
n
0 -~

~ . PROCEEDINGS
:J:I
~ OF THE
n

6 .1977 INTERNATIONAL CONFERENCE
z '

I
~ i

> ~
::t'I ;
> : r­
r­m ,
r- '

ON

PARALLEL PROCESSING

PROCEEDINGS
OF THE

1977 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING

JEAN-LOUP BAER
Editor

Papers presented on
August 23-26, 1977

Co-Sponsored by

Department of Electrical and Computer Engineering
WAYNE STATE UNIVERSITY

Detroit, Michigan

and the

IEEE Computer Society

In Cooperation with the

8
Association for Computing Machinery

. Copyright © 1977 A The Institute of Electrical and 'W Electronics Engineers, Inc.
345 East 47th St., NY, NY 10017

Additional copies are available from:
IEEE Computer Society

5855 Naples Plaza, Suite 301
Long Beach, CA 90808

or

IEEE Service Center
445 Hoes Lane

Piscataway, NJ 08854

Manufactured in the U.S.A.

P R E F A C E

In a year filled with numerous national and international meetings, the

response to the call for papers and the attendance at the 1977 International

Conference on Parallel Processing have been extremely rewarding for its

organizers. This conference, the sixth if one includes the Sagamore Computer

Conferences to which it has succeeded, is now regarded as a regular annual

event. The 1977 conference, as its predecessor, had the formal support of

the IEEE Computer Society which is handling the production and distribution of

these Proceedings and of the Association for Computing Machinery.

This year more than 80 papers were submitted with prospective authors

coming from 9 countries. Each paper was refereed by at least two referees.

The 96 individuals who made this possible are listed at the end of these

proceedings and I would like to thank them personally for a job well done.

Special thanks are also due to Dr. U. Herzog who served as a liaison with

some European contributors, Mr. M. Kesselman who volunteered to organize a

panel on multiple microprocessors systems, Mr. J. McKay who set up a session

on PEPE, and Dr. M. Freeman and TCCA who helped in organizing and refereeing

papers for a session on Computer Architecture.

I think that the participants at the Conference will agree with me

for sending congratulations to Dr. Charles Elliott and his staff at Wayne

State University for taking care of impeccable local arrangements. I would

also like to thank Ms. Marcia Riedel at the University of Washington for her

help.

Last, but certainly not least, we owe a great debt of gratitude to

Professor Tse-yun Feng. Dr. Feng, who originated and organized the first

four conferences, was General Chairman of the 1977 ICPP. With him as a

constant driving force, we can look forward with great anticipation to next

year's meeting.

Jean-Loup Baer

1977 ICPP Program Chairman

iii

SPECIAL AWARDS

1977
INTERNATIONAL

CONFERENCE
ON

PARALLEL PROCESSING

Best Presentation

Mr. David Misunas
M.l.T.

Analysis of Structures for Packet Communication

Most Original Paper

Professor Jerome Rothstein
Ohio State University

Toward An Arithmetic For Parallel Computation

T A B L E

KEYNOTE ADDRESS

Perspectives of Parallel Processing
Dr. Franklin H. Westervelt

0 F C 0 N T E N T S

Director of Computer Center, Wayne State University

SESSION 1: SELECTED TOPICS FROM EUROPEAN CONTRIBUTORS

The Impact of Classification Schemes on Computer Architecture
W. Handler

Parallel Compiled Interpretation
V. Sigmund

Schedules for General Monitor Systems with a Minimal Number of Processors
D. Hennings, S. Schindler and M. Steinacker

Scheduling Two-Processor Systems
M. Steinacker, D. Hennings and S. Schindler

SESSION 2: DISTRIBUTED FUNCTION ARCHITECTURES

Chairperson: Professor G. J. Lipovski

Page

1

7

16

26

31

Analysis of Structures for Packet Communication 38
R. Jacobsen and D. Misunas

Introducing the Concept of Data Structure Architectures 44
W. Giloi and H. Berg

A Multi-Minicomputer Approach to Concurrent Computation for Interactive 52
On-Line Simulation of Complex Biosystems

I. Nielsen, T. Park and C. Zimmerman

Array Type Variable Topology Multicomputer Systems 53
Y. Paker and M. Bozyigit

Virtual Instruction Sets in an MIMD Microcomputer Network 54
M. Cutler

Expression of Parallelism and Communication in Distributed Network Processing 55
N. Dang and G. Sergeant

SESSION 3: OPERATING SYSTEMS AND COMPILERS

Co-Chairpersons: Professor E. Feustel
Dr. G. Tjaden

On the Construction of Microprocessor-Oriented Operating Systems
M. Freeman, W. Jacobs and L. Levy

A Pipelined Dynamo Compiler
W. Huen, O. El-Dessouki, E. Huske and M. Evans

A Comparison of Various Methods for Detecting and Utilizing Parallelism in
a Single Instruction Stream

H. Shapiro

vii

56

57

67

TABLE OF CONTENTS (CONT'D)

SESSION 4: DATA-FLOW ARCHITECTURES

Chairperson: Dr. W. Gaertner

Implementation of Procedures on a Class of Dat:a Flow Processors
G. Miranker

Pipelining, Parallelism and Asynchronism in the LAU System
J.-c. Syre, D. Comte and N. Hifde

A Distributed Computer System Using a Data Flow Approach
M. Schroeder and R. Meyer

A Multilayered Data Flow Computer Architecture
J. Gurd and I. Watson

SESSION 5:

Chairperson:
Panelists:

SESSION 6:

Chairperson:

PANEL ON ASPECTS OF MULTIPLE MICROPROCESSORS SYSTEMS

Mr. M. Kesselman (RADC)
G. J. Lipovski (University of Texas)
J. Ousperhout (Carnegie-Mellon University)
T. Wolff (Sperry-Univac)

SCHEDULING

Professor D. Kafura

On the Optimality of First-Fit and Level Algorithms for Parallel Machine
Assignment and Sequencing

E.G. Coffman, Jr., J. ·Leung and D. Slutz

On Scheduling Algorithms for N-free Task Dependency Structures
E. Nett

A Fixed-Variable Scheduling Model for Multiprocessors
J. Jensen

SESSION 7: PERFORMANCE EVALUATION

Chairperson: Professor R. Jump

Page

77

87

93

94

95

100

108

Performance Evaluation of a Parallel System Processing Fault-Tolerant Programs 118
K. Kim and M. Jenson

Analysis of Asynchronous Multiprocessor Algorithms with Applications to Sorting 128
J. Robinson

On the Performance and Cost-Effectiveness of Some Multiprocessor Systems 136
T. Hsu

A Performance Study of Distributed Control Loop Networks 137
M. Liu, R. Pardo and G. Babic

Performance Aspects of Multiprocessing in a Time Sharing Environment 139
T. Darr

SESSION 8: ASSOCIATIVE PROCESSORS

Chairperson: Mr. O. Reimann

STARAN Series E
K. Batcher

STARAN E Performance and LACIE Algorithms
R. Boulis and R. Faiss

A Modified ALAP Cell for Parallel Text Searching
H. Love, Jr.

Performing Summation and Product in an Associative Processor
I. Chen

viii

140

144

153

155

TABLE OF CONTENTS (CONT'D)

Page

SESSION 9: CHOPP: SELF-ORGANIZING PARALLEL PROCESSOR

Chairperson: Professor T. Bashkow

The Node Kernel: Resource Management in a Self-Organizing Parallel Processor 157
H. Sullivan, T. Bashkow, D. Klappholz and L. Cohn

High-Level Language Constructs in a Self-Organizing Parallel Processor 163
H. Sullivan, T. Bashkow and D. Klappholz

Parameters of CHoPP 164
H. Sullivan and T. Bashkow

SESSION 10: ARCHITECTURE

Chairperson: Professor M. Freeman

A Reconfigurable Varistructure Array Processor
G. Lipovski and A. Tripathi

165

Parallel Processing Research in Computer Science: Relevance to the Design of 175
a Navier-Stokes Computer

C. Weiman and C. Grosch

Controlling the Active/Inactive Status of SIMD Machine Processors 183
H. Siegel

Architectural Design Considerations for a Fault-Tolerant Array Processing System 184
A. Thomasian and A. Avizienis

SESSION 11: PARALLEL ARRAY PROCESSORS

Chairperson: Mr. J. McKay

PEPE Hardware and System Overview
A. Evansen

Numerical Weather Prediction in the PEPE Parallel Processor
H. Welch

PEPE Application to BMD Systems
C. Blakely

A Parallel Processor Approach for Searching Decision Trees
D. Marshall

SESSION 12: ALGORITHMS AND APPLICATIONS

Parallelism in Sorting
F. Preparata

A Parallel Triangulation Process for Sparse Matrices
O. Wing and J. Huang

Vector Reduction Process on CRAY-1 and Their Performance
T. Jordan

Image Magnification
J. Vocar

Algorithm Development for Pipelined Processors
P. Kogge

SESSION 13: THEORY

Chairperson: Professor F. Preparata

Parallel Prefix Computation
R. Ladner and M. Fischer

ix

185

186

193

199

202

207

215

216

217

218

TABLE OF CONTENTS (CONT'D)

Toward an Arithmetic for Parallel Computation
J. Rothstein

Response Time of Parallel Programs
R. Lipton and F. Sayward

Algorithmic Analysis of Control Structure Behavior
R. Mattheyses and S. Conry

x

Page

224

234

243

PERSPECTIVES OF PARALLEL PROCESSING

Franklin H. Westervelt

Director, Computing Services Center
Professor of Computer Science

College of Liberal Arts
Professor of Engineering
College of Engineering

Wayne State University
Detroit, Michigan 48202

Keynote Address
1977 International Conference

on
Parallel Processing

Over the past years, the keynote
address for the International Conference
on Parallel Processing has attempted to
present one or another view of Parallel
Processing and, in so doing, provide a
point of beginning and a challenge for the
conference and its work. Each view of
parallel processing tends to see and to
emphasize certain aspects of parallel
processing and its state of development.
In a very real sense, each view provides
another perspective of parallel
processing.

It has been observed that the "real
world" is the union of an unbounded finite
number of "unreal worlds". Each unreal
world is a model or perspective of the
real world, or some aspect of it, held by
a particular observer. Occasionally, many
observers share a common perspective, at
least for a time, and cause a particular
view to acguire a certain popularity and
acceptance. But it is of considerable
importance for each of us to develop
flexibility and adaptiveness so that we
may recognize and appreciate the
contributions provided for us by other
views or perspectives. The best
perspectives recognize a great many
features and fine structure and, in so
doing, tend to provide unification and
understanding of complex subjects, but it
is also important to remember the
difficulty inherent in viewing any
complex, multidimensional subject from a
finite number of perspectives, let alone
from a single point, and thereby obtaining
an adequate picture of the subject.

This address will provide yet another
perspective of parallel processing. But
the point of view is, hopefully, different
enough that some may discern new features
and new ch~llenges.

Parallelism in computation machinery
has been recognized and incorporated from

1

the very beginning. Circuitry to provide,
for example, parallel addition appeared
almost concurrently with serial circuits
for the same functional purpose.
Designers have always recognized the
improvement in speed and performance to be
gained through parallelism. The ability
of each member of the audience to carry
on, at this very moment, extremely
difficult feats of audio and visual
pattern recognition and interpretation
very easily while employing receptors and
information processors whose performance
specifications are comparatively
pedestrian is possible only because of
quite incredible parallel processing
inherent in each one of us. The human
being is, indeed, a most remarkable 80 kg
non-linear parallel orocessinq
servomechanism capable of mass production
by unskilled labor.

The individual logic devices which
together comprise the human Parallel
processor can each be put to shame in many
ways by components already state-of-the­
art in contemporary computing systems.
Yet we remain an enormous distance away
from being able to assemble, nackage and
power a parallel processor - of like
complexity and generality. It is
interesting to note the anthropomorphic
insoiration present in recent research on
optical pattern recognition systems and
interconnected cellular automata. Man has
always derived great benefit from the
study and modeling of existing systems and
from using these studies and models to
enhance and improve upon various aspects
or features of them. Parallel Processing
research should be found to be no
different in this respect.

With these very general remarks as
background, let me move toward the
presentation of my particular personal
perspective of parallel processing. Here
my experience in providing systems for all
aspects of computational services in

higher education at two major United
States universities must necessarily bias
my point of view. But I believe that my
perspective may be of sufficient general
interest on a larger scale to merit your
consideration. At the close of this
address, I hope that we share in a mutual
exchange of question and comment springing
from these remarks.

As we are all well aware, the world
presently faces an energy crisis. But it
is more nearly correct to recognize the
crisis to be in the consumption of certain
particular forms of fuels. In other
words, the problem lies in the most
appropriate use of raw materials as their
finite supply decreases and the cost of
acquiring them increases. The complex
long chain hydrocarbons present in fossil
fuels are a resource of chemical building
blocks that is much too valuable to be
simply oxidized by burning. I must
believe that the descendants of our
children's children will be most critical
of ou~ generation for having squandered
and destroyed these complex molecules in
such enormous quantities by burning them.
Yet the world need for abundant energy in
order to provide an adequate food supply
and general living standards for its
burgeoning population must be met.

Because the energy needs must be met
if we are to survive and continue as a
civilization, I will make no further
comment on this situation at this time. I
shall assume the solution for the energy
supply problem and focus my attention on
another longer range problem. In the
longer run, the obviously finite size of
the planet Earth and the material
resources available to it within its
reasonable sphere of acquisition will, in
my opinion, result in the problems of most
efficient and effective use of all natural
resources becoming the overriding concern
for all people. Materials may become too
valuable and costly to permit anything but
highly automated plants and machines to
handle, mold, cut, shape and form them
into products for our use. Reduction of
the waste of materials by the progressive
elimination of the human error factor in
manufacture and production will come to be
a dominant objective achievable through
increased application of automation. Many
products, particularly in the computer
field, are only possible to be made at
all, even today, because of complex,
highly automated machines which operate
with very minimal human intervention. The
concurrent development and application of
information processing in its most general
sense and the consequent impact on further
development of parallel processing
methodology follows immediately in the

2

industrial and commercial arena.

But the systematic reduction of human
error in manufacture and production will
carry with it another effect. It has been
observed that, in any reasonably complex
system, there is no such thing as a change
that produces only a single effect. As
the use of automation increases, the
amount of conventional work performed by
humans in manufacture and production will
decrease. Leisure time growth today is
viewed as positive by many who may have
had their time occupied to too great an
extent in the past by conventional work.
But society does not yet compensate
leisure in any general sense and for some
persons bypassed by technology "leisure
time" may be only another term for
"unemployment".

Unemployment is a problem of concern
when national levels are in the 5% to 10%
range. But I can tell you from recent
personal experience in the Detroit area
where unemployment in some segments of the
population reached 50% or more during the
recent recession that "concern" is simply
not an adequate term to apply to such a
problem. Consider then what the situation
might be if conventional work decreased
such that very high levels of unemployment
became common on a world scale. Each of
you may construct your own image of such a
world.

The world faces a dilemma: On the one
hand, the Puritan work ethic will tend to
decline to compensate leisure while, on
the other hand, scarcity of material
resources will cause conventional work to
decline as well. A solution for this
apparent dilemma will, in my opinion, come
from a redefinition of "conventional work"
and from a shift in human activities from
those that are intensive in the
consumption of non-renewable materials
toward activities that will tend to be
energy-intensive, and in many cases nearly
energy-exclusive. In other words, energy
will tend to become the one resource that
humans will, in general, be permitted to
use and consume in significant amounts
because it will be the most easily
replenished resource.

Consider some of the kinds of energy­
intensive activity implied by such a world
situation. "Work" mav be structured in
terms of interaction at many different
levels of intellectual capability and
skill using the technology &f extremely
advanced communication, simulation and
computation to enable persons to learn
complicated new skills and to be
compensated for doing so. IQ :the process
of such learning and development, actual

materials would be consumed very sparingly
while the process may consume siqnificant
energy in order to be carried out
properly.

If this should seem too farfetched,
consider only a few of the things that we
are presently doing of this nature. We
are all aware of the elaborate simulations
used in the development of skills needed
by the Astronauts and Cosmonauts. When
the first Astronaut actually stepped upon
the surface of the Moon, after consuming
enormous quantities of real natural
materials in order to get there, his pulse
tate, respiration and blood pressure
showed no indication of his awareness of
being in surroundings that for the rest of
us must still be regarded as fantastic!
Of course not, this human being had
already "been there before" many times
through simulation that was incredibly
"real" and which, by comparison, consumed
almost no natural resources. Furthermore,
this Astronaut was among many who
experienced the same training through
simulation and were paid to do it.

Airline pilots and the captains of
supertankers are also examples of skill
development and learning through the use
of sophisticated simulations. I need not
relate to this audience the critical role
played by computer technology in these
cases. I should only like to point out
that many much less sophisticated examples
exist where compensation has been given to
those learning or developing new skills or
capabilities. The learning of foreign
language while in military service is a
most familiar example. The extension and
refinement of these and similar examples
is, perhaps, the mechanism by which "work"
in the future may come to be redefined.

If something similar to this should
come about, it will require significant
new developments in parallel processing
for general purpose computation in
addition to the special purpose forms that
receive most of our attention today. It
is of great importance that the necessary
research and development of large general
purpose parallel processors be funded now.

To develop my perspectives of
parallel processing further, I should now
like to turn my attention toward a much
closer but highly related problem. In a
very strong sense, both the foregoing
problem and the one upon which I now focus
are related to education and learning.
Education, in general, and Higher
Education, in particular, is an extremely
labor intensive business today. For many,
if not most, colleges and universities the
fraction of General Fund Budget committed

3

to salaries and wages is 70% to 80% or, in
some cases, more.

As a result of declining numbers of
students in the primary and secondary
schools and general inflationary pressures
on salaries and wages, colleges and
universities face the very serious
prospect of "pricing themselves out of
business" in the next decade. Tuition is
alreadv at a level that tends to reauire
one or.more forms of student fina~cial
assistance, even for students from
families nominally considered to be well­
to-do. For less advantaqed students,
higher education in the absence of
substantial student financial aid is
already priced beyond reach.

In order to preserve or, better,
improve the quality of higher education
while holding or, better, reducing the
cost, means for improving the productivity
of the system must be found. Other
business and industry faced with the same
sort of problem turned to technology for
help in solving it. Unfortunately, much
of the technology relevant to industry is
not relevant to higher education in trying
to improve productivity.

There are, however, two general
technologies with considerable relevance
to this problem. One, the general
"broadcast" technology, provides many ways
to improve upon the dissemination of
inforrna~ion in the "one-to-many" mode.
Audio-visual techniques, including the
entire scope from films and tapes to
video, all extend the audience of a given
educator and tend to reduce the unit or
per-student cost of conveying the
particular information or lesson. In
general, the more effectively the
broadcast technology expands the audience
size, however, the less effectively does
the technology accommodate to the
individual needs of particular students.
In other words, the "unfair advantage"
that distinguishes the university or
college from the correspondence school,
student-teacher interaction, tends to be
seriously impaired. And with this loss of
interaction, the quality of the
educational process is also impaired.

Again we face a dilemma: it appears
essential to improve the productivity of
higher education in terms of numbers of
students per person engaged in the
process, yet it is the interaction or
feedback of the one-on-one educational
experience that characterizes the finest
aspects of that process.

The broad
technology is

field of
the other

computer
technology

relevant and uniquely suited to assist in
the resolution of this dilemma. Where the
broadcast technologies tend toward simplex
communications channels, computer
technologies have emphasized duplex
communications in many relevant forms.
The essential contribution is the
provision of a "many-to-one" technology to
provide more efficient and economical
interaction and feedback for use in higher
education.

The simplest examples of currently
available techniques are little more than
conventional - store-and-forward
communications systems. Computer
conferencing or asynchronous conferencing
comes much closer to the level of
technological assistance required for the
solution of the quality/quantity versus
unit cost dilemma of higher education.

A great deal can be done with
existing computer systems in this area.
But to reach the levels of reliability and
generality required to really solve the
problem, we do not yet have the computer
systems available with general purpose
characteristics and the configurability
necessary to deliver the appropriate
computational power to a very large number
of dynamically created and changing tasks.
Parallel processing research and
development holds the promise of making
the required systems available.

I should like to take a moment to
describe a little of the work now being
done at Wayne State University which, I
hope, may be relevant to parts of the
solution for the foregoing problem. Let
me first give you a brief picture of the
university itself.

Wayne State University is a major
urban university with a number of rather
unique characteristics. At any given
moment, Wayne State University is an
active community of about 40,000 or more
students and faculty. But the momentarily
active student body of 30,000 to 35,000 is
drawn dynamically by personal
circumstances of work and study from a
student population admitted to the
university numbering well in excess of
100,000 individuals.

It has been demonstrated, for example
by Dartmouth, that when sufficient
computer resources can be made available
and accessible, nearly 70% to 80% of a
university community will find the
resource meaningfully relevant to their
educational experience.

But it is a considerable challenge to
try to provide such access using

4

contemporary systems at an. institution
that is an order of magnitude larger than
Dartmouth.

At ~ayne State University, we began
over six years ago to acquire the
facilities step by step and to develop a
hierarchical computing system for the
university that might address the problems
of higher education as rapidly and
effectively as resources and technology
would permit. The first decision was to
purchase, in 1971, a dual processor IBM
System/360 Model 67 configured as a full
duplex system. Since then we have been
able to retire the loan used to acquire
that system and to use the system as a
foundation for further system growth and
development. This April, we added an
Amdahl 470V/6 system as a part of the
plan.

The design limitation on main memory
size and the lack of Error Correcting Code
capability in the standard IBM memory
products for the Model 67, as well as the
relatively high cost of IBM memory,
resultea in a contract between Wayne State
University and Fairchild Memory Systems.
Under this contract, the parties combined
talents to design a bipolar semiconductor
memory using the same 256xl TTL 100 ns
memory chips supplied by Fairchild for the
Illiac IV. This memory system has several
interesting features, such as a memory
controller capable of executing
instructions, and it has demonstrated
significantly better performance and
economics. Instead of being limited to a
maximum of 2 Megabytes, we have 4.25
Megabytes today at an ave£age system cost
of about four cents per bit.

The Model 67 duplex architecture
remains unique in the IBM family and is
generally very poorly understood. This
architecture provides features to enhance
the parallel processing carried on by the
processors and channel controllers. These
features have been exploited in the MTS
(Michigan Terminal System) implementation.
While best known for its Address
Translation hardware, the Model 67 bus
structure providing for up to eight
processors or channel controllers to share
main memory and its extremely flexible
configuration capability features are at
least as important and significant. Quite
unlike the more common MP systems produced
by IBM. the duplex Model 67 provides
system symmetry and consequent
simplification of system design. In MTS,
for example, the only lack of complete
homogeneity among the processors is in the
keeping of Time of Day. Since an
independent clock for that purpose was not
a part of the system hardware, this task

is uniquely assigned ,to whichever
processor was IPLed first~ Otherwise the
processors are treated in a completely
homogeneous fashion. The MTS software is
designed to support the maximum of four
processors and four channel controllers
supported by the bus. IBM never built a
maximum configuration to my knowledge, and
only one triplex, which was never
delivered to a customer. It is most
unfortunate that the features of the Model
67 were never carried forward into later
systems by IBM.

As but a single example of the
importance and utility of these features
when combined with appropriate operating
system software, a soon to be released
paper by Professor R. J. Srodawa of the
Wayne State University Computer Science
faculty reports and discusses the
achievement of dual processor throughput
more than double that of the single
processor case. The literature commonly
cites factors of 1.5 to 1.8 for such
systems. While there is need for more
experimentation and modeling, these
results indicate that it is possible to
attain significantly better systems
performance than has generally been
reached and reported elsewhere. It is
also important to recognize the existence
of practical cases in which a two
processor duplex system can produce more
than twice the throughput of a single
processor system with the same memory
size. Such a result is by no means a
contradiction of the Second Law of
Thermodynamics. There are many reasons
why such a result is attained in this
case. Clearly these results require both
hardware which is designed with special
attention paid to issues of symmetry, lock
contention, storage contention and inter­
processor communication as well as an
operating system designed with special
attention to these same issues and
including design features that do not
double or more than double svstem overhead
in going from one to two processors. The
fundamental work of Alexander et al at the
University of Michigan in the design of
MTS should be much better and more widely
understood.

In April of this year, a 4 Megabyte
Amdahl 470V/6 was added to our duplex
Model 67 configuration. This well known
pipelined machine was installed so quickly
that our own site preparation delay in
obtaining 400 Hz power held up initial
operation by two days. Since power became
available, we have been extremely pleased
with the reliability and performance of
this system. The Amdahl is being run
under the VM (Virtual Machine) operating
system in order to accomplish the

5

significant system work needed to
interconnect the 67s and the Amdahl using
two CCAs (Channel-to-Channel Adapters) in
a full-duplex communications protocol.
When ready for use in this mode, the 67s
will act as "frontend processors" for the
Amdahl and will enable concurrent support
for a large number of interactive
terminals performing relatively small,
quick response tasks and for a smaller
number of large, more demanding tasks with
slower response. The 67s are further
"frontended" by intelligent terminal
controllers to provide flexible and prompt
communications response. One such
controller, based on a PDP-11, serves as
the communications controller for up to 32
terminals and the MERIT computer network
linkinq our facility at Wayne State
University to TELENET and to the CDC 6400
at Michigan State University and the
Amdahl 470V/6 at the University of
Michigan. The goal for this system is to
form a hierarchical system capable of
providing good service for 400 to 500
concurrent general purpose timesharing
lines or users. These users presently
connect a wide variety of remote terminals
to our system ranging from "dumb"
typewriter or CRT devices to quite
"intelligent" micro- or mini-based
graphics and laboratory systems.

The objective is to provide very
economical access to a computational
resource able to provide a "match" for a
given problem with the computing power
necessary for effective interaction. And
to accomplish this in a user-transparent
manner and on a scale consistent with the
size of our university community of users.

We see a great many challenging
problems in various aspects of parallel
processing to be solved in order to
achieve our goals and objectives. We
believe that dealing with these problems
in a real environment of demandinq users
will cause us to seek out and implement
solutions that will contribute to the
understanding necessary for improved
future systems.

One characteristic of our system that
should be clear to all is its combination
of processors of a wide range of size,
bandwidth and capability. I am frequently
amused and sometimes annoyed by the
various proponents and protagonists in the
mini- vs midi- vs maxi-computer system
arguments.

I have held that we, as computer
people, have yet to build anything but
minicomputer systems. Until we actually
build a real maxi-computer, I believe that
we have no basis for such arguments.

To illustrate my point, several years
ago I served on the Board of the Argonne
Universities Association, the governance
body for the Argonne National Laboratory.
The Laboratory had just acquired an IBM
195 system at a cost of some $10 to $12
million. Clearly a system that most might
feel to be a maxi-computer.

On the return flight to Detroit, my
seat companion was another member of the
AUA Board who was also a vice president of
the Detroit Edison Company. Thinking
about the 195 acquisition, I asked him,
"When was the last time that Detroit
Edison acquired a major power generator
for $10 million?" My companion laughed
and said, "Good Heavens! The transformer
substation for the Renaissance Center cost
more than that!" Which is exactly my
point, a single major power generating
station today represents nearly $1 billion
and there are many such installations over
the entire United States, let alone over
the world! On the other hand, while we
talk of computer utilities and maxi­
computers, we have yet to conceive of, let
alone build, any comparable scale machine.
Until we have designed and built such a
scale machine, I believe that we are
dealing with mini-computers and networks
of them, no matter what actual mainframe
we may be talking about.

When it is finally decided that a
true maxi-computer should be built for the
first time, it seems clear that parallel
processing must infuse the entire design.
Parallelism to improve speed and
performance, parallelism to improve system
reliability and availability, parallelism
to enable dynamic configuration,
partitioning and assignment of
computational power appropriate to a very
large number of both independent and
interdependent tasks, parallelism to
~nable rapid and efficient processing of
very large databases required to meet the
needs of society. The call to this
International Conference on Parallel
Processing seems clear and the future
exciting and challenging.

6

If one places today's point in the
development of modern computer technology
on the same time scale as the Industrial
Revolution beginning with James Watt's
Condensing Steam Engine, then we have just
this year seen Robert Fulton's first
commercial steamboat! While we recognize
that the advance of technology tends to be
exponentia~ and that, as a result,
progress on an absolute scale in our time
is much larger than from Watt to Fulton, I
believe that our relative progress in
computer technology as viewed from a
century or two hence will appear to have
been no greater! We have no justification
to feel superior or to fail to press
forward with maximum effort. -

Depending upon how one keeps the
score, we have moved toward the serial
limit of machine computation by seven to
nine orders of magnitude since Eckert and
Mauchly, and again depending upon who
attempts to establish the serial limit, we
have perhaps five or six orders of
magnitude rema1n1ng. Allowing for
complementary exponential effects in
difficulty and technology advance, we
should approach the serial limits rather
closely when we have lapsed again the time
interval already past in computer
technology development. We must continue
to press forward toward the serial limits,
but it becomes quite clear that we must
become increasingly aware of and sensitive
to the vital role of parallelism in the
future of machine computation.

These are some of my perspectives of
parallel processing. I hope that you may
have gained from sharing them with me even
a tiny fraction of the pleasure that it
has been for me to present them to such a
distinguished and important audience. I
want to add my welcome to that of Wayne
State University and the IEEE Computer
Society to -the 1977 Internatlonal
Conference on Parallel Processing and to
the important work ahead of you. Thank
you for your most gracious consideration
and attention.

THE IMPACT OF CLASSIFICATION SCHEMES ON COMPUTER ARCHITECTURE

Wolfgang Handler*
Universidade Estadual de Campinas

Instituto de Matematica, Estat1stica e Ciencia da Computac;ao
Campinas S.P., Brasil

1. Remarks on
Classification Schemes and Formal Systems

Classification schemes, languages, and formal
systems of all kinds have a considerable influence
on our thinking. Structures which are inherently
the subject-matter of a language as well as of
classification schemes form the basic material of
what can be expressed in a language or can be com­
prehended from its position in a classification
scheme. The same statement seems to be valid for
formal systems in a more specific sense. Thus the
tool can be used in the application area for which
it was created.

For example the Ricci-Calculus performs this
role only in the area for which it was created
certain areas of physics and partial differential
equations. Outside this area problems arise for
which it is not suitable.

B. Whorf has said that language guides thought
[11) and that therefore language sometimes pre­
vents the appropriate solution of a problem being
f~und. We must admit that in many cases a language
(1t can be referred to as a calculus or notation)
can be a barrier rather than an aid in solving a
problem. It is also true that a classification
scheme can be a barrier, although it can provide
an insight into the relationships between the ele­
ments of some group.

If such a classification scheme is to be ap­
plied to animals and plants, then the elements are
existing objects and the scheme cannot completely
fail, although the discovery of a new species can
present difficulties in fitting it into an existing
classification scheme. Such a scheme can be called
a taxonomy, since all the species are considered
to be descended from a single species, in accor­
dance with the biological theory of evolution.

It seems more difficult to create a classifi­
cation scheme, or even a taxonomy, for some area
of contemporary technology. It is necessary to
project f~tu~e advances as well as placing existing
examples in 1t.

*on sabbatical leave from: Institut fUr Mathemati­
sc~e Ma~chinen und Datenverarbeitung (III),
University of Erlangen-Nuremberg, Martensstr. 3,
D-8520 Erlangen, Fed. Republic of Germany.

7

The aim of this paper is to show that some
existing schemes may fail to indicate the right
direction for the development of computer archi­
t~c~ure~ as compar~d with a new and promising clas­
sification scheme introduced in [3), [4). We
would, however, not claim that the proposed classi­
fication scheme will cover all computer structures
which will arise in the future. We do show that
the proposed scheme does cover several very inte­
resting structures which cannot be placed at an
appropriate point in the scheme of Flynn [l) and
Feng [2).

The justification of the proposed scheme is
that it should be useful in classifying structures
and concepts which will emerge in the next years,
and be of use to the designers of these structures.
A further justification of the scheme is that the
elements of the classification scheme can be com­
posed and decomposed by operations which are sui­
table for the purposes of the computer architect.

2. Contemporary Classification Schemes

Existing classification schemes differ in the
information on which they are based. For instance
M. Flynn [l) bases his scheme on a 'data stream'
a~d an 'instruction stream'. By combining these
simple concepts he can classify many of the new
computer structures. In contrast, Feng [2) empha­
sises the number of bits which are processed si­
multaneously. These schemes are outlined in sec­
tions 2.1 and 2.2 in order to contrast them with
the scheme outlined in chapter 3. In section 2.3
the definitions of multiprocessing proposed by the
American National Standards Institute [5) and by
Enslow [6) are discussed.

2.1 Flynn's Classification

Flynn proposed in 1966 a classification based
on the instruction streams and data streams. In the
convent~onal Princeton type computer a single data
stream is processed by a single instruction stream.
This is described as SISD (single instruction
single data).

In an array computer such as ILLIAC IV, a
single instruction stream processes many data
streams. Such a computer is known as SIMD (single
instruction multiple data). In ILLIAC IV 64 copies

of the same instruction are executed simultaneous­
ly by 64 arithmetic units. The Goodyear STARAN is
also a SIMD computer. It differs from ILLIAC IV in
many respects, in particular in being an associa­
tive array processor.

MISD is an abbreviation fo~ multiple instruc­
tion single data. Some authors include various
types of pipeline computers in this class though
it is doubtful whether this is appropriate, and it
is unsatisfactory because it does not distinguish
between the three kinds of pipelining (see section
3.3 below).

MIMD is an abbreviation for multiple instruc­
tion multiple data. Here multiple processors are
working on multiple data streams. The simplest case
is where each processor is executing its own pro­
gram on its own data. The processors can be con­
nected via a bus system or can access multi-port
memory. The classification does not contain any in­
formation about the type of connection used.

Flynn's classification is illustrated by fig.
1, where many contemporary computers can be classi­
fied by assigning them to one of the four verti­
ces of a graph. However, the classification does
not fully satisfy the needs of computer architects
because it is not fine enough and because the in­
terpretation of the class MISD is not clear (cf.
[7]). In the literature many authors restrict them­
selves to the classes SISD, SIMD, and MIMD. A fur­
ther difficulty occurs if a computer contains both
parallelism and pipelining.

2.2 Feng's classification

Feng [2] classifies according to the word­
length, i.e. the number of bits which are processed
in parallel in a word, and the number of words
which are processed in parallel. A computer struc­
ture is represented by a point in a plane (fig.2)
where the abscissa is the wordlength (normally 12,
16, 24, 32, 48, 60 or 64), and the ordinate is the
number of words processed in parallel. The latter
can be determined by the number of processors. For
example C.mmp which contains 16 PDP-ll's with word­
length 16 bits is represented by (16,16). The ordi­
nate can also be determined by the number of arith­
metic and logical units in an array processor.
Thus ILLIAC IV is represented by (64,64).

Thus Feng's classification does not allow to
distinguish between multiprocessors like C.mmp and
array processors. This caused Enslow [7] to repre­
sent C.mmp in "gang" mode by (16,256). But C.mmp
in gang mode can be regarded as similar to ILLIAC
IV, with 16 ALU's executing a single program,
which would give the point (16,16) which is the
same as when gang mode is not used. The classifi­
cation also does not distinguish between autono­
mous processors which execute programs and ALU's
which execute operations, i.e. it does not distin­
guish between processing levels.

The TIASC (Texas Instruments Advanced Scienti­
fic Computer) is represented as (64,2048). The
number 2048 os obtained from the 4 pipelines each
consisting of 8 stages with 64 bits. However the

8

number 2048 can be obtained in many ways, e.g. 8
pipelines, 8 stages, 32 bits. Thus the classifica­
tion cannot represent a multiple pipeline structure
like the TIASC accurately.

It is also not possible to represent the pipe­
line structure at the program level of PEPE. PEPE
is characterized as (32,16), and the fact that each
set of data (up to 288, each representing a flying
object) is processed successively in three diffe­
rent ways is not represented. This is performed in
three separate series of ALU's, and we can regard
this as a three stage macropipeline (cf. section
3.3).

The lack of a rigorous definition of pipelin­
ing in the context of Feng's classification scheme
leads to difficulties in c)assifying structures
containing both pipelining and parallelism. Thus
the scheme is not entirely satisfactory for the
computer architect either.

2.3 Definition of Multiprocessing

Similarly to classification schemes, if defi­
nitions are too narrow, some viable computer struc­
tures may be excluded from consideration.

The American National Standards Institute [5]
defines a multiprocessor as:

"A computer employing two or more processing
units under integrated control." Manufacturers of
systems containing two to four processors did not
find themselves in conflict with this definition.
The definition did not exclude future developments
in computer architecture, but does not seem to have
had any impact on contemporary architecture. Sub­
sequently Enslow suggested a more detailed defini­
tion in his excellent book [6] which included

1. two or more processors, having access to
a common memory, whereby private memory is not ex­
cluded,

2. shared I/0,

3. a single integrated operating system,

4. hardware and software interactions at all
levels,

5. the execution of a job must be possible on
different processors,

6. hardware interrupts.

We will concentrate on the first characteri­
stic:

A common memory is mandatory. Such a structure
is shown in fig. 3. It is easily seen that as the
number of processors increases the congestion in
the access to the common memory will also increase.
Thus Enslow's definition seems to exclude systems
containing very large numbers of processors. Micro­
processors costing a few dollars are now available,
so that systems containing thousands of processors
are now possible. Some of the more progressive pro-

jects of computer architecture such as PRIME [9]
are also excluded. On the other hand some struc­
tures which satisfy Enslow's definition are subject
to severe limitations on their expandibility and
application due to their use of an expensive cross­
bar switch [10].

Thus Enslow's definition does not either satis­
fy the requirements of contemporary computer ar­
chitecture.

2.4 The Influence of Classification
Schemes and Def1nit1ons

We have tried to show in the previous secti­
ons that definitions and classification schemes
have their limitations and can prove a hindrance
beyond a certain point. The computer architect
should recognize when this point has been reached,
and consider whether an entirely new classifica­
tion scheme or definition is needed, which will
ideally include all existing structures within a
particular area and also all structures which will
be considered in this area in the future. There is
no doubt that one should consider very carefully
the consequences of introducing a new classifica­
tion, because of its possible educational and nor­
mative effects.

3. The Erlangen Classification Scheme

3.1 Introduction

The Erlangen classification scheme (ECS) was
developed mainly in order to avoid the drawbacks
of existing classification schemes, as outlined in
section 2.

The basic requirements are

1. the objects to be classified should not be
unnecessarily restricted. Any kind of computer sy­
stem - in particular parallel processors, array
processors, multiprocessors, pipeline processors
must be classifiable in the scheme;

2. the classification must be sufficiently
fine to express those differences between the ob­
jects considered important;

3. the classification must be unambiguous.

The classification scheme developed was also
found to be a useful technique in computer archi­
tecture, in the sense that:

4. Composed computer configurations can be
described by using operators which are applied
to primitive elements of the scheme.

5. It can be used in evaluating architectural
configurations, in particular with reference to
cost.

6. It provides a measure for the flexibility
of a system.

7. It provides a starting point for scheduling

9

of flexible structures.

The objects of the classification are not ne­
cessarily computers only. This will be amplified
below. The flexibility mentioned in 6. above is
connected with the fact that a computer can be re­
presented by more than one point in the classifi­
cation. The various points which represent a com­
puter will be referred to as modes. The more modes
a computer has, the more choice of mode it has for
a particular application, and so the greater is
its flexibility.

The classification scheme can be used for al­
gorithms as well as for computers, and demon­
strates the inherent partitioning of the algorithm
into parallel sections and pipeline stages. The
classification of algorithms must then be related
to the classification of the computers on which
they are to be run. In general, jobs must be in­
vestigated to identify the classes of the algo­
rithms contained, and matched to the classes of
the computers on which they are to be run. A more
detailed discussion of this question will be
given in another paper.

3.2 Parallel ism

Our classification aims at characterizing
the parallelism and pipelining present in a com­
puter system. The connections between the pro­
cessors and the memory blocks are not included
in the classification. It is assumed that the con­
nections can carry the expected traffic and pro­
vide the required availability. In such a case
the performance of the system is mainly determined
by the processors, including their capability to
transfer information.

The classification is based on the distinc­
tion between three processing levels:

1. Program control unit - Using a program
counter and some other registers, and, in most
cases, a microprogram device, the PCU interprets
a program instruction by instruction.

2. Arithmetic and logical unit - The ALU uses
the output signals of a microprogram device to
execute sequences of microinstructions according
to the interpretation process performed by the PCU.

3. Elementary logic circuit - Each of the
microoperations which make up the microoperation
set initiates an elementary switching process. The
logic circuits belonging to one bit position of
all the microoperations are called an ELC.

A computer configuration can include a number
of PCU's. Each PCU can control a number of ALU's
all of which perform the same operation at any
given time. Finally, each ALU contains a number
of ELC's, each dedicated to one bit position. The
number of ECL's is commonly known as the word-
1 ength.

If we disregard pipelining for the moment,
the number of PCU's, ALU's per PCU, and ELC's per

ALU form a triple, written

t (computer type) = (k, d, w).

We give some examples of the triple, where we
assume that the reader is familiar with at least
some of the computers:

t(MINIMA) = (1,1,1)

The "classical" serial computer. Some early
European computers were of this form.

t(IBM701) = (1,1,36)

An example of the early "parallel" (on the
3rd level) Princeton computers.

t(SOLOMON) = (1,1024,1)

The historical concept of an array processor.

t(ILLIAC IV) = (1,64,64)

The famous array processor developed at the
University of Illinois (without PDP 10).

t(STARAN) = (1,8192,1)

The well-known associative array processor
(without host and sequential control processor)
fully extended (32 frames of 256 bits each).

t(C.mmp) = (16,1,16)

The Carnegie-Mellon University mulit-mini
project using 16 PDP-ll's.

t(PRIME) = (5,1,16)

The University of California, Berkeley, pro­
ject in which time-sharing is replaced by multi­
processing.

The different systems exhibit different kinds
of parallelism, which is uniquely attached to one
of the three levels. The numbers which make up the
triple show this directly.

At first sight, the triples are able to clas­
sify all viable structures, particularly in regard
to parallelism. But although parallelism is the
most important phenomenon in contemporary computer
architecture, pipelining must also be considered.
The examples above exhibit parallelism but not
pipelining. In the next section the classification
is extended to include pipelining.

3.3 Pipelining

Pipelining can also be implemented at the
three levels described in section 3.2, i.e.
1. PCU, 2. ALU, and 3. ELG.

For example level 3 pipelining is the well­
known pipelining of the arithmetic unit used in
the CD STAR-100 and the TIASC. The STAR-100 uses
a four stage pipeline and the TIASC an eight stage

10

pipeline.

An arithmetical pipeline can be regarded as a
"vertical" replication of ECL's, compared with the
"horizontal" replication used in a parallel EGL.
It is therefore reasonable to multiply the number
of ECL's, w, by the number of stages in the pipe­
line, w', to characterize the ALU. For the TIASC
we have then

t(TIASC) = (l,4,64x8).

The multiplication sign will be used at all
levels to separate the number representing the de­
gree of parallelism from the number representing
the number of stages in the pipeline.

The next higher level of pipelining is in­
struction pipelining. This involves the existence
of a number of function units which can operate
simultaneously to process a single instruction
stream. It is based on the inspection of instruc­
tions prior to execution to identify those instruc­
tions which can be executed simultaneously without
conflict. This is done by a scoreboard, in the ter­
minology of Control Data. These instructions are
executed as soon as a suitable function unit is
free. This technique is referred to as "instructi­
on lookahead", "instruction pipelining", or "paral­
lelism of function units".

A classical example of this kind is the CD
6600 computer. Disregarding for the moment the in­
put-output section (i.e. the peripheral processoraj,
the internal structure of CD 6600 with 10 function
units becomes:

t(CD 6600 central proc.) = (1,lxl0,60).

The 10 units in this case are highly specia-
1 ized (e.g. floating point multiplication, integer
addition, incrementation, etc.) and therefore a
gain of a factor of 10 cannot be achieved. The reru
factor depends on the special program actually run­
ning. An average of 2.6 is a typical figure accor­
ding to information available from Control Data.
A combination of several function units of the same
type seems to be quite reasonable regarding the
better utilization of equipment on the one hand
and the now available large-scale integration tech­
nology on the other hand. These latter considera­
tions nevertheless are not directly a subject of
this paper.

Finally, we have to consider the pipelining
concept of level 1, which is so far not very known.
This concept can be called "macro-pipelining"[12].
Assuming that a data set has to be processed by
two different tasks sequentially, then it can be
performed in two different processors, each one
processing one task. The data stream then passes
the first processor (1. task), is stored in a me­
mory block, which the second processor also has
access to, and will then pass the second processor
(2. task). Since both processors can work at the
same time (on different data), the effective pro­
cessing speed can be in an ideal case doubled in
comparison with the use of only one processor.

In such a way stepping from processor to processor
data are 'refined' (12] on one hand or are 'inte­
grated' [13, 8] in the case of ordinary differenti­
al equations on the other hand.

The PEPE array (without the host installation)
then is characterized as

t(PEPE) = (lx3,288,32) (3-fold macropipelining).

Summarizing now, the triple has been extended
to a sixtuple to incorporate pipelining. Neverthe-
1 ess, we keep calling it a triple because the three
levels of consideration (as introduced in 3.2) sug­
gest that we think in three terms, which have to be
extended in some cases by an additional term, at­
tached to the other value (of the same level) by
using the sign x.

The triple now reads as follows:

;;:'.::,:':.,.,,'.! 'jk''
(multi-processor)

PCU's in pipelining
(macro-pipelining)

dxd',wxw')

ALU' s in parallel----'
(array computer)

ALU's in pipelining~--___.
(instruction pipe-
1 ining-lookahead)

ELC in parallel--------'
(wordlength}

ELC in pipelining-------~
(arithmetic pipe-
1 ining}

All entities are independent of one another.
All combinations therefore can appear.

Regarding the 'completeness' we claimed in
section 3.1, we would have to prove that, apart
from the three levels mentioned in section 3.2, no
essential other level can be defined, and that
there are also no phenomena apart from parallelism
and pipelining. This is not pointed out in detail
here, because this paper centers on another point,
the impact of classification schemes on computer
architecture. But there is some evidence regarding
the completeness of our classification. While there
are some modifications in details, how the level
2 pipelining is designed, there are no doubts about
the other levels. With respect to parallelism and
pipelining there is an exclusive duality as is
known from other fields of science where parallel­
ism and serial ism also appear.

Regarding the triple notation, we introduced
the following simplifications:

11

k=l, or k'=l, or d=l etc. mean, respectively, the
simple cases, in which no parallelism or pipeli­
ning appear;

we write then

(lxk' ,dxd' ,wxw') (xk', dxd', wxw')
k't1 if

(k X 1, d xd I > WXW I } (k,dxd', wxw'}

(kxk' ,lxd' ,wxw') (kxk' ,xd' ,wxw'}
if d't1

(kxk I ,dx1 ,WXW I} (kxk' ,d,wxw')

(kxk' ,dxd' ,lxw') (kxk' ,dxd' ,xw')
if w'rl

(kxk 1 ,dxd 1 ,wxl} = (kxk',dxd',w)

If there is any form of pipelining then the
character x is preserved in the corresponding le­
vel. In the case of no pipelining the triple de­
generates to

t(MODEL} = (k,d,w).

This convention contributes to the clearness
consiuerably as well as to the transparency of no­
tation. Therefore we will use this convention in
the fo 11 owing.

3.4 Operations on Triples

As a triple characterizes a computer structure
of a certain homogeneity, a combination of triples
connected by an operator can denote

a} a more complex computer structure
(as given e.g. by a special I/0 section
of processors or by a special host,
which are connected to a specific com­
puter configuration};

b) a selection of operation modes of a
structure, which can be used alterna­
tively, fitting to different needs,
according to the algorithmic nature
of different applications.

It should be noted in connexion with b) that
for any application there can exist a number of
algorithms, each one fitting a different computer
structure. E.g. one algorithm which is a solution
to a given problem can be highly suited for exe­
cution on a conventional Princeton type computer,
while another may be better suited for a parallel
or pipelining computer.

The forementioned computer CD 6600 would read
its complete structure, using a multiplication
sign x:

t(CD 6600) = (10,1,12) x (1,xl0,60).

The first term on the right hand side of "="

denotes the existence of ten processors of a sim­
ple structure with a wordlength of 12 bits. The
second term is the characterization of the nucle­
us of the CD 6600, as it was given earlier. The
multiplication sign visualizes the fact that all
algorithms (programs) must be forwarded through
the peripheral processors first, in order to be
processed then in the central processor (1,xl0,60).

Another example of contemporary computer ar­
chitecture is PEPE (Parallel Element Processor En­
semble). Its host is one CD 7600 with the charac­
teristic

t(CD 7600) = (15,1,12) x (1,x9,60).

PEPE then becomes

t(PEPE) = (15,1,12) x (1,x9,60) x (x3,288,32)

where the last term (x3,288,32) corresponds
to the actual PEPE structure. As, in this example,
a certain flow of information penetrates the three
structures, the sign x is used between the corre­
sponding terms.

The structures characterized by the primitive
terms in these examples are very different. There­
fore a further condensation of the presentation is
not suggested. A further decomposition can be in­
dicated, e.g. by the use of other operators, for
instance in the special case of a CD 7600 by

(15,1,12) x (1,x9,60) =

[(1,1,12) + (1,1,12)+ ... +(1,1,12)Jx(l,x9,60),

15 times

where (n,d,w) = (1,d,w)+(l,d,w)+ ... (1,d,w).

n times

We note that the opera tors x and+ again re­
flect parallelism and pipelining in a certain

·sense. The last example shows 15 equal processors
allocated in parallel. A given job (or task) will
be forwarded to the central processor: It may
also be necessary to allocate processors serially,
if there are different tasks to be performed one
after another. This is supported by the use of
functional'Jy dedicated processors, specialized to
the respective task.

The last operator we have proposed so far is
the 'alternative' operator v, which is to be un
derstood as an 'exclusive or'. For the C.mmp pro­
ject which can be used in three different kinds
of operation modes, an expression becomes:

t(C.mmp) = (16,1,16) v (x16,1,16) v (1,16,16).

Similarly, the EGPA project (4x4 array of
processors, 32 bits each, described e.g. in [13))
reads

12

t(EGPA 4x4) (16,1,32) v (xl6,1,32) v

(1,16,32) v (1,512,1).

The last term of this expression denotes the
operation mode "vertical processing" in which the
16 processors are used, each as if it consisted of
32 one-bit processors working in parallel. 16 pro­
cessors then result in an ensemble consisting of
16x32 one-bit processors. Information then is or­
iented to one-bit vertical streams (items) and the
machine-word of the memory becomes what is called
a 'bit-slice' in associative processors.

The operator v visualizes alternatives regar­
ding the processing modes which can basically be
used. An extended operator + can be used for a
further partitioning of a system in which the en­
semble is working. Scheduling algorithms have to
be developed which have to centre on the best
utilization of the system with respect to a given
set of jobs. The scheduling problems, however, are
not covered by this paper.

Yet, a remark on the 'flexibility' should be
added. The number of available processing modes
of a system seems to be a reasonable measure for
its flexibility. Therefore we define (F=Flexibili­
ty):

F(t(MODEL)) =

I (k1 xk; ,d1 xd; ,w1 xw;) v (k1 xk; ,d2?<cl.z' ,w2xw~)v ... ,

where II gives the number of triples connected
by the v sign.

For the examples presented above we have:

F(t(C.mmp)) = 3 and F(t(EGPA 4x4))= 4.

In this section we wanted to show that a
classification scheme becomes operable if it is
carefully chosen.

Nevertheless, it is not the aim of this pa­
per to introduce Ecs<al completely. We have used
it as a further example of the discussion about
the 'impact of classification schemes on computer
architecture'.

4. Summary and Outlook

Some things which can be done with ECS (chap­
ter 3), cannot be done with any of the systems
mentioned earlier (chapter 2). Although we do not
claim that ECS is the only possible classificati­
on scheme, we have found it useful for evaluating
computer structures, throughput, flexibility etc.

In this respect ECS seems, as briefly presen­
ted here, to be an approach which can become a vi­
able design tool. It classifies enough objects and
it does not limit too seriously the set of objects.

(a}A rigid and more formal presentation of ECS is
under preparation.

The only limitation we perceive so far is the inhe­
rently binary nature of the definition of w (word-
1 ength). If a computer is based on another modulo­
number system, then we would have to slightly modi­
fy the ECS as presented.

If, for historical reasons, we have to, for
example, include the old mechanical calculating ma­
chines of Ch. Babbage, then it would be necessary
to extend ECS. Also excluded from ECS are computers
of the analogue type. But this limitation seem~ to
be quite natural in that analogue data processing
is quite different.

The only criticism which at this time can be
made within the aims of this paper could center on
the number of levels we introduced in chapter 3.
There we defined a triple according to three pro­
cessing levels. If perhaps in a later step of evo­
lution a level above the program interpretation le­
vel will be created, then we would have to extend
the triple to a quadruple.

But just this step to achieve a new level of
computer structure is a real evolution step we ~re
searching for at present. It was exactly for this
that the classification scheme has been peveloped
as a tool. About such an evolutionary step a deci­
sion cannot be made in advance. It is rather the
ECS classification scheme and the operations de­
fined on the elements (triples) which seem to be
the appropriate starting point for investigations
of that kind. We hope that ECS will not limit too
narrowly a future development, for it includes all
structures which so far have been proved as viable
examples of computer architecture.

Acknowledgement

The assistance of Mr. R. K. Bell and Dr. V.
Sigmund in the preparation of this paper is grate­
fully acknowledged.

References

[l] M. Flynn, "Very high computing systems", Proc.
of the IEEE 54 (1966), 1901-1909.

[2] T. Feng, "Some characteristics of associativ~
parallel processing", Proc. of the 1972 Saga­
more Comp. Conf., Syracuse University, 1972,
S:16.

[3]

[4]

[5]

[6]

(7)

[8]

(9)

(10]

[11]

(12)

[13]

13

W. Handler, "On classification schemes for
computers in the post-van-Neumann era", in:
D. Siefkes (ed.), Gl-4.Jahrestagung, Berlin,
Okt. 1974, Lecture Notes in Computer Science
24, Springer, Berlin (1975), 439-452.

W. Handler, "Zur Genealogie, Struktur und
Kl ass i fizi erung von Rechnern", Parallel i smus
in der lnformatik, Arbeitsberichte des !MMD,
Universitat Erlangen-NUrnberg, 9 (1976)/8,
1-30. -

"Vocabulary for Information Processing",
American National Standard, X.3.12-1970.

Ph. E. Enslow, Multiprocessor and Parallel
Processing, John Wiley and Sons, New York,
1974.

P. H. Enslow, "Multiprocessors and other pa­
rallel systems - an introduction and over­
view", W. Handler (ed.), Computer Architec­
ture, Workshop of the GI, Erlangen, May 1975,
Springer Verlag Berlin (1976), 133-198.

W. Handler, "Aspects of Parallel ism in Com­
puter Architecture", Proc. of the !MACS ~Al­
CA -GI-Symposium on Parallel Computers,ar-
a e at ematics, unic arc
North Holland Amsterdam, to appear.

H.B. Baskin, Borgerson and Roberts, "PRIME -
a modular architecture for terminal-oriented
systems", SJCC 1972, pp. 431-437.

W.A. Wulf, C.G. Bell, "C.mmp - A Multi-Mini­
Processor", AFIPS Conf. Proc. FJCC 1972 41,
pp. 765-777.

B. Wharf, "Language, Thought and Reality",
M.I.T. Press, Cambridge, Massachusetts, 1963.

w. Handler, "The concept of macro-pipelining
with high availability", Elektronische Re­
chenanlagen 15 (1973), pp. 269-274.

W. Handler, F. Hofmann, H.J. Schneider, "A
General Purpose Array with a Broad Spectrum
of Applications", W. Handler (ed.), Computer
Architecture, cf. [7].

MISD
TIASC (?)
STAR (?)

MIMD

multiprocessors

SIMD
ILLIAC IV,
SOLOMON
ST ARAN

SISD
Princeton-type com-
puters

Fig. 1: M. Flynn's classification with some
examples

2048 t: 1..,. TIASC, t 4 PIPELINES
(64,2048)

Vl

!::; 256

STARAN 1 MODULE
, (1,256)
--... ----------~ 8 stages

co

LLl
:E:
I-

LLl
z
0

I-
<(

Cl
LLl
Vl
Vl
LLl
u
C>
0::
c..
LLl
u _,
Vl

I
I-......
co
LL
C>

::c:
I-
Cl
3 64

_,
<(......
1-
z
LLl
::::>
CY
LLl
Vl

I-

+. I
C.mmp, 16 GANGED PRO-I
CESSORS (16,256) I

I
I
I
I
I
I
I
I
I

FULLYIPARALLEL
I
I
I
I
I
I
I
I

I I ILLIAC IV,
I 1..,tfl QUADRANT r---------------1 (M,M)
C.mmp, SEPARATE I

I MULTIPROCESSORS I
(16,16) PEPE 1 MODUL4

16 I \ ..,tf(32, 16) I
IB!T--·----, IBM 360/50 :WORD SEQUEN

l :EERIAL ~ (32, 1) J.: -

1 16 . 32 64 TIAL
BASIC MACHINE WORD SIZE (BITS)

Fig. 2: T. Feng's classification with some ex­
amples

14

Fig. 3:

processors

P.E. Enslow's definition of a multiproces­
sor leads to "one common memory block"
(private memory blocks, owned by a pro­
cessor exclusively, are not excluded by
the definition).

Execution of one instruction in 4 stages
w'=4

stage 1.

stage 2.

stage 3.

stage 4 .

Fig. 4: Arithmetic pipelining (level 3 pipelining)

Instructions

program

function
units

memory
data

Fig. 5: Instruction-pipelining (level 2 pipe­
lining)

15

proc. 1

task 2
proc. 2

task 3
proc. 3

Fig. 6: Macropipelining (level 1 pipelining)

PARALLEL COMPILED INTERPRETATION

V. Sigmund
Institut fUr Mathematische Maschinen und Datenverarbeitung (III)
Universitat Erlangen-NUrnberg, Martensstrasse 3, 0-8520 Erlangen

Federal Republic of Germany

Abstract -- Program execution in some proces­
sors (analog, array, pipeline, data-flow, single­
assignment, etc.) reflects the structure of com­
pound operations described in the user program.
However, the original user description of these
operations has to be first transformed (transpor­
ted, translated, collected, interpreted) before
the actual execution can begin. The structure of
compound operations in this transformation can al­
so be exploited (parallel or pipelined data trans­
fer by I/0-devices and channels), and, under cer­
tain conditions, even in transformation and execu­
tion together (overlapped instruction fetch/ exe­
cution in lookahead processors). An extensive
application of this concept in the successive in­
terpretation of (very) high-level languages is
suggested by the current trend of hardware prices.

1. Introduction

The exploitation of parallelism in computers
has been preceded by the recognition of common
structural features of computations, at least at
some levels. For example, the need for the repea­
ted transport of programs and data sets from the
periphery to main memory resulted in the use of
multiple independent I/0-channels to the main pro­
cessor, which perform this transport in parallel.
Another example is the repeated transport of in­
ctructions from the main memory to the processor,
which resulted in the overlapping of the instruc­
tion fetch and execution phases. There is also
quite often a need for the repeated execution of
similar operations on elements of data arrays,
which led to the construction of array and pipeline
processors.

One feels that the types of parallelism in
these three examples are somehow different, but it
is difficult to characterize this distinction us­
ing Flynn's classification [1] according to whe­
ther instruction streams and data streams are pro­
cessed simultaneously. It is even sometimes not
clear whether pipelining can be considered as MISD,
i.e. multiple instruction stream/single data
stream processing, and if it is so, why (Enslow
[2]). The classification scheme introduced by
Handler [3],[4],[5) which consists of the numbers
of parallel and pipelining function units simulta­
neously active at the three main processing levels,
bit operation level, machine instruction level and
program level, possibly together with similar num­
bers for I/0-, front-end or other coupled special
processors, gives us much more information about

16

the computer. This measure is quantified, simi­
larly to the parallelism measure introduced by
Feng [6), thus enabling one to compare different
machines according to their degree of parallelism,
and also giving us a much more detailed picture
of the machine structure, which is important for
our intentions here. One should always explicitly
state what level is considered in studies of pa­
ra 11 el ism, etc.; speaking of the "para 11 el ism of
the ILLIAC IV computer" or of the "serial pro­
cessing of the von Neumann computer" is of little
value.

We find it useful to consider the computa­
tions together with the functions which they
SfiOUTd imelement. The user is interested---onTy in
the functions he wants to have computed by the
machine, i.e. in the external behaviour of his
program; from his point of view the machine has
been constructed in order to execute these func­
tions. Regretably, the machine has much more to
do than this execution. The user program and data
are mostly placed in some user space, e.g. a ter­
minal, disc or tape, but the machine can perform
the execution only when the instructions and data
items involved have been brought into the machine
execution space. After the execution another
transport is necessary in order to give the re­
sults back to the user and to free the execution
space for the forthcoming execution. We would like
to speak of a transformation rather than trans­
port or transfer, since the action can also in­
volve some encoding of instructions or data items;
in a broader sense also, for example, program com­
pilation or subprogram collection belong to this
category. Thus, although the user's only aim is
the execution of his program upon his actual data,
or more precisely the execution of the functions
composing the external behaviour of his program,
the machine has to perform both the execution and
transformation. Sometimes also the transformation
may be explicitly programmed by the user so that
its description constitutes a part of his program,
but the characteristic of the transformation is
that it does not influence the external behaviour
of the user program.

Now, considering the cases of parallel com­
putations in a machine, we can divide them ac­
cording to the category into which the implemented
functions belong. In the first example above the
parallel action of multiple I/0-channels forms a
part of the transformation. In the second example
the instruction fetch belongs to the transforma­
tion while the operation performed by the in­
struction execution upon the actual data items

often forms a part of the external behaviour of
the user program. Operations perfonned during the
parallel execution in an array processor belong in
most cases to the external behaviour of the user
program. We could speak therefore of transformation
parallelism, transformation/execution parallelism
and execution parallelism, respectively. We look
closer at the transformation and execution and at
the potential inherent in the extensive exploita­
tion of their common structure in the second part
of the paper (sections 4,5). If the transformation
is a transport, examples of parallel transforma­
tion and execution at several levels in computers
can be given: job execution overlapped with the
transfer of the next jobs of the job stream from
the periphery to the main memory, overlapped
fetch/execution in lookahead processors, etc., and
proposals for its exploitation have also been made
across the whole storage hierarchy (cf. e.g.
Dennis [7], Madnick [8]). The aim is to achieve the
maximal possible execution speed with only very
small run-time storage requirements, by having addi­
tional processing capacity to perform the trans­
port overlapped with the execution. The price of
processing elements relative to memory has fallen
rapidly. But the same principle could also be ex­
ploited across the whole hierarchy of the succes­
sive interpretation of (very) high-level languages.
Some proposals in this direction have been made
e.g. by Miller and Cocke [9]. Consistent with the
usage of the terms "compilation" and "i nterpreta­
tion" in processing of high-level languages, one
could then speak of parallel compiled interpreta­
tion. The aim here could be characterized as, in
aadftion to that above, saving peripheral and mass
storage, for their prices remain also relatively
high. Of course, the processing elements for the
"on-fly" compilation must be more intelligent than
for a simple transport, but this should be no
problem today. A sufficient condition for the
parallel transformation/execution is that the
transformation preserves the program ordering
(section 5).

However, before turning to the transformation
and execution, we consider in more detail their
common structural features. (sections 2,3). The tenn
"parallelism" is namely by no means exhaustive for
alle that can be observed in computations (nor
even in the papers presented at this conference,
so that the words "parallel processing" in its
name are partially misleading). We start with the
most natural computations which are perfonned in
the evaluation of compound operations, as described
by algebraic expressions and as has been exploited
by man for several thousand years in analog devi­
ces, and later e.g. in combinational circuits
(section 2). We prefer to use standard tenninology
although it became quite modern in some places to
speak about "transitions", "tokens" and "firing".
Then we look at the structure of programs and
machines. As for the no ti on of "structure",
mentioned almost everywhere today, we find as its
best explanation its usage in mathematics: "The
fundamental structure broblem of algebra is that of
analyzing a given alge raic system into simpler ·
components, from which the given system can be
reconstructed by synthesis." (Birkhoff [10), p.55).

17

We begin with the synthesis of complex programs
and machines from simple ones based on the ex­
ploitation of similarity of their components. By
"complex" we mean here and in the following "more
intelligent". This synthesis has been mostly
motivated by economical factors, e.g. at the time
of the first electronic computers the number of
memory cells and function units required for the
execution of a computation had to be kept small.
The synthesis can be roughly characterized as
"trading space for complexity", sometimes also as
"trading space for time". Steps in the other di­
rection, i.e. towards the analysis of complex
machines into simpler ones can be observed in the
recent work in computer architecture towards dis­
tributed processing, parallel processing (e.g.
array and pipeline processors), or, as we prefer
to say, structured processing (e.g. data flow
machines and single assignment machines, cf.
Tesler and Enea [11], Dennis [12], [7], Dennis
and Misunas [13), Rumbaugh [14], [15], Plas et al
[16), search mode and interconnection mode con­
figurable computers, cf. Miller and Cocke [9],
macropipelining, cf. Handler [17], and many other
designs described as reconfigurable, restructu­
rable, varistructured, variable, etc.). One could
characterize this roughly as "trading complexity
for space", when e.g. a complex centra 1 "All es­
konner" is replaced by a number of simpler di­
stributed processing elements, and sometimes also
as "trading time for space", when e.g. execution
time is saved by the use of a greater number of
processing elements, in accordance with the re­
cent developments of hardware prices and the
growing need to reduce execution time (section 3).

2. Compound Operations and Related Computations

The use of compound operations and their
description by expressions is widespread not only
in mathematics. Consider the very well know des­
cription (1) of how to get the length of the

c = ~ a = 3, b = 4 (1)

hypotenuse of a right-angled triangle, given the
lengths 3 and 4 of the sides adjacent to the right
angle. Perhaps a more suggestive picture is (2).

result c

(2)

3 4

Note that (1) and (2) are essentially two drawings
of the same graph where in the first drawing some
details such as edges, circles for nodes and the
ordering of the argument nodes are omitted for
reasons of economy (but are implicitly present),
and where the shape of (1) is dictated by the ty­
pographic needs of machine print.

In order to be able to execute the described
computation for the given arguments 3 and 4 (or,
as algebraists may prefer to say, to evaluate at
the point (3,4) the compound operation

+ + + R x R + R : (a,b) >+ c (3)

corresponding to the expression Ja2+b2, cf.
Gratzer [18]),we must first have learned at school
that the operators denote certain operations on
nonnegative real numbers R+, i.e. we must know
what specific algebra we are dealing with, cf.(18].

For example v denotes the square root ope­
ration

R+ sq.r. R+ : s t

which sends a nonnegative real number2 s to that
nonnegative real number t for which t = s. Given
the number 25 as the argument in the fo 11 owing
simple computation description

t = rs. s = 25

or, more explicitly, (4), the execution of the des-

"'"" 'V
"'".'"' ~ (4)

25

cribed computation (the evaluation of the opera­
tion square root at the point 25) means that we
determine the number 5 using our knowledge of the
operation square root and having the argument 25.
(The evaluation map

R+
e : R+ x R+ + R+ : (square root, 25) 5 is very
important in mathematics,. cf. Mac Lane [19], p .18,
61, 96, 216). We depict this in (5).

5

e (5)

25

The evaluation of a compound operation des­
cribed by an expression such as (1) or (2), is de­
fined inductively over the height of an operator
occurrence in the expression, i.e. the length of
the maximal path from the leaves to the correspon­
ding node labelled by this operator in the tree
such as (2).

In detail: Let f' : An~ A denote the opera­
tion corresponding to the n-ary operator f of the

18

algebra under consideration. Then the value of the
compound operation corresponding to an expression
in variables x1,x2, ... ,xk at the point
(a1 ,a2, .. .,ak) E Ak is defined by:

(i) the value at a leaf-node labelled by xi is ai
11 11 by a 0-ary

operator bEA is b
(ii) if an n-ary operator f is the label of a node

of height h ~ 1 in the tree and b1 ,b2, ... ,bn
are the values at its argument nodes, then
f' (b1,b2, ... ,bn) is the value at this node.

In the above case, the induction proceeds as
shown in (6).

f sq.r. f sq. r.

/'d~ =- /'d~ ~

l0~ f~ 1°~ f~
1 id.
3

9

2 1 id. 2 3 2 4 2

4
(6)

5

16
For illustration, in these induction steps the

values of the intermediate results are transformed
by the operations and moved along the tree from the
leaves to its root.

The above interpretation and evaluation of
(1) is as old as the usage of the expressions it­
self. However, quite usual, and, in fact, also
very old, is a physical implementation of this con­
cept. If we have functional units for the required
operations, the function (compound operation) des­
cribed by (1), (2) can be implemented in the com­
binational network (7), for example by moving and

output

(7)

input 1
3

transforming electrical signals along this tree
from the leaves to its root.

We could call the expression (1) (or the di­
rected graph in (2)) a program scheme or machine
scheme and the corresponding directed graph in (6),
~pro~ram or machine implementing the function
(3), consistently with the common usage of these
notions (cf. e.g. Arbib and Give'on (20)).

The term "computation" is usually used for
the sequence of intermediate results or configu­
rations (consisting of the intermediate result and
the state) of the corresponding program or machine
for a g~ven argument value (cf. e.g. (20), El~ot
and Robinson (21), Elgot (22)), in accordance with
th~ intuitive meaning of this notion. More appro­
priate would perhaps be computation run, thus
leaving the term computation to denote the set of
all computation runs for all allowed argument"'
values, similarly to the term "function" which can
be interchangeably used for the set of all corres­
ponding ordered pairs "(argument, result)". Con­
sidering the ordered pair consisting of the first
and the last element in the sequence of the inter­
mediate results of each computation run, and the
s~t of.these pairs corresponding to the computa­
tion (i.e. to the set of all computation runs), we
get precisely the function implemented by the com­
putation, sometimes called the external behaviour
of the computation. In our case of unary and
binary operators in (2), the com utation run for
the arguments (3,4) is the directe graph) of

result

(8)

2

~he intermediate results (instead of a sequence as
in the case of only unary operators) giving the
assignment (3,4) 5 as its external behaviour.
For the set R+ x R+ of all admissible arguments we
get a set of similar~ as the corresponding
computatlciTl;",a~d their respective argument and
r~sult nodes give us precisely the required func­
tion (3) as the external behaviour of this compu­
tation (cf. Arbib and Give'on (20]).

We remark that the only ordering of operator
occurrences in (1), (2) and of the intermediate
results in each computation run such as (8) is
that which is induced by their argument-result
relation, directly shown by the arrows in (2) and
(8). Operator occurrences which are incomparable
according to this partial order, as for example
the two nodes labelled with the power operator
"to" in (2), are often said to be inherently paral-
1 el.

It was our intention to use standard termino­
logy for well-known phenomena such as expressions,

19

their interpretation and evaluation. This is not
only convenient but, moreover, it enables one to
exploit results already known (cf. Give'on and
Arbib (23) for a study of a structure of the com­
pound operations described by a given operator
set). Some authors prefer to use notions like
"tokens which contain values", "an actor with a
token on each of its input arcs" which is "enab­
led and sometime later will fire" and quite often
they speak of "data driven execution" in a simi­
lar context.

We note that the program (machine) scheme
a~d the corresponding program (machine) have si­
milar graph structures (cf. (2) and (7): the
underlying directed graphs are indeed isomorphic).
Because these graph structures are our main con­
cern in the following, we shall feel free to use
the notions scheme, program and machine inter­
changeably, as convenient, hopefully without
causing any confusion.

3. Structure of Computations and Machines

The notions computation run and computation,
used in the last section, can be considered as
the prior and most natural concepts from which
the notions of "operation" ,"operation composition"
"compound operation" and the corresponding '
"operator" and "expression" are obtained by syn­
thesis. Concepts such as "interpretation" and
"implementation" represent steps in the other
direction, i.e. analysis. To this extent we can
speak of the structure of computations which is
reflected in the most simple programs and machi­
nes such as (2) and (7) of section 2. However to
explain this in more detail is outside the scope
of this paper so that we study only the struc-
ture ?f ro rams and machines in the following,
starting wit t e simp e mac ines of the last
section.

