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PREFACE

For this Ninth International Conference on Parallel Processing
we received a total of 117 papers, 31 of which were from 6 countries in
Europe, Canada, Israel, Japan, and the People's Republic of China.
Sixty-five papers were accepted for presentation at the meeting, 21 of
which are to be presented in a one- and one-half hour poster session.
In a poster session visual displays of all the papers are mounted on
bulletin boards, and the author of each paper is present during the
entire session for explanation and in-depth discussion with interested
persons. This session allowed us to accept more interesting papers than

would have been otherwise possible.

The conference featured a film festival covering the history of
and advances in computer architecture, and a panel session addressing

the outstanding issues of designing high performance computer systems.

We would like to thank Tse~yun Feng, the conference chairman, for
arranging the location of this meeting, and printing and distributing the
preliminary announcements. We are indebted to Mrs. Vivian Alsip for her
valuable help in keeping all the correspondence to the authors and
reviewers superbly organized. We also extend our thanks to Ms. Gerrie
Katz of the IEEE Computer Society for her patience and help in producing
this proceedings. Finally, we thank Tse-yun Feng and K.H. Kim for
handling the papers by Banerjee, Gajski, and Kuck, and Lawrie and Vora.
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iii






SESSION 1:

A Parallel Operating System for an MIMD Computer

R.A. Schmidt

The Programming Language Parallel PASCAL
Bruner, M.S.

A.P. Reeves, J.D.

Decomposing a Program for Multiple Processor Systems

Arvind

Automatic Exploitation of Parallelism on a Homogenous Asynchronous

Multiprocessor
T.L.

SESSION 2: ARCHITECTURE

A Controllable MIMD Architecture
S.F. Lundstrom and G. Barnes

Array Machine Control Units for Loops Containing IFs
U. Banerjee, D. Gajski, D. Kuck

VASTOR: A Microprocessor Based Associative Vector Processor for Small Scale

Applications

W.M. Loucks, W.M. Snelgrove, S.G. Zaky

An Outline of the Computer System with Associative Pipelining

S.Y. Berkovich

Framework for Communication in Loosely Coupled Multiple Processor Systems

V.P. Srini

SOFTWARE AND LANGUAGES

TABLE OF CONTENTS

Poret

Rodeheffer and P.G. Hibbard

Suitability of Bubble Memories in Parallel Processor Architectures .

E.W. Davis

On the Performance of On-Line Arithmetic
M.D. Ercegovac and A.L. Grnarov

SESSION 3:

An Interconnection Network for Processor Communication with Optimized

Local Connections
Y. Chow, R. Dixon

Use of the Augmented Data Manipulator Multistage Network for SIMD Machines
S.D. Smith, H.J. Siegel, R.J. McMillen, G.B. Adams III

, T.

INTERCONNECTIONS I

Feng

Design and Validation of a Connection Network for Many-Processor .

Multiprocessor Systems
G.H, Barnes

The Prime Memory System for Array Access

D. Lawrie and C.

Vora

.

Page

15

19

28

37

47

49

53

55

65

75

79

81



SESSION 4: PERFORMANCE
Empirical Results on the Speed, Efficiency, Redundancy . « « « « o o o «
and Quality of Parallel Computations

R.B. Lee

Performance Evaluation of Pipeline Architectures . . « ¢« ¢« o ¢ ¢ ¢« &« & &«
J.H., Mirza

A Cray-l Simulation Using PASCAL=PlUS . + « o o o o o o « o o o o o o o
R.H. Perrott and C. King

SESSION 5: RESOURCE CONTROL AND ALLOCATION

Hardwired Resource Allocators for Reconfigurable Architectures . . . . .
B.D. Rathi, A.R. Tripathi, G.J. Lipovski

Resource Control in a Demand-Driven Data-Flow Model . . ¢« ¢ ¢ o o o o &«
B. Jayaraman and R.M. Keller

POSTER SESSION

High-Level Operating System Formation in Network Computers . . . « « « &
A.M. van Tilborg and L.D. Wittie

Design Optimization for a Special-Purpose Multiple-Computer . . . « « .
C.F. Summer, R.O. Pettus, R.D. Bonnell, M.N. Huhns, L.M. Stephens

Numerical Computations on CM . ¢ ¢ ¢ ¢ o o o o o o o s o s s o o s s a @
P.G. Hibbard and N.S. Ostlun

An Organization of a Three-Dimensional Access MemOLY .+ « o « o o o o o o

H. Shirakawa and T. Kumagai

Loop Decomposition in the Translation of Sequential Languages to. . . . .
Data Flow Languages
S.J. Allan and A.E. Oldehoeft

Goodyear Aerospace Corporation's Microcomputer Array Processor System . .
F.G. Carty and R.H. Ries

Simultaneity of Events in Petri NetsS . o ¢ ¢ o o o o ¢ o o o « o o o o &
R.C.0. Martins and K.B. Irani

Parallel Computer Architecture Employing Functional Programming Systems .
J.C. Peterson and W.D. Murray

The Requirements of a Language for Asynchronous Parallel Image Processing
R.J. Douglass

A Fastbus System Description Language . . « + + . e o e e e o o o
T. Christopher, O. El-Dessouki, M. Evens, W. Kabat, S. Wagle

VSP: Building Blocks for Parallel ProCeSSOLS o « o o o « o o o s o o o &«
W.S. Dowey

A New General-Purpose Distributed Multiprocessor System Structure . . . .
J. Lan

A Multi-Microcomputer Architecture for an Iterative Algorithm . . . . . .
D.I. Moldovan

Parallel Nonlinear Minimization by Conjugate Directions . . . « « . . «
E.C. Housos and 0. Wing

vi

91

101

105

109

118

131

133

135

137

139

141

143

145

147

149

151

153

155

157



+ A Parallel Algorithm for Solving Band Systems of Linear Equations . .

L. Halada

LSI Implementation of Modular Interconnection Networks for MIMD Machines

L. Ciminiera and A. Serra

Another Approaéh to Making Supercomputer by Microprocessors--Cellular .

Vector Computer of Vertical and Horizontal Processing with
Virtual Common Memory
G. Qing-shi and Z. Xiang

An Algorithm of Parallel -Processors for Theorem Proving and Its Applications

X.C. Zeng
SESSION 6: DISTRIBUTED PROCESSING I

Design and Implementation of a Language for Communlcatlng Sequential
Processes
M. Jazayeri, C. Ghezzi, D. Hoffman, D. Mlddleton, M. Smotherman

A Comprehensive Framework for Evaluating Decentrallzed Control . . .
J.A. Stankovic

Directions for User Defined Cpﬁmunicatidn for Distributed Software .
R.B. Kolstad and R.H. Campbell

SESSION 7: NUMERICAL ALGORITHMS*AND APPLICATIONS

SIMD Algorithms to Perform Lineaﬁ Predictive Coding for Speech . . .
Processing Applications
L.J. Siegel, H.J. Slegel R.J. Safranek, M.A. Yoder

A Note on Pipelining a Mesh Connected Multiprocessor for Finite . . .
Element Problems by Nested Dissection
D. Gannon

- Solving Linear Algebraic Equations on a MIMD Computer . « . . « « « &

R.E. Lord, J.S. Kowalik, S.P. Kumar

F.P. Preparata and J. Vuillemin
VLSI Computing Structures for Solving Large-Scale Linear System of .
of Equations

K. Hwang and Y-H Cheng
SESSION 8: NONNUMERICAL ALGORITHMS AND APPLICATIONS
Simulation and Analysis in Deriving Time and Storage Requirements .
for a Parallel Alpha-Beta Algorithm

D.G. Akl, D.T. Barnard, R.J. Doran

Parallel Alpha-Beta Search on Arachne . . . e 5 o 8 o o o s e o o o
J.P. Fishburn, R.A. Finkel, S.A. Lawless

Two Parallel Algorithms for Shortest Path Problems . « ¢« ¢ ¢ ¢ o o &
N. Deo, C.Y. Pang, R.E. Lord

A Partition Algorithm for Parallel and Distributed Processing . . . .
S.B. Wu and M.T. Liu

vii

- Optimal Integrated-Circuit Implementation of Triangular Matrix Inversion

.

159

161

163

165

173

181

188

193

197

205

211

217

231

235

244

254



SESSION 9: DATA BASE ARCHITECTURE AND SOFTWARE I

A Highly Concurrent Tree Machine for Database Applications . . .
S.W. Song

A Study of the Interconnection of Multiple Processors in a Database

Environment
J.R. Goodman and A.M. Despain

On Database-Oriented Peripheral Transformation Processor Systems
D. Schutt

SESSION 10: DATABASE ARCHITECTURE AND SOFTWARE II

Stochastically Conflict-Free Data—-Base Memory Systems . « o« o o«
D. Klappholz

PANEL DISCUSSION: DESIGNING HIGH PERFORMANCE COMPUTER SYSTEMS

A Manufacturer's Viewpoint . . &« ¢ ¢ ¢ ¢ o ¢ ¢ o o o o s s o o o &«
R.J. Malnati

General Purpose SUPErCOMPULEIrS « o o o o o o o o s o o o o o o o o
B.J. Smith

SESSION 11: DISTRIBUTED PROCESSING II

Hierarchical Analysis of a Distributed Evaluator . . . . . . . .« &
R.M. Keller and G. Lindstrom

Specification and Synthesis of Synchronizers e e e e e e e e e e
K. Ramamritham and R.M. Keller

SESSION 12: INTERCONNECTIONS II

Data Broadcasting in SIMD COmpPUters . « « « o o « o o o o o o o o
D. Nassimi and S. Sahni

Packet Communication in Multistage Shuffle-Exchange Networks . . .
D.M. Dias and J.R. Jump ) :

A Layout for the Shuffle-Exchange Network . . . . « « o &« & « & &
D. Hoey and C.E. Leiserson )

Toward a Generalization of Two and Three-Pass Multistage, Blocking
Interconnection Networks
A. Shimor, and S. Ruhman

LATE PAPER

Modelling Control Strategies for Artificial Intelligence Applications

A. Giordana, P. Laface, and L. Saitta

viii

259

269

279

283

293

295

299

311

325

327

329

337

347



ADAMS III, G.B.
AKL, D.G.
ALLAN, S.J.
ARVIND
BANERJEE, U.
BARNARD, D.T.
BARNES, G.H.
BERKOVICH, S.Y.
BONNELL, R.D.
BRUNER, J.D.
CAMPBELL, R.H.
CARTY, F.G.
CHENG, Y.H.
CHOW, Y.
CHRISTOPHER, T.
CIMINIERA, L.
DAVIS, E.W.
DEO, N.
DESPAIN, A.M.
DIAS, D.M.
DIXON, R.
DORAN, R.J.
DOUGLASS, R.J.
DOWEY, W.S.
EL-DESSOUKI, O.
ERCEGOVAC, M.D.
EVENS, M.
FENG, T.
FINKEL, R.A.
FISHBURN, J.P.
GAJSKI, D.
GANNON, D.
GHEZZI, C.
GIORDANA, A.
GOODMAN, J.R.
GRNAROV, A.L.
HALADA, L.
HIBBARD, P.G.
HIBBARD, P.G.
HOEY, D.
HOFFMAN, D.
HOUSOS, E.C.
HUHNS, M.N.
HWANG, K.
IRANI, K.B.
JAYARAMAN, B.
JAZAYERI, M.
JUMP, J.R.
KABAT, W.
KELLER, R.M.
KING, C.
KLAPPHOLZ, D.
KOLSTAD, R.B.
KOWALIK, J.S.
KUCK, D.
KUMAGAI, T.
KUMAR, S.P.
LAFACE, P.
LAN, J.
LAWLESS, S.A.
LAWRIE, D.
LEE, R.B.

AUTHOR INDEX

75
231
139

7

28

231
19,79

47

133

5
188
141
217

65
149
161

53
244
269
327

65
231
147
151
149

55
149

65
235
235

28
197
173
347
269

55
159

15
135
329
173
157
133
217
143
118
173
327
149

118,299,311
105
283
188
205

28
137
205
347
153
235

81

91

ix

LEISERSON, C.E.
LINDSTROM, G.
LIPOVSKI, G.J.
LIU, M.T.

LORD, R.E.
LORD, R.E.
LOUCKS, W.M.
LUNDSTROM, S.F.
MALNATI, R.J.
MARTINS, R.C.O.
MCMILLEN, R.J.
MIDDLETON, D.
MIRZA, J.H.
MOLDOVAN, D.I.
MURRAY, W.D.
NASSIMI, D.
OLDEHOEFT, A.E.
OSTLUND, N.S.
PANG, C.Y.
PERROTT, R.H.
PETERSON, J.C.
PETTUS, R.O.
PORET, M.S.
PREPARATA, F.P.
QING-SHI, G.
RAMAMRITHAM, K.
RATHI, B.D.
REEVES, A.P.
RIES, R.H.
RODEHEFFER, T.L.
RUHMAN, S.
SAFRANEK, R.J.
SAHNI, S.
SAITTA, L.
SCHMIDT, R.A.
SCHUTT, D.
SERRA, A.
SHIMOR, A.
SHIRAKAWA, H.
SIEGEL, H.J.
SIEGEL, L.J.
SMITH, B.J.
SMITH, S.D.
SMOTHERMAN, M.
SNELGROVE, W.M.
SONG, S.W.
SRINI, V.P.
STANKOVIC, J.A.
STEPHENS, L.M.
SUMMER, C.F.
TRIPATHI, A.R.

VAN TILBORG, A.M.

VORA, A.
VUILLEMIN, J.
WAGLE, S.
WING, O.
WITTIE, L.D.
WU, S.B.
XIANG, Z.
YODER, M.A.
ZAKY, S.G.
ZENG, X.C.

329
299
109
254
205
244

37

19
293
143

75
173
101
155
145
325
139
135
244
105
145
133

211
163
311
109

141

15
337
193
325
347

279
161
337
137

75,193
193
295

75
173

37
259

49
181
133
133
109
131

81
211
149
157
131
254
163
193

37
165



W.B. Ackerman
D.P. Agrawal
D; E. Atkins
J-L. Baer

U. Banerjee
Y. Bard

G.H. Barnes
D.H. Bartley
T.R. Bashkow
K.E. Batcher
G.G. Belford
K. Bowyer

M. Bozyigit
W. Brainerd
J.D. Brock

R.M. Brown

R.H. Campbell

A. Casavant
V.G. Cerf
P-Y. Chen
S-c. Chen
Y-C. Chow
K. Culik

E.S. Davidson

E.W. Davis

N. Dershowitz

D.M. Dias

M. Edelberg

0. El-Dessouki

J. Ellis

LIST OF REFEREES

1980 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING

J. Emery R.N. Kapur

P. Emrath ' V. Kathail

M.D. Ercegovac R.M. Keller

M. Faiman K.H. Kim
A. Fantechi » W. Kim
E.A. Feustel T. Kimura

P.M. Flanders J.C. Knight

M.A. Franklin D.J. Kopetzky

D.D. Gajski B. Krieg-Bruckner

D.B. Gannon W.J. Kubitz

O0.N. Garcia

D.J. Kuck
W.M. Gentleman R. Kuhn
W. Gillett L. Lamport

M.J. Gonzalez, Jr‘J.L. Larson

J.R. Goodman D.H. Lawrie

J. Grcar B. Leasure

I. Greenberg

K.Y. Lee
I. Greif R. B-L. Lee
D.H. Grit V. Lesser
R.K. Gupta G. Lindstrom

P.E. Hagerty G.J. Lipovski -

W. Handler B. Liskov

R. Haskin R.E. Lord

F.P. Hiner, IIT g n [indstrom

L. Hollaar T. Macke

E. Horowitz M. Maekawa

K.B. Irani M. Marathe

A.K. Jones R.C.0. Martins

H.F. Jordan K. Maruyama

R.Y. i
Rain R.J. McMillen

J. Metzner K. Schwans

R.S. Michalski H.J. Siegel

C.T. Mickelson . B.J. Smith
D. Mickunas S.D. Smith
R. Montoye S.W. Song
J.D. Mooney M. Sowa

P.T. Mueller, Jr. V.P. Srini

W.D. Murray J.A. Stankovic

D. Nassimi R. Stokes
C. Neuhauser R. Towle
J.D. Noe S.H. Unger

S.E. Orcutt K. Vairavan

S. Owicki J. Vanaken
D. Padua A.M. van Tilborg
R. Paige R.G. Voight
D.S. Parker C.R. Vora
J. Patel D. Watanabe
J.C. Peterson D. Weiss
D. Plaisted J.E. Wirsching
S. Preece D.S. Wise

C:Vo;Ramamoorthy J. Wisniewski

~

K. Ramamritham - -M. Wolfe
_ H.K. Reghbaiim C-1. Wu

J.E. Robertson W.C. Yen

T.L. Rodeheffer P-C. Yew

Y. Saad N -

S.K. Sahni\

A.H. Sameh

M.S. Schlansker

R.A. Schmidt



SESSION 1l: SOFTWARE AND LANGUAGES






A PARALLEL OPERATING SYSTEM FOR AN MIMD COMPUTER

Rodney A. Schmidt

Denelcor,

Inc.

Denver, Colorado 80205

Summary

The HEP computer system developed by
Denelcor, Inc. under contract to the U.S. Army
Ballistics Research Laboratory is an MIMD machine
of the shared resource type as defined by Flynn

i]. The architecture of this machine has been
covered earlier in a paper by SmithEﬂ . Briefly,

processors, all of which access a shared data
memory. Multiple tasks may cooperate by sharing
a common region in data memory. Cells in data
memory have the property of being '"'full' or
"empty'' and the execution of instructions in
processes may be snychronized by busy waiting (in
hardware) on the full/empty state of data memory
cells. Other than the state of data memory,
processes and tasks in different processors have
no means of synchronization or communication.

High-level language (e.g. FORTRAN) programs
in this machine are explicitly parallel. Sub-
programs are made to run in parallel with the
main program by an explicit CREATE statement
analogous to CALL in ordinary FORTRAN. Code
within a subprogram is S1SD. The objective of
the HEP operating system is to preserve the
parallelism of the user program by executing in
parallel during the performance of 1/0 and re-
lated supervisory functions. The operating sys-
tem must:

1.) Allow all user processes to execute
during 1/0 related supervisory
computation;

2.) Allow multiple concurrent supervisory
1/0 computations;

3.) Allow reentrant use of code in the
supervisor and the user program;

4.) Provide maximum user performance by
consuming minimum resource in both time
and space.

In SISD computers, reentrancy is usually obtained
with some form of dynamic memory allocation.
Concurrency of the operating system and the user
is not possible due to the SISD nature of the
machine.

In HEP, most dynamic memory allocation would
generate considerable serialization of code
around the resource lock required to safeguard
the memory allocation data structure. |In
addition, HEP cannot allow any memory used by the
system to be writeable by the user since the
user is running truly in parallel with the sys-
tem and could destroy any location at any time.

CH1569-3/80/0000-0003$00.75 © 1980 IEEE
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In the HEP operating system, the available
general purpose registers (about 2,000 of them)
are divided a priori into groups of uniform
length. When a process is created, the creating
process must obtain a register environment from
a table of available groups. This operation is
relatively infrequent and inexpensive. All
register environments are identical, and no state
is retained in them.

Main memory (data memory) environments are
obtained at the subprogram level by each sub-
program as it is invoked. Space is obtained from
a pool of data memory environments peculiar to
that subprogram. The user must specify at link
time how many such environments should be
allocated for each subprogram. Control of an
environment is obtained via a table of free
environments, but the table is local to the sub-
program. Thus, serialization for access to an
environment is only between multiple, nearly
simul taneous, invocations of the same subprogram,
and is much less damaging to performance.

Data memory environments are a resource not
visible to the user, and as such can contribute
to deadlock problems. Given the user's ability
to increase the amount of data memory resource
allocated to a subprogram, the deadlock problem
can be circumvented without much difficulty.

Concurrent |/0 presents its own set of
problems. In FORTRAN, a single 1/0 is implemented
with multiple calls to 1/0 formatting services.
State must be retained by the formatter during
this process. This state is bound to the 1/0
unit, not the subprogram. Further, the amount
of space required is not known until run time.
Thus, some type of run time memory management is
required, and the resource thus allocated is
invisible to the user. The space must be allo-
cated in an area accessible to all processors
in a multi-processor job, so that all tasks may
share the same 1/0 units.

The strategy employed in HEP is to allocate
1/0 buffers for a logical unit upon the first
1/0 to the unit. The space is then consumed for
the duration of the program, even if the 1/0 unit
is closed. |If the 1/0 unit is re-opened for
another file, the record length of the new file
must be less than or equal to that of the old
file. In this implementation, space can be
allocated from a top-of-memory pointer which
moves in only one direction. Serialization of
processes occurs only on simultaneous first 1/0
operations, and only for the few microseconds
required to move the pointer. This contrasts
with the substantial serialization introduced
by the normal scheme of a linked list of avail-
able space with garbage collection.



Consideration is being given to allowing a
user to supply his own logical record buffer,
with only the fixed portion of the 1/0 state held
at the top of memory. This would allow the user
greater dynamism in the logical record size, at
the expense of managing his own resources.

HEP supervisors require two types of
dynamic memory: registers to use while copying
logical records to/from physical records, and
data memory to hold file parameters for open
files. Of these, the register allocation is the
simplest. Since the users register requirement
can be determined from the number of processes
requested (a control card _parameter), all re-
maining registers in the register memory parti-
tion can be used for supervisor 1/0 operations.
These registers are allocated from a bit table
to active |/0 operations. :

Data memory allocation is more difficult.
It is not known until run time how many files
will be used, or how much logical record buffer
space will be required by the user. Fortunately,
the amount of supervisor space required per open
file is constant. - The operating system merely
allocates supervisor space for enough files to
accomodate the larger system programs
(compiler, etc.) and leaves the remaining space
for the user. The default limit on open files
may be overridden with a control card for users
with special requirements.

The present HEP system provides a high-
performance low overhead environment for parallel
computational activities. Our next activity will
be to extend this capability with high-
performance parallel 1/0 operation with speed
comparable to our processing speeds. The
parallel file system will include such features
as record interlock within files and concurrent
read/write capability from multiple jobs to the
same file.
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THE PROGRAMMING LANGUAGE
PARALLEL PASCAL

by

Anthony P. Reeves, John D. Bruner, and Mark S. Poret

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Summary

An extended version of the Pascal programming
language for Parallel processors 1s described.
This language reduces the semantic gap between the
very popular sequential Pascal language and a
large group of highly structured paratlel proces—
SOrs. Only a small number of carefully chosen
features have been added to the conventional Pas-
cal language. A specification of the language is
given in [1].

Most parallel processors are currently pro-
grammed in either assembly language or a machine-
dependent special version of Fortran. In some
cases, an attempt has been made to implement a
sequential high level language on a parallel pro-
cessor. This may work well on a tightly-coupled
processor with a small number of processing ele-
ments (PE's). The advantage is that existing pro-
grams may be used without change and that program—
mers do not have to learn anything new. Unfor-
tunately, sequential languages are often unsuit—
able for the expression of array manipulations and
efficiency is lost. By contrast, since Parallel
Pascal has been designed for SIMD processors, it
is a high level language offering efficiency, por-
tability, and error detection and diagnosis facil-
ities.

Parallel Pascal primitive operators are based
on the instructions available on Parallel Matrix
Processors (PMP’s), a class of highly structured
parallel processors involving a large number of
PE’s with a limited PE interconnection scheme.
Two examples of PMP’'s are the MPP [2] and BASE
[3]. It should be efficiently implementable on a
very wide range of architectures, including vector
and pipeline processors. However, the cost for
this portability is that many powerful features of
particular parallel processors may not be made
easily available as operators. As a result, it
may be necessary to perform some simple reformula-
tion of algorithms to achieve optimum efficiency
when transporting programs.

Parallel Pascal is not simply implementable on
an MIMD processor. However, a program written in
Parallel Pascal can be divided more easily into
subtasks than an equivalent conventional Pascal
program.

The prime objective of developing a parallel
processor 1is to achieve high speed execution;
The work reported here was funded by NASA-Goddard
Space Flight Center under grant NAG 5-3.
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therefore an efficient programming of any problem
is essential. The extensive error checking avail-
able with conventional Pascal impairs the effi-
ciency of the program execution unless the paral-
lel processor contains error checking hardware
(which is wusually not the case). An implementa-
tion of Parallel Pascal should provide for the
generation of code without runtime error checking
once programs have been debugged. In addition, an
implementation should provide for the inclusion of
assembly language segments for critical sections,
most likely as externally called procedures.

A translator program has been written for a
subset of Parallel Pascal which will translate a
Parallel Pascal program into a conventional Pascal
program; the translator itself is written in Pas-
cal. The design of Parallel Pascal is being re-
fined as experience is gained with writing practi-
cal Parallel Pascal programs and running them via
the translator. A Parallel Pascal compiler for
the MPP is being developed.

The two principal goals of the Pascal program-
ming language were to make available a language
for teaching systematic, structured programming
and to develop reliable, efficient implementations
on presently available computers [4]. The result-
ing language is based on Algol 60 and has a richer
set of program control structures and data struc-
tures (types).

The goal of implementability was achieved by
considering how to simply compile the language
when it was designed. The structure of the
language was chosen so that a simple parsing algo-
rithm could be used [5]. Unfortunately, the goal
of simplicity has led to a few deficiencies which
should be remedied in future language revisions.
One serious deficiency for Parallel Pascal is the
lack of dynamic arrays array dimensions may
only be specified by constants. This provides
simplicity and strict typing, but makes it very
difficult to write a library of functions for gen-
eral array operations.

A special version of Pascal with operating sys—
tem features, called Concurrent Pascal [6] has al-
ready been developed by Per Brinch Hansen. In a
sense, Concurrent Pascal reduces the semantic gap
between a user Pascal program and the total com—
puter enviromment including the supervisor mode
and operating system. In Parallel Pascal an at-
tempt 1is made to reduce the semantic gap between
the Pascal language and parallel processor archi~
tectures.

In Parallel Pascal a set of standard functions



for general array manipulations will be intro-—
duced. All standard functions will be defined for
any size arrays; this is consistent with the Pas—
cal concept of standard functions operating on
more than one data type. User defined procedures
and functions will be limited to a single array
size.

Parallel Pascal is characterized by the follow—
ing extensions to Pascal:

(a) Arrays to be manipulated by the parallel pro-
cessor may be explicitly declared as such by
the word parallel, e.g.

a,b,c: parallel array [1..8,1..8] of type

(b) Expressions may involve entire arrays; also,
functions may return entire arrays, e.g.

a := b+ sin(c) + 3
means
ali,j] := b[i,j] + sin(c[i,j]) +3 ¥ i,j

(c) All control statements may have arrays for
control variables, e.g.

if A>B then C := 3
means
if A[1,3]1>B[1,]] then C[i,3] := 3 ¥ i,j

(d) A new set of standard functions are available
for entire array manipulation. These func—
tions are defined for all array sizes and
types.

shift(array, S1, S2, ..., Sn)
rotate(array, S1, $2, ..., Sn)

The shift function moves the data in the
amounts specified by the integers S1 ... Sn
(one S for each dimension of the array).
Null values are inserted at the edges of the
array. The rotate function is similar to
shift except that the data shifted in at one
edge of the array is the data shifted out of
the opposite edge of the array.

expand(array, dimension, size)

The expand function replicates the array
along a new dimension size times.

transpose(array, D1, D2)

This transposes an array about the two given
dimensions D1 and D2. If only one dimension
is specified then the data is "flipped" about
that dimension.

There are also several functions which
apply a reduction operator over all of the
specified dimensions.

general format: fn(array,D1,D2,...,Dn)

asum arithmetic summation
aprod product

aand logical and

aor logical or

amax maximum value

amin minimum value

For example, the sum of all elements in a ma-
trix M is specified by asum(M,1,2) and a vec-
tor containing the maximum values of each row
of M is specified by amax(M,2).

(e) For convenient input and output of parallel
array data the procedures read and write have
been extended so that a whole array may be
read on written. The capability of reading
or writing a subarray of a large array file
may be added later.

(f) The index for a Parallel Pascal array may be
scalar, elided, a logical vector or a set. A
scalar index selects one item in a dimension
and reduces the rank of the result by one.
An elided index specifies all items in that
dimension. A subset of items in a dimension
may be specified by either a set or a logical
vector. The logical vector must be the same
length as the dimension it indexes.

