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PREFACE

In a year filled with numerous national and international meetings, the
response to the call for papers and the attendance at the 1977 International
Conference on Parallel Processing have been extremely rewarding for its
organizers. This conference, the sixth if one includes the Sagamore Computer
Conferences to which it has succeeded, is now regarded as a regular annual
event. The 1977 conference, as its predecessor, had the formal support of
the IEEE Computer Society which is handling the production and distribution of
‘these Procéedings and of the Association for Computing Machinery.

This year more than 80 papers were submitted with prospective authors
coming from 9 countries. Each paper was refereed by at least two referees.
The 96 individuals who made this possible are listed at the end of these
proceedings and I would like to thank them personally for a job well done.
Special thanks are also due to Dr. U. Herzog who served as a liaison with
some European contributors, Mr. M. Kesselman who volunteered to organize a
panel on multiple microprocessors systems, Mr. J. McKay who set up a session
on PEPE, and Dr. M. Freeman and TCCA who helped in organizing and refereeing
papers for a session on Computer Architecture.

I think that the participants at the Conference will agree with me
for sending congratulations to Dr. Charles Elliott and his staff at Wayne
State University for taking care of impeccable local arrangements. I would
also like to thank Ms. Marcia Riedel at the University of Washington for her
help.

Last, but certainly not least, we owe a great debt of gratitude to
Professor Tse-yun Feng. Dr. Feng, who originated and organized the first
four conferences, was General Chairman of the 1977 ICPP. With him as a
constant driving force, we can look forward with great anticipation to next

year's meeting.

Jean-Loup Baer

1977 ICPP Program Chairman
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PERSPECTIVES OF PARALLEL PROCESSING

Franklin H.

Westervelt

Director, Computing Services Center
Professor of Computer Science
College of Liberal Arts
Professor of Engineering
College of Engineering

Wayne State University
Detroit, Michigan 48202

Keynote Address
1977 International Conference

Parallel Processing

Over the past years, the keynote
address for the International Conference
on Parallel Processing has attempted to
present one or another view of Parallel
Processing and, in so doing, provide a
point of beginning and a challenge for the
conference and 1its work. Each view of
parallel processing tends to see and to
emphasize certain aspects of parallel
processing and its state of development.
In a very real sense, each view provides
another perspective of parallel
processing.

It has been observed that the "real
world” is the union of an unbounded finite
number of "unreal worlds". Each unreal
world 1is a model or perspective of the
real world, or some aspect of it, held by
a particular observer. Occasionally, many
observers share a common perspective, at
least for a time, and cause a . particular
view to acguire a certain popularity and
acceptance. But it 1is of considerable
importance for each of us to develop
flexibility and adaptiveness so that we

may recognize and appreciate the
contributions provided for wus by other
views or perspectives. The best
perspectives recognize a great many
features and fine structure and, in so
doing, tend to provide unification and
understanding of complex subjects, but it
is also important to remember the
difficulty inherent in viewing any

complex, multidimensional subject from a
finite number of perspectives, let alone
from a single point, and thereby obtaining
an adeqguate picture of the subject.

This address will provide yet another
perspective of parallel processing. But
the point of view is, hopefully, different
enough that some may discern new features
and new challenges.

Parallelism in computation machinery
has been recognized and incorporated from

the very beginning. Circuitry to provide,
for example, parallel addition appeared
almost concurrently with serial circuits
for the same functional purpose.
Designers have always recognized the
improvement in speed and performance to be
gained through parallelism. The ability
of each member of the audience to carry
on, at this very moment, extremely
difficult feats of audio and visual
pattern recognition and interpretation

very easily while employing receptors and
information processors whose performance
specifications are comparatively
pedestrian is possible only because of
quite incredible parallel processing
inherent in each one of us. The human
being 1is, indeed, a most remarkable 80 kg
non-linear parallel processing
servomechanism capable of mass production

by unskilled labor.

The individual 1logic devices which
together comprise the human vparallel
processor can each be put to shame in many
ways by components already state-of-the-
art 1in contemporary computing systems.
Yet we remain an enormous distance away
from being able to assemble, package and
power a parallel processor of like
complexity and generality. It is
interesting to note the anthropomorphic
inspiration present in recent research on
optical pattern recognition systems and
interconnected cellular automata. Man has
always derived great benefit from the
study and modeling of existing systems and
from using these studies and models to
enhance and improve upon various aspects
or features of them. Parallel Processing
research should be found to be no
different in this respect.

With these very general remarks as
background, let me move toward the
presentation of wmy particular personal
perspective of parallel processing. Here
my experience in providing systems for all
aspects of computational services in



higher education at two major United
States universities must necessarily bias
my point of view. But I believe that my
perspective may be of sufficient general
interest on a larger scale to merit your
consideration. At the close of this
address, I hope that we share in a mutual
exchange of question and comment springing
from these remarks.

As we are all well aware, the world
presently faces an energy crisis. But it
is more nearly correct to recognize the
crisis to be in the consumption of certain
particular forms of fuels. In other
words, the problem 1lies in the most
appropriate use of raw materials as their
finite supply decreases and the cost of
acquiring them increases. The complex
long chain hydrocarbons present in fossil
fuels are a resource of chemical building
blocks that is much too valuable to be
simply oxidized by burning. I must
believe that the descendants of our
children's children will be most critical
of our generation for having squandered
and destroyed these complex molecules in
such enormous quantities by burning them.
Yet the world need for abundant energy in
order to provide an adegquate food supply
and general 1living standards for its
burgeoning population must be met.

Because the energy needs must be met
if we are to survive and continue as a
civilization, I will make no further
comment on this situation at this time. I
shall assume the solution for the energy
supply problem and focus my attention on
another 1longer range problem. In the
longer run, the obviously finite size of
the planet Earth and the material
resources available to it within its
reasonable sphere of acquisition will, in
my opinion, result in the problems of most
efficient and effective use of all natural
resources becoming the overriding concern
for all people. Materials may become too
valuable and costly to permit anything but
highly automated plants and machines to
handle, mold, cut, shape and form them
into products for our use. Reduction of
the waste of materials by the prooressive
elimination of the human error factor in
manufacture and production will come to be

a dominant objective achievable through
increased application of automation. Many
products, particularly in the computer
field, are only possible to be made at
all, even today, because of complex,
highly automated machines which operate

with very minimal human intervention. The
concurrent development and application of
information processing in its most general
sense and the consequent impact on further
development of parallel processing
methodology follows immediately in the

industrial and commercial arena.

But the systematic reduction of human
error in manufacture and production will
carry with it another effect. It has been
observed that, in any reasonably complex
system, there is no such thing as a change
that produces only a single effect. As
the use of automation increases, the
amount of conventional work performed by
humans in manufacture and production will
decrease. Leisure time growth today is
viewed as positive by many who may have
had their time occupied to too great an
extent in the past by conventional work.
But society does not yet compensate
leisure in any general sense and for some

persons bypassed by technology "leisure
time" may be only another term for
"unemployment"”.

Unemployment is a problem of concern

when national levels are in the 5% to 10%
range. But I <can tell you from recent
personal experience in the Detroit area
where unemployment in some segments of the
population reached 50% or more during the
recent recession that "concern" is simply
not an adeguate term to apply to such a
problem. = Consider then what the situation
might be if conventional work decreased
such that very high levels of unemployment
became common on a world scale. Each of
you may construct your own image of such a
world.

The world faces a dilemma: On the one
hand, the Puritan work ethic will tend to

decline to compensate 1leisure while, on
the other hand, scarcity of material
resources will cause conventional work to

decline as well. A solution for this
apparent dilemma will, in my opinion, come
from a redefinition of "conventional work"
and from a shift in human activities from
those that are intensive in the
consumption of non-renewable materials
toward activities that will tend to be
energy~intensive, and in many cases nearly
energy-exclusive. In other words, energy
will tend to become the one resource that
humans will, in general, be permitted to
use and consume in significant amounts
because it will be the most easily
replenished resource.

Consider some of the kinds of energy-
intensive activity implied by such a world
situation. "Work" may be structured in
terms of interaction at many different

levels of intellectual capability and
skill wusing the technology of extremely
advanced communication, simulation and

computation to enable persons to learn
complicated new skills and to be
compensated for doing so. In the process

of such learning and development, actual



materials would be consumed very sparingly

while the process may consume significant
energy in order to be carried out
properly.

If this should seem too farfetched,

consider only a few of the things that we
are presently doing of this nature. We
are all aware of the elaborate simulations
used in the development of skills needed
by the Astronauts and Cosmonauts. When
the first Astronaut actually stepped upon
the surface of the Moon, after consuming
enormous quantities of real natural
materials in order to get there, his pulse
rate, respiration and blood pressure
showed no indication of his awareness of
being in surroundings that for the rest of
us must still be regarded as fantastic!
Of course not, this human being had
already "been there before" many times
through simulation that was incredibly
"real" and which, by comparison, consumed
almost no natural resources. Furthermore,
this Astronaut was among many who
experienced the same training through
simulation and were paid to do it.

Airline pilots and the <captains of
supertankers are also examples of skill
development and learning through the use
of sophisticated simulations. I need not

relate to this audience the critical -role
played by computer technology in these
cases. I should only like to point out

that many much less sophisticated examples
exist where compensation has been given to
those learning or developing new skills or
capabilities. The learning of foreign
language while in military service 1is a
most familiar example. The extension and
refinement of these and similar examples
is, perhaps, the mechanism by which "work"
in the future may come to be redefined.

similar to this should

require significant
new developments in parallel processing
for general purpose computation in
addition to the special purpose forms that
receive most of our attention today. It
is of great importance that the necessary
research and development of large general
purpose parallel processors be funded now.

If something
come about, it will

To develop my perspectives of
parallel ©processing further, I should now

like to turn my attention toward a much
closer but highly related problem. 1In a
very strong sense, both the foregoing

problem and the one upon which I now focus
are related to education and learning.

Education, in general, and Higher
Education, 1in particular, is an extremely
labor intensive business today. For many,

if not most, colleges and universities the
fraction of General Fund Budget committed

to salaries and wages is 70% to 80% or, in
some cases, more.

As a result of declining numbers of
students in the primary and secondary
schools and general inflationary pressures

on salaries and wages, colleges and
universities face the very serious
prospect of ‘'"pricing themselves out of

business" in the next decade. Tuition is
already at a level that tends to reguire
one or more forms of student financial
assistance, even for students from
families nominally considered to be well-
to-do. For 1less advantaged students,
higher education in the absence of
substantial student financial aid is
already priced beyond reach.

In order to preserve or, better,
improve the aquality of higher education
while holding or, better, reducing the
cost, means for improving the productivity
of the system must be found. Other
business and industry faced with the same
sort of problem turned to technology for
help in solving it. Unfortunately, much
of the technology relevant to industry is
not relevant to higher education in trying
to improve productivity.

There are, however, two general
technologies with considerable relevance
to this problem. One, the general

"broadcast" technology, provides many ways
to improve upon the dissemination of
informatiorn in the "one-to-many" mode.
Audio-visual technigues, including the
entire scope from films and tapes to
video, all extend the audience of a given
educator and tend to reduce the unit or
per-student cost of conveying the
particular information or lesson. In
general, the more effectively the
broadcast technology expands the audience
size, however, the less effectively does
the technology accommodate to the
individual needs of particular students.
In other words, the "unfair advantage"
that distinguishes the wuniversity or
college from the correspondence school,
student-teacher interaction, tends to be
seriously impaired. And with this loss of
interaction, the quality of the
educational process is also impaired.

Again we face a dilemma: it appears
essential to improve the productivity of
higher education in terms of numbers of
students per person engaged in the
process, vyet it is the interaction or
feedback of the one-on-one educational
experience that characterizes the finest
aspects of that process.

The broad field of
technology is the other

computer
technology



relevant and uniguely suited to assist in
the resolution of this dilemma. Where the
broadcast technologies tend toward simplex

communications channels, computer
technologies have emphasized duplex
communications in many relevant forms.
The essential contribution is the

provision of a "many-to-one" technology to
provide more efficient and economical
interaction and feedback for use in higher
education.

The simplest examples of currently
available technigues are little more than
conventional store-and-forward
communications systems. Computer
conferencing or asynchronous conferencing
comes much closer to the 1level of
technological assistance required for the
solution of the gquality/quantity versus
unit cost dilemma of higher education.

A great deal can be done with
existing computer systems in this area.
But to reach the levels of reliability and
generality required to really solve the
problem, we do not yet have the computer

systems available with general purpose
characteristics and the <configurability
necessary to deliver the appropriate

computational power to a very large number
of dynamically created and changing tasks.
Parallel processing research and
development holds the promise of making
the required systems available.

I should 1like to take a moment to
describe a little of the work now being
done at Wayne State University which, I

hope, may be relevant to parts of the
solution for the foregoing problem. Let
me first give you a brief picture of the
university itself.

Wayne State University is
urban university with a number of

a major
rather

unique characteristics. At any given
moment, Wayne State University is an
active community of about 40,000 or more

students and faculty. But the momentarily
active student body of 30,000 to 35,000 is

drawn dynamically by personal
circumstances of work and study from a
student population admitted to the
university numbering well in excess of

100,000 individuals.

It has been demonstrated, for example
by Dartmouth, that when sufficient
computer resources can be made available
and accessible, nearly 70% to 80% of a
university community will find the
resource meaningfully relevant to their
educational experience.

But it is a considerable challenge to
try to provide such access using

contemporary systems at an @ institution
that 1is an order of magnitude larger than
Dartmouth.

At Wayne State University, we
over six years ago to  acquire the
facilities step by step and to develop a
hierarchical computing system for the
university that might address the problems
of higher education as rapidly and
effectively as resources and technology
would permit. The first decision was to
purchase, in 1971, a dual processor IBM
System/360 Model 67 configured as a full
duplex system. Since then we have been
able to retire the loan used to acgquire
that system and to wuse the system as a
foundation for further system growth and
development. This Aapril, we added an
Amdahl 470V/6 system as a part of the
plan. :

began

The design limitation on main memory
size and the lack of Error Correcting Code
capability in the standard IBM memory
products for the Model 67, as well as the
relatively high cost of IBM memory,
resulted in a contract between Wayne State
University and Fairchild Memory Systems.
Under this contract, the parties combined
talents to design a2 bipolar semiconductor
memory using the same 256x1 TTL 100 ns
memory chips supplied by Fairchild for the
Illiac IV. This memory system has several
interesting features, such as a memory
controller capable of executing
instructions, and it has demonstrated
significantly better verformance and
economics. Instead of being limited to a
maximum of 2 Megabytes, we have 4.25
Megabytes today at an average system cost
of about four cents per bit.

The Model 67 duplex architecture
remains unique in the IBM family and is
generally very poorly understood. This
architecture provides features to enhance
the parallel processing carried on by the
processors and channel controllers. These
features have been exploited in the MTS
(Michigan Terminal System) implementation.

While best known for its Address
Translation hardware, the Model 67 bus
structure providing for up to eight

processors or channel controllers to share
main memory and its extremely flexible
configuration capability features are at
least as important and significant. Quite
unlike the more common MP systems produced

by IBM. the duplex Model 67 provides
system symmetry and consequent
simplification of system design. 1In MTS,
for example, the only lack of complete

homogeneity among the processors is in the
keeping of Time of Day. Since an
independent clock for that purpose was not
a part of the system hardware, this task



is uniguely assigned
processor was IPLed first. Otherwise the
processors are treated in a completely
homogeneous fashion. The MTS software is

,to whichever

designed to support the maximum of four
processors and four channel controllers
supported by the bus. IBM never built a

maximum configuration to my knowledge, and
only one triplex, which was never
delivered to a customer. It 1is most
unfortunate that the features of the Model
67 were never carried forward into later
systems by IBM.

As but a single
importance and utility of these features
when combined with appropriate operating
system software, a soon to be released
paper by Procfessor R. J. Srodawa of the
Wayne State University Computer Science
faculty reports and discusses the
achievement of dual processor throughput
more than double that of the single
processor case. The 1literature commonly
cites factors of 1.5 to 1.8 for such
systems. While there is need for more
experimentation and modeling, these
results indicate that it 1is possible to
attain significantly better systems
performance than has generally been
reached and reported elsewhere. It is
also important to recognize the existence
of practical cases in which a two
processor duplex system can produce more
than twice the throughput of a single
processor system with the same memory
size. Such a result 1is by no means a
contradiction of the Second Law of
Thermodynamics. There are many reasons
why such a result 1is attained in this
case. Clearly these results require both
hardware which is designed with special
attention paid to issues of symmetry, lock
contention, storage contention and inter-

example of the

processor communication as well as an
operating system designed with special
attention to these same issues and
including design features that do not

double or more than double system overhead
in going from one to two processors. The
fundamental work of Alexander et al at the
University of Michigan in the design of
MTS should be much better and more widely
understood.

In April of this year, a 4 Megabyte
Amdahl 470V/6 was added to our duplex
Model 67 <configuration. This well known

pipelined machine was installed so guickly
that our own site preparation delay in
obtaining 400 Hz power held up initial
operation by two days. Since power became
available, we have been extremely pleased
with the reliability and performance of
this system. The Amdahl is being run
under the VM (Virtual Machine) operating
system in order to accomplish the

significant system work needed to
interconnect the 67s and the Amdahl using
two CCAs (Channel-to-Channel Adapters) in
a full-duplex communications protocol.
When ready for use in this mode, the 67s
will act as "frontend processors" for the

Amdahl and will enable concurrent support
for a large number of interactive
terminals performing relatively small,

quick response tasks and for a smaller
number of large, more demanding tasks with
slower response. The 67s are further
"frontended" by intelligent terminal
controllers to provide flexible and prompt
communications response. One such
controller, based on a PDP-11, serves as
the communications controller for up to 32
terminals and the MERIT computer network
linking our facility at Wayne State

University to TELENET and to the CDC 6400
at Michigan State University and the
Amdahl 470V/6 at the University of

Michigan. The goal for this system is to
form a hierarchical system capable of
providing good service for 400 to 500
concurrent general npurpose timesharing
lines or users. These users Dpresently
connect a wide variety of remote terminals
to our system ranging from "dumb"
typewriter or CRT devices to quite
"intelligent"” micro- or mini-based
graphics and laboratory systems.

The objective 1is to provide very
economical access to a computational
resource able to provide a "match" for a
given problem with the computing power
necessary for effective interaction. And
to accomplish this in a user-transparent
manner and on a scale consistent with the
size of our university community of users.

We see a great many challenging
problems in various aspects of parallel
processing to be solved in order to
achieve our goals and objectives. We
believe that dealing with these problems
in a real environment of demanding users

will cause us to seek out and implement
solutions that will contribute to the
understanding necessary for improved

future systems.

One characteristic of our system that
should be clear to all is its combination
of processors of a wide range of size,
bandwidth and capability. I am frequently
amused and sometimes annoyed by the
various proponents and protagonists in the
mini- vs midi- vs maxi-computer system
arqguments.

I have held that we, as computer
people, have yet to build anything but
minicomputer systems. Until we actually
build a2 real maxi-computer, I believe that
we have no basis for such arguments.



To illustrate my point, several years
ago I served on the Board of the Argonne
Universities Association, the governance
body for the Argonne National Laboratory.
The Laboratory had just acquired an IBM
195 system at a cost of some $10 to $12
million. Clearly a system that most might
feel to be a maxi-computer.

On the return flight to Detroit, my
seat companion was another member of the
AUA Board who was also a vice president of
the Detroit Edison Company. Thinking
about the 195 acquisition, I asked him,
"When was the last time that Detroit
Edison acquired a major power generator
for $10 million?" My companion laughed
and said, "Good Heavens! The transformer
substation for the Renaissance Center cost
more than that!" Which 1is exactly my
point, a single major power dgenerating
station today represents nearly $1 billion
and there are many such installations over
the entire United States, let alone over
the world! On the other hand, while we
talk of computer wutilities and maxi-
computers, we have yet to conceive of, let
alone build, any comparable scale machine.
Until we have designed and built such a
scale machine, I believe that we are
dealing with mini-computers and networks
of them, no matter what actual mainframe
we may be talking about.

When it 1is finally decided that a
true maxi-computer should be built for the
first time, it seems clear that parallel
processing must infuse the entire design.
Parallelism to improve speed and
performance, parallelism to improve system

reliability and availability, parallelism
to enable dynamic configuration,
partitioning and assignment of

computational power appropriate to a very

large number of both independent and
interdependent tasks, parallelism to
enable rapid and efficient processing of

very large databases regquired to meet the

needs of society. The call to this
International Conference on Parallel
Processing seems <clear and the future

exciting and challenging.

If one places today's point in the
development of modern computer technology
on the same time scale as the  Industrial

Revolution beginning with James Watt's
Condensing Steam Engine, then we have just
this year seen Robert Fulton's first
commercial steamboat! While we recognize

that the advance of technology tends to be
exponential- and that, as a result,
progress on an absolute scale in our time
is much larger than from Watt to Fulton, I
believe that our relative progress in
computer technology as viewed from a
century or two hence will appear to have
been no greater! We have no justification
to feel superior or to fail to press
forward with maximum effort.

Depending upon how one keeps the
score, we have moved toward the serial
limit of machine computation by seven to
nine orders of magnitude since Eckert and
Mauchly, and again depending upon who
attempts to establish the serial limit, we
have perhaps five or six orders of
magnitude remaining. Allowing for
complementary exponential effects in
difficulty and technology advance, we
should approach the serial limits rather
closely when we have lapsed again the time
interval already past in computer
technology development. We must continue
to press forward toward the serial limits,
but it becomes guite clear that we must
become increasingly aware of and sensitive
to the wvital role of parallelism in the
future of machine computation.

These are some of my perspectives of
parallel processing. I hope that you may
have gained from sharing them with me even
a tiny fraction of the pleasure that it
has been for me to present them to such a
distinguished and important audience. I
want to add my welcome to that of Wayne
State University and the IEEE Computer
Society to the 1977 International
Conference on Parallel Processing and to
the important work ahead of you. Thank
you for your most gracious consideration
and attention.
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1. Remarks on
Classification Schemes and Formal Systems

Classification schemes, languages, and formal
systems of all kinds have a considerable influence
on our thinking. Structures which are inherently
the subject-matter of a language as well as of
classification schemes form the basic material of
what can be expressed in a language or can be com-
prehended from its position in a classification
scheme. The same statement seems to be valid for
formal systems in a more specific sense. Thus the
tool can be used in the application area for which
it was created.

For example the Ricci-Calculus performs this
role only in the area for which it was created,
certain areas of physics and partial differential
equations. Qutside this area problems arise for
which it is not suitable.

B. Whorf has said that language guides thought
[11] and that therefore language sometimes pre-
vents the appropriate solution of a problem being
found. We must admit that in many cases a language
(it can be referred to as a calculus or notation)
can be a barrier rather than an aid in solving a
problem. It is also true that a classification
scheme can be a barrier, although it can provide
an insight into the relationships between the ele-
ments of some group.

If such a classification scheme is to be ap-
plied to animals and plants, then the elements are
existing objects and the scheme cannot completely
fail, although the discovery of a new species can
present difficulties in fitting it into an existing
classification scheme. Such a scheme can be called
a taxonomy, since all the species are considered
to be descended from a single species, in accor-
dance with the biological theory of evolution.

It seems more difficult to create a classifi-
cation scheme, or even a taxonomy, for some area
of contemporary technology. It is necessary to
project future advances as well as placing existing
examples in it.

*On sabbatical leave from: Institut fur Mathemati-
sche Maschinen und Datenverarbeitung (III),
University of Erlangen-Nuremberg, Martensstr. 3,
D-8520 Erlangen, Fed. Republic of Germany.

The aim of this paper is to show that some
existing schemes may fail to indicate the right
direction for the development of computer archi-
tecture, as compared with a new and promising clas-
sification scheme introduced in [3], [4]. We
would, however, not claim that the proposed classi-
fication scheme will cover all computer structures
which will arise in the future. We do show that
the proposed scheme does cover several very inte-
resting structures which cannot be placed at an
appropriate point in the scheme of Flynn [1] and
Feng [2].

The justification of the proposed scheme is
that it should be useful in classifying structures
and concepts which will emerge in the next years,
and be of use to the designers of these structures.
A further justification of the scheme is that the
elements of the classification scheme can be com-
posed and decomposed by operations which are sui-
table for the purposes of the computer architect.

2. Contemporary Classification Schemes

Existing classification schemes differ in the
information on which they are based. For instance
M. Flynn [1] bases his scheme on a 'data stream'
and an 'instruction stream'. By combining these
simple concepts he can classify many of the new
computer structures. In contrast, Feng [2] empha-
sises the number of bits which are processed si-
multaneously. These schemes are outlined in sec-
tions 2.1 and 2.2 in order to contrast them with
the scheme ‘outlined in chapter 3. In section 2.3
the definitions of multiprocessing proposed by the
American National Standards Institute [5] and by
Enslow [6] are discussed.

2.1 Flynn's Classification

Flynn proposed in 1966 a classification based
on the instruction streams and data streams. In the
conventional Princeton type computer a single data
stream is processed by a single instruction stream.
This is described as SISD (single instruction
single data).

In an array computer such as ILLIAC IV, a
single instruction stream processes many data
streams. Such a computer is known as SIMD (single
instruction multiple data). In ILLIAC IV 64 copies



of the same instruction are executed simultaneous-
ly by 64 arithmetic units. The Goodyear STARAN is
also a SIMD computer. It differs from ILLIAC IV in
many respects, in particular in being an associa-
tive array processor.

MISD is an abbreviation for multiple instruc-
tion single data. Some authors include various
types of pipeline computers in this class though
it is doubtful whether this is appropriate, and it
is unsatisfactory because it does not distinguish
between the three kinds of pipelining (see section
3.3 below).

MIMD is an abbreviation for multiple instruc-
tion multiple data. Here multiple processors are
working on multiple data streams. The simplest case
is where each processor is executing its own pro-
gram on its own data. The processors can be con-
nected via a bus system or can access multi-port
memory. The classification does not contain any in-
formation about the type of connection used.

Flynn's classification is illustrated by fig.
1, where many contemporary computers can be classi-
fied by assigning them to one of the four verti-
ces of a graph. However, the classification does
not fully satisfy the needs of computer architects
because it is not fine enough and because the in-
terpretation of the class MISD is not clear (cf.
[7]). In the Titerature many authors restrict them-
selves to the classes SISD, SIMD, and MIMD. A fur-
ther difficulty occurs if a computer contains both
parallelism and pipelining.

