Additionally,

a function to count the number of responders is
often provided.

Another function the responder bits provide
to the processor is to allow it to select a single
responder if more than one exists. This 1is dore
by daisy-chaining the responder bits such that
when the signal SELECT-FIRST is generated by the
processor only the first responder in the chain
remains set and all the others are reset. The
processor - can also perform the function SET-ALL
which sets all the responder bits true. This 1is
usually done before the comparand is broadcast to
the memory.

Along with the comparand the processor also
broadcasts a mask value. This 1is used by the
words of the CAM to determine which bits of the
word .are to participate. For bits in the word
where the mask bit is not set, no comparison takes
place. The full operation is:

for all Words J
for all Bits I in Word J

Responder_bit[J] <-
Responder_bit[J]

and
T ((Mask_bit[I]
and
CAM bit[I,J] = Comparand bit[I]
)

or not Mask bit[I]
)

Note that this operation takes place in al words

in parallel. i

113

The processor can also perform the operations
READ-RESPONDERS and WRITE-RESPONDERS. These allow
the processor to read the contents of and change
the contents of all words whose responder bits are

set. This operation is often 1implemented to be
under the control of the mask. Finally it is
often convenient to allow the processor to access

the CAM as a regular RAM and allow reading and
writing of single words.

Suitability For
(VLST)

Very Large Scale Integration

CAM is well suited to VLSI implementation.
Foster [6] and Mead and Conway [10] both discuss
the practical design of a VLSI CAM circuit. Two
-f the most important criteria for determining if
a circuit can be implemented efficiently in VLSI
are the regularity of circuit components and the
rumber of input/output pins necessary [10]. CAM,
like RAM, has an inherently regular sub-structure:
the word.

To minimize the pinout (the number of
input/output pins needed) several techniques can
be used. First both the comparand and the mask
values can be broadcast to the CAM in a bit serial
protocol. This would mean that comparisons are
done one bit at a time across all words in
parallel. Bit serial operation would slow down
the comparisons somewhat, but only on the order of
the number of bits in a word. (a)

To minimize pinout further, the data in, data
out, and address 1lines of the circuit can be
multiplexed onto the same pins of the package.
This technique has been used successfully for
other types of VLSI circuits, for example, the
Zilog Z8000 microprocessor. Minimizing the number
of pins (and output drivers) would sigrificantly
reduce the cost of the circuit and increase the
area available for storage.

The cost of CAM has been estimated to be 1.5
to 3 times the cost of an equivalent size RAM [6].
Memory sizes up to 64k of 32 bit words per circuit
are not inconceivable [10]. Printed circuit cards
containing Uk bytes of CAM have been on the market
since 1978 [81.

Finally, CAM architectures lend themselves to
a solution of the yield problem for VLSI. The
problem is that a single flaw in one place of a
VLSI circuit will cause the whole circuit to be

unusable. As the physical area of VLSI circuits
increases, so does the the probability of a flaw
ruining a given circuit [10]. Since CAM
operations, unlike RAM operations, do not depend

upor where in memory a particular value is stored,
it would be possible to disable flawed words of a
CAM circuit, after testing, and still wuse the
resulting (smaller) memory.

(a) The time per bit would be on the order of 10
nano-seconds. Therefore, even with bit serial
operation, with reasonable word lengths, the time
for a CAM operation would be on the order of the
time for a machire instructior.

For most applications
long. The Semionics CAM,
bytes (2048 bits) per word [8]. This allows
entire records of data to fit in one word. A
record might contain an employee's name, address,
telephore number, pay rate, regular hours,
overtime hours, etc. This would allow searching
on any field of the record to retrieve it.
Although there are standard techniques for
spreading records across two or more CAM words,
this slows the search considerably [6].

CAM words are quite
for example, has 256

An ideal
it

CAM for LISP has much shorter words

since is desirable to have only one LISP cell

per CAM word. We discuss several types of LISP
cells below. Here we concentrate our discussion
on list cells which have seven fields: Flags,
. Garbage, Cell type, Left, Left type, Right and
Right_ type.
The Flags field is wused for complex CAM
searches involving logical disjunction and
conjunction of different match criteria [6]. The

bits in the Flags field are used as "temporary
storage" for the responder bit of each word. The
Flags field could be replaced by several auxiliary
responder bits for each word and CAM operations to
logically combine them [6] [8].

The Garbage field need be only one bit,
indicating if the cell were "free". Using this
bit we completely dispense with the Free 1list

found in most LISP implementations.

The Cell type field indicates if the cell is
a list cell, a string cell, or any one of a number
of other types. We discuss this in detail 1later.
The Cell type will facilitate any desired strength
‘of typing and also allow cells of different types

to share the same memory space (without
partitioning) and the same garbage collecting
scheme,

The Left type and Right_type fields will also
enforce typing. They allow us to pack short
integers, bit strings, and pointers to machine
language code into the cell. 1In addition they
simplify the garbage collect process by allowing
us to test whether a given Left or Right is a
pointer.

The Left and Right fields would, as usual, be
large enough to point to any other cell in memory.

That is, a memory with 2¥*n CAM words (cells)
would require n-bit Left and Right fields.

The CAM operations that need to be supported
are SET-ALL,. MATCH, SELECT-FIRST, SOME-NONE,

"READ-RESPONDERS, WRITE-RESPONDERS, READ, and WRITE

as outlined above. The COUNT-RESPONDERS is not
necessary. Additionally, for the name-value
binding scheme outlined below, a FIND-GREATEST

function would be helpful.

114

Real-Time List Processing with CAM

The Algorithm on a Simplified LISP CAM

We begin the description of our algorithm
using a CAM in which each word contains one
simplified LISP cell with only three fields: Left
(CAR) and Right (CDR), which both point to another
LISP cell, and a Garbage bit (see figure 2).

GARBAGE
7
LEFT

RIGHT

Figure 2. Simplified CAM LISP Cell
—o° g 2ITD1IA0C LAM LioF veld

collection with
if there are any
CAM operations:
and a CAM search
in memory.

The key observation about garbage
such a cell is that we can find
pointers to a given cell with two
a CAM search of the Left fields
of the Right fields, of all cells

Any practical implementation would use CAM
words to hold several different kinds of cells.
In particular, our implementation wuses special
cell types to allow garbage collection of strings,

name—valuq bindings, and the primitives of the
GRASPER graph processing language [9]. We discuss
how these special cells are handled after

presenting the simplified one cell type algorithm.

When a free cell is needed, a CAM search 1is
done for a cell whose Garbage bit is set. This is
done by the Supply free cell routine in figure 3
(which appears at the end of the paper). One of
these cells is selected with the SELECT-FIRST
operation. This cell, call it C, is returned as *
the needed free cell. It is still necessary,
however, to propagate "garbageness" to the
sub-structures of this cell. This is done by the
Potentially make garbage routine in figure 3. We
do this by first CAM searching the Left and Right
fields of all other cells for equality to C.Left.
If there are no responders to this search
(SOME-NONE has value NONE), then the cell pointed
to by C.Left is garbage and we set its garbage
bit. If C.Left = NIL, then the search need not be
done. We handle C.Right in an identical way. The
algorithm requires that all cells be initialized
with their Garbage bits set and their Left and
Right fields set to NIL.

A piece of list structure potentially becomes
garbage when one of possibly many pointers to it
is deleted. This can occur in several ways during
the execution of a program. The functions REPLACA
and REPLACD explicitly delete pointers from the
left (CAR) and right (CDR) fields of list cells.
The function SET (assigmnment) also deletes the
pointer to a variable's old value. These
functions all call the routine
Potentially make garbage on the the pointer they
are deleting. This routine determines whether to
set the Garbage bit of the head cell of the

structure pointed to. All sub-structure will be
handled if that head cell is made garbage and when
it is actually reused.

Circular lists cannot be garbage collected in
our regular scheme because there 1is always a
pointer to any cell in the circle. They can be
accommodated, however, either by requiring the
user to release them explicitly, or by simulating
them with a "lazy evaluation" scheme (see Allen
[1] for details on lazy evaluation).

Extensions For Other Cell Types

Our scheme is easily adapted to other kinds
of dynamic data structures. Here we will discuss
an implementation for strings. Remember that, as
discussed earlier, our LISP list cell actually has
seven fields. The simplified cell 1is augmented
with a Type field for the cell and for the Left
and Right fields. These fields are necessary for
the algorithm, but also allow us to enforce
typing. Typically, typing is done by putting all
of one kind of data together so that address alone
can be used to determine type. In our scheme, if
a
of type T.

Strings are made up of linked lists of cells
(see figure 4). String cells, like any other cell
type, must be fit into the existing size CAM word
and must have Type,
They also have several bytes of character data and
also Next, a Cell ptr implicitly of type string.
The implicit typing saves space in the cell and it
does not cause a problem, since string cells can
point only to string cells,

GARBAGE
CELL TYPE \/FLAGS NEXT
st [smme[[[RIE[AILTI-] ~, |

-
s2 [samne] | [TTI] M| E by /“ll

s [][] V]S[TIE]
el BTN

ut [usr] [sTR] V|
CELL TYPE AFLHGS}_—VEPFJ LEFT "‘IIVGPHET RIGHT
GARBAGE

The string "REAL-TIME" (S1) and a list cell,(L1)
whose CAR points to a string beginning "SYSTE".

Unlike a list, when the head of a string
becomes garbage, the entire string is known to be
garbage. Potential "garbageness" need only be
propagated down the Next field 1link and the

Other_ptrs_to operation need not be done.

For example, in figure 4, assume that cell L1
is - made garbage. When the cell is chosen to be
reused, we attempt to propagate "garbageness" to
L1.Left. If there are no other pointers to cell

field is of type T, it may only point to a cell-

Garbage, and Flags fieldsn

115

S3 the string "SYSTE..." becomes garbage. S3 1is
marked garbage and when it is reused no other CAM
searches need be done.

Atoms are also implemented as special cells.
In addition to the Flag, Cell type, and Garbage
fields, atoms have a Value field and Value type
field, pointirng to the atom's static binding, and
a Print_name field implicitly of type string (that
is, pointing to a cell of type string).

A Truly Associative "A-List"

In LISP each function call creates a set of
name-value bindings which exist during the
execution of the function and disappear at its
completion. This 1is roughly equivalent to the
formal to actual parameter bindings in other
programming languages. Traditional binding
schemes use one or more lists to associate names
with values. A 1list used this way is called an
A-List for Association-List (see Allen [1] for
more details).

In our scheme the A-list, like the Free list,
does not exist. Instead the bindings are held in
a set of distinguished cells, existing anywhere in
CAM, When entering a new environment, we
increment an environment counter and create a set
of CAM cells to hold the names bound in that
environment, their values, and the new environment
number . Now we can ask the question above as a
single compound CAM search for a name-value
binding within an envirorment, and retrieve the
current binding directly. Since the current value
of a name might not be in the most current
environment, we need to search for the greatest
environment number for that name.

When an environment is exited, a pair of CAM
operations is executed. First a search for all
environment cells with the current environment
number, followed by a WRITE-RESPONDERS operation
to make all these cells garbage. Since no other.
cell will point to these binding cells, even if
some do point to their descendants, they can all
be turned into garbage in one operation.
all cell

Figure 5 summarizes the

discussed in this section.

types

Garbage, Flags, and Cell_type fields occur ir each cell.

List Left, Left_type, Right, Right_type

Atom Print_rame (implicitly of type string)
Value, Value_type

String Character_1...,a1aracter_n. Next (implicitly
of type string) :

Envirormert Envirorment number, Name (implicitly of

type atom), Value, Value_type

f

Figure 5. Summary 11 Types

Other Issues

CDR-Coding

Many recent LISP implementations use
CDR-coding, compact encodings of list
representations which take advantage of
statistical regularity in 1list structures (see

Bobrow and Clark [3] for a summary and discussion

of these schemes). A CAM augmented LISP with
CDR-coded cells is easy to imagine, though it
would require considerable extra time and

complexity in the implementation of the basic LISP
operations. Finding all pointers to a given cell
would, in general, require a CAM search for each
possible interpretation of a cell pointer field.

Given decreasing hardware costs, we did not
feel it necessary to compromise the simplicity and
speed of our algorithms. In particular,
CDR-coding offers no solutions to our primary goal
of real-time operation since it reduces space
rather than time needs.

Virtual Memory

Our scheme does not support virtual memory.
In general, it would be impossible to perform the
test Other_ptrs_to on a given cell without paging
every active page of the virtual memory into CAM,
The application programs we envision for our
system can always be tested 'in advance to
determine their space needs. More CAM cells can
always be added without a time penalty.

Our Implementation

We are currently implementing the LISP system
discussed above using a Z80-based microcomputer
and 80K bytes of CAM. The CAM, Semionics
Recognition Memory (REM) [8], is organized as 320
256-byte words (called "super words" in the
company literature), We do not need such long
words and have cut the memory into vertical
slices, yielding 32 LISP cells per word. Although
this means that many of our CAM operations will
have to be repeated 32 times in the worst case
(once for each vertical slice), the system runs at
an acceptable speed. The real-time properties of
our system remain intact.

The project is a pilot study to
issues. First we wish to
relatively slow CAM (bit serial searches on the
order of 1 micro-second per bit) which is not
organized to our needs, we can build a real-time,
self-contained LISP system.

examine two
show that even with

Second, the graph processing language GRASPER
uses many associative operations which can be
supported by CAM. (b) GRASPER objects have the

(b) GRASPER is used to represent and operate on
semantic nets, augmented transition networks
(ATNs) , HEARSAY-II style blackboards, and other
associative data structures used by AI projects at
the University of Massachusetts.

116

design and

same dynamic allocation needs as other LISP
objects. We will embed a subset of the GRASPER
language into our LISP system using the cell

typing conventions already discussed. We expect
to show the advantages of a CAM based GRASPER
system as part of a feasibility study for the
implementation of a state of the art
CAM on our VAX 11/780.

Conclusions

We have presented a scheme for implementing a
real-time LISP system by using Content Addressable
Memories for storage of the basic LISP cells. Not
only does our scheme perform all elementary
operations in real-time, it also has the following
other advantages:

1. All cells are available for wuse, in
contrast to other real-time schemes.

2. Retrieving the correct value for a name
can be be done truly associatively,
always requiring only two CAM operations.

3. Strings and other dynamic data types can
be elegantly and efficiently integrated
into the basic scheme without
partitioning memory.

4, CAM is eminently suited to modern VLSI
implementation techniques.

Our scheme does have limitations, however:

1. Circular lists cannot easily be garbage
collected.

2. Our scheme does not 1lend itself to a

virtual memory environment.

We believe that even given the above
limitations, our scheme is an attractive
alternative for self-contained, dedicated systems.
It is wusable 1in a real-time environment and all
basic LISP operations perform extremely quickly.
We believe that tested AI systems written in LISP

could be transferred to a CAM-augmented LISP
machine without costly redesign and without
recoding in a standard systems programming
language (e.g. assembly 1language or Ada). In
this way we hope our scheme will aid in the
creation of simpler yet more powerful

computer-controlled systems.

Acknowl edgements

We would like to thank Caxton Foster for his
wealth of knowledge about CAMs and "hardware
solutions". Raj Wall is working with us to
implement the system. Our interactions with him
have been very valuable. John Lowrance provided
us with much information about the basic
implementation and operation of LISP and GRASPER.
We would also 1like to thank Jeff Conklin, Dan
Corkill, Elliot Soloway, Bev Woolf, and the
referees for their careful reading of earlier
drafts.

References

[1] John Allen, Anatomy of LISP, MeGraw-Hill
Book Company, (1978), pp. 149-153.

[2] Henry G. Baker, "List Processing in Real
Time on a Serial Computer,"” Communications
of the ACM, (April, 1978), pp. 280-294.

[3] Daniel G. Bobrow, and Douglas W. Clark,
"Compact Encodings of List Structure," ACM
Transactions on Programming Languages and
Systems, (October, 1979), pp.266-286.

(4] L.P. Deutsch, "A LISP Machine With Very
Compact Programs," Proceedings 3rd IJCAI,
Stanford, California, (1973), pp. 697-703.

[5] Caxton C. Foster, Computer Architecture,
second edition, Van Nostrand Reinhold Co.,
(1976) .

[6] Caxton C. Foster, Content Addressable
Parallel Processors, Van Nostrand Reinhold
Co., €1976).

[7] R. Greenblatt, LISP Machine Progress
Report, AT Lab. M.I.T., Cambridge,
Massachusetts, memo Ui, (August,1977).

[8] Sydney Lamb, "An Add-In Recognition Memory
For S-100 Bus Microcomputers-Parts 1,2, and
3," Computer Design,(August-October, 1978).

[91 John D. Lowrance, GRASPER 1.0 Refererce
Manual, Department of Computer and
Information Science, University of
Massachusetts, Amherst, Massachusetts,
Report 78-20, (December,1978).

[10] Carver Mead, and Lynn Conway, Introduction
to VLSI Systems, Addison-Wesley Publishing

To., (1980).

[11] Philip L. Wadler, "An Analysis of an
Algorithm for Real Time Garbage Collection,"
Communications of the ACM, (September,
1976), pp. 491-500.

117

Figure 3. Algorithm for CAM Augmented LISP Garbage
Collection

function Supply free cell : Cell ptr;
(* called by CONS to f1nd a cell it can use
to build a list structure with. In addition
this function does the incremental garbage collect ¥)
var Free_cell, Temp : Cell ptr;
begin
search for first Free cell from Cell
where Cell[Free cell].Garbage
ao begln
if Cell[Free_cell]l.Left <> Nil ptr
then begln
Temp := Cell[Free cell].Left;
Cell(Free_celll.Left := Nil_ptr;

(* These two make sure a check for other
pointers = Cell[Free_cell]l.Left will
not respond to that field itself *)

Potentially make garbage (Temp)

(* propagate "garbageness" *)

end;

if CelllFree celll.Right <> Nil_ptr
then begin
Temp := Cell[Free cell].Right;
Cell[Free cell].Right := Nil _ptr;

(* These two make sure a check for other
pointers = Cell[Free_cell].Right will
not respond to that field itself #%)

Potentially make garbage (Temp)

(* propagate "garbageness" *)

end;
return Free cell

end

else System_error ("Cell space full")
end;

procedure Potentially make garbage (C : Cell ptr);
begin
Cell[Cl.Garbage := not Other ptrs to (0)
end; ’

function Other_ptrs to (C : Cell_ptr) : boolean;
var Responder : Cellptr;

begin
sSearch for Responder from Cell
where not Cell[Responder].Garbage

and CTell[Responder].Left = C
do return Ttrue
else search for Responder from Cell
where not Cell[Responder] Garbage
and Cell[Responder] Right = C
do return true

else return false

end;

(continues on the next page.,.)

118

(...figure 3 continued)

procedure Init_CAM;

var Responder : Cell ptr;

begin
search for Responder from Cell
where true

do begin
Cell{Responder].Garbage := true
Cell[Responder].Left := Nil ptr;
Cell(Responder].Right := Nil-ptr
end

end;

Notational Conventions
The CAM is saen as an "associative" array of records, where
each record represents the data in one CAM cell. Standard
indexing into the array allows us to treat the CAM as RAM.
From the above we have two data types: ’

Cell ptr = 1..Num_cells;

Cell = associative array [Cell_ptr]
22 record
Garbage : boolean;
Left, Right : Cell ptr
end

The basic CAM opsration is:

search for [first] <index variable into CAM>
from <CAM array name>
where <boolean expression>
do <statements>
else <statementsd>

The <index variable> is available within the do <statements>
to syntactically represent all cells that meet the search
eriteria. This <index variable> is a free variable ranging
over all possible values, that is, indexing all cells in the
CAY array. For each CAM cell where the <boolean expression>
is satisfied, the do <statements> are executed. The do
{statements> are performed in parallel for these cells. In
the case of "search for first", the index variable gets sat
to the value of the first responder. In the case that no
cells satisfy the <boolean expression>, the else
{statements> are executed, Typical CAMS do not support the
generality implied by this construct. In particular,
arbitrarily complex <boolean expressions> will take N CA¥
searches, where N is the number of disjuncts in a
disjunctive-normal-form version of the <boolean expression>,
and do <statements> are limited to assignments to the cells

indexed by the <index variable>., Other operations can be
supported either by more intelligent CAM cells or by a

micro-coded CAM controller, Our algorithms use the
construct in ways easily implemented in CAM.

119

THE M.A.P. PROJECT
AN ASSOCIATIVE PROCESSOR
FOR SPEECH PROCESSING

*

V. CORDONNIER - L. MOUSSU

University of Lille
(FRANCE)

*

ABSTRACT

MAP is an associative multiprocessor of medium
size. It has been designed for experimentation in
pattern recognition area - especially speech reco-
gnition. The machine is composed of sixteen micro-
programmable processors. At the microprogram level,
every processor is autonomous and can perform its
task without receiving any external command. At
the collective level, control is assumed by an
extra master processor. This processor is concer-
ned with Input-Output and common orders distribu-
tion. The architecture presents special accomoda-
tions for synchronization between processors. Some
of them are driven by an associative arrangement.
The total instruction rate is 68 MIPS, allowing a
real time processing of the speech.

INTRODUCTION

The architecture of a multiprocessor machine
must optimize, both data and instruction flows.
Often, these two goals appear to contradict each
other. However some facilities may occur when the-
se flows are driven with a good regularity or re-
petition of simple pattern. Particularly, when a
unique model of control distribution and data ma-
nipulation may be taken as a general representa-
tion of the behaviour of the processors, the ar-
chitecture may be designed according to it (for
example - vector computing with SIMD architecture).

In the most general case it is quite impossi-
ble to find out such a model and, accordingly, to
obtain a satisfying balance between two cons=
traints :

- availability of a flexible control scheme
for parallelism able to support distributed algo-
rithms

- realization of a fast and simple communica-
tion tool between processors.

The first goal implies the design of indepen-
dant and autonomous processors but, conversely,
represents a difficulty for getting an easy solu-
tion for the second one. Communications have to be
localy controled by each processor according to a
communication protocol. Then, data transfers, are
complicated and slow.

So, when studying a special purpose architec-
ture the first step is to point out the regular
properties of the application involving facilities
in control distribution and data.

120

0190-3918/81/0000/0120$00.75 © 1981 IEEE

Pattern recognition applied to voice analysis
has two typical characteristics :

- Input data flow is strictly sequential and
periodic

- The amount of data to be held at a time is
not very large and may be easily ordered.

THE SPEECH RECOGNITION CONTEXT

The most usual way to drive a speech recogni-
tion process is to use a mathematical representa-
tion derivated from.signal processing models [11].

The aim of the project is to use an associa-
tive model related with a data base organization

[4T.

Speech processing may use as an input unit, a
channel analyser. It is composed of sixteen input
filters distributed along the voice spectrum. At
every sampling period, a filter issues a digital
value in proportion to the quantity of energy re-
ceived in the channel.

According to the noise and the limits of pre-
cision, one value may be represented by a binary
positive number of height bits. Then a sample is
a 16 bytes vector or a 128 bits word. Period may
be taken between 10 and 50 ms.

The input data flow may be looked as a two
dimensions array in a timefrequency diagram (fig.

1). [91Cf101.

At the phonetic level, the element to be
identified is named ''phonem" and represents a ty-
pical sound produced by the speaker. [12][13].

A phonem stretches itself in the two direc-
tions time .and frequency -as a fuzzy pattern- it
seems to be possible to recognize such a pattern
by comparison with models which have been stored
in an associative memory [21[8]. Unfortunatly the -
direct comparison is impossible and it is neces-
sary to extract from the input flow some charac-
teristic informations such as :

- mean value
- peak location
- ratios in upper and lower frequencies
- measurement of relief
etec ...

Theseinformations come out from an horizontal
(time) or vertical (frequency) or mixed analysis

[31.

Using these informations, a process must fol-
low various tracks among the stored patterns used
as references. It has to compute a dynamic score
for each-of them and to decide :

- rejection of a bad candidate

- acceptance of one or several good
candidates .(a choice will be done
at the upper lever referring to syn-
tax or semantics)

- pursuing the operation with the following
samples
- activate new candidates.

Although MAP is designed for experimentation rather
than for exploitation, the previous considerations
seem to be general and lead the organization of
storage. The informations used as references are
sets of samples. These sets are organized in files
Some files are time indexed and represent phonems.
Some files are type indexed and gather all the
samples which have similar properties or measure-
ments (fig. 2).

A reference sample located in the date memo-
ry may belong to several files and the associative
process will have to follow various links before
idntifying a phonem. Consequently this memory must
present the following characteristics :

- basic items.are samples (128 bits)

- there is a need for a fast (parallel)
access to one sample.

- facilities must be provided for multifiles
description (linkage).

It is obvious that a multiprocessor is adequate for
such a processing [5], [6] ,[7] including

- parallel computing in order to extract
significant informations from unknown sam-
ples.

- parallel access to models of patterns.

- comparisons between vectors and measure-
ment of distances.

GENERAL DESCRIPTION OF MAP

The processing model derived from this appli-
cation may be described by the flow of fig. 3.

MAP has been designed from this model with
two control levels. It is composed of sixteen 8
bit microprocessors. The Low Level Control (LLC)
is local to the PE.and brings facilities for auto-
nomous processing. The High Level Control (HLC) is
unique and has to drive, organize and synchronize
collective activities.

At the High Level a single control unit
issues general commands that are identified at the
same time by the PEs. A general command is initia-
ted when the former one has been achieved by all
the processors. From this point of view, the machi-
ne seems to have an SIMD architecture with a se-
quential running of the program.

At the Low Level, a specific program is loca-
ted in the control memory of each processor. So
every processor is able to perform its own and par-
ticular part of the task. A processor must take
into account :

- its own location

- its status (resulting from previous opera-
tions)

- informations produced by neighbours.

121

Two buses allow communications between HLC
and LLC. The command bus is provided for distri-
buting general commands or common data in paral-
lel. The control bus is organized in a polling-
selecting manner and driven by the HLC processor.
By this means the HLC processor may observe clo-
sely the activity of the PEs and pick out final
results.

Every processor may access two routing re-
gisters. The first one -128 bits- may be shifted
to the right along all the sixteen PEs. The other
one -136 bits- may be shifted to the left via the
HLC processor. Routing operations are controled
by the processors themselves. Two neighbour pro-
cessors or a consecutive set of processors may
request a partial use of these buses for local
communications.

The storage is divided in two parts : one
processor possesses its own control memory. Accor-
ding to the characteristics of the chip - 8 X 300-
this control memory is a 4K - 16bits RAM- . During
processing, this memory cannot be altered and is
used as a ROM.

Data memory is organized in a 128 bits wide
- 16 K words store. Every slice of 8 bits is de-
dicated to one processor. There are 9 adresses
producers : every pair of processors PLUS the HLC
processor may access the data memory through a
priority encoder. This unit is provided for con-
flicts management but, most of the time, these
conflicts may be avoided by synchronization at the
LLC.

They are mainly two types of informations to
be stored in the data memory :

- voice samples represented by sixteen orde-
red bytes

- linking informations, that is to say,
addresses represented by 8 double bytes.
One word of memory contains 8 links, thus
a sample described by this word may belong
to 8 different files.

As these linking informations are used to cons-
truct complex data structures between reference
samples, the data memory is seen as a special pur-
pose, read only, data base with a fastened access
and a limited capacity.

THE PROCESSING ELEMENT

In spite of an appearance of choice, they
were not a great amount of possibilities for the
microprocessor of a processing element :

- a custom designed processor was rejected
because of the delays

- rapidity is a major argument

- ability for microprogramming is important

- data manipulations are considered to be more
interesting than computing possibilities

The typical architecture of 8 X 300 from Signetics

seemed to present the best characteristics for
these criterions. [1]

A processing element is composed with :

-~ CPU : 8 X 300 - 250 ns for one instruc-
tion

- three registers for memory control

- four registers for routing

- two registers for exchanges with the con-
trol and command buses

- two registers for sorting

- two registers for synchronization

- four 16 K bits static RAMS arranged in
4 K - 16 bits store.

All the program is loaded into the RAM before
starting, though a special loading bus. This pro-
gram is composed of :

- a general command analyser

- various sequences corresponding to the
commands. The maximum number of sequences
is 255. They are initiated by HLC

- synchronization and communication proce-
dures.

During a sequence a processor is able to
access the data memory, to exchange informations
with its neighbours, to receive and send informa-
tions from or to the HLC processor, to present and
accept synchronization demands and, of course,to
perform local computations. A macro-assembler bring
facilities for writing the sequences in parallel.

Fig. 4 show the architecture of a PE and fig.
5 is a simplified representation of the program
organization.

In order to increase the performances of col-
lective operation. a wired sorting unit has been
added to the processors. This unit gives at any
time the maximal value among those presented in
parallel by all the processors. This SORTER is a
tree and returns to all the processors the number
of the winner.

It takes three iﬁstructions (750 ns) before
getting the results of a sorting operation :

MORE VALUE TO RSORT
COMPARE WINNER'S CODE TO LOCAL CODE
JUMP IF NOT EQUAL

Many general purpose sequences have already
been written, let us give some examples (I is one
instruction or 250 ns) :

- compute the mean value rounded in
one byte (12 I)

- compute the location of gravity center
(16 I)

- compute the moment of. inertia with regard
to a processor (28 I)

- find the best ressemblance between a
given sample and a file of £ references
with distances

122

16
d = § [xi—ri|+(5+1o£).1

- find the best ressemblance with distance

16
a=7j \/xz-r§+(5+18/&).1
1

2

The general control processor is also a 8 x 300
module. Over and above the communications with the
PE, it has a private memory used as a general
control store. This memory is shared in a multi-
access arrangement with a conventional processor.
Because of the low rate of the inputs and outputs,
a microprocessor is sufficient, then the HLC pro-
cessor has only to search and distribute general
commands.

This host processor also has two extra roles

- load the PES programs before executing
a program

- compile new programs to be loaded from
macro-assembler to 8 X 300 machine lan-
guage.

Fig. 6 shows the architecture of the whole system.

THE SYNCHRONIZATION UNIT.

Because it is the most important part of the
distributed control, the synchronization unit will
be described in detail.

There are two occasions where processors must
execute in a synchronous way :

- at the end of a LLC sequence in order to
obtain a new general command from the HLC
processor

- before communications, sorting operations
or memory accesses.

All the processors must have exactly the same
behaviour during the operations because all of them
are working at the same level. For ‘this matter the
synchronization is designed according to an asso-
ciative model.

The first family of synchronization tools is
applied to well delimited sets of processors. For
one given set each processor K has two flags

- a D, Flag used as an output device
(demand of synchromnization in the set)

- a C, Flag used as an input device
(command of synchronization for the who-
le set).

The logical relationship between these flags
is easily realized with a unique AND circuit :

Cg=D; D, ...nDyf.e. D K=l

Synchronization occurs when each of the PE_ of the
set execute the same sequence of instructiodns :

SET D, = TRUE ;

K]
WAIT : WHILE CK = FALSE GOTO WAIT
NEXT :

As a common clock drives all of them, the proces-
sors are going to execute the NEXT labeled ins=t
truction at the same time. This operation is pos-
sible because the 8 X 300 processor is able to
perform in one instruction the test of CK and the
corresponding jump.