We depict in (9) once more the program
(machine) implementing the compound operation
R+ x R+ ~ R+ , corresponding to the expression

Ja2+b2 . The situation is now more symetric

result

with respect to data items and operators, since
operators can also be treated as data, e.g. they
can be changed. The only operation acting upon all

the data items and operators is the evaluation of
section 2, which we left anonymous. We call the
nodes such as those labelled a,b,2 or without la­
bel in (9) data nodes and the nodes labelled with
operators operator nodes. Every programmer would
probably be inclined to speak instead of the data
locations or variables and the (operator code part
of) instruction locations, but our data nodes can
actually be memory data locations as well as gene­
ral purpose registers or data lines of a bus, and
our operator node can be the operator code part
of the location in memory of an instruction, as
well as a function unit implementing the corres­
ponding operation or a control signal line of a
bus.

The implementation {description) of compu­
tations by the simplest machines (programs) such
as (7), (9) is not always economically feasible.
For large computations this would require too many
data and operator nodes. In the case of machines
this means that the number of registers and func­
tion units is too big; for programs their size is
too large, and the schemes (expressions such as
(1)) become clumsy. However, looking at these
simple machines (programs, schemes) we observe the
similarity of certain parts: the same data items
or operators occur repeatedly at different nodes,
somtimes even rather large identical, or at least
very similar parts of the machine occur repeatedly.
In what follows we describe several quite common
cases of synthesis, where such similar parts of
machines (programs, schemes) are "coalesced". This
happens at the cost of simplicity, since some new
mechanisms such as control flow, .subtroutine call
must then be introduced into the machines (pro­
grams, schemes). Sometimes the saving of nodes is
outweighed by the introduction of a new dimension
into the machines (programs, schemes), the time.
For each case of synthesis we show also examples
of analysis of the complex machines into a greater
number of simple ones, motivated by the recent de­
velopment of hardware prices and by the increasing
need to reduce execution time. The external be­
haviour of the corresponding computations remains
in all cases unchanged, i.e. both the synthesis
and analysis are "semantics preserving".

Multiple use of data nodes. Looking at the
example of the machine (9) we see that the two
occurrences of the data item "2" could be coales­
ced, thus obtaining the machine (10). The under­
lying directed graph is then no more a tree (cf.
Arbib and Give'on [20)). This technique is quite
common in programming. Such a saving of data nodes
costs increased complexity of the machine: the
data item "2" must be available for two references
to it; increased execution time may also result
if, caused by technical circumstances, one such
multiple reference must wait for the completion
of another.

Anal sis exam le: the replication {broad­
casting o an argument with multiple references
used in the packet communication architecture
(cf. Dennis [?)).

20

1.ar .

Multi le use of o erator nodes. The two nodes in
10 bearing the labe pow. can also be coales­

ced, cf. (11). A typical example is the use of
function units in a centralized processor: there
will be only one function unit for the operation
"pow." which will satisfy all references to it.

result

(11)

1.arg.

Compared to the function units of (9), this happens
at the cost of increased complexity of the single
function unit in (11) which must be able to resol­
ve multiple references; increased execution time
may also result if one such reference must wait
for the completion of another. A second example is
the use of array operators in programming langua­
ges.

Analysis example: the provision of multiple
function units for more frequent operations, e.g.
two increment units in CD 6600. Another example is
the provision of multiple function units for ope­
rations on data arrays in array processors, or the
replication {broadcasting) of an array operator
when executed on an array processor.

Re-use of data nodes. In the labelled graph
(11) we have used explicitly the letters p, r, s,
t, u, v, w, x, y, z for the nodes. Another ~ossib­
le representation of this graph is (12) which shows
in another form the (finite) maps of the labelling

p=2, r=pow., s=a, t=b, u=r(s,p), v=r(t,p),
w=+, x=w(u,v), y=r, z=y(x) (12)

and assignment of nodes to edges depicted in (11).
Now, observing the chain s+u+x+z of data nodes in
(11) with the property that none of them has other
immediate successors, we can use four copies
(1,s), (2,s), (3,s), (4,s) of the same nodes,
with the chain ordering of 1+2+3+4, instead of the
chain s+u+x+z. (An algebraist would say we take
the direct product of {t} with the chain 1+2+3+4
together with the product order relation.) We get
the description (13). If we call the chain
1+2+3+4 a "time sequence", we can say that the

p=2, r~pow., (1,s)=a, t=b, (2,s)=r((l,s),p),
v=r(t,p), w=+, (3,s)=w((2,s),v), (13)
y=.J , (4,s)=y(3,s)

three data nodes u, x, z have been saved by re­
using the data node s at three other time instants.
The price to be paid is increased complexity of
the machine, because we need a clock giving the
time impulses 1+2+3+4; increased execution time
may also result if the clock is slower than the
gate times and conducting delays along the path
s+u+x+z. Note that the program (machine) (13) can­
not be depicted as a graph like (11) without in­
troducing some new description conventions. Nor
can it be implemented as a combinational network,
since the clock functions as a delay unit bet­
ween two successive uses of the data node s; we
get a sequential network (cf. for example Hennie
(24], chapter l, for a discussion of combinational
network/sequential network dichotomy in finite
automata implementation).

We can save yet more data nodes by extended
re-using of data nodes (14). Three data nodes,
p, s and t, are sufficient instead of the seven
data nodes in (11). However, the price to be paid
is increased execution time by additional ordering
of operators which were inherently parallel in(ll).

1. p=2; 2. r=pow. ; 3. s=a; 4. t=b;
5. s=r(s,p); 6. p=r(t,p); 7. w=+; (14)
8. s=w(s,p); 9. y=r; 10. s=y(s).

We use in (14) the convention that the value of
the new ordering parameter 1+2+3+4+5+6+7+8+9+10 is
written in front of a node on the left-hand side
of "=" and the implicit assumption that an occur­
rence of a node on the right-hand side of "="
should be indexed with the last previously occu­
ring index at this node; e.g. the full description
of the fifth assignment would be (5,s) = (2,r)
((3,s),(l,p)).

Analysis example: the iterative array imple­
mentation of sequential circuits (cf. Hennie [24]).
This is to some extent the principle employed in
pipeline processors, data flow machines (cf. [7],
[12], [13], [14]), single assignment machines
(cf. [ll], [16]), interconnection mode configurab­
le machines (cf. [9]) and macro-pipelining (cf.
[17]).

21

Re-use of o erator nodes. Because of the
symmetry o t e programs machines) with regard
to the data and operator nodes, the same reason­
ing holds here as above. Typical examples are re­
definable operators in some interpretive pro­
gramming languages, e.g. Snobol, or micropro­
grammable function units in some computers.

Analysis example: the replacement of the all­
purpose ALU of the CD 6400 by the dedicated func­
tion units in the CD 6600.

Let t e two programs mac ines iu a contain
identical parts consisting of ~ # . Then we can
join them to the single program (machine) (15b),
thus saving data and operator nodes. The price
to be paid is increased complexity, viz. the in­
troduction of a new mechanism, the control flow
into the program (machine).

a) b)

(15)

The operators f, f 1, g, h in (15a) have then to
be extended to f', f', g', h' in which a new
control flow paramet~r is taken into account.
Examples can be found in ordinary programming.

Consider another case of the two programs
(16a) where the domains as well as the value sets

a) b)

t i iii

th t hi (16)

f g f gl

tf if1

of both pairs of the operations g, g1 and h, h1
are disjoint. Then we can use the single pro-
gram (16b) with g2, h2 being unions of the above
pairs and with h additionally producing a truth
value for the co~trol flow branch (cf. Elgot [25]).

Analysis example: the step from centralized
to distributed control, e.g. from centralized
"star" or bus interconnection to decentralized
full interconnection of computer modules (cf.
Arderson and Jensen [26]).

Re-use of pro ram parts subtroutine calls
let a part consisting o the operations
~~occur repeatedly in the program (17a).

a) b}

td
f 9
ff
tc

(17)
f g

tr
f b

f g

tr
fa

Then we can save data and op1ra tor nodes if we in­
stead use multiple copies (+ ~, i) (i=l,2,3) of
the repeatedly occuring part (see (17b)), di­
stinguished by a new parameter i. Again, calling
1+2+3 "time" we can say that we use the same pro­
gram part in three different time instants. In
detail: if the repeated occurrences are

(i=l,2,3) (18)

Xi Ui Yi Vi Zi

with data nodes xi' yi, zi and operator nodes
ui' vi' then the use of (19) instead of (18)

(o---@----0-G--o ,i) (i=l,2,3) (19)
x u y v z

represents normal subroutine calls while (20) re­
presents re-entrant subroutine calls. The price to

(o----{D--0--ill ,i) (i=l,2,3) (20)

Xi U y i V Zi

be paid is increased complexity, viz. the neces­
sary introduction of a new mechanism into the pro­
gram, the subroutine call. Increased execution
time may also result if one of the multiple calls
of the same subroutine must wait for the comple­
tion of another.

Analysis example: some compilers generate
"inline code" for each call of an intrinsic or
library function subroutine, i.e. they generate
full object code of the subroutine at each place
corresponding to a subroutine call in the source
program.

4. Transformation and Execution of Programs

In the last section we considered generally
the structure of computations. In this section we
want to make a difference between the computation
implementing the external behaviour of the user
program on his data, which we call simply execu­
tion in the remainder of the paper, and the com­
putation performing the transformation of the

22

user program and data, as outlined in section 1.
There exist different methods to perform the

transformation necessary for the execution of a
program upon its actual data.

Global program/global data transformation:
First the whole program and all initial data are
transformed, then executed,and then the final re­
sults are transformed back. The following are some
significant features: Positive: (a) Because the
whole transformation is perforii1e'<fln one piece,
before and after the execution respectively, it
is possible to analyze the transformation, as de­
scribed in section 3, to the extent this is econo­
mically feasible (e.g. several I/0-channels which
can transport simultaneously several data files
needed for one program). J.E1 Because the whole
execution is performed in one piece, it is possib­
le to analyze the execution, as desc~ibed in
section 3, to the extent this is economically
feasible (e.g. array processors, associative pro­
cessors, arithmetic pipelining). Negative: (c)
Large storage capacity is required for program and
data in the (expensive) execution space (e.g. main
memory required to store a large compiled program
and the large data arrays to be processed by this
program). ~Too much transformation is perfor­
med on programs where only a small part of all
instructions (operators) and data items actually
occur during execution (e.g. loading of a segment
of a segmented executable program when it is acti­
vated, where the whole program segment is trans­
ported into the main memory although possibly only
a very small part of the segment will actually be
executed; or a paging machine where a whole page
of data is transported although possibly only a
few data items of the page will actually be pro­
cessed).

Local program/local data transformation: for
a single user program statement that has actually
received control: first the instruction (operator)
and data items which are the arguments are trans­
formed, then the corresponding function is evalua­
ted, and finally the results are transformed back.
Significant features: Positive: (a) Small storage
capacity is required for program and data in the
execution space (e.g. a simple machine with a few
registers into which the function code and argu­
ments are loaded for evaluation). Negative: (b)
Because transformation and execution are inter-
1 eaved in small slices, they both can be analyzed
to only a very small extent.~ For the same
reason as (b), the transformation delays the exe­
cution (e.g. a high-level language interpreter).
~ Too much transformation is performed on pro­
grams in which many of the instructions (opera­
tors) and data items occur repeatedly during exe­
cution (e.g. a high-level language program per­
forming a large number of iterative computing
steps, which is interpreted by a language inter­
preter).

There are also intermediate or mixed methods
of performing transformations which try to ex­
ploit some advantages and avoid some drawbacks of
the two extreme methods given above.

Global program/local data transformation: the
whole program is transformed before and after the
whole execution, while data items are transformed
only when required for the current execution, and
then transformed back again (e.g. an executable
program processing direct access disc files).

Combined global/local transformation accor­
ding to the assumed number of occurrences of in­
structions (operators) and data items during the
execution: the most frequent are transformed glo­
bally into the execution space before and after
the whole execution, while the remaining are trans­
formed locally only when required for the current
execution (e.g. parts of an operating system or a
hierarchy of subprogram libraries in general pur­
pose applications). A modification of this method
is the dynamic global/ local transformation: in­
structions (operators) or data making up the glo­
bally transformed items in the execution space will
not stay there for the whole execution but may be
exchanged for locally transformed items, e.g. if
they have not been involved in execution for a
long time (e.g. usage of general purpose registers
of a processor by executable programs which load
them with some data more frequently required for
execution and replace them later by others; an­
other example is the cache memory, or the throw­
away compiling, cf. Brown [27]).

Blockwise transformation: Program and data
are partitioned into blocks; any of these blocks
is transformed into the execution space whenever
an item it contains is required for execution, and
it is transformed back when an item outside of this
block is required (e.g. segmented loading of pro­
grams, paging machines).

These intermediate methods depend heavily on
the specification of the portions of programs or
data which are to be transformed locally and glo­
bally, respectively. If badly specified, they can
result in much worse overall performance than in
the first two methods (e.g. columnwise processing
of a large matrix on a rowwise paging machine).

5. Common Analysis of the Transformation and
Execution ·

The global program/global data transformation
is an extreme case which allows very fast execu­
tion but requires very much storage in the exe­
cution space. If the storage capacity does not
suffice, one has to use some of the intermediate
methods. In these, however, the interleaved trans­
formation delays the execution, as is seen most
clearly in the opposite extreme case of the local
program/local data transformation. If the machine
were able to transform locally the items required
for the next execution during the current exe­
cution, and simultaneously to transform back the
items which have been involved in the foregoing
execution, it could achieve an execution speed
comparable to execution after global transforma­
tion. This would mean analyzing the transformation
and the execution together, as described in sec­
tion 3. However, for the transformation of the
items which will be involved in the next execution

23

the machine must first decide which these will be.
It is not always possible to give a precise answer.
The following method offers a rather ad hoc but
easy implemented solution:

Neighbourhood: One expects that the items in
some neighbourhood of those involved in the cur­
rent execution will be required for the next exe­
cution and transforms them (cf. blockwise trans­
formation, section 4) into the execution space,
simultaneously with the current execution (e.g.
hierarchical storage reorganisation, Madnick [8]).
Thus very fast execution may result, but in the
least favourable case the execution speed can be
worse than in the local transformation method,
while much more storage is required in the execu­
tion space.

However, there is a lot of information in the
user program about the possible next items. Let X
be the set of user's variables, L set of user's
labels, and assume that

i ; f: x+CY; 11 , ...• \ l

1 ·f' .+x'+(..,.y' · 1' . ' ...

.
1 ;f":x"+(y"; ...

p

is a part of his program, with labels l,1 1, ... ,
lpE L, where x,y are sequences (x1····•XmJ and
(Y1•····Yn) of variables of X. The user's reference
manual interpretation, which we denote by I, then
assigns to f some (partial) function If:
Atl x ... x Atm +(Aul x •.. x Aun) x pas its
meaning, where p denotes the set {0,1,2, ... ,p-1}.
The letters t 1, ... ,tm,u1, ... ,un denote some ele-
ments of the set T of the allowed data types and
At , ... , Au the underlying sets, i.e. the sets

1 n of possible values on which the
function If operates. Thus If assigns to arguments
a1, ... ,am of the required types in the domain of
If some b1, ... ,bn of specified types as its resul­
ts, and a truth value j as one of its possible p
outcomes. In accordance with the reference manual
interpretation I, the instruction labelled with 1
would be decoded as follows: If a1, ... ,am are the
respective values of x1, ... ,xm and if the value of
If at (a1, ... ,am) is {b1,. .. ,bn;j), then assign to
the variables y 1, ••• ,yn the values b1, ••• ,bn, resp.,
and for the next action refer to the label lj.

Thus each program statement specifies all its
possible direct successors. If the transformation
preserves this partial ordering, the possible di­
rect successors of the current executed program
statement of the transformed program can also be
specified.

Without going into further details, we call

the transformation order preserving, if it con­
sists of a map F .of programs and a map~ of data
with the following properties: F maps the data
types, T+T' : ti+t', into the data types of the
transformed programs and If maps bijectively the
data items, At+A't• for each tET, into the trans-
formed data items; F sends each function
name (instruction, operator) of a type
(t 1 ••• tm,ul ... un,p) into a function description
(program) f' of the type (t; ... t~,u; ... u~,p) which
is to be interpreted by the interpretation I' over
the sets At' (t'E T'} of the transformed programs
so that always ('fnxl)o If= I'f'o'f'm; final-
ly we require that F map~ for each user program P
injectively the user variables, X+X':x ... x', and
labels, L+L':lt+l ', into the variables and labels
of the transformed program P', respectively, and
sends each statement l·f·++(+y·l 1) of

' .x ' 1····· p
Pinto l';f':x'+(y';li ,. .. ,l'p) in P', with
x'=(x' 1, ... ,x'm) if x=(x1, ... ,xm). These conditi­
ons on (F,'f') ensure that each user's program state­
ment and data item can be transformed independen­
tly of other items and that the transformed pro­
gram will process under the interpretation I' the
transformed data as the user expects, considering
his source program, data, and interpretation I
only. In order preserving transformations one can
apply lookahead methods for the transformation and
execution.

Partial lookahead: Some of the possible direct
successor user program statements are chosen and
the corresponding items are transformed during the
current execution. If the current execution has
another outcome than expected, execution is delay­
ed and the actually required items have to be
transformed first (e.g. lookahead processors). The
next method seems to be the most promising.

Total lookahead: For alle possible direct suc­
cessor user program lines the corresponding items
are transformed simultaneously with the current
execution (e.g. a user sitting at a demand termi­
nal and waiting a long time for the outcome of the
currently executed job control command, who al­
ready pretypes onto the screen the job control
line for each of the possible outcomes). Of course,
if the transformation is so complicated that it
lasts longer than the execution, then more advan­
ced possible successors must also be taken into
account.

From the above conditions on the transforma­
tion it follows that the transformation preserves
the "shape" of the program and data (cf. Goguen
[28)), as in the case of their transport (trans­
fer), or "refines" the program instructions and
operators as subprograms, and data items as data
constructs in a lower-level language, what we call
a successive interpretation. If we do not insist
that the transformation transforms instructions
and operators f of the source program "pointwise",
but allow f to be a source program subroutine,
than the transformation also involves, for example,
the analysis of a complex program into its "un­
folded" version, as described in section 3 (cf.

24

e.g. Ramamoorthy and Gonzalez [29) for a survey
of some techniques).

6. Conclusion

We have explored the common structure of the
transformation and execution of programs. The
notion of transformation is general enough to
include not only transport but also high-level
language translation, subroutine calls, emulation,
hardware implementation of functions, etc. Most
of machine data processing consists of a hierarchy
of successive transformations where lookahead me­
thods can be applied, if these transformations
preserve the ordering of the instructions and
operators in a source program. Our aim was to at­
tract more attention to the potential inherent in
the successive interpretation of (very) high-level.
languages and the possibility of the exploitation
of lookahead methods for the compiled interpre­
tation, in accordance with the recent develop­
ments of hardware prices.

Acknowledgement. I am obliged to Prof. Dr.
W. Handler and Mr. R. K. Bell, MA, for much valu­
able advice and useful comments on this paper.

References

(1) Flynn, M.J., "Very high-speed computing
systems", Proc. of the IEEE 54 (1966).
19ol-19o9. ~

(2) Enslow, P.H.,"Multiprocessors and other pa­
rallel systems - an introduction and over­
view", in: Handler, W.(ed.), Computer Archi­
tecture, Workshop of the GI, Erlangen, May
1975, Springer, Berlin 1976, 133-198.

[3) Handler, W., "On classification schemes for
computers in the post-von-Neumann-era", in:
Siefkes, D. (ed.), GI-4.Jahrestagung, Berlin,
Okt. 1974, Leet. Notes in Comp. Sience 24,
Springer, Berlin 1975, 439-452.

[4) Handler, W., "Zur Genealogie, Struktur und
Klassifizierung von Rechnern", in: Parallelis­
mus in der Informatik, Erlangen, Jun1 1976,
Arbe1tsberichte des IMMD, Universitat Erlangen­
NUrnberg, ~ (1976)/8, 1-30.

[5) Handler, W., "Impact of classification sche­
mes on computer architecture", this con­
ference.

[6) Feng, T., "Some characteristics of asso­
ciative/parallel processing~ Proceedings of

the 1972 Sagamore Comp. Conf., Syracuse Uni­
versity, 1 72, 5-16.

[7) Dennis, J.B., "Packet communication architec­
ture", Proc. of the 1975 Sagamore Comp. Conf.
on Parallel Processing, IEEE, New York 1975,
224-229.

[8) Madnick, S.E., "INFOFLEX-hierarchical decom­
position of a large information management
system using a microprocessor complex", AFIPS
Conf. Proc. 44 (1975), 581-586. --

[9) Miller, R.E. and Cocke, J., "Configurable com­
puters: A new class of general purpose machi­
nes" in Ershov, A.P. and Nepomniaschy, V.A.
(eds.), Internat. Sym osium on Theoretical
Programming, , ecture Notes in omp.
Sci. 5, Springer, Berlin 1974.

[.10) Birkhoff, G., Lattice Theory, 3rd Ed., Ameri­
can Mathematical Society, Providence 1967.

[lU Tesler, L.G. and Enea, H.J., "A language des­
ign for concurrent processes", AFIPS Proc. of
the Spring Joint Comp. Conf. 1968, 32,
403-408. -

[12) Dennis, J.B., "Programming generality, paral­
lel ism and computer architecture", Information
Processing 68, North-Holland, Amsterdam 1969,
484-492. .

[13] Dennis, J.B., and Misunas, D.P., "A pipelining
architecture for basic data-flow processor",
Proc. of the Second Annual Symposium on Comp.
Architecture, (1974), IEEE, New York 1975,
126-132.

[14) Rumbaugh, J., "A data flow multiprocessor",
Proc. of the 1975 Sa~amore Comp. Conf. on Pa­
rallel Proc., IEEE, ew York 1975, 220-223.

[15) Rumbaugh, J., "A data flow multiprocessor",
IEEE Trans. on Computers C-26 (1977)/2,
138-146. -

[16) Pl as, A., et al., "LAU system architecture:
a parallel data-driven processor based on sing­
le assignment", Proc. of the 1976 Int. Conf.
on Parallel Processing, IEEE, New York 1976,
293-302.

[17] Handler, W., "The concept of macro-pipelining
with high availability", Elektronische Rechen­
anlagen, _!E. (1973)/6, 269-274.

[18) Gratzer, G. , Universal Algebra, D. van No­
strand, Princeton 1968.

[19) MacLane, S., Cate~ories for the Working
Mathematican, Springer, New York 1971.

[20] Arbib, M.A. and Give'on, Y., "Algebra automa­
ta I: Parallel Programming as a prolegomena to
the categorical approach", Information and
Control ~ (1968), 331-345.

25

[21] El got, C.C., and Robinson, A., "Random-access
stored-program machines, an approach to pro­
gramming languages", J. Assoc. Comp. Mach.
.!.!. (1964), 365-399.

[22] Elgot, C.C., "The external behavior of ma­
chines", Proc. 3rd Hawaii Int. Conf. on System
Sciences 1970, 447-450.

[23) Give'on, Y., and Arbib, M.A., "Algebra auto­
mata II: The categorical framework for dyna­
mic analysis", Information and Control 12
(1968), 346-370. -

[24) Hennie, F.C., Finite-State Models for Logi­
cal Machines, Wiley, New York 1968.

[25] El got, C .C., "Remarks on one-argument pro­
gram schemes", in: Rustin R. (ed.), Formal
Semantics of Programming Lan,uages, Courant
Computer Science Symp. 2, 19 o, Prentice­
Hall, 1972.

[26] Anderson, G.A. and Jensen, E.D., "Computer
interconnection structures: Taxonomy, charac­
teristics, and examples", Computing Surveys J_
(1975)/4, 197-213.

[27] Brown, P.J., "Throw away compiling", Software
Practice & Experience.§. (1976)/3, 423-434.

[28) Goguen, J.A. Jr., "On homomorphisms, correct­
ness, termination, unfoldments, and equivalen­
ce of fl ow diagram programs", J. Comp. Syst.
Sciences~ (1974)/3, 333-365.

[29] Ramamoorthy, C.V. and Gonzales, M.J., "A sur­
vey of techniques for recognizing parallel
processable streams in computer programs",
AFIPS Proc. of the Fall Joint Computer Con­
ference, 1969, 1-15.

SCHEDULES FOR GENERAL MONITOR SYSTEMS
WITH A MINIMAL NUMBER OF PROCESSORS

Dirk Hennings, Sigram Schindler, Michael Steinacker
Fachbereich 20 (Inf ormatik)

Technische Universitat Berlin
Berlin, Germany

Abstract -- The ~aper summarizes previous
and contains new solutions for the problem to con­
struct schedules for a set of independent tasks
to be executed on several processors. For each
task requestline and deadline for execution and
the computation time required on any processor are
known in advance.

I . Introduction

A general monitor system, GMS, consists of a
finite set of independent tasks, T, each task
having an individual requestline,-RL(T), an indi­
vidual "hard" deadline, DL(T), and an individual
computation time, CT(T), where
0 < CT(T) ~ DL(T) - RL(T) is assumed.

The problem is to construct schedules for a
GMS and a minimal number of identical, independ­
ent processors of finite speed. If only one pro­
cessor is available the general solution for a
GMS is derived in [SI]. Restricted monitor sys­
tems were investigated previously by Liu/Layland
[LL] and by one of the authors [82], the latter
considering the case of several processors. An­
other special case was studied by Labetoulle [La],
assuming a single processor system.

The first result of this paper is
a method for calculating the minimal num­

ber of processors required for executing a given
GMS without violating constraints;

a scheduling scheme which describes the
class of all preemptive schedules for a given GMS
and a given number of processors.

We are interested in "classes of schedules"
in order to be able to care for additional con­
straints imposed on solutions by reality (see
[SL] for further explanations).

Basically a scheduling scheme consists of two al­
gorithms (see figure 2):

the first algorithm computes the set of
all "admissible" assignments of the GMS;

the second algorithm computes the maximal
running time for the aomissible assignment from
this set selected for execution.

The second result of this paper is a scheduling
algorithm for a GMS having some relatively weak

26

additional property. [H] is the full version of
this paper including all proofs of correctness of
the algorithms derived.

2. Notions and definitions

A general monitor system, GMS:= (!,RL,DL,CT),
is defined to be a finite set T of tasks and three
mappings for the requestlines,-deadlines and com­
putation times

RL T .. R
DL f .. R
CT T-+ R

The computation time, CT(T), of a task T gives the
time required to execute T completely on any of
the available processors. The processing of a
task T cannot begin before its requestline, RL(T),
and must be completed before its deadline, DL(T).
Because of the graphical representation of the
GMS chosen in this paper it is sometimes reason­
able to speak about lengths of tasks instead of
computation times of these tasks (see figure I).

A processor system consists of a finite set
of independent and identical processors which are
able to process the tasks with a constant, posi­
tive, and finite speed. The. units of length and
time are determined such that one processor re­
duces the length of a task by one in one time
unit. We exclude that several processors simul­
taneously execute one task or that one processor
execute several tasks simultaneously.
X c T is called an assignmer>.t if all tasks of !
are processed simultaneously for some time, the
running time tX of the assignment !· We say a
preemption occurs if a processor executing a task
is interrupted before the length of the task has
been reduced to zero.

GMSt:= <.'.!.t•RLt,DLt,CTt) denotes the remaining GMS
after a finite sequence of assignments with total
running time t has been executed.

A schedule S for a given GMS and for a given num­
ber of processors is determined by a finite se­
quence of assignments X and the respective running
times tx, compatible with the requirements of the
GMS.

A schedule for a GMS and M processors is called

M=2

- ~
I
i

Tl ,_ ___ T ___ ~
1-------------·- - --- ----
t

4

Figure 1:

3 2 0

Representation of a GMS, processing
takes place from right to left. The
requestlines, deadlines and computation
times are the following:

RL (T 1) 0, DL (T 1) 4, CT (TI) 2
RL(T2) O, DL(T2) 2, CT(T2) 2
RL(T3) 3, DL(T3) 4, CT(T3) 1
RL(T4) 1, DL(T4) 2, CT(T4) I
RL(T5) 3, DL(T5) 4, CT(T5) 1
RL(T6) O, DL(T6) 3, CT(T6) 1
Note that Y = .cr2,T6) is not contained
in the set of admissible assignments
at time t=O, because if executed for
an arbitrarily small time, t=E, the
GMSE is over-critical in the k-inter­
val [1,2] U [3,4]. Thus T1 and T2 must
be assigned at first.

optimal if f there is no other schedule for this
GMS and less than M processors.

The following definitions are required for
the description of the algorithms.

A single interval begins at some requestline and
terminates at some deadline of some task(s). A
multiple interval (or k-interval, k E N) is the
union of a finite number of single intervals. The
minimal load, MINLOAD (GMS,A), of a k-interval A
of a GMS is given by the sum over those parts of
tasks of the GMS which at least must be processed
inside of A, because they cannot be executed
outside of A without violating constraints de­
fined by the GMS (see figure 1).

For a given number of processors, M, a k-interval
A of a GMS is called critical iff the condition

MINLOAD(GMS,A) = M• length(A)

holds. It is called over-critical iff the condi­
tion

MINLOAD(GMS,A) > M· lenght(A)

holds.

The length of a GMS, L(GMS), is defined to be the
length of the interval between its first request­
line and its last deadline. Then a GMS is called
adjusted (with respect to M processors) iff the

27

condition

~ CT(T) = M• L(GMS)
TET

is fulfilled and none of its k-intervals is over­
critical. Obviously the first property can be ob­
tained in a trivial way. For an adjusted GMS an
assignment is called admissible iff executing it
for an arbitrarily small time t, t > O, implies
GMSt is adjusted. The longest running time of an
assignment, X, with this last property is called
maximal running time t~x·
Note: Obviously an adjusted GMS contains at least
M requested tasks.

The basic idea of this paper is the following:
In order to determine M, the minimal num­

ber of processors for executing a given GMS com­
pletely, consider the minimal load density, de­
fined by MINLOAD(GMS,A)flength(A) for all k-inter­
vals, A, and calculate the maximum. The next higher
integer is M.

In order to construct an optimal schedule
for the GMS and M processors control the minimal
load density of all k-intervals of the remaining
GMSt such that none of them exceeds this bound M,
by choosing appropriate assignments and running
times.
Any scheduling algorithm obeying this principle
generates optimal schedules. Moreover, all opti­
mal schedules can be described in this way.

3. Results for the general case

Theorem 1:

Let an adjusted general monitor system, GMSt, at
time t and an M-processor system be given. Then
the subsequent algorithm Al computes the non-empty
set of all admissible assignments.

Al:

Input

Step 1:

Step 2:

GMSt,M
1 Compute the set, !t• of all requested

tasks, Tt, fulfilling the condition
DL(Tt) - CT(Tt) = t.

For each critical k-interval, not begin­
ning at t, compute the set of all request­
ed tasks making it over-critical, unless
assigned immediately. The union of all
these sets is called!~·

Step 3: For each critical k-interval, beginning
at t, compute the set of all requested
tasks contributing to its MINLOAD. The
intersection of all these sets is called
!f .

Output: Set of admissible assignments, AAt, de­
fined by

IYI =
i.e.

2 3
T c:Xc:T}
-t - -t

end Theorem

Remarks

For an adjusted GMS the interval [t,L(GMSt)] is
always critical at time t. Thus all requested
tasks may belong to admissible assignments. More­
over, both definitions of AA coincide because

I 2 3 -.!t u .!t c .!t •

Theorem 2:

Let an adjusted general monitor system, GMSt at
time t and an M-processor system be given and let
X be arbitrarily chosen from the set of admissi­
ble assignments, AAt, calculated by algorithm Al.
Then the respective maximal running tiine, ~~x•
can be computed by the subsequent algorithm A2 •.

A2:

Input

Step

Step 2

Step 3

Step 4

Output

Remarks

GMSt,!_,M

For each task; Tt,not assigned by!_,
compute the time t', t' = DL(Tt) - CT(Tt).

For each k-interval not beginning at t
compute the next point in time, t' > t,
at which the tasks not assigned by X
would make it over-critical. -

For each critical k-interval beginning
at t compute the next point in time
t' > t at which a task assigned by X
would no longer contribute to its -
MINLOAD.

Compute the minimum, t~x. of all the
above t' and of the computation times
of the tasks assigned in X.

x -
Maximal running time tmax·

end Theorem 2

For each k-interval the t' from steps 2 and 3 can
be computed by an easy and computational efficient
algorithm, omitted here because of its notational
complexity. But note that the number of k-inter­
vals may be exponential in the number of tasks.

Theorem 3:

Let a general monitor system, GMS, and the number
of processors, M, be given such that

M ~ r max { MINLOAD(GMS,A) / length (A) such that
A is k-interval of the GMS}l •

Let SA(GMS,M) denote the set of scheduling algo­
rithms for the GMS and M processors obtained from
the scheduling algorithm scheme in figure 2 by all
deterministic interpretations of the starred lines,
i.e. by all choice algorithms replacing these two
lines.

Let S(GMS,M) denote the set of all schedules for
the GMS on M processors obtained by applying all
SA ESA(GMS,M) to the GMS.

Then .§_(GMS,M) is the set of all optimal schedules
for the GMS on M processors.

28

Let SE~(GMS,M) be obtained by a schedulin~ algor­
ithm from SA(GMS,M) always choosing tX = tma for
all assignments. Then S consists of at most ~.N2
assignments.

START)

I

Input: Adjusted GMSt,M, t:=O, S:=0

1 Compute the set of all admissible
,assignments, AAt

Choose any assignment ! E ~

v
Compute the maximal running time
of!_, t~x
Choose any running time tx,
O < tx::; t~x

v
Update the representation of the

!GMSt

Extend the schedule obtained so
far S:= s I (!_,tx)

t:= t + tx

v
~ ,. Are all tasks of the GMS '-,

'· completely executed?

YES
v

Output: Schedule S

__ y

END

(by A2)

(**)

Figure 2: scheduling algorithm scheme

end Theorem J

Remarks

The optimal schedules of an adjusted GMS are cha­
racterized by the adjustment of the remaining GMSt
at any point of time t. This also implies that
the admissible assignments are those assignments
consisting of requested tasks which can be exe­
cuted for an arbitrarily small time without in­
creasing M in order to be able to execute the re­
maining GMS completely.

4. Scheduling algorithms for the case MINLOAD ~ I

[H] contains various special cases, charac­
terized by additional assumptions about the given
GMS, allowing us to find an efficient scheduling
algorithm. One of them is briefly discussed in
this paper subsequently.

For a given GMS let {Ii, i=l, •.. ,iO} denote
the set of disjoint intervals in [O,L(GMS)] de­
fined by all requestlines and deadlines as bound­
aries of the Ii; let Ii be located lower than Ij
if i < j. The GMS is called q-simple iff
MINLOAD(GMS,Ii) ~ q• length(Ii) for all i=l, •.• ,iO.
(For the rest of the section we additionally as­
sume that q is the largest such number. This ad­
ditional assumption is done for simplicity of pre­
sentation but without any deeper relevance and
can be omitted easily.)

For increasing q the property of a GMS to be
q-simple obviously becomes more and more restric­
tive. For q=l figure 3 shows that this assumption
does not exclude many technically interesting
problems; especially for M=2 it is relatively
weak. In the sequal we describe an efficient sche­
duling algorithm based on this assumption allowing
to reduce the M-processor problem to a single pro­
cessor problem (it is not difficult to see that
this assumption can be further weakened without
loosing this reducibility).

In order to explain this reduction process
we start with an M-processor system, a GMS being
adjusted and nowhere over-critical (with respect
to M) and being(M-1)-simple. From the (M-1)-sim­
plicity we see that uniquely defined parts of
tasks of the GMS mut be processed in "ilniquely de­
fined intervals Ii (defining a set POT;) and that
the total length of these pieces of tasks in Ii
(i.e. of the pieces in POT;) is equal to
(M-l)•length(Ii), i=l, ••• ,io.

A shog! 1moment's ryflection shows how to de-
rive a GMS and a GMS from the given GMS:

M-1 The GMS consists of the POTi to be pro-
cessed in Ii, i=l, ... ,iO,

GMSI consists of those pieces of tasks in
GMS not contained in a POTi restricted by the ori­
ginal requestlines and deadlines; if a piece of a
task is in a POTi then for the remainder of this
task in the G":MS"i there is an exclusion interval,
Eli c Ii, where this remainder may not be process­
ed.

M-1
The GMS may be scheduled for M-1 processors

by a trivial scheduling algorithm [C, page 76].
The following observation is now important: We can
always determine a particular schedule for the
GMSM-1 on M-1 processors such that its Ei's do not
exclude the schedule for the GMSJ on the remaining
processor derivable by the DDEI-scheduling algor­
ithm (defined below). This follows from the open
Ii's property that they do not contain any request­
line or deadline.

In order to schedule the GMS 1 for the remain-

29

ing processor we use a modification of the dead­
line driven scheduling algorithm cited in [S2],
such that the exclusion intervals of all tasks
are taken into account. We call this modification
DDEI-scheduling algorithm (for .!!_eadline .!!_riven
with exclusion intervals) and define it by means
of the tasks' modified deadlines. Given exclusion
intervals for a GMSJ at any instant, t, the modi­
fied deadline of T from GMS 1, MDL(T), is defined
to be DL(T) - SLEI(T) - t, where SLEI(T) denotes
the sum of the lengths of all exclusion intervals
for Tin [t,DL(T)]. The DDEI-scheduling algorithm
now simply prescribes to schedule at any time a
task (from the set of all tasks being requested
and not yet completely scheduled and not entering
into an exclusion interval) with smallest modified
deadline (for all tasks from this set).

5. Conclusion

Obviously the GMS scheduling problem can be
considered as a special graph scheduling problem;
thus the former problem is simpler than the latter
one.

For the preemptive case and the graph schedu­
ling problem presently finite scheduling algorithms
are not known for M > 2 (the proof of polynomial
completeness by Ullman refers to a somewhat differ­
ent problem, [4]).

For the preemptive case and the GMS scheduling
problem we presented finite scheduling algorithms
of complexity 0(2N), producing the class of all
schedules for arbitrary M (choosing maximal running
times for all assignments their number is bounded
by O(N2) in each schedule).

For arbitrary M we were not able to derive
polynomial bounded algorithms nor were we able to
show the polynomial completeness of the problem.
In order to extend the knowledge about this prob­
lem it thus seems reasonable to look for "sub­
optimal" heuristic scheduling algorithms for a GMS
or additional assumptions about GMS's, reducing the
complexity of the problem. An example of how such
additional assumptions may look like and how weak
they may be is discussed in section 4. Both ap­
proaches surely will be successful if it is pos­
sible to reduce the number of k-intervals to be
considered in Al and A2 to be bounded by a poly­
nomial in N. Such results obtained by additional
assumptions can be found in [H]. Presently we in­
vestigate scheduling algorithms obtained by choos­
ing feasible subsets (of polynomially bounded car­
dinality) of the set of all k-intervals.

M=2

TS
t-··----.. --- -·--- -"'----t·---- ---

-<~---·---+3------1-2------~·
Figure 3a:

M=3

Representation of a GMS
requestlines, deadlines
times, respectively, of
TI "" (0, I , I ,) ; T2
T3"" (1,4,2.S); T4""
Tsc=(0,4,1).

given by the
and computation
the tasks:

(0,3,2.S);
(3,4,1);

The intervals to be checked are
I]= [O,l]; I2 = [1,3]; I3 =[3,4].

The parts of the tasks to be executed
in such an Ii on the first processor
are shown as bold lines. The thin lines
show the remainder for the GMS 1 to be
executed on the second processor.

The GMS is I-simple.

,_ ..

1--...... , ___ _ -
t

<. •

s

T
2

4 3 2 0

30

References

[CJ

[HJ

E.G. Coffman, Jr.: Computer and job/shop
scheduling theory, Wiley 1976

D. Hennings: Doctoral Thesis, Fachbereich
20, Technische Universitat Berlin, under prep.

[La] J. Labetoulle: Some theorems on real-time
scheduling, Proceedings of the International
Workshop, August 12-14, 1974, Rocquencourt,
North-Holland Publ. 1974

[LL] C.L. Liu and J.W. Layland: Scheduling algor­
ithms for multiprogramming in a hard-real­
time environment, JACM, Vol. 20, No. I,
January 1973, pp 46-61

[SI] S. Schindler: Scheduling general monitor
systems, Proceedings of the Ninth Hawaii
International Conference on System Sciences,
Honolulu, January 1976

[S2] S. Schindler: Scheduling algorithms for mo­
nitor systems on M-processor systems, M ~I,
Proceedings of the Eighth Hawaii Internation­
al Conference on System Sciences, Honolulu,
January 197S

[SL] S. Schindler and H. Llidtke: Eine Diskussion
verschiedener Zugange zum deterministischen
Scheduling Problem, 6. Jahrestagung der Ge­
sellschaft flir Informatik 1976, Informatik­
Fachberichte Nr. S, Springer-Verlag 1976

[U] J.D. Ullman: Polynomial complete scheduling
problems, Operating Systems Review, 7.4,
1973, pp 96-101

Figure 3b: Representation of a GMS as in Figure
3a.
T1 "" (0, 1 , I) ; Tz "" (4, S, 1);
T3 "" (1,3,I.S); T4 "" (3,4.5, I);
Ts (0.5,3, I); T5 "" (3,5, 1);
T7 "" (0,5,0.S); Ts "" (1,4.5,3);
T9 "" (0,5,S).

I 1 [0,0.5] Iz [O. 5, 1]

I3 [1 , 3] I4 [3,4]
I5 [4,4.5] I5 [4. 5 '5]

The GMS is 2-simple.

SCHEDULING TWO-PROCESSOR SYSTEMS

M. Steinacker, D. Hennings, S. Schindler
Fachbereich ZO (Informatik)

Technische Universitat Berlin
Berlin, Germany

Abstract -- The paper summarizes previous
and contains new solutions for the problem to con­
struct time-optimal schedules for a set of tasks
to be executed on a two-processor system. We as­
sume that arbitrary precedence rules for the exe­
cution of the tasks and the tasks' computation
times on any of the two processors are known in
advance.

I. Introduction

Consider a finite, acyclic, weighted, direct­
ed graph, G (fawd-graph)-:- with N "ii°odes and E edges.
G represents a task system; a node is a task, the
weight of a node is the processing time of the
task, and an edge (v,w) means that task v must be
finished before task w can be started.

The problem is to construct time-optimal (mi­
nimal-length) schedules for a fawd-graph and for
8 system of two identical processors (see [C],
page 84).

A well known special solution is obtained by
the algorithm of Muntz/Coffman [MC] which computes
a preemptive schedule in O(NZ) steps. If we re­
strict attention to a system in which all tasks
require the same processing time the algorithm of
Coffman/Graham [CG] computes a nonpreemptive sche­
dule in O(Na(N)+ E) steps where a(N) is an almost
constant function of N [Se].

It is obvious that due to the various con­
straints imposed on real task systems (being not
considered in this paper) a set of schedules is
much more desirable in general than a single sche­
dule because in many cases at least one of the
schedules from that set will be compatible with
such constraints. That means: as soon as different
and/or varying costfunctions are to be considered
(i.e. reality shall be approximated) the approach
to the problem via classes of time-optimal sche­
dules [SchL] seems to be adequate.

Predicates provide the best description for
the class of all time-optimal schedules. Being true
during processing of a fawd-graph on a multipro­
cessor system these predicates guarantee the time
optimality of the respective schedule. By this
method for a certain type of task systems (charac-

31

terized by: arbitrary task lengths, precedence
structure being a forest or an antiforest, arbi­
trary number of processors, preemptions are al­
lowed) one of the authors [Sehl] constructed not
only one special solution but the class of all
time-optimal schedules, i.e. the general solution
of this problem. Due to this general solution the
authors [HSS] were able to derive a fast sched­
uling algorithm (where the number of steps is lin­
ear in N).

The result of this paper is

a scheduling algorithm scheme which de­
scribes (by means of efficient algorithms) the
set of all time-optimal preemptive schedules for
a fawd-graph on a two-processor SY.Stem (i.e. the
general solution of this problem)(a)

a special time-optimal scheduling algor­
ithm of complexity O(NZ) (i.e. the same complexi­
ty as the Muntz/Coffman algorithm) generating
schedules with at most 3N preemptions (whereas
Muntz/Coffman's schedule may have O(NZ) preemp­
tions).

A short report about preliminary efforts to
obtain these results is given in [SchS].

Basically, the scheduling scheme consists of
two efficient algorithms to be applied repeatedly
to G until it is completely scheduled:

The first algorithm, Al, computes the set
of all admissible first assignments, AA. That
means: Al computes the set, AA, of alY-those assign­
ments the tasks of which can--i;-e executed by the
two processors for some time t, t > 0, without loss
of optimality of the whole schedule.

For an arbitrary admissible first assign­
ment X the second algorithm, AZ, computes its ma­
ximal-running time, t~x· That means: after select­
ing aribtrarily any assignment X from AA, AZ com­
putes a time t~~x such that the tasks of !_ can be
processed for time t, 0 < t ~ t~ax• without loss
of optimality of the whole schedule and t~ax is the
largest such number.

The correctness of the algorithm is proved.
A full version of this paper including all proofs
will appear [St].

(a)Note that we do not talk about the set of all
time-optimal scheduling algorithms but about the
set of all time-optimal schedules.

2. The class of all time-optimal schedules

2.1 Notions and definitions

Let G be a finite, acyclic, weighted, direct­
ed graph, (fawd-graph G), where weights belong to
the nodes. The length of a path of G is defined as
the sum of the weights of the nodes on this path.
The height H(G) of the graph is defined by the
length of a longest path in G. !GI denotes the sum
of all weights.

Each node represents a task, T, the weight of
a node represents the length"l':(T) of task T. The
directed edges between the nodes represent the
precedence relations > between the tasks. The set
of all tasks is denoted by T. A fawd graph is call-
ed task-graph. -

The two processors are able to process tasks
with equal, constant, positive, finite speed, i.e.
the length of a task being processed is reduced by
one unit of length per one unit of time. If a task
is reduced to length zero, it is deleted from the
graph. A task may be executed if it has no prede­
cessors. A processor executing a task can be inter­
rupted before the length of the task has been re­
duced to zero. This is called a preemption.

_! c !(a) is called an assignment if all tasks
of X are processed simultaneously for some time,
tx,-the running time of X.

A schedule S for G is determined by a finite
sequence of assignments X and the respective run­
ning times.Cb) This shortest sum of running times is
denoted by topt(G). In an optimal schedule all
assignments are called admissible. The lonrest run­
ning time of an admissible assignment, X, is called
maximal running time, t~ax· -

In this paper the graph G is drawn in the
so-called stripe-representation D, using a car­
tesian coordinate system. (See figures la - Jc.)
A task T is represented by a vertical bold line
of the length l(T) which might be partitioned in­
to several parts connected by descending dashed
arcs (see figure Jc). If T precedes T' this is ex­
pressed by a non-ascending dashed arc from the
bottom of the representation of T to the top of
the representation of T'. Arcs may be omitted in
cases as (T1,T4) in figure lb. Two simple repre­
sentations are ol and oh, where all tasks are po­
sitioned as low as possible and as high as possi­
ble , respectively, in the interval [O,H(G)]. The
horizontal line through the top (bottom) 0f a
task of G in representation 0 is called start­
line (end-line) of this task. Any horizontal line
is called height-line.

The load density, ld, of G in 0 between
two height-lines is defined to be the sum of the
lengths of parts of tasks between these height­
lines divided through the distance between these
height-lines. If G has a representation such that
its ld ~ 2 everywhere in [O,H(G)], then G is called

(a)underscores denote sets

32

adjustable and this representation is called
adjusted representation (or a-representation).

Let us denote by L(G,O) the length of the
union of all intervals in [O,H(G)] in which
ld < 2. Let LMING:= min{L(G,O)I 0 is represen­
tation of Gin [O,H(G)]} . Then obviously

t (G) = -21 (I GI - LMING) + LMING = -2
1 (I GI+ LMING)

opt

Finally we sometimes extend G (without
changing notation) by a so-called zero task, which
is unrelated to any task in G and which has
length LMING; Then topt(G) is not changed but G
is adjustable.

The subsequent solution is derived from
the principle - proved in (St] - that a schedule
for an adjustable task-graph is optimal iff at
any point in time the remaining graph is adjust­
able.

2.2 Algorithms

The scheduling algorithm scheme we are
going to investigate is of the structure represent­
ed graphically in figure 2. From this scheme a
scheduling algorithm is obtained by assigning an
interpretation to the starred lines. The scheme
consists mainly of four parts

checking whether G is adjustable
determining the set of all admissible

first assignments, AA
determining the chosen assignment's,

!E AA, maximal running time, t~ax
updating G's representation such that

this step of execution is displayed.

The first three parts are based on the sub­
sequent algorithm AO and slight modifications of
it. AO starts from G in oh and a partitioning of
oh into p levels, defined by the end-lines of the
tasks of any chosen longest path. We try to
adjust G level by level from the bottom (level
number= 1) to the top (level number= p). As we
have on any level the task of the longest path
chosen we.,,only have to check whether we have with­
in the level to be adjusted additional tasks for
adjusting this level (we call this level a-level);
if there are not enough such tasks, the next
higher level(s) is (are) considered (we call this
level c-level) for a task to be moved down in or­
der to adjust the a-level. This changes G's re­
presentation. Tasks of G in the current represen­
tation which may be moved down to the a-level
without violating the precedence constraints are
called a-candidates. We finally denote by ald the
load density of the a-level in the current repre­
sentation of G.

(b)S is called time-optimal or optimal if there
is no other schedule with a shorter sum of
running times.

Figure la: Traditional representation
of a fawd-graph

/\
h

5

4

3

2

end-line of T1

__ start-line of T 1

T2 T3 I
V I

' •••• 4 ·1 ·>< - -· - -"<

-\

,. T6 l
--~7r- -

Figure lb: Stripe-representation
(!-representation) where
start- and end-lines are only
drawn for T1. The others are
omitted in order to simplify
the representation.

T2v T3 !
I

4 -
-"«

TIJ TS T6l
1

I
>.L-~ I

T7J T4
.. --··----·--·--·

2 -

I -

Figure Jc: Stripe-representation
Note: H(G) does not depend on
G's representation.

33

Theorem I:

Let G be a task graph. Then the subsequent algor­
ithm AO computes LMING

AO:
begin
input G in nh; LMING:= 0
determine the p-levels of any longest path
for a-level from I step I until p
~c-level:=-a=feve~l
- while ald < 2 A c-level ~ p

do while ald < 2 A 3 a-candidate on c-level
- do move at most ((2- ald) * length of a-level)

- units of length of any a-candidate from
the c-level down to the a-level

ad
c-level:= c-level +

ad
LMING:= LMING+ (2-ald)* length of a-level

od
ouptput LMING
end AO.

end Theorem I

Remember that with LMING we know tapt(G), too.

For the calculation of the set of all admis­
sible first assignments, AA, we use a modification
of the algorithm AO denoted by Al.

Theorem 2:

Let G be an adjustable task graph in Dh and let a
longest path (defining p levels) be chosen; let Tp
denote its highest task. Then the set of all ad­
missible first assignments, AA, is obtained by
applying algorithm Al. Al computes a special a­
representation nAl of G. Let p-set denote the set
of all tasks without predecessors in level p of G
in nAI. Let pld denote the load-density of level p.
Then AA is defined as follows

AA:= { (T,T') IT if pld = 2
then TP
else arbitrary from p-set,

T'= arbitrary from p-set}
Al is defined as follows.

Al:
begin
input G in Dh
determine the p-levels of any longest path
for a-level from I step I until p
~while ald~
-~

ad

determine E and ES, E < ES, where E is the
height of the lowest end-line of a-candidates
and ES is the next higher such end- or start­
line, and determine k, the number of a-candida­
tes with end-line E. Move y units of length of
each of these k a-candidates down to the a­
leve 1, where
y = min {(2 - ald) * length of a-level / k, · ES-E}
ad

output AA
end Al

end Theorem 2

For a task graph G the next theorem gives the
. 1 . . x maxima running time tmax of an arbitrarily chosen

admissible assignment ! E AA.

Theorem 3:

Let G be an adjustable task graph and let
!:= (T,T') E AA be an arbitrarily chosen admissible
first assignment. Let GX denote the task graph
obtained from G by reducing the lengths of T and
T' ~Y mi~ (l(T~,l(T')}. Let DX denote the represen­
tation D for G . Let the representation D' for G
be defined such that all tasks of GX are located
as in nX and T and T' are located on top of nX.

x
By applying A2 to G in D' we obtain trnax·
A2 is defined as follows.

A2:
begin
input G in D'
determine the p levels of any longest path in GX
for a-level from I step I until p
do -- ---

see Al

od
~x:= minimum of the pieces of T and T' still

beyond of H(GX)
end A2

end Theorem 3

The next theorem is the main result of the
paper; it makes use of theorems 1-3.

Theorem 4:

Let SA(G) denote the set of scheduling algorithms
for a task graph G obtained from the scheduling
algorithm scheme, shown in figure 2, by all deter­
ministic interpretations of the starred lines. Let
~(G) denote the set of all schedules for G obtain­
ed by applying all SAE SA(G) to G. Then S(G) is
the set of all optimal schedules for G. -

end Theorem 4

Unfortunately the approach taken to derive
this general solution is of no help if more than
two processors are to be scheduled. But as present­
ly two processor systems are of great technical
importance and no general solution for m-processor
systems, m > 2, can be expected, a separate in­
vestigation of this special case is surely justi­
fied.

2.3 The computational complexity of the algorithms

Let G have N tasks and E arcs. Then the input
procedure has the complexity 0 (N + E). See figure 3
for an overview.

For computing LMING, the set of all admissible
first assignments and the maximal· running time for

34

~GIN
Input: G, t:= 0, S:= ~

v
Compute LMING and extend G by a
zero task of length LMING

~~=~
~·--·

___ __iL_ _____ . __ -·---- --- ---·

Compute the set of all admissible
first assignments, AA(Gt)

Choose any !E AA(Gt)

Compute the maximal running time
t~ax of !
Choose any time tX, O < tX < tX - max

Update the representation of Gt
after the lengths of the tasks
assigned in X have been reduced
by tX. -

(*)

(*)

Extend the schedule obtained so far, i.e.
S:= s concat (!_,tx); t:= t + tx.

Figure 2~ Scheduling algorithm scheme

Gt here denotes the part of G
not yet scheduled at time t.

a chosen admissible assignment the algorithm AO
and its modifications, respectively, are used.
All three algorithms have the complexity O(N2),
Because of their similarity it suffices to con­
sider AO in order to obtain this bound.

Applying AO basically requires two steps:
I. Establishing the appropriate initial re­

presentation for execution of AO, i.e. bringing
Gt into nh • This requires O(N+ E) steps.

2. Execution of AO, requiring O(N2) steps.
This low bound seems to be achieveable, observing
that each of the N tasks can be cut in N parts at
most; it actually is achieveable by an appropriate
implementation as shown in [St].

The updatings of Gt, S and t obviously can
be done in O(N) steps.

If always the largest running time, ttkx• is
chosen, then the number of assignments is bounded
by O(N2) because no assignment can occur twice.
Thus the complexity of the output procedure is
O(N2), too.

If moreover the choice of an X E AA(Gt) is
always done in at most O(N2) steps then the com­
plexity of the scheduling algorithm (obtained by
this interpretation of the scheduling algorithm
scheme) is bounded by O(N4),

BEGIN
'· __ --_r --~-- -

Input G

'J

Compute LMING (by AO) and
add zero task, if required

!:------·----··><-)
Compute AA(Gt) (by Al)

Choose X E AA(G) (by caX)
; - - t

Compute tX (by A2)
max

Various updatings

'J
'--NO-----/· Are all tasks of G '·,,

completely executed?

YES

Output schedule

- ---·····""-----

END

O(N+E)

O(N)

Figure 3 Computational complexity of any sche­
duling algorithm derived from figure 2
by interpreting the starred lines as
follows: tX:= t~x and for determining
an! E AA(Gt) we have some choi~e al­
gorithm, caX, of complexity O(N), at
most.

3. An efficient scheduling algorithm

In this section we give a scheduling algorithm,
LNP, generating schedules with a .!_ow !!_Umber of E_re­
emptions. LNP has the computational complexity
O(N2), i.e. in the general case it is not faster
than the algorithm with O(N2) steps given by
Muntz/Coffman(a), But the total number of preemp-

(a)For the special case l(T) = I for all T E T,
i.e. all tasks have the same length, LNP is of
complexity O(N+E), if we have a computer with
multi-level indirect addressing [T, p.84), like
e.g. the PDP-JO, or an instruction determining
the number of leading zeros in a word [H,p.245),
or something similar.

35

tions of schedules generated by LNP is bounded by
3N, whereas the M/C algorithm may generate O(N2)
preemptions, as can easily be seen [Sch2].

It is quite interesting to see that the LNP
scheduling algorithm is not derived from the
scheduling algorithm scheme; although the sche­
dules generated by the LNP algorithm may be gener­
ated by the ·scheduling algorithm obtained by a
suitable interpretation of the scheduling scheme.
Nevertheless it probably would not have been pos­
sible to construct the LNP algorithm and it is
hard to see how to prove its correctness without
the analysis required for the scheduling algorithm
scheme.

The algorithm LNP starts from an adjustable
G in ol. It begins with the highest tasks of G
in Di and precedes to the lowest tasks. At any
time t during scheduling G we denote by Gt the
part of G not yet scheduled. The abbreviatio~s
introduced subsequently all refer to Gt in 0-C-,
unless stated otherwise. Let HEL denote the
highest end-line HEL and let HEL-tasks denote the
set of all tasks with start-lines higher than HEL.
Let rt be a task with the lowest end-line of all
tasks in HEL-tasks and let rH be a task with
start-line H(Gt)· HEL-tasks' is obtained from
HEL-tasks by removing rl and rH from it. Let rU
be a task with a lowest end-line of all tasks in
HEL-tasks', if it is notempty. HEL-tasks" is ob­
tained from HEL-tasks' by removing rU from it.

Let the initial current representation, Dc
of Gt, be defined such that

- all tasks not in HEL-tasks' are located
as in ol

the end-lines of the tasks of HEL-tasks"
have the height HEL ~~d

a piece of ~ of length z i§nlocated
beyond HEL, the remaining piece of ~ being lo­
cated as in of, where

z:= min { l(TU), sum of the lengths of the pieces
beyond HEL of all tasks of
HEL-tasks \ { rU } of Gt in Dc}.

Let the ~urrent i_n~djustment of Gt in Dc be
defined as

CIA:= 2 * (H(Gt) - HEL) - sum of the lengths of the
pieces beyond HEL of all tasks of Gt in Dc.

As long as CIA > 0 we must change Dc once more by
moving another task (or a piece of it) up into a
position beyond HEL. For this purpose we take a
task with the highest end-line of all tasks of Gt
in Dc starting not above HEL, and which may be
moved up beyond HEL without violating the prece­
dence rules in Gt (this may imply moving up a
task, which is located beyond HEL, until its
start-line becomes H(Gt)). Let this latter task
(required for reducing the current inadjustment
of the part of Gt in Dc beyond HEL) be denoted by
Tc.

As soon as CIA becomes zero, the pieces of
the tasks beyond HEL may be scheduled by a simple
algorithm, e.g. the "packing" algorithm from

13-

10-

8-

7- "

6--· r
~11 Tl2 5-

T 7
4-·

Tl T18

Tl

J:

T18. T19

-~~~~

T17

.------r.:-
__ _:_1_2

T9

T12 TlO

T T13
1-4--T-­

_ _]_ __

1- ·[l I
------- -----~-i .. \L_~~ .-2 ----------------------

Figure 4: An example of the application of the algorithm LNP.
Note the following pecularities of this example

the highest and the lowest level cannot be adjusted

the second lowest level has a current inadjustment
which can be reduced to zero

in the second highest level the task with the second
lowest end-line (T15 = Tll) is taken only partially;
moreover, Tll = TH.

36

[C] , page 7 6 .

Note that obviously the computation of HEL and
the associated adjusting takes place at most N
times and that each time at most 3 preemptions are
required.

Theorem 5:

Let G be a task graph in Dl. Then the application
of the algorithm LNP (defined below) generates an
optimal schedule, S, for G in at most O(N2) steps
and S contains at most 3N preemptions.
The algorithm LNP is defined as follows.

LNP:
begin: Input G in Dl
while G not completely scheduled
do in Gt determine
- HEL, HEL-tasks", TH, ~. ~.

move the tasks from REL-tasks" and a piece of
Tll up beyond HEL such that Gt is brought into
its initial nc

od

while CIA > 0 A 3 Tc
do determine Tc

od

locate a piece of re of length min{l(TC),CIA}
beyond HEL

schedule the pieces of Gt in nc beyond HEL
by applying the packing algorithm

ootput s
end LNP

end Theorem 5

Because of its similarity to the algorithm AO
the algorithm LNP terminates after O(N2) steps.
Figure 4 gives an example of the application of the
algorithm LNP to a G such that the various cases
to be considered do occur.

37

References

[C]

[CG]

E.G. Coffman Jr., ed.: Computer and job/
shop scheduling theory, Wiley 1976

E.G. Coffman and R.L. Graham: Optimal
scheduling for two-processor systems,
Acta Informatica 2, 1972

[H] A.N. Habermann: Introduction to operating
system design, Science Research Associates,
Inc., 1976

[HSS] R.D. Hennings, S. Schindler, M. Stein­
acker: The complexity of preemptive
scheduling algorithms for multiprocessor
systems, TR 74-20, December 1974, Techni­
sche Universitat Berlin, Fachbereich 20

[MC] R.R. Muntz and E.G. Coffman: Optimal pre­
emptive scheduling on two-processor sys­
tems, IEEE Transactions on Computers,
Cl8, No. I I, 1969

[Sehl] S. Schindler: Classes of optimal schedules
for multiprocessor systems, 2. Jahresta­
gung der Gesellschaft filr Informatik,
Karlsruhe 1972, in: Lecture Notes in Eco­
nomics and Mathematical Systems, Vol.78,
Springer-Verlag 1973

[Sch2] S. Schindler: Quantitative aspects of op­
timal schedules for multiprocessor sys­
tems, TR 73-10, July 1973, Technische Uni­
-;ersitat Berlin, Fachbereich 20

[SchL]

[SchS]

[Se]

[St]

(T]

S. Schindler and H. Ludtke: Eine Diskus­
sion verschiedener Zugange zum determini­
stischen Scheduling Problem, 6. Jahres­
tagung der Gesellschaft filr Informatik,
Stuttgart 1976, in: Informatik-Fachberich­
te, No.5, Springer~Verlag 1976

S. Schindler and w. Simonsmeier: The class
of all optimal schedules for a two-proces­
sor system, Proceedings of the Seventh
Annual Princeton Conference on Information
Sciences and Systems, 1973

R. Sethi: Scheduling graphs on two proces­
sors, SIAM Journal
Vol.5, No.I, March 1976

M. Steinacker: Doctoral Thesis, Technische
Universitat Berlin, Fachbereich 20, under
preparation

A.S. Tanenbaum: Structured computer organi­
sation, Prentice-Hall, Inc., 1976

ANALYSIS OF STRUCTURES FOR PACKET COMMUNICATION*

Robert G. Jacobsen
David P. Misunas

Laboratory for Computer Science
Massachusetts Institute of Technology

C&mbridge, Massachusetts 02139

Abstract -- In a system utilizing packet
communication techniques of message transmission,
all communication between the units comprising the
system is through discrete blocks of information
conveyed in packets. Interconnection structures
in such systems can range from bus and crossbar
structures to complex routing networks. A
~mparative analysis of a number of
interconnection structures for packet
communication systems is presented and tradeoffs
between the various structures in terms of cost
and performance are analytically examined.

Introduction

The increasing popularity of multi processor
systems and the corresponding necessity for
efficient interprocessor communication means has
spurred the study and development of communication
paths for use in such systems. One means for
interprocessor communication which ls gaining
popularity is that of packet communication. In a
system with packet communication architecture, the
units comprising the system communicate through
the transmission of discrete information packets
(2).

Classical approaches to the design of
communication paths have included such structures
as busses and crossbar switching networks. These
structures are necessarily small, due to the small
number of interconnected uni ts and due to the
speed requirements placed on the structure. As
the number of interconnected uni ts increases,
these structures become cumbersome both in size
and processing capability.

Mo r e r e c e n t 1 y , a n e w i n t e r co n n e c t i o n
structure, the routing network, has been presented
and used in the design of a new type of parallel
computer [3). This structure is capable of
simultaneously conveying many packets to their
destinations in the processor and has a slower
growth rate than the crossbar structure.

*This research was supported by the National
Science Foundation under grant DCR75-04060 and by
the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of
Naval Research under contract number N00014-75-C-
06661.

38

The tradeoffs between the various
interconnection structures are not clearly
understood. In the case of the routing network,
little analysis has been performed at all.
Detailed studies have examined such structures as
the bus and crossbar CS, 9]. Some network
structures have been studied [1, 8), particularly
in the context of telephone switching networks (6,
7, 8]. However, these studies have generally
considered only fixed connection circuits, rather
than packet switching circuitry.

In the analysis of the present paper, we
examine the characteristics of three communication
structures: the bus, the crossbar, and the
routing network. The cost and performance of each
structure is analyzed to yield results as to the
various tradeoffs involved in the choice of one
structure over another. The analysis of these
interconnection structures is supported through
simulation results obtained on a packet
communication simulation facility.

System Architecture

The design of a system interconnection
structure is a difficult and poorly-understood
problem, generally relying heavily on the
experience of the system architect. There are no
rules or guidelines for one to follow in such an
exercise, merely a few general philosophies. In
the following paragraphs, we will examine this
situation more closely in the context of a packet
communication system.

A packet communication system generally has
some structure similar to that shown in Figure 1.
The uni ts comprising the User of Figure 1 may be
processors, memories, functional uni ts, or any
other devices capable of message transmission or
reception. The Communication Network of the
system provides a path between the various units
of the User. This interconnection structure may
provide a path from every unit to every other
unit, from groups of units to groups of units, or
from each unit to one or several of the others.
For the purposes of this discussion, we will
assume the most general case; that is, every unit
of the User can communicate with every other unit
through the Communication Network. Other
interconnection schemes can be considered as being
composed of a number of embodiments of this more
general case.

User

Communication

Network

Figure I. System Structure

Presumably, the designer of a packet
communication system has an application area in
mind for the system and has some idea of the
amount of traffic which will pass over the
communication medium. Thus, through some
analysis, one should be able to generate a curve
corresponding to the solid line of Figure 2. Such
a user load curve expresses the number of packets
generated as a function of the time required for
an individual packet to transit the communication
network and should al ways have a non-positive
derivative, indicating that interunit
communication will generally occur less frequently
as the communication times increase.

On the other hand, the dashed curve of Figure
2 represents the load characteristics of the
Communication Network and always has a non­
negative derivative. The slope of the
Communication Network load curve demonstrates that
the load on the communication medium increases,
the delay through the medium should eventually
increase.

Packet

Traffic

/

/
/

/
/

/

I
I

I
I

/
/

Operating
Point

Network Transit Time

Figure 2. System Operating Characteristics

39

Generally, the two curves intersect at a
point which will be the operating point of the
system. Clearly, the system is only stable at the
operating point and any digression from that point
is countered by forces which tend to return the
packet flow to the operating point.

Were it possible to empirically derive the
User and Communication Network curves of Figure 2,
the analysis and synthesis of packet communication
systems would be greatly simplified. If there
existed curves for the various types of
interconnection structures, a designer need only
develop the characteristic curve of his proposed
User structure, choose a desired operating point
on that curve, and match the appropriate
Communication Network curve to yield the best
cost/performance at that operating point.

Such a scheme may seem impractical, however,
methods similar to this have been derived for 111&ny
other branches of engineering, and there is no
explicit reason why it is not possible to do so
for aspects of computer design.

The remainder of this paper describes some
preliminary results which were achieved while
trying to generate load curves for various
Communication Network structures. Whereas the
achieved results do not yield rules for processor
design, they provide a first step in that
direction through the analysis of packet flow in
the structures

Network Representation

The communication networks of the present
study are formed of arbitration uni ts and switch
units. Each arbitration unit accepts the first
packet to arrive at any input and passes the
accepted packet to its output. In the case of
confl let, one packet is arbitrarily selected and
passed to the output before the other Cs>. Each
switch unit transfers a packet on its input to one
to its outputs, generally controlled by some
switching specification contained in the packet.

The bus module of Figure 3 comprises an
arbitration unit followed by a switch unit.
Similarly, models for a crossbar and a routing
network are shown in Figures 4 and 5. A network
such as that of Figure 4 which is composed
initially of switch units followed by arbitration
uni ts is called a distribution network, and a
crossbar is one configuration of such a network.
Similarly, a network which contains an initial
stage of arbitration as that of Figure 5 is called
an arbitration network.

The networks under study are structured as a
number of stages connected in sequence. Each
stage of a network is composed exclusively of
either arbitration or switch units and is
characterized by the log to the base N of the
fanout/fanin ratio:

(Number of Outputs)

(Number of Inputs)

Figure 3. Structure of a Bus

This means of characterization has been chosen for
two reasons. First, the size of the individual
arbitration and switch units comprising each stage
is clearly specified. Second, such a
characterization represents a constant network
architecture, regardless of the number of inputs
and outputs.

The bus structure of Figure 3 (and all bus
structures) ls characterized by (-1, 1).
Similarly, all crossbar structures are
characterized by (1, -1). The "square-root"
arbitration network of Figure 5 has the
characterization (-1/2, 1/2, -1/2, 1/2).

Note that for an NxN communication network,
the sum of all numbers in the network
characterization must be equal to O. Furthermore,
in order for every input of a network to be able
to communicate with every output, the sum of the
absolute values of the numbers comprising the
network characterization must be at least two. If
the sum is greater than two, the network contains
redundant paths.

Figure 4. Structure of a Crossbar

40

Figure 5. Structure of a Routing Network

At this point, we shall further restrict the
networks under analysis to constant geometry NxN
communication networks which can be characterized
by a positive integer fraction f, where the
network characterization is (-f, f, -f, f, •••)
for an arbl tration network or Cf, -f, f, -f, •••)
for a distribution network. The number of
occurrences of f in each characterization is equal
to the number of stages in the network, that is,
to 2/f. Bus structures, crossbar structures, and
simple power networks are examples of networks
with such a characterization.

This re st r i cti on does not neces sar 11 y
preclude the consideration in our model of
networks which do not have alternating stages of
arbitration and switch units. Without loss of
generality, adjacent stages of the same type can
be considered as one stage with a characterization
which is equal to the sum of the characterizations
of the two stages. However, the model described
herein is only applicable to networks which can be
characterized by a constant fraction f once
reduction of identical adjacent stages has been
performed.

Performance Analysis

Fo r t h e p u r p o s e s o f f i n d i n g t h e
characteristic curve of a communication network,
we need to make two simplifying assumptions.
First, we consider the cost of a device
proportional to the speed of the device times the
number of wires connected to it. This assumption
is not precisely accurate, but close enough for
the purposes of this discussion.

Se c o n d , w e a s s u m e t h a t t h e p a c k e t
distribution on the inputs of a communication
network is even and Poisson and the distribution
through any cross section of the network is even.

The communication networks under study are
composed of an interconnection of one basic unit
type, called a tie and consisting of an
arbitration unit and a switch unit. The bus of
Figure 3 ls composed of one such tie. The network
of Figure 5 can readily be seen to comprise a
number of ties. Al though the topology of a
distribution network is slightly different than
that of the networks in Figures 3 and 5, such a
structure can be analyzed in a similar fashion.

We wish to examine two variables within each
communication structure, a delay derater D and a
loading representation F. D represents the
average transit time for the network divided by
the minimum transit time and can assume values
ranging from one to infinity. D=l signifies that
the transit time through the communication network
is only the hardware delay, whereas larger values
of D indicate the presence of conflict in the
structure.

F represents the fraction of the network that
is not ls use, that ls, the free capacity of the
network di vlded by the total capacity. In the
following study, we examine D as a function of F
to achieve each network characterization. The
communication network load curve of Figure 2
represents a graphical depletion of a function
similar to Cl-F) vs. D. We have made this
modification to the axis of the graph for the
purposes of simplifying the analysis and the
lnvol ved mathematics.