2.2 Feng's classification

Feng [2] classifies according to the word-
lTength, i.e. the number of bits which are processed-
in parallel in a word, and the number of words
which are processed in parallel. A computer struc-
ture is represented by a point in a plane (fig.2)
where the abscissa is the wordlength (normally 12,
16, 24, 32, 48, 60 or 64), and the ordinate is the
number of words processed in parallel. The latter
can be determined by the number of processors. For
example C.mmp which contains 16 PDP-11's with word-
length 16 bits is represented by (16,16). The ordi-
nate can also be determined by the number of arith-
metic and logical units in an array processor.

Thus ILLIAC IV is represented by (64,64).

Thus Feng's classification does not allow to
distinguish between multiprocessors like C.mmp and
array processors. This caused Enslow [7] to repre-
sent C.mmp in "gang" mode by (16,256). But C.mmp
in gang mode can be regarded as similar to ILLIAC
IV, with 16 ALU's executing a single program,
which would give the point (16,16) which is the
same as when gang mode is not used. The classifi-
cation also does not distinguish between autono-
mous processors which execute programs and ALU's
which execute operations, i.e. it does not distin-
guish between processing levels.

The TIASC (Texas Instruments Advanced Scienti-
fic Computer) is represented as (64,2048). The
number 2048 os obtained from the 4 pipelines each
consisting of 8 stages with 64 bits. However the

number 2048 can be obtained in many ways, e.g. 8
pipelines, 8 stages, 32 bits. Thus the classifica-
tion cannot represent a multiple pipeline structure
1ike the TIASC accurately.

It is also not possible to represent the pipe-
line structure at the program level of PEPE. PEPE
is characterized as (32,16), and the fact that each
set of data (up to 288, each representing a flying
object) is processed successively in three diffe-
rent ways is not represented. This is performed in
three separate series of ALU's, and we can regard
this as a three stage macropipeline (cf. section
3.3).

The lack of a rigorous definition of pipelin-
ing in the context of Feng's classification scheme
leads to difficulties in classifying structures
containing both pipelining and parallelism. Thus
the scheme is not entirely satisfactory for the
computer architect either.

2.3 Definition of Multiprocessing

Similarly to classification schemes, if defi-
nitions are too narrow, some viable computer struc-
tures may be excluded from consideration.

The American National Standards Institute [5]
defines a multiprocessor as:

"A computer employing two or more processing
units under integrated control." Manufacturers of
systems containing two to four processors did not
find themselves in conflict with this definition.
The definition did not exclude future developments
in computer architecture, but does not seem to have
had any impact on contemporary architecture. Sub-
sequently Enslow suggested a more detailed defini-
tion in his excellent book [6] which included

1. two or more processors, having access to
a common memory, whereby private memory is not ex-
cluded,

2. shared 1/0,
3. a single integrated operating system,

4. hardware and software interactions at all
levels,

5. the execution of a job must be possible on
different processors,

6. hardware interrupts.

We will concentrate on the first characteri-
stic:

A common memory is mandatory. Such a structure
is shown in fig. 3. It is easily seen that as the
number of processors increases the congestion in
the access to the common memory will also increase.
Thus Enslow's definition seems to exclude systems
containing very large numbers of processors. Micro-
processors costing a few dollars are now available,
so that systems containing thousands of processors
are now possible. Some of the more progressive pro-



jects of computer architecture such as PRIME [9]
are also excluded. On the other hand some struc-
tures which satisfy Enslow's definition are subject
to severe limitations on their expandibility and
application due to their use of an expensive cross-
bar switch [101].

Thus Enslow's definition does not either satis-
fy the requirements of contemporary computer ar-
chitecture.

2.4 The Influence of Classification
Schemes and Definitions

We have tried to show in the previous secti-
ons that definitions and classification schemes
have their limitations and can prove a hindrance
beyond a certain point. The computer architect
should recognize when this point has been reached,
and consider whether an entirely new classifica-
tion scheme or definition is needed, which will
ideally include all existing structures within a
particular area and also all structures which will
be considered in this area in the future. There is
no doubt that one should consider very carefully
the consequences of introducing a new classifica-
tion, because of its possible educational and nor-
mative effects.

3. The Erlangen Classification Scheme

3.1 Introduction

The Erlangen classification scheme (ECS) was
developed mainly in order to avoid the drawbacks
of existing classification schemes, as outlined in
section 2.

The basic requirements are

1. the objects to be classified should not be
unnecessarily restricted. Any kind of computer sy-
stem - in particular parallel processors, array
processors, multiprocessors, pipeline processors
must be classifiable in the scheme;

2. the classification must be sufficiently
fine to express those differences between the ob-
jects considered important;

3. the classification must be unambiguous.

The classification scheme developed was also
found to be a useful technique in computer archi-
tecture, in the sense that:

4. Composed computer configurations can be
described by using operators which are applied
to primitive elements of the scheme.

5. It can be used in evaluating architectural
configurations, in particular with reference to
cost.

6. It provides a measure for the flexibility
of a system.

7. It provides a starting point for scheduling

of flexible structures.

The objects of the classification are not ne-
cessarily computers only. This will be amplified
below. The flexibility mentioned in 6. above is
connected with the fact that a computer can be re-
presented by more than one point in the classifi-
cation. The various points which represent a com-
puter will be referred to as modes. The more modes
a computer has, the more choice of mode it has for
a particular application, and so the greater is
its flexibility.

The classification scheme can be used for al-
gorithms as well as for computers, and demon-
strates the inherent partitioning of the algorithm
into parallel sections and pipeline stages. The
classification of algorithms must then be related
to the classification of the computers on which
they are to be run. In general, jobs must be in-
vestigated to identify the classes of the algo-
rithms contained, and matched to the classes of
the computers on which they are to be run. A more
detailed discussion of this question will be
given in another paper.

3.2 Parallelism

Our classification aims at characterizing
the parallelism and pipelining present in a com-
puter system. The connections between the pro-
cessors and the memory blocks are not included
in the classification. It is assumed that the con-
nections can carry the expected traffic and pro-
vide the required availability. In such a case
the performance of the system is mainly determined
by the processors, including their capability to
transfer information.

The classification is based on the distinc-
tion between three processing levels:

1. Program control unit - Using a program
counter and some other registers, and, in most
cases, a microprogram device, the PCU interprets
a program instruction by instruction.

2. Arithmetic and logical unit - The ALU uses
the output signals of a microprogram device to
execute sequences of microinstructions according
to the interpretation process performed by the PCU.

3. Elementary logic circuit - Each of the
microoperations which make up the microoperation
set initiates an elementary switching process. The
logic circuits belonging to one Bit position of
all the microoperations are called an ELC.

A computer configuration can include a number
of PCU's. Each PCU can control a number of ALU's
all of which perform the same operation at any
given time. Finally, each ALU contains a number
of ELC's, each dedicated to one bit position. The
number of ECL's is commonly known as the word-
length.

If we disregard pipelining for the moment,
the number of PCU's, ALU's per PCU, and ELC's per



ALU form a triple, written
t (computer type) = (k, d, w).

We give some examples of the triple, where we
assume that the reader is familiar with at least
some of the computers:

t(MINIMA) = (1,1,1)

The "classical" serial computer. Some early
European computers were of this form.

t(IBM701) = (1,1,36)

An example of the early "parallel" (on the
3rd level) Princeton computers.

t(SOLOMON) = (1,1024,1)
The historical concept of an array processor.
t(ILLIAC IV) = (1,64,64)

The famous array processor developed at the
University of I11inois (without PDP 10).

t(STARAN) = (1,8192,1)

The well-known associative array processor
(without host and sequential control processor)
fully extended (32 frames of 256 bits each).

t(C.mmp) = (16,1,16)

The Carnegie-Mellon University mulit-mini
project using 16 PDP-11's.

t(PRIME) = (5,1,16)

The University of California, Berkeley, pro-
ject in which time-sharing is replaced by multi-
processing.

The different systems exhibit different kinds
of parallelism, which is uniquely attached to one
of the three levels. The numbers which make up the
triple show this directly.

At first sight, the triples are able to clas-
sify all viable structures, particularly in regard
to parallelism. But although parallelism is the
most important phenomenon in contemporary computer
architecture, pipelining must also be considered.
The examples above exhibit parallelism but not
pipelining. In the next section the classification
is extended to include pipelining.

3.3 Pipelining

Pipelining can also be implemented at the
three levels described in section 3.2, i.e.
1. PCU, 2. ALU, and 3. ELC.

For example level 3 pipelining is the well-
known pipelining of the arithmetic unit used in
the CD STAR-100 and the TIASC. The STAR-100 uses
a four stage pipeline and the TIASC an eight stage

pipeline.

An arithmetical pipeline can be regarded as a
"vertical" replication of ECL's, compared with the
"horizontal" replication used in a parallel ECL.
It is therefore reasonable to multiply the number
of ECL's, w, by the number of stages in the pipe-
Tine, w', to characterize the ALU. For the TIASC
we have then

t(TIASC) = (1,4,64x8).

The multiplication sign will be used at all
levels to separate the number representing the de-
gree of parallelism from the number representing
the number of stages in the pipeline.

The next higher level of pipelining is in-
struction pipelining. This involves the existence
of a number of function units which can operate
simultaneously to process a single instruction
stream. It is based on the inspection of instruc-
tions prior to execution to identify those instruc-
tions which can be executed simultaneously without
conflict. This is done by a scoreboard, in the ter-
minology of Control Data. These instructions are
executed as soon as a suitable function unit is
free. This technique is referred to as "instructi-
on lookahead", "instruction pipelining", or "paral-
lelism of function units".

A classical example of this kind is the CD
6600 computer. Disregarding for the moment the in-
put-output section (i.e. the peripheral processors),
the internal structure of CD 6600 with 10 function
units becomes:

t(CD 6600 central proc.) = (1,1x10,60).

The 10 units in this case are highly specia-
lized (e.g. floating point multiplication, integer
addition, incrementation, etc.) and therefore a
gain of a factor of 10 cannot be achieved. The rea
factor depends on the special program actually run-
ning. An average of 2.6 is a typical figure accor-
ding to information available from Control Data.

A combination of several function units of the same
type seems to be quite reasonable regarding the
better utilization of equipment on the one hand

and the now available large-scale integration tech-
nology on the other hand. These latter considera-
tions nevertheless are not directly a subject of
this paper.

Finally, we have to consider the pipelining
concept of level 1, which is so far not very known.
This concept can be called "macro-pipelining"[12].
Assuming that a data set has to be processed by
two different tasks sequentially, then it can be
performed in two different processors, each one
processing one task. The data stream then passes
the first processor (1. task), is stored in a me-
mory block, which the second processor also has
access to, and will then pass the second processor
(2. task). Since both processors can work at the
same time (on different data), the effective pro-
cessing speed can be in an ideal case doubled in

comparison with the use of only one processor.
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In such a way stepping from processor to processor
data are 'refined' [12] on one hand or are 'inte-
grated' [13, 8] in the case of ordinary differenti-
al equations on the other hand.

The PEPE array (without the host installation)

then is characterized as
t(PEPE) = (1x3,288,32) (3-fold macropipelining).

Summarizing now, the triple has been extended
to a sixtuple to incorporate pipelining. Neverthe-
less, we keep calling it a triple because the three
levels of consideration (as introduced in 3.2) sug-
gest that we think in three terms, which have to be
extended in some cases by an additional term, at-
tached to the other value (of the same level) by
using the sign x.

The triple now reads as follows:

t = (k x k'y d xd', wxw')

number of:

PCU's in parallel
(multi-processor)

PCU's in pipelining
(macro-pipelining)

ALU's in parallel—m
(array computer)

ALU's in pipelining—
(instruction pipe-
Tining-lookahead)

ELC in parallel
(wordlength)

ELC in pipelining
(arithmetic pipe-
Tining)

A1l entities are independent of one another.
A1l combinations therefore can appear.

Regarding the 'completeness' we claimed in
section 3.1, we would have to prove that, apart
from the three levels mentioned in section 3.2, no
essential other level can be defined, and that
there are also no phenomena apart from parallelism
and pipelining. This is not pointed out in detail
here, because this paper centers on another point,
the impact of classification schemes on computer
architecture. But there is some evidence regarding
the completeness of our classification. While there
are some modifications in details, how the level
2 pipelining is designed, there are no doubts about
the other levels. With respect to parallelism and
pipelining there is an exclusive duality as is
known from other fields of science where parallel-
ism and serialism also appear.

Regarding the triple notation, we introduced
the following simplifications:
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k=1, or k'=1, or d=1 etc. mean, respectively, the
simple cases, in which no parallelism or pipeli-
ning appear;

we write then

(Ixk',dxd' ,wxw') = (xk', dxd', wxw')

if k'4$l
(kx1,dxd' ,wxw') = (k,dxd', wxw')
(kxk',1xd' ,wxw') = (kxk',xd',wxw")

if d'$1
(kxk',dx1,wxw') = (kxk',d,wxw")
(kxk',dxd',1xw") = (kxk',dxd',xw')

if w'dl

(kxk',dxd' ,wx1) = (kxk',dxd',w)

If there is any form of pipelining then the
character x is preserved in the corresponding le-
vel. In the case of no pipelining the triple de-
generates to

t(MODEL) = (k,d,w).

This convention contributes to the clearness
considerably as well as to the transparency of no-
tation. Therefore we will use this convention in
the following.

3.4 Operations on Triples

As a triple characterizes a computer structure
of a certain homogeneity, a combination of triples
connected by an operator can denote

a) @ more complex computer structure
(as given e.g. by a special I/0 section
of processors or by a special host,
which are connected to a specific com-
puter configuration);
b) a selection of operation modes of a
structure, which can be used alterna-
tively, fitting to different needs,
according to the algorithmic nature
of different applications.

It should be noted in connexion with b) that
for any application there can exist a number of
algorithms, each one fitting a different computer
structure. E.g. one algorithm which is a solution
to a given problem can be highly suited for exe-
cution on a conventional Princeton type computer,
while another may be better suited for a parallel
or pipelining computer.

The forementioned computer CD 6600 would read
its complete structure, using a multiplication
sign x:

t(CD 6600) = (10,1,12)x (1,x10,60).

The first term on the right hand side of “="



denotes the existence of ten processors of a sim-
ple structure with a wordlength of 12 bits. The
second term is the characterization of the nucle-
us of the CD 6600, as it was given earlier. The
multiplication sign visualizes the fact that all
algorithms (programs) must be forwarded through
the peripheral processors first, in order to be

processed then in the central processor (1,x10,60).

Another example of contemporary computer ar-
chitecture is PEPE (Parallel Element Processor En-
semble). Its host is one CD 7600 with the charac-
teristic

t(CD 7600) = (15,1,12) x (1,x9,60).
PEPE then becomes
t(PEPE) = (15,1,12) x (1,%x9,60) x (x3,288,32)

where the Tast term (x3,288,32) corresponds
to the actual PEPE structure. As, in this example,
a certain flow of information penetrates the three
structures, the sign x is used between the corre-
sponding terms.

The structures characterized by the primitive
terms in these examples are very different. There-
fore a further condensation of the presentation is
not suggested. A further decomposition can be in-
dicated, e.g. by the use of other operators, for
instance in the special case of a CD 7600 by

(15,1,12) x (1,x9,60) =

[(1,1,12) + (1,1,12)+...4(1,1,12)]x(1,x9,60),
L b
Y

15 times

where (n,d,w) = (1,d,w)+(1,d,w)+...(1,d,w).
L j
Y

n times

We note that the operators xand+ again re-

flect parallelism and pipelining in a certain
“sense. The last example shows 15 equal processors
allocated in parallel. A given job (or task) will
be forwarded to the central processor; It may
also be necessary to allocate processors serially,
if there are different tasks to be performed one
after another. This is supported by the use of
functionally dedicated processors, specialized to
the respective task.

The last operator we have proposed so far is
the 'alternative' operator v, which is to be un
derstood as an 'exclusive or'. For the C.mmp pro-
ject which can be used in three different kinds
of operation modes, an expression becomes:

t(C.mmp) = (16,1,16) v (x16,1,16) v (1,16,16).
Similarly, the EGPA project (4x4 array of

processors, 32 bits each, described e.g. in [13])
reads
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t(EGPA 4x4) = (16,1,32) v (x16,1,32) v
(1,16,32) v (1,512,1).

The last term of this expression denotes the
operation mode "vertical processing" in which the
16 processors are used, each as if it consisted of
32 one-bit processors working in parallel. 16 pro-
cessors then result in an ensemble consisting of
16x32 one-bit processors. Information then is or-
iented to one-bit vertical streams (items) and the
machine-word of the memory becomes what is called
a 'bit-slice' in associative processors.

The operator v visualizes alternatives regar-
ding the processing modes which can basically be
used. An extended operator + can be used for a
further partitioning of a system in which the en-
semble is working. Scheduling algorithms have to
be developed which have to centre on the best
utilization of the system with respect to a given
set of jobs. The scheduling problems, however, are
not covered by this paper.

Yet, a remark on the 'flexibility' should be
added. The number of available processing modes
of a system seems to be a reasonable measure for
its flexibility. Therefore we define (F=Flexibili-

ty):
F(t(MODEL)) =

xd'

(kyxk)'»d, xdy

,wlxwf) v (klxk;,dzxqi,wzxwé)v“J
where || gives the number of triples connected
by the v sign.

For the examples presented above we have:
F(t(C.mmp)) = 3 and F(t(EGPA 4x4))= 4,

In this section we wanted to show that a
classification scheme becomes operable if it is
carefully chosen.

Nevertheless, it is not the aim of this pa-
per to introduce ECS(2) completely. We have used
it as a further example of the discussion about
the 'impact of classification schemes on computer
architecture'.

4. Summary and Outlook

Some things which can be done with ECS (chap-
ter 3), cannot be done with any of the systems
mentioned earlier (chapter 2). Although we do not
claim that ECS is the only possible classificati-
on scheme, we have found it useful for evaluating
computer structures, throughput, flexibility etc.

In this respect ECS seems, as briefly presen-
ted here, to be an approach which can become a vi-
able design tool. It classifies enough objects and
it does not Timit too seriously the set of objects.

(éjA rigid and more formal presentation of ECS is
under preparation.



The only limitation we perceive so far is the inhe-
rently binary nature of the definition of w (word-
length). If a computer is based on another modulo-
number system, then we would have to slightly modi-
fy the ECS as presented.

If, for historical reasons, we have to, for
example, include the old mechanical calculating ma-
chines of Ch. Babbage, then it would be necessary
to extend ECS. Also excluded from ECS are computers
of the analogue type. But this Timitation seems to
be quite natural in that analogue data processing
is quite different.

The only criticism which at this time can be
made within the aims of this paper could center on
the number of levels we introduced in chapter 3.
There we defined a triple according to three pro-
cessing levels. If perhaps in a later step of evo-
lution a level above the program interpretation le-
vel will be created, then we would have to extend
the triple to a quadruple.

But just this step to achieve a new level of
computer structure is a real evolution step we are
searching for at present. It was exactly for this
that the classification scheme has been developed
as a tool. About such an evolutionary step a deci-
sion cannot be made in advance. It is rather the
ECS classification scheme and the operations de-
fined on the elements (triples) which seem to be
the appropriate starting point for investigations
of that kind. We hope that ECS will not limit too
narrowly a future development, for it includes all
structures which so far have been proved as viable
examples of computer architecture.
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Abstract -- Program execution in some proces-
sors (analog, array, pipeline, data-flow, single-
assignment, etc.) reflects the structure of com-
pound operations described in the user program.
However, the original user description of these
operations has to be first transformed (transpor-
ted, translated, collected, interpreted) before
the actual execution can begin. The structure of
compound operations in this transformation can al-
so be exploited (parallel or pipelined data trans-
fer by I/0-devices and channels), and, under cer-
tain conditions, even in transformation and execu-
tion together (overlapped instruction fetch/ exe-
cution in lookahead processors). An extensive
application of this concept in the successive in-
terpretation of (very) high-level languages is
suggested by the current trend of hardware prices.

1. Introduction

The exploitation of parallelism in computers
has been preceded by the recognition of common
structural features of computations, at Teast at
some Tevels. For example, the need for the repea-
ted transport of programs and data sets from the
periphery to main memory resulted in the use of
multiple independent I/0-channels to the main pro-
cessor, which perform this transport in parallel.
Another example is the repeated transport of in-
ctructions from the main memory to the processor,
which resulted in the overlapping of the instruc-
tion fetch and execution phases. There is also
quite often a need for the repeated execution of
similar operations on elements of data arrays,
which led to the construction of array and pipeline
processors.

One feels that the types of parallelism in
these three examples are somehow different, but it
is difficult to characterize this distinction us-
ing Flynn's classification [1 ] according to whe-
ther instruction streams and data streams are pro-
cessed simultaneously. It is even sometimes not
clear whether pipelining can be considered as MISD,
i.e. multiple instruction stream/single data
stream processing, and if it is so, why (Enslow
[2]). The classification scheme introduced by
Handler [3],[4],[5] which consists of the numbers
of parallel and pipelining function units simulta-
neously active at the three main processing levels,
bit operation level, machine instruction level and
program level, possibly together with similar num-
bers for I/0-, front-end or other coupled special
processors, gives us much more information about
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the computer. This measure is quantified, simi-
larly to the parallelism measure introduced by
Feng [6], thus enabling one to compare different
machines according to their degree of parallelism,
and also giving us a much more detailed pi cture
of the machine structure, which is important for
our intentions here. One should always explicitly
state what level is considered in studies of pa-
rallelism, etc.; speaking of the "parallelism of
the ILLIAC IV computer" or of the "serial pro-
cessing of the von Neumann computer" is of little
value.

We find it useful to consider the computa-
tions together with the functions which they
shouTd implement. The user is interested only in
the functions he wants to have computed by the
machine, i.e. in the external behaviour of his
program; from his point of view the machine has
been constructed in order to execute these func-
tions. Regretably, the machine has much more to
do than this execution. The user program and data
are mostly placed in some user space, e.g. a ter-
minal, disc or tape, but the machine can perform
the execution only when the instructions and data
items involved have been brought into the machine
execution space. After the execution another
transport is necessary in order to give the re-
sults back to the user and to free the execution
space for the forthcoming execution. We would 1ike
to speak of a transformation rather than trans-
port or transfer, since the action can also in-
volve some encoding of instructions or data items;
in a broader sense also, for example, program com-
pilation or subprogram collection belong to this
category. Thus, although the user's only aim is
the execution of his program upon his actual data,
or more precisely the execution of the functions
composing the external behaviour of his program,
the machine has to perform both the execution and
transformation. Sometimes also the transformation
may be explicitly programmed by the user so that
its description constitutes a part of his program,
but the daracteristic of the transformation is
that it does not influence the external behaviour
of the user program.

Now, considering the cases of parallel com-
putations in a machine, we can divide them ac-
cording to the category into which the implemented
functions belong. In the first example above the
parallel action of multiple I/0-channels forms a
part of the transformation. In the second example
the instruction fetch belongs to the transforma-
tion while the operation performed by the in-
struction execution upon the actual data items



often forms a part of the external behaviour of
the user program. Operations performed during the
parallel execution in an array processor belong in
most cases to the external behaviour of the user
program. We could speak therefore of transformation
parallelism, transformation/execution parallelism
and execution parallelism, respectively. We look
closer at the transformation and execution and at
the potential inherent in the extensive exploita-
tion of their common structure in the second part
of the paper (sections 4,5). If the transformation
is a transport, examples of parallel transforma-
tion and execution at several levels in computers
can be given: job execution overlapped with the
transfer of the next jobs of the job stream from
the periphery to the main memory, overlapped
fetch/execution in lookahead processors, etc., and
proposals for its exploitation have also been made
across the whole storage hierarchy (cf. e.g.
Dennis [7], Madnick [8]). The aim is to achieve the
maximal possible execution speed with only very
small run-time storage requirements, by having addi-
tional processing capacity to perform the trans-
port overlapped with the execution. The price of
processing elements relative to memory has fallen
rapidly. But the same principle could also be ex-
ploited across the whole hierarchy of the succes-
sive interpretation of (very) high-level languages.
Some proposals in this direction have been made
e.g. by Miller and Cocke [9]. Consistent with the
usage of the terms "compilation" and "interpreta-
tion" in processing of high-level languages, one
could then speak of parallel compiled interpreta-
tion. The aim here could be characterized as, in
addition to that above, saving peripheral and mass
storage, for their prices remain also relatively
high. Of course, the processing elements for the
"on-fly" compilation must be more intelligent than
for a simple transport, but this should be no
problem today. A sufficient condition for the
parallel transformation/execution is that the
transformation preserves the program ordering
(section 5).

However, before turning to the transformation
and execution, we consider in more detail their
common structural features (sections 2,3). The term
"parallelism" is namely by no means exhaustive for
alle that can be observed in computations (nor
even in the papers presented at this conference,
so that the words "parallel processing" in its
name are partially misleading). We start with the
most natural computations which are performed in
the evaluation of compound operations, as described
by algebraic expressions and as has been exploited
by man for several thousand years in analog devi-
ces, and later e.g. in combinational circuits
(section 2). We prefer to use standard terminology
although it became quite modern in some places to
speak about "transitions", "tokens" and "firing".
Then we look at the structure of programs and
machines. As for the notion of "structure",
mentioned almost everywhere today, we find as its
best explanation its usage in mathematics: "The
fundamental structure problem of algebra is that of
analyzing a given algebraic system into simpler
components, from which the given system can be
reconstructed by synthesis." (Birkhoff [10], p.55).
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We begin with the synthesis of complex programs
and machines from simple ones based on the ex-
ploitation of similarity of their components. By
"complex" we mean here and in the following "more
intelligent". This synthesis has been mostly
motivated by economical factors, e.g. at the time
of the first electronic computers the number of
memory cells and function units required for the
execution of a computation had to be kept small.
The synthesis can be roughly characterized as
"trading space for complexity", sometimes also as
"trading space for time". Steps in the other di-
rection, i.e. towards the analysis of complex
machines into simpler ones can be observed in the
recent work in computer architecture towards dis-
tributed processing, parallel processing (e.g.
array and pipeline processors), or, as we prefer
to say, structured processing (e.g. data flow
machines and single assignment machines, cf.
Tesler and Enea [11], Dennis [12], [7], Dennis
and Misunas [13], Rumbaugh [14], [15], Plas et al
[16], search mode and interconnection mode con-
figurable computers, cf. Miller and Cocke [9],
macropipelining, cf. Héndler [17], and many other
designs described as reconfigurable, restructu-
rable, varistructured, variable, etc.). One could
characterize this roughly as "trading $omg}$xity
for space", when e.g. a complex central "Alles-
konner™ is replaced by a number of simpler di-
stributed processing elements, and sometimes also
as "trading time for space", when e.g. execution
time is saved by the use of a greater number of
processing elements, in accordance with the re-
cent developments of hardware prices and the
growing need to reduce execution time (section 3).