Parallel Pascal also has a bit indexing mechan-
ism for the 1low level programming of bit-serial
parallel processors. This mechanism is outside
the normal usage of the language; however, its
availability may make it possible to avoid using
assembly code for low level bit serial operations.
This feature is, in general, not portable between
different implementations as the bit representa-
tion of numbers is machine dependent.
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Abstract

The success of high performance multiple processor systems depends upon our ability to decompose a
program into small segments suitable for execution on one processor. It is argued in this paper that purely
applicative languages are better suited for parallel processing because they offer considerable advantage over
Fortran-like languages in program transformation and decomposition. A scheme for decomposing applicative

programs is described through examples.

1 Introduction:

The operation of a multiple processor system designed to
increase the exccution speed of a single program can be viewed at
two levels. At the macroscopic level the system carries out the
computations of the user’s high-level program. At the microscopic
level cach processor exccutes its own set of instructions and
exchanges data with other processors as neceded. Implementing a
program on such a system requires transforming the high level
description into a set of programs for the individual processors.

Work at the University of California, Irvine has shown how
high-level dataflow programs can be mapped onto a set of
asynchronously cooperating processors as the computation unfolds
dynamically [4,10]. For applications such as partial differential
cquation simulation, however, the cost and overhcad of fully
general, dynamic mapping may be unwarranted. These
applications are characterized by cxtremely high computational
requirements and simple and regular program and data structures
[3]. Hence a static mapping of activitics onto processors may prove
more cfficient and cost effective without creating an undue loss of
flexibility.  Furthermore, a static mapping scheme for these
problems could distribute activitics and data structurc clements
over the processors in such a way that information flow is highly
localized. This would allow a simpler, lower cost interconnection
network than is required to achicve high performance with
dynamic mapping. The cffectivencss of static mapping of activities
is dircctly related to the decomposability of a program.

In this paper we first discuss the appropriateness of purely
applicative languages for parallel processing and then give a
scheme for decomposing applicative programs for multiple
processor systems. It is assumed that each processor is capable of
storing its own programn and data and can communicate with any

other processor in the system. ‘The internal organization of a

processor docs not affect our scheme.
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2 Impact of High level language on
Decomposability:

Traditionally, Fortran and its extensions have been regarded as
the only acceptable high-level languages for high performance
systems such as CRAY-1, STAR-100 and Illiac IV. The main
reason for programming in Fortran is to maintain compatibility
with a large existing body of scientific software. This compatibility
is of little use in practice because existing Fortran programs do not
show significant performance gains on new machines with different
architectures. In fact, a recoding of parts of the program either in
machinc language or in some new extension of Fortran is required
to achieve high performance. Software tools such as vectorizing
and optimizing compilers have been successful on a very limited
class of Fortran programs, namely those programs that do not have
undesirable -"side-cffects” (see [1] for an in-depth discussion of
side-cffects).  In a maximally parallel program, statement
cxccutions arc ordered only by data dependencies. It is difficult to
detect data dependencies in a Fortran (in fact in any imperative
language) program due to accesses to global variables and
opcrations on data structures. A programmer often tries to
minimize storage by reusing the same array over and over again.
This further complicates detection of minimal data dependencies.
A ban on the use of global variables or arrays scems absurd in view
of the fact that for cfficiency, a clever Fortran programmer often
passes parameters to subroutines through common declaration.
Potential side-cffects of common declarations in Fortran are so
intricate that most optimizing compilers will not optimize across
subroutines.

Kuck and his associates [12, 13, 14] have studicd and classified a
large number of Fortran programs in an attempt to identify
features that should be supported by high performance systems.
They have given various statement exccution orderings that
potentially could be cxploited by a compiler for a multiple
processor machine or an array or pipeline machine. Various
transformations of the source program are also suggested to
cnhance parallclism in a program. Even though the uscfulness of



studying -existing - algorithms' for designing high perforrmance
architectures is undeniable, we take issuc with Kuck’s acceptance of
the adequacy of Fortran or its cxtensions. An cfficient multiple
processor architecture cannot be developed unless it supports the
exccution model of a parallel processing language systematically.

Our approach to program decomposition may be applicable to a
class of Fortran programs structured along certain guidelines.
However the basis of our programming is so radically different
from Fortran that syntactic compatibility with Fortran is of little
use. If a Fortran program has to be rewritten for a- high
performance architecture then it can just as well be written in a new
language. We hope that cventually parallel processing languages
will remove the constraints placed by Fortran-like languagés on our
thinking, encouraging us to devclop yet faster algbrit,hm's.j

3 Applicative Programming for Parallel
Processing:

A parallel or asynchronous programming language for a
multiple processor system should not incorporate the concept of an
updatable storage cell [4, 8]. -This is cssential to avoid complex
synchronization mechanisms and elaborate sequencing of
operations. When all computation is based on valucs, as opposed
to addresses where values are kept, the possibility of a race to read
or write is not possible. The two most widely known languages that
can support pure applicative (i.e., functional) programming are
LISP and APL. However, both have such different syntax from
conventional languages that the cffort involved in learning cither of
them is quite substantial. The difficulty is further compounded by
the fact that both LISP and APL also present cntirely different
programming paradigm. One has to almost unlearn Fortran
programming to be able to think clearly in either of these
languages. LISP due to its recursive nature and strange syntax is
treated by scientific programmers as an amusing diversion for.
academicians. The incfficiency of these languages on conventional
architectures also lends support to Fortran adherents.

We think that the' "syntax" problem of applicative languages is-
completely solvable. Two languages, Id[4] and VAL[2], currently
under devclopment at the University of California at Irvine and
MIT provide a syntax as well as a programming paradigm that is
superficially quite similar to Algol—Pascal family of languages.
Both of these languages are purely applicative, and we believe that
a programmer familiar with Algol can learn Id in a few days.

Generally, an applicative language such as LISP allows the
creation and use of data structures in a much more dynamic
manner than Fortran. Hence a fair comparison of their cfficiency is
difficult. However, for most numerical algorithms this cxpressive
power of applicative languages is not required. An applicative
language with as restrictive a control and data structure as Fortran
.may still be lcss efficient than Fortran on a scquential computer.
However, for a multiple processor machine the cfficiency of a high
level language will depend on the availability of program
decomposition schemes, and due to this fact applicative languages
may indecd turn out to be more cfficicnt than imperative languages

1We prefer to study algorithms over programs because algorithms are more
language independent.

for such machines. A consensus scems to be emerging on this point
[6,9,11].

The problem of decomposition can also be viewed as an exercise
in program transformation. A fair amount of work has alrcady

“Been done on transforming applicative programs (see [7] for

example). We illustrate the flexibility for decomposition provided
by .an applicative program through an cxample. Considér a
classical relaxation algorithm in one-dimension. One computes the
new values of the x clements repeatedly using the following
equation.

newx; = (xip + x; + x;,.)/3. 1<iLn
where x, and x| remain constant.

A straightforward Fortran program would do this in the
following way.

C XIS AN ARRAY OF N+2 ELEMENTS
C X(1) AND X(N+2) REMAIN CONSTANT
N1=N+1
DO 20K =1, KMAX
DO 10 1=2, N1
Y(I) = (X(-1) + X(I) + X(1+1)/3.
10 CONTINUE
DO 151=2,N1
X(D) = Y()
15 CONTINUE
20 CONTINUE )

A compiler can easily generate good code for a multiple processor
machine from the above program. Even if a programmer is clever,
and avoids copying array Y into X by switching back and forth
between X and Y, a vectorizing compiler will be able to deal with it
cffectively. However, if array X is large, and a programmer decides
to avoid using another array Y altogether, the following program
may result.

NI=N+1
DO 20 K = 1, KMAX
TL=X(1)
T2=X(2)
DO 101=2, N1
X(=(T1+T2 + X(I+1))/3.
TI=T2
T2=X(I+1)
10 CONTINUE
20 CONTINUE @

It would be extremely difficult for a compiler to detect a
transformation in which all the clements of array X arc rclaxed
simultancously.

On parallel computers, programmers use the trick of relaxing
only half the clements (i.c., odd or even) in one iteration to avoid
cexcessive use of storage. It should be noted that the algorithm for
relaxing odd and even clements alternatively is an entirely different
one, and requircs mathematical sophistication on the part of a
programmer to prove its stability.



Now we contrast this situation with an applicative program
written in 1d.

(for k from 1 to kmax do
new x «— (initial y — <0:1b, n+1:1b>
!1b and rb represent the boundary values at
sclectors 0 and n+ 1 respectively!
for i from 1tondo
new y[i] — (x[i-1] + x[i] + x[i+1])/3.
return y)
return x) 3)

We rely on readers intuition to understand the control structure of
the above Id program. Manipulation of arrays (i.c. an example of
structures) in applicative languages needs some explanation. One
thinks of every array construction operation (such as append) as
producing a new array. Hence append (a,i,v) produces a new array
a’ which differs from a only in position i. Even though new y[i] ...
looks like a conventional assignment statement, y[i] docs not refer
to a storage cell.  Rather one should think of the whole array as a
value, and y[i] as referring to a part of the value. Naturally if one
changes a part of a value the aggregate value changes too. In this
example since 7 is taken from an unrepeated set of values (i.e., 1 to n)
it is possible to regard y as an I-structure [5]. In contrast to ordinary
structures, an clement of an I-structurc can be used as soon as it is
created. Thus I-structures allow greater freedom in manipulating
programs for cfficicnt exccution on a parallel computer.

Using a vectorizing compiler it is as casy to gencrate code for a
multiple processor machine from this Id program as it was with the
first Fortran program. However, the same Id program allows us to
generate code that may overlap scveral iterations of the outer loop.
Note that since y is an I-structure, the k+1% iteration of the outer
loop can begin as soon as the first threc elements of x from the K
iteration have been computed. If we desire we can easily derive
implementations of this Id program that will use the same
minimum amount of storage as the sccond Fortran program and
still allow concurrent exccution of several itcrations (see Figure 1).

Our premise is that a high level language should permit coding of
algorithms to show the maximal parallelism inherent in an
algorithm. Such languages have to be purcly functional in nature,
The task of decomposing and transforming maximally parallel
programs for a parallel machine is considerably simpler than the
task of decomposing Fortran programs. In the rest of this paper we
will outline a scheme for decomposing 1d programs for multiple
processor machines. The scheme will be described through
examples.

4 Decomposition Scheme:

Applicative programs that have loops as their primary control
structure and that operate on bounded-size data structures can be
decomposed into programs for a set of individual processors in
three steps:

1. The nested loop structures are unrolled into a network
of computation cells.

2. Data structure clements are assigned to the cells.

3. The network of computation cells is mapped onto the
actual processors of the systemn, according to the size
and structure of both the network and the computer
system.

A computation cell can be regarded as a virtual processor to
which a program and local data has been assigned. However, the
virtual processor program may also refer to data that is not local, in
which casc a communication between this virtual processor and the
virtual processor holding the data takes place. We will use
programs written in 1d language to illustrate the decomposition
scheme. All expressions in Id have the property that for every set
of inputs received they must produce exactly one sct of outputs.
Due to this property, the communication between conputation cells
is highly structured and its pattern can be determined a priori. In
order to remain consistent with the data-driven nature of Id, we
assume, without loss of generality, that a non-local value is sent to,
rather than demanded by, a computation cell. We can draw a
directed link from the cell that sends a value to the cell that receives
it, and thus a network of virtual processors can be created. If an
unbounded number of processors were available and if these
processors could be interconnccted in any desired pattern, then an
ideal nctwork topology for the physical system would be the
topology of the computation cell nctwork.

4.1 Defining Cells of Computation:

A programmer defines a cell by specifying what task is to be
carried out by it. For cxample a task may be defined as the work
done in the i iteration of a loop, hence by unfolding a loop a
number of computation cells may be defined. A program for the
task carricd out in the i iteration of an 1d loop can be gencrated
automatically. There is in gencral more than one computation cell
definition possible as we show below. Consider the following
program for conventional matrix multiply algorithm.

procedure matrix_multiply (a, b, 1, m, n)
! multiply matrix a of dimensions 1 X m by matrix b
of dimensions m X n!
(initial ce— < > 1 <> represents an empty structure!
for i from 1 to 1do '
new cfi] « (initial d— <>
for j from 1 to ndo
new dfj] —
(initial s+0
for k from 1 to m do
new s — s + a[i,k]*blk,j]
return s)
return d)
return ¢) ©)

In Id a matrix is rcpresented by an one-dimension array of
one-dimension arrays. Hence output matrix ¢ is constructed by
appending together | rows, each represented by an array d. We note
that this Id program when exccuted under the U-interpreter [5] can
automatically carry out all the I X m X n multiplications in
parallel. This effect is achieved without any global analysis of the
program. As stated earlicr the attempt in this paper is to perform



certain functions of the U-interpreter aw compile time and hence
map concurrent activities statically onto processors.

Suppose we specify computation cells to carry out one iteration
of the loop with index variable i. The network of Figure 2 will be
produced by unfolding loop i. The program for the i cell can be
written as follows.

append(c;.,, i, d) where d is computed as follows
de (initial d —<>
for j from 1 to n do
new d[j] + (initial s — 0
for k from 1 to m do
new s +— s + a[i,k] * blk,]

return s)

return d)

The subscript on a variable (i.e. c;.1) indicates the cell where that
variable will be computed. This program is valid for ccll numbers 1
to 1. The computation cell 0 should produce an empty array < >,
and the result should be available in cell 14 1.

The definition of computation cells can be critical to exploiting
parallelism in a program. In the matrix multiply procedure if 1 is
much smaller than the actual number of processors available then
unfolding cither both loop i and loop j, or only loop j may be more
advantageous than unfolding only loop i. The network produced as
a result of unfolding loop i and loop j of program (4) is shown in
Figure 3.

There is no obvious advantage in unfolding the outer loop of
program (3) for the rclaxation algorithm. Computation cells
produced in this manner will exccute essentially in a scquential
order. However, if loop i is unfolded concurrent relaxation of all
the clements of x is possible. The process of unfolding an inner
loop without unfolding the outer loop in a nested loop structure is
somewhat tricky. The result of unfolding loop i of program (3) is
shown in Figure 4. The cell programs are given below.

for cell 0
yo + <0:1b, n+1:rb>
forcell1<i<n

y; + append (y;.1, i, t) where tis computed as follows
t— (x4 q[i-1] + x4 q[i] + x4 i+ 173,

Note that as before x, ; means that x is defined in cell n+1.
The program for cell n+1is

(for k from 1 to kmax do
new x — y (x)
return n)

The meaning of y,(x) is that output from cell n is needed but it can
only be obtained after x is supplicd. In a dataflow interpretation
the value array x is sent by ccll n+1 to all the relevant cells as soon
as x is produced. For every x value that cell n+1 outputs it
reccives an input value y, which becomes the new value of x. The
initial valuec of x has to be given to ccll n+1 to start the
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computation. Such an input is implicit in program (3).

A reader at this point may consider the computation cell
network of Figure 4 to be very wasteful because it makes many
copies of array x. Indeed this is what we wish to avoid by mapping
structures on computation cells.

4.2 Mapping Data Structures on Computation Celis:

Once computation cells have been defined, a mapping of data
structures (i.c., matrices and arrays) onto these cells can be
specified. For example a programmer may specify that x[ij] for all
j should be mapped onto cell k. Mappings may not be one to one.
Consider again program (3) with the inner loop unfolded. A
mapping that scems quite sensible is that clements x[i-1), x[i] and
x[i+1] be mapped on to cell i. This mapping assigns cach clement
of x to threc computation cells. Treating a data structure as
collection of elements--each one of which is assigned to a cell or
cells--climinates the select operation on data structures. Suitable
mappings to reduce communication due to the select operation are
straightforward to derive but unfortunatcly solve only half the
problem.

Consider a mapping in which cach x[i] is mapped onto only cell
i. The program for cell i can be expressed as follows:

y; + append(y;.;. i, t) where t is computed as follows
te (x[i-1;.q + xfi] + x[i+1};,,)/3.

where each x[j] should be treated as one valuc and the meaning of
x[jly is as usual that x[j] is defined in cell k.

The value t computed by cell i becomes part of array y, and is
passed on to cell i+1 which passes it to cell i+2 and so on. It
finally reaches ccll n+1 as a part of the value y,. The new value of
x isy,, and it is y, that is distributed to cells 1 to n. Hence the x{if
that cell i receives is in fact the last t computed by cell i. This makes
the whole process of constructing x and then distributing it scem
unnccessary. Every cell should compute t and store it for the next
calculation of t. It must still communicate the valuc of t to cells i-1
and i+1 in order for these calls to compute their t values but most
of the communication from cell n+1 to cell i will be avoided.
There has to be some communication from cell n+1 to cell i to
indicate if the computation has terminated or not (i.c., k>kmax?).
Figures 5.1 and 5.2 depict the cffect of simplification achicved by
this data structurc mapping.

In order to achieve the simplification suggested by Figure 5.2 we
have to be able to determinc the cell where a particular clement of
a structure is gencrated. This can be done casily in program (3)
once we note that no clement of y in the inner loop is ever
redefined that is, y is an I-structurc. As noted earlier an clement
belonging to an I-structurc can be distributed as soon as it is
generated.

For the kind of programs we arc interested in, the sclector for
the append opcration is often directly and simply related to the
loop index. If the loop index is taken from an unrepeated set the
condition of I-structures is automatically met. Now we give a rule



for determining the number of the cell where the clement of a data
structure is gencrated in such cases.

Suppose we want to find the cell number where element cfi,j] is
defined in program (4). First, find the ccll that appends a value on
sclector i of c. 1et kO be the cell. Then

Cyo — append(cyy, i, dyy)

where subscripts k0, k1 and k2 refer to cell numbers. Once k2 is
known find the cell that appends a value on sclector j of dy,. l.etk3
besuch acell. Then

dy3 + append(dyy, j, v)

Mapping cfi,j] onto cell k will mean that cell k3 will send value v to
cell k. Supposc we consider the cell definitions of Figure 3. Then
mapping c[ij] onto cell number <i,j> results in all the append
operations being eliminated. Cell <ij> would compute a value s
and hold on to it. On the other hand, mapping c[i,j] on cell <i,j+1>
would result in cell €i,)> sending the value s to cell <ij+ 1>.

It is uscful in a large program to map a data structure according
to how it is used rather than how it is created. When matrix
multiply is part of a larger program one will have to take into
account the cells where matrix ¢ will be used to specify efficient
mappings. A common situation is that of unnested loops where
one loop produces a structurce and the other loop uses it. In such
cases a cell definition may include one iteration of each loop.

5 Mapping Computation cells on processors:

In general one expects the network of computation cells to be
larger than the number of processors available. The mapping in
such cases takes the form of specifying a folding of the network of
cells to fit the machine. Suppose we want to map the network of
Figure 2 onto a p processor machine when 1 >> p.For the
interconnections of Figure 2 we consider 3 mappings:

1. Map cell i on processor number i mod p (see Figure
6.1).

2. Map cells 0 to p-1 on processors 1 to p. Map cells p to
2p-1 on processors p to 1, and so on (sce Figure 6.2).

3. Map cells 0 to f-1 on processor number 1, cells f to 2f-1
on processor number 2, and so on where f =
I(1+2)/p (sce Figure 6.3).

If the p processors are connected by a ring bus there may be no
reason to choose between mappings 1 and 2. However the first two
mappings are clearly inferior to the third mapping if the p
processors have any kind of locality in their interconnection.

‘This small example only illustrates that a reasonable mapping of
a nctwork of cells onto an actual machine can be derived by simple
reasoning. In fact we cxpect to do such simple folding of networks
automatically.
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6 Conclusions:

The success of large multiple processor machines crucially
depends upon their programmability. Flexibility in programming
such machines is ultimatcly limited by our ability to decompose a
program into smaller programs suitable for exccution on one
processor. In the past, decomposition efforts have had limited
success due to Fortran being the source language. It is suggested in
this paper that applicative languages with restrictions-on data and
control structures arc far more amenable to decomposition. It is
generally quite easy to write a maximally parallel applicative
program for a given algorithm. Undoubtedly the problem of
decomposing a maximally parallel program is far simpler than
detecting parts of a sequential programs that are suitable for
concurrent cxecution.

A strategy for decomposing applicative programs for a multiple
processor machine has been outlined. It crcates a network of
computation cells without relying on any information about the
topology or the number of processors in the actual machine. The
network is mapped onto the actual machine as the last step in the
procedure. Our research cfforts for the time being are concentrated
on deriving cfficient cell programs for the network of computation
cells.
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Automatic Exploitation of Parallelismon a
Homogenous Asynchronous Multiprocessor

Thomas L. Rodeheffer and Peter G. Hibbard
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Carnegie-Mellon University
Pittsburgh, Pennsylvania, 15213

Summary

This paper describes an investigation which is starting
the practical issues of
parallelism in ordinary programs and -exploiting it on a

into automatically detecting
multiprocessor. We are looking at user programs written in
Fortran and our target multiprocessor is Cm*, a distributed
multiprocessor designed and built at Carnegie-Mellon

University.

We have chosen Fortran because of the following
reasons: we have a modern Fortran compiler written in C
which is accessible and. easy to modify; Fortran has a
simpler implementation than other commonly-used high-level
languages; much previous work has been concerned with
analyzing Fortran programs, thereby allowing our results to
be more easily compared with the results of others; and
finally, Fortran is a language of much practical interest to
the scientific computing ‘community.

We have chosen Cm* [1] as our target multiprocessor
primarily because it is a part of our research environment.
Since Cm* is the subject of several projects, our work can
enhance other research. Operating roughly as a classic,
shared-memory multiprocessor with fifty identical, asynchro-
nous processors, Cm* has the advantage that its memory
accessing mechanism is implemented by a hierarchical
switching network whose nodes can be microprogrammed to
provide special operalions in addition to simple memory
mapping. Finally, Medusa [2], an operating system which
supports a Unix-like environment but still allows almost a full
exploitation of the Cm* hardware, has recently become
available.

Measurements on Cm* [3] indicate that speedups near
the theoretical limit are attainable for programs which have
been carefully designed to take advantage of the available
parallelism. Unfortunately, sufficiently careful and ingenious
design has not proved to be a simple matter. Programming
a multiprocessor is a difficult and tedious task, especially at

CH1569-3/80/0000-0015$00.75 © 1980 IEEE
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the detailed levels of inter-processor coordination. Further-
more, multiprocessors are not generally available and thus
much work has tended to be theoretical in nature.

Previous work on automatically detecting and exploiting
parallelism has been directed primarily at architectures other
than those of asynchronous multiprocessors. Kuck et al. [4]
have studied extensively the ways in which programs can be
transformed to extract parallelism under the assumption that
the target architecture consisted of synchronous processors
which perform exactly one operation every time step. Allan
and Oldehoeft [5] have considered the same problems with
a data-flow machine as a target architecture. In both cases,
no consideration need be given to the problems of commu-
nication and synchronization between the processing ele-
ments, because such problems are assumed to be solved by
the architecture at no cost. Gonzalez and Ramamoorthy [6]
have studied through simulation the problems of scheduling
on a multiprocessor paraliel tasks of a program at the
statement level.

We view the exploitation of parallelism as an optimiza-
tion technique which is useful on a multiprocessor architec-
ture. We are interested in automatically taking advantage of
low-level parallelism—parallelism which would be difficult or
just too tedious for a programmer to specify but which can
be detected on a fairly local basis. The more global
problem of designing a program or algorithm specifically to
use parallelism falls beyond the scope of what we consider
automatic optimization techniques.

We are building a prototype system which compiles
Fortran programs into machine code for Cm*, detecting
implicit, low-level parallelism and generating a schedule of
tasks to minimize the time-to-completion of the program. All
detection and scheduling is done during compilation. The
run-time system on Cm* provides inter-processor communi-
cation ‘and synchronization primitives which the compiler
uses to effect its schedule.



For our purposes, each of the individual processors in
Cm* contains a copy of the same code and shares access
to the same data locations. As explained in [2], such an
arrangement is not the most effective use of Cm*, but its
simplicity and. similarity to the normal manner of use of
tightly-coupled multiprocessors is appealing. This arrange-
ment is essentially the same as presumed in [6].

The compiler processes the Fortran source program on
a subroutine-by-subroutine basis. Each subroutine is
compiled into a directed graph of actions, in which each
action represents an operation at the level of the individual
operations of expression evaluation, and each edge repre-
sents a data- or control-flow dependency. The compiler
then analyzes the flow graph to determine an execution
schedule for the dctions of the program.

The compiler uses approximate execution times for the
various machine instructions and run-time system primitives
in order to transform the flow graph to reduce the estimated
time-to-completion of the final object code program. For
example, a sequence of actions each of which is dependent
solely upon its predecessor is probably best executed as a
single task with no internal scheduling actions. Even
actions that could be performed in parallel probably ought
to be executed sequentially without scheduling if the
overheads required of the run-time system to coordinate
another processor are too large relative to the time that
could be saved by parallel execution. These are only the
simplest transformations, however.

Kuck et al. [4] have developed transformations appli-
cable to assignment statements and common forms of
Fortran 4DO-loops which exploit parallelism to reduce total
execution time. Although the transformations were designed
for a synchronous multiprocessor architecture such as an
array machine, with proper consideration of inter-processor
- coordination costs it seems that these transformations could
"Be. useful in the environment of an asynchronous multi-

processor as well.

Another important class of transformations are those
which act to defer or distribute overheads so that work is
removed from the critical, limiting path of the computation.
For example, instead of creating a new task at some point in
the program (which involves the run-time overhead of

" locating a free processor and communicating the task start.

address to it) the compiler may be able to identify an earlier
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task whose completion had recently been awaited and
arrange to re-use that task by passing signals for synchro-
nization; this assumes that the task creation and completion
primitives are more expensive than a signal between two
existing tasks.

Our goal is to demonstrate a workable system for
exploiting low-level paralielism on a multiprocessor. We are
encouraged by previous. results [7] which indicate that
substantial low-level data parallelism is in fact available,
although in that implementation the language run-time
support was so complex that performing all analysis at run-
time was feasible. Now we direct our attention to a
language of much simpler requirements in order to address
the practical issues of a workable system.
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Abstract -- A MIMD architecture targeted at
1000 Mflop/sec has been described to NASA. This
system is targeted to be the Flow Model Processor
(FMP) in the Numerical Aerodynamic Simulator.
This paper describes the strategies adopted for
making a many-processor multiprocessor
controllable and efficient, primarily by
decisions that are made at compile time.
Hardware features include the division of memory
into space private to each processor and space
shared by all, and a hardware synchronization of
all processors. The connection network,
connecting 512 processors to 521 memory modules,
is an essential element.

Two main constructs are needed in the
language to control the architecture. First, an
expression that a number of instances of a given
section of code can be executed concurrently, and
second, a determination as to whether variables
are local to the instance or global to the entire
program.

Performance validations used whole programs,
not kernels. Simulation and analysis combine to

demonstrate achievement of the goal of 1000
Mflop/sec on  suitable programs and good
performance on others.

Introduction

Present generation very-high-speed computers
generally exploit vector algorithms for their
highest performance. A study for NASA Ames
Research Center was conducted to determine the
feasibility of a "Flow Model Processor" (FMP)
which could achieve a sustained computational
rate of one billion floating point operations per
second on complete aerodynamics flow programs
[1]. It concluded that the dependence on vector
operations for high throughput was no longer
necessary.

Given that device technology has been fully
utilized, parallelism can be used to achieve
performance beyond that possible  with a
uniprocessor. Historically, two approaches have
been used to achieve parallelism: a pipeline

ZajThis work was done for NASA under Contract
NAS2-9897 and reported to them in [1].
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where parallelism is achieved by each
the pipeline operating on a different
successive operation, or an array of identical
execution units each simultaneously evaluating
the same  instruction on  different data.
References [2,3,4, and 5] have recent examples of
both. In either case the result is a vector mach-
ine where the data comes from orderly addresses
in memory and the same instruction acts on each
data element.

stage of
step of

The Flow Model Processor makes use of the
parallelism of a MIMD (multiple instruction
stream, multiple data stream) architecture. The
architecture includes specific features so that a
single program can be issued to all the
processors and result in cooperative execution on
a single application for a single user.

This paper describes motivations behind the
design and some of the strategies used to ensure

controllability. The architecture described here
avoids or sidesteps the limitation observed in
some MIMD architectures which are wunable to

utilize more than a few processors effectively.
The result is an architecture that is somewhat
specialized to a class of applications (although
much less specialized than a vector machine would
be). This architecture exploits any concurrency
inherent in the problem, whether or not that
concurrency can be described as vector
operations.

The problem was approached by first studying
the aerodynamic applications [6]. These
applications have a large numerical component,
much inherent concurrency, and simple control
structures. Due to the wide variation in the
amount of computation that may concurrently
proceed between times at which synchronization is
required, efficient implementation  of the
synchronization function is required. Due to the
many different natural modes of accessing data, a
large memory equally accessable to all processors
is required. Due to the practical limitation on
the speed attainable in a large common memory,
and due to the need for speed, an architecture is
required which allows many memory accesses to be
from memory local to each processor.