Representing the interarrival time on each
input of an n-input tie by I and the service time
by T, we find that a packet will arrive every I/n
and hence:

Ftie .. 1 - nT/I

Generalizing to all the units of a stage, a packet
can be transmitted to the next stage at most every
TCn/N) • T(Nf/N) • T/NCl-f>, Thus:

Fstage " 1 - CT/NC1-f'>tCI/N)
• 1 - NfT/I

Since all stages in this type of network are
similary constructed:

Fnetwork • Fstage • 1 - NfT/I

The application of queueing theory techniques
to the performance analysis of one tie,
considering each tie as a queue and assuming
Poisson arrival rates, yields the result:

D • 1 + C1-F)/4F

All ties in the network operate at the same
F. Hence, overall, we can say:

Dnetwork • 1 + Cl - Fnetwork>14Fnetwork

Simulation Results

Utilizing a packet communication simulation
facility, a number of bus, crossbar, and routing
network structures were simulated to see if actual
performance followed the D = 1 + (1-F)/4F formula.
The simulation results are depicted in Figure 6.

The solid line of Figure 6 represents the
graph of D • 1 + Cl-F) /4F, and the points
resulting from the simulation appear to observe
this characteristic for the three structures under
study.

The simulation modelled each network input as

41

1-F
D=I+--

2.4 4F

6 Bus

2.2 0 Crossbar

a 2 Stage Arbitration

2.0 Network

6

1.8
D

1.6

1.4
6

1.2

1.0

0 .2 .4 .6 .8 1.0
F

Figure 6. Simulation Results

an independent source with a Poisson distribution
and given lnterarrival time. The discrepencies of
the simulation from the model for small values of
F are due to the fact that the model contained
infinite queues between the sources and the input
ports, whereas such is impractical in the
simulation, eventually causing the input queues to
back up and affect operation of the sources.

Network Selection

The cost analysis for an arbitration network
such as that of Figure 5 can be represented as
follows, where CAN is the cost of the network:

CAN • (number of stages)(cost of each stage)
'" (1/f) (speed • number of wires)
• (1/f) C [Nf /fl •N>
• N(l+f) /f2

In this case, speed is equal to Nf/f to maintain a
constant average delay through the network with
changes in f, The term Nf compensates for the
increased loadin~ of arbitration units due to the
compression by N • The 1/f arises from the need
for each stage to operate faster in networks with
more stages.

In the case of a distribution network:

.. (number of stages) (cost of each stage)
• (1/f) (speed • number of wires)
= (1/U (1/f) • CN (1+f»
= NCl+f) /f2

A distribution network has a greater number of
wires because each input wire of a stage of such a
network is expanded to N(l+f) wires. Due to this

expansion, the component speed in a distribution
network is only affected by the number of stages,
that is, by 1/f.

Thus the linear cost assumption has led us to
the conclusion that for some fixed performance,
the arbitration network of Figure 5 costs the same
as the distribution network of Figure 7. This
result is non-intuitive at first, however,
consider an arbitration network of complexity N.
The units comprising this network have speed N due
to the initial compression factor. The complexity
of an equivalent distribution network is N2, but
the additional parallellsm allows the network to
be constructed of components with speed 1. Hence,
the cost of the two networks is equivalent.

The minimum of the network cost NC1+f) /f2
occurs at

1/f • Cl/2) ln N

where 1/f is the number of stages. Hence, for the
linear cost assumption of the model, the following
structures are best suited for the specified
number of inputs for either arbitration or
distribution network:

.t! Structure

7 1-stage networks
(bus and crossbar)

so 2-stage networks

400 3-stage networks

3000 4-stage networks

An interesting result which arises from the
performance computations ls the determination of
the optimal value of n, that is, the number of
inputs to each arbitration unit and outputs of
each switch unit. As we have seen, the minimum
cost occurs when f .. 2/ln N. Thus, these
expansion and compression ratios should be:

To utilize the previously described results
in the design of a packet communication system,
one first determines the load curve of the uni ts
to be interconnected. The architecture of the
communication network utilized in the system is
specified by the number of uni ts. With these
specifications in mind, there are a number of
design choices which can be made.

The load curves of the communication network
consist of a family of curves which are parametric
with cost. To design for a specific cost or
technology, the intersection of that member of the
family with the user load curve yields the
performance which can be achieved.

Conversely, to structure the system for a
specific performance, the desired operating point
on the user curve is specified and the network
curve which passes through that point determines
the cost and speed necessary in the component
parts.

42

Figure 7. Structure of a

Distribution Network

The choice of el ther an arbi tratlon network
or a distribution network must take into account
important factors such as the available
technologies. Whil~ ~hese factors are not
included in the model, they will dictate actual
use of any results achieved therefrom.

Concluding Remarks

This attempt to probe the interconnection
problem for packet communication systems has left
many questions unanswered. The model utilized has
a number of deficiencies and remains to be made
more exact and extended to structures other than
certain NxN power networks, such as asymmetric
networks and concentration networks. Further
refinement of the model and addition of other
structures should provide much information useful
in the synthesis of processor structures for
packet communication. Despite its deficiencies,
the model provides a first attempt to analyze such
packet communlcatlon interconnection structures
and yields some lnterestln1 insights int~ their
behavior.

References

[11 Davidson, I. A., and J. A. Field, "Design
Criteria for a Switch for a Multiprocessor
Computing System," Proceedings of the 1975
Sagamore Computer Conference on Parallel
Processing, IEEE, New York, (August 1975),
pp. 110-114.

[2] Dennis, J. B., "Packet Communication
Architecture," Proceedings of the 1975
Sagamore Computer Conference on Parallel
Processing, IEEE, New York, (August 1975),
pp. 224-229.

[3] Dennis, J. B., and D. P. Misunas, "A Computer
Architecture for Highly Parallel Signal
Processing," Proceedings of the ACM 1914
National Conference, ACM, New York, (November
1974), pp. 402-409.

[4] Marcus, M. J., New Approaches to the Analysis
of Connecting and Sorting Networks, Research
Laboratory of Electronics, M.I.T., cambridge,
Mass., TecJmical Report 486, <March 1972), 54
pp.

[5] Pearce, R. c., and J. C. Maj i thia, "Upper
Bounds on the Perfor11&nce of Some Processor­
Meaory Interconnections," preprint.

[6] Pippenger, N., The Complexity Theory of
Switching Networks, Research Laboratory of
Electronics, M. I. T., Cambridge, Mass.,
Technical Report 487, <December 1973), 51 pp.

43

C7J Pippenger, N., "On Crossbar Switching
Networks," IEEE Transactions on
Comaunicatlons COM-23, 6 (June 1975), pp.
646-659.

(8] Thurber, K. J,, "Interconnection Networks -­
A Survey and Assessment," APIPS Conference
Proceedings il, APIPS Press, Montvale, New
Jersey, (1974), pp. 909-919.

(91 Thurber, K. J,, et. al., "A Systematic
Approach to the Design of Digital Bussing
Structures," APIPS Conference Proceesings 41
Part II, APIPS Press, Montvale, New Jersey,
(Pall 1972), pp, 719-740.

INTRODUCING THE CONCEPT OF DATA STRUCTURE ARCHITECTURES

W. K. Giloi and H. Berg
Computer Science Department

University of Minnesota
Minneapolis, Minnesota 55455

Abstract -- In the paper, the concept of data
structure architectures is developed as a solution
to the problem of providing increased hardware
support for the bas.ic task of computing, viz. the
creation and processing of data structures. As a
starting point, a uniform algebraic descriptionof
data structures is presented. Consequently, the
necessity for a management of the two fundamental
types of data entities, ordered sets and general
sets, is recognized. In order to allow a machine
to handle the various data structures by a stan­
dardized hardware, an intermediate data structure,
called the basis and managed by hardware, is
introduced. The programmer creates arbitrary data
structures in terms of basis elements which are,
in turn, mapped by the hardware onto consecutive
storage. The processing of basis elements in res­
ponse to a single machine instruction is based on
the referencing of basis element descriptors and
implemented by pipelined processors.

Keywords: computer architecture, performance
architecture, general-purpose computing, data
structures, ordered sets, data model, descriptor­
referenced allocation, tagged architectures, hard­
ware execution.

1. Introduction

The basic organizational concept of most
computers presently being used or being marketed
is still the 30 years old concept as developed by
von Neumann, Burks, and Goldstine [l]. In our
opinion, the reason for the so amazing longevity
of the von Neumann principle is its unique com­
bination of simplicity and flexibility. The von
Neumann concept may be epitomized as a concept of
minimal hardware resources: The basic von Neumann
machine encompasses one central processing unit,
orte main memory, and one input/output channel.

This concept of hardware minimality, which
was perfectly adequate at a time when the hard­
ware of a computer was the major cost factor, has
meanwhile turned into the major factor that will
obsolete the von Neumann architecture. In the
age of dramatically decreasing cost of standard­
ized LSI componentry, concepts are needed which
allow increased hardware expenditures in order to
achieve certain design objectives such as an in­
crease in performance or availability or both.
Such a multiplication of hardware resources
implies the abolishment of the most severe perfor­
mance-limiting feature of the von Neumann machine,
namely that it manipulates the content of only a
single memory location at the time, in favor of
the simultaneous accessing and processing of a
set of values, i.e., in favor of parallel proces­
sing.

44

Most of the existing parallel processing
architectures, however, were initially designed
for special purposes rather than for general­
purpose computing, and many of these architectures
do not lend themselves very well to a generaliza­
tion. Whereas it is a rather straightforward
task to design the architecture of a special pur­
pose computer, based on a homogeneous class of
algorithms (e.g., for solving partial differential
equations or for processing a matrix of radar
data), it is not possible to define such distin­
guished classes of algorithms after which a com­
puter architecture could be modelled if the uni­
verse of all possible algorithms is considered.
However, in the search for a class of architec­
tures for general-purpose computing, i.e., arch­
itectures which can really replace the von Neumann
architecture, the whole domain of computing must
be taken into account.

The most general definition of computation is
that of "a sequence of transformations which
transform an initial representation through a
sequence of intermediate representations into a
final representation" [2]. A representation is a
transforming function and its data. As it is not
possible to identify patterns in the universe of
all possible transforming functions which could
render the blueprint for a class of general-pur­
pose architectures, the only possibility left is
the structuring of the data or, more precisely,
the processing of appropriately structured data
entities.

In the von Neumann machine, data are totally
unstructured, i.e., the only data entity of the
machine is the scalar. In real-world computation,
we find always structuring relationships between
the data of a program which constitute the basis
for data retrieval and processing. An architec­
ture which supports the representation and pro­
cessing of arbitrary data structures l?x, hardware
shall be called a data structure architecture
(DSA). It need hardly be emphasized that a data
structure architecture should be complete and
minimal, i.e., it should allow for the representa­
tion of any desired structure, and it should
employ for this purpose a minimal number of stan­
dardized tools.

2. A Formal Definition of Data Structures

Knuth [3] defines data structure as "a table
of data including structural relationships".
Formalizing this, we define a data structure as a
pair

(S, p)

where S {s1 , ••• ,sn} is a set of data objects

and p - {R R } is a set of binary relations - l"~' r
such that / '\. Ri ~ S x S

1 < i < r

By specifying certain properties of the
relations in p, different structure types are
obtained. These are basically the following four
types [4].

(S,p) = (S, {~}) (1)

where 4 denotes a relation that is reflexive,
antisyiiimetric, and transitive, and satisfies the
additional condition that for any two objects s.,
sj £ S at least one of the two propositions s 1 ~1

s 2 or s 2 ~ s 1 is true. Thus <! denotes a linear

ordering. This relation defines an ordered set
{S [l], .•. ,S[n]} of data objects S[i] e: S which are
identified by an ordinal number specifying their
relative position in the set. This structure is
usually called a linear list.

A simple generalization of a linear list is
a two-dimensional or higher-dimensional array of
data objects. In a rectangular two-dimensional
m x n array we have the linear row lists (R ,
{«R .}), i£ [l:m], with R. = {R.[l], ... ,R.~n]}

- ,1 1 1 1

and the linear column lists (C.,{4C .}), j £ [l:n],
J - ,J

with C. = {C.[l], ... ,C.[m]}. These linear lists
J J J

are orthogonally connected such that the linear
ordering of the row lists implies the same order­
ing of the column lists and vice versa. Hence,
a two-dimensional m x n array is defined by the
pair (the definition can be easily extended to
any arbitrary higher dimension)

m

(S,p) = (LJR .. {~R l'"'• ~R '~c l''"'~C n}).
i=l i , ,m ' '

(S,p) = (S,{q1 , ... ,q })
p-n

(2)

where p = {q1 , ... ,q } is a set of relations that
p-n

are reflexive, symmetric, and transitive, i.e.,
equivalence relations. The equivalence relation
q1 defines a partition P(S) = {s1 , •.. ,Sm} of the

set S, and the remaining equivalence relations in
p define refinements of this partition. If we
assume that P(S) is refined until n singleton
sets, {s1}, .•. ,{s }, are obtained, each one con­
taining exactly oRe of the elements of S, the
result is a collection of nested sets [3] C =
{C1 , ... ,Cp} such that each equivalence relation

qk£P defines a partition P(Ck)c:c, k£ [l:p-n],

whereas the remaining n sets in Care the elements
of the set {{s1 }, ..• ,{s }} = {C +1 , .•. ,C } (any n p-n p
partition generates a collection of nested sets;
but not any collection of nested sets constitutes
a partition). Such a data structure is called a
tree.

The definition of the collection of nested
set C = {c1 , ••. ,Cp} does not imply an ordering of

45

the equivalence classes Cj £ P(Ck), 1 .::_ k .::_ p-n,
but only indicates the ancestor-descendant rela­
tionship among the equivalence classes Ci £ C.

Trees which are equivalent to a collection of
nested sets are called oriented trees, since only
the relative orientation of the nodes is being
considered. An ordering of all equivalence
classes Cj e: P (Ck) implies an ordering <! on the

data objects si £ S. Thus, an ordered tree is

defined by a pair

(S,p) = (S,{«,q1 , ... ,q })
- p-n

(S,p) = (S,{R1 , ... ,Rr}) (3)

where the relations R. e: p are defined in certain
l.

pre-defined subsets Ai,Bi c: S, i.e., Ri c: Aix Bi

c: S x S, with the additional constraint for the
range~. of a relation R. that 1f. = B. (we call

l. 1 1 1

such a relation range-total). No constraint is
given for the domain ~i' that is /Ji:= Ai. Fur-

thermore, we have

LJ A. and S
l<i<r 1

B u Bi= u 'fZi.
l<i<r l<i<r -- --

Adopting Knuth's terminology, we call such a data
structure a List.

The set p of relations R. = {(s.,sk)/p.(s.,
1 J 1 J

sk) } = .C\ x ti = A x S := S x S may be defined by a

set rr = {pi, .•. ,pr} of propositions. For each

relation R. £ p, we call the elements a. e: A., with
1 J 1

/Ji :: Ai.= S, the reference elements of Ri. Then,

a relation R. c: lJ. x -12 c: A. x S generates for each
1 - 1 '"i - 1

aj £Ai a subset of 1?..i that shall be denoted 1?./aj

(read: "the subset of 1{. with respect to a."),
1 J

such that

-f<./aj = {s£1?/Pi(aj,s)}

,q1./aJ. = 0 if a. i.fJ. and LJ -fl.la. = 1{ .. The
J 1 .e"iJ 1

aj£ i
relations R. e:p define a set N = {1(i/a./i£ [l:r]/\

1 J
a. e:A.} such that {s1}, ... ,{s }£N, The nodes of

J 1 n
a List represent the sets 1?../ a. e: N. The defini-

1 J
tion of some ad hoc ordering~ on the data objects
s. e: S implies an ordering of the nodes repre-

1

senting the sets \I aj £ N in all sub-Lists of a

List L which is defined by a pair

(S,p) = (S,{2',R1 , ... ,Rr})

(S,p) = (S,{R1 , ••. ,Rr}) (4)

where the relations Ri £ p are defined in subsets

A,B := S such that

S :=_ A = U /ji and S =- B = U 1{.i and S = A U B.
~i~r l~i~r

No constraints are imposed on the relations Ri e: p.

We call such a data structure an associative
structure. The elements aj e: A =: S are called

domain elements and the elements bk e: B =: S are

called range elements. The set p of relations
Ri = {(aj ,bk)/pi (aj ,bk)} =:/Ji x'Ri .=Ax B 5: s x S

is defined by a set n = {p1 , ••• ,pr} of proposi­

tions. Thus, the data structure under considera­
tion may be specified by the triad (A,n,B) [5].

3. The Necessity of a Machine Data Model

In order to store a data structure (S,p) =
({s1 , ••• ,sn},{~, ••• ,Rr}) in a computer memory,

the information content of that data structure,
i.e., the set S = {s1 , ••. ,sn} of data objects and

the set of structuring relations {R1 , ••• ,Rr} must

be represented in an appropriate form. That is,
a memory representation of a data structure must
retain the set-element relationships defined by
the relations Rk e: p. The relations ~ 5 S x S

define subsets S. c: S which are represented by
J -

the nodes of the corresponding data structure
(S,p). If all singletons {si}, si e: S, are

uniquely identified by the relations ~ e: p in

connection with reference elements sj e: S, then

the definition of a linear ordering of the data
objects si e: S implies an ordering of all the

nodes of the corresponding data structure. Other­
wise, the nodes of the corresponding data struc­
ture represent (unordered) sets Sj =: S of data

objects. Therefore, a data structure architec­
ture must provide hardware support for themanage­
ment of ordered sets and general sets, as well as
an adequate set of operators defined on these
fundamental types of data entities.

Physical memory can be either location­
addressable or content-addressable (associative).
Hardware-associative memory is ruled out for two
reasons: Firstly, its cost is prohibitive and,
secondly, it is not needed, as will be shown sub­
sequently, if the purpose is to store and access
structured sets of data rather than unstructured,
general sets. In the case of location-addressed
memory, the most fundamental mode of storing the
data items of a data structure is the consecutive
storage in the form of a data vector. The alge­
braic definition of a data-st'r~ can here be
substituted by the "semantic" definition

<data structure>

(<data vector>,<structure specification>)

In the von Neumann machine, the mapping from
a data structure to its data vector is performed
(by software) in one step. However, such a

46

mapping can be greatly facilitated if the data
structure is, in a first step, mapped onto an
appropriate 'intermediate' data structure which,
in turn, is then mapped in a second step onto the
data vector. We call the first mapping a struc­
ture definition and the second mapping an addres­
sing function. The advantage of this approach
lies in the fact that a standardized intermediate
structure can be found that is necessary and
sufficient for the representation of all data
structures defined in section 2, whereas the data
vector represents only the data of those struc­
tures.

Let E denote the set of non-negative integers
and let M be the set of memory addresses. A data
vector that is physically represented by sequen­
tial memory location is defined by the mapping

v: lN+M

Let B be a set of r-dimensionally ordered sets,
i.e., an element of B is defined by

cr : INr + lN .

We call .B the basis of the data structure archi­
tecture. The positions in the r-tuples (n1 , ••• ,

n) e: Er are called the coordinates of the r-
r

dimensionally ordered set, and r is called its
rank (dimensionality). An element of mr is
called an index r-tuple. The index r-tuples are
unique identifiers of the elements of an r­
dimensionally ordered set, as the function cr maps
index r-tuples into indices which specify the
relative position of the identified element in
the data vector. Hence, the mapping from the
thus defined basis into a physical data vector,
based on a sequential memory allocation, is
accomplished by a composition of the functions cr
and v into a function

Cl. :

which we call the addressing £unction.

Sequential allocation is characterized by
the linear ordering of the memory locations. The
addressing function. for sequentially allocated
r-dimensionally ordered sets is

a.(n1····•nr) = e + (cr(n1·····nr)-l)•m

where S e: M is the base address, and m is the num­
ber of memory words occupied by each data item.
The limitation of the basis to multi-dimensionally
ordered sets thus allows the use of a rigorously
standardized addressing function -- an absolute
must if the addressing function is to be executed
by hardware. Hence, we consider a class of com­
puter architectures where we have multi-dimension­
ally ordered sets as the standardized internal
data structure, called the basis and handled by
the hardware of the machine. Fig. 1 presents a
general diagram of such a data structure architec­
ture.

Of course, a data structure architecture
shall process at the hardware level not only
multi-dimensionally ordered sets but any of the
structure types as defined in section 2. To this

DATA
STRUC- structure)
TURES definition

BASIS addressing)
function

DATA
VECTOR

'-~~~Software______J t_____Hardware~~~~~

Fig. 1 General Concept of Data Structure
Architectures

end, other data structures must be mapped through
an appropriate structure definition on multi­
dimensionally ordered sets, i.e., on the basis of
the data structure architecture. Therefore, a
mechanism for structure definitions must be devel­
oped, and it must be proved that all types of data
structures can be defined in such a way. These
stipulations can be satisfied by introducing an
appropriate machine data model. A machine data
model defines legitimate data types and struc­
turing relations which are applicable for the
definition of arbitrary data structures in terms
of the basis. In order to mitigate the restric­
tion that only rigorously standardized physical
structures can be used for a hardware realization,
a machine data model must be more general than the
conceptual data models which were developed for
generalized data-base management [6], [7].

4. The Linear Data Model

As a basis for the design of data structure
architectures, we define the linear data model.
DEFINITION: The linear data model is based on
the linear ordering as the only structuring rela­
tion. Identifiers of basis elements are a data
type of the linear data model.
Unlike a pointer, an IDENTIFIER does not represent
a reference to the identified basis element but
the basis element itself [8]. The data items of
a basis element are stored in a data vector.
Hence, the linear data model defines basis ele­
ments as ordered sets of data vectors. Conse­
quently, multi-dimensionally ordered sets are the
only basis structures permitted by the linear data
model.

Let A be an r-dimensionally ordered set whose
components are denoted A[n1 ; •.. ;nr]. With the

definition of the admissible ranges of the index
values ni' i e [l : r], in all index lists [n1 ; .•. ;

n] e lNr such that n1 E: [l : d1] and n. E: {1 : d.
r J J

[n1 ; • • • ;nj_1 J J, j E: [2 : r], the linear lists

(A[n1 ; ... ;ni_1 ;l;ni+1 ; ..• ;nr], •.• ,A[n1 ; ... ;ni-l;

d.[n1 ; ... ;n. 1 J;n.+1 ; ... ;n]), ie:[l: r], define
i i- i r

cross sections of A which are denoted A[n1 ; .. ;

ni_1 ;ni+l; •. ;nr]. We call di[n1 ; .•. ;ni-l] the

dimension of the linear list A[n1 ; .. ;ni_1 ;ni+l;

.• ;nr].

The introduction of the linear data model as
the fundamental notion for the design of data
structure architectures is based on the
THEOREM: The linear data model is necessary and

47

sufficient for the definition of linear lists,
arrays, trees, generalized lists, and associative
structures in terms of multi-dimensionally ordered
sets of linear lists.
~· (1) Necessity: Linear orderings consti­
tute the simplest possible structuring relations
with respect to the representation of data struc­
tures in location-addressed memories. Linear
lists are the fundamental basis elements, as they
are identical with the structure of the under­
lying. data vectors.

(2) Sufficiency: An r-dimensionally ordered set
A can be represented by an (i-1)-dimensionally
ordered set whose components are the (r-i+l)­
dimensionally ordered sets A[n1 ; ... ;ni_1], nj e:

[l : d. [n1 ; ... ;n. 1]], j e: [l : i-11. In the nota-
J J-

tion A[n1 ; ••• ;ni_1][ni; ••. ;nr]' the second index

list [ni; ••• ;nrl specifies the components in the

(r-i+l)-dimensionally ordered set A[n1 ; ••• ;ni_11

as defined by the index list [n1 ; .•• ;ni_1 J. Thus,

the components A[n1 ; •.• ;n. 11 [n.; .•. ;n 1 represent
i- i r

the components A[n1 ; •.• ;nr] of the r-dimensionally

ordered set A. By forming cross sections of the
components A[n1 ; ... ;ni_1J[ni; •.. ;nr]' an r-dimen-

sionally ordered set A can be defined as an (i-1)­
dimensionally ordered set of linear lists

A[nl; ••• ;ni-1] =

(A[n1 ; ••• ;ni_1 J [l], .•. ,A[n1 ; .•. ;ni_1 l

[di[nl; ... ;ni-lll),

such that the second index list [k], k e: [l : di

[n1 ; ••. ;ni_1 1], specifies the (r-i)-dimensionally

ordered sets A[n1 ; ... ;ni_1 ;kl which are the com­

ponents of the linear lists A[n1 ; ... ;ni_11. Ob­

viously, for i = r, the above derivation defines
an r-dimensionally ordered set A as an (r-1)­
dimensionally ordered set of linear lists. It is
readily recognized that the recursive application
of the above definition leads to representations
of r-dimensionally ordered sets as orthogonal
interconnections of linear lists. Moreover, the
definition of the data type IDENTIFIER allows the
representation of any set containment in an r-
d imensionally ordered set in the form of linear
lists A[n1 ; ..• ;ni_1 J whose components A[n1 ; ... ;

ni][k] may represent arbitrary identifiers A[m1 ;

.•. ;m.] which, in turn, represent (r-j)-dimension-
J

ally ordered sets A[m1 ; ... ;mj 1, j e [l : r]. Ob-

viously, with the above definition of the data
type IDENTIFIER, the r coordinates of an r-dimen­
sionally ordered set correspond to r levels of
substructure containment. Therefore, a linear
list A[n1 ; .•. ;ni-ll of data type IDENTIFIER may

represent a node at the (i-l)st level of a hierar­
chical structure and is thus a "parent" of compo­
nents A[n1 ; ..• ;ni_1 l[kl which may represent nodes

A[m1 ; ••• ;mj] at any level of the hierarchical

structure. In addition to the predecessor­
successor relationships defined by linear order­
ings, the introduction of the data type IDENTIFIER
hence allows the definition of arbitrary parent­
child relationships.

A tree structure can be defined by the speci­
fication of an r-dimensionally ordered set, such
that the components A[n1 ; ••• ;n][k] of the i-1
linear lists A[n1 ; ••• ;ni_1] of data type 'IDENTI-

FIER exclusively represent the (r-i)-dimensionally
ordered sets A[n1 ; ••• ;ni_1 ;k]. As the components

A[n1 ; ••• ;ni_1][k] of linear lists A[n1; ••• ;ni-l]

may represent identifiers of arbitrary (r-j)­
dimensionally ordered sets A[m ; ••• ;m], it is

1 j
obvious that generalized lists can be defined by
the linear data model.

The linear ordering of the memory locations
in a location-addressed memory implies an order­
ing of the elements of general sets in memory
representations. Thus, linear lists are adequate
logical structures for the representation of
general sets in location addressed memories. Pos­
sible nestings of general sets are also easily
manageable through linear lists of data type
IDENTIFIER. The latter property of the linear
data model, and the ability to arbitrarily link
multi-dimensionally ordered sets through their
identifiers, may efficiently be applied for the
definition of associative structures (q.e.d.).

The above discussion of the efficiency of
the linear data model shows that a hardware­
associative memory would not facilitate the stor­
age of basis elements,for components of multi­
dimensionally ordered sets are uniquely identi­
fied through its index list [n1;,, • ;n j E INr,
Therefore, the multi-match capabiliti~s of an
associative memory cannot be exploited.

5. The Internal Information Structure

5.1 A Proposed Standardization of the Basis
Elements

So far, we assumed basis elements to be r­
dimensionally ordered sets. In section 4 it is
proved that one-dimensionally ordered sets
(linear lists) are sufficient for the representa­
tion of arbitrary data structures. However, we
propose two-dimensionally ordered sets, given in
the form of homogeneous, rectangular arrays
(matrices) as the standardized basis element.
Such a structure has the following desirable
properties:

(i) The dimension of the linear lists in the
two coordinates of a matrix are the same,
i.e., a basis element is fully specified
by a dimension vector D = (d~,d 2), where

d1 and d2 are the column dimension and

the row dimension, respectively.

48

(ii) The addressing function is given by the
simple expression

a(n1 ,n2) = (n1-l) •d2 +n2 -1 + f3

(iii) Matrices are the most important data struc­
ture in practical applications. The exis­
tence of several structuring relations
within a linear list (as usually repre­
sented by multi-linked structures) can be
represented by a single basis element of
data type identifier.

5.2 Memory Representation of the Basis

The standardized basis elements are repre­
sented by variable descriptors which contain the
parameters of the addressing function a: IN2 + M.
The general format of these variable descriptors
is defined by the triple

VD = (a,s,b)

with a = variable attributes (including data type
specification), s =structure specification, and
b = base address of the data vector. Hence, the
data definition of two-dimensional arrays is
obtained in the form of standardized variable
descriptors

VD= (<attributes>,(<column dimension>,

<row dimension>),<base address>).

variable descriptors of this format can have a
uniform length of one memory word. Thus, data
definitions can be stored as named variable des­
criptors, such that descriptor identifiers are
equated with the memory locations which contain
the associated variable descriptors. It is
readily recognized that identifiers of basis
elements as defined by the linear data model cor­
respond with descriptor identifiers. In contrast
to the von Neumann machine, where a machine var­
iable is defined by a pair <variable> = (<loca­
tion>, <value>), we have the following machine
variable structure

<variable>

<name>

<value>

(<name>,<value>)

<descriptor identifier>

(<data vector>,<structure
specification>).

This machine variable structure implies a
two-stage value reference scheme through variable
descriptors. The components of the data vector
are accessed by executing the addressing function
a for the structure specification given in the
variable descriptor. This value reference scheme
also applies to multi-dimensionally ordered sets
which are represented by two-dimensional arrays
of data type IDENTIFIER. According to the
definition of the data type IDENTIFIER, references
to components of data vectors of data type IDEN­
TIFIER are automatically replaced by references
to the identified variable descriptors. This
indirect reference scheme can be nested to any
arbitrary depth, resulting in an iterative appli­
cation of the standardized two-stage value refer­
ence mechanism.

With the equivalence of coordinates of multi­
dimensionally ordered sets and the levels of sub­
structure containment (cf. section 4), we obtain
a correspondence of n-1 nested references of des­
criptor identifiers in two-dimensional arrays
with a (2n)-dimensionally ordered set. Let A be
a two-dimensional array of data type IDENTIFIER
which represents a (2n)-dimensionally ordered
set with components A[m1 ;m2J [m3;m4 J ••• [m2n-l ;m2nl •

The components of this (2n)-dimensionally ordered
set are the components of all two-dimensional
arrays A[m1;m2J ••• [m2n_3;m2n_2J which areaccessed

through n-1 levels of descriptor references. The
descriptor references are defined by the descrip­
tor identifiers A[m1 ;m2J ••• [m2i_1 ;m2il of the

two-dime~sional arrays A[m1 ;m2J ••• [m2i_3;m2i-2]

of data type IDENTIFIER, i e: [l : n-1] (for i=l,
A[m_1 ;m0] =A). That is, the components A[m1;m2]

[m3;m4J ••• [m2n_1 ;m2nl are accesses through n

iterative executions of the addressing function

j e: [l : n]. The base addresses flA[.] [.
ml,m2 • • ~j-3'

l and the dimension vectors dA[•]
m2j-2 ml,m2 ••

[m2j-3;m2j-2] = (dl,A[ml;m2] .• [m2j-3;m2j-2] 'd2,A

[•] [.]) are specified in the
ml,m2 • • m2j-3'm2j-2

variable descriptors of the two-dimensional arrays
A[m1 ;m2J ••• [m2j_3 ;m2j_2J. Each two-dimensional

array A[m1;m2J ••• [m2i_3 ;m2i_2J defines the order­

ing of the two-dimensional arrays A[m1 ;m2J •••

[m2i-l ;m2i], i e: [l : n-1], within the coordinates

with indices 2i-l and 2i. Hence, in accordance
with the definition of the data type IDENTIFIER,
the machine variable A completely defines the
ordering of all components A[m1 ;m2J ••• [m2n_1 ;m2nl

within all 2n coordinates.

We call the above memory allocation scheme
for basis elements a descriptor referenced allo­
cation. With the specification of all necessary
~le attributes and of the dimension vectors
in the variable descriptors of the two-dimensional
arrays, A[m1 ;m2J ••• [m2i_1 ;m2i], variable defini-

tions are completely self-descriptive. That is,
descriptor referenced allocation allows for modu­
lar variable definitions through variables of data
type IDENTIFIER. The descriptor identifiers bind
the variable definitions of basis elements, and
hence, the descriptions of multi-dimensionally

49

ordered sets. The automatic replacement of des­
criptor identifiers by the referenced descriptors
builds up a complete structure specification by
selecting the appropriate parameters for the iter­
ative execution of the addressing function a.
Hence, the addressing function for two-dimensional
arrays is the only tie between multi-dimensionally
ordered sets of basis elements representing arbi­
trary data structures and components of these data
structures.

The descriptor reference mechanism for vari­
ables of data type IDENTIFIER does not prescribe
a uniform data type for all components. Rather,
the data type of the components is described by
their variable descriptors. Hence, heterogeneous
data structures can be defined. Furthermore, the
unique definition of the coordinate dimensions of
multi-dimensionally ordered sets by the variable
descriptors at the different reference levels
allows the construction of irregular data struc­
tures. As shown in [9], the descriptor referenced
allocation scheme can also be exploited to arbi­
trarily restructure multi-dimensionally ordered
sets without modifying or copying the underlying
data vectors. To this end, the addressing func­
tion is extended into a generalized storage access
function. In addition to that, the dimension
vector in the variable descriptor of a restruc­
tured variable is replaced by a description of
appropriate structure functions. Restructured
variables reference the variable descriptor of the
variables from which they were generated through
restructuring. With the automatic replacement of
descriptor identifiers, the generalized storage
access function then maps a components S[i;j] of
a two-dimensional array S onto the data vector of
a two-dimensional array A, from which S was gener­
ated through restructuring. That is, the execu­
tion of the generalized storage access function
comprises the execution of the addressing function
a and the execution of the stored structure func­
tions.

The descriptor referenced allocation of data
structures is a refinement of the concept of self­
identifying information components in tagged arch­
itectures [10], [11]. In tagged architectures,
self-identification provides the possibility to
uniquely associate with each category of variable
specifications dedicated control routines. Con­
trastingly, descriptor referenced allocation
defines self-descriptive data entities through a
standardized basis which can be managed by a
standard set of control routines. Basis elements
are self-identifying. However, there is no need
for a self-identification of different types of
data structures, as they are uniformly constructed
from self-descriptive components. The invokation
of the appropriate standard control routines is
completely described by the variable attributes in
the self-identifying basis elements and the
ordering of descriptor identifiers in variables
of data type IDENTIFIER.

The modularity of the internal information
structure, as implied by the above implementation
of the linear data model, suggests the separate

storage of three basic information components
[12], [13]. These are

an instruction list IL,
a variable descriptor list VDL, and
a data list DL.

Hence, the internal information structure is
defined by the triple

(IL,VDL,DL)

5.3 Machine Language Instructions

Machine language instructions exclusively
reference variable descriptors, i.e., we have the
general instruction format (~,VD3 ,vn 2 ,vn1). ~is

the operation code and vn3 is the descriptor iden­

tifier of the result variable, whereas vn 2 and

vn1 are the descriptor identifiers of the operand

variables. Hence, a data structure
architecture processes basis elements in response
to single machine instructions. 3-address in­
structions are a prerequisite for the processing
of ordered sets in a streaming mode. The machine
language instructions may be grouped into the
following categories [9]

Scalar Operatrio.ns
Redu.ct:iilll.ns;
Innu: Products
St:iru:c:turing Operations
Tran:s;fer Op er at ions

-- ~liedies
Jump.s

-- Theclla:rations and I/O Operations

The first thre~ groups are value-transfor­
ming operations which• generate a new variable
descriptor and a new data vector for the result
variable. Structuring operations create a new
strlicturing o,f existing, data, i.e., they are
solely perfo.nned on descrfyttors, not on data.
Transfer operations p'l!fmanly; p.erf.mrm parameter
transfers' ,.by reference' and'. ''by· value 1 to and
from subroutines. Queries apply to the basic
components o.f the internal information structure,
i.e., to variable descriptors and data vectors.
Jumps constitute the program flow control opera­
tions.

The self-descriptiveness of stored data
structures allows the creation of complete vari­
able descriptors as part of the execution of
assignment statements. Hence, variables are
dynamically declared at run time. Consequently,
the machine language is to a large extent declara­
tion free, except for input operations. Variables
which are created by input operations must be
declared as to their data, type and coordinate
dimensions.

Normally, a sequential storage of data is
inefficient if such data vectors are to be manipu­
lated dynamically. In data structure architec­
tures, this problem is circumvented by the capa­
bility to manipulate variable descriptors through

50

structuring operations. Furthermore, with des­
criptor referenced allocation, unnecessary copies
of data vectors can be avoided by the definition
of different basis elements on the same under­
lying data vector. The mechanization of the con­
version of basis elements into data vectors
achieves physical data independence. Hence, the
reference of self-descriptive variables inmachine
language instructions is not affected by the
representation of data objects in the data vectors.
A high degree of logical data independence is
achieved by the fact that changes of data defini­
tions through the creation of variables of data
type IDENTIFIER do not affect other existing data
definitions.

Conclusion

Attempts have been made before to provide
hardware support for the generation of data struc­
tures. One such example is the SYMBOL machine
[14]. However, while the SYMBOL concept provides
a mechanism for building structures, it offers no
means for processing them. Ultimately, we may
only then speak of a certain data structure of a
machine if it comprises operators to perform
transformations on the structure. Other authors
[15,16] have recognized the necessity for data
structure architectures but do not present a
general solution.

The concept of data structure architectures,
as introduced in the paper, represents a novel
approach that is radically different from most
endeavors as yet so typical in computer architec­
ture. The typical approach has been to multiply
certain hardware resources (e.g., processors,
memories, etc.) and arrange these modules into
organizational structures which reflect certain
task patterns. Contrastingly, our approach is to
start from a general requirement of computing, the
ability to create and process data structures, and
develop a standardized logical model. It is shown
in the paper that this is generally feasible, and
the resulting information structure is described.
Its modularity implies a high degree of orthogon­
alization of the hardware, thus lending itself in
a natural way toward parallel processing. In our
opinion, the concept of data structure architec­
tures presents a genuine alternative to the von
Neumann concept in the realm of general-purpose
computing.

References

[l] A. W. Burks, H. H. Goldstine, J, VonNeumann,
Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument, (Part
I, vol. 1), report for the U.S. Army Ordnance
Department, 1946, in A.H. Taub (ed.),
Collected Works of John von Neumann, Vol. 5,
The MacMillan Company, New York, (1963),
pp. 34-79.

[2] P. Wegner, Programming Languages, Information
Structures, and Machine Organization,
McGraw-Hill, London, (1971).

[3] D. E. Knuth, The Art of Computer Programming,
Vol. 1, Chapter 2, Addison Wesley, 3809,
Second Edition, (1975).

[4] W. K. Giloi and H. Berg, A Uniform, Alge­
braic Description of Data Structures,
Computer Science Dept., Univ. of Minnesota,
Tech. Report 76-15.

[5] J. A. Feldman and P. D. Rovner, "An ALGOL­
Based Associative Language," CACM 12,8
(August, 1969), 439-449.

[6] CODASYL Data Base Task Group, April 1971
Report, ACM, New York, (1971).

[7] D. S. Tsichritzis and F. H. Lochovsky,
"Hierarchical Data Base Management,"
Computing Surveys, Vol. 8, No. 1,
(March, 1976), pp. 105-123.

[8] W. K. Giloi, "BEYOND APL - An Interactive
Language for the Eighties," Proc. ICS 77,
North Holland Puhl., (1977).

[9] H. Berg, A Computer Architecture Based on
Ordered Sets as Primitive Data Entities,
Ph.D. Thesis, Computer Science Dept., Univ.
of Minnesota, (1977).

[10] J. K. Illiffe, Basic Machine Principles,
American Elsevier Publishing Co., New York,
(1968).

51

[11] E. A. Feustel, "On the Advantages of Tagged
Architecture," IEEE Trans. on Computers,
Vol. C-22, No. 7, (July, 1973), pp. 644-656.

[12] W. K. Giloi and H. Berg, "STARLET - A Com­
puter Based on Ordered Sets as Primitive
Data Types," Proc. 2nd Annual Symposium
on Computer Architecture, Houston 1975,
pp. 201-206.

(13] W. K. Giloi and H. Berg, "STARLET - A
Contribution to the Computer Architecture
of the Post von Neumann Era," Computer
Science Dept., Univ. of Minnesota,
Tech. Report 75-21.

[14] W. R. Smith, et al., "SYMBOL - A Large
Experimantal System Exploring Major
Hardware Replacement of Software," Proc.
AFIPS SJCC 1971, 601-616. --

[15] Y. Chu, "Architecture of Hardware Inter­
preter," Proc. 4th Annual Symposium on
Computer Architecture, IEEE Computer
Society Catalog No. 77CH1182-5C, 1-9.

[16] K. J. Thurber and P. C. Patton, Data
Structures and Computer Architecture,
Lexington Books, Lexington, Massachusetts,
(1977).

A MULTI-MINICOMPUTER APPROACH TO CONCURRENT
COMPUTATION FOR INTERACTIVE ON-LINE
SIMULATION OF COMPLEX BlOSYSTEMs(a)

Ivan R. Neilsen, Ted C, Park, and
C, Duane Zimmerman

Department of Biomathematics, School of Medicine
Loma Linda University
Loma Linda, CA, 92354

It is the main purpose of this paper to
describe our exper ience in designing and
implementing an all-digital simulation system
with the problems partitioned to run on a
tightly-coupled complex of arithmetic processors,
These 'ar ithme tic processor modules are, in fact,
modern high-speed minicomputers, More par ticu­
lar ly, we describe a new modular computing
resource currently being developed specificall)'
to meet the needs of the biomedical modeler, A
computer system well suited to the needs of this
environment may be equally appropriate for use in
the simulation of other complex systems and the
approach taken in designing a simulation resource
for biomedicine is described for the general
interest of the computer science and engineering
community,

The presentation follows in two principal
parts, The first part is a discussion of the
rationale for the development of a new
multicomputer simulation system with a
consideration of alternative approaches and
associated trade-offs, This is then followed by
a description of the over all system architecture
and of the hardware and software that have been
assembled and integrated into the now operational
MMCS (MultiMiniComputer System), In addition it
seems appropriate to -consider some of the
factors, economic and technological, that make
such a system especially attractive at this time.

It seemed clear to us that the machines
typically used to support common modeling
languages were less than ideal for this modeling
task and that a multicomputer system could be
devised that would be a much better match to the
requirements of the modeling process, In
particular in order to provide the compute power
needed to work with complex models it seemed
highly reasonable to provide parallel computing
to better match the parallel nature of the
systems being simulated, The system, as
initially conceived, would be made up of a number
of modern high-speed minicomputers operating
concurrently, It was anticipated that such a
multicomputer system could retain many desirable
features and capabilities typically found in
other modeling or simulation systems at a much
imir oved cost-effectiveness level while providing
a number of other significant advantages,

(a)This work
Biotechnology
Division of
Institutes of

was supported in part by a
Resource grant RR 00276 from the

Research Resources of the National
Health.

52

The principal hardware components making up
the currently operating MMCS are as follows:

1 Mapped Eclipse S/200 with 192K bytes of
memory and hardware floating point

3 Eclipse S/200 with 64K bytes of memory
and hardware floating point

1 Floating-point array processor (AP120B)
1 Mapped Nova 3/12 with 128K bytes of

memory
2 80 megabyte disk drive with controller
5 MCA (Hulti-Communications Adaptor,

allows memory to memory data transfer
for all machines)

The development of system software for a
multicomputer system can be an enormous task
involving many man-years of effort. Our initial
approach was to use Data General Corporation's
ARDOS operating system, To run programs on the
satellite computers the load (link-edit)
processes for ARDOS was modified so that a small
psuedo-operating-system (approximately 400 bytes)
is inserted into each load module (core image
file), This change has the far-reaching effect
of allowing a load-module produced by any of the
language processors to be executed on any of the
computers whether or not an operating system is
present.

The user software available to accomplish
concurrency consists of a few primitives which
may be called as subroutines from the various
language processors. The primitives allow such
functions as sending to or receiving from any
other processor, reading or writing common
memory, and testing or setting common flags. All
concurrency is controlled directly by the
programmer ,

The great generality of our hardware and
software configuration allows not only the
traditional forms of concurrent processing but
promotes the use of pipelining techniques as
well, Our experience thus far shows pipelineing
to be a much more widely applicable and useful
technique than we had previously anticipated,

Most of the biosystem simulations we have
undertaken have been written in FORTRAN. In the
interest of freeing the modeler from some of the
coding tedium and numerical analysis aspects of
working at this level there is a role for
high-level simulation languages, The first major
simulation language implemented on ~ft1CS is DAREP
(developed at the University of Arizona), DAREP
is a lanaguage for describing systems of first
order differential equations, The package
includes hardcopy and CRT graphic capabilities,

* ARRAY TYPE VARIABLE TOPOLOGY MULTICOMPUTER SYSTEMS

Yakup PAKER
Universite de Rennes
UER Mcthematif!ue et
Informatique
35031 Rennes Cedex,France
On leave from:
Polytechnic of Central Lendon

Summary

A system architectural concept called Variable
Toµology Multicomputer (VTM) is proposed to imple­
menL large networks of low cost computers linked
with serial communication paths which can be recon­
fi9ured according to the needs of each computation
(11. VTM consists of N computer pairs called nodes
interconnected with duplex lines. Each rode contains
a local computer, a communications computer and an
inter-computer message handler. The local computer
executes user programmes whereas the communications
computer is totally dedicated for message handling
between the nodes. The inter-computer message hand­
ler contains the input and output terminations so
as to enable links to be established with ether
nodes.

VTM utilizes a synchronous communication sche­
mP where message carrying packets are transmitted
during each fixed transmit time Tt repeated every
main period time Tm , common throughout the system
so that all nodes send and receive messages at the
same time. Transmission efficiency is defined as
Pt=Tt/Tm.

In a VTM system topology can be varied in tw"
levels: phy~ical and logical. By connecting wires
between various nodes a desired physicdl network
topology can be obtained. Over a given physical
network, it is possible to establish logical con­
nections between nodes with no direct link between
them, by means of one Oi" more intermediate nudes,
using a packet switched or cictJit switched scheme.

Organizing the VTM nodes as a two dimensional
mesh yields an array structure. Such a configura­
tion has interest because of suitibilitv in many
important fields of applications. A simulation
model of the VTM system has been developed for per­
formance evaluation[2l. Extensive studies have been
carried out on an 8x8 VTM array structure. Boundary
nodes have been connected so as to obtain a closed
toroid. The rou~ing matrix is computed by using a
modi~ied Floyd's algorithm for even load distribu­
tion [3]. The characteristics of four typi ca 1 topo­
logies that have been tried are listed in Table 1.
The hexagonal and cubic topology are also included
for comparison.

(*) This work is supported in part by an US Army,
European Research Office, research grant
(No. DAJA 37-36-0401).

53

Muslim BOZYIGIT
Polytechnic of Central London
115 New Cavendish Street
London WL, Ergland

Performance measures of message delay time,
total system throughput, and buffer lengths are
simulated under various topology conditions to stu­
dy the influence of say additional lines on messa­
ge delay times. The transmission efficiency is a
measure of channel capacity in the system. Its in­
crease provides more slots for message transmission.
This, however, reduces the period during which the
local processing takes place and hence requests for
transmission. For large Pt values the average delay
time nears the average path length times Tm. For
smaller Pt delays due to queueing start to accumu­
late. For very small Pt values congestion starts
building up. Throughput depends very little on
topology for large Pt values and goes through a
maximum as Pt is decreased. For small values of Pt
the effect of topology is clearly seen. IDetermining
the maximum value of Pt is ca 11 ed "tuning" where the
message generation rate is best matched with the
message transmission capacity. The simulation re­
sults have indicated that the toroidal organization
of 8x8 mesh with alternate diagonal connections has
interesting properties to make it a powerful candi­
date for a general purpose multicomputer structure.

References
Y. Paker, M. Bozyigit,"Variable Topology
Multicomputer Systems" ,Euromicro 1976,
North-Holland, pp.141-151.

2 Y Paker, Variable Topology Multicomputer,
Final report, US Army, European Research
Office, Grant DA-ERD-124-74-60079,Nov. 1975,
98 pp.

3

I "I·" I 25i· 73 I

VIRTUAL INSTRUCTION SETS IN AN MIMD MICROCOMPUTER NETWORK

Melvin M. Cutler
Computer Systems Laboratory

Hughes Aircraft Company
Culver City, CA 90230

Summary

While technology advances have greatly re­
duced the cost of simple computing devices, it is
not clear that a network of such devices.operating
in parallel provides a cost-effective solution for
complex tasks. An ongoing research activity to
define and evaluate microcomputer architectures
for effective network implementation has charac­
terized the generic features of state-of-the-art
microcomputers, identified those features which
impair network implementation, and proposed
improvements [l]. A result of this effort, the
implementation of virtual instruction sets within
physical clusters of microprogrammed microcom­
puters, is summarized here.

The contemporary computer-on-a-chip is too
limited and slow for effective networking. Thus,
an assumption of the research is that a high­
speed MIMD (Multiple-Instruction, Multiple-Data)
network is implemented by microprogrammed micro­
computers using bit-slice CPUs. Two generic
features of such microcomputers serve as the
impetus for our design: narrow (typically 16
bits) instruction words and a CPU minor cycle
which is two or three times as long as the micro­
program memory cycle itself. A 16-bit format
places a premium on operation code field width;
thus, microcomputer instruction sets are small and
general-purpose. A fast microprogram memory
means that it is under-utilized by a single CPU.
The solution we propose is to share a microprogram
memory among a number of CPUs. This particular
approach offers three advantages:

• Execution speed is not affected
• Arbitration logic is not needed
• Hardware savings are converted to

software and reliability savings

The first two advantages are achieved by a
"barrel switch" which allocates one microprogram
memory access to each CPU during each of the CPU's
minor cycles. Thus, if the CPUs operate with
their minor cycles "out of phase" from one another
by one microprogram memory cycle, there is no
change in execution speed. Regularity of micro­
program accesses insures that no conflicts occur
between CPUs, and that no arbitration hardware is
required. Added cost is the access switching
mechanism and the faster basic clock, which now
runs at the rate of microprogram memory cycles
rather than the rate of CPU cycles. The third
advantage is a result of using the net hardware
savings to expand the number and capability of
(macro-level) instructions implemented in the
shared microprogram memory. Thus, each cluster
of microprocessors will have access to a large
and powerful "real" instruction set. This set

might be indexed using an 8-bit "real" operation
code, while the "virtual" operation code would be
the microcomputer operation code, which might be
6 bits wide.

For any task, the applications programmer
selects a 64-instruction subset of the 256-
ins truction set, either on an individual instruc­
tion basis, instruction group basis, or functional
instruction set basis. During execution, when this
task is assigned to a microcomputer, the executive
constructs the mapping from virtual instruction
code to real instruction code for the particular
microcomputer; further information on executive

·implementation and protection can be found in [l].

54

Each shared microprogram memory implements this
mapping via a table addressed by a field which
consists of a CPU ID code followed by the virtual
opcode. The contents of this table is the 8-bit
real operation code; the table look-up is done
once per instruction. The microprogram memory
contains one address register for each CPU in its
cluster; while this system is less modular, its
addressing is completely in the "real" space
except for instruction sequencing.

It is hoped that the above brief description
of the implementation of virtual instruction sets
is sufficient to convince the reader that this
particular approach is appropriate to low-cost
microcomputer networks. A popular approach, that
of using writable control store, is far more costly
because it requires the addition of low-density
read-write microprogram memory (for each CPU) as
well as data paths and control for .reading into
them. An alternative approach, implemented in
the Burroughs Bl700/Bl800 [2], is an intriguing
and low-cost implementation of virtual instruction
sets via interpretation. However, for a micro­
computer network with limited memory, the Bl700's
use of distinct interpreters for each (perhaps
only slightly) different task would be wasteful of
program memory space, and requires extensive
sharing of common program memory (for interpreters).
In summary, the proposed design is uniquely suited
to providing a network of microcomputers with
powerful instruction set capability and with flexi­
bility for degraded mode operation at virtually
(sic) no additional cost.

[2]

References

M. M. Cutler, An Improved Microcomputer
Architecture for Network Implementation,
Hughes Aircraft Co., IDC 7531.~0/1349,
(March, 1977).

W. T. Wilner, "Design of the Burroughs
Bl700," Proc. FJCC (1972), pp. 489-497.

EXPHESSION OF PARALLELISM AND COMMUNICATION
IN DISTRIBUTED NETWOHK PlWCESSING

NG.X. DANG & G. SEii.GEANT
ENSI1\1AG - Insti tut National Polytechnique
B.P. 53 - 3804I Grenoble Cedex, F'HANCE

This work was supported by the French D.H.
l\'l.E. under contract.

Summary

In distributed network processing (I)
the control and the functions of a distri­
buted application are performed by many
geographically dispersed sites. To define
and to implemente such an application, one
needs the existence of a Logical Network
Machine and its operating language which
take in the network the same part as a ba­
sic software of a given general computer.
This machine, named SIGOH, would supply
the users with a set of tools necessary to
facilitate the definition and the imple­
mentation of distributed applications in
an heterogeneous environment. These tools
are represented by a transportable and in­
terpreted language (2) which is able to
run on all the machines of the network.
This language defines the set of objects
and basic functions linked to the design
of distributed applications (3) : trans­
port of algorithms (remote process initia­
lisation, control of the algorithm's trans
port, control of the distributed execu­
tion), expression of parallelism (by using
a variable of mode event and the following
instructions : wait, post, multiple wait
of n events among p, check), communication
between processes (implicit communication
of information, explicit transfer of in­
formation). The Logical Network Machine
SIGOR is realized on a multiprogramming
support which conforms to the basic prin­
ciples of a teleprocessing system (4).

The operating language of SIGOR is a
procedural type language (3). The proce­
dure is the basic unit used for transport.
Except in the case of explicit transfer of
information and explicit synchronization,
all the functions as communication and ex­
pression of parallelism between processes,
which interprete user's procedure algo­
rithms, are done implicitly; tree of hie­
rarchical processes, inter-process proto­
cols, finite states automata, queue to
stack rec1uests are defined in order to
perform these functions.

55

It is hoped that this swnmary will
served as a gateway to increase apprecia­
tion of the Logical Network Machine SIGOR
and to its probable descendant : a high
level network command language allowing
users to define distributed algorithms in
a network environment.

Heferences

(I) Andy Van Dam, Transcripts of the two
Distributed Processing Workshop, (Aug.
1976 and Aug. 1977), Brown Universi­
ty, Providence, R.I., 02912

(2) M.N. F'arza, G. Sergeant, Machine In­
terpretative pour la mise en oeuvre
d'un langage de commande sur le re­
seau CYCLADES, These de Doctorat de
3e cycle, Universite de Toulouse,
(1974).

(3) Ng.X.Dang, Systeme et Langage Porta­
ble pour le traitement des applica­
tions reparties, These de Doctorat de
3e cycle, USMG, INPG, Grenoble, (
1977).

(4) Ng.x. Dang, v. Quint, J. Seguin, G.
Sergeant, Presentation et Definition
de SYNCOP, un sous-systeme de commu­
tation de processus pour la tele-in­
formatique et les reseaux d'ordina­
teurs, ENSIMAG, Happort de Hecherche
no 64, (1977), 54 pp.

(5) l\'l, Elie, H. Zimmermann, Transport
Protocol. Standard end-to-end proto­
col for heterogeneous computer net­
works, IFIP WG6.I, INWG 6I, (May
I975)' 33 pp.

(6) N. Wirth, Modula : a language for mo­
dular multiprogramming, Software -
Practice and Experience, (1977).

(7) Brinch Hansen, Concurrent Pascal He­
port, Californie Institute of Techno­
logy, (JuneI975).

(8) Hoare, C.A.R., Monitors: an operating
system structuring concept, Communi­
cations ACM 17, IO, 549-557, (Oct.
197 4).

ON THE CONS7RUCTION OF MICROPROCESSOR-ORIENTED OPERATING SYSTEMSt

Martin Freemantt
Walter W. Jacobs

Department of Mathematics, Statistics and Computer Science
The American University
Washington, D.C. 20016

and ttt
Leon S. Levy

Department of Computer and Information Sciences
University of Pennsylvania

Philadelphia, Pennsylvania 19174

Summary

Microprocessors and semiconductor memories
are becoming faster and cheaper. As this situation
progresses, the constraint imposed on the number
of pins available on these components will force
us to consider more carefully the functionality of
such components and their interconnection.

In this regard, two approaches immediately
suggest themselves as design philosophies for con­
structing microprocessor systems: (1) provide a
general interconnection network among microproces­
sors where data paths, control paths and communi­
cation protocols are already specified, and try to
map a (software) solution onto such a system; or
(2) start from the general system functional spec­
ifications (e.g. system requirements) and refine
them into a logical design which provides a basis,
in an implementation phase, for determining the
(hardware/software) functionality of specific mi­
croprocessors and a suitable interconnectionstruc­
ture.

In this paper we take the latter approach and
describe a model (i.e. a conceptual framework)
which forms the basis for the design and implement­
ation of microprocessor systems.

[l]

[2]

[3]

[4]

[5]

tt

References

B.W. Arden, and A.D. Berenbaum, "A Multi­
Microprocessor Computer System Architecture,"
Proc. Fifth Symp. Operating Syst. Principles,
(Nov., 1975), pp. 114-121.

R.S. Barton, "Ideas for Computer Systems Or­
ganization: A Personal Survey," Software En­
gineering, Academic Press, (1970).

R.B. Bunt, and J.N. Hume, "Self-Regulating
Operating Systems," Canadian J. Operational
Res. and Inform. Processing, (June, 1972),
pp. 232-239.

Y. Chu, High-Level Language Computer Archi­
tecture, Academic Press, (1975).

P.J. Denning, "Fault-Tolerant Operating Sys­
tems," ACM Comput. Surveys, (Dec. ,1976),

This work was funded by NSF Grant MCS 76-07682.

Present address: Digital Systems Laboratory,
Stanford University, Stanford, California94305.

ttton leave from the University of Delaware,
Newark, Delaware 19711.

56

pp. 359-391.

[6] E.W. Dijkstra, "The Structure of the T.H.E.
Multiprogramming System," CACM, (May, 1968),
pp. 341-346. --

[7] M.J. Flynn, "Some Computer Organizations and
Their Effectiveness," IEEE Trans. Comput.,
(Sept., 1972), pp. 948-960.

[8]

[9]

C.C. Foster, "An Unclever Time-Sharing Sys­
tem," ACM Comput. Surveys, (Mar., 1971),
pp. 23-48.

M. Freeman, W.W. Jacobs, and L.S. Levy, A
Model for the Construction of Operating Sys­
tems, Dept. Math. Stats. and Comput. Sci.,
The American Univ., TR-100 (draft), (Aug.,
1977), 25 pp.

[10] M. Freeman, W.W. Jacobs, and L.S. Levy, "On
the Construction of Interactive Systems,"
(in preparation), 22 pp.

[11] G. Goos, "Some Basic Principles in Structur­
ing Operating Systems," Operating Systems
Techniques, Academic Press, (1972).

[12] P.B. Hansen, Operating System Principles,
Prentice-Hall, (1973).

[13] C.A.R. Hoare, "Monitors: An Operating System
Structuring Concept," CACM, (Oct., 1974),
pp. 549-557. --

[14] J.J. Horning, and B. Randell, "Process Struc­
turing," ACM Comput. Surveys, (Mar. , 197 3) ,
pp. 5-30.

[15] W.W. Jacobs, "A Structure for Systems that
Plan Abstractly," AFIPS Conf. Proc., (1971)
pp. 357-364.

[16] W.W. Jacobs, "Control System in Robots,"
Proc. ACM 25th Anniv. Conf., (1972), pp. 110-
117.

[17] W.W. Jacobs, "How a Bug's Mind Works," Cyber­
netics, Artificial Intelligence, and Ecology,
Spartan Press, (1972).

[18] G.J. Lipovski, and J.A. Anderson, "A Virtual
Memory for Microprocessors," Proc. 2nd Ann.
Symp. Comput. Arch., (Jan., 1975), pp. 80-84.

[19] B. Liskov, "The Design of the Venus Operating
System," CACM, (Mar., 1972), pp. 144-156.

[20] B. Liskov, and S. Zilles, "Specification Tech­
niques for Data Abstractions," IEEE Trans.
Software Eng., (Mar., 1975), pp. 7-19.

A PIPELINED DYNAMO COMPILER*

Wing Huen, Ossama El-Dessouki, Eugene Huske, Martha Evens
Department of Computer Science

Illinois Institute of Technology
Chicago, Illinois 60616

ABSTRACT - The design of a pipe­
lined DYNAMO compiler which produces
parallel code segments for a network com­
puter is described. The network computer
is dedicated to execution of a single job
at a time. Phases of the compilation
process, residing on separate computers
in the network, cooperate to process an
input source stream in a pipelined style
but are constrained not to access global
tables or intermediate files. The object
code is partitioned automatically into
clusters by the compiler and the clusters
are allocated to constituent computers
for run time execution. Problems raised
by the constraints are discussed and
design alternatives to these problems are
examined.

Introduction

A pipelined D~NAMO compiler which
produces parallel code segments has been
designed for the TECHNEC, a network com­
puter at Illinois Institute of Technol­
ogy. The TECHNEC will be a ring network
of twelve LSI-lls. It is called a net­
work computer rather than a computer net­
work because the whole network will be
dedicated to the execution of a single
job at a time.

The design aims to make full use of
the parallelism provided by the network
computer. At compile time, the compiler
itself is organized in the form of a
pipeline. Stages of the pipeline execute
in parallel and cooperate by passing
statements in a conveyor belt style. But
the communication is asynchronous between
stages of the pipeline. The generated
object code is partitioned automatically
by the compiler into clusters which are
to be executed in parallel at run time on
the network computer.

This paper is concerned with the
problems we have encountered and the
alternative solutions to the problems.
The deciding factors in solution selec­
tion are the efficiency of the solution
and the degree of parallelism exploited.

*

Goals of the DYNAMO Project:

This work was supported by National
Science Foundation under grant MCS
76-01310.

57

a. Compilation on ~ Network of Microcom­
puters

This project aims to investigate the
problems inherent in implementing a
high-level language compiler which is
distributed on a network of microcomput­
ers. The compilation process is treated
as a single task and partitioned into
cooperating subprocesses on the network.
Each microcomputer is relatively slow
compared with larger computers and the
primary memory on each microcomputer is
restricted in size. But a network of
microcomputers as a whole serves as a
powerful computing device by exploiting
parallelism on the network.

Microcomputers have been predom­
inantly used to control real-time
processes and languages available on
microcomputers are usually assembly
languages. This attempt to implement a
compiler distributed on a network
represents an exploration of new applica­
tions of microcomputer networks.

b. Pipelined Compilers

The compiler will be in the form of
a pipeline each stage of which carries
out an individual phase of compilation.

Each computer on a network has a
local primary memory but does not share
any common global memory with another
computer. A computer thus can only com­
municate with other computers in the net­
work by means of data messages. The
TECHNEC on which the compiler is to be
implemented is in the form of a unidirec­
tional ring in which any computer may
communicate with another by circulating a
message around the ring. Each phase of
the compiler receives a statement in the
form of a message, converts it to some
internal form and passes the converted
statement to the next stage as a message.

c. Partitioning ~ Distributed Program

Parallelism is to be exploited by
executing the compiled object code in
parallel on the computers of the network.
The generated code is partitioned
automatically by the compiler into code
segments called clusters. This parti­
tioning involves tradeoffs between

speedup due to parallel execution of
clusters and the amount of message pass­
ing necessitated by communication between
dependent clusters.

d. Synchronization Between Clusters

The compiled object code of the
DYNAMO compiler will be in the form of
program clusters which communicate by
data messages. A communication mechanism
has to be provided between the clusters.
The style of synchronization for the
clusters is an important problem.

Choice of Language

Simulation of parallel processes is
a basic concern of the Network Research
Group at Illinois Institute of Technology
because we view simulation as a fundamen­
tal part of the future development of
networks. While simulation is often car­
ried out on single processors there are
obvious conceptual advantages in simulat­
ing parallel processes on a network of
parallel processors. Clearly this kind
of simulation is a most natural and
appropriate task for a network computer.

The decision to focus on continuous
rather than discrete simulation was
motivated by the concern of the Network
Research Group with control processes.
This group aims at investigating a style
of control developed in [3] in which com­
plex tasks requiring accurate coordina­
tion of many variables are performed by
distributed controllers, each handling a
stage of rough computation. The TECHNEC
system [4] provides a hardware/software
environment for experimenting with this
style of control. A control process is
to be programmed as a collection of con­
trol tasks each responsible for control-
1 ing a subset of the variables. The
whole TECHNEC is to be dedicated for the
execution of a single control process at
a time. These control processes will be
studied with the help of simulation
models. This design leads to the imple­
mentation of a continuous simulation
language. An appropriate language tool
must lend itself easily to problem decom­
position.

DYNAMO [2,5] is a well-known con­
tinuous simulation language. While
DYNAMO presents serious complications in
the areas of sequencing and partitioning,
it is easy to parse and its only data
structures are simple variables and 1-
dimension arrays. Thus implementation of
DYNAMO seemed to be a feasible step in
the development of network software.

A continuous simulation model is
often represented by a set of

58

differential equations. DYNAMO [5]
models a system with a set of variables
called LEVELS and their rates of change
called RATEs. The differential equations
are solved by determining the value of
each LEVEL at regular time points and the
corresponding RATE in an interval between
adjacent time points. The value of a
LEVEL at a simulation time point is
expressed as an integration of the
corresponding rate over a regular time
interval. A very simple integration
scheme (the Euler or rectangular method)
is used. The scheme is very efficient
when no need for great accuracy exists.
There are also AUXILIARY variables to
help specify the relationship between
variables especially in nonconservative
systems.

DYNAMO differs from procedural
languages in that statements of a DYNAMO
program are not s~quential, i.e., they
can be written in any order without
affecting the outcome of the program. No
g?to nor conditional statements are pro­
vided. In a traditional implementation
for single processor systems, there is an
implicit order of executing LEVEL vari­
ables as a group first, followed by AUXI­
LIARYs and finally RATEs in one cycle of
simulation. There is still considerable
freedom available in varying the order of
execution of LEVELS since they are
independent of one another. Similarly
all RATES are independent of one another.
This independence among LEVELS and RATEs
gives rise to opportunities in parallel
processing. In a network computer such
as the TECHNEC on which a single DYNAMO
program is distributed, much more paral­
lelism can be exploited. An AUXILIARY
equation can be executed in parallel with
a LEVEL or a RATE equation allocated to a
different processor as long as they are
independent.

The state of a model is computed at
regular time points. The length of the
constant interval is designated by the
symbol DT. The size of DT is chosen by
the user. DYNAMO adopts the convention
of attaching one of the symbols J, K, JK,
or KL as subscripts to a variable to
indicate the timing. The value of level
ABC at the instant at which calculations
are being made is referred to as ABC.K.
Its value at the previous instant is
ABC.J. The interval just passed is
called the JK interval; the interval com­
ing up is the KL interval. Since RATES
hold over an interval, their subscripts
are either JK or KL while other variables
have J or K as subscripts. It is not
necessary to attach a subscript to con­
stants.

Most DYNAMO statements are assign­
ment statements whose right hand sides

(RHS) are arithmetic expressions. We
will use the term 'equation' interchange­
ably with 'statement' since the assign­
ment statement defines the value of the
variable on the left hand side (LHS) at a
particular time point. The type of the
variable on the LHS is indicated by the
first character in the statement. Thus
in

L ABC.K=ABC.J+DT*R.JK

ABC is defined as a LEVEL. There are
seven equation types: level (L), auxili­
ary (A), rate (R), supplementary (S),
initial value (N), given constant (C) and
table (T). Each variable is defined
exactly once with at most one correspond­
ing initial value (NJ equation.

To summarize DYNAMO has been adopted
as a research vehicle for several rea­
sons. First of all, simulation of paral­
lel processes is a central problem in
network development and a most important
application for network computers.
DYNAMO raises the central problem of par­
titioning tasks in an urgent and immedi­
ate fashion. Second, the Network
Research Group needs a continuous simula­
tion language to model control processes.
Third, the simplicity of the syntax and
data structures of DYNAMO make it a good
starting point for compiler development
on networks.

TECHNEC System 0verview

We shall present a brief introduc­
tion to the hardware configuration and
software facilities available on the
TECHNEC. The emphasis is on the inter­
face between the available software
facilities and the DYNAMO Compiler.

Hardware Configuration

The TECHNEC [3] is a ring network of
five nodes initially (Figure 1) with
12 nodes planned in the second year of
the project. Each node consists of a
COSMAC (called the Ring Interface Unit -

RIU) and an LSI-11 (called the Micro
Processor Unit - MPU). COSMACs are
linked together by I/O ports to form a
ring. Each MPU is attached to a
corresponding RIU. All user tasks reside
in MPUs. The RIUs are responsible for
message communication among the nodes.

Each MPU is a 16-bit LSI-11 with at
least 12K words of RAM and floating point
hardware. One of the MPUs has an RX-11
dual floppy disk and serial I/O inter­
face. This node will be designated as
the system node. A system console is
attached to this node. The network will
be connected to other computers on campus
via modems.

59

F1 oure !. Structure of TECl!tiEC

The RIU is an 8-bit microprocessor
with lK bytes of RAM and three sets of
I/O ports. One set of ports implements
the. message communication path between
adjacent RIUs. The message communication
between RIUs is byte parallel and uni­
directional. The other two sets of ports
are used for communication with its
corresponding MPU. One set implements a
control/status and data buffer register
interface and the other set serves as a
DMA (Direct Memory Access) interface
between the RIO and the memory of the
MPU. An RIU may interrupt its MPU (but
not the other way around) and it can
access the 12K RAM of its MPU in the DMA
mode.

Software Facilities

The operating system includes a mul­
titasking executive called SEXTECH which
allows multiple tasks to reside in one
MPU and schedules user tasks in a simple
round robin fashion.

The TECHNEC supports two modes of
message communication between tasks. One
is the broadcasting mode in which one
task passes a message around the ring via
a 'channel' and all tasks which are
opened to receive messages at this
specific channel may receive the message.
The channels are virtual because no phy­
sical links are established between the
tasks. A channel is simply an identifier
tagged to each message. This is a one­
to-many communication mode. The identity
and the location of the receivers are not
known to the sender. The other mode is
point-to-point transmission in which a
task transmits a message to exactly one
receiver via a channel and the receiver

is identified by a 'subchannel.' The
location of the receiver need not be
known to the sender.

A collection of facilities such as
the console management routine, file
management, and debugging facilities are
available on the system node. The con­
sole management routine allows the system
console to interact with user tasks via
messages. The file management routine
provides storage and retrieval of files
resident on one of the floppy disks. The
debugging routine provides functions such
as suspension of a task, resumption of a
task, modifying contents of a location,
display of status, and breakpoints. A
loading routine exists to load programs
from the floppy disk or other external
computers to the TECHNEC.

Structure of the Compiler

The compiler is structured in the
form of a pipeline with the various
phases of the compilation process distri­
buted over the ring network. Each phase
resides as a module on a separate com­
puter of TECHNEC. A module receives one
statement in the form of a message at a
time from the previous module, performs
one compilation phase on the statement,
and passes the statement to the next
module. Statements of the source pro­
gram, originating from the system node,
thus pass through the phases in order,
with no feedback required. So one may
consider the compiler to be pipelined in
the same sense as pipelined arithmetic
units. The code generated will return to
a file at the system node. The system
node behaves both as a source and a sink
for the pipeline.

Several severe constraints are
imposed on the design of the compiler.
First, no intermediate files exist
between the phases. Each phase can be
considered to be processing a statement
in the statement stream through a window.
Once a statement is processed and passed
to the next phase, neither the original
nor the modified form of the statement
will be available to the phase.
Secondly, the individual phases cannot
access global tables. Ideally informa­
tion derived by each phase should be
embedded in the internal code which is
routed to successive phases. Thirdly,
the memory available to each phase is
limited.

The first two constraints are not
due to theoretical or physical limita~
tions but are based on performance con­
siderations. A file or information
tables at any node could be made accessi­
ble to any process on TECHNEC via the
interprocess communication mechanisms.