2. Compound Operations and Related Computations

The use of compound operations and their
description by expressions is widespread not only
in mathematics. Consider the very well know des-
cription (1) of how to get the length of the

c= ¢a2+b2, (1)

hypotenuse of a right-angled triangle, given the
lengths 3 and 4 of the sides adjacent to the right
angle. Perhaps a more suggestive picture is (2).

a=3,b=4

result c




Note that (1) and (2) are essentially two drawings
of the same graph where in the first drawing some
details such as edges, circles for nodes and the
ordering of the argument nodes are omitted for
reasons of economy (but are implicitly present),
and where the shape of (1) is dictated by the ty-
pographic needs of machine print.

In order to be able to execute the described
computation for the given arguments 3 and 4 (or,
as algebraists may prefer to say, to evaluate at
the point (3,4) the compound operation

RT x R* > RY : (a,b) » ¢ (3)
corresponding to the expression Va2+b2, cf.
Gratzer [18]),we must first have learned at school
that the operators denote certain operations on
nonnegative real numbers R*, i.e. we must know

what specific algebra we are dealing with, cf.[18].

For example Vv denotes the square root ope-
ration

R 5L:Typt . g0 t

which sends a nonnegative real number,s to that
nonnegative real number t for which t = s. Given
the number 25 as the argument in the following
simple computation description

t=Vs, s=25
or, more explicitly, (4), the execution of the des-
result t
(4)
argument

25

cribed computation (the evaluation of the opera-
tion square root at the point 25) means that we
determine the number 5 using our knowledge of the
operation square root and having the argument 25.
(The evaluation map

Rt
e: RF xRV >R (square root, 25) » 5 is very
important in mathematics, cf. Mac Lane [19], p.18,
61, 96, 216). We depict this in (5).

5
15('].?‘. FT-9 (5)

25

The evaluation of a compound operation des-
cribed by an expression such as (1) or (2), is de-
fined inductively over the height of an operator
occurrence in the expression, i.e. the length of
the maximal path from the leaves to the correspon-
ding node labelled by this operator in the tree
such as (2).

In detail: Let f' : A" » A denote the opera-
tion corresponding to the n-ary operator f of the
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algebra under consideration. Then the value of the
compound operation corresponding to an expression
in variables X sXgse e e s Xy at the point

(a75355-..53,) € Ak is defined by:

(i) the value at a leaf-node labelled by X; is a;
n " n " n " by a o_ary
operator beA is b

(i1) if an n-ary operator f is the label of a node

of height h 2 1 in the tree and bl’bZ""’bn

are the values at its argument nodes, then
f! (bl’bZ""’bn) is the value at this node.

In the above case, the induction proceeds as
shown in (6).
qu.r.

Isq.r.
SN T AN
ABAA

4 (6)

%q.r. 5
25 I >

Isq.r.
—_— >
/dd .
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For illustration, in these induction steps the
values of the intermediate results are transformed
by the operations and moved along the tree from the
leaves to its root.

The above interpretation and evaluation of
(1) is as old as the usage of the expressions it-
self. However, quite usual, and, in fact, also
very old, is a physical implementation of this con-
cept. If we have functional units for the required
operations, the function (compound operation) des-
cribed by (1), (2) can be implemented in the com-
binational network (7), for example by moving and

output O

(7)

input 10

12] input 2 O



transforming electrical signals along this tree
from the leaves to its root.

We could call the expression (1) (or the di-
rected graph in (2)) a program scheme or machine
scheme and the corresponding directed graph in (6),
(7) a program or machine implementing the function
(3), consistently with the common usage of these
notions (cf. e.g. Arbib and Give'on [20]).

The term "computation" is usually used for
the sequence of intermediate results or configu-
rations (consisting of the intermediate result and
the state) of the corresponding program or machine
for a given argument value (cf. e.g. [20], Elgot
and Robinson [21], Elgot [22]), in accordance with
the intuitive meaning of this notion. More appro-
priate would perhaps be computation run, thus
leaving the term computation to denote the set of
all computation runs for all allowed argument
values, similarly to the term "function" which can
be interchangeably used for the set of all corres-
ponding ordered pairs "(argument, result)". Con-
sidering the ordered pair consisting of the first
and the Tast element in the sequence of the inter-
mediate results of each computation run, and the
set of these pairs corresponding to the computa-
tion (i.e. to the set of all computation runs), we
get precisely the function implemented by the com-
putation, sometimes called the external behaviour
of the computation. In our case of unary and
binary operators in (2), the computation run for

the arguments (3,4) is the directed grap ) of

result

the intermediate results (instead of a sequence as
in the case of only unary operators) giving the
assignment (3,4) » 5 as its external behaviour.
For the set R* x R* of all admissible arguments we
get a set of similar graphs as the corresponding
computation, and their respective argument and
result nodes give us precisely the required func-
tion (3) as the external behaviour of this compu-
tation (cf. Arbib and Give'on [20]).

We remark that the only ordering of operator
occurrences in (1), (2) and of the intermediate
results in each computation run such as (8) is
that which is induced by their argument-result
relation, directly shown by the arrows in (2) and
(8). Operator occurrences which are incomparable
according to this partial order, as for example
the two nodes labelled with the power operator
"to" in (2), are often said to be inherently paral-
lel.

It was our intention to use standard termino-
logy for well-known phenomena such as expressions,
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their interpretation and evaluation. This is not
only convenient but, moreover, it enables one to
exploit results already known (cf. Give'on and
Arbib [23] for a study of a structure of the com-
pound operations described by a given operator
set). Some authors prefer to use notions like
"tokens which contain values", "an actor with a
token on each of its input arcs" which is "enab-
led and sometime later will fire" and quite often
they speak of "data driven execution" in a simi-
lar context.

We note that the program (machine) scheme
and the corresponding program (machine) have si-
milar graph structures (cf. (2) and (7): the
underlying directed graphs are indeed isomorphic).
Because these graph structures are our main con-
cern in the following, we shall feel free to use
the notions scheme, program and machine inter-
changeably, as convenient, hopefully without
causing any confusion.

3. Structure of Computations and Machines

The notions computation run and computation,
used in the last section, can be considered as
the prior and most natural concepts from which
the notions of "operation","operation composition",
"compound operation" and the corresponding
"operator" and "expression" are obtained by syn-
thesis. Concepts such as "interpretation" and
"implementation" represent steps in the other
direction, i.e. analysis. To this extent we can
speak of the structure of computations which is
reflected in the most simple programs and machi-
nes such as (2) and (7) of section 2. However to
explain this in more detail is outside the scope
of this paper so that we study only the struc-
ture of programs and machines in the following,
starting with the simpTe machines of the last
section.

We depict in (9) once more the program
(machine) implementing the compound operation

R¥ x RV > R* , corresponding to the expression
\/a2+b2 . The situation is now more symetric

result

with respect to data items and operators, since
operators can also be treated as data, e.g. they
can be changed. The only operation acting upon all



the data items and operators is the evaluation of
section 2, which we left anonymous. We call the
nodes such as those labelled a,b,2 or without la-
bel in (9) data nodes and the nodes labelled with
operators operator nodes. Every programmer would
probably be incTined to speak instead of the data
locations or variables and the (operator code part
of) instruction locations, but our data nodes can
actually be memory data locations as well as gene-
ral purpose registers or data lines of a bus, and
our operator node can be the operator code part
of the location in memory of an instruction, as
well as a function unit implementing the corres-
ponding operation or a control signal line of a
bus.

The implementation (description) of compu-
tations by the simplest machines (programs) such
as (7), (9) is not always economically feasible.
For large computations this would require too many
data and operator nodes. In the case of machines
this means that the number of registers and func-
tion units is too big; for programs their size is
too large, and the schemes (expressions such as
(1)) become clumsy. However, Tooking at these
simple machines (programs, schemes) we observe the
similarity of certain parts: the same data items
or operators occur repeatedly at different nodes,
somtimes even rather large identical, or at least

very similar parts of the machine occur repeatedly.

In what follows we describe several quite common
cases of synthesis, where such similar parts of
machines (programs, schemes) are "coalesced". This
happens at the cost of simplicity, since some new
mechanisms such as control flow, subtroutine call
must then be introduced into the machines (pro-
grams, schemes). Sometimes the saving of nodes is
outweighed by the introduction of a new dimension
into the machines (programs, schemes), the time.
For each case of synthesis we show also examples
of analysis of the complex machines into a greater
number of simple ones, motivated by the recent de-
velopment of hardware prices and by the increasing
need to reduce execution time. The external be-
haviour of the corresponding computations remains
in all cases unchanged, i.e. both the synthesis
and analysis are "semantics preserving".

Multiple use of data nodes. Looking at the
example of the machine (9) we see that the two
occurrences of the data item "2" could be coales-
ced, thus obtaining the machine (10). The under-
lying directed graph is then no more a tree (cf.
Arbib and Give'on [20]). This technique is quite
common in programming. Such a saving of data nodes
costs increased complexity of the machine: the
data item "2" must be available for two references
to it; increased execution time may also result
if, caused by technical circumstances, one such
multiple reference must wait for the completion
of another.

Analysis example: the replication (broad-
casting) of an argument with multiple references
used in the packet communication architecture
(cf. Dennis [7]).
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Multiple use of operator nodes. The two nodes in

(10) bearing the Tabel "pow.™ can also be coales-
ced, cf. (11). A typical example is the use of
function units in a centralized processor: there
will be only one function unit for the operation
"pow." which will satisfy all references to it.

Compared to the function units of (9), this happens
at the cost of increased complexity of the single
function unit in (11) which must be able to resol-
ve multiple references; increased execution time
may also result if one such reference must wait
for the completion of another. A second example is
the use of array operators in programming langua-
ges.

Analysis example: the provision of multiple
function units for more frequent operations, e.g.
two increment units in CD 6600. Another example is
the provision of multiple function units for ope-
rations on data arrays in array processors, or the
replication (broadcasting) of an array operator
when executed on an array processor.

Re-use of data nodes. In the labelled graph
(11) we have used explicitly the letters p, r, s,
t, u, V, W, X, ¥y, z for the nodes. Another possib-
le representation of this graph is (12) which shows
in another form the (finite) maps of the labelling




p=2, r=pow., s=a, t=b, u=r(s,p), v=r(t,p),

w=+, X=w(Uu,v), y=v z=y(x) (12)
and assignment of nodes to edges depicted in (11).
Now, observing the chain s»u»x»z of data nodes in
(11) with the property that none of them has other
immediate successors, we can use four copies
(1,s), (2,s), (3,s), (4,s) of the same node s,
with the chain ordering of 1+2+3+4, instead of the
chain s»u»x>z. (An algebraist would say we take
the direct product of {t} with the chain 1+2+3+4
together with the product order relation.) We get
the description (13). If we call the chain

1-2+3+4 a "time sequence", we can say that the

p=2, r=pow., (1l,s)=a, t=b, (2,s)=r((1l,s),p),
v=r(t,p), w=+, (3,s)=w((2,s),v),
y=Y", (4:5)=y(3,s)

(13)

three data nodes u, x, z have been saved by re-

using the data node s at three other time instants.

The price to be paid is increased complexity of
the machine, because we need a clock giving the
time impulses 1+2+3+4; increased execution time
may also result if the clock is slower than the
gate times and conducting delays along the path
s+u+x>z. Note that the program (machine) (13) can-
not be depicted as a graph like (11) without in-
troducing some new description conventions. Nor
can it be implemented as a combinational network,
since the clock functions as a delay unit bet-
ween two successive uses of the data node s; we
get a sequential network (cf. for example Hennie
[24], chapter 1, for a discussion of combinational
network/sequential network dichotomy in finite
automata implementation).

We can save yet more data nodes by extended
re-using of data nodes (14). Three data nodes,
p, s and t, are sufficient instead of the seven
data nodes in (11). However, the price to be paid
is increased execution time by additional ordering

of operators which were inherently parallel in(11).

1. p=2; 2. r=pow.; 3. s=a; 4. t=b;
5. s=r(s,p); 6. p=r(t,p); 7. w=+; (14)

8. s=w(s,p); 9. y=/~; 10. s=y(s).

We use in (14) the convention that the value of
the new ordering parameter 1+2-+3+4-+5+6-+7+8+9->10 is
written in front of a node on the left-hand side
of "=" and the implicit assumption that an occur-
rence of a node on the right-hand side of "="
should be indexed with the last previously occu-
ring index at this node; e.g. the full description
of the fifth assignment would be (5,s) = (2,r)

((355),(1,p))-
Analysis example: the iterative array imple-

mentation of sequential circuits (cf. Hennie [24]).

This is to some extent the principle employed in
pipeline processors, data flow machines (cf. [7],
[12], [13], [14]), single assignment machines

(cf. [111, [16]), interconnection mode configurab-
le machines (cf. [9]) and macro-pipelining (cf.

(171).
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Re-use of operator nodes. Because of the
symmetry of the programs (machines) with regard
to the data and operator nodes, the same reason-
ing holds here as above. Typical examples are re-
definable operators in some interpretive pro-
gramming languages, e.g. Snobol, or micropro-
grammable function units in some computers.

Analysis example: the replacement of the all-
purpose ALU of the CD 6400 by the dedicated func-
tion units in the CD 6600.

Shared use of description parts (branching).
Let the two programs (mach1nes)’1£ (15a) contain
identical parts consisting of & 3 . Then we can
join them to the single program (machine) (15b),
thus saving data and operator nodes. The price
to be paid is increased complexity, viz. the in-
troduction of a new mechanism, the control flow
into the program (machine).

a) b)
EONNG
1
h (15)

— e e
[¥=] > -0
— e e el
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The operators f, f, g, h in (15a) have then to
be extended to f',"f3, g', h' in which a new

control flow parametér is taken into account.
Examples can be found in ordinary programming.

Consider another case of the two programs
(16a) where the domains as well as the value sets

®H ®

a) b)

o hy
th tny
to 191
ki 1

(16)
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of both pairs of the operations g, g, and h, h
are disjoint. Then we can use the si%g]e pro-

gram (16b) with 9,5 h, being unions of the above
pairs and with h add%tiona]]y producing a truth
value for the coﬁtro] flow branch (cf. Elgot [25]).

Analysis example: the step from centralized
to distributed control, e.g. from centralized
"star" or bus interconnection to decentralized
full interconnection of computer modules (cf.
Arderson and Jensen [26]).

Re-use of program parts (subtroutine calls).
Eft a part consisting of the operations
£ occur repeatedly in the program (17a).




a) b)

Then we can save data and o%erator nodes if we in-
stead use multiple copies (> &, i) (i=1,2,3) of
the repeatedly occuring part (see (17b)), di-
stinguished by a new parameter i. Again, calling
1+2+3 "time" we can say that we use the same pro-
gram part in three different time instants. In
detail: if the repeated occurrences are

O O-—g}—-0O  (i=1.2:3) (18)
ST B T T
. and operator nodes

with data nodes Xis ¥Yis 2
Ujs Vi then the use of (19) instead of (18)

{ O O E O »1) (i=1,2,3) (19)
X u y v z

represents normal subroutine calls while (20) re-
presents re-entrant subroutine calls. The price to

X T2 vz,

be paid is increased complexity, viz. the neces-
sary introduction of a new mechanism into the pro-
gram, the subroutine call. Increased execution
time may also result if one of the multiple calls
of the same subroutine must wait for the comple-
tion of another.

Analysis example: some compilers generate
"inline code™ for each call of an intrinsic or
library function subroutine, i.e. they generate
full object code of the subroutine at each place
corresponding to a subroutine call in the source
program.

4. Transformation and Execution of Programs

In the last section we considered generally
the structure of computations. In this section we
want to make a difference between the computation
implementing the external behaviour of the user
program on his data, which we call simply execu-
tion in the remainder of the paper, and the com-
putation performing the transformation of the
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user program and data, as outlined in section 1.

There exist different methods to perform the
transformation necessary for the execution of a
program upon its actual data.

Global program/global data transformation:
First the whole program and alTl initial data are
transformed, then executed,and then the final re-
sults are transformed back. The following are some
significant features: Positive: (a) Because the
whole transformation is performed in one piece,
before and after the execution respectively, it
is possible to analyze the transformation, as de-
scribed in section 3, to the extent this is econo-
mically feasible (e.g. several I/0-channels which
can transport simultaneously several data files
needed for one program). (b) Because the whole
execution is performed in one piece, it is possib-
le to analyze the execution, as described in
section 3, to the extent this is economically
feasible (e.g. array processors, associative pro-
cessors, arithmetic pipelining). Negative: (c
Large storage capacity is required for program and
data in the (expensive) execution space (e.g. main
memory required to store a large compiled program
and the large data arrays to be processed by this
program). (d) Too much transformation is perfor-
med on programs where only a small part of all
instructions (operators) and data items actually
occur during execution (e.g. loading of a segment
of a segmented executable program when it is acti-
vated, where the whole program segment is trans-
ported into the main memory although possibly only
a very small part of the segment will actually be
executed; or a paging machine where a whole page
of data is transported although possibly only a
few data items of the page will actually be pro-
cessed).

Local program/local data transformation: for
a singTe user program statement that has actually
received control: first the instruction (operator)
and data items which are the arguments are trans-
formed, then the corresponding function is evalua-
ted, and finally the results are transformed back.

Significant features: Positive: (a) Small storage
capacity is required for program and data in the
execution space (e.g. a simple machine with a few
registers into which the function code and argu-
ments are loaded for evaluation). Negative: (b
Because transformation and execution are inter-
leaved in small slices, they both can be analyzed
to only a very small extent. (c) For the same
reason as (b), the transformation delays the exe-
cution (e.g. a high-Tevel language interpreter).
(d) Too much transformation is performed on pro-
grams in which many of the instructions (opera-
tors) and data items occur repeatedly during exe-
cution (e.g. a high-Tevel language program per-
forming a large number of iterative computing
steps, which is interpreted by a language inter-
preter).

There are also intermediate or mixed methods
of performing transformations which try to ex-
ploit some advantages and avoid some drawbacks of
the two extreme methods given above.



Global program/local data transformation: the
whole program is transformed before and after the
whole execution, while data items are transformed
only when required for the current execution, and
then transformed back again (e.g. an executable
program processing direct access disc files).

Combined global/local transformation accor-
ding to the assumed number of occurrences of in-
structions (operators) and data items during the
execution: the most frequent are transformed glo-
bally into the execution space before and after
the whole execution, while the remaining are trans-
formed locally only when required for the current
execution (e.g. parts of an operating system or a
hierarchy of subprogram libraries in general pur-
pose applications). A modification of this method
is the dynamic global/ local transformation: in-
structions (operators) or data making up the glo-
bally transformed items in the execution space will
not stay there for the whole execution but may be
exchanged for locally transformed items, e.g. if
they have not been involved in execution for a
long time (e.g. usage of general purpose registers
of a processor by executable programs which load
them with some data more frequently required for
execution and replace them later by others; an-
other example 1is the cache memory, or the throw-
away compiling, cf. Brown [27]).

Blockwise transformation: Program and data
are partitioned into bTocks; any of these blocks
is transformed into the execution space whenever
an item it contains is required for execution, and
it is transformed back when an item outside of this
block is required (e.g. segmented loading of pro-
grams, paging machines).

These intermediate methods depend heavily on
the specification of the portions of programs or
data which are to be transformed locally and glo-
bally, respectively. If badly specified, they can
result in much worse overall performance than in
the first two methods (e.g. columnwise processing
of a Targe matrix on a rowwise paging machine).

5. Common Analysis of the Transformation and
Execution

The global program/global data transformation
is an extreme case which allows very fast execu-
tion but requires very much storage in the exe-
cution space. If the storage capacity does not
suffice, one has to use some of the intermediate
methods. In these, however, the interleaved trans-
formation delays the execution, as is seen most
clearly in the opposite extreme case of the Tocal
program/local data transformation. If the machine
were able to transform Tocally the items required
for the next execution during the current exe-
cution, and simultaneously to transform back the
items which have been involved in the foregoing
execution, it could achieve an execution speed
comparable to execution after global transforma-
tion. This would mean analyzing the transformation
and the execution together, as described in sec-
tion 3. However, for the transformation of the
items which will be involved in the next execution
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the machine must first decide which these will be.
It is not always possible to give a precise answer.
The following method offers a rather ad hoc but
easy implemented solution:

Neighbourhood: One expects that the items in
some neighbourhood of those involved in the cur-
rent execution will be required for the next exe-
cution and transforms them (cf. blockwise trans-
formation, section 4) into the execution space,
simultaneously with the current execution (e.g.
hierarchical storage reorganisation, Madnick [8]).
Thus very fast execution may result, but in the
least favourable case the execution speed can be
worse than in the local transformation method,
while much more storage is required in the execu-
tion space.

However, there is a lot of information in the
user program about the possible next items. Let X
be the set of user's variables, L set of user's
labels, and assume that

1 F(T31 e 001)

P
]1;f':;'+(y';... )

] AT N ATIN
Tp,f X (Y. )

is a part of gi§ program, with labels 1,1.,...,
1pe L, where x,y are sequences (xl,...,x } and

(yl,...
manual interpretation, which we denote by I, then

assigns to f some (partial) function If:

Atl X oo. X Atm > (Au1 X oo X Aun) X p as its

meaning, where p denotes the set {0,1,2,...,p-1}.
The Tetters tl""’tm’ul""’un denote some ele-

ments of the set T of the allowed data types and

At serns Au the underlying sets, i.e. the sets

1 ™ of possible values on which the
function If operates. Thus If assigns to arguments
ars---s3p of the required types in the domain of

m
,yn) of variables of X. The user's reference

If some b,,...,b_of specified types as its resul-
ts, and a“truth 'value j as one of its possible p
outcomes. In accordance with the reference manual
interpretation I, the instruction labelled with 1
would be decoded as follows: If apse..sa are the

respective values of Xpoee oo Xp and if the value of

If at (al,...,am) is (bl,...,bn;j), then assign to

the variables y;,...,y, the values b;,...,b , resp.
and for the next action refer to the Tlabel ]j'

Thus each program statement specifies all its
possible direct successors. If the transformation
preserves this partial ordering, the possible di-
rect successors of the current executed program
statement of the transformed program can also be
specified.

Without going into further details, we call



the transformation order preserving, if it con-
sists of a map F of programs and a map ¥ of data
with the following properties: F maps the data
types, T»T' : tet', into the data types of the
transformed programs and v maps bijectively the
data items, At+A't. for each t €T, into the trans-
formed data items; F sends each function
name (instruction, operator) of a type

(t,...t ,u ...u_,p) into a function description
1 m’ 1 n

(program) f' of the type (t;...tg,ui...ug,p) which

is to be interpreted by the interpretation I' over
the sets Al, (t'€T') of the transformed programs
so that always (¢"x1 )oIf = I'f'oym; final-
1y we require that F map§ for each user program P
injectively the user variables, X»X':x»x', and
labels, L+L':1»1', into the variables and labels
of the transformed program P', respectively, and
sends each statement 1;f:;a(y;]l""’]p) of

P into 1';f':§<"+(§';1i soees100) in PY, with

—}, 1 l . . .
x'=(x 120X m) if ?=(x1,...,xm). These conditi-

ons on (F,¥) ensure that each user's program state-
ment and data item can be transformed independen-
tly of other items and that the transformed pro-
gram will process under the interpretation I' the
transformed data as the user expects, considering
his source program, data, and interpretation I
only. In order preserving transformations one can
apply lookahead methods for the transformation and
execution.

Partial lookahead: Some of the possible direct
successor user program statements are chosen and
the corresponding items are transformed during the
current execution. If the current execution has
another outcome than expected, execution is delay-
ed and the actually required items have to be
transformed first (e.g. lookahead processors). The
next method seems to be the most promising.

Total lookahead: For alle possible direct suc-
cessor user program lines the corresponding items
are transformed simultaneously with the current
execution (e.g. a user sitting at a demand termi-
nal and waiting a long time for the outcome of the
currently executed job control command, who al-
ready pretypes onto the screen the job control
line for each of the possible outcomes). Of course,
if the transformation is so complicated that it
lasts longer than the execution, then more advan-
ced possible successors must also be taken into
account.

From the above conditions on the transforma-
tion it follows that the transformation preserves
the "shape" of the program and data (cf. Goguen
[28]), as in the case of their transport (trans-
fer), or "refines" the program instructions and
operators as subprograms, and data items as data
constructs in a lower-level language, what we call
a successive interpretation. If we do not insist
that the transformation transforms instructions
and operators f of the source program "pointwise",
but allow f to be a source program subroutine,
than the transformation also involves, for example,
the analysis of a complex program into its "un-
folded" version, as described in section 3 (cf.
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e.g. Ramamoorthy and Gonzalez [29] for a survey
of some techniques).

6. Conclusion

We have explored the common structure of the
transformation and execution of programs. The
notion of transformation is general enough to
include not only transport but also high-level
language translation, subroutine calls, emulation,
hardware implementation of functions, etc. Most
of machine data processing consists of a hierarchy
of successive transformations where lookahead me-
thods can be applied, if these transformations
preserve the ordering of the instructions and
operators in a source program. Our aim was to at-
tract more attention to the potential inherent in
the successive interpretation of (very) high-level.
languages and the possibility of the exploitation
of Tookahead methods for the compiled interpre-
tation, in accordance with the recent develop-
ments of hardware prices.
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Abstract —— The paper summarizes previous
and contains new solutions for the problem to con-
struct schedules for a set of independent tasks
to be executed on several processors. For each
task requestline and deadline for execution and
the computation time required on any processor are
known in advance.

1. Introduction

A general monitor system, GMS, consists of a
finite set of independent tasks, T, each task
having an individual requestline, RL(T), an indi-
vidual "hard" deadline, DL(T), and an individual
computation time, CT(T), where
0 < CT(T) =< DL(T) - RL(T) is assumed.

The problem is to construct schedules for a
GMS and a minimal number of identical, independ-
ent processors of finite speed. If only one pro-
cessor is available the general solution for a
GMS is derived in [S1]. Restricted monitor sys-—
tems were investigated previously by Liu/Layland
[LL] and by one of the authors [$2], the latter
considering the case of several processors. An-
other special case was studied by Labetoulle [La],
assuming a single processor system.