Software strategy is based on the premise
that source text submitted to the compiler should



result in a single program being compiled for all
processors in the array which will then execute
it cooperatively. This premise is also advocated
in [7]. From another point of view, the compiler
emits a single program which is to be executed
independently by each of the processors in the
array. Included by this program are instructions
which cause the processors to cooperate by
sharing data and by synchronizing their actioms
appropriately when needed.

A second element of the strategy is to make
certain decisions at compile time instead of rum

time. These decisions can then be supported by
efficient hardware mechanisms, not by system
software.

The functional constructs on which a

language for this architecture is to be based can
be compared to discussions previously found in
the literature. A general discussion of parallel
languages is found in [8]. Some proposed
parallel languages are directed at the vector
type of architecture, as in [9,10,11,12], others
are not [13,14,15]. Some workers have proposed
that the requisite parallelism can be found by
starting from algorithms expressed in serial form
[16,17] so that standard Fortran can be mapped
onto various parallel architectures without
language extensions. In the present case the
architecture 1is such that the operations which
can be done. independently of each other and in
parallel are whole sections of code, not
restricted to single operations.

We believe that the architecture proposed
here has several advantages over other parallel
architectures previously proposed and that the
simulations and performance validations reported
below uphold this view. While no single feature
of this architecture is by itself new, we believe
the combination of features is. Some previously

proposed architectures have all memory shared
among all processors, [18, 19, 20, 21] but
without processor private memory for data. In
some cases, a central control ©processor is
involved with the control of interconnections

between processors, or from processors to memory
[22]. N such centralized control is required
here during execution of user programs. To our
knowledge, fast hardware synchronization as seen
here has not been proposed for MIMD
architectures, although any SIMD machine, such as
in [3], will be synchronized.

The development of the system concepts
evolved from the  applications to system
architecture (involving both  hardware  and

software) to a more detailed definition of both
the hardware and software. In order to simplify

the introduction of the software concepts, they
will be preceded by a short summary of the
hardware architecture. Following the software

concept summary, a more detailed description of
some parts of the hardware will be provided.
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Hardware Overview

The block  diagram of the
multiprocessor is shown in Figure 1.
features of this hardware are:

proposed
Salient

* A prime number of memory modules to reduce
memory access conflicts.

* Separation of the memory space seen from
each processor into a private part, and a section
shared among all processors.

* A connection network whereby all processors
can simultaneously request access to various
memory modules.

* Hardware synhcronization, a P-way AND of the
signal from each processor that marks its having
gotten to a specific point in the program.

Each of the 512 processors has its own
program counter, its own. local memory for program
and data, and its own connection to a shared
memory. The shared memory is built of many (521)
independently accessible modules. In order to
provide connectivity between the processors and
the memory modules, a connection network which
has a complexity of O(P log(P)), instead of the
0(P2) complexity expected for a fully general
cross-point network, was chosen. This choice
satisfies both the economic requirements and the
bandwidth requirements of the system. For
discussion of the connection network, see [23].

Software

The expense involved in application software
development and maintenance over the life of a
system now often exceeds the total costs of
operations support and acquisition/ amortization
of the computational equipment especially in
development environments. The development of any
new capabilities for such environments must,
therefore, carefully consider both efficient
utilization of the computational facility and the
efficiency with which application development can

proceed. In the past, unfortunately, the
emphasis has been almost entirely on efficient
hardware utilization. The provision of

capabilities to embed assembly or machine code
within high-level languages such as FORTRAN are

an example of this approach. One recently
introduced extended FORTRAN supports both
development, with application-oriented vector

forms, and efficient hardware utilization [12].

The major concern during the study was the
feasibility of a hardware system with the
required sustained performance. Automatic
conversion of standard FORTRAN was not required.
Rather, the project emphasized the definition of
FORTRAN extensions that  provided efficient
control of the hardware capabilities ease 1in
application definition.

Language Overview

The basic language construct chosen for this



MIMD system was one of computational processes
that proceed concurrently between appropriate
synchronization points. This type of construct
is clearly compatible with a MIMD system. Such a
construct is also convenient for application
descriptions in that it is more general than the
vector forms currently in use. The concurrent
processes may include boundary value computations
and central value computations simultaneously.
Thus, each program for the FMP has a structure of
pieces of normal serial code, which describe the
details of what must be done at a given time, or
at a given element of some index set, embedded in
a control structure that expresses the location
of concurrency and where the synchronization must
occur.

Three extensions to standard FORTRAN are
proposed. The primary extension is the construct
described above which allows the definition of

the inherent concurrency in a process. This
construct is called '"DOALL". The second
extension is a construct to allow the definition
of index sets, called '"DOMAIN"s. The third

extension is a means for identifying the data or
variable dependencies between the instances of
various processes and for differentiating which
variables or data are independent of the global
process structure and are therefore local to a
particular instance.

Domains
for describing index sets to the

In FMP FORTRAN such sets are
A DOMAIN has an associated name

A means
compiler is needed.
called DOMAINs.

and can be interpreted as a one or multi-
dimensional index set. For example, the
declaration

DOMAIN/EYEJAY/: I=1, IMAX; J=1, JMAX
declares that there are IMAX*JMAX elements, each

consisting of one pair of values of I and J, with
values in the range shown. Standard set
operators are allowed. For example, if one has
also declared
DOMAIN/KAY/ :
then the cartesian product
DOMAIN/IJK/: EYEJAY .X. KAY

defines a three-dimensional domain with extents
in each dimension of IMAX, JMAX, and KMAX.

K=1,KMAX

In the aero flow applications, only
rectangular domains such as the example "IJK"
were seen. Extensions to the domain concept will
be needed for other = applications. Simple
modifications to domains can be implemented by
conditional statements within the doall program
segment.

In addition to their use in specifying the
index sets for doalls as explained in the next
section, domains can substitute for the iteration
index sets in do loops, and for dimensionality in
the declaration of arrays.

One convenient use of the DOMAIN construct
is for the description of the geometry (or
computational limits) of the problem. By naming
the controlling index set, and referring to the
index set by name throughout the rest of the
program, changes relating to geometry need be
made in only one place in the program.

DOALL Construct

The DOALL construct is the FMP FORTRAN
extension for describing the inherent concurrency
in a process. Figure 2 shows the conceptual flow
of execution in this construct. Once the
construct is entered, all individual parts may
proceed simultaneously dependent on the availabi-
lity of resources. Control is not allowed to
pass beyond the construct until all individual
parts (called instances) have completed whatever
computation they are to do.

The doall construct consists of a "DOALL"
header, followed by a doall program segment
followed by a doall terminating delimiter. The
header will contain a specification of a domain,
perhaps by name. If the domain in the header is
the domain "EYEJAY" as declared in the example of
the previous section, and IMAX = 100 and JMAX =
50, then there are 5000 intances of the doall
program segment to be executed. Each instance of
the doall program segment can execute indepen—-
dently of, and without any interaction with,
every other instance of the doall program
segment. Within each instance, there may not be
any references to computations within any other
instance, but no restrictions on references to
"0ld" values exist. The computation within each
instance may be conditional on location in the
model, on data, or on any other conditionm.

Hardware Support of the DOALL Construct

An issue is the mapping of the DOALL
construct onto real processor resources. A DOALL
construct execution begins when processors O

through 511 pick up instance numbers O through
511. For a DOALL with I and J for instance
variables as in the example above, each processor
computes I and J values from the instance number
by solving the equation
instance number = J*IMAX + I

Specifically, I is instance number modulo ' IMAX
and J is instance number DIV IMAX. When each
processor has finished its instance of the DOALL
program segments, it increments instance number

. by 512, computes new I and J values, and proceeds

- used to create a
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to iterate thus until the I and J values computed
are outside the domain. Once the processor has
completed all assigned instances, it drops down
to a "WAIT" instruction. When all processors get
to "WAIT", a 512-way AND of the WAITing state is
"go" signal which causes all

processors to step to the next construct or
instruction. Thus, an essential feature to make
the DOALL construct work is a fast hardware



synchronization operation. DOALL program seg-
ments can be as short as a single statement. A
single-statement DOALL with regular subscripting
on variables exactly corresponds to a vector
operation in a vector machine and hence this MIMD

architecture includes vector computations as a
subset of its capabilities.
Waiting implies processor idle time. In the

aerodynamic flow and weather codes which were
analyzed during the study, the amount of
processing per processor was nearly equal for all
processors, and hence processor efficiency was
high, the first processor to finish being only
slightly ahead of the last.

Memory Allocation

System control is simplified by making
decisions at compile time rather than having them
made by system software art run time. The

distinction between the various sorts of memory
is made in the compiler with help from programmer
declarations.

of

The potential four

allocation are:

types memory

1. A variable or array element is visible to any
part of the program, can be accessed from within
any instance of a doall program segment, or from
any serial section of code between doall program
segments.

2. A variable is a temporary variable which need
not remain defined after the end of the instance
in which it is used.

3. A variable is so frequently accessed that
each processor deserves to have its own local
copy.

4. A one-to-one relationship between the

elements of an array and the elements of a domain
holds. Within the instances of a doall program
segment over that domain, elements of that array

are accessed in correspondence to the
relationship.
The exact form of the  declarations for

helping the compiler make appropriate assignments
of different data to different types of space is
still under discussion. It is clear that some
analysis on the compiler's part is possible; an
array which is subscripted with the instance
variables inside a doall must be either type 1 or
type 4, for example. If the language is to be an
extended Fortran, each common area must contain
variables of only one category.

The sets of memory declarations suggested to
date contain some common features. First, there
is a declaration to the effect that a variable is
shared (type 1). Second, there is a declaration
(or default) that a variable is temporary to the
instance (type 2). Third, there is a means for
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declaring that a set of variables is of type 4.
This last is the "INALL" declaration. The INALL
declaration couples a variable or array with the

dimensionality and index set of a domain. For

example, the declaration i
INALL/EYEJAY/ Cl, C2, A(5)

declares that there is an element of Cl, an

element of C2 and five elements of A associated
with each element of the domain "EYEJAY". When
there is a doall construct over the domain
"EYEJAY (I,J)" then these variables can be used
with the doall program segment and each instance
will have its own copy. Referring to a variable

such as C2 either without subscripts, or with
"centered subscripts" i.e., "ca2(1,n", is
permissible and functionally identical. Outside
of doalls over YEYEJAY', these three identi-
fiers will identify arrays which have
dimensionality

C1(IMAX,JMAX), C2(IMAX,JMAX), and A(IMAX, JMAX,5)
respectively.

Given that there are two kinds of memory
space, memory private to each processor and
memory shared by all processors, variables of
type 2 and type 3 will be found in processor
private memory, and type 1 would be in shared
memory. If a variable of type 4 is only accessed
within doalls over the appropriate domain, and
always on centered subscripts, it can be held in
the private memories of the processor that will

compute the instances that are in one-to-one
correspondence with the appropriate array
elements.

Parallel Functions

Some common parallel operations and first-
order linear recurrences would be supported by
new intrinsics.

Parallel sum. Consider a variable defimed
within each instance at the end of a doall. The
parallel sum of all those variables is created,
which will then be accessible after the end of

the doall. 512 such variables can be summed in 9
steps using interprocessor communication.
Similar parallel functions are parallel AND,

parallel OR, and MAXIMUM across all instances.

First-order linear recurrence. Given
quantities B(I) and C(I) in each instance of a
doall whose index set is I=1, IMAX, form the
sequence A(I) = A(I-D)*B(I) + cC(1). A(0) is
given as an initial value. As with the parallel
sum, this function can be implemented in N steps
when IMAX = 2N, [24]

Other Software Issues

Although the mechanisms shown demonstrate
that one can design a langauge to enhance control
of the MIMD machine by imposing structure and
regularity on the MIMD interprocessor
interactions at compile time, there are certain



issues which have to be resolved before fixing on
a final design for the language.

One issue 1s a trade between making memory
allocation decisions based on programmer declar-

ations and making allocation decisions by
compiler analysis. Many users of high-throughput
machines insist on being able to control every

detail of machine action, out of fear that the
vendor's compiler will be inefficient if left to
its own devices.

Using Fortran as a starting point raises an
issue that might not arise with some other
starting point because of the requirement in
Fortran for separate compilation. At compile
time the compiler must distinguish between a
subroutine called within a doall program segment
where each instace of the doall calls its own
copy, and a subroutine called outside the doall
which runs on the array as a whole. The simplest
solution would be to distinguish between the two
kinds of subroutine by a difference in the
SUBROUTINE statements.

"Every instance of the doall program segment
must be independent of and free from any side

effects that would interfere with any other
instance of the same doall program segment".
This over-simplified statement is true at the

first level of understanding of the working of
the machine. However, steps taken to enforce
this rule are subject to a trade between authori-
tarian and libertarian schools of programming.
There is no hardware limitation on the processors
fetching or storing any variable in shared memory
at any point in the program. Since the relative
timing between actions that occur in different
instances of the doall is not controlled, this
allows for data accesses and definitions to occur
in an uncontrolled. order. Hence there is a
question about the enforcement of data prece-
dence. Absolute enforcement by the compiler, so
that code which is emitted is guaranteed to be
free of data precedence violations, may be
undesirable. First, such a compiler will be
unable to detect all cases in which the instances
are independent of each other and as a result
will forbid certain useful functions. Second,
for some applications [25] a change in the
sequence of performing the computations will
change the result to another, different, but
still acceptable result. One does not wish to
forbid such programs. However, if the compiler
made no check, gave the user no help, unnecessary
errors might be committed. The following rule is
observed to cover all cases that arise in the
aero flow and weather codes, and appears simple
to implement. "If an array element in shared
memory is used on the right side of an assignment
statement within a doall program segment then any
assignment to that array in the same doall
program segment must be on centered subsgcripts
and will be held in a "new" copy of the array.
The "new" c¢opy will replace the old copy of the
array at the time of synchronization at the end
of the doall."
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Hardware Details

Instead of implementation details, discus-
sion below will concentrate on how hardware
features support the langauge extensions.

Processor

Analysis of the aerodynamic flow and global
weather model programs (provided by NASA Ames
during the NASF Feasibility Study as samples of
typical application programs) showed that up to
several thousand processors could efficiently
work in parallel. In these cases, the actual
number of processors supplied is irrelevant over
a large range; only total throughput matters.
The design intent was to supply a processor that
had maximum throughput at minimum cost. The
trade-off evaluation was based on assumptions of
the technology suitable for 1983 delivery and on
the desire to limit complexity to control project
risk. The result was 512 processors, each having
capability of about 3Mflop/sec.

independent integer and
floating-point execution wunits with limited
instruction look-ahead. To hide access time of
the shared memory, each processor has a one-slot

Each processor has

queue, called the "CN Buffer", which manages
accesses to the shared wmemory while other
processor operations go on concurrently. A
processor-local memory of about 32K words is
appropriate to the applications studied.
Shared Memory

In reference (1), the shared memory is

called "Extended Memory" (EM). It consists of a
prime number of memory modules (521) in order to
reduce conflicts for the case that the pattern of

accesses from the processors forms a regular
pattern [26,27].

All processors independently compute
accesses in shared memory, and independently
access memory. Given that processor no. 1 is to

access shdred memory address A(i) the processor
will compute address-within-module given by
L(i) = A(i) DIV 512

and module number

M(i) = A(i) modulo 521
When the addresses being accessed by the
processors form a vector with constant stride the
formula for the A(i) is
: ACL)=A(0)+p*i
Here the M(i) fall into 512 different memory
modules because p and the number of memory
modules are relatively prime. This is the basis
for claiming that a prime number of memory
modules makes certain kinds of accessing
"conflict-free".

Features for Fault Tolerance

Because of the flexibility of the connection
network, a simple method of providing spare
processors and memory modules is planned. Each



CN buffer contains a "replacement unit directory"
to redirect connections around spare units.
Single error correction, double error detection
(SECDED) code covers all memory and transfers
through the connection network. The connection
network, being duplexed, has a simplex mode of
operation as backup.

Staging Memory

Staging memory is called "Data Base Memory"
in (1) where a size of 128 Mwd is assumed. Later
discussions have centered on a size of 256 Mwd.
Transfer rates must be on the order of 50 Mwd per
second to and from shared memory. Access time
requirements make disk undesirable. If staging
memory were to be built of semiconductor compon-
ents, then 256k-bit chips would be desirable.

The design and control of the staging memory
has no surprises. The structure is one of a dual
port memory. One port responds to requests from
the coordinator for high-speed transfers between
staging memory and Extended Memory. The other
port is externally controlled and provides the
high-speed data path to the rest of the system.

Connection Network

The connection network is used like a dial-
up network, with any processor requesting
connection to any memory module at any time, with
the concommittant "message" being an address plus
one word of data either stored to or fetched from
the memory module involved. All processors could
request simultaneously. Blockage must be low
enough that the average added delay due to
blockage is small compared to the time due to
cable delays, access time of the memory module
and memory conflicts. In addition processors
must be treated 'fairly". In the intended
applications all processors have an equal amount
of work to do. If any processor had a low
probability of making its connections through the
connection network, then that slower processor
would tend to be the last processor arriving at
the synchronization points, thereby slowing up
the whole system.

The chosen configuration (Figure 3) is
called the "baseline" network by Wu and Feng 28].
We first derived it as an isomorphism to the
Omega network of Lawrie [29]. A parallel paper
[22] discusses the design and validation of the
connection network showing that it indeed
performs as desired.

The time it takes to make a connection from
any one of the 512 processors to any one of the
521 memory modules 1is estimated at 120 ns.,
barring conflicts or blockage. The throughput
analysis of the FMP assumed a path width of 11
bits. During throughput analysis of the FMP, a
particular distribution of shared memory
conflicts and of blockage in the conmmection

network was assumed. After the simulations to
evaluate performance were nearly finished,
simulation of the connection network [23] showed
that the assumed delays were in fact correct.

Synchronization

Synchronization is mechanized by the WAIT
instruction. A processor continues to execute
WAIT until a '"go" signal is received. The '"go"
signal is the 512-way AND of a signal emitted by
each waiting processor. Synchronization ensures
that no processor tries to fetch new data until
that data has in fact been produced, perhaps by
the slowest processor, in the preceding DOALL
construct.

Figure 4 shows a mechanism whereby the
512-input AND gate is implemented as a tree-form
cascade of 8-input AND gates (Figure 4 is
actually drawn for a 27-input AND gate
implemented as a cascade of 3-input AND gates;
the number of levels in the tree comes out the
same in either case). The root node of the tree
reflects the "GO" signal back to all processors
when the "AND" output is true at the root node.
Note that the spare processors must always appear
to be waiting even when being serviced or checked
off-line from the primary problem.

The total delay from the 1last processor
accessing a WAIT instruction until the 'go"
signal reaches all processors has been estimated
at 160 ns.

Performance Validation

NASA had supplied two complete three-
dimensional aerodynamic flow codes, solutions of
the time-averaged Navier Stokes equations, and
some weather codes. Three of these programs were
completely analyzed. The method of analysis was
to determine the calling sequence, the path of
execution through the entire program, with
notations as to how often each section of the
code was called. Appropriate DO loops were
converted into concurrent "DOALL" constructs in
which DO iterations are converted into DOALL
instances. Representative - sections of the
programs were exercised in simulation to deter-
mine running time. Other sections had their
running estimated based on how their parameters
were related to the parameters of the simulated
sections. The most significant parameter was the
number of floating point operations per reference
to the shared memory. The running time and

_number of floating - point operations in each

section are each summed to give the running time
for the whole program and the number of floating
point operations for the whole program. The
quotient of these two totals is then the
throughput for the entire program in terms of
floating point operations per second. Details
are in [1] in Appendix A.
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The results of this analysis are summarized
in Table I. 1In brief, performance met the target
of 1.0 Gflop/sec for favorable aerodynamic
applications, and varied from 0.5 Gflop/sec on up
for other suitable applications. The chemistry
and radiation portions of the global circulation
model were not vectorized, but consisted of a
doall with one instance at each point on the
globe; the doall program segment having much data
dependent branching within it.

Conclusion

A generalization of vector architectures for
high-throughput numerical computing has been
presented. The lack of any need to vectorize the
application should make it more widely applicable
than are the current generation of vector
machines. Validation using actual application
programs supports the expectation of high through-
put.

The three programming constructs are the
parallel execution of many instances of the same
code, the use of named index sets, and the
concept of two types of memory, one private to a

single instance, the other shared across the
entire program.
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ARRAY MACHINE CONTROL UNITS FOR LOOPS CONTAINING IFs
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Abstract -- The control unit is the interface
between the compiler and the processing part of a
computer. A number of array (parallel or pipe-
line; machines have been built with scalar or
array instruction sets. Most such machines do a
poor job of handling sparse data arrays and this
paper addresses how such computations may be
better handled. We emphasize two areas:

1. Conditional statements can lead to
Boolean recurrences that must be solved to gener-
ate control bits. We discuss hardware for the
solution of Boolean recurrences.

2. Sparse array computations lead to diffi-
cult memory access and data alignment problems.
We discuss an efficient bit string approach to
handling such computations.

1. Introduction

The control unit of any computer is the point
at which the compiler meets the rest of the com-
puter system. Thus, a well-designed control unit
is necessary in achieving good system performance.
In an array processor, the control unit is rela-
tively more important because the system is more
complex. Furthermore, compiler algorithms should
be designed hand-in-hand with the control unit to
achieve high system performance for ordinary user
programs.

In this paper we discuss a subject that has
seldom been handled well in existing parallel or
pipeline machines, namely, the processing of
sparse arrays in an efficient manner. We will
present ideas that can be applied to array ma-
chines that execute single-array operations, which
we denote SEA (single execution, array), and can
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be regarded as simple parallel or pipeline ma-
chines. The ideas are also useful in MEA mul-
tiple execution, array) machines which can execute
several array operations simultaneously, and MES
(multiple execution, scalar) machines, which can
be regarded as tightly coupled multiprocessors
whose goal is the speedup of one program at a

time [KuPa79]. For more discussion of the above
notation, see [Kuck78].

Specifically, we will discuss three hardware
aspects of executing programs: accessing data in
parallel memory units, alignment networks that
pair proper array elements, and the processing
pattern of the elements. In a parallel machine
the problem is pairing elements in different pro-
cessors, while in a pipeline machine the problem
is pairing elements to be fed into the pipeline.

We assume that a traditional serial language
is used to specify array operations, and that
arrays are stored densely in a parallel set of
memory units. The problem arises when conditional
statements in loops cause the selection of only a
limited, random set of the array operations to be
performed. We will show that there are simple
synchronous ways of accessing and aligning such
arrays that should give high performance in most
programs.

Two aspects of programs will be discussed.
First, IF-statements contained in the scope of
iteration statements (e.g., DO loops) give rise
to mode bits that are used to control the execu-
tion of subsequent statements. We will discuss
the fast generation of such mode bits, even when
cycles of dependence are involved. This gives
rise to new algorithms for the fast execution of
Boolean recurrences.

Secondly, we discuss the use of mode bits in
executing arithmetic array statements. Here the
problem of accessing sparse arrays in parallel
memories arises. We will present some theoreti-
cal results, sketch some hardware and give an
example of the operation of our ideas. Formerly,
high degrees of vectorization have been achiev-
able in these cases, but the sparseness of the
vectors led to poor efficiency unless the arrays



were first compressed [Kuck76].

We do not discuss the handling of compressed
arrays. Most serial languages do not have ex-
plicit ways of specifying compress and expand
operations; however, they may be useful operations
when arrays are extremely sparse or indexing pat-
terns are such that the methods we describe per-
form poorly. Some languages and software systems
do allow the specification and manipulation of
sparse arrays, and these are useful in many appli-
cations. In [Kuck70], this subject was dealt with
for a few special cases and the ideas of this
paper can be extended to this area as well, but
are beyond our present scope.

The remainder of the paper contains five
sections. In Section 2, some background ideas are
presented. Section 3 discusses Boolean reeur-
rences and Section 4 is about arrays and mode
bits. Section 5 contains a detailed example and
Section 6 gives some remarks and conclusions.

2. Theoretical Background

Here we briefly discuss the theoretical foun-
dations of our work. For more details, see
[Bane79]. Earlier results about compilation with
conditional statements may be found in [Towl76]
and [Kuck76].

Consider an arbitrary program consisting of
loops, assignment statements, and conditional
statements. Because of the presence of the cendi-
tional statements in the program, some instances
of some of the statements may fail to get executed.
For each assignment statement S, we define a

Boolean valued function FS of a suitable set of

(loop) index variables, such that
(1) FS has a value for each instance of S;

and (2) the value of F_ corresponding to a given

S
instance of § is 1, iff that instance must be exe-
cuted. We call FS the mode function of S and its

values the mode bits for S. Clearly, the mode
function of a statement is determined by the con-
ditions of all the conditional statements whose
scopes contain that statement. The efficient
generation of mode bits and their proper use is
our main concern.

The statements in the program are dependent
upon one another in a ecertain way. Using this
dependence structure, we can break up the given
program into a partially ordered set of sub-
programs. The same results would be obtained, if
instead of executing the given program serially we
execute the subprograms in any parallel way, as
long as a subprogram is never started until all of
its predecessors have finished.

No subprogram can be further decomposed along
similar lines. Moreover, these subprograms can be
grouped into several classes according to their
characteristics, amorig which are the classes of
cyclic mixed subprograms, acyclic subprograms,
and cyclic arithmetic subprograms.
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A cyclic mixed subprogram is such that some
of the variables defining the conditions of its
conditional statements are evaluated within the
subprogram itself. This leads to the design of
programmable hardware for the solution of Boolean
recurrences (Section 3). A Boolean recurrence

B<n,m> of degree n and order m (1 < m < n) is a

set of equations of the form

X = OOy Fepr crer Xeg)

where Xys Xpy e

(1 <k<n)

x  are Boolean variables and

Kys X_ys wees X_poo Boolean constants.

Consider now a subprogram where all variables
defining the conditions of all the conditional
statements are computed outside the subprogram.

If in addition there is exactly one assignment
statement, all of whose instances can be executed
independently of one another, then we have an
acyclic subprogram. Thus the mode bits for the

unique assignment statement are known at execution
time. This leads to the use of mode bits to con-
trol the execution of array assignment statements,
involving the accessing of memory and aligning of
data to and from memory. We will see in Section 4
that hardware for this can easily be added to
standard indexing hardware, and this extends the
earlier work on conflict-free array access
[BuKu71], [Lawr75].

A cyclic arithmetic subprogram has one or
more arithmetic assignment statements which are
dependent upon one another or on themselves;
except for that, it is similar to an acyclic sub-
program. Here also the mode bits are known at
execution time, but the instances of the assign-
ment statements can no longer be executed inde-
pendently. A subprogram of this kind is equiva-
lent to an arithmetic recurrence with mode bits.
A comment is made on the solution of linear arith-
metic recurrences with mode bits in the final
section; we do not discuss this problem in detail.
(The definition of an arithmetic recurrence is
obtained from that of a Boolean recurrence given
above by making the obvious changes. An arithme-
tic recurrence is linear, if each ¢k is a linear
function of its arguments.)

3. Generation of Mode Bits
3.1 Cyclic Mixed Subprograms
Consider the following example.
DO k=1, 100, 1
IF [C(k) > U(k) + C(k~-1)]
THEN BEGIN
Sl C(k +1) = V(k + 1)
S2 Y (k) =C(k+ 2) +Y(k-~-1)
END
ELSE BEGIN
53 Ck +1) = Wk + 1)
END
Let x, denote the condition of the IF statement.
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Then the Boolean variables Xl’ X

2%ttt Xloo

satisfy the Boolean recurrence B<100,2> described

below.

p:¢

* ) X K

where
X, = 0, Xq
ajg = [C(1)
ay = [W(2)
ay, = [V(2)
a, = [w(k)
a = [W(k)
a ., = [V(k)
a3 = [V(k)

= 0;

u(l)
U(2)

U(2)

U(k)
U(k)
U(k)

U(k)

2

+

+

-+

(Here [...] represents

sion.)

kT %0 *k-1 ¥k-2 T A1 Fk-1 Fk-2

tag X B

(1 < k < 100)
€O, aj; = apy =a;3=0;
c(ni, a, = 0,
cl, 2y = 0,

W(k-1)]
V(k-1)]
W(k-1)]
V(k-1)]

(k =3, 4, ..., 100)

a Boolean valued expres-

The Boolean coefficients a . (1 f_k < 100,

0 <t < 3) of this recurrence can be computed in

parallel on a vector machine like one shown in
Fig. 1. They are all stored in the Boolean-
coefficient memory. After n sets of coefficients
are stored, the Boolean-recurrence solver gener-
ates mode-function bits for n iterations of the
loop. Those bits are stored in the mode-function
register and control the parallel execution of the
true and false branches of the conditional state-
ment in the loop. In our example, the statements

Sl and S2 are executed in each processor that has

a mode-function bit equal to 1. Processors with
mode~function bit equal to O are turned off.