60

It is felt that message communication
involves too much overhead in parallel
computation on TECHNEC. No feedback is
allowed in the compiler out of a desire
to keep the pipeline as full as possible
and to reduce message communication. The
compiler as a whole is a one pass com­
piler without the benefit of global
tables. Moreover it is distributed on
multiple computers. The compiler is com­
posed of eight modules organized as in
Figure 2:

optional listing
of source and
expanded macro
statements

--------,

- - - - - - 1 error
1 messages
I
I

I
I
I _____ .J

I
I

--------.J

cluster
assignments

Figure Z.. Structure of the Pipelined DYNAMO Compfler.

Error reports, originating from one
of the first seven modules, bypass inter­
mediate modules to reach the Error Mes­
sage Generator which produces symbolic
error messages.

Figure 2 represents the structure of
the compiler in our current design. Ini­
tially we placed the Code Generator after
the Partitioning Module. We realized,
however, that if the Code Generator pre­
ceded the Partitioning Module, the latter
would have more accurate estimation of
the execution time and storage require­
ments of statements in forming clusters.

A statement is passed between
modules in an internal form of a string
of tokens. A token has two fields: type
and value. The value field indicates the

symbol represented by the token (e.g.,
identifier, subscript, statement, etc.).
The interpretation of the value field is
dependent on the type field. For example
the value field of a subscript token
indicates the subscript type (J, K, JK or
KL). The value field of a statement
token denotes the statement type (level,
auxiliary, rate, supplementary, constant,
initialization, table, etc.). The value
field of an identifier or a real number
points to the original symbolic represen­
tation in a character string which fol­
lows the string of tokens. Organization
of the string and information in tne
token vary from phase to phase.

Scanner

The input to the Scanner is the
DYNAMO source program. The function per­
formed by the scanner is to transform the
text input into an internal form of
tokens.

Scanning a DYNAMO statement is a
simple matter. A routine is first called
to scan the statement identifier (L, A,
R, SPEC, etc.). All statements except
PRINT, PLOT, NOTE, RUN and title state­
ments are scanned by the same routine.
There are only four kinds of symbols that
need to be dealt with: quantity names,
subscripts, numeric constants and
delimiters/operators. A token is created
for each symbol and stored in the output
message. When the statement is com­
pletely scanned, the message is sent to
the Macro Expansion program.

Macro Expansion

Tne macro expansion module expands
macro calls into one or more DYNAMO
statements, produces the source listing
(optionally listing expanded statements),
and assigns to each statement a unique
number.

The language requires that a macro
definition appear before a call to it is
made. This is important for a one pass
compiler. The tokens for statements
within a macro definition are stored in a
table as the statements are received from
the Scanner. Special tokens for
occurrences of local variables, formal
parameters, and macro names replace the
normal identifier tokens to speed up
macro expansion. The macro and a pointer
to the macro definition are stored in a
second table.

At expansion time, the macro call is
replaced by a compiler-generated identif­
ier. Each statement in the macro defini­
tion is processed by replacing local
variables and occurrences of the macro
name by compiler generated identifiers

61

and replacing formal parameters by the
actual parameters. As each statement in
the macro body is processea, tokens are
transferred to a message to be sent to
the symbol table program. Macro calls
are allowed in macro definitions and in
actual parameters. These nested macro
calls get expanded in the same way.

The source listing is produced by
this module because it is felt that list­
ing of expanded statements should be a
user option and it is desirable to per­
form the source listing as early as pos­
sible to reduce message passing overhead.

The number assigned to a statement
is printed on the listing and stored in
the internal form statement for the pur­
pose of associating an error message
(both compile time and run time) to a
particular statement.

Symbol Table Manipulation Routine

The Symbol Table Manipulation Rou­
tine is the third module in the pipeline.
The function performed by this module is
to replace the value field of quantity
name identifier tokens by an index into
the symbol table. It also checks sub­
scripts in a given statement type, checks
for multiple definitions of a quantity
name, checks for undefined quantity
names, and searches for conflicting use
of subscripts.

Converting value fields of an iden­
tifier token to a symbol table index is
straightforward. When a message is
received from the Macro Expansion Module,
each identifier is looked up in the sym­
bol table. If the identifier is not
found in the table, a new entry is made
in the symbol table and the value field
set to the table index.

More work is required to achieve
subscript checking. The nonsequential
nature of DYNAMO gives rise to the prob­
lem of verifying a subscript appearing on
the RHS of an equation. It should be
emphasized that the pipeline does not
permit a second pass through the source.
One solution is to keep in the symbol
table entry for each quantity name a bit
to indicate whether or not the identifier
is defined. If defined, a field indi­
cates the equation type (L, A, R, s, N,
C, CP, T or TP) in which the quantity
name is defined; in this case the sub­
script is immediately verified. If the
quantity name is not yet defined, the
equation type field is a pointer to a
linked list. Each node in the linked
list contains a field for the statement
number, a field indicating the equation
type and a field indicating the subscript
used. When the definition of the

quantity name is encountered, the sub­
scripts for the previous references to
the quantity name are verified for
correctness. The Symbol Table Routine
notices inconsistencies in use of sub­
scripts.

Parser

The Parser is the fourth stage in
the pipeline. Separate routines parse
assignment statements, print and plot
statements, and specification statements.
The main function performed by this
module is to transform expressions from
infix to Polish suffix notation. Polish
suffix notation was chosen as internal
form because the LSI-11 provides stack
operations. For this kind of stack
machine, code generation from Polish suf­
fix form is particularly simple.

A transition matrix is used by the
parser to handle arithmetic expressions.
Transition matrix parsing has the advan­
tage of being a particularly robust pars­
ing method. It also facilitates the pro­
duction of good error messages. The main
disadvantage of this parsing method is
the space required for tne matrix. For­
tunately, DYNAMO expressions are so res­
tricted in form that the matrix for this
language is of reasonable size. Operator
precedence parsing is awkward for DYNAMO
because it allows two operators to appear
nl'>xt to each other: A*-B and (A+B) (A-C)
are both legitimate.

Sequencing Module

The nonsequential characteristic of
DYNAMO by no means implies that DYNAMO
statements can be executed in any order.
Determination of data dependency,
sequencing of statement execution, and
initialization of the model are essential
tasks of a DYNAMO compiler. Each DYNAMO
assignment statement can actually be con­
sidered the defining equation of its LHS
variable. Moreover, these statements
define a partial ordering relation
between variables in the program in which
the LHS variable is a "successor" of each
variable in the RHS. A topological sort­
ing algorithm can be used to produce a
linear sequence consistent with the par­
tial ordering relations.

As was mentioned in Section 3, there
is an implicit order of execution (or
sequencing) of statements during each
simulation cycle, that begins with LEVEL
equations followed by AUXILIARY equa­
tions, and finally RATE equations. This
sequencing will be referred to as the
"LAR looping sequence." The LEVELs can be
computed in any order in the beginning of
a cycle, and also the RATES can be exe­
cuted in any order at the end of the

62

cycle, [5, p. 25]. The sequencing of
AUXILIARY equations must be determined by
the compiler.

A DYNAMO compiler must provide the
initial values for those auxiliaries and
rates that have no explicit (i.e., user­
defined) initial value equations (N­
equations) by treating the auxiliary or
rate equation as an N-equation
[5, p. 25]. This actually means that,
the first simulation cycle is to produce
the initial values for all quantities in
the model. This is done by beginning
with those quantities that have a user­
def ined initial value and executing the
appropriate statements in the model in
the correct order to provide initial
values for other quantities. This
sequence is referred to as the "initiali­
zation sequence." In general the initial­
ization sequence may differ £rom the LAR
looping sequence (in fact they are dif­
ferent in most practical examples).
Hence, the Sequencing Module (SM) can be
schematically represented by Figure 3.
The input is fed to the sequencing module
a statement at a time. Data dependency
information is extracted from that state­
ment and the statement is passed
untouched to the next stage. When a RUN
statement is encountered, SM begins pro­
cessing the accumulated information.

sequence of
parsed

statements

Sequencing
Module

{SM)

parsed statements:
constants sequence;
initialization sequence;
LAR looping sequence .

F1gure 3. Input and Output of the Sequencing Module

Constant (C) and table (T) equations
actually may be evaluated in any order at
the very beginning in the initialization
sequence. Moreover, constants and tables
are the only quantities that may be rede­
fined in case of reruns. It is, there­
fore, expedient to group constant and
table equations as a separate sequence,
referred to as "Constants Sequence" in
Figure 3.

The Sequencing Module can only
determine sequencing after examining the
complete program. Again the three con­
straints mentioned at the beginning of
this section come into play. To avoid a
second pass and to keep the next stage
busy while SM is functioning, each state­
ment written by the programmer will be
eventually converted to a subroutine by
the Code Generator. The SM will produce
a sequence of subroutine calls.

The
described

Sequencing
functionally

Module can be
by the flowchart

in Figure 4. There are two logical parts
in SM. The first part, consisting of
modules Ml, M2, and M3, builds the data
structure and the second part produces
the sequences. The data structure used
to convey the data dependency information
in the SM consists of a set of linked
lists. Each linked list, shown in Fig­
ure 5, corresponds to a variable in the
program and contains the data dependency
in both the defining equation of the
variable and the user-defined initial
value equation, if available. The data
dependency information is conveyed in the
form of a COUNT field, indicating the
number of predecessors to the variable,
and a successor list for that variable.

M3

pass the statement

to next module.

Ml

Receive a statement

token through the

pipe.

yes

M2

add the appropriate
lnfonnation to the
data structure that
represent data depen­
dency.

M4

can the program
be initialized?

MS M6

generate the appropria

te error message.

produce the "inltialz-

ation sequence 11 calls.

produce the "LAR
stop

looping sequence 11

calls.

stop

Figure 4. Logical Flow of the Sequencing Module

The SM then checks whether the model
can be initialized and simulated prop­
erly. The conditions for proper execu­
tion are:

a. All LEVELS are initialized using
user-defined N-equations. This is
checked using the T and NEQ fields.

b. All variables are properly defined.
This is indicated by a nonzero DEQ4 field.

63

HEADER

NAME NEQ DEQ# CQll~T TOP!

NI OUNT2 TOP2 SUC2 NEXT

SUCCESSOR LIST2

SUCCESSOR LlSTl

SUCl NEXT!

fields are Interpreted as follows :

NAME

NEQ

DEQI

Is a type field (Indicating the type of the variable)

Is the symbol table entry for the LHS variable

Is a pointer to the list representing the corresponding
N-equation supplied by the user (0 ff none)

is the defining equation number of the variable

COUNTJ is the number of predecessors of the variable in DEQ
COUtH2 is the number of predecessors of the variable in NEQ

TOP! Is a pointer to the first member of the SUCCESSOR LISTl
TOP2 Is a pointer to the first member of the St:CCESSOR L!ST2

tlEXTl Is a pointer to the next entry in the SUCCESSOR LISTl
NEXT2 is a pointer to the next entry In the SUCCESSOR LIST2

SUCl Is the symbol table entry for the successor in LIST!
SUC2 Is the symbol table entry for the successor in LIST2

N# Is the user-supplied N-equatfon number for the variable

Figure 5. Data structure used in the Sequencing Module

The "LAR looping sequence" calls can
be generated directly from the "initiali­
zation sequence" calls if no AUXILIARY
variable has a user-defined N-equation.
In this case, the LAR looping sequence is
simply calls to LEVELS in any order, fol­
lowed by calls to AUXILIARYs in the same
order as in the initialization sequence
(same equation numbers), followed by
calls to RATEs in any order.

On the other hand, if N-equations
are supplied for some AUXILIARY equa­
tions, the data structure is searched for
entries with zero NEQ fields. For each
entry, a SUCCESSOR LIST2 is built as
required by the language as a copy of
SUCCESSOR LISTl with N# equal to DEQ# and
COUNT2 equal to COUNTl field. This is
necessary because the topological sorting
program has to be run twice in this case.

In general, the topological sorting
program incorporated in the SM searches
for a zero COUNT field, produces the call
for the corresponding equation number,
and decrements by 1 the COUNT field in
the header of each variable appearing in
the SUCCESSOR LIST. To produce the "ini­
tialization sequence" calls, in case a
above, this procedure is applied itera­
tively using COUNT2 and SUCCESSOR LIST2
for those entries with nonzero NEQ fields
and COUNT! and SUCCESSOR LISTl for the
others. In case b, COUNT2 and SUCCESSOR
LIST2 are used for all variables. If the
model is consistent and an evaluation
sequence can be found, the SM produces

calls in the correct order. Otherwise,
the number of calls produced does not
check with the number of statements pro­
cessed and a "simultaneous equations"
error message is generated from SM that
contains those variables for which no
calls were produced.

Code Generaeor

The Code Generator receives from the
SM parsed statements. It ext~acts the
variables from a statement and sends·them
as a list to the PM which will need
predecessor-successor relationship among
variables. The parsed statement is con­
verted by the Code Generator to a subrou­
tine in assembly language and sent to the
code file. PRINT and PLOT statements are
handled differently since routine check­
ing and formatting are necessary. The
Code Generator finally generates for the
PM execution time and storage require­
ments of each statement.

Partitioning Module (PM)

One of the main objectives of the
DYNAMO project is to exploit parallelism
by executing the compiled object code in
parallel on the computers of the network
(goal c). The partitioning module is to
receive from CG lists of variables in
each statement that is used to build a
data structure representing the depen­
dency between variables. After
encountering the RUN statement, the
module processes the data structure and
produces a "processor assignment list"
that specifies the statements to be exe­
cuted on each processor in the network,
using the statistics provided for execu­
tion time and storage requirements of
each statement. This can be represented
schematically as in Figure 6. The PM
also is supposed to insert the required
communication primitives between vari­
ables in different partitions. Although
the data structure required in PM has
many similarities with that of the
Sequencing Module, since both of them
reflect some sort of connectivity rela­
tion, a main difference exists in sub­
script treatment. In PM the initializa­
tion cycle is completely ignored, because
it occurs only once. Supplementary equa­
tions are also ignored at this point
because they are only executed during
special print or plot cycles. The main
objective is to produce p~rtitions that
will reside on different processors at
run-time in order to achieve the fastest
execution of the program. Hence, it is
clear that a relation between the initial
value of two variables Vl, V2 is not as
important as a recurrence relation
between them.

64

variable
lists

artitionin
Module

(PM)

statements
statistics

list of conmunication calls;
list of processor assignments;
pseudo statements

Figure 6. Input and Output of the Partitioning Module.

Consequently, a directed graph,
representing two successive simulation
cycles of a DYNAMO source program, is
built as follows:

(i) All C, N, S, PRINT, PLOT, SPEC, T
statements are ignored. An appropriate
initializing process will be provided to
initiate constant sequence and initiali­
zation sequence calculations and send the
results to different partitions before
the main iteration operation begins.

(ii) A variable with a J or JK subscript
is represented by an entry node with no
predecessors.

(iii) Every variable V is represented by
two nodes Nl, N2:

Nl representing V.J (or V.JK)
N2 representing V.K (or V.KL)

As mentioned in (ii) Nl is an entry node.

(iv) An arc from node Ni to node Nj
represents a precedence relation, i.e.,
Ni is a RHS variable of an equation that
has Nj in its LHS.

The main algorithm for automatic
partitioning is the subject of a study
parallel to this project. The main
points investigated in automatic parti­
tioning [l] can be stated as follows:

(1) Two basic approaches are being stu­
died.

a. An optimal partitioning approach based
on an integer programming model that pro­
duces partitions of DYNAMO code that
takes minimum time to run on the network
computer (taking into consideration the
communication overhead).

b. A heuristic approach that investigates
different partitioning policies that can
be incorporated easily at compile time.

The tradeoff between the two approaches
together with comparative studies for
different heuristics, is the main theme
of that study. The study had reached the
stage of completing the formulation of
the problem as a Mixed-Integer-Linear-

Programming (MILP) model of a reasonable
size. Test runs using sample DYNAMO pro­
grams are being attempted using a stan­
dard package (FMPS) for producing solu­
tions on a UNIVAC 1108 processor. In
addition four heuristics have been sug­
gested and are being tested on the same
sample programs. In all these algorithms
an important assumption has been made.
Namely, every two nodes Nl, N2 represent­
ing the same variable Vat different time
points, are grouped together in one com­
puter. This implies that a variable is
assigned to one processor during the
whole simulation period.

(2) In the MILP model a combination of
synchronous and asynchronous modes {see
the section on Run Time Synchronization
of clusters) is assumed. This assumption
does not affect the resulting solution, ,
but mainly influences its optimality.

(3) The MILP model generates not only
processor assignment, but also the
optimal starting-time-values for each
variable. This can be used to generate
the LAR looping sequence instead of the
scheme described above. The latter pro­
duces a feasible but not necessarily
optimal sequence.

The Symbol Table, the Sequencing
Module, and the Partitioning Module all
generate data structures involved with
connectivity between statements which are
related but not identical. The first two
constraints imposed on the design
motivate these distributed data struc­
tures. Some duplication does occur, but
each data structure is tailored specif i­
cally for the phase and is thus more
efficient. Moreover the phases are exe­
cuting in parallel. A single central,
general data structure can only be
accessed sequentially.

Error Message Generator

The error message module is the last
logical step in the pipeline. This
module differs somewhat from the other
modules in that there is more than one
input source. Error messages are
received from any of the other modules
except the code generator module.

Each error message contains an error
messag2 number, a line number, and,
optionally, one or more identifier tokens
and/or text tokens. The error message
number is used to retrieve an error mes­
sage from disk. The line number is
printed with the error message to indi­
cate where the error occurred. Variable
text, e.g., a subscript name, is simply
inserted where required. After the error
message is formatted, it is sent to a

65

print program.

Error Recovery and Error Correction

A compiler must be able to discover
as many errors as possible before ter­
minating. This implies that a good error
recovery scheme must be incorporated in
every good compiler.

When it comes to error correction,
however, there is serious conflict, par­
ticularly in regard to DYNAMO subscript
errors. We believe on principle that a
compiler should not correct user errors.
This is a complicated process which may
lead to unpredicted and unreliable
results. What is more, user errors may
signal defects in the model. We can
serve the user better, we think, by flag­
ging errors and forcing him to correct
them. On the other hand we also I: •lieved
in language standardization and we have
tried to follow the DYNAMO manual as
closely as possible. According to the
DYNAMO manual, all subscript errors are
considered nonfatal [5 p. 53-54].

Run Time Synchronization of Clusters

A cycle of simulation consists of
execution of LEVEL statements, AUXILIARY
statements if any, RATE statements and in
certain specified cycles SUPPLEMENTARY
statements for PRINT and PLOT statements.
Due to dependency between statements,
values may also be passed between cycles.

The evocation of cycles and state­
ments within a cycle can be performed
synchronously or asynchronously. By syn­
chronously we mean statement execution of
cycle initialization are evoked by a sig­
nal given by a central process. In the
asynchronous mode, no timing mechanism
exists to control the timing of evoca­
tion. Each process evokes its logical
successor.

There are a number of ways to syn­
chronize partitions:

Option 1. {Synchronous Mode): Partitions
are evoked by a global signal at the
beginning of a cycle and evoked to send
and receive messages at the end of the
cycle. This mode stipulates that no mes­
sages be passed between partitions in the
same cycle. It implies that values
required for the execution of a statement
are either available at the beginning of
the cycle or generated by the partition
itself. Only intercycle data dependency
is taken care of. This mode imposes a
serious constraint on partitioning.

Option 2. (Synchronous Mode): l'ln evoca­
tion signal is provided for each class of
statements of the same type and 3 signul

in between classes for message passing.
This approach allows more freedom in par­
titioning and message passing between L­
A, A-R, L-R, L-S, A-S, R-S pairs. The
price paid is additional signals and
reduction in speed. The execution time
of a cycle is the sum of maximum execu­
tion times for each class of statements
plus the maximum transmission times.
Moreover a message cannot be sent once
the value of quantity is available but
must wait for the synchronization signal.

Option 3. (Asynchronous Mode): In the
completely asynchronous mode, each state­
ment is executed once all the required
values on its right hand side are avail­
able. It is conceivable that one parti­
tion may run a number of cycles ahead of
another. Data messages may have to be
tagged by cycle numbers or a FIFO queue
is needed between partitions that commun­
icate with each other.

Opt ion 4. (A Combination of Synchronous
and Asynchronous Modes): Cycles are
evoked by a global signal. The broadcast
message facility is used advantageously
for this purpose. Intracycle messages
are sent asynchronously. A partition may
send a value needed by another using the
point-to-point communication scheme. A
partition may also pause to wait for a
data message. Each partition may inform
the signaling mechanism of its readiness
to start a new cycle which implies com­
pletion of all execution and intercycle
data transfers. When all partitions are
ready, the signaling device generates a
signal for the new cycle. If n parti­
tions exist, then n messages plus one
b~oadcast are necessary. A broadcast
message from the signaling mechanism to
poll each partition's readiness is a more
efficient solution. But a good estimate
on the cycle execution time is important
to avoid multiple pollings.

The fourth option is favored for run
time synchronization.

Summary

We have described the design of a
pipelined DYNAMO compiler to be imple­
mented on a network computer. The goals
are to make use of parallelism available
both at compile time and run time. At
compile time the compiler itself is
organized in the form of a pipeline.
Each stage of the pipeline executes in
parallel and communicates asynchronously.
The object code is automatically parti­
tioned into clusters by the compiler so
that the clusters execute in parallel on
the constituent computers of the network
computer. The problems raised by the
objectives and the constraints of the
environment are discussed and alternative

66

solutions to these problems are examined.

References

1. o. El-Dessouki and W. Huen, "Parti­
tioning and Processor Assignment on
a Network Computer," Technical
Report 77 - 2, Department of Com­
puter Science, Illinois Institute of
Tedhnology, Chicago, Ill. 60616.

2. J. Forrester, Industrial Dynamics,
MIT Press, Cambridge, Mass., 1961.

3. P. Greene, "Proposed Organization of
Hierarchical Multicomputer Control
Systems," to appear in International
Journal of Man-Machine Systems.

4. w. Huen, P. Greene, R. Hochspring,
and O. El-Dessouki, "TECHNEC, A Net­
work Computer for Distributed Task
Control," to appear in Proc. of the
First Rocky Mountain Symposium on
Microcomputers: Systems, Software
and Architecture 1977.

5. A. Pugh, I I I, DYNAMO· User Is Manual,
MIT Press, Cambridge, Mass., 1975.

A COMPARISON OF VARIOUS METHODS FOR DETECTING AND

UTILIZING PARALLELISM IN A SINGLE INSTRUCTION STREAM

by

Henry D. Shapiro
Computer Architecture Department

Sperry Research Center
Sudbury, Massachusetts 01776

Abstract -- By analyzing the data depend­
ency graph of a program it is possible to determine
the potential for program speedups by simultaneous
execution qf logically independent operations.
When concurrent execution of instructions in
existing programs on a given machine is attempted,
efficient detection of data independence during
execution is a central difficulty. Simulation,
using actual program traces, has been used to
evaluate the effectiveness of several approaches
to detecting the presence of logically indepen.­
dent operations as a function of the number of
processing elements, The results indicate that
simple conflict detection algorithms perform
about as well as more complex detection algorithms
if the number of processing elements is six
or less. The complex algorithms continue to
show performance improvements as the number of
processing elements increases, whereas, perform­
ance levels off if the simple algorithms are
used. The rate of this increase indicates that
the additional improvement achievable probably
does not justify the increased cost of the
complex detection mechanisms and the additional
processing elements.

Introduction

The idea that program speedups can be obtained
by simultaneous execution of logically independ­
ent instructions has received the attention of
numerous researchers and practitioners [6,9,10,
11]. While some authors have reported that
utilizing potential parallelism can give
program speedups of a factor of 50, computer
manufacturers have settled for actual perfor­
mance improvement in the 1.5-3 range. There
are two main reasons for this:

1) Theoretical work has tended to ignore
the fact that the dependency graph, on
which the more optimistic estimates are
based, must be constructed during run time
from a program stored linearly in main
memory. If a computer utilizing the potential
parallelism inherent in the dependency graph
is to be cost effective, the hardware to
detect the data dependencies present in the
code must be fast, yet it cannot overshadow
the multiple execution units in cost.

67

2) The problem of effectively handling
conditional branches has not been solved.
In pipelined machines, as described in M4
below, both the next sequential instruction
and the instruction branched to if the jump
is taken can be conveniently prefetched.
In machines with this type of architecture
the test to abort the inappropriate branch
can be made before any instructions along
that branch have reached a point where re­
covery of the correct state is difficult.
The conditional execution of (several)
instructions along either path after a
branch, before the test can be resolved,
can lead to a large quantity of state
information, in fact the amount of statP.
information can grow exponentially
since the instructions along the paths
may themselves be branches.

Many researchers have felt that the conditional
branch problem is the main reason that the
potential parallelism in code is not better
utilized. In this paper we analyze the effects
of the problem raised in point one: How much
parallelism is actually present in existing
code, and how much does the technique used to
detect and utilize this parallelism degrade
performance from the ideal?

In the next section we shall review the
theory associated with concurrent execution of
logically independent instructions, pointing
out a number of problems and subtleties not
previously noted in the literature. After that
we will present several machine models which
detect and utilize parallelism in a single in­
struction stream in different ways. Some of
the models embody the theoretically ideal data
dependency detection mechanism, while still
incorporating the realistic limitations of
non-zero instruction decode time and main
memory fetch time and an addressing structure
similar to those found on many current computers.
An empirical upper limit on performance improve­
ment can be obtained for a given piece of object
code by executing it on a (simulated) machine
employing the ideal data dependency mechanism.
Other of the models are based on data depend­
ency detection mechanisms that do not fully
exploit the parallelism inherent in the code,
and thus are not as complex to implement. In
the final section of the paper, simulation re­
sults and an interpretation will be presented.

Theory of Concurrent Instruction Execution

The abstract theory of program speedup by
concurrent execution of logical!~ independent
instructions is well documented LS, 6, 9, 10].
In fact by appropriate interpretation the theory
can be applied at a number of levels.

Definition: Let T1 , T2 , ••• ,Tn be a sequenc~ of

elemental operations, each with a well defined
set of input variables and output variables.
We define an ordering relation @on the elemental
operations as follows:

T.@T.
1 J

if and only if i < j and at least one of

the foll owing three conditions holds

(i) an input variable of T. is an output variable
of T. J

i
(ii) an input variable of Ti is an output variable

of T.
J

(iii) T. and T. i J
have an output variable in common.

The transitive closure of<3:}defines a partial
ordering, <~n the set of elemental operations.
From this definition it is possible to construct
a data dependency graph (see Figure 1). It is
customary to include only those arcs that cannot
be deduced by transitivity. If execution times
are associated with each node of the graph, we
have the following:

Principle of Optimality: Given unlimited re­
sources, the minimal execution time of a program,
sequentially specified as T1 , T2 , .•• ,Tn' is

equal to the length of the longest path in the
dependency graph (the length equals the sum of the
execution times of the nodes along the path),
and this minimal execution time can be realized
by starting an elemental operation as soon
as all its predecessors (in the partial ordering)
have completed.

This model has been specialized in a number
of ways. Graham [4] and Coffman [2J have in­
terpreted ·~1emental operation" as a job and
have considered scheduling interrelated jobs on a
multiprocessor system (with limited resources).
Brinch-Hansen [lJ has treated '~lemental
operation" as a procedure or begin block, allowing
the user to specify parallelism in a higher
level language. At the other end of the spectrum,
Tsuchiya and Gonzalez Ll2J have performed automatic
optimization of horizontal microcode within the
constraints imposed by the dependency graph that
results from considering as "elemental operations"
logically indivisible sub-instruction functions.

In the research reported below we will be
adapting this abstract model to execution of the
instructions in a single user program. A number
of subtleties arise in this case. It should be
noted that the points presented below can be
incorporated into the abstract model, by either

68

slightly .JJJedifying the definitio~ ~f order~ng
relation\$}, or by carefully defining the input
and outp~t variables. As with many other simulation
problems the difficulty in building an accurate
model is determining what aspects of the problem
are the most relevant.

The first class of subtleties deals with why
the principle of optimality does not really produce
the minimum possible execution time.

1) Changing the elemental operations. ~y
changing the choice of elemental operations
the total execution time may be reduced.
Formally we have

Definition: A refinement of a sequence of elemen­
tal operations, T1,T2 1 ••• ,Tn• is a sequence T11

T12, •• ,,T1m1 , T21,T22,••••T2m2•'''•Tnl •

Tn 2, ••• ,Tnm, such that
n

(i) for i i j. ifT.<T. then Ti< Tj, iu JV

(ii) for i i j if T. < T., then there exists
i J

u and v with T. < T.
' and iu JV

(iii) the longest path (where the length of a
path is defined to be the sum of the
execution times associated with the nodes
along that path) in the subgraph Til ,Ti2 '

.•• T. equals the execution time for
1 lffi.

i

node T., for all i, i.e. the execution
i

time for the subgraph into which Ti is

decomposed equals the execution time ol
T. when viewed as a whole.

i

It is not difficult to prove that the minimal
execution time of a refinement is less than or
equal to the minimal execution time of the
original sequence. Intuitively, the subsequence,
T. T. 2 ... ,T. performs the same task as Ti

i l ' i ' imi ·

This condition can also be formally stated, but a
precise statement of this condition is not im­
portant here.

The notion of refinement is relevant to the
current discussion since there are two natural
choices for elemental operations: Machine instru­
ctions, like load accumulator number five from
the main memory location symbolically labeled I
(L A5,I), or subinstruction functions, like compute
an address, fetch an operand, etc. Figure 2 shows
the same program segment as Figure 1, but with a
different choice of elemental operations. Because
of the environment within a computer, detecting
dependencies at the subinstruction level is not
more difficult than at the machine instruction
level. In the simulation results reported later
subinstruction functions are used as the elemental
operations.

2) Restrictive instruction format. Even if
a computer contains an unlimited supply of
arithmetic-logic units, a rigid instruction
format or lack of a sufficient number of general
registers may introduce dependencies in the machine
code not implied by the higher level language
statement of the program. Inefficient use of
general registers or poor code generation by a
compiler can also create such dependencies.
Dependencies introduced for these reasons normally
manifest themselves as dependencies due to
conditions (ii) and (iii) of the basic definition
of the ordering relation. The arcs marked with
asterisks in Figures 1 and 2 represent such de­
pendencies. Keller [5J discusses the technique
of '~irtual registers" which can be used to.
eliminate these dependencies, and thereby,
(potentially) reduce the minimal execution time.

When viewed theoretically, the technique amounts
to having an infinite number of input/output
variables available for use with the elemental
operations, and using each variable for output
only once Cit can subsequently be used for input
indefinitely.) Practical implementation of the
virtual register technique may be quite costly
and the necessarily non-zero time to use the
additional hardware may negate any expected per­
formance improvement. Careful examination of
code from machines with numerous general registers
and register-memory and register-register in­
structions (UNIVAC 1100 series and IBM 360
series are typical) indicates that careful register
allocation makes the potential gain from the use
of virtual registers quite small in most real
applications. At the other extreme, in machines
with one accumulator this problem is so severe
that almost no program speedup is possible
without using virtual registers.

3) Alternate program formulations. The
sequence T1 , T2, ••• ,T may be able to be replaced
by.another sequence W~, w2,.!••Wm' which accom­
plishes the same job. Kuck [6] and Lamport L7J
have investigated speedups obtainable by semantic
analysis of FORTRAN programs. Careful analysis
of the algorithm being employed, with subsequent
recasting to take advantage of vector/array
features of the hardware can produce dramatic
improvements. A recent paper by Giroux [3] reported
a speedup factor of 25 for code carefully reworked
for the CDC-STAR· The reprogramming effort took
several years, however. Such techniques will not
be investigated here.

The points mentioned above demonstrate that
unless precautions are taken, determining
potential program speedups from the dependency
graph of a program can yield results that
~~e too low. There are also a number of pre­
cau~!ons that must be taken to avoid overly
optimistic estimates of performance improvement.
We discuss one here, since it is relatively
abstract in nature; others are discussed in the
next section.

69

4) Unresolved addresses. This problem is
not apparent if the elemental operations are
machine language instructions, and is easily
overlooked if the dependency graph is generated
from an assembly language listing containing
symbolic addresses. On many third generation
computers absolute addresses are not part of
the instruction, but are computed during run
time by adding a displacement contained witin
the instruction to the contents of a base
register an~possibly, the contents of an
index register. This addressing scheme permits,
amongst other things, shorter instructions,
greater run time flexibility in managing
storage and makes array referencing more natural.
Run time computation of absolute addresses poses
a significant hazard for the potential for
concurrent execution however. Consider the
symbolic code segment:

S AO,I

L A2,J

The fetch from memory location J cannot be
safely initiated until it is known that there are
no uncompleted (including uninitiated) stores to
memory location J, preceeding this instruction.
This implies that the real address symbolically
represented by I will have to be computed and
this address and the real address symbolically
represented by J will have to be compared for
possible conflict before the fetch can be safely
initiated. Note carefully, we have a dependency
between computing the real address of I and
fetching from the memory location addressed by J.
NOT between the actual store into I and the fetch
from J. In fact no fetches or stores past the
S AO,I instruction can be safely initiated until
after the address of I is known. In the situation
just described, where the base register is implied
(and not modified frequently), and no indexing
is performed, no delay will actually occur. The
reason for this is that by the time the real address
symbolically represented by J is known, so the
fetch could be initiated, the real address sym­
bolically represented by I will also be known.
However, if a store is being made into a location
whose address is computed using an index register,
like S Al,A(XO), then the computation of the
address symbolically represented by A(XO), can be
delayed a long time due to a dependency on XO.
Thus every fetch past the S Al,A(XO) will be
(indirectly) delayed, waiting for an earlier
load index register instruction to complete,
even though there may be no conflicts over
actual data. There is no a priori way of deter­
mining how much this indirect effect will lower
the potential for program speedup. In practice

this problem arises naturally in two ways:
1) in scientific code, where indexing is a common
occurrence, and 2) in the object code of programs
written in ALGOL-like languages, where an index
register is used as a base register to address
variables whose scope is global to the currently
active block. To the best of the author's know­
ledge nobody has investigated the effects of this
problem on potential program speedup.

Machine Models

From the points discussed in the last
section, determination of the potential for
performance improvement by concurrent execution
of logically independent elemental operations must
be done with care if the results are to have
credibility. A major additional problem remains
when we consider building a computer to utilize all
or some of this potential. How can the parallelism
inherently present in a single instruction stream
be efficiently utilized? The importance of this
question cannot be stressed too much, since the
data dependency detection mechanism creates an
overhead cost in addition to the increased
cost due to the presence of the multiple arithmetic­
logic units needed to perform the computation. The
(non-zero) time the detection mechanism takes to
function must also be considered.

Four machine models were developed and a
simulation was performed to determine how much
of the potential program speedup could be
realized by each one. The models differ primarily
in the way they detect parallelism and in how
they utilize the parallelism once found. The
philosophy has been to determine the maximum
possible potential parallelism within the constraints
of each model. Toward this end the following
properties are common to all four models.

1) The elemental operations are subinstruction
functions. These include compute an
address (see the discussion below), fetch/
store from/to memory or a register, perform
the basic algebraic or logical operation, and
fetch and decode an instruction. The time
it takes to perform each elemental operation
is a parameter of the simulation. The rate
at which instructions stored sequentially can
be fetched can be set faster than main
memory speeds, effectively simulating a
high speed instruction buffer.

2) The virtual register technique is used
to eliminate data dependencies arising from
conditions (ii) and (iii) of the
definition of the ordering relation.

3) Memory bandwidth is assumed adequate to
handle the requests generated. Delays due
to memory bank conflicts or cache misses
(if memory cycle time is set sufficiently
low as to imply a cache memory is being
used) are ignored.

70

4) When a conditional branch is encountered
the correct path is traversed, even before
the test is completed. The simulator can
perform in this manner because actual program
traces are utilized, so the next instruction
actually executed is available. This attitude
is essentially the one taken by Riseman and
Foster [9] in their earlier simulation
experiments. Some factors which negate the
clearly too optimistic nature of this
approach are discussed below.

The goal of achieving the maximum possible
potential parallelism must be tempered by
reasonable constraints if the models developed
are to produce meaningful results. The following
properties, which are restrictive in nature, are
common to all the models.

5) The addressing structure of the under­
lying instruction set reflects that used
on a number of widely available machines.
In all four models the final memory address
is computed by adding a displacement to a
base register and to an optional index
register. As was discussed in the last
section the computation of final addresses
during execution impacts potential performance
improvement by indirectly inhibiting all
future fetches.

6) The too optimistic estimates developed
by assuming foreknowledge of the way in
which the test in a conditional branch will
resolve is ameliorated by two constraints
imposed on the models:

The time between recognizing that an
instruction is a conditional branch
and the decoding of the next instruction
to execute is greater when the branch is
taken than when the next instruction to
execute is fetched from the next sequential ~
location. This reflects the fact that . wN> J.,;s
the "jump to" address must be computed J'" I l
before the instruction can be fetched. st~~~ ·
No stores into registers or memory are
permitted after a conditional branch,
until the test is made. The philosophy
here is that no irrevocable actions
should be taken until it is guaranteed
that they will occur.

These two points, coupled with a non-zero
instruction fetch time and the observed
average distance between successive
conditional branches in actual code, help to
explain why the speedup factor of 50 reported
by Riseman and Foster L9] is not confirmed
by this research.

7) The amount of hardware that is dedicated
to performing instruction execution (as
opposed to hardware for detecting data
dependencies) can be limited.

Definition: Suppose the instructions in the
program trace are numbered consecutively (in
the order they executed), and suppose a
number N, known as the window size, is
given. An instruction numbered i, is
called active if and only if instructions
1, 2, ••• , i-N have completed. In other
words, the first uncompleted instruction
and the N-1 instructions following the
first uncompleted instruction are active.

Note that an active instruction need not
actually be making forward progress;
all of its uncompleted subinstruction
function~ may be waiting on data depend­
encies. The window size is a parameter
of the simulation. When the window size
is set to one all four models reduce to
a col!Dllon denomlnator--a computer which
executes one instruction at a time, using
parallelism within the instruction, and
overlapping instruction.fetch and decode of
the next instruction with execution of
the present instruction. The simulated
execution time on this machine is used as
the basis for computing program speedups
when several processors are employed.
This is a realistic model for both speedup
and costing estimates, for it corresponds
to many present day medium scale machines.

Within the constraints listed above, it is
still possible to have wide variation. Determining
which elemental operations can be started at any
~ime is quite complex. To be valid a data depend­
ency detection mechanism must not start an opera­
tion in violation of the partial ordering imposed
by the dependency graph; it need not however,
start an operation that logically can begin.
In order to keep hardware costs within bounds
the designer of a computer may choose to use a
data dependency detection mechanism which does
not utilize the full potential for concurrent
execution.

Theoretical Ideal - M1•

The purpose of this model is to establish
an upper bound on possible performance improve­
ment. For active instructions, subinstruction
functions are started as soon as the necessary
input data is available. In particular, depend­
encies created by the addressing structure are
ignored, and only-dependencies on actual data
are considered. In terms of the addressing
structure used in the simulation, displacement
plus contents of a base register plus (optional)
contents of an index register, the dependencies
caused by unresolved addresses, as discussed in
the last section, are ignored. This model, not
only establishes an empirical upper limit, it
also allows us to gauge the effect of two
measures designed to increase parallelism
potential:

- Fetch operands before the possibility of
conflict over data is resolved and restart
an instruction if a data dependency is
later discovered.

71

Increase the word length, allowing program­
mers and compilers to use the added bits
to contain data dependency information
derivable from the symbolic (assembly)
listing, but lost in translating into
absolute machine code.

Fully Parallel Computer - ~

The data detection mechanism is quite similar
to that used in M1, a subinstruction function
for an active instruction is begun as soon as it
can logically be started. The difference is in
the way dependencies due to the addressing
structure are treated. In M2 the (indirect)
dependencies are not ignored as in Mi• Since
elemental operations can proceed in an order
quite different from that implied by the sequential
program statement, the name "fully parallel"
is justified. It is very important to note the
complexity of the algorithms used to detect data
independence in M1 and M2• Since any active
can be dependent on any other active instruction
which precedes it in the sequential program
statement, if the active instruction window is
of size N, the number of comparisons which must
be made to determ~ne all startable elemental
operations is O(N). Thus the overhead cost of
the detection mechanism grows at a faster rate
than the hardware performing the actual instruction
execution.

Concurrent Execution/Sequential Detection - M3

One way to prevent the overhead cost of the
detection mechanism from growing at a rate
faster than the rate of growth of the arithmetic­
logic units is to use a data dependency detection
mechanism that processes requests to fetch or
store an operand in_a sequential manner. In
model M3 the data dependency mechanism provision­
ally approves a fetch or store if

(1) the address of the fetch or store is
known and

(2) there is at most one dependency which
prevents complete approval of the request,
(e.g. the only reason a store to an
address cannot be approved is that there
is a fetch from the same address).

The arithmetic-logic units in model M3 are
assumed to be sufficiently complex that they can
detect resolution of the one dependency. If the
address of the fetch or store is not known or there
are several dependencies then the request is held
up, as are all requests following this request.
When the request can be provisionally approved,
processing of requests resumes. In addition to
the general strategy just described, if an
instruction fetches a value from a location and
later stores an (updated) value back into
the same location this is not counted as a
dependency. This is perfectly safe since
no value to store can be computed until

after the fetch is complete. This, apparently
minor addition is necessary if two address machines
are not to be unduly penalized by their addressing
structures. (Note the earlier discussion of overly
restrictive instruction formats.) The actual
execution of instructions goes on concurrently in
multiple execution units in M3.

Mechanisms of the type described here have been
used on a number of computers. Certainly the most
widely known is the scoreboard on the CDC-6600 [10}

Overlapped Computer - M4

The philosophy behind this design is that the
execution of an instruction can be divided into
phases, which the instruction progresses through
sequentially. On code with no dependencies an
instruction is in phase N, the next sequentially
specified instruction is in phase N-1, the next
sequentially specified instruction is in phase N-2,
etc., and at the end of every machine cycle all
instructions advance to the next phase. N is
called the degree of overlap. Checking for
dependencies is quite simple, since the activity in
each phase is proscribed. Uneven execution times
and data dependencies cause delays by not permitting
an instruction, and all instructions that follow it,
to advance to their next phase. The arithmetic­
logic unit can be divided into several phases
(pipelined) if this seems appropriate. Even many
modest computers are overlapped to some degree,
instruction fetch and decode is overlapped with
instruction execution. In this simple case the only
dependencies possible are due to self modifying
code (prefetched instruction no longer correct)
or branches taken (wrong instruction prefetched).
Normally a delay is encountered while the correct
instruction is refetched. The UNIVAC 1100/80
and IBM 370/168 are examples of machines in which
a high degree of overlap is used to gain
significant speedups.

Results and Conclusions

A simulator for the models described in the
preceding section has been developed and run on
a number of benchmarks. The benchmarks, written
in FORTRAN and executed on a UNIVAC 1106 availabJP.
to the staff at the Sperry Research Center, were
chosen from programs currently being used in un­
related research areas. The programs studied in
depth were a constrained minimization problem with
integer variables, a model of a physical problem
which uses double precision floating point instruct­
ions, and a system print routine. The simulator
uses program traces generated by actual program
executions. The results of a number of runs are
summarized in the graphs at the end of the paper.
(Figures 3-5). The horizontal axis represents
the number of active instructions. The vertical
axis represents the potential speedup factor
due to concurrent execution of logically independent
elemental operations. The speedup factor is
computed relative to a computer (with the same
component speeds) that executes instructions in a

72

strictly sequential manner, except that instruction
prefetch is performed.

The Effect of Sophisticated Addressing Structures
on Potential Performance Improvement

The need to be concerned about the indirect
effects of unres@lved addresses has been mentioned
in several places in this paper. There was no
a priori way of determining the degree to which
these dependencies would affect performance.
Comparing the simulation results of Mi and Mz
allows us to conclude that this problem is rela­
tively minor. While the reason the performance
degradation is so small is not completely under­
stood several factors appear to contribute :

index registers are frequently loaded
in advance of need, so no delay is
encountered when an address using index­
ing is computed.

when a fetch is delayed in Mz because of
the presence of an unresolved address
it is often simultaneously dependent on
the actual data as well. This dependence
on the data causes a delay in M1• (This
was discovered by monitoring some of the
queues internal to the simulator.)

Several consequences of the small nature of
the performance degradation should be noted.
The two techniques for improving performance
discussed with model M1, recording within the
instruction information about data dependencies
derivable at compile time and prefetch of data
with refetching if a dependency is found, do not
provide noticeable improvement in speedup
potential. An important conclusion can be
drawn in the area of system security by naturally
extending these results. The use of numerous
base registers to allow implementation of small
segments and rapid segment switching does not
appear antithetical to the goals of using
parallelism to gain high performance. The reas<ll
for this is that while changing the contents
of a base register is done more frequently in an
environment that supports flexible use of small
segments, it is not done as often as loading or
modifying an index register; thus having little
additional impact.

Instruction Starvation and Differential Execution
Time

The continued gradual rise in the potential
performance of M1 and lVL, as a function of the
number of processors, after the performance of
the simpler designs of M3 and M4 has leveled off
might make it attractive to those users demanding
the highest possible speeds. The sensitivity of
the curve of performance versus number of active
instructions to changes in the relative speeds of
some of the basic operations becomes an interesting
question. Two experiments were performed: In one
the relative speed of sequential instruction fetch
time to data fetch time was varied. In the other
the relative time to perform a long instruction

\ •

(e.g. double prec1s1on floating point multiply)
to that of a short instructi(t) (e.g. add a fixed
point value to a register) was varied. The results
are summarized in Figures 6 and 7.

Figure 6 shows that unless a very fast in­
struction buffer is provided the performance im­
provement that can be expected from use of M1
is limited due to instruction starvation. When
the observed average instruction execution time
is less than the rate at which instructions
can be supplied, performance will level off at
about the number of processors needed to main­
tain this average instruction execution time.
The leveling off is gradual, of course, because
the amount of parallelism in the instruction
stream varies.

Figure 7 indicates that obtaining large
speedups is difficult for those users who desire
it the most, users with large simulation programs
that use many double precision floating point
operations (e.g. weather prediction programs).
When an instruction with a long execution time
falls on the critical path of the dependency
graph, the activities that can be performed
simultaneously with the execution of this
instruction are soon completed and the system
must wait for the instruction to complete.

Practical Data Dependency Detection Mechanisms

The evaluation of the effectiveness of
practical mechanisms for detecting subinstruction
independence was a major goal of this research.
The graphs at the end of the paper show that
sequential (provisional) approval of fetches and
stores, as described in machine model M3 and
the overlapped approach as described in model M4
limit the amount of parallelism that can be
utilized. In order to validate the performance
improvement recorded for model M3, the author
investigated the experiences of users who have run
large FORTRAN codes on both CDC-6600 and CDC-6400.
The two machines have the same instruction set.
The CDC-6600 corresponds closely to model M3,
while the CDC-6400 corresponds to the base for
comparison, a computer with only one active
instruction. After taking into account the
differences in component speeds, the performance
improvement observed for the CDC-6600 over the
CDC-6400 is similar to that obtained in this
simulation [8]. The widening gap between M1 and
M3 - M4,as the number of active instructions
increases beyond six, indicates that it is
difficult to find algorithms to detect parallelism
while keeping the cost of detection hardware
down.

It appears that for all but specialized
scientific problems that can be formulated
in terms of vector or array operations, cost
effective program speedups by architectural
techniques cannot be pressed much beyond
current implementations.

73

Some reasons for this are:

The cost of the mechanism for detecting
dependencies used in M1 would be much
greater than that used in M3 or M4 ,
if it could be designed at all.

The regularity introduced into M3 and M4
by the natural sequencing of certain
elemental operations permits more even
utilization of memory resources, keeping
down the cost of the memory interface.
It appears that more realistic modeling
of the memory interface would impact Mi
more than M3 or M4.

- The benefits of M1 over M3 or M4 are most
significant when the number of active
instructions is large. As the number of
active instructions grows the problem
of handling conditional branches
becomes more acute.

- The sensitivity of M1 to a number of
factors (e.g. sequential instruction
fetch times and execution time for
long instructions) implies that a
computer developed around model M1
might very well show performance
lower than anticipated from the sim­
ulation results.

- The rise of the potential performance
curve for Mi is gradual after six
processors. The slow rate of increase
means a marginal return for each
processor added (at more or less
constant cost).

It is not possible to conclude whether
the Ms or the M4 design is more cost effective,
in general. The effect of minor variations in
the addressing structure, the instruction set and
the job mix imply that a detailed analysis is
needed in each individual case.

References

(1) Brinch-Hansen, P., "The Programming Language
Concurrent Pascal", IEEE Transactions on
Software Engineering, SE-1 no. 2, June 1975
pp. 199-207.

(2) Coffman, E.G. Jr. and R. L. Graham, "Optimal
Scheduling for Two Processor Systems,"
Acta Informatica, 1972, pp. 200-213.

(3) Giroux, E.D., "A Large Mathematical Model
Implementation on the Star-100 Computers",
presented at the Symposium on High Speed
Computer and Algorithm Organization
(proceedings to appear).

(4) Graham, R.L., "Bounds on Mlllltiprocessing
Timing Anomalies.", SIAM Journal of Applied
Mathematics, Vol.17, no.2, March 1969,
pp. 416-429.

(5) Keller, R. M. "Look-Ahead Processors",
Computing Surveys Vol. 7, no. 4, December
1975, pp. 177-195.

(6) Kuck, D. J., Y. Muraoka, and S.C. Chen,
"On the Number of Operations Simultaneously
Executable in FORTRAN-like Programs and their
Resulting Speedup", IEEE Transactions on
Computers, C-21, no. 12, December 1972,
pp. 1293-1309.

(7) Lamport, L., "The Parallel Execution of DO
Loops", CACM, Vol. 17, no. 2, February 1974,
pp. 83-93.

(8) Link, B. Sandia Laboratories. Private
Communication.

(9) Riseman, E.M. and C.C. Foster, "The
Inhibition of Potential Parallelism by
Conditional Jumps", IEEE Transactions
on Computers, C-21, no. 12, December 1972,
pp. 1405-1411.

(10) Thornton, J.E., Design of a Computer-­
The Control Data 6600, Scott, Foresman
and Canpany, Glenview, Illinois, 1970.

(11) Tjaden, G. S. and M. J. Flynn, "Detection
and Parallel Execution of Independent
Instructions", IEEE Transactions on
Computers, C-19, no. 10, October 1970,
pp. 889-895.

(12) Tsuchiya, M. and M.J. Gonzalez, "Toward
Optimization of Horizontal Microprograms",
IEEE Transactions on Computers, C-25,
no. 10, October 1976, pp. 992-999.

• L A0,I (11 time units) • LX X0,J (11 time units)

LADD A0,#1 (7 time units)

1
1 L A1,A(X0) (12 time units)

! S~ ADDA1,A8 (8Umo•olbl

L
1

* DD A!l,#-100* (7 time units) 1 S A1,A(X0) (11 time units)

JNP All,$99 (5 time units) speedup= 1.91

FORTRAN Sample Machine Code Key

1=1+1 (1) L A0,I L = load accumulator

(2) ADD All.#1 ADD = fixed point addition

(3) s A0,I s = store accumulator

A(J)=A(J)+I (4) LX X0,J LX = load index register

(5) L A1,A(X0) JNP = jump non-positive

(6) ADD A1,A0 #i = immediate operand

(7) s A1,A(X0) $99 = label

IF (I .LE. 100)GOTO 99 (8) ADD All,#-100 Ai = accumulator i

(9) JNP A!l,$99 Xi = index register i

A(Xi) = address computation using indexing
(array A is of type INTEGER)

FIGo 1 A Typical Dependency Graph

74

Al

·-z; ;••#1
• Add

Is Al

L")
'-......._•LPC

$99

F x1 •

CA AIXll\

F A(XI) l
S A1 !

F x1

F A1"~/j
• S A(Xll

CA = compute address (4 time units)

speedup = 2.41

F = fetch (6 time units from memory
1 time unit from register)

S = store (6 time units to memory
1 time unit to register)

Im = prepare immediate operand (4 time units)

Add = (2 time units)

Test= (1 time unit)

LPC = load program counter (1 time unitl

FIG. 2 A Refinement of a Dependency Graph

75

SPEEDUP
FACTOR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NUMBER OF ACTIVE INSTRUCTIONS

FIG. 3 Parallelism Potential ~
Constrained Minimization Problem

SPEEDUP
FACTOR

4

3

2

TIME FOR FLOATING MULTIPLY
TIME FOR FIXED POINT ADD = 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15

NUMBER OF ACTIVE INSTRUCTIONS

FIG. 4 Parallelism Potential ~
Simulation of Electron Scattering

SPEEDUP
FACTOR

4

3

2

1 2 3 4 5 6 7 8 9 10 11

NUMBER OF ACTIVE INSTRUCTIONS

FIG. 5 Parallelism Potential
FORTRAN Print Routine

14 15

76

6

5

4

SPEEDUP
FACTOR

3

2

r = 0.5

r = 1.0

SEQUENTIAL INSTRUCTION FETCH TIME
r = DATA FETCH TIME

DATA FETCH TIME - CACHE MEMORY SPEEDS

15 20 25 30

NUMBER OF ACTIVE INSTRUCTIONS

Constrained Minimization Problem

FIG. 6 The Effects of Instruction Starvation

4

3

SPEEDUP
FACTOR

2

1 2

TIME FOR FLOATING MULTIPLY R = . -
TIME FOR FIXED POINT ADD

3 4 5 6 7 8 9 10 11 12 13 14 15

NUMBER OF ACTIVE INSTRUCTIONS

Simulation of Electron Scat1ering

FIG. 7 The Effects of Instructions
with Long Execution Times

Implementation of Procedures on a Cl• of
Data Flow Proceaon

Glen Seth Mlranw *
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract -- We present 1 machine structure which has as its base
language, encodings of 1 general class of parallel programs
known as clots 11- 1et..ma. The machine is unique in that it
supports a rich subset of the schema class that includes
procedures. The procedure implementation scheme is particularly
novel in that the creation, execution and termination of procedure
activations are distributed over the machine. The additional
hardware required to handle procedures is small and smoothly
incorporated into existing data flow machine designs.
Furthermore, the execution overhead is low. Fundamental to the
scheme Is Hlecdw cop:rfn• of active parts of an invoked
procedure. RanlinN renomin• of the copied parts of the
procedure is used to maintain the identity of distinct activations.

I . Introduction

I.I Motivation

One general architectural approach to the task of
improving machine performance has been the design of parallel
processors. The traditional approach has been to design .,,._m
proceuor1 [25, 26] • These processors tend to divide into two
general groups. There are those that cchieve modest
performance improvement but are quite general purpose, typical
examples being the IBM 360, a SISD machine (Single Instruction,
Single Data Stream), and the CDC star, a MISD machine (Multiple
Instruction, Single Data Stream) [26] . There are also those that
achieve striking performance improvement for specific types of
computations, most notably the SIMD (Single Instruction, Multiple
Data Stream) machines, such as ILLIAC IV or $TARAN [9].

These approaches to parallel computation are limited by
the trsditional view that a computation is a sequentially ordered
set of operations to be performed on a set of datL A more
natural notion is that any operation can proceed when its
operand values are available, and the destination of the results of
the operation are able to receive them. The class of programs
called clots /lofll 1et..mcu captures this idea.

1.2 A Parallel Representation of Computations

A pro•ram act..ma in general is an abstract program,
constructed from a precisely specified set of primitives according
to a prescribed set of composition rules. Data flow schemas
(OFS) are graphical models of programs that embody the idea
that a component operation can be carried out as soon as all its
operands are available. More generally, control flow can be (and
in DFSs is) completely determined by flow of data. The most
important property of DFSs is that the computations modeled by
DFSs though highly parallel are clererminore [21] • That is, the
outputs of any DFS pro1ram that terminates on a set of inputs,
are functions only of the particular set of inputs and not the past
history, or the particular computation sequence.

Furthermore, DFSs in addition to exhibitin1 lar1e amounts
of parallelism, are syntactically modular, side-effect free, and
quite 1eneral In expressive power. It has been shown

(constructively) that DFSs are equiv1lent to the cl1ss of flowch1rt
schemas which are well known to be able to model ALGOL-like
programs [15].

Thus DFSs are a well understood model of parallel
computation which exhibits a number of properties one might
·desire to have in a language executable on a new (parallel)
machine architecture. Consequently, if a machine existed which
could execute Instructions that were an encoding of a DFS, and
executed them in the manner prescribed by the data flow model
(i.e. flow of control is determined by flow of data) we would have
a parallel machine which had as its •base language• a data flow
language [3] • Such a machine would exhibit many of the
properties of the pro1rams themselves, e.g. a high degree of
parallelism and determinate computations.

A number of the architectures proposed to date that
directly execute encodings of data flow programs cannot handle
procedures efficiently - or at all [2,7, 22,24] . In this paper we
will present an extension to the data flow machine of Dennis and
Misunas [7] which can execute data flow programs as procedures
in a general, efficient and architecturally simple manner. Section
2 of the paper is a review of the base language of the data flow
machine. Sections 3.1, to 3.3, review those apsects of the
machine's operation that are central to our procedure
Implementation. The remainder of the piper discusses the
Implementation scheme Itself.

2. The a .. L1n1u11a

2.1 Introduction

The base language for the new machine, DFM, is a subset
of a data flow language. DFL is itself just the set of interpreted
OF sChemas thiit have been thoroughly discussed in [5, 10, 11,
13, 15] • We will not introduce the general schema class but
briefly review the language.

DFL is a generalization of the idea of execution of an
operation as soon as its operands are available. A DFL program
Is a bipartite, directed graph whose nodes are

1. Actors - sites of action
and

2. Links - conveyors of values.

All the roots and leaves of the 1raph are links. We re1ard values
as being associated with tokens which are placed on the input
and output arcs of the links. An arc may hold at most one token.

A node's 6elNaWor or ffrin• nde is characterized by a
simple algorithm which depends on whether it is a link, or which
of the four classes of actors it is a member - primitive
computational function (PCF), SWITCH, MERGE gate or APPLY. The
firing rules for links and the first three kinds of actors are
depicted In figure lo We will defer the discussion of the APPLY
actor until later.

~PCF

(1nalo1ously for "F"tokens)
Flrin1 RulH

Figure 1

In general a node fires by absorbing a token from each of
its input edges, performing a transformation on them, and placing
a single token on the appropriate output edge. A node may fire
only if the ouput edge to receive the value is empty, and all of
the input edges of the node are occupied by tokens. An
exception to this general rule is the MERGE gate. It observes the
above output restriction but needs only two of its inputs to fire,
IS shown above.

Given these primitives and the composition rules, we c1n
construct fairly elaborate programs. Figure 2 is 1 data flow
program that computes fldorill(x) (x > 0).

3:

T M' F

T s F

11:

A Data Flow Pro1r1111 Compulins Flclorill
Fi1ure 2

78

The actor IDENT performs the identity transformation, the x
actor's output is the product of its Inputs, ind the • 1 actor
decrements its input 1r1ument.

2.2 D1t1 Flow ProcedurH

In sequential programming languages, the abstraction
obtained by using procedures is a useful one. One would expect
the Hme sorts of advantages to accrue In a parallel programmln&
language. We will incorporate them into DFL by generalizing the
notion of a program and adding one additional actor type. A DFL
program is a forell of properly formed DFL programs called
procedures. We associate a procedrue name with each of the
subprograms in the forest. One of the subprograms, called the
main program, has the name P0 associated with it, and it is the
!?!!!l. procedure to receive tokens on its input arcs from an
•outside agent•. That is, it is the entry point of the program in
the sense that it receives the input values.

We introduce a new actor which we call an APPLY actor. It
has 111 inputs, n outputs and is labelled with a procedure name P; •
The APPLY actor when enabled to fire, (conceptually) substitutes
for itself a copy of the procedure whose name matches that of
the actor. This action taken by the actor is defined only if a
procedure exists with name P; and the procedure has the same
number of inputs and outputs as the actor.

To completely understand how the APPLY actor works, we
must define the enabling condition, the mechanism for
transmitting Input values to the copied procedure, and the return
mechanism for results. There are two alternatives we consider:

1. The APPLY actor is enabled, as soon as its first
argument token arrives. It then copies the procedure (a
procedure copy is called an irutcnlialion) and passes argument
tokens as they arrive. An argument is passed by absorbing a
token from an input arc to the APPLY, and placing a copy of it
onto the procedure instantiation's corresponding input link's
output arc. The actor copies output values from the procedure
copy as soon as they become available on the output links input
arc and the corresponding link of the calling program is empty.
When values from each output link have been returned the copy
is destroyed.

2. The APPLY actor is enabled only when all its argument
values have arrived and its output links are empty. When these
two conditions are met, the procedure is copied and the argument
tokens passed. When all result tokens are available they are
copied by the APPLY from the input arcs of the procedures
output links to the output arcs of the APPLY actor. The copy of
the procedure is then destroyed.

In both cases we assume that the n input links are numbered left
to right, 0,1, ••• , n-1, for both the APPLY actor and the

procedure It invokes. We associate the 1th link of the APPLY with
the 1th link of the procedure it invokes. We treat the m output
links in a similar fashion.

The semantics of the two approaches to procedure
activation are quite different. In the first approach an APPLY
actor can be thought of as replaced inline by the graph of. the
procedure it invokes. In the second approach an APPLY actor
behaves exactly like a PCF actor, except that it may have multiple
outputs and computes a function that is not necessarily in the
repertoire of PCF's. The first approach we call the immediate
copy rule (ICR). The second is called the deferred copy rule
(OCR). The OCR most closely corresponds with one's idea that a
procedure is some sort of a functional abstraction, whereas the
ICR Is more like a macro expansion. The OCR has the advantage
of simplicity of implementation. It also lends an additional
homo&eneity to the set of actors, since its enabling rule is that of

a PCF. However, the ICR clearly allows greater parallelism than
OCR. Furthermore, it is easy to simulate the OCR for an APPLY
actor using an ICR APPLY actor and gates. Consequently, we have
chosen to incorporate the ICR form of the APPLY in DFL

The ICR has one potential problem. Suppose an argument
token arrives on the i1h link and the execution of some procedure
is initiated. Consider what happens if another argument arrives
on the ith link before the previously invoked copy of the
procedure terminates. In order to be consistent we must create
another copy of the procedure and pass this newly arrived token
to it. Thus the APPLY actor must "keep track of" an arbitrary
number of concurrently executing instantiations of the procedure.
Needless to say, this poses some serious implementation
questions. If we can demonstrate for every APPLY actor a. that

V (i, j) IR<i) - R(j)I S 1, 0 S i, j S number of inputs of 0.
where nm • number tokens that have arrived on

the 1th input of a.
for any reachable configuration of a data flow program, then we
can show for any apply actor Cl of a DFL program that at most
one instantiation can exist at any time, and consquently the state
information is bounded. In general, data flow programs do not
exhibit this behavior. However, certain large syntactic sub­
classes of DFL programs have been shown to satisfy the above
arc condition [19, 20). One such class is known as -11 formed
llaea flow program1. Beside having the above property, a well
formed data flow procedure, when it terminates, will be in its
initial configuration. In particular, the only tokens left on the arcs
of a terminated procedure, will be the initial "F" tokens on the
gating inputs of MERGE gates of iterative loops. This property
will be important for the implementation.

The introduction of procedures concludes our discussion of
DFL The reader may note the DFL language does not contain
structures as a token type, nor does it have any structure
manipulating actors. These features have been omitted for
brevity, since they are adequately discussed in [51 and [20].

3. The M1ehine

3.I Introduction

There are obvious hardware analogs to each of the the
actor types of a data flow program. This suggests that it is
possible to execute an encoding of a data flow program by
constructing an exact hardware realization of the program [14] .
This approach has several serious liabilities [19]. Most important,
the resulting machine would have much idle hardware, since any
direct implementation of actors would necessitate placing
substantial computational power at each hardware actor. Also,
such a machine would not be readily configurable. For all these
considerations we reject out of hand any direct implementation of
data flow program graphs.

The description of the machine architecture we present
will be at a rather abstract level, and quite brief since our main
purpose is to introduce the procedure implementation scheme.
The interested reader is referred to [4, 7, 19] for details. Briefly,
this new machine, DFM, is a member of a larger general class of
system structures known as pad.a comnwnicolion arclii1ec1u.rea
[6] • Such systems consist of a collection of interconnected
subsystems, which themselves may be packet communications
structures. The subsytems are Interconnected via a set of one
way links called eliannel1. They communicate with each other by
sending messages through the channels using a well specified
protocol. The messages transmitted are known as pachea.

79

3.2 The Proceuor Pipeline

The processor pipeline is composed of four parts, the
!nstruction !!!.emory (IM), the !,l'bitration !!.8twork (AN), the
functional units (FU) and the distribution network (ON) connected
is shown in figure 3. - -

OISTRIBUTION
NETWORK •

FUNCTIONAL
UNIT

FUNCTIONAL
UNIT

INSTRUCTION
MEMORY

RELOCATION
BOX

PACKET
MEMORY
SYSTEM

ARBITRATION
NETWORK

Data Flow Processor With Procedlra Cap1bility
Figure 3

The IM is the heart of the machine. It contains a collection
of nc identical units called call1. We can refer to a particular cell
of the IM by a unique integer which we call a call name. With
the exception of APPLY actors, there is a one-to-ona
correspondence between a cell of an object program and an
actor of the source program. Since we are not interested in the
precise representation of cells, we will schematically represent
them as in figure 4.

OPCODE

AR Go DESTo

ARG1 DEST1

ARG2 DEST2

AbstrlCI Call Rapr-tation
Figure 4

The OPCODE field specifies a function to be computed according
to the type of the actor the cell represents. It is set at program
loading time and remains fixed throughout execution. The ARG
fields are also registers. Their contents are encodings of the
values that reside on the input arcs to the actor whose
representation was loaded into the cell. Clearly the ARG fields
change their contents during execution. Notice that by assuming
three such fields, only actors with three (or fewer) inputs .,.e
representable in the machine. The DEST fields contain addresses,
which are encoded as register pairs which specify an ARG

1:

4:

7:

register of a cell. If a cell has fewer than three destinations, the
unused DEST fields are set to a distinguished state ~
Similarly, if an OPCODE requires fewer than three arguments, the
unused ARG fields are set to notused. t.tlltiple destination fields
are used to provide ,_, OfVaiiies. Since there are three
destination fields, the maximum branch factor of a link of a
representable program is three.

When the function specified by OPCODE (OPCODE Ill
SWITCH) is computed, the results are sent to the ARG registers
of the cells named in the DEST fields. For SWITCH's, one of the
destination will be selected on the basis of the Boolean argument
of the cell. The cell encoding of the factorial program of figure 2
is shown In fi1ure 5.

MERGE 2: MERGE 3: SWITCH

1 3, 0 't. 4, 0 6:0

5, 0 5, 1 NOT USED

FALSE NOT USED FALSE NOT USED NOT USED NOT USED

SWITCH 5: LESS THAN 6: MULT

7, 0 8, 0 1, 1

11,0 1, 2 NOT USED

NOT USED NOT USED NOT USED NOT USED NOT USED NOT USED

IDENT 8: IDENT 9: DEC

6, 1 2, 2 2, 1

NOT USED 9.:o NOT USED 3, 1 NOT USED NOT USED

.NOT USED NOT USED NOT USED 4, 1 NOT USED NOT USED

Cell Encoding of Fectori1I Program
Figure 5

By convention, we let the oth ARG field of a SWITCH correspond
to the d1ta input. The first ARG field correspands to the control
input. The oth DEST field holds the T destination address, and the
181, the F address. Similarly, the oth ARG field of a MERGE is the
T input, the 111 is the F input, and the 2nd is the control input.

Now that we have outlined the structure of cells, we must
describe their operation. Figure 6 specifies the operation of cells
whose opcode field Is not MERGE. The operation of cells
implementing MERGE gates la an obvious modification.

START
CLEAR

ARG
REGISTERS

Cell Operation
Figure 6

PLACE OUTPUT
PACKET IN
CHANNEL

CONSTRUCT
OUTPUT
PACKET

80

where an operation packet la a septuple of binary words

{225i V0t Vt, Vz, ~ dt, d2}
ope • contents of opcode register
vi • contents of register ARG;

• !!!!!!. if register ARG; is notused
d1 • contents of register DEST;

• null if register DEST; Is ~

Thus the cells of the instruction memory pass •messages• to the
arbitration net requesting that an operation be done. Notice that
cells have some processing capability - they are small finite state
machines. However, this capability la quite primitive. The
operation of the rest of the pipeline ahould be Intuitively clear,
1nd is omitted.

3.3 The Virtual Memory

Now that the basic processor pipeline has been outlined,
and its m1jor characteristics described, we turn our attention to
the virtual memory part of the ORA. With iterative and conditional
programs and recursive procedures (to be described later) it
becomes obvious that parts of a program are more •active• than
others. Therefore, it is desirable to have a •- 1-1 memory
liierarc#ly. One level is the instruction memory, in which we keep
the most active parts of a program. The other level is some sort
of 6oeiing 11ore, much larger than the IM, and lacking any
processin1 ability. Hence it is relatively inexpensive. Cell image•
are kept in the backing store. Each cell image is a sequence of
binary words which completely specifies the state of a cell.

When a cell is referenced during execution that is not in
the IM, its Image is fetched from the backing store and placed
into a physical cell (p-cell) of the instruction memory (assuming a
p-cell is free). If a cell c is referenced that is not in the IM, and
there are no free p-cells, a p-cell is selected for displacement. A
p-cell is said to be prildne if it has received no operands, or is a
MERGE cell and contains only and initial F token. A pristine,
selected p-cell is simply discarded. Otherwise, the state of the
selected p-cell, together with the name of the cell that is •in it9 is
stored in the backing store. This makes room for the cell image of
c which is subsequently fetched and installed in the new, free p­
eel! in the IM. Notice that the set of cell names now has the size
of the backing store plus the IM, rather than just the IM.
Furthermore, a cell may be resident in the machine as an image
either in the backing store or in a p-cell. Thus the M•ol cell
name space is much larger than nc. The command and control
networks and the PMS implementTha backing store [6,19] • To
retreive a cell named c, a packet of the form {fetch, c} is issued
by some controller in the IM to the command network. Storing is
similar, but a packet tagged store is sent, and the packet also
contains the state of the named cell. Retrieved cells are returned
to the IM through the control network, again via a packet
containing a cell name and the named cell's state.

3.4 Procedure Invocation and Activation Names

There are several ways of invoking a procedure in data
flow lan1uage that are consistent with the data flow model.
Consider for example, a single input, k output procedure P. The
effect of a token arriving at an actor a. labelled APPLY P is easily
described. When a data token • arrives on the input arc, a copy
of the data flow graph for P is made, • is absorbed from the
input arc of a. and a copy is placed on the output arc of the
input link of procedure P. As each of the k outputs for this
activation of P is produced, it is passed from Its output link to the
corresponding output link of the APPLY and hence to a successor
cell of a. (For convenience in discussion, each cell In a data flow
program is assumed to have a unique name associated with it.
The name of a cell will be shown in the fi1ures as <name>: next
to the representation of the cell. The name of a cell is used in

the data flow processor to Identify It. For example, to route
result packets to It or to retrieve it from memory.) To be
syntactically correct, P must have one Input link and k output
links.

The heart of the procedure Implementation scheme Is the
relocation bos together ·with a special functional unit that can do
•byte• manipulations on operation packets. Anticipating
mechanisms to be proposed later, some of the functions of the
relocation box (RB) will be described. It is assumed that every
actor in a data flow program as represented In the processor has
a unique cell name except for APPLY actors. Further, during the
course of execution (where and how will be described later) a
cell name may have a suffix appended to it - these suffixes will
serve to distinguish activations. At any time during the execution
of a program, there will be a one to one correspondence
between used suffixes and procedure activations. In the following
discussion we will seperate a cell name from a suffix by a •. • •

The RB's operation is quite simple. Upon receipt of a /etcla
paclret from the memory command network {fetch, -1. it
passes the packet {fetch, •} to the packet memory system.
When cell image of • Is returned by the PMS to the relocation
box, all the names in its destination fields are changed to have
suffix fl. The RB then passes the resulting cell image back
through the memory control network to the instruction memory.
Finally, it is assumed that with the sole exception of the
relocation box and one special functional unit, no other
component of the data flow processor of figure 3 can distinguish
if a cell name has a suffix appended or not. That is, if the
distribution network for example, receives a packet with a
destination cell name &fl it sends a result packet to cell • (the
dot seperating the name from the suffix is included merely as an
aid to the reader's eye). The essential idea is that a complete cell
name (i.e. a cell name plus an appended suffix, which we refer to
as an esecution name) is treated everywhere but the relocation
box and the distinguished functional unit as a single entity - a
cell designation.