The first result of this paper is

- a method for calculating the minimal num-
ber of processors required for executing a given
GMS without violating constraints;

- a scheduling scheme which describes the
class of all preemptive schedules for a given GMS
and a given number of processors.

We are interested in 'classes of schedules"
in order to be able to care for additional con-
straints imposed on solutions by reality (see
[SL] for further explanations).

Basically a scheduling scheme consists of two al-
gorithms (see figure 2):

~ the first algorithm computes the set of
"admissible" assignments of the GMS;

- the second algorithm computes the maximal
running time for the admissible assignment from
this set selected for execution.

all

The second result of this paper is a scheduling
algorithm for a GMS having some relatively weak

additional property. [H] is the full version of
this paper including all proofs of correctness of
the algorithms derived.

2. Notions and definitions

A general monitor system, GMS:= (T,RL,DL,CT),
is defined to be a finite set T of tasks and three

mappings for the requestlines, deadlines and com—
putation times

RL : T-R
DL : T~-R
CT : T—-R

The computation time, CT(T), of a task T gives the
time required to execute T completely on any of
the available processors. The processing of a

task T cannot begin before its requestline, RL(T),
and must be completed before its deadline, DL(T).
Because of the graphical representation of the

GMS chosen in this paper it is sometimes reason-
able to speak about lengths of tasks instead of
computation times of these tasks (see figure 1).

A processor system consists of a finite set
of independent and identical processors which are
able to process the tasks with a constant, posi-
tive, and finite speed. The units of length and
time are determined such that one processor re-
duces the length of a task by one in one time
unit. We exclude that several processors simul-
taneously execute one task or that one processor
execute several tasks simultaneously.

X< T is called an assignmert if all tasks of X
are processed simultaneously for some time, the
running time tX of the assignment X. We say a
preemption occurs if a processor executing a task
is interrupted before the length of the task has
been reduced to zero.

GMSy:= (T,RL{,DL;,CTy) denotes the remaining GMS
after a finite sequence of assignments with total
running time t has been executed.

A schedule S for a given GMS and for a given num—
ber of processors is determined by a finite se-
quence of assignments X and the respective running
times t®, compatible with the requirements of the
GMS.

A schedule for a GMS and M processors is called
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Representation of a GMS, processing
takes place from right to left. The
requestlines, deadlines and computation
times are the following:

RL(T}) = 0, DL(T;) =
RL(Tp) = 0, DL(Tp) =
RL(T3) » DL(T3) = 4, CT(Tj3)
RL(T,) = 1, DL(T) = 2, CT(T,)
RL(TS) N DL(TS) s CT(TS)
RL(T6) , DL(T6) s CT(T6)
Note that Y = (T,Tg) is not contained
in the set of admissible assignments
at time t=0, because if executed for
an arbitrarily small time, t=e, the
GMS. is over-critical in the k-inter-
val [1,2] U [3,4]. Thus T and Ty must
be assigned at first.
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optimal iff there is no other schedule for this
GMS and less than M processors.

The following definitions are required for
the description of the algorithms.

A single interval begins at some requestline and
terminates at some deadline of some task(s). A
multiple interval (or k-interval, k € N) is the
union of a finite number of single intervals. The
minimal load, MINLOAD (GMS,A), of a k-interval A
of a GMS is given by the sum over those parts of
tasks of the GMS which at least must be processed
inside of A, because they cannot be executed
outside of A without violating constraints de-
fined by the GMS (see figure 1).

For a given number of processors, M, a k-interval
A of a GMS is called critical iff the condition

MINLOAD (GMS,A) = M- length(A)

holds. It is called over-critical iff the condi-
tion

MINLOAD(GMS,A) > M- lenght (A)
holds.

The length of a GMS, L(GMS), is defined to be the
length of the interval between its first request-—
line and its last deadline. Then a GMS is called
adjusted (with respect to M processors) iff the
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condition

2. CT(T) = M+ L(GMS)

TET
is fulfilled and none of its k-intervals is over-
critical. Obviously the first property can be ob-
tained in a trivial way. For an adjusted GMS an
assignment is called admissible iff executing it
for an arbitrarily small time t, t > O, implies
GMSy is adjusted. The longest running time of an
assignment, X, with this last property is called
maximal running time t%ax‘
Note: Obviously an adjusted GMS contains at least
M requested tasks.

The basic idea of this paper is the following:

- In order to determine M, the minimal num-
ber of processors for executing a given GMS com—
pletely, consider the minimal load density, de-
fined by MINLOAD (GMS,A)/length(A) for all k-inter-
vals, A, and calculate the maximum. The next higher
integer is M.

~ In order to construct an optimal schedule
for the GMS and M processors control the minimal
load density of all k-intervals of the remaining
GMSt such that none of them exceeds this bound M,
by choosing appropriate assignments and running
times.
Any scheduling algorithm obeying this principle
generates optimal schedules. Moreover, all opti-
mal schedules can be described in this way.

3. Results for the general case

Theorem 1:

Let an adjusted general monitor system, GMS., at
time t and an M-processor system be given. Then
the subsequent algorithm Al computes the non-empty
set of all admissible assignments.

Al:
Input : GMSt,M

Step 1: Compute the set, Eé, of all requested
tasks, Ty, fulfilling the condition
DL(T,) - CT(Ty) = t.

For each critical k-interval, not begin-
ning at t, compute the set of all request-
ed tasks making it over-critical, unless
assigned immediately. The union of all
these sets is called I%.

Step 2:

Step 3: For each critical k-interval, beginning
at t, compute the set of all requested
tasks contributing to its MINLOAD. The
intersection of all these sets is called

3
It *

Set of admissible assignments, AA., de-
fined by

LLYE

Output:

(TiuTiuy) 1 Ye 1 A 1Y) =
M- ITluTén i.e.

B 1 2 3

{X 11Xl =MAT UT cXcl}
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énd Theorem |



Remarks

For an adjusted GMS the interval [t,L(GMS.)] is
always critical at time t. Thus all requested
tasks may belong to admissible assignments. More-
over, both definitions of AA coincide because
I U T < Ig.

Theorem 2:

Let an adjusted general monitor system, GMS, at
time t and an M-processor system be given and let
X be arbitrarily chosen from the set of admissi-
ble assignments, AA¢, calculated by algorithm Al.
Then the respective maximal running time, tpay»
can be computed by the subsequent algorithm A2.

A2:

Input : GMSt,g,M

Step -1 : For each task, T¢,not assigned by X,
compute the time t', t'= DL(Tt) - CT(T¢).

Step 2 : For each k-interval not beginning at t-
compute the next point in time, t' > t,
at which the tasks not assigned by X
would make it over-critical.

Step 3 : For each critical k-interval beginning
at t compute the next point in time
t' > t at which a task assigned by X
would no longer contribute to its
MINLOAD.

Step 4 : Compute the minimum, t%ax, of all the
above t' and of the computation times
of the tasks assigned in X.

Output : Maximal running time tX .

max
Remarks end Thgorem 2

For each k-interval the t' from steps 2 and 3 can
be computed by an easy and computational efficient
algorithm, omitted here because of its notational
complexity. But note that the number of k-inter-
vals may be exponential in the number of tasks.

Theorem 3:

Let a general monitor system, GMS, and the number
of processors, M, be given such that

M > [max { MINLOAD(GMS,A) / length (A) such that
A is k-interval of the GMS}] .

Let SA(GMS,M) denote the set of scheduling algo-
rithms for the GMS and M processors obtained from
the scheduling algorithm scheme in figure 2 by all
deterministic interpretations of the starred lines,
i.e. by all choice algorithms replacing these two
lines.

Let S(GMS,M) denote the set of all schedules for
the GMS on M processors obtained by applying all
SA €SA(GMS,M) to the GMS.

Then S(GMS,M) is the set of all optimal schedules
for the GMS on M processors.
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Let S€ S(GMS,M) be obtained by a schedulin§ algor-
ithm from SA(GMS,M) always choosing tX = tha for
all assignments. Then S consists of at most 3.2
assignments.

P

START
v L
Input: Adjusted GMS M, t:=0, S:=¢

. .- U

. L4

Com?ute the set of all admissible (by Al)
assignments, éét

‘Choose any assignment X € éé{ (%)
...... SV . . .
sz§utexthe maximal running time (by A2)
ot &, tmax X

Choose any_running time t , (x%)

o< X=X o

v
Update the representation of the
%GMSt
Extend the schedule obtained so
far S:= 58| (§}tX)

t:=t+tx

: . %
[NO - Are all tasks of the GMS
\. completely executed?
YES
. % .
" Output: Schedule §
Y

END

Figure 2: scheduling algorithm scheme

end Theorem 3

Remarks

The optimal schedules of an adjusted GMS are cha-
racterized by the adjustment of the remaining GMS,
at any point of time t. This also implies that

the admissible assignments are those assignments
consisting of requested tasks which can be exe-
cuted for an arbitrarily small time without in-
creasing M in order to be able to execute the re-
maining GMS completely.



4. Scheduling algorithms for the case MINLOAD > 1|

[H] contains various special cases, charac-
terized by additional assumptions about the given
GMS, allowing us to find an efficient scheduling
algorithm. One of them is briefly discussed in
this paper subsequently.

For a given GMS let {Ij, i=Il,...,i0} denote
the set of disjoint intervals in [0,L(GMS)] de-
fined by all requestlines and deadlines as bound-
aries of the Ij; let Ij be located lower than Ij
if i < j. The GMS is called g-simple iff
MINLOAD(GMS,I;) = q- length(I;) for all i=1,...,i0.
(For the rest of the section we additionally as-—
sume that q is the largest such number. This ad-
ditional assumption is done for simplicity of pre-
sentation but without any deeper relevance and
can be omitted easily.)

For increasing q the property of a GMS to be
gq-simple obviously becomes more and more restric-
tive. For g=1 figure 3 shows that this assumption
does not exclude many technically interesting
problems; especially for M=2 it is relatively
weak. In the sequal we describe an efficient sche-
duling algorithm based on this assumption allowing
to reduce the M-processor problem to a single pro-
cessor problem (it is not difficult to see that
this assumption can be further weakened without
loosing this reducibility).

In order to explain this reduction process
we start with an M-processor system, a GMS being
adjusted and nowhere over-—critical (with respect
to M) and being(M-1)-simple. From the (M-1)-sim—
plicity we see that uniquely defined parts of
tasks of the GMS mut be processed in uniquely de-
fined intervals I; (defining a set ggzi) and that
the total length of these pieces of tasks in Ij
(i.e. of the pieces in POT;) is equal to
(M-1) +length(I;), i=1,...,1i0.

A sho§t]moment's r?flection shows how to de-

rive a GMS" ' and a GMS  from the given GMS:

- The GMSM_l consists of the POT; to be pro-
cessed in I, i=l,...,i0,

- @MS! consists of those pieces of tasks in
GMS not contained in a POTj restricted by the ori-
ginal requestlines and deadlines; if a piece of a
task is in a POTi then for the remainder of this
task in the GMS' there is an exclusion interval,

EIj © Ii, where this remainder may not be process—
ed.

The GMSM ! may be scheduled for M—1 processors
by a trivial scheduling algorithm [C, page 76].
The following observation is now important: We can
always determine a particular schedule for the
eMsM™1 on M-1 processors such that its Ei's do not
exclude the schedule for the GMS! on the remaining
processor derivable by the DDEI-scheduling algor-
ithm (defined below). This follows from the open
Ii's property that they do not contain any request-
line or deadline.

In order to schedule the GMS] for the remain-
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ing processor we use a modification of the dead-
line driven scheduling algorithm cited in [S2],
such that the exclusion intervals of all tasks
are taken into account. We call this modification
DDEI-scheduling algorithm (for deadline driven
with exclusion intervals) and define it by means
of the tasks' modified deadlines. Given exclusion
intervals for a GMS! at any instant, t, the modi-
fied deadline of T from GMS], MDL(T), is defined
to be DL(T) - SLEI(T) - t, where SLEI(T) denotes
the sum of the lengths of all exclusion intervals
for T in [t,DL(T)]. The DDEI-scheduling algorithm
now simply prescribes to schedule at any time a
task (from the set of all tasks being requested
and not yet completely scheduled and not entering
into an exclusion interval) with smallest modified
deadline (for all tasks from this set).

5. Conclusion

Obviously the GMS scheduling problem can be
considered as a special graph scheduling problem;
thus the former problem is simpler than the latter
one.

For the preemptive case and the graph schedu-
ling problem presently finite scheduling algorithms
are not known for M > 2 (the proof of polynomial
completeness by Ullman refers to a somewhat differ-
ent problem, [4]).

For the preemptive case and the GMS scheduling
problem we presented finite scheduling algorithms
of complexity O(ZN), producing the class of all
schedules for arbitrary M (choosing maximal running
times for all assignments their number is bounded
by O(Nz) in each schedule).

For arbitrary M we were not able to derive
polynomial bounded algorithms nor were we able to
show the polynomial completeness of the problem.
In order to extend the knowledge about this prob-
lem it thus seems reasonable to look for "sub-
optimal" heuristic scheduling algorithms for a GMS
or additional assumptions about GMS's, reducing the
complexity of the problem. An example of how such
additional assumptions may look like and how weak
they may be is discussed in section 4. Both ap-—
proaches surely will be successful if it is pos-—
sible to reduce the number of k-intervals to be
considered in Al and A2 to be bounded by a poly-
nomial in N. Such results obtained by additional
assumptions can be found in [H]. Presently we in-—
vestigate scheduling algorithms obtained by choos-
ing feasible subsets (of polynomially bounded car-
dinality) of the set of all k-intervals.



Figure 3a:
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Representation of a GMS given by the
requestlines, deadlines and computation
times, respectively, of the tasks:
(0,1,1,); T2 (0,3,2.5);
(1,4,2.5); T4 (3,4,1);
(0,4,1).

The intervals to be checked are
11 = [0,1]; I2 = [1,3]; 13 =[3,4].

The parts of the tasks to be executed
in such an Ij on the first processor
are shown as bold lines. The thin lines
show the remainder for the GMS' to be
executed on the second processor.

The GMS is l-simple.
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SCHEDULING TWO-PROCESSOR SYSTEMS

M. Steinacker, D. Hennings, S. Schindler
Fachbereich 20 (Informatik)
Technische Universit#dt Berlin
Berlin, Germany

Abstract --  The paper summarizes previous
and contains new solutions for the problem to con-
struct time-optimal schedules for a set of tasks
to be executed on a two-processor system. We as—
sume that arbitrary precedence rules for the exe-
cution of the tasks and the tasks' computation
times on any of the two processors are known in
advance.

1. Introduction

Consider a finite, acyclic, weighted, direct-
ed graph, G (fawd-graph), with N nodes and E edges.
G represents a task system; a node is a task, the
weight of a node is the processing time of the
task, and an edge (v,w) means that task v must be
finished before task w can be started.

The problem is to construct time-optimal (mi-
nimal-length) schedules for a fawd-graph and for
a system of two identical processors (see [C],
page 84).

A well known special solution is obtained by
the algorithm of Muntz/Coffman [MC] which computes
a preemptive schedule in 0(N2) steps. If we re-
strict attention to a system in which all tasks
require the same processing time the algorithm of
Coffman/Graham [CG] computes a nonpreemptive sche-
dule in O(Na(N) + E) steps where a(N) is an almost
constant function of N [Se].

It is obvious that due to the various con-
straints imposed on real task systems (being not
considered in this paper) a set of schedules is
much more desirable in general than a single sche-
dule because in many cases at least one of the
schedules from that set will be compatible with
such constraints. That means: as soon as different
and/or varying costfunctions are to be considered
(i.e. reality shall be approximated) the approach
to the problem via classes of time-optimal sche-
dules [SchL] seems to be adequate.

Predicates provide the best description for
the class of all time-optimal schedules. Being true
during processing of a fawd-graph on a multipro-
cessor system these predicates guarantee the time
optimality of the respective schedule. By this
method for a certain type of task systems (charac-
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terized by: arbitrary task lengths, precedence
structure being a forest or an antiforest, arbi-
trary number of processors, preemptions are al-
lowed) one of the authors [Schl] constructed not
only one special solution but the class of all
time-optimal schedules, i.e. the general solution
of this problem. Due to this general solution the
authors [HSS] were able to derive a fast sched-
uling algorithm (where the number of steps is lin-
ear in N).

The result of this paper is

- a scheduling algorithm scheme which de-
scribes (by means of efficient algorithms) the
set of all time-optimal preemptive schedules for
a fawd-graph on a two-processor system (i.e. the
general solution of this problem) ‘2

- a special time-optimal scheduling algor-
ithm of complexity O(N4) (i.e. the same complexi-
ty as the Muntz/Coffman algorithm) generating
schedules with at most 3N preemptions (whereas
Muntz/Coffman's schedule may have O(NZ) preemp-
tions).

A short report about preliminary efforts to
obtain these results is given in [SchS].

Basically, the scheduling scheme consists of
two efficient algorithms to be applied repeatedly
to G until it is completely scheduled:

- The first algorithm, Al, computes the set
of all admissible first assignments, AA. That
means: Al computes the set, AA, of all those assign-
ments the tasks of which can be executed by the
two processors for some time t, t > 0, without loss
of optimality of the whole schedule.

- TFor an arbitrary admissible first assign-
ment X the second algorithm, A2, computes its ma-
ximal running time, t%ax‘ That means: after select—
ing aribtrarily any assignment X from AA, A2 com-
putes a time t%ax such that the tasks of X can be
processed for time t, 0 < t < tX x» Without loss
of optimality of the whole schedule and ti,x is the

largest such number.

The correctness of the algorithm is proved.
A full version of this paper including all proofs
will appear [St].

(a)Note that we do not talk about the set of all

time-optimal scheduling algorithms but about the
set of all time-optimal schedules.



2. The class of all time-optimal schedules

2.1 Notions and definitions

Let G be a finite, acyclic, weighted, direct-
ed graph, (fawd-graph G), where weights belong to
the nodes. The length of a path of G is defined as
the sum of the weights of the nodes on this path.
The height H(G) of the graph is defined by the
length of a longest path in G. |G| denotes the sum
of all weights.

Each node represents a task, T, the weight of
a node represents the length Z(T) of task T. The
directed edges between the nodes represent the
precedence relations > between the tasks. The set
of all tasks is denoted by T. A fawd graph is call-

ed task-graph.

The two processors are able to process tasks
with equal, constant, positive, finite speed, i.e.
the length of a task being processed is reduced by
one unit of length per one unit of time. If a task
is reduced to length zero, it is deleted from the
graph. A task may be executed if it has no prede-
cessors. A processor executing a task can be inter-
rupted before the length of the task has been re-
duced to zero. This is called a preemption.

Xc T( a) is called an assignment if all tasks
of X are processed simultaneously for some time,
tX, the running time of X.

A schedule S for G is determined by a finite
sequence of assignments X and the respective run-
ning times.(P) This shortest sum of running times is
denoted by topr(G). In an optimal schedule all
as51gnments are called admissible. The longfest run-
ning time of an admissible assignment, X, 1s called

maximal running time, tp. ..

In this paper the graph G is drawn in the
so-called stripe-representation D, using a car-
tesian coordinate system. (See figures la - lc.)
A task T is represented by a vertical bold line
of the length £(T) which might be partitioned in-
to several parts connected by descending dashed
arcs (see figure lc). If T precedes T' this is ex-—
pressed by a non-ascending dashed arc from the
bottom of the representation of T to the top of
the representation of T'. Arcs may be omitted in
cases as (T{,T;) in figure 1b. Two simple repre-
sentations are and Dh, where all tasks are po-
sitioned as low as possible and as high as possi-
ble , respectively, in the interval [0,H(G)]. The
horizontal line through the top (bottom) of a
task of G in representation D is called start-
line (end-line) of this task. Any horizontal line

is called height-line.

The load density, 1ld, of G in D between
two height-lines is defined to be the sum of the
lengths of parts of tasks between these height-
lines divided through the distance between these
height-lines. If G has a representation such that
its 1d = 2 everywhere in [0,H(G)], then G is called

(a)

underscores denote sets
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adjustable and this representation is called
adjusted representation (or a-representation).

Let us denote by L(G,D) the length of the
union of all intervals in [0,H(G)] in which
1d < 2. Let LMING:= min { L(G,D)| D 1is represen-
tation of G in [0,H(G)1} . Then obviously

1 1

= — - = — + N .
topt(G) 5 (1GI = LMING) + LMING = (|Gl + LMING)

Finally we sometimes extend G (without
changing notation) by a so-called zero task, which
is unrelated to any task in G and which has

length LMING; Then topt(G) is not changed but G
is adjustable.

The subsequent solution is derived from
the principle - proved in [St] - that a schedule
for an adjustable task-graph is optimal iff at
any point in time the remaining graph is adjust-
able.

2.2 Algorithms

The scheduling algorithm scheme we are
going to investigate is of the structure represent-
ed graphically in figure 2. From this scheme a
scheduling algorithm is obtained by assigning an
interpretation to the starred lines. The scheme
consists mainly of four parts

- checking whether G is adjustable

- determining the set of all admissible
first assignments, AA

- determining the chosen assignment's,
X€ AA, maximal running time, tg..

- updating G's representation such that
this step of execution is displayed.

The first three parts are based on the sub-
sequent algorithm AO and _slight modifications of
it. AO starts from G in DP and a partitioning of
ph into p levels, defined by the end-lines of the
tasks of any chosen longest path. We try to
adjust G level by level from the bottom (level
number = 1) to the top (level number = p). As we
have on any level the task of the longest path
chosen we.only have to check whether we have with-
in the level to be adjusted additional tasks for
adjusting this level (we call this level a-level);
if there are not enough such tasks, the next
higher level(s) is (are) considered (we call this
level c-level) for a task to be moved down in or-
der to adjust the a-level. This changes G's re-
presentation. Tasks of G in the current represen-
tation which may be moved down to the a-level
without violating the precedence constraints are
called a-candidates. We finally denote by ald the
load density of the a-level in the current repre-
sentation of G.

(b)

S is called time-optimal or optimal if there
is no other schedule with a shorter sum of
running times.
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Theorem 1:

Let G be a task graph. Then the subsequent algor-
ithm AO computes LMING

AO:
begin
input G in DD ; LMING:= 0
determine the p-levels of any longest path
for a-level from 1 step 1 until p
do c-level:= a-level + 1
while ald < 2 A c-level < p
do while ald < 2 A 3 a-candidate on c-level
do move at most ((2- ald)* length of a-level)
units of length of any a-candidate from
the c-level down to the a-level
od
c-level:= c-level + 1
od
LMING:= LMING+ (2- ald) * length of a-level
od
ouptput LMING
end AO.

end Theorem 1
Remember that with LMING we know topt(G), too.

For the calculation of the set of all admis-
sible first assignments, AA, we use a modification
of the algorithm A0 denoted by Al.

Theorem 2:

Let G be an adjustable task graph in Dh and let a
longest path (defining p levels) be chosen; let TP
denote its highest task. Then the set of all ad-
missible first assignments, AA, is obtained by
applying algorithm Al. Al computes a special a-
representation of G. Let p-set denote the set
of all tasks without predecessors in level p of G
in D®'. Let pld denote the load-density of level p.
Then AA is defined as follows

AA:= {(T,T')I T = if pld = 2
then TP
else arbitrary from p-set,
T'= arbitrary from p-set}
Al is defined as follows.

Al:

begin h

input G in D

determine the p-levels of any longest path

for a-level from | step ! until p

do while ald < 2
do
determine E and ES, E < ES, where E is the
height of the lowest end-line of a-candidates
and ES is the next higher such end- or start-
line, and determine k, the number of a-candida-
tes with end-line E. Move y units of length of
each of these k a-candidates down to the a-
level, where

y = min {(2- ald) * length of a-level/ k, ES-E}
od

od

output AA

end Al

end Theorem 2



For a task graph G the next theorem gives the
maximal running time tp,, of an arbitrarily chosen
admissible assignment X € AA.

Theorem 3:

Let G be an adjustable task graph and let

X:= (T,T') € AA be an arbitrarily chosen admissible
first assignment. Let GX denote the task graph
obtained from G by reducing the lengths of T and

T' by min {K(T% ,L(T")}. Let DX denote the represen-
tation DMfor GX. Let the representation D' for G
be defined such that all tasks of GX are located

as in DX and T and T' are located on top of DX,

By applying A2 to G in D' we obtain tﬁax.
A2 is defined as follows.

A2:

begin

input G in D'

determine the p levels of any longest path in G
for a-level from 1| step 1 until p

do

. see Al

od

E§AX:= minimum of the pieces of T and T' still
beyond of H(GX)

end A2

end Theorem 3

The next theorem is the main result of the
paper; it makes use of theorems 1-3.

Theorem 4:

Let SA(G) denote the set of scheduling algorithms
for a task graph G obtained from the scheduling
algorithm scheme, shown in figure 2, by all deter-
ministic interpretations of the starred lines. Let
S(G) denote the set of all schedules for G obtain-—
ed by applying all SA € SA(G) to G. Then S(G) is
the set of all optimal schedules for G.

end Theorem 4

Unfortunately the approach taken to derive
this general solution is of no help if more than
two processors are to be scheduled. But as present-
ly two processor systems are of great technical
importance and no general solution for m—processor
systems, m > 2, can be expected, a separate in-
vestigation of this special case is surely justi-
fied.

2.3 The computational complexity of the algorithms

Let G have N tasks and E arcs. Then the input
procedure has the complexity O(N+ E). See figure 3
for an overview.

For computing LMING, the set of all admissible
first assignments and the maximal running time for
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Input:

Compute LMING and extend G by a
_ zero task of length LMING
e
. 4 SR
Compute the set of all admissible
first assignments, AA(Gt)

Choose any X€ AA(Gt) (*)
Cnmpute the maximal running time

thax of X

Choose any time tX, 0< tX S tX (*)

‘max

T i
i

Yoo e e -
Update the representation of Gt
after the lengths of the tasks
assigned in X have been reduced
by tX,

Extend the schedule obtained so far,i.e.
S:= S concat (X,tx)~ ti= t.+ tX

e all tasks of G
M'gNO———<<\mep§el iy scheduled?
Output: §(6), tope(6)i= t
D RN
( m0

Scheduling algorithm scheme

Figure 2:
G here denotes the part of G
not yet scheduled at time t.

a chosen admissible assignment the algorithm AO
and its modifications, respectively, are used.
All three algorithms have the complexity O(N2).
Because of their similarity it suffices to con-
sider AO in order to obtain this bound.