Tools have been wired for the following sets :

Sets of two PEg : (POPl)(PQPa)...(quPlS) : Flag D,

(P1P2)(P3P4)...(P15PO) : Flag D,
Set of four (POP1P2P3)..(PlQPlaPluPls)Flag Dy
Set of sixteen (POPl"""""(Plupls) : Flag Dq
Set of seventeen (P.P........... P, P _ plus the
HLC processor) FlgngS 715

this latter set is particularly used before get-
ting a new general command.

Another manner to obtain synchronization bet-
ween groups of processors consists of a dynamic
construction of the group. The interest of such
a tool is to allow synchronization by observing
the results of processing rather than the location
of processors. This is necessary within an asso-
ciative process when processors may issue some
specific result, the value of which is significant
for driving cooperation between them. Namely a
subset of the network may request a synchroniza-
tion because every processor of that subset holds
a typical result while all the others do not.

For that purpose, a processor may display one
of the heipt names (0 to 7).

Names O and 1 have special meaning :
0 : the choice of a synchronization name has
not yet been done
1 : no synchronization required
2,7 : effective synchronization names.

The management of these names is realized accor=
ding to the following rules :

(a) if there exist, at least, one synchroniza-
tion name equal to O no synchronization is
possible

(b) in order to allow other groups to synchro-
nize, a processor must display its choice
(# 0) as soon as it is in position to do

(c) displaying a name is not realy a request for
synchronization ; the request is represented
by an extra D flag. (D6)

(d) among the processors that have displayed the
same name, and AND circuit is dynamicaly
provided and delivers the C command when all

123

the D flags have been switched on.

Realization is quite simple and entirely sta-
tic. First a gate is provided in order to take in
charge the (a) rule.

As there are six names, each of them is con-
troled by one AND gate. Every gate is controled
by all processors through a network driven by na-
mes. This network must decide whether one name, for
one processor, is active or not.

Fig. 7 presents an illustration of some usual
cases of synchronization.

CONCLUSION

It is easier to design a special purpose pro-
cessor than a general purpose one. The behaviour
of programs is more closely identified and a spe-
cific model of instructions and data flow may be
established. Accordingly, the architecture is more
sophisticated and the performance increased.

In the MAP project these considerations gave
the possibility to take advantage of two points

- the main data structure is a fixed vector.
- the control may be separated in a high
(general) and a low (local) level.

The former point imposed to realize a very
flexible synchronization system between proces-
sors. Such a system brings a great facility for
writing parallel programs.

This study was supported by CNET, the French
administration for Research in Telephone and Tele-
communication area. The machine in now under test
and must be operationnal in a few weeks.

'BIBLIOGRAPHY

[1] SIGNETICS - 8X 300 reference manual -
8T32 reference manual.

[2] S.S. YAU, H.S. FUNG - Associative processor
architecture : A survey. Computing
surveys Vol. 9, n® 1, March 77,
pp 3-27..

[3] C.A. FINNILA, H.H. LOVE - The associative linear
array processor. IEEE Transactions on
computers, Vol. 26, Feb 77, pp 112-125.

[4] D.C.P. SMITH, J.M. SMITH - Relational data base
machines. Computer, vol. 12, march 79,
pp 28-38.

[5] P.J. SADOWSKI - Exploiting parallelism in a re-
lational associative processor. bth
Workshop on Computer Architecture for
non numeric processing, ACM Syracuse
University, Aug. 78, pp 99-109.

[6] J.R.CARLBERG - A paged hardware associative
memory. David W. Taylor Naval Ship

Research and Development Center
BETHESDA MARYLAND, Aug. 77.

[7] A.D. FALKOFF - Algorithms for parallel search
memories. Journal of the ACM 9, 4,
Oct. 62, pp 488-511,

[8] s.S. YAU, C.C. YANG - Pattern recognition by
using an associative memory. IEEE
Transactions on computers 15, n® 6,
Dec. 66, pp 94u4-947.

[[9] H.F. SILVERMAN, N.R. DIXON - The Modular Acous-
tic processor. IEEE Transactions on
Acoustics speech and signal proces-
sing 25, n® 5, Oct. 77, p 367.

[10]L. MOUSSU - Modéle fonctionnel de mémoire as-
sociative ; application au traite-
ment de la parole. Thése 3éme cycle
Feb. 81.

[11]J.L. FLANAGAN - Speech analysis, synthesis and
perception. Springer Verlag, NY.
1972.

[12]R. de MORI - Recent advances in automatic
speech recognition. Int. Journal
Conference on pattern recognition
KYOTO, Apr. 78.

[13]P. QUINTON - Contribution & la reconnaissance
automatique de la parole. Utilisa-
tion de méthodes heuristigues pour
la reconnaissance des phrases.
Thése d'Etat, Rennes 1980.

124

A
FREQUENCY
| Spectral Analysis
o]
- L — -® —@- @ o— | 1ime Analysis
. 3 T
[o]
[¢) _~O
) —
0 MiXed| Analysi§ __o—
0 g
—] .
Q 7 o pd
Q . . 4
[+) -~
[<)
[+) » TIME
FIGURE 1 THE TIME-FREQUENCY ARRAY.

Peak Value
Bt +

Uppgr Frea. Lorer Freq.
. . s
I

] ¥
] 1
! \ -7
i P
i A
P LN : ‘!
[] :]
'\\ l/)
> 17
\\ //I
e
]
‘ L 3
u Tt
P
'\ IIX\‘\
f)t\ \\\\
Wt e
1 1 Py
‘\\J ,/’
Ise -7
4"’\\~
il
Z T + - T
1 ! i
HE i
FIGURE 2 DATA ORGANIZATION

High level

Control

to all PEs

Local
Status

Low Level

Control

Commupication

FIGURE 3

125

CONTROL DISTRIBUTION

ROUTING

SYNCHRONIZATION SORT ROUTING
—
[o | [uw [smour | [swin | [sorr | | RN ROUT

RSTAT

COMMON BUS FOR CONTROL AND

CONTROL PROCESSOR | LOCAL BUS
MEMORY 8 X 300 |
4K x 16

It

COMMAND

— - - -

— - — — o ——

MIN

| | MouT JlMADR 1
T I

DATA MEMORY
ONE BYTE SLICE. 16K

FIGURE 4 : THE ARCHITECTURE OF A PROCESSING ELEMENT.

—— - - —

126

GENERAL COMMAND
ANALYSIS
r._..lk N N N R 2
PROC 1 PROC 2 PROC J PROC K PROC 255
‘ LOCAL
PROCES§INC LOCAL
SYNCHRO. PROCESSING
““““ COMMUNICAT, - =T =
A LOCAL SYNCHRO
PROCESSING LOCAL
PROCESSING
|
I ¥ i :l il \ vy l
COMMON SYNCHRONIZATION
3
FIGURE 5 : THE CONTROL FLOW CHART FOR ONE PROCESSING ELEMENT.‘

VOICE 1/0 MEMORY 8085

INPUT 2 CONTROU CPU
DMA
HLC
PROCESYOR
i L 1 l L 1
T3 T3 T3 T3 T3 T3
——————— A s N
po [p1 [p2 RIIIIIIA b 11 P [pis

1 l l ! 1 1

VECTORIZED DATA MEMORY 16k x 128 bit

FIGURE 6 : GENERAL ARCHITECTURE OF M.A.P.

> inhibit
s | =
po T and ! '(1>-
c I 271"
gy n 3
a | S | .
p; 1€ 34""
. Iy) & L
|| T _7.--- %
P1 ¢ i ! =
! / 0
! 1
- . : n 2
sit ™ 42 |3 ____
— m 4
p2 (-—é pj e _5_..___
a — > (6 -
T \ 7
‘ I
[y > |
s ' sync/name 2
P3 _|— !
“Te |d
FIGURE 7A : SYNCHRONIZATION FIGURE 7B : SYNCHRONIZATION BY NAME.
BY LOCATION. SYNC(PO,P1,P2,P3) SYNC(NAME 2) FOR Pi AND Pj.

127

COMMENTS

P4 P5

SYNCHRONIZATION
BY LOCATION

SYNC(PO,P1)

SYNC(PO,P1,P2,P3)

SYNCHRONIZATION
BY NAME.

SYNC(N2) for PO,P2

SYNC(N1) for P1,P3

SYNC(N3) for P1,P4

SYNCHRONIZATION
BY LOCATION FOR
“ALL PROCESSORS.

SYNC (ALL)

Iddle Proc:

Sync. firing

time

FIGURE 8: EXAMPLE OF THE SYNCHRONIZATION PROCESS.

128

AIRBORNE ASSOCIATIVE PROCESSOR (ASPRO)

Jon M. Surprise
Program Manager, Digital Technology Department
Goodyear Aerospace Corporation
1210 Massillon Road

Akron, Ohio

Introduction

Under company sponsored Research and Develop-
ment programs and subsequently under Navy Contracts
00019-78-C-0598 and 00019-79-C-0563, Goodyear
Aerospace Corporation performed extensive tradeoff
studies based on experience with STARANTM, to
demonstrate the advantages of associative pro-
cessing for airborne surveillance. Two advantages
are: the simplicity of the software for managing
the surveillance data base, and the high inherent
processing speed of ASPRO. The necessary small
size (0.35 ft3) and low power (330W.) are realized
using custom CMOS VLSI and multichip CMOS random
access memory. The ASPRO processor, now in final
development, will augment the existing data pro-
cessor aboard the Navy's Grumman E-2C aircraft.
Its combination of content-addressability, multi-
dimensional access (MDA) memory, and parallel
processing provide a powerful architecture for
real-time processing applicationms.

Architecture

The basic architecture of ASPRO is shown in
Figure 1.

DATA | CONTROL DATA
MEMORY —=— —3=— MEMORY
BUS A MEMORY BUS B
INSTR | DATA
' 7
ARRAY INSTR E;:iﬁﬁTON CONTROL EEG-
CONTROL " |ARITH.
CONTROL
CONTROL DATA
i
ARRAY UNIT
Figure 1. Block Diagram of ASPRO

ASPRO is divided into five functional sub-
systems:

Control Memory. This subsystem is made up of three
types of storage: (1) buffer memory, (2) program
memory, and (3) read-only memory (ROM).

The buffer memory provides storage for input
and output data for the ASPRO. It consists of two
identical modules, each capable of storing 8192
words of 32 bits each. Each buffer memory module

Goodyear Aerospace Corporation

129

0190-3918/81/0000/0129$00.75 © 1981 IEEE

44315

has three access ports. Two of the access ports
are connected to the two memory buses of an
external computer. The third port is connected to
the ASPRO's internal bus system.

The program memory, which is loaded through
the buffer, provides storage for the ASPRO machine
instructions. Its one access port is connected to
the ASPRO bus system.

The ROM provides nonvolatile program storage
for certain essential operations including pro-
gram load and basic built-in test routines.

Program Execution Control. This unit controls

execution of instructions stored in program memory.
Four index registers are provided, as is a sub-
routine stack capable of accommodating 15 levels

of subroutines. Conditional branches to any
location in program memory can be executed. To
maximize performance, fetch of the next instruction
is initiated at the earliest possible stage of the
current instruction such that it overlaps the
current instruction execution.

Register and Arithmetic. This section contains
the working registers, sequential arithmetic unit,
and buses required for data transfer and control
exclusive of the array. The logic in this unit
consists of twenty-four 16-bit registers, two 32-
bit registers, and a 16-bit arithmetic logic unit
(ALU) interconnected by a bus system. The 32-bit
memory bus is connected to one port of the common
register and to the 32-bit instruction register.

Data to and from the array unit flows through
the register and arithmetic logic. The 32-bit
bidirectional array data bus is split into an
array input and an array output bus by the inter-
face logic. All data transferred to and from the
array are buffered by the common register.

Sixteen general 16-bit registers and eight
specific 16-bit registers are accessed via a
16-bit data bus. The general registers are loaded
from the ALU output and can be used for either ALU
input argument. The specific registers are
dedicated to array operations to hold array
addresses and loop counts.

The arithmetic logic unit (ALU) permits con-
ventional arithmetic and logic operations to be
performed upon data presented to the working
registers. It can perform seven arithmetic and
nine logic operations on two 16-bit operands.
Multiplexers at the ALU inputs provide the
capability to select various pairs of source
operands.

Array Control. This unit provides the timing

and control to execute the specified array
operation. Basic array operations include Read
Array, Write Array Masked/Unmasked from Common or
Array Register, and Output to Common Register.
When reading from the array, array control sets

up control lines to perform one of 16 possible
Boolean operations between array data and the
Processing Element registers. lLogical sequences
of these operations permit a wide variety of
associative functions to be performed on the array
data.

Array Unit. The multidimensional access (MDA)
array unit consists of four basic components:
array memory, flip (permutation) network, pro-
cessing elements, and response-store resolver.,
is partitioned into 17 array modules. Sixteen
modules of 128 words each make up the 2048-word
array. Each word is 4096 bits in length. The
seventeenth 128 word module is a spare which
may be switched in if one of the basic modules
fails. Each module comprises a 128-word by
4096-bit array of solid-state MDA storage and
128 processing elements (PE's).

The 2048 words of 4096 bits each provide a
total of 8 megabits of data storage. Format
of the 4096 bits is under total software control.
Operand lengths can be 1 to 256 bits. The MDA
storage organization provides access in either
the bit or word direction, a technique proven in
the STARANTM associative processor from which
ASPRO has evolved. The flip network and associa-
ted address logic permits MDA using conventional
RAM. This, in conjunction with the response store
and resolver permits parallel processing and
content-addressability without sacrificing normal
word-mode input-output.

It

The array includes 2048 PE's. Each PE
contains 3 single-bit registers, and can: buffer
data from or to array memory, execute all logical
operations on two single-bit operands, condition-
ally inhibit a write instruction, and provide
the response store function for search operations.
Associative array input and output is 32 bits via
the common data bus. The array is partitioned to
provide for reduction in required volume and
power by the efficient use of custom VLSI circuit-
ry. CMOS/SOS technology has been used for the
PE VLSI integrated circuit design because of its
low power and high speed.

Software

A significant amount of system software is
being provided to allow users to develop applica-
tion programs. Software tools include: assembler,
linker, loader, librarian, subroutine library, a
debug package and diagnostics. Most .of the system
software is written in a high order language for
portability, enabling program development on a
variety of general purpose computers.

The assembler is a conventional two-pass
assembler which supports structured modular pro-
gramming. The mnemonics are separable into two
sets. One set is for the sequential control
portion of ASPRO and is much like the instruction
set for conventional sequential computers. The
second set is for the associative memory and
consists of double and triple address arithmetic
and logical operations.

130

The output of the assembler is an object
module which can be combined with other object
modules via the linker and librarian into a load
module. The load module, when loaded into the
ASPRO can be interactively debugged with the
debug package. The debugger allows the user to
stop the program at any program location, dump
registers or memory contents, change those
contents and then continue the program. In the
trace mode, selected registers and memory can be
dumped automatically after every instruction is
executed. These and other features of the ASPRO
debugger provide the user with a powerful de-
bugging tool.

Two types of diagnostics are being developed
for ASPRO: an on-line self-test program which is
executed periodically to assure operational in-
tegrity and off-line diagnostics to isolate faults
to a specific section of hardware.

Performance

The relative processing time for ASPRO in a
radar tracking application is significantly less
than a conventional processor when the number
of tracks increases from several hundred to
several thousand.

Table I is a simplified comparison of pro-
cessing time for some typical operations on a data
base of 2000 items.

Table I. Performance Comparison
OPERATION ON ASPRO CONVENTIONAL
2000 ITEMS ASSOCIATIVE | COMPUTER

PROCESSOR
SINGLE-BIT SEARCH | 0.5 uUSEC 1000 pSEC
16~BIT ARITHMETIC | 32 wuSEC 3000 WSEC
OPERATION
Conclusions

The ASPRO processor is a dense, low-power,
high performance processor. This parallel pro-
cessing system is designed to replace or augment
existing, conventional airborne data processing
systems. ASPRO's simple software and high-speed
search and processing capabilities provide a
unique, cost—effective solution to real-time
signal processing.

References

[1] K. E. Batcher, The Multidimensional-Access
Memory in STARAN, IEEE Transactions on
Computers, February, 1977, Vol. C-26, pp.
174-177.

B. W. Prentice, Implementation of the AWACS
Passive Tracking Algorithms on a Goodyear
STARAN, Proceedings of the Sagamore Computer
Conference, August, 1974, pp. 250-269.

(2]

[3] E. E. Eddey and W. C. Meilander, Application
of an Associative Processor to Aircraft

Tracking; Ibid pp. 417-430.

MODELLING OF LARGE-SCALE MARKOV CHAINS
WITH ASSOCIATIVE PIPELINING

Simon Ya.

Berkovich

The George Washington University
Department of Electrical Engineering
and Computer Science

Washington, D.C. 20052, USA

Summary

The scope of various applications of the
associative or content-addressable processors
(see, e.g.[1]) is extended to random walk modelling.
The main problem in this modelling is to provide a
random choice among a set of alternatives. Let
us consider n alternatives with probabilities P,.
The choice of an alternative with corresponding
probability can be presented as a hit by a random
number R in the range (0-1) of one of the intervals

(SO - 81)9 (Sl - 52)3 (82 - 83)3 A] (Sn-l - Sn)9
where
8= 0,8 =P,8, =P +P, ...8 =1

This procedure can be organized as a search among
the numbers S, Sl’ Shs ¢+« B for that which
is the largesg smaller than R. nﬁsing an associa-
tive memory of ternary elements the intervals

(s, -~ S,) can be presented in such a way that
th%E search will be performed with one memory call
[2]. (The third state of the ternary associative
element (-M) provides matching signals for both
"0" and "1" interrogations, and it can be imple-
mented either with special hardware or with soft-
ware using two bit combinations in binary
associative memory.)

We will illustrate this method by an example
(Fig. 1). Suppose we have four alternatives with
the probabilities 2/16, 9516, 6/16 and 3/16. The
total random number range 0000 < R < 1111 can be
covered, for example, by the following ternary
combinations:

1 -

000M 2/16

2 - 001lM 5/16
010M

0110

0111
10MM
1100

6/16

1101
111M

3/16

Such a representation is a subject of minimi-
zation (cf. Fig. 1,a). The alternatives 1, 2, 3
and L4 will be accessed with the probabilities 2/16,
5/16, 6/16 and 3/16, respectively, because the
chances for a random number R to match to one of
these intervals is proportional to its length,
i.e., 2, 5, 6 and 3.

The transition matrix of a discrete Markov

131

0190-3918/81/0000/0131$00.75 © 1981 IEEE

chain, p,,, can be stored in a format: (i, v, j),
vhere i i¥ a starting state, V - a ternary combi-
nation corresponding to the choice of the j state.
The interrogation of the associative memory by

(i, R) will result in a random choice of "j" with
the probability Pi , i.e., "a transition i=j". The
process of Markov éhain modelling is a succession
of such transitions.

The associative pipelines as suggested in[3]
have actually the same algorithmic capabilities as
associative processors, but the pipelines are more
efficient in implementation and suitable for pro-
cessing of large volumes of information. The
uniform cells of the associative pipeline realize
in succession the transformations isomorphic to
that realized by the associative processor in
parallel. The random choices are made in the pipe-
line cells by picking-up the numbers of the alter-
natives from the passing word-stream when the
ternary combinations corresponding to their proba-
bilities match the provided random numbers. All
cells operate on the word-stream concurrently with
the shift in time according to the propagation
delay. The associative pipeline can easily perform
the first-match selection for the multiple respon-
ses, so the necessary intervals for random choice
can be constructed simpler using overlapping
ternary combinations with partial screening of the
successors. This is illustrated in Fig. 1,Db.

There are two possibilities for selection alterna-
tives # 1, three possibilities for # 4, six possi-
bilities for # 3, and five for # 2. It does not
matter that the alternatives are not presented by
contiguous segments; if R is uniformly distributed,
the chances of the selection of the alternatives
will correspond to their probabilities, i.e.,
#1-2/16, # 2 - 5/16, # 3 - 6/16 and # 4 - 3/16.
It should be emphasized that the choice of the
alternative is performed in each cell independently
and is determined by its own random number R only.

The basic unit of the computer system for
modelling Markov chains is presented in Fig. 2.

The output of the pipeline cell is connected
to its command register to extract information
from the word-stream. The possibility of the con-
trol of the computing process through the word-
stream is an attractive property of the associative
pipelining, which can be efficiently used in
different problems as, for example, considered in
[4]. The word-stream is a mixture of transition
matrix elements in one format and control computer
messages in another format. The mode of operation
is specified by tag bits, which also serve as a lock

to permit some operations on a given word and to
prevent further access to this word in other cells.

The basic operations are the following:

with associative pipelining.

Not bound by storage

limitations, it can be efficiently applied to the
investigation of wvery large stochastic models in
system analysis and computational physics.

1. Initialization - a random walking point should
be set into a certain initial position. References

2. Transition - moving from a given state i to 1. C. C. Foster, Content Addressable Parallel
one of the states J according to the Processors. Van Nostrand Reinhold Co., 1976.
probabilities (Pij)'

2. S. Ya. Berkovich and Yu. Ya. Kochin, "Search

3. Random number supply - after each transition for Numbers that are Nearest to a Given
the random number R must be changed to deter- Number," Automation and Remote Control, V. 36,
mine the choice of the next alternative. No. 1, pp. 343-345 (1975).

k., Sensing - the results of random walking should 3. 8. Ya. Berkovich, "An Outline of the Computer
be returned to the word-stream and processed System with Associative Pipelining," Proceed-
by the control computer; two types of Markov ings of the 1980 International Conference on
chains are usually considered: with and Parallel Processing, pp. 47-48.
without absorbing states, the results of the
modelling are some characteristics of the 4, J. M. Pullen, An Architecture for a Database
random walks to absorbing states in the first Computer Using Associative Pipelining, D. Sec.
case, or of the equilibrium distribution in Dissertation, The George Washington University,
the second case. 1981.

The suggested technique is a typical example
of the organization of the computing processes
R_# | R # R #
(ool _%_é’_é_g Lolalalal 21 [GTololal 4]
16 16 16 16
2/16 | olo| olm|1][] [ae] [o]
0]0f1iM|3 N ;;‘ ;;]
6/16 { oj 1] MM| 3 =P R R
1lo] ou|h | M/ M| 1o] [0 fam | -
3/1611]0] 1]ol b M| 2] [m
5/1610112 T T
BN 2] 3[4z |
& b
Fig. 1 Random choice with the associative
processor (a) and pipeline (b).
M Associative pipeline
u
-1
t v
cs I+
Transition P - - - - —]
Matrix 1
e
b
o
\\\‘““’// Control
Computer B

Fig. 2 Basic computing unit

132

RECONFIGURATION OF DYNAMIC ARCHITECTURE INTO MULTICOMPUTER NETWORKS

Svetlana P. Kartashev
University of Nebraska-Lincoin,

Steven I.

Kartashev

Dynamic Computer Architecture, Inc.

ABSTRACT -- This paper considerns reconfigura-
tlon of dynamic architectunes Anto multicomputen
networks that can assume rnings, trees, and stars
congigurations.

Reconfiguration algonithms intrhoduced are
_one-step algonithms performed concwuiently by all
netwonk nodes nequested gon reconfigwation. The
time of this step 4is the time to execute a one-
bit shigt and mod 2 addition. These recongigura-
tions can be accomplished with special shift-
negistens called shift-registerns with variable
bias (SRVB) introduced into each network node, N,
that stone the position code of this node. Upon
neceipt of the hecongiguration instruction, each
such registen genenrates the position code o4 the
network node, N*, with which node N must estab-
Lish a data path consistent with the overall net-
work conflguration (thee, star, or ning).

1. INTRODUCTION

As was shown in the literature [1-3], a
dynamic architecture may increase a system
throughput using the following adaptations to
algorithms:

1) Adaptation of the resources to instruc-
tion and data parallelism, and

2) Reconfiguration of the resources into
multicomputer, multiprocessor, array, and pipe-
Tine architectures.

A multicomputer adaptation to algorithms is
generally understood as:

a) The architectural capability to parti-
tion resources into a variable number of dynamic
computers with changeable word sizes, and

b) The capability of multicomputer archi-
tecture to function as a multicomputer network
characterized by different topological configura-
tions among its computers.

Since various techniques that implement the
a) property of dynamic architectures were studied
in [2-5], this paper concerns itself with recon-
figuration of dynamic architecture into a multi-
computer network.

2. APPLICATION OF MULTICOMPUTER NETWORKS

A multicomputer network is characterized by
different network structures formed by network
computers, otherwise called network nodes. As
was shown in the literature [6-12], the most con-
venient network structures are rings, trees,
stars, binary cubes, closely connected graphs,
and mixed structures that involve various combina-
tions of the above mentioned structures.

Rings, cubes, and strongly connected graphs
are useful for computational algorithms in which
each computer node performs computations only and
assigns no computations to other nodes.

0190-3918/81/0000/0133%00.75 © 1981 IEEE

Trees and stars are useful for both computa-
tional and control algorithms. Trees and stars
are described by two types of nodes--feaves and
non-Leaves--where a leaf is generally understood
as a node of the lowest level, i = 0, and a non-
leaf node has level i > 0. A node(s) of the
highest level, i = L, is called a roof.

A tree or a star may have one or several
roots describing a corporate structure with one
or several directors, respectively. The differ-
ence between a star and a tree is in the number
of nodes of a lower level that are adjacent with
a node of level i. In a tree, this number does
not exceed one for a root, and two for each node
that is neither root nor leaf. For a star, each
non-leaf node of level i may have more than two
adjacent nodes of a Tower level.

If a tree or star has one root it is called
a one-root thee or a one-roof starn; if it has
several roots, it is called a multiple root thee
or a multiple hoot star.

3. REQUIREMENTS FOR A MULTICOMPUTER NETWORK

In order to provide a multicomputer network
with very high flexibility and reduce the amount
of data to be transferred among its nodes, any
network must be provided with the following
characteristics.

Cl. Minimal Reconfiguration Time. This 1is
understood as the minimal time required by the
network to reconfigure itself into any of the net-
work structures indicated above.

C2. Multifunctional Node. This is under-
stood as the capability of each node, N, to be
connected into any network structure (ring,
strongly connected graph, cube, tree, or star).
Within a tree or a star a multifunctional node
should be capable of functioning as a root (single
or multiple), leaf, or a non-leaf node. As a
result, a programmer will be able to minimize
idle resources not involved in a particular compu-
tation and to eliminate traffic bottlenecks
created in particular portions of a network due
to overcentralization of information flow from
the root(s) to other nodes.

C3. variable Word Sizes of a Network Node.
To increase the network flexibility each network
node must be provided with the capability to
change its word size. This will minimize the
amount of resource interconnected into a particu-
lar network configuration, and allows computation
of additional programs using the same resources.
The advantages of such computations are coinci-
dent with those performed by dynamic architec-

tures in general.
in [2-5].

A multicomputer network that is provided
with properties C1, C2, and C3, and performs
reconfigurations into the network structures
described above, can be organized using the DC
group described in [1-3].

These are treated extensively

4. CONTRIBUTION TO THE STATE-OF-THE-ART

This paper studies reconfiguration of dyna-
mic architecture into rings, trees, and stars.
Reconfiguration algorithms developed are based on
the theory of shift-register sequences as follows.

A network node N &ctivates a data path with
its immediate successor, N*, in the given network
structure when N generates the position code of
N* [2, 3]. - This activation may be done with the
use of shift-register and special constant B
brought with the reconfiguration instruction to
all network nodes that are requested for recon-
figuration.

4.1. Rule of Succession during Reconfiguration
To activate each data exchange that can be
either PE-ME*, PE-PE*, ME-PE*, or ME-ME*, it is
sufficient for the processor element, PE, belong-
ing to computer element, CE, identified with net-
work node N to generate the position code of the
CE* identified with the network node N* that
contains a second element of the exchanging pair
(ME* or PE*). This will be denoted as transition
N > N* meaning that: a) N will generate position
code of N*, b) N will establish a given data path
between N and N*, and c) the data path activated
by N can be made bidirectional--either from N to
N* or from N* to N--and it can be one of the four
types considered above (PE-ME*, PE-PE*, ME-ME*, or
ME-PE*).

(Here for simplicity it is assumed that each
node N is equivalent to one CE. An extension of
the results accomplished to a dynamic computer,
C(k), assembled of k CE can be done very easily
by asiigning the same position code to all its
CE's.

To minimize the time of reconfiguration, it
is reasonable to assume that for each network
structure, such rule of succession, N -~ N* should
be maintained during reconfiguration for which
each node N has a minimal number of successors N*
in this structure. Then it will take the minimal
reconfiguration time to establish all the data
paths between N and each of its successors, N*.

While for rings, the rule of minimal number
of successors is trivial, for trees and stars it
requires that the succession be maintained in the
direction from leaves to root(s). Namely for
each N + N*, the level of N is lower than N*.

If all these paths are established concur-
rently, the entire network reconfiguration takes
time T of activating only one network transition,
N > N*, and can be performed with a one-step re-
configuration algorithm performed concurrently by
all network nodes.

4.2. Application of Shift-Register Theory

In this paper, trees, stars, and rings will

134

be generated with the use of shift-register
theory. Its application proceeds along the fol-
Towing Tines.

Assume that each network node N is proyided
with a special shift-register of length n which
stores its position code N, where n is the size
of the code (Fig. 1). Suppose that in the given
network structure to be assumed, node N should be

network
node N

network
node W*

T
to SEL channel

FIGURE 1

Shift-Register with Variable Bias B = 0111

succeeded by node N* via PE-PE*, PE-ME*, ME-ME*,
or ME-PE* data path. Then for each type of com-
munication between N and N*, node N generates
position code N* using a left-shifted shift-
register that generates N* as follows:

N* = 1[N] ®B (1
where 1[N] is one-bit shift of N to the left and
B is an n-bit reconfiguration constant brought
with the reconfiguration instruction to all net-
work nodes that are requested for reconfigura-
tion. Reconfiguration constant B will be called
bias and the shift-register of Fig. 1 is called
a shift-register with variable bias (SRVB).

In Fig. 1, N = 1101 = 13, B = 0111 = 7.
This gives N* = 1[1101] ® 0111 = 1011 ® 0111
1100. Therefore network node N] generates posi-

tion code N* = 1100 = 12 of its successor in the
given network structure. This code will then
activate a given data path between nodes N3 and
N*. .

12 The gate FBG in Fig. 1 is called a geedback
gate. Introduction of the FBG gate allows a
shift-register, SRVB, to.perform two types of
shifts: a) cirewlan 1[N]], when f§eedback input

FI = 1; and b) non-circwlan 1[N]0, when FI = 0.

As will be shown later, if FI = 1, concur-
rent shift-registers of network nodes generate
rings; if FI = 0, they generate trees, where the
meaning of FI is brought to each node with the
reconfiguration instruction.

However, different network structures depend
not only on the value of bias B, and feedback
input FI, but also on the type of the SRYB acti-
vated in each node.

To this end SRVB can be s.nglfe and composite.
A singfe SRVB has a unique feedback gate FBG,
which connects its MSB with LSB. A composite
SRVUB is formed from k (k > 1) single shift-regis-
ters each having a unique feedback gate, FBGi.