After Sl and 82 have been executed, the content

of the mode-function register is complemented and
statement S3 is executed.

If the upper limit of index k is much larger
than the number of processors n, the execution of
the loop can be partitioned into n-iteration
slices. In this case, the computation of mode-
functions by solving Boolean recurrence can be
overlapped (pipelined) with the computation of
Boolean coefficients and execution of the IF
statement. This way IF statement control becomes
time-transparent to the original vector machine.
Thus, we must be able to solve such Boolean re-
currences.

We now consider a general cyclic mixed sub-
program. From this program we extract a Boolean

recurrence. To evaluate the k' variable X of

this recurrence, we need to know certain values
computed inside the subprogram itself and certain
values coming from outside. The values (arithme-
tic and Boolean) coming from outside will be

;
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Fig. 1. Control hardware for the loops with IF statement
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completely known at run-time, and they are to be
treated as constants. The formula defining X

can be expressed in terms of the constants in at

most 2k_l different ways, but frequently requires
much less than that, since several different paths
may lead to the same expression and hence can be
combined.

3.2 Solution of Boolean Recurrences

In what follows, n and m denote two integers
such that 1 < m < n. Consider an arbitrary set

of m Boolean variables {yl, Vyr ens ym}. The 2™

minterms of these variables are numbered 0, 1, 2,
ees 2m—1 in the usual way, and the tth minterm
is denoted by Pt(yl, Yo +ees ym). We will use
AND and OR gates, such that each gate has a gate
delay of one unit of time. It is assumed that
each gate gives true and complemented outputs
with no time or cost penalty. The sole purpose
of this assumption (which holds for ECL circuit
family gates) is to keep our formulas simple; ex-
tension to the general case is easy and straight-
forward. For any positive integer k, we write
log k to denote [logzk].

Let us define a Super Cell (SC) (Fig. 2(b))
to be a piece of combinational logic which takes
2m m
(m+1)“" inputs {aS]O <s<2-1} U {brtll <r< ()

m, 0 <t 5_2m—1} and produces 2" outputs c, de-

fined by
M1
c, = SEO a Ps(blt, bZt’ ey bmt)

(0 <t < 2™1)

where each c,

Cell (BC) (Fig. 2(a)).
obvious.

is realized by the logic in a Basic

The following lemma is

Lemma 1

If fan-in and fan-out considerations are
ignored, then an SC can be implemented in 2 gate (©)

delays with 2m(2m+1) gates. L]

Consider now a general Boolean recurrence
B<n,m> of degree n and order m, defined by the
equations

2m—l

x = I

X
k=0

k—m)
(1 <k<n

ae Pe(hye 1 X g ooos

are known

1
where the a's and Kgs X_ps cees X

Boolean constants.
Theorem 1

If fan-in and fan-out considerations are
ignored, then the Boolean recurrence B<n,m> can be
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solved in
2(log n + 1) gate delays
with
[(% log n)Zm(2m+l) + n(2m+l)] gates. L]
For a proof of this theorem and for results

in the limited fan-in, fan-out case, see [Bane79].
As an example, the solution of B<8,2> is shown in

Fig. 2(c).
5
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4. Arrays and Mode Bits

Assuming that mode bits exist, we now discuss
their use in memory accessing for arrays. We will
discuss alignment later. Its implementation is
straightforward with a crossbar switch but less
costly with an extended omega network [Lawr75].

Assume a storage scheme such that the element
X(I) of an array X is stored in memory module .num-—
ber £(I), is given by

f(I) = 1+ Basex) mod m

where Base_ is the number of the module that con-

X
tains X(1) and m is the total number of memory
modules. The following two results are crucial
for our discussion; for proofs, see [Bane79].
(The notation of this section is somewhat differ-
ent from those of the previous sections.)

Lemma 2

Let AO’ a denote integers such that gcd(a,m)
1. Then the elements X(a0 + ai) and X(ao + aj) of

an array X are stored in the same memory module,

iff (j - i) is a multiple of m. u

An immediate consequence of this lemma is the
following corollary.

Corollary 1

Let ag, @ n denote integers such that ged

(a,m) = 1land 0 <n <m.
of elements {X(a0 + al)

Then for any i, the set
i<I<i+n- 1} of an

array X can be accessed from memory without any

conflicts. =
Consider now the program
DO I =1, u, 1

S Z(c0 + cI) = X(a0 + al) op Y(b0 + bI)
END

where X, Y, Z are one-dimensional arrays, u, Cqs

¢, ags 2, bO’ b are integer constants, and op some

valid operation. (The conditional statements are
not shown explicitly; we deal with the mode func-
tion of S instead.) Let us assume that m is a
prime number and that none of a, b, ¢ is a mul~

tiple of m. If the value of the mode function FS

of statement S is equal to 1 for each value of I,
then everything works just fine. We can fetch
X(aO + al) and Y(b0 4+ bI) and store the result of

op in Z(c0 + ¢1) for any m consecutive values of

I, without ever getting a conflict. However, in
general, FS(I) = 1 only for a random set of values

of I. And only those instances of statement S
are to be executed for which FS(I) = 1. We

may still fetch the full set
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{X(ay + aI)|l < i < m} without any conflicts, but

now probably only a few of these values need to be
sent to the processors.

The above lemma points to a way of aveiding
this potential inefficiency. We look at a number
of values of~FS(I), much larger than m. A set of

m or fewer 1's are selected from these values,
such that if Fs(i) and Fs(j) are in this set and

i# j, then (j - i) is not a multiple of m. The
values of the index I corresponding to these bits
are guaranteed not to produce any conflicts in the
memory addresses of the elements X(ao + al) of any

arbitrary array X, as long as ged(a,m) = 1. Our
scheme fails when gcd(a,m) > 1, but then nothing
can be done in that case; X(a0 + al) will lie in

the same memory module independently of I. If m
is a large prime number, these instances of fail-
ure should occur very rarely.

The selection of m or fewer mode-bits with
value 1 is accomplished by the Mode~Function Com-
pressor (MFC) shown in Fig. 3. The MFC has two
outputs: mode bits and their corresponding indi-
ces, and it can be thought of as consisting of m
content-addressable memories, each storing pairs 1
of the form (Fs(i), i). Any two pairs (Fs(i), i) |

and (Fs(j), j) have (mod-m)-equivalent index val-

ues; that is, i = j(ﬁod m). Each memory when en-
abled, reads out the first value (Fs(i), i) with

Fs(i) = 1, or the pair (FS(i) =0, i =0) is is-
sued when there is no pair with'FS(i) = 1. Mode

bits are stored in Mode-Function Register as be-
fore. Fs(i) = 0 will turn off the corresponding

processor Pi which will generate a null result

that is never stored in any module of the Parallel
Memory. The corresponding index values are sent
to the memory address generator which generates
memory address for each memory unit from the com-
mon vector descriptor containing ao, a, and Basex

for each vector X(a0 + al).

The set of m associative memories may become
prohibitively costly for reasonable values of m
(16 to 64) and index set I (1024 to 4096). For
this reason, we will now describe a less costly
but slower design of the MFC (Fig. 4).

Part of this design-is similar to a paging
system. Suppose that the set of all values of the
mode function FS (in the Boolean Coefficient Mem~

ory) has been broken up into a number of "pages,"
each page being m bits long. Page 1 consists of
the values {Fs(l), FS(Z), v FS(m)}, page 2 con-

sists of {Fs(m +1), Fgm+2), ..., FS(Zm)}, and

so on. There are L "page frames," where L is some

suitably chosen number, and a frame is an m-bit
register. The "page table" consists of L lines,
where line £ gives the number of the page residing
in frame %, and a test bit which is 1 iff frame %
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has at least one 1 (1 < & < L). A page is brought
to the frames iff it has at least one 1. (We
assume that the sum of all the bits in a given
page is also stored in memory, and that this bit
is tested before the page is brought out.) No
page is brought to the frames more than once. Any
frame can hold any page. When the time comes to
bring new pages into frames, a frame is refilled
iff all the 1's of the page originally residing in
this frame have been used up (as indicated by its
test bit). We will see that the 1's in frame 1
are always used up before refill-time, and hence
its test bit should be permanently fixed at O.

We start by bringing L pages into the L
frames. Then we choose the leading 1 in each of
the m columns, i.e., the leading 1 among the 1lst
bits of all frames, the leading 1 among the 2nd
bits of all frames, and so on. The values of the
index I corresponding to these bits lead to exe-
cutable instances of statement S, and they do not
cause memory conflicts. If the position of the
leading 1 in the k'™ column is %, then the value i
of index I corresponding to this bit is given by

i = (number of page in frame 2 - 1)m + k
(1<k<m 1<L<L,1<di<u)

If the kth column has at least one 1, then the
index value i corresponding to the leading 1 goes
to the Memory Address Generator.

Before the process is repeated, we must reset
the leading 1-bit in each column and update the
test bit for each frame. New pages are brought
into the frames whose test bits are equal to O.
And we start all over again. If the loop-size is
large and the steady stage is reached, we should
be able to get out m (or close to m) conflict-free
index values from the MFC, for a number of times.

5. Example

In this section we present an example of
handling sparse array operations using the method
of the previous section. As was mentioned earlier,
the idea can be used for a register-to-register
pipelined processor as well as for a parallel ma-
chine as sketched here.

Consider the program of Fig. 5(a), a segment
of a larger program, in which the X array is
tested and C(I) is updated whenever X(I) is non-
negative. Fig. 5(b) shows those index values (I)
for which this test is true. Given a memory sys-—
tem with five memory units, conflict-free access
to array elements is guaranteed except for such
subscripts as 5I, 10I + 3, etc. Such a memory is
shown in Fig. 6.

A snapshot of the system in Fig. 3 is shown
in Fig. 7. It is assumed that the entire mode
function has been computed and stored in mode-bit
registers inside the MFC. The contents of the
mode~bit registers are shown in the first row in
Fig. 7.

We now have the problem of accessing only
hose elements of arrays for which the mode bits
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DO I=1, 15

IF (X(I) > 0)

THEN C(I) = A(2I + 1) + B(I + 3)
END

(a) The program segment

1, 3, 4, 7, 8, 9, 11, 12, 13, 15

(b) Values of I for which X(I) > 0

Fig. 5. Program with IF in loop

Fig. 6. Memory units with stored arrays
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are 1. The 15 bits (one per loop iteration) are
folded over in rows of length 5 (one column per
memory unit). After one leading one's detection
in each column, mode bits corresponding to index
values 1, 7, 3, 4, and 15 are selected and they
appear at the outputs of MFC. At the same time
the MFC outputs five 1's to the Mode-Function
Register. The array elements A(3), A(15), A(7),
A(9), and A(31) correspond to index values of 1,
7, 3, 4, and 15.

Using the code Q for this first set of

elements and referring to Fig. 6, we see that all

o

out conflict.

elements in the A array can be fetched with-
Similar statements can be made
about accessing the @ elements in the B and C

arrays. The second cycle in Fig. 7 shows the
mode bit registers after the first set of 1's are
deleted and the results of a second leading one's

detection are presented with the B code:
elements are also marked in Fig. 6.

the
On a third

cycle, only one element, marked 4 , would be
accessed. Note that five elements are accessed

on the first cycle, four on the second and one on
the third. The effective memory bandwidth will
always drop off toward the end of a vector access,
but will remain high on earlier cycles as long as
the addresses are uniformly distributed across the
memory units.

Next, consider the processing of data for
this program using the five processor parallel
machine of Fig. 3. The Memory Address Generator
calculates from index values supplies from MFC and
vector descriptor supplied by the control unit the
proper addresses of array elements. For example,

an array indexed as A(a0 + ai) has ags 3,

Basey s Addr

descriptor, where Base

e and Base included in the vector

Unie 304 Base,qq,
unit number and address of A(l). For each index
value i the address ([(a0 + ai + BaseUnit - 1)/m]

- 1) + Base is supplied to memory unit 1 +
- 2) mod m.

are memory

Addr
(ao + ai + BaseUnlt

[LaVo80]. We see that the array elements from A
and B arrays are not paired properly for proces-
sing.

For details, see

This leads us to our final point, consider-
ation of data alignment between memory units and
processors. It is obvious that if a crossbar
switch is provided between processors and memo-
ries, then the proper alignments would be pos-—

sible. 1Instead of an O(nz) gate switch between n
memory and processor units, however, we can employ
an O(n log n) gate omega network [Lawr75], because
only uniform shifts and squeezes are involved.
Thus, an array indexed as A(aO + ai) can be

aligned with an array indexed as B(i), by a shift

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
MODE-BIT 1 0 1 1 0 0 0 2 (; 8 g g g g (0)
REGISTERS 0 1 1 1 0 0 0
1 1 1 0 1 1 1 1 0 0 0 0 1 0 0
MODE~FUNCTION . _ _
COMPRESSOR [ 1 7 3 4 15 11 12 8 9 - - -
(index values)
MODE-FUNCTION
COMPRESSOR 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0
(mode bits)
MEM. ADDRESS _ _
GENERATOR 7 2 1 2 3 - 4 5 4 5 - 6 -
(A Array)
PARALLEL
MEMORY A(31) A(7) AQ3) A(9) A(15) - A(17) A(23) A(9) A(25) - A(27) - - -
OUTPUT
oL A aas A A aGD |a@) aes) aan aae - | - - a@n - -
MEM. ADDRESS R _ _
GENERATOR 8 9 8 8 10 10 10 9 9 - - - 1
(B Array)
PARALLEL
MEMORY B(4) B(10) B(6) B(7) B(18) | B(14) B(15) B(11) B(12) - - - B(16) - -
OUTPUT :
ALIGNMENT I | p4)  B(10) B(6) B(7) B(18) | B(14) B(15) BAL) B(12) - | - - BU6) - -
OUTPUT
PARALLEL _
PROCESSOR C(l) c¢€(7) c€(3) C(4) cC(15)f§c(11) c(12) c(8) cC(9) - - - Cc(13) -
OUTPUT
aIoENTIL ey e @ cas) o |can c@® o - canf - camn - - -
MEM. ADDRESS _ _
GENERATOR 15 14 14 16 13 16 15 15 - 15 - 16 -
(C Array)
le. All memory elements|

First cycle. All memory Second cycle. All memory Third cyc.

elements read or written elements used in this cycle used in this cycle are denoted by,

in this cycle are denoted are denoted by €} in Fig. 6. A 1in Fig. 6.

by © in Fig. 6.

Fig. 7.
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A snapshot for example in Fig. 5



of a,

by the difference in their base memory unit num-—
ber is required.

and a squeeze of a. Additionally, a shift

These ideas can be clarified in our example.
Notice that the A array is stored beginning in
unit 1, whereas the B array begins in unit 3.
Thus, B must be left-rotated by distance 2 because
of its base address, plus 3 because of its sub-
script (I + 3), for a total of 5, which is pre-
cisely the number of memory units. A rotation of
distance 5 (mod 5) is no rotation at all.

The A array, on the other hand, requires a
left rotation of 1 (mod 5) because of its sub-
script (but none due to its base address in memory
unit 1) and a squeeze of distance 2 (mod 5) be-
cause of its subscript. This combination is pre-
cisely that between input and output of Alignment
Network I. Since pair elements are correctly ac-
cessed by the scheme described earlier, they are
correctly aligned using methods for dense arrays.
More discussion of dense arrays and omega net-
works can be found in [Lawr75]. It may be ob-
served that the scheme we are using for sparse
arrays can be regarded as substituting for one
element of a dense array, another desired element
that happens to be stored in the same memory
unit. For example, A(15) is substituted for A(5)
and A(31) is substituted for A(11). Thus, the
omega network handles the alignments properly.

6. Remarks and Conclusion

The solution of linear arithmetic recurrences
with mode bits will be studied somewhere else.
Here it would suffice to make a few comments.
Since linear arithmetic recurrences of low order
can be processed in time proportional to the log
of the serial time, breaking a recurrence into
two parts to be processed consecutively could
actually slow down a computation. In certain
cases, however, breaking up a large recurrence is
quite profitable. If a very large number of small
recurrences arise, an MES machine (or an MEA ma-
chine with very many instruction sequences) could
execute each one serially (or using limited pro-
cessor algorithms [ChKS78]). For register-to-
register pipeline processors with vector registers
(e.g., CRAY-1), register-contained recurrences are
desirable since no memory access is needed other
than at the beginning and end. Also, on any ma-
chine, remote term recurrences can be speeded up
by only computing the final sequence required to
obtain the remote terms.

To illustrate the basic idea, consider an
R<n,1> recurrence defined by

X, = a, X, + b, (1 <1i<mn)
i i —- T =

i 7i-1
with appropriate initial conditions. Suppose this
appears in a loop with an IF statement, so a mode
bit pattern controls its execution. If one mode
bit is zero, then this may be computed as two
independent recurrences, using an initial value
for x in the zero mode bit position. Similarly,
if some a; happens to be zero, the recurrence can
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be broken into two recurrences.

A new scheme for handling array operations
inside DO loops with IF statements has been pre-
sented in this paper. The idea of Mode Function
Compressor can be easily extended to processing
of any type of sparse arrays on a parallel ma-
chine. We also gave a new result on solving
Boolean recurrences.
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ABSTRACT

A word-parallel, bit-serial associative processor built

around an array of 1-bit wide

microprocessors 1is introduced. It is intended as a low-cost auxiliary processor in small scale
computer systems. Data are organized in an array of fixed number of elements, variable word-length
vectors. Processing proceeds in parallel on all elements of a vector. Information about the location
and word-length of these vectors is stored in a small general-purpose computer which is used to

control the storage and processing array.

I. INTRODUCTION

The parallel processing capabilities of an
associative processor are highly attractive in
many non-numeric applications. Operations such
as searching and sorting are inherently parallel
in nature, since they may be regarded as a se-
quence of basic operations such as compare,
shift, and mark performed in parallel on a large
number of operands. Many organizations have
been proposed for associative processors [8,
10]. Of these, the word-parallel, bit-serial,
or vertical [9], organization has received con-
siderable attention. This is due to the fact
that the bit-serial organization leads to a con-
siderable simplification of the hardware in com-
parison with fully parallel schemes.

Because of the hardware intensive nature of
associative processors, they tend to be economi-
cally viable only in large, high capital cost
systems. The purpose of this paper is to intro-
duce an associative processor that is meant for
relatively small applications. It is based on
an array of commercially available 1-bit wide
microprocessors. Machine organization is word-
parallel, bit-serial. Data is stored and pro-
cessed in the form of vectors consisting of a
fixed number of elements. The machine has been
dubbed VASTOR for Vector Associative Store TO-
Ronto.

VASTOR is intended as a special purpose
processor to be attached to a conventional
mini-computer system. In what follows, the min-
icomputer will be referred to as the host. In
such a system, VASTOR would handle those parts
of the work load that can benefit from its asso-
ciative and vector capabilities. Use of associa-
tive processors in this manner has been sug-

*¥ This work was partially supported by the
Natural Sciences and Engineering Research
Council of Canada under research grant #A8994

CH1569-3/80,/0000~0037$00.75 © 1980 IEEE

gested by many authors, e.g. [5]. Also many po-
tential applications have been studied [3]. The
main feature of VASTOR is that it represents an
associative structure and its implementation
that are economically viable in a minicomputer
system environment. A prototype processor has
been constructed and tested.

The main constraints in the design of VA~
STOR were 1low cost and modularity. This re-
quired that readily available components be
used, that internal communication and control be
kept simple, and that VASTOR should not cverload
the computer to which it is attached. Modular-
ity also meant that backplane interconnections
between modules should be kept simple and easily
expandable.

The VASTOR processor, figure 1, consists of
two main components, namely the processing array
and the controller. The processing array con-
tains all the storage and processing elements cf
VASTOR. The controller translates high level
commands received from a scalar machine ~the
host- into sequences of control signals for the
processing array. This paper presents a practi-
cal implementation of the array and its control-
ler, and describes input/output transfers bet-
ween the array and the host computer. Algor-
ithms that may be implemented on vector oriented
machines such as VASTOR are readily found in the
literature [2, 3 and 7].

II. MACHINE STRUCTURE

The organization of the VASTOR array is il-
lustrated in figures 2 and 3. The storage sec-
tion in the array is an n-word memory, with a
word length of several kilobits. Operations are
performed on vectors of data elements, figure 2,
when the elements of a given vector occupy the
same bit positions in all words. While the num-
ber of bits per element is the same for all ele-
ments of a given vector, it may vary from one
vector to another. A 1-bit wide processing ele-
ment PE is a part of every word. Shift-register
SH provides the main mechanism for data transfer



among VASTOR words, as well as between the array
and the outside world.

VASTOR s architecture, depicted in figures
2 and 3, has the properties both of an associa-
tive processor and of an array processor, in the
sense in which those terms are defined in [10].
It 1is an SIMD machine, as are both of these
types (note that opcode lines are shared by all
cells in figure 2). Each cell contains a sto-
rage element which may be used to mark indivi-
dual words. The 1/0 structure enables the host
to read from and write to marked words in the
memory. This allows VASTOR to be used as a con-
tent-addressable memory for the host machine.
Each cell also has the ability to perform logi-
cal and arithmetic operations on its memory un-
der the control of the mark bit, so that one may
operate (in parallel) on all data elements sa-
tisfying some arbitrary condition. The above
features give VASTOR the properties of an asso-
ciative processor.

On the other hand, one may leave all words
selected and use VASTOR as an array of proces-
sors. Its I/0 structure allows large quantities
of data to be transferred to and from the host
machine via the parallel port on the right of
figure 2. 1/0 data transfer rate ranges from
0.5 to 8 Mbit/s, as will be discussed in section
V. Each cell C can perform data manipulation
operations on one word of the memory M. From
this point of view, VASTOR is an array proces-
sor. Inter-processor communication within the
array enables handling of data organized in the
form of a one-dimensional array, hence the word
"vector" in the machine’s name. Thus associa-
tive operations may be seen as a particular case
of array processing, in which a preliminary com-
putation is used to select data in certain cells
for further processing or output to the host ma-
chine.

VASTOR operations are essentially word-par-
allel, bit-serial. The major differences bet-
ween VASTOR and other serial machines, e.g.
STARAN [10], stem from pragmatic considerations:
component cost and backplane complexity.
STARAN s memory is multi-dimensional: data may
be accessed either by row (horizontally) or co-
lumn (vertically) of a 256 row by 256 column me-
mory array. These two modes of access involve a
relatively complex interconnection network,
which is referred to as a "flip network". Such
a network is not required in VASTOR.

VASTOR uses 256 conventional 1024 by 1 bit
random-access memories, all driven by the same
address lines (cf. figure 2). Operations can be
performed only on columns of memory. Because of
this it is a "vertical" computer similar to that
proposed by Shooman [9]. The I/0 structure has
been designed to compensate for the resulting
difficulty in communicating with the "horizon-
tal" host machine.

When the number of elements in a data vec-
tor is greater than the number of cells in a co-
lumn of memory, operations can be carried out on
"sub-vectors™ of 256 elements each. This com-
promise exists in Shooman’s machine also.

As mentioned earlier, development of the
structure of VASTOR has been heavily influenced
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by interconnection considerations. The array
has been designed to wuse only "daisy-chained"
and "bused" connections between circuit boards.
This allows new boards to be added at any time
to increase the size of the array with minimal
modifications to the existing backplane. The
structure 1is also well suited to large-scale
integration because of the small number of in-
terconnections required between modules.

The main implication of the above restric-
tion on backplane complexity is that it limits
the inter-word and associative facilities that
may be used. Hence, inter-word communication is
accomplished via a shift-register, which in-
volves a daisy-chain connection between circuit
boards for both data and control information.
Moreover, a single bused connection common to
all words of the array combined with an analogue
to digital converter (not shown) are used to
provide limited accuracy associative testing.

The structure of VASTOR may be discussed in
terms of three separate features: the intra-
word storage and computation, the inter-word
communication, and the associative testing capa-
bilities. Each of these features is discussed
briefly below.

2.1 INTRA-WORD FACILITIES

Figure 4 shows the components of a VASTOR
word: two kinds of storage, a 1-bit processor
and one bit of a shift register.

The random-access memory referred to in the
figure as WK constitutes the ‘working store’.
Data are taken from this memory and returned to
it during computation. A second memory, refer-
red to as BK, for backing store, is a serial me-
mory. Its contents are swapped with the contents
of the working store in pages containing 256
bits per word. One more bit of storage is
available for each word in its part of the
shift-register SH. This may be used for tempo-
rary storage of operands. It should be noted
that the intra-word facilities can be expanded
through the use of the 1line marked ‘B° on the
figure.

The 1-bit processing element PE with which
VASTOR has been implemented is the  Industrial
Control Unit - Motorola MC14500B. It performs a
limited set of primitive operations on external
data and a 1-bit internal accumulator called RR
(the result register). Another internal regis-
ter, output enable or OEN, contains a mask which
is used to enable selective write-back into
either the working or the backing store. The
collection of the OEN registers in all words
constitutes the output enable vector.

2.2 INTER-WORD COMMUNICATION

The shifter SH is the primary medium for
inter-word communication. It is the only ma-
chine feature that defines any order to the
words. The shift-register SH is divided into
8-bit segments as shown in figure 5. Each seg-
ment of SH has two parallel bidirectional ports
A and B. The B port is connected to one "phrase"
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of eight VASTOR words.The A ports of all seg-
ments are connected together to form an 8-bit
I/0 bus.

Two multiplexers CIRC and SHMODE connect
the serial inputs of the segments of SH to any
of a number of sources. This allows data trans-
fer between the shifter and VASTOR words to take
place in one of the following modes.

1. VASTOR to shifter -
through the B port:
source of data may be
element PE, the working
the backing store BK.

parallel mode
in this mode the
the processing
store WK or

2. VASTOR to shifter - serial mode
through the SI port: in this mode up
to eight bits of data may be loaded
from any word of a phrase into the
shifter segment. This operation takes
place in parallel for all phrases.

3. Shifter to VASTOR - parallel mode:
VASTOR words may be loaded in parallel
from port B of the shifter SH via the
processing element PE.

'R Shifter to VASTOR - serial mode: 8
bits of data can be moved serially
from a shifter segment to any word in
the corresponding phrase. This is ac-
complished via the combined use of the
output enable vector OEN and the abil-
ity to circulate data within each of
the 8-bit segments of SH.

We should note that in the two serial modes
2 and 4, only one word of each phrase is in-
volved in data transfer. This reduces the par-
allelism in the array by a factor of eight.
However, the serial modes are necessary to sim-
plify byte-oriented data transfer between VASTOR
and the host machine, as will be discussed in
section V.

2.3 ASSOCIATIVE TESTS

All VASTOR operations may leave a result in
register RR of the processing element. Contri-
butions from all RR registers are summed, in an
analogue fashion, onto a single line. This is a
simple scheme to obtain a limited accuracy esti-
mate of the number of responders S, i.e. the
number of words with RR=1. The most useful va-
lues for this number are zero, one and more than
one. A simple analogue to digital converter is
used to extract this information from the ana-
logue sum.

III. EXAMPLES OF VECTOR OPERATIONS

This section presents two examples of vec-
tor operations in order to illustrate the capa-
bilities of the VASTOR array. In the first ex-
ample vector addition is described. The second
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example deals with an associative search for the
largest element of a vector.

Let A and B be two vectors that are resi-
dent in the VASTOR array, Figure 6a. It is re-
quired to obtain a third vector R which repre-
sents the arithmetic sum of A and B. Informa-
tion regarding the two vectors A and B is stored
in a table in the controller. The table stores
the relevant parameters for each vector, e.g.
starting address in the array, number of ele-
ments, number of bits, etc. The ADD operation
is initiated by the host computer by sending a
high level command specifying the function to be
performed and the two operands A and B. It is
not necessary for the host computer to specify
such details as the addresses of the operands,
the number of elements or the element lengths.
Operands are identified by means of pointers
into the operand table stored in the controller.
When the operation is completed, the controller
returns to the host the value of the pointer
corresponding to the result vector R.

Addition is performed in a bit serial, word
parallel manner. The sequence of operations is
given in Figure 6b. As indicated in the figure,
control of the sequence of operations and ad-
dress calculations are performed in the control-
ler, while vector operations are performed in
the array. The optional masking operation at
the beginning of the sequence disables those
words of the array for which the mask contains
"O"s. This may be needed when the vectors in-
volved contain fewer elements than the number of
VASTOR words. The mask used in such operations
is set up at the time vectors A and B are
created.