Applying AO basically requires two steps:

1. Establishing the appropriate initial re-
presentation for execution of AO, i.e. bringing
Gy into ph . This requires O(N+ E) steps.

2. Execution of AO, requiring O(N2) steps.
This low bound seems to be achieveable, observing
that each of the N tasks can be cut in N parts at
most; it actually is achieveable by an appropriate
implementation as shown in [St].

The updatings of Gt, S and t obviously can
be done in O(N) steps.

If always the largest running time, tgax’ is
chosen, then the number of assignments is bounded
by 0(N2) because no assignment can occur twice.
Thus the complexity of the output procedure is

O(N ), too.



If moreover the choice of an X € AA(Gt) is
always done in at most 0(N2) steps then the com-
plexity of the scheduling algorithm (obtained by
this interpretation of the scheduling algorithm
scheme) is bounded by O(N4).

BEGIN
nﬂumwmwmA

—i

Input G

O(N+E)

Compute LMING (by AO) and
add zero task, if required
T
e “"*"”""'“>k()
"

Compute éé(Gt)
Choose X € éé(Gt)

o%)

o(?)
o)

(by A1)

(by caX)

X 2 4

Compute tmax (by A2) o(N%) O(N)
/

Various updatings o(m)

/ Are all tasks of G .
completely executed?

YES

e NO-ert

. /

Output schedule 0(N2)

SR S

END

Figure 3 Computational complexity of any sche-
duling algorithm derived from figure 2
by interpreting the starred lines as
follows: tX:= tX and for determining
an X € éé(Gt) we have some choice al-
gorithm, caX, of complexity O(N“), at
most.

3. An efficient scheduling algorithm

In this section we give a scheduling algorithm,
LNP, generating schedules with a low number of pre-
emptions. LNP has the computational complexity
0(N4), i.e. in the general case it is not faster
than the algorithm with O(N ) steps given by

Muntz/Coffman(a). But the total number of preemp-—

(a)For the special case £(T) = 1 for all T € T,
i.e. all tasks have the same length, LNP is of
complexity O(N+E), if we have a computer with
multi-level indirect addressing [T, p.84], like
e.g. the PDP-10, or an instruction determining
the number of leading zeros in a word [H,p.245],
or something similar.
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tions of schedules generated by LNP is bounded by
3N, whereas the M/C algorithm may generate O(N2)
preemptions, as can easily be seen [Sch2].

It is quite interesting to see that the LNP
scheduling algorithm is not derived from the
scheduling algorithm scheme; although the sche-
dules generated by the LNP algorithm may be gener-
ated by the scheduling algorithm obtained by a
suitable interpretation of the scheduling scheme.
Nevertheless it probably would not have been pos-
sible to construct the LNP algorithm and it is
hard to see how to prove its correctness without
the analysis required for the scheduling algorithm
scheme.

The algorithm LNP starts from an adjustable
G in . It begins with the highest tasks of G
in and procedes to the lowest tasks. At any
time t during scheduling G we denote by Gt the
part of G not yet scheduled. The abbreviatigzs
introduced subsequently all refer to G¢ in D%,
unless stated otherwise. Let HEL denote the
highest end-line HEL and let HEL-tasks denote the
set of all tasks with start-lines higher than HEL.
Let T* be a task with the lowest end-line of all
tasks in HEL-tasks and let TH be a task with
start-line H(Gy). HEL-tasks' 1s obtained from
HEL-tasks by removing ¢ and TH from it. Let T
be a task witha lowest end-line of all tasks in
HEL-tasks', if it is notempty. HEL-tasks" is ob-
tained from HEL-tasks' by removing T** from it.

Let the initial current representation, p¢
of Gt’ be defined such that

- all tasks not in HEL-tasks'
as in D

- the end-lines of the tasks of HEL-tasks"

have the height HEL gnd
%zzlocated
being lo-

- a piece of of length z
beyond HEL, the remaining piece of

z:= min {K(TEK), sum of the lengths of the pieces
beyond HEL of all tasks of

cated as in D%, where
HEL-tasks \ { T¢L } of Gy in D€},

are located

Let the current inadjustment of Gt in D¢ be
defined as

CIA:= 2* (H(Gt) - HEL) - sum of the lengths of the
pieces beyond HEL of all tasks of Gy in D€,

As long as CIA > O we must change D once more by
moving another task (or a piece of it) up into a
position beyond HEL. For this purpose we take a
task with the highest end-line of all tasks of Gt
in D¢ starting not above HEL, and which may be
moved up beyond HEL without violating the prece-
dence rules in Gy (this may imply moving up a
task, which is located beyond HEL, until its
start-line becomes H(Gy)). Let this latter task
(required for reducing the current inadjustment
of the part of G¢ in D beyond HEL) be denoted by
TC.

As soon as CIA becomes zero, the pieces of
the tasks beyond HEL may be scheduled by a simple
algorithm, e.g. the "packing" algorithm from
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Figure 4: An example of the application of the algorithm LNP.
Note the following pecularities of this example

- the highest and the lowest level cannot be adjusted

- the second lowest level has a current inadjustment
which can be reduced to zero

- in the second highest level the task with the second
lowest end-line (T;5 = Tﬂt) is taken only partially;
moreover, TXL = TH,
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[Cc], page 76.

Note that obviously the computation of HEL and
the associated adjusting takes place at most N
times and that each time at most 3 preemptions are
required.

Theorem 5:

Let G be a task graph in Dz. Then the application
of the algorithm LNP (defined below) generates an
optimal schedule, S, for G in at most O(Nz) steps
and S contains at most 3N preemptions.

The algorithm LNP is defined as follows.

LNP: 2
begin: Input G in D
while G not completely scheduled
do in G determine
= HEL, HEL-tasks", TH, 1€, T¢L,
move the tasks from HEL-tasks'" and a piece of
2L up beyond HEL such that Gt is brought into
its initial D€
while CIA> 0 A 3 TC
do determine T€
locate a piece of T® of length min{£(T¢),CIA}
beyond HEL
od
schedule the pieces of Gt in D¢ beyond HEL
by applying the packing algorithm
od
output S
end LNP

end Theorem 5

Because of its similarity to the algorithm AO
the algorithm LNP terminates after O(N2) steps.
Figure 4 gives an example of the application of the
algorithm LNP to a G such that the various cases
to be considered do occur.
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ANALYSIS OF STRUCTURES FOR PACKET COMMUNICATION*

Robert G. Jacobsen
David P. Misunas
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract -- In a system utilizing packet
communication techniques of message transmission,
all communication between the units comprising the
system is through discrete blocks of information
conveyed in packets. Interconnection structures
in such systems can range from bus and crossbar
structures to complex routing networks. A
comparative analysis of a number of
interconnection structures for packet
communication systems is presented and tradeoffs
between the varjous structures in terms of cost
and performance are analytically examined.

Introduction

The increasing popularity of multiprocessor
systems and the corresponding necessity for
efficient interprocessor communication means has
spurred the study and development of communication
paths for use in such systems. One means for
interprocessor communication which 1is gaining
popularity is that of packet communication. 1In a
system with packet communication architecture, the
units comprising the system communicate through
the transmission of discrete information packets
[21.

Classical approaches to the design of
communication paths have included such structures
as busses and crossbar switching networks. These
structures are necessarily small, due to the small
number of interconnected units and due to the
speed requirements placed on the structure. As
the number of interconnected units increases,
these structures become cumbersome both in size
and processing capability.

More recently, a new interconnection
structure, the routing network, has been presented
and used in the design of a new type of parallel
computer [3]. This structure is capable of
simultaneously conveying many packets to their
destinations in the processor and has a slowver
growth rate than the crossbar structure.

*This research was supported by the National
Science Foundation under grant DCR75-04060 and by
the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of
Naval Research under contract number N00014-75-C-
06661,
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The tradeoffs between the various
interconnection structures are not clearly
understood. In the case of the routing network,
little analysis has been performed at all.
Detailed studies have examined such structures as
the bus and crossbar [5, 9]. Some network
structures have been studied [1, 8], particularly
in the context of telephone switching networks [6,
7, 8]. However, these studies have generally
considered only fixed connection circuits, rather
than packet switching circuitry.

In the analysis of the present paper, we
examine the characteristics of three communication
structures: the bus, the crossbar, and the
routing network. The cost and performance of each
structure 1is analyzed to yield results as to the
various tradeoffs involved in the choice of one
structure over another. The analysis of these
interconnection structures is supported through
simulation results obtained on a packet
communication simulation facility.

System Architecture

The design of a system interconnection
structure is a difficult and poorly-understood
problem, generally relying heavily on the
experience of the system architect. There are no
rules or guidelines for one to follow in such an
exercise, merely a few general philosophies. In
the following paragraphs, we will examine this
situation more closely in the context of a packet
communication system.

A packet communication system generally has
some structure similar to that shown in Figure 1.
The units comprising the User of Figure 1 may be
processors, memories, functional units, or any
other devices capable of message transmission or
reception. The Communication Network of the
system provides a path between the various units
of the User. This interconnection structure may
provide a path from every unit to every other
unit, from groups of units to groups of units, or
from each unit to one or several of the others.
For the purposes of this discussion, we will
assume the most general case; that is, every unit
of the User can communicate with every other unit
through the Communication Network. Other
interconnection schemes can be considered as being
composed of a number of embodiments of this more
general case.



Communication
Network

Figure I. System Structure

Presumably, the designer of a packet
conmunication system has an application area in
mind for the system and has some idea of the
amount of traffic which will pass over the
communication medium. Thus, through some
analysis, one should be able to generate a curve
corresponding to the solid line of Figure 2. Such
a user load curve expresses the number of packets
generated as a function of the time required for
an individual packet to transit the communication
network and should always have a non-positive
derivative, indicating that interunit
communication will generally occur less frequently
as the communication times increase.

On the other hand, the dashed curve of Figure
2 represents the load characteristics of the
Conmmunication Network and always has a non-
negative derivative. The slope of the
Communication Network load curve demonstrates that
the load on the communication medium increases,
the delay through the medium should eventually
increase.

Packet
Traffic

Network Transit Time

Figure 2.  System Operating Characteristics

Generally, the two curves intersect at a
point which will be the operating point of the
system. Clearly, the system is only stable at the
operating point and any digression from that point
is countered by forces which tend to return the
packet flow to the operating point.

Were it possible to empirically derive the
User and Communication Network curves of Figure 2,
the analysis and synthesis of packet communication
systems would be greatly simplified. If there
existed curves for the various types of
interconnection structures, a designer need only
develop the characteristic curve of his proposed
User structure, choose a desired operating point
on that curve, and match the appropriate
Communication Network curve to yield the best
cost/performance at that operating point.

Such a scheme may seem impractical, however,
methods similar to this have been derived for many
other branches of engineering, and there is no
explicit reason why it is not possible to do so
for aspects of computer design.

The remainder of this paper describes some
preliminary results which were achieved while
trying to generate load curves for various
Communication Network structures. Whereas the
achieved results do not yleld rules for processor
design, they provide a first step in that
direction through the analysis of packet flow in
the structures

Network Representation

The communication networks of the present
study are formed of arbitration units and switch
units. Each arbitration unit accepts the first
packet to arrive at any input and passes the
accepted packet to its output. In the case of
conflict, one packet is arbitrarily selected and
passed to the output before the other(s). Each
switch unit transfers a packet on its input to one
to its outputs, generally controlled by some
switching specification contained in the packet.

The bus module of Figure 3 comprises an
arbitration unit followed by a switch unit.
Similarly, models for a crossbar and a routing
network are shown in Figures 4 and 5. A network
such as that of Figure 4 which is composed
initially of switch units followed by arbitration
units is called a distribution network, and a
crossbar is one configuration of such a network.
Similarly, a network which contains an initial
stage of arbitration as that of Figure 5 is called
an arbitration network.

The networks under study are structured as a
number of stages connected in sequence. Each
stage of a network is composed exclusively of
either arbitration or switch units and is
characterized by the log to the base N of the
fanout/fanin ratio:

(Number of Outputs)

logy
(Number of Inputs)
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Arbitration
Unit

of a Bus

Structure

Figure 3.

This means of characterization has been chosen for
two reasons. First, the size of the individual
arbitration and switch units comprising each stage
is clearly specified. Second, such a
characterization represents a constant network
architecture, regardless of the number of inputs
and outputs.

The bus structure of Figure 3 (and all bus
structures) 1is characterized by (-1, 1).
Similarly, all crossbar structures are
characterized by (1, -1). The "square-root"
arbitration network of Figure 5 has the
characterization (-1/2, 1/2, -1/2, 1/2).

Note that for an NxN communication network,
the sum of all numbers in the network
characterization must be equal to 0. Furthermore,
in order for every input of a network to be able
to communicate with every output, the sum of the
absolute values of the numbers comprising the
network characterization must be at least two. If
the sum is greater than two, the network contains
redundant paths.

s a

s " a

s a

s a
Figure 4. Structure of a Crossbar
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Figure 5. Structure of a Routing Network

At this point, we shall further restrict the
networks under analysis to constant geometry NxN
communication networks which can be characterized
by a positive integer fraction £, where the
network characterization is (-f, £, -f, £, ...)
for an arbitration network or (£, -f, £, -f, ...)
for a distribution network. The number of
occurrences of £ in each characterization is equal
to the number of stages in the network, that is,
to 2/f. Bus structures, crossbar structures, and
simple power networks are examples of networks
with such a characterization.

This restriction does not necessarily
preclude the consideration in our model of
networks which do not have alternating stages of
arbitration and switch units. Without loss of
generality, adjacent stages of the same type can
be considered as one stage with a characterization
which is equal to the sum of the characterizations
of the two stages. However, the model described
herein is only applicable to networks which can be
characterized by a constant fraction f once
reduction of identical adjacent stages has been
performed.

Performance Analysis

For the purposes of finding the
characteristic curve of a communication network,
we need to make two simplifying assumptions.
First, we consider the cost of a device
proportional to the speed of the device times the
number of wires connected to it. This assumption
is not precisely accurate, but close enough for
the purposes of this discussion.

Second, we assume that the packet
distribution on the inputs of a communication
network is even and Poisson and the distribution
through any cross section of the network is even.

The communication networks under study are
composed of an interconnection of one basic unit
type, called a tie and consisting of an
arbitration unit and a switch unit. The bus of
Figure 3 is composed of one such tie. The network
of Figure 5 can readily be seen to comprise a
number of ties. Although the topology of a
distribution network is slightly different than
that of the networks in Figures 3 and 5, such a
structure can be analyzed in a similar fashion.



We wish to examine two variables within each
communication structure, a delay derater D and a
loading representation F. D represents the
average transit time for the network divided by
the minimum transit time and can assume values
ranging from one to infinity. D=1 signifies that
the transit time through the communication network
is only the hardware delay, whereas larger values
of D indicate the presence of conflict in the
structure.

F represents the fraction of the network that
is not is use, that is, the free capacity of the
network divided by the total capacity. In the
following study, we examine D as a function of F
to achieve each network characterization. The
communication network load curve of Figure 2
represents a graphical depiction of a function
similar to (1-F) vs. D. We have made this
modification to the axis of the graph for the
purposes of simplifying the analysis and the
involved mathematics.

Representing the interarrival time on each
input of an n-input tie by I and the service time
by T, we find that a packet will arrive every I/n
and hence°

Fyge = 1 - AT/1

Generalizing to all the units of a stage, a packet
can be transmitted to the next stage at most every

T(m/N) = T(N /N) = T/N Thus:

Fpage = 1 - an=Dy am
= 1 -N1/I

Since all stages in this type of network are
similary constructed:

F = F = 1 - Nf1/1

network stage

The application of queueing theory techniques
to the performance analysis of one tie,
considering each tie as a queue and assuming
Poisson arrival rates, yields the result:

D=1+ (1-F)/4F

All ties in the network operate at the same
F. Hence, overall, we can say:

Dnetwork =1+ Q- l=network)/”network

Simulation Results

Utilizing a packet communication simulation
facility, a number of bus, crossbar, and routing
network structures were simulated to see if actual
performance followed the D = 1 + (1-F)/4F formula.
The simulation results are depicted in Figure 6.

The solid line of Figure 6 represents the
graph of D = 1 + (1-F)/4F, and the points
resulting from the simulation appear to observe
this characteristic for the three structures under
study.

The simulation modelled each network input as
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Figure 6. Simulation Results

an independent source with a Poisson distribution
and given interarrival time. The discrepencies of
the simulation from the model for small values of
F are due to the fact that the model contained
infinite queues between the sources and the input
ports, whereas such is impractical in the
simulation, eventually causing the input queues to
back up and affect operation of the sources.

Network Selection

The cost analysis for an arbitration network
such as that of Figure 5 can be represented as
follows, where CAN is the cost of the network:

CAN = (number of stages) (cost of each stage)
= (1/f)(speed * number of wires)
= (1/f)([N /£)«N)
N(1+D) /g2

In this case, speed is equal to Nf/f to maintain a
constant average delay through the network with

changes in f. The term Nf compensates for the
increased loadin% of arbitration units due to the
compression by N*. The 1/f arises from the need
for each stage to operate faster in networks with
more stages.

In the case of a distribution network:

= (number of stages) (cost of each stage)
(1/£) (speed » number of wires)

(/) (1/f)*(N( +)

= N+ )/f

Cpn

A distribution network has a greater number of
wires because each input wire of a stage of such a

network is expanded to N(l* wires. Due to this



expansion, the component speed in a distribution
network is only affected by the number of stages,
that is, by 1/f.

Thus the linear cost assumption has led us to
the conclusion that for some fixed performance,
the arbitration network of Figure 5 costs the same
as the distribution network of Figure 7. This
result is non-intuitive at first, however,
consider an arbitration network of complexity N.
The units comprising this network have speed N due
to the initial compression factor. The complexity
of an equivalent distribution network is NZ, but
the additional parallelism allows the network to
be constructed of components with speed 1. Hence,
the cost of the two networks is equivalent.

The minimum of the network cost N“’f)/f2
occurs at

1/£ = (1/2) In N

where 1/f is the number of stages. Hence, for the
linear cost assumption of the model, the following
structures are best suited for the specified
number of inputs for either arbitration or
distribution network:

N Structure

7 1-stage networks
(bus and crossbar)

50 2-stage networks
400 J-stage networks
3000 4-stage networks

An interesting result which arises from the
performance computations is the determination of
the optimal value of n, that is, the number of
inputs to each arbitration unit and outputs of
each switch unit. As we have seen, the minimum
cost occurs when f = 2/1n N. Thus, these
expansion and compression ratios should be:

NE o /IR N | G2 5 g

To utilize the previously described results
in the design of a packet communication system,
one first determines the load curve of the units
to be interconnected. The architecture of the
communication network utilized in the system is
specified by the number of units. With these
specifications in mind, there are a number of
design choices which can be made.

The load curves of the communication network
consist of a family of curves which are parametric
with cost. To design for a specific cost or
technology, the intersection of that member of the
family with the user load curve yields the
performance which can be achieved.

Conversely, to structure the system for a
specific performance, the desired operating point
on the user curve is specified and the network
curve which passes through that point determines
the cost and speed necessary in the component
parts.
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Structure of a

Figure 7.

Distribution Network

The choice of either an arbitration network
or a distribution network must take into account
important factors such as the available
technologies. While these factors are not

included in the model, they will dictate actual
use of any results achieved therefrom.

Concluding Remarks

This attempt to probe the interconnection
problem for packet communication systems has left
many questions unanswered. The model utilized has
a number of deficiencies and remains to be made
more exact and extended to structures other than
certain NxN power networks, such as asymmetric
networks and concentration networks. Further
refinement of the model and addition of other
structures should provide much information useful
in the synthesis of processor structures for
packet communication. Despite its deficiencies,
the model provides a first attempt to analyze such
packet communication interconnection structures
and yields some interesting insights into their
behavior.
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Abstract -- In the paper, the concept of data
structure architectures is developed as a solution
to the problem of providing increased hardware
support for the basic task of computing, viz. the
creation and processing of data structures. As a
starting point, a uniform algebraic description of
data structures is presented. Consequently, the
necessity for a management of the two fundamental
types of data entities, ordered sets and general
sets, is recognized. 1In order to allow a machine
to handle the various data structures by a stan-—
dardized hardware, an intermediate data structure,
called the basis and managed by hardware, is
introduced. The programmer creates arbitrary data
structures in terms of basis elements which are,
in turn, mapped by the hardware onto consecutive
storage. The processing of basis elements in res-
ponse to a single machine instruction is based on
the referencing of basis element descriptors and
implemented by pipelined processors.

Keywords: computer architecture, performance
architecture, general-purpose computing, data
structures, ordered sets, data model, descriptor-
referenced allocation, tagged architectures, hard-
ware execution.

1. Introduction

The basic organizational concept of most
computers presently being used or being marketed
is still the 30 years old concept as developed by
von Neumann, Burks, and Goldstine [1]. 1In our
opinion, the reason for the so amazing longevity
of the von Neumann principle is its unique com-
bination of simplicity and flexibility. The von
Neumann concept may be epitomized as a concept of
minimal hardware resources: The basic von Neumann
machine encompasses one central processing unit,
one main memory, and one input/output channel.

This concept of hardware minimality, which
was perfectly adequate at a time when the hard-
ware of a computer was the major cost factor, has
meanwhile turned into the major factor that will
obsolete the von Neumann architecture. In the
age of dramatically decreasing cost of standard-
ized LSI componentry, concepts are needed which
allow increased hardware expenditures in order to
achieve certain design objectives such as an in-
crease in performance or availability or both.
Such a multiplication of hardware resources
implies the abolishment of the most severe perfor-
mance-limiting feature of the von Neumann machine,
namely that it manipulates the content of only a
single memory location at the time, in favor of
the simultaneous accessing and processing of a
set of values, i.e., in favor of parallel proces-

sing.
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Most of the existing parallel processing
architectures, however, were initially designed
for special purposes rather than for general-
purpose computing, and many of these architectures
do not lend themselves very well to a generaliza-
tion, Whereas it is a rather straightforward
task to design the architecture of a special pur-
pose computer, based on a homogeneous class of
algorithms (e.g., for solving partial differential
equations or for processing a matrix of radar
data), it is not possible to define such distin-
guished classes of algorithms after which a com-
puter architecture could be modelled if the uni-
verse of all possible algorithms is considered.
However, in the search for a class of architec—
tures for general-purpose computing, i.e., arch-
itectures which can really replace the von Neumann
architecture, the whole domain of computing must
be taken into account.

The most general definition of computation is
that of "a sequence of transformations which
transform an initial representation through a
sequence of intermediate representations into a
final representation" [2]. A representation is a
transforming function and its data. As it is not
possible to identify patterns in the universe of
all possible transforming functions which could
render the blueprint for a class of general-pur-
pose architectures, the only possibility left is
the structuring of the data or, more precisely,
the processing of appropriately structured data
entities.

In the von Neumann machine, data are totally
unstructured, i.e., the only data entity of the
machine is the scalar. In real-world computation,
we find always structuring relationships between
the data of a program which constitute the basis
for data retrieval and processing. An architec-
ture which supports the representation and pro-
cessing of arbitrary data structures by hardware
shall be called a data structure architecture
(DSA). It need hardly be emphasized that a data
structure architecture should be complete and
minimal, i.e., it should allow for the representa-
tion of any desired structure, and it should
employ for this purpose a minimal number of stan-
dardized tools.

2. A Formal Definition of Data Structures

Knuth [3] defines data structure as '"a table
of data including structural relationships".
Formalizing this, we define a data structure as a
pair

(s, p)

where S = {sl,...,sn} is a set of data objects



and p = {Rl""’Rr} is a set of binary relations

such that //A\\ : R
l<icx<r

; S Sx§ .

By specifying certain properties of the
relations in p, different structure types are
obtained. These are basically the following four
types [4].

(8,0) = (5,{sh) ,

where < denotes a relation that is reflexive,
antisymmetric, and transitive, and satisfies the
additional condition that for any two objects s,,

sj €S at least one of the two propositions s 2

Thus < denotes a linear

(€D

s or s, < s1 is true.

2 2
ordering. This relation defines an ordered set
{s[1],...,5[n]} of data objects S[i] € S which are
identified by an ordinal number specifying their
relative position in the set. This structure is
usually called a linear list.

A simple generalization of a linear list is
a two-dimensional or higher-dimensional array of
data objects. In a rectangular two-dimensional
m X n array we have the linear row lists (R

{sg 4D i [Lim], with R, = {Ri[l],...,Rii[’n]}

and the linear column lists (Cj,{fC j}), jell:n],
b

with C,
J

are orthogonally connected such that the linear
ordering of the row lists implies the same order-
ing of the column lists and vice versa. Hence,

a two-dimensional m X n array is defined by the
pair (the definition can be easily extended to
any arbitrary higher dimension)

= {Cj[l],...,Cj[m]}. These linear lists

m
(S,p) = (i;gRi’ {fR’l’..., fR,m’ fC,l""’fC,n})'

(5,0) = (S,{agseena D) ©)

p-n

where p = {ql,...,q n} is a set of relations that

p-
are reflexive, symmetric, and transitive, i.e.,

equivalence relations. The equivalence relation
9 defines a partition P(S) = {Sl,...,Sm} of the

set S, and the remaining equivalence relations in
p define refinements of this partition. If we
assume that P(S) is refined until n singleton
sets, {s.},...,{s_}, are obtained, each one con-
taining exactly one of the elements of S, the
result is a collection of nested sets [3] C =
{Cl,...,Cp} such that each equivalence relation

q EP defines a partition P(Ck)C:C, ke [1:p-n],
whereas the remaining n sets in C are the elements
of the set {{sl},...,{sn}} = {Cp_n+1,...,Cp} (any

partition generates a collection of nested sets;

but not any collection of nested sets constitutes
a partition). Such a data structure is called a

tree.

The definition of the collection of nested
set C = {Cl,...,Cp} does not imply an ordering of
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the equivalence classes C; €P(C,), 1 <k < p-n,
but only indicates the ancestor-descendant rela-
tionship among the equivalence classes Cie C.

Trees which are equivalent to a collection of
nested sets are called oriented trees, since only
the relative orientation of the nodes is being
considered. An ordering of all equivalence
classes Cj sP(Ck) implies an ordering < on the
data objects s; € S. Thus, an ordered tree is
defined by a pair

(S,p) = (S,{f,ql,-.-,q Do

pP—n

(8,0) = (S,{R ;.- uRLD (3)

where the relations Rie p are defined in certain
pre-defined subsets A,,B, =S, i.e., R, €A X B,
i’7i — i—"1i i

= Sx8S, with the additional constraint for the
range Ri of a relation Ri that ﬁ& = Bi (we call

No constraint is
Fur-

such a relation range-total).
given for the domain .)Si, that is f)i (= Ai'

thermore, we have

B = k_J Bi =

1<i<r

Us,.