Feedback Path Feedback Path 2
85=0 B,=1 Bz=\
1 + 1 + 1 1 + 0
N=60 . .
bb b4 b3 b2 b]
N*=47 a5=1 a,=0 a,=1
FIGURE 2

Composite SRVB

For instance, Fig. 2 shows a
register with three feedback ,
FBG.,. 2
Generally, in a shift-register with variable
bias, each bit can broadcast its value via one
of two alternative paths: a) a unique shift-path
when it is shifted Teft to the next more signifi-
cant bit, and b) a unique feedback path; when it
is sent right to some less significant bit.
Activation of either a shift or a feedback
path for each bit can be made by a special recon-
figuration code RC stored in the reconfiguration
instruction that performs reconfiguration into a
given network structure. This instruction also
brings to each node the same bias B that forms
position code of the CE* identified with node N*

composite shift-
gates, FBG], FBG

that succeeds node N in a given network structure.

The same bias B received by PE of node N is con-

41

44
FIGURE 3

Network Structure Generated by
Composite SRVB of Fig. 2

135

ceived of as an address of the instruction stored
in local ME that initiates a subroutine of com-
munication between node N and N*.

For instance, if the reconfiguration instruc-
tion stores bias B = 010111 and reconfigures the
shift-register, SRVB, of each network node N into
a composite one shown in Fig. 2, then the network
structure formed is shown in Fig. 3. As seen, it
consists of a 6-root star and a 2-root star.

"~ For instance, composite shift register parti-
tions N = 60 = 111100, into b5b4b3 = 111; b2b] =
10; bO = 0. Bias B = 010117 is also partitioned
into B5B4B3 = 010; BZBl = 11; and B0 = 1. There-

fore the composite shift register generates the
following successor N* of node N60: agaa, =
1[111]1 @010 = 111 ® 010 = 101; a3y = 1[%0]0 ®
11 =00®11 =11; 3y = 1[0]0@1 =0®1 =1,
giving N* = 101111 = 47.

Similarly, one can obtain any other single
successor N* of the given node N. As follows,
reconfiguration into the structure of Fig. 3
is performed during the time of one 1-bit shift
and mod 2 addition executed concurrently by all
the network nodes that receive the same bias B =
010111 and the same reconfiguration code RC that
reconfigures each SRVB into the composite register
shown in Fig. 2.

4.3. Contribution to the Ongoing Research

The contribution of this paper to current
state-of-the-art on network reconfiguration is
two-fold: 1) It devises original, simple, and
elegant techniques on network reconfiguration into
the structures that proved to be convenient for a
large class of computational and control algo-
rithms. The time for such reconfigurations
approaches the theoretically minimal boundary.
2) It further expands a shift-register theory
described in [13-17] as follows.

In the literature the shift-register studied
is shown in Fig. 4. Here each circle marked with
Bi means connection if Bi = 1 and disconnection

if Bi = 0. Thus B = (Bn-]’ cees BO) is conceived
of as the same bias as was introduced above for

the shift-register SRVB. The difference between
these two registers is: Fig. 4 shows a Linear

n-1

Current
State N by + by 2

L)

Next
State N*

-1 an-2

FIGURE 4

Linear Shift-Register

shift-registen which broadcasts to each mod 2
adder the meaning of its MSB provided Bi = 1. 1In
the linear shift-register each next state N*
generated can be obtained via matrix multiplica-
tion N* = N<A where N is a current state stored
in bits by 3, b 55 ...5 by, and A is the canoni-
cal shift-registern matrnix given below:

Bo-1 Bno2 Bpg oo By By By

1.0 0 .0 0 0

0 1 0 0 0 0

o o0 1 0 0 0
A= . .

0o 0 0 ... 1 0 O

0o 0 0 ... 0 1 0

For instance, if bias B = 1011 and the cur-
rent state N = 1100, then the next state N* to be
generated by a linear shift-register is N* = 1100«

1011
1000
0100
0010
by the SRVB storing the same N and B (assume that
gate FBG is set since for linear shift-register
its MSB is also fed back to the LSB): N* =
][1100]] @ 1011 = 1001 ® 1011 = 0010. As follows

linear shift-register and SRVB generate different
next states for the same current state N and bias
B inasmuch as in SRVB each mod 2 adder receives
bit B; rather than MSB of the register if B, =1

as is the case for the linear shift-register. As
a result, different structures of trees, stars,
and rings are generated by these two types of
shift-registers. In particular, a fundamental
property of a linear shift register is that it
always generates next state N* = 0000 if a cur-
rent state N = 0000, i.e., O always generates a
cycle of period 1 since N* = 0-A = 0. On the
other hand, SRVB maps O onto bias B, i.e., if N
= 0, it is succeeded by N* = B. This means that
if bias B # 0, then 0 is a node of a network
structure other than cycle of period 1.

For the linear shift-register this is funda-
mentally impossible. For instance, for the
single circular SRVB receiving B = 0111, 0
belongs to the following ring of period 8:
{0,7,9,4,15,8,6,11}. If this shift-register
stores N = 0101, it generates another ring of

= 0011. Find the next state N* generated

136

period 8: {5,13,12,14,10,2,3,1}. Indeed, if

N = 5, it is succeeded by N* = 1[0101] ® 0111 =
1010 @ 0111 = 1101 = 13, etc. This network struc-
ture cannot be obtained with 4-bit linear shift
registers no matter what bias B is selected, since
Tinear shift-registers always map 0 onto 0. Thus,
the remaining 15 nodes cannot be formed into 2
rings of period 8 each since this will require 16
nodes.

Hence, the network structures generated by
SRVB and linear shift-registers are not equiva-
lent. Furthermore, a fundamental drawback of a
linear shift-register is that the techniques for
finding the network structures that can be gener-
ated are very laborious and complex, since they
are based on finding the periods of polynomials
over Galois field [13-16]. The complexity of
these techniques grow exponentially with an
increase in n, the number of bits in a shift-
register. However, for complex multicomputer
networks having a large number of nodes the size
n of a code that identifies each node may become
significant (n = 10 and more). Thus it becomes
prohibitively difficult to utilize elegant
results of linear shift-register theory in order
to tabulate different cycles and trees that may
be generated in an n-dimensional binary space
with the use of linear shift registers. As for
stars, Tinear shift-registers can generate no
stars by definition.

On the other hand, all the network struc-
tures generated by SRVB (single and composite)
can be described with very simple formulas that
can be used by the programmer performing various
reconfigurations in the multicomputer networks.

As will be shown in this paper, complexity
of the techniques remain constant and does not
depend on n, the size of the position code N.
Thus, these techniques are applicable to complex
multicomputer networks, inasmuch as they allow
obtaining simple and fast reconfiguration
algorithms and simple descriptions of various
network structures that can be generated in the
network.

The only area of equivalence among linear
shift-register and shift-register with variable
bias is when bias B = 0. If B = 0, both registers
generate either the same binary tree with the
root R = 0, or both are transformed into a circu-
Lating shigt-rnegistern whose structure has been
extensively studied in the literature [16].

5. NETWORK RECONFIGURATION

If an application program needs a new net-
work structure for execution of its tasks, it
contains global or Tocal modification of the
reconfiguration instruction, RIN, where a global
modification establishes the same type of data
exchange for all network transitions, N - N*,
whereas a local modification of RIN allows dif-
ferent data exchanges for various network transi-
tions. RIN can be executed in an array or even
in a single CE. It stores the following codes:
1) Code RR of requested resource which determines
whether or not a requested resource is ready for
reconfiguration. 2) Reconfiguration code, RC,
that reconfigures the shift-register, SRVB, of
each requested network node N, into the type that

generates the required network structure. 3) The
bias B, which allows each shift-register, SRVB,
reconfigured by the RC code to generate position
code N* that succeeds N in the given network
structure. 4) Program user code, NP, that is
used in the priority analysis, aimed at determin-
ing the priority of the program to perform net-
work reconfiguration. 5) For global modification
of the RIN instruction it stores the code of
exchange, COE, provided all requested nodes will
maintain the same type of exchange (PE-ME*,
PE-PE*, ME-ME*, or ME-PE*). Each CE that
receives reconfiguration code RC, bias B, and
code of exchange, COE, performs the following
steps. ,
Step 1. It sends RC to its shift-register,
SRVB, to reconfigure it into the type (single or
composite), that generates the required network
structure. The bias B is sent to this SRVB to
generate the position code of the network node N*
that succeeds N in this network structure.

Step 2. The bias B is used as the base
address of the task that begins execution in the
network structure. As a rule, bias B stores a
jump instruction which performs jump to another
location of the local memory, ME.

Step 3. For the global modification of the
RIN instruction, the code of exchange, COE acti-
vates a needed data path between network nodes N
and N*, where N* was formed during Step 1.

Such an organization of RIN allows very fast
reconfigurations into the network structures

which proved to be very efficient for computation.

The time of these reconfigurations approaches the
absolute minimum due to the following reasons:

a) Concurrent 1-step reconfiguration algorithms
in which the entire network reconfiguration is
made in one step by all network nodes during the
time of 1-bit shift and mod 2 addition. b)
Minimal time required to establish each data path
between two network nodes, N and N*.

6. TYPES OF SHIFT-REGISTERS
This section will introduce the techniques

for describing various types of shift-registers,
SRVB.

6.1. Arithmetic Formats

Each composite SRVB will be described with
an arithmetic gormat, AF = [k], Kos «vvs kT,
where k; is the size of each sing%e shift-eegis—
ter contained in SRVB. OQbviously n = k; + k, +

. + k_where n is the size of the SRYB.

Since each single shift-register of the
arithmetic format AF may perform either circular
shift provided that the feedback input FI =1 or
non-circular shift provided FI = 0, the arithme-
tic format AF may be divided into the following
categories: a) Cinculan AF,, when all its single
shift-registers perform cirlu]ar shifts; b)
Non-cinculan AFO’ when all its single shift-regis-

ters perform non-circular shifts; c) Mixed AF]O’

when single shift-registers described by it per-
form circular and non-circular shifts.

It will be convenient to represent mixed
AF]0 as a combination of circular and non-circu-

lar AF, i.e., AF10 = AF] X AFO, where AF]
includes all circular single shift-registers and
AF0 includes all non-circular ones.

For instance if A, = [30, 4, 5], 20], then

A1 = [4, 5] and A0 = [3, 2], i.e., A]0 = A] X Ao.

6.2. Reconfiguration Code

Reconfiguration of the SRVB into any given
arithmetic format will be performed with the re-
configuration code, RC. RC is stored in the
reconfiguration instruction and described as
foltows:

It is (2n-1)-bit code where n is the size of
each SRVB. It consists of (n-1) 2-bit zones, ;s
each including two bits, 51 and Fi’ and one 1-bit
zones, Z0 including only one bit, F Thus RC =
(Znoys Zypogs wes Zp5 Z)-

Each zone Z, encodes, respectively, feedback
and shifting paths for the two bits b; and b1
of the SRVB, where bi is more significant than
b;_y (Fig. 5).

0

Feedback from by

Feedback from b]

A

Feedback from by

=)
-/

Feedback from by

53*"L__.)

. 0

\
=
I,

by + b

17F5;

FIGURE 5

Shift and Feedback Paths in 4-bit SRVB

For each zone, Z; = (Fisi)’ the values of F,
and Si show what type of path is activated for
every pair of consecutive bits, bi and bi-]' If
Fi =1, bit bi receives circular feedback informa-

tion; and it receives no shift information from
the next less significant bit, b4+ If F, =0,

bit bi receives either no feedback, or it 1s non-

circular feedback (for trees and stars).
Bit Si = 1 of zone Zi stands for left shift

from b;_y to bi and Si = 0 stands for no shift
from b;_,. Therefore, together F,, S. show what
type of path is activated between bi and bi- 5
shift path (Si =1, Fi = 0) or feedback path to
b; and no shift from bi-]’ Si =0, F, =0v 1.
Since Si = 1 means that bits b, and bi-]
belong to the same shift register and Si =0

means that they belong to two different shift re-
gisters, each S. is sent to activate a new feed-

back path initiated in b, ,. Likewise, each S,
is sent to the feedback path initiated in bi
either to maintain it if Si =1 or block unwanted
transfer of b, to less significant bits of shift
register if Si = 0.

Exampfe. In Fig. 6, if 53 =1, bits b3 and
b2 belong to the same shift register and S3 =1
maintains the feedback path initiated in b_. At
the same timeA§é = 0 blocks b2 from initiating its
own feedback path.

If 33 =0, b& and b2 belong to two shift
registers. Thus S, = 1 initiates a new feedback
path from b2 and 53 0 blocks unwanted transfers
of b3 to other less significant bits, etc. As

fo]]ows, selection of the RC code can be formal-
ized qnd described with a very simple algorithm
that is not introduced in this paper.

7. SINGLE NETWORK STRUCTURES

The objective of this section is to outline
the ways for solving the following problem:

Given bias B and an arithmetic format AF =
[k], k2, ...> k.]. Find the network structure
that is generated.

The solution of this problem will allow a
programmer to select bias B and reconfiguration
code RC and obtain all the network structures
that are needed.

Before attacking a general case of arbitrary
AF consider the so-called single network struc-
tunes produced by single shift-registers, i.e.,
those identified by AF = [n].

These can be of two types: rings and trees,
specified by circular and non-circular arithmetic
formats, respectively. Rings will be described
first.

7.1. Single Ring Structures

A single ning structure, SRS, is a set of

138

.bias, B.

rings that is generated by single shift-registers
available in network nodes. To define SRS means
to define the following:

a) A set of periods, SP = {T}, where T is
the period of a ring generated in the SRS, and

b) The number D(T) of rings having the
same period, T.

Therefore, we define SRS as:
{D(T) :TeSP}.

SRS =

7.1.1. Set of Periods for Single Ring Structure

The set of periods, SP, is completely speci-
fied by the bias B: namely, how many ones are in
B--odd or even. Before introducing this result we
will make some definitions.

By the weight, W, of the bias B we mean the
number of ones it has. We say that bias B is even
if its weight is an even number and B is odd if
its weight is an odd number.

Let SDn be a set of divisors for number n
and SD,, = SDZn - SDn where (-) is understood as
a set subtraction,

For instance, for n = 6, SD6 = {6,3,2,1} and
SD6 = SD, - SD3 = {6,3,2,1} - {3,1} = {6,2}. As
follows SD_ may be specified only if p is even.
With this in mind Tet us introduce one theorem
that specifies the set of ring periods, SP, for
single ring structures.

Given: Circular single arithmetic format
AFy = [n] and Bias B fed to each shift-register.

Theonem 1. If bias B is even, then SP =
SDn; if bias B is odd, then SP = SD2n = SD2n -

SD . (2)
" Exampfe. For the SRVB in Fig. 6, specified

with arithmetic format AF., = [3], bias B = 001

1
is odd, since its weight W = 1 is an odd number.
Thus a set of periods SP = 502.3 = SD6 = SD6 -

SD3 = {6,2}. If the same shift-register is fed
with an even bias (B = 000, 011, 110, 101) then

the set of ring periods, SP = SD3 = {3,1} (Fig. 7).

7.1.2. Number of Rings with the Same Period

As was seen, the set of ring periods, SP, can
be found very easily. It is either SDn or SD2n
for AF, = [n]. Similar simplicity is associated
with the formulas that find D(T), the number of
rings having period T, where T is a member of SP.

Theorem 2. In a single circular shift-regis-
ter, AF] = [n], fed with an even bias B, for any

period, T e SP, 2' = E T eD(T') (3)

T e SDT

As follows from (3), this formula is recur-
sive since for any ring period, T, one can find
the number, D(T), of rings with period T, only
after finding D(T') for all divisors T' of T.

Example. Given AF] = [6] fed with an even

Using Theorem 1, one obtains that the set of
its ring periods is SP = SD6 = {6,3,2,1}. Using
Theorem 2, apply the recursive procedure for {ind-
ing D(T) for any T € SP. Start withT=1,2 =

FI=1

b. 0 1 ,

{0 0

6 7 ?
FIGURE 6

1
a. Single SRVB with AF, = [37] and B = 001

b. Single Ring Structure
Generated by This SRVB

1-D(1); D(1) = 25 for T = 2, 2% = 1-D(1) + 2-D(2)
and D(1) is a known value. 22 =2+ 2:D(2); D(2)
= (4-2)/2 = 1; for T = 3, 23 = 1-D(1) + 3D(3)
and D(3) = (8-2)/3 = 2; for T = 6, 20 = 1.D(1) +
2-D(2) + 3D(3) + 6-D(6) and D(6) = (28-1-D(1)-2-
D(2)-3:D(3))/6 = (26-2-2:1-3+2)/6 = (64-2-2-6)/6
=9. Thus we found that ‘the single ring structure,
SRS, generated by this shift-register is: SRS =
{2(1),1(2),2(3),9(6) }.

Similar simplicity is associated with find-
ing the numbers of rings with period T generated
by shift-registers receiving an odd bias B.

Since the set of ring periods, SP = SD2n = SD2n -
SDn’ where n is the size of shift-register, then

we may establish the following Theorem 3.
) Theorem 3. 1In a single circular shift-regis-
ter, AF] = [n], fed with an odd bias B, for any

ring period T ¢ SD,
Zn

2172 - E T -D(T')

T € §ﬁf
This is also a recursive formula since one
can find D(T) only after finding D(T') for all
periods, T' € SDT' The recursive process starts
with D(T) where T = 2° and s > 1, because for T =

25, 55’5 = SD o - SD 5.7 contains only one member
2

(4)

oS [- (oS
, 1.e., SD s © {27}.
2
Example. Given shift-register with circular

arithmetic format AF] = {6}, fed with an odd bias

B. Using Theorem 1, one obtains that the set of

its ring periods SP = SD]2 = SD]2 - 506 =

139

a. 1 0
N = A . 1 e)
N* = 0 1
. 1 7 0 5 4 3
2 6
FIGURE 7

Single Ring Structure Generated by the
SRVB with AF = [3] Receiving B = 101

{12,6,4,3,2,1} - {6,3,2,1} = {12,4}. Using
Theorem 3, one first finds D(T) for T = 4 as 4-

D(4) = 2% giving D(4) = 1; next 12-D(12) + 4+

D(4) = 2° = 64 and D(12) = (2%-4-D(4))/12 =
(64-4)/12 = 5. Thus, single ring structure, SRS,
g?ne;ated by this shift-register is: SRS = {1(4),
5(12)}

7.2. Single Tree Structure

As was indicated above a single shift-regis-
ter with non-circular arithmetic format generates
a single-rooted binary tree (Fig. 8). We will
call a single-rooted binary tree generated by a
single non-circular SRVB with arithmetic format
AF = [n] a sdngle tree structure, STS.

0 As was shown above, to minimize the time of
reconfiguration, an adopted direction of succes-
sion is from the leaves to the root, R, which
then succeeds itself by forming a cycle of
period 1.

For tabulation purposes, we will use the
following symbols for different single tree struc-
tures: if STS is generated by non-circular shift-
register with arithmetic format AF, = [n], then

->

STS = [n,1], shows that the tree is single and
has n levels, and the root R succeeds itself by
->

forming a cycle of length 1, i.e., 1.]
For instance, the STS of Fig. 8 is described

>
as STS = {3, 1}, since this tree is single, it"
has three levyels, and its root, R = 7, forms a

R
cycle of length 1, j.e., 1, because 1[]11]0<:)001
=110 @ 001 = 111.

b.
0 0
N = 1 |- L 0
= 1 0
FIGURE 8

STS Generated by the [3]0 Shift-Register

7.2.1. Technique for Finding Root for Single Tree
Structures, STS

Since in a one-rooted tree root, R, may store
important information that needs to be transferred
to other nodes (such as deactivation of some tree
nodes from computation, or other managerial infor-
mation), it is desirable to provide a programmer
with simple techniques for finding root analyti-
cally. The problem that is to be solved is:
Given non-circular arithmetic format AF = [n]0 and

bias B. Find root R. This problem is solved in
the following Theorem 4.

Theorem 4. 1In a shift-register SRVB speci-
fied with non-circular arithmetic format AF =

[n]ys Tet CL(by) = 2@211@2 2o .. @2“

(For 1nstance for AF 4'7, CL(b.) = 2

22 @23 ,a(%%-21®2£@2 a?% @ @

and CL(b) =2°.) Let Bias B be B = b, ® bi C)
1 2

@b . Then the root R is: R = CL(b,) ®
(b)@ @CL(bi).

Example For the arithmetic format AF0 =

[4], let bijas B=1@®4 &8 = 1101. Find CL(1) =
1@2@4@8 CL(4) = 4®8 and CL(8) = 8. Then
root R is: = CL(1) @ CL(4) DCL(B) =1®D2® 4
38®4@$®8=1@2®8=1ML Indeed, R is
succeeded by the following N* = I[R]o ®B =

1[1011]0@)1101 = 0110 ® 1101 = 1011, i.e., N* =

R and it forms cycle of length 1.

Therefore using Theorem 4, a programmer may
find a root before hand and assign it with tasks
that perform many useful functions in the network.

140

References

[1] €. R. Vick, S. P. Kartashev, and S. I.
Kartashev, "Adaptable Architectures for
Supersystems," Compuxen November, 1980,
pp. 17-35.

[2] S. I. Kartashev and S. P. Kartashev, "Prob-
lems of Designing Supersystems with Dynamic
Architectures," TEEE Transactions on Compu-
f%ﬂé’ vol. C-29, December, 1980, pp. 1114-

32.

[3] S. P. Kartashev and S. I. Kartashev, "Per-
formance of Reconfigurable Busses for Dynamic
Architectures," Proceedings of the Finst
International Congerence on Distributed
Computing Systems, Huntsville, Alabama, 1979,
pp. 261-273. .

[4] S. 1. Kartashev and S. P. Kartashev, "A
Multicomputer System with Dynamic Architec-
ture," IEEE Thansactions on Computerns, vol.
C-28, no. 10, October, 1979, pp. 704-721.

[5] S. I. Kartashev and S. P. Kartashev, "Dynamic
Architectures: Problems and Solutions,"
Computen, July, 1978, pp. 26-40.

[61.R. J. McMillan and H. J. Siegel, "The Hybrid
Cube Network," Proceedings of the Distributed
Data Requisition, Computing, and Control
Symposium, 1980, pp. 11-22.

[7] M. C. Pease, "The Indirect Binary n-Cube
Microprocessor Array," IEEE Thansactions on
Computens, vol. C-26, no. 5, May, 1977, pp.
458-473.

[8] Y. Paxer and M. Bozyigit, "Variable Topology
Multicomputer," Proceedings of the Second
Euwromicno Symposium on Michoprocessing and
Microprogramming, Venice, 1976, pp. 141-149.

[9] L. D. Wittie and A. M. van Tilborg, "MICROS,
A Distributed Operating System for MICRONET,
A Reconfigurable Network Computer," IEEE
Transactions on Computens, vol. C-29,
December, 1980, pp. 1133-1144.

[10] A. Despain and D. Patterson, "X-Tree: A

Tree Structured Multi-Processor Computer
Architecture," Proceedings Figth Annual
Symposium on Computer Architecture, 1978,
pp. 144-150.

[11] A. Goyal and G. J. Lipovski, "Reconfigurable
Hierarchical Rings," Proceedings of the Dis-
tributed Data Acquisition, Computing, and
Control Symposium, 1980, pp. 3-10.

[12] D. DeGroot and M. Malik, "Resource Allocation
for Macropipelines," Proceedings of the Dis-
tributed Data Acquisition, Computing, and
Contnol Symposium, 1980, pp. 23-27.

[13] B. Elspas, "The Theory of Autonomous Linear
Sequential Networks," IRE Thransactions on
Cirnewit Theorny, January, 1959, pp. 45-60.

[14] N. Zierler, "Linear Recurring Sequences,"

J. Siam, 7(1), 1965, pp. 31-48.

[15] W. H. Kautz (ed.), Linean Sequentiol Switch-
ing Circuits, Holden-Day, 1965.

[16] S. W. Golomb, Shift Registern Sequences,
Holden-Day, 1967.

[17] T. L. Booth, Sequential Machines and Automata
Theonry, 1967.

DESIGN OF A GENERAL-PURPOSE MULTIPROCESSOR
WITH HIERARCHICAL STRUCTURE

J. Sasidhar and Kang G. Shin
Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York, 12181

Abtract -- In this paper we consider the des
sign of a Hierarchical Multiprocessor (HMp) for
general-purpose gpplications. The main attribute
of the HMp is the simplicity of the interconnection
network. The HMp consists of clusters of proc-
essors connected hierarchically for both data
processing and daba distribution.

There are two levels of interprocessor
camunications in the HMp, an implementation of
which is ‘developed on the basis of the monitor
concpet. Using queueing network mddels, the per-
formance falloffs due to shared hardware is also
analyzed, and the optimum number of processors
in each cluster is then determined.

1. TINTRODUCTION

In the past few years multiprocessor architec-
tures have gained considerable attention due to the
availability of the powerful but inexpensive micro-
processors and memories in the computing arena.

The question that still remains to be answered sat-
isfactorily is whether the microprocessor can be
utilized as a building block for large general-pur-
pose computer systems, thereby achieving a higher
performance/price ratio as campared to traditional
uniprocessor architectures. A survey of existing
multiprocessor organizations can be found in [1].
The unsolved issues associated with multiprocessors
are also well discussed in [2].

The proposed architecture called the hierarch-
ical multiprocessor (HMp) has been considerably

influenced by both the Cm* architecture at Carnegie-
Mellon University and the Hierarchical Multicomputer

Organization at State University of New York,
Stony Brook.

The central idea in Cm* [1,3,4] is the group-
ing of processors into clusters and the concept of
a task force [5,12] which is ideal for a cluster
organization. The main drawback in Cm¥* however is
the integration of the I/O units into the system.
The I/0 units are made dependent on individual pro-
cessors which results in an unstructured operating
system and gives rise to religbility and utiliza-
tion problems. This to scome extent has been solved
by the Hierarchical Multicomputer Organization [6,T7]

This work is partially supported by the National
Institute of Justice, U.S. Department of Justice,
under Contract J-LEAA-014-T8, and the National
Science Foundation under Grant EnG-~T9113L47.

141

0190-3918/81/0000/0141$00.75 © 1981 IEEE

where the idea of separating the control and data
moving functions has been suggested. In the pro-
posed architecture this idea has been extended to
include the users interface to the system.

The HMp has been designed to minimize the
interconnection camplexity of the system and uses
only a few types of functional units as building
blocks for the system. The aim of the design
has been to create a general purpose multiproc-
essor with no restriction on the types of algo-
rithms which it can exploit.

This paper is orgenized as follows. Section
2 discusses the HMp architecture of the multi-
processor in some detail. Section 3 describes
the structure of the kernels necessary to imple-
ment monitor primitives [9,10] for synchronizatim
purposes.. Finally Section U deals with the per-
formance falloffs due to shared hardware re-
sources and analyzes the performance of the sys-
tem in terms of the processing rate. Conclusion
follows in Section 5.

2. ARCHITECTURE

2.1 Overview

A multiprocessor should be able to exploit
the explicit or implicit parallelism given by an
algorithm. This is possible only if the number
of steps in each parallel path is greater than a
fixed minimum so as to offset the communication
overhead existing between interacting tasks.

Thus the extent of exploitable parallelism de-
pends on the communication overhead between inter-
acting processes. The hardware interconnection
which has the lowest associated communication
overhead is the shared memory concept. The re-
striction of this approach is that the communica-
tion overhead increases as the number of proc-
essors in the system increases.

To circumvent this problem, a system with
two levels of communication is developed. At the
first level of communication the communication
time is kept to a minimum and independent of the
total number of processors in the system. At
the second level of communication the cammunica-
tion time is sacrificed for extensibility and
hardware interconnection costs. The processors
in this architecture are grouped into clusters.

The significance of this approach becomes
more evident when we examine the property of
process locality [2]; which states that inter- -

action within a defined group of processes is
frequent, whereas interaction between different
groups is infrequent. If processes are allocated
to processors such that the processes of the same
group reside in any single cluster, then the
communication overhead would correspond to that of
a closely coupled system.

The HMp consists of two hierarchies, namely
the processing hierarchy and the data distribu-
tion hierarchy. The data distribution hierarchy
handles the file management functions and the
processing hierarchy handles the processing func-
tions. To differentiate the processors in the
processing hierarchy from those of the data
distribution hierarchy, the former are referred to
as the P-processors and the latter as the D-pro-
cessors. :

The processing hierarchy consists of pro-
cessing modules grouped into clusters which are
then organized in a hierarchical fashion. Associ~
ated with each cluster of processors in the pro-
cessing hierarchy is a parent processor which is
part of the cluster one level higher in the hier-
archy. FEach cluster in the processing hierarchy
has associated with it a D-processor. The D-proc-
essors of the sys tem with the secondary memory from
the data distribution hierarchy. The cluster
organization is presented first and then the
system organization is described in some detail.

2.2 Cluster Organization

The cluster consists of processing modules
which have a sibling relationship to each other
and they share a common memory by means of a time
shared common bus (Fig. 1). Conflicts of access
to the common bus are resolved by the bus arbiter,
and the handshaking required for gaining control
of the bus is done by the switch, which is a
subsystem of each processing module. Each proc-
essing module in the cluster consists of a proec-
essor, local memory, a swtich, a DMA interface
to the D-processor and serial links to its child
and parent processing modules.

2.2.1 The Switch. The processor does not
distinguish between accesses to common memory and
its local memory. It is the responsiblity of
the switch to recognize a nonlocal reference and
initiate the necessary handshaking to perform
the memory access. To access common memory, the
switch has to gain control of the common bus by
handshaking with the arbiter. The switch has
been given the capability of buffering a single
data word which has to be read from or written
into the cammon memory. Also for ease of imple-
menting process synchronization primitives the
switch has been given the capability of requesting
the control of the bus at two levels, depending
upon the status of the switch (Section 3 will deal
with this in some detail). This status is explicit-
ly set by the processor and is alterable only by
the processor.

2.2.2 The Bus Arbiter. The bus arbiter is
moderately complex since it can grant control of
the bus at two levels and there are certain rules

142

it has to follow in order to preserve the integ-
rity of the interprocess synchronization primi
tives (This will be discussed later). The arbiter
provides a round robin service to requesting
processors to ensure that all requests will be
honored in due time. Each of the switches has
two individual request lines to the arbiter for
requesting control of the bus at the two levels,
and correspondingly there are two grant lines

to each switch.

2.2.3 The Control Links. Since the cotrol
links are serial in nature, we need additional
processing at both ends of the link for buffer-
ing a message, generating interrupts and setting
up flags at the completion of a message transfer.
A parent processor can interrupt its child
processor through the serial control link at two
levels: one level is maskable and the other is
nonmaskable. An interrupt at any of the two
levels will cause the child to execute a message
receiving routine which is a part of the kernel
software. In normal operation a parent interrupts
its child at the maskable level. This implies
that if the child is inside the kernel, the inter-
rupt will remain pending until the child exits
from the kernel. But if the parent has reason
to believe that a malfunction has occurred, it
interrupts at the nonmaskable level. The child
on the other hand can interrupt its parent through
the serial control link only at the maskable level.
This ensures that the parent can still function
with a faulty child processor.