Before introducing the complete procedure mechanism, we
will first demonstrate how a single input/single output procedure
is invoked on the machine. The APPLY cell in particular has the
format shown in figure 7.

APPLY
p OEST.a

empty NULL.a

not used NULL.a

An Apply Cell
Figure 7

P is the name of the procedure to be invoked, DEST.Q is the name
of the cell that is to receive the result value, and the empty ARG
register is to receive the argument for the procedure call. The
implementation of a single input-single output APPLY actor Is
straightforward. When the operand • arrives, the APPLY becomes
enabled, and transmits the packet
{APPLY, P, ar, DEST.Q, NULLQ, MJLLQ} which the arbitration
network routes to the special functional unit that processes
procedures. The FU on receipt of an apply operation paclret
creates a unique suffix fl and then outputs two packets {ar, P.fl}
and {DEST.Q, RT.fl}. (Every packet sent to a cell must also
contain field tultlre•aea, that is, specifications of which register in
a cell is to receive the value(s) conveyed by the packet. These
will not be explicitly represented in the diagrams since it. should
be clear from the context which register of a cell is supposed to
receive which value. Leaving out the field address will make the
diagrams a bit less detailed and hence less confusing.)

The first picket to arrive at the instruction memory

81

destined for the procedure activation P.e, causes the cache
mechanism of the instruction memory to retrieve from the packet
memory system a cell with name P.fl. (Since fl is unique suffix, cell
P.e cani possibly have been in the instruction memory.) Due to
the action of the relocation box, a copy of cell P will be retrieved
and all its destination fields &iven the suffix fl. Once the cell P.fl is
successfully installed in the Instruction memory, actor P.e will
then receive Its operand ar, and become enabled. Whatever
computation is specified by P (the first actor of the invoked
procedure) will be carried out and the resulting values will be in
packets destined for cells Do.e. 01.e ••• D1rfl• where 0 1, ••• On are
the contents of the destination fields of P. Clearly Do.e . • . o...e
will not be found in instruction memory and will be fetched from
the packet memory system in the manner described above for
P.tr. And so execution of the flth activation of P proceeds.

To return the value computed by P we assume that all
procedures are compiled so that their output value is to be sent
to a cell named RT, which is a re..wl cell name. That is, rather
than having an output link, pro1rams are compiled to have a
(uniformly named) output cell. Further, It is assumed th1t
resident In the packet memory system is a cell with name RT, as
shown In fi1ure 8.

RT:
RET

empty NULL

empty NULL

!!.Q1..!!§fil!. NULL

Return Cell
Fi1ure 8

This cell belon1s to no procedure (i.e. it is a runtime support
cell). It will be retrieV.d by the second packet {DEST.Q, RT.e}
generated by the FU as a result of the APPLY cell firing. When it
is finally resident in the IM, it will appear as in figure 9.

RT.<T:
RET

OEST.a ' NULL. <T

empty .NULL. <T

not used NULL. <T

Return Cell in IM
Figure 9

With the compiler convention previously mentioned, when
execution of the procedure is complete the packet {O, RT.tr}
will be sent by the FU to the ON, where 0 is the output value of
the flth activation of P. Thus RT.fl will be enabled and create the
packet {RET, DEST.Q, 0, NULL, NULLe, NULL., MJLLtr} which is
sent to the appropriate function unit. This FU will then output
the packet {O, DEST.Q} thus sending the result of the •'h
activation of P in the correct destination cell, and returns fl to the
pool of free suffixes.

The question immediately arises as to whether the machine
resources are all reclaimed. Clearly the activation name • has
been recovered. But what about the •residue• from the now
terminated procedure activation? We remind the reader that the
procedure is a well formed data flow program. Consequently, at
termination, all of its cells are pristine. Thus because of the cache
displacement (described in section 3.3) algorithm alaere will be no
cell• rllitla o • ••ffis in alse PMS or in tlse reql&f/JI qaeue• of alae
PMS. So all the fl residue is in the IM. Since cell names
(unadorned by suffixes) are all unique, this residue will be
purged from the IM as room is required for new cells. No trouble
arises should • be reused as an activation name for the same
procedure as its last use before that residue has been cleared
because the left-over cells are all pristine.

It may be objected that the IM should be Immediately

purpd of • residue to prevent displacement of •useful• cells
from the memory. This can be done by heving the· FU emit 1
packet {•,IM} in addition to {O, DEST.Q} when It processes
the RET operation packet. Upon receipt of this packet, the IM
cache manager purges itself of all cells with 1 • suffix. When it is
finished, it send the packet {RECLAIM, •} to the FU, which
then places • on the free list of suffixes. Alternately, we could
construct the cache manager so that pristine cells have highest
priority for removal.

This procedure application scheme has several attractions.
First it is simple. Overhead in terms of storage, or extra packets
in the system, is almost zero. Few changes need to be made to
the basic data flow processor, and those that are necessary are
incorporated in 1 smooth and natural way. Also, notice that in this
scheme the entire procedure is not copied, just the pieces of it
as they become active. This is an important characteristic
especially for programs with conditional constructs. For these
programs, the amount of processing activity is not uniform over
all program actors. In particular the predicate of a conditional
program n, will select either the 9true• or .,a1se• subgraph of n.
It will never be the case that both subgraphs (of a given
activation) execute. Thus to load both of them into the instruction
memory is wasteful of instruction memory space and memory
control network bandwidth. Finally, procedures are compiled no
differently than programs, thus allowing (without recompilatlon)
the use of any data flow pro1ram as a data flow procedure. This
will be discussed at 1reater length in section 3.7.

3.!I More Elaborate Schemes.

The primary deficiency of this scheme for procedure
implementation is that it supports a rather primitive form of the
APPLY actor - only one input and one output. If this sort of
procedure call were incorporated in a data flow processor which
could manipulate data structures, this deficiency would not be so
bad. Then multiple input values and multiple output values could
then be encoded as structures. However, such a for111 of
procedure invocation would be undesirable because it would limit
the degree of parallelism achievable. After all, there is no
inherent reason for returnin1 all the outputs of a procedure
simultaneously. If a procedure produces k outputs, to wait for all
of them to b• computed, assemble them into a structure, return
the structure to the calling routine, disassemble the structure,
and then to use the resulting k components, restricts the amount
of concurrency achievable in a program. It also incurs the
overhead of assembly and dissassembly of structures. One would
like to pass each of the k output values to its destination in the
callfng procedure as it is generated.

Similarly, one would like to have multi-argument functions.
Passini an J component structure with the J argument values to
1 procedure as its components is undesirable. Again there is a
loss of parallelism. A particular subgraph of the data flow
procedure may require only a subset of the J input values to
start execution. Thus to inhibit passing of any argument values
to the procedure until all of them are available, seriously limits
the achievable level of concurrency.

The naive approach to implementin1 multiple input/multiple
output APPLY (in the context of the previous discussion) is simply
to h1Y9 J apply cells for a J input APPLY actor each receiving
one ar1unient value:

APPLY

P; OESTo

empty ·0EST1

!!filJ!W! OEST2

APPLY Cell for Multiple Input APPLY
Fi1ure 10

82

All fields are as in figure 7 except P1 is the jth input link of
i:>rocedure P. The compiler is assumed to write •coc1e• to send the
jth ar1ument value to cell AP1 • We also place some number n of
RETurn cells in the PMS, with names RT°'" .• RT,..1• When the FU
processes an APPLY operation packet it issues packets that
retreive k return nodes RTo-•, ••• RTk-I·• and supplies each with
the appropriate destination name. Unfortunately, this scheme
does not work. The functional unit will assi1n a new activation
name (new suffix) to each cell AP1 • This will 1uarantee incorrect
operation for all but the most contrived programs. Even if this
could somehow be patched, there is also no way to return output
values correctly since each cell AP1 would cause 1 new set of
RETurn cells to be fetched. Finally, there is no mechanism for
freeing suffixes once a procedure instance terminates.

To correctly invoke a procedure we need to guarantee that
for each set of input values to a particular APPLY actor only the
first argument value causes 1eneration of a packet which causes
the functional unit to create a new activation name. Furthermore,
we must make certain that the other argument values that are
sent to the APPLY actor are all passed to the same procedure
activation as the first. Last, we must be sure only one return
mechanism is set up. To do this we introduce a new actor which
we call SEQ (for sequence). It has J inputs and J outputs.

Operation of the SEQ actor is simple. Upon receipt of any
one of its inputs, say on input arc j, it produces an output value
which is a unique suffix name. This value is then passed out on
each of SEQ's output arcs. No further action is taken until t,okens
arrive on inputs 0,1, ... j-1, j+l, ... J-1. When this state occurs,
one token on each of the input arcs i (i id j) is absorbed and no
output token is produced. The actor (and cell) then return to the
initial state and the above action is repeated. Figure 11 shows
two examples of possible firing sequences of a SEQ actor.

SEQ Actor Firin1 Rula
Figure 11

Notice that while the times at which outputs are produced are
quite unusual compared to the other data flow actor$, only one
output is produced for each set of J input values.

To allow freeing of activation names we introduce a new
actor type FREE. Like SEQ, the FREE ac.tor is not available to the.
programmer. It is a •runtime• support actor that allows proper
activation name maintenance. This new actor has been introduced
(just like SEQ actors) as a convenient way of showing how a
procedure call and return is implemented. It is not an addition to
DFL, but merely a way of presenting the details of the call-return
mechanism that preserves a one to one correspondence between
cells and actors. The FREE cell receives as inputs copies of each
of the output values of the procedure instance of which it is a
member. When all the output values have been produced the
FREE cell Is enabled. It then outputs a packet {FREE, 00o 01, 02-
• ., NULu, MJLU,. •• NlLU} which is routed to the functional
unit that handles APPL Ys and RETurns. Upon receipt of this

packet the functional unit frees the activation name • or outputs
the packet {•,IM} as before.

The reader should notice that unlike the RETurn cells, the
FREE cell is esplicidy included as part of the procedure
application mechinism. This saves us the difficulty of determining
at runtime the number of values the FREE cell must receive
before becoming enabled. It may be objected that since the
RETurn actors are not part of the procedure that the RETurn
cells have no way to •know• what the name of the FREE cell is.
Consequently, they cannot send result values to it. To fix this we
send tUJO destination names to the RETurn actors at runtime - the
name of the cell that is to receive a result of the procedure call,
and the name of the FREE cell. To ensure that these names are
sent exactly once to the return cells, we add one more runtime
cell, with an opcode APRET, whose function is described below.
The full procedure cell mechanism is shown in figure 12.

SQ:

FR:

Procedure Call Mach1nilm
Figure 12

The J input APPLY actor now maps into J APPLY cells of the
form in figure 10 except that they have MJLL destination field,
and the third argument field is used to hold a suffix name. SEQ
and FREE actors are added to maintain activation names, and RET
and APRET actors to handle return values. However, at the
source level all the user is aware of is that he is using a single
actor, an J input/k output. immediate copy APPLY. To see how
this all works, let us supr.se that the Q1h activation of some
procedure produces the i1 argument •i for an application of P,
where P has J inputs and k outputs. For concreteness, we depict
the case of J • 2, k • 3 in fi1ures 13 through 15.

The compiler will have generated code so that the actor
that produces the value «i has as its destinations the cells AP;
and SQ. Thus the packets {«i , AP;Q} and {«i , SQ.Q} will be
produced. These will cause the two cells shown in fi1ure 13 to be
fetched into the instruction memory.

so.a:
APPLY SEO

P; NULL.O empty AP0.a

empty NULL.0 empty AP1.0

empty NULL.0 empty APR.0

Figure 13

83

The cells are depicted before the argument packets {«i , AP;Q}
and {«; , SQ.Q} have been delivered. SQ is now enabled and will
generate the packet {SEQ, ••• «; ••• , APo-0. AP1.Q, APR.Q}
which is routed to the special functional unit. This FU outputs the
packets {e, APo-Q}, {e, AP1.Q}, and {e, APR.Q}. The packet

{•, AP;.Q} will enable the cell AP;.Q, and as a result it will
output the packet {APPLY, Pio «, e, NULLQ, NULLQ, NULLQ}
which is then routed to the apply functional unit. It then outputs
the packet {«, P;.e} and execution from the i1h entry cell •th
activation procedes as described in the single input case. The
other packets output by the functional unit - {•, AP,.Q} ,
J ,. i , J S J - eech cause cache faults, thus bringing in cells
shown in figure 14.

APPLY

'1 NULL.a

empty NULL.a

empty NULL.0

Figure 14

When their arguments arrive, execution will proceed in the
manner described for AP1 •

The returning of values from the e activation of n is
handled in a similar fashion as that described in the previous
section on single input/single output APPLY. In this case it is the
APRET cell that causes the RET cells to be fetched into the
instruction memory. The packet {e, APR.Q} output by the FU
retrieves the cell shown in fi1ure 16.

APR.0:
APR ET

empty I OEST 0.a
FR I OEST1.0

not used J OEST 2.a

Figure 15

Notice that the APRET cell has as a constant operand, the name
of the FREE cell. When it is enabled it produces the output packet
{APRET, e, FR, NULL, DESTo-Q, DEST1.Q, DEST2-Q} This packet in
turn causes the FU to output packets
{DESTo-Q, RTo-e}, {FR.Q, RTo-e}, {DEST1.Q, RT1.e}, {FR.Q, RT1.e}, •••
Thus the RETurn cells receive as parameters the names of botli
of their destinations. When a RET operation packet is processed
by the FU, both the named FREE cell and the return destination
cell receive copies of the output. We see that output values are
returned as before. However, processing a RET operation packet
does not cause the FU to terminate the activation. Instead it is
the firing of the FREE cell that instructs the FU to terminate an
activation as discussed above.

3.6 Relocetion Box Revisited

To simplify the previous discussion we have purposely
oversimplified part of the operation of the machine. We had said
that the relocation box upon receipt of a fetch packet would
always pass the packet to the PMS with the suffix stripped off
the cell name. This is incorrect. If the machine really operated in
this fashion, then it could never retrieve cells that had been
displaced from the IM into the PMS. There are a number of
solutions to this problem. However, selection amona them is
impossible without a more detailed model of the implementation
of the packet memory system and the cache mechanism. Thus 1
full discussion is beyond the scope of this paper. The p1rticulll"
solution described here was cholen for its simplicity, and should
not be thouaht of • 1n •opt1ma1• solution.

Upon receipt of 1 packet {fetch. ..,} the relocation box

first checks if • is a valid .activation name. If it is not, the RB
signals a runtime error; otherwise it issues •• fetch requests to
the PMS. One is for a cell with name ., and the other is for a cell
with name The PMS will respond in one of several ways.

1. If the PMS returns no entry for either request, then the
RB signals an error.

2. If the PMS returns a cell Image for ..,, and no entry for
., then the RB signals an error

3. If the PMS returns a cell Image for both, then the cell
image returned in response to the request .., Is pessed beck to
the IM unaltered.

4. If the PMS returns a cell image for the request ., and no
entry for the request ..,, then the cell image returned Tri
response to the request • is passed back to the IM with its
destination fields altered as previously discussed.

3:1 N1111e1 ind Loedin1

Another attraction of this impl•mentation scheme for
APPLY is that It does away with the need for an elaborate linking
loader for data flow programs. Consider for example, a data flow
program consisting of several procedures that have been
independently compiled. One may assume for the purposes of
discussion that the cell names (and hence the contents of the
destination fields of a cell) correspond in some direct way to the
memory locations of the packet memory system (PMS). Thus when
loading the component parts of the program (i.e. the procedures)
into the PMS two things must be done. Assume for concreteness
that a procedure is compiled into a linear block of cells numbered
from 0 and that cell numbers are cell names. When loading a
procedure, a number equal to the cell number into which the first
cell of the procedure was loaded must be added to all destination
fields of all cells that refer to cells that are part of the
procedure. Then all external references in a procedure - that is
entrance cell names in APPLY cells - must be set to the correct
value. This v1lue depends of course on the location into which
the referenced procedure is loaded. Notice however, thet return
names need not be relocated since they are •constructed• at
runtime. Thus no correcting of the destination addresses of an
APRET cell need be done. Indeed, the RETurn cells which actually
transfer return values to the invoking procedure are not nen
pan of the invoked procedure. Thus the two tasks of loading -
fixing (by adding an offset) of internal references is easy, and
fixing of external references is greatly simplified. Only half of the
job must be done before execution, since the entry but not the
return points must be relocated.

The naming scheme provides a solution to establishing the
identity• of distinct activations amenable to efficient hardware
implementation. Since a cell of an activation is uniquely identified
by its name (assigned in the original compilation) and a single
suffix, names are bounded in size (we assume of course that
suffixes end simple names are of fixed maximum length).

3.8 One Last CMn1e

Creation and returning to the .,ree poor• of activation
names (i.e. suffixes) is probably not an appropriate activity for a
FU The primary reason is that one would like to have multiple
Flfs for processing of APPLY, RET, FREE and SEQ packets.
Coordinating the creation and returning of suffixes to the free
pool among several autonomous, asynchronously operating
modules (Flis) is a messy task. It 1lso introduces an overhead
since the FUs coordln1tion must t1ke place through exch1nge of
messages (packets) if we are to keep the overall mechine
structure consistent. Consequently, we propose the following

84

modification to the scheme described above. We Introduce an
additional date pith from each FU that processes applies etc. to
the reloc1tion box end from the reloc1tlon box to the those Flfs.
Thus the machine structure Is:

DISTRIBUTION
NETWORK

FUNCTIONAL

UNIT

FUNCTIONAL
UNIT

INSTRUCTION
MEMORY

.!!!;. CELLS

RELOCATION
BOX

PACKET
MEMORY
SYSTEM

•
•
•

ARBITRATION
NETWORK

Final Machine Structure Supporllq Procedures
Figure 16

When jth functional unit needs a new suffix, rather than
generating It internally, it now sends the packet {NEWSUFFIX, j}
to the relocation box. The RB responds by generetlng a new
suffix name and sending the new name (as a packet over the new
data path) to the requesting FU When· the FU wishes to free a
suffix • it sends the packet {FREESUFFIX, •} to the RB which
then returns • to the pool of free suffix names. Thus in the new
machine, assianment and freeing of activation names takes place
at a central location, hence avoiding the problems of maintainin&
a distributed list of free suffix names. The choice of using the
relocation box to perform these functions is somewhat arbitrary,
the main idea being to centralize activation name management.
Where it is done is not critical. Note that simply letting each
apply FU manage its own activation names cannot work even if a
Flis pool of names contains no elements in common with any of
the others. The problem is that an additional mechanism must be
provided to auarantee that a packet {FREE, •} is routed to the
functional unit that created •· Because of this complication the
above scheme is inferior to the central name allocator.

3.9 Procedure Variabl•

Finally, it should be observed that the naming scheme for
establishin& unique activations is in no way dependent on the
fact that the name of procedure in an apply cell that is to be
invoked is constant. (Its placement in an operand field of the
APPLY cell was intentional.) Consequently, without adding any
additional mechanisms to the schemes proposed, procedure
variables can be handled. One merely has to compile the APPLY
cells with empty entries where the entrance cell names for the

invoked procedure was. Of course some other actor of the
program now must send a cell name corresponding to an entrance
point of a procedure to the appropriate APPLY cell In order for it
to become enabled.

One simple way to do this is to have each APPLY cell of
the call mechanism receive the name of the procedure it is to
invoke, rather than a node name of a particular entry point. When
the 1th one is enabled it passes to the FU a packet of the form
{APPLY~ P, '•., NlA.LQ, MJLLQ, MJLLQ}. The FU •knows• from
the opcode and the first two ar~uments, that processing of this
packet Is supposed to send the i h argument to the ,th activation
of procedure P. The FU can either

1. Look Ufi In a table set up at loading time the name of the
cell that is the i h entry point of procedure P.

or
2. With a suitable compiler convention, compute the name

of the cell given i and P.

Though either approach works, the former has two advantages.
First, since the call structure is set up at compile time, the
number of inputs and outputs to the apply mechanism is known.
This information could be incorporated in the encoding of the
APPLY cells and also in the table. This would allow the FU to do a
runtime check to see if the named procedure has the appropriate
number of input and outputs. Second, using a table allows the FU
to check if procedure P was defined.

3.10 Conclusion

We have presented here several schemes of increasing
capability for implementing procedure application in a large class
of data flow processors. All of the schemes implemented the
immediate copy rule - that is, a data flow program with an apply
actor is semantically equivalent to one where the APPLY has
been replaced by the program graph of the procedure it invokes.
This effect can only be achieved at runtime since recursive
procedures and procedure variables are allowed. The schemes
presented were efficient in the sense that the overhead in terms
of the number of packets required to set up and terminate an
activation was small. In addition only the pieces of the invoked
procedure that were active were brought into the instruction
memory. This helps economize the use of instruction memory
space, especially in the case of data flow procedures with
conditional components.

This scheme was designed to be quite general, and minor
modifications to it can achieve very different behaviour. For
example:

1.
a) Forcing SEQ to wait for all its inputs before firing
b) Altering the compiler so that the FREE cell of a

return mechanism receives it values from the same sources
as the RETurn cells

changes the invocation rule to OCR.

2. We restricted programs to have only one outstanding
procedure activation at each call site (section 2.2). If we make
some simple modifications, the scheme will work in a OFM with
acknowledgement of packets [8] and this restriction can be
eliminated. Another minor modification then allows the machine to
handle 1treo1n1 as input and output data types [27J The details
involve no major changes, but are beyond the scope of this
paper.

The mechanism for procedure implementation outlined here
should be regarded as a aclteme, and not a particular method. The
things that are central to the approach are the ideas of

85

1. Creation of a tiirtual cell name 1paee, using a
hierarchical associative store.

2. Creation and separation of different procedure
Instances through the n&ntime reumin,. of the cells that
store the (encoding of the) procedure Instance.

3. Seleetiw copying of the parts of procedures as
they become active.

4. Keeping the amount of •tote illformotion that is
necessary to characterize e procedure inltolllff 6er&nded
and encoded in the cells by Imposing 1yn&oetie Nlfrie1io1U
on the base language.

BIBLIOGRAPHY

1. Amerasinghe, s. N. Tlte Hontlleing of Procedure Vorio61e•
in o Bue l.onpage• s. M. Thesis, Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA.
September 1972.

2. Arvind, and Gostelow, K. AN- Interpreter for Do10 F10111

ond 111 lmplico1ion1 for Campuler Arditeeture. UCI
Technical Report •72, Department of Information and
Computer Science, University of California - Irvine, Irvine,
CA. October 1975.

3. Dennis, J, e., and Fosseen, J, e. lntraduc1ion ta Doto
FIOlll Scliemu. CSG Memo 81, Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA,
September 1973.

4. Dennis, J, B, and Misunas, o. p, •A Preliminary
Architecture for a Basic Data Flow Processor". Proceeflin1•
Second Annaal Sympallium an Computer An:biteeture,
January 1974.

5. Dennis, J,
Language".
Goos and J.
NY, 1974.

B. "First Version of a Data Flow Procedure
l.ecture Nate• ill Computer Science, 1!1, G.

Hartmanis, Editors, Springer-Verlag, New York,

6. Dennis, J. e. "Packet Memory Systems Architecture",
Proceeding• a/ tlte 1915 Sa,.omare Campu1er Conference on
Parallel Proce1dng, August 1975.

7. Dennis, J, e. and O. p, Misunas "A Computer Architecture
for Highly Parallel Signal Processing". Procee4in1• of tlte
ACM 1914 National Conference, ACM, New York, NY,
November 1974.

8. Dennis, J. B. , Misunas, o. p. , and Leung, c. K. A
Hi11aly Parallel Proceuor B1Ut14 on 11ie Do1a FlOlll Concept•
MAC TR134, Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA, August 1974.

9. Flynn, M. "Some Computer Organizations and Their
Effectiveness• •
September 1972.

IEEE Tramac1ion1 an Camp1&ter1,

10. Hack, M. Analym of Production Scltema1a. MAC TR-94,
Department of Electircal Engineering and Computer Science,
MIT, Cambridge, MA, February 1972.

11. Karp, R. M. and R. E. Miller "Properties of a Model for
Parallel Computations: Determinacy, Termination, Queueing".
SIAM Journal of Applied Matltematilll, 14, November 1966.

12. i<eller, R. M. •Ulok-Aheld Processors•. JICJI c.,.,_.,.
S..Wya, vol 7, number 4, Dlcember 1975. ·

13. Kosinski, p, R. •A Dita Flow Llnguqe for ()per1tlns
Systems Proar1mm1111• • "°"""in11 o/ ACM SICPLAN­
SICOPS lnter/oce Mfflilt1, SIGPLAN Notices, 8, 9,
September 1973.

14. Miller, R. E., and Cocke; J. Co11/lpra6le Computen: o
N.,. a.., o/ Ce"'"" Par,... .,,,,,,.,.,,, Report RC 3897,
IBM T. J. Watson Research Center, Yorktown Heights,
N.Y., June 1972.

15. Leung, c. K.
Fl- SclNI,,..,.

Formal Propertiea o/ Well-Formed Doto
MAC Technical Memorandum 66,

Department of Electrical Engineering and Computer Science,
MIT, Cambridge, MA. June 1972.

16. Miranker, G. s. lmplerneruatioft SclNrmea /or Dato Fl­
Procedu.rea. CSG memo 138, Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA,
May 1976.

17. Miranker, G. s. Pnmn1 Poebt Com11111nicodo111
Arcliilectu.re• Correct. CSG memo-143, Department of
Electrical Engineering and Computer Science, MIT,
Cambridge, MA, September 1976.

18. Miranker, G. s. An Approacli For ProtJi1t1 Poeht
Commuldcatfona Arcliilec111r., Cornet. CSG note-27,
Department of Electrical Engineering and Computer Science,
MIT, Cambridge, MA, September 1976.

19. Mir1nker, G. s. Deai1n and Cornctneu o/ o Data Fl-
Procedu.re Meclionbm· s.M. Thesis Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA,
January 1976.

86

20. Misunas, D. p, A C.111,,.,.,. ArcliilllCh&re /or Doto F'­
C.mpatodon. s. M. Thesis Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA,
July 1975.

21. Patil, S· s. •ciosure Properties of Interconnections of
Determinate Systems". Record o/ tlNr Project MAC
Con/enmce on CoJtCUmtnt Sysaema and Parallel Computotioft,
ACM, New York, 1970.

22. Pin, A., et. 11. "LAU System Architecture: A Parallel
Data-Driven Processor Based on Single Assignment".
ProcHlin11 of tlNr 1976 So,.amore Computer Co1t/erence 011

Parallel Proceadn1, August 1976.

23. Rodriguez, J. E0 A Crapli •o4el for Parallel
Computation. TR-64, Project MAC, MIT, Cambridge MA,
September 1969.

24. Rumbaugh, J, A Parallel A1yncliro1101U Compl&fer
Arcliilectu.re For Data Flo• Pro,.raJlll• MAC Technical
Memorandum 150, Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA, May 1975.

25. Slotnick, o. "Unconventional Systems". Proceedin61

AFIPS Sprin1 Joint Computer Conference, 1967.

26. Thurber, K., and Wald, L. "Associative and Parallel
Processors". Computin1 s-ya. vol. 7 number 4,
December 1975.

27. Weng, K· Stream Oriented Computation in Recurait1e Dota
Fl- Selie,,..,. MAC Technical Memorandum 68, Department
of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, October 1975.

PIPELINING, PARALLELISM AND ASYNCHRONISM IN THE

LAU SYSTEM

J.C. SYRE, D. COMIE, N. HIFDI
O.N.E.R.A - C.E.R.T., Department of Computer Science
B.P. 40-25, 31055 TOULOUSE CEDEX, FRANCE.

Abstract : This paper presents the hardware
specifications and figures of a parallel multi­
processor system, currently under construction.
The LAU system philosophy comes from the Single
Assignment software concept and data-directed
expression of problems. Up to now, a high level
language, a machine language and a paper machine
have been defined. A compiler and a simulator gave
us significant results enough to start the actual
implementation of a prototype processor. The paper
focuses on the advantages of data-directed control
mechanisms and register-independent instruction/
data formats throughout the different parts of the
processor : maximally efficient pipelining, full
parallelism and asynchronism will be shown at the
different stages of an instruction execution, with
accompanying figures in speed, complexity and
cost of their implementation.

Introduction

This paper presents the hardware specifications
of a parallel multi-processor architecture, called
"LAU system", whose control and sequencing
mechanisms are directed by the computation of the
program data. The data-driven control leads to
some interesting properties and advantages in the
design of the system, in terms of "independent"
pipelining, parallelism and asynchronism.

Since 1973, when the LAU Project started
[1, 2] , the "Single Assignment" software concept
µ, 4] has led to the definition of a high level
language, a machine language and a paper machine.
A compiler and a simulator gave us significant
results enough to allow the actual implementation
of the system. Much like other principles, mainly
stressed by J.B. Dennis, [5, 6, 7] , all control
mechanisms are provided by the "readyness" of
data. In short, a statement in the (high-level-
er machine -) language is executable as soon as
its operands have their 'unique' values computed.
Instruction sequencing is readily achieved by the
data flow itself, and no longer by the relative
order of statements. The single assignment rule,
combined with these properties, guarantees program
determinism, and leads to a "maximal parallelism"
together with some interesting hardware design
advantages. To be a little more acquainted with
the LAU system philosophy, the reader is invited
to follow an instruction stream, from its
generation by the compiler to its execution in the
different parts of the machine. In the first sec­
tion of this paper, we present the high level soft­
ware and hardware characteristics of the LAU
system, some of them being still open problems.
The second section outlines the architecture of
one processor and the specific mechanisms implemen­
ting the data directed flow of control. The third

87

section gives more details on each of the functio­
nal parts of a processor. At each step will be
given some figures (technological choices, cycle
time, complexity) and the design properties which
take full account of parallelism, concurrency and
asynchronism derived from the single assignment
and data-driven sequencing approach.

High levels system principles

The single assignment approach

Beside methods trying to discover parallelism
in programs and others which transform sequential
code into pseudo-parallel executable sequences,
some radically different ways have emerged which
start from the problem statement itself. The
parallel program schemata and the data flow
approach fall in this cat;egory. The single assign­
ment rule is another concept [3, 4] that applies
from the problem analysis to its execution on a
parallel processor system. This rule states that

te

an object may be assigned a value at most
once during program execution

Implications of single assignment are immedia-

I. a statement, say X = A + B, is "executable"
as soon as its operands (A, B) are computed

2. it may be executed at any time later, in a
way totally independent ftom its location in
the program.

The parallelism expressed by the single assign­
ment rule (S.A. rule) corresponds to the inherent
parallelism as stated in the problem. Due to the
S.A. rule, instructions are guaranteed to deal with
the unique values of operands, which insures µ:ogram
determinacy.

However, executable instructions may be per­
formed in any order; this is a definite advantage
for an implementation which will not be concerned
with instruction sequencing at the hardware level.

LAU System level 0 : the general system (paper
made only)

An S.A. program may be viewed as a collection
of tasks whose activations are data-driven :
when input data are evaluated, a task supervisor
may decide to route the task onto an idle processor.
Outputs of the task allow the detection of the
task termination and the activation of other tasks.
The following software/hardware diagram describes
the LAU system at this level :

TASK MA.NAGER SECONDARY
STORAGE

HARDWARE SOFTWARE

Figure I : level 0 LAU system architecture

Independent tasks may run concurrently on
different processors; the task manager has only
to keep track of the task execution by examining
the data directed tree produced at compile-
time. Notice that this scheme might be extended
to a set of different jobs, whose task trees
would be controlled by the task manager. A
processor Pi, enters the active state when loaded
by the data and instructions of a task. As data
values are unique, the execution time is irrele­
vant for determineay. When task outputs are
computed, the processor informs the task manager
which stores data produced by the task, and
checks for new tasks to be activated. This higher
level of the LAU system has not yet been imple­
mented nor studied in full detail. Open problems
are still to be evaluated : the expression of
problems by single assignment data flow tasks,
the compilation mechanisms that could break a
program into tasks suitable in the memory space
of a processor, the workload on the communication
system and the task manager.

- LAU system level I : the LAU processor -

The high level language :

From now on, we come to the real things
with the software and hardware at the processor
level.

. As for the software part of the system, a
high level language has been defined. Statements
in the.language are syntactically classical, but
s:mantically different from usual ones in sequen­
tial languages : every statement is an assign­
ment statement, and produces values for each of
the objects to be computed within its scope. In
the following program

SI INPUT (INMATX);
S2 N = 128
S3 EXPAND/16 I = I, N :

LOCAL TEMP I ; TEMP 2 ;
TEMPI INMATX (I) INMATX (I - I)
TEMP2 INMATX (I) + INMATX (I- I)

88

MAT(!) = TEMPI z TEMP2;
END EXPAND;

S4 MATS= VSUM (MAT FROM I TON);
SS OUTPUT (MATS);

SI is the unique statement assigning INMATX,
while S3 is the only assignment statement of MAT.
To be executable, S3 has to wait for the computa­
tion of N, INMATX, i.e. the completion of SI and S2.
Notice that SI and S2 are "ready" instructions
which will be generated by the compiler. The first
block will compute MAT (I), MAT (17), ••• , MAT(ll3)
the sixteenth one MAT (16), MAT (32), ••• ,
MAT (128). Once activated, each block runs con­
c~rrently with its IS brothers, and parallelism
will range between 16 and 32. When S3 is terminated
(i.e when MAT is computed), S4 will be activated
and finally SS. '

Open problems in the high level language
include some properties that can be found in other
langu~ges : very high level data structures,
creation of user defined types. The reason is that
we wanted a compiler as soon and as efficient as
possible.

The LAU machine language

It is a single assignment language, too, and
must imbed the data flow control expressed at the
upper level:

- an instruction may enter its execution cycle as
soon as its operands are ready

the result object is the only link between the
instruction computing it and those using it
as an operand.

Ready instructions should run independently
and free from hardware constraints (other than
those imposed by the technology at the logic gate
level), such as the organization and the number
of processing units, management of requests,
register assignment and control, data organiza­
tion in memory. All these problems are totally
irrelevant in our high level approach. The
definition of the machine language has led to the
following formats

- Data format :

value LINK LINK 2 Cd

LINK I and LINK 2 refer to instruction ad­
dresses using the data as an operand. Cd is a
control tag bits indicating the computation of
the data.

- Instruction format (for simple computational
.instructions)

OPCODE I OP I j OP 2 : : ! '
1--.--L........J_

CO Cl CZ

Further details on the machine language
can be found in (2,9] • These features
imply the following coDDDents :

- the instruction format is large (64 + 2 bits)
but conesponds to approximately th~ee classical
machine instructions (LOAD OPI, ADD OP2, STORES)
An instruction will occupy one memory word. The
data format is larger than a classical one which
does not contain instruction links.

- the instruction has a three-address format,
yelding two interesting properties for its execu­
tion and the design of the machine : an ins­
truction may be executed in any one of the pro­
cessing units of the machine, and, more, the
machine may be built with any number of processing
units that can be increased, decreased, or support
degradation without program change at the compile
time.

THus, the machine language preserves the
parallelism expressed at the high level pro­
gramining stage, and does not introduce hardware
constraints for the definition of the machine.

The LAU processor architecture

The LAU processor consists of three functio­
nal boxes, interconnected by data and control
busses as follows :

CR

DK0-1

HOST
MINICOMPUTER--{-_-LA_U_PR-OG-RAM--S
SYSTEM

- UTILITIES : COMPILER,

CONTROL
SUBSYSTEM
(INSTRUC­
TIONS AND
DATA)

16 16

INTERFACE

23

SIMUIATOR, TRACE,
INPUT/OUTPUT

l FRONT PANEL
MONITORING
I/O CONTROL,LOAD

MEMORY
11-------'4111 SUBSYSTEM

UPDATE
BUS 29

ACK
7 BUS

QST
39 BUS 64

INST.
us 39

DATA
BUS

EXECUTION SUBSYSTEM

Figure 2 - Functional diagram of an LAU
processor

89

The Control sub-system is the truly original
part of the processor : the Von Neuman program
counter is replaced by two memories; the instruc­
tion control memory (ICM) and the data control
memory (DCM). ICM handles the three tags bits
Co, Cl, C2 of the program instruction, while DCM
will take care of the Cd tag bit of program data.

The Memory Subsystem manages input requests
and delivers memory operations to the other
units. Special interest will be given to this
box that may be the bottleneck of the processor.

The Execution subsystem consists of N
elementary processersconnected on various busses.
Each processor is totally independent from its
neighbours, except for requests to external
busses.

We find it useful to explain the lower levels
of the LAU processor by following the trip of machine
instructions throughout the different parts of
the system. The machine instruction (let's call
it MI) has the following initial assignment :

Co Cl C2

II. 0 II l.___+~~~-RE~S~~-O-P_E_R~~~-2~__,
RES and OPER are data addresses
2 is an immediate operand.

Co Cl C2 are located in the Instruction Control
Memory at the same address as MI in main memory.
Co has been set to I at compile time, and means
that Ml is not nested in a control instruction.
CJ denotes that the object OPER is not yet
computed at this time, and C2 = I corresponds to
the constant 2 in the second operand field.

M I Magic Mystery Tour

Let us come now to the micro-functional
level of the design, and follow M I.

Extracting M I address from the Control Unit

The machine instruction, computing OPER,
is being performed in some processing unit. It
sends the Control Unit a signal indicating
the computation done.

The UPDATE module will set the Cl bit to I
at M I address. Now M I is virtually executable.
In parallel, with UPDATE an Instruction Fetch
Processor (IFP) is permanently looking for "Ill"
configurations in ICM (simulating a not yet
available associative mechanism). IFP examines
only the ICM portion where there is a chance to
find out ready instructions, and it is capable
of sending their addresses every 120 ns. Thus
M I will eventually be checked as a ready ins­
truction. All things happening elsewhere in the
machine will never affect M I, due to the unique
just computed value of OPER guaranteed not to
change. IFP sends M I address to either a FIFO

"OPER · computed"
Request from PUi

"'u'""P""D..,.A""TE..--.r ead I
write

COC1C2

MI

INTERFACE

INPUT
~Pl ex

MEMORY
BANKO
MEMORY
BANKl

INTERFACE

INSTRUCTION
FETCH
PROCESSOR ADD.>. ----t

short path
"MI is ready"

second short
path
"output port
free" 16

normal path
''MI is ready"

(IFP)

normal path : MI address
into waiting queue

FIFO MEMORY 64xl 6b

SUBSYSTEM

Figure 3 - Instruction Control Memory and
Instruction Fetch.

file buffer, or directly, to the Instruction
Output Port of the Control Unit, using a short
path, thus eliminating systematic buffering of
requests. The File is a 64 x 16 bit FIFO stack
and may deliver an instruction address every
120 ns. When full, meaning .64 instructions
waiting for execution, the file inhibits the
Instruction Fetch Processor. Notice that when
this occurs, IFP will not make access to ICM :
this will speed up the UPDATE device, and
consequently, the servicing of processing units
which will become idle sooner, thus will accept
new instructions sooner, and so accelerating
requests for ready instructions located in the
file. Beside that, the short path is possible
because ready instructions are fully independent
from each other, and ordering them is irrelevant.
This property allows a straightforward implemen­
tation of the instruction fetch mechanisms. Here
parallelism is not perturbated by logic cons­
traints but only at level of accesses to the
Instruction Control Memory.

Reading M I in the Memory Subsystem

The Instruction Output Port of the Control Unit
is one of the three possible inputs to the
Memory Subsystem, organized as follows :

90

EXEC. SYSTEM

MEMORY
BANIO

DATA BUS

INSTRUCTION BUS
EXEC. SYSTEM

Figure 4 - Functional organization of
memory

The input policy gives priority to the
execution subsystem (accesses to data operands
from processing units), which may send requests
every 60 ns. When there is a gap in this flow,
M I address is processed by the Memory Input
Manager, whose job is to translate the request
into a standard memory request (one of 16) and
then to drive the request to the corresponding
Memory Bank; and it lasts 60 ns to do so.
The activated Memory Bank stores the request
into a buffer of waiting operations. Still here
ordering is not relevant and a LIFO or FIFO
scheme may be adopted. Overflow in the buffer
is prevented by the following :

GOMS From Input Plex
Standard request "Ins. Read,

MI add"

1-----__,.PORT B
WAITING FI

29705

(32x56b w.)

PORT A

MEMORY
CONTROL 2 x 4 K xl32 bits w.

I

MI instruction

I
I

TO OUTPUT µ..-Plex

Figure 5 - Micro-functional description of
a Memory .. bank

The Memory unit which stores program and data
instructions, is organized in two independent
4 K x 32 bits memory blocks allowing read and
write operations on each block in one 480 ns
cycle.

Thus, MI is pushed on to the buffer, or
directly conveyed to the request register of
the Memory Uni.~. An instruction read operation
is performed, the result stored into the Output
Memory Latch 8 minor cycles after the cycle
initiation. The Output Memory Manager looks for
requests coming from the 8 Memory banks, and
will take MI within the next 480 ns. This
request is decoded , translated and sent on to
the appropriate output bus (here, the Instruc­
tion Bus).

In the Memory subsystem, parallelism is
achieved by the interleaved organization of the
Memory : 8 requests every 480 ns can be completed
making a 60 ns - minor cycle (an§, for those
who like large numbers, I 066 10 bits/second,
parity bits not included). Asynchronism can be
seen at the level of the acceptance of input
memory requests : read, write, instruction
read operations are not to be ordered to gua­
rantee a correct program execution. However,
priority and clock synchronization are necessary
at the logic level, to deal with all requests
without loss of information.

M I enters the Execution Subsystem

The Instruction Bus is connected to one of
the six controlers managing the execution sub­
system.

DATA IN INST. BUS
~ CONTROL CONTROLER ~M CONTROLER I

4=

~

DATA OUT
CONTROL ~

CONTROLER
INS.CONTROL .L

CONTROLER

J ' Control Unit :
- I, 5Kx64b ,...-Inst
- 240 ns J.'--cycle

!6xl6 monitor memory

ALU
16 bits
4 Am 2901

PROCESSOR I

~ DATA RQST
CONTROL ER

DATA IN
~ CONTROLER

dentic~

PROCESSOR 24
(present machine)

Figure 6 - Organization of the Execution
Subsystem

91

Any number of elementary processors may be
attached to the six busses whose functions are
given in the diagram. The instruction bus con­
troler is composed of input file containing ins­
tructions to be processed, and once more, a
short path permitting an instruction to be driven
directly onto the internal instruction bus. The
instruction controler checks for idle processors
and allocates the bus to the first one which
will accept MI; MI is stored into the Ins­
truction Register and execution starts. An
elementary processor is built from AMD 2900
series bit-slice microprocessors. This 16-bit
data processor has no local memory (other than
the 16 internal registers), but contains a special
memory used for monitoring and workload evalua­
tion , and runs microprograms corresponding to
the whole instruction set. An extensible micro­
assembler has been developped and is used to
generate 64-bit micro-instructions composed of
20 fields. Some of these fields are dedicated
to monitoring and spying operations that can be
performed in parallel, thus not affecting the
actual execution of instructions. Once in the
processor, M I is interpreted as follows :

- Decode CODOP
- Make a data operand access request, corres-

ponding to OPER on the data out request bus.

- As M I uses an immediate value as second
operand, the constant 2 is prepared in a
register

- When the request is performed (it may occur at
any time later, and depends on the load of
the data out controler, the memory input
manager, the Memory Block interested, etc •••)
The result (i.e OPER value) comes back to
the data In Request Controler which signals it
to the processor on which M I is being perfor­
med.

Then operation proceeds : RES is computed, and
special control primitives are performed

- Send a write-read request to memory at address
RES : the value of RES will be stored in, and
the link fields will be brought back to the
processor

- in parallel, send a write request to Data Con­
trol Memory : the Cd tag bit will be set to I,
and the Data Control Unit will send back an
acknowledgement.

Once the link fields are present in the pro­
cessor, send update requests to the Instruction
Control Memory. Each link field consists of an
instruction address using RES as an operand
and one bit indicating a left or a right operand.
The Cl or C2 bits will be set to one and
eventually will make new "Ill" configurations
in the ICM.

There are other devices in the Data Control/
Unit which run in parallel with the Update

processor. They implement the control primitives
(creation of data descriptors, descriptor checking
single assignment verification) that we shall
not discuss here.

In the execution subsystem :

- processors are identical and independent from
each other. They perform instructions given
by the Instruction Bus controler in parallel,
and work asynchronously. They are managed by
the Controlers for their requests to the out­
side. The number of processors can be extended;
though not yet much studied, it should be
interesting to discuss the capabilities of
fault tolerant or degradated processing in
this part of the system.

- pipelining of requests makes no problem and
may be short-circuited in some cases, thus
speeding up the actual throughput.

- within a processor, the microprogram may
send simultaneous requests to the output busses
However, every request has to be acknowledged
before the processor may be considered as idle.

Simulation results showed that the major
problems lie in the memory subsystem, and not
in the execution subsystem,"The prototype will
thus be built with 16-32 elementary processors,
with a 240 ns microinstruction cycle.

Its connection to a host system will allow
the use of peripheral devices. In particular,
a library of LAU programs, located on a disk
will be managed by the interface unit which
will also give facilities for tracing, monitoring
and data input/output.

Conclusion

The LAU system is an overall hardware/
software system which makes use of data­
driven sequencing principles at all levels :
a high level language, implemented and a general
multi-processor architecture have been studied.
A machine language and a compiler producing
executable code from user's programs have been
defined, together with a data driven processor
structure. The processor is composed of any
number of processing units running in parallel,
and a special control unit implementing the
data driven mechanisms. Parallelism is securely
achieved by the independence of data flows in
the machine, due to the single assignment rule.
Use of pipelined mechanisms allows a bufferization
of requests when needed and a better throughput
in the system when saturation occurs in some
func.tional part of it. However, the pipeline
mechanisms can always been short-circuited in
case of low workload, without any trouble for
the determinism of computation. Asynchronism
is the main feature of the system : instruction
fetch, memory operations for any number of·
processors, instruction execution and control
updating functions are achieved concurrently.

92

Only logic constraints may sometimes affect the
operation in the system. These characteristics
allowed us to be interested in the actual problem
of implementation at the chip level and to have
a straightforward design period. The LAU system
waffle I is expected to be operational by the
end of 1978 and application programs will be
evaluated at that time.

2

3

4

5

6

7

8

9

10

II

12

References

J.M. NICOLAS, J.C. SYRE, TEAU 1-4 : Techniques
et exploitation de l'assign,ation unique,
Rapports SESORI 73-038, 1972, 1973

D. COMTE, G. DURRIEU, O. GELLY, A. PLAS,
J.C. SYRE : TEAU 5-8, Rapports SESORI
74-167, 1975, 1976

L.G. TESLER and H.J. ENEA, : A language
design for concurrent processing, Proc
AFIPS, SJCC 68, Vol 32, p.403-408, 1968

D.D. CHAMBERLIN, Parallel implementation of
a single assignment language, Ph D. Thesis,
Stanford u. TR 19, Jan. 71

J.B. DENNIS, First version of a data flow
procedure language, MIT, Lab. for Computer
Science, MIT/LCS/TM-61, May 75

J.B. DENNIS, D.P. MISUNAS, : Design of a
highly parallel computer for parallel
processing application, MIT, Project MAC,
TR IOI, 1974.

J.E. RUMBAUGH, : A parallel asynchronous
computer architecture for data flow
programs, Ph D. Thesis, MIT, MAC-TR-150
May 75

ARVIND and K. GOSTELOW : A ~ew interpreter
for data flow schemas. and its implications
for computer architecture, TR 72, ICS~ ..
University of California, Irvine, Oct 75

A. PLAS and al : LAU system architecture,
a parallel data driven processor based on
single assignment, 1976 International
Conference on parallel processing, Aug 76,
pp. 293-302, IEEE n° 76CH1127-0 C

D. COMTE, G. 1' URRIEU, O. GELLY, A. PLAS
J.C. SYRE : TEAU 9 (Vol 1,7) Final reports
Contract SESORI 74 167, Sept. 1976 (vol. 7
is a summary.in English) ·

Advanced Micro devices, The Am 2900 Family
Data Book, Sunnyvale, .California 1976

Texas Instruments, the TTL Data Book for
Design Engineers, 1976.

A DISTRIBUTED COMPUTER SYSTEM
USING A DATA FLOW APPROACH*

by

Michael A. Schroeder
Robert A. Meyer

Electrical and Computer Engineering Department
Clarkson College of Technology

Potsdam, New York 13676

Summary

This paper presents the design of a highly
asynchronous distributed computer system which em­
ploys a data flow approach for handling parallel­
ism in programs.

The proposed system is a hierarchically
connected network of modules, each of which op­
erates in an asynchronous manner. The main com­
ponents of the system are a set of Computation
Activation Processor (CAP) Modules, each executing
an individually assigned procedure on the input
data it receives. A Scheduler module regulates
the sequencing and dispatching of all CAP proce­
dures and data flow instruction packets.

The data flow approach is based on direct
initiation of each operation simply by the pres­
ence of the required operand values. In a 1974
paper Dennis [l] first proposed a very basic ver­
sion of a data flow language in which instruction
execution was limited only by the data dependen­
cies of the program. Dennis and Misunas [2] did
preliminary work into the design of a computer
based on this language. Rumbaugh [3] has
expanded and improved the earlier version of the
data flow language proposed by Dennis and has de­
veloped a multiprocessor architecture consisting
of N identical Activation Processors. Each pro­
cessor is capable of executing in a pipeline man­
ner several data flow instructions at a time.

The system we propose is a new, simpler im­
plementation based on their work. We have parti­
tioned our system into a number of asynchronously
operating modules, each of which consists of a
controlling processor and its associated memory
structures. Our system consists of five major
module types, namely an Interface Module, Assign­
ment Module, Collection Module, Scheduler Module,
and a set of N Computation Activation Processor
(CAP) Modules. These five module types are inter­
connected to produce a system in which the total
functioning of the system is spread throughout the
various modules, thereby realizing a distributed
architecture system. Each module is only respon­
sible for executing a specific, preassigned por­
tion of the total system workload, with each mod­
ule functioning in an independent manner. This
approach provides a far superior method of system
functioning than most contemporary systems since
the distributed architecture concentrates the con­
currency problems inherent in parallel computer
systems in the module interfaces. Our module in­
terconnection is accomplished through the use of a
set of similarly functioning bus-to-queue inter-

*This work was supported in part through the Post
Doctoral Program by the U.S Air Force under con­
tract F30602-75-C-0082.

93

faces. These interfaces reduce the module inter­
action to the problem of putting items in and re­
moving items from the queues in a non-conflicting
manner.

The Interface Module accepts programs, pro­
cedures, and data input from the outside world in
a high level language for later entry into the
main system.

The Scheduler Module has three main areas of
responsibility: 1) accepting the transformed com­
pilation structures from the Interface Module,
2) dispatching completed operand packets to the
Assignment Module, and 3) retrieving completed re­
sult packets from the Collection Module.

Each Computation Activation Processor Module
contains a processor capable of performing a speci­
fic operation stored in its procedure store. Op­
erand packets are removed one at a time from the
CAP's operand packet queue, placed in its working
store, and then the assigned procedure is performed
on the packet. After the computation is completed,
a result packet is formed and'placed in the CAP's
results packet queue where it awaits collection.

The distribution of the processors and
memory into modules, which perform individual
portions of the system's total functioning,
reduces the problems of memory contention and
processor synchronization. The consistent way
in which the interfacing and synchronization of
the various modules is handled helps to simplify
the problems involved in determining system
failures. Since the system design permits us
to isolate faults to one or more modules or
interfaces, we are easily able to correct the
problem by simply replacing the faulty module.

As a final comment, we believe that our
system design will allow us to implement many
hardware aspects of the system with the use of
low cost, currently available hardware. The
individual processors may be realized using
microprocessors, and the various memory struc­
tures are easily implemented using LSI techni-
ques.

[l]

[2]

References

Dennis, J.B., "First Version of a Data
Flow Procedure Language", Project MAC,
MIT Cambridge, Mass., 1974.

Dennis, J.B. & Misunas, D.P., "A Computer
Architecture for Highly Parallel Signal
Processing", Proceedings of the ACM 1974
National Conference, ACM, New York, pg. 402-
409.

[3] Rumbaugh, J.E., "A Parallel Asynchronous
Computer Architecture For Data Flow Pro­
grams", Ph.D. Thesis, MIT Project MAC, 1975.

A MULTILAYERED DATA FLOW COMPUTER ARCHITECTURE

John Gurd and ran Watson
Department of Computer Science

University of Manchester
Manchester M13 9PL , England

Summary

It is difficult to take full advantage of the
parallelism in a problem when designing a computer
containing many processors. Consequently, several
new types of parallel computer architecture have
been proposed with the objective of allowing
efficient exploitation of problem parallelism. The
class of configurable computers[t], including data
flow machines (e.g.[2,3]), has evoked considerable
interest because of its general applicability and
inherently parall.el nature. More recently, the
possibility of interconnecting very large numbers
of microprocessors has been suggested, and data
flow conf'igurations have been proposed in this
vein [4]. This paper outlines a basio ring­
structured data flow architecture, and proposes an
extended version (using eonnected, multiple layers
of simple rings) in which an arbitrarily large
number of processing units may operate.

The basis of all data flow systems is a
graphical computational schema (e.g.[3-7]). The
schema used as a base for the ring-structured
system is described in detail in reference[8]. It
differs from other data flow schemata in that
tokens on arcs need not be maintained in ~irst-in­
first-out order. As a c·onsequence, all tokens in
a re-entrant graph mus.t be labelled to enaure· that
they are distinct. A label comprises three fields
which distinguish three sources of reentrancy,
namely: (i) parallel data structure (array) ; (ii)
iteration (sequence) ; and (iii) recursion.
Specialised nodes can adjust all or part of a
l.abel when entering or leaving a reentrant section
of a graph. The schema also restricts the maximum
number of input (and output) arcs at a node to 2.

The single ring architecture contains a
processing area and an assembler together with
se'V'eral stores.

The instruction store contains a (read-only)
linear representation of the computational graph :
each instruction defines a nodal function and up
to two possible destination instructions for the
results (i.e. the output arcs).

The matching store is associatively accessed
and is used to hold those results (i.e. tokens)
which cannot proceed to the next instruction
because the necessary firing condition has not
been met (i.e. because a second input result is
not yet available). The name used for association
consists of the destination of the token together
with its label. This uniquely identifies every
result in the system provided that labels are
distinct.

The result queue acts as a buffer for named
results between their leaving the processing area
and their being dealt with by the assembler.
Although call.ed a queue, this store need not be
strictly first-in-first-out.

The assembler takes results one-at-a-time
from the head of the resul.t queue and tries to
torm for each an exeeutable instruction by
accessing the instruction store (to find the
next function and destinations) and (if necessary)
the matching store (to find a matching input
result for a two input function). If the last
action is unsuccessful, the incoming result is
saved in the matching store to await its partner :
otherwise the ensuing executable instruction
(i.e. function, two operands, common label and
destinations) is sent to the processing area to be
executed.

An input/output switch at the output of the
processing area enables results to be transmitted
into or out of the ring.

In the multilayered architecture, the input/
output switch is extended to become a switching
network connecting the outputs of the processing
areas to the inputs of the result queues in the
system. The switching network resembles a sorting
network [9] which directs each result according to
some part of its name.

Both switching network and individual rings
can be constructed as pipelines : any number of
rings may be connected without redueing the
pipeline beat period.

References

[1] R.E.Miller and J .Cooke, "Configurable Computers
A New Class of General Purpose Machines",

Lecture Notes in Com uter Science, vol. 5,
pringer-Verlag, 1974 ,p 2 5

[2] J.B.Dennis and D.P.Misunas , "A Preliminary
Architecture for a Basic Data Flow Processor",
Proo. Second IEEE Al'l:nual Symposium on Computer
Arohiteoture,(Jan. 1975),p 126

94

[3] J.E.Rumb:augh, "A Data Flow Multiprooessor",IEEE
Trans. Comp., vol. C-26 no.2,(Feb. 1977),p 138

[4 J H.Arvind and K.P .Gostelow, "A Computer Capable
of Exchanging Processors for Time", Proo. IFIP
Congress,(Aug. 1977)

[5] R.M.Ka.rp and R.E.Miller, ''Properties of a Model
for Parallel Computations : Determinacy,
Termination, Queueing", SIAM J'. Apnl. Illa.th.,.
vol. 14,(Nov. 1966),p 1360

[6] D.A.Adams,"A Model for Parallel Computations",
~ Hobbs (ed.), Parallel Processor Systems,
Technologies and Applioations,Spartan Books,
(1970) ,p 311

[7] J.B.Dennis, "First Version of a Data Flow
Procedure Language", Lecture Notes in Computer
Science, vol. 19, Springer-Verlag,(1974),p 362

[8] J.R.Gurd, P.C.Treleaven and I.Watson, "A Data
Flow Computer Architecture" , Draft paper,
University of Manohester,(Aug. 1977)

[9] K.E.Batoher, "Sorting Networks and '!'heir
Applications", AFIPS SJCC, vol. 32, (1968),
p 307

ON THE OPTIMALITY OF FIRST-FIT AND LEVEL ALGORITHMS

FOR PARALLEL MACHINE ASSIGNMENT AND SEQUENCING

E.G. Coffman, Jr. Joseph Y-T. Leung Donald Slutz
IBM Research

San Jose, Calif,
Dept. of Electrical Engineering

and Computer Science
Columbia University

Dept. of Computer Science
Virginia Polytechnic

Institute and State University
New York, N.Y. 10027

Abstract -- The application of one-dimension­
al bin-packing to the problems of efficient allo­
cation of parallel resources is studied. Two
classes of fast approximation algorithms are con­
sidered for these problems, which are known to be
NP-complete. Known bounds on performance are
briefly surveyed; some new results are then deriv­
ed for broad classes of problems for which the
approximate algorithms are in fact optional.

I. Introduction

In the implementation of parallel processing,
one encounters the sequencing of tasks on multiple
processors and the allocation of information to
parallel storage units as two common design de­
cisions for which specific problems are defined
and efficient solutions sought. With the nature
of the units being assigned, allocated or sequenc­
ed being known, these problems are normally in­
stances of general bin-packing problems, In the
sequel we shall define the basic model of bin­
packing, couch the above sequencing and allocation
problems in these terms, and then explore two
classes of approximation algorithms that have been
applied to these problems. In this study of the
so-called first-fit and level algorithms we shall
examine questions of optimality and performance
bounds relative to optimization algorithms. It
will be seen that the first-fit algorithms appear
more promising in the applications considered.

II. One-Dimensional Bin-Packing

Informally, we are given a collection of m
"bins" B1 , ••• , Bra of equal capacity, c, and a
set P of n "pieces" p1 , ••• , Pn each of which
has a size not exceeding the bin capacity. The
piece sizes as well as names will be given by Pi•
1 ~ i ~ n. The object of any bin-packing problem
is to pack the pieces into the bins so as to
optimize some given measure of the packing. In
applying this model to processor sequencing and
storage allocation we have the following term
associations (the first term applies to sequencing/
scheduling while the second applies to storage
allocation):

Bin: processor, storage unit (e.g. cylinder)

Piece: task, record

Packing: schedule, allocation

Capacity: deadline, capacity

We consider the following problems.

95

Pl. Assume m is as large as necessary (m ~ n
will always suffice), and a fixed capacity. The
object is to minimize the number N of bins
required to pack P.

This problem as well as those below have
many applications outside of computer science. In
computer operation Pl concerns the problems of (1)
minimizing the number of uni.ts (cylinders, pages,
etc.) necessary for the storage of a collection
of variable size records, and (2) minimizing the
number of processors needed to complete all tasks
by a given deadline common to all tasks.

P2. Assume m is fixed. The problem is to mini­
mize c such that all pieces can be packed.

P2 is the classical problem of sequencing
to minimize make-span, or the design problem of
finding a capacity such that all records can be
placed in a fixed set of equal capacity storage
units.

P3. With m and c fixed maximize the number n
of pieces (i.e. the subset of P) packed in the
bins.

P3 is clearly the problem of maximizing the
number of tasks finished by some deadline (c), or
the number of records stored in a fixed collection
of storage units.

P4. With m

pieces so as

level*of B .•
l.

fixed and

to minimize

c unconstrained pack the

~~=l t~ where ti is the

P4 has arisen in storage allocation applica­
tions in which the object is to minimize average
access times. In these problems the records are
of equal size; the "piece sizes" correspond to
stationary record access probabilities.

Although Pl-P4 by no means exhaust all pro­
blems of the bin-packing type they are the princi­
pal ones to which the simple approximation al­
gorithms that we discuss have been successfully
applied. For general parameter values each of
Pl-P4 is NP-complete; this fact has been a prime
motivation for studying fast heuristics. Those
having received most attention fall into two
classes, heuristics in both classes assigning
pieces one at a time as they are drawn in sequence

''<The level of Bi is the sum of the piece sizes in
Bi.

from a given list L.

III. Level Algorithms

These algorithms are distinguished by the
assignment criterion: The next piece to be assign­
ed is packed into the bin currently of lowest
level. The largest-first (LF) algorithm is a lev­
el algorithm that initially puts L into non­
increasing order (as with the first-fit algorithms
below, it is only the assumed ordering of L that
distinguishes two different level algorithms).
The LF rule has been applied to P2 and P4; it is
illustrated below for P2.

L=(l/2, 2/5, 3/8, 1/3, 5/16, 5/16, 1/4, 1/5,
1/6, 3/20)

m = 3

47/48 17/16 23/24 levels
3/20

1/6 1/5 1/4
5/16 5/16 1/3
1/2 2/5 3/8

Bl B2 B3

LF Rule AJ2Elied to P2 (cmin = 17/16)

1 1 1 levels
1 5/16 3/20
6

1 5/16 1/5
3

1 3/8 2/5 2
Bl B2 B3

An Optimum Packing (cmin =l)

Let us define the performance ~ for an
algorithm and a given m as the worst-case ratio of
the performance of the given algorithm to that of
an optimization algorithm. The asymptotic per­
formance ratio is the limiting value as m ~~.
For the cases at hand performance means the maxi­
mum bin occupancy (least capacity necessary for an
LF packing) for P2, and the sum of the squares of
the bin levels for P4. It has been shown that the
LF performance ratio is 4/3 - l/3m for P2 and is
bounded by 25/24 for P4. It is not known whether
the latter is achievable, but this is conjectured
not to be the case.

The shortest-first level algorithm has been
applied to P3, but it has a performance ratio of
m/(2m+l), which is relatively poor as we shall see
later. LF level algorithms can also be applied to
Pl and P3, but their performance ratios are easily
shown to be inferior to those of the corresponding
first-fit algorithms described below.

IV. First-Fit Algorithms

The first-fit (FF) algorithms are more ex-

96

plicitly goal oriented, in contrast to the level
algorithms. With these algorithms, the bins are
scanned in the order B1,B2, ••• until a bin is
encountered which will accommodate the next piece
to be packed. An effective FF algorithm is the
first-fit-decreasing (FFD) algorithm which, like
the LF algorithm, initially puts the list into
non-increasing order. The FFI ("I" for "increas­
ing") algorithm initially puts the list in a non­
decreasing order. The FFD algorithm is illustrat­
ed below for Pl.

L = (1/2' 2/5' 3/8, 1/3, 5/16, 5/16, 1/4, 1/5,
1/6, 3/20)

C= 1

1/10 1/24 1/120 17/20 unused
1/6 capacity

1/4 1/5
2/5 1/3 5/16
1/2 3/8 5/16 3/20

Bl B2 B3 B4

FFD Rule Applied to Pl (4 bins)

0 0 0 unused capacity
3/20

1/6 5/16 1/4
1/3 5/16 1/5
1/2 3/8 2/5

Bl B2 B3

An Optimum Packing (3 bins)

Variations of the FF algorithms are the best­
fit (BF) algorithms, in which the, bins are scanned
as before, but with the result that a piece is
placed in that bin of lowest index for which the
resulting unused capacity is least.

The FF, BF, FFD, and BFD algorithms have been
applied to Pl; the a symptotic performance ratios
have been shown to be 17/10, 17/10, 11/9, and
11/9, respectively.

The FFI algorithm has a performance ratio of
3/4 when applied to P3. Improved performance for
P3 is obtainable from an iterated FFD algorithm
which works as follows. L, assumed to be in non­
decreasing order, is scanned until a largest r is

r
found such that ~i=l Pi~ me, where me repre-
sents the total capacity. The list p1~P2~ ..• ~pr
is then scanned in reverse order and packed accord­
ing to the FFD rule. If the rule fails to pack
all pieces then the largest piece (pr) is discard­
ed and the process repeated on Pl• ••• , Pr-1'
Largest pieces are discarded iteratively until a
packing of all remaining pieces succeeds. The
asymptotic performance ratio of this rule is known
to be in the interval (6/7, 7/8].

The same concept has been exploited in apply­
ing the FFD rule to P2. In this case, the FFD
rule is iterated on the entire list in a (binary)
search for a c in a bounded range. The result

is an algorithm whose performance ratio is known
to be in the interval [20/17, 61/50) for m ~ 8;
for m = 2,3 and 4 s m s 7 the performance ratios
are precisely 8/7, 15/13, and 20/17, respectively.

The FF rules have yet to be applied to P4,
although an algorithm based on the FFD rule appears
to have superior performance to the LF level
algorithm.

v. Optimality Tests

There are a number of important cases when
the simple heuristics we have discussed are in
fact optimal or asymptotically so. For a given
positive real, a, let S(a) denote the set of
positive powers of a; i.e. {a, a2, ••• } ,

Theorem l*

If for some a, Pl S(a) for all i, then the
LF and iterated FFD rules are optimal for P2.
Moreover, the FFD rule is optimal for Pl.

This result verifies optimality, in particular
reference to computer applications, when all task
execution times, or perhaps more appropriately all
record sizes, are powers of two. In addition, this
is true for P2 even when an arbitrary level al­
gorithm can still do fairly badly, as shown in the
following generalization of a result due to
Graham [3].

Theorem 2

Suppose the piece sizes can be normalized so
that for all i, p. is an integer. Then an arbi­
trary level algorifhm for P2 can perform worse
than optimal by a factor of up to 2 - l/min{m,
max{ PiJ } •

A result somewhat stronger than Theorem 1 can
be proved for the FFD rule when applied to Pl.

Theorem 3

Suppose Pt divides c for all i. Then for
Pl an FFD packing never requires in excess of one
bin more than an optimum packing.

A test for optimality existing with the LF,
but not the iterated FFD, rule applied to P2 is
given next.

Theorem 4

Let w1 be the maximum bin occupancy on
applying the LF rule to an instance of P2 in m
bins. If

(3 1) n w > - - - 6 p~/m
L 2 2m i=l ~

then LF is optimal.

*Results in this section are proved in the
appendix.

97

This result states that if the LF rule is
forced to do "too badly" with respect to the

n
absolute minimum,.~ pi/m, then it must be opti-

J.ml

mum, For example, if the LF rule ever does 50%
worse than the absolute minimum, then it must be
optimal.

These are useful tests for optimality which
allow one to avoid expensive enumerative or
approximate approaches when solutions very close
to the optimum are always needed. It is obviously
desirable to derive conditions that are necessary
as well as sufficient; however, the nature of the
problem appears to make this a very difficult
question.

VI. Open Problems

Worst-case performance bounds have obvious
shortcomings as criteria for algorithm selection.
This problem is aggravated by the fact that level
and first-fit algorithms are seldom comparable in
the sense that one always does at least as well
as the other. Indeed, worst-case examples for
one are frequently handled optimally by the other.
Thus, although worst-case bounds may point to one
algorithm, there is no assurance that that al­
gorithm is statistically best.

Worst-case examples are somewhat pathological
in some cases, and rely, for example, on large
variations in piece sizes; thus, it would be of
considerable interest to parameterize bounds in
terms of this variation. Further results con­
cerning instances when certain algorithms are
optimal would also appear possible. Simple pro­
bability models appear to be of greatest interest;
with such models one can hope to quantify such
statements as: "algorithm performance will be
within x percent of optimum with a probability
bounded by p".

The FFD algorithms exhibit anomalies in many
cases. These occur in their application to Pl,
P2 and P3. For example, there are lists for Pl
such that if a piece is removed, the number of
bins required to pack (by the FFD rule) the re­
maining pieces becomes one greater. It would be
helpful to obtain some usable estimate of the
maximum effects of such anomalies.

References

Pl

(l] D.S. Johnson, A. Demers, J,D. Ullman, M.R.
Garey, and R.L. Graham, "Worst-Case Perfor­
mance Bounds for Simple One-Dimenstional
Packing Algorithms," SIAM J. on Computing,
1 (1974), 299-326.

[2] D.S. Johnson, "Fast Algorithms for Bin­
Packing," J. of Comp. and Sys. Sci.,§ (1974)

ll.
[3] R.L. Graham, "Bounds on Multiprocessing

Timing Anomalies," SIAM J. on Applied Ma th. ,

17 (1969), 416-429.

[4] E.G. Coffman, Jr., M.R. Garey, and D.S.
Jolmson, "An Application of Bin'-Packing to
Multiprocessor Scheduling," SIAM J. on
Computing (to appear).

[5] R.L. Graham, "Bounds on the Performance of
Scheduling Algorithms," Computer and Job­
Shop Scheduling Theory, E.G. Coffman (Ed.),
Wiley and Sons, 1975.

[6] E.G. Coffman, Jr., Joseph Y-T. Leung, and
Dennis Ting, "Bin-Packing: Maximizing the
Number of Pieces Packed," Acta Informatica
(to appear).

[7] E.G. Coffman, Jr,, Joseph Y-T. Leung,
"Efficient Sequencing and Allocation Algor­
ithms: Maximizing the Number of Units
Assigned," (to appear)

[8] A. Chandra and C.K. Wong, ''Worst-Case
Analysis of a Placement Algorithm Related to
Storage Allocation," SIAM J, on Computing,
!t (1975), 249-263.

[9] R. Cody and E.G. Coffman, Jr., "Record Allo­
cation for Minimizing Expected Retrieval
Costs on Drtnn-Like Storage Devices," Journal
of the ACM, .fl (1976).

Appendix

Proof of Theorem 1

Consider the LF rule applied to P2 on m
machines under the assumptions that P 1~P2~ ••• ~pn
and each piE P is a positive power of some posi­
tive number a , (For this part of Theorem 1 we
shall use the-terminology of task scheduling.)
Suppose, contrary to the theorem, that the LF rule
is not optimal for P, and suppose that P is a
smallest counterexample. Thus, if wL and wopt
are the respective lengths of LF and optimum
schedules for P, then wL > w0 pt·

Suppose P_n: the smallest task, does not
terminate the LF schedule; i.e. suppose Pn does
not have a latest finishing time in the LF schedule.
Then we note that the LF schedule length for
P-[p } must be equal to wL while the length of an
optifilum schedule for P-[p } can not be greater
than w0 t' Thus, P-[pn} provides us with a
smaller ~ounterexample, and this contradicts the
assumed minimality of P. Hence, we may assume
that Pn terminates the LF schedule.

Finally, observe that
It follows easily from the

vations to this point that

Pn divides pi for all i.
LF rule and the obser-

wL =r~ p./ml ,
i=l 1 .IPn

98

where rYlx denotes the least

greater than or equal to y.

multiple of x

But r~ p/ml
i=l "lpn

is

a lower bound to the length of .!!!!Y schedule for P
and hence the LF schedule is optimal.

Consider now the FFD rule applied to Pl
under the above assumptions. Assuming as before
that P is a smallest counterexample implies
that p uniquely occupies the last bin. Since Pn
divide~ all pi, this in turn implies that every
bin, except the last one, must be filled to a

level of LcJp • Since !!2 packing can fill a bin
n

to a higher level, the FFD rule must be optimal.

With reasoning similar to the above it is
easily shown that the iterated FFD rule is also
optimal for P2 under the assumptions of the
theorem.

Proof of Theorem 2

Suppose that each pi is an integer. We
want to consider the largest possible ratio be­
tween two schedule lengths arising from two differ­
rent level algorithms applied to P2 on m machines.
(We shall use the terminology of task scheduling.)
First, we dispose of the case when p1=max [pi}<m.