S2A-= k_j Ai and S =
1<i<r

l<i<r

Adopting Knuth's terminology, we call such a data
structure a List.

The set p of relations R, = {(sj,sk)/pi(sj,
Sk)} E;E)ix ‘Ri SAxS ©Sx8 may be defined by a
set T = {pi,...,pr} of propositions. For each
relation Rie p, we call the elements aje Ai’ with
Then,

i R X c A, xS generates for each
a relation iEﬁi »R_L SA; g

£& < Ai-EES, the reference elements of Ri.

a.eA; a subset of Ri that shall be denoted Ri/aj
(read: '"the subset of R; with respect to aj"),
such that
'Ri/aj = {se'Ri/pi(aj,s)} .

Lié‘ﬂi/aj -
a.ed.
3
relations Rie p define a set N = {ﬁi/aj/is [1:r]A

‘l{i/aj = p if 3 éﬁi and ‘Ri. The

aj eAi} such that {sl},...,{sn} e N. The nodes of
a List represent the sets ﬁ;/aj e N. The defini-

tion of some ad hoc ordering < on the dataobjects
s; € S implies an ordering of the nodes repre-

senting the sets ﬂ;/aj eN in all sub-Lists of a
List L which is defined by a pair
(S,p) = (S,{f,Rl,---,Rr}) .

(5,p) = (S:{Rls---er}) (4)

where the relations Rie p are defined in subsets

A,B = S such that



So A= U,@i and S B = Uki and S = AUB.

1<i<r l<i<r
No constraints are imposed on the relations Rie '8

We call such a data structure an associative
structure. The elements a, €A < S are called

domain elements and the elements bk

called range elements. The set p of relations
Ri = {(aj,bk)/pi(aj,bk)} Eﬁi X'Ri S AxXB<SSxS

is defined by a set m =

eB = S are

{pl,...,pr} of proposi-

tions. Thus, the data structure under considera-
tion may be specified by the triad (A,m,B) [5].

3. The Necessity of a Machine Data Model

In order to store a data structure (S,p) =
({sl""’sn}’{Rl""’Rr}) in a computer memory,

the information content of that data structure,
i.e., the set S = {sl,...,sn} of data objects and

the set of structuring relations {R Rr} must
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be represented in an appropriate form. That is,
a memory representation of a data structure must
retain the set-element relationships defined by
the relations R, ep. The relations R S Sx8

define subsets S, = S which are represented by

the nodes of the corresponding data structure
(S,p). If all singletons {Si}’ s € S, are

uniquely identified by the relations Rke p in
connection with reference elements s, € S, then

the definition of a linear ordering of the data
objects 84 €S implies an ordering of all the

nodes of the corresponding data structure. Other-
wise, the nodes of the corresponding data struc-
ture represent (unordered) sets Sj = S of data

objects. Therefore, a data structure architec-
ture must provide hardware support for the manage-
ment of ordered sets and general sets, as well as
an adequate set of operators defined on these
fundamental types of data entities.

Physical memory can be either location-
addressable or content-addressable (associative).
Hardware-associative memory is ruled out for two
reasons: Firstly, its cost is prohibitive and,
secondly, it is not needed, as will be shown sub-
sequently, if the purpose is to store and access
structured sets of data rather than unstructured,
general sets. In the case of location-addressed
memory, the most fundamental mode of storing the
data items of a data structure is the consecutive
storage in the form of a data vector. The alge-
braic definition of a data structure can here be
substituted by the "semantic" definition

<data structure> =
(<data vector>,<structure specification>) .
In the von Neumann machine, the mapping from

a data structure to its data vector is performed
(by software) in one step. However, such a
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mapping can be greatly facilitated if the data
structure is, in a first step, mapped onto an
appropriate 'intermediate' data structure which,
in turn, is then mapped in a second step onto the
data vector. We call the first mapping a struc-
ture definition and the second mapping an addres-
sing function. The advantage of this approach
lies in the fact that a standardized intermediate
structure can be found that is necessary and
sufficient for the representation of all data
structures defined in section 2, whereas the data
vector represents only the data of those struc-
tures.

Let N denote the set of non-negative integers
and let M be the set of memory addresses. A data
vector that is physically represented by sequen-
tial memory location is defined by the mapping

v: WN->M .

. Let B be a set of r-dimensionally ordered sets,

i.e., an element of B is defined by

o : INF - IN .

We call B the basis of the data structure archi-
tecture. The positions in the r-tuples (nl,...,

nr)e N' are called the coordinates of the r-

dimensionally ordered set, and r is called its
rank (dimensionality). An element of INT is
called an index r-tuple. The index r-tuples are
unique identifiers of the elements of an r-
dimensionally ordered set, as the function ¢ maps
index r-tuples into indices which specify the
relative position of the identified element in
the data vector. Hence, the mapping from the
thus defined basis into a physical data vector,
based on a sequential memory allocation, is
accomplished by a composition of the functions o
and v into a function

r

o : IN° M

which we call the addréssing function.

Sequential allocation is characterized by
the linear ordering of the memory locations.
addressing function for sequentially allocated
r-dimensionally ordered sets is

The

a(nl,...,nr) = R + (o(nl,...,nr)—l)-m s

where BeM is the base address, and m is the num-
ber of memory words occupied by each data item.
The limitation of the basis to multi~dimensionally
ordered sets thus allows the use of a rigorously
standardized addressing function -- an absolute
must if the addressing function is to be executed
by hardware. Hence, we consider a class of com-
puter architectures where we have multi-dimension-
ally ordered sets as the standardized internal
data structure, called the basis and handled by
the hardware of the machine. Fig. 1 presents a
general diagram of such a data structure architec-
ture.

Of course, a data structure architecture
shall process at the hardware level not only
multi-dimensionally ordered sets but any of the
structure types as defined in section 2. To this
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Fig. 1 General Concept of Data Structure
Architectures

end, other data structures must be mapped through
an appropriate structure definition on multi-
dimensionally ordered sets, i.e., on the basis of
the data structure architecture. Therefore, a
mechanism for structure definitions must be devel-
oped, and it must be proved that all types of data
structures can be defined in such a way. These
stipulations can be satisfied by introducing an
appropriate machine data model. A machine data
model defines legitimate data types and struc-
turing relations which are applicable for the
definition of arbitrary data structures in terms
of the basis. In order to mitigate the restric-
tion that only rigorously standardized physical
structures can be used for a hardware realization,
a machine data model must be more general than the
conceptual data models which were developed for
generalized data-base management [6], [7].

4, The Linear Data Model

As a basis for the design of data structure
architectures, we define the linear data model.
DEFINITION: The linear data model is based on
the linear ordering as the only structuring rela-
tion. Identifiers of basis elements are a data
type of the linear data model.

Unlike a pointer, an IDENTIFIER does not represent
a reference to the identified basis element but
the basis element itself [8]. The data items of
a basis element are stored in a data vector.
Hence, the linear data model defines basis ele-
ments as ordered sets of data vectors. Conse-
quently, multi-dimensionally ordered sets are the
only basis structures permitted by the linear data
model.

Let A be an r-dimensionally ordered set whose
components are denoted A[nl;...;nr]. With the

definition of the admissible ranges of the index
values n., iefl : r], in all index lists [nl;..g

r
nr] e IN' such that e [1: dl] and nj e [1 : dj

[nl;...;nj_l]], je[2 : r], the linear lists

(A[nl;...;ni_l;l;ni+1;...;nr],...,A[nl;...;ni_l;

di[nl;...;ni_l];ni+l;...;nr]), ie[l : r], define
cross sections of A which are denoted A[nl;..;
ni_l;ni+l;..;nr]. We call di[nl;...;ni_l] the
dimension of the linear list A[nl;..;ni_l;ni+l;
..;nr].

The introduction of the linear data model as
the fundamental notion for the design of data
structure architectures is based on the
THEOREM: The linear data model is necessary and
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Proof.

sufficient for the definition of linear lists,
arrays, trees, generalized lists, and associative
structures in terms of multi-dimensionally ordered
sets of linear lists.

(1) Necessity: Linear orderings consti-
tute the simplest possible structuring relations
with respect to the representation of data struc-
tures in location-addressed memories. Linear
lists are the fundamental basis elements, as they
are identical with the structure of the under-
lying data vectors.

(2) Sufficiency: An r-dimensionally ordered set
A can be represented by an (i-l)-dimensionally
ordered set whose components are the (r-it+l)-
dimensionally ordered sets A[nl;...;n 1, n, e

i-1 i
[1 : dj[nl;...;nj_l]], jell : i-1]. In the nota-
tion A[nl;...;ni_ll[ni;...;nr], the second index

list [ni;...;nr] specifies the components in the

l]
as defined by the index list [nl;...;ni_l]. Thus,

(r-it+l)-dimensionally ordered set A[nl;...;ni_

the components A[nl;...;ni_l][ni;...;nr] represent

the components A[n .;nr] of the r-dimensionally

13-
ordered set A. By forming cross sections of the
components A[nl;...;ni_l][ni;...;nr], an r-dimen-

sionally ordered set A can be defined as an (i-1)-
dimensionally ordered set of linear lists

A[nl;...;ni_l] =

(A[nl;...;ni_ll[l],...,A[nl;...;ni_ll
[di[nl;---;ni_l]]),

such that the second index list [k], ke [1 : di

[nl;...;ni_l]], specifies the (r-i)-dimensionally
ordered sets A[nl;...;ni_l;k] which are the com-
ponents of the linear lists A[nl;...;ni_l]. 0b-

viously, for i=r, the above derivation defines
an r-dimensionally ordered set A as an (r-1)-
dimensionally ordered set of linear lists. It is
readily recognized that the recursive application
of the above definition leads to representations
of r-dimensionally ordered sets as orthogonal
interconnections of linear lists. Moreover, the
definition of the data type IDENTIFIER allows the
representation of any set containment in an r-
dimensionally ordered set in the form of linear
lists A[nl;...;ni_l] whose components A[nl;...;

ni][k] may represent arbitrary identifiers A[ml;
...;mj] which, in turn, represent (r-j)-dimension-
1;“';“51’ jell : r]. Ob-

viously, with the above definition of the data
type IDENTIFIER, the r coordinates of an r-dimen-
sionally ordered set correspond to r levels of
substructure containment. Therefore, a linear
list A[nl;...;ni_l] of data type IDENTIFIER may

ally ordered sets A[m

represent a node at the (i-1)st level of a hierar-
chical structure and is thus a ''parent' of compo-
nents A[nl;...;ni_l][k] which may represent nodes



A[ml;...;mj] at any level of the hierarchical

structure. In addition to the predecessor-
successor relationships defined by linear order-
ings, the introduction of the data type IDENTIFIER
hence allows the definition of arbitrary parent-
child relationships.

A tree structure can be defined by the speci-
fication of an r-dimensionally ordered set, such
that the components A[nl;...;ni_ll[k] of the

linear lists A[nl;...;ni_ll of data type IDENTI-

FIER exclusively represent the (r-i)-dimensionally
ordered sets A[nl;...;ni_l;k]. As the components

A[nl;...;ni_l][k] of linear lists A[nl;...;n ]

i-1
may represent identifiers of arbitrary (r-j)-
dimensionally ordered sets A[ml;...;mj], it is

obvious that generalized lists can be defined by
the linear data model.

The linear ordering of the memory locations
in a location-addressed memory implies an order-
ing of the elements of general sets in memory
representations. Thus, linear lists are adequate
logical structures for the representation of
general sets in location addressed memories. Pos-
sible nestings of general sets are also easily
manageable through linear lists of data type
IDENTIFIER. The latter property of the linear
data model, and the ability to arbitrarily link
multi-dimensionally ordered sets through their
identifiers, may efficiently be applied for the
definition of associative structures (q.e.d.).

The above discussion of the efficiency of
the linear data model shows that a hardware-
associative memory would not facilitate the stor-
age of basis elements,for components of multi-
dimensionally ordered sets are uniquely identi-
fied through its index list [n,;...;n_] e INT,
Therefore, the multi-match capabilitigs of an
associative memory cannot be exploited.

5. The Internal Information Structure

5.1 A Proposed Standardization of the Basis
Elements

So far, we assumed basis elements to be r-
dimensionally ordered sets. In section 4 it is
proved that one-dimensionally ordered sets
(linear lists) are sufficient for the representa-
tion of arbitrary data structures. However, we
propose two-dimensionally ordered sets, given in
the form of homogeneous, rectangular arrays
(matrices) as the standardized basis element.
Such a structure has the following desirable
properties:

(1) The dimension of the linear lists in the
two coordinates of a matrix are the same,
i.e., a basis element is fully specified
by a dimension vector D = (dl’dz)’ where
d1 and d2 are the column dimension and
the row dimension, respectively.

(i1) The addressing function is given by the
simple expression

a(nl,nz) = (nl-l)'d2+n -1+8 .

2
Matrices are the most important data struc~
ture in practical applications. The exis-
tence of several structuring relations
within a linear list (as usually repre-
sented by multi-linked structures) can be
represented by a single basis element of
data type identifier.

(iii)

5.2 Memory Representation of the Basis

The standardized basis elements are repre-
sented by variable descriptors which contain_ the
parameters of the addressing function a: IN“ - M.
The general format of these variable descriptors
is defined by the triple

WD = (a,s,b) ,

with a = variable attributes (including data type
specification), s = structure specification, and
b = base address of the data vector. Hence, the
data definition of two-dimensional arrays is
obtained in the form of standardized variable
descriptors

VD = (<attributes>, (<column dimension>,
<row dimension>),<base address>).

variable descriptors of this format can have a
uniform length of one memory word. Thus, data
definitions can be stored as named variable des-
criptors, such that descriptor identifiers are
equated with the memory locations which contain
the associated variable descriptors. It is
readily recognized that identifiers of basis
elements as defined by the linear data model cor-
respond with descriptor identifiers. In contrast
to the von Neumann machine, where a machine var-
iable is defined by a pair <variable> = (<loca-
tion>,<value>), we have the following machine
variable structure

<variable> (<name>, <value>)

<name> = <descriptor identifier>

<value> = (<data vector>,<structure
specification>).

This machine variable structure implies a
two-stage value reference scheme through variable
descriptors. The components of the data vector
are accessed by executing the addressing function
o for the structure specification given in the
variable descriptor. This value reference scheme
also applies to multi-dimensionally ordered sets
which are represented by two-dimensional arrays
of data type IDENTIFIER. According to the
definition of the data type IDENTIFIER, references
to components of data vectors of data type IDEN-
TIFIER are automatically replaced by references
to the identified variable descriptors. This
indirect reference scheme can be nested to any
arbitrary depth, resulting in an iterative appli-
cation of the standardized two-stage value refer-
ence mechanism.




With the equivalence of coordinates of multi-
dimensionally ordered sets and the levels of sub-
structure containment (cf. section 4), we obtain
a correspondence of n-1 nested references of des-
criptor identifiers in two-dimensional arrays
with a (2n)-dimensionally ordered set. Let A be
a two-dimensional array of data type IDENTIFIER
which represents a (2n)-dimensionally ordered
set with components A[ml;mZ][m3;m4]...[m2n_l;m2n].

The components of this (2n)-dimensionally ordered
set are the components of all two-dimensional
arrays A[ml;mZ]...[m2n_3;m2n_2] which are accessed

through n-1 levels of descriptor references. The
descriptor references are defined by the descrip-
tor identifiers A[ml;mZ]...[mZi_l;mZi] of the

two-dimersional arrays A[ml;mzl...[m21_3;m21_2]

of data type IDENTIFIER, i€ [1 : n-1] (for i=1,
A[m_l;mO] = A). That is, the components A[ml;mZ]

[m3;m4]...[m2n_l;m2n] are accesses through n

iterative executions of the addressing function

a(m,, -3m,.) = (n . . -1)
23-1°"23 1,A[m1,m2]..[mzj_3,m2j_2]
.d2 Alm,;m,]..[m ;m ]
i ey R E IR L T
+n . . -1
Z,A[ml,mZ]..[mzj_3,m2j_2]
+ B .
A[ml’mzl"[ij—B’ij-Z] >
je[l : n]. The base addresses B

Almysmy .. (my, 5
and the dimension vectors d .
m2j—2] Alm sm, ..
=@ . . »d

l’A[mlymzl--[mzj_a,mzj_zl 2,A

]) are specified in the

(my5-35m5-]

(mysmpleemyy 3imp5.9
variable descriptors of the two-dimensional arrays
A[ml;mz]...[mzj_3;m2j_2]. Each two-dimensional

array A[ml;m21'°'[m21-3;m21—2
ing of the two-dimensional arrays A[ml;mz]...
(my, q5myy)s 1€l s

with indices 2i-1 and 2i. Hence, in accordance
with the definition of the data type IDENTIFIER,
the machine variable A completely defines the

ordering of all components A[ml;mzl"'[mln—l;mZn

] defines the order-

n-1], within the coordinates

]

within all 2n coordinates.

We call the above memory allocation scheme
for basis elements a descriptor referenced allo-
cation. With the specification of all necessary
variable attributes and of the dimension vectors
in the variable descriptors of the two-dimensional
arrays, A[ml;mzl...[mZi_l;mZi], variable defini-

tions are completely self-descriptive. That is,
descriptor referenced allocation allows for modu-
lar variable definitions through variables of data
type IDENTIFIER. The descriptor identifiers bind
the variable definitions of basis elements, and
hence, the descriptions of multi-dimensionally
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ordered sets. The automatic replacement of des-
criptor identifiers by the referenced descriptors
builds up a complete structure specification by
selecting the appropriate parameters for the iter-
ative execution of the addressing function o.
Hence, the addressing function for two-dimensional
arrays is the only tie between multi-dimensionally
ordered sets of basis elements representing arbi-
trary data structures and components of these data
structures.

The descriptor reference mechanism for vari-
ables of data type IDENTIFIER does not prescribe
a uniform data type for all components. Rather,
the data type of the components is described by
their variable descriptors. Hence, heterogeneous
data structures can be defined. Furthermore, the
unique definition of the coordinate dimensions of
multi-dimensionally ordered sets by the variable
descriptors at the different reference levels
allows the construction of irregular data struc-
tures. As shown in [9], the descriptor referenced
allocation scheme can also be exploited to arbi-
trarily restructure multi-dimensionally ordered
sets without modifying or copying the underlying
data vectors. To this end, the addressing func-
tion is extended into a generalized storage access
function. In addition to that, the dimension
vector in the variable descriptor of a restruc-
tured variable is replaced by a description of
appropriate structure functions. Restructured
variables reference the variable descriptor of the
variables from which they were generated through
restructuring. With the automatic replacement of
descriptor identifiers, the generalized storage
access function then maps a components S[i;j] of
a two-dimensional array S onto the data vector of
a two-dimensional array A, from which S was gener-
ated through restructuring. That is, the execu-
tion of the generalized storage access function
comprises the execution of the addressing function
o and the execution of the stored structure func-
tions.

The descriptor referenced allocation of data
structures is a refinement of the concept of self-
identifying information components in tagged arch-

itectures [10], [11]. 1In tagged architectures,
self-identification provides the possibility to
uniquely associate with each category of variable
specifications dedicated control routines. Con-
trastingly, descriptor referenced allocation
defines self-descriptive data entities through a
standardized basis which can be managed by a
standard set of control routines. Basis elements
are self-identifying. However, there is no need
for a self-identification of different types of
data structures, as they are uniformly constructed
from self-descriptive components. The invokation
of the appropriate standard control routines is
completely described by the variable attributes in
the self-identifying basis elements and the
ordering of descriptor identifiers in variables
of data type IDENTIFIER.

The modularity of the internal information
structure, as implied by the above implementation
of the linear data model, suggests the separate



storage of three basic information components
[12], [13]. These are

-- an instruction list IL,
-- a variable descriptor list VDL, and
-- a data list DL.

Hence, the internal information structure is
defined by the triple

(IL,VDL,DL)

5.3 Machine Language Instructions

Machine language instructions exclusively
reference variable descriptors, i.e., we have the
general instruction format (W,VD3,VD2,VD1). ¥ is

the operation code and VD3 is the descriptor iden-
tifier of the result variable, whereas VD2 and

Dy
variables. Hence, a data structure

architecture processes basis elements in response
to single machine instructions. 3-address in-
structions are a prerequisite for the processing
of ordered sets in a streaming mode. The machine
language instructions may be grouped into the
following categories [9]

are the descriptor identifiers of the operand

Scalar Operations
Reductions:
Inner Products
Structuring Operations
- Tramsfeer Operations
Queries.
-— Jumps
-— Declarations and I/0 Operations

The first three groups are value-transfor-
ming operations which: generate a new variable
descriptor and a new data vector for the result
variable. Structuring operations create a new
structuring of existing data, i.e., they are
solely performed on descriptors, not on data.
Transfer operations primarily perform parameter
transfers "by reference' and "by value' to and
from subroutines. Queries apply to the basic
components of the internal information structure,
i.e., to variable descriptors and data vectors.
Jumps constitute the program flow control opera-
tions.

The self-descriptiveness of stored data
structures allows the creation of complete vari-
able descriptors as part of the execution of
assignment statements. Hence, variables are
dynamically declared at run time. Consequently,
the machine language is to. a large extent declara-
tion free, except for input operations. Variables
which are created by input operations must be
declared as to their data type and coordinate
dimensions.

Normally, a sequential storage of data is
inefficient if such data vectors are to be manipu-~
lated dynamically. 1In data structure architec-
tures, this problem is circumvented by the capa-
bility to manipulate variable descriptors through

50

structuring operations. Furthermore, with des-
criptor referenced allocation, unnecessary copies
of data vectors can be avoided by the definition
of different basis elements on the same under-
lying data vector. The mechanization of the con-
version of basis elements into data vectors
achieves physical data independence. Hence, the
reference of self-descriptive variables inmachine
language instructions is not affected by the
representation of data objects in the data vectors.
A high degree of logical data independence is
achieved by the fact that changes of data defini-
tions through the creation of variables of data
type IDENTIFIER do not affect other existing data
definitions.

Conclusion

Attempts have been made before to provide
hardware support for the generation of data struc-
tures. One such example is the SYMBOL machine
[14]. However, while the SYMBOL concept provides
a mechanism for building structures, it offers no
means for processing them. Ultimately, we may
only then speak of a certain data structure of a
machine if it comprises operators to perform
transformations on the structure. Other authors
[15,16] have recognized the necessity for data
structure architectures but do not present a
general solution.

The concept of data structure architectures,
as introduced in the paper, represents a novel
approach that is radically different from most
endeavors as yet so typical in computer architec-
ture. The typical approach has been to multiply
certain hardware resources (e.g., processors,
memories, etc.) and arrange these modules into
organizational structures which reflect certain
task patterns. Contrastingly, our approach is to
start from a general requirement of computing, the
ability to create and process data structures, and
develop a standardized logical model. It is shown
in the paper that this is generally feasible, and
the resulting information structure is described.
Its modularity implies a high degree of orthogon-
alization of the hardware, thus lending itself in
a natural way toward parallel processing. In our
opinion, the concept of data structure architec-
tures presents a genuine alternative to the von
Neumann concept in the realm of general-purpose
computing.
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It is the main purpose of this paper to
describe our exper ience in designing ' and
implementing an all-digital simulation system

with the problems partitioned to run on a
tightly-coupled complex of ar ithmetic processors,
These ;ar ithmetic processor modules are, in fact,
modern high-speed minicomputers, More particu-
larly, we describe a new modular computing
resource currently being developed specifically
to meet the needs of the biomedical modeler. A
computer system well suited to the needs of this
environment may be equally appropriate for use in
the simulation of other complex systems and the
approach taken in designing a simulation resource
for biomedicine is described for the general
interest of the computer science and engineer ing
community.

The presentation follows in two principal

parts, The first part is a discussion of the
rationale for the development of a new
multicomputer simulation system with a
consideration of alternative  approaches and

associated trade-offs, This is then followed by
a description of the overall system architecture
and of the hardware and software that have been
assembled and integrated into the now oper ational

MMCS (MultiMiniComputer System). In addition it
seems appropriate to consider some of the
factors, economic and technological, that make

such a system especially attractive at this time.

It seemed clear to us that the machines
typically used to support common modeling
languages were less than ideal for this modeling
task and that a multicomputer system could be
devised that would be a much better match to the
requirements of the modeling process, In
particular in order to provide the compute power
needed to work with complex models it seemed
highly reasonable to provide parallel computing
to better match the parallel nature of the
systems being simulated. The system, as
initially conceived, would be made up of a number
of modern high-speed minicomputers operating
concurrently, It was anticipated that such a
multicomputer system could retain many desirable
features and capabilities typically found in
other modeling or simulation systems at a much
improved cost-effectiveness level while providing
a number of other significant advantages.

(a8)This work was supported in part by a
Biotechnology Resource grant RR 00276 from the
Division of Research Resources of the National
Institutes of Health,
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The - principal hardware components making up
the currently oper ating MMCS are as follows:
1 Mapped Eclipse S/200 with 192K bytes of
memory and hardware floating point )
3  Eclipse 5/200 with 64K bytes of memory
and hardware floating point
1 Floating-point array processor (AP120B)

1 Mapped Nova 3/12 with 128K bytes of
memory.

2 80 megabyte disk drive with controller

5 MCA (Multi-Communications Adaptor,

allows memory to memory data transfer
for all machines)

The development of system software for a
multicomputer system can be an enormous task
involving many man-years of effort, Our initial
approach was to use Data General Corporation’s
ARDOS operating system, To run programs on the
satellite computers the load  (link-edit)
processes for ARDOS was modified so that a small
psuedo-oper ating-system (approximately 400 bytes)
is inserted into each load module (core image
file), This change has the far-reaching effect
of allowing a load-module produced by any of the
language processors to be executed on any of the
computers whether or not an operating system is
present,

The user software available to accomplish
concurrency consists of a few primitives which
may be called as subroutines from the various
language processors., The primitives allow such
functions as sending to or receiving from any
other processor, reading or writing conmon
memory, and testing or setting common flags. All
concurrency 1is controlled directly by the
Pr ogr ammer ,

The great generality of
software configuration
traditional forms

our hardware and
allows not only the
of concurrent processing but
promotes the wuse of pipelining techniques  as
well, Our experience thus far shows pipelineing
to be a much more widely applicable and useful
technique than we had previously anticipated.