2.2.4 The DMA Interface. The DMA interface
transfers blocks of code/data to and from the
local memory of the D-processor associated with
the cluster and the local memories of the process-
ing modules. The DMA interface is also used in
setting up code/data in the common memory of a
cluster. To start a block transfer, the parent
processor of the cluster gives the order to the
D-processor including the identity of the file,
processor number, starting address, the length
of the block and the direction of transfer. The
D-processor then sets the address registers
and the word count register of the DMA interface
and initiates the transfer. On completing the
transfer the DMA interface informs the D-processor
which in turn informs the parent processor of
the cluster.

2.3 Data Distribution Hierarchy

For each of the dlusters in the processing
hierarchy there is an associated D-processor
which handles the transfer of code/data into or
out of the cluster. Since most of the processing
is done at the bottom level of the processing
hierarchy, most of the file transfers in the sys-
tem will be handled by the associated leaf D-
processors. Thus we need high capability data
links between the secondary storage units and
the bottom level D-Processors of the data dis-
tribution hierarchy. To perform the file manage-
ment functions of the system, the D-processors
need to exchange short control messages between
themselves. The D-processors are interconnected
hierarchically by means of serial links and since

at times there will be file transfers on these
links, a packet switching communication system
has to be implemented.

All the human interfaces to the system are
connected to the data distribution hierarchy and
so it acts as the source of all tasks which need
processing power fram the processing hierarchy.
New processes enter the processing hierarchy via
the serial control links interconnecting the two
hierarchies and the results enter the data dis-
tribution hierarchy in the same way. The D-procs
essors act as camand message interpreters in the
same sense as the 'shell' of the UNIX system [11]
and create processes which execute the command
message in the processing hierarchy.

2.4 Root Cluster Organization

The two hierarchies of the system namely the
processing hierarchy and data distribution hier-
archy are merged at the top by a root cluster
whose organization is slightly different fram
that of the other clusters in the system (Fig. 2).
The root cluster consists of both P-processors
and D-processors sharing a camon memory. The
processing hierarchy is attached to the P-proc-
essors of the root cluster and the data distribu-
tion hierarchy is connected to the D-processors
of the root cluster.

Tasks of the operating system executing in
the root cluster can oversee both the processing
and the data distribution hierarchies. Typically
these tasks would consist of cooperating parallel
processes and since the processors in the root are
tightly coupled, it leads to an efficient imple-
mentation.

3. SYNCHRONIZATION AND INTERPROCESS
COMMUNTI CATTON

For any multiprocessor architecture it is
essential to have an efficient implementation of
the synchronization and interprocess communication
primitives. Microprocessor architectures being
introduced at present have capabilities to support
two execution modes, features for memory pro-
tection and hardware support for task switching.
These hardware supports simplify the implementa-
tion of efficient primitives.

3.1 General Approaches

Synchronization and interprocess cammunica-
tion can be implemented by using any of the follow-
ing mechanisms: semaphores, mailboxes, message
queues or monitors. Each of these mechanisms is
logically equivalent to the other.

From a software point of view, monitors [5]
are an ideal solution since they help in specify-
ing the precedence relationships in a structured
fashion. Monitors consist of shared data and
procedures which operate on the shared data. A
process can operate on the shared data only
through the procedures of the monitor and not
directly. Since only one process can be inside
the monitor at any time operations on the shared

143

data are mutually exclusive. The primitives re-
quired to support monitors are: entering a moni-
tor, exiting a monitor, signalling a condition
and waiting for a condition [10].

Since we have interprocess camunications at
two levels: 1) between processors in the same
cluster and 2) processors in different clusters,
we will first discuss the implementation of the
primitives at the cluster level and then at the
system level.

3.2 Synchronization at the Cluster Level

To be as general as possible we assume that
there can be more than one process assigned to a
single processor at any time and that the imple-
mentation should handle both static and dynamic
creation of tasks.

To limit the loading on the central resources
of the cluster (i.e. the common memory, the
cammon bus and the parent processor), we decided
to define two kernels; the processor kernel (call-
ed the P-kernel) and the cluster kernel (called
the C-kernel). The P-kernel resides in each
processor and manages the processes residing in
that processor. The C-kernel handles the monitors
of all processes residing in that cluster and is
located in the common memory of that cluster.
Since the kernels handle the system queues, they
themselves should not be interrupted to assure
that no race conditions develop. This is easy
to implement for the P-kernel since on entering
the kernel it can disable all interrupts (includ-
ing the interrupts from the parent processor).
But mutual exclusiveness for the C-kernel has to
be implemented by using additional hardware.
This mutual exclusiveness is taken care of by the
arbiter and is discussed later.

The C-kernel provides mutual exclusiveness
of the monitors by associating with each monitor
a flag which récords whether the monitor is busy
or not. Thus the C-kernel provides a means of
having more than one monitor busy at the same
time. The C-kernel maintains the queues for
processes walting to enter a monitor and queues
for each condition, The P-kernel queues contain
the full status of the processes necessary to re-
start the processes whereas the queues in the C-
kernel contain only minimal information to
identify the processes. This is to ensure that
the loading on the central resources is as minimum
as possible.

The tasks running in the processors of the
cluster are in the user mode, and execution of
any of the synchronization primitives causes a
trap to the P-kernel of the processor. The
P-kernel saves the status of the user process and
then tries to enter the C-kernel and waits if
busy until it is free. This does not load the
central resources but only idles the processor.
Once the C-kernel is free, the P-kernel enters
it and performs the operations corresponding to
the desired primitive operation. It should be
again stressed that the C-kernel can be entered
only through the P-kernel and not directly by the

user processes. The operations done after enter-
ing the C-kernel for the case of e primitive is
discussed and the rest are similar.

Exiting from a monitor: The C-kernel checks
‘the queue associated with the monitor and if there
is no process waiting to use the monitor, it resets
the monitor flag and exists to the p-kernel. If
hwoever, there is a process waiting, it sends
the identification of the waiting process to the
parent processor (to be woken up) and then exits
without resetting the monitor flag. The P-kernel
then passes control back to the user process.

When the parent processor receives the message
for weking up a process, it interrupts the processor
which has that process in its wait. queue, and thus
we have a "positive wakeup of the process" [8].

The parent processor does not require to keep
track of where the process is residing since the
message from the C-kernel cotains both the
identification of the process and the physical pro-
cessor in which it is residing.

For the case of dynamic creation of processes,
the technique used is quite similar. Execution
of a FORK statement by a user process causes a
trap into the P-kernel and the P-kernel then re-
quests the parent processor to create the re-
quired number of processes. It is understood that
any daba to be shared has initially been stored
in the cammon memory of the cluster when the task
itself was allocated. Once the Parent processor
acknowledges the message, the P-kernel gives con-
trol back to the user process.

3.2.1 Functions of the Arbiter. Function
of the arbiter are:

1. to give mastership of the bus to a requesting
processor, and
2. to keep track of the condition of the C-kernel

(i.e busy or not) and thus provide mutual
exclusion of the C-kernel.

Each processor can request use of the bus at two
levels, one for using the C-kernel and the other
for using code /data cutside the C-kernel (i.e.
the monitor procedures). This is implemented by
using an independent set of two request and two
grant lines for each processor.

If the processor wants to enter the C-kernel,
it sets a status bit in the switch of the pro-
cessor module. The switch then asserts the C-
request. line and if the C-kernel is not in use,
the arbiter asserts the C-grant line. The switch
then sets a flag indicating to the processor that
it can now proceed to use the C-kernel. Then for
each access to the camon memory the switch
asserts the B-request and performs the memory ac-
cess after the arbiter asserts the B-grant line.
Once the processor exits from the C-kernel, it
resets the status bit in the switch which causes
the switch to deassert the C-request line. If the
processor wants to access code/data which is out-
side the C-kernel, then the processor does not
set the status bit in the switch. For each access
to the common memory the switch only asserts the

144

- other processor in the C-kernel.

B-request line,

The arbiter provides mututal exclusion of
the C-kernel by asserting C-grant to only one
of the processors which has its C-request line
asserted and ignores all other requests for the
C-kernel until the corresponding processor exits
from the C-kernel. The arbiter can give master-
ship of the bus to a processor with only its B-
request line asserted even though there is an-
This does
not -create race conditions but does improve the
utilization and availability of the time shared
bus. Thus the arbiter provides a round robin ser-
vicé for the use of the bus (by asserting B-grant)
and a round robin service for the use of the C-
zernel (by asserting C-grant).

3.3 Synchronization at the System Level

We have so far discussed the implementation i
of the inter-process synchronization primitives -
at the cluster level. There can be two approaches
for implementing these primitives at the system
level. One approach would be to have processes
residing in different clusters communicate via
messages., This involves the complexity of having
two types of communication primitives, one at the
cluster level and the other at the system level.
It suffers from the fact that the architecture
is not transparent to the systems programmer.

The second approach is to implement the syn-
chronization primitives.at the system level by us-
ing the monitor concept. This provides transparen-
cy and makes it easier-for the system programmer to
implement the system software. Since monitor pro-
cedures access only data local to the monitor,
all interactions between the calling process and
the monitor procedure is made via arguments. Thus
execution of a monitor procedure whose physical
location is in another cluster can be implemented
via messages. The monitor procedures will physie.:
cally reside at a common ancestor cluster of the
two clusters in which the cammunicating processes
are present. : '

The basic kernel of the operating system which
handles the processes and the inter-process camuni-
cation is described below. This kernel code is
replicated in all the P-processors of the HMp.

The basic kernel consists of essentially two levels.
The first level consists of the P-kernel and the
C-kernel. The second level consists of the mes-
sage handler which implements the primitives neces-
sary for a process to switch processors. A process
can execute a monitor procedure whose physical
location is in another cluster by migrating to that
cluster. The message handler can create, destroy
or wake up processes residing in the processor.

This is necessary for implementing the monitor
primitives and also serves to implement the concept |
of coscheduling the task force [12].

Above this basic kernel, a-distributed operat- . |
ing system such as Medusa [12] can be implemented. }
Medusa consists of a set of disjoint utilities
(each of which is a task force) which communicate

via messages using a structure called pipes [11].
This structure can be implemented by using the
monitor primitives made available by the message
handler.

4. PERFCRMANCE ANALYSIS

Since the present organization consists of
two levels; we first determine the performance
of a single cluster treating it as a single
unit. Using these results we evaluate the per-
formance of the entire system. In this analysis,
performance refers only to the throughput of the
system and not to any other factors.

4.1 Performance of a Single Cluster

The resources which are shared by the pro-
cessors of a single cluster are the time shared
common bus, the cammon memory, the D-processor
and the parent processor. Interference in shar-
ing these resources results in a decrease in the
performance of each processor.

The reason for analyzing the cluster is to
determine the optimum number of processors for
a cluster and to find the limiting value of
performance due entirely to hardware constraints.
We are at present not considering the performance
falloffs due to software precedence relationships
which do affect the final figure of performance.

The performance of a cluster of processors is
being evaluated by using queueing network models.
The first queueing network models the perform-
ance falloffs due to common memory interference.
The second queueing network models the perform-
ance falloffs due to the parent processor and the
D-processor of the cluster.

4.1.1 Common Memory Interference. Let us
define the memory cycle time (Mc) as the time
taken to read or write a single word into common
memory once the switch has mastership of the time
shared common bus. Let us also define the access
interval time (Ai) as the time interval between
two consecutive accesses to memory by a pro-
cessor. The accesses can be either for code or
data. Even though there is a variation in the
access interval times we assume for simplicity
that it has a constant value [13].

Let us further denote the integer value
[Ai /Mc] by m. The greater the value of m, the
less the interference due to the shared re-
source and thus greater is the performance of the
processors in the cluster. If the common memory
is implemented in bipolar technology and the pro-
cessors in MOS technology then the value of m is
usually in the range 3 to 10 and thus can be used
as a design parameter. Using bipolar memories
for the common memory is reasonable since the
memory requirements for shared information is
small.

To analyze the interference in accessing the
common memory, we should have an understanding
of the nature of the stochastic process which
describes the accesses to common memory by each

145

processor. Reviewing the use of common memory we
find that the common memory is used only for moni-
tor procedures, and their associated data and
control mechanisms. When a processor starts exe-
cuting a monitor procedure, all memory accesses
will be to the cammon memory since both code and
data will reside in the common memory. Thus
successive accesses to common memory by the same
processor cannot be modeled as independent random
variables.

If a processor executes any of the monitor
primitives, it begins executing the code of the
C-kernel and then, depending upon the type of
monitor primitives desired and the state of the
desired monitor, one of the following actions
takes place.

1. Processor starts to execute the monitor pro-
cedure.

2. It wakes up a process residing in another
processor to execute the monitor procedure.

3. It waits for another process to signal it and
at that time it continues to execute the
monitor procedure.

4. Tt does not execute the monitor procedure nor

does it wake up another process to execute
the monitor procedure.

Examining the above cases we find that for
the first two cases the monitor procedure is
executed either by the same processor or by an-
other immediately following the execution of the
C-kernel. In the last two cases the monitor
procedures are not executed, and the next time
the processor accesses the common memory it would
execute the C-kernel. Once a monitor procedure
is being executed, the processor has to execute
one of the monitor primitives to exit from the
monitor. The above four cases can be condensed to
the following two cases.

1. The processor executes the C-kernel, then the
monitor procedure and finally the C-kernel;
each one immediately after the other.

2. The processor executes the C-kernel and then

starts executing code from its local memory
and then the C-kernel when it cames across a
monitor primitive.

Both of these cases can be represented by one uni-
fied model which is as follows: the processor
first executes the C-kernel and then a monitor
procedure and then code from its local memory and
then finally the C-kernel again.

4.,1.2 Closed Queueing Network Model. We
can model the memory contention problem as a closed
queueing network model with appropriate service
times and scheduling policies. The resource being
shared is the common memory and the service time
it provides can be measured in terms of the number
of common memory accesses.

The number of common memory accesses needed to
execute a portion of a monitor procedure sand-
wiched between two consecutive monitor primitivesg

can be treated as a random variable with an ex- -
ponential distribution. The number of local
memory accesses between two monitor calls can
also be treated as a random variable with an
exponential distribution. The nunber of ccmmon
memory accesses needed to execute the monitor
primitive by means of the C-kernel is assumed
to have an exponential distribution. Even
though the actual distributiong might net corre-~
spond to our assumptions, queueing models are
generally robust and do give good results,

The queueing network consists of three nodes
two of which consist of parallel servers and the
third a single server (Fig. 4). The first node
consists of n servers where n is the number
of processors in the cluster. The service time
for these servers corresponds to the distribution
of the number of local memory accesses between
two consecutive monitor calls, Node 1 is of
type-D [15] since the customers are delayed inde-
pendently of other custamers at this service
center.

The common memory can be treated as m vir-
tual parallel servers since effectively there
can be m common memory accesses in time period
Ai. Also note that we cannot give more than one
common memory access to a processor in a given
time period Ai. (Fig. 5). Of the m virtual
servers of the common memory one server services
the C-kernel queue which is Node 2 of the queue-~
ing network. The rest of the m~ 1 virtual server
service the monitor queue and form Node 3 of the
queueing network.

In the actual system however, the server
servicing the C-kernel queue would service cus-
tamers in the monitor queue if there are no
customers in the C-kernel queue. Therefore the
performance characteristics obtained by this
queueing network model gives the lower bound of
the actual performance. The upper bound of the
performance can be easily obtained by having an
additional parallel server at Node 3.

The scheduling policy used for Node 2 and
Node 3 of the queueing network is FCFS. 1In the
actual system the type of scheduling used to
service the monitor queue is round robin. As
we are only interested in the mean values of the
waiting time and the mean queue lengths, we can
assume an FCFS service mechanism. As long as
the scheduling is independent of the service re-
quirements of a customer, the mean values do not
change [1k].

The analytical solution of the queueing net-
work was carried out by the recursive algorithm
in [15]. The results shown in Fig. 6 correspond
to mean value service times indicated below
(values normalized by the mean number of local
memory accesses needed to execute a block of
local code sandwiched between two consecutive
monitor calls):

1. Mean number of common memory accesses needed
for executing the C-kernel: Case 1: 2.5%;
Case 2: 5%.

S

146

2, Mean number. of common memory accesses
needed for executing monitor code)
sandwiched between two monitor primitives:
Case 1: 10%; Case 2: 20%.

The results give the lower and upper bounds
of the performance of the cluster with common
memory interference for m = 3 and m = k,

4.1.3 Parent Processor Interference. To
evaluate the type and frequency of demands placed
on the parent processor, let us consider its func-
tions. The parent processor basically consists
of a message handler and other user or system
processes. The message handler handles all in-
coming messages from the child processors, the
D-processor and the parent of the processor it-
self. There are three types of messages which
can occur and their description follows.

The first type is a synchronization request
between processes residing in the same cluster.
The amount of processing time needed to process
this type of message is small but their frequency
of occurrence is high. The parent processor
should be very responsive to these requests since
any delay would entail a decrease in the perform-
ance of the cluster.

The second type of message is a request for
execution of a monitor procedure residing in the
parent processor cluster. This entails the
creation of a process by the message handler by
inserting its description in the ready queue of
the P-kernel. The created process then needs
processing time to execute the monitor. Then the
message handler has to reconvert the process into
a message form and send it back to the child
processor. The frequency of occurrence of these
type of messages is small but the processing time
needed is higher in relation to the messages of
the first type.

The third type of message is a request for
the transfer of code/data into or out of the lo-
cal memories of the child processor. This message
should be redirected to the D-processor and once
the transfer is over the reply from the D-
processor should be sent to the child processor.
The frequency of occurrence of these type of
messages is low and the processing time needed
is also low.

h.1,h Queueing Model. We can now treat the
system as a closed queueing network model with the
parent processor and the D-processor as servers
with the processors in the cluster and the parent
of the processor itself as the customers (Fig. T).
The processors are assumed to have a think time
which is exponentially distributed. After each
think period a processor sends a message to the
parent processor which acts as the server. The
message can be of any type and it is placed in
the message queue. The service time requirements
for customers in the message queue are assumed to
be exponential. This service time includes the
time taken to read the message from the hardware
buffer; perform the synchronization or create a
new process by entering it in the run queue of
the kernel.

The customers coming out of the first server
Oantake three paths where each path has an assign-
ed probability. The three cases are as follows:

1. If the customer needs no further processing,
then it returns to the processor from which
it originated (p21).

2. If further processing is required, then the
customer is put back in the message queue
which is serviced by the parent processor
(p22)

3. If further processing is required from the
data processor, then it is put in the data
queue. After it receives service from the
data processor, it is put back in the
message queue (P23).

Both the queues in the model namely the
message queue, and the data queue are served in a
FCFS discipline. Synchronization messages are
being given higher priority in the queueing
model since additional processing needed by a
message is being postponed until the backlog
of messages have been serviced. -

P22 with the average service time for
customers in the message queue determines the
total service time requirements for messages
which need execution of monitor procedures. The
service time for customers in the data queue is
the total time the system takes to transfer the
code/data to or from the primary memory. This
service time is also assumed to have an exponen-
tial distribution.

The analytical solution of the queueing net-
work was again obtained by the recursive algo-
rithm in [15]. The results shown in Fig. 8.
correspond to the following mean value service
times (the values are normalized by the service
time for executing code residing in the cluster,
sandwiched between two consecutive calls to the
parent processor):

1. Mean service time taken by the parent processa
to perform a synchronization request: 2.5%

2. Mean service time for the D-processor to
transfer code/data in and out of the cluster
processor's private memory: 20%

The routing probabilities for the closed queueing
network was taken as follows:

1. Case 1: P21=0.8, P22=0.1, P23=0.1

2. Case 2: P21=0.T, P22=0.2, P23=0.1

4.2 The System Performance

From the analysis so far carried out we have
to arrive at the figure for the optimum number of
processors in each cluster. Since m, the figure
of merit of the cammon memory can be varied within

147

3 reasonable range; it can be varied such that
the parent processor becomes the critical shared

resource of the cluster.

Assuming that we desire at least 90% of the
ideal performance (i.e. when there is no inter-
ference), we come up with the figure of 15 pro-
cessors from the performance curves of the parent
processor (Case 1). Since the parent processor
is also a resource for the grandparent of the
cluster, the optimum number of processors for
the cluster would be equal to 1k.

From this optimum number of processors and
the curves for the performance falloffs due to
the common memory interference we can determine
the desired value of m, such that the critical
resource is still the parent processor. For m
equal to 3 and the number of processors equal to
14 we have the performance due to common memory
interference as 97% of the ideal case for Case 1.

The performance falloff when both the shared
resources are present can be taken as the sum of
the individual performance falloffs as a first
approximation. Therefore the performance of the
cluster with both the shared resources present
will be 87% (=100-(100-90)-(100-97) of the ideal
performance. Since the number of processors in
the cluster is 14, the net cluster performance
will be equivalent to that of 12 processors
(14*87%) .

Assuming that most of the actual processing
takes place in the leaf clusters, the total sys-
tem performance can be written as the product
of the cluster performance (net performance) and
the number of leaf clusters in the processing
hierarchy of the computer system. The above
analysis assumes that the P-processors at the
higher levels are busy synchronizing and perform-
ing other communication tasks.

5. CONCLUSION

We have presented the architecture of the
HMp, the synchronization primitives and finally
the performance of the system based on these
primitives. Our future work will concentrate on
the interesting aspects brought up by this archi-
tecture, some of which are given below.

The HMp has an upper bound on the number of
levels it can have. This depends on the higher
level processors becoming the bottlenecks in the
system. This is thus related to the number and
locality of the inter-cluster messages which
further depends on the operating system structure.

The effects of software precedence has to be
introduced into our queueing models for determin-
ing the actual performance falloffs. This will
be useful in determining the effects of both soft-
ware and hardware constraints in the system. We
know by intuition that the figure for the optimum
number of processors in each cluster will increase,
when these effects are taken into account.

The files in the secondary memory should be
distributed such that the time to access them
from any point in the processing hierarchy is a
minimum. The modelling of such a system will in-
volve the actual hardware being used and the band-
width of the interconnections in the data distri-
bution hierarchy.

REFERENCES
[1] ©P. H. Enslow, "Multiprocessor Organization -
A Survey," Computing Surveys, Vol. 9, No. 1,
March 1977, pp. 103-129.
[2] s. H. Fuller, J. K. Ousterhout, L. Raskin,
P. L. Rubinfeld, P. J. Sindhu and R. J. Swan,
"Multi-Microprocessors: An Overview and Work-
ing Example," Proc. IEEE, Vol 66, No. 2,
Feb. 1978, pp. 216-228.
[3] R. J. Swan, S. H. Fuller and D. P. Siewiork,
"Cm¥ - A Modular Multi-microprocessor,"
AFIPS Conference Proceedings, Vol 46, 1977
National Computer Conference, pp. 637-6kk.
[4] R. J. Swan, A. Bechtolsheim, K. Lai and
J. K. Ousterhout, "The Implementation of Cm¥
Multi-microprocessor," AFIPS Conference
Proceedings, Vol 46, 1977 National Computer
Conference, pp. 645-655.
[5]1 A. K. Jones, R. J. Chansler, I. Durham, P.
P. Feiler and K. Schwars, "Software Manage-
ment of Cm¥ - A Distributed Multiprocessor,"
AFIPS Conference Proceedings, Vol 46, 1977
National Computer Conference, pp. 657-663.
[6] J. A. Harris and D. R. Smith, "Hierarchical
Multiprocessor Organization," Conf. Proc.
bth Ann. Symp. Computer Architecture,
March 1977, pp. 41-L8.
[7] R. B. Kieburtz, "A Hierarchical Multi-
computer for Problem Solving by Decomposi-
tion," Proc. 1lst Int'l Conf. Distributed
Computing Systems, Oct. 1979, pp. 63-T1.
[8] H. K. Reghbati and V. C. Hamacher, "Hardware
Support for Concurrent programming in
Loosely Coupled Multiprocessors,”" Conf. Proc.
5th Ann. Symp. Computer Architecture,
April 1978.
[9] C. A. R. Hoare, "Monitors: An Operating Sys-
tem Structuring Concept," CACM Vol. 17,
No. 10, 197h, pp. 549-557.
[10] R. C. Holt et al., Structured Concurrent
Programming, Addison Wesley, 1978.
[11] D. M. Ritchie and K. Thompson. "The UNIX
Time-Sharing System Comm.," ACM, Vol. 17,
No. 7, July 1974, pp. 365-375.)
[12] J. K. Ousterhout, D. A. Scelza and
P. S. Sindhu, "Medusa: An Experiment in
Distributed Operating System Structure,"
Proc. Tth Ann. Symp. Operating Systems
Principles, Nov. 1979, pp. 115-126.

[13] D. P. Bhandark . "Same Performance Issues in
Multiprocessor System Design," IEEE Trans.
Computers, Vol. C-26, No. 5, May 1977,
pp. 506-511.

[14] L. Kleinrock, Queueing Systems, Vol. 1 & 2,
John Wiley and Sons, 1975.

[15] M. Reiser, S. S. Lavenberg, "Mean Value

Analysis of Closed Multichain Queueing Net-
works," JACM, Vol. 27, No. 2, April 1980,
313-322.

pp.

Control Links to
Parent Processor

Common Bus

55 6 0

To Parent To Parent &
of Cluster Child D-Processors

- Processor
- Local Switch
Arbiter

= >
1

Common Memory

Local Memory

=

DP - D-Processor
C - Serial
Communication
Interface

Figure 1. Cluster Organization.

148

RC - ROOT CLUSTER
C - CLUSTER
MONITOR
DP - D-Processor lC-KERNEL PR?CEDURE
SM - SECONDARY MEMORY N
"

w
| =
time
EXECUTION OF
LOCAL CODE

Figure 3. Common Memory Reference Pattern.

Node 1 Node 3

C-Kernel poge 2 Monitor

Figure 2. System Hierarchies.

Cluster Processors Virtual Servers

Case 1: No. of Requesting Processors < m . Figure 4. Queueing Model for Common Memory

11213 112 1|3
L
n
Common ;EE—P
Memory N
Not Used For
Two Cycles

1l: Access to C-Kernel by Processor 1.

2,3: Access to Monitors by Processors 2,3.

Cese 2: No. of Requesting Processors > m .

B, Figure 5. Individual Access
1 to Common Memory

v
—
time

1: Access to C-Kernel by Processor 1.

2-6: Access to Monitors by Processors 2 to 6.

149

No. of Equivalent Processors

—%— : Case 1

—8— : m =3 —_—— Case 2

No. of Equivalent Processors

L L i n . s

2 L4 6 8 10 12 14 16 18 20
2 bk 6 8 10 12 14 16 18 20

No. of Processors in Cluster
No. of Processors in Cluster

Figure 6 Common Memory Interference. Figure 8. Parent Processor Interference.
Cluster Processors
y Message Message
_ Queue p23 Queue
: PP alill
P22’{ P

21
G - Grandparent

PP - Parent Processor

DP - Data Processor

Figure 7. Queueing Model for Parent Processor.

150

A BLOCK-DRIVEN DATA-FLOW PROCESSOR*

By

T.L. Chang, Student Member, IEEE

and

P. David Fisher, Senior Member, IEEE

Department of Electrical Engineering
and Systems Science
Michigan State University
East Lansing, Michigan 48824

Summary

A highly distributed data-flow processor
based on block-driven principles is described.
Being block-driven, data-flow programs can be
executed in functional blocks. As a result, data
transfers can be effectively separated into
different levels of communication paths. Through
the use of a structured computer architecture and
a hierarchical data-transfer mechanism within the
tree network, this data-flow processor provides
programmable communication paths for fast data
transfer while at the same time achieving very
high levels of concurrency.

Introduction

In a data-driven computing system, the in-
structions of a data-flow program are normally
stored in the instruction memory cells; an in-
struction cell will be fired whenever the required
data are available [1.2]. Based on a variety of
forms of parallel routing and parallel computation,
a large number of such instructions can be exe-
cuted simultaneously. However, due to data depen-
dencies, this data-driven approach requires streams
of data to be routed back to the instruction memory
cells. These data then trigger newly addressed
instruction cells. Based on the trend that data
transfers are becoming more and more costly when
compared to the cost of a unit of computing power,
there is a critical need for data-flow structures
having efficient data transfer paths [3,4]. Con-
sidering the constraint of data dependencies to
data-flow instructions, this constraint varies from
one instruction to another. Some instructions re-
quire one data item from the previous execution and
some require two. An instruction with one depen-
dent data item can be executed immediately after
the previous operation is completed. However, the
execution of an instruction with two dependent data
items has to wait until both data items are ready.
This results in a different degree of efficiency
for transferring these two types of data. A num-
ber of data-flow machines, which have been pro-
posed recently or which have already been devel-
oped, have paid little attention to this problem.

*This research was supported in part by the

National Science Foundation under Grant
No. MCS879-09216.

0190-3918/81/0000/0151$00.75 © 1981 IEEE

151

In these machines, data items are transferred on
a fixed-length data path basis. As a result, the
problem of intercell communication overhead has
limited their potential to only a handful of
applications [1,2,5].

In an effort to overcome the communication
overhead problem, a block-driven approach is ex-
plored. By contrast to the "data-driven'", the
"block-driven" can be best described as the group
firing of instructions which belong to a group of
composite computations. The result of this group
firing is that data paths can be effectively sepa-
rated. Data transfers among the already executed
instructions and the succeeding instruction cells
within the same group will have shorter paths
compared to those outside the group.

The purpose of this paper is three-fold:
First, we describe the block-driven principle and
discuss its potential advantages: second, we
introduce an hourglass computing model to facili-
tate different levels of data transfer, and by
this model, develop a block-driven data-flow
computer architecture; and finally, we present a
push-pull data-transfer mechanism.

Block-Driven Data-Flow Principle

The flow of data and control in data-flow
programs represent fundamentally a random motion
phenomenon. And the requirement for transferring
this tremendous number of data links and control
signals has made the design of parallel processors
extremely complex. Although a large number of
algorithms have been designed to make applicative
programs more suitable for parallel computations,
they have been proved to be efficient only when
they are executed in specialized array processors
[6,7,8]. Like the structured programming techni-
que being widely applied to the software design,
the idea of structural, compound function compu-
tations has been gaining a great deal of support
recently [9,10]. The block-driven approach is
developed here to exploit as much of the structure
of data-flow programs and machines as possible.
In what follows, we will describe this approach.
Two important computational steps in data-flow
programs are the branch computation and the joint
computation. Branch computations involve a se-
quence of chain computations with the constraint

that each succeeding computation requires one data
item from its previous computation. In other
words, a computation branch is represented by a
mathematical expression of the form

£.(an,fn_l(an_l,("fz(az,fl(al,ao))")

in which the f,'s denote the elementary arithmetic
function (+,—,¥,/) and the a,'s are data. A joint
computation is defined as a pair of branch compu-
tations which are linked together by a computation
node at their ends. A data-flow graph containing
two computation branches at a joint is shown in
Figure 1. By such linkage, we can form a number
of joint computations into a cluster of functional
cells or a computational block. Each functional
cell is made up of a group of composite instruc-
tions and a number of data operands. Data items
which are used to initiate the firing of a func-
tional cell are called global data.