An implementation of the binary search al-
gorithm [3] for positive or unsigned integers is
given in Figure 6c. In this case the elements
of the vector are scanned starting with the MSB.
A one-bit wide vector TEMP masks out the words
that have been rejected at any stage of the
search. The associative sum S is used to deter-
mine the first bit position where one element of
TEMP contains a "1" while all other elements
contain "0"s. At the end of the search TEMP
contains "1"(s) in the word(s) containing the
largest element(s).

The above examples illustrate the operation
of VASTOR on short vectors with all bits conti-
guous in fields. When there are more elements
in a vector than words in the array, the vector
may be broken into several subvectors. Each
subvector is operated on independently. It is
also possible that the elements of a vector may
occupy two or more non-contiguous fields in a

word. In this case the controller repeats the
operations on the different fields of the vec-
tor.

IV. THE CONTROLLER

The function of the controller 1is to reduce the
control overhead required from the host machine
to drive VASTOR. In order to keep the VASTOR

array continuously active, 50 control bits are



needed every microsecond. That -is, a control
bandwidth of 50 bits/microsecond must be sup-
ported. This rate exceeds the bandwidth of the
entire PDP-11 UNIBUS. Hence, it must be reduced
to a level which does not prevent the host from
performing operations not related to VASTOR.
The controller receives high level commands from
the host machine, requiring a much lower control
bandwidth. These commands are then translated
into the sequences of control signals needed to
drive the VASTOR array.

The complexity of the commands that have to
be interpreted by the controller is represented
by the examples given in section III. In order
to support such operations, a hierarchical ap-
proach has been adopted. Each 1level in the
hierarchy serves to reduce the bandwidth re-
quired from the higher levels. Furthermore, in-
terpretation of high level commands has been
made relatively simple because of the use of
well defined interfaces between various levels.

The hierarchical approach 1led to the con-
troller organization shown in Figure 7. It con-
sists of three distinct wunits. The microcon-
troller which performs low level looping control
operations, the buffer memory which is used as a
communications medium, and the microprocessor
which is responsible for interpreting high level
commands received from the host and for space
allocation within the VASTOk array. As such,
the microprocessor performs functions similar to
that of the "interpreter" in ECAM [1]. The mi-
crocontroller corresponds to the iteration con-
trol logic in ECAM. The three subsystems of VA=~
STOR ‘s controller are discussed briefly below.

4.1 THE MICROCONTROLLER

The microcontroller UC serves to remove
some of the redundancy at its output, the array
control lines, in order to reduce the bandwidth
required at its input. Its sophistication, and
therefore cost, can be selected to provide al-
most any desired bandwidth at its input. We
have chosen to implement a device that executes
sequences of microcode stored in an internal
Read OUnly Memory, with primitive branching and
looping capability. Input commands to the mi-
crocontroller come from a buffer memory M which,
in turn, is filled by the microprocessor UP.

Linear microcode sequencing provides a
large reduction in the control bandwidth. Hence,
it was adopted as the main sequencing mechanism
in the microcontroller. The starting address
for a given microcode sequence is loaded from
the buffer M. Since data can be made to appear
in the VASTOR array in fields of consecutive lo-
cations, further compression of the control in-
formation is obtained with a simple 1loop coun~
ter/index register. This counter is decremented
and tested to control microprogram loops. It
also serves as an index register to modify the
addresses transmitted by the controller to the
array memory.

Some further control bandwidth compression
is obtained by introducing a data-dependent
branch. The associative sum of responders is

40

compared to a reference in the microcode. One of
two branch addresses is then selected from the
buffer M.

4.2  THE BUFFER MEMORY

The buffer memory is divided into sixteen
separate task control blocks. These blocks are
filled by the microprocessor and interpreted by
the microcontroller. Whenever the microcontrol-
ler finishes a task it interrupts the micropro-
cessor to request the address of the next con-
trol block. Task control blocks contain up to
26 bytes of information. This includes starting
and loop control information for the microcode
of the microcontroller. It also includes speci-
fications for the operands in the VASTOR array.

4.3  THE MICROPROCESSOR

Controller algorithms represented by one
control block in the buffer memory take from 1
to several hundred microseconds to complete and
to interrupt the microprocessor. These inter-
rupts are usually quite simple to service but
would be uneconomically frequent for the host
machine. The microprocessor is therefore in-
cluded to provide further compression of the
control bandwidth. It simplifies the interfac-
ing software by translating high-level opera-
tions into sequences of microcontroller tasks.

In addition to sequencing control, the mi-
croprocessor performs the storage management
function. This includes allocating and freeing
fields of storage, garbage collection, paging
variables into the working store from the back-
ing store, allowing the widths of elements (e.g.
integers) to expand and contract, and segmenting
vectors longer than the VASTOR array into man-
ageable components.

V. INPUT/OUTPUT

Data transfer between VASTOK and the host
machine is generally difficult because of the
incompatibility of the addressable units in the
two machines. While a host machine generally
obtains all bits of a single element of a vector
with one reference to its memory, VASTOR obtains
one bit of each element. The transposition re-
quired tc match the two machines is the source
of the difficulty.

The simplest type of vector to transfer is

" a boolean vector, which is only one bit wide,

figure 8a. In order to transfer such a vector
from the host into the VASTOR array, its ele-
ments may be shifted serially by bit into the
shift register SH. This is followed by a trans-
fer from SH to a column of WK using the parallel
mode (mode 3, section 2.2). If elements of the
boolean vector are packed into bytes in the host
machine, as is the case in some versions of APL,
shift register SH may be loaded serially by byte
through its “A° port. In the current implemen-



tation, data rates for the bit-serial and byte-
serial modes are 1 Mbit/s and 1 Mbyte/s respec-
tively.

Consider now the case where data is pre-
sented to VASTOR so that some number of consecu-
tive bits must be loaded into a single word,
figure 8b. This may be achieved by first load-
ing register RR of the ICU from the CONST line,
figure 4, and then storing the content of RR in
the enabled word. Due to that two-step sequence
and the fact that only one word is enabled at a

time, the transfer rate is 1limited to 500
Kbits/s.
The phrase structure may be used to in-

crease the transfer rate of byte-organized data,
as shown in figure 8c. This corresponds to mode
4 of section 2.2. The data rate achievable in
this case is 2.5 Mbits/s. In this approach con-
secutive words from the host machine are not
loaded into consecutive words of VASTOR.
Rather, they are loaded into the same relative
positions in consecutive phrases. A sentence

structure consisting of two phrases per sentence
also exists and may be used for 16-bit wide I/0
transfers. The detailed procedure is given in
reference [6].

VI. PERFORMANCE IN APPLICATION AREAS

This section discusses potential applica-
tions of a VASTOR processor. The primary appli-
cation of VASTOR is as an auxiliary processor in
a minicomputer system. In this case, it would

serve to enhance the performance of the system
in vector and associative operations. A second,
and equally important, potential application

derives from the fact that VASTOR can be re-
garded as a collection of 1-bit wide controllers
driven in parallel by a host computer. Each of
these two application areas is discussed briefly
below.

Table 1.

Performance Comparison

Between VASTOR and a PDP-11/45
with Bipolar Memory in Vector Operations Involving
256-Element Vectors, with 16 Bits per Element.

Operation Result VASTOR PDP-11/45
Execution Time ‘Execution Time
Microseconds Microseconds
Compare Vector I us/bit * 16 bits 3.225 us/word * 256 words
= b4 = 825.6
Addition Vector 10 us/bit * 16 bits 1.9 us/word ¥ 256 words
= 160 = 486.4
Mark Vector 3 us/bit * 16 bits 2.5 us/word * 256 words
Largest = 48 = 640
Element
Compare Vector 3 us/bit * 16 bits 2.5 us/word ¥ 256 words
to Scalar = 48 = 640
Sum Scalar 336 us/bit * 16 bits 1.5 us/word ¥ 256 words
Reduction = 5376 = 384

Vector and associative operations are per-
formed quite frequently in the operating system
software of a computer. Symbol table manipula-
tion and file management are two such examples.
Also, some computer languages, such as APL and
SNOBOL, are based upon the organization and ma-
nipulation of data in the form of vectors [4] or
character strings [7]. A VASTOR processor is
ideally suited to such tasks, and hence can take
a considerable load off its host computer. Ta-
ble 1 gives an estimate of VASTOR s performance
in this area. The table gives execution times
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for a number of operations on 256-element vec-
tors, where each element is 16 bits wide. These
times are based on the current implementation
using a processing element, the ICU, which runs
at a 1 microsecond cycle time. For comparison,
the times required to perform the same opera-
tions in a PDP-11/45 minicomputer are given. As
can be seen from the data in Table 1, VASTOR is
an order of magnitude faster than a PDP-11/45
when executing tasks that involve parallel oper-
ations on all elements of a vector. However,
operations such as sum reduction (adding all



elements of a vector) take much more time. In
this case, VASTOR's performance is limited by
its inter-word communication facilities. How-
ever, when dealing with much longer vectors VA-
STOK ‘s performance on sum reduction approaches
its performance on vector addition. This is due
to the fact that many elements of the vector
would be stored in the same word of the array.

At the present stage of development of the
VASTOR processor, it is very difficult to obtain
an accurate estimate of the gain in performance
that would result from adding a VASTOR processor
to a minicomputer system. While the data in Ta-
ble 1 indicate that considerable gain can be re-
alized, this gain will be partially offset by
the overhead resulting from transferring data
between VASTOR and its host computer. This ov-
erhead is expected to be of the same order as
that involved in transferring data between the
main memory of a computer and a disk file.
Therefore, VASTOR is most suited for use in ap-
plications where a number of vector operations
have to be performed before a given vector is
transferred back to the host machine.

Stand-alone ICU’s have applications in pro-
cess control and monitoring. VASTOR may be used
in situations where a number of ICU’s performing
similar tasks are to be interfaced to a common
host computer. In this case, VASTOR represents
an organized way of performing I/0 and control
functions. Each ICU is capable of sampling data
from and controlling an external device at data
rates of the order of a few kilohertz. Status
information and data such as minimum values,
maximum values, averages, setpoints and enabling
bits for each device may be kept in the corres-
ponding working storage. The main limitation to
this approach is that it is necessary to syn-
chronize data transfer between the ICU’s and the
various devices.

VII. CONCLUSIONS

The VASTOR processor presented in this pa-
per represents a trade-off between the capabili-
ties and cost of the inter-word communication
facilities in an associative processor. The re-
sult of this trade-off is a processor that al-
lows a nontrivial associative processing capa-
bility to be incorporated in small scale mini-
computer systems. The communication hardware
provided in the VASTOR array enables data trans-
fer among the words in the array without requir-
ing costly and complicated hardware. It also
results in simple backplane interconnections
between different modules. The modular struc-
ture of VASTOR allows its capabilities to be ex-
panded easily and economically.

Some of the limitations of the current im-
plementation of VASTOR are due to the slow speed
of the processing element used (the ICU). A

faster and more powerful 1-bit wide processing

element can 1lead to a considerable increase in
performance without the need for any changes to
the architecture. In fact, because of the low
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number of interconnections involved, the struc-
ture is well suited to integration. Some of the
possibilities would be the implememtation of an
array of 1-bit processors, or processors and me-
mory on a single chip. Another possibility
which is currently being investigated by the au-
thors is the use of a table driven processing
element made of memory only. Some other limita-
tions of VASTOR, such as the difficulty of re-
ordering a vector, are more fundamental. In
order to perform such operations at high speed,
a more complex, and hence more costly, inter-~
word communication scheme must be provided.
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Fig. 4. One word of the storage
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CLEAR C ; Clear carry vector - array operation (optional)
OEN <+ MASK ;s Vector array operation
FOR i=0,W-1 ; Controller operation
ADDRESS (Ai) = LSBA + i ; Address calculation - controller operation
ADDRESS (Bi) = LSBB + i ; Address calculation - controller operation
ADDRESS (Ri) = LSBR + i ; Address calculation - controller operation
ADDRESS (C) = LSBC 3 Address calculation - controller operation
Ri « Ai ¥ Bi ¥ C ;s Vector array operation
C« A AB, vV A AC V B, AC s Vector array operation
i i i i
Fig. 6b. Implementation of vector addition
TEMP <« MASK Vector array operation

FOR 1=0,W-1
ADDRESS (A;) = MSB, - i

Controller operation
Address calculation - Controller operation

s we we

RR « TEMP.Ai 3 Vector array operation

IF (S = 1) s Controller operation
EXIT ; Controller operation

ELSE IF (S # 0) s Controller operation
TEMP « RR ;s Vector array operation

Fig. 6c. Search for the largest element
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Summary

The fundamental ways for increasing the pro-
ductivity of computer systems are parallelism and
pipelining. In both cases for the sake of effi-
ciency the computing processes should be decomposed
into possibly small and uniform parts. The most
appropriate elementary computing operations from
this point of view are provided bya fully parallel
word-organized associative processor [1]. Unfortu-
nately, the successful application of the associa-
tive processors comes across two limitations: the
implementation of such devices of sufficiently
large scale is rather diffieult and the necessity
to make supplementary moves of data in and out of
the working area cut down the gain in their fast
processing.

In this work we consider a new type of compu-
ter system - dual to the associative processor.
Its main component is a homogenous array of cells
[2], which realizes pipelining transformations in
space, isomorphic to parallel transformations

realized by the associative processor in time (fig.

1). The algorithms of the associative processing
are based on the alternation of two types of
commands: (1) & - the isolation of the subset of
words having a given indicator and (2) A - the
multiwriting of given codes simultaneously in cer-
tain digits of all the words of the isolated sub-
set. The program in (&-A) form for the processor
controls the pipeline elements as well. The data
are processed during transmission and the number
of the pipeline elements is equal to the length of
the program rather than to the amount of these
data. The above-mentioned limitations on the size
of the device and speed of the computing process
fall away, and it gives fresh impetus to the appli-
cation of the long and well developed theory of
associative processing.

The principle of associative pipelining can be
applied to different types of computers from rela-
tively small specialized devices to very large data
processing systems. The computing process can be
constructed as a succession of the uniformly orga-
nized data transmissions; if the program is longer
than the available pipeline length, the processing
can be arbitrarily divided into successive steps.
A general purpose architecture is shown in fig. 2.

The pivotal part of the computing system is
the associative pipeline in the form of a closed
curve to decrease possible losses due to fragmen-
tation. Information storage is spread over a num-
ber of some devices with cyclic access, which are
called DLS - "Drum-Like Storage," because a drum
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presents a clear view of word stream supply. Main
functions of the control processor are the presen-
tation of control programs in (®-A) form and the
dynamic allocation of the DLS and pipeline
resources. The switching circuit establishes the
necessary paths between DLS and output units
through some segments of the pipelineand directing
The control program can be sent to
such a path essentially simultaneously with the
data stream.

In the framework of this architecture it is
simple to achieve multiprogramming facilities by an
interleaving technique for data transmissions. The
solution of the concurrency problems can be orga-
nized in such a way that as soon as some informa-
tion starts out to transfer from one DLS to another
DLS, all the requests to the former should be re-
assigned to the latter, and the access to the up-
dated information will be available right away,
before the whole process of updating will be com-
pleted.

Associative transformations of isolated words
should be extended to some operations concerning
their collective properties. These operations can
be applied to sets of short words considered as
long-word packets, and to data collection as a
whole for sorting, eliminating duplicates, max/min
and so on. It is more easy to provide such faci-
Tities for the associative pipeline than for the
associative processor, because the processor re-
quires extra circuitry in bulk, while the pipeline
needs only some additional equipment for its indi-
vidual devices - directing interfaces and output
units.

The pipeline operations are efficient formani-
pulating with different types of information
structures, especially in a table form. They may
be used in sublanguages based on relational algebra
as SEQUEL. Associative pipelining is adjustable
for most reasonable table functions as MAX, MIN,
COUNT, TOTAL and for transformation operators like
SELECTION, PROJECTION, DIVISION, and JOIN. The
computer system with associative pipelining is
beneficial for inverted file directories, which
can be organized by presenting the keys of records
in packet form. The access may be accelerated by
an order of magnitude and even more. Associative
pipelining provides not only all necessary infor-
mation, corresponding to simple key matching,
but more complex searching criteria, including
logical functions and partial name matching can
be accomplished in the same time.

The most crucial question for system applica-



tions is the pipeline length, i.e., the number of
(¢-A) elements to be implemented. Estimates show
that one such element with word length - r about
40 bits should contain approximately ~0.5+103 gates.
A moderate system of about 109 logic circuits may
present a pipeline with ~200 elements. This is
fairly enough for most information retrieval proce-
dures, for which are typical the algorithms with
0(r) number of é@-A) elements. A larger systemon
the order of ~10° logic circuits may presenta pipe-
Tine with ~2,000 elements. Such systems may be
used for computational problems for some kind of
algorithms with 0(r2) number of (®-A) elements.

The idea of associative pipeliningis in accord
with data-flow concept [3]. The advantages of this
approach are hardware/software uniformity, high
speed, easeof operational control and multi-access
using a communication computer. This system natu-
rally integrates into network environment. It is
worthwhile to notice that a reply processing can
be initialized before the completionof the request,
when it is in (®-A) form. Because any algorithm
can be realized at the rate of word transmission
with no bottle-neck situations, associative pipe-
1ining -is appropriate for code conversion by send-
ings and receivings of data, e.g. for any kind of
encryption and error correction, and for rather
more complicated real-time signal processing.
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Associative processors are known to be useful
for different parallel algorithms, but their most
powerful applications are in information retrieval.
The associative pipeline as a dual structure
has the similar properties too. Hence, this com-
puter system may be in particular considered as a
sort of a database machine [4]. In this case, a
unified approach to different types of information
systems can be developed, including features of
information retrieval and database management.
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The problem of communication between
processes in multiple processor systems is
addressed. Three high level communication
mechanisms are presented. The first
mechanism is based on sequential processes
consisting of modules, procedures and
processes that communicate wvia procedure
calls and input/output statements. The
second mechanism 1is based on nessage
passing consisting of modules with
conditional send message and receive
message primitives. The third mechanism
is based on structured message-passing
consisting of blocks that receive messages

at the beginning of a block and send
messages at the end of a block.
Programming language constructs for
supporting each of the three mechanisms
are outlined. The structured
message-passing approach {or abstract
dataflow approach) has features that

facilitate automatic scheduling of blocks
to processors, brings out all parallelism
at the block level, facilitates
synchronization without using semaphores,
and facilitates a design approach using
abstractions and refinement.

I. INTRODUCTION

Most of the multiple processor systems
that have pbeen developed during the past
several vyears can be divided into three

categories:

a. Tightly coupled systems such as
multiprocessors with shared memory
or a shared bus (e.g. C.mmp , UC
Berkeley's PRIME, Burroughs
67909/7799, and PLURIBUS).

b. Loosely coupled systems
distributed systems, and
which communicate by
messages (e.g. HP's 3099,
8140) .

c¢. Wetworks
ARPANET,

such as
systems
passing

IBM's

of computers
ALOHANET, Ethernet).

(e.qg.

The development of each of the
systems has required significant
development and maintenance.
software is more expensive than

above
software

Since
hardware

This work is supported in part by TI Inc.,
Corporate Engineering Center, Dallas, Tx.
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of the
above
in inexpensive

or firmware, the implementation
strategies and policies used in the
systems is not possible
multiple processor systems. In this
paper, an outline of strategies for
interprocess communication in multiple
processor systems is presented. A detailed
discussion is presented in [1,2].

STRATEGIES FOR INTERPROCESS COMMUNICATION

A fundamental concept useful in loosely
coupled multiple processor systems is the
distributed process, dp. A dp 1is a
collection of Dblocks, called dp blocks.
the dp blocks communicate either by using
messages or by sharing data structures.
The details of dp,blocks are discussed
later on. A dp consists of the following:

1. Its own address space.

2. Its own resource environment.

3. A list of all other dp's it can
access (capability list) and a list
of other dp's that can access it
(access list).

All communications between dp's take place
using relatively short messages. The code
and data associated with a dp is stored in
the address space. The address space of

any dp 1is symbolic (e.g. a collection of
named objects). The code of a dp is
executed wusing the data in the address

space and the resources available in the
environment. The resource environment of
a dp provides the runtime support for the
dp. It contains standard iibrary
programs, a runtime stack(s) for
supporting activation records, a heap(s)
for supporting storage needs, a
processor(s), virtual or real devices, and

special functional units such as a
floating point processor, and a FET
processor.

ReQULREMENTS OF IJTERPROCHSS COMMUNICATION

One of tne major areas to be addressed in
the support for dp's is the interprocess
communication. The following dp support
reguirements are noted:

a. Apbility to share large data
structures and to communicate short
messages.



Ability to block on
various conditions.
Ability to refuse
resources.

Facility to employ different
strategies 1in accessing resources.
Facility to handle local and systenm
exception conditions.

Facility to prevent deadlocks.

regquests

requests for

£.
Asynchronously
communicate

executing

using three

approacihes. The first approach
on the procedure call or the
monitors [3]. In this approach,

is partitioned into process,es
programnaer. In each
programmer makes decisions regarding the
seguence of statements. An OMODULE
construct is introduced to realize the dp
concept. The OMODULE consists of a
collection of PROCESSs, MODULEs, IMODULES
For shared objects, DMODULEs for device or
control dependent activities, procedures,
initialization part, and a module body.
The constructs MODULE, IMODULE, DMODULE,
PROCESS, and procedure represent the
dp block. wach MODULE consists a
collection of procedures, MODULES, an
initialization part, and a body. A MODULE
establisnes a scope rule for its local
variaoles. An IMODULE is the extension of
tne interface module in MODULA [4]. It
encapsulates shared objects and operations
allowed on ‘these objects. An IMODULE
consists of a collection of procedures,
one or more DMODULEs, an initialization
part, and a body. desting of IMODULEs is
not allowed. A DMODULE is an extension of
device modules in MODULA. The syntax of
the above constructs and the informal
seinantics of the constructs are shown in

[2].

dp's can
distinct
is Dbased

use of
a program

by the
process, the

of

The second communication strategy is based
on message passing. A program is
partitioned into modules by the
programmer. In each module, the programmer
makes decisions regarding the sequence of
statements. Communication between modules
is by sending messages and receiving
messages. This approach to communication
avoids the delay inherent 1in procedure
calls when the called procedure cannot be
entered.

'he third communication strategy 1is a
structured message-passing approach based
on dataflow with high 1level primitives
[1,2]. The highlights of the third
strategy are shown in the next section.

S5TRUCTURED MESSAGZ-PASSING

The structured message-passing approach to
communication between asynchronous
processes uses principles of dataflow [5].
Basic dataflow has been used in computer
systems organization and in the
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specification of algorithms. All
activities that can be performed in
parallel are expressed as nodes without
data dependencies. Activities are
segquenced only when there is data
dependency. One problem with using basic
dataflow 1is that the resulting graphs are
complex, containing all the details.
Another problem 1is the rather restricted
set of primitives. Basic dataflow nas
been extended so that wusers can define
operations suitable to their applications.
sach of these operations is a procedure in
a highlevel 1language. This abstract
dataflow approach is supported by a
dataflow simulator [6,7]. Dataflow
programs using basic dataflow primitives
and user defined operations can be run on
the dataflow simulator. This has opened
up several possiblities in analyzing
algorithms for parallelism and functional
partitioning of programs.

Kach node in
the arrival

abstract dataflow waits for

of tokens on the required
input arcs. If space is available on the
output arcs for tokens, then the node can
be enabled for firing. Thus, communication
between nodes is accomplished using tokens
on arcs. Tokens can be thought of as
messages and specified arcs as data paths.
This communication facility is different
from the message passing approach in
several aspects:

a. Using a standard firing rule, once
a node starts firing, it cannot be
interrupted by other nodes sending
tokens to it and the node cannot
wait for tokens from other nodes.
Using a nonstandard firing rule, a
node starts firing when tokens
arrive on a specified subset of
input arcs and continues to accept
token(s) on a specified subset of
input arcs. )

All tokens generated by a node are
sent as output on the designated
arcs either at the end of firing,
if a standard firing rule is used,
or during firing if a nonstandard
firing rule is used.

There are several advantages to the above
mentioned communication facility:

a. The communication mechanism for
each node is the same.

b. Each node has a specified set of
output arcs for sending tokens to
other nodes and a specified set of
input arcs for receiving tokens
from other nodes.

c. The communication structure is
regular and comprehensible. The
resulting program is well
structured.

d. Synchronization is achieved by
using enabling conditions which



require at least one token on each
of the reguired input arcs. There
is no need for semaphore variables
and P and v operations on
semaphores.
in the structured message_passing
approaci, a program is an abstract
dataflow graph (ADG). Fach ADG 1is a
labelled and directed graph which is an
interconnection of subgraphs. Each
subgraph consists of nodes which are
interconnected by arcs. Each node and arc
has a number of attributes. Some of the
attriputes of a node are label, operation,

and input/output (I/0) arc specification.
The label of a node is a unigue identifier
for the node. The operation attribute
specifies the semantics associated with
tlie node. The I/0 arc specification
attribute specifies the input arcs and
output arcs of the node. Each 1I/0 arc
specification of a node has a set of
conditions that must be met before the
node can be fired. can be fired. This
set of conditions is called the enabling
condition and 1is represented as a set,
called the firing semantics set (FSS).
Some of the attributes of an arc are
lapbel, token type that the arc can carry,
and arc capacity.

A simple example . is shown in Figure 1.
The READER reads a job, copies it into an
empty buffer, and outputs a filled buffer
to PROCESS_JOB. The PROCESS JOB
manipulates and fills an empty buffer with
its results. The buffer received from
READER is returned as an empty buffer to
the BUFFER_POOL_MANAGER. The WRITER
receives the filled buffer from PROCESSOR,
outputs the contents of the buffer, and
returns the empty buffer to the
BUFFZR_POOL_MANAGER. The node
BUFFER POOL MANAGER 1in turn removes an
empty buffer from one of its input arcs
and outputs the empty buffer on onée of its
- output arcs using the policy specified in
the semantics of BUFFER_POOL_MANAGER.
Initially, empty buffers are on the arc
EMPTY_ BUFFERS.

A detailed discussion on
to ADG, and several examples are shown in
[o]. In order to use the structured
message~passing approach in multiple
processor systems, we need either an
environment supporting the execution of
ADGs or a high level language with
constructs for representing nodes, arcs,
and tokens. In this paper, the high level
language approach is pursued. VWe propose
a construct for representing nodes. This
construct is called a dp_block. We now
draw an analogy between the ADG and the dp

ADG, extensions

concept, and describe the details of
dp_blocks.
1f we treat a dp as analogous to the

51

execution of a subgraph in an ADC, the
dp_blocks are analogous to the nodes in an
ADG. Since any number of nodes can be
fired in parallel depending on the FS5S and

the availability of data, any number of
dp_blocks in a dp can potentially be
executed simultaneously. The syntax of

this construct is shown in Table 1.

The name of the
the name of
node. i'he

dp_block corresponds to
the operation assigned to a
label of the dp block
corresponds to the node label. The“input
arc descriptions correspond to tne
description of all arcs incident to the
node. An arc description consists of arc
name, arc capacity, label of the source
block, and the type of token the arc can
carry. The condition part corresponds to
an FSS and specifies the set of input arc
names that must have at least one tokan in
order to enable the node for firing.
Those arcs that can receive a token(s)
during the firing of the node are
specified in INPUT. The condition part
can be a Pascal IF statement using any of
the 1input arc names or constants, or
logical operators such as AND, OR, or WOT.
If +the condition part is absent, then a
token must be present, on each of the
input arcs in order to execute the block
and the block should not contain any arc
names in INPUT. The body of the dp_block
represents the node semantics. The
constant, type, and local variable
declarations have the usual Pascal syntax
and semantics. The statements in the
plock can be any of the executable Pascal
statements except procedure calls, and
blocks.