Most of the biosystem simulations we have
under taken have been written in FORTRAN. In the
interest of freeing the modeler from some of the
coding tedium and numerical analysis aspects of
working at this level there is a role for
high-level simulation languages. The first major
simulation language implemented on MMCS is DAREP

(developed at the University of Arizona). DAREP
is a lanaguage for describing systems of first
order differential equations. The package

includes hardcopy and CRT graphic capabilities,
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Summary

A system architectural concept called Variable
Topology Multicomputer (VTM) is proposed to imple-
meni large networks of low cost computers linked
with serial communication paths wnhich can be recon-
figured according to the needs of each ccmputation
L11. VIM consists of N computer pairs called nodes
interconnected with duplex lines. Each rode contains
a loca?! computer, a communications computer and an
inter-computer message handler. The local computer
executes user programmes whereas the communications
computer is totally dedicated for message handling
between the nodes. The inter-computer message hand-
ler contains the input and output terminations so
as to enable links to be established with cther
nodes.

VTM utilizes a synchronous communication sche-
me where message carrying packets are transmitted
during each fixed transmit time Tt repeated every
main period time Ty , common throughout the system
so that all rodes send and receive messages at the
same time. Transmission efficiency is defined as
0t=Tt/Tm'

In a VTM system topolcgy can be varied in twn
levels: physical and logical. By connecting wires
between various nodes a desired ghysical network
topology can be obtained. Over a given physical
network, it is possible to establish logical con-
nections between nodes with no direct 1ink between
them, by means of one or more intermediate noudes,
using a packet switched or cicuit switched scheme.

Organizing the VTM nodes as a two dimensional
mesh yields an array structure. Such a configura-
tion has interest because of suitibility in many
important fields of applicaticons. A simulation
model of the VIM system has been desveloped for per-
formance evaluation{2]. Extensive studies have been
carried out on an 8x8 VTM array structure. Boundary
nodes have been connected so as to obtain a closed
toroid. The rouiing matrix is computed by using a
modified Floyd's algorithm for even load distribu-
tion][3]. The characteristics of four typical topo-
logies that have been tried are listed in Table 1.
The hexagonal and cubic topology are also included
for comparison.

(*) This work is supported in part by an US Army,
European Research Office, research grant
(No. DAJA 37-36-0401).
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Performance measures of message delay time,
total system throughput, and buffer lengths are
simulated under various topology conditions to stu-
dy the influence of say additional lines on messa-
ge delay times. The transmission efficiency is a
measure of channel capacity in the system. Its in-
crease provides more slots for message transmission.
This, however, reduces the period during which the
Tocal processing takes place and hence requests for
transmission. For large p{ values the average delay
time nears the average path length times T,. For
smaller pt delays due to queueing start to accumu-
late. For very small p{ values congestion starts
building up. Throughput depends very little on
topology for large py values and goes through a
maximum as pt is decreased. For small values of py
the effect of topology is clearly seen. Determining
the maximum value of ot is called "tuning" where the
message generation rate is best matched with the
message transmission capacity. The simulation re-
sults have indicated that the toroidal organization
of 8x8 mesh with alternate diagonal connections has
interesting properties to make it a powerful candi-
date for a general purpose multicomputer structure.
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Table 1 /L} @
Connectivity 3 4 6
No. of Tinks 96 128 192
Av. path Tength 4.29 4.06 3.04
Longest path 7 8 6

6 8 8

192 256 256
2.82 2.73 2.31
4 [} 3
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Summary

While technology advances have greatly re-
duced the cost of simple computing devices, it is
not clear that a network of such devices operating
in parallel provides a cost—effective solution for
complex tasks. An ongoing research activity to
define and evaluate microcomputer architectures
for effective network implementation has charac-
terized the generic features of state-of-the-art
microcomputers, identified those features which
impair network implementation, and proposed
improvements [1]. A result of this effort, the
implementation of virtual instruction sets within
physical clusters of microprogrammed microcom-
puters, is summarized here.

The contemporary computer-on—a-chip is too
limited and slow for effective networking. Thus,
an assumption of the research is that a high-
speed MIMD (Multiple-Instruction, Multiple-Data)
network is implemented by microprogrammed micro-
computers using bit-slice CPUs. Two generic
features of such microcomputers serve as the
impetus for our design: narrow (typically 16
bits) instruction words and a CPU minor cycle
which is two or three times as long as the micro-
program memory cycle itself. A 16-bit format
places a premium on operation code field width;
thus, microcomputer instruction sets are small and
general-purpose. A fast microprogram memory
means that it is under-utilized by a single CPU.
The solution we propose is to share a microprogram
memory among a number of CPUs. This particular
approach offers three advantages:

o Execution speed is not affected

e Arbitration logic is not needed

e Hardware savings are converted to
software and reliability savings

The first two advantages are achieved by a
"barrel switch'" which allocates one microprogram
memory access to each CPU during each of the CPU's
minor cycles. Thus, if the CPUs operate with
their minor cycles "out of phase" from one another
by one microprogram memory cycle, there is no
change in execution speed. Regularity of micro-
program accesses insures that no conflicts occur
between CPUs, and that no arbitration hardware is
required. Added cost is the access switching
mechanism and the faster basic clock, which now
runs at the rate of microprogram memory cycles
rather than the rate of CPU cycles. The third
advantage is a result of using the net hardware
savings to expand the number and capability of
(macro-level) instructions implemented in the
shared microprogram memory. Thus, each cluster
of microprocessors will have access to a large
and powerful "real" instruction set. This set
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Cutler

might be indexed using an 8-bit '"real" operation

code, while the "virtual" operation code would be
the microcomputer operation code, which might be

6 bits wide.

For any task, the applications programmer
selects a 64-instruction subset of the 256-
instruction set, either on an individual instruc-
tion basis, instruction group basis, or functional
instruction set basis. During execution, when this
task is assigned to a microcomputer, the executive
constructs the mapping from virtual instruction
code to real instruction code for the particular
microcomputer; further information on executive

‘implementation and protection can be found in DJ

Each shared microprogram memory implements this
mapping via a table addressed by a field which
consists of a CPU ID code followed by the virtual
opcode. The contents of this table is the 8-bit
real operation code; the table look-up is done
once per instruction. The microprogram memory
contains one address register for each CPU in its
cluster; while this system is less modular, its
addressing is completely in the ''real" space
except for instruction sequencing.

It is hoped that the above brief description
of the implementation of virtual instruction sets
is sufficient to convince the reader that this
particular approach is appropriate to low-cost
microcomputer networks. A popular approach, that
of using writable control store, is far more costly
because it requires the addition of low-density
read-write microprogram memory (for each CPU) as
well as data paths and control for reading into
them. An alternative approach, implemented in
the Burroughs B1700/B1800 [2], is an intriguing
and low-cost implementation of virtual instruction
sets via interpretation. However, for a micro-
computer network with limited memory, the B1700's
use of distinct interpreters for each (perhaps
only slightly) different task would be wasteful of
program memory space, and requires extensive
sharing of common program memory (for interpreters).
In summary, the proposed design is uniquely suited
to providing a network of microcomputers with
powerful instruction set capability and with flexi-
bility for degraded mode operation at virtually
(sic) no additional cost.
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Summary

In distributed network processing (I)
the control and the functions of a distri-
buted application are performed by many
geographically dispersed sites. To define
and to implemente such an application, one
needs the existence of a Logical Network
Machine and its operating language which
take in the network the same part as a ba-—
sic software of a given general computer,
This machine, named SIGOR, would supply
the users with a set of tools necessary to
facilitate the definition and the imple-
mentation of distributed applications in
an heterogeneous environment, These tools
are represented by a transportable and in-
terpreted language (2) which is able to
run on all the machines of the network.
This language defines the set of objects
and basic functions linked to the design
of distributed applications (3) : trans-—
port of algorithms (remote process initia-
lisation, control of the algorithm's trans
port, control of the distributed execu-
tion), expression of parallelism (by using
a variable of mode event and the following
instructions : wait, post, multiple wait
of n events among p, check), communication
between processes (implicit communication
of information, explicit transfer of in-
formation)., The Logical Network Machine
SIGOR is realized on a multiprogramming
support which conforms to the basic prin-
ciples of a teleprocessing system (4).

The operating language of SIGOR is a
procedural type language (3). The proce-
dure is the basic unit used for transport.
Except in the case of explicit transfer of
information and explicit synchronization,
all the functions as communication and ex-
pression of parallelism between processes,
which interprete user's procedure algo-
rithms, are done implicitly; tree of hie-
rarchical processes, inter-process proto-—
cols, finite states automata, gqueue to
stack requests are defined in order to
perform these functions.
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It is hoped that this summary will
served as a gateway to increase apprecia—
tion of the Logical Network Machine SIGOR
and to its probable descendant : a high
level network command language allowing
users to define distributed algorithms in
a network environment.
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Summary

Microprocessors and semiconductor memories
are becoming faster and cheaper. As this situation
progresses, the constraint imposed on the number
of pins available on these components will force
us to consider more carefully the functionality of
such components and their interconnection.

In this regard, two approaches immediately
suggest themselves as design philosophies for con-
structing microprocessor systems: (1) provide a
general interconnection network among microproces—
sors where data paths, control paths and communi-
cation protocols are already specified, and try to
map a (software) solution onto such a system; or
(2) start from the general system functional spec-
ifications (e.g. system requirements) and refine
them into a logical design which provides a basis,
in an implementation phase, for determining the
(hardware/software) functionality of specific mi-
croprocessors and a suitable interconnection struc-
ture.

In this paper we take the latter approach and
describe a model (i.e. a conceptual framework)
which forms the basis for the design and implement-
ation of microprocessor systems.
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ABSTRACT - The design of a pipe-
lined DYNAMO compiler which produces

parallel code segments for a network com-
puter is described. The network computer
is dedicated to execution of a single job

at a time. Phases of the compilation
process, residing on separate computers
in the network, cooperate to process an

input source stream in a pipelined style
but are constrained not to access global
tables or intermediate files. The object
code 1is partitioned automatically into
clusters by the compiler and the clusters
are allocated to constituent computers
for run time execution. Problems raised
by the constraints are discussed and
design alternatives to these problems are
examined.

Introduction
A pipelined DYNAMO compiler which

produces parallel code segments has been
designed for the TECHNEC, a network com-

puter at 1Illinois Institute of Technol-
ogy. The TECHNEC will be a ring network
of twelve LSI-1lls. It is called a net-

work computer rather than a computer net-
work because the whole network will be
dedicated to the execution of a single
job at a time.

The design aims to make full use of
the parallelism provided by the network
computer. At compile time, the compiler
itself 1is organized in the form of a
pipeline. Stages of the pipeline execute
in parallel and cooperate by passing
statements in a conveyor belt style. But
the communication is asynchronous between
stages of the pipeline. The generated
object code is partitioned automatically
by the compiler into clusters which are
to be executed in parallel at run time on
the network computer.

This paper 1is concerned with the
problems we have encountered and the
alternative solutions to the problems.
The deciding factors in solution selec-
tion are the efficiency of the solution

and the degree of parallelism exploited.

Goals of the DYNAMO Project:

This work was supported by National
Science Foundation under grant MCS
76-21310.

Illinois
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a. Compilation on a Network of Microcom-
puters

This project aims to investigate the
problems inherent in implementing a
high-level languages compiler which is
distributed on a network of microcomput-
ers. The compilation process is treated
as a single task and partitioned into
cooperating subprocesses on the network.
Each microcomputer 1is relatively slow
compared with larger computers and the
primary memory on each microcomputer is
restricted in size. But a network of
microcomputers as a whole serves as a
power ful computing device by exploiting
parallelism on the network.

have been predom-
inantly used to control real-time
processes and languages available on
microcomputers are usually assembly
languages. This attempt to implement a
compiler distributed on a network
represents an exploration of new applica-
tions of microcomputer networks.

Microcomputers

b. Pipelined Compilers

The compiler will be in the form of
a pipeline each stage of which carries
out an individual phase of compilation.

Each computer on a network has a

primary memory but does not share
any common global memory with another
computer. A computer thus can only com-
municate with other computers in the net-
work by means of data messages. The
TECHNEC on which the compiler is to be
implemented is in the form of a unidirec-
tional ring in which any computer may
communicate with another by circulating a
message around the ring. Each phase of
the compiler receives a statement in the
form of a message, converts it to some
internal form and passes the converted
statement to the next stage as a message.

local

c. Partitioning a Distributed Program

Parallelism is to be exploited by
executing the compiled object code in
parallel on the computers of the network.
The generated code is partitioned
automatically by the compiler into code
segments called clusters. This parti-

tioning involves tradeoffs between



speedup due to parallel execution of
clusters and the amount of message pass-
ing necessitated by communication between
dependent clusters.

d. Synchronization Between Clusters

The compiled

DYNAMO compiler

object code of the
will be in the form of
program clusters which communicate by
data messages. A communication mechanism
has to be provided between the clusters.
The style of synchronization for the
clusters is an important problem.

Choice of Language

Simulation of parallel processes is
a basic concern of the Network Research
Group at Illinois Institute of Technology
because we view simulation as a fundamen-

tal part of the future development of
networks. While simulation is often car-
ried out on single processors there are

obvious conceptual advantages in simulat-
ing parallel processes on a network of
parallel processors. Clearly this kind
of simulation is a most natural and
appropriate task for a network computer.

The decision to focus on continuous
rather than discrete simulation was
motivated by the concern of the Network
Research Group with control processes.
This group aims at investigating a style
of control developed in [3] in which com-
plex tasks requiring accurate coordina-
tion of many variables are performed by
distributed controllers, each handling a
stage of rough computation. The TECHNEC
system [4] provides a hardware/software
environment for experimenting with this
style of control. A control process is
to be programmed as a collection of con-
trol tasks each responsible for control-
ling a2 subset of the variables. The
whole TECHNEC is to be dedicated for the
execution of a single control process at
a time. These control processes will be
studied with the help of simulation
models. This design leads to the imple-
mentation of a continuous simulation
language. An appropriate language tool
must lend itself easily to problem decom-
position.

DYNAMO [2,5] is a well-known con-
tinuous simulation language. While
DYNAMO presents serious complications in
the areas of sequencing and partitioning,
it is easy to parse and its only data
structures are simple variables and 1l-
dimension arrays. Thus implementation of
DYNAMO seemed to be a feasible step in
the development of network software.

is
of

model
set

simulation
by a

A continuous

often represented
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differential
models a

equations. DYNAMO [5]
system with a set of variables

called LEVELs and their rates of change
called RATEs. The differential equations
are solved by determining the value of

each LEVEL at regular time points and the
corresponding RATE in an interval between
adjacent time points. The value of a
LEVEL at a simulation time point is
expressed as an integration of the
corresponding rate over a regular time
interval. A very simple integration
scheme (the Euler or rectangular method)
is used. The scheme is very efficient
when no need for great accuracy exists.
There are also AUXILIARY variables to
help specify the relationship between
variables especially in nonconservative
systems.

DYNAMO
languages

differs from procedural

in that statements of a DYNAMO
program are not sequential, i.e., they
can be written 1in any order without
affecting the outcome of the program. No
oto nor conditional statements are pro-

vided. In a traditional implementation
for single processor systems, there is an
implicit order of executing LEVEL vari-
ables as a group first, followed by AUXI-
LIARYs and finally RATEs in one cycle of
simulation. There is still considerable
freedom available in varying the order of
execution of LEVELs since they are
independent of one another. Similarly
all RATEs are independent of one another.
This independence among LEVELs and RATEs

gives rise to opportunities in parallel
processing. In a network computer such
as the TECHNEC on which a single DYNAMO

program is distributed, much more paral-
lelism can be exploited. An AUXILIARY
equation can be executed in parallel with
a LEVEL or a RATE equation allocated to a

different processor as long as they are
independent.
The state of a model is computed at

regular time points. The length of the
constant interval is designated by the
symbol DT. The size of DT is chosen by
the user. DYNAMO adopts the convention
of attaching one of the symbols J, K, JK,
or KL as subscripts to a variable to
indicate the timing. The value of level
ABC at the instant at which calculations
are being made is referred to as ABC.K.
Its value at the previous instant is
ABC.J. The interval Jjust passed is
called the JK interval; the interval com-
ing up 1is the KL interval. Since RATEs
hold over an interval, their subscripts
are either JK or KL while other variables
have J or K as subscripts. It 1is not
necessary to attach a subscript to con-
stants.

Most DYNAMO statements
statements whose

are assign-

ment right hand sides



(RHS) are arithmetic expressions. We
will use the term 'equation' interchange-
ably with 'statement' since the assign-
ment statement defines the value of the
variable on the left hand side (LHS) at a

particular time point. The type of the
variable on the LHS is indicated by the
§irst character in the statement. Thus
in

L ABC.K=ABC.J+DT*R.JK

ABC is defined as a LEVEL. There are
seven equation types: level (L), auxili-
ary (A), rate (R), supplementary (S),
initial value (N), given constant (C) and
table (T). Each variable 1is defined

exactly once with at most one correspond-
ing initial value (N) equation.

To summarize DYNAMO has been adopted

as a research vehicle for several rea-
sons. First of all, simulation of paral-
lel processes is a central problem in

network development and a most important
application for network computers.
DYNAMO raises the central problem of par-
titioning tasks in an urgent and immedi-
ate fashion. Second, the Network
Research Group needs a continuous simula-
tion language to model control processes.
Third, the simplicity of the syntax and
data structures of DYNAMO make it a good
starting point for compiler development
on networks.

TECHNEC System Overview

We shall present a brief introduc-

tion to the hardware configuration and
software facilities available on the
TECHNEC. The emphasis is on the inter-
face between the available software

facilities and the DYNAMO Compiler.

Hardware Configuration

The TECHNEC [3] is a ring network of

five nodes initially (Figure 1) with
12 nodes planned in the second year of
the project. Each node consists of a

COSMAC (called the Ring Interface Unit -
RIU) and an LSI-11 (called the Micro
Processor Unit - MPU). COSMACs are
linked together by I/0 ports to form a
ring. Each MPU is attached to a
corresponding RIU. All user tasks reside
in MPUs. The RIUs are responsible for
message communication among the nodes.

Each MPU is a 16-bit LSI-11 with at
least 12K words of RAM and floating point
hardware. One of the MPUs has an RX-11

dual floppy disk and serial I/O inter-
face. This node will be designated as
the system node. A system console is

attached to this node. The network will
be connected to other computers on campus
via modems.
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Structure of TECHHEC

Fiqure 1.

The RIU is an 8-bit microprocessor
with 1K bytes of RAM and three sets of
I/0 ports. One set of ports implements
the . message communication path between

adjacent RIUs.
between RIUs

The message communication
is byte parallel and uni-
directional. The other two sets of ports
are used for communication with its
corresponding MPU. One set implements a
control/status and data buffer register
interface and the other set serves as a
DMA (Direct Memory Access) interface
between the RIU and the memory of the

MPU. An RIU may interrupt its MPU (but
not the other way around) and it can
access the 12K RAM of its MPU in the DMA
mode.

Software Facilities

The operating system includes a mul-
titasking executive called SEXTECH which
allows multiple tasks to reside in one
MPU and schedules user tasks in a simple
round robin fashion.

The TECHNEC supports two modes of
message communication between tasks. One
is the broadcasting mode in which one
task passes a messagz around the ring via
a 'channel' and all tasks which are
openead to receive messages at this

specific channel may receive the message.
The channels are virtual because no phy-
sical links are established between the
tasks. A channel is simply an identifier
tagged to each message. This is a one-
to-many communication mode. The identity
and the location of the receivers are not
known to the sender. The other mode is
point-to-point transmission in which a
task transmits a message to exactly one
receiver via a channel and the receiver



is identified by a ‘'subchannel.' The
location of the receiver need not be
known to the sender.

A collection of facilities such as
the console management routine, file
management, and debugging facilities are
available on the system node. The con-

sole management routine allows the system

console to interact with user tasks via
messages. The file' management routine
provides storage and retrieval of files

resident on one of the floppy disks. The
debugging routine provides functions such
as suspension of a task, resumption of a

task, modifying contents of a location,
display of status, and breakpoints. A
loading routine exists to load programs

from the floppy disk or other “external

computers to the TECHNEC.

Structure of the Compiler

The compiler is structured in the
form of a pipeline with the various
phases of the compilation process distri-

buted over the ring network. Each phase
resides as a module on a separate com-
puter of TECHNEC. A module receives one

statement in the form of a message at a
time from the previous module, performs
one compilation phase on the statement,
and passes the statement to the next
module. Statements of the source pro-
gram, originating from the system node,
thus pass through the phases in order,
with no feedback required. So one may
consider the compiler to be pipelined in
the same sense as pipelined arithmetic
units. The code generated will return to
a file at the system node. The system
node behaves both as a source and a sink
for the pipeline.

severe constraints are
the design of the compiler.
First, no intermediate files exist
between the phases. Each phase can be
considered to be processing a statement
in the statement stream through a window.
Once a statement is processed and passed
to the next phase, neither the original
nor the modified form of the statement
will be available to the phase.
Secondly, the individual phases cannot
access global tables. Ideally informa-
tion derived by each phase should be
embedded in the internal code which is
routed to successive phases. Thirdly,
the memory available to each phase is
limited.

Several
imposed on

constraints are not
or physical limita-

The first two
due to theoretical
tions but are based on performance con-
siderations. A file or information
tables at any node could be made accessi-
ble to any process on TECHNEC via the
interprocess communication mechanisms.
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It is felt that message communication

involves too much overhead in parallel
computation on TECHNEC. No feedback is
allowed in the compiler out of a desire
to keep the pipeline as full as possible
and to reduce message communication. The

compiler as a whole is a one pass com-
piler without the benefit of global
tables. Moreover it 1is distributed on
multiple computers. The compiler is com-
posed of eight modules organized as in
Figure 2:
source
input
Scanner F===-==--=-"7
H
l i
1
1]
optional listing Macro | !
of source and Expansion [~ T 777 o
expanded macro i
statements l : :
[
Symbol .
Table b e == + 1 ' error
Routine i : ! messages
1
1 L
SRR 2
Error
Parser F-—-- Message
Generator
T
l o
! 1
1 ]
Sequencing
Module . [----—- |
1
1
l !
Code X
Generator \
]
l ]
t
1
Partitioning |
Module  f-------- J

cluster
assignments

Figure 2. Structure of the Pipelined DYNAMO Compfler.

Error reports, originating from one
of the first seven modules, bypass inter-
mediate modules to reach the Error Mes-
sage Generator which produces symbolic
error messages. :

Figure 2 represents the structure of
the compiler in our current design. Ini-
tially we placed the Code Generator after
the Partitioning Module. We realized,
however, that if the Code Generator pre-
ceded the Partitioning Module, the latter
would have more accurate estimation of
the execution time and storage require-
ments of statements in forming clusters.

A statement is passed between
modules in an internal form of a string-
of tokens. A token has two fields: type
and value. The value field indicates the



symbol represented by the token (e.g.,
identifier, subscript, statement, etc.).
The interpretation of the value field |is
dependent on the type field. For example
the valus field of a subscript token
indicates the subscript type (J, K, JK or
KL). The value field of a statement
token denotes the statement type (level,
auxiliary, rate, supplementary, constant,
initialization, table, etc.). The value
field of an identifier or a2 real number
points to the original symbolic represen-
tation in a character string which fol-
lows the string of tokens. Organization
of the string and information 1in thne
token vary from phase to phase.

Scanner

The input to the Scanner 1is the
DYNAMO source program. The function per-
formed by the scanner is to transform the
text input into an internal form of
tokens.

DYNAMO statement 1is a
A routine is first called
(LI AI

Scanning a
simple matter.
to scan the statement identifier

R, SPEC, etc.). All statements except
PRINT, PLOT, NOTE, RUN and title state-
ments are scanned by the same routine.

There are only four kinds of symbols that
nzed to be dealt with: gquantity names,
subscripts, numeric constants and
delimiters/operators. A token is created

for each symbol and stored in the output
message. When the statement 1is com-
pletely scanned, the message is sent to
the Macro Expansion program.
Macro Expansion

Tne macro expansion module expands
macro <calls into one or more DYNAMO
statements, produces the source listing

(optionally listing expanded statements),

and assigns to each statement a unigue
number .
The language requires that a macro

appear before a call to it is
made. This is important for a one pass
compiler. The tokens for statements
within a macro definition are stored in a
table as the statements are received from
the Scanner. Special tokens for
occurrences of local variables, formal
parameters, and macro names replace the
normal identifier tokens to speed up
macro expansion. The macro and a pointer
to the macro definition are stored in a
second table.

definition

At expansion time, the macro call is
replaced by a compiler-gesnerated identif-

ier. Each statement in the macro defini-
tion is ©processed by replacing local
variables and occurrences of the macro
name by compiler generated identifiers
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and replacing formal
actual parameters. As each statement in
the macro body is processed, tokens are
transferred to a message to be sent to
the symbol table program. Macro calls
are allowed in macro definitions and in
actual parameters. These nested macro
calls gst expanded in the same way.

parameters by the

The source listing 1is produced by
this module because it is felt that list-
ing of expanded statements should be a
user option and it is desirable to per-
form the source listing as early as pos-
sible to reduce message passing overhead.

The number assigned to a statement

is printed on the listing and stored in
the internal form statement for the pur-
pose of associating an error message
(both compile time and run time) to a
particular statement.
Symbol Table Manipulation Routine

The Symbol Table Manipulation Rou-

tine is the third module in the pipeline.
Th= function performed by this module is
to replace the wvalue field of quantity
name identifier tokens by an index into
the symbol table. It also checks sub-
scripts in a given statement type, checks

for multiple definitions of a quantity
name, checks for undefined quantity
names, and searches for conflicting use

of subscripts.

Converting value fields of an 1iden-
tifier token to a symbol table index is
straightforward. When a message is
received from the Macro Expansion Module,
each identifier is looked up in the sym-
bol table. If the identifier 1is not
found in the table, a new entry is made
in the symbol table and the value field
set to the table index.