In a block-driven computer system, the firing
of an instruction cell in the data-flow program is
subject to the firing of a functional cell with
which this instruction is associated; and the fir-
ing of a functional cell is subject to the group
firing of a computational block. Through this
process, a large number of independent functions
can be executed in parallel. Further, complex
algorithms can be easily decomposed and thereby
effectively executed.)

Joint Computation

One important issue of having data-flow pro-
grams executed by the block-driven process is con-
cerned with the manner in which a computation is
executed locally. To deal with this, we propose a
simple and effective processing pair for branch
computations. The processing pair consists of a
pair of local supervisors and a pair of FLP comput-
ing modules connected in a ring configuration (see
Figure 2). Data-flow instructions on a pair of
branches are executed on an interleaved basis. An
example of this interleaved computation is illus-
trated in Figure 3. The advantages of this ap-
proach are: first, the succeeding instructions
can be driven by local data with an address field
of minimum bits; second, reliability can be greatly
improved by connecting the processing elements
in this manner.

Hourglass Data-Flow Computing Model

In an attempt to exploit the potential advan-
tages of this block-driven principle, a novel
hourglass computing model was developed (see
Figure 4). The hourglass is loaded with a pair of
"double mirrored" trees and has the computing
power elements at one end, the instruction memory
cells at the other, and hierarchical tree-
structured data paths in between. Based on the
block-~driven principle, a block of fired func-
tional cells pass through a pipe of instruction
buffer units to the block control master, where
the functional cells are distributed, and the
separated computational branches are executed
locally on an interleaved basis in a pair of

152

processing elements. Data flow within the hour-
glass is guided, primarily depending on whether
data are global or local in type, either into
transmission paths or reflection paths. The length
of the transmission paths is fixed; therefore,
there is no preference for all global data trans-
fers. The reflection paths are varied, ranging
from the shortest paths, which are localized in
the processing pair, to the logarithmic paths
within the buffering tree. This hourglass model
has highly concurrent activities at both ends,
while global data, which link the functional
cells, are trickling in between.

Block-Driven Computer Architecture

Various tree-structured computing machines l.
have been proposed [11,12]. The tree machines
have very high levels of concurrency and are well
suited for implementation with current VLSI
technology [11,12,13]. Based on our hourglass
model, we propose a data-flow tree machine. It
contains two kinds of trees: one is called the
buffering tree and the other is the distributing
tree (see Figure 5). In what follows, we will
briefly describe the structures of these two
trees and the associated functional units.

Buffering Tree--The buffering tree is an n-
level binary network capable of computing 2" FLP
operations concurrently and transferring the
results efficiently. It consists of 2 -1 nodes
and one root node. Each one of these nodes is a
controlling buffer, at which each visiting data
item will either be buffered down or be trans-
ferred out. This choice is based on a number of
conditions which will be discussed later. Also
associated with each leaf node is a pair of local
supervisor and processing element where FLP
operations are performed. The buffering tree has
two primary roles: first, it is an interconnec-
tion network to the 2 processing elements;
second, it is a buffering channel between the pro-
cessing elements and the instruction memory cells.

Data movements within the buffering tree are
based on a two-phase push-pull mechanism. While
capable of being pushed forward and pulled back-
ward, local data can be precisely moved from one
leaf node to another in a few number of push-pull
cycles. Global data, which use the buffering tree
as the channel, can be pushed forward through the
network and off via the root node in n push
cycles.

Distributing Tree--The distributing tree is
an m-level pipelined binary switching network.
It provides the basic mechanism of routing streams
of globally independent data to a set of function-
al cells. There are 2 functional cells and data
operands tied to the lowest level leaf nodes of
the tree. Through the use of an m-bit address
header, data items can be routed to their desti-
nation cells. As data items enter the root node,
they are pipelined through this m~level distrib-
uting tree.

As a data item is passed from one node to
the lower level node, the select bit in the
address header is deleted. As a result, the m-
bit header is eliminated from a data item when
the routings are concluded.

Block Control Master--The major role of
the block control master is to provide the tree
machine with concurrent joint computations.

The master communicates with all the local leaf
supervisors. The master acknowledges when the
tree machine is released from one block of
computations. Then a following computational
block will be sequenced and be distributed over
the local leaf supervisors, and a joint
computation will be executed.

Instruction Buffer--The instruction buffer
unit is used for the queueing of blocks of
functional cells which are fired and ready to be
executed and is built with intelligent FIFO buffer
memories.

Push-Pull Data Transfer Mechanism

Because there are two types of data to be
transferred in the same network, each node of the
buffering network--a controlling buffer--is de-
signed to work on a two-phase basis. In the push
mode, data are pushed forward from the lower-
level nodes to the higher-level nodes; whereas,
in the pull mode, data are pulled backward in an
opposite way. Each data item is tagged with a
destination address field and a one-bit data type
header. The width of the address is determined by
the tree height--the higher the tree height, the
wider the field. Specifically, a locally depen-
dent data item has a relative displacement ad-
dress and a one-bit direction header, while a
globally independent data item has an absolute
address. The relative displacement address is
determined by the distance in which the two commu-
nicating leaf nodes are apart and by the relative
position in which the two nodes are located (see
Figure 6). Data to be pushed forward or pulled
backward depend on a one-bit mode control by
ORing the one-bit data type header and selected
bits in the address field. With a tree height
of n, this mode control at the ith level,

M., is given by
i
n-1

= 2UGY;)

where the notation U stands for the logic OR
operation. If the mode control is '"1", data will
be pushed forward; otherwise, they will be buffer-
ed at the node at which they last visited and be
ready to be pulled backward.

M

5 0 <ic<n-1,

Global data, which carry a "1" in the data
type header a,, will allow themselves to be pushed
forward through the buffering network. However,
local data, which carry a "0" in the data type
header, can never be pushed forward beyond the
root level, because the mode control at the root
level is always "0" for these data. Data which
have already been buffered down to a node at some
level will be pulled backward by one of the two

153

son nodes. The decision is determined by a left-
right control——LRi——at that level, with

a, +aa,,
n i n i

a 1<ic<n-1,

where a_ is the direction header which determines
whether"the data to be directed to their right or
to their left. If the left-right control is "1",
the data will be pulled backward by the right son
node, and if it is "0", they will be pulled back-
ward by the left son node. A three-level buffer-
ing tree is illustrated in Figure 7.

Discussion

The block-driven data-flow processor describ-
ed executes clusters of data-flow instructions in
a block of locally tree-structured processing
elements. Two classes of data communication paths
exist. The first communicates global data among
blocks of the locally tree-structured processing
elements. The second communicates local data
among processing elements within a block. Maximum
throughput occurs when the ratio of the local data
communication rates within a block is much-much
greater than the global data communication rates
for the data channels bringing operands into or
taking results from a block. So, the granularity
of the tasks performed within the structured
blocks determines the overall system performance
for a fixed number of blocks and processing ele-
ments. We are currently assessing the complexity
of this data-flow structure in the context of its
application to both vector processing and discrete-
time filtering.

References
[1] D.P. Misunas and J.B. Dennis, "A Computer
Architecture for Highly Parallel Signal
Processing," Proceedings of the ACM 1974

National Conference, ACM, N.Y. (Nov. 1974),
pp. 402-409.

[2] 1. Watson and J. Gurd, "A Prototype Data-
Flow Computer with Token Labeling,' AFIPS
Conf. Proc., Nat'l Comput. Conf., (June

1979), pp. 623-638.

[3] C.H. Sequin, "Single-Chip Computers, The
New VLSI Building Blocks," Proc. Caltech
Conf. on VLSI, (Jan. 1979), pp. 435-445.
[4] D.A. Patterson and C.H. Sequin, 'Design

Considerations for Single-Chip Computers
of the Future," IEEE Trans. on Computers,

Vol. C-29, (Feb. 1980), pp. 108-116.

[5] A.L. Davis, "A Data-Driven Machine Archi-
tecture Suitable for VLSI Implementation,"
Proc. Caltech Conf. on VLSI, (Jan. 1979),

pp. 479-494.

H.S. Stone, "An Efficient Parallel Algorithm
for the Solution of a Tridiagonal Linear
System of Equations,' ACM Journal, Vol. 20,
No. 1, (Jan. 1973), pp. 27-38.

[6]

[7] H.T. Kung, "The Structure of Parallel
Algorithms," Advances in Computers, Vol. 19,
ed. by M.C. Yovits, Academic Press (1980),

pp. 65-112.

[8] H.T. Kung, "Let's Design Algorithms for VLSI
Systems,”" Proc. Caltech Conf. on VLSI,

(Jan. 1979), pp. 65-90.

[9] D.D. Gajski, D.J. Kuck, and D.A. Padua,
"Dependence Driven Computation," Digest
of Papers, IEEE Compcon Spring 81, (Feb.

1981), pp. 168-172.

[10] Arvind, "Decomposing a Program for Multiple
Processor Systems," Proc. 1980 Int'l Conf.
on Parallel Processing, (Aug. 1980),

pp. 7-11.

[11] S.W. Song, "A Highly Concurrent Tree Ma-
chine for Database Applications," Proc. 1980
Int'l Conf. on Parallel Processing, (Aug.

1980), pp. 259-268.

[12] A.M. Despain and D.A. Patterson, "X-Tree:
A Tree Structured Mhlti—Processor Computer
Architecture," Proc. Fifth Symp. on Comp.

Arch., (April 1978), pp. l44-151.

[13] E. Horowitz and A. Zorat, "The Binary Tree
as an Interconnection Network: Applications
to Multiprocessor Systems and VLSI," Proc.
Workshop on Interconnection Networks for

Parallel and Distributed Processing, (April

1980), pp. 1-10.

branch ¢

A joint computation data-flow graph
h (£,8).

Figure 1.

154

Figure 2. The ring configuration:
CM: computing module and
LS: 1local supervisor.
‘1 bo
do bl
x = £,(ay, 8, (a),24))
Y= "2("2'91“’1"’0”
2z = hix,y)
Figure 3a. An example of a
joint computation.
29
et
B2
* y
Figure 3b. Steps in an interleaved

computation.

Figure 4.

-e @=® o

Pintributing Tree
Butfating Tres
Inatruceion Butter
Group fnstruct o
Packet

Global Data
toaal bata

The hourglass computing model.

Local

Processing Functional
Pairs Cells
rd (
5 4 ¢ (?}
rd e . 9 .
7 4 . . .
Block . . . ' o})
. . . Bufferi Distributing rd
b | ; L | e e 8}
. .
§ f : . :
. .
< ~Lih
-+ { e}
£
Intetigent. 7
rd
FIFO 7
ra
v4
Figure 5. Block-driven data-flow architecture
address
A
ls N
a,: data type header
L] L L]
data an 2l % a -a,: address field
a, = 1
global absolute 7
data address
a_-a,: absolute address, m < n
m 1 -
a =20
local relative o
o displacement 0 a : direction header
data) address n
S8 R relative displacement address

Figure 6. Data address syntax.

Figure 7.

A three-level buffering tree

155

Processor Allocation in Data Driven Systems - Two Approaches

by

K.J. Mundell, M.W. Linder and S.E. Conry
Electrical and Computer Engineering Department
Clarkson College of Technology
Potsdam, New York 13676

Summary

The topics of data driven computer and pro-
gram organization have attracted considerable
attention in recent years. A number of
architectures have been proposed and several pro-

‘totype machines are now either operational or are
being built[1-8]. In addition, various groups
have developed languages baséd on principles com~
patible with data driven execution[8-13]. 1In this
paper we describe two approaches to the problem of
associating operations in a program with the pro-
cessors which will execute them. The goal is to
reduce the time required for program execution by
making judicious processor allocationms.

In this paper we are concerned with a class
of programs written in a textual-form single
assignment ~language. The fundamental control

structures assumed are: BEGIN-END, WHILE-DO, and
IF-THEN-ELSE. We assume that the parallelism 1is
implicit, rather than explicitly expressed by a
COBEGIN-COEND type construct. (The assumptions
outlined here are completely consistent with those
inherent in most, if not all, of the single
assignment languages that have been developed.)
The data driven rule for execution implies that
unless there is a direct data dependency of one
operation on another, two operations can be done
in parallel (provided other architectural con-
straints of the system are met). Thus an opera-
tion can be performed at any time after all of its
-operands are available, independent of any ex-
ternal timing constraints.

An optimal assignment of operators in a pro-
gram to functional units is one which minimizes
execution time. In a data flow system, there are
two factors contributing to the overall execution
time of a program: the computation time associated
with each operation and the time required for
transmission of results to the appropriate
destinations for use as operands. It is not
difficult to show that the problem of obtaining
optimal allocations is NP-complete, hence the cost
of doing so is prohibitive.

For this reason, the goals of our processor
allocation schemes are threefold. First, an
allocated program should take advantage of as much
of the inherent concurrency as possible. Second-
ly, since we believe that communication delays can
have a significant effect on execution time, the
time lost to interprocessor communication should
be reduced wherever possible. Finally, the amount
of analysis at runtime needed to perform any
necessary dynamic allocation should be minimized.

0190-3918/81/0000/0156$00.75 © 1981 IEEE

156

Thus we attempt to allocate as
possible prior to runtime.

completely as

The problem of allocating operations in a
program to functional wunits in a data driven
machine can be divided into two phases. The first
of these involves reducing the magnitude of the
problem by decomposing the program into smaller
portions that are easier to analyze for alloca-
tion. The second phase deals with actually per-
forming the allocation. In the paragraphs which
follow, we describe two sets of algorithms for
solving the problem. Each has been implemented in
PASCAL and data has been gathered with respect to
its efficacy and complexity.

Our first approach to the problem of resource
allocation in data flow systems involves decompos-—
ing a program written in a block structured single
assignment language into smaller segments accord-
ing to the 1level of nesting associated with a
block and analyzing each "local" subprogram to de-
termine the implicit parallelism and any inherent
sequential restrictions. The statements in each
program segment are then assigned to processors,
and the results of the "local” allocation are pro-
pagated for use 1in allocating operations in its
containing block.

As was previously mentioned, an algorithm for
performing this analysis and allocation has been
developed and implemented in PASCAL. Its im—
plementation is a family of mutually recursive
routines which accomplish the decomposition, pro-
ducing lists of statements that can be done in
parallel. These groups of '"parallel" statements
are then analyzed to determine what data de-
pendencies exist between them. A processor
allocation for each block is then produced and re-
turned for use in obtaining a global allocation.

allocation within each
level of nesting is performed just after that
segment has been analyzed. Two criteria are used
in determining which processor should perform a
given operation. If several statements are con-
strained to be executed sequentially, they are
assigned to the same processor, that processor be-
ing the one with the smallest number of statements
already assigned to it.

In this approach,

A second approach to the problem of processor
allocation has also been investigated. This
approach also involves decomposing a program into
smaller segments, but in this case the decomposi-

tion takes a different form. Each block is first
analyzed in order to determine the global
sequential restrictions. In finding these re-
strictions, a data dependency graph is constructed
which exposes the dependencies that imply
sequential restrictions. Given this graph, an
allocation is obtained by traversing the graph and
taking two factors into consideration at each
stage: which operations have their operands avail-
able and the amount of communication overhead that
would be involved in allocating a statement to a
given processor. Algorithms for allocation com-
patible with this approach have also been designed
and implemented in PASCAL. These algorithms are
iterative in nature, whereas those mentioned pre-
viously are highly recursive.

It is mnot difficult to see that each of the
two approaches outlined in this paper produces
allocations that are, in general, not optimal. An
analysis of the algorithms developed to implement
the first approach mentioned reveals that a bound

on the worst case time complexity is 0(N2) where N
is the number of statements in the program. It

can also be shown that O(NZ) behavior cannot be
achieved, since not all of the pathologically
difficult conditions can arise at once. In order
to obtain the obvious improvement (over the
optimal case) in the time required to produce an
allocation, this approach sacrifices optimality.
Not all of the inherent concurrency is exposed, so
it is not possible to use all of this concurrency
in determining the processor assignment.

The second approach also provides a way of
obtaining processor allocations quickly. The
worst case complexity of this algorithm (as it has

been implemented) is also bounded by O(Nz), though
we believe the average case will exhibit
O(N log N) performance. It is evident that these
algorithms, too, restrict the inherent parallelism
in constructing the data dependency graph. This
(potentially) adds some sequential restrictionms,
so that the allocations produced cannot, in
general, be optimal.

Each of these implemented algorithms has
advantages and disadvantages. On small programs,
with varying numbers of processors in the
simulated system, each appears to produce very
good results. The process of gathering more
statistical data is, of course, an ongoing one.
Research is also proceeding on the allocation pro-
blem in the context of an expanded set of
linguistic constructs.

its

157

IV, References
1. J.E Rumbaugh, "A Data Flow Multiprocessor",

10.

11.

12.

13.

IEEE Trans., G Vol. C-26, No. 2,

Lomputers,
Feb. 1977, pp. 138-146.

I. Watson and J. Gurd, "A Prototype Data Flow
Computer with Token Labeling", AFIPS Conf.
Proc., 1979 NCC, New York, June 1979,
PP. 623-628.

A. Davis, "A Data Flow Evaluation System
Based on the Concept of Recursive Locality",
AFIPS Conf. Proc., Vol. 48, 1979 NCC, New
York, June 1979, pp. 1079-1086.

R.M. Keller, G. Lindstrom, and S.S. Patil, "A
Loosely-Coupled Applicative Multiprocessing
System", AFIPS Conf. Proc., Vol. 48, 1979
NCC, New York, June 1979, pp. 613622.

J.B. Dennis and D.P. Misunas, "A Preliminary
Architecture for a Basic Data Flow
Processor", Proc. Second Annual Symp.
Computer Architecture, Houston, Texas, Jan.
1975, pp. 126132,

A. Plas, D. Compte, O. Gelly, and J.C. Syre,
"LAU System Architecture: A Parallel Data
Driven Processor Based on Single Assignment",
Proc. 1976 Int. Conf. On Parallel Process-

ing, P.H. Enslow, ed., August 1976,
PP. 293-303.

J.B. Dennis, "Data Flow Supercomputers",
Computer, Vol. 13, No. 11, Nov. 1980,
PP. 48-56.

Arvind, K.P. Gostelow, and W. Plouffe, "An

Asynchronous Programming Language and Comput-
ing Machine", Department of Information and
Computer Science, TR 1l4a, University of
California at Irvine, Dec. 1978.

AFIP

W.B. Ackerman, "Data Flow Languages",

Conf. Proc., Vol. 48, 1979 NCC, New York,
June 1979.

J. McGraw, "Data Flow Computing: Software
Development", IEEE Trans. Computers, Vol.

Cc-29, No. 12, Dec. 1980, pp.1095-1103.

G. Darrieu and J.C. Syre, "Extension of the
LAU System: Global Specification of
Synchronization in a Data Driven Language",

Proc. Workshop on Data Driven Languages and
Machines, J.C. Syre, ed., Toulouse, France,
Feb. 1979.

K. Boekelheide, "A High Level, Graphical,
Data Driven Language", Proc. Workshop on Data
Driven Languages and Machines, J.C. Syre,

ed., Toulouse, France, Feb. 1979.

A. Davis, "DDNs - A Low Level Programming
Schema for Fully Distributed Systems", Proc
Workshop on :Data Driven Languages and
Machines, J.C. Syre, ed., Toulouse, France,
Feb. 1979.

DATAFLOW APPROACH TO DISCRETE SIMULATION

Bharadwaj Jayaraman

Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina 27514

Summary

Discrete simulation is the technique of

simulating the dynamic behavior of a system at

discrete points in time. Languages for discrete

simulation, such as GPSS, SIMULA, etc., are based
on a

sequential and centralized scheduler of

events; however, greater concurrency can be
achieved by a distributed approach, as proposed
in [13, [2] and [4].

this idea in the context of a dataflow model [3]

In this paper, we explore
for two main reasons: 1) The interconnection and
flow of entities in a simulation model, such as

in GPSS, closely resemble the flow of streams

between operators in a dataflow graph. 2)
Dataflow models exploit both pipelined and
horizontal concurrency; hence, unrelated or

concurrent events can be executed asynchronously
and concurrently

In our dataflow simulation model, each data value

is tagged with a positive integer, called a time
tag. A stream of such tagged data values always
has time tags in monotonically increasing or
chronological order. Streams may be finite or
infinite (As in most data-flow models, the size
of an input stream to any operator is assumed to
be unbounded). The time tag of a data value

represents the 1local time of some temporary

entity in the simulation model. The processing
of a data value by an operator is called an event
and begins at the local time of the operator.
The completion of an event can, but need not
always, increase the local time of an operator.
The concept of local time is introduced since
there is no global clock and no centralized
schedulér of events in our dataflow simulation

model.

0190-3918/81/0000/0158%00.75 © 1981 IEEE

We present some primitive operators for dataflow
simulation, and discuss the problem of correct
simulation of events. The choice of operators is
motivated by a need to consider the
rather the

properties of the entities.

dynamic

aspects of simulation, functional
Since the dynamic
behavior of our dataflow simulation model is
determined mainly by the flow of streams, the
operators of interest are various functions on
streams.

D S

Typical operators from this set are:

If D is an untagged stream of
nonnegative integers (d,, d, ...)
St and S is a tagged stream (<v1.t1>.
<v2. t2>....) then S' is a tagged

stream (<v1,t’ > <v2,t' Deees)
where t'; = d; + max(t'; ,,t;), and
t'o = 0.

B is a untagged stream of bit

values, and S, S', 3'' are tagged
streams. If the first bit value in
B is 1 then the first data value in
S is gated out to S' else the first
data value in S is gated out to
AR

S is the result of sorting S' and
S'' based upon their time tags.

We assume two operators, source and sink, for

creating and destroying tagged streams
respectively. The delay operator models a
single-server queueing system, in which the

stream D represents the service times for the
objects in S. The choice operator is used for
splitting up a stream; its control stream B will
usually be generated

by some probability

distribution. The merge operator produces an
output stream that is in chronological order;
hence, it needs a tagged data value on both its
inputs before it produces an output. As a-

consequence, it may be assumed that the merge

operator is determinate, i.e. will produce the
same output stream given the same pair of input

streams.

There are basically two types of dataflow
simulation graphs: acyclic (figure 1) and cyclic
(figures 2 and 3). Two types of cyclic graphs
may also be distinguished: simple (figure 2) and
shared (figure 3), depending on whether or not a
merge operator is shared between two cycles.
Cyclic graphs represent the notion of feedback in
the simulation model and therefore are the more
interesting case. Deadlock occurs in cyelic
graphs due to a circular dependency between the
output of a merge operator and its input.
However, using information from other merge and
delay operators in a cycle, it is possible to
break deadlocks in a distributed fashion. In
comparison, acyclic graphs do not require any

additional mechanism for their correct operation.

We now summarize a method for breaking deadlocks
in simple cycles. Four phases may be identified
TEST, START,

During the TEST phase, a

in the execution of a simple cycle:
EXECUTE, and RE-TEST.
test message is sent around the cycle, by a
pre-determined merge operator in the cycle,
polling information from each delay and merge
operator, 1in order to determine which merge
In the START
phase, the merge operator chosen to break the

The EXECUTE

operator must break the deadlock.

deadlock is sent a start message.
phase represents operation of the cycle after the
deadlock has been broken. Special exit messages

are sent around the cycle, by each choice
operator in the cycle, to determine when the last
data value leaves the cycle, i.e. to detect the
The RE-TEST phase begins

when some choice operator detects the recurrence

recurrence of deadlock.

of deadlock and sends the pre-determined merge of
the cycle a re-test message. The receipt of this
message re-initiates the TEST phase all over

again.

Assuming M1 e Mn are n merge operators in the

cycle, di

operators between Mi and Mi+

is the composite delay of all delay

10 1oci is the 1local

159

time of this composite delay operator, and ti is
the time tag of the first data value of the input
arc of Mi that is not in the cycle, then the
merge operator Mj chosen to break the deadlock is
such that S.

J,.n
S1'n <os S where

has the minimum value over all

Sj K = if k < j then t, else
dy + max(lo K* Sj,k-1)

The deadlock is broken by sending the data value

tj along the output of Mj'

An extension of the above method can be used for

breaking deadlocks in shared cycles, but is

omitted here due to shortage of space. Work is

in progress in formalizing the algorithm for this

extension.

References

[1]1 R.E. Bryant, Simulation on a Distributed
System, Computation Structures Group, MIT,
Memo 182, (July, 1979).

[2] K.M. Chandy and J. Misra, Distributed Simu-
lation: a case Study in Design and Verifi-
cation of Distributed Systems, IEEE Trans-
actions on Software Engineering, (September
1979), pp 440-452.

[3] J.B. Dennis. First version of a dataflow
procedure language, In G. Goos and J. Hart-
manis (eds.), TLecture Notes in Computer
Science, Springer-Verlag, 1974, pp 362-376.

(4] J.D. Peacock, J.W. Wong, and E. Manning,
Distributed Simulation Using a Network
of Microcomputers, Computer Networks,
(February, 1979), pp 44-55.

Crergd

Gy 0 e

(Shoicd

Figure 1

Figure 2

Figure 3

ARCHITECTURE OF A MULTIPROCESSOR USING
DATA FLOW AT A PROGRAM BLOCK LEVEL

Marie-Paule LECOUFFE

E.R.A. CNRS 771

U.E.R. d'IT.E.E.A. - Informatique

Université de LILLE I

F. 59655 VILLENEUVE D'ASCQ CEDEX

Summary

Data flow architectures bring a great contri-
bution about the parallelism exploitation because
they are able to detect, at execution time, ins-
tructions which are executable concurrently. Howe-
wer, most of the time, parallelism is exploited at
program instruction level [1-3]. That implies a
considerable flow of communication in the system
because instructions, and sometimes their operands,
are communicated separatly.

To minimize the flow of information, it may
seem useful to exploit the parallelism at the le-
vel of a set of instructions, by grouping the ob-
jects used by these instructions and these instruc
tions into an indivisible set that is called a
"block". The communication between such sets is re-
duced to input and output parameters. So, a block
forms a module which contains all the information
which are necessary for its execution.

In this paper is described MAUD(a), a system
based on the subdivision of programs into blocks
and a data driven execution [4]. A program for
MAUD is a set of bloecks. Blocks are composed of a
set of instructions and of the objects they use.

A block can be viewed as a generalized primitive
applied to input objects (I-obfects) which are
calculated by other blocks, and providing output
objects (0-obfects) which will be usedas I-obfects
by other blocks. Blocks are built before the pro-
cessing by the system.

Communication between blocks is conducted so-
lely by means of I-objects and 0-objects. A com-
munication name is associated to I-obfects and
0-objects : it does not point out an explicit me-
mory cell ; it is used only to point out values.

The single assignement rule is applied to the
communication names at the block level. It allows
the natural expression of dependencies existing
between the blocks of a program, and therefore the
expression of parallelism at execution time. More-
over, it allows the use of a data flow control for
the execution of a program : a block is ready for
execution when all its I-obfects, which are 0-0b-
fects of other blocks, have been propagated to
this block. Such a block is an executable block.
If one or several of its I-objfects have not been

(a) : MAUD : Machine d'Assignation Unique Dynamique.

0190-3918/81/0000/0160$00.75 © 1981 IEEE

assigned values, the block is called a waiting
block. Executable bLocks may be executed concur-
rently.

Two special operations used during block exe-
cution have been defined : (i) an execblock ope-
ration, which allows the execution of a block, a
model of this block existing in a library. It has
certain similarities to a procedure call (it is
an execution request for a block which must exist
in the library) and to a FORK operation (the exe-
cution of the requested block may run concurrently
with the execution of the block which made the re-
quest) 3 (ii) a wadif operation which allows the
calling block to wait 0-objects calculated by the
execblock operations. The execution of the block
which performs a waif operation is then suspended,
and this block is transformed into a waiting
block, waiting for the objects which appeared in
the wait operation. Thus, the execution processor
becomes free.

The use. of execbfock and wait operations gi-
ves a dynamic characteristic to the execution of
a program because of the addition of a number of
blocks which are executable concurrently during
the program execution. An example of the utiliza-
tion of these operations can be found in [5].

The multiprocessor is composed of :

- a set o4 execution processons P. whose
function is the execution of a block ; each pro-
cessor has a local memory and is able to execute
a block in an autonomous way. The blocks are not
dedicated to the processors. As soon as a proces-
sor is idle because it has just executed a walt
operation or because the block execution is over
it searches a new executable block, if there is
one left.

- an updating processor, UPD, which updates
the waiting bLocks with 0-objects produced by the
execution processors at the end of block execu-
tion, and which finds out the waiting blocks with
all the I-objects assigned in order to transform
them into executable blocks.

- a builden processon, BUILDER, whose func-
tion is to build a block using the execution re-
quests produced by the execution processors when
they perform execbfock operations. It manages the
library of blocks.

There is no direct communication path between
the processors. The waiting blocks and the 0-o0b-
fects are sent to the UPD processor, and the exe-
cution rnequests to the BUILDER processor. But they

are sent through shared memories

- an A-memory, which holds the waliting
blocks

- an S-memony, which holds the 0-objects pro-
duced by the execution processors at the end of
the block execution

- a D-memory, which holds the execution he-
quests produced by the execution processors when
they perform an execbfock operation.

- an X-memory holds the executable blocks.

A functional description of MAUD is shown in
Fig. 1. An example of the execution of a program
in MAUD can be found in [6].

An implementation of MAUD has been studied.
The processors are realized with conventional mi-
croprocessors, except the UPD processor which is a
very specialized one, because it must be very fast
while not necessarily very powerful, and it must
be able to have associative accesses to A-memory
and S-memory.

Memories have two functions : storage of the
various objects of MAUD, and communication. For
the realization, it has been chosen to use a uni-
que memory shared by all the processors : it is a
ring of circulating memory. That allows simulta-
neous accesses for reading and writing by all the
processors, and it is easy to have associative ac-
cess for the UPD processor. The ring is divided
into logical sectors of the same size called slots.
Every slot can hold any kind of objects, but only
one at a time ; execution requests and 0-objects
circulate temporarily (no more than one lap) ;
waliting bLocks and executable bLocks are kept cir-
culating in the ring until the former become exe-
cutable blocks and the latter are picked out from
the ring by a free processor. A MANAGER processor
is necessary to regulate the load of the ring, i.e.
to put some blocks temporarily out of the ring
when the number of empty slots gets too small, and
to put them back inside when the number of empty
slots is increasing. In fact, no new processor is
needed, this function may be realized by the UPD
processor or the BUILDER processor.

In order to justify this choice, a simulation
of the system with the above characteristics of
hardware implementation has been done. The obtai-
ned results for a simplified version of the system
makes it clear that the gain in the processing.
speed is important compared to a conventional mo-
noprocessor system, if the block execution time is
not too short compared to the duration of a com-
plete lap of the ring. Yet, this condition is not
necessary because it is possible to have dynamic
reconfigurations of the ring allowing the reduc-
tion of the access time [7].

161

References

(11 J.B. Dennis, "The varieties of data fLow com-
putens”, 1st International Conference on dis-
tributed computing systems (Oct, 79).