Assignment statements in dp block use
the single assignment rule which is
similar to those rules proposed by Tessler
and Chamberlin [10].

a

Tne result of a node's firing is
by the last line in the block. If values
have been calculated in the block for the
output arc names, then these values are
sent as output by the last line in the
block provided the condition part is true.
Outputs can also be sent during the node
firing. The output arcs that receive
tokens in this manner are shown in OUTPUT.

provided

PROGRAM DECOMPOSITION

Since a program is a directed and labelled
ADG using nodes and arcs with an operation
assigned to each node, this operation can
be the name of the ADG. Such a node is
called a recursion node, and the graph is
called a recursive graph. Each recursive
graph is denoted as a dp. Each invocation
of a recursive graph has a distinct graph
color. This color is used by all the
tokens in the invocation of the graph.
All the invocations of a recursive graph
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Table 1 Syntax of dp_block
EMPTY_BUFFERS  JOB_STREAM -
= T o e = e o e e e e
| o
oo . . MODE
| J{ 3 TYPE DESCRIPTION DELIVERED
I H «lased
i form labei>: BEGIN <name> (<input_arc_descriptions>
‘ BUFFER_POOL_MANAGER i {<condition>}}
‘ {INFUT <arc_descriptiom;>):
1
! W o i {<constant_declaration>1,
i R o | (<type_declaration>}]
i \[ ) I {<local_variable_declaration> )':
I {<statement>} ';
READER , . 1
% {<QUTPUT <arc_cescriptions>},
i ) ! N ( <wtput_arche5cripti.ons> )
r | {<condition>}, <dp-hlock>
I —*\L . | expression (karc_name>, <arc_capacity>,
‘ ! Form <label_of_source_dp_block>,
m
<token_type>, <arc_mode>) },, <arc_
l PROCESS_JOB I descriptions>
| l axpression
form <Any Pascal statment other than procedure
i . ‘ calls, or dp blocks> <statement>
expression
1 | form <constant declaration in Pascal> <constant _
declaration>
! WRITER | :
| <Type declaration in Pascal> <type_
l declaration>
PRINT | .
L l expression
e . e M iform <variable declaration in Pascal> <local-variable
declaration>
Figure 1 Example of structured message-passing approach
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SUITABILITY OF BUBBLE MEMORIES IN PARALLEL
PROCESSOR ARCHITECTURES

Edward W. Davis
Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27650

Summary

Advances in computer architecture result from
creative organizational ideas, improvement and
innovation in components, and the requirements of
new applications. Architectural creativity has
led to various parallel processor organizationms.
Technological inventiveness has produced magnetic
bubble memories. When bubble technology was a new
item in the research labs, the major anticipated
application was mass memory for large computer
systems [5]. Now that commercial bubble devices
are available, the applications have in reality
been microprocessor oriented [9]. Certain prop-
erties of bubble storage devices make them quite
suitable as components in a memory hierarchy for
parallel processors. Five aspects of this suit-
ability are outlined in this paper.

Parallel Processor Memory Considerations: A
parallel processor follows the definition that
there is a single control unit with the responsi-
bility of driving a set of identical processors.
These machines have primary memories from which
processing elements (PEs) operate. Secondary
memory is typically disk storage interfaced to
primary memory, the control unit, or even a host
computer. Clearly this definition includes real
machines such as ILLIAC IV [1], PEPE [8], and
STARAN [2]. It also includes newer ideas such as
data base machines [4,7].

There are two aspects of the memory systems
that need to be mentioned. First, the amount of
primary memory per processor is typically much
smaller in parallel processors than in uniproces-
sors. For example, ILLIAC IV has a 2K word by 64
bits memory associated with each processing ele-
ment, PEPE has 1K by 32 bits per PE, and STARAN
with its more global, multi-dimensional access
memory has a 256 by 256 bit memory array associa-
ted with 256 PEs or 256 x 9216 in the STARAN E.
These numbers reflect memory component technology
available at the time the machines were built.
They also illustrate the comparatively small pri-
mary memory size used in parallel processors.
Movement of data in and out of primary memory is
an important part of total system performance.
The second aspect is secondary memory and its
interface to primary. The usual device is a disk.
This provides good storage capacity but is poor
with respect to access time and interface path.

Bubble Memory Characteristics: Magnetic bub-
ble memory technology became commercially avail-
able in the late 1970's. An introductory refer-
ence is [9]. Bubble memories are essentially
shift register storage structures. Several shift
path organizations are possible. One of these,
the major-minor loop organization, offers a good
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compromise between capacity, access time, and sim-
plicity of operation. Figure 1 shows the basic
structure. Information flows serially in or out
of the device on the major loop but can be trans-
ferred in parallel as a 'page'" to or from the
minor loops.

Given a major-minor loop organization, the
access time components for a read are (a) posi-
tion the page at the transfer gates, and (b)
transfer to the major loop and shift to the
detector. Presently available devices have page
position times of 3 to 10 msec and major loop
shift times of 4 to 30 msec. At the device level,
capacities range from 92K bits to 1M bits. Expec-
tations are that device capacity will double annu-
ally and that new techniques will improve shift
rates by a factor of ten in the near term.

Support circuits are needed to implement
memory systems. These circuits include a con-
troller which provides an interface to other
equipment through useful features and functions
such as page buffering, format conversion between
bits and bytes, maintaining page position, error
detection and correction, and indicating status.
The controller exercises control over individual
bubble devices attached to it. Functions acti-
vated at one device are independent of other
devices. That is, bubble memory devices are indi-
vidually operable.

Bubble memories clearly represent a new
choice for designers. The properties and charac-
teristics of this new choice need to be examined.

Five Suitability Factors: The five subsec-
tions that follow are intended to provide a con-
trast between bubble and disk devices when used
in parallel processor memory hierarchies. Figure
2 shows the model for bubble memory usage as an
intermediate level in the hierarchy.

(1) Access Time. With the small primary memory
capacity in typical parallel processors, fast
access to a secondary storage is important.
Access to randomly located information in cur-
rently available bubble memories is about ten
times faster than access times to random informa-
tion using movable head disks. Fixed head disks
match bubble access times but are not competitive
in terms of cost or modularity.

Storage allocation techniques for reducing
access times are applicable to both. However,
bubble memories have a performance improvement
due to their unique capability to "stop" the
rotation. Pages can be positioned at the trans-
fer gate waiting for an I/0 command.



(2) Selectable Input/Output. The ability of an
individual processor within a parallel processing
system to execute instructions sent from the com—
mon control unit, or else do nothing, represents
one form of local, individualized control. This
control exists because it is useful, or even
essential, for devising parallel algorithms. 1In
previous architectures, the ability to enable
local entities applied only to processors and the
primary memory associated with them. Control of
a bubble memory system is readily exercised at the
level of individual components. By using such
memory components, local control can extend to
secondary memory. This is a logical extension of
the need for local control which becomes practi-
cal through bubble memory technology.

(3) Localized Memory Addressability. In most
parallel organizations an additional local control
feature is memory reference modification.
Addresses supplied to all processors from the con-
trol unit can be modified individually within the
processors. It is this feature that enables
simultaneous access to rows or columns of arrays
through skewed storage schemes [6]. It is a
variation of this feature that produces multi-
dimensional access memories [3]. In previous
machines, local control of addresses was limited
to the primary memory. Now, with device level
control of bubble storage devices it is possible
to extend local addressability to the secondary
memory.

(4) Customized Configurations. Bubble memory
components are ideally suited to customized design
of secondary memory configurations. Modular com-
ponents allow memory design customized to the num-
ber of PEs and capacity requirements, For exam-
ple, the number of modules can match exactly the
number of PEs for bit stream operations. It can
be a multiple for byte wide or other size I/0
operations. If I/O transfer rates are less
demanding, a controller can operate more than one
memory module. Essentially, the technology allows
a great deal of flexibility.

(5) Fault Tolerance. First note that non-
volatile bubble memories are manufactured using
integrated circuit techniques. There are no
moving parts or mechanical adjustments. The
devices are inherently more reliable than disk
storage units. As further protection against
failures, storage loops can be provided for single
error correction and double error detection. When
an uncorrectable failure occurs, the system
remains operable with reduced parallelism. It is
reasonable to assume the fault can be located to a
replaceable unit providing a minimal mean time to
repair.

Conclusion: Research is needed to develop
a better understanding of the data structures and
algorithms for efficient use of bubble memories in
parallel processing environments.
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ON THE PERFORMANCE OF ON-LINE ARITHMETIC
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the

and effectiveness of on-line ar-

Abstract —-- An analysis of per-

formance

ithmetic structures is provided. A rela-

tive comparison with structures based on

the conventional arithmetic in computa-

tional ©problems such as the evaluation of

scalar and vector expressions and re-

currence systems indicates speedup and

cost benefits of on-line arithmetic struc-

tures.

1. Introduction
The purpose of this research 1is to
analyze the performance of on-line arith-
metic structures and provide a relative
comparison with the conventional arithmet-
the

scalar and vector expres-

ic in computational problems such as
evaluation of
sions and recurrence systems. On-line ar-
ithmetic algorithms have been investigated

by a number of authors [1-6]. Here we re-

view only = the basic definitions and
characteristics that are used in the fol-
lowing discussion.

An algorithm is on-line if the Jj-th

leftmost output digit is cemputed using no
more than (j+8) leftmost input digits.
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Thus, an on-line

always in

algorithm is performed
a digit-serial manner from the
most to the least significant digit. In
the first digit of the

result, the inputs have to be known to &+1

order to compute

digits of precision. Thereafter the next

most significant digit of the result «can

be obtained for each additional input di-
small in-

git. The on-line delay § is a

teger, typically 1 to 5 for the basic ar-
The

subtractioh, multiplication and

ithmetic operations. algorithms for
addition,
been described
The on-line
8§=3 to 5,

Interest-

square root with &=1 have
in the [1,5].

require

literature
division algorithms
depending on the radix [1,4,5].
ingly, there is an algorithm for fast po~-
lynomial and rational function evaluation
with an on-line delay of -1 [2].
The use of a redundant number system
in the representation of the variables is
necessary and desirable in on-line arith-

metic. Computation of results from left
the
redundant number system in the
the
quently, the input operands should also be
the

number

to right in all operations requires

use of a
results.

representation of Conse~

acceptable in redundant. form. A

redundant system can be
the

The time required to compute one

system

used conveniently in on-line algo-
rithms.
output digit, tqs can be made independent
of the length of operands by using inter-

nally a redundarit representation of the



partial results. Alternatively, an inter-

nal carry-save, structure can achieve the

same effect.
The on-line of

representation a

number x is defined as

. -§-7
Xj Xj_l + xj+§r

and

The digits Xy belong to a redundant digit
set

{=prever=1,0,1,..0,p}

where r/2 < p < r-1 determines the amount
of redundancy.
In general, an on-line algorithm is

specified recursively in terms of the on-

line representations of operands, results

and some internal values. The recursion

is of the form

Aj = f(Aj-l'xS-r-j’YS-l-j'zj)

where Aj denotes the internal vectors re-—

quired - by the algorithm. For example, in
the case of multiplication Aj_1 contains
the scaled
represéntations of the operands
[171.

tors at the j-th step require

residual Wi_yr and on-line
Xj_1 gnd
In general, the internal vec-

3

'Yj-l
radix r
digits
tive operations used in the recursion

in the representation. The primi-
are
addition, multiplication by a single radix
r digit, one position shift and concatena-
tion.
- limited precision

tionfl,2,4,5,7,8]):

The output digit is determined by a
selection

23 7 S(yo1%543+Y543)

func-

where A is a truncated value of A. Since

only a small number of most significant

the of
recursion can be

digits is required for selection
the the

performed using totally parallel

output digit,
opera-
limited
Thus the recursion step time

tions, i.e., carry-propagation

operations.

or the time td to obtain one output digit
is 1independent of the 1length of the
operands and an on-line algorithm can be

implemented in

without
¥

tion of on-line unit as a linear array of

a highly modular manner

speed degradation. An organiza-
identical modules operating in parallel is
shown in Figure 1.

is
by the precision s of the selection func-

The number of modules determined

tion S(Aj) and the number of digits n:
p = F(n + s)/24]

assuming that each module has internally 4
of
tions of modular organizations of

digits precision. Detailed descrip-
on-line
units are discussed in [2,3,5].

The on-line algorithms are interest-
ing for several reasons. Since the results
are always computed from left to right,
of
ovérlapping the operations

Ievel.

a
sequence operations can be sped up by
at the digit
Furthermore, the interconnections
in an on-line arithmetic network are much
than
only single digits are transferred between
the operation units. Therefore, the struc-

simpler in a conventional one since

im-
The

tures using on-line arithmetic can be
plemented in a highly modular manner.

~on-line arithmetic realizes by definition
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arithmetic with a
the
inputs . of k significant'digits the output

a variable-precision
built-in significance indication: for

‘has at least k-8 significant digits.



The on-line algorithms can be used in
a floating-point system without difficul-
should be
implemented using a conventional approach.
of the

arithmetic is

ties. The exponent arithmetic

One on-line
the
per-

apparent advantage

in
be
in on-line manner and, thus, over-

floating-point
operand alignment phase. It can
formed
lapped with the mantissa operation. Howev-
er, in the present discussion we are as-
suming that, given the same resources, the
floating-point

exponent operations,

operand alignment and mantissa normaliza-
tion require the same time in on-line and

conventional arithmetic. Therefore, our

analysis of relative performance of these

two approaches is restricted to mantissa

operations.

of
conventional arithmetic unit

We first consider the performance
on-line and
structures (networks) in evaluating scalar
In this case we are interest-
their
effects of of the interconnec-
The arith-

as well as conven-

expressions.
ed in the total delays of networks,
costs and
tion bandwidth on the speedup.
on-line

metic units,

tional, are not pipelined. Later dis~
the

effectiveness of on-line and

we

cuss relative performance and cost-
conventional
networks of pipelined units in evaluating

vector expressions, i.e., scalar expres-

sions repeated on sets of operands.

2. Evaluation of Scalar Expressions

We consider a scalar expression to be

of the form

z = E(x)

where z is a scalar, X is an argument vec-
tor of n-digit elements and E is an arith-
with the

operators {+,-,*,/, square

metic expression formed
floating-point

root } and the elements of x.
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at

Assume that a network to evaluate
of

its, connected as a tree network

E
non-pipelined arithmetic un-
of L lev-
arithmet-
the i-th
all units

consists

In the case of conventional
at
begin operating only when
at the level i-1
on-line network the units are synchronized

els.
ic we assume that the units
level
have finished. In an
with a common digit clock. An on-line unit
at

digit as soon as the coressponding 8+1 in-

level i can generate the first output

put digits are available. Therefore, a

network of L levels of on-line arithmetic

units has the delay ( latency ):

L
T,y < [n+ X (8,
i

oL +1)]td

imax

where is the largest on-line delay

Simax
the i-th level, n is the number of di-
gits and ty is the time to compute or load

one digit.

of
conventional arithmetic units has the fol-

Similarly, a network of L 1levels

lowing delay:

tLOAD)

the

and tLOAD

between

is the time slowest

max of
operation unit at the level i

where Ti
is
the time to transfer operands twoe

levels in the network.

We assume in our analysis that Simax

is 3 on the average. In the case of con-

ventional arithmetic units, we assume that

T = cntd

imax
arithmetic
T=0 (n)
(log n)z/n if the operation time
0(logzn).

where c=1 if the conventional

operation time is and

= is

[
T

The on-line and the conventional



networks, consisting of the same number of
units, are compared using the speedup fac-
tor S: ‘

g = _CON _ L(cn + 1)
TOL n + 4L
assuming that troap = tg- The minimum

number of levels for which an on-line net-
work iskfaster than a conventional network

is
_ n
Lnin = {cn - 3]

For example, let n=32 and c=52/32.

network

Then a
with two or more levels is faster
in on-line arithmetic than in the conven-

tional arithmetic. For L,

S — (cn+l)/8max. In particular,

large

(1ogn) 2
4

n + 1
4

< S (00) <

The number of levels required to -achieve k
percent of the maximum speedup is:

kn

4(1

L = —_-:—ET

The relation between the speedup S and the
number of levels L is illustrated for n=32
and ¢=25/32 in Figure 2.

The

an

minimum number of digits for

which
the conventional one is:

on-line network is faster than

3L

"nin ~ {EE“:“T} < [%l

In the previous analysis the differ-
in the bandwidth requirements of on-
ig-
If a conventional arithmetic unit

ence

line and conventional networks was

nored.
has a bandwidth of B digits per wvariable;
its delay is increased to:

T, =

i (n/B + cn)td
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and the speedup becomes

L(n + cBn)

S = B(n+ 4n)

The additional due to the

bandwidth limitation, is n/4B for large L.

speedup,

3. Organization of On-Line Structures

A pipelined on-line unit consists of

(n+8) stages with the stage delay tye In
the steady state, the unit is computing up
to n different results, the first stage

producing the first digit of the 1i-th
result and the 1last stage producing the
last digit of the (i-n)-th result. As

mentioned before, to implement the recur-
sion of an on-line algorithm, the
that
of steps must be provided.
to
of n digits, the
the

j < n/2 and a precision of n-j digits

working
increases with the number
If the
be computed to a maximum precision
at

precision
result
is
recursion requires
j-th step a precision of j digits for
for
j > n/2. Therefore, n simultaneous opera-
tions in various stages of completion re-
quire a

n2/4 digits.

total working precision of about

This indicates that a one-dimensional
array of modules;, shown in Figure 1, would
the
modules (their internal precision) and the

not be suitable for pipelining since
inter-module bandwidth would depend on the
relative position in the array. We suggest
identi-
illustrated in Figure 3.
with d-digit
requires fn/dl rows with a
variable number of modules
the
indicated above.

a two-dimensional array that uses
cal modules as
This array, if implemented
wide modules,
per row with
maximum number of modules in a row as
of d-

digit modules for a maximum precision of n

The total number

digits is approximately (n/d)2/4. In terms
of digit the
dimensional and array units have

circuits, pipelined one-



equivalent complexities, the later scheme

having more uniform implementation.

4, Evaluation of Vector Expressions

Consider vector expressions that have
V vector operands and one vector result,

each of M elements:

Z = E(Xyr -eer %)

2= (2 eees 2y
and

Xj = Eypr oeeer Xy

Each vector element is represented with n

significant digits.

A conventional pipelined unifunction-
al unit
the stage delay tg [9]. The time

to

is assumed to have N stages with
required

compute M results using a network of L

levels of pipelined conventional |wunits,
shown in Figure 4, is:
TCOP = [NL + M - l]ts

In this analysis we are ignoring the time
required to "chain" pipelined units.

A pipelined on-line unit of array
type discussed in the previous section,
has n + 8 stages for a precision of n di-

gits.
quired to compute M results using a

The stage delay is td' The time re-
net-

work of L levels of pipelined on-line un-

its, shown in Fiqure 5, is:

T = (LSma +n+ M- 1)ty

OLP X

We are assuming that the latencies of a
conventional and an on-line pipelined unit

satisfy the following condition:
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NtS = Cntd

defined

speedup factor in this case is:

where c is in Section 2. The

cn(LN + M - 1)

s = Tcop _
NS+ n+M-1)

P TOLP

The speedup factor for several cases

in which L=4 is given below:

c n N M Sp
25/32 32 4 100 4.9
1 32 4 100 6.2
1 32 8 1000 3.9
1 64 4 1000 15.0

For a large number of operands, i.e.,
when M —> oo, the speedup is:

S =

p cn/N

and in the case of networks with a 1large

number of levels L, i.e., when L —oo0:

S =

P cn/4

These results indicate that the additional

speedup due to on-line arithmetic is

between 2 and 16 for typical precision.

One distinct advantage of on-line ar-
ithmetic is that it can be easily applied

in cases that are known to be difficult to

speed up using pipeline or parallel com-
puter organizations. For example, non-
linear recurrences [10,11] cannot be sped

up by algebraic transformations and thus a
parallel or a pipeline system organization
an m~th order

is not useful. Consider

non-linear recurrence

X(i) = F(X(i-1),...,X(i-m))

for 1<i<M where F
operations. Using a network of pipelined

requires L 1levels of



on-line units, F can be evaluated in time
L

ToLp = (Mi>=_18i + n)ty

In the case of conventional arithmetic:

L
TCON = M.L Ti
i=1
For example, a non-linear recurrence to
compute the square root of y

. _ 1. .. y
x(i+l) = 2[X(1) + x(i)]
requires k iterations in order to obtain n

digits of precision. If implemented using

conventional arithmetic wunits, the time
would be

Teon = *{(Tpry * Tapp)
and

ToLp = [k(8ppy *+ §pp) + nlty

in on-line arithmetic.

5. Cost Considerations

of

and on-line networks consisting Ny

The implementation costs conven-
tional

arithmetic units are compared with respect

to the total cost of arithmetic modules
and the costs of data communications 1in
the network. The cost of a conventional

network is defined as:

C =C

CON NU + (nlogzr)CBNK

Cu

where C is the cost of a conventional

Ccu

arithmetic is the total communi-

K is the

of data paths in the network.

unit; CB

cation cost per bit; and N number

Similarly, the cost of an on-line

network C is defined as:

oL
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C =C_ N

oL ou™Nu + (logzr + l)CBN

K
assuming one signed radix r digit per data
path.

If the number of modules required to
implement a conventional arithmetic unit
with the cost CCM at least
linearly proportional to the number of di-

module is

gits, i.e.,

Ceu = "Cem
we obtain that
Ccu _ . Cem
T %
ou oM

since the number of modules in an on-line,
non-pipelined unit is proportional to n/2.
Let

SoM _ o
Cem
The ratio of implementation costs can now
be expressed in the following form:
.- Coon _ 1 ¥ Ryx
COL x/2G + x
where
Hlogzr
R | S
K 1og2r + 1
is the communication cost ratio and x is
defined as,
. - (logzr + 1)NKCB
nFNUCCM
where G, H and F are implementation-
dependent parameters. We estimate [12]

that for non-pipelined units G=1, H=n and

F=1 while for pipelined units G=2c, H=1

and \=c assuming a stage delay of ty un-
its.



The cost ratio R indicates, for exam-
ple, that the sufficient condition for an
on-line, non-pipelined network to be 1less
costly than the conventional one is that
the cost of the on-line module is no
than the

module.

more

twice cost of the conventional

6. Concluding Remarks

On-line arithmetic offers an alterna-
tive approach in achieving higher speed in
arithmetic

numeric computations. On-line

is complementary to other approaches that
are used to achieve concurrency in execu-
tion of algorithms: for example, it can be
used in minimal-depth tree-structured net-
works. In particular, the use of on-line
arithmetic in non-linear recurrence
The main

(a) high

and (b) simple interconnection

sys—

tems would be advantageous.

features of on-line networks are
modularity

requirements. These properties make on-

line arithmetic very attractive in recon-

figurable networks. Importantly, the on-

line structures are easily extendable to

accomodate either more 1levels or higher

precision. Thus it is interesting to com-
with

results of

pare the on-line arithmetic networks
the conventional The
this study indicate that by using

ones.
on-line
arithmetic, besides highly reduced commun-
ication requirements and modular, uniform
implementation,

“tional speedup factor of 2-16.

one can expect an addi-
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AN INTERCONNECTION NETWORK FOR PROCESSOR COMMUNICATION
WITH OPTIMIZED LOCAL CONNECTIONS

Y. Chow, R. Dixon, T. Feng
Computer Science Department
Wright State University

Dayton, Ohio

Abstract -- In this paper we use a simple
graph model to describe the routing algorithms
for a class of circuit switching networks in inter-
processor communication including permutation
and full processor communication networks. In
full processor communication systems, processors
communicate with each other in arbitrary pairs
as opposed to pairs between two disjoint sets of
processors in a permutation network. It is also
assumed that the pool of processors is hierachi-
cally structured and the minimum connection paths
for local (and/or global) connection are desired.
We propose such a full processor communication
network with optimized connection paths. Both
size and routing complexities are shown to be
O(N log N).

I. Introduction

The interconnection network is an essential
part of a multiple-processor system and has been
widely investigated as a means of interprocessor
communications. These networks are generally
classified as non-blocking, rearrangeable, or
blocking in terms of their flexibility in inter-
connection. A special class of the interconnec-
tion networks is the multi-stage organization.
This kind of organization has appeared in various
literatures [CLOS 53, BENE 65, WAKS 68, OPFE 71,
STON 72, FENG 74, BATC 76, SIEG 78, WU 78,

NASS 79, etc]. Research problems associated

with multi-stage interconnection networks include
system topology, connectivity, control structure
(routing), fault tolerance, and cost-effectiveness
of the system. In an SIMD or an MIMD environment
two major interconnection schemes that are of
interest are permutation networks and partition
networks. A permutation network performs specific
one-to-one connections between two disjoint sets
of processors while a partition network partitions
a set of processors into disjoint subsets such
that the processors within each subset can commun-
icate with each other. A special case of parti-
tioning in which a set of processors is partitioned
into pairs of processors will be referred to as
full processor communication throughout the paper.
This kind of full processor communication can be
achieved by extending some existing permutation
networks. In this paper we will discuss some
proposed full processor communication networks

and then present an interconnection network for
full processor communication with optimized local
connections, i.e., a network in which the pool of
processors is hierachically structured and the
minimum connection paths for local (and/or global)
communications are obtainable. The complexities
of routing and switching elements in the network

65

CH1569~3/80/0000~0065%$00.75 (€ 1980 IEEE

45435

are discussed.

In Section II we review a bipartite graph
routing algorithm for permutation networks. The
algorithm can also be applied to the routing
control in the full processor communication
models. Section III includes the discussion of
existing full processor communication networks
and a network with localized property is pro-
posed. The routing for such network is developed.
A formal description of the routing is discussed
in Section IV.

II. The Bipartite Graph Routing Algorithm

A general structure of multi-stage networks
which allow complete permutation of a set of
processors is shown in Figure 1. This NxN
(where N=2") network is recursively defined and
Pi denotes.a complete permutation network of
size (21x2'). Each (2x2) switching element may
assume one of the three states as indicated in
Figure 2. This network is a special case of the
general Clos network [CLOS 53]. Its structure
covers networks such as base 1ine, omega, and
indrect binary n-cube networks since it has been
shown that these networks are topologically
equivalent [WU 78]. It is also shown by Clos
[CLOS 53] that this network can realize all N!
permutations of the N inputs. The argument is
usually made by induction using HALL's theorem
[HALL 35] although it can be illustrated easily
in the bipartite graph algorithm. Connections
between processors (routing) can be established
by some local addressing schemes [WU 78] or by
a centralized routing control [OPFE 71]. Exist-
ing routing algorithms for realizing any permuta-
tion using only two states, straight and cross,
have been shown to have the complexity of
O(N Tog N) if the algorithm is implemented in a
single processor system.

The bipartite graph algorithm is demon-
strated as follows. The structure of the network
in Figure 1 is recursively defined with 0(Tog,N)
stages. Figure 3 shows an example of such ne%-
work with N=8. This is essentially a 8x8 Benes
network. For a given permutation (or connections),
the routing is to determine the switch settings
of the entire network such that desired connec-
tions can be achieved. If we set the switches
iteratively from outer stages into the inner
stages, we observe that after each iteration the
network is divided into two independent subnet-
works. This property leads us to a simple con-
clusion, i.e., in order to connect two processors
(one from the left hand side, one from the richt
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hand side), they must be switched either both to
the upper subnetwork or both to the lower sub-
network. This is the basic idea behind the graph
algorithm. The graph algorithm is illustrated

by the following example of permutation

(0 1234567
37402615

graph that represents this permutation. The
symbols ' <:' or ' ' denote a switch and the
lines across the two set of numbers (processors)
denote the desired connections. A marko on a
switch indicates that the corresponding processor
will be switched down (or up) while the other
processor to the same switch should be switched
up (or down). The whole graph is marked such
that each pair (two numbers Tinked by a line) are
both marked or both unmarked. This process en-
sures that the two processors in each connected
pair will always go to the same sub-permutation-
network in the next stage. It is obvious that we
can rephrase the marking process by saying that
the paths in the graph are marked alternately.
The same process is repeated as shown in Figure
4-b and Figure 4-c for the subnetworks. It takes
lTog N iterations to complete the marking of the
graphs and therefore the switch settings of the X
entire network. The result is shown with dashed
lines in Figure 3.

Figure 4-a is a bipartite

There is a non-conflict marking for every
permutation graph since there are an even number
of paths and the marking is done alteratively.
After log N iterations we will always obtain

2109 N'](2x2) subgraphs and still maintain the
desired connections. It is always possible to
realize a (2x2) subgraph by a (2x2) switch. Thus
all N! permutations are realizable by using the
interconnection network in Figure 1. The routing
algorithms using the graph model requires the
traversal of the graph and is of complexity 0(N).
There are a total of log N stages in the network.
The overall complexity for setting the switches
for any permutation is therefore O(N Tog N).
Since subgraphs are independent, parallel pro-
cessors may be assigned for computing the routing.
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p1-1 processors may be used to set the NT—T
SE

switches at the ith iteration. Thus a parallel

algorithm would require the following computa-

tions:

N, N N
Nttt T Tog W

For large N, this would have an upper bound of

2N. We reduce the time complexity from O(N log N)

to O(N) if parallel processors are available.