Since all tasks are integral and each task
is assigned in its turn to the first available
processor, we have for a maximum schedule length

n
w' :s: P1 +l E p./ml

i=2 l. 'J

For a minimUJ!l schedule length we have the lower
n

bound w ~ E p./m, and hence
i=l]_

n n
E p./m = E p./m - p1/m :S: w - p1/m

i= 2]_ i=l]_

But w must be integral, and since p1/m < 1 we
have

or

l i~l/mj :s: lw - P1fmj

n

l E p. /ml
i=2]_ J

w
:s: 1 - l

w

w - 1

Hence, I .n j
-w' P1+4~1p/m Pl _l __ P1-l

:s: :s:- +1- l+ --w w w w w

Since w ~ p1 we get

1

pl

As shown in [3], 2-1/m is a general bound
on w'/w; in particular, the bound holds when
pl > m. Thus,

w'
- :!i: 2 - l/min[m, max{p.}] w 1

An example showing that the bound is achievable is
provided by the parameters n=2m-l, p1= k-1(2~i:!i:m),

and pi=l (m+l~i:!i:2m-l) for any integer k :!i: m. []

Proof of Theorem 3

For the FFD rule applied to Pl, we assume
that pi divides c for all i. For simplicity we
may assume c=l, and hence that the p. are all
unit fractions. Assume the FFD packifig requires
m bins of which j~ m have a non-zero unused capa­
city. Let l/k be the size of the largest piece in
the last bin, Rm • Thus, at least j-1 of the in­
completely filled bins must be filled to a level
exceeding (k-1)/k.) Consequently, since l/k is a
lower bound to the level of the last bin, we have

or

n
E p. > (m-j)+(j-l)(k-1)/k+l/k

i=l 1

n
E p. > m-j/k -(k-2)/k.
i=l 1

Clearly, each incompletely filled bin, except
possibly the last, must have at least two differ­
ent piece sizes in it. Therefore, since the pie­
ces are packed in a non-increasing order, we have
j :!i: k and

n
E P. > m-1- k- 2 > m-2

i= 1 1 k

Finally, if Nopt is the optimum number of bins,

we have the obvious lower bound Nopt;;,: r.~ p ~ • I 1=1 ii
Making use of the previous inequality, we get
Nopt;;:,: m-1; i.e. an optimum packing requires at

most one fewer bin than the FFD packing. []

Proof of Theorem 4

Using scheduling termonology we shall show
that for P2 the LF rule is optimal if in the re­
sulting schedule for P we have

3 1 n
w > (- - -) E p. Im

L 2 2m i=l 1

First, note that the starting time of any task
must not exceed any processor finishing time.
Thus, if P is assumed to be a smallest counter
example for the theorem, than we have as in the
proof of Theorem 1 that the smallest task, say Pn'
terminates the schedule. Hence,

n-1 1 n
wL :!i: pn+ E p./m= p (1- -)+ E p./m

i= 1 i n m i=l 1

Using the above two inequalities we obtain

99

1 n 3 1 n
p (1- -)+ E p./m >(---) E p./m
n m i=l i 2 2m i=l 1

which reduces to

n
2pn > 2: p./m

i= 1].

But this means that there are at most two tasks
per processor in the LF schedule. (If a processor
had three or more tasks, then conservation of

n
E pi would require that the finishing time of

i=l
some other processor precede the starting time
of the third task scheduled.) Finally, it is
routine to verify that an LF schedule with at
most two tasks per processor is an optimum
schedule. This contradiction proves the
theorem. D

ON SCHEDULING ALGORITHMS FOR N-FREE

TASK DEPENDENCY STRUCTURES

Edgar Nett

Gesellschaft fiir Mathematik

und Datenverarbeitung

5205 St. Augustin, West Germany

Abstract-- Multiprocessor scheduling strategies

have been the focus of substantial research in

recent years. The complexity of the general

scheduling problem necessitates an abstract mathe­

matical model to analyze scheduling algorithms

with respect to their worst-case performance

bounds. This paper is to study the task scheduling

problem for a Task Dependency Structure which

differs from the general precedence relation on

tasks only by one restriction: All immediate

successor tasks of a branch task must not be

merge tasks. In particular, it is shown that for

m > 2 processors the ratio of the length of an

arbitrary level schedule for N-free task structur­

es and of the corresponding optimal schedule is

bounded by 3/2. Furthermore, if m = 2, then a

level schedule is always optimal for N-free task

structures.

I. Introduction

Multiprocessor scheduling strategies have been

the focus of substantial research in recent years.

The complexity of the general scheduling problem

necessitates an abstract mathematical model to

render an analysis of scheduling algorithms with

respect to certain performance goals.

One of the most common models is the so-called

'General Multiprocessor System' proposed by

Graham [1]. This model is defined by the following

components:

1) A set of m identical processors Pi,

i = 1, ... ,m.
2) A set of tasks T = (t 1, ... ,tn) which is to

be processed by the Pi.

3) The general task dependency structure < on T

100

which is a binary relation that is anti­

symmetric and transitive.

4) A function µ : T 7 (O,oo) which denotes the

execution of each task t E T.

The performance goal to be considered here is to

find scheduling algorithms which minimize the

total time required to execute the task set T

on the processors P .•
1

Ullman [4] has shown that this problem is poly­

nomial complete even if one of the following

restrictions holds:

1. All tasks t ET require one unit of time for

their execution.

2. All tasks t E T require one or two units

of time for their execution and there are only

two processors P1 and P2 .

This result it tantamount to showing that the

problem of optimal task scheduling according to

this model is computationally intractable. More­

over, worst-case investigations of the known poly­

nomially bounded scheduling algorithms have

shown that the length of the generated schedules

can be approximated arbitrarily close to (2-1/m)

times the length of the optimal schedule. This

value, however, is an upper bound on every

demand schedule, which allocates an idle

processor to anyone of the tasks that are ready

for processing. Hence, it does not appear reason­

able to apply sophisticated algorithms unless the

scheduling problem conforms to a simpler model

which, beyond being confined to unit time tasks,

meets some additional restrictive conditions.

These restrictions may be imposed on the number

of processors or on the task dependency structure

(TDS). In fact, it has been demonstrated that

optimal schedules can be generated by poly­

nomially bounded algorithms for the case that the

number of processors is confined to two, while

the TDS, according to Graham's model remains

unrestricted [2], and for the case that the TDS

constitutes a tree structure while the number of

processors remains unbounded [3] .

Tree structures, however, do not reflect the type

of tasks dependencies that can typically be found

in conventional computer programs. Recently, a

more adequate class of restricted TDS, the so­

called series-parallel graphs, have been investi­

gated by Goyal [6]. However, the upper bound on

the length of a level schedule for these graphs

is (2 - _g) times the length of an optimal
m

schedule. With increasing m, this value can be

approximated arbitrarily close by the worst

possible bound (2 - l).
m

These two examples - tree structures on the one

hand and series-parallel structures on the other

hand - indicate that two objectives have to be

met when imposing restrictions on the TDS with

regard to the generation of task schedules by

polynomially bounded algorithms:

1.) The algorithm must produce at least sub­

optimal schedules, i.e. the upper bound on

the length of the schedule must be decidedly

lower than the worst case upper bound to

justify the increased computational effort

as compared to arbitrary demand scheduling.

2.) The class of TDS that conforms to the first

objective must reflect structures that appear

in real processes.

The purpose of this paper is to present TDS's

which meet these objectives with regard to level

schedules. In the next section, we introduce

rather informally the class of the so-called N­

free TDS's, and in the third section, we demon­

strate that level schedules for these TDS's are

bounded by ~· which represents a considerable

improvement over the worst case bound. In section

4, we show that N-free TDS.'s cover the structures

of nested DO-loops, the Fork-Join concept, and

101

also comply with the rules of structured

programming.

II. N-free Task Dependency Structures

When trying to define a class of TDS's that

yields at least suboptimal level schedules, it

is, as a first approach, useful to identify

those TDS-elements which may cause level

schedules to become non-optimal.

Consider, as an example, the TDS in figure 1,

which belongs to the class of the so-called

multi-linear structures.

Figure 1: ¢······¢
6 6

A level schedule for such a simple structure is

always optimal, since every task that has been

completed frees its successor task from the next

lower level for execution. Hence, the tasks can

be processed level by level without violating

any dependency relations. This situation changes,

if tasks with more than one successor and more

than one predecessor are permitted.

Definition 1: A task t in a TDS G is called

a branch task, if the number of its immediate

successors is greater than one; correspond­

ingly, a task t is called a merge task, if

the number of its immediate predecessors is

greater than one.

Now, it is conceivable to have a task dependency

structure as shown in figure 2, where the tasks

1,2,3,4 belong to some level £,and the tasks

5,6,7,8,9 belong to the level £-1.

Figure 2:

Level:
Q,

Q,-1

We assume, that the number of processors is three.

Clearly, if during the first time slot the tasks

1,2,3 are being performed, then only the tasks 4

and 5 can be executed next, leaving one processor

idle. It takes another two time slots to process

the remaining task 6,7,8,9; i.e. four time slots

altogether. If, however, task 4 is executed

during the first time slot, then all processors

can be kept busy and the entire job is done in

only three time slots.

Another example of a TDS-element which may be

responsible for erroneous scheduling is shown

in fig. 3a.

Figure 3:

Level:
Q, a)

R,-1

Suppose the tasks 1,2,3,4 belong to the level R-,

and the tasks 5,6,7,8 belong to the level Q.-1.

If the number of processors is three, then it is

imperative that the task 1 be processed during

the first time slot while two more tasks from

the level Q. can be arbitrarily selected. Other­

wise, all tasks of the level R--1 would remain

blocked for one more time slot, during which only

the task 1 could be executed. The entire job

would require four time slots, compared with only

three time slots for an optimal schedule. Task 1

looses its blocking effect with regard to level

scheduling, if its level is lifted above the

level of the tasks 2,3,4, in which case the task

1 can never be scheduled later than the tasks

2,3,4. This may be caused either by a higher

level of task 5 relative to the tasks 6,7,8, or

by an additional task along at least one of the

102

edges leading from task 1 to the tasks 6,7,8.

Thus , we have:

Definition 2: A task t with level Q. in a TDS

G is called a blocking branch task, if at

least one of its immediate successor with

level R--1 is a merge task.

The simplest structure that fulfils definition 2

is composed of only four tasks, and, as shown

in fig. 3b, has the shape of an N. These N­

structures constitute the most critical TDS-ele­

ments as far as level scheduling is concerned,

since errors can be made with the least number

of tasks involved. A large number of N-structures

within the TDS may therefore cause a level

schedule to rapidly approach the worst case bo"Und

(2 - ;) [7].

Hence, it appears rather rewarding to investigate

the scheduling problem for TDS's which are free

of these N-structures. It is reasonable to

assume that, on the one hand, these - only

slightly restricted - TDS's yield at least sub­

optimal level schedules and that, on the other

hand, computer programs can be kept free of

blocking branch tasks.

III. Worst case bounds for level schedules on

N-free task dependency structures

In this section, we submit and proof the basic

theorems regarding the length of level schedules

on N-free TDS's.

Definition 3: A TDS G is called N-free, if it

has no blocking branch task.

Theorem 1: Let G be an N-free TDS, let w1 be

the length of an arbitrary level schedule,

wopt be the length of an optimal schedule

for G. Then, for m > 2 processors it holds:

WR, 3
w ~ 2 and this is the best possible bound.

opt

Theorem 2: If the same assumptions apply as in

theorem 1, then for m = 2 processors every

level schedule for G is optimal.

These two theorems may be proved by means of the

following definitions and lemmata. Some of the

definitions can be found in [!], most of the

proofs for the lemmata are omitted since they

are of a more or less technical nature.

Definition 4: Let S be a schedule for a TDS G.

Let w(S) denote the length of S given by

the number of time slots required to execute

G according to schedule S. S(i) denotes

the subset of all tasks t € TG that are

executed during time slot i. If S(i) is

smaller than the number m of the given

processors, then time slot i in schedule S

is called an 'l_ncompletely Qccupied Time Slot'

(abbr. IOTS).

Lemma 1: Let i be an IOTS in a schedule S for

G. Then the set N(S(i)) of all successors

of the tasks belonging to S(i) is equal to

the set of all those tasks that have not yet

been executed at the end of time slot i.

It should be emphasized, that this lemma, of

course, is correct only since we are dealing

with demand schedules.

Definition 5: An IOTS i in S is real if there

exists an optimal schedule R for G so

that S(i) = R(j) and j .::_ i; otherwise, i

is called virtual.

Lemma 2: Let i be a virtual IOTS in a non-optimal

schedule S for G. Then, there exists at

least one task t € S(i) which in every

optimal schedule R for G is executed in a

preceding time slot.

Definition 6: A virtual IOTS i in a non-optimal

schedule S is called primary, if there exists

a task r € S(i) and a task t € 8(£), (£<i),

so that for an arbitrary optimal schedule R

for G holds: r £ R(j) and t € R(k) and

j < k.

103

Lemma 3: Every non-optimal schedule S has at

least one primary IOTS.

Definition 7: A task r is said to dominate a

task s in a TDS G, if the set of successors

of s, N(s), is a subset of the corresponding

set N(r) of r.

The dominance criterion requires that a task is

always executed no later as those tasks it

dominates.

Lemma 4: Let S be a schedule for a TDS G so

that the dominance criterion is not violated

in S. Then there exists no primary IOTS i

in s with I s (i) I = 1 •

Proof: Assume there exists a primary IOTS with

the above property. Let i :=min {jij is .a

primary IOTS in S and ls(j)i = 1} and let

S(i) = {t}.

According to lemma 1, all tasks that are executed

in S after task t belong to the set of

successors N(t) of t. From the definition of a

primary IOTS follows that there must exist at

least one more task s, which is independent of

t and which can be executed in time slot i

without involving an IOTS; othe.rwise, i would

be a real IOTS. Therefore, the following relation

holds for these two tasks: N(t) ~ N(s) and t

is executed later than s in schedule S. This

is a violation of the dominance criterion and,

hence, a contradiction to the assumption.

Lemma 5: Let G be an N-free TDS, let S be an

arbitrary level schedule for G. Then the

dominance criterion is not violated in S.

Proof: Assume the dominance criterion is violated

in S. Then there exist two tasks s and t so

that N(t) ~ N(s), and s is executed before t,

i.e. : £(s) ::_ £(t). Then, the set of immediate

successors of s, DN(s), must be a pure subset

of the corresponding set DN(t). Since DN(s)

cannot be empty, there exists a task r with

r € (DN(t)" DN(s)). Hence, task t is a

blocking branch task. This is a contradiction to

the assumption that G is N-free.

Lemmata 4 and 5 immediately lead to the following

Lemma 6: In an arbitrary level schedule S for

an N-free TDS G there exists no primary IOTS

i with js(i)j = 1.

Obviously, in every IOTS of a schedule S for

two processors only one task is executed. Consider­

ing the foregoing lemma 6, it follows that in

every level schedule for an N-free TDS G and

two processors there exists no primary IOTS.

According to lemma 3, in every non-optimal

schedule, however, there exists at least one

primary IOTS. This proves the correctness of

theorem 2.

Lemma 7: Suppose, in a schedule S for a TDS G

all the time slots i, i+1, ..• ,j, (i<j), are

IOTS's and at least one of these IOTS's is

primary. Then all IOTS's i, .•• ,j are primary.

Definition 8: Let the time slots i, •.. ,j,(i_::.j),

be consecutive primary IOTS's in a schedule S

for N-free TDS G. The neighborhood U(i,j)

of these IOTS's is defined as follows:

U(i,j) := {ul j i'~ Q,'~ j' S(u) nR(JI.') f. ¢}

where the time slots i' and j' are defined as

follows: Let R be an optimal schedule for G then
j

i' :=min {R(u') n U S(JI.) f. ¢}
U' Jl.=i

j' :=max {R(u') n 0 S(JI.) "f ¢}
U' R,=i

For a better understanding of this definition and

the following step in the proof see fig. 4.

(a) r.Q.1 denotes the smallest integer greater
m

than £.
m

(b) l.£.J denotes the greatest integer smaller
m

than !!...
m

104

Figure 4:
Processors

Schedll;le S Schequle R

i I

hl{~'

{ -
Time slots a

U(i ,j) o+p

h2r. P2 j I J

Comment: From the definition of a primary IOTS

follows, that i' < i and j ' .::_ j

The rest of the proof of theorem can now be

given straightforwardly:
j

Let a = I U S (JI.) I . Then the following equat­
t=i

ion holds for the optimal schedule R:
j I

I U R(t) J= a+ p with p > O. The integers
t=i I

k and h are defined as follows: k := j-i+1

and h := i-i'+j'-j.

Then the number of time slots that is necessary

to execute the a + p tasks in schedule R is

given by

of tasks

wo+p = k+h. To execute the same number
o~ ()

in the level schedule S wo+p= k+ r.e..1 a
' t Ifill

time slots are necessary, where m is the number

of processors. Since o+p ~ (k+h)•m, 2k+h-L;J (b)
o+p

is an upper bound for wt . Now, a becomes
o+p

minimal and, subsequently, wt becomes a maximum

if in every primary IOTS between i and j only

the minimal number of tasks is executed. Accord­

ing to lemma 6, for every primary IOTS, this

minimal number of executable tasks is two and,

therefore, a = 2k. Then, from lemma 2 follows

that k = h and, therefore,

wo+p < 3k- l2k.1 < 3k- 2k + 1 .
t- mJ- m

cr+p

Consequently, -w-"'R. ___ < l _ l + .L
w a+p - 2 m 2k'

then l2k~ = 0
m

opt a+p
WR.

and therefore

If m >2k,

< l
-2

Since the above estimate holds for an arbitrary

sequence of primary IOTS's(which includes the

case of only one IOTS, since it was defined in

definition 8 that i ~ j), it holds for every

sequence of primary IOTS's in a level schedule

S for an N-free TDS G. Hence, it is also valid

for the sum of all such sequences in S. If there

exist some tasks in S which are executed in

time slots that do not belong to any neighborhood

U(i,j) in S, all tasks executed in these time slots

according to schedule S are executed in sche­

dule R also in one time slot. That is, in order

to extend the above estimate to the lengths of

the whole schedules S and R, it is necessary

to add a constant c > O to the numerator and

the denominator of th: fraction ~· Since
x+c x wR.(G) 3
-- < - for x,y,c ~ O, it follows: w (G) ~ 2
y+c - Y opt
and this completes the proof of theorem 1.

To verify that this upper bound is the best

possible, figure 5 shows a model of an N-free TDS
wR.(G)

G for which w (G) can be approximated
opt

arbitrary close to ~·

105

Figure 5: k-(m• 1)

G: 8V
k

k

0
k-(m• 1)

Assume k = n•m, i.e. k is a multiple of the

number of processors. Then it is easy to verify

that wopt(G) = 2 n•m and wR.(G) = 2·n(m-1)+n•m.

wR.(G) 3nm-2n 3 1 3
Henc:e, w t(G) = 2nm = 2 - m = 2 for

op

m ~ oo.

The following diagram exhibits the correlations

between the results we have obtained from our

investigation of level schedules on N-free TDS

and, particularly, from the notions of dominance

and IOTS's.

Figure 6:

Schedule for 2 processors
is optimal

There is no primary IOTS
during which only one task
is executed.

wR.(G) < d
w=TQt G) - 2 op

Dominance
criterion is
not violated

Level sche­
dule for an
N-free TDS G

IV. -Relevance of N-free structures

to computer programs

In the preceding section it has been shown that

N-free TDS's are suited for level scheduling. In

the following; we offer some representative

examples which exhibit the relevance of these

structures to computer programs. The TDS of a

program can be considered.as the representation

of what we call the •iri.nimal control structure'

of this program. This is to say that the TDS

imposes only those precedence relations between

tasks that have to be observed in order to

accomplish the correct execution of the program.

Consider, for instance, figure 7.

Figure 7: b)

The graph in figure 7a represents data dependen­

cies between some tasks in a program. This TDS

permits several sequential control structures

for the program execution. In figure 7b we list

two of them. All correct control structures for

the execution of this program have in common

that, for instance, task 4 is executed later than

task 2 and task 3 or that task 6 is executed at

least.

For multiprocessor scheduling purposes, programs

(or program segments) that feature a high degree

of parallelism are of considerable interest. This

is particularly true for iterative (nested) DO­

loop structures [8] • In a previous paper we have

shown that these structures, which constitute a

106

subset of N-free structures, even yield optimal

level schedules under certain conditions[5].

FORK-JOIN constructs are known as programming

tools which allow the explicit specification of

parallel executable task sequences [10]. Every

FORK instruction can be considered as the

realization of a branch task. Moreover, the ·FORK­

JOIN concept demands that every FORK instruction

is associated with a junction point. At this

junction point - represented in the TDS by a

merge task - all processes that have been initia­

ted by the associated FORK instructions must

recombine. This, however, implies that the FORK­

JOIN concept does not permit N-structures.

Improving program verification and program

manageability are two main objectives of what

is commonly known as structured programming [3] .
Particularly in very large and complex program

these properties are quite desirable. The general

idea of structured programming is to permit only

some elementary control structures within

programs. These structures include:

1) a single assignment statement,

2) a conditional branch statement,

3) an interation, i.e. the repeated execution of

an elementary control structure as long as a

certain condition holds,

4) a sequence of elementary control structures.

Obviously, the control structure of a structured

program is N-free, if each of these elementary

control structures is N-free. Since we are

dealing only with deterministic scheduling, the

data flow in a program is assumed to be known

a priori. For this reason, a conditional branch

can be omitted in our considerations. Assignment

statements or sequences of them are represented

in the corresponding TDS as a single task. Hence,

only the iteration remains to be considered. If

the repeated execution of elementary control

structures within an iteration can be done

independently of each other, it is equivalent to

a DO-loop structure the representation of which

has already been treated. If; however, the single

steps of an iteration must be executed in a

sequential order, its control structure is similar

to the sequence of elementary control structures.

Every algorithm can be written using only simple

instructions, conditional branches and interations.

Consequently, every program, which is nothing

but the description of an algorithm, can be

written in a well structured form.

Concluding remarks

Of all the algorithms, by which the priority of

tasks for scheduling purposes in multiprocessor

systems can be determined, the level algorithm

appears to be most suitable for practical appli­

cations because of its simplicity. So far, it has

been demonstrated that the level algorithm

suffices to generate optimal schedules for TDS's

that feature a tree structure.

In this paper, a new type of TDS's can be present­

ed which represents an extension of the tree

structures and which reflects to a greater extent

structures that appear in real processes. It has

been shown that level schedules for this class of

restricted TDS's provide considerably better

results than for the general TDS's.

Acknowled.gements

I am indebted to Dr. W. Kluge for his stimulation

and help. I also like to thank Dr. K. Ecker and

my other colleagues for useful discussions.

References

[1] Graham, R.L.: 'Bounds on Multiprocessing

Anomalies and Related Packing

Algorithms', Spring Joint Comp.

Conf., 1972

[2] Coffman, E.G.: 'Optimal Scheduling for Two­

Graham, R.L. Processor Systems', Acta Infor­

matica, Vol.1, No.3, 1972

107

[3] Hu, T.C.: 'Parallel Sequencing and

Assembly Line Problems' , Op.

Res., Vol.9, No.6, Nov. 1961

Q.i] Ulman, J.D.: 'Polynomial Complete Scheduling

[?] Nett, E.:

Problems', Techn. Report 3,

Dept. of Comp. Science, Univ.

of Calif. at Berkeley, March

1973

'On Further Applicdtions of

the Hu Algorithm to Scheduling

Problems', Proc. of the 1976

Int. Conf. on Parallel Process­

ing, P.H. Enslow Jr., Editor

[6] Goyal, D.K.: 'Scheduling Series-Parallel

Structured Tasks on Multi­

processor Computing Systems',

Dept. of Comp. Science,

Washington State Univ., Pullman,

Sept. 1976

[7] Chen, N.-F.: 'An Analysis of Scheduling

Algorithms in Multiprocessor

Computing Systems', Dept. of

Comp. Science, Univ. of

Illinois, Urbana, May 1975

[BJ Baer, J.L.: 'A Survey of some Theoretical

Aspects of Multiprocessing',

Comp. Surveys, Vol.5, No.1,

March 1973

[9] Dahl, O.J.: 'Structured Programming',

Dijkstra,E.W. Academic Press, 1972

Hoare, C.A.R.

[10 J Conway, M, : 'A Multiprocessor System

Design', Proc. AFIPS 1963,

Fall Joint Comp. Conf., pp.

1'.39 - 146.

A FIXED-VARIABLE SCHEDULING MODEL FOR MULTIPROCESSORS(a)

John E. Jensen
Department of Mathematics

Texas Tech University
Lubbock, Texas 79409

Abstract -- A model is presented for a
scheduler which interfaces multiprocessing hard­
ware and software to form a complete model of the
dynamic effects of scheduling on a multiprocessor
system. A fixed-variable scheduling philosophy
is introduced which allows both the immediate
scheduling of tasks in a high-demand situation
and the careful improvement of schedules through
arbitrarily complex algorithms as time becomes
available to the scheduler. Hardware and soft­
ware are determined for the creation of a direct
mechanism for the implementation of this new
scheduling philosophy, although only the fixed
part is actually implemented. Experiments on the
model enable several conclusions to be made re­
garding the acyclic representation of cyclic
graphs and the marginal improvements achievable
by some global scheduling heuristics.

I. The Scheduling Philosophy

The problem of maximizing the efficient use
of the computer's resources is hampered by the
large number of system variables to consider.
Even in the restricted case where task lengths
and precedences are the only considerations,
looking for optimal solutions becomes futile [19].
In this paper we accept the bounds on optimality
presented by heuristic methods [7] and consider
appropriate heuristics which might include some
of the other parameters of importance. Some
theoretical results [4] demonstrate the levels of
complexity which are added by the consideration
of the computer system as a general set of limit­
ed resources, while others [11] specifically
approach the problem of including memory restric­
tions in the scheduling algorithm. This rapid
growth seen in analytical complexity with each
new system parameter suggests simulation as the
most immediately viable tool for studying the
dynamic effects of scheduling in realistic system
models.

What we propose is a new philosophy of
"fixed-variable" scheduling. The theory is based
on the fact that there are certain duties the
scheduler must perform as rapidly and frequently
as possible in order to avoid undue delays for
scheduling overhead. At the same time there are
many interesting parameters we would like to in­
clude in the scheduling algorithm if it were not
for the time penalty. The solution comes from
the fact that the demands made upon the scheduler
are not constant; both the frequency of requests
for tasks by the processors and the time penal-

(a) This research was supported by NSF grant GJ-
41164.

108

ties for polling new tasks and implementing the
scheduling algorithm will vary widely during the
hours of operation on the multiprocessing system.

The "fixed" part of the scheduling philosophy
is the implementation of a minimal scheduler in
the following fashion. Static heuristics are
used to pre-order the tasks such that delivery of
tasks to a processor simplifies to a hardware
function [8] with the only real overhead for the
scheduler being the time required for polling the
user programs for tasks ready to be scheduled.
A high rate of polling .(the asymptote being demand
scheduling) requires too much time on the part of
the scheduler to search for "ready" tasks. The
alternative is a low polling rate which may cause
the "ready list" to become empty or a high-prior­
ity task to miss an early chance at execution.
This trade-off creates a decision in the polling
frequency which is best made dynamically.

The "variable" part of the scheduling philo­
sophy incorporates all of the various dynamic
decisions which may be made. With the hardware
producing a "reasonable" schedule of tasks at a
frequency comparable to the highest rate of pro­
cessor demand, the scheduling software need only
"improve" the already existing schedule as time
permits. That is, when the request rate for
tasks is low, the scheduler executes a compli­
cated algorithm involving a large number of
dynamic variables, and when the request rate is
high, the scheduler spends nearly all of its time
polling in order to keep the "ready list" from
becoming empty. Other decisions, such as the
polling frequency, which and how many dynamic
variables to consider, and the desired level of
optimality in the algorithm which uses these
variables, are made dynamically by the scheduler.

The difficulty with this scheduling philoso­
phy is in determining the answers to the dynamic
questions just raised. Since it is difficult to
measure the effects of the algorithms in this
highly variable setting, and since the overhead
penalties are heavily machine and program depend­
ent, it becomes impossible to determine the
answers to the dynamic decisions the scheduler
must solve. In particular, this aspect of the
scheduling model could not be included in the
simulation experiments to follow, due to the lack
of the appropriate overhead factors and the un­
bounded possibilities for algorithms to test.
The remainder of this paper investigates the
appropriate parameters for the fixed portion of
the scheduling model and leaves the variable
portion of the model open to further investiga­
tion.

II. The System Model

Assumptions Regarding the Host System

The features which we consider as part of
our model begin with a collection of independent
processing units organized on a time-phased ring.
All execution is handled by functional units
shared by the processors, with the scheduling
duties being performed by a dedicated processor
similar to the one offered as part of Texas
Instruments' ASC [18]. The processing units re­
quest tasks from.the scheduler upon completion of
their previous assignments (in concordance with
the results of [5]) while the operating system
polls user programs to find tasks which are ready
for scheduling. When the polling routine detects
that all of the predecessors of a given task have
been processed, the task is placed on a "ready"
list where it waits for assignment to a processor
by the scheduler. The scheduling processor also
assigns tasks for interrupt processing as de­
scribed in [6].

The aspects of memory which influence the
scheduling model are memory interference and the
availability of memory for tasks about to be
executed. A variety of interference models is
available [2] with the simplest being to assume
that memory is shared randomly. Less interfer­
ence may be achieved by the "home memory" concept
[17] in which instructions and data used primar­
ily by one processor are loaded in a memory
module specifically assigned to that processor.
However this requires that the processor assign­
ment be known in advance for proper loading of
the task, and further complicates the treatment
of interference among the various resources in
the system. The availability of memory for load­
ing tasks also appears in [3] as a part of the
scheduling algorithm.

The "forking scheme" which determines the
various parallel execution paths among the tasks
is a function of the model used to describe the
programs which are to be executed on the multi­
processor. The responsibilities of the proces­
sors, the processes, and the operating system for
achieving the proper matching between tasks and
processors is a matter taken up by [5]. The
"ready list" of tasks about to be scheduled is
managed by the scheduling processor and is con­
stantly being updated. A special controller
serves as the interrupt mechanism and delivers
the next task from the ready list upon processor
request. If hardware monitoring is desired to
improve the scheduling efficiency, that also is
interpreted by the scheduling processor.

Run-time anomalies, or variance in task
attributes, is modeled in several stages. Vari­
ance in task lengths due to data dependencies,
looping instructions, or IO waits within a task
is determined by treating the task length as a
random variable with only its mean and some
assumed distribution being known to the scheduler.
Variance due to contention for hardware resources
is modeled analytically [10] to produce a "con-

109

tention function" relating the "free" execution
time of a task to its "limited-resource" execu­
tion time. Variation which occurs in the
interpretation of the program graph, such as
branches and loops between vertices, has been
studied by Martin and Estrin [14].

Representation of Tasks

The tasks to be scheduled are considered to
be vertices of a single program graph of the type
discussed in [9]. The model for an individual
task consists of its connecting structure in the
program graph and its resource attributes. Since
many of the operating system tasks may be consi­
ered as service calls from the user program, they
may be represented as subgraph modules of the
user program, thus enabling the model to treat
user and operating system tasks as indistinguish­
able. In addition, it is anticipated that future
research will enable the entire operating system
to be modeled by a single program graph with sub­
graph substitutions being performed dynamically
to represent the flow of user jobs in the system.
This makes the assumption in this paper that only
one program graph exists in the system at a time
a reasonable simplification.

The origin of the program graph and descrip­
tions of the individual tasks is not a major
concern here. We assume that all user programs
require an amount of computation time warranting
their decomposition into several (parallel) tasks,
that they are properly compiled, checked for
proper termination conditions, and linked through
appropriate graph-module replacement algorithms
into the operating system's program graph. Each
task possesses a unique identity, a link to its
creator (operating system or user job), its memory
size and protection requirements, and estimates
for its duration, variance of duration, and
instruction mix. The instruction mix reflects
the resource requirements in that it differenti­
ates tasks with heavy usages of IO, arithmetic,
or memory capacity. The variance parameter allows
the task to behave anomalously during execution
after the scheduler has assumed the other esti­
mated parameters to be exact.

Several graph structures for programs to be
input to the system were taken from [13] (e.g.
Figure la). The scale of the tasks and distribu­
tion of task weights were modified, however, to
resemble a more balanced weighting of tasks that
might result from a compiler analysis of user
programs [8]. The desirability of having the
compiler balance the task weights in this fashion
becomes apparent when comparing expected results
from heuristics in [l] with the worst-case bounds
on scheduling anomalies expressed in [7] and [19],
which are attained by considering asymptotic task
relationships. Transformations were also made on
the original graphs to make them adhere to proper
termination criteria [9] and to make the graphs
acyclic, replacing the cycles by multiplying the
vertex weights within the loops by the estimated
loop frequencies [14].

I-'
I-'
0

·, Figure la - Example Program Graph

LEGEND

• "AND" input, "AND" output + "AND" input, "OR" output
e "OR" input, "AND" output

O "counter vertices
IQ! "replicator vertices

Figure lb - Modularized Program Graph

Our purpose is to simulate both the cyclic
and acyclic versions of the graphs in order to
determine the ralative advantages of each model­
ing technique. The final transformation perform­
ed on the graphs made use of graph modules and
replication vertices [9] to implement the cycles
in the graphs directly. Returning to the origin­
al cyclic graphs, each loop was replaced by an
appropriate graph module controlled by one of the
replication vertex forms provided in the extended
program model. The result may be seen by compar­
ing Figures la and b. Significant savings are
accomplished in both the number of tasks to be
specified by tables and in the simplicity of the
overall graph. Although simulation proved to be
considerably longer in terms of both simulated
and real execution times in the modularized case,
due to the repeated simulation of each loop for
each replication, control structures of this kind
must be investigated for the actual implementation
of real programs in real multiprocessing systems.

Modeling the Invoking of Algorithms

Several scheduling algorithms have been sug­
gested for use in multiprocessing systems. In
this paper we consider a number of heuristics
based on task lengths and program structure,
leaving user job priorities for later considera­
tion. Two approaches were taken in [7), one
based on longest-task-first, the other on a
lexicographic ordering from a labeling process
giving unique assignments beginning from the exit
vertex of the graph. Chen and Epley [3] used the
latest allowable starting times, while Martin and
Estrin [14) used a variety of heuristics, includ­
ing first-in-first-out, shortest task first,
longest task first, longest path to exit, expect­
ed path length to exit, and number of successors.
Adam [l) compares some of these with similar path
calculations measured from the entry vertex.

Additional algorithms appear with the
inclusion of memory requirements as a recognized
scheduling parameter. The work reported in [3)
considers both channel speed and memory size in
finding schedules, while [11] introduces a "two­
dimensional" scheduling strategy which uses an
optimistic initial guess for the schedule comple­
tion time to initiate an iterative trial method
for finding optimal schedules satisfying the
memory requirement. Analysis of these and other
memory-oriented task-scheduling algorithms is
available in [12). The limitation on these
algorithms is that they are intended for multi­
programming systems where there are no inter-job
dependencies. We wish to study multiprocessing
systems where partial orderings exist between
tasks due to the structure of the program graph
of which all tasks are a part.

The heuristics chosen for study may be
divided into three groups: local, global, and
comparison standards. The local algorithms
(those in which priorities are calculated from
the parameters of the task alone) are most imme­
diate successors first (MISF), longest time first
(LTF), shortest time first (STF), and largest

111

memory first (LMF). The global algorithms (those
in which priority calculations require knowledge
of the graph structure and the priorities of other
vertices) are most total successors first (MSF),
highest level first (HLF), highest weighted level
first (HWLF), longest expected path length first
(LPF), and longest weighted path length first
(LWPF). The standards of comparison are first-in­
first-out (FIFO) and random selection (RAND). The
reason for having two comparison standards is that
FIFO is the simplest to implement (no sorting at
all), while purposely randomizing the list elimi­
nates any bias that may have been entered by the
polling algorithm.

The amount of difficulty to compute each of
these heuristics is determined primarily by the
same group classification. The comparison
standards are essentially no work at all, while
the local algorithms simply select one of the
task attributes and assign it as a priority. The
global heuristics, however, require more computa­
tion. The "level" of a vertex is defined as the
number of vertices in the longest path from that
vertex to the exit vertex (inclusive), while the
"expected path length" is defined as the combina­
torial average of the probabilities of each
possible path to the exit, based on the output
probabilities associated with each vertex. (The
actual calculation of these heuristics can be done
by a polynomial process [15].) For the "weighted"
algorithms, the number of vertices in each path is
replaced by the sum of the estimated times for
each vertex in that path.

The algorithms we have discussed may be in­
voked either statically or dynamically. The
static or list-schedule technique is to order all
tasks prior to execution according to whatever
heuristic is chosen, and to assign the list mem­
bers to processing units on a first-come-first­
served basis. More complicated schemes may do
the assignment in advance as ~ell by creating a
separate list of tasks for each processing unit.
The dynamic approach differs in that the task
priorities may be modified at run-time as more
information becomes available about each task and
and the status of the program graph. This is
particularly true of global heuristics, since
they are based upon graph structures, where
already-executed portions of the graph may be
removed and the remaining task priorities recal­
culated. While the dynamic method produces better
schedules in general, due to increased knowledge,
it suffers from the problem that an inordinate
amount of time may be spent recalculating the
task priorities.

The basic strategies chosen for testing in
this paper are invoked in a mixed fashion, in that
the scheduling priorities are pre-calculated
(thus static) while the tasks are assigned to
processors dynamically upon processor request.
The "ready" queue is maintained by the operating
system polling user jobs for tasks available to
be scheduled. Tasks are selected from the queue
during program execution, based upon the immedi­
ate resource availability and the priority

assigned to each task by the. heuristic.

III. The E~eriments

Input Selection and Validation

A number of experimental machine conf igura­
tions ~nd scheduling philosophies may be repre­
sented by the model we have discussed. In
addition, the class of job mixes which can be
modeled for execution on.this system is unbounded.
We wish to describe specific configurations and
mixes in order to exercise the simulation under
different scheduling strategies and ascertain the
effects of these strategies on the overall system.
To achieve this it becomes necessary to gather
data from a variety of sources in order to deter­
mine the hardware configurations, resource
descriptions, and hardware instruction mixes for
the machine model, and to select sample program
graphs, task descriptions, and resource require­
ments for the programs to be executed on the
modeled system.

The simulations were run on a Xerox Sigma 5
using a FORTRAN and assembly language system to
implement a portion of the SIMULA 67 class con­
cept. The simulation program operates on a
discrete system-state basis wherein state-tables
are modified as events such as job-entry, task
completions, scheduling functions, and processor
requests for tasks occur. The resource competi­
tion and configuration parameters resemble those
of [16] in that lists of resources, competitors,
priority rules, service times of resources, and
load variance conditions describe the particular
hardware being simulated by that run. An exterior
event generator is used to create the program
graphs and task parameters which are to enter the
simulation as exogenous events. A general mix of
programs, including highly parallel, intermediate,
and serial jobs, is generated in the form of
tables produceable by compilers, and "executed"
on the simulated hardware model. The simulation
is then exercised under different scheduling
strategies in order to ascertain the effects of
these strategies on the overall system.

The general hardware configuration studied
was a 32-processor system [8]. When it .was de­
termined that sufficient program loads could not
be generated within the limits of the simulation
host computer, smaller numbers of processors were
sampled. The hardware timing parameters were
chosen on the basis of currently available hard­
ware units, with the number and types of resource
units selected empirically to fit the instruction
mixes anticipated. In order to determine the
instruction mix parameters, traces were taken on
the XDS Sigma 5 from what were considered to be
typical programs: a double-precision FORTRAN
subroutine, a series of FORTRAN IO statements,
the XPL/S compiler, and a sample run of the
SIMTRAN simulation package. The results of the
traces are reported as percentages of instruc­
tions counted in Table 1. Over 600,000 instruc­
tions were counted for each mix.

112

With the variety and volume of input data.and
model parameters available, it becomes necessary
to ma~e some preliminary studies of the data and
calculations made upon it to determine their
validity and appropriateness for use in the simu­
lation model. Since the memory interference
function must be re-evaluated for each new task
to be executed by a processor, its behavior,
particularly relating to convergence speed, was
studied under a variety of parameter values to
deterllline the numerical accuracy of the analytical
solutions [10]. These calculations were also
helpful in.selecting"the numbers of processors and
memories and cache hit ratio to be included in the
simulation.

Some interesting observations may be made
from the duplicate runs on the cyclic and acyclic
versions of the test graphs. While the cyclic
r~presentation may be considerably more accurate
in representing the flow of control in the actual
program, the penalty in simulation time is severe.
For a loop that is replicated k times, k times as
many tasks must be scheduled, resulting in many
more polling and scheduling delays. In the
example of Figure 1, 21.7 times as many vertices
were executed with a 22% increase in elapsed time.
These time increases were reflected to a much
greater degree in the computation time to perform
the simulations. It may be concluded from this
that, depending upon the level of detail desired,
either method of modeling cycles may have merit.
It is necessary to be capable of modeling the
cyclic execution, both for understanding of the
model and for implementation of real schedulers,
but the overhead makes it not worth the effort in
a larger-scale view of the system, particularly if
the loop count is very large.

Variance and Load Parameters

The subject of variance due to run-time
anomalies is an inescapeable part of the multi­
processor system and is included as part of our
model. Variance in the instructions executed
within a task, variance in executing power due to
resource contention, variance in decision branches
between tasks, and variance from exogenous vari­
ables such as system load characteristics each
cast their effect on the overall system. Specific
studies of these effects have been performed
previously [14] and need not be repeated here,
but they are still present in the simulation and
must be.accounted for in a statistical sense.
Results from single runs on any of the experi­
ments reported here tend to lack credibility
unless we can be certain that the range of the
results is clearly within the range of the vari­
ance involved in the experiment.

Since processing time constraints on the
simulation make it impossible to repeat all of
the experiments sufficiently to reduce the vari­
ance in the values reported, a series of 10 runs
with different random-number seeds was made on
each of the sample graphs in order to establish
an estimate for the range of credibility of future
experiments. Simulations of one graph executed an

average of 46 vertices in 1023 time units, requir­
ing a total of 1414 units of execution from the
processors, with a variance of 14%. In the next
graph simulated, 145 vertices were executed in
time 590, requiring 3611 processor-time units
with less than 1% variance. Simulations of a
third graph completed 124 tasks in time 1974 with
8% variance and required 2376 processor-time units
with 15% variance. In the final graph (Figure 1)
204 tasks were completed in time 8494 with 2%
variance and 33356 processor-time units were re­
quired with only 5% variance. The results were
similar or better when the modularized graphs
were tested in the same manner. In the remainder
of this paper, a parameter will be considered
significant only when its effect exceeds the
variance from these preliminary runs.

One form of variance not studied by [14] is
that caused by resource contention. When the
system is under sufficient load, tasks with
similar instructions mixes will conflict over
resource requests and cause variance in the task
completion times. In order to observe this
phenomenon, a full load is necessary on the system
resources which cannot be achieved by a single
graph, and increasing the size of the graph
creates space problems in the simulation. If we
limit the size of the system, considering the
graph under study to possess only a portion of
the total system, then the model weakens because
no interaction exists with the jobs assumed to
hold the remaining system resources. What is
required is a means of occupying the other pro­
cessors not immediately concerned with the current
graph in such a way that they simulate the
contention effects of having other jobs in the
system.

One solution is to introduce "dummy" tasks to
the system. Whenever a task is to be scheduled
(found "initiable" by the token machine) a set
number df "ghost" co.pies of the task are entered
in the ready list. This not only causes other
processors to become occupied with tasks which
will have an effect on the resource contention
calculations, but also produces a load on the
scheduler and may cause the real tasks from the
graph to wait for "dummies" to complete, much as
they would have to in a real system containing
other jobs from a general mix. The "ghost" tasks
differ from the real ones in that they merely
"die" upon completion of their processor-computa­
tion time and do not cause tokens to be moved as
in the case of "real" tasks. The number of
"ghosts" created for each "real" task is taken as
a system load parameter.

The effects of the load parameter on the
system are shown in Figure 2, where each run
assumes all tasks to be from the same one of four
instruction mixes. The idle time for each mix is
graphed as a function of the number of ghost
tasks produced, and as would be expected, the
effects of the different mixes becomes more dis­
tinct as the load increases. The next experiment
examined the effect of "balancing" the instruc­
tion mix on the system by randomly assigning a

113

different instruction mix to each task. The re­
sult was compared with an average taken from the
runs made with the separate mixes, in order to
show the advantage of scheduling an equal number
of tasks from each mix. By balancing the instruc­
tion mix on the system in this way, the scheduler
may avoid contention bottlenecks which occur when
all the processors are executing tasks which re­
quest the same resources. The difference found,
however, was determined insufficient to justify
including the mix parameter as part of the sched­
uling priority.

Another factor to consider is the source of
the idle times that are being measured. We have
considered a system where the operating system
polls its users for tasks available for scheduling
and made the frequency at which the polling occurs
a simulation parameter. When at least one task
has completed, a flag is set enabling the polling
process-object. When the appropriate time inter­
val expires, the graph is polled, or scanned by
the scheduler. We may model demand scheduling
with this model by simply setting the polling
interval to an extremely small value, such that
polling will occur precisely whenever the flag is
set. The difference in idle time between a poll­
ed and a demand system was found to be signifi­
cant. Because of this difference, the remaining
simulations were performed under demand scheduling
so that all of the idle time reported may be
directly attributed to the scheduling algorithm
and/or the configuration under study.

Comparison of Scheduling Algorithms

The idle times of the various scheduling
heuristics described in Section II are compared
in Figure 3 as functions of the number of proces­
sors in the system. In every case we see that
the local algorithms (MISF, LMF, LTF and STF) are
poor in that they show no improvement over the
comparison standards (FIFO and RAND). The global
strategies involving some measure of path length
(HLF, HWLF, LPF and LWPF) show consistently better
performance, particularly in the 4-6 processor
region. The pseudo-global urgency MSF gives some
improvement over the local urgencies but is not
as good as the path length algorithms. Little
difference can be seen between the four global
strategies.

At this point it becomes necessary (for
limitations in computer time) to fix the level of
load on the system. This may be accomplished by
selecting a specific processor range since the
same job stream is used for simulating each con­
figuration. We may observe that for lightly
loaded systems (characterized by large idle times)
all scheduling algorithms will tend to perform
equally well because there is no real contention
requiring a careful scheduling decision. For
moderately-to-heavily loaded systems (character­
ized by smaller idle times) the distinguishing
performance characteristics of the algorithms will
emerge. We select the 4-6 processor range since
it seems to typify the moderately-loaded situa­
tion.

1--'
1--'
.i:-

80

70

60

50

40

30

20

10

0

Figure 2 - Comparison of the Instruction Mixes Under Load

2

% Idle Time for Individual Mixes
vs. Load Factor in No. of Ghosts

1. FORTRAN floating point

2. FORTRAN IO statements

3. XPL/S compiler

4. SIMTRAN simulation

4 6

Number of Ghosts

8

1

4
2

3

80

70

60

50

40

30

20

10

Figure 3 - A Comparison of Several Scheduling Algorithms

2

% Idle Time for Each Scheduling Algorithm
vs. Number of Processors in the System

1. RAND algorithm

2. MISF, LMF, LTF, STF algorithms

3. FIFO algorithm

4. HWLF, MSF algorithms

5. HLF, LPF, LWPF algorithms

4 6

Number of Processors

8

1
2
3

·4
5

One goal in this research was to find a
local strategy that would perform near to the
global strategies or to determine which of the
global strategies would perform best. It was
hoped that when memory becomes a critical re­
source that the LMF algorithm might out-perform
some of the others. For the remaining simulation
runs, a limit is placed on the total memory
occupancy at a given time in the system, causing
the shceduler to pass over some tasks with large
memory requirements for smaller ones if they do
not fit in the available memory. (Contiguity of
memory is ignored here.) It is expected that as
memory becomes restricted, all of the non memory­
oriented strategies will degrade rapidly in their
performance to the point where a simple memory
strategy like LMF may succeed.

For this reason an investigation was made
into the memory capacity limit as reported in
Figure 4. The LMF algorithm is shown for a few
processor values over a wide selection of memory
limits. Dotted lines in the figure indicate the
performance in the case where an infinite memory
is assumed (i.e. when the memory parameter is
ignored by the loader). The lowest memory limit
considered was 410 because the largest simulated
task will just fit in that space. The result of
this investigation is that memory limits of 410,
600 and 800 should serve as an appropriate test
range for systems within the established ideal
load range of 4-6 processors.

In the final simulation series, the global
strategies were run under varying memory capaci­
ties in order to see how they measure against the
LMF algorithm as memory becomes a critical
resource. Tbe results for HLF, HWLF, LPF and
LWPF were nearly identical, so HLF was chosen as
being representative for the comparisons with
RAND, FIFO and LMF. The effect of the memory
constraint on each algorithm's performance is
shown in Figure 5 for each of the memory limits
under consideration. FIFO appears to be consis­
tently better than RAND, although not much
difference is noted. The performance of LMF is
considerably disappointing. The path length or
global algorithms are again clearly better than
the others, although the margin of improvement
dwindles rapidly when memory becomes critical.

IV. Conclusions

A number of conclusions may be drawn from
the experiments performed here, some positive,
some negative. A significant step has been made
in the modeling of multiprocessor systems. A
model has been successfully constructed which is
capable of modeling the complete system from many
different points of view and at many levels of
detail. We have also found that the simpler
acyclic program model is reasonable in many in­
stances, that demand scheduling is highly
desirable if the scheduling processor can be
spared to perform the task often enough, and that
more work is needed in specifying efficient
implementation details of the sched11ler's duties.
In the way of scheduling algorithms, we have

115

found that the local heuristics are of no help at
all, that all of the global strategies listed are
of equal value (therefore pick the cheapest one to
implement), and that the usefulness of the global
strategies is limited when the time spent on
determining these priorities is a critical concern.
We were also disappointed by the failure of the
LMF attempt at introducing the memory parameter to
scheduling in an inexpensive manner.

Acknowledgment

The author is deeply indebted to "Referee A"
for his constructive criticism and assistance in
the organization of this paper.

References

[l] Adam, T. L., Chandy, K. M. and Dickson, J. R.
"A Comparison of List Schedules for Parallel
Processing Systems" Comm. ACM 17: 12 (December
1974), pp. 685-690.

[2] Baskett, F. and Smith, A. J. "Interference
in Multiprocessor Computer Systems With
Interleaved Memory" Comm. ACM 19:6 (June
1976), pp. 327-334.

[3] Chen, Y. E. and Epley, D. L. "MemoryRequire­
ments in a Multiprocessing Environment"
J. ACM 19:1 (January 1972), pp. 57-69.

[4] Garey, M. R. and Graham, R. L. "Bounds on
Scheduling With Limited Resources" Proc. 4th
Symposium on Operating Systems Principles,
October 1973, pp. 104-111.

[5] Gonzalez, M. J. Jr. and Ramamoo~thy, C. V.
"Parallel Task Execution in a Decentralized
System" IEEE Trans. on Comput. C-21:12
(December 1972), pp. 1310-1322.

[6] Gountanis, R. J. and Viss, N. L. "A Method
of Processor Selection for Interrupt Handling
in a Multiprocessor System" Proc. IEEE 54:12
(December 1966), pp. 1812-1819.

[7] Graham, R. L. "Bounds on Multiprocessing
Anomalies and Related Packing Algorithms"
Proc. AFIPS 1972 Spring Joint Computer Conf.,
pp. 205-217.

[8] Jensen, J. E. Dynamic Task Scheduling in a
Shared Resource Multiprocessor, PhD Disserta­
tion, University of Washington, August 1976.

[9] Jensen, J. E. "A Graphical Representation
of Tasks for Multiprocessing" to appear in
Proc. ACM 1977 Annual Conference, October
1977.

[10] Jensen, J.E. and Baer, J. L. "A Model of
Interference in a Shared Resource Multipro­
cessor" Proc. 3rd Symposium on Computer
Architecture, January 1976, pp. 52-57.

[ll] Kafura, D. G. and Shen, V. Y. "Scheduling
Independent Processors With Different Storage

•f-'
I-'
CJ\

80

70

60

50

40.

30

20

10

Figure 4 - Investigation of the Memory Capacity Limits

% Idle Time for Selected Processor Values
vs. System Memory Capacity
(dotted limits indicate unbounded memory)

- - - -- - - - - -- -- - --- ---- -- - - ---..,.- - -- ---8-processors

--------·-··········-----------·· 6 processors

4 processors

__,__
400 600 800 1000 1200

Memory Capacity

60

50

40

30

20

10

w~ 50

40

30

20

10

Figure 5 - A Comparison of Algorithms Under Memory Constraints

.% Idle for Memory = 410 % Idle for Memory • 600
60

50

40

30

20 ..

10

3 4 5 6
No. of Processors No •... of Processors

% Idle for Memory = 800 I % Idle for Unlimited Memory
60

50

40

RAND
30

20

10

3 4 5 6 3 4 5 6
No. of Processors No. of Process.ors

Capacities" Proc. ACM National Conference,
1974, pp. 161-166.

[12] Krause, K. L., Shen, V. Y. and Schwetman,
H. D. "Analysis of Several Task-Scheduling
Algorithms for a Model of Multiprogramming
Computer Systems" J. ACM 22:4 (October 1975),
pp. 522-550. ---

[13] Martin, D. F. The Automatic Assignment and
Sequencing of Computations on Parallel Pro­
cessor Systems, PhD Dissertation, U.C.L.A.,
January 1966.

[14] Martin, D. F. and Estrin, G. "Experiments
on Models of Computations and Systems" IEEE
Trans. on Comput. EC-16:1 (February 196~
pp. 59-69.

[15] Martin, D. F. and Estrin, G. "Path Length
Computations on Graph Models of Computation"
IEEE Trans. on Comput. C-18:6 (June 1969),
pp. 530-536.

[16] Merikallio, R. A. and Holland, F. C.
"Simulation Design of a Multiprocessing
System" Proc. AFIPS 1968 Fall Joint Com­
puter Conf., pp. 1399-1410.

[17] Mitchell, J. et al. "Multiprocessor
Performance Analysis" Proc. AFIPS 1974
National Computer Conf., pp. 399-403.

[18] Texas Instruments A Description of the
Advanced Scientific Computer System,
Internal Publication MlOOlP, Texas Instru­
ments, April 1972.

[19] Ullman, J. D. "Polynomial Complete
Scheduling Problems" Proc. 4th Symposium
on Operating Systems Principles, October
1973, pp. 96-101.

Table 1 - Typical Instruction Mixes(b)

FORTRAN FORTRAN XPL/S SIMTRAN
Floating IO Compiler Simulation

Category of Instruction Point Statements

Memory Addressed Instructions .8870 .7685 • 7772 .8828

Immediate Addressed Instructions .1130 .2315 .2228 .1172

Total Memory References 1.6696 1.3932 1.4844 1.4354

Instruction Fetches 1.0000 1.0000 1.0000 1.0000

Operand Addresses • 7244 .3713 .5342 .4930

Operand in Memory .6360 .3462 .4636 .4085

Register Operands .0884 .0251 .0706 .0845

Operaud Fetches .5916 .2201 .3980 .3792

Operand Stores .1328 .1512 .1363 .1138

Indirect Memory References .0336 .0470 .0208 .0269

Total "P.c" Instructions .5367 .6727 .7067 .7732

Branch Instructions .1626 .3972 .2430 .3898

(Successful Branches) .1501 .2912 .1696 .3281

Load/Store Instructions .3675 .2726 .4637 .3834

"Execute" Instructions .0066 .0029 .0000 .0000

Total "D.e" Instructions .4699 . 3939 . 3147 .2420

Int. Add, Subtract, Compare .0714 .3282 .2431 .1428

Floating Add, Subtract .1668 .0003 .0000 .0197

Multiply Instructions .1339 .0079 .0001 .0133

Divide Instructions .0371 .0024 .0003 .0006

Logical Instructions .0134 .0149 .0313 .0115

Shift Instructions .0473 .0400 .0471 .0138

Monitor and IO Calls .0000 .0002 .0003 .0403

(b)Values expressed as ratios to the number of instructions counted. Over 600,000 instruc­
tions were counted per mix.

117

PERFORMANCE EVALUATION OF A PARALLEL SYSTEM
PROCESSING FAULT-TOLERANT PROGRAMSt

K. H. Kim and M. J. Jenson
Department of Electrical Engineering

and Computer Science
University of Southern California
Los Angeles, California 90007

Abstract, A parallel (multiprocessor)
system processing fault-tolerant programs was
developed in (4, SJ. The· system performance
is evaluated in this paper, using an analytic
approach based on stochastic models. The
analysis confirms the high effectiveness of a
parallel system, under all practical circum­
stances, in reducing the program execution
time increase due to run-time validation and
system state saving. It also shows how the
system performance is affected by various
program characteristics.

1. Introduction

A system architecture for parallel exe­
cution of fault-tolerant programs (i.e., pro­
grams containing redundancy for the tolerance
of residual program errors and/ or hardware
faults [7]) was developed in [4, 5). The system
was designed to execute block-structured
fault-tolerant programs developed by Horning
et al. (3]. A fault-tolerant block or recovery
block is the basic component containing re­
dundancy in these programs and has the fol­
lowing structure: ensure T by o 1 else-by Oz
else-by ... else-by On else-error, where T
denotes the validation test, 0 1 the primary
object block, and Ok (1 <k ::;;;n) the alternate
object blocks. All of the object blocks in a
fault-tolerant block F compute the same or
approximately the same objective function.
The validation test T is executed on exit from
an object block to confirm that the object
block has performed acceptably. The exe­
cution of a validation test results in either
an acceptance (i.e., confirmation) or a re­
jection. If accepted, control exits from the
fault-tolerant block. If the result produced by
an object block is rejected, the next alternate
is entered, After the alternate object block
finishes its computation, the validation test is
repeated. Before an alternate object block is
entered, the system state is restored to the
state that existed just before entry to the pri-

mary object block (1, 2, 3]. To enable this,
a state vector that contains the values of all
the variables (that may be changed by the
object blocks) is saved on entry to a fault­
tolerant block.

The goal of the parallel execution is to
overlap, as much as possible, execution of
object blocks with the validation and system
state saving. In this paper, we evaluate the
performance of the parallel system, The
approach used in this paper for performance
evaluation is of an analytic nature and is
based on stochastic models for both the parallel
system and the sequential system (i.e., one
in which the execution of an object block is
not overlapped with the execution of a validation
test). The evaluation shows the performance
gain by parallel execution over sequential
execution.

In the next section major characteristics
of both an efficient sequential system and a
parallel system are compared. Section 3, 1
deals with the evaluation of the sequential
system. Performance of the parallel system
is evaluated in Section 3, 2 and compared with
the performance of the sequential system in
Section 3, 3,

2, Distinguishing Characteristics
of a Sequential System and a Parallel System

In this section two systems, a sequential
system using a memory organization called a
recovery cache [1, 3) and a parallel system
using a duplex memory [4, 5], are briefly
sketched,

The essence of the recovery cache
scheme is to save the "original value" of each
non-local variable W together with its logical
address right before the variable is modified
for the first time in a new object block. The
original values are thus saved in a compact

t This work was supported in part by the Joint Service Electronics Program under Air Force
Contract F44620-76-c-0061.

118

table structure. For illustration, the fault­
tolerant program in Figure la is used.

Figure 1 b shows a snapshot of the re­
covery cache taken when primary object block
Oz. 1 is in execution. As shown, there is a
stack, called the cache stack, used for saving
the original values. Similar to the main
stack, the cache stack is also divided into
regions, one region for each nested fault­
tolerant block in the "active" state (i. e., a
fault-tolerant block that has been entered but
not exited). The top region of the cache stack
in Figure lb contains previous values of non­
local variables together with their names (re­
presenting logical addresses), i.e., YZ, Xl,
XZ, which have been modified during execution
of the current object block Oz. 1• Similarly,
the bottom region of the cache stack contains
the previous value of non-local variable Xl
which had been modified by execution of object
block 01. 1 before Oz. 1 was entered. Figure
lb also shows a flag field in the main stack.
The flag attached to a variable indicates
whether the original value of the variable has
already been saved since the current object
block was entered. Thus the flags attached to
YZ, Xl, XZ in the main stack are currently set.

If the result produced by execution of
Oz. 1 fails the validation test Y z , then the top
region Cz of the cache stack can be used to
reset the main stack to the state that existed
on entry to fault-tolerant block F z. If it
passes the test, execution of F z is complete
and Cz is merged into c 1 so that the result
will contain previous values of those variables
which are non-local to 01. 1 and have been
modified since 01. 1 was entered. Thus the
result will be a single region containing (Xl, 9)
and (XZ, Z). Flags in the main stack are also
adjusted such that only flags of Xl and XZ are
set. Therefore, the combination of the main
and cache stacks usually contains information
with which several old state vectors can be
reconstructed.

In the case of parallel execution at least
two processors are used, a main processor
for object block execution and a YR-(validation
and recovery) processor or audit processor
for execution related to validation and recovery.
It is necessary to save a state vector on exit
from an object block since the state vector is
used by both the main processor and the YR­
processor. This is accomplished by simul­
taneously storing the operand of each WRITE
operation into two locations, one in the main
~ and the other in the YR-store. When
the main processor enters a fault-tolerant
block F, a YR-store-segment is created to
keep an execution image which consists of

119

records of assignments made by an object
block in F. A YR-store-segment consists of
two sections, the L-(local variable) section
for keeping records of assignments to variables
local to the object block in execution and the
N-(non-local variable) section for assignment
records of non-local variables. A variable
local to the object block being entered is
allocated one location in the main stack and
one location in the L-section of a YR-store­
segment. New values assigned to variables
that are non-,local to the object block in exe­
cution are recorded together with the logical
addresses (of the variables) in a table struc­
ture in the N-section of a YR-store-segment.

For illustration, Figure le shows the
content of the YR-store at an instant during
execution of the program in Figure la by a
parallel system using a duplex memory.
When the main processor entered the program
(i.e., the outermost block), YR-store-segment
s0 was created to keep assignment records
of local variables Xl and XZ. Since there are
no variables non-local to the outermost block,
So does not contain a N-section. When the
main processor entered F 1, YR-store-segment
S1. was created. When non-local variable Xl
was assigned the value 11 811 during execution of
object block Oi. l• a table entry (Xl, 8) was
made in s 1N. Similarly, Sz was created when
the main processor entered Fz and was filled
by execution .of object block Oz. 1 • The content
of the main stack in a duplex memory is that
in a recovery cache minus the flag field.

On completion of Oz. 1, the main pro­
cessor proceeds to the execution of F 3 (which
will be imaged in a new YR-store-segment S3)
while the YR:-processor starts examining the
execution image in Sz by execution of Y z. If
the result produced by execution of Oz. 1 (kept
in Sz) fails the validation test Y z , then the
non-local variables recorded in SzN (and S3N,
if not empty) are those which need to be reset.
Segments s0 and s 1 contain the values of the
variables that existed when the main processor
entered fault-tolerant block Fz and their values
may be used to reset the main stack. A
duplex memory may be implemented such that
the previous value can be obtained in a single
content-addressable memory (CAM) cycle [4, 5].
If the result of Oz.l passes Yz, SzL is dis­
carded and SzN is merged into s1 so that the
result contains the assignment records, of the
variables addressable in 01. 1, made since
Oi. 1 was entered. This will result in SIL
containing 11 1 11 , 11 511 and 11 311 for Yl, YZ, Y3,
respectively and s 1N containing (Xl, 7) and
(XZ, 8).

Let us now compare the characteristics
of the recovery cache scheme for sequential
execution with the characteristics of the duplex
memory scheme for parallel execution.

1. In both schemes, content-addressable
memory modules are needed to obtain an
acceptable level of performance in program
execution and in the rest of this paper, the
use of CAM modules is assumed.

2. The duplex memory takes more space
than the recovery cache,

3, The WRITE operation into a non-local
variable W involves two steps with the recovery
cache, the first step being used for fetching
the original value or the flag, while the WRITE
operation takes one step (CAM cycle) with the
duplex memory. Therefore, the execution of
an object block is slower with the recovery
cache than with the duplex memory,

4. Overall, it is expected that the re­
covery cache takes less merging time than the
duplex memory. During the execution of a
program in which no fault-tolerant block is
nested within another fault-tolerant block, there
is no merging involved with the recovery cache.

5, The parallel system is slower in re~
covery because (a) recovery of a variable takes
more steps with the duplex memory than with
the recovery cache and (b) there are more
variables that need to be recovered in the
parallel system because while an execution
image is being validated, the main processor
normally proceeds to the successor block(s),

In summary, the parallel system largely
trades recovery time increase for the reduction
of total program execution time. There are
cases, though highly impractical, where the
performance of the parallel system is inferior
to the performance of the sequential system,
Let ot denote the reliability of an object block,
i.e., the probability of an average object block
producing an ace epted execution image. Then
there is a lower bound O!L for ot such that when
Ql>O!L, the parallel system performs more
efficiently than the sequential system. This
lower bound is one of the values of interest
examined in subsequent sections.

3. Performance Evaluation

Given a fault-tolerant program, the aver­
age execution time of a fault-tolerant block is
defined as the execution time of the program
divided by the number of fault-tolerant blocks
executed during the program execution, Ts and
T p denote the ave'!:' age execution time of a fault­
tol.erant block by the sequential system and by

120

the parallel system, respectively. The system
throughput is defined as the number of fault­
tolerant blocks completed per unit time and is
given by the inverse of the average execution
time of a fault-tolerant block, We denote the
sequential system throughput and the parallel
system throughput by THRs and THR , res­
pectively. Throughputs are used in fhis section
as measures of the performance of the se­
quential system and of the parallel system,

For mathematical tractibility, the following
set of global assumptions have been adopted
throughout the performance evaluation.

Assumption G

G.l The programs considered in this analysis
are of the type in which no fault-tolerant block
is nested within another fault-tolerant block and
whose execution becomes a sequential chain of
fault-tolerant block executions (Figure 2).

G. 2 Primary and alternate object blocks take
the same average execution time.

G. 3 Each fault-tolerant block contains an un­
limited number of alternate object blocks (to
eliminate the case of program failure).

In executing a program satisfying assump­
tion G. 1, the sequential system does not involve
assignment record merging, as mentioned in
Section 2. This assumption G. 1 is adopted
because of the difficulties in (1) dealing with a
large spectrum of legitimate program structures,
(2) keeping accounts of various execution times
during execution of a general program (i.e.,
a program in which fault-tolerant blocks are
nested one within another), etc. However, it
is conjectured that results in this paper of
performance comparison between two systems
for programs satisfying G. 1 will not be far
different from the results for general programs.

3. 1 Throughput Evaluation for the Sequential
System

The behavior of the sequential system
during execution of a fault-tolerant block is
depicted in Figure 3a. The system first enters
the "object block execution" state s 0 in which
the processor executes an object block within
the current fault-tolerant block. On completion
of an object block, the system enters the
"validation" state sv in which the processor
executes the validation test. If the validation
results in a rejection, the system enters the
"recovery" state sr, and on completion of the
recovery, the system again enter!:! s 0 in which
the processor executes an alternate object block.
If the validation results in an acceptance, the
system proceeds to the execution of the succes­
sor fault-tolerant block and repeats the above
behavior,

During execution of fault-tolerant programs
satisfying assumption G, the sequential system
continuously repeats the process depicted in
Figure 3a. We thus model the system behavior
by the following stochastic process for the pur­
pose of evaluating THRs.

Model S

S. 1 There are three states which the sequen­
tial system may enter: s 0 - object block exe­
cution, sv - validation, and sr - recovery.
(Due to assumption G. 1 there is no merging
state.)

S. 2 The time during which the system is in
any state is exponentially distributed.

S. 2. 1 When the system is in state s 0 , the
rate gs of generating an execution image (i. e.,
the probability of the system completing the
execution of an object block within an infinite­
simal time interval {).t is gs*llt), is gs= l/t0 s
where t 0 s denotes the mean object block exe­
cution time in the sequential system. gs is
called the generation rate.

S. 2. 2 When the system is in state sv, the
rate v of completing the validation, called the
validation rate, is v= l/tv where tv denotes the
mean validation time.

S. 2. 3 When the system is in state sr, the rate
rs of completing the recovery, called the re­
covery rate, is rs= l/trs where trs denote-;-
the mean recovery time in the sequential system.

S. 3 The probability of the system entering
state s 0 after leaving state sv is a, while the
probability of entering state sr is a'= 1 - OI.

Figure 3b depicts Model S. Let p 0 , Pv,
Pr denote the equilibrium probabilities [6] of
the system being in s 0 , sv, sr, respectively.
The steady-state behavior of the system is
expressed by the following equilibrium equations.

p0 • gs = pr• rs + pv • v • a

(1)

P0 + Pv + Pr= 1 (normalizing equation).

Solving Eq. 1, we obtain
I .

p =rs•v/(gs•v·a +rs•v+gs•rs)
0

p ::rs•gs/(gs·v·a'+rs•v+gs•rs) (2)
v

p :: gs •v 0 01 1/(gs •v•a' +rs •v +gs •rs).
r

By definition system throughput is equal to the
number of execution images accepted per unit
time. Throughput THRs and its inver s·e Ts can
thus be obtained as follows.

121

THR
s pv·v·OI

I

rs•gs·v·Ol/(gs·v·a + rs·v+ gs•rs)

(3a)

Ts= l/THRs

(gs • v • Ol 1 + rs • v + gs •rs)/ (rs •gs • v · O!)

(l/Ol)·(t + t) + (CY. 1 /rx)·t . (3b) os v rs

3. 2 Throughput Evaluation for the Parallel
System

In most cases the main processor need
not be synchronized with the YR-processor.
However, when the next fault,.tolerant block to
be executed specifies irreversible actions of
critical nature, the main processor waits until
the YR-processor accepts all the execution
images in the queue (i. e. , the execution images
of the predecessor fault-tolerant blocks) [4, 5].
An execution image generated immediately be­
fore a block specifying an irreversible action
is entered, is a "synchronizing" execution
image (or for short, S-image). The other
execution images are "normal" execution images
(or N-images).

An abstract representation of the parallel
system with unbounded queue is shown in
Figure 4. The main processor continuously
constructs execution images and puts the com­
pleted execution images into the queue of exe­
cution images except when (1) the YR-processor
stops it on rejection of an execution image and
enters the recovery state, or (2) the main pro­
cessor has generated a synchronizing execution
image and put it intp the queue. The YR-
proc es sor validates execution images in the
order of their arrival. When it accepts an
execution image, it enters the "merging" state.
On completion of merging, it checks if another
execution image is waiting in the queue. If an
execution image is rejected, the main processor
is stopped and recovery is initiated. Recovery
involves a sequence of assignment reversals
using the assignment records in the execution
images and thus can be thought of as a process
of "erasing" the execution images in the queue.
On completion of the recovery, the queue is
empty and the main processor is restarted.
The parallel system is thus modeled by the
following stochastic process.

Model P

P. 1 The state of the system at any instant is
characterized by (1) the state of the YR-pro­
cessor which may be in wait, validation,
merging or recovery, and (2) .the number and
types of execution images in the queue. The
state of. the main processor is busy or waiting

and is determined by the state of the YR-pro­
cessor and the state of the queue. . Thus each
system state is denoted by

s ' YR-processor state, queue state
where (1) YR-processor state= w (wait), v
(validation), m (merging), or r (recovery), and
(2) queue state= 9l (empty), N (one normal
execution image), S (one synchronizing execution
image), $ (= N or S), NN, NS, $N, $S, NNN,
NNS, $NN, $NS, ••.•

Some possible states of the system are
shown in Figure 5, where some possible state
transitions are also indicated. For example,
sv N is the state where the queue contains one
normal execution image which the YR-processor
is validating. There are four states which the
system may enter from sv, N: sv, NN which is
entered if the main processor generates another
normal execution image; sv NS which is entered
if the main processor generates a synchronizing
execution image; sm, $ which is entered if the
YR-processor accepts the normal execution
image in the queue; and sr, N which is entered
if the YR-processor rejects the normal exe­
cution image in the queue. In sr N the system
erases the normal execution image in the queue
and thereafter enters state sr, 9l in which the
system erases the partially constructed exe­
cution image contained within the main proces­
sor. Note that the type of the first image in
the queue is not distinguished in some states
(e.g., Sm, $N>· This is because once an
execution image is accepted, the system's
future behavior is independent of the type of
the execution image just accepted.