[2] A. Plas and al, " LAU system architecture : a
parallel data driven processon based on sin-
gle assignment”, 1976 International Conferen-
ce on parallel processing (Aug, 76).

[3] P.C. Treleaven and al, "a concuwrrent architec-
ture and a ning-based Lmplementation", 6th
International symposium on computer architec-
ture (April, 79).

[4] M.P. Lecouffe, "Etude et définition d'un mo-
déle de machine paralléle d.irnigée parn Les don-
nées", Thése de 3&me cycle, Université de
Lille I, (July, 79).

[5] M.P. Lecouffe, "MAUD : a dynamic sinale assi-
gnment sustem”, Computers and Digital Techni-
ques, (April, 79), Vol. 2, n°® 2.

[6] M.P. Lecouffe, "Dynamic processing with single
assignment at a program block Level", Work-
shop on data driven languages and machines,
(Feb, 79),

[7] B. Petitprez, "A {Lexible circulating memory
fon communication in a multiprocessorn”, Euro-

micro Congress, (Sept, 80).

X
executable
blocks)

N

S l
| output

execution | : /
requests 4 \ / | objects |
\ 7 S |
BUILDER ;
N ;:"
N /
LIBRARY \\\\ ./
r;w-AL___m_j
{ A f i
" waiting ! ;
| blocks |
\\“\\ % i
~_ :

G

Fig. 1 : MAUD : Functional description.

HIGH LEVEL SPECIFICATION OF RESOURCE SHARING

Dennis W. Leinbaugh
Computer and Information Science Research Center
The Ohio.State University, Columbus, Ohio, 43210

Summary

A high level specification language is des-
cribed making it possible to very concisely specify
the orderly sharing of a protected resource [1].
The rules and policies dictating resource usage
are specified separately and clearly making it
easy to write, understand, and change them. Since
the specifications themselves are enforced, no
errors in resource sharing are introduced in pro-
gramming the enforcement of them.

Many schemes have been proposed and developed
to aid in resource sharing. Hoare's monitors and
Hewitt's serializers were designed primarily to
enforce cooperation among users sharing resources.
These schemes provide primitives and language
structures which make it relatively easy to
write code to enforce the necessary rules and
desired policies upon resource sharing.

This work describes how to directly specify
the resource sharing rules needed and policies
wanted. The code to enforce these rules and
policies can then be automatically generated from
the high level specification provided. The advan-
tages are clear. Since the rules and policies are
specified directly, it is known exactly what they
are and that they are enforced.

Ramamritham and Keller [2] concurrently with
and independent of this work attacked the same
problem. Their specification language is at a
different level. State variables are conceptually
different and the implementation schemes are
entirely different for the two systems.

Request messages for a protected resource are
sent to its scheduling module. This module uses
the high level specifications provided to determine
what requests and when requests are sent to for
service. These specifications are:

-description of the requests,

-resource constraints,

rordering policy,

*postponement policy, and

-expedite policy.

The description of the requests defines the
fields in request messages that will be used by
the resource scheduler to aid in scheduling them.
The resource modules that provide the service for
each type of request are also specified as well as
the updates which the performance of these requests
cause to the state variables.

The resource constraints consist of defining
those states in which the resource continues to
correctly service requests. These states are des-
cribed in terms of the values of state variables
and the requests that can simultaneously be ser-
viced by the resource. A request is acceptable to
the resource if its inclusion for service would

162

0190-3918/81/0000/0162$00.75 © 1981 IEEE

result in a state described by the resource con-
straints. State variables are defined local to the
resource scheduler and reflect the actual state of
the resource.

The ordering policies specify the usual
policy used to decide what request should receive
service next. Among the requests acceptable to
the resource, the ordering policy determines which
actually begins service. In case of ties, the
older request is granted service. The ordering
policy is specified in terms of priorities between
request types, ordering based upon some value in
the request, or some other standard ordering
scheme (e.g., elevator algorithm).

The main purpose of the ordering policies
is to achieve efficiency in resource use or effi-
ciency in the processes which use the resource.
Efficiency considerations alone, however, can
lead to very poor service or no service for some
requests. The postponement and expedite policies
are used to modify the ordering policies to avoid
extremely poor service.

The postponement policies specify under what
conditions newly arrived requests are not to be
considered for selection even if they would be
acceptable to the resource and no other waiting
requests are acceptable. If, however, there are
no waiting requests then postponed requests may
be selected for service. A request can only be
postponed when it initially arrives and then only
until the postponed condition for it becomes
false. The postponement conditions may involve
the current resource state and a consideration of
other waiting requests.

The expedite policies specify under what
conditions the ordering policies are to be vio-
lated and a non-postponed request is selected to
be the next request in line for service. No
other requests are allowed ahead of a request
chosen by expedite.

The postponement policy should be used to
hold back requests which might otherwise cause
starvation of any of several requests waiting for
service. The expedite policy should be used to
identify a request being starved and make it
next for service.

Figure 1 illustrates the scheduling strategy.
A process requests service by sending a request
message to the Scheduling Module. The Scheduling
Module implements the resource sharing specific-
tions, forwarding the request to the Protected
Resource Module when it is to be performed. When
service is complete, the process receives a re-
sponse message. Requests can only reside as post-
poned requests, ordered requests, expedited
requests, or requests being serviced. The un-

new request arrivals

SCHEDULING MODULE

postpone_conditions

true
\
ORDERED postponed POSTPONED
REQUESTS conditions REQUESTS
true

expedite conditions

ordering
resource constraints
no expedited requests

no ordered requests
no expedited requests
resource constraints

EXPEDITED
REQUESTS

resource constraints

REQUESTS
BEING

decrease uncertaintyj

increase uncertainty ///
in state variables

in state variables

SERVICED

ROTECTED) A
RESOURCE response to
MODULE \\‘\~___,,—/// completed requests

Figure 1: Overall Scheduling Strategy

certainty in state variable values increases when
a request begins service and decreases when ser-
vice is complete. This handling of state variables
is faithful to what the scheduling module can know
of actions of the resource module allowing for
natural specifications of resource constraints.
Figure 2 is a specification of the classical
producer/consumer problem. The resource can hold
up to 10 items. An insert request message to the
insert routine adds another item into the re-
source and a remove request message removes an
item from it. At most one insert request and one
remove request can be serviced at the same time.
The maximum number of items that can be placed in
the resource is 10 and the minimum number is 0.
To use the constraints, the preconditions for each
type of request are derived. For the case of an
insert request, the preconditions are less than 10
items already saved and no insert request receiv-
ing service. The number of items is kept track of

DECLARE STATE VARIABLES #items INITIALLY 0

REQUEST DECLARATIONS

REQUEST FIELDS type CHARACTER(1)
item CHARACTER(99)
insert HAS type = 'I'
remove HAS type = 'R'

PROCESSING
insert PROCESSED BY insert-routine
UPON SERVICE #items := #fitems + 1

remove PROCESSED BY remove-routine
UPON SERVICE #items := ffitems - 1

RESOURCE CONSTRAINTS
insert.ACTIVE < 1 AND remove.ACTIVE < 1
AND 0 < #items AND #items < 10

Figure 2. A Producer/Consumer Problem

163

in the scheduling module through the use of the
local state variable f#fitems. The PROCESSING
clause indicates that during service of an insert
request, the number of items is increased by 1

and during service of a remove request, the number
of items decreases by 1. There is, however, un-
certainty as to exactly when these changes occur.
#items is kept as a range of possible values. For
example, if there were 9 items and both a remove
and insert request were receiving service, ffitems
is the range [8,10]. If the remove request com-
pletes first the range becomes [8,9] and when the
insert request subsequently completes the range
becomes [9,9].

Figure 3 is a high level specification for
sharing a moving head disk. ORDERING specifies
both a primary and secondary ordering policy. If
there is more than one request for a disk address,
then the write requests are done before the read
requests for that address. The elevator algorithm
insures that no addresses (at the ends) are ig-
nored. The only way a request can wait forever is
if new requests for the same address keep receiv-
ing service. The POSTPONE prevents this by not
allowing these newly arrived requests to be con-
sidered for service until the disk has moved off
the address they are requesting
(THISREQUEST.addr = ACTIVE.addr).

REQUEST DECLARATIONS

REQUEST FIELDS type CHARACTER (1)
addr CHARACTER(6)
data CHARACTER(505)

read HAS type = 'R’
write HAS type = 'W'

PROCESSING
PROCESSED BY disk-driver-routine

RESOURCE CONSTRAINTS
read .ACTIVE + write.ACTIVE < 1

ORDERING PRIMARY BY ELEVATOR ON addr
SECONDARY write BEFORE read

ACTIVE,addr
ACTIVE.addr

POSTPONE read IF THISREQUEST.addr
write IF THISREQUEST.addr

Figure 3: Moving-Head Disk Scheduler

References

[1] D. W. Leinbaugh, "High Level Specification
and Implementation of Resource Sharing,"
The Ohio State University, (Feb., 1981),
Technical Reprot OSU-CISRC-TR-81-3.

[2] K. Ramamritham and R. M. Keller, 'Specifica-
tion and Synthesis of Synchronizers,' Proc.
1980 International Conference on Parallel
Processing, (Aug., 1980), pp. 311-321.

Exploitation of Concurrency by Virtual
Elimination of Branch Instructions

N. Magid
Dataproducts Corporation
Wallingford, CT 06492

G. Tjaden

Summary

This paper introduces a technique for the
virtual elimination of conditional branch instruc-
tions during program execution. The technique,
called Multiple Path Exploration (MPE), aims
at increasing the potential concurrency between
program instructions by, automatically and dynami-
cally, removing procedural dependencies.

There are basically two types of dependencies
between instructions: Data Dependency, when one
instruction requires data from a previous instruc-
tion; and Procedural Dependency, due to the
specification of the instructions sequence. There
is a procedural dependency between a branch
instruction and the instructions following it in
sequence. Conditional branch instructions cause a
wait until the condition is resolved before the
next instruction in the sequence is determined,
thus imposing severe limitations on the attempts
to detect and exploit concurrency.

In order to eliminate the procedural dependency
caused by the presence of a conditional branch
instruction in a program, the execution must pro-
ceed simultaneously down the two possible paths
emanating from the branch. To bypass x condition-
al branch instructions, as many as 2” paths must
be processed simultaneously.

Instead of bypassing all conditional branch in-
structions of a program simultaneously, only a
subset consisting of a fixed number, m, of bran-
ches may be bypassed at any given time. Out of
2" paths, only one path will remain valid, while
all the others may be discarded. Another set of
(2m) paths, generated from the valid path are
explored next. This process continues until the
program is completely executed.

Branch instructions are grouped into sets.
Each set represents a Branch Level (Fig. 1). Each
path is uniquely identified by a Path Code. A
Branch Code identifies each instruction with at
least one path. The cgoncepts of Branch Level,
Path Code, and Branch Code provide tools to
automate the process of generating and discarding
of branch paths dynamically during program execu-
tion.

Further performance improvement can be achieved
if the instructions of each path are not executed
in a strictly sequential order. This becomes pos-
sible if there is a mechanism associated with
every path, which detects data independent instruc-
tions. The Ordering Matrix technique is suitable
for the detection of data independent instruc-
tions, especially in the absence of branch in-
structions [1], [2]. The Ordering Matrix (M) for
a sequence of N instructions is an N x N Boolean
matrix such that:

164

0180-3918/81/0000/0164$00.75 © 1981 IEEE

Cox Cable Communications
Atlanta, GA 30346

H. Messinger
Illinois Institute of Technology
Chicago, IL 60616

1 Iff instructions I, & I,
J

iy = are dependent.
0 Otherwise

The presence of branch instructions in gener-
al, and backward branches in particular, have
complicated algorithms to detect data independ-
ence and limited the amount of concurrency
detected [2]. Their absence within each path
enables the detection of more concurrency using
less complex algorithms [1].

Foster and Rieman [3] found that a speed-up
in program execution by a factor of 51 may
theoretically be achieved if all conditional
branches are bypassed. Using the MPE technique,
the speed-up factor is expected to be as shown in
Fig. 2 as a function of the number of branch
levels m (and consequentially the number of
streams N) [1]. A speed-up factor of more than 5
may be achieved for the case of m = 4, where 16
paths are processed simultaneously by different
instruction streams.

The MPE technique may be implemented using
a Multiple Instruction Stream, Multiple Data
Stream Organization as shown in Fig. 3. The
private data memory is used to enable the dis-
carding of invalid paths. An execution speed of
15 MIPS may be obtainable. The architecture of
Fig. 3 is discussed in detail in reference [1].

The proliferation of VLSI and microcomputer
technology is expected to make the implementation
of such a highly parallel system organization
cost-effective in the future.

‘References

[1] N.F. Magid, High Speed Computer Systems As
A Result of Concurrent Execution of Sequen-
tial Instructions, Ph.D. dissertation,
Illinois Institute of Technology, Chicago,
Illinois, (1980).

[2] G.S. Tjaden and M.J. Flynn, "Representation
of Concurrency With Ordering Matrices",
IEEE Trans. on Computers (August 1973), pp.
752-761.

[3] E.M. Riseman and C.C. Foster, "The Inhibi-
tion of Potential Parallelism by Conditional
Jumps”, IEEE Trans. of Computers, Vol.
Cc-21, (Dec. 1972), pp. 1405-1411,

0 /\ 1 Branch Level 1

Oxx 1xx
(o] < > 1 [+] <S 1 Branch Level 2
00x Olx 10x 11x
0 <>1 0<> 1 0<>1 /] élaranchl.ovu}
001 010 011 100 101 110 m

Figure 1. Branch Tree

Figure 2. Speed-up Factor vs. Number of Streams

Instruction Private Shared
Buffer Instruction Execution Data Memory Data Memory
Unit Unit

r— L
T | I
| I I :
i 1 | |
! | 1 H
1 I 1 i
1 | |)

!
_— bl

|

L Instruction Memory ,

Figure 3. System Block Diagram

165

EXPERIMENT IN PARALLEL PROCESSING
A LARGE SCIENTIFIC CODE

Ingrid Y. -Bucher, Bill L. Buzbee, and
Paul O. Frederickson

Computer Research and Applications Group
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Summary
We wish to report results of a successful
initial experiment in our study of the

usefulness of multiple processor architectures
for large scientific computations.

It is believed that a hundredfold increase in
computational speed will be required over the
next decade in order to meet a variety of
scientific needs’. The prospects of speeding
up a single processor mainframe by a factor
greater than ten beyond the fastest machines
available today, seem rather dim. It follows
that parallel processing is necessary in order
to meet the needs of the scientific community.

Using current technology, interprocessor
communication, via either direct communication
lines or common memory, 1is a significant

factor to be considered in the design of an
algorithm to fit on a parallel architecture.
Our guiding philosophy is to divide current
computational problems into relatively large
tasks with a high degree of independence, thus
minimizing the need for interprocessor
communication. To avoid common memory
contention we are looking at parallel
architectures in which each processor is
equipped with a reasonable amount of private
memory. In that framework we wish to consider
the usefulness of a variety of interconnection
schemes.

Our initial experiment involved formulating a
particle-in-cell simulation of a plasma2 for
a simple star graph architecture with a UNIVAC
1110 at the hub P, of the star and up to
eight Floating Point System 120B array
processors at the other vertices Pj. Each
of the nodes P; was equipped with at least
48k words of memory, but there was no fast
access common memory available in this system.

Figure la illustrates the main computations
within one time-step of our model algorithm as
carried out on a MONOProcessor. Our
adaptation of this algorithm to fit on the
architecture described above is shown in
Figure 1lb. As
potential ¢ is computed for n cells from the
charge distribution C by processor Py. n
values of ¢ are subsequently transmitted to

0190-3918/81/0000/0166$00.75 © 1981 IEEE

indicated in the figure, the

166

processors Pj, i=1,...,8. The computation
of the field E from the potential ¢ is carried

out by each of the processors P; in
parallel, in order to reduce the data transfer
from 2n to n items (for a 2-dimensional
problem) . Each processor P; then moves its

share of m; particles through the electro-
magnetic field, a step which constitutes the

|

1 74
Co! te Potential
Compute Potential mp;\ = ¢(C)
v = ¢(0)
n
n P
{Compute P,
Compute E =-v¢ E=-U¢ 2
Push .
2n m; = m/p :
Particles,
Push m particles. Compute Charge|
through field E, L
Discretize charge
C at n points n
I; =55
Fig. la Fig. 1b
major contribution to the computational
process, and computes their contribution Cj

to the total charge distribution C. As final
steps, n values of Cj have to be transmitted
from each processor P; to processor P,
where they are summed to yield the charge
distribution C for the next time-step.

The multiprocessor used in our experiment is
located at the Naval Ocean Systems Center in
San Diego. 1In a fairly typical run, we moved
m = 32,400 particles, distributed evenly over
six array processors, in an n=18x18 size
grid. Each time step required 0.54 s. of
this 0.265 s was spent solving Poisson's
equation in the host at a rate of 0.2
MFLOPS/s. Each array processor Pj pushed
5400 particles in 0.13 s at a rate of 5.7
MFLOPS/s3. The remaining time, 0.145 s, was
spent in initiating data transfers to and from
the array processors and transmitting the
data, most of it being system overhead.

It is fairly obvious that the time spent on
solving Poisson's equation could have been
reduced to 1less than 0.01 s by moving the
process from the relatively slow host to the
array processors. Our experience shows that
to speed up interprocessor communications an
operating system that allows for parallel data
transfers with a minimum of system overhead,
or efficient access to common memory, is
highly desirable.

We conclude that in spite of the limitations
of the system used, significant speedups via
parallel computation are achievable for
particle-in-cell plasma simulation and related
problems.

We thank the staff of the simulation facility
of the Naval Ocean Systems Center for their
assistance in using their system, particularly
Bob Dukelow, John Mayr, and Ron Dahlseid.

References:

(1)

B.L. Buzbee, W.J. Worlton, G. Michael, G.
Rodrigue, DOE Research in Utilization of High
Performance Computers, Los Alamos Scientific
Laboratory Report, LA-8609-MS, December 1980.

(2)

R.L. Morse, C.W. Nielson, One-, Two-, and
Three-Dimensional Numerical Simulation of Two
Beam Plasmas, Phys. Rev. Letters 23, 1087
(1969).

(3)

I.Y. Bucher, P.O. Frederickson, Experience
with a Multiprocessor Based on Eight FPS 120B
Array Processors, Los Alamos National
Laboratory Report LA-UR-81-1082, March 1981.

167

ITERATORS AND CONCURRENCY

A. T. Berztiss
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

We propose a modest parallel execution facility
for essentially sequential programs, particularly
appropriate for very small computers. It consists
of three approaches. First, iterators are re-
garded as a major programming tool. We discuss
parallel composition of iterators, and use of
iterators as a means for buffered access to ele-
ments of composite data structures. Second,
Dijkstra's guarded command set is given a new
interpretation: all actions for which guards are
true may be performed in parallel. Third, we con-
sider the partitioning of iteration sequences into
segments that may then be executed in parallel.

Empirical studies of computer programs have
shown that most processing time is spent in exe-
cuting loops, and that most loops are concerned
with providing orderly access to elements of com-
posite data structures [1] - [3]. Our aim here is
present mechanisms for achieving limited parallel-
ism in the execution of for-loops, and we do so in
the context of data abstraction.

We shall use iterators coupled to for-loops.
Iterators are provided in CLU [4] and Alphard [5],
and their purpose is to deliver the elements of a
composite data structure in the particular sequ-—
ence determined by the specification of the itera-
tor. This achieves separation of the traversal of
a data structure from the computations carried out
on the objects delivered by the iterator in the
course of the traversal. Iterators can therefore
be made part of an abstract data type. We have
introduced controlled iteration [6]. This genera-
lization in the usage of iterators enables the
same for loop to invoke more than one iterator,
and the iterators coupled to a given for loop to
be synchronized. The form of a for loop with con-
trolled iteration is

for J1,32,...,Jn loop
loop body;

end loop;
loop tail;

end for;

This construct is described in [6], and familiari-
ty with this reference is being assumed.

Because iterators can appear only in a specific
context, namely the for loop, a single stack suf-
fices for runtime control (as long as the itera-
tors are nonrecursive and do not invoke other
iterators): On reaching a for statement, create a
vector of n activation records, one for each of
the J1, J2, ..., Jn, where it is assumed that an
activation record contains space for all temporary
locations needed by the corresponding iterator.
The vector of activation records is treated as a
single unit until it is discarded as a single

0190-3918/81/0000/0168$00.75 © 1981 IEEE

168

unit on reaching the end for. Iterators are a
special type of coroutines, but they have advan-
tages over general coroutines. This has been dis-
cussed in [6]. Here we note that it is the con-
fining of iterators to for loops that permits look
ahead and buffering in the implementation of an
iterator.

As regards difficulty of program proofs, our
generalized for loop occupies an intermediate
position between a conventional for loop and a
while loop. Because one can interpret iterators
as coroutines, our generalized for loop can be
translated in a mechanical manner to a while loop
that contains coroutine calls. At the very worst,
then, the proof rules of the while loop can be put
to use. Most instances, however, advantage can be
taken of the fact that the generalized for loop is
rather closer to the conventional for loop than
to the while loop.

The use of controlled iteration implies that
some decisions are made within the loop body.
Consequently the entire loop body may be an if
statement. We now introduce a change of notation
for the if statement:

if B1 then SI;
elsif B2 then S2;

elsif Bn then Snj;

end if;
becomes
cond Bl: s1 [
B2: s2 [
Bn: Sn
end- cond;

The latter has been made to resemble Dijkstra's
guarded command set [7]. 1t then suggests new
interpretations. When the conditional is inter-
preted as equivalent to the if statement we call
it a sequential conditional. Dijkstra's inter-
pretation is that any Si that corresponds to a
true Bi may be executed, but this interpretation
can be carried further: All Si for which guards
Bi are true may be executed concurrently. The
conditional then becomes a concurrent conditional
with the following informal semantics:

a. All
any

b. All

Bi are evaluated before the execution of
Si begins.

Si following true Bi are executed fully,
or, if any such Si contains an exit, up to
the exit, and if an exit has been encoun-
tered, exit from the loop body takes place
after all this has been done.

Example: Determine whether or not a given key
is present in a linear list that is being simul-
taneously traversed from both ends. Here we can
have concurrent advances in the list, and con-
current evaluation of the Boolean expressions
(guards).

for X in FILE.UP
Y in FILE.DOWN loop

cond
X.KEY = Y.KEY : exit 0
X.KEY = GIVEN KEY: exit a
Y.KEY = GIVEN KEY: exit
end cond;
end loop;

if X.KEY = GIVEN KEY or Y.KEY = GIVEN KEY then
PUT("Given key is in the list');
else
PUT("Given key not found in the list");
end if;
end for;

We now consider partitioned iteration sequences
in the context of matrix multiplication: Matrix C
is to receive the product of matrices A and B, and
it is assumed that C has already been initiated to
zeros. In conventional Ada syntax this can be
written as follows:

for I in A'FIRST..A'LAST loop
for K in A'FIRST(2)..A'LAST(2) loop
for J in B'FIRST(2)..B'LAST(2) loop
C(I,J):= C(I,J) + A(I,K)*B(K,J);
end loop;
end loop;
end loop;

Here matrix C is built up one row at a time. In
building up a row in C, the corresponding row in A
is traversed just once, but B is traversed in its
entirety. What matters is that in generating a
particular row of C only the one corresponding row
of A is needed, i.e., the traversal of A can be
partitioned into independent traversals of its
rows. Consequently we now consider matrix A as a
set of vectors (rows of the matrix). The matrix.
multiplication code is reformulated to make use of
the separation of the matrix into a set of vectors
to induce parallelism. It is the declaration of
the data structure as a set before the for loop is
entered that enables the system to recognize the
opportunity for concurrency. The loop itself con-
tains no indication to this effect.

for X in ROWSETA.TRA loop
I:= C'FIRST(2);
for controlled A in X.FORWARD,
B in MATB.ROWWISE(ENDROW) loop
C(X.ROWNO,I):= C(X.ROWNO,I) + A.VAL*B.VAL;
I := I+1;
if ENDROW then
promote Aj;
I:= C'FIRST(2);
end if;
end loop; end forj;
end loop; end for;

Here we have three iterators: (i) Iterator TRA
delivers a complete row of the matrix. It is
understood that the object denoted by ROWSETA
functions as a set of vectors. The guise of this
matrix as a set permits parallelism. The body of
the outer loop can be executed concurrently by as

169

many processors as there are rows in the matrix.
An attribute of the row delivered by TRA is the
index of this row in reference to the matrix as a
two-dimensional array (ROWNO). It establishes
correspondence between the rows of the input
matrix and of C. (ii) FORWARD delivers the ele-
ments of the row supplied by TRA. (iii) ROWWISE
is associated with the second input matrix in its
guise as a proper matrix (MATB). It delivers ele-
ments of MATB one by one in roworder. Parameter
ENDROW associated with ROWWISE is normally false,
but it becomes true for any pass through the loop
in which an element that terminates a row in MATB
is being accessed.

One problem that remains is the synchronization
of components of several partitioned iteration
sequences. Such is the case when matrices A and C
are both regarded as sets of row vectors. Then it
has to be ensured that the row in C generated
using a particular row in A properly corresponds
to this row in A (for example, that the row gene-
rated using the second row of A becomes in fact
the second row of C). Iterators are used to en-
force the required correspondence. If the same
iterator ranges over two sets, then an ordering of
the elements of the sets into sequences has to be
assumed, and corresponding elements from the
sequences are assigned to the same instance of
execution of the loop body.

Note that our purpose has not been to solve
general concurrency and synchronization problems.
Nevertheless, as regards the execution of such
programs as are currently executed on very small
computers, use of our mechanisms can lead to
substantial reduction in execution time by en-
abling the computational load to be spread over
several processors.

References

[1] D.E. Knuth, "An Empirical Study of Fortran
Programs", Software-—Practice and Experience
1 (1971), pp. 105-133.

[2] T.W. Pratt, "Control Computations and the
Design of Loop Control Structures", IEEE
Trans. Software Eng. SE-4 (1978), pp. 81-89.

[3] D. Grune, "Statistics of Algol 68 Programs",
SIGPLAN Notices (ACM) 14, 7 (July 1979),
pp. 38-46.

[4] B. Liskov, A. Snyder, R. Atkinson, and
C. Schaffert, "Abstraction Mechanisms in CLU",
Comm. ACM 20, 8 (Aug. 1977), pp. 564-576.

[5] M. Shaw, W. Wulf, and R. London, "Abstraction
and Verification in Alphard: Defining and
Specifying Iteration and Generators', Comm.
ACM 20, 8 (Aug. 1977), pp. 553-563.

[6] A.T. Berztiss, "Data Abstraction, Controlled
Iteration, and Communicating Processes,' Proc.
ACM Annual Conf., Nashville, TN, 1980, pp.
197-203.

[7] E.w. Dijkstra, "Guarded Commands, Nondetermi-
nacy, and Formal Derivation of Programs',
Comm. ACM 18, 8 (Aug. 1975), pp. 453-457.

OPTIMAL PARALLEL ALGORITHMS FOR THE CONNECTED.COMPONENT PROBLEM{a)

Fraﬁcis Y. Chin

John Lam

|-Ngo Chen

Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2HI1

Abstract -~ In this paper, we study a parallel
algorithm for computing the connected components
of an undirected graph, using the Single Instruc-
tion Stream-Multiple Data Stream model. We as-
sume that the processors have access to a common
memory and that no memory or data alignment time
penalties are incurred. We derive a general time
bound for a parallel algorithm which uses K pro-
cessors for finding the connected components of
an undirected graph. In particular, an 0(logZn)
time bound can be achieved using only
K =n In/log2n1 processors. This result is op-
timal in the sense that the speedup ratio is
linear with the number of processors used. The
algorithm can also be modified to solve a whole
class of graph problems with the same time bound
and fewer processors than previous parallel
methods.

1. INTRODUCTION

The dramatic drop in the cost of computers en-
courages the use of parallel computers. Parallel
computers are capable of performing several in-
dependent operations concurrently. In the fol-
lowing discussion, we assume that (1) processors
share the same memory; (2) each processor can
perform any arithmetic, Boolean or logical opera-
tions in one time unit, and all instructions ex~
ecuted in parallel are identical (Single Instruc-
tion Stream-Multiple Data Stream [7]); (3) sim-
ultaneous read operations on the same location
are allowed, but not simultaneous write opera- -
tions; (4) no memory or data alignment time pen-
alties [15] are incurred.

Parallel algorithms for sorting and numerical
applications have received substantial attention
recently [1,9,11,17,23]. Much work has been done
on the development of efficient parallel graph
algorithms [5,6,8,10,12,14,18,19]. A parallel
algorithm which uses n2 processors to find the
connected components of an undirected graph with
n vertices in 0(log2n) time was proposed in [10].
Recently, it has been shown by Hirschberg et al.
[12] that an 0(log2n) time bound can also be
achieved using only n [n/log n7 processors. In
this paper, we present a modified version of this

(a)

This research was supported in part by
Natural Science and Engineering Research
Council Grant NSERC-AL4319 and A7133.

170

0190-3918/81/0000/0170$00.75 © 1981 IEEE

‘the 0(log2n

algorithm which requires 0(n2/K + log2n) time if
only K processors are available. In particular,
time bound can be achieved with on-
ly n[n/log“nl processors. This modified algor-
ithm is optimal in the sense that the speedup
ratio [21] is linear with the number of proces-
sors used. ~ Furthermore, we demonstrate that
this algorithm can be used to solve a class of
graph problems with the same time and processor
bounds in a forthcoming paper [4].

Section 2 presents definitions used in this
paper. Section 3 studies the modified algorithm
and derives its time and processor bounds. Sec-
tion 4 summarizes these results and discusses
further research possibilities.

11. DEFINITIONS

An undirected graph G = (V,E) consists of a
finite, non-empty set V of n vertices and a set
E of unordered pairs of vertices called edges.
We represent G by its adjacency matrix A, which
is an nxn symmetric Boolean matrix where
A(i,j) =1 if and only if (i,j) € E. G is con-
nected if there exists a path between every pair
of distinct vertices in V. A connected compo-
nent of G is a maximal connected subgraph of G.

If TK is the time required by a parallel al-
gorithm using K = 1 processors, the speedup rat-
io of the K-processor computation over the cor-
responding uniprocessor computation (taking time
Ti) is defined as Sg = Ty/Tk.

Throughout the paper, log n denoted [lognl .

I11. CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH

Figure 1 shows the algorithm MOD,CONNECT for
finding the connected components of an undirect-
ed graph. The actions of algorithm MOD.CONNECT
can be described briefly as follows. Each ver-
tex belongs to exactly one connected component.
Array D is used to specify the connected compo=
nent for each vertex, thus D(i) = D(j) if and
only if vertices i and j belong to the same
component. Step 1 initializes the arrays D and
Flag whose function will be discussed later.
During the first iteration, step 2b selects the
smallest numbered vertex among all the vertices
incident upon vertex i and assigns it to C(i).
Step 3 eliminates the isolated vertices. Steps

Algorithm MOD. CONNECT

Input: The nxn adjacency matrix A for an un-
directed graph.