III. The Full Processor Communication Models

In full processor communication systems,
processors communicate with each other in arbi-
trary pairs as opposed to pairs between two dis-
joint sets of processors in a permutation network.
Full processor communication can be achieved by
including the loop-back state of the (2x2)
switching elements or by using additional two-ways
(straight and cross states) switches in a conven-
tional binary switching network. Several full
processor communication models are presented in
this section. Subsection A describes a non-
blocking network using three state switching
elements with complexity O(NZ). Subsection B
introduces a blocking interconnection network with
complexity O(N log N). Finally in subsection C,
we present a rearrangeable model with optimal
connections and of complexity O(N log N).

A. A non-blocking network using three-state
switching elements

By using all three states of the (2x2) switch-
ing elements as shown in Figure 2, Gecsei [GECS 77]
shows a non-b]ock1ng full processor communication
system with 0(N2) switching elements. A typical
eight processors network is shown in Figure 5 in
which pairs of processors (07) (16) (25) (34) are
to be connected. For N processors the possible
ways of connections is (N-1)x(N-3)x... 3*1. The
total number of switches required is (N-2) +
(N-4) + ...+ 2= %? - g,_ The non-blocking
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Figure 6: A Sixteen Processors Communication Network.

property of the network can be easily shown by
induction.

B. A blocking network using three-state switch-
ing elements

The non-blocking network previously des-
cribed becomes impractical for large N since it
has a size complexity of 0(N2) and an average
delay of O(N).
By incorporating the loop-back state in the (2x2)
switching element, it becomes possible to connect
a pair of processors in the same side of the
multi-stage permutation network. The permutation
network thus becomes a full communication network
of 2N processors. Figure 6 is an example of 8x8
sixteen processors network for the connection of
{(12) (45) (015) (37)(612) (814) (10 13)

Better solution must be solicited.
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(9 11)}. Since the network is hierachically
structured we can introduce the concept of local
connections, e.g. connections (01) (23) (45) (67)
are considered as the first level local connec-
tion, (03) (46) as the second level local connec-
tions, and (15) (36) as the third level local
connections, etc. Connections between the two
sides of the network are considered as long dis-
tance connections. If we use binary numbers to
name the processors, then the levels can be re-
presented in bit positions. Assume that lower
Tevel local connections are more likely to occur
than the long distance connections. It is there-
fore desirable to have minimum delays for the
local connections such that the overall perfor-
mance of the routing delays can be improved. With
some modifications the graph algorithm presented
in Section II can be used for the routing control



in the full processor communication systems. It
is illustrated in the following example. Figure
7 is a connection graph similar with that of the
permutation network. Again the '<(1' or ' !

denotes a switch, the curved lines and the straight

Tines represent local connections and long dis-
tance connections respectively. There are two
unconnected sub-graphs in the graph. Both sub-
graphs have odd number of paths. An alternating
marking is possible only if the number of paths
is even in a sub-graph. The sub-graph

<::g) is called a minimum sub-graph since it has

the minimum number of paths possible in a graph.
Such a graph implies an immediate loopback since

<0 2>

<3 i
<5 13

< H

Figure 7: Connection Graph for Connection

of Sixteen Processors

the alternating marking is impossible. This
Toopbacked switch can be utilized by other sub-
graphs. A non-minimum sub-graph with even number
of paths can be marked as usual. If it contains
odd number of paths, some rearrangements have to
be made. This rearrangement must utilize the
loopback switch, if available, to make an even
paths graph such that an alternating marking is
possible. Figure 8 shows such an example of
marking. The path between 0 and 15 is deleted

Toop
4\."
back )~
<
<5
7
Figure 8: Rearrangement of Connections.

and connections of (0 4) and (5 15) are estab-
lished. This rearrangement makes an even path
subgraph and yet maintains the connection of
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(0 15) because the (4 5) connection is a loopback
and the output of the switch is shorted. The
marking is done for the first iteration (Figure 8)
and the outside layer of switches is set accord-
ingly (Figure 6). The second and third iterations
of the marking process are shown in Figure 9 where
a, b, c are the common connection points due to
loopback switches. The final switch setting
dashed lines in Figure 6) shows that all local
connections have the shortest paths at the ex-
pense of the prolonged delay of the long distance
connection (0 15) which has a delay of 9 switches.

It can be seen from the above graph example
that a connection is realizable only if all sub-
graphs have an even number of paths in each itera-
tion or all non-minimum subgraphs with odd number
of paths can be made into even paths subgraphs by
combining with minimum subgraphs. Although the
network has a complexity of O(N log N) and has
Tocal connection property, it is a blocking net-
work. Figure 10 is an example that connections
can not be realized. The connection {(0 8)

(1 11) (2 12) (3 13) (4 14) (56) (7 15) (9 10)}
involves two sub-graphs with odd number of paths
and no minimum subgraph can be utilized. In

this example the loop back of the local connectior
(9 10) forces the two terminals8 and 11 to both
go to the upper subnetwork or the lower subnet-
work. The two terminals 0 and 1 to be connected
with 8 and 11 can only go to different subnet-
works. Thus one of the connections cannot be
made unless there is a minimum subgraph that pro-
vides a loopback for the connection.

C. A rearrangeable network using two-state
switching elements

Both non-blocking and blocking full processor
communication networks presented earlier use
three-state switching elements. The former net-
work requires O(N¢) switching elements while the
later has a size complexity of O(N log N). We
now propose an O(N log N) full processor communi-
cation network which has optimal local connec-
tions and requires only two-state switching
elements. Figure 11 is a sixteen inputs modified
reverse-exchange network. The sixteen outputs
on the right hand side are shorted to form the
connections {(0 8) (1 9) (2 10) (3 11) (4 12)

(5 13) (6 14) (7 15)}. It can be seen that four
switches in the lower right corner are redundant.
The network now consists of two parts: a
partition network on the left and a permutation
network on the right. The partition network
partitions the input processors such that half of
the processors goes to the upper part of the
permutation network and the other half is sent to
the lower part of the permutation network. For
any desired full processor communication, e.

the eight sets of connections (0 15) (1 4) (2 7)
(314) (59) (6 11) (8 10) (12 13) of sixteen
terminals, if we can partition the terminals

into two sets such that the two terminals in all
the connection pairs appear in different sides
of the permutation network, then it becomes
possible to achieve the desired connections.
will show by using the graph model that the

We
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partition network in the box shown in Figure 11
will accomplish such a partition. The graph in
Figure 12 represent the desired connections.
To obtain a connection, the two terminals linked
by a curved line should be dispatched to two
different sides of the permutation network, e.g.
pair (2 7), if terminal 2 is labeled left (1)
then terminal 7 should be labeled right (r). We
can traverse the graph marking the terminal 1 or
r without considering the curved lines as paths.
Since we have even number of straight paths, a
partition of the terminals into two sets is always
possible. The labeling of the graph in Figure 12
gives us the two sets (0 2 4 6 9 10 12 14) and
(1 357811 1315). By using these two sets
as both sides of the permutation network we can
achieve the permutation

02 4 6 9 10 12 14 .
(1577 11 5 'g 13 '3) by using the

graph algorithm and therefore establish the
connections. The result is shown in Figure 11.

The full communication network is similar
with the one proposed by Chung and Wong [CHUN 79].
However the interconnection network is centralized
in the sense that all terminals are considered as
a single group and all connections have the same
delay (the number of switches traversed). We
are interested in the concept of local connections,
i.e., processors are hierachically structured and
local connections are expected to have minimum
delays. We have shown that the network in
Figure 11 can be used to get all possible con-
nections. By structuring the network we can
obtain an equivalent network with local proper-
ties. To illustrate the restructuring we use
the same network in Figure 11. The network is
first unfolded (turn the bottom half to the right
hand side) in order to make the picture clearer.
Then we merge the redundant switches and rearrange
the switch boxes. The network is then converted
into the following (Figure 13).

The twisted switch boxes in the center stage
essentially serve as the purpose of straight
through long distance connection or loopback local
connections. Such additional switches can be
used in other stages to provide an immediate loop
back local connection without effecting the other
routing in the whole network as indicated by dash
Tines in the figure. The structure of the network
indicates that these modifications can be grouped
in pairs as a standard form shown in Figure 14.
Two-state switches S1 and S2 are additional
switches for loop-back purposes. There are four
inputs (a, b, ¢, d) to each pair of switches. To
perform loop-backs we have six possible connec-
tions: (a b), (ac), (ad), (bc), (bd), (cd).
Connections (a b) (c d) can be ruled out because
in the graph algorithm they would have been
routed to different center stages. Connections
(a ¢) (b d) are not necessary because they come
from the same subnetwork and if Tocal connections
are desired they would have been looped back in
the previous stages. Thus, if a Tocal loop back
is desired, it should be either (a d) or (b c).
In other words, if we use binary code for each
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input, a loop back is performed only if the pair

of processors differ in the two least significant
bits. Switch S1 and S2 in Figure 14 have the
ability of looping back (a d) and (b c) in straight-
state and preserving original connections when in
cross-state.

The overall algorithm for full processor
communication is summarized as follows:

a. partition the terminals into two dis-
joint sets by using the graph algorithm

b. connect the two sets of terminals by
using the permutation graph algorithm
iteratively

c. restructure the network and set switches
for routing local connections

The complexity of the overall process is O(N Tog N).
The process establishes all connections with
shortest possible routes for both.local and long
distance connection with twice the number of
switches as in a non-localized network. The

number of switches remains O(N log N). The mak-

ing of the localized full communication network

is more formally described in the following

section.

IV. A Formal Description of Routing in the Network

We have shown that the interconnection net-
work in Figure 13 can be used for permutation and
full processor communication. We may formally
define our switching schemes as follows:

Let the processors be labeled 0 to 2" -1.

For each processor, a, define its binary

expansion as:

a=aa q...858.

Number the stages of the switching network as
1,2,...,n-1,n,n-1,...2,1.
In all the networks below we define a con-
nection and switching procedure for which a is
switched to

location a3, 1+ - -390 at input to stage 1

location aa --23Xq3, at input to stage 2

n-1°

location a3, 1+ - -XoXqag at input to stage 3

location a x ,...xa 1 at input to stage n-1

where x.'s are determined by the switch posi-
tions.

A. Permutation Network

For permutation the nth
Here we may map any a to b if a, = Bh

stage is redundant.
(0=1, T=0).
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The n-Tth stage consists of 2"'2 switches each of
which corresponds to the middle n-2 digits of the
input, Xn_z...x]. The 4 inputs are determined

by a, an_l(i.e. the first and last bit). The
switch is one of type which will map a a4 to
Shy, y=0orl.

A Standard Circuit Which Provides Loopback and Preserves Other Connections.

Thus if our routing algorithm maps a to b then
a, = bn and

if a maps to a x, ,...Xq3, 4
and b maps to bnyn-Z"‘ylbn—l

then X, 5 = ¥n-2» Xp-3 = Yn-3; %1 = -
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B. Full Processor Communication Without Local
Connection
. th
The inputs to the n

stage are X_ X ...
th 1"n-2

X,Xja,. The n”" stage consists of 2""E switches

each of which corresponds to the front n-2
digits of the input x X »...x,. The four in-

puts to the center stage switches are determined
by the digits X2, The switch has the mappings

1% > XY

where a maps to X X, q1...Xj3,
and b maps to Yo¥n-1 y]bn
then R N2 and X1=Y1

Stage 1

Stage 2

C. Full Processor Communication With Optimized
Local Connection

Two inputs a and b are local at stage k if
an=bn.. ak+1=bk+] and ay # bk' Let a and b be

local at stage k, and suppose we want to connect
them. Follow the full connection algorithm to
stage k. Then we have

a is at PR R R ST

b is at bn"‘bk+1yk"'y1bk

Since an=bn"'ak+1=bk+1 and since wE_know the
routing produces XY X005 Xq7Yqs we know
the precise relationship of these calls already

Stage 3

=y
S

8
9
10
N

e
N
| L

vV
12 e
o
14
15 ]

Figure 15: A Full Communication Network With Localized Connections.



at the k™ stage, i.e. X1=§H’ ak=5k, the local
connection differs in the two least significant
bits.

We add to the network switches to optionally
connect at each stage k, k=1, 2, . n input
YAVA Z] to ZnZ ...Z]. This exactly doubles

n“n-1° n-1
the number of switches in the network. The addi-

tional switch type is shown in Figure 14.
We now notice that at the nth stage, if a is
to be mapped to b with an=bn then it will have

been cut across by the n-1 stage switches. Thus
the mapping S e-3q y where y=0 or 1 is only
necessary when a =7

and we map X3, > x]

th stage.

Thus no switch is necessary
and we can eliminate the

- Finally, we give one last diagram using the
switch from Figure 14, represented by the symbol

{E , and ﬁ to represent

this figure: F1gure 15 is the

full processor communication network with opt1—

mized local connections,

Conclusion

We have used a graph model in computing the
routing for permutation network, partitioning
network, and full processor communication network.
Special emphasis is placed on multistage full

interconnection network with hierachical structure.

A rearrangeable non-blocking interconnection net-
work with local properties is developed for full
processor communication. Such network provides
shortest routing for both local and long distance
connections. The complexity of the routing
algorithm and the number of switches used are
both in the order of N log N. It is also shown
that by using parallel processors, the routing
computation time can be reduced to O(N). 1In
addition to the rearrangeable non-blocking inter-
connection network, blocking and non-blocking
models are reviewed. Interconnect networks play
an important role in communication and parallel
processor systems.. Further research results in
the application of the techniques used in this
paper to.general Clos networks with full processor
communications and local routing are expected.
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USE OF THE AUGMENTED DATA MANIPULATOR MULTISTAGE NETWORK FOR SIMD MACHINES
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Abstract -- The capabilities of the augmented data

manipulator (ADM) and the inverse ADM (IADM) as
permutation networks for SIMD machines are ex-
plored. Redundant control settings for commonly

used permutations are examined. A method to count
the number of distinct permutations performable by
these networks is given. Finally, techniques for

controlling these networks in SIMD mode are
presented.
I. INTRODUCTION

In [131 it is shown that the multistage cube
networks called the generalized cube, omega, in-
direct binary n-cube, and STARAN flip are
equivalent and that the capabilities of the aug-
mented data manipulator (ADM) network are a super-
set of those of these multistage cube networks.
In this paper, the use of the ADM in an SIMD en-
vironment is studied.

An SIMD (single instruction stream-multiple
data stream) machine has a control unit which

broadcasts instructions to N processors. A pro-
cessor along with its private memory is called a
processing element or PE. ALl active PEs execute
the same instruction at the same time, each pro-
cessor on data from its own memory. Data can be
transferred by the interconnection network from PE
to PE. Each PE is assigned a unique address from

0 to N-1, where N=2".

An interconnection network can be described as
a set of interconnection functions, where each
interconnection function is a permutation <(bijec-
tion) on the set of PE addresses [8]l. When inter-
connection function f is applied, input i is con-
nected to output f(i) for all i, 0<i<N, simultane-
ously. An equivalent definition is that the in-
terconnection network takes the set of PE ad-
dresses as its input and produces as its output a
permutation of these PE addresses, i.e., it maps
an input address to an output address.

The Plus-Minus gj (PM2I) network consists of
the 2n functions defined by

PH2,. (i) = j+2' mod N and PM2_.(j) = j-2 mod N

for 0<j<N, 0<i<n [8], where (-x = N-x) mod N.

The data manipulator network [2], Fig. 1, con-
sists of n stages with N switching cells per
stage, plus a column of network output cells. The
stages are ordered from n-1 to 0, where the dinter-
connection functions of stage i are PM2+i’ PMZ_i,

This work was supported by the Air Force O0ffice of
Scientific Research under AFOSR-78-3581. The U.S.
Government is authorized to reproduce and distri-
bute reprints for Government purposes notwith-
standing any copyright notation hereon.
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Figure 1: The data manipulator

network for N=8,

and the identity (straightd. There is one pair of
control signals perstage. At stage i, cells whose
i-th address bit is 0 respond to one control, the
other cells to the other control.

The augmented data manipulator (ADM) is a data

manipulator with individual cell control
[9,11,13,141. Each cell receives control signals
independently of any other cell.

If the stages of the ADM are traversed in re-
verse order, i.e., the input stage is stage 0
(PM2+O) and the output stage 1is stage n-1
(PM2, _4), the resulting network is the inverse

ADM (IADM) [151.

11. CAPABILITIES OF THE ADM AND IADM
Lemma T: The ADM passes the permutation f if and
only if the IADM passes the inverse permutation.
Proof: See [15].
Theorem 1: The ADM can perform a perfect
in one pass through the network.
Proof: The perfect shuffle interconnection func-

tion is shuffle(pn_1...p1p0) = Pp-2--+P1PoPp-1~

shuffle

P = Pn-1-+-P1Pg- O<P<N. The switch settings for

stage i, n>i>0, are determined as follohs, where
the address of a cell P at stage i is Pn-1+=P4Pg-

set stage n-1 to straight across;

for i = n=2 step -1 until 0 do
iF py47p
then if pi+1=0



then set cell P at stage i to PM2+i;
else set cell P at stage i to PMZ_i;

else set stage i to straight across;
For the controls calculated from the algorithm,
data originally from PE Ph—1 === Pq Pg is sent to

cell Pr=2Pp=3+++P;Pp-q1Pj-1+--Pg at stage i. This
algorithm is related to the "PM2I + shuffle'" algo-
rithm in [10] and is proved correct in [15]. {)
Corollary 1: The IADM can perform an inverse per-
fect shu%fle in one pass through the network.
Proof: Follows from Lemma 1 and Theorem 1.

Theorem 2: The IADM cannot perform a perfect shuf-
fle in one pass through the network.

Proof: Assume arithmetic is mod N. Consider P =

0"'211, where the superscript is a repetition fac-

tor, e.g., 0411 = 000011. The difference of the
addresses P and shuffle(P). is an odd number.
Since no combination of PM2+i and PMZ;i, 0<i<n,

difference as the shuffle
The

distance between P+1 and shuffle(P+1) is even, as
is the distance between P-1 and shuffle(P-1). The
straight connections are used for the data from
P+1 and P-1 at stage 0, creating a conflict.
Corollary 2: The ADM cannot perform an inverse
perfect shuffle in one pass through the network.
Proof: Follows from Lemma 1 and Theorem 2. <:>
The generalized cube and its equivalents Li3]
cannot perform the shuffle or inverse shuffle (for
N>16, Oﬂpn_sm..p11 and 1Opn_3...p11 conflict at

for the shuffle, and 1pn_2...p201 and

yields an odd number
does, data from P must use PMZ+D at stage O.

stage n-1
1pn_2...p211 conflict at stage 1 for the inverse

shuffle).

Theorem 3: A bit reversal function transfers data
from PE P = Pp-1+-+P1Pg to P' = PgP{=**Pp-1- For
N>8, the IADM cannot perform a bit reversal in one
pass through the network.

Proof: Let P = D"'211. The distance between P and
its bit reversal is an odd number, so PMZ+0 must

be used. The distance between P+1 and its bit re-
versal is an even number, as 1is the distance
between P-1 and its bit reversal. The straight
connections are used for the data from P+1 and P=1
at stage 0, creating a conflict.

Corollary 3: For N>8, the ADM cannot perform a bit
reversal in one pass through the network.
Proof: Follows from Lemma 1 and Theorem 3. <:>

For some transfers, more than one setting ex-
ists for the ADM. In addition to being of
theoretical interest, the existence of redundant
paths adds a certain amount of fault tolerance.

Two classes of these redundant settings are shown
(details in [151).

Theorem 4: There are n-i different control set-
tings for the ADM which realize the Cubei inter-
connection function, 0 < i < n-2.

Proof: Cube,i (pn_1...p1p0) = Pp=q===Pj--=Pg, 0<i<n
[81l. Cubei can be realized by setting the ADM

controls such that at stage i, cells whose i-th
address bit equals O perform PM2+1, while those
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whose i-th address bit is 1 perform PMZ_i.
= 2k_2k'1_‘

Since,

i

..=2', n>k>i, there are n-i dif-
ferent settings for the ADM which accomplish
Cubei. Data ditems from an arbitrary pair of in-
puts, P and P', P<P', cannot conflict.

Case 1: P;=p;'. Always P'-P cells apart.
Case 2: p, i#p;'- For stage j, j>i, the data items
must be in cells which differ in at least the i-th

bit position (since p,#p;'). At stage i, the data
from P will be at cell Cubei(P) and the data from
P' will be at Cubei(P'), which will differ

least the i-th bit position.

The uniform shift permutations send data
PE P to P' = P+A mod N, O<A<N, for all PEs.
= an_1-¢-a180-
Theorem 5: The ADM has redundant control
for all uniform shifts of A mod N, 0<A<N.
Proof: The ADM can be set as follows: at stage i,
if ai=0, then set the network to straight across;

if a;=1, then set the network to PM2,.. Let A be

digit notation, where
ai' e {0, +1, -1}, the sum and difference of

powers of 2 (e.g., A = 0111 = 100¢-1) = 10(¢-D1 =

1(-1)11). The following are all equivalent [7]:
a' ,...a'k01...110a'

n=i
a n_1...afk10...'0(-1)0a'j...a'0
a n_1...a'k10...0(-1)103'
'k1(-1)1...103'

Each of these different representations of A can
be used to yield control settings for the ADM net-

in at

O

from
Let A

settings

expressed in signed

camad’n
U

j...a'0

]
a' _q.--a j...a'0

work as follows: at stage i, if a;'=0, then set
stage i to straight across; if ai‘=1, to PM2+i; if
a,'=-1, to PMZ_i. Since all cells in a stage are

set the same way, no conflicts can occur.
Corollary 4: Theorems 4 and 5 hold for the IADM.

Proof: Follows from Lemma 1, Cube;1=Cubei, and the

inverse of shift A mod N is shift N-A mod N.

One measure of a network is the number of per-
mutations it can perform. The generalized cube
network (and its equivalents [13]) can perform

ZN"/2 permutations [12]. The following theorems
consider the number of permutations performable by
the ADM (details in [1J).
Lemma 2: For N = 4, the ADM can perform all poss1-
ble N!_ = 24 permutations.
Proof: By enumeration (see [151). <:>
A size N ADM can be partitioned into two in-
dependent subnetworks of size N/2 [11]1, plus stage
0. These subnets have the same structure as a
size N/2 ADM. ALl the inputs of one subnet are
even-numbered (the even subnet). The subnet with
all the odd-numbered inputs 1is the odd subnet.

The connection of the two subnets to stage U of
the size N ADM is shown in Fig. 2. ALl even-

numbered inputs of stage 0 are connected to the
outputs of the even subnet and all odd-numbered
inputs to the outputs of the odd subnet.

Let Si, Dy specify a source/destination pair.
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A connection in stage O that does not affect the
low order bit, i.e., (SO)i = (dO)i' is a straight

connection. A connection that changes the low
order bit, (so)i # (dO)i' is called an exchange

A regular exchange is between stage
pn_1pn_2...p10 and P+1. An irregular
exchange 1is between stage 0 inputs P and P-1 mod
N. Any possible configuration of stage 0 that s
a permutation, except the all +1 or all -1 confi-
gurations, consists of straight and exchange con-

(see Fig. 3).
0 inputs P =

nections only [11] and can be expressed as an N-
bit number. A bit is associated with each adja-
cent pair of inputs, dincluding the wrap-around

If the adjacent pair of in-
the bit is 1; if not, O

pairing of 0 and N-1.
puts form an exchange,
(see Fig. 3).

Two kinds of adjacency for binary numbers are
distinguished. When the first and last bits of
the binary number (representing the wrap-around)

are not considered adjacent it 1is Llinear
adjacency. When the first and last bits are con-
sidered adjacent it is circular adjacency.

Lemma 3: Every configuration of stage 0, except

the settings all +1 or all -1, that is a permuta-
tion, has a unique associated binary number with
no circular adjacent bits that are 1.

Proof: If there are circular adjacent 1's, then an
input P is in two exchanges such that P + P+1 mod
N and P > P-1 mod N.

Lemma 4: The number of N-bit numbers with no
Llinear adjacent 1's is
B(N)=B(N-1)+B(N-2); B(2)=3, B(3)=5, N>4.

Proof: If the number ends in a 0, it must have no
Llinear adjacent 1's in the first N-1 bits. If it
ends in a 1, the bit immediately preceding must be

a 0, and the first N-2 bits must have no linear
adjacent 1's.

Lemma 5: For an N-input ADM network, the number of
stage 0 configurations that yield a permutation of

stage 0 inputs to outputs is
a(N) = B(N) - B(N-4) + 2 ; N > 8.
Proof: By Lemma 3, a(N) is the number of N-bit

numbers with no circular adjacent 1's, plus all +1

. 000 =—T000] _,
igure 3: 001 a 01|,
a) Straight connections [010 b 010
b) Regular exchange 011 :::=‘<::: o111 !
c) lrregular exchange a -0
1C0 100
Also shown, the Tol o1l 0
associated binary number c -
(N = 8). no>< 110
a -0
111 [RLE 0
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B(N) exceeds the number with no cir-
cular adjacent 1's by the number with no linear
adjacent 1's which do have circular adjacent 1°'s.
These numbers are of the form 10a1a2...aN_401

where a ...ay_, has no linear adjacent 1's. <:>

Lemma 6: Consider the stage 0 permutations except
the all irregular exchanges, all +1, and all -1.
Any two of these permutations differ in the source
subnetwork for at least one output.

Proof: Consider two distinct permutations of the
given set. There must be at least one output Di

and all -1.

which is mapped differently. If output Di is con-

nected to a straight stage 0 connection,
(do)i = (sp)j. If it is connected to an exchange

at stage O, (dO)i # (so)i, and it receives its

data from a different source subnet.
Theorem 6: A Lower bound on the number of distinct

permutations performable by the ADM, P(N), is
PIN) > P(N/2)2¢[a(N)-31; P(4)=24; N>8 .
Proof: Each subnet can perform PU(N/2) permuta-

tions. Let stage 0 be restricted to any permuta-
tion other than all +1, all -1, or all irregular
exchanges; there are a(N)-3 such configurations.
By Lemma 6, any change in the stage 0 setting will
cause at least one output to be mapped from a dif-
ferent subnet, changing the overall permutation.
P(4) is from Lemma 2.

Theorem 7: An upper bound on the number of dis-
tinct permutations performable by the ADM is

PIN) < PIN/)2eaN); P(4)=24; N>8 .

Proof: Assuming that the composition of any input
permutation with any stage 0 permutation yields a
unique overall permutation gives the above result.
The <inequality is because the assumption is false
(there are redundant settings).

III. NETWORK CONTROL
Routing tags are used to distribute control of
the network among the N PEs. A full routing tag
= fzn_1f2n_2...f1f0 at each input can specify any

arbitrary path. In stage i, if f2i=0’ the
straight Llink is qsed; if f2i=1 and f2i+1=0’ the

+2'  link is used; otherwise the -2" link is used.
If all the sign bits in a full tag are the same,
form an n+1 bit routing tag by computing the
signed magnitude difference between destination D
and source S: T = tntn-1"'t1t0 = D-S, where tn=0
tn=1
tn_1...t1t0 equals the absolute value of D-S [5].
At stage i if t.,=0, the

indicates positive and negative, and

straight connection is

used; if tn=0 and ti=1' the +2i Link is used; oth-

erwise the -2' Link is used. If all N tags for a
permutation are calculated in this way, then the
permutation is routed using natural routing tags.
An individual route consisting of only straight or

+21-type connections is positive dominant; an in-
dividual route consisting of only straight or

-2'-type connections s negative dominant [51].




Two tags are equivalent if they route a message
from the same source to the same destination.
Theorem 8: Let A' denote the two's complement of A
and T#0 (S#D). Then T' is equivalent to T.
Proof: See [51].

A permutation is routed using positive dominant

routing tags if those tags that are negative dom-
inant in the set of natural routing tags are con-
verted to positive dominant using Theorem 8.
Lenfant has defined five families of frequently
used permutations [4]. Theorems 9 to 12 show that
two of the families are passable by both the ADM
and IADM using positive dominant tags. The proofs
are very briefly sketched and the details are in
[6]. Let (52,51) be the bitwise representation of

an address P, 52 the j high order bits, and 51

the n-j low order bits. <T>r denotes T mod 2".

Lemma 7: The location of a message in stage i of
the IADM is cell <S + <T>i>h,‘uhere T is the mag-

nitude portion of its positive dominant tag.
Proof: At stage i, bits 0 to i-1 have been exam-
ined, so the message has been displaced by <T>i'<>

AM  hich
ik

maps X to jX+k mod N (j odd), is passable by the
IADM using positive dominant tags.
Proof: Lemma 7 is used to show no
occura

Theorem 9: The class of permutations

conflicts can

Theorem 10: The class of permutations x}”;, which
4

maps X to jX+k mod N (j odd),is passable by the

ADM in one pass using positive dominant tags.