More work 1is required to achieve
subscript checking. The nonsequential
nature of DYNAMO gives rise to the ©prob-
lem of verifying a subscript appearing on
the RHS of an equation. It should be
emphasized that the pipeline does not
permit a second pass through the source.
One solution 1is to keep in the symbol
table entry for each quantity name a bit
to indicate whether or not the identifier
is defined. If defined, a field indi-
cates the equation type (L, A, R, S, N,
C, CP, T or TP) in which the quantity
name is defined; in this case the sub-
script is immediately verified. If the
gquantity name 1is not yet defined, the
equation type field is a pointer to a
linked list. Each node 1in the linked
list contains a field for the statement
number, a field indicating the equation
type and a field indicating the subscript
used. When the definition of the



quantity name is encountered, the sub-

scripts for the ©previous references to
the guantity name are verified for
correctness. The Symbol Table Routine
notices inconsistencies in wuse of sub-
scripts.
Parser

The Parser is the fourth stage in
the pipeline. Separate routines parse
assignment statements, print and plot

statements, and specification statements.
The main function performed by this
module 1is to transform expressions from
infix to Polish suffix notation. Polish

suffix notation was chosen as internal
form because the LSI-11 provides stack
operations. For this kind of stack

machine, code generation from Polish suf-
fix form is particularly simple.

A transition matrix is used by the
parser to handle arithmetic expressions.
Transition matrix parsing nas the advan-
tage of being a particularly robust pars-
ing method. It also facilitates the pro-
duction of good error messagses. The main
disadvantage of this parsing method is
the space required for the matrix. For-
tunately, DYNAMO expressions are so res-
tricted in form that the matrix for this
language is of reasonable size. Operator
precedence parsing is awkward for DYNAMO
because it allows two operators to appeartr
next to each other; A*-B and (A+B) (A-C)
are both legitimate.

Sequencing Module

The nonsequential characteristic of
DYNAMO by no means implies that DYNAMO
statements can be executed in any order.
Determination of data dependency,
sequencing of statement execution, and
initialization of the model are essential
tasks of a DYNAMO compiler. Each DYNAMO
assignment statement can actually be con-

sidered the defining =quation of its LHS
variable. Moreover, these statements
define a partial ordering relation

between variables in the program in which
the LHS variable is a "successor" of each
variable in the RHS. A topological sort-
ing algorithm can be used to produce a
linear sequence consistent with the par-
tial ordering relations.

As was mentioned in Section 3, there
is an implicit order of execution (or
sequencing) of statements during each
simulation cycle, that begins with LEVEL
equations followed by AUXILIARY equa-
tions, and finally RATE equations. This
sequencing will be referred to as the
"LAR looping sequence." The LEVELs can be
computed in any order in the beginning of
a cycle, and also the RATEs can be exe-
cuted in any order at the end of the
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cycle, [5, p. 25]. The sequencing of
AUXILIARY equations must be determined by
the compiler.

A DYNAMO compiler must  provide the
initial wvalues for those auxiliaries and
rates that have no explicit (i.e., user-
defined) initial wvalue equations (N-
equations) by treating the auxiliary or
rate equation as an N-equation
[S, p. 25]. This actually means that,
the first simulation cycle is to produce
the initial values for all quantities 1in
the model. This 1is done by beginning
with those quantities that have a user-
defined initial wvalue and executing the
appropriate statements in the model in
the correct order to provide 1initial
values for other quantities. This
sequence is referred to as the "initiali-
zation sequence." In general the initial-
ization sequence may differ from the LAR
looping sequence (in fact they are dif-
ferent in most - practical examples).
Hznce, the Sequencing Module (SM) can be
schematically represented by Figure 3.
The input is fed to the sequencing module
a statement at a time. Data dependency
information is extracted from that state-
ment and the statement is passed
untouched to the next stage. Wh2n a ROUN
statement 1s encountered, SM begins pro-
cessing the accumulated information.

q e of S
parsed

statements —}

9 parsed statements:
constants sequence;
initialization sequence;
LAR looping sequence .

q in
Module
(sM)

Figure 3. Input and Output of the Sequencing Module

Constant (C) and table (T) equations
actually may be evaluated in any order at
the very beginning in the initialization
sequence. Moreover, constants and tables
are the only gquantities that may be rede-
fined in <case of reruns. It is, there-
fore, expedient to group constant and
table equations as a separate sequence,
referred to as "Constants 3Sequence" in
Figure 3.

The
determine

Sequencing Module can only
sequencing after examining the
complete program. Again the three con-
straints mentioned at the beginning of
this section come into play. To avoid a
second pass and to keep the next stage
busy while SM is functioning, each state-
ment written by the programmer will be
eventually converted to a subroutine by

the Code Generator. The SM will produce
a sequence of subroutine calls.

Th= Sequencing Module can be
described functionally by the flowchart



in Figure 4. There are two logical parts

in SM. The first part, consisting of
modules M1, M2, and M3, builds the data
structure and the second part produces
the sequences. The data structure wused

to convey the data dependency information
in the SM consists of a set of 1linked
lists. Each 1linked list, shown in Fig-
ure 5, corresponds to a variable in the
program and contains the data dependency
in both the defining equation of the
variable and the user-defined initial
value equation, if available. The data
dependency information is conveyed in the
form of a COUNT field, indicating the
number of predecessors to the variable,
and a successor list for that variable.

M1

Receive a statement

token through the

M3

pass the statement

to next module.

add the appropriate
information to the
data structure that
represent data depen-
dency.

]

M4

can the program
be initialized?

M5 M6
generate the appropria-|

produce the “"initialz-

te error message. ation sequence" calls.

l

produce the "LAR

( stop )

looping sequence"

calls.

( stop )

Figure 4. Logical Flow of the Sequencing Module

The SM then checks whether the model
can be initialized and simulated prop-
erly. The conditions for proper execu-
tion are:

a. All LEVELs are initialized
user-defined N-equations. This
checked using the T and NEQ fields.

using
is

b. All variables are properly defined.
This is indicated by a nonzero DEQ# field.
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HEADER SUCCESSOR LIST1

[ T TNAMEI NEQ !DEQ# lconmq 111—,——)[ sucl ,NEXTI—{——)

l N# FOUNTZI TOPZHSUCZINEXTE—-}—)

SUCCESSOR LIST2

fields are interpreted as follows :
T is a type field (indicating the type of the variable)

NAME is the symbol table entry for the LHS variable

NEQ is a pointer to the list representing the corresponding
N-equation supplied by the user (0 if none)
DEQ# 1is the defining equation number of the variable

COUNT1 is the number of predecessors of the variable in DEQ
COUNT2 is the number of predecessors of the variable in NEQ

TOP1  {s a pointer to the first member of the SUCCESSOR LIST1

TOP2 {s a pointer to the first member of the SUCCESSOR LIST2
NEXT1 s a pointer to the next entry in the SUCCESSOR LIST1
NEXT2 1{s a pointer to the next entry in the SYCCESSOR LIST2
SUC1 {5 the symbol table entry for the successor in LIST1
SUC2  is the symbol table entry for the successor in LIST2
N# is the user-supplied N-equation number for the variable

Figure 5. Data structure used in the Sequencing Moduie

The "LAR looping sequence" calls can
be generated directly from the "initiali-
zation sequence"” calls if no AUXILIARY
variable has a user-defined N-equation.
In this case, the LAR looping sequence is
simply calls to LEVELs in any order, fol-
lowed by calls to AUXILIARYs in the same
order as 1in the initialization sequence
(same equation numbers), followed by
calls to RATEs in any order.

On the other hand,
supplied for some AUXILIARY equa-
the data structure is searched for

with =zero NEQ fields. For each
entry, a SUCCESSOR LIST2 1is built as
required by the language as a copy of
SUCCESSOR LIST1 with N# equal to DEQ# and
COUNT2 .equal to COUNT1 field. This is
necessary because the topological sorting
program has to be run twice in this case.

if N-equations
are
tions,

entries

In general, the topological sorting
program incorporated 1in the SM searches
for a zero COUNT field, produces the call
for the <corresponding equation number,
and decrements by 1 the COUNT field in
the header of each variable appearing in
the SUCCESSOR LIST. To produce the "ini-
tialization sequence" <calls, 1in case a
above, this procedure is applied itera-
tively wusing COUNT2 and SUCCESSOR LIST2
for those entries with nonzero NEQ fields
and COUNT1 and SUCCESSOR LIST1 for the

others. 1In case b, COUNT2 and SUCCESSOR
LIST2 are used for all variables. If the
model is consistent and an evaluation
sequence can be found, the SM produces



calls in the correct order. Otherwise,
the number of calls produced does not
check with the number of statements pro-
cessed and a "simultaneous equations"
error message is generated from SM that
contains those variables for which no
calls were produced.

Code Generator

The Code Generator receives from the
SM parsed statements. It extracts the
variables from a statement and sends them
as a list to the PM which will need
predecessor-successor relationship among
variables. The parsed statement is con-
verted by the Code Generator to a subrou-
tine in assembly language and sent to the
code file. PRINT and PLOT statements are
handled differently since routine check-
ing and formatting are necessary. The
Code Generator finally generates for the

PM execution time and storage require-
ments of each statement.
Partitioning Module (PM)

One of the main objectives of the

DYNAMO project is to exploit parallelism
by executing the compiled object code in
parallel on the computers of the network
(goal c¢). The partitioning module is to
receive from CG 1lists of variables in
2ach statement that is used to build a
data structure representing the depen-
dency between variables. After
encountering the RUN statement, the
module processes the data structurs and
produces a "processor assignment list"
that specifies the statements to be exe-
cuted on each processor in the network,
using the statistics provided for execu-
tion  time and storage requirements of
each statement. This can be represented
schematically as in Fiqure 6. The PM
also is supposed to insert the required
communication primitives between vari-
ables in different partitions. Although
the data structure required in PM has
many similarities with that of the
Sequencing Module, since both of them
reflect some sort of connectivity rela-
tion, a main dJdifference exists in sub-
script treatment. In PM the initializa-
tion cycle is completely ignored, because
it occurs only once. Supplementary equa-
tions are also ignored at this point
because they are only executed during
special print or plot cycles. The main
objective is to produce partitions that
will reside on different processors at
run-time in order to achieve the fastest
execution of the program. Hence, it is
clear that a relation between the initial
value of two variables V1, V2 is not as
important as a recurrence relation
between them.
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1ab) Partitigning list of communication calls;
variable - Module | 1ist of processor assignments;
lists ) > pseudo statements
(PM)
statg\nents

statistics

Figure 6. Input and Output of the Partitioning Module.

directed
successive
source

Conseguently, a
representing two
cycles of a DYNAMO
built as follows:

grapn,
simulation
program, is

(i) All1 C, N, S, PRINT, PLOT, SPEC, T
statements are ignored. An appropriate
initializing process will be provided to
initiate constant sequence and initiali-
zation sequence. calculations and send the
results to different partitions before
the main iteration operation begins.

(ii) A variable with a J or JK subscript
is represented by an entry node with no
predecessors.

(iii) Every variable
two nodes N1, N2:

V is represented by

N1 representing
N2 representing

V.J (or V.JK)
V.K (or V.KL)
As mentioned in (ii) N1 is an entry node.
(iv) An arc from node Ni to node
represents a precedence relation,

Ni is a RHS variable of an equation
has Nj in its LHS.

Nj
i.e.,
that

The main
partitioning is

algorithm for automatic
the subject of a study
parallel to this project. The main
points investigated in automatic parti-
tioning [1] can be stated as follows:

(1) Two basic approaches are being stu-
died.

a. An optimal partitioning approach based
on an integer programming model that pro-
‘duces partitions of DYNAMO code that
takes minimum time to run on the network

computer (taking into consideration the

communication overhead).

b. A heuristic approach that investigates
different partitioning policies that can
be incorporated easily at compile time.

The tradeoff between the two
together with comparative studies for
different heuristics, is the main theme
of that study. The study had reached the
stage of completing the formulation of
the problem as a Mixed-Integer-Linear-

approaches



Programming (MILP) model of a reasonable
size. Test runs using sample DYNAMO pro-
grams are being attempted-using a stan-
dard package (FMPS) for producing solu-
tions on a UNIVAC 1168 processor. In
addition four heuristics have been sug-
gested and are being tested on the same
sample programs. In all these algorithms
an important assumption has been made.
Namely, every two nodes N1, N2 represent-
ing the same variable V at different time
points, are grouped together in one com-
puter. This implies that a variable is
assigned to one processor during the
whole simulation period.

of
(see
Synchronization

(2) In the MILP model 'a combination
synchronous and asynchronous modes

the section on Run Time
of clusters) is assumed. This assumption
does not affect the resulting solution,
but mainly influences its optimality.

(3) The MILP model generates
processor assignment, but
optimal starting-time-values
variable. This
the LAR looping sequence instead

not only
also the
for each
can be used to generate

of the

scheme described above. The latter pro-
duces a feasible but not necessarily
optimal sequence.

The Symbol Table, the Sequencing
Module, and the Partitioning Module all
generate data structures involved with

connectivity between statements which are
related but not identical. The first two

constraints imposed on the design
motivate these distributed data struc-
tures. Some duplication does occur, but

each data structure is tailored specifi-

cally for the phase and 1is thus more
efficient. Moreover the phases are exe-
cuting in parallel. A single central,
general data structure can only be

accessed sequentially.

Error Message Generator

The error message module is the last
logical step in the pipeline. This
module differs somewhat from the other
modules in that there is more than one
input source. Error messages are
received from any of the other modules
except the code generator module.

Each error message contains an error
messaga number, a line number, and,
optionally, one or more identifier tokens
and/or text tokens. The error message
number is used to retrieve an error mes-
sage from disk. The 1line number is
printed with the error message to indi-
cate where the error occurred. Variable
text, e.g., a subscript name, is simply
inserted where required. After the error
message is formatted, it 1is sent to a
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print program.

Error Recovery and Error Correction

A compiler must be able to discover

as many errors as possible before ter-
minating. This implies that a good error
recovery scheme must be incorporated in

every good compiler.

When it comes to error correction,
however, there is serious conflict, par-
ticularly in regard to DYNAMO subscript
errors. We believe on principle that a
compiler should not correct user errors.

This 1is a complicated process which may
lead to unpredicted and unreliable
results. What 1is more, user errors may
signal defects in the model. We can
serve the user better, we think, by flag-
ging errors and forcing him to «correct

On the other hand we also t :lieved
we have

them.
in language standardization and
tried to follow the DYNAMO manual as
closely as possible. According to the
DYNAMO manual, all subscript errors are
considered nonfatal [5 p. 53-54].

Run Time Synchronization of Clusters

A cycle of simulation <consists of
execution of LEVEL statements, AUXILIARY
statements if any, RATE statements and in
certain specified cycles SUPPLEMENTARY
statements for PRINT and PLOT statements.
Due to dependency between statements,
values may also be passed between cycles.

The evocation of cycles and state-
ments within a «c¢ycle can be performed
synchronously or asynchronously. By syn-
chronously we mean statement execution of
cycle initialization are evoked by a sig-
nal given by a central process. In the
asynchronous mode, no timing mechanism
exists to control the timing of evoca-
tion. Each process evokes 1its 1logical
successor.

There are a number of ways to
chronize partitions:

syn-

Option 1. (Synchronous Mode): Partitions
are evoked by a global signal at the
beginning of a cycle and evoked to send
and receive messages at the end of the
cycle. This mode stipulates that no mes-
sages be passed between partitions in the
same cycle. It implies that values
required for the execution of a statement
are either available at the beginning of
the cycle or generated by the partition
itself. Only intercycle data dependency
is taken care of. This mode imposes a
serious constraint on partitioning.

Option 2. (Synchronous Mode): An evoca-
tion signal is provided for each class of
statements of the same type and a 'signal




in between <classes for message passing.
This approach allows more freedom in par-
titioning and message passing between L-
A, A-R, L-R, L-S, A-S, R-S pairs. The
price paid 1is additional signals and
reduction in speed. The execution time
of a cycle is the sum of maximum execu-
tion times for each class of statements
plus the maximum transmission times.
Moreover a message cannot be sent once
the wvalue of quantity is available but
must wait for the synchronization signal.

Option 3. (Asynchronous Mode): In the
completely asynchronous mode, each state-
ment is executed once all the required
values on its right hand side are avail-
able. It is conceivable that ons parti-
tion may run a number of cycles ahead of
another. Data messages may have to be
tagged by <c<ycle numbers or a FIFO gueue
is needed between partitions that commun-
icate with =ach other.

Synchronous

Option 4. (A Combination of
and Asynchronous Modes): Cycles are
evoked by a global signal. The broadcast
message facility 1is used advantageously
for this purpose. Intracycle messagas
are sent asynchronously. A partition may

send a valu2 needed by another using the
point-to-point communication scheme. A
partition may also pause to wait for a

data message. Each partition may inform
the signaling mechanism of its readiness
to start -a new cycle which implies com-
pletion of all execution and intercycle
data transfers. When all partitions are
ready, the signaling device generates a
signal for the new cycle. If n parti-
tions exist, then n messages plus ones
broadcast are necessary. A  broadcast
message from the signaling mechanism to
poll each partition's readiness is a more
efficient solution. But a good estimate
on the cycle execution time is important
to avoid multiple pollings.

The fourth option is favored for run
time synchronization.

summary
We have described the design of a
pipelined DYNAMO compiler to be imple-
mented on a network computer. The goals

are to make use of parallelism available
both at compile time and run time. At
compile time the compiler itself |is
organized in the form of a pipeline.
Each stage of the pipeline executes in
parallel and communicates asynchronously.
The object code is automatically parti-
tioned into clusters by the compiler so
that the clusters execute in parallel on
the constituent computers of the network
computer. The problems raised by the
objectives and the constraints of the
environment are discussed and alternative
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solutions to thess problems are examined.
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A COMPARISON OF VARIOUS METHODS FOR DETECTING AND
UTILIZING PARALLELISM IN A SINGLE INSTRUCTION STREAM

by
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Computer Architecture Department
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Sudbury, Massachusetts

Abstract -- By analyzing the data depend-
ency graph of a program it is possible to determine
the potential for program speedups by simultaneous
execution of logically independent operations.
When concurrent execution of instructions in
existing programs on a given machine is attempted,
efficient detection of data independence during
execution is a central difficulty. Simulation,
using actual program traces, has been used to
evaluate the effectiveness of several approaches
to detecting the presence of logically indepen~-
dent operations as a function of the number of
processing elements, The results indicate that
simple conflict detection algorithms perform
about as well as more complex detection algorithms
if the number of processing elements is six
or less. The complex algorithms continue to
show performance improvements as the number of
processing elements increases, whereas, perform-
ance levels off if the simple algorithms are
used. The rate of this increase indicates that
the additional improvement achievable probably
does not justify the increased cost of the
complex detection mechanisms and the additional
processing elements.

Introduction

The idea that program speedups can be obtained
by simultaneous execution of logically independ-
ent instructions has received the attention of
numerous researchers and practitioners [6,9,10,
11]. While some authors have reported that
utilizing potential parallelism can give
program speedups of a factor of 50, computer
manufacturers have settled for actual perfor-
mance improvement in the 1.5-3 range. There
are two main reasons for this:

1) Theoretical work has tended to ignore
the fact that the dependency graph, on
which the more optimistic estimates are
based, must be constructed during run time
from a program stored linearly in main
memory. If a computer utilizing the potential
parallelism inherent in the dependency graph
is to be cost effective, the hardware to
detect the data dependencies present in the
code must be fast, yet it cannot overshadow
the multiple execution wunits in cost.
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2) The problem of effectively handling
conditional branches has not been solved.
In pipelined machines,as described in My
below, both the next sequential instruction
and the instruction branched to if the jump
is taken can be conveniently prefetched.

In machines with this type of architecture
the test to abort the inappropriate branch
can be made before any instructions along
that branch have reached a point where re-
covery of the correct state is difficult.
The conditional execution of (several)
instructions along either path after a
branch, before the test can be resolved,
can lead to a large quantity of state
information, in fact the amount of state
information can grow exponentially

since the instructions along the paths

may themselves be branches.

Many researchers have felt that the conditional
branch problem is the main reason that the
potential parallelism in code is not better
utilized. In this paper we analyze the effects
of the problem raised in point one: How much
parallelism is actually present in existing
code, and how much does the technique used to
detect and utilize this parallelism degrade
performance from the ideal?

In the next section we shall review the
theory associated with concurrent execution of
logically independent instructions, pointing
out a number of problems and subtleties not
previously noted in the literature. After that
we will present several machine models which
detect and utilize parallelism in a single in-
struction stream in different ways. Some of
the models embody the theoretically ideal data
dependency detection mechanism, while still
incorporating the realistic limitations of
non-zero instruction decode time and main
memory fetch time and an addressing structure
similar to those found on many current computers.
An empirical upper limit on performance improve-
ment can be obtained for a given piece of object
code by executing it on a (simulated) machine
employing the ideal data dependency mechanism.
Other of the models are based on data depend-
ency detection mechanisms that do not fully
exploit the parallelism inherent in the code,
and thus are not as complex to implement. In
the final section of the paper, simulation re-
sults and an interpretation will be presented.



Theory of Concurrent Instruction Execution

The abstract theory of program speedup by
concurrent execution of logically independent
instructions is well documented [5, 6, 9, 10].
In fact by appropriate interpretation the theory
can be applied at a number of levels.

Definition: Let Tl’ Tg,...,T be a sequence of
AR L2 DL n ‘

elemental operations, each with a well defined
set of input variables and output variables.

We define an ordering relation C)on the elemental
operations as follows:

Ti(:DTj if and only if i < j and at least one of
the following three conditions holds

(i) an input variable of Tj is an output variable
of T.
i

(ii) an input variable of Ti is an output variable
of Tj

(iii) Ti and Tj have an output variable in common.

The transitive closure of(:)defines a partial
ordering, <,n the set of elemental operations.
From this definition it is possible to construct
a data dependency graph (see Figure 1). It is
customary to include only those arcs that cannot
be deduced by transitivity. If execution times
are associated with each node of the graph, we
have the following:

Principle of Optimality: Given unlimited re-
sources, the minimal execution time of a program,
sequentially specified as Tl' T2,...,Tn, is

equal to the length of the longest path in the
dependency graph (the length equals the sum of the
execution times of the nodes along the path),

and this minimal execution time can be realized

by starting an elemental operation as soon

as all its predecessors (in the partial ordering)
have completed.

This model has been specialized in a number
of ways. Graham [4] and Coffman [2] have in-
terpreted "elemental operation™ as a job and
have considered scheduling interrelated jobs on a
multiprocessor system (with limited resources).
Brinch-Hansen [1] has treated "elemental
operation™ as a procedure or begin block, allowing
the user to specify parallelism in a higher
level language. At the other end of the spectrum,
Tsuchiya and Gonzalez [ 12] have performed automatic
optimization of horizontal microcode within the
constraints imposed by the dependency graph that
results from considering as "elemental operations”
logically indivisible sub-instruction functions.

In the research reported below we will be
adapting this abstract model to execution of the
instructions in a single user program. A number
of subtleties arise in this case. It should be
noted that the points presented below can be
incorporated into the abstract model, by either

68

slightly modifying the definition of ordering

relationC), or by carefully defining the input

and output variables. As with many other simulation
problems the difficulty in building an accurate
model is determining what aspects of the problem
are the most relevant.

The first class of subtleties deals with why
the principle of optimality does not really produce
the minimum possible execution time.

1) Changing the elemental operations. By
changing the choice of elemental operations
the total execution time may be reduced.
Formally we have

Definition: A refinement of a sequence of elemen-
tal operations, Ty,T2,...,T,, is a sequence Tll

T12y 40 "Tlm]_' To1.T22,. “'T2m2' eeeyTny
Tn2""'Tnmn' such that

. . . < <
(i) for i # j, if Tiu ij then Ti Tj'

(ii) for i # j if T, < Tj' then there exists
i <
u and v with Tiu ij , and
(iii) the longest path (where the length of a

path is defined to be the sum of the
execution times associated with the nodes
along that path) in the subgraph Til'Ti2'

...,Tim equals the execution time for
i

node Ti' for all i, i.e. the execution
time for the subgraph into which Ti is

decomposed equals the execution time of
Ti when viewed as a whole.

It is not difficult to prove that the minimal
execution time of a refinement is less than or
equal to the minimal execution time of the
original sequence. Intuitively, the subsequence,
Til' 132""'Tim. performs the same task as Ti.
This condition can also be formally stated, but a
precise statement of this condition is not im-
portant here.

The notion of refinement is relevant to the
current discussion since there are two natural
choices for elemental operations: Machine instru-
ctions, like load accumulator number five from
the main memory location symbolically labeled I
(L A5,I), or subinstruction functions, like compute
an address, fetch an operand, etc. Figure 2 shows
the same program segment as Figure 1, but with a
different choice of elemental operations. Because
of the environment within a computer, detecting
dependencies at the subinstruction level is not
more difficult than at the machine instruction
level. In the simulation results reported later
subinstruction functions are used as the elemental
operations.



2) Restrictive instruction format. Even if
a computer contains an unlimited supply of
arithmetic-logic units, a rigid instruction
format or lack of a sufficient number of general
registers may introduce dependencies in the machine
code not implied by the higher level language
statement of the program. Inefficient use of
general registers or poor code generation by a
compiler can also create such dependencies.
Dependencies introduced for these reasons normally
manifest themselves as dependencies due to
conditions (ii) and (iii) of the basic definition
of the ordering relation. The arcs marked with
asterisks in Figures 1 and 2 represent such de-
pendencies. Keller [5] discusses the technique
of "virtual registers" which can be used to
eliminate these dependencies, and thereby,
(potentially) reduce the minimal execution time.
When viewed theoretically, the technique amounts
to having an infinite number of input/output
variables available for use with the elemental
operations, and using each variable for output
only once (it can subsequently be used for input
indefinitely.) Practical implementation of the
virtual register technique may be quite costly
and the necessarily non-zero time to use the
additional hardware may negate any expected per-
formance improvement. Careful examination of
code from machines with numerous general registers
and register-memory and register-register in-
structions (UNIVAC 1100 series and IBM 360
series are typical) indicates that careful register
allocation makes the potential gain from the use
of virtual registers quite small in most real
applications. At the other extreme, in machines
with one accumulator this problem is so severe
that almost no program speedup is possible
without using virtwal registers.

3) Alternate program formulations. The
sequence T., T,,...,T may be able to be replaced
by another” sequence W, , wz,.,.,w , which accom-
plishes the same job.  Kufk [6] and Lamport [7]
have investigated speedups obtainable by semantic
analysis of FORTRAN programs. Careful analysis
of the algorithm being employed, with subsequent
recasting to take advantage of vector/array
features of the hardware can produce dramatic
improvements. A recent paper by Giroux [ 3] reported
a speedup factor of 25 for code carefully reworked
for the CDC-STAR. The reprogramming effort took
several years, however. Such techniques will not
be investigated here.
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