Output: The vector D of length n such that D(i)
equals the smallest-numbered vertex in
the connected component to which i be-
longs.

Comment: Each of the following steps is executed

in parallel for all i, 0 < i <n or for
all i€S. The assignments in the various
steps are considered to be done simulta-
neously for all i.
The vector Flag of length n such that
Flag(i) = 1 indicates vertex i is a
current supervertex. Current supervert-
ices are stored in set S.

1 for all i, 0 <i <n do comment: Initialization

TD(i) <--i

Flag(i)<--1
do step 2 through 8 for log n iterations

comment: Uniform Smallest Incident Node
Selection
2a S<--{ilFlag(i) = 1} comment: D(i) = i for ieS
2b for all ieS do
T c(i) <-- MinlJ | A(i,]) =1}
jes
if none then i
comment: Eliminate the isolated supervertices
3 for all ieS do
T if €(i) = i then Flag(i) <0
comment: Path Compression

4 Tor all ie§ do D(i) <--C(i)
5 for log n interations do
for all ieS do C(i) <--C(C(i))

6a for all ieS do D(i)<-- Min{C(i), D(C(i))}
6b Tor all i, 0<i <n do D(i) <--D(D(i))
comment: Clean Up (by column contraction)
7a for all ieS do
T for all j S s.t. j=D(j) do
TA(i,j) <--O0rR{A(i,k) D(k)=j}
keS
7b for all jeS s.t. j=D(j) do
T for all ieS s.t. i=D(7) do
A(i,j) <OR {A(k,j) ID(k)=i}
KeS
7c for all ieS do A(i,i) <--0

8 Tfor all ieS do if D(i)# i then Flag (i)<--0

Figure 1 Algorithm MOD.CONNECT

4-6 perform path compression and merge vertices
which are known to be in the same connected com-
ponent into a single ''supervertex''. Steps 7 and
8 eliminate the merged vertices and store all the
information about their edges into the super-
vertices. |In succeeding iterations, S contains
the indices of the supervertices and the whole
process is repeated on the graph represented by
the adjacency matrix A restricted on S. Super-
vertices are merged to form super-supervertices,

171

and so on. This merging process is repeated log
n times until each connected component is repre-
sented by a single vertex. Array D contains the
information about which vertices are in the same
component and step 6b updates D(i) for all i,
i.e. updates the supervertex into which i is
merged. The main difference between algorithm
MOD.CONNECT and algorithm CONNECT in [12] is the
introduction of the vector Flag of length n, the
set S and the clean-up steps (steps 7 and 8) in
algorithm MOD.CONNECT. Flag(i) = 1 indicates
that vertex i is a supervertex. Flag(i) =0 in-
dicates that vertex i has been merged into a
supervertex or is an isolated supervertex and
should not be used in subsequent iterations.
Thus only those vertices with Flag(i) =1 (or in
S) are involved in any given iteration.

In order to visualize how the algorithm works,
an informal description of the set S and the ar-
rays A,D, Flag and C during each iteration are
given as follows:

""Flag'' - a boolean vector of length n.

Flag (i) = 1 iff vertex i is a super-
vertex representing the group of vert-
ices being merged to it. Vertex i is
always the smallest numbered vertex of
the supervertices.

ngn - contains the indices of the supervert-
ices .

npu - a vector of length n. D(i) specifies the
supervertex into which vertex i is
merged.

ngn - a vector of length n. C(i) specifies the
smal lest supervertex to which super-
vertex i is adjacent.

HAM - an n x n symetric boolean matrix. Usu-
ally we are only interested in the re-
stricted A over the current S.

A(i.j) =1 if and only if there is an
edge connecting supervertex i and super-
vertex j.

Algorithm MOD.CONNECT is a modified version of
the algorithm CONNECT given in [i2], a more de-
tailed proof for the correctness of the algorithm
can be found there.

Since the number of flagged vertices (the num-
ber of elements in S) is reduced by a factor of
at least two after each iteration, we shall show
that by the technique of problem decomposition
[13] the same time bound 0(log2n) can still be
achieved by using less than n [n/log nl proces-
sors.

The reduction on the number of processors is
based on the fact that certain operations have to
be performed on the set S of the supervertices
and not on all the vertices. However, in order
for the processors to set themselves up so as
they know which vertices are in S and be selected

to perform the various operations, an array, say
Q, can be set up such that Q(0),Q(1), ...,
Q(M-1) represents the elements in S, where m=|S].
Q(j) for j runs from 1 to m would be used to re-
place the condition 'for all ies' in the algor-
ithm. The array Q and m can be updated at each
iteration in 0(log n) steps by applying the fast
parallel sorting algorithm described in [11,17]
on the array Flag. Thus, step 2a in algorithm
MOD.CONNECT can be replaced by calling the sort-
ing procedure in [11,17] as
2a SORT(FLAG,Q,n)

Procedure SORT sorts the input binary array Flag
in time 0(log n) with n processors, returns array
Q with the property that Flag (Q(j)) = 1 for
0 <j <m and 0 elsewhere, where m is the number of
1's in Flag (i.e. m = [S|). Besides the above
changes, steps 2(b) and 7 are required to be con-
sidered accordingly based on array Q.

The following lemmas are useful in proving our
results.

Lemma 1: Given n elements {ag,al,..., an-|}and K
processors, A(n) = ag*aj*...*ap-| can be computed
in T time units, where * is any associative bin-
ary operation and

[n/KT=-1+ log K if Ln/2]>K
T=
log n if Ln/2 | <K
Proof: |If K> In/2 J,it has been shown that A(n)

can be computed in log n time units by the tech-
nique of recursive doubling [9,22]. If K <ln/2']
we partition {ag,ay, ...,apn-j} into K groups,
each of [n/K7 elements, except that the last
group has r = n - (K-1)In/K7 elements. Assign
one processor to each group and then compute the
groups in parallel. This takes [n/K71 -1 time
units. These K results, one from each group, are
then combined in parallel by the K processors,
which takes another log K time units. Hence, the
total time requirement is [n/K1- 1 + log K time
units.

[

Lemma 2: Let the n elements be partitioned into
p sets and assume K processors available. The p
products, one for each set, can be computed in at
most T time units, where T is the same as given
in Lemma 1 and * is an associative binary opera-
tion.

Proof: Align the p sets of elements as shown in

Figure 2 and partition the elements into K groups

as in the proof of Lemma 1.
set 1 set 2 set 3

< < >< <
XeooX[Xe oo X[XXXe o e X[XXX 00 XX 00X]| X

<-k—>l<-k->l<--k-->l< ----- k===-=> l

sgt.p
> >
X[XXX .o oX

gr. 1 2 3 4 K
where k = [n/Kl elements

r=n - (K-1) [n/Kl elements
Figure 2: Partition of p sets into K groups

172

Assign one processor to each of the K groups to
compute the products in that group. If all the
elements in a group belong to the same set, one
answer will result from that group. |If the ele-
ments in a group belong to several sets, say b
sets, then b answers, one for each set, will be
obtained. If b >2, at least b - 2 answers are
final products and at most 2 answers in each
group will be combined with answers in other
groups to give a final product (the first and
last groups each contribute at most one answer and
the final product). For instance, (see Figure 2)
groups 1 and 2 have one answer, group 3 has 2 an-
swers and group 4 has 3 answers, one of them be-
ing a final product. It is obvious that no more
than [n/K7 -1 time units are needed for comput-
ing answers in each group.

Let us assume that nj answers will be combined
to give the produce of set i. (In figure 2,
np =3, n2 =2, and n3 =1.) Assign Ln;/2]
processors to each set to compute the product of
that set. Since IP_, (nj-1)/21<K, the total)
number of pnocessors required will be less than K.
Each set will take another log n; <log K time
units to obtain the final product. Thus the tot-
al time requirement is still no more than T as
given in Lemma 1.

[l

Lemmas 1 and 2 give an upper bound on the paral-
lel time complexity for computing a product of n
elements and products of sets of n elements. As
a matter of fact, it can be shown easily that this
bound is at most one time unit from optimal [16].
Since the "Min' operation in step 2b and the '"OR"
operation in step 7 are associative binary opera-
tions, Lemmas 1 and 2 give an upper bound on the
total number of time units spent in these steps.

Lemma 3: Given nK processors, step 2b in algor-
ithm MOD.CONNECT takes at most O(n/K+log nlog K)
time if 1 <K <['n/2 land 0(log2n) time if

K= ln/21]

Proof: As mentioned earlier or from [10,12],
further iterations of steps 2-7 merge supervert-
ices. Step 8 eliminates those merged vertices
which are no longer supervertices. It is proved
in [12] that the number of supervertices (flagged
elements) i.e. |S|, in each connected component
decreased by a factor of at least two after each
iteration until the connected component is repre-
sented by a single supervertex. Moreover, if the
whole connected component has merged to a single
supervertex (i.e. the supervertex will be isolat-
ed), that supervertex will not be considered in
the succeeding iterations since its flag is set to
zero at step 3 in the iteration at which it be-
comes isolated. Thus, we have n flagged elements
at the first iteration (i.e. m=n) and have at most
L n/21] flagged elements after i iterations. At
step 2, in order to compute all C(i), K processors
are assigned to each i to compute the minimum val-
ue among at most|S| elements. Since '"Min'" is an
associative binary operation, we can apply Lemma 1
to evaluate the time complexity.

The program for step 2b can be described as
follows:

2b The following steps are performed in paral-
lel for 0 <i< m,0<j<K, since m <n, the max-
imum number of processors is nK. It is as-
sumed that M=Im/K1. m=[S| and
s = {Q0),Q,(1),...,Qm-1)} after step 2a.
(1) for k<-- 0 until M-1 do
for all i,j do -
if (A(Q(i),Q>jM+K))=1 AND
Flag (Q(jM+k))=1) then
Temp (i, jM+k) <--.Q(FM¥K)
else Temp(i,jM+k) <—- Yy
(2) for k<--1 until M-1 do
for all i,j do
Temp(i,jM)<-- min{Temp(i,jM),
Temp(i,jM+k) }
(3) for k<--0 until (log K)-1 do
T for all 7,j, do -
Temp(i,jM) <--min{Temp(i,jM),
Temp (i, ((j+2X)mod K)M) }
(4) for all i do

T if Temp(i,0) = y. then C(q(i))<-Q(i)
else C(q(i)) <-- Temp(7,0)

In the above program, Yy stands for any number
exceeding n-1. In step (1), the elements whose
minimum is to be computed are stored in the array
Temp. In step (2) the minimum values for all the
groups (the number of groups<K and the size of
each group<M) are found in time 0(m/K) via seq-
uential search and all these groups are processed
in parallel. Then, the overall minimum of the
K minima is found (step (3)) in time 0(log K)
using at most mK processors at each step. The
details for the time complexity are as follows:

Case 1: 1<K<[n/21, since |S| is reduced by at
Teast half after each iteration, | S| is at most
2K after t = log n - [log K1 iterations. Thus,
we have the following time bound, T.

T=EE L (MLn/2k0) /KT <1410gK)+2,29 " log (n/2%)

K=t
<I2n/K1 + tlog K + (log K)2
<0(n/K + log nlog K)

Case 2: K =2Ln/2], we have

T =z|l<‘33 "“og (n/2%) = 0(10g®n) 1
= [

Lemma 4: Given nK processors, step 7 in algor-
ithm MOD.CONNECT takes at most 0(n/K + log“n)
time units if 1 <K<Ln/2] and 0(log2n) if

K =Ln/2],

Proof: After sets of supervertices are merged in
steps 4-6, the adjacency information among the
supervertices is updated in step 7. Basically,
step 7a puts an arc from vertex i to new super-
vertex j (i.e., A(i,j)=1) if there is an edge
between i and a vertex merged into j. Step 7b
puts an arc from supervertex i to supervertex j

173

if there is an arc to j from a vertex merged in-
to i. |In step 7a or 7b those columns or rows in
the adjacency matrix A corresponding to those
vertices which are merged to supervertex j or i,
are ''OR''ed together to give the new column j or
row i. Since '"OR'" is an associate binary opera-
tion, Lemma 2 can be applied to derive the time
bound for step 7. There are m rows in A which
correspond to S and these rows of elements are
handled in parallel. As in step 2b, K proces-
sors are assigned to each row i to compute
A(i,j) in step 7.

Since the application of Lemma 2 assumes that
the elements in the same set are grouped togeth-
er, we have to apply the parallel sort algorithm
in [12,17] on array D. As a consequence, all
the elements which have the same value in the
array D are grouped together by the following
procedure call

SORT (D -FLAG,Q,m)

The input array is the inner product of the ar-
rays D and Flag (i.e. the i'th element equals
D(i) if Flag(i)=1 otherwise 0). Array Flag is
used such that only those elements corresponding
to the supervertices are considered. Since the
information corresponding to the isolated super-
vertices need not be merged with any other super-
vertices, their corresponding Flag values have
been assigned to 0 in step 3 and they will ef-
fectively be ignored. Procedure SORT basically
arranges the supervertices according to their
values in D and all those elements with Flag(i)=
0 are put at the end of the list. After the pro-
cedure call, array Q has the property that
p(Q(j))=Db(Q(i)) if j >i and Flag(j)=Flag(i)=1.
The program for step 7a (similarly for step 7b)
can be described as follows:

7a The following steps are performed in parallel
for 0 <i <m, 0 <j <K. Since m <n, the max-
imum number of processors required is nK.
It is also assumed that M=Im/KT.
(1) SORT(D-Flag,Q , m)
(2) for all j do Temp(j)<-- Q(jM)
(3) for k<-- 1 until M-1 do
for all i,j do
if D(Temp(j))=D(Q(jM+k) AND
Flag(Q(jM+k))=1 then
A(Q(i),Temp(j))<--OR{A(Q(i),Temp(j)),
A(Q(1),Q(jM+k))}
else Temp(j)<-- Q(jM+k)
(4) for all i,j do

T if D(Temp(J))=D(Q((j+1)M)) AND
Flag(Q((j+1)M))=1 then
A(Q(i),Temp(j))<-- ORTA(Q(i),Temp(j)),

ACQ(i), Q((j+1)M))}

(5) for k<--0 until (log K)-1 do
for all i,j do ‘
TTHE D (Temp(j)) = D(Temp(((j+2K) mod
“K)M)) then A(Q(l), Temp(j))<--OR
{A (i), emp (ﬁ
AQ(1),Q(((+2K) mod K)M))}

for all i,j do A(Temp(j),Q(i))<--
“ATQ(i),Temp (7))

As in the proof of Lemma 2, the elements are
partitioned into K groups each of which has M
elements. In step (1) the elements are stably
sorted such that all the elements with the same
value in D (the same D-value) are grouped to-
gether (this refers to those elements which will
later be merged together). The first element in
each group is assigned to the array Temp in step
(2). The columns of A with the same D-value in
each group are ''OR''ed together sequentially in
step (3). The resultant column is stored at
A(*,Temp(j)), where Temp(j) always remembers the
index of the first column in the j'th group among
all the columns which have the same D-value.’ In
step (4), the two resultant columns which have the
same D-value in two adjacent groups are ''OR'ed to-
gether. In step (5), all the resultant columns
with the same D-values are '"OR''ed together and the
final resultant column is stored in the smallest
indexed resultant column. Since step (1) evokes
a stable sort [11,16], it is easy to show that the
smallest numbered column, say j, has the property
that j = D(j), (i.e. it will become the supervert-
ex in the later iterations).

(6)

During the first iteration, the K processors of
one row must deal with n elements; and for each
succeeding iteration, the number of elements to
be dealt with by the K processors is at most half
of the number in the previous iteration. Thus,
using Lemma 2 and applying the same kind of analy-
sis as in the proof of Lemma 3, we derive the time
bound T as stated in the lemma.

[]

Theorem: Algorithm MOD.CONNECT finds the connec-
ted components of an undirected graph with n vert-
ices in time 0(n/K + logzn) using nK processors
where K21,

Proof: The time and processor requirements are as
follows:
Step Total Time Processors
1 <Kk<ln/2] K2 n/2
1 0(1) o(1) n
2a 0(1og2n) 0(1og2n) n
2b 0(n/K+(1og n)
(Tog K)) 0(log2n) nK
3 0(log n) 0(log n) n
4 0(logzn) 0(log n) n
5 0(log2n) 0(log2n). n
6 0(log n) 0(logzn) n
7 0(n/K+1og2n)0(1og2n) nK
8 0(log n) 0(log n) n

Thus, nK processors suffice to determine the

174

connected components of an undirected graph with
n vertices in time 0(n/K + log“n).

[l

As a by-product of our main theorem, we have
the following result.

Corollary: Given nfn/logzﬁ] processors, algori-
thm MOD.CONNECT determines the connected compon-
ents of an_undirected graph with n vertices in
time 0(log“n)

This method uses the least number of processors
yet to find the connected components of an un-
directed graph in time 0(log2n). The previous
method [12] needs n[n/log nl processors to ach-
ieve the same time bound. [t can be shown easily
that if K= 1, i.e. n processors are available,
algorithm MOD.CONNECT takes 0(n) time. If less
than n processors are available (i.e. K <1), each
parallel step will be repeated [1/K times and
the total required time will be 0([n/KI). As a
matter of fact, this algorithm takes 0(n2) time
with 1 processor (i.e. K= 1/n) and also, this
algorithm is optimal in the sense that the speed-
up ratio is linear with the number of processors
available as long as the tota]l number of proces-
sors ‘is no more than n [n/log“nl .

1V. CONCLUSION

We have proposed algorithm MOD.CONNECT to find
the connected components of an undirected graph
and have derived a time bound for the algorithm
using a fixed number of available processors.
can also show that several related problems can
be solved in the same time and processor bounds
[4]. In _particular, these problems can be solved
in 0(log2n) time using nfn/log?nl processors.

This method is superior to the previous methods
[19,20] because it uses the least number of pro-
cessors for the same time bound. The technique
employed in our algorithm is a kind of problem
decomposition which is similar to what is used in
[19] for finding the miminum element in an array
of n elements. |t exploits the property that the
problem size is reduced by at least half after
each iteration and thus the processor requirement
can be reduced by a factor of log n over existing
algorithms. However, other problems, such as
finding the transitive closure of an asymmetric
Boolean matrix and the strongly connected compon-
ents of a directed graph, can be shown to be re-
ducible to the matrix multiplication problem
[3,18], whose time complexity is 0(n%- Ilog n/k)
using K <n2:81/1og n processors with SK=0(K/1og n)
Since the size of the problem remains constant
after each iteration, the idea of reducing the
number of processors by a factor of log n is not
directly applicable. It remains an open problem
to determine whether there exist algorithms for
these problems whose speedup ratios are linear
with respect to the number of processors avail-
able.

We

ACKNOWLEDGEMENTS

The authors wish to thank one of the referees
for correcting one mistake in this paper and the
referees of our other paper [4] in particular for
their constructive comments and correcting several
errors in our original manuscript.

V. REFERENCES

[1] Baudet G. and D. Stevenson, '‘Optimal Sorting
Algorithms for Parallel Computers, ' |EEE
Trans. on Computers, Vol. C-27, Jan. 1978,
pp.84-87.

[2] Berge C. and Chouila-Houri, A., Programming,
Games and Transportation Networks, Wiley,

1965, p. 179.

[3] Chandra A.K., "Maximal Parallelism in Matrix
Multiplication, "IBM Research Report, RC 6193
1976.

[4] chin F., J. Lam and |. Chen, “Efficient Par-
allel Algorithms for Some Graph Problems,"
Technical Report, University of Alberta,
(Submitted to CACM).

[5] Csanky L., '"On the Parallel Complexity of
Some Computational Problems,' Ph.D. Disserta-
tion, Comp. Sci. Division, U. of California,
Berkeley, 1974.

[6] Eckstein D.M. and D.A. Alton, 'Parallel Graph
Processing Using Depth-First Search,' Conf.
on Theoretical Comp. Sci., U. of Waterloo,
1977, pp.21-29.

[7] Flynn M., "Some Computer Organizations and
Their Effectiveness, "IEEE Trans. on Comput-
ers, Vol. C-2], Sept. 1972, pp. 948-960.

[8] Golaschlager L.M., "'Synchronous Parallel
Computation,' Ph.D. Dissertation, TR 114,
Dept. of Comp. Sci., U. of Toronto, 1977.

[9] Heller D., "A Survey of Parallel Algorithms
in Numerical Linear Algebra,' SIAM Review,
Vol. 20, Oct. 1978, pp.740-777.

[10] Hirschberg, D.S., '"Parallel Algorithms for
the Transitive Closure and the Connected
Component Problems,'' Proc. gj_QEQ_Annual ACM
Symposium on Theory of Computing, 1976,
pp.55-57.

[11] Hirschberg D.S., '"Fast Parallel Sorting Al-
gorithms,' CACM, Vol. 21, Aug. 1978,
pp.657-661.

[12] Hirschberg, D.S., A.K. Chandra and D.V.
Sarwate, ''Computing Connected Components on
Parallel Computers,'' CACM, Vol 22, Aug. 1979,
pp.461-464

175

[13]

[14]

[15]

[16]

(7]

(18]

(19]

[20]

[21]

[22]

[23]

Hyafil L. and H.T. Kung, '"Parallel Algor-
ithms for Solving Triangular Linear Systems
with Small Parallelism,' Dept. of Comp.
Sci., Carnegie-Mellon U., Pittsburgh, Pa.,
1974,

Ja'Ja', J. and J. Simon, ''Parallel Algor-
ithms in Graph Theory - Planity Testing"
T.R. Penn State University, June 1980.

Kuck D.J., "A Survey of Parallel Machine
Organization and Programming,' ACM Comput-
ing Surveys, Viol. 9, March 1977, pp.29-59.

Munro |. and M. Paterson, ''Optimal Algor-
ithms for Parallel Polynomial Evaluation,'
JCSS, Vol. 7, April 1973, pp. 189-198.

Preparata F.P., 'New Parallel-Sorting
Schemes,' |EEE Trans. on Computers, Vol. C-
27, July 1978, pp.669-673.

Reghbati E. and D.G. Corneil, ''Parallel
Computations in Graph Theory, "SIAM J.

Computing, Vol. 7, May 1978, pp.230-237.

Savage,C.D., ''"Parallel Algorithms for Graph
Theoretical Problems,' Ph.D. Dissertation,
R-784, Dept. of Math., U. of Illinois,
Urbana, 1977.

Savage, C.D. and J. Ja'Ja', "Fast, Effic-
ient Parallel Algorithms for Some Graph
Problems,' Technical Report, Penn State
University, 1980.

Stone H.S., '"Problems of Parallel Computa-
tion," Complexity of Sequential and Paral-
lel Numerical Algorithm, Academic Press,
1973, pp.1-16.

Stone H.S., "An Efficient Parallel Algori-
thm for a Tridiagonal Linear System,'' JACM,
Vol. 20, Jan. 1973, pp.27-38.

Thompson C. and H.T. Kung, ''Sorting on a
Mesh-Connected Parallel Computer,'' CACM,
Vol. 20, April 1977, pp.263-270.

SPEEDUP BOUNDS FOR CONTINUOUS SYSTEM SIMULATION
ON A HOMOGENEOUS MULTIPROCESSOR

E.H. D'Hollander
State University of Ghent
Department of Applied Mathematics
Coupure Links 533
B-9000 Ghent, BELGIUM

Abstract -- This paper explores the benifits
and the bounds of multiprocessors for the simula-
tion of continuous systems. Different types of
parallelism are defined describing the stepwise
refinement of a problem into parallel executable
tasks: Invariant simulation systems have a great
parallelism in time, due to their periodic execu-
tion for each integration step. When a problem can
be partitioned into tasks which are independently
scheduled, it has natural parallelism. A problem
structure having precedence constraints among
tasks exhibits functional parallelism and finally
a task which further is split-up in atomic opera-
tions exploits the operator parallelism. For each
of these forms the processor utilization and speed-
up bounds are analysed with respect to the struc-
tural characteristics of the simulation problem.

1. Introduction

The idea to apply multiprocessor systems in
the domain of continuous system simulation is mo-
tivated mainly by the following considerations.
First, the need for fast simulation power is re-
cognized in many applications, but it is most
stressed in the field of interactive simulation
and in real time systems. Second, most digital
simulation is cpu-bound, since numerical integra-
tion of a complex set of differential equations
is calculation~intensive. Because of the heavy
cpu-load, the use of several processing units is
likely to produce a faster solution. However, the
final speedup is bound by the processor—system as
well as the problem characteristics. The aim of
the following sections will be to focus on the
problem dependent characteristics which influence
the potential speedup on a MIMD-machine. After a
general problem formulation in section 2, the dif-
ferent types of parallelism will be defined in
section 3. In section 4 the problem—dependent fac—
tors, limiting the unconstrained use of parallelism
are discussed and some useful bounds on cpu-utili-
zation will be derived. Attention is given to the
architectural aspects where they might constitute
a potential bottleneck.

2. Problem Definition

A simulation model S, is described by the
following set (Fig. 2.1) :
- the time, t ;
- the input-set, X ;
- the state variables, ¢ ;
- the output-variables, y ;
- the derivative functions, f ;
- the output functioms, g.
We consider a general multiprocessor MP, con-
sisting of :
- n identical processors ;
- m memory-modules ;

176

0190-3918/81/0000/0176$00.75 © 1981 IEEE

- an interconnection system I, which describes

the coupling between processors and memories.

A multiprocessor is coded by the software P,
yielding a programmed computer system, K :

K = {n,m,I,P} (2.1)

When a computer system K solves the simulation
problem S, the code for executing S is partition-
ed and allocated to the different processors by
the mapping 7 :

P = w(S) (2.2)

A programmed multiprocessorsystem K, has an exe-
cution time, t, which is function of

~ the machine dependent characteristics, n,m,I;
- the implementation of the problem, w(S) :

t, = F [n,m,T; 7(s)] 2.3)

The minimization of t, therefore depends on
machine- and on problem—characteristics. Whereas
the architectural aspects have received ample
considerations in the literature, especially for
the possible interconnection structures, this
paper contributes to the equally important parti-
tioning problem. From the results obtained, it
should be possible to select the proper n, m and
I, in order to tailor the multiprocessor to the
type of problems it will solve.

>

q = £(q,x,t)
X —>

3. Types of parallelism

3.1, Partitioning steps

The partitioning, P = w(S) proceeds in two
distinct steps (Fig. 3.1).

™ T2
§—>cCc={J<}) ——>P

Fig. 3.1. Simulation system (S), Task system (C)
and Processor-coding (P)

In the first pass wj;, the model S is transformed
into a task system C = {J, < }. A task system con-
sists of a set of tasks, J = {T.} subject to an
ordering <. This ordering indicates the prece-
dence constraints governing the execution of J.

A task T;j, operating on the results of task Tj,
requires the prior termination of T; before task
T; can initiate. This execution ordering is

denoted by T, <* T.. In the second step my, the
task system C is scheduled and programmed on the
available processors, by the coding P. This im~
plies compilation and downloading of the tasks T:,
together with the necessary synchronization primi-
tives. The scheduling strategy has to take into
account the precedence constraints of the task
system, the duration of each task, and eventually
the parallelism within a task Tj. Given an un-
supervised scheduling algorithm, step m, is total-
ly transparent to the user, whereas normally a
limited user-assisted partitioning occurs in step
m1. Since the number of processors n, is only in-
troduced in the unsupervised partitioning step Ty
this approach permits a graceful degradation.

3.2, Parallelism in time

Whenever a simulation problem S has a deter—
ministic structure, its task system will be iden-
tical for each time step. Consequently, the sche-
duling and compilation is the same for all inte-
gration steps and needs to be done only once.

On the other hand, if the structure of the problem
varies according to state changes during execution,
the parallel implementation requires a reschedul-
ing of the task system, in order to account for
any variations in the ordering <, the duration
times or the task set J. The influence of these
structure-variations is estimated by the 'paral-
lelism in time'. The time-parallelism is defined
as the average number of integration steps during
which the problem structure is fixed. A high pa-
rallelism in time justifies an elaborated optimi-
zation of the scheduling strategy.

3.3. Natural parallelism

Each integration step of a set of differen-

tial equations requires successively :

1) the numerical integration of the state vec-—

tor (q)
2) the calculation of the derivative functions
4 = £(q,x,8).

The corresponding set of tasks J, generally can
be partitioned into several subsets B. of tasks
T;» which do not interact during the execution of
an integration step, i.e. : C = {B,0} withB={B.}
Consequently, all sets B: can run concurrently
without synchronization. This form of parallelism
is termed 'matural', and it is quantified by the
number of subsets in B. Many simulation systems
exhibit a natural parallelism, since they can
split up in logically independent subsystems.
A prominent example of natural parallelism is
given by the independent state equations (Fig.2.1).
First all state variables can be integrated in
parallel. Then the state vector is communicated to
the different processors and finally each deriva-
tive function is evaluated simultaneously [7].

3.4, Functional parallelism

When there exists precedence constraints be-
tween the tasks of a simulation system or subsys—
tem, the ordering relation <* is not empty. The
parallelism which respects this ordering < 1is
termed 'functional'. It is not possible to extract
this functional parallelism immediately from the
problem description’S, or during phase w;, where

177

the task system C is created. It has to be recog-
nized in the phase 7y, and the partitioning algo-
rithm has to take into account the absolute prio-
rities between executing tasks, the task duration
times and the communication- and synchronization-
overhead. Typically this parallelism is applied
to the parallel execution of derivative function
calculations.

3.5. Operator parallelism

A fourth form of parallelism, also occuring
in the partitioning phase m,, arises when a task
T., is further split up, in order to increase
parallel execution. The operator parallelism gives
rise to two subforms : the micro- and the macro-
operator—parallelism, depending on its effect on
the structure of the whole task system C. In the
micro-form, the task T, is searched for parallel
executable basic-operators, such as multiplication
and addition ; the structure of the task system is
then changed only locally [17],[18],[19]. The
macro-form has a profound effect on the global
task system structure. There the splitting of ope-
rator T; results in a split-up of the whole task
system. This happens for certain parallel integra-
tion algorithms, e.g. when the integration formu-=
las allow the system to be evaluated simultaneous-
1y for two consecutive timesteps [7],[21],[23].

4., Problem-dependent performance bounds

4.1. The importance of time-invariant systems

Clearly the major advantage of most simula-
tion systems with respect to parallel processing,
is the repetitive execution of the same calcula-
tions during each timestep. Ideally this requires
that task duration times and problem structure
(i.e. the precedence constraints) remain invariant
during the whole integration interval. The condi-
tion of a time-invariant structure, however, can
be relaxed to include continuous systems which
switch over during execution time between a limit-
ed number of alternating structures. In this case
all possible structures are partitioned in advance
and downloaded into the different processor-memo-
ries. In this way the jump to a new structure, even
as a result of a state-change in the model, can be
realized with minimal overhead, similar to a sub-
routine—call in sequential processing. However,
this method fails in two cases. First the 'context-—
switching' becomes predominant whenever the model
rapidly alternates between several different struc-
tures, i.e. when the time-parallelism is low.
Second, the number of possible structures grows
exponentially with the number of 'switchpoints'
in the model : these are the points where a selec—
tion is made between alternate functions to evalu-
ate (compare with the switches in an analog block-
scheme). Few analytical results exist on the in-
fluence of variable task duration times. Several
simulation results, however, seem to indicate that
slight variations on the estimated task length
have only a marginal effect on the scheduling effi-
ciency [1]. Task lengths can be estimated at com-—
pile time from the duration of the individual in-
structions [20].