Proof: Lemma 1, Theorem 9, and properties of the

ring of integers mod N [3] are used to show A-1=x

and the classis passables

(n)

ik’
a (n=j) ,» - . _

maps (3,,84) to (52'x1,k (89 (G < m), is pass

able by the IADM using positive dominant tags.

Proof: It is shown that if &, < 2" -k, the tag is

Theorem 11: The class of permutations § which

00...0kn_j_1...k1k0; otherwise it is 11...1kn_
5-q++-Kqkg. This is used to demonstrate no con-
Tlicts can occur.

Theorem 12: The class'&?"i (j £ n) is passable by
—A=oren , 2

the ADM using positive dominant tags.
Proof: Lemma 1 and Theorem 10 are used to

§ 1=6 and the classis passable. <:>
Positive dominant routing tags cannot be used

to route all passable permutations without con-

flict (e.g. perfect shuffle).

Theorem 13: The perfect shuffle is passable by the

ADM network using natural routing tags.

Proof: If pn_1=1, T = (shuffle(P)-P)<0, i.e. T s

negative dominant. n_1=1, the

bit pair Pi+1P; will always be of the form 10 or

show

In Theorem 1, if p

1. The algorithm specifies settings of -2i and
straight respectively, representable by a negative

dominant tag. The case for pn_1=0 is similar.

Corollary 5: The inverse shuffle permutation is
passable by the IADM using natural routing tags.
Proof: Follows from Lemma 1 and Theorem 13.

The tags used in Theorems 9 to 13 require only
nt1 bits and are easy to compute. If a passable
permutation is needed, but cannot be represented
with natural or positive dominant tags, full rout-
ing tags can be precomputed.

Iv. CONCLUSIONS
The use of the ADM and IADM networks for
processing have been explored. Analyses such as
these are necessary in order to evaluate the
cost-effectiveness of the ADM (and IADM) as SIMD
interconnection networks.

SIMD
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Design and Validation of a Connection NeEg?rk for
Many-processor Multiprocessor Systems

George H. Barnes
Burroughs Corporation
Advanced Development Organization
Paoli, Pa., 19301

Summary
A connection network 1is described for
connecting any or all of a large number of
processors on one side to a large number of
memory modules on the other. Each processor
independently requests connection through the
network. Response time is to be commensurate

with the access time of memory, and hence no time
can be allowed for global control of the network.
The connection 1is made at combinatorial logic
speed, and the connection held for accessing one
word only. In the specific case studied, a
network to be embedded in the Flow Model
Processor of the Numerical Aerodynamic Simulator,
there were 512 processors and 521 memory modules,
with an assumed memory access time of 240 ns.

[1,2].

The selected network (the '"baseline"
network of [3]) 1is isomorphic to the Omega
network of [4]. Figure 1 shows an example of

this type of network together with an example of
how the individual bits of the requested memory
module number control the connection being made
through each two-by-two node. To avoid the
hazards of designing with arbiters and synchro-
nizers, the connection network is synchronized by
a clock, whose cycle time exceeds the roundtrip
delay through the net, but may be substantially
shorter than the memory access time. The bidirec-
tional path through the network 1is latched up
with the acknowledge bit from the memory module
while addresses, memory commands, and data are
transmitted. A path width of 11 bits was chosen.
This width 1is wide enough to allow the module
number and a strobe through the network in
parallel and provides sufficient bandwidth for
the balance of the system.

The entire collection of processors will
run no faster than the slowest processor due to
points of synchronization within the programs
being executed. An important constraint on the
network 1s that it treat processor requests
fairly since a slow processor will slow the whole
system; in the applications studied, all pro-
cessors had equal amounts of computation to do.

(a) The information in this paper was previously
submitted to NASA Ames as the final report of
contract NAS2-9897. N

CH1569-3/80/0000-0079$00.75 € 1980 IEEE
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-slightly.

Thus on the average no node, in the network may
favor ome input port over another. For redun-
dancy and additional bandwidth the CN is assumed
to be duplexed.

The performance of the Connection Network
was evaluated by simulation. The simulators
collected data on the effect of blockage in the
network on processor throughput, particularly the
effect on the last processor to finish. The
simulator generated its own test cases. Table 1
shows the result when the simulator is presented
with a single access from each processor, and
then runs to completion. The test cases included
the three data access patterns that dominated the
aerodynamic flow programs furnished by NASA, as
well as the case where the 512 processors request
access to memory modules which have been selected
at random. Figure 2 shows the result for one
case in which each processor has a number of
random memory access requests. The three curves
in Figure 2 are R (the number of processors
making a request on this memory cycle), M (the
number of different memory modules represented in
these requests (some processors request
connection. to the same memory module, and thus
conflict with each other)), and Z (the number of
processors which the connection network succeeds
in connecting to some memory module). Z/M is the
fraction of .successes versus maximum possible
number of successes. In all these simulations,
the network was duplexed.

Harris and
reproduced here by

Simulations reported
Zichterman [5], and
permission, are shown in Fig. 3 and 4. 1In this
case, the processor queues were filled by
requests (and the associated timings) generated
by a simulator of the FMP processor. In this way
the test case had realistic timings. Fig. 3
shows six accesses during this first iteration of
a particular segment of code. Fig. 4 shows the
fourth iteration of these same six access
patterns. The spread of access times represents
the processors  getting -. 'slightly  out of
synchronism with each other as some get delayed

by

The network, with NlogN complexity, has
been validated for application to a
many-processor multiprocessor with success not
only for the access patterns exhibited in the
targeted areodynamic flow code applications, but
also for random patterns of accessing.

v
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B. Random Case

Cycle 11213141516

R(req.) [512(212| 63| 16| 4| 1

M(mem.) (327158 48| 12| 3| 1
Z(succ.)|300|149| 47| 12| 3| 1

Note: - First and third patterns are vectors with

stride p.
cess of several vectors.

leggth = 31, and stride between vectors, q, of

31" modulo 521.

and q = 5000 modulo 521.

Second pattern is the simultaneous ac-
Case (1) has p=1, vector

Case (2) has p = 1, length = 100,
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Abstract

In this paper we describe a memory system
designed for parallel array access, and first
used in the Burroughs Scientific Processor. The
system is based on the use of a prime number of
memories to allow conflict free access, and a
powerful combination of indexing hardware and
data alignment switches. The use of a prime num—
ber of memories causes certain difficulties in
addressing hardware, and particular emphasis is
placed on the memory indexing equations and
their implementation.

1. Introduction

The problem discussed in this paper is the
design of a memory system that can access, in
parallel, the required sections of an array,
e.g., a row, column, diagonal, etc. A number of
these memory systems have been discussed in the
literature. 1In [Batc77], Batcher discusses a
scheme for allowing access to words, bit slices,
or "byte" slices of a two-dimensional bit array.
Feng described another scheme for assessing
various "slices" of data in [Feng74]. Other work
described in [Ston71], Swan74], [Lang76],
[LaSt76], [Orcu76], [Sieg77]1, [Lawr75], and
[Shap75] has treated the problem from a variety
of viewpoints. However, all of these designs
have restrictions either on the kinds of
"slices" available without memory access con-—
flicts or in the data alignment capabilities.

In [BuKu71], Budnik and Kuck observed that
if the number of memory modules is a prime
number, then access to any 'linear" array
slices can be achieved without conflict (provided

*This work was supported by Burroughs Corporation,
Paoli, PA, and in part by the Department of Com-
puter Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801.

%
Current address is:

Data General Corporation
15 Turnpike Road
Westboro, MA 01581

CH1569-3/80/0000~0081%$00.75 € 1980 IEEE

that the memory ordering of the desired array
elements is relatively prime to the number of
array elements). This observation turns out to
be quite useful. However, the problem of addres-
sing this type of memory turns out to be diffi-
cult due to the need to do integer divisions and
modulo operations in the addressing hardware. In
this paper we will discuss these problems in more
detail, and will present a feasible implementation
of the prime memory system.

Since many of the ideas in this paper have
been incorporated in the design of the Burroughs
Scientific Processor (BSP), we will describe some
of the details of the memory, alignment, and
indexing hardware of this machine. The BSP is a
high performance computer designed to be espec-—
ially effective on vector processing applications,
without significantly impairing its performance on
scalar computations. As can be seen in Figure 1,
the BSP consists of sixteen processing units,
seventeen memories, two alignment networks, and a

16
PROCESSORS

PARALLEL
PROCESSOR
CONTROL

CONTROL SCALAR

MAINTENANCE [ PROCESSOR INPUT

QUTPUT
UNIT ALIGNMENT

ALIGNMENT

CONTROL MEMORY
(256 K WORDS)

CONTROL
COMMUNICATIONS

12.5 M W/SEC

ARRAY FILE MEMORY
SYSTEM MANAGER MEMORY SYSTEM
B7700/87800 17 MODULES
(5T08M

T WORDS) J

250 K W/SEC

Block Diagram of the Burroughs Scienti-
fic Processor

Figure 1.



central control and scalar processing unit. The
control unit includes a fully functiomal scalar
processing unit which can be overlapped with
vector operations, and additional memory for
scalar data and program storage. (See [KuSt79]
for further details.) Special hardware is
included in the control unit to perform vector
addressing and alignment control, and these
operations can be overlapped with vector and
scalar processing. We refer to the alignment,
indexing, and memory systems collectively as the
AIM system. We will discuss this system in more
detail in Section 3.

The alignment networks shown in Figure 1 are
in reality crossbar switches controlled by source
tags. (That is, each output port of the network
can supply a "tag" which specifies the number of
the input from which it needs data.) While in
general, crossbar switches are too expensive for
large arrays of processors, due to the relatively
small number of processors in the BSP it was
determined that crossbar switches were the most
cost-effective form of switch capable of perform-
ing all the desired alignments.

In particular, the functions such as com-
press, expand, merge, require a random aligning
pattern which only the crossbar switch could per-
form efficiently in the allocated time. Other
forms of switches were investigated, e.g., the
Swanson network [Swan74], Omega switch [Lawr75],
Barrel Shift network, ete., but these switches
do not perform all the functions needed in the
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2. The Storage Scheme and Associated Equations

By a storage scheme, we mean the set of rules
which determine the module number and address
within that module where a given array element is
stored. For the present, we will restrict our
attention to two-diménsional arrays. However,
generalization of these storage schemes is
trivial for higher dimensionéd arrays.

Figure 2 shows an 8%8 array stored in 5
memory modules using one storage scheme. Notice
that any 5 consecutive elements of a row, column,
diagonal, etc., all lie in separate modules, and
thus can be accessed in parallel, i.e., without
conflict. For example, the second through sixth
elements of the first row are stored in module
numbers 3, 1, 4, 2, 0, and at addresses 2, 4, 6,
8, 10, respectively.

We begin with some definitions. Let M be
the number of memory modules and P be the number
of processors, where we assume P < M and M is
prime. There are two storage equations, f(i,j),
and g(i,j) which determine the module number and
address, respectively, of element (i,j) of the
array. In our case, we have the following
equations:

(1)
(2)

[ # 1T+ i+ base] mod M
[ # 1+ i+ base]/P

£(1,3) =
g(i,3) =
where we assume the array is dimensioned (I,J),

"base'" is the base address of the array, and P is
the greatest power of two less than M. Notice

82

Memory Module Number

Address 0 1 2 3
0 00 [10 |20 [30 | x
1 50 [60 |70 | x |40
2 21 |31 | x |01 |11
3 71 | x |41 |51 |61
4 x |02 |12 |22 |32
5 4z |52 |62 |72 | x
6 13 |23 |33 | x |03
7 63 |73 | x |43 |53
8 3 | x |04 |14 |24
9 x |4k |54 |64 |74
10 05 |15 |25 |35 | x
11 55 165 |75 | x |45
12 26 |36 | x |06 |16
13 76 | x |46 |56 |66
14 x |07 |17 |27 |37
15 47 (57 |67 |77 | x

Figure 2. Example of an 8%X8 Array Stored in 5

Memory Modules

that these equations require a MOD M operation
where M is a prime number. They also require an
integer divide by P operation. However, P is a
power of two which makes this divide easily im-
plementable. This simplification is made possible
by the "holes" shown in Figure 2.

Clearly, the number of holes in each row of
the memory is equal to M - P in gneral. For
example, if M = 37 and P = 32, then 5/37th of the
memory is wasted. These holes could be filled
with other data, e.g., scalar data, but a cleaner
solution is available at the expense of an
increase in the complexity of the indexing equa-
tions (see [LaVo79]).

Next we define a linear N-vector, or simply
an N-vector, to be an N element set of the ele-
ments of the array formed by linear subscript
equations:

V(a,b,c,e) = {A(i,j): i =ax + b,

j=cx+e, 0<x<N} (3)
where again we assume the array is dimensioned
A(1,J). Thus, if a=b =0 and ¢ = e = 1, then
the N-vector (N = 5) is the second through sixth
elements of the first row of A: A(0,1), A(0,2),
ooy A(0,5). If a=c=2and b =¢e =0, then
the N-vector (N = 4) is every other element of
the main diagonal of A: A(0,0), A(2,2), ...,
A(6,6). DNotice that the elements of the N-vector
are ordered with index x.

Next we define the index equations for the
N-vector V. We define @ (x) to be the address, in
module U(x), of the x-th element of the N-vector.
Thus combining equations (1) through (3) above,
we get:



u{x) = f(ax + b, cx + e)

']

[dx + B] mod M
where d = a + cI and B = b + el + base.
d to be the

initial address. Next we get:

f(ax + b, cx + e)
[(cx +e) * I+ (ax + b) +
base]/P

o (x)

It is easy to show that if d is relatively prime
to the number of memory modules, then access to
the N-vector can be made without memory conflict.
(See [BuKu71] and [Lawr75] for a proof.)

Since it is most convenient to be able to

generate the address a(x) in memory u(x), we solve

for x in terms of u and get:

x() = [(u - B)d'] mod M

where d' is the multiplicative inverse of d modulo

M. Substituting this into equation (5), we get:

{(a + Ic)[ (u - B)d' mod M] + b +
el + basel}/P
{d[(u - B)d' mod M] + B}/P

a (1)

For example, consider the 5-vector V(0,0,1,1,),
i.e., the second through sixth elements of the
first row of A(8x8). We have B = 8 and d = 8,
thus

n(x)

a(x)

[(x+8) * 8+ 0] mod 5,
[(x+ 8) * 8+ 0]/4,

and since d' = 2 (i.e., 2 * 8 = 1 mod 5), we get:
a(u) = {8[2(u - B) mod M] + 8}/4.
Thus, u(x) = (3, 1, 4, 2, 0),

(2, 4, 6, 8, 10),

a (x)

and

OL(U) (10’ 43 8’ 2’ 6)'
Notice that
veey, &4, are 10, 4, 8, 2, 6, respectively. We use
the u(x) equation in the x~th processor to deter-
mine the module number of the memory containing
the x-th element of the desired N-vector. At the
same time, addressing hardware in memory U uses
the a (1) equation to determine the necessary
address of the desired element. We use a(u)
instead of a(x) because this eliminates the need
to route the addresses from the processors
through the switch.

This process is reasonably straightforward,
except that it is not obvious that the hardware
can do the necessary calculations efficiently.

In Section 3, we will describe how we partition
the equations into parts that can be done
separately by special hardware in the CU, AU,

[(cx + e) * T+ (ax + b) + base] mod M
%)

We define
order of the N-vector, and B to be the

(5>

(6)

()

the proper addresses in memories 0, 1,
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and memory addressing box.

3. 1Indexing Hardware

Vector instructions in the BSP are designed
to allow processing on vectors of arbitrary
length. The control unit automatically sequences
vector operations as a series of superword opera-
tions where a superword consists of 16 or less
vector elements. For example, a vector instruc-
tion which specifies a vector of length 53 would
be sequenced as three superwords of 16 elements,
followed by a superword of 5 elements.

Associated with every array is an array
descriptor (AD), shown in Figure 3(a). The two
values in the AD describe the base address and
total volume (words) of the array, and are used
for addressing and bounds checks on the array.
Every vector instruction refers to at least one
and as many as six vector operands. Each vector
operand is referenced through a vector set des-
criptor (VSD), shown in Figure 3(b). The VSD
actually describes a set of vectors from a given
array. B is the address of the first element of
the first vector in the set. This vector is
ordered with distance d, and contains L elements.
The first element of the second vector in the set
is the (signed) distance D from the first element
of the first vector. There are K vectors in the
set. Thus the VSD describes a two-dimensional
set of data.

Figure 3(a). Array Descriptor

ENENENENESTSEN
L,LL

b,B a
\X X\XXXXXX‘
i
) |
XX/XXXXXXK
Xxxxxxxxl

b: Memory address of the first element of a super-

word

B: Memory address of the first element of a
vector

d: Vector element displacement

D: Vector displacement

L: Remaining (unprocessed) length of a vector
LL: Initial length of a vector
K: Total number of vectors in the vector set
Figure 3(b) Vector Set Descriptor (VSD)
For example, the VSD (3 =1, d = 8, L = 8,
D = 2, K = 4) describes the odd numbered rows of
the array A(8,8) shown in Figure 2. Similarly,



VSD (B=0,d=1, L =28, D=16, K= 4) describes
even numbered columns, and VSD (B = 0, d = 0,
L=28,D=1, K= 8) describes a two~dimensional
set of data, X(i,j), where X(i,j) = A(1,1),

0< i, j < 8, and A(i,j) is the array shown in
Figure 2. The above parameters are not all

stored together. The first step in preparing a
vector instruction is to compute the above para-
meters, together with other values needed for
addressing and alignment. This is greatly facili-
tated by special-purpose indexing hardware.

The purpose of the indexing hardware is to
generate alignment tags and memory addresses for
vector access. Consider first the input align-
ment network. To access a superword, processor p
must generate an input alignment tag, IAT, which
specifies the memory module number of the p-th
element of the superword, i.e., u(p). At the
same time, the address of the p-th element, a(p),
is generated in memory u(p). Notice that each
processor could generate the required address
using equation (5), and then route this address
to the proper memory through the output alignment
network. However, by using equation (7), we
avoid the extra routing operation.

The output alignment network works similarly.
Memory U(p) is to receive the p-th element of a
superword, and thus generates an output alignment
tag, OAT, whose value is computed from equation
(6) above. Each memory also computes the required
address, 0(u), for storing the output.

The alignment, indexing, and memory systems
are responsible for a number of other functions.
We will discuss these functions in a later sec-
tion. TFor now, we will restrict our attention
to accessing linear N-vectors.

3.1 Linear N-Vector Access

Let us assume for the moment that we are
interested in access to a single superword, with
initial base address B, and with order d. If the
superword is to be fetched from the memory, then
for each memory |, we must generate an address
(see squations (4) through (8))

o) = {B+pCu) » d}/P 8

where p() = (u-B)d' mod M 9)

and for each processor p, we must generate an IAT
ulp) = (B+d * p) mod M (10}

However, if the superword is to be stored in the
memory, then for each memory U, we must generate
an address given by equations (8) and (9) and for
each memory | we must also genmerate an OAT

p(w) = [(u~-B) d'] mod M (11)

Thus M-addresses and P-IAT's or M-OAT's are
required to access a superword. In the next sec-
tion we will show how the generation of these
values can be simplified.

3.1.1 Recursive Generation Technique

Consider the equation (10). Substituting

(p + k) and (p - k) for p, we get

ulp 2 k) =[B+d* (p* k)] mdM
= [u(p £tk ¥1) £d] mod M (12)

Equation (12) implies that u(p + k) can be
generated from U(p) with modulo M addition/sub-
traction operations instead of a multiply followed
by a modulo M addition. Extending the notion,
from any u(p) all tags can be generated recur-
sively with appropriate modulo M additions or sub-
tractions. In practice, primary u(p) for several
values of p are generated using equation (10),
and secondary u(p) for the remaining values of p
are generated using equation (12). The number of
primary u(p) versus the number of secondary u(p)
calculated can be determined by a simple hardware
versus time tradeoff.

The same technique can be applied to generate
output alignment tags and memory addresses. The
equation for the CAT's is:

p(u k)= [p(uzk ¥1) £+d'] mod M (13)
For memory addresses, the equation is:

alp+ k)= @B+ {[puztkzl)£d]
mod M}z d)/P (14)

3.1.2 BSP Implementations

For the BSP, P = 16 and M = 17. The base
address, B, is a 23-bit value. Flement displace-
ment, d, is a 23-bit signed quantity. For timing

and hardware considerations, 4 initial memory
addresses, 4 IAT's and 4 OAT's are generated by
using multiplications and modulo and normal addi-
tions. Other addresses and tags are generated by
using binary adders. To use the binary adders,
the equations described in the previous section

were further simplified as follows. Let &§ =
d mod M, and notice that u(p) < M. For IAT's,
we get

plp + k) = u(p) + k8 - cM - as)
where M < u(p) +kd§ < (c+1) M

For example, assume M = 17. We might generate
primary u(p) for p = 1, 4, 7, 10, 13, 16 from
equation (10). Secondary u(p) for the remaining
values of p would be generated as follows from
equation (15).

u(p + 1) = u(p) + 6 corrected by =17 if

up) + 8 2 17
u( - 1) = u(p) - § corrected by +17 if
u() +86 <0

Equations for OAT's are the same as above
except § is replaced by d'. For memory address
generation, the equations are as follows. Let

A() =B+ p() = d so that a(u) = A(u)/P.

Then



A(u + k) B+d -« p(u+ k)
B+ d([d'(u + k - B] mod M)
B+ d([p(u) + dk'] mod M)

A(u) + kdd" - deM

where (16)

cM < p(u) + kd' < (c + 1)M

depends on the quantity p(u) + 2d' = d'(u - B)

mod M + 2d4' (see equation (16)). d'(y - B) mod M
(available from the primary address generator) and
d' are each 5-bit quantities and are used as

Figure 4.

Address generation in the BSP is performed
as follows. Primary A(u) are generated for u = 2,
6, 11, and 15 as shown in Figure 4. Then secon-
dary values are generated for K = #1, 2.
Notice that A(u) for u = 4 and 13 are each gener-
ated twice. This redundancy is used to check the.
hardware integrity by comparing duplicated values.
(In addition, modulo 3 checks are performed on all
additions to further verify hardware integrity.)

A primary A(u) generator is shown in Figure
5. B mod M and d' are each 5-bit quantities
(since M = 17) and are supplied by the Central
Index Unit (to be discussed in the next section).
The quantity d'(u - B) mod M is supplied by a
1024x5 bit ROM.  (The ROM contents differ for each
primary Uu.)

B MODM
B d d'
5
10241 5 &
123 123 ROM
MULTIPLICATION |e—rf— d'(-BIMOD M = p{u)
A23 \
TO OAT GENERATOR
ABDITION

3
Alp)=8+d[d'(z-BIMOD M]

Figure 5. A Primary Address Generator

A secondary address generator for A(u + 2)
is shown in Figure 6. Notice that in equation
(16) a test is required to determine the quantity
added to (or subtracted from) A(u). This. test

Primary and Secondary Address Generation
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address inputs to a 1024x5 ROM. The output of the
ROM determines the test result and is used to mul-
tiply the necessary additive factor for the final
adder. The other secondary address generators for
A(u + 1), A(p - 1), and A( = 2) are similar to
the one shown in Figure 6. However, the A(u * 1)
generators only need 2-way multiplexers and a one-
bit wide decision ROM. (Through further simplifi-
cation, these decision ROM's can be reduced to 512
words, so that the total decision ROM for four
secondary generators is just 6x512 bits.) The
primary and its four associated secondary address
generators are all grouped together physically.

Alp)=8 +d [d'(u-B)mop M] d'(p-B)MOD M

24dd' 5 ¢

1024x 2
ROM

2dd'- dMm

A3 23 123
24dd'-2dM

3

Mux %

-———l 423

ADDITION

is,

Atp+2)

DECISION BITS

Figure 6. Secondary Address Generation for

A(u + 2)

Generation of IAT's and OAT's is essentially
the same or simpler than address generation. Only
the values and number of bits change. One group
of hardware, described above, generates. the
addresses, and a similar group of hardware gener-
ates both the IAT's and OAT's. Both groups of
hardware form part of the Central Index Unit that
will be described next.



3.1.3 The Central Index Unit

One of the components of the control unit is
the Central Index Unit (CIU). The purpose of the
CIU is to a) perform automatic indexing of multi-
ple superwords; b) generate input and output
alignment tags; and c) generate 4 initial memory
addresses and indexing constants. The CIU can
be divided into 4 major sections: 1. Descriptor
Store Unit; 2. Descriptor Processing Unit;

3. TIAT and OAT generators; and 4. Memory Address
and Indexing Constant Generators. Figure 7 shows
the organization of the above sectioms. The IAT,
OAT and address generators were described in the
previous section. The descriptor store unit
stores up to 16 vector set descriptors (VSD). A
simplified descriptor's contents are shown in
Figure 3(b).

DESCRIPTOR
STORE
uNIT
1
DESCRIPTOR IAT & OAT uzmonvaAooRess
PROCESSING GENERATOR INDEXING ' CONSTANT
UNIT GENERATOR
| I
To ANS TO MEMORY
Figure 7. Central Index Unit

A superword access requires an Indexing Event
in the CIU. During this event the descriptor is
updated by the Descriptor Processing Unit to
reflect the access. The processing depends upon
the kind of descriptor as well as the data values
within the descriptor. For example, suppose we
have a two-dimensional vector set operand (e.g.,
K > 1). The processing will be as follows:

If the length L is lorger than a superward
(N), then the descriptor values are updated as
follows. These updates are performed after each
superword access is initiated.

«b+d*N
<~ B

<L -N

<+ K

A 0w o

However, if the length L of the last access
was equal or less than a superword (N), then the
next superword should come from the next vector
in the vector set. The appropriate update equa-

tions are as follows. :
b« B+D.
B« 3B+D
L <« LL
K<K-1
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These actions cause the length to be reset
to the initial length (LL), and increment the base
address (B) to the base of the next vector in the
set.

3.2 Other Functions of the Alignment, Indexing,
and Memory System

As we mentioned above, the AIM system is also
responsible for a number of other functions. In
order to facilitate the smooth flow of data
through the vector processing elements, forms of
data other than linear N-vectors must be handled
more or less automatically. These functions will
be discussed next.

3.2.1 Automatic Padding of Short Superwords

As mentioned earlier, not all superwords in
a vector operation are a full 16 words. Inter-
nally in the BSP System, the Arithmetic Elements
(AE) recognize a "NULL" operand. The array memory
also recognizes the NULL operand and inhibits a
store when a NULL operand is encountered. The
control unit automatically causes the alignment
networks to pad short superwords by selecting NULL
operands during input and output alignment .events.

3.2.2 Vector Element Conflict

In the memory storage scheme, if d mod M = O,
all the elements of the linear vector lie in the

Memory module. This is referied Lo as a
vector element conflict condition. In this case,
the access to the memory has to be sequential.

In the BSP System, this condition is handled by
foreing superword size equal to 1. Thus the BSP
System automatically adapts to this case without

any software or other interruption.

Same

3.2.3 Inner and Outer Loop Optimization

Consider the following FORTRAN program

setment.
D0 10 I=1, 14
DO 10 J=1, 4
10 A(1,J) + B(I,J)

This program can be performed in a single BSP
vector operation consisting of 14 superwords each
of length 4. However, it is faster to execute the
above program segment with inner and outer loops
interchanged, using 4 superwords of size 1l4. The
BSP optimizes these cases by using hardware detec-
tion of the fastest loop order from the parameters
L and K of a VSD. Of course, not all loops can beé
interchanged, and a software check is made to
allow the above optimization.

Space prevents us from describing all the
other functions performed by the alignment and
memory system. These functions include, among
others, handling scalar data in vector operations,
data compression and expansion, and mode vector
operations. : C '



4, Conclusion

In this paper we have shown one design for a
conflict-free array access memory. This design is
based on the use of a prime number of memories.
Crucial to this design is the simplification of
the indexing equations which allow most of the mod
M operations and much of the other index calcula-
tions to be done with ROM's and other simple hard-
ware. These simplifications were discussed in
Section 3, along with a brief discussion of some
of the necessary indexing hardware. Further
details can be found in [LaVo77].

The design of this memory system fits nicely
in the context of the Burroughs Scientific
Processor ([Stok77], [KuSt79]). The vector
machine instructions on this computer can encom-—
pass two levels of loop nesting, and the indexing
hardware carries out the necessary addressing and
alignment calculations automatically, once the
initial vector set descriptors have been set up.
One of the major problems with large vector com-
puters has been that indexing overhead and memory
access conflicts have a significant effect on
overall vector performance. By using the prime
memory system and indexing hardware described in
this paper, the BSP is able to execute vector
instructions efficiently.
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