P. 2 The time during which either processor
is in a particular state is exponentially dis -
tributed.

P. 2. 1 When the main processor is in a busy
state, the generation rate gp is gp = 1 /t0 p,
where t 0 p represents the mean object block
execution time (which is different from t 0 s)·

P. 2. 2 When the YR-processor is in a valida­
tion state, the validatiori rate v is v = 1 /tv,
where tv represents the mean validation time.

P. 2. 3 When the YR-processor is in a merging
state, the rate mp of completing the merging,
called the merging rate, is mp= l/tmp where
tmp represents the mean merging time.

P. 2. 4 When the system is in a recovery state
other than sr, 9! • · the rate rp of erasing an
execution image, ·called the recovery rate, is
rp= l/trp where trp represents the mean time
for erasing an execution image.

122

P. 2, 5 The size of the partially constructed
execution image remaining within the main
processor when the system enters a recovery
state is assumed to be proportional to the
amount of time that the main processor has
spent in construction of that execution image.
Borrowing a result in the renewal theory, the
mean size of the execution image partially con­
structed (when the system enters a recovery
state from a state where the main processor is
busy), is the same as the mean size of a com­
pleted execution image (6]. Thus when the
system is in ~r, 91 , the rate of moving from
sr, 9l to sw, 9l is also rp.

P. 3 The probability of a validation resulting
in an acceptance is a as before, while the
probability of a rejection is a 1 = 1 - a.

P. 4 The probability of a newly generated
execution image being an N -image is 11, while
that for being an S-image is 11' = 1 - 11.

Figure 5 depicts Model P. It also shows
the notation for the equilibrium probability of
the system being in each state si, j • The pro­
babilities are denoted by I (for sw, 91), J (for

sm,$), zk•Yk•xk,wk,uO (for sr,91),uk, andqk,
where k=l,2, ••• except that there does not
exist y 1 nor x 1• The subscrj.pt k indicates the
number of execution images present in the queue,
The steady-state behavior of the system is then
expressed by the following equilibrium equations.

(a) I• gp = J ·mp + u0 • rp + q 1 • rp

(b) Jo(gp+mp) = (z 1 + w 1) 'V'Cl/

(c) z 1·(gp+v) = I•gp•11+y 2 ·mp

(d) zk· (gp+ v) = zk_ 1 ·gp•11 +yk+l' mp for k=2, 3, •••

(e) Y2·(gp+mp) = J•gp·11+z2·v·01

(f) yko(gp+inp) = yk_ 1·gp•11+zk•v 0 a for

(g)

(h)

(i)

(j)

(k)

(1)

(m)

k = 3,4, •.•

x 2 ' mp = J • gp • ,, 1 + W 2 • V • 01

~·mp= yk-1. gp· ,,. + Wk'V•OI for k=3,4, •••
I

w 1 • v = I· gp ·,, + x 2 • mp

w •v = z • gp·11' + x ·mp for k=2, 3, •••
k k-1 k+l

uo·rp = ul•rp
I

~·rp=zk•V•a +~+1 ·rp for k=l,2, ...

qk• rp =wk• v• a'+ qk+l' rp for k = 1, 2, •••

"'
(n) I+J+uo+ k~l (zk+yk+~+wk+~+qk)

(normalizing equation) (4)

So.lving this system of equations, we can obtain
the quilibrium probabilities. This system can
be solved in closed form, but the solution pro-

cedure is not described here. Since the sys­
tem throughput THRP was defined as the num­
ber of acceptances made per unit time, THRP
and T p can be obtained by

"' "'
THR = v · r:x • (L: zk + L: wk)

p k=l k=l

T
p (5)

Another measure of interest is the expected
queue-length E(QL).

"'

where y 1 = x 1 = 0 . (6)

Figure 6 depicts the expected queue­
length E(QL) for various values of Cl, ri, tv/t0 p,
tmp/top, trpltmp. In examining Figures 6 and
7 we are mostly interested in the cases where
Cl! is greater than 0. 9. Since fault-tolerant
programs dealt with here are supposed to have
undergone a testing phase before being put into
operation, one or more erroneous object blocks
out of ten seems highly improbable. On the
other hand, ri is application-dependent and may
not be very close to 1. For example, Tl= O. 999
implies that only one among 1000 execution
images generated is an S-image. In this eva­
luation, ri is set mostly within the range of
0. 9 - O. 95 and the most frequently used values
are O. 9 for ri and O. 95 for Cl!. The following
practical constraints were also adopted.

t < t
v op

t < t
mp op

1 < t It ~ 1. 5 •
rp mp (7)

As expected, E(QL) becomes larger as et

or ri increases, Furthermore, comparison of
curve 3 in Figure 6a (which is a result of
changing Cl! when ri= 0. 95) with curve 2 1 (a result
of changing ri when a= 0. 95) indicates that
E(QL) is more sensitive to the change of Tl than
to the change of Cl!. This is also shown by a
comparison of curve 2 (a result of changing Cl!

when ri = 0. 9) with curve 1 1 (a result of changing
'11 when Cl= O. 9). Figure 6b shows that E(QL)
increases as mean validation time tv or mean
merging time tmp increases. When tv + tmp <
t 0 p, E(QL) is generally smaller than 5. The
data obtained but not plotted in Figure 6 in­
dicated that mean recovery time trp affects
E(QL) to a negligible extent. This is because
(1) when ct is large, the system rarely enters

123

a recovery state and (2) when ct is small, the
system rarely enters a state where the queue­
length is large.

3. 3 Performance Comparison Between the
Sequential System and the Parallel System

A simple way of assessing the perform­
ance of the parallel system is to compare the
throughput THRp with the throughput THRs of
the sequential system. THRp/THRs is then
the throughput ratio and is a function of Cl, Tl,

tvftop' tmp/top• trpltmp• t 0 s/t0 P' and trpltrs.
Here t 0 s/t0 p represents the object block exe­
cution time ratio while trp/trs represents the
recovery time ratio. These parameters are
within the following ranges (cf. Section 2 or
[5) for more details).

< t ft << 2
OS op

< t It < 1. 5
rp rs

(8)

Figure 7 depicts the throughput ratio for
various values of parameters subject to the
constraints in Eqs. (7) and (8). First, Figure
7a discloses that variation of recovery time
ratio trp/trs within a practical range has
little effect on the throughput ratio. This is
again because (1) when ct is large, the system
rarely gets into a recovery state, and (2) when
a is small, E(QL) becomes small and thus a
recovery involves mostly a small number of
execution images. Figure 7b indicates that
the throughput ratio is not much affected by the
change of trp/tmp for ct within a practical
range, while it is significantly affected by
object block execution time ratio t 0 s/t0 p.
Object block execution time ratio t 0 s/top, re­
covery time ratio trpltrs and trpltmp are
machine characteristics while other parameters
represent program characteristics.

Figure 7c shows that the throughput ratio
decreases as merging 'time tmp (more precisely
tmp/t0 p) increases. The obvious reason is
because under assumption G. 1 merging is in­
volved only in parallel execution. It also shows
that increase of tv causes a throughput ratio
increase approximately until tv+tmp surpasses
t 0 p but further increase of tv does not change
(actually slightly decreases) the throughput ratio.
This can be explained as follows. As tv + tmp
becomes larger than t 0 p, E(QL) becomes large
and thus, each time a synchronizing execution
image is generated, the queue contains a large
number of execution images. The validation
and merging of these are not overlapped with
object block execution. Figure 7d confirms
the expectation that as '11 increases, the through­
put ratio increases.

In summary, (1) for a practical Q', the
performance improvement by parallel execution
is most sensitive to object block execution time [l)
ratio t 0 s/top and tmp/t0 p, less sensitive to
tvft 0 p and the least sensitive to trpltmp and
recovery time ratio trp/trs, and (2) the
throughput ratio ranged over 1. 02-1. 65 (or
2 - 65% gain) for a= O. 95 and for the values of
other parameters plotted in Figure 7. (2)

Figure 7a also displays the existence of
O'L (defined in Section 2 as the lower bound of
a to make the performance of the parallel [3]
system superior to that of the sequential sys-
tem), The data obtained but not fully plotted
in Figure 7 showed that in all the cases de-
picted in Figure 7, Q'L did not exceed O. 87 and
rarely went above O. 6. It can conservatively
be said that the practical range of OI is far

above aL. (4]

4, Summary

The analysis made in this paper confirmed
that parallel execution can reduce the execution
time increase inherent in fault-tolerant pro- [5]
grams. The analysis demonstrated largely two
points. First, under all practical circumstances
the parallel system showed good performance.
The performance was particularly good when a
was above O. 9 or O. 95. It is believed that 0/

would always be in such a range for programs
which have undergone a reasonable degree of [6]
testing before being put into operation. Second,
it showed how the effectiveness of parallel
execution was affected by various program [7]
characteristics. Although no real statistics on
various program characteristics are available,
it is believed that our examination covered a
broad range of reasonable values for each
parameter, Availability of a parallel system
may influence the program characteristics to
some extent.

In short, the parallel execution approach
allows the incorporation of extensive validation
and recovery facilities without associated ex­
pensive execution time overhead. The price
paid is the increased hardware requirement.

Acknowledgements

The authors would like to thank Drs.
David L. Russell, C. V. Ramamoorthy, and
L. R. Welch for helpful discussions. The
authors also wish to acknowledge the help of
Messrs. M. Naghibzadeh, M. Olumi, and B.
Shah.

124

References

Anderson, T. and Kerr, R., "Recovery
Blocks in Action: A System Supporting
High Reliability," Proc. 2nd Int'l Conf.
on Software Engineering, 1976, pp. 447-
457.

Chandy, K. M., "A Survey of Analytic
Models of Rollback and Recovery Strate­
gies, 11 Computer, May 197 5, pp. 40-48.

Horning, J.J., Lauer, H.C., Melliar­
Smith, P. M. and Randell, B., "A Pro­
gram Structure for Error Detection and
Recovery," Lecture Notes in Computer
Science, Vol. 16, Springer-Verlag, 1974,
pp. 171-187.

Kim, K.H. and Ramamoorthy, C. V.,
"Failure-tolerant Parallel Programming
and Its Supporting System Architecture,"
Proc. AFIPS Nat'l Comp. Conf., 1976,
pp. 413-423.

Kim, K. H., "A Parallel System Pro­
cessing Fault-Tolerant Programs - I.
System Architecture," submitted
for publication. (Also Tech. Memo.
PETP-2, Electronics Science Laboratory,
University of Southern California.)

Kleinrock, L., Queueing Systems Volume
1: Theory, Wiley-Interscience, 1975.

Computing Surveys, Vol. 8, No. 4,
December 1976 (Special Issue on Fault­
Tolerant Software edited by R. T. Yeh).

declare XI, X2

Xl := 9 ; X2 :: 2 ;

ensure V

by NI regin declare Yl, YZ, Y3

by [begin declare Z
F2 02. :

o elseby
1.1 [

Value

z 4

Y3 3

Y2. s
Y1

xz 8

XI 7

F.lag logical ptevious
stack marks address value

set on
entry to F 2 X2 2 !c, XI 8

* Y2. 6

*
XI 9 cl

*
main stack

stack mark set cache stack on entry to F 1

{

ensure v 2

I t 02.2
~{ else-error

Figure la.

5zL
z

51L

Y3 3

yz 6

YI

~2
I
I
I

SI

:

::1':Li
so

elseby

o1r;­
L.._

A block-structured fault-tolerant
program.

xz

Xl

YZ

51N

Xl

8

7

5

• •

• • •

•

Figure 1 b. Recovery cache
of la.

On completion of
the predecessor

fault-tolerant block

• •
To the successor
fault-tolerant block

during execution

Figure le. VR-store
during execution of la.

Fk: Fault-tolerant block k Figure 3a. Behavior Figure 3b. Model S.
of the sequential

Figure 2. Execution of a
fault-tolerant program of
the type assumed.

system during execution.

,- --- - -- ----- ---- ----- - -.-- ------ --- ---------------,
I

I I
: i---r------------------------, t
t : IS-image ,-------------j ______ j 1

recovery
complete

stop I \ generated 1 1 .
I I I -----~-

\ I i I

I

~

~--+-~I I

Main
processor

I I

Exec image
generation

I S-image y
L _____________________________ a5c_!'E_t<:__d ___ _J

YR-processor

Figure 4. Parallel system modeled in a queueing system.

125

"' "' 00
00 "' "' "' "' "' 0 0 "' 0 "' 0 0

II II
II

II

" " ,c " '.:'
~

::'

:!. '.'.'- "--
' ' ' ----:

'-

' '

_:

" a.
6

"
:::_

a.
~

~
00 00
> > _,;
3 3 0 a a II

w r;r a.
0

~

·1
~

a.
8

~

<0

0
" a.

0
~
~

>
~

i= - =i -r T

"'
.,.

:::;
Q,

'"

Figure 5. Model p

"' 0
00

0 0
II

II II

" .- '-
::' ;;:; 0

i:...- ?J " a.
0

~

a.
8

~

ro
'°

00

I"'
I

l- ...
co

I
I
I
I -oo
I

I -

Figure 6. Expected queue-length

126

...
0 0

" II

a. a.
0 0

~ ~

a. a.
8 8

~ ~

3
a
r;r

E(QL).

' ' ' '

__ __.,.

~

~

a.
0

>

..0

'°

I-'
N

t:tj ,...
OQ
~

" CD

-..J

1-3
::;-

" 0
~

OQ
::;-

'"O
~

" II>
rl-c;·
1-3
::i::
::0

'"O ' y;._
·1-3

::i::
::0

"'

THR
~
THR-

s

THR __ P_

THR •

I. 2

.s

• 6

I. 6

I. 4

I. 2

__ , "=0.9.

___ , 11=0.9,

tm/top = O. 2,

t It = o. 6.
mp op

t It =0.3, t It =I.I, t It =I.I
v op os op rp mp

t It =0.7,
v op

/
/

/
/7

,,,..~/

I
I

.,.,, /'l7

I. l - - -;._-/.:"""'

I. 3 -::. ---..:::-.:::-~ - /

l ,.. -- -.0

"
• 3 .4 . 5 • 6 .7 • 8 . 9 1.

(7a)

--: ri=0.9, a=0.95, trp It =I. I, t It =I.3, t It =I.I
mp rp rs cs op

---· " • 0<=0. 98,

-- - --
.)._ --- } t It = o. 2

mp op

l
- - - - --

- } t It = 0.4
/

/
mp op

/ /

t It =0.6
mp op

t It
v op

.1 • 3 • 5 • 7 . 9

7c

!. 8

!. 6

I
I. 4

THR

T1=0. 9, t)t0 p = 0. 5, tmp/t0 P = 0, 4,

---=

I. 5

t /t =I.I,
rp mp

t It =I. !,
OS op

t It =1.3
rp rs

~ 11. 3 THR
s

I. 2 t It -rp mp _ - - _

-:::::::-:::::;..= ... -

- ------i.1::::---
I. 5

I
I. 0

"'
• 9 .92 .94 • 96 .98 I.

(7b)

tv/t0 p = 0, 5, tm/top = 0. 4, tr/tmp = !. I, tr/\s = 1. 3, t 08 /t0 p = 1. l

!. 6 "= o. 999

/ _ 0<=0. 98
l. 4

THR I ----- ------ ----- OI= 0. 95 __ P_

THR
s

i. 2 I -- OI= 0. 9

'1

• 8 .84 • 88 .92 .96 I .

(7d)

Analysis of Asynchronous Multiprocessor Algorithms
with Applications to Sorting <o.>

John T. Robinson

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract Efficient algorithms for asynchronous

multiprocessor systems must achieve a balance between

low process communication and high adaptability to

variations in process speed. Algorithms which employ

problem decomposition can be classified as static and

dynamic. Static and dynamic algorithms are particularly

suited for low process communication and high

adaptability, respectively. In order to find the "best"

method, something about mean execution ti'mes must be

known. Techniques for the analysis of the mean

execution time are developed for each type of algorithm,

including applications of order statistics and queueing

theory. These techniques are applied in detail to (1)

st a tic generalizations of quicksort, (2) static

gen~ralizations of merge sort, and (3) a dynamic

geheralization of quicksort.

1 - Introduction

We consider the design and analysis of k-process

algorithms for an asynchronous multiprocessor system,

which consists of k or more processors sharing a common

memory by means of a switch or connecting network. In

addition there is an operating system providing such

functions as process creation, scheduling of processes,

allocation of memory, synchronization, etc. A real example

of such a system is described in [7), and a general

discussion of asynchronous parallel algorithms is

presented in [5]. A k-process algorithm will be presented

by giving the procedure e.ach process executes when

assigned a processor. We will assume that a processor is

always available for any of the k processes that is

runnable.

(a) This research wo.s supported in po.rt by the No.tiono.l

Science Foundation under gro.nt MCSlS-222-55 o.ncl tne

Office of No.110.l Research under contra.ct NOOOl4-76-C-

0370, NR044-422.

128

Given a task we wish to execute on such a system,

in order to exploit parallelism we must decompose the

task into a set of subtasks. Some subtasks cannot begin

until others which they depend upon finish; this

establishes a precedence relation between tasks.

Inefficiency in an algorithm arises when some process

must spend too much time waiting for other processes to

complete subtasks, and again towards the end of

execution when there are fewer than k subtasks.

Attempts to remedy this by "evenly" dividing the original

task are hopeless, since task execution time will vary due

to variations in the input, the effects of other users,

properties of the operating system, processor-memory

interference, and many other causes. Any efficient

algorithm must adapt to these variations. However, this

adaptation is expensive, in that it requires process

communication. Thus the trade-off between adaptability

and process communication must be considered in the

design of muftiprocessor algorithms. In the algorithms

considered in this paper, process communication t·akes

place by means of global data accessible by cill processes.

Since in many cases access to this global data must be

confined to a critical section, one cause of process

communication overhead is the interference between

processes seeking access to this global data.

Two methods of decomposition naturally arise: (1)

static decomposition, in which the set of subtasks and

their precedence relations are known before execution,

and (2) dynamic decomposition, in which the set of

subtasks changes during execution. Static decomposition

algorithms offer the possibility of very low process

communication, providing there are not too many tasks;

however, their adaptability is limited. Dynamic

decomposition algorithms can adapt to variations in task

execution time very well, but only at the expense of high

process communication.

Given a problem which can be decomposed into

subproblems, which method is best? Is the extra expense

necessary for fast process communication (thus

supporting efficient dynamic algorithms) justified? If a

dynamic algorithm is used, how far should decomposition

proceed? In order to answer these questions we need

techniques for finding mean execution times for these

types of algorithms.

In section 2 algorithms employing static

decomposition are considered. We develop techniques ftir

finding the probability distribution of total execution time

in terms of the distributions of individual task execution

times, and when these are not known, techniques for

finding bounds on the mean execution time. In section 3,
the mean execution time for a simple model of a dynamic

algorithm is found, assuming e.xponentially distributed task

execution times. In sections 4 and 5 the results of

section 2 are applied to static generalizations of quicksort

and merge sort. Certain partitioning strategies are shown

to be unsuitable for a static decomposition version of

quicksort. In addition, a parallel merging algorithm is

presented and analyzed. In section 6 a dynamic

generalization of quicksort is presented. Using a result of

section 3, the mean execution time is found, and an

expression for the optimal degree of decomposition is

derived. Section 7 contains a summary of the main

results.

2 - Static Decomposition Algorithms

Given a set of tasks T 1,T 2, ... T n partially ordered by

a precedence relation <, we call Ti a predecessor of Ti (Ti

a successor of Ti) if Ti<Tj. If there is no task U such that

Ti<U<Ti, Ti is said to be an immediate predecessor of Ti

(Ti an immediate successor of Ti). Tasks with no

predecessors are called initial, and tasks with no

successors are called final. In the execution of the static

algorithm, each process does the following:

(1) Select either an initial task or a task all of

whose predecessors have been completed,

which has not already been selected. Check

in the order T 1,T 2, ... T n·
(2) If no task can be selected, go to sleep,

unless all t-asks have already been selected,

in which case terminate. When awakened go

to (1).

(3) Execute the selected task.

(4) For each immediate successor of the task,

record that an immediate predecessor has

completed, and wake up a sleeping process if

possible.

(5) Repeat from (1).

For the purposes of analysis we assume that steps

(1 },(2),(4}, and (5) take zero time, and that the execution

time of task Ti is given by the random variable ti, with

cumulative distribution function (c.d.f.) Fi.

Definition - The task-graph G associated with T 1,T 2,...T n

129

and < is a directed graph with nodes T 1,T 2, ... T n and

arrows from Ti to Ti if Ti is an immediate predecessor of

Ti.

Note that there is a one-to-one correspondence
between partially ordered sets of tasks and task-graphs.

Definition - G is a chain if the tasks are totally ordered.

The length of a chain is the number of tasks in the

chain. If in a chain the initial task is T· and the final task
. I
is Ti we say it is a chain from Ti to Ti. A sub-graph of a

task-graph G which is a chain is said to be a chain in G.

Definitio11 - The level of a task T in a task-graph G is the

maximum length of any chain in G from an initial task to T.

The depth of G is the maximum level of any task.

Definition - A set of tasks is independent if for any tasks

Ti, Ti in the set, neither Ti<Ti nor Tj<Ti. The width of a
task-graph is the maximum size of any independent
subset of tasks.

Given a task-graph G, let tG be the random variable
representing total execution time (the time. from when all

processes are started until the last process terminates).

Assume tG has c.d.f. FG. In the following definition a class

of task-graphs is defined for which FG can be expressed
simply in terms of the F1•

Definition - Let C1,C21 ••• Cm be all chains from initial to final

tasks in G. For each chain C·1 containing ta~ks T· T·
• - 11' 12•····

let E1• be the expression (x· ·x· ·. } where x 1 x2 x are
• • 11 12 ··' ' ,. .. n

polynomial variables. Then G is said to be simple if the

polynomial E1 +E2+ .. ~+Em can be factored so that each
variable appears exactly once (see figure 2.1).

Tl T2

1/
T3 T4

\,/
T5

SiMple

X1X3X5+X2X3X5+X4X5
n((x1+x2>x3+x4lx5

Figure 2.1

Tl T2

lXJ
T3 T4

Si11ple

X1X3+X1x4+X2X3+x2x4
•<x1+"21 <x3+x4l

Tl T2

l~l
T3 T4

Nan-si111ple

"1X3+X1 X4 +x2x4

Theorem - If ki!width(G), then tG can be expressed in

terms of the ti using only + and max. Furthermore, if G is

simple and the ti are independent, then F G can be

expressed in terms of the Fi using only • (multiplication)
and * (convolution}.

Proof: Note that since ki!width(G) each task begins

immediately after its last predecessor completes. Let

c 1,c2, ••. Cm be all chains from initial to final tasks. Then

tG • max
ls ism

Next note that + and max are commutative and associative

operations, and that + distributes over max (i.e.,

max(a,b)+c=max(a+c,b+c)). Thus if G is simple the

expression for tG above can be factored in terms of max
and + so that each random variable appears only once.

Then, if the ti are independent, the expression for FG may

be found by substituting Fi for ti, * for +, and · for max in

the expression for tG (see figure 2.2).

Figur.e 2.2

Thus in the proof of this theorem we have a

method for calculating the c.d.f. of total execution time for

simple task-graphs with independent task execution times,

providing we know the c.d.f. of the execution time of each

task. When the c.d.f.s of each task's execution time are

not known, the best we can do is derive bounds .on mean

execution time, such as those of the following theorem.

The expected value of a random variable x is denoted by
E(x}.

Theorem - Given a task-graph G with kO!:width(G} and with

the ti independent, let c1,c2, ... Cm be all chains in G from

initial to final tasks. Also let Hi be the set of all tasks of

level i, for lsisl where l=depth(G). Then

max

ls ism

Proof: From above,

tG = max
ls ism

(2.1}

The lower bound then follows from E(max{xi}) "= max{E{x1)}

for any random variables xi. For the upper bound, let

130

to=O and define f(i,j)=O if CinHj is empty, otherwise f(i,j) is

the index of the single task in CinHj. Then

tG = max (I tfli,j)) s I Cmax(tf(i,j)))
lsism lsjsl lsjsl lsism

from which the result follows.

The upper bound in equation 2.1 is useful only if

something can be said about E{max{tj}). An applicable

result from order statistics (see [2]) is that if the

independent random variables x 1,x2,. .. xm are identically

distributed with mean u and standard deviation s, then

EC maxlxil) Su+.~ s
-v 2m-1

Hence the following corollary:

(2. 2)

Corollary - If k<?width{G), the ti are independent,
depth{G)=I, and the mj tasks on level j have identically

distributed execution times with mean uj and standard

deviation sj, then

1~ 1 ui s ECtG) s l~I (ui +V2:;=~ si) (2. 3)

Let w=width(G). When w>k, FG cannot in general be

expressed simply in terms of the Fi, even when G is

simple and the ti are independent. For example, let G

consist of T 1,T 2•T 3 with the set {T l•T 2•T 3} independent,

and let k=2. Then tG=max(min(t1,t2)+t3,max(t1,t2)), and tG
cannot be simplified further.

When w>k, the lower bounds for E(tG) given above

still hold. For an upper bound we take the following

approach. It is assumed that w processes are created,

and each process has a processor available at least k/w

of the time. For example, the bound given in the

corollary becomes

s ..!:!..
k

Finally, when the ti are dependent, in general

special techniques must be used, such as those in the

analysis of partitioning sthtegies (section 4) or parallel

merging (section 5) .

3 - A Dynamic Decomposition Algorithm

Given a task T and a orocedure which decomposes

a task into two tasks which may be executed

concurrently, we consider the following dynamic

algorithm: First, there is a decomposition phase, in which

each process repeatedly removes tasks from the task­

queue TQ (which initially contains only T), decomposes the

task and inserts the two new tasks in TQ, until there is a

total of M tasks. Next, there is an execution phase, in

which each process repeatedly removes hsks from TQ

and executes the task.

We analyze this algorithm under the following

assumptions:

(1) In this section the time to access TQ is

assumed to be 0.
(2) The time to decompose a task is assumed

to be exponentially distributed with mean

di-1 • where i is the current total number of

tasks.

(3) The time to execute a task is assumed to

be exponentially distributed with mean eM-1·

We use standard queueing theory techniques in the

analysis (see for example [3]). Adopting as a state

variable the total number of tasks in TQ or currently

being executed or decomposed, the state-transition-rate

diagram is given by figure 3.1.

Figure 3.1

&&~ ~ ~~ dl 2d2 3d3 kdk kdk+l kdM-1

KeM

~~~ ~~ {;-8 
eM 2eM 3eM ken Ken keM 

The mean execution time is found to be: 

T 

where Hk 

l:5i:5M-1 

---=1-- (3.1) 
min ( i, kl di 

Cl + 1/2 + 1/3 + ... + l/kl. 

131 

4 - Static Ouicksort 

We consider a static generalization of quicksort as 

given by the task-graph of figure 4.1 (see [6) for a 

complete discussion of sequential quicksort): 

Figure 4.1 

The tasks may be described as follows: 

( 1) P 1 is a partition of the file to be sorted. 

(2) Pi,j (j odd) is a partition of the left subfile 

produced by Pi- l ,(j + 1) 12. 
(3) Pi,j (j even) is a partition of the right 

subfile produced by Pi-l,j/2· 
(4) sj (j odd) is a quicksort of the left subfile 

produced by PL-l,(j+l}/2. 
(5) Sj (j even} is a quicksort of the right 

subfile produced by PL-1,j/2· 

First consider the simplest case, where k is a 
power of 2 and L=l +lg(k} (where lg is log2). Jn this case 

the width of the task graph is k. The question arises as 

to what partitioning strategy to use, that is, how should 

the partitioning element be selected in the P tasks? First 

a definition of asysmptotic mean speedup: 

Definition - Given an algorithm for k processes, let the 

mean total execution time be T k(N}, where N is the size of 

the input. Then the asymptotic mean speedup Sk is 

defined to be 

I im 
N->oo 

We would prefer a partitioning strategy which gives 

asymptotic mean speedup of k even in the simplest case; 

strategies which depend on large L for speedup are 

unsuitable since the number of tasks increases 



exponentially with L, and one of the main advantages of 

static algorithms is low overhead. 

It is now necessary to make some assumptions 

about the execution times of tasks. Jn the sequential 

analysis of quicksort it is found that partitioning a file of 

size N takes O(N) time with standard deviation O(N}, and 

that sorting a file of size N takes O(N lg(N)) time with 

standard deviation O(N} (see [6)). Thus in analyzing 

asymptotic mean speedup it is only necessary to consider 

the sorting task times. 

( 1) When the partitioning element for a partition of 

a file of size M is selected at random, it is natural to 

assume that either subfile size is uniformly distributed 

between 0 and M. This, together with the fact that the 

sum of the subfile sizes is M, gives an expected maximum 

subfile size of 3M/4. Using this, it is easy to show that of 

the k subfiles to be sorted i.n the sorting tasks, the 
expected maximum subfile size is at least (3/4)lg(k)N, 

which implies Sk:Sklg(4/ 3> 

(2) If the median of three method is used to select 

the partitioning element, and if it is assumed that the final 

position of each of the three elements in the subfile is 

uniformly distributed between 0 and M, then the 

probability density function for the size of either subfile 

is: 

f(x) = .2.(1 - .!!)!. 
M MM 

This gives an expected maximum subfile size of l lM/16. 

As in ( 1) it can be shown that the expected maximum size 
' . I 6)1g{k)N of the subfiles to be sorted 1s larger than (11 1 · 

It follows Sk:Sklg(l 6/ l l). 

(3) If the partitioning elements for all partitioning 

tasks are found using the method of samplesort (first pick 

k-1 elements randomly, sort, and use these for the k-1 P 

tasks), and if the final position of each of the k-1 

elt:tments is assumed to be uniformly distributed between 

o and N, then the probability density function for the size 

of the largest subfile to be sorted is: 

f(x) = ~ (-l)j-lk(k-1)(~-l)h - .:!!.)k-2 

l:Sj:sLN/xj J-1 \ N • 

(See the discussion on the random division of an interval 

in (2)). It follows the expected maximum size of the 

subfiles to be sorted is: 

132 

f: xf (x) dx ~ I (-lJ j-l C~J ~ 
l:Sj:Sk 

~ N. 
k 

(4) Finally we turn to the partitioning strategy of 

first finding the median (in O(M) time, where M is the si:ze 

of the subfile) in each P task, and using the median as the 

partitioning element. This does give Sk=k, but it should 

be noted that median finding represents a large overhead. 

Unless process communication is extremely expensive, a 

dynamic generalization of quicksort (such as the one 
presented in section 6) is probably better. 

If the mean and standard deviation of the time to 

quicksort a file of size M are aqM lg(M) and bqM, and the 

mean and standard deviation of the time to find the 

median of a file of size M and partition the file using the 

median as partitioning element are aPM and bPM, then 

from equation 2.3 we find that the mean total execution 
time is less than 

~2Ll b ]·N 
~ 2i .../2i~l-1 

l:Sj:Slg(k)-1 

When L is greater than l+lg(k) a similar result may be 
found using equation 2.4. 

5 - Static Merge Sort 

Consider a static generalization of merge sort as 

given by figure 5.1 (see [4) for a discussion of sequential 
merge sort): 



lhe tasks may be described as follows, assuming the file 

to be sorted consists of records 1 through N: 

(1) Si is a merge sort of all the records 
between (i-l)(N/2L-l) and i(N/2L-l)+l. 

(2) M2,i is a merge of the two sorted files 

produced by S2i-l and S2i· 
(3) Mi,j (i>2) is a merge of the two sorted 

files produced by Mi-1,2j-1 and Mi-1,2j· 

When k is a power of 2 and L=l+lg(k), the width of 

the task graph is k and equation 2.3 may be applied. 

Assuming the time to merge sort a file of size N has mean 

asN lg(N) and standard deviation bsN, and that the time to 

merge two files of sizes M and N has mean am(M+N) and 

standard deviation bm (see [4]), we find that the mean 

total execution time is less than 

a5 (!i )1 g(!i \..zam (i- .!)N+ (k-1) bsifN° 
k kl" k ~ 

When L is larger than 1 +lg(k} a similar result holds, using 

equation 2.4. 

In the remainder of this section we consider one 

possible improvement: replacing the merging tasks with 

parallel merges. A two task merge of two files is poss.ible 

by letting each task be an instance of the usual sequential 

two-way merge (see [4]), except that in one task merging 

begins with the two smallest items of the two files (a 

merge from the left), and in the other task merging begins 

with the two largest items (a merge from the right). In 

addition the two tasks are interlinked as follows: in 

sequential two-way merge, the pointers to the files are 

compared to the ends of the files; in a two task merge, 

the pointers of one task are compared to the pointers of 

the other task. Because of this, the two tasks finish 

together almo.st exactly, providing one has not already 

finished before the other starts. We now assume a 

sequential two-way merge of two files each of size N 

takes time 2amN. Hence a two process merge using the 

above method would take time amN. 

Next consider the following merging algorithm, for 

133 

Figure 5.2 

Assume the elements to be merged are x 1 <x2<x3< ... <xN 

and y 1 <y2<y3< ... yN. The tasks are: 

11: Insert x[!'J/~ into the Yi's. 

12: Insert Y[-J/2J into the xi's. 
Z: The results. of the insertions determine 

three pairs of subfiles, as shown below. Z 
determines the subfile pairs and initializes 

the Li and Ri tasks. 
Li: Merge from the left of the i'th subfile 

pair. 

Ri: Mer.ge from the right of the i'th subfile 

pair. 

Figure 5.3 

,, 41 

1 ;' / 2 ,' 3 
,,_,- r 

If process 1 executes L1 and process 2 executes 

L2 and then R1, process 1 finishes before or with process 

2. Let the sizes of the subfiles in the second subfile pair 

be X and Y. The execution time for process 2, starting at 

the completion of Z, is: 

since (X+Y)/2SN/2. The same result holds for the process 

executing R2 and L3. In order to find the distribution of 

IX-YI, it is assumed all elements xi, Yi are distinct, and that 

all permutations are equally likely. Then the probability of 

inserting ><aN in position i is: 

( i + aN -1 ) ( N (2-a) - i) 
aN - 1 U-a)N 



aN (~) (:N) 
! i +aNJ ( 2N ) 

i+aN 

2o:N 
C i +o:N Jfiijit 

using the normal approximation to the binomial 

distribution. This distribution is again approximately 

normal, with mean aN and standard deviation "/N/2. 

Assuming X and Y are actually distributed normally, the 

mean of IX-YI can be calculated to beV2N/n. Hence, 

where the O(lg(N)) term is from the insertion tasks. 

Other merging algorithms for k=4 and for higher k 

can be devised by using various element insertion 

strategies. Similar techniques may be used in their 

analysis. 

6 - Dynamic Quicksort 

We may use the dynamic algorithm of section 3 for 

sorting, where tasks are considered to be subfiles, the 

decomposition of a task is a partition of the subfile into 

two subfiles, and the execution of a task is a sort of the 

subfile. In analyzing this algorithm we make the following 

assumptions, where the file to be sorted contains N 

records: 

(1) If M is the total number of subfiles to be 

produced during the decomposition stage, the 

total number of task-queue accesses is 3M-2, 

and each process makes an approximate 

average of 3M/k such accesses. We 

therefore assume the overhead due to 

process communication is linear in M, and is 

given by w(k)'M. 

(2) When there are i subfiles, the mean 

subfile size is N/i. JI is assumed the time 

needed to partition a subfile is exponentially 

distributed, and that when there is a total of 

i subfiles the mean time is aN/i. 

(3) During the task execution phase, the 

average subfile size is N/M. It is assumed 

the time to sort one of the M subfiles 

produced by decompositioning is 

exponentially distributed, with mean 
b(N/M}ln(N/M). 

From equation 3.1, the mean execution time T(M,N,k) is: 

~a N + 
i__, i2 

l:Si:Sk-1 

a_N_ 
ki 

k:Si:SM-1 

+ 

w!klM + .tl. {b In N 
k 

aHk-1 + aHM-1 - b In Ml 

Given N and k, we seek to find M so as to minimize 

T(M,N,k). If we approximate HM-l by ln(M), then M must 
satisfy 

ClT 
ClM 

Let 

w{k) +Nia-bl + bN!H -ll (In M - In N -1\ 
kM k MZ } 

= 0 . 

A = w(k) 

bN !Hk - lJ 
and B (a-bl 

bk !Hk-ll 

then the optimal value of M is the solution of 

A short table of the optimal integer value of M for 

various values of w(k)/b follows, for the case k=4, a=b, 
N=106 : 

w(4J/b M 
10 930 
102 313 
103 105 
104 35 
105 11 

Thus, given a,b,N, and k, the optimal degree of 

decomposition is determined by w(k), the process 

communication overhead. 



7 - Summary 

We have classified asynchronous multiprocessor 

algorithms which employ problem decomposition as static 

and dynamic. Static decomposition algorithms require 

little process communication and would be well-suited for 

systems where process communication is expensive, e.g., 
"loosely-coupled" computer networks. 

A static decomposition algorithm is de:;cribed by a 

task-graph. Simple task-graphs have the property that 

there is a simple expression for the probability 

distribution of total execution time in terms of the 

probability distributions of each task, providing the result 

of one task does not affect the execution time of another. 

If the probability distributions of each iask's execution 

time are unknown, it is still possible to bound mean total 

execution times providing the means and variances of task 
execution times are known. 

Regarding the upper bound given by equation 2.3, 
the bound is tight in that task-graphs and task execution 

time probability distributions may be constructed so that 

equality holds, using distributions derived in [2]. Any 

improved bound would require either more detailed 

information about the partial ordering of the tasks in the 

expression of the bound, or additional assumptions about 

the probability' distributions of task execution times. 

When process communication is inexpensive, 

dynamic decomposition algorithms are suitable. One 

technique for analyzing these algorithms is by means of a 

queueing model. Queueing models may be used in 

analyzing other types of asynchronous parallel algorithms 

as well (e.g., in [1] a queueing model is used to analyze 

asynchronous iterative methods). 

For some static decomposition algorithms the 

bounds derived in section 2 may be directly applied, such 

as static quicksort with median finding· and static merge 

sort. In other cases where task execution times are 

dependent other techniques must be used. This is the 

case for static quicksort when median finding is not used 

and in the parallel merging algorithm presented. These 

algorithms have dependent task execution times since 

there are tasks where the input size depends on the 
result of a previous task. 

135 

The assumption that process communication 

overhead is negligible in static decomposition algorithms 

is valid only if the total number of tasks is not very large. 

For this reason we have given bounds on mean execution 

time only for those algorithms in which the width of the 

task-graph is k (although a technique for greater width 

task-graphs has also been presented). These bounds 

give an indication of the performance that can be 

expected when process communication overhead is high 

enough to warrant the use of static decomposition. 

However, in dynamic decomposition algorithms we may 

choose the degree of decomposition, which should ideally 

be chosen so as to balance process communcication 

overhead and adaptability to variations in the execution 

times of tasks. For example, by applying a queueing 

model to a dynamic generalization of quicksort, we have 

derived an expression relating process communication 

overhead and the optimal degree of decomposition. 

References 

[1] Baudet, Gerard (1976) "Numerical Computation 

on Asynchronous Multiprocessors", Thesis 

Proposal, Department of Computer Science, 

Carnegie-Mellon University 

[2] David, Herbert A. (1970) Order Statistics, Wiley 

[3] Kleinrock, Leonard (1975) Queueing Systems, 

vol. 1, Wiley-lnterscience 

[4] Knuth, Donald (1972) The Art of Computer 

Programming, vol. 3, Addison-Wesley 

[5] Kung, H. T. (1976) "Synchronized and 

Asynchronous Parallel Algorithms for 

Multiprocessors", Algorithms and Complexity -

New Directions and Recent Results, ed. J. F. 

Traub, pp. 153-200, Academic Press 

[6] Sedgewick, Robert (1975) Quicksort, Ph.D. 

Thesis, Computer Science Department, Stanford 

University 

[7] Wulf, W. A., and C.G. Bell (1972) "C.mmp - A 

Multi-Mini-Processor", Proceedings Qi the AFIPS 

1972 Efil! Joint Computer Conference, vol. 41, 
pp. 765-777 



ON THE PERFORMANCE AND COST-EFFECTIVENESS 
OF SOME MULTIPROCESSOR SYSTEMS 

Terry T. Hsu 
Digital Image Systems Division 

Control Data Corporation 
Minneapolis, Minnesota 55440 

Sumnary 

The performance (maximum throughput) and cost 
are analyzed for multiprocessor systems using the 
global bus, shared memory, full interconnection, 
and ring configurations for inter-processor connnu­
nications [l] - [3]. The approach is to identify 
the major characteristic parameters and express 
the throughput and cost for all configurations in 
similar forms for easy comparisons. 

Let the throughput of a single processor ele­
ment (PE) be defined as Tp = l/tp, where tp is the 
average processing time of an instruction. In the 
absence of inter-PE connnunication, any multi­
processor system of N PE's has a maximum system 
throughput (T) of NTp. This bound is processor­
limited. However, assuming each PE has to do a 
fraction (q) of its processing in communicating 
with some other PE's through the bus, the shared 
memory, or paths between PE's, as the case may be, 
then the system throughput may be bounded by the 
transfer rate or bandwidth of the communication 
path. This bound is said to be bandwidth-limited. 
By considering the utilization of the path by each 
PE, the bandwidth-limited upper bounds on system 
throughputs can be shown as follows: 

Bound On Utilization 
System Througheut Factor 

Global Bus Tp/b b = qtb/tp 

Shared Memory Tp/m m= qtm/(tpM) 

Full Connection NTp 

Ring NTp/r r = qdt/tp 

Where tb' tp, and tr are the cycle times to 
connnunicate an instruction or data between PE's 
(adjacent in the case of a ring system) in above 
systems, respectively. M is the size of the collBDOn 
memory, and d is the distance (number of links) 
between the conmunicating PE's. 

The bandwidth-limited system throughput be­
comes minimum when a PE has to wait for all other 
(N-1) PE's to complete their use of the path first. 
This leads to the expression for a lower bound for 
all cases. 

NT!? 
T(min) = 1 + (N-1) u 

Where u is the utilization factor for each 
case (b,m, and r above) and is q(N-2)/(N-1)2 for 
the fully interconnected system. 

Of course the achievable maxi1lllllll system 
throughput is determined by the smallest of all 
above bounds - processor or bandwidth limited. 

The system cost is assumed to be composed of 
five major component costs: PE (including local 

136 

memory), cable, I/O port, switching unit, and 
extra memory. Let the unit costs be normalized to 
the cost of one PE (Cpe) and denoted as Kc, Kp, 
Ks, and Km, respectively. The total system cost 
can then be expressed in terms of Cpe, the normal­
ized cost coefficients and some coefficient 
multipliers, which are as follows: 

System !£. ~ Ks Km 

Global Bus N N N2 
Shared Memory N 2N N 1 
Full Connection N(N-1) N(N-1) N(N-1) 
Ring N N ZN 

For example, the cost of a shared memory 
system with N PE's is expressed as Cpe (N + NKc + 
2NKp + N2Ks + Km) • 

With above analytic expressions for the four 
systems, a cost-performance ratio can be obtained 
readily. Figure 1 compares the four systems on 
their best performance, assuming b = m = r = .1, 
and Kc = O, Kp = .06, Ks = .02, Km = 1. The pur­
pose of the diagram is more illustrative than 
conclusive. Since many parameters are involved, 
one should be cautious in interpreting the graphs. 

[l] 

[2] 

References 

G.A. Anderson and E.D. Jensen, "Computer 
Interconnection Structures: Taxonomy, Char­
acteristics, and Examples",Computing Surveys, 
Vol, 7, No. 4, December 1975, pp. 197-213. 

J,L. Baer, "Multiprocessing Systems", IEEE 
Trans .• Comput., Vol. c-25, No, 12, December 
1976, pp. 1271-1277. 

[3) R.C. Pearce and J.C. Majithia, "Upper Bounds 
on the Performance of Some Processor-Memory 
Interconnections", Proceedings 1976 !!!m­
national Conference .2!!. Parallel Processing, 
pp.303. 

6 
Cpe1Tp 

Shared Memory 
5 

4 

3 

2 

1 
_..., ___ ~--------R.ing 

0 N 
5 10 15 20 25 30 

Fig. 1. System Cost/Throughput Comparisons. 



A PERFORMANCE STUDY OF DISTRIBUTED CONTROL LOOP NETWORK* 

Ming T. Liu, Roberto Pardo, and Gojko Babic 
Department of Computer and Information Science 

The Ohio State University 
Columbus, Ohio 43210 

Swmnary 

This paper presents some analytical results 
on the performance of three types of distributed­
control loop networks, viz., the Newhall loop 
(single message of variable length), the Pierce 
loop (multiple messages of fixed length), and the 
DLCN loop (multiple messages of variable length). 
The primary goal of the paper is to show, through 
queueing analysis, that the DLCN loop has superior 
performance over the other two loops, viz., it has 
better channel utilization and shorter message 
delay. A secondary goal is to verify our previous 
simulation results which made such a claim. 

Introduction 

The loop network is becoming increasingly 
popular today for the design of distributed pro­
cessing systems. A loop network is composed of a 
high-speed digital communication channel, arranged 
as a closed loop to which computers, terminals and 
other devices are attached through loop interfaces. 
Messages from a sender are multiplexed.on to the 
loop by its interface, then travel around the loop 
from interface to interface until received by the 
interface of the addressed receiver. Thus the 
design of the loop interface and the transmission 
mechanism it incorporates are very important in 
the operation of a loop network. 

Three transmission mechanisms have been pro­
posed for use in distributed-control loop networks. 
In the Newhall loop, a round-robin control passing 
token circulates around the loop and allows only 
one interface at a time to transmit onto the loop 
a single message of variable length. In the Pierce 
loop, communication space on the loop is divided 
into fixed-size time slots, and it is possible 
for more than one interface to transmit onto the 
loop multiple messages of fixed length at a time. 
In the DLCN loop, the use of a delay buffer in the 
interface allows simultaneous transmission of 
multiple messages of variable length. 

The superior performance of DLCN transmission 
mechanism has been verified by an extensive simu­
lation study [l]. In this paper we present some 
analytical results on the performance of DLCN as 
compared with Newhall and Pierce loops. The main 
problem in making the comparison is that, in the 
analysis of each loop, different characteristics 
of data sources are assumed. 

Analytical Results 

In this section formulas for channel utili-

* Research reported herein was supported in part 
by AFOSR Grant No. 77-3400 and by OSU Resaerch 
Grant No. 221110. A full-length version of 
the paper is available from the authors. 

137 

zation and average message delay for the three 
loops are given. Only symnetric loops (symnetric 
traffic pattern and identical nodal characteristics) 
are considered. A glossary of terms to be used in 
the following is listed in Table 1. · 

c 
N 
ft. 

l/µ 

a2 
l/µ'. 

w 
u 
B 

Capacity of connnunication channel (bits/sec) 
Number of nodes in the loop 
Arrival rate of messages from the data 
source (messages/sec) 
Average message length (bits) 

Second moment of message length (bits2) 
Average duration of active period of data 
source (seconds) 
Average duration of idle period of data 
source (seconds) 
Bit rate during active period (bits/sec) 
Utilization of data source 
Number of information bits per packet (bits) 

Average message delay (including all waiting 
times and time for multiplexing message onto 
loop)(second) 
Average message waiting time (• T - l/µC) 
Channel Utilization 
Number of bits in the address field (bits) 

Table 1. Glossary of Terms 

DLCN Loop Analytical Results 

Formulas presented below for the DLCN loop are 
derived in a paper by Liu, Babic and Pardo [2]. 
Data sources are assumed to be characterized by 
instantaneous generation of message according to 
the Poisson process and distribution of message 
lengths is general. 

1. Channel Utilization: 

U "" ft.N/2µC (1) 

2. Average Message Delay: 

T • Tl + l/µC + NB/2C + (N/2 - l)T4 (2) 

where 
T • Nft.a2µ/4C(Cµ - ft.) (3) 

1 -
T4 • Nft.a2µ2/2(Cµ - ft.)(2Cµ - Nft.) (4) 

Pierce Loop Analytical Results 

Formulas presented below for the Pierce loop 
are derived in a paper by Hayes and Sherman [3]. 
In their model data sources are characterized by 
having active and idle periods and both are assumed 
to be exponentially distributed. During·an active 
period a data source produces bits in constant rate 
and generates one message. 

1. Channel Utilization: 



u rNB /2C (5) p 
where 

r - µ'Qu (6) 

Q (1 - EXP(-B µ'/b))-l 
p 

(7) 

u .. A I I (A I + µ') (8) 

2. Average Message Delay: 

T - y/µ' + y6*/µ 

+y20c1 + 0*) 2/µ'(l - ya(l + 6*)) 

+ U*/M*(l - y6(1 + 6*)) (9) 
where 

y µ 1QB /C p (10) 

6 A'/µ' (11) 

6* .. R*B /(C - R*B ) (12) p p 

R* .. r(N/2 - 1) (13) 

U* = R*B /C (14) p 

M* .. µ'/y(l + 8*) (15) 

Newhall Loop Analytical Results 

Formulas presented below for the Newhall loop 
are derived in a paper by Kaye [4]. Data sources 
have the following characteristics: After a data 
source generates one message it will be inactive 
until that message is multiplexed onto the loop. 
Afterward the data source behaves as a Poisson 
process with parameter A., but only until the next 
message is produced. Then the data source is again 
inactive,and so on. This process generates mes­
sages with effective average interarrival time 
Aeff = A(l - PL) (PL is given below). 

. 1., Channel Utilization: 

(16) 

where PL is the portion of lost messages given by 

where 

PL= AT/(l + AT) (17) 

2. Average Message Delay: 

T = l/µC - l/A. 

- N-1 AT' 
+ (l/n) E -rne n(N - n)pn 

n=O 

N 
n = E npn 

n=O 

T 
Iii. 

N/C+ n/µC 

(18) 

(.19) 

(20) 

(21) 

Performance Comparison 

Because of different characteristics of data 
source assumed in the analysis of each loop, we 
have decided to compare the DLCN loop against the 
Pierce loop and the Newhall loop separately. Fig­
ures 1 and 2 show average message delay of the 
DLCN loop against the Pierce and the Newhall loops, 
respectively, and clearly verify that the DLCN 
loop has shorter message delay. Better channel 
utilization can also be easily verified by com• 
paring Equations (1), (5) and (16). 

Reference 

1. C. C. Reames and M. T. Liu, "Design and Simula­
tion of the Distributed Loop Computer Network 
(DLCN)," Proc. 3rd Annual Symp. on Computer 
Arch., (Jan. 1976), pp. 124-129. 

2. M. T. Liu, G. Bab;Lc, and R. Pardo, "Traffic 
Analysis of the Distributed Loop Computer Net­
work (DLCN)," to appear in Proc. 1977 National 
Telecomm. Conf., (Dec. 1977), Los Angeles, CA. 

3. J. P. Hayes and D. N. Sherman, "Traffic Anal­
ysis of a Ring-Switched Data Transmission Sys­
tem,"~. Vol. 50 (Nov. 1971), pp. 2947-78. 

4. A. R. Kaye, "Analysis of a Distributed Control 
Loop for Data Transmission," Proc. Symp. Compu. 
COliDD. Networks and Teletraffic, (April 1972), 
pp. 47-58. 

T 

(µs) 

600 

500 

~00 

300 

200. 

N • 10 

l/:f.I • b/µ 1 • 100 bits 

C .. 1.5 Mhrs 

I .. 12S bits 
p 

y - 1 
b .. .8583 bits/µs 

200 400 600 800 1000 1200 l(msgs/sec) 

Fig. 1. Average Message Delay (DLCN vs. Pierce) 

T 

<••> 

40 

30 

25 

20 

N • 10 

l/ll .. 15 bits 

for n = 1, 2, ••• , N, and p0 = K for n = O, where 1 5 -1.:..~~~..-~~~,-~~~.--~~~,--~~~~• 

N 
K is determined by E p • 1. 

n=O n 

138 

1000 2000 3000 4000 l.eff(mgs/sec) 

Fig. 2. Average Message Delay (DLCN vs. NewJ>.all) 



PERFORMANCE ASPECTS OF MULTIPROCESSING IN A TIME SHARING ENVIRONMENT 

Major Thomas C. Darr 
Rome Air Development Center 

Griffiss AFB 
Rome, NY, l344l 

Summary 

One of the goals of the computer architecture 
program at RADC is to investigate the cost/perfor­
mance benefits and trade-offs in the application 
of current and future technology to Air Force and 
DOD information processing systems. It has been 
recognized [l] that so~ware complexity is respon­
sible for a major percentage of the life cycle 
cost of most systems. It is also recognized that 
the availability of very low cost microprocessors 
and other LSI devices presents the potential for 
the design of highly reliable, low hardware cost 
systems for a number of applications. Opportuni­
ties also present themselves for the reduction of 
so~ware complexity by judicious use of such low 
cost hardware and firmware. 

This paper investigates the performance of a 
modern demand paged, virtual memory, multiprogram­
med time sharing system (the MULTICS system at 
RADC). The average system response time for 
interactive users (editing, debugging, small 
compilations) is the basic performance yardstick 
for such systems. It is shown that the system 
response time is governed and limited by the 
memory management mechanism. A queueing network 
model of the system is used to aid the analysis 
[2]. 

A model of a multiprocessing system is ana­
lyzed [3] with particular attention to comparison 
of system response time, cost, complexity, and 
reliability with that of the' single processor 
system. It is shown that performance is still 
limited by the memory management mechanisms. 

139 

It is conjectured that, within the capabili­
ties of forecasted technology in LSI, microproces­
sors, and computer communications, cost/effective 
organizations of such systems will eliminate the 
interactive processing function from the central­
ized resources. These functions will be placed 
in highly intelligent terminals, leaving the 
secondary storage media with user and system data 
and programs, and a sophisticated data base proces­
sor, at the central location. It is shown how 
this organization simplifies required operating 
system software, allows for nearly unlimited 
growth in the user population, and increases sys­
tem reliability. Other benefits, such as ease in 
processing secure data, are discussed. 

References 

[l] D.A. Fisher, Automatic Data Processing Costs 
in the Defense Department, Institute for Defense 
Analysis, Paper P-l046, (Oct, l974). 

[2] J.P. Buzen, Queueing Network Models of Multi­
programming, Ph.D Dissertation, Div. Eng. Appl. 
Phys., Harvard Univ., Cambridge, MA, (l97l). 

[3] Y. Chow and W.H. Kohler, "Performance of 
Several Queueing Models for Multiprocessor Multi­
programming Systems," Proc. COMPCON76, {Aug, l976), 
pp. 66-7l. 



STARAN SER;lES E 

Kenneth E. Batcher 
Digital Technology 

Goodyear Aerospace Corporation 
Akron, Ohio 44315 

Abstract. STARAN(a) Series E is an enhanced 
version of the STARAN parallel array processor. 
Multi-dimensional-access data storage and high 
speed control storage have been increased several­
fold. Faster !C's and new processing algorithms 
improve the processing rates significantly. A 
new 1/0 unit allows faster and more flexible 
input and output of data. The cost impact of 
these changes has been minimized by using stand­
ard parts which were not available when the first 
STARAN was built. In this paper we discuss the 
enhancements and the reasons they were incorpor­
ated. 

Introduction 

As explained in [l] all logic and memory 
devices in STARAN are standard high-volume inte­
grated circuits. The semi-conductor industry is 
continually improving these circuits, e.g., more 
bits on a chip and higher speeds. Thus, it is 
relatively easy to enhance STARAN by using the 
newer circuits as they become available. The 
goal in the design of the .Series E systems was to 
enhance the capabilities of STARAN using newer 
circuits and better processing algorithms while 
preserving software compatibility with the 
original design. 

The major enhancement in the Series E 
systems is a much larger multi-dimensional-access 
(MDA) memory in each array module [2] . Other 
enhancements are a larger high-speed control 
store, faster processing rates and a new 1/0 unit. 

Larger MDA Memory 

Need for Larger Memory 

The MDA memory in the original design used 
256-bit random-access-memory (RAM) devices. 
These were the largest bipolar RAM devices that 
were generally available at the time (1971-1972). 
The size of these devices governed the choice of 
256-bit words with a simple PE per word. 

After several applications were programmed 
on the system it became evident that larger words 
would be better. In most applications the size 
of the machine (number of array modules) is 
dictated by memory requirements instead of 
processing speed requirements. In some applica­
tions some data is off-loaded into the control 
store to make room in the MDA memories. In some 
other applications two or more words are used per 
item and some of the PE's are wasted. 

Another indication that a larger MDA memory 
is desirable appears when the ratio of storage 

(a)T.M. Goodyear Aerospace Corporation, 
Akron, Ohio 44315 

bits to processing speed (MIPS) 
several large computer systems. 
ratio compared to other systems 
too many MIPS or too few bits). 
storage by a factor of .20 would 
with other systems. 

MDA Memory in Series E 

is examined for 
STARAN has a low 

(either we have 
lncreas ing the 

bring us in 1 ine 

In the original STARAN design the number of 
bits per word was fixed at 256. Each array 
module contained BK bytes in a 256 x 256 bit array 
and 256 PE' s. To increase the storage capacity 
of a machine one added array modules and added 
more PE' s as well. In the Series E machines one 
can size the processing power (number of PE's) 
and memory capacity independently. This is 
accomplished by multiplying the MDA memory address 
space by a large factor (256) and allowing the 
space to. be partially populated. 

Bipolar 1,024-bit RAM devices are generally 
available today. These devices have ECL - compat­
ible interfaces so that they match the logic 
levels of STARAN better than the TTL - compatible 
devices of the original design and have faster 
access and cycle times. Thus, these devices are 
a natural choice for Series E. 

MOS 4,096-bit RAM's are also generally 
available. To keep the slow MOS speed from 
severely affecting the processing rate of the 
machine, part of the storage should be bipolar 
and algorithms modified to move most of the 
memory accesses into the high-speed bipolar 
storage. The section on faster processing rates 
discusses these modifications. 

A mixture of high-speed bipolar and low-
s peed MOS devices is allowed in the MDA storage 
of a Series E array module (Figure l) . The MOS 
MDA memory is an array of 256 mK bits where K= 
1024 and m is a multiple of 4. It uses 4,096-bit 
MOS RAM's. The band width of the MOS memory is 
256 bits in or out every 420 nanoseconds (76 
megabytes/second). The bipolar MDA memory is an 
array of 256 by nK bits where n is an integer. 
It uses 1,024-bit bipolar RAM's. A read cycle in 
the bipolar memory requires 120 nanoseconds (267 
megabytes/second) and a write cycle takes 160 
nanoseconds (200 megabytes/second). For compari­
son, the MDA memory of the original STARAN had a 
read cycle of 120 nanoseconds and a write cycle 
of 300 nanoseconds. 

140 

The maximum MDA storage in each array module, 
limited by the address space, is 256 x 64K bits 
(2,097,152 bytes). The physical size of the array 
module grows with storage capacity and depends on 



the mix of bipolar and MOS storage. In the first 
Series E machine, m=8 and n=l, for a capacity of 
262,144 MOS bytes and 32,768 bipolar bytes per 
array module. Two array modules are packaged in 
one STARAN cabinet (array modules with greater 
storage capacity are packaged one per cabinet). 
For a cost increase of less than 50% these array 
modules have 36 times the storage of the original 
STARAN modules. 

Accessing MDA Memory 

In the original design each MDA memory access 
(fetch or store) required two parameters: an 
8-bit access mode to select one of 256 stencil 
shapes and an 8-bit address to position the 
selected stencil at one of 256 positions [2]. 

The larger MDA address space in Series E 
requires a 16-bit address. Some thought was 
given to also increasing the access mode para­
meter and allowing some stencils to access every 
ith bit slice of a word (i=2,4,8,etc.). This idea 
was rejected because such stencils do not appear 
to be generally useful and they are hard to imple­
ment in a memory which is partially populated with 
both fast and slow memory devices. Because of the 
way data is scrambled in memory it is important 
that all 256 memory bits accessed at one time act­
ually exist and either be all "fast" bits or all 
"slow" bits. The basic memory increment is 1,024 
bit-slices so the maximum allowable access mode 
parameter is 10 bits--the increase from 8 bits to 
10 bits does not add any significant MDA capabil­
ity so the access mode parameter was left at 8 bits. 

In Series E, one may view the MDA memory of 
an array module as a number of 256 x 256-bit planes 
(Figure 2). The leftmost 8 bits of the 16-bit 
address select one of the planes. The 8-bit access 
mode selects a stencil shape and the rightmost 
8 bits of the address positions the stencil within 
the selected plane. All 256 bits covered by the 
stencil are fetched or stored in one memory cycle. 
The shapes of the 256 possible stencils are 
discussed in (2). 

Bipolar MDA memory occupies the first 4n 
planes (n=l,2,3, •.• ) and MOS MDA memory the next 
4m planes (m=0,4,8,12, ••. ). 

Base Registers 

In the original design the 8-bit MDA memory 
address came from one of five sources: an address 
field in the instruction, the resolver through the 
link pointer or one of three field pointers. The 
instruction address field is usually used to ref­
erence flag bits in fixed locations. The resolver 
and link pointer are used to reference particular 
words in the MDA memory, e.g., a word satisfying 
an associative search operation. The three field 
pointers are used to step through the bit-slices 
of fields in arithmetic and search operation; e.g., 
to add field A to field B with the result put in 
field C the three field pointers reference corres­
ponding bit-slices of fields A, Band c. 

141 

In the original design the 8-bit MDA access 
mode came from one of two access mode registers 
(AMRO and AMRl) depending on the state of a mode 
bit in the instructions referencing MDA memory. 

In Series E, five base registers are included 
in the control unit; one for each of the five 
sources of MDA memory addresses. The final 16-bit 
MDA memory address is formed by adding the 8-bit 
source to a 16-bit base address in the associated 
base register. The 8-bit access mode comes from 
a field in the base register. This arrangement 
allows addressing of: 1. flags in a flag-bit 
region, 2. words satisfying a search, and 3. fields 
in scattered memory regions without modifying the 
base registers. 

The speed of arithmetic instructions with 
long sequences of micro-steps (multiply, divide, 
square root and floating-point) would be severely 
affected if all micro-steps addressed fields in 
the MOS MDA memory. To speed up these instruc­
tions, a sixth base register is used as a pointer 
to the base of a vector stack in the fast bipolar 
MDA memory. The long arithmetic instructions 
move vector operands from MOS memory to the bi­
polar stack, operate on the stacked vectors and 
then return the results to the MOS memory. Guard 
bits are added to the vectors when moved onto the 
stack and rounded-off when results are unstacked. 

The mode bit of the instruction (used in 
the original design to select AMRO or AMRl) is 
used in Series E to select vector stack address­
ing or the five-base-register addressing. In 
vector stack addressing, the 16-bit stack base 
address in the sixth base register is added to the 
8-bit source regardless of its source so system 
micro-programs operating on stacked vectors can 
use all address sources. 

A set of sixteen 32-bit registers is added to 
the control unit in Series E. Six of the regis­
ters are the MDA base registers just discussed. 
Another eight registers are the return-jump 
registers (RO - R7) of the original design. The 
other two registers can be used as general-purpose 
registers. The Series E instruction set is 
augmented with instructions to manipulate these 
registers. 

Control Memory 

The control memory of the original design had 
an address space of 65,536 32-bit words populated 
with three high-speed 512-word page memories, one 
high-speed 512-word data buffer and a 16,384-word 
magnetic core memory. The remainder of the address 
space could be used to address the memory of a 
host computer if such an interface exists or to 
double the capacity of the pages, the high-speed 
data buffer and/or the core memory. 

The page memories hold the micro-program 
instructions of the system subroutines and user­
generated micro code. For some applications page 
memory space was tight and measures such as execu­
ting some micro-code in core memory or swapping 



micro-code in the pages were necessary. With the 
larger memory devices available now it is easy to 
expand the page memory capacity without increasing 
their physical size. In Series E, each of the 
three page memories holds 4,096 words and can be 
doubled to 8,192 words if necessary. The memory 
devices are faster so 100-nanosecond instruction 
fetch rates can be supported (compared to 120 
nanoseconds in the original design). 

Magnetic-core memory space was also tight in 
some applications of the original design. In 
these applications a significant amount of core 
memory space was used to unload the small MDA 
memories and/or buffer data on the I/O channels. 
In Series E the MDA memories are much larger and 
the I/O channels communicate with the MDA memories 
directly so the core memory is relieved of this 
burden. The core memory capacity in Series E is 
the same as the original design (32,768 words). 

Faster Processing Rates 

There are about two MDA memory read steps, 
and one array register transfer for every MDA 
memory write step in the typical application 
program. The following table uses this ratio and 
the read and write cycle times of the original MDA 
memory and the MDA memories of Series E to show 
the effect of MDA memory times on the processing 
rate. 

Original Series E Series E 
MDA Bipolar MOS 
Memor;i:: Memor;i:: Memorl'.: 

Array Register 120 100 100 
Move Time(nsec) 

Read Time (nsec) 120 120 420 

Write Time (nsec) 300 160 420 

1 Reg.Move + 2 read 
+ 1 wri,te (nsec) 660 500 1360 

Relative Process-
ing Rate 1 1.32 0.49 

With no changes in the system micro routines, the 
processing rate of Series E would be close to that 
of the original design. 

The small MDA memory in the original design 
limited the arithmetic micro-routines to little or 
no temporary space for their calculations. This 
had a severe ~impact on the execution times of ·the 
multiply, divide, square root and floating-point 
operations. With the much larger MDA memory of 
Series E some of the memory space can now be given 
to these operations for temporary storage. The 
micro-routines for these operations were rewritten 
to use the vector stack in bipolar MDAmemory for 
temporary storage. S.ome examples of the speed 
improvement are shown in the following table. 

142 

Operation 

32-bit floating-point add 
32-bit floating-point multiply 
32-bit floating-point divide 
16-bit fixed-point multiply 
16-bit fixed-point divide 

Series E speed/ 
original speed 

3.0 
4.0 
2.0 
1.8 
1.5 

Since the floating-point micro-routines had to be 
recoded, it was decided to allow other precisions 
besides single-and double-length. The precision 
of these operations can then be tailored to match 
the precision of an attached host computer or to 
match problem requirements. A max:imum precision 
of 100 bits was selected -- this is large enough 
to cover most applications and small enough to be 
handled conveniently in the MDA memory vector 
stack. No special problems arise if the precision 
is two or more bits so a minimum precision of 
2 bits was selected. Users can adjust the 
precisions of floating-point operands anywhere in 
this large range. Operands with different 
precisions can be combined and results stored with 
another precision in the four basic floating-point 
operations: add, subtract, multiply and divide. 
The execution time and vector stack space used 
depends on the operand precisions. 

To accomodate host computers with different 
exponent lengths, floating-point operands can have 
a base-2 exponent with 7 to 11-bits. In the basic 
operations all operand exponent lengths must agree. 

The format of floating-poing numbers in 
Series E was selected to maximize performance. 
The format is one sign bit followed by 7 to 11 
base-2 exponent bits followed by 2 to 100 mantissa 
bits. Exponents are biased by 64, 128, 256, 512, 
or 1024 depending on exponent length. Non-zero 
numbers have normalized mantissas (the most­
significant mantissa bit is always 1). All bits 
of a floating-point-zero are 0. 

The format of fixed-point numbers is the same 
as in the original design--a two's-complement 
representation with three or more bits, and any 
scale factor. 

Input-Output 

The array modules of the original design had 
two ways of inputting and outputting data: 
through the 32-bit common register or through an 
optional parallel input-output (PIO) unit. The 
PIO unit had wide ports (256 bits) into each array 
module and allowed transfer of data at 80 mega­
byte/second rates. Each array port had 1024 wires 
(256 twisted-pair inputs and 256 twisted-pair 
outputs) so the PIO unit was relatively expensive. 
In some applications the common register path was 
too slow, inconvenient to use, or required large 
buffer space in the control memory. 

In Series E the array I/O was redesigned. 
We found that data can be reliably transferred 
over a 32~bit-wide path at 80 megabytes/second so 
the high I/O rates supported by the original PIO 
unit can be accomplished with busses only 1/8 as 



wide. The 8-to-l reduction of bus width through 
the I/O unit reduces its cost dramatically. 

Each array module has a multiplexer-demulti­
plexer (MPX/DEMPX) to pack and unpack data between 
the 256-bit-wide internal busses and the 32-bit­
wide I/O busses (see Figure 1). A control unit 
associated with the MPX/DEMPX steals an MDA memory 
cycle to fetch or store I/O data -- both the 
access mode and the address come fran registers in 
the MPX/DEMPX control unit. 

BIPOLAR 

MEMORY MDA MEMORY 

The I/O busses of the array modules are 
coupled to a cross-bar to permit data transfers 
between array modules and I/O to external devices. 

[l] J. D. Feldman and L. c. Fulmer, RADCAP - An' 
operational parallel processing facility, 
AFIPS Conf. Proc. Vol. 43, pp.7-15 (1974 
Nat'l. Computer Conference). 

[2] K. E. Batcher, The Multidimensional Access 
Memory in STARAN, IEEE Trans. on Computers, 
Vol. C-26, no.2, pp. 174-177, Feb. 1977. 

FROM COMMON REGISTER 

3: 
FLIP -c 

)< 32 ._ 
(256xnK NETWORK 0 

(256xmK ..., 
BITS) BITS) 

TO COMMON 
REGISTER 

Figure 1 - Series E Array Module 

ie----256---t--i .. 
• 

• 
• 256 

r-+-+-t- ACCESS MODE • 11111111 

ACCESS MODE • 00000000 

ADDRESS 

PLANE STENCIL 
SELECTION POSITION 

8 8 

ACCESS MODE 

STENCIL 
SHAPE 

8 

Figure 2 - Accessing Series E MDA Memory 

143 

3: 
-c 
)< 

1/0 



STARAN E PERFORMANCE AND LACIE ALGORITHMS 

Roger L. Boulis and Rudolf O. Faiss 
Application Engineering 

Goodyear Aerospace Corporation 
Akron, Ohio 44315 

Abstract. The features of the Goodyear. 
Aerospace Corporation's new STARAN(a) E model 
computer are described and its architecture is 
discussed. The implications of the new archi­
tecture on array storage, input/output (I/O), 
arithmetic, program design, and software 
generation capabilities are related to corre­
sponding features of the earlier STARAN B 
model. Through examination oZb~he use of the 
STARAN E for performing LACIE tasks now done 
by the STARAN model B machine, the utility of 
the new features is shown. 

Introduction 

The purpose of this paper is to introduce 
the reader to the improvements that can be 
afforded to a STARAN E model user over the ear­
lier B model system. 

Throughout the paper, potential users of 
parallel processors are acquainted with the fea­
tures of the Goodyear Aerospace Corporation 
STARAN Band E model computers. A critique of 
the STARAN B model as currently applied to the 
LACIE investigation [l] provides the basis upon 
which the STARAN .E model establishes its merit. 

This paper is presented in three basic 
sections. The first section provides a short 
swnmary of the STARAN computer and its usage 
experience at the various STARAN installations. 
This is accompanied by a more detailed descrip­
tion of the functions the STARAN B is required 
to perform on LACIE algorithms at Johnson Space 
Center (JSC). The second section describes the 
highlights of the STARAN E model, making refer­
ence to the STARAN B model where applicable. 
The last section discusses the advantages the 
STARAN E model can demonstrate over the STARAN B 
model when the LACIE algorithms are adapted to 
the new STARAN E architecture. 

Background 

STARAN Architecture Swrunary 

The STARAN is a modularly constructed com­
puter in which many identical operations may be 
executed simultaneously; that is, it is a 
"single instruction stream, multiple data stream" 
processor. 

The basic STARAN building block module is 
called an array. It consists of an array memory 
section, 256 bit-oriented processing elements, 
and a routing network/address structure that 
allows for multidimensional access of the array 

(a)TM, Goodyear Aerospace Corporation, 
Akron, Ohio 44315 

(b)Large Area Crop Inventory Experiment at 
NASA's Johnson Space Center, Houston, Texas 

144 

memory by the processing elements. Local array 
control allows selective enabling of data 
streams. A single STARAN control unit broadcasts 
instructions to all enabled array modules. 

STARAN's modular construction allows for the 
incremental increase of not only working storage, 
but also, memory-to-processing element bandwidth 
and processing elements. For example, in a one 
module STARAN, an "add" operation can be executed 
simultaneously for 256 pairs of numbers (or 256 
data streams). The parallel execution of an 
operation for many data pairs is made possible 
by employing many processing elements (256) per 
module. In a two module STARAN, twice as many 
adds can be performed in the same time interval 
because twice the resources are provided; 512 
data streams may be treated simultaneously. 

The high processing and throughput speeds of 
STARAN are a direct result of its parallel pro­
cessing architecture. 

STARAN Usage Experience 

Since its introduction to the commercial 
marketplace in the spring of 1972, STARAN B has 
been used to solve a variety of applications 
problems. Independent of the applications, the 
tasks that have been. implemented in STARAN for 
problem solving can be categorized into two 
major types, namely, bit and bit-group manipu­
lation type tasks. 

The former type tasks generally require 
access to specific individual bits of both input 
and intermediate task data items. Bit manipu­
lation capabilities are commonly employed for 
solving problems that require automatic deci­
sions, e.g., problems that arise out of data base 
management, text searching, command and control, 
and air traffic control applications. They are 
also used for problems that are dominated by one 
bit data items. A number of problems that arise 
out of cartography, graphics/drafting, weapons 
sensor processing simulation, and attribute-to­
boundary correlation applications are of this 
nature. 

The second task category, the bit-group 
manipulation type task, allows access to data 
items by bit-groups. An N-bit data item may be 
treated N bits at a time (as in the multipli­
cation of two such items). Such tasks are 
generally of an arithmetic nature and most often 
are add or multiply tasks. Applications that 
employ bit-group processing are far ranging, and 
those applications that are most likely to de­
mand that bit-group tasks be executed at high 
rates are those that deal with vectors or arrays 
of N-bit data items. Examples of applications 
that treat data of thi.s type at high rates include 



image processing, signal processing, weather fore­
casting, reactor design, and fluid dynamics appli­
cations. 

STARAN's processing elements were designed 
for the manipulation of individual data bits of 
data items in a great number of data streams, 
i.e., it is a bit manipulator. At present, 
STARAN is optimized for performing bit manipu­
lation tasks. 

Bit-group manipulation tasks are accomplished 
in STARAN by executing a regular sequence of 
operations on the individual bits of bit-group 
operands. As a result of the manner in which bit­
group tasks are accomplished by STARAN, arbi­
trarily sized N-bit group data items are treated 
with equal ease. Thus, a 5-bit x ?1-bit multiply 
task is accomplished with no more programming 
difficulty than a 16 x 16-bit multiply task; both 
multiply tasks demand about the same processing 
time. 

Three STARAN B installations other than 
those at GAC - the Rome Air Development Center 
(RADC), the Engineering Topographic Laboratory 
(ETL), and the Johnson Space Center (JSC) instal­
lations are now in regular use. The RADC and 
ETL STARAN's are being used primarily for appli­
cations that require STARAN to perform bit mani­
pulation tasks, whereas the STARAN of the most 
recent installation at JSC is being used pri­
marily for accomplishing bit-group manipulation 
tasks; more specifically, for vector arithmetic 
processing tasks. 

While the usage experience at all three 
installations has influenced the choice of 
STARAN enhancements implemented in GAC.' s upgraded 
STARAN E machine, the LACIE application task set 
executed by the present JSC STARAN B will be used 
as the primary vehicle to demonstrate the im­
provement of the new STARAN E over the older 
STARAN B machine. 

This task set has been chosen as a demon­
stration vehicle deliberately for the following 
reasons: (1) the STARAN B installation is being 
used in a semi-production fashion, and so good 
installation usage statistics are available; 
(2) the LACIE application requires the repeated 
execution of bit-group tasks; and (3) the cost 
statis~ics for the development of the LACIE 
STARAN software are well known. 

Rationale for STARAN in LACIE 

Prior to the LACIE program, NASA had de­
veloped an enhanced Earth Resources Interactive 
Processing System that was structured to utilize 
one of the five IBM 360/75 computers in the real 
time computer complex in the Mission Control 
Center of JSC. It was determined to be desirable 
to use this same software/hardware system for 
implementing the LACIE program. Yet, the com­
plete implementation of the LACIE software set 
within the computers of the Mission Control 
Center would have severely drained the complex of 
its compute power. On the basis of a competi­
tive assessment, NASA ultimately chose a two 
array STARAN B to off-load the computationally 

145 

demanding LACIE data processing tasks [l). In 
particular, STARAN B was required to perform: 
(1) Statistics, (2) Iterative Clustering, (3) 
Adaptive Clustering, (4) Maximum Likelihood 
Classification, and (5) Mixture Density tasks. 

This paper will show why the STARAN E would 
simplify the design and coding .of software for 
achieving the above LACIE tasks: It will further 
show that STARAN E could have performed the tasks 
more rapidly and potentially could have reduced 
the number of arrays required for processing from 
2 to 1. It will show that STARAN E would have 
been a more desirable off-loading vector pro­
cessor than the STARAN B. 

STARAN E Highlights 

General 

Since its introduction, the STARAN B model 
computer has satisfied and even exceeded system 
performance predictions for a variety of appli­
cations. The extensive and varied use has pin­
pointed certain STARAN B limitations. At times, 
users have found the STARAN B word length too 
short, the data transfers between array memory 
and program memory too slow, and the size of the 
page memories insufficient. To remove these 
limitations, the STARAN B model architecture was 
modified in three major areas: (1) multidimen­
sional access (MDA) array memory size/speed, 
(2) control memory size/speed, and (3) MDA array 
memory I/O. 

Significant Hardware Features 

Figure 1 is a block diagram of the resulting 
STARAN E with the modified hardware outlined. 
The new hardware will be discussed below. 

MDA Array Memory Size/Speed. The heart of 
the STARAN E model is the MDA array memory, a 
two dimensional matrix of bits. There are three 
basic components of each array module in a STARAN 
system, whether it be an E or B model (see 
Figure 2). A set of processing elements (PE's) 
is connected through a permutation network to a 
high bandwidth MDA memory. Rows, columns, or 
other subsets of data can be read in parallel 
from the memory, permuted in various ways as they 
pass through the permutation network, and then 
can be combined with other data in the processing 
elements. The processed results can be again 
permuted and stored into memory in various ways. 
The arrays in the STARAN E model are still the 
basic modules from which STARAN E systems of 
varying size and power are constructed. The 
maximum number of STARAN E arrays in a given 
system is eight. The size of the STARAN E arrays 
has been increased from 256 bits per word, as in 
the STARAN B model, to an allowable maximum of 
65,536 bits per word. Each array still contains 
256 words. Any of the 256 PE 1 s within an array 
still has access to data in any array in the 
system. A maximum STARAN E model configuration 
is shown in Figure 3. 

Two types of memory may be employed in each 
memory module - fast bipolar 1,024-bit random 
access memory (RAM) and slower metal-oxide semi-



conductor (MOS) 4,096-bit RAM. The former has 
emitter coupled logic ECL electrical character­
istics that provide a read time of 120 nsecs and 
a write time of 160 nsecs. The latter exhibits 
standard MOS electrical characteristics, yielding 
420 nsecond read and write times. The allowed 
mix and amount of these two types of memory is 
somewhat arbitrary, but has been chosen at lK fast 
RAM memory and BK of slower MOS memory for the 
first STARAN E built. 

Each array of the first STARAN E model is 
organized as a matrix of 256 words by 9216 bits, 
as shown in Figure 4. This matrix is further 
broken down into 36 256-word x 256-bit square 
segments. As in the STARAN B model, within these 
segments, it is possible to read or write all 
bits of one word, or one bit of all words, or a 
few bits of many words, or many bits of a few 
words - all in one memory operation. The M, X, 
and Y processing element (PE) registers (Figure 4) 
are still 256 bits wide each and may be used as 
temporary storage for data moved to or from the 
array. 

Addressing the STARAN E model arrays is 
almost identical to the scheme used by the 
STARAN B model. Due to the extended length of 
each array word, a base register philosophy was 
incorporated in the STARAN E model and is de­
picted in Figure 5. A set of six, 32-bit regis­
ters provides the capability of addressing the 
36 segments of 256 words by 256 bits of the first 
STARAN E model. A maximum capability of ad­
dressing 256 of these segments (corresponding to 
the maximum array s;ize) is provided. 

Control Memany Size/Speed. The main function 
of the STARAN ff connr:ol memory is to contain 
assembled applica,tfon programs. It has also 
proven very ne~essary as a data buffer used by 
STARAN control,. the MDA arrays and the I/O chan­
nel of a host computer connection. The maximum 
address s.pa<:e of the STARAN B model is 65,536 
32-bit:. .ti!Wll'!l!IS. A maximum of 32, 768 32-bit words 
are res·erved for magnetic core memory; 1024 words 
for the high sireed data buffer memory. These 
figures have not changed. in the STARAN E model. 
The high speed page memory system has been en­
larged considerably though. Up to 8,192 32-bit 
words can be stored in each of the three page 
memories. Instruction execution speed has been 
decreased almost 20% to 100 nanoseconds. The 
remaining memory address space can be utilized 
for addressing the memory of a host computer if 
so connected. The first STARAN E model built has 
16,384 words of core memory, 4,096 words in each 
of 3 page memories, and 512 words of high speed 
data buffer memory. 

MDA Array Memory I/O. Interarray communi­
cation and I/O between the arrays and external 
devices can occur in two different ways for the 
STARAN B model. The most usual method is by way 
of the 32-bit wide common register - a path that 
can achieve a 12 to 15 megabit per second data 
transfer rate. The optional parallel I/O (PIO) 
path, with a channel width of 256 bits to each 
array in the system, provides the larger. band-

146 

width in the STARAN B model of 640 megabits per 
second, but at the expense of a great deal of 
circuitry and cabling. 

One of the main features of the STARAN E 
model is direct access to data within the MDA 
arrays from an external device. The array access 
is made by stealing a machine cycle from STARAN 
control. In this way, STARAN does not have to 
expend processing time assisting in I/O, but 
instead may devote all its time to array pro­
cessing. 

Three I/O ports are provided at each MDA 
array as shown in Figure 6. The first, a 256-
bit PIO path, is capable of transfer rates from 
512 megabits per second up to 2560 megabits per 
second. The second is a 32-bit wide multiplexed 
I/O (MIO) path with the same basic bandwidth as 
the STARAN B model's PIO - from 80 to 640 mega­
bits per second. The third is the standard com­
mon register path to STARAN control that cur­
rently exists in the STARAN B model. Its trans­
fer rate varies from 12 to 15 megabits per 
second. Of these three ports, only the latter 
two are utilized in the first STARAN E model 
built. 

Implementation of the array I/O is made 
possible by four hardware units:(l) the array 
access resolver, (2) a multiplexed I/O con­
troller, (3) the multi-port crossbar switch, and 
(4) a STARAN command channel (SCC). These are 
shown in Figure 6 for a two array STARAN E model 
configuration. The resolver block was shown 
separately in this figure for clarity. Normally, 
its function is assumed by the MIO block for 
diagrammatic purposes. 

• Access Resolver. The STARAN E array can 
be controlled by any one of three units - STARAN 
control, MIO control, or PIO control. Conflicts 
are controlled by the access resolver. A "snap­
shot" scanning resolver is employed to decide 
which device is allowed access to the array. 
There are four types of requests that the re­
solver looks for. In order of priority, they 
are: (1) STARAN control, (2) PIO, (3) MIO read, 
and (4) MIO write. A snapshot is taken only 
when a PIO, MIO read, or MIO write request is 
made and the requested array is available. 
STARAN control is the unit that in effect grants 
the resolver's request to service another unit. 
The array(s) will only be available if STARAN 
control is not currently utilizing that array. 
The highest priority request within the snapshot 
is then honored for one MDA array memory cycle. 
If other requests are pending, each of them gets 
one memory cycle on a priority basis. This pro­
cedure continues until all devices eventually drop 
their requests. 

STARAN's exclusive utilization of the arrays 
is not interrupted unless an array tests busy. 
At that point, basic array access efficiency re­
mains high but STARAN control efficiency drops 
slightly. 

• MIO. As shown in Figure 6, each array in 
a STARAN E model system employs a MIO that allows 



array I/O to occur on a cycle stealing basis. 
The array I/O can be initiated by the execution 
of an I/O instruction of an external I/O proces­
sor (IOP) or by the execution of an associative 
instruction of the STARAN E proper during an 
interarray transfer. These data transfers take 
place over the 32-bit wide array I/O busses as 
coupled together by the crossbar circuitry. The 
same bandwidth as the STARAN B's PIO is maintained 
by "burst" transmitting the data with a clock rate 
of 50 nanoseconds per 32-bit word. Another 32-bit 
port connected to the MIO is the common register 
data path from the STARAN E model mainframe. The 
same data transfer rate as the STARAN B's common 
register data path is maintained (15-20 megabits 
per second). 

The smallest data item passed through the 
MIO from the crossbar unit is 256 bits. A clocked 
multiplex/demultiplex scheme is employed in the 
·MIO that breaks a 256 bit item from the array into 
eight 32-bit words during transmission to the 
crossbar. Likewise, when eight 32 bit items are 
received by the MIO from the crossbar, they are 
packed into a 256-bit item for parallel transfer 
to the MDA array. The MIO, as shown in Figure 7 
is designed such that data transfers may occur 
in both directions simultaneously, but not neces­
sarily at the same rate. Data input to the MIO 
from the crossbar touches both the demultiplex 
buffer and the control register input. MIO data 
output to the crossbar comes from the multiplexed 
output buffer or the control registers. Control 
registers may be transferred between each other 
over an internal path. The MIO circuitry is cap­
able of several I/O functions that are useful to 
internal STARAN E model data manipulation as well 
as external I/O. In most cases, the MIO is acti­
vated by loading the internal control registers 
shown in Figure 7. The functions that the MIO 
is designed to perform include: (1) continuous 
transmit, (3) block transmit, (3) receive, and 
(4) exchange. These are pictorially represented 
in Figure 8. 

Continous Transmit. An IOP may initiate 
this mode when it is required to read MDA array 
data. It establishes a hardware connection to 
the specific array MIO through the crossbar switch, 
writes the "continous transmit" register (CR2) and 
then breaks the connection. The MIO is now acti­
vated and will establish the connection to the 
IOP and begin transmitting array data. The trans­
mission continues until: (1) IOP control termin­
ates the transfer, or (2) CR2 is loaded again by 
another IOP. The continuous transmit mode allows 
several IOP's to obtain data from the same array 
during a given time interval. 

The continous transmit mode requires that the 
intelligence controlling the transfer be on the 
receiving (IOP) side of the transfer. Data trans­
mission from the MIO can cease at any time and it 
would be up to the IOP hardware to restart it. 

Block Transmit. An IOP may also read 
array data a block at a time. A connection is 
made as before and registers CR2, CR3, and CR4 are 
written into the source array MIO with source and 

147 

destination addresses, block size, and other per­
tinent data. The connection is broken as before 
and the MIO is activated. The contents of regis­
ter CR3 are placed on the output and loaded into 
the IOP. The corresponding array words follow. 
Once a block transfer is initiated, only an "ex­
change" operation can intervene. Each time an 
exchange does occur, the MIO will reinitiate the 
connection and continue the transmission where 
it left off. A "receive" can also occur at the 
MIO and allow data to be written in the array on 
a cycle stealing basis using the "block transmit" 
capability. 

The block transmit function can also be ini­
tiated by STARAN control writing CR2, CR3, and 
CR4 in the source array MIO and allows data to be 
sent to one or more arrays from the source array. 
Register CR3 in the source array is loaded into 
CRl of the destination MIO(s) and the array words 
follow. The source array MIO in a block transmit 
mode will not accept another continuous transmit 
or block transmit request until the current one 
is complete. However, the source array MIO will 
allow "exchange" and "receive" operations to occur 
as explained above. 

Receive. An IOP may write data to an 
array by first connecting to the MIO. Next, CRl, 
the "receive control register" is loaded. Data 
is then transmitted into the MIO. The receive 
operation will allow any other operation to inter­
vene on a cycle stealing basis. However, the IOP 
or source array must have the capability to re­
initiate the "receive" operation. 

Exchange. Another type of interarray 
communication that can be performed by the 
STARAN E model is the "exchange" function. This 
function uses the data path afforded by the MIO 
and the crossbar switch to perform a synchronous 
data transfer. Array address and control inform­
ation are provided by an associative instruction 
executed within STARAN control that triggers the 
exchange function. Array connectivity is con­
trolled by the connection registers within the 
crossbar switch. All data manipulations performed 
by the associative exchange instruction are iden­
tical to their non-exchange counterparts. Its 
basic purpose, however, is to provide interarray 
data communication. The contents of one memory 
location may be swapped synchronously with the 
contents of another's memory location. Or, data 
from one array may replace data in all the other 
arrays in the system if so desired - all within 
the same period of time that it takes to read the 
data from the source array. A variety of other 
exchange options are available to the STARAN 
user. 

• Crossbar Data Switch. The crossbar data 
switch of the STARAN E model provides part of 
the path that allows MDA array data to be ac­
cessed by external devices (and other arrays) 
without direct STARAN participation in the trans­
fer. The crossbar is an eight port data switch 
that has one of its ports connected to each array 
in the system. Each port contains 32-bit wide 
data paths and operates at 80 to 640 megabits 



per second. Remaining ports may be connected to 
IOP's for direct MDA array transfers. A port is 
defined as having simultaneous input and output 
capabilities. 

Large systems may have up to eight arrays 
and have several IOP's attached. In order to 
accommodate situations like this, the crossbar 
design allows a second crossbar to be added to 
the first, thus providing 14 ports. Up to four 
crossbars may be ganged together like this to 
provide 20 free data ports. 

All STARAN E systems may also use the cross­
bar data switch to transfer information from one 
array to another. The transfer may be synchron­
ous under control of a STARAN associative 
instruction, or asynchronous under MIO control. 

The STARAN E model instruction set was ex• 
panded to incorporate several new instructions 
that control the MIO, crossbar and sec. Those 
required for the crossbar proper allow four basic 
functions to be performed: (1) reset, .(2) read 
registers, (3) write registers, and (4) strobe 
status. These instructions are issued over the 
sec to the crossbar and MIO devices. The control 
registers in the crossbar as well as the MIO are 
accessible by any device attached to the sec. 

e STARAN Command Channel (SCC). The SCC 
is the vehicle by which command and control 
information is passed from STARAN control to the 
IOP's and MDA array MIO's that are attached to 
the crossbar data switch. The sec is driven by 
I/O instructions executed by STARAN. In additi.on 
to command transfer, the sec also provides a 
data output and input path 36 ,hits wide, in­
cluding 4 bits of parity. IOP interrupts are 
also supported by the channel. The SCC, crossbar 
data switch, and MIO are all involved during 
interarray operations and are initiated by 
STARAN I/O instruction execution. The SCC ori­
ginates at STARAN control and can be daisy­
chained from its first connection at the cross­
bar control logic to any IOP's within the system. 

STARAN E vs. STARAN B in LACIE 

STARAN Program Storage 

It was indicated earlier that the LACIE pro­
cessing at NASA is handled by IBM 360/75 host 
computer(s) that off-load five computationally 
demanding LACIE pattern recognition tasks to a 
STARAN B computer. The particular 2-array 
STABAN B used is equipped with a 136K byte (34K -
32-bit word) control memory. The STABAN B is 
connected to the selected host computer via a 
custom-built channel-to-channel interface unit 
that connects to STABAN's buffered I/O (BIO) port. 
Data that transfer through this port are read 
from or are written to the S'l'ABAN B model's 
program memory (i.e., program memory is used for 
data as well as instruction storage). 

The maximum intermachine data transfer rate 
is restricted to less than one Megabyte per 
second as a result of the need for very long 
cable lengths. (Since fundamental data transfer 
rates that can be supplied by the host during 

148 

the execution of a STABAN LACIE task lie sub­
stantially below this rate, the one Megabyte per 
second intermachine transfer rate limit imposed 
by the channel causes no apparent impact on LACIE 
processing.) To support block data transfers 
between machines, receive and send I/O buffers 
are provided by both machines. The size of these 
buffers is related to the maximum data block size 
allowed in a single one-way data transfer. To 
minimize the number of I/O interrupts the host 
machine is required to process, it is desirable 
to use large data block transfers. Furthermore, 
to support simultaneous STARAN processing, host 
processing, and intermachine data transfers, 
more than one I/O buffer is required in each 
machine. As a result, a considerable portion of 
STARAN B program memory is allocated for use as 
I/O buffers. At present, data block sizes for 
one way intermachine transfers are restricted to 
20K or less bytes. For reasons imposed by inter­
machine I/O protocol, on the order of 60K bytes 
of buffer space must be made available in STARAN 
to achieve a double buffering capability. 

Thus, a large percentage of STARAN control 
memory is allocated for use by transient data. 
Yet other data, namely input parameter data, re­
quire large allocations of program memory stor­
age space for classification tasks when pixel 
measurement vectors have many components. In 
particular, when 20-component measurement vectors 
are associated with the pixels to be classified, 
when the reference statistics for 60 crops are 
to be used in classifying pixels, and when the 
Mixture Density Classification task is used to 
accomplish .classification, the input parameter 
data (crop reference statistics) require on the 
order of 56K bytes of program memory. Another 
4K bytes of program memory is required for inter­
mediate data storage when the above task is exe­
cuting. As a result, only on the order of 16K 
bytes of program memory is available for the LACIE · 
executive, STARAN I/O handlers and LACIE task 
application modules. The actual system software 
requires about SK bytes of the remaining 16K 
bytes, leaving SK bytes of program memory for all 
five LACIE applications tasks. Since the amount 
of code for the LACIE tasks exceeds 40K bytes of 
instructions, insufficient program memory exists 
in the JSC S~ARAN to allow the various STARAN 
LACIE TASK modules to co-reside within the 
STARAN-B program memory. In fact, the complete 
instruction set for only one LACIE application 
task exists in the program memory at any· one 
time. The remaining programs are stored on a 
disc associated with the STARAN system. Thus, 
when the host calls upon STARAN to execute a 
task,· STARAN must first determine whether or not 
the desired task program already exists in pro­
gram memory. If the program is not resident in 
the memory, it must be called in from disc stor­
age. Such an operation results in substantial 
delays and becomes particularly noticeable when 
task calls treat relatively few pixel measurement 
vectors. 

In order to alleviate the delay problem, the 
applications programs were separated into 
initialization and processing segments; the ini-



tialization segments for all five tasks were com­
bined and are kept in program memory. Thus, if 
a task needs to be loaded from disc, STARAN may 
proceed with the execution of initialization 
actions as the processing segment of the task 
program is being loaded. 

The need for such "cleverness" in managing 
the LACIE application programs disappears when 
using the STARAN E machine in place of the B 
machine. The program memory of the E machine is 
supplemented by 288K bytes of array memory. If 
an E machine were used for the LACIE program, it 
would be tied to the host via a STARAN E crossbar 
port. Pixel measurement data would pass directly 
into STARAN array storage rather than into pro­
gram storage. Intermediate task results would 
remain in array memory. And the bulk of the pro­
gram memory would be available for program stor­
age. As a result, all five STARAN LACIE appli­
cations programs would co-reside in the three 16K 
byte page memories. Delays in task execution 
disappear with the elimination of the requirement 
to load programs from disc. Even short tasks 
would be executed efficiently since all tasks 
would execute out of high speed page memory. The 
systems software and the applications program 
design would be reduced substantially. All soft­
ware now would fit comfortably within the 48K 
byte page memory system, and program segmenting 
would be eliminated. The availability of large 
I/O buffers would permit simpler I/O handlers. 

STARAN Array I/O 

When the JSC STARAN B I/O buffer contains 
pixel data and the task program requires it to 
be moved to array storage, the data must be moved 
to array storage by way of .the common register. 
When the transfer is made most efficiently, the 
full bandwidth of this path is only on the order 
of 2 Megabytes per second (as compared to the 
512 Megabyte per second bandwidth for the pro­
cessing elements-from-arrays path). During such 
transfers, all STARAN processing stops. 

Because data transfers between the STARAN 
program and array memorie·s occur at a slow rate, 
and because such transfers degrade the processing· 
power of the machine, much effort was spent to 
attain a software design for each task that would 
eliminate the use of the program memory for 
storing intermediate task data. Only the soft­
ware design for the Maximum Likelihood Classifi­
cation task was able to eliminate such transfers; 
all other tasks required the movement of at least 
some intermediate data through the common path. 

The impact of moving intermediate data was 
most severe on the timing of tasks that are used 
to establish crop reference statistics; namely, 
the Statistics, Iterative Clustering, and Adap­
tive Clustering tasks. The ratio of the amount 
of time spent for making common path data trans­
fers compared to the time required for arithmetic 
processing is dependent on both the task and task 
setup parameters. Ratios of 5: 1 for Iterative· 
Clustering and 1:5 for classification are repre­
sentative of those likely to be observed while 
performing commonly encountered LACIE jobs. 

149 

The STARAN E would eliminate the requirement 
to move input, intermediate, or output data 
through the common path since such data would 
remain in the array memory throughout a task. 
The execution speed of all tasks would increase 
significantly; for the clustering tasks, dramatic 
execution time improvements in excess of 2:1 
could be expected. The· construction of code to 
implement intermediate data storage would be sim­
plified since the temporary storage region would 
be in the same array memory that produced the 
intermediate data. 

STARAN Algorithm Development 

The STARAN B model array word is 256 bits 
long; the two array JSC STARAN B model provides 
512 such words. Regardless of the LACIE task 
called, 512 pixel measurement vectors are treated 
at a time; one vector is assigned to each array 
word. To satisfy LACIE requirements, vectors 
with up to 20 8-bit components have to be ac­
cepted as input. To provide worst-case capa­
bility, 160 bits of a STARAN array word are re­
quired for storage of the input pixel data. The 
remaining 96 bits are available for storing 
intermediate pixel related data and for per­
forming required arithmetic/logic operations. 
The 96-bit wide space is inadequate for storing 
intermediate results for all but one task (Maxi­
mum Likelihood Classification) and, as was de­
scribed earlier, forces the use of program mem­
ory for storage. 

Because of the undesirability of using pro­
gram memory for the storage of intermediate 
results, the software design effort sought to 
(1) minimize the number and types of intermediate 
data items and (2) reduce the precision of all 
such items to the bare minimum required to ful­
fill LACIE accuracy requirements. The design 
guidelines resulted in the intensive e~amination 
of the basic arithmetic descriptions of the 
tasks. This allowed arithmetically equivalent 
forms to evolve that could be computed fast, 
operate in minimal field space, and generate 
intermediate data with well defined statistics. 
As examples, two major subroutines that allow 
the Maximum Likelihood Classification task to 
hold intermediate data in array storage are the 
common multiply and accumulate routine and the 
rounded square routine. The former routine con­
serves array field space by eliminating the pro­
cess of first generating a product field and 
then adding it to the accumulation of previous 

Clearly, the array space of the STARAN B 
model forced the software designer in this case 
to conserve as much field space for intermediate 
storage as possible. A STARAN E model applied to 
the LACIE application has no requirements for 
special field conserving subroutines. Further­
more, the new variable floating point arithmetic 
routines that are provided by STARAN E's software 
language are at least as efficient as those 
developed specifically for the LACIE tasks. 
products. Instead, the product field is added 
directly into the accumulation field as the pro­
duct is formed. The latter rounded squares 



routine squares the contents of a particular in­
put field and simultaneously rounds the squared 
field to the length of the final output field. 

Summary/Conclusions 

The conmercially available STARAN E model 
hardware/software enhancements include: 

• faster MDA arrays that provide a minimum of 
36 times the storage capacity of present 
STARAN B model arrays, 

• new crossbar hardware that allows interarray 
data transfers from 8 to 64 times faster (at 
composite rates up to 640 megabytes per 
second per crossbar) and will allow host-to­
STARAN array moves (at rates up to 80 mega­
bytes per second per array), 

• new page memories that provide 8 times the 
storage and allow up to 65% faster array 
instruction execution times, and 

• a set of floating point arithmetic modules 
that allow the STARAN programmer to arbi­
trarily specify the mantissa and exponent 
lengths. 

The impact of using a STARAN E model rather 
than a STARAN B model, for the LACIE program, is 
summarized below. 

• All five LACIE applications software 
modules could be pre-loaded into the page section 
of STARAN E's control memory. No calls to the 
STARAN disc would be required after a task was 
requested by the host computer. As a result, 
even tasks involving few data items would be able 
to be performed efficiently in the STARAN E. 

• No intermediate data generated during 
the course of task execution would need to be 
stored in STARAN program memory. Intermediate 
data would be stored within the confines of the 
arrays. The time required to store or access 
such data would be reduced by a factor of at 
least 200:1. By eliminating the requirement to 
store data in program memory, all tasks would be 
able to execute in less time even if the fast 
array memory bandwidths had not been improved. 

• Intermachine I/O would move data directly 
between STARAN arrays and the host. By using 
this path for moving data, no STARAN program 
memory data exchanges are required. As a result, 
the degrading effect on processing power, that 
data transfers along this path cause, is elimin­
ated. 

150 

• Software design and layout costs would be 
reduced dramatically as a direct result of having 
ample control and array memory resources. A one­
array 9K bits/word STARAN E model provides about 
3 times the total storage of the two-array JSC 
STARAN B. The effort that was necessary to fit 
both programs and data into a limited storage 
facility would not be required. The new standard 
STARAN E model arithmetic modules provide exe­
cution times that rival those of the specialized 
modules developed in LACIE. Thus, software debug 
time would be limited largely to main routines. 

Based on the results of the study, a single 
array STARAN E model machine can perform the 
overall LACIE tasks as well as a two-array 
STARAN B model. The one-array E model would 
execute clustering tasks faster than the two­
array B model machine, but would execute classi­
fication tasks somewhat slower than on the B 
model machine. It would outperform the B model 
when executing tasks involving only a small number 
of pixels. Both the STARAN application and 
systems software for the E machine would have 
been simpler to design, required less code, less 
time to code, less time to debug, less time to 
document, and less time to maintain. The overall 
software costs would likely have been halved. 

Acknowledgment 

The authors wish to express their gratitude 
for the technical support provided by John P. 
Rasmussen, one of the major design engineers 
responsible for the new array I/O architecture. 

[ l] 

[2] 

[3] 

References 

R. Faiss, J, Lyon, M. Quinn, S. Ruben, 
"Application of a Parallel Processing Com­
puter in LACIE," 1976 International Con­
ference on Parallel Processing, pp. 24-32. 

Goodyear Aerospace Corporation, "The 
STARAN E System - An Overview," GAC Docu­
ment Number AP-123226, 29 September 1976. 

K. E. Batcher, "STARAN Series E," 1977 
International Conference on Parall;l"Pro­
cessing. 



1/0 
c 

AP 0 
CONTROL N 

T 
R 
0 
L 

CONTROL MEMORY 

PAGE 
MEMO RI ES 

M 
1 
0 

MDA ARRAY MEMORY 

MDA ARRAY MEMORY 

CONTROL 
MEMORY 

AP 
CONTr.OL 

ARRAY MODULE 1 

65,536 BITS 

• (B) 

ARRAY MODULE 

65,536 BITS 

256 
WORDS 

2 56 
WORDS 

134,2 MEGABITS 
16.8 MEGAGYTES 

4.2 MEGAf/ORDS (32 BITS/WORD) 

Figure 1. STARAN E Block Diagram Figure 3. A Maximum STARAN E Configuration 

SELECTOR 

1' r FAST MOS MOS 2 

m 
BIPOLAR MDA MOA 5 
:1DA MEM#l MEM#2 M FL! P 6 
MEM A 

256 s NETWORK B 
MDA ROCESS I NG WORDS K 1 

ARRAY ELEMENTS L l 024 4096 4096 T 
MEMORY BITS BI TS BITS s 

....:l 

Figure 2. MDA Array Memory Module Figure 4. Typical MDA Array - First STARAN E System 

ARRAY SELECTION MDA ARRAYS 

76543210 c=___, Joooo~ ::::> 
ARRAY SELECT REGISTER 