4.2, Automatic partitioning algorithms for natural
and functional parallelism

The general assignment problem can be stated
as follows. We are given :
1) a task system C = {J,<} in which
J = {Ty,..., Ty} equals a set of tasks and
<+ is the partial ordering relation :
T; < T; denotes that T: cannot start execu-
tion prior to the compl%tion of T; 3

2) a weighting function a(T;), representing the

execution time : T = a(i) ;
3) a fixed number of identical processors, n.
The objective is to find a partition A, ...,

A of J, such that the largest execution time on
any processor

max { Z
¥i T1.€A,
i

t =
max

T. } 4.1)
J

is minimized, subject to the precedence con-
straints, <.

It is well known that for general values of n
and m, this problem is NP-complete [14],[22].
Therefore considerable attention has been given
to the development of fast heuristics, yielding
suboptimal results [1]1,[51,[9 1. The general
problem formulation above, involves the detection
of natural parallelism (<= 0) as well as func-
tional parallelism (< # 0). In the following
paragraphs, two common heuristics for this parti-
tioning problem will be analyzed.

Natural parallelism (<= 0). In this case,
the tasks are independent. Intuitively it seems
useful to assign the longest tasks first. In this
way the smaller tasks are reserved for the end, -
and can be used to reduce the irregularities of
the distribution. This leads to the 'Longest Pro-
cess Time' algorithm [4]

1) arrange the tasks in a list, in decreasing
order of execution times ;
2) assign each task from this list consecutive-
ly to the first available processor.
This is a so-called 'list-algorithm'. The list al-
gorithms differ only in the way a list of tasks is
arranged. In contrast to an optimal search by
enumerative techniques, the LPT-algorithm is rela-
tively efficient. The sorting of the list takes
0 [N.log(N)] steps, and the assignment phase re-
quires O [N(n~1)/2] operations. For large N and
constant number of processors n, the algorithm is
of order O [N.log(N)].

Functional parallelism (<# 0). The ordering
relation <, governing the execution priority of
the tasks, is represented by a task graph. This is
the tupple [J, a(T), <] and consists of vertices
denoting tasks, and edges denoting the precedence
constraints. Again a list algorithm is applied for
the automatic scheduling. In order to account for
the precedence relations however, the weight of a
task T; is measured by its level. A task T; has
level &, when the longest path from that task to
a terminal task requires % time-units. Consequent-
ly, Q(Ti) is the minimal time needed to terminate
the execution of the task graph, from the beginn-
ing of task T;. It is intuitively appealing to

178

assign the highest priority of execution to the
tasks with highest level, i.e. to those tasks
with the largest workload ahead. This leads to
the following 'level algorithm', which originates
from the optimization of assembly lines [13]:

1) arrange the tasks by decreasing . levels ;

2) whenever a processor becomes free, assign
that task of which all predecessors are
executed, and which has the highest level
of the remaining tasks. Ties are arbitrari-
ly resolved.

The workload of this algorithm depends on the num-
ber of tasks N, the average number of predecessors
of each task, Npred, and the number of processors
n ; for moderate valugs of Npred and n, however,
the algorithm is O [N“/2].

4.3. Bounds on processor utilization and speedup

It is not a rule that a multiprocessor of n
identical processors will perform n times faster
than a single processor. Although several archi-
tectures bear this potential, even the best equip-
ped systems will be more or less seriously limit-
ed by the constraints of the problem. It is the
aim of this section to derive the lower and upper
bounds of processor utilization with respect to
the problem characteristics. Several authors have
demonstrated the suboptimality of the LPT- and
level-algorithms [11],[131,[15]. Here we concen-
trate on the suboptimality conditions for the
processor utilization taking into account algo- -
rithmic—, problem- and processor-characteristics.
We define the following performance measures.

The effective execution time to, is the process-—
ing time of the longest operating processor.

The minimal execution time tpi;, of any problem
on an n-processor system is :

tmin = E/n

(4.2)

with E = z T.
tem. v, !

1
The processor utilization U is defined as the
average fraction of time that the processors are
busy during te :

U=t /te (4.3)

the total workload of the task sys-

min
The speedup S of a n-processor system over a uni-
processor is S = U.n.)

Upper bounds. The effective calculation time
of a task system is bound below both by the long-
est chain of tasks to be executed serially and by
the number of processors n, i.e. the degree of
hardware parallelism. When there are no precedence
constraints and we do not allow pre-emption, one
has

= <
max {Tmax’ E/n} for 0

t .

e,min
with T the longest task duration. In the case
of precedence constraints, the effective execution
time is bounded below by the longest path in the
task graph. According to the previous definition,
this is the highest task-level L :

= max {L, E/n}‘ for < #0

t .
e,min

For obvious reasons it is assumed that the number

of tasks exceeds the number of processors, i.e.
N = n. Define the average task length T = E/N.
Then the processor utilization and speedup have
the following upper bounds :

U =min {—2— , 1} for <=0 (4.4)
max n. T
max
. E
SmaX = min {T , n}
max
and
. ¢+ E
Umax = min LETE , 1} for <#0 (4.5)
. ,E
Smax = min {L , n}

Lower bounds. First we consider the indepen-
dent task system (<* = 0). Denote by t; the start-
ing time of task T.. The minimal execution time
tmin given by (4.27) requires that all processors
remain active during the interval [O,tp;, 1.

In each of the list-algorithms, the last task Ty
is started on the first available processor,

at ty. Thus, till ty all processors are busy exe-
cuting the previous N-1 tasks, yielding an upper
bound for ty :

N-1
<(L

i-1

(4.6)

Let T T be the last tasks executed on

27707 Tay
each of the n processors. These tasks start ulti-
mately at ty. From that moment the execution will
not last longer than the maximal duration of these
n tasks, T with T = max T

2 ,max 2,max . .

J_I’n J

This gives an upper bound for the execution time

of each list-algorithm : t, < ty * Ty thax’ Taking

into account inequalities (4 6) and (4 2),
tmin > ty and the execution time of the LPT-sche-
dule is bounded by

<t + T

trpr S tmin 4.7

% ,max
demonstrating that the LPT-schedule always termi-

nates within t of the absolute minimal exe-
2 ,max .

cution time. With topt > tmins equation (4.7) also
yields a suboptimality bound for the algorithm :

t T
LPT <1+ tz,max (4.8)

opt opt

This bound is comparable with the Graham bound

[11] :
‘LT _ 4 _ 1
topt 3 3n

Both bounds are represented in Fig. 4.1, for large

values of n (n > 10) and with the normalization

To . max 1. This figure illustrates that for
’
S - . .
topt 3n/(n-1) Tl,max’ equation (4.8) gives a
lower bound. Moreover, (4.7) can be written as :
t n. 1
LPT <1+ f,max (4.9)
min N. 1

179

When the number of tasks N, grows indefinitely,
and the mean task length T exceeds an arbitrary

value € > 0, (4.9) yields lim tLPT = tmin'

Therefore, the LPT—algoritﬂglgg asymptotically
optimal.

fLer —

Copt
+.18E+@1 4
+.14E+01] 1

Graham
T ' eqn. (4.8) T

+.10E+@1 — topt

+. 18E+81 +. 5BE+91 + 98E+@1

Fig. 4.1. Comparison of the execution-time bounds
for independent-task systems (<= 0),
scheduled by the LPT-algorithm

With U = tmin / topt» the lower bound for
the processor utilization is given by the inverse
of the upper limit in (4.9) and

1Ty max
S . =U. .n=mn/ {1+ ———El————-}

for <= 0.

For the general case where <# 0, the long-
est path, L, defines the minimal execution time
te min? which is 1ndependent of the number of pro-
cedsors n. When there is no bound on the number
of processors, all other tasks can run concurrent-
ly with the longest chain tasks, yielding a total
execution time L. In the worst case, however,
due to precedence constraints, no tasks can be
executed in parallel with the longest path. In
order to be consistent with the definition of
longest path, this requires that the remaining
tasks can be executed in zero time, by an even
partitioning over an infinite number of processors.
This collection of remaining tasks is called an
'impulse task'. Consider a task system having a
total task duration E = 1, and a longest path L <I.
In the worst case, this problem requires the exe-
cution of an impulse-task of 1-L time units, after
the execution of the longest path. Since an impul-
se-task can be divided evenly over n processors,
this gives an additional workload of ¢ = (1-L)/n
time units (Fig. 4.2). The total execution time
is te = L + 6. With tp;, = 1/n, the processor uti-
lization of the worst case, U = tmln/te’ gives the
lower bound

Upin = 1/[1+ (=1L].

This lower bound is also related to the mean width

2

50
\

PR
P1 %—

L

0 L Les

Fig. 4.2. Worst case task system subject to prece-
dence constraints (< # 0)
7

of the task graph, W, which is defined as follows.
Suppose the task graph is executed on an unlimited
number of processors. At each instance of time, t,
t € [0,L], there are w(t) processors active,

w(t) equals the number of parallel executed tasks

at time t, and is conveniently called the width of
the task graph. The mean width, W, is now defined:

L
w=1 [T u@) at
L 0

The integral value represents the total active
processor time, which clearly equals the total
task duration time E, so W = E/L and consequently
with E = 1,
Umin =1/[1+ (a-1)/W].

This is the best possible bound, since one always
can construct a taskgraph with longest path L,
giving minimal utilization on n processors.
The lower bound for speedup becomes :

n-1

S, =n/[1+ 'if']

<
i for <# 0

4.4, Parallelism and Communication

The degree of parallelism and the degree of
communication are strongly interconnected. There-
fore, the interconnection network - mainly used
for traffic between processors and memories -
should be tuned to the type of parallelism which
is exploited. Parallel program execution can be
static or dynamic. Analytical and simulation stu-
dies [3 1,[12] have demonstrated that simultaneous
execution of programs in an n processor, n memory
system, coupled through a crossbar switch, can re-
sult in a significant loss of efficiency when pro-
cessors randomly access memories other than their
preferred memories for the execution of instruc-
tions. Parallel continuous system simulation, how-
ever, mainly involves the repetitive execution of
static programs which are assigned permanently to
the same processors. Therefore, the programs can
be stored in private memories, one for each pro-
cessor. Using private memories for program execu-
tion, the total bandwith of the interconnection
system becomes available for data communication.
Memory access can be scheduled or arrive at random.
Some authors suggest the scheduling of tasks of a
highly structured taskgraph could take into ac-
count the possibly hierarchically structured com-
munication paths, in order to program highly

180

interactive tasks on 'nearby'-processors [2].
However, for general simulation problems this
complicates unnecessarily the scheduling algorithm.
Indeed, communication conflicts should be more an
exception than a rule, so their minimization
through a well-balanced partitioning will normal-
ly have only a marginal effect. In fact, the hard-
ware interconnections have to provide the requir-
ed support for the statistically expected traffic
load within reasonable efficiency bounds. There-
fore, a homogeneous multiprocessor system with

a non-hierarchical bus-structure is considered.

In order to estimate the impact of the intercon-
nection structure, a single bus-structure queu-
ing model is considered as an example (Fig. 4.3).

/A

Fig. 4.3. Queuing model of an n-processor,
1 shared memory architecture

The model consists of n identical processors, re-
questing information from the shared data-memory,
which is the server. The service time 1/u, depends
on the number of variables which are written into
or read from the memory. These are the numbers of
input variables of a task plus one output variable
i.e. typically O - 10 memory cycles. The system

is self regulating (closed loop), since request-
ing processors in the queue become non-active un-—
til they receive service. Since a processor re-
quests service at the end of each task, the mean
request-interarrival time, 1/A equals the mean
task-execution time. Assuming exponential service
and interarrival times, this queuing model yields
an estimate for the effective response time R,
which is function of A and u [16] :

=2 _
R = e 1/ (4.10)

with
P
p_ ={ —~7 0 }
o i=o (n~-1)!
the probability that the shared memory stays idle,
and
_ average communication time per task
mean task duration

The impact of bus conflicts on the effective
speedup of n parallel operating processors is
given by the efficiency factor

/X + 1/u (I+p)(1-p)

"bus - T/% + R n.p

and which is shown in Fig. 4.4 for various values
of n.

r‘bus
n=2
+. 8BQE+0Q0Q]
-~ ns= 5
+. 40E+00]
n =10
n =20
+. QQE+QQ + : —+ o
+.00E+Q@Q +. 20E+0QQ +.40E+00Q

Fig. 4.4. Bus efficiency in function of inter-
task communication (p) and number of
processors (n)

The figure illustrates that low values of p (< .1)
reduce the influence of bus-conflicts. In order to
hold the queueing time below 10%Z, (ny,q > .9,
critical values of p are given in table I.

n pC]'.'
5 .16
10 .09
20 .05

Table I. Maximal p-values for Mus > .9

From this table a rule of thumb, p.n < 1 can be
derived. This inequality stresses the bounds for
parallel task execution in a one-bus interconnec-
tion structure. Moreover the result is robust with
respect to varying distributions of arrival and
service times as is shown analytically [16] and

by simulation [6]. From the rule it is possible
to predict quantitatively the communication per-
formance of a task system on a single bus-multi-
processor in terms of the average duration and
mean communication time of a task. The bound es-
pecially applies to micro-operator-parallelism,
since the duration time of basic operators such

as addition and multiplication may be of the same
order as the data-transfer time. Unfortunately,
few publications take into account this communica-
tion overhead, which may well exceed the effective
calculation time [8]. It is noted that an m-port
memory or m multiple memories interconnected by

a crossbar reduce the bus-conflicts significantly,
provided the memory accesses are spread equally
over all communication paths by an appropriate
partitioning of the shared variables over the
available memories. Using the queuing network
theory of Gordon and Newell [10] for exponential
distributions one finds a similar result:p.n/m < 1
[6 1. In order to estimate the relative influence
of communication and precedence constraints, we
consider a unit task with longest path L = .05,

181

or mean taskgraph width W = 20. The speedup is
the inverse of the execution time of a unit task.
The maximal and minimal bounds on a single bus,
n-processor system are shown in Fig. 4.5, using
the values p = O (no communication overhead),

p = .025 and p = .05. Apparently bus conflicts
cause a serious efficiency loss when n > 1/p.

The maximal speedup is 20, ideally achieved with
20 processors. Interestingly however, in the
worst case a doubling of the processors allows
the speedup to become 12, i.e. 607 of its maximum,
provided the connection system is not saturated
(p = <.025).

+. 206402

o

+.1SE+02 4

+ 106+02. |

+.S0ELOL

++00E+00 ——t——t + i H—t—t
+.00€+0 ++ 106502 +.20E+02 +. 308402 Y

Fig. 4.5. Ideal and worst case performance of a
taskgraph with mean width W = 20
(longest path L = .05) on n processors,
1 shared memory.
Upper line : maximal speedup S.
Lower lines : minimal speedup S with
no (p = 0), moderate (p = .025) and
high (p = .05) bus traffic.

5. Conclusion

Continuous simulation constitutes a fruitful
application to parallel processing techniques,
mainly because of its invariant and repetitive
tasksystem, i.e. its parallel structure in time.
The state equations are independent tasks that
can be distributed evenly over the available pro-
cessors by a simple, efficient and asymptotically
optimal LPT-scheduling algorithm. More parallelism
can be gained in building up a tasksystem of the
derivative functions, thereby introducing prece-
dence constraints between tasks. This functional
parallelism can be scheduled transparently to the
user by a numerically simple, yet powerful level
algorithm. Minimal and maximal speedup bounds
have been derived in function of the longest path
L, or equivalently the mean task graph width W.
Further refinement of tasks into basic operators
raises the problem of communication overhead.
Queuing analysis of a single bus interconnection
between processors and a shared data memory re-
veals that the duration of the average task should
exceed n times its communication time, where n
equals the number of active processors. This re-
sult can be generalized for other interconnection
structures by the theory of closed queuing net-

works.

References

[1] Adam, T.L., Chandy, K.M. and Dickinson, J.R.,
"A comparison of list schedules for parallel
processing systems", Comm. ACM 17, 12, 1974,
pp. 685-690.

[2] Arvind and Bryant, R.E., "Parallel Computers
for Partial Differential Equatioms', Proc.
Sc. Conf. Inf. Exch. Meeting, Livermore,
California, 9, 1979, pp. 94-102.

[3 1 Bhandarkar, D.P., "Some performance issues
in multiprocessor system design', IEEE Trans.
Comp. 26, 5, 1977, pp. 506-511.

[4] Coffmann, E.G. Jr. and Denning, P.J., "Operat-—
ing Systems Theory", Prentice Hall, 1973.

[5] Coffmann, E.G. Jr., Leung, J.Y-T. and Slutz,
D., "On the optimality of first-fit and level
algorithms for parallel machine assignment
and sequencing", Int. Conf. Par. Proc.,

Ed. J.L. Baer, 8, 1977, pp. 95-99.

[6] D'Hollander, E.H., "Multiprocessors for Con-
tinuous System Simulation'", PhD. thesis,
State University of Ghent, Belgium, 1980.

[7 1 Franklin, M.A., "Parallel solution of ordi-
nary differential equations', IEEE Trans.
Comp. 27, 1978, pp. 948-960.

[8] Gentleman, W.M., "Some complexity results for
matrix computation on parallel processors',
J.ACM 25, 1, 1978, pp. 112-115.

[9] Gonzalez, M.J., "Deterministic processor
scheduling", Computing Surveys 9, 9, 1977,
pp. 173-204.

[10] Gordon, W.J. and Newell, G.F., "Closed Queu-
ing Systems with Exponential Servers", Op.
Res. 15, 1967, pp. 254-265.

[11] Graham, R.L., "Bounds on multiprocessing
timing anomalies'", SIAM J. Appl. Math. 17,
2, 1969, pp. 416-429.

[12] Hoogendoorn, C.H., "A general model for me-
mory interference in multiprocessors",
IEEE Trans. Comp. 26, 1977, pp. 998-1005

[13] Hu, T.C., "Parallel sequencing and assembly
line problems", Op. Res. 9, 6, 1961, pp.841-
848.

182

[14]

{15]

[16]

[17]

(18]

[191]

[20]

[21]

[22]

[23]

Karp, R.M., "Reducibility among combinatori-
al problems", Complexity of computer compu-
tation, Plenum Press, N.Y., 1972, pp.85-104.

Kaufman, M.T., "An almost optimal algorithm
for the assembly line scheduling problem",
IEEE Trans. Comp. 23, 11, 1974, pp.1169-1174.

Kleinrock, L., "Queuing Theory II", John
Wiley and Sons, 1977.

Kuck, D. and Muraoka, Y., "Bounds on the pa-
rallel evaluation of arithmetic expressions
using associativity and distributivity",
Acta Informatica 3, 1974, pp. 203-216.

Kuck, D., "A survey of parallel machine or-
ganization and programming", Computing Sur-
veys 9, 1, 1977, pp. 29-59.

Muller, D.E. and Preparata, F.P., "Restruc-
turing of arithmetic expressions for parallel
evaluation", J.ACM 23, 1976, pp. 534-543.

Rodeheffer, T.L., Hibbard, P.G., "Automatic
exploitation of parallelism on a homogeneous
asynchronous multiprocessor", Intl. Conf.
Par. Proc., 1980, pp. 15-16.

Shampine, L.F. and Watts, H.A., "Block Im-
plicit one-step methods", Math. Comp. 23,
1969, pp. 731-740. -

Ullman, J.D., "Polynomial complete schedul-
ing problem", 4th Symp. Operat. System Prin-
ciples, 1973, pp. 96-101.

Worland, P.B., "Parallel methods for the
numerical solution of ordinary differential
equations', IEEE Trans. Comp. 25, 1976,

pp. 1045-1048.

ANALYTICAL MODELS TO EXPLAIN ANOMALOUS
BEHAVIOR OF PARALLEL ALGORITHMS

Bruce W. Weide
Department of Computer and Information Science
The Ohio State University

Columbus, Ohio

Abstract —-- A probabilistic model of a class
of parallel programs is used to investigate the
counterintuitive behavior observed for some
parallel algorithms. Two main points are made:
(1) It may, in general, be beneficial to consider
using more logical processes than physical pro-
cessors in a parallel algorithm; and (2) Results
from order statistics are useful tools in analyz-
ing parallel systems.

1. Introduction

Certain strange phenomena have been reported
recently regarding the behavior of parallel
algorithms on real multiprocessors, such as C.mmp
and Cm* [2,6,8,10], and an interesting problem is
the development of models and analytical tech-
niques to explain them [8,9]. Our goal here is to
develop a realistic probabilistic model for
describing how members of a class of 'decompos-
able'" problems behave when solved by certain
parallel algorithms. Our contribution is not
simply in the explanation of observed phenomena,
but also in the introduction of order statistics
as an analytical tool not ordinarily used in
performance evaluation of computer systems.

Anomalous problems that have been reported
in the literature can be classified into two
categories. On the one hand are problems that
are solved in parallel by decomposing them into
a number of subproblems, the successful comple-
tion of any one of which solves the original
problem. For instance, suppose it is necessary
to search a table for the occurrence of an item
known to be in the table somewhere. One possible
algorithm is to search the positions of the table
in random order. A search by n such processes,
operating independently and in parallel, can
be conducted, and the first process that finds
the item is the one that determines the total
running time.

Such an algorithm could, in theory at least,
exhibit the following strange behavior. With one
processor, the average solution time is Tl; with

n processors and n independent processes, the
average solution time 1s T ; and Tn < Tlln. In

other words, n processors can exhibit a speed~up
of the average time that is more than a factor
of n.

A plausible explanation of such an
" apparently unlikely phenomenon is that the al-
gorithm's running time is a random variable,

Research supported im part by the National
Science Foundation, MCS-79-12688.

0190-3918/81/0000/0183%00.75 © 1981 IEEE

183

43210

having a distribution F(x), for which the
expected value of the minimum of n observa-
tions is less than 1/n times the expected value
of a single observation. For instance,

F(x) xs, 0<x<1l, 0<6 <1/2, has the
required property for all n > 2. This phenom-
enon is described in more detail in [8]. It
should be noted that while such behavior is
theoretically possible, we know of no practical
algorithms for which it has been observed.

We consider here a different problem, where
the decomposition is into a number of subproblems,
the successful completion of all of which is
required to solve the original problem. An
example (in fact, the one that motivated develop-
ment of the model proposed here) is a discrete
optimization problem, such as integer programming,
in which the space of possible solutions is
partitioned into n disjoint subsets that are
searched in parallel for the optimum feasible
solution. The curious behavior here seems more
believable than that described above, but still
not entirely intuitive. It has been observed
that average running times can sometimes be
reduced by partitioning into more subproblems
than there are processors, and by sharing the
processors among the active subproblem-solving
processes [8].

In late 1975, when the C.mmp multiprocessor
at Carnegie-Mellon University [10] was configured
with 5 PDP-11's sharing access to a single large
memory, experiments with a parallel implementa-
tion of an implicit enumeration algorithm for
0/1 integer programming were conducted. In this
problem, the goal is to 2

minimize: ¢, + L. C.X
Y J=1 373
n
subject to: jgl a4 5%y >2b;sl<ci<m

ij{O,l}, 1<j=<n,

A complete enumeration of the 2" possible
solution vectors can be avoided by making use
of "branch-~and~bound” techniques, but the
general approach still looks much like a tree
search: 'branch" on x,, say, and solve the two
subproblems (each with n-1 variables) in which,
respectively, Xy is replaced by 0 and by 1 in the

original problem. The subproblems are smaller
instances of the same type problem, and can be
solved by further division. TIf r variables

are chosen initially for branching, there are 2
subproblems, each with n-r variables, and they
can be solved independently and in parallel.
practice, it improves the solution time 1if

In

certain global information (a bound on the
objective function value) is shared, but there
is no requirement for any interaction except for
one final comparison of the subproblem's optimum
solution value with the best solution found so
far for another subproblem.

The experiments on C.mmp were not intended
to determine how much speed-up could be obtained
by parallel decomposition, but rather to exer-
cise the C.mmp hardware and software in the
system's early days of operation. Consequently,
few precise timing runs were made. The limited
experience offered by the parallel integer
programming algorithm and the timings observed
for it indicated, however, that even with only
5 processors, the average solution times tended
to fall as the number of subproblems solved in
parallel increased well beyond 5.

Figure 1 shows the behavior observed for a
typical 20 variable, 20 constraint problem.
Several runs were made with the r initial
branching variables chosen at random, for r
from O to 4, and the solution times averaged.
The fact that average solution times tended to
fall, even with 8, 16, and 32 subproblems being
solved in parallel on only 5 processors, led to
speculation regarding the underlying reasons for
this phenomenon and to development of the analyt-
ical model described below.

Explanation of this behavior in a fairly
realistic model, accounting even for overhead
associated with processor sharing, is the purpose
of this paper. Section 2 describes the hardware,
scheduling, and problem models. Section 3
presents the analysis of the ideal (no over-
head) case, and Section 4 extends it to include

A
40

30

k = 5 processors

©)

20

10

Tk(n), Total Elépsed Execution Time, Sec

I S o N

1 |]
| 1
0 10 20 30

n, Number of Processes
FIGURE 1 - Average execution times for a

typical 0/1 integer programming
problem on C.mmp system

A\

184

scheduling overhead. We conclude in Secfion 5
with a brief discussion of possible applications
and future directions.

2. The Model

A simple multiprocessor model is that shown
in Figure 2. The k identical processors operate
asynchronously and in parallel, and communicate
via a shared memory. For simplicity we assume
there is no contention for this memory (an
assumption that is entirely reasonable for cer-
tain hardware configurations and reference pro-
perties), and that no overhead is involved in
locking shared data for exclusive access. In
short, each processor operates as fast as if it
alone were executing without the other k-1 pro-
cessors. This assumption is necessary to make
the model at all tractable; analysis of conten-
tion effects is a difficult problem in its own
right. In addition, we assume that the problem
we are solving accounts for the entire computing
load on the system; more about this later.

A schedulable entity is called a process.
In our model, each subproblem solution is
computed by a separate process, and each process
is either active (i.e., not completed) or
inactive. Whenever there are at most as many
active processes as processors, each process is
bound to one processor, and no scheduling is
necessary. If there are more active processes
than processors, scheduling is by processor
sharing, which means that each process effec-
tively has only a fraction of a processor's
computing power. For instance, with k pro-
cessors running n > k active processes, the
computation of each process progresses at k/n
times the rate it would progress if it had its
own dedicated processor.

In Section 3, the analysis assumes that
there is no overhead associated with processor
sharing; in Section 4, we relax this restric-
tion. It should be noted, however, that if the
system is shared with other tasks, if our job
is allocated a fixed percentage of the system
resources, and if the system-wide scheduling
policy is processor sharing, then the results of
Section 3 hold even though they do not account
for overhead. This is true because all running
times are multiplied by the same constant,

k-port Shared Memory

(no contention)

FIGURE 2 - k-processor model with shared memory

namely, the reciprocal of the fraction allo-
cated to our job, since processor sharing takes
place even when our job has fewer active pro-
cesses than processors. Section 4, then, is
necessary only because a dedicated multi-
processor system could refrain from processor
sharing at that point, so the overhead would be
paid only during a part of the computation.

The most controversial (i.e., unrealistic)
aspect of our model is the problem model. We
assume the problem to be solved can be decom-
posed into a number of subproblems, for para-
1lel solution, with the following properties:

(1) The time required by the algorithm to
solve a random instance of the problem on a
single processor is a random variable X having
the distribution F(x). We assume that F(x) =
for x < 0 since processing times are non—nega—
tive, and that u = E(X) is finite.

(2) The problem can be solved by solving
all of any finite number n of subproblems, each
of which is of the same type as the original
problem, but is probabilistically smaller (in
solution time) by a factor of n. Therefore, the
solution time for each subproblem on a single
processor is a random variable having the
distribution F(nx).

(3) The subproblem solution times are
independent of each other and independent of the
solution time of the original problem.

Property (2) seems questionable at first
glance, but is in fact quite reasonable, espe-
cially for many numerical linear algebra pro-
blems, sparse matrix manipulations, discrete
optimization problems, and queries in large
data bases, for instance. Property (3) is
unreasonable in most cases, but this is the
price we must pay for the ability to get ana-
lytical results. Actually, the subproblem
solution times may be almost independent if n
is very large, or may truly be independent if
randomness is induced by the algorithm itself

[8l.

The problem to be considered here is how to
determine n such that the expected solution time
on k processors is minimized. Each subproblem
is allocated one process, and the total solution
time is the elapsed time to completion of the
last process that finishes, since all sub-
problems must be solved in order to solve the
original problem. Although in the model n can
be arbitrarily large, presumably any real
problem can be subdivided only so far before
the assumptions fail. A conclusion such as
"make n as large as possible'" means "make n
as large as possible such that the assump-
tions (1) through (3) above are satisfied".

3. "No Overhead'" Analysis

Let Tk(n) be the total solution time on k

processors when the problem is divided into n
subproblems; let Xj'n be the jth smallest of n

independent random variables from the distribu-

185

E(X Define Y,
j: ng j:n

to be the solution time of the J subproblem if
each subproblem (process) had its own processor.
Then E(Y.,) =1qu /n because of property (2) in

jin j:n
Finally, let Sj be the

tion F(x); and let uJ).

the problem model.

elapsed time to completion of the jth sub~
problem using processor sharing on k processors.
Throughout this analysis we assume n > k, since
it is clear that it is always worthwhile to have
at least k subproblems.

In order to solve the problem, we must find
an expression for Tk(n). By definition, Tk(n) =

Sn' = (n/k)len

there are n active processes before time S1 and

Furthermore, note that S1 (since

each has k/n effective processors) and that

sj =SJ._1+(

for 2 < j < n-k. This follows from the fact that
between the completion of the j-1St and jth sub-
problems, there are n-j+l active processes.
Solving the recurrence we find that

Sn—k =Y + (1/k) ©

After time S__. there are at most k pro-
cesses still actige, so each has its own pro-
cessor and there is no sharing. The time
remaining until all finish is simply

Yn:n - Yn-k:n’ so

JenYyoq) (3D /K

n-k:n -l J n

=Y

Tk(n) = Sn n:n

+am Ty

Taking expectations of both sides gives

/n + (1/k) /n

E(T, () = w . _1 jin

which can be rewritten as

E(T, (n)) = uw/k +

n

b/ - (/K) j=nZ Lt “yin o/

Note that u/k is the best value of E(Tk(n))

we could hope for, and that the expression above
exceeds this by only
n

(u)/ (kn),

j=n§k+l n:n—uj:n
which for most distributions F tends rapidly to
zero as n increases. For example, for the expo-

nential distribution

k
E(T, () = u(@/k + (I,(1/1)/n);

and for the uniform distribution
E(Tk(n)) = u(1/k+(k-1)/(2n(n+l))).

It is clear that for a fixed number of pro-
cessors k > 2, each of these is a decreasing
function of n. What we need to show is that the
same is