~~~ 
DI RE CT

[ARRAY ADDRESS !ti INSTRUCTIGN

~
INSTRUCTION REGISTER

+

~~
l';.~~L':' .. : .. :.~
(MODE) BASE REGISTER

IND! RECT
REGISTER) [ARRAY AODl<ESSTif Fl LD POPnoR)

8 BI TS

~]
FIELD POINTER

+
16 BITS

lo----C lo-~1oio----ol
(MODE) BASE REGISTEK

':;,., "'r' "~:'"' ,:;;m ~.~~Jj])
212 --

- --- ----
---------~~~------------~

Figure 5. Addressing Example - First STARAN E System

151

R
E
s
0
L
v
E
R

DEMULTI- MEMORY
PLEX. INTERFACE SELECTOR

BUFFER BUFFER

CRO AM OC DP SA
PIO PIO CR! AM MF HM DA CRO - TRANSMIT CONTROL

CR! - RECEIVE CONTROL
CR2 AM DC DP SA CR2 "} CONT!Nµous TRANSMIT
CR3 AM Mf HM DA CR3 - PENDING BLOCK TRANSMIT

CR4 -
MIO CR4 BL MA CR5 - STAT.US

CR5

CONTROL REGISTERS

CROSSBAR SWITCH

MUL Tl- MULTIPLEXED

SELECTOR PLEXDR OUTPUT

BUFFER

Figure 6. STARAN E Array 1/0 LATCH

CONTINUOUS

AM - ACCESS MODE
BL - BLOCK LENGTH
DA - DESTINATION ADDRESS
DC - DESTINATION XBAR NO.
DP - DESTINATION ~ORT NO.

HM - HOME MASK
MA - MASK ADDRESS
MF - MASK FUNCTION
SA - SOURCE ADDRESS

Figure 7. MIO Unit - STARAN E System

TRANSMIT ----•COMMANDS

10? --.oATA
INITIATED

BLOCK TRANSMIT

l IOP
INITIATED
ST ARAN
CONTROL
HiITIATED

RECEfil

1 !OP
INITIATED
STA RAN
CONTROL
HIITIATED

EXCHANGE

l ST.ARAN a---COllTR.QL sec
l~IT!ATED

ST ARAN I

COSTROL
I:CiTIATEO zc3

<C"' "',_
<CZ
>-0 .,.,._,

s---

,\RRAf

0

ARRAY

w
Figure 8. MIO Data Transfer Functions

152

A

R

A
y

A MODIFIED ALAP CELL FOR PARALLEL TEXT SEARCHING

Hubert H. Love, Jr.
Hughes Aircraft Company

Culver City, California 90230

Summary

The Associative Linear Array Processor
(ALAP) and several of its applications are de­
scribed in (1) and (2). An ALAP memory con­
sists of a set of cells organized around four bit­
serial data channels. Three of these are common
buses connected to external registers. One of the
common channels permits both arithmetic and
match operations to be performed between the
data in selected cells and an external operand.
The selection of the operation is global. The other
two common channels are for input and output.
All three common channels can operate
simultaneously.

The fourth channel, the "chaining channel",
permits each cell, under a combination of local
and global control, to transfer data and control
states to its nearest neighbor in one direction
only. Each cell, under local program control,
can either accept the data from its chaining chan­
nel input, or else relay the data to its neighbor­
ing cell.

The major components of the ALAP cell are:

I. A 64-bit shift register, the "data regis­
ter", which holds the cell's data.

2. An arithmetic unit which performs arith­
metic and match operations between the contents
of the data register and the data from the
chaining channel or one of the common channels.
The results can either be retained in the cell or
put on the chaining channel to the next cell.

3. A six-bit "flag register". The states of
the bits determine the operation of the cell's
routing logic, and also determine whether or not
the cell is to participate in input, output, data
transfer or arithmetic operations during command
execution. The flag bit states can be reordered
and logically combined, and can also be trans -
£erred from cell to cell via the chainring channel.

There are three basic ALAP commands. One
of these is used in conjunction with fault-detection
software, and can effectively remove a malfunc­
tioning cell from the array. The second command
is the "flag shift" command which alters and re­
orders the flag register contents. The third com­
mand is the "word cycle" command. This com­
mand causes the data register contents of a
selected subset of cells to be shifted simultane­
ously while data transfer, match or arithmetic
operations take place as specified by the flag
registers and the states of global control and
data lines.

The chaining channel and the cell's arithme­
tic and control logic gives the ALAP memory the
capability for performing arithmetic, match and
data-transfer operations among many sets of
cells simultaneously.

153

The basic text-processing task discussedhere
is that of locating all occurrences of a specified
set of "key" words appearing, in any order, in a
large data base of raw text, such that the words
lie within a specified range of character positions.
The sentences which encompass each occurrence
of the set are output to the user together with the
associated document identifiers.

For this application, several modifications to
the basic ALAP cell are required. The structure
of the modified cell is shown in Figure I.

CHAIN IN FROM PREVIOUS CELL

DATA REGISTER

(64K. BITS)

CHAIN OUT TO
NEXT CELL

(26 BITS)

Figure 1. Modified ALAP Cell

The principal modifications are the following:
1. Instead of 64 bits, the modified cell

has a data register of 64, 000 bits for storing the
text. It is hoped that the use of a very long data
register will reduce the cost-per-bit of the modi­
field ALAP memory to the order of that for a medium
priced disk. The data registers are fabricated on
the same multi-cell wafer with the rest of the cell
logic.

2. The modified cell contains an additional
register, the "auxiliary register", together with
some associated data routing and arithmetic logic.
This 24-bit register can recirculate through a
small arithmetic unit which can subtract or add
a globally-specified operand to the register con­
tents. In addition, the auxiliary register inter­
faces with the chaining channel in the same fashion
as the data register.

3. Unlike the original ALAP cell, the arith­
metic logic for the modified cell includes no step­
multiply, step-divide or step-square-root
capability.

For the text-processing task, the entire text
resides in a succession of eleven-bit "character
fields" in the data registers, each field contain­
ing one character plus three flag bits. Sentences
and even character fields may lie across cell
boundaries. Since the chaining logic permits all
cells to shift their contents simultaneously on the

chaining channel, the entire ALAP memory can
act as one large shift register, and the cell
boundaries can usually be ignored during
processing.

The search procedure is conducted in three
phases. The first of these is the operation of
locating all occurrences of each key word in the
specified set, and of tagging them in the flag bits
of their most-significant characters. The second
phase is the process of locating and tagging all
occurrences of the set of key words which lie
within the specified range. The third phase co,n­
sists of outputting to the user the sentence or
sequence of sentences which contain each match­
ing set of words, together with the document
identifiers. All three phases of the process are
performed in parallel for all cells, and are inde­
pendent in execution time of the size of the data
base. However, the execution time for the third
phase is dependent on the number of matching
sets, since the matches are output sequentially.

In Phase 1, a number of parallel searches
equal to the number of characters in the word are
performed so that all occurrences of the word
may be found, regardless of their orientation.
Figure 2 illustrates this process. The contents
of three (abbreviated) cells are shown with the
chaining channel interconnections indicated by
the arrows. They key word being sought is
"TRUTHS". Below are shown four of the six
comparands, corresponding to four of the six
orientations of the key word, as they are fed into
the ALAP memory from an external register.
The third of these is seen to match successfully.
Phase 1 requires n complete word cycle opera­
tions, where n is the total number of characters
in all of the key words.

Phase 2 of the operation requires a separate
search for each possible permutation of the set
of key words. In searching for each permutation,
one (12-bit) field of the auxiliary register is used
to count the characters between the first key word
and the last, according to the range specification.
A second (11-bit) field contains each single char­
acter from the text in turn, shifted in from the
data register. This permits each text character
to be compared against several characters with­
out requiring complete word cycles for each
comparison. Several comparisons are required
because the various cells may be in different
states with regard to the search (for example,

FROM EXTERNAL
REGISTER

c::;;;- HOLO THESE TR~
c+UTHS TO BE SELF=-----,

c:+E VI 0 ENT THAT AL~

T R U T ----+ H S T R U T H S T R U T H S * * 1ST COMPARANO

T R U T H S T R U T H S T R U T H S * 2ND COMPARAND

T R UT H 5 T R U T H S T R U T H S 3RD COMPARAND

T R U T H S T R U T H S * * * * * 4TH COMPARAND

Figure 2. Phase 1 Search Operation

different key words may be the object of the cur­
rent search, depending on the cell). The state
of the operation within the cell is denoted by the
setting of a 3-bit field of the auxiliary register.

For each permutation of a set of k key words,
Phase 2 requires 2k complete data register
shifts. Each shift is about k-1 times slower than
those in Phase 1 because of the aforementioned
repeated comparisons. The total Phase 2 execu­
tion time is therefore equivalent to 2k(k-l)k! word
cycle operations. (In practice, k will rarely be
greater than 4.)

Phase 3 requires two data register shifts
(i.e., word cycle operations) for each matching
key word set. At a clock rate of 5 mHz, a word
cycle requires 13. 1 msec. If the ALAP clock
frequency is 5 mHz, and if key words are six
characters long, total search times for sets of
two, three and four key words are O. 6 sec,
1. 7 sec, and 9. 7 sec respectively, including a
20 percent overhead for flag shifting operations.

References

(1) C. A. Finnila and H. H. Love, Jr., "The
Associative Linear Array Processor",
IEEE Transactions on Computers, Vol. 0-26,
No. 2, (February, 1977), pp. 112-125.

(2) Hubert H. Love, "Radar Data Processing on
the ALAP", Proceedings of the 1976 Interna­
tional Conference on Parallel Processing,
IEEE Computer Society, (August, 1976),
pp. 161-167.

154

PERFORMING SUMMATION AND PRODUCT IN AN
ASSOCIATIVE PROCESSOR

I-Ngo Chen
Department of Computing Science

The University of Alberta
Edmonton, Alberta, Canada

Summary
It is well known that successive operation on a

set of n numbers (e.g. the summation or the prod­
uct of n numbers) required Jog2n steps for para­
llel processings no matter how many processors
are assumed to be available. For an associative
processor employing bit-sequential-word-parallel
operation [I], the number of steps required for
the summation of n numbers each of lengt[i m is

1
(21og2n + m) •log2n •.• (1)

For the product, the number of steps required
wi 11 be

1 2 2 3 m (n -1) ...•....... (2)

if the general shift-and-add multiplication is
employed.

In this short paper, we present two procedures
which wou Id reduce the bounds of Eqs. (I) and
(2), if the associative memory is sufficiently
large. We shall thus assume:

I. that the associative memory has at least
n words and that the word length is
sufficiently long;

2. that there is a data-manipulator [2]
which can perform some simple data mani­
pulating functions [3] 1 ike

shift
En(X) - take all even elements of the

vector X
Od(X) - take all odd elements of the

vector X;
3. that for simplicity, all numbers are

positive integers;
4. that there is a bit-slice full adder (be

it hardware or routine I ike in STARAN
[4]) which takes a bit-slice of augend
Ai, a bit-slice of addend B., and a bit­
slice of previous carry C. ; and gives as
outputs, a bit-slice of c~rry C. and a
bit-slice of sum bit S,. i.e. 1We shall
have F1 and F2 such th~t

C. F1 (A., B. ,C. 1)
I I I 1-) (3)

Si F2(Ai' Bi,Ci-1)

To perform summation of n numbers each of
length m, first we divide the numbers into 2
equal parts Al and sl as shown in Fig. 1. Next
we read a bit-slice of Al. and a bit-slice of
s1 1 to the full adder and 1write the odd and the
even elements of the sum sl. res?ectively into
A2. andB2. i.e. 1

I I

Od (SI .)
I

En(s 1.) f 1 , or 1,2,. . .,m.

155

A~+I Od (sj .)
In general I I

j+J j
B. = En (S i) I

for j = 1,2, ... ,k, where k is the least
integer greater than or equal to Jog n.

As depicted in Fig. 1, the number 6f steps
required is

m + 21og2n ••.•••...•...... (4)
while the number of read and

2 x 2(m +21og2 rl
compared favorably to

and
log2n (2m + Jog2n-I)

writes is

reads

log2n(m + log2n+l) writes

2
as required by ordinary tree sum addition.

Fig. l Lay-out of operands in
memory

Multiplication of two numbers
Q=qmqm-1 ... qt and R=r mr m-1 ... r l

can be performed by the following summation
m i-1 H

T =>l: (2 •q.•(r.r. 1 ... r 1)+2 •r.(q. 1 ... ql))
i=J I I I - J 1-

Let
Q.= q.•(r.r. 1 ... r 1)

I I I 1-

Ri=r i • (qi-1 ... ql)

i . -1
P:= Z 2J • (Q.+R.)

I j=I J J

Then Eq. (5) can be rewritten as

T=Pm.

•..•• (5)

i -I
But P.=2 •(Q.+R.)+P. 1=G 1(Q.,R.,P. 1) ... (6)

I I I I - I I I -

and T., the ith bit of T, can be obtained at the
1th iteration of Eq.(6) for i from l up tom.
In fact, Ti is the ith bit of P1• So we may write

T.=G2(Q.,R.,P. 1) (7)
I I I 1-

The similarity of Eqs. (6) and (7) to that of
Eq.(3) allows us to perform successive multipli-

cation the same way as performing successive
addition. For product of n number each of length
m, the total number of steps required will be
m•m•Jog2n.

References
[J] Feldman, J.D. and Reiman, O.A. "RADCAP; An
Operational Para! lei Processing Facility", Pro­
ceedings of the Sagamore Conference on Parallel
Processing, August 1973.
[2] Feng, Tse-Yun, "A Versatile Data Manipula­
tor", Proceedings of 1973 Sagamore Computer Con­
ference on Parallel Processing.
[3] Feng, Tse-Yun, "Data Manipulating Functions
in Parallel Processors and Their Implementa­
tions", IEEE TC Vol. C-23, No. 3, March 1974.
[4] Batcher, K.E., "STARAN/RADCAP Hardware
Architecture", Proceedings of 1973 Sagamore
Computer Conference on Parallel Processing.

156

THE NODE KERNEL: RESOURCE MANAGEMENT IN A SELF ORGANIZING
PARALLEL PROCESSOR

Herbert Sullivan
Sullivan Associates

200 West 79th Street
New York, New York

T.R. Bashkow, D. Klappholz
Dept. of Electrical Engineering and Computer Science

L. Cohn
Center For Computing Activities

Columbia University
New York, New York

INTRODUCTION

CHoPP

This paper describes certain aspects of software support for CHoPP
(Columbia Homogeneous Parallel Processor), a large scale MIMD ma­
chine which has been under study by our group for almost two years
[1,2,3,4]. CHoPP is intended to speed up digital computing by use of
parallelism; its applications are not restricted to any special class of
algorithms, nor limited to numerical analysis, or to non-numeric compu­
tation. The goal of speed up is common to most proposals for parallel
computers. However the idea of a single machine capable of achieving
such speed up for practically all of the mainstream algorithms of digital
computing is not usually to be found in previous and contemporaneous
proposals and implementations. CHoPP's approach consists of support­
ing vast amounts of parallelism at much lower levels of hardware and
software than has heretofore been attempted in MIMD machines. At
this low level, parallelism is to be found in virtually every program, and
this parallelism may be exploited to speed up computation.

There exists a large and growing literature on the complexity of parallel
algorithms, [5,6] which shows that significant parallel speed up may be
obtained for the great majority of algorithms of computer science. In
some cases, the speed up available is proportional to the number of
processors employed. These theoretical results have been confirmed [71
and extended [8] by analysis of typical FORTRAN programs, and by
measurements, using trace techniques, of the run-time parallelism avail­
able in such typical programs. The speed up calculations in the previous
work do not usually take into account any of the "overhead" functions
which contribute to the execution time in a practical multiprocessor.
Specifically, no allowance is made for time required to assign a processor
to a task, or for time required to communicate results from one task to
another. Moreover, it is assumed that tasks are scheduled, in accordance
with the constraints of the parallel algorithms presented, without any
delay. The parallelism* identified in this work is characterized by very
short tasks, which execute for a few instructions, and then terminate,
transmitting results to some other task. Implicit in these analyses is a
model of a parallel processor as an MIMD machine in which negligible
time is required for assignment and reassignment of processors (task
switching) and negligible time is required for communication of results.

*This form of parallelism is often called a "tightly coupled pro­
cess". However the term has been used in various ways - for example
C.MMP has been termed [9] a tightly coupled processor, as compared to
the ARPA network of processors. The sense in which we would like to
use the term is very different from such usage. We have therefore avoid­
ed "tightly coupled" perhaps at the expense of some circumlocution.

157

Most of the previous designs [10,11,12] consist of an assemblage of
conventional computers, minicomputers, or microcomputers intercon­
nected to form some kind of cooperating system. Although a variety of
interconnection schemes and memory structures have been tried [14],
and sophisticated operating systems devised [15], the existing and pro­
posed systems fall far short of supporting the kind of parallelism des·
cribed in the last paragraph.

As a consequence, a central theme of multiprocessor research has been
[12, 13] the effort to discover parallel programs whose peculiar proper·
ties. perm it them to be executed with low task interaction, and in­
frequent task switching. These endeavors lead away from general pur­
pose computing, to the identification of special applications. This search
has thus far produce_d no large or interesting_ collection of suitable

algorithms. Some special algorithms have indeed been uncovered [22],
but it has yet to be shown that these have any bearing on the mainstream
problems of digital computing.

CHoPP is intended to support the form of parallelism generally available
in computer programs. As such, it is designed to provide a good approx­
imation to the idealized model of parallel multiprocessing described
above. This necessitates (among other things) that task switching and
intertask communication time both be reduc·ed by several orders of
magnitude, as compared with existing practice. To approach this level of
performance, we have found it necessary to revise current notions of
almost every aspect of multiprocessor architecture, in the processor
design, in the memory to processor interconnection network, and in the
software support structure. The resulting architecture bears little rela­
tionship to that of conventional multiprocessor designs. Some of its
structures are more reminiscent of high speed sequential machines and
vector processors, in that they rely on extensive pipelining and high
bandwidth interleaved memory.

The Virtual Hardware Machine

The hardware implementation of CHoPP has been described elsewhere
[1,3, 16]; for the purpose of this paper, it is sufficient to explain the
virtual hardware machine which this implementation provides for use by
the system programmer. This machine runs the operating system and
executes the language support software. The facilities available on this
machine determine the ease with which systems' programs may be
written, and together with the timing of operations, determine the
overall speed of execution of system programs. The specification of the
virtual hardware machine includes all facilities and timing available to the
system programmer, but excludes structures which are implemented in
firmware_ and hardware. Thus the hardware virtual machine is just that
machine which is usually described in a computer users manual, but not
the one described in the maintenance manual.

Figure 1 shows a block diagram of CHoPP at the virtual hardware level.
There are three main elements: a number (N) of identical processors, a
shared memory, and an interrupt system which permits one kind of
interprocessor communication. The processors are general purpose
computers. In preliminary designs a word length of 32 bits appears
a_ppropriate; however, such details are beyond the scope of this paper.
The memory for these computers is a single, shared entity, organized into
a single address space, and accessable, in toto, by every processor on an
equal basis. Using conventional semiconductor technology, the speed of
each processor will be approximately 200,000 instructions per second,
and it is realistic to implement a system with approximately 1000
processors, such a machine would operate at 200 M !PS. There is nothing
in the hardware design, nor, as we shall see, in the software structure, to
limit the number of processors implemented.

INTERRUPT SYSTEM

N Processors ...

SHARED MEMORY

Fig. 1. Virtual Hardware Machine

The key. element in the system shown in Fig. 1. is the common shared
memory. All processors access the memory independently and. concur,
rently. Conflicting references are resolved by the underlying hardware
without loss of efficiency and effectively without any loss of time.
Consequently there is no need to provide copies even when code or data
is shared by a large number of processors. The most important aspect of
this shared memory is that communication of code and data from one
processor to the other is accomplished by passing an address pointer.
This can be done in one instruction time, independent of the length of
the material being transmitted. The common, shared, conflict free
memory is thus the mechanism by which the intertask communication
requirements {described in the previous section) are met. Ultimately, the
shared memory is also the basis for achieving the rapid context switching
required for the support at parallel processes in the general purpose en­
vironment. Whenever a new task is to be initiated, it can be sent to any
desired processor by the execution of a single instruction, which contains
an appropriate pointer to a block of share.d memory. Of course, addi­
tional mechanisms are required to schedule and synchronize parallel
tasks. But for all of these, a key factor is intertask communication,
which makes possible the transmission of arbitrarily long messages, with
negligible overhead. The implementation of the memory processor
structures which accomplish the performance just described, is the princi­
ple hardware innovation of CHoPP. This implementation is efficient and
economical for practically unlimited numbers of processors.

The Problem of Control and Organization

The high performance hardware structure of CHoPP does not, by itself,
provide any assurance of high system performance. Efficient techniques
for organization and control of parallel tasks are required. The problem

158

may be stated thus: some mechanism is needed which assures that,
whenever tasks to be run are waiting, they will be assigned to available
processors without delay. In conventional multiprocessors, this organi­
zation is provided by the operating system; in CHoPP it is the function
of analogous software called the nonde kernel, whose operation is sup­
ported by hardware primatives. The importance of this kind of software
has been pointed out [14] by Enslow. In the conventional multipro­
cessor, it might be hoped that system performance improves materially
with the addition of a processor, provided the number of processors is
sufficiently small. This is not the case; Enslow reports an example where
throughput increased by a factor of 1.8 for a two processor system, and
by a factor of only 2.1 for a three processor system. He attributes this
non-linearity, in part, to the operating system.

Amd~hl, as quoted [17] in Computer World, goes further. "The need
for control and coordination software ... [results] in a situation where
by the time you got to four processors you actually had less performance
than with three."

The problem of control of parallel processes has two sides. From the
standpoint of the user, there are instructions which invoke parallelism
and provide for intertask communication. From the standpoint of the
system; there are structures which interpret the user instructions and
carry out the intended parallel execution. The relative roles of the user
language and of the system support differ in various approaches to
parallelism. In CHoPP, the node kernel does actual assignment of pro­
cessors, and (with extensive hardware support) mediates communication
between tasks. These activities are performed in response to the user
program, which contains instructions invoking parallel processing. To
understand the node kernel, it is first necessary to briefly consider the
form of language constructs.

In CHoPP the application program contains the calls for parallel execu­
tion of code. When the user determines that some sequence of instruc­
tions can be executed concureently with the rest of the program, he
identifies this sequence as a task. When the program is run, the node
kernel will schedule the task on one of the processors. The user view
of CHoPP is thus similar to that of some multitasking systems (for exam­
ple UNIX) which permit user invocation of parallel processes, and to
that presented by operating system languages such as Concurrent Pascal.

In order to control the sequence of tasks, and insure synchronization, the
user must indicate, where appropriate, that a task should wait until
results generated by another task are ready. The user need not concern
himself with the time at which the result will be ready. Scheduling of
processors is the responsibility of the system, and if a task is suspended,
waiting for results, the user can expect that the processor on which it
has been running will be reassigned to another runnable task until the
results are ready.

We may think of the user as programming a virtual user machine. The
code for this user machine is the high level language implemented at the
installation. For definiteness, we may think of an ALGOL-like language.
The user machine has an unlimited number of processors. Whenever a
new task is called, a processor starts its execution; when a task stops, the
processor goes back into the infinite resevoir of processors. In the high
level language which represents the user machine, the only constructs re­
quired to support parallelism are CALL P TASK, and a pair of synchron­
izing constructs such as WAIT result and SIGNAL result. Here result is
the unique name for the data which has been generated by the task.
When a task needs a result, the programmer uses a WAIT statement in the
code of that task, at the point where the result is required. This will
cause the task to suspend until the result is ready. Whenever a task gen­
erates a result needed by another task, the programmer uses SIGNAL re­
sult whicn transmits the pointer result and restarts the waiting task. The
CALL P IASK statement (which we have borrowed from PL 1) simply
indicates that the code P should be run in parallel with the rest of the
program. As seen by the user, th is causes a processor to start executing
P immediately.

In the user machine, the constructs CALL TASK, WAIT and SIGNAL,
cause tasks to run and to stop at various times. Between execution Qf
one of these statements, the tasks run completely asynchrononous1y.
However, no task starts until it is called, and every task waits for the
specific results (or synchronizing signal) which it requires. Thus the '01<­

ecution of tasks is rigidly controlled by the statements in the language
which support parallelism. Taken together, these statements, as they
appear in any particular program, constitute a schedule for segments of
executable code. Another way of expressing the same idea is the\ the
parallelism statements in any program construct a precedence graph,
which governs the order of execution of code segments. This schedule,
or precedence graph arises naturally from the algorithm; and provides
the (partial) order for the execution of tasks in CHoPP.

In CHoPP, the operations of WAIT and SIGNAL, as well as some other
synchronizing monitors, are implemented in the hardware and firmware
of the processors. The execution time of these primitive then becomes
that of a typical single instruction, and need not concern us here. How­
ever, since we are interested in implementing languages which support
recursion, and in systems which incorporate virtual memory, the trans­
lation of symbolic addresses, such as result must be accomplished at
run time. This· translation, which is a function of the operating system
and language support software in sequential machines, is a function of
the node kernel in CHoPP, and will be described further on.

In normal programming for CHoPP, many more tasks are invoked than
there are real processors to execute them. The user therefore knows
that in the real machine the execution of a task or task activation will
normally be deferred for some time, until a processor is available to
execute it. But for CHoPP he can expect that 1) All but a negligible
number of processors will be busy, whenever tasks to execute are avail­
able 2) The overhead associated with a task call will be about the same
as that of a subroutine call in a sequential machine 3) No time will be
lost in moving programs, data or results from one processor to another.

We shall describe the three functions of the node kernel which make
possible this kind of performance. The first of these is processor alloca·
tion. When a task running in one of the processors executes a CALL
TASK statement, a processor must be assigned to the new task. Because
many tasks are running in parallel, many CALL TASK statements may be
executed concurrently. The key to efficient execution is that the activi­
ties required to generate the new tasks and assign the processors be car­
ried out fully in parallel, without central programs or central tables.
The second function is that of memory management. New tasks will,
in gene~al, require memory space in which to run. This space must be
assigned from a general pool. When space is released, it must be returned
to the pool. But, as before, the management of memory space must be
carried out fully in parallel. Otherwise, creation and deletion of tasks
would depend on sequential mechanism. Such a mechanism will have of
course, some limited capability. And when many tasks request its ser­
vice, the resulting bottleneck may stop the whole machine. The third
function is that of reference resolution. We have described the trans­
mission of information between tasks, using synchronizing constructs
(e.g. WAIT and SIGNAL) which are hardware supported. The data or
results which are transmitted by these statements are referenced sym­
bolically by this programmer in simple languages, like FORTRAN. lhe
symbolic references are translated to machine addresses at compile time.
But in the general case which the CHoPP ooperating system supports
this is not possible. Tasks are created at run time, often as a result of
computation. Moreover, the language which CHoPP supports will per­
mit recursion, as the most natural and efficient way of creating new
tasks. Under these circumstances (as is well known) the symbolic ref­
erences in the program must be translated at run time, into machine ad­
dresses. Again, this activity must be performed in parallel, by many
processors, without reference to central tables.

THE NODE KERNEL

The node kernel is software that performs the operating system func­
tions, such as allocating tasks to processes, allocating memory to tasks,
and mediating intertask communication. In a parallel computer, these
functions cannot be accomplished by a single processor as this would
require all other processors to queue up to obtain services, leaving them
idle almost all the time. Each operating system function must be distri­
buted among all the processors, so each processor must have its own
kernel. In CHoPP, the kernels that run at each processor are identical.
Each kernel behaves as an autonomous program and no processor kernel
assumes a master or control role. All node kernels may be run in parallel
and there is no hierarchical structural relationship between them. We
will show how some of the operating system functions can be carried
out by a large number of node kernels running in parallel.

Task Allocation

The first function that we will consider is the allocation of tasks to pro­
cessors. In CHoPP we run any task at any node since the applications
programmer cannot know ahead of time what processors will be avail­
able. Further, in a machine designed to use programming languages
that support recursion, the number of tasks to be performed is, in
general, data dependent, hence the applications programmer does not
know that number of tasks to be assigned, let alone to which processor
to assign them. This function must be carried out by the node kernels
at run time. A task may be created by either of two methods, as a job
that has been entered into the system at a node, or spawned by an
existing task already at a node. In either case the node where the task
is created is not necessarily the node where the task will eventually be
run.

In sequential machines that support multi-tasking, the operating system
determines the assignment of processors to tasks in the following way
(this description closely follows Denning [18]. A task manager, pa~t
of the operating system, maniputlates two queues and a task list .. The
task list is merely the collection of all activation records (called "state­
words" by Denning). The activation record contains the task's unique
index number, the location in memory associated with the task, the in­
struction pointer, and registers. It thus consists of all information ne­
cessary to initiate the execution of a task. The two queues maintained
by the task manager are the queue of ready tasks and the queue of tasks
waiting for some event to occur. Entries in each queue consist of point­
ers to appropriate activation records. Whenever the running task ter­
minates, a new task is taken from the ready queue by the task manager,
which initiates its running. When a running task is blocked, waiting for
an event to occur, the task manager removes it from the processor,
places it in the queue of tasks that are blocked, and initiates execution of
a task from its ready queue. When an event takes place which unblocks
a blocked task, the task manager pu.ts this task in the ready queue.

This is a description of. a multitask, single processor system. Each node
of CHoPP will be run in this manner. When a CALL TASK statement is
executed by a program running at, a node, a trap to the node kernel is
generated in the hardware. The response of the node kernel is to con­
struct an activation record and place the pointer to this activation record
in its ready queue. For high utilization of CHoPP, a mechanism is
needed to assure that no processor is ever idle. The only circumstance
under which a processor may be idle is if its ready queue is empty when
the task it is running terminates or suspends. To eliminate the possibility
of any node having an empty ready queue while other nodes have ready
queues with more than one task waiting, the node kernel must equalize
the length of its ready queue with the ready queues of the other nodes
in the machine. We call this mechanism queue balancing, which is ac­
complished as follows:

159

1. When a processor creates a task, it selects at random another pro­
cessor and assigns this task to it. The receiving node kernel places the
task in its ready queue.

2. Whenever the number of runnable tasks in the queue at a node
either increases as a result of step 1 above, or decreases as a result of a
task leaving the queue to be run, the node kernel selects another node
at random to perform balancing. That is, enough runnable tasks are
sent from the node with the longer queue to other node to equalize
their lengths.

The performance of the algorithm just described is measured by the ex­
pected number of processors whose ready queues are empty. These
processors may not be idle since they may still be running a task; there­
fore this measurement provides a lower bound on the efficiency of
the algorithm. A computer simulation was carried out to determine,
for a 256 node CHoPP the expected numbor of empty ready queues.

The results of this simulation are shown in Fig 2., where the expected
fraction of empty ready q,ueues is plotted against mean queue lengths, s,

The upper curve shows application of
step 1 only of the algorithm. The lower curves show the application of
step 2. These results indicate that the algorithm is entirely adequate
whenever the number of tasks exceeds the number of processors by a
reasonable factor.

.3

.1 t---.

.03 ~
LS: ,-
~ ~

.01

. oo3

~
~

.01

. 003

. 001

.0001 _,,_ --'-
1.5 2.0 2.5 3.0

As CHoPP is presently conceived, no further improvement on the algo­
rithm is necessary, from the standpoint of efficiency. For the record,
we observe that the following modification (which we were considering
before the results of Fig. 2 were available) will further decrease the num­
ber of idle processors. Assume an otherwise idle node will periodically
select another node at random and balance its queue with it. The other­
wise idle node will continue this procedure until it obtains one or more
tasks to run. This will have the effect of further reducing the mean
queue length for 100% utilization.

It should be pointed out that the activation record itselt is kept in the
memory. When a runnable task is passed from one norle Kernel's queue
to another, only a pointer to the activation record is passed, not the
record itself.

Memory Management

The conventional structure for memory management in system design
has been to maintain a central list of page frames for available storage.
It is not feasible in CHoPP, (where memory is managed by the kernel in
each processor), to have multiple memory managers updating a central
table simultaneously because sequential access produces unacceptable
bottlenecks. Just as in the case of task assignment it is necessary to
devise techniques to distribute not only the management of the list
but the list, itself, equally over all nodes.

The conventional structure for memory management in system design
has been to maintain a central list of page frames for available storage.
It is not feasible in CHoPP, where memory managers updating a central
table simultaneously because sequential access produces unacceptable
bottlenecks. Just as in the case of task assignment it is necessary to
devise techniques to distribute not only the management of the list but
the list, itself, equally over all nodes.

When a task is created, it will require memory space assignment. This
will be controlled by the memory manager at the node kernel where the
execution of the task begins. Recall that memory in the CHoPP system
is a single address space memory equally accessable by every node. Al I
nodes can concurrently access every word of memory. The CHoPP

memory is organized in page frames. The size of the page frame will be
considerably smaller than that for an I BM system. The reason for this
is that the expected segment size is small, perhaps 32 words, as opposed
to 16K in IBM systems. Thi< kind of segment size has been experienced

in Burroughs Machines and Multics [19]. For a discussion of the relation
between segment size and page frame size, see Brinch Hansen [20].

Pointers to page frames are transferred from processor to processor
during memory assignment. Initially, all nodes have the same number of
page frame pointers. When a task is initiated, the memory it needs will
be obtained from the list of available page frames at the initiating node .
It is desirable to maintain equal numbers of page frames at every node as
long as memory is available in the machine. If any node discovers it
has too little memory to meet the demands of its running tasks, then it
must invoke some overflow protection mechanism or virtual memory .
However, these mechanisms should not be triggered unless there is, in
fact, a global lack of memory .

Hence, the two functions of the memory manager are the maintenance
of even length lists of available page frames, and the detection of global
memory overflow. The principle on which the memory manager con­
trol ls its list of page frames is analogous to the methods used for queue
balancing by the task mana~er. When a task releases page frames, these

are added to the local list of available page frames at the node. When a
task requests page frames, the request is filled, if possible, from the
local node's list of available page frames. If insufficient page frames
are available to satisfy any request, the memory manager selects another
node at random, and acquires page frames, repeating this process as
often as necessary to fill the ,requirement.
In order to •~hievo the goal of maintaining about the same number of
available page frames at each node, a balancing operation is used. The
memory manager in each node maintains a quantity, the page frame
estimator, (PFE) whicl'l, at all times, is an estimate of the average number
of page frames in all nodes. Whenever the number of available page
frames at a node changes, for any reason, the memory manager compares
the number of available page frames, with the PFE. If the difference
between these two quantities exceeds a preset initiation limit (which
may depend on the PFE), a balancing operation takes place. This bal­
ancing operation consists of selecting, at random, another node, and
equalizing the number of page frames in the two nodes. The balancing
operation is rej:leated until the difference between the number of pages in
the node and the PFE is within a preset acceptance limit (which may

160

also depend on the PFE) Note that there are two pr~set valu~s involved,
namely the initiation limit, which determines the point at which the bal-

ancing operation is initiated and the acceptance limit, which caU!ii:s ~e
balancing operation to stop. By adjusting the relative size of these limits,
the performance of the system may be modified.

Each time that a memory manager acQuires oaoe framP.• from Annth~r
node, or balances with ii.the length of the list of available page fram.es m
the otner node is noted The list .lengths thus accumulated constitute
a random sample of the average list length in the whole ma~hi~e. ~her~­
fore, the average of these measurements constitutes a stat1st1c which 1s
an estimator of this average list length. The average of the measurements
of the length of lists in.other nodes is the PFE. (Of course, each memory
manager maintains its own PFE). By adjusting the initi.ation limit and
the acceptance limit, the designer can assure that the lists throughout
the machine are equalized, to within any previously specified tolerance.
The mechanism just described for determining the PFE is a sequential
sampling technique for estimating the mean of a dist~ibution, a~d as such
it requires a minimum number of balancing ope~at1ons ~o ~ch1eve a de­
sired tolerance, with a fixed (predetermined) confidence limit.

In any case, the local PFE provides at each node a reliable estimator
for the amount of available memory in every other node, and therefore
in the whole .machine. Note that this estimate has been derived without
any central structures which might produce a bottleneck, and essentially
as a bi-product of the basic memory allocation structure. When the total
amount of memory remaining in the machine has decreased below some
preset level, the mechanism described above will ~roduce an excessiv_e
number of search operations whenever a node requires memory. At this
level the memory is effectively full. When the PFE is dropped below
this 'predetermined lower limit, at any node, the overflow mech~nisms
ot the machine should be invoked. In this way the second function of
the memory manager has been implemented.

Reference Resolution: Distribution of Central Tables

As we have seen previously the central tables required by an operating
system must be handled differently in CHoPP. The two techniques
we have seen for task and memory allocation are not, however suffi­
cient for all such tables. We now give a third technique which is useful
for a variety of purposes. To describe this structure and show how it is
used, let us use the example of the table containing buffer information
used for intertask communication. In a sequential processor, when a
task needs information about a buffer, it sends its request to the operat·

, ing system, which searches for the buffer name in a central tabl~. Upon
locating the name, the operating system retrieves the requested mforma~
tion and sends it to the task.

; In CHoPP, the buffer name for each buffer is hashed. The resulting hash
is interpreted as the address of a node. Each node of CHoPP will main·
tain the portion of the table that is hashed to it. Thus, instead of one
large central table, CHoPP will have one small table at each node and
each buffer name will occur in exactly one of these small tables. When
a task needs information on a given buffer, it sends its request to its
local node kernel. This node kernel hashes the. buffer name to find the
address of the node where the requested information will be found. A
message is sent to the kernel at the node to obtain the information.
Upon· receiving that message, the information is obtained and sent back
to the task's local node kernel, which then relays it to the task.

Any table can be distributed among the nodes of CHoPP by hashing the
search key. The number of accesses to any table at any time is never
greater than the number of nodes. Hence, if the hash gives a reasonably
uniform distribution of node addresses from a table's search key, then
the queue of requests at any node will never be unacceptably long.

Discussion and Conclusions

The hardware basis of CHoPP provides a new memory/processor rela­
tionship in which large numbers of processors can concurrently access a
large common high speed memory, without incurring penalties due to
conflicting references. This permits an unprecedented level (for an
MIMD machine) of intertask communication, and facilitates rapid con­
text switching.

In this paper, three important aspects of the ChoPP software support
have been discussed. The theme that runs through the operating system
design is decentralization of control functions and of tables. In each of
the examples presented, the tables and control functions have been
distributed in such a way that every node processor shares equally in
the operating system task. Moreover all functions are performed autono·
mously yet cooperation is achieved. By analogy with the tessalated auto­
mata of Von Neumann, we call this system "self-organizing".

Thus the focus of our research on operating system techniques is de­
centralization of function. But, at the same time, it becomes clear that
a sophisticated operating system (the node kernel) is required, and that
it will bring with it a number of "overhead" functions. We would main­
tain that these functions are an inevitable concomitant of the control
of parallel tasks. Our goal is not to eliminate these functions, for we
believe that such an attempt would be futile but rather to find the means
of providing them in such a way that they do not interfere with process·
ing. This is accomplished when there are no shared control mechanisms,
whose limited capacity can cause resources to be idle, while waiting for
some Service function. We expect that, within tolerable limits, every
processor in CHoPP will always be kept busy. We also expect that some
large fraction of the time of each processor (perhaps 30.50%, as in some
existing sequential machines) will be spent in overhead functions.

This philosophy also conditions our CHoPP hardware design. In a
parallel processor, l1ardware support (at the instruction level) of task
generation ~nd synchronizing primatives are just as important as branch
instructions in a sequential machine.

161

The achievement of conflict free parallel access memory seems to require
complex and elaborate interconnection circuits. AJI of these factors
increase the cost of the machine, so that a CHoPP configuration of N
processors, will cost more (we now estimate by about 50%) than N
separate processors of the same general capability. This is the price
paid for the speed up execution of algorithms in a general purpose con­
text.

This increased hardware complexity, dedicated to the support of parallel­
ism, provides a benefit in reducing the running time of the operating
system functions described in th is paper. The principle factor in node
Kernel overhead is the· execution, at each node, of a conventional multi­
tasking system on behalf of the tasks managed by the local node kernel
Primatives specifically oriented toward improving the efficiency of
execution of parallelism will make the node kernel functions, including
multitasking, significantly more efficient.

We end by a mention of the origins of some of the concepts in this
paper. In one or another form, these concepts incorporate techniques
for di~tributing central tables. The germ of this idea goes back at least
as"far as the original paper on C.MMP [13). where it is pointed out that
dividing global tables into smaller tables will improve the efficiency of
parallel processors. The node kernel programs maintain tables, and
assure ·synchronization by permitting only a single request to be active·

at any time. Such programs are monitors as described by Hoare [21]
and Brinch Hansen [20] .

It will be noted that some aspects of the node kernel which
were described in a previous paper differs from the present description,
which we consider an improvement.

REFERENCES

1. H. Sullivan, T.R. Bashkow, "A Large Scale, Homogeneous, Fully
Distributed Parallel Machine, I" 4th Annual Symposium on Com­
puter Architecture Proceedings, March 23-25, 1977.

2. H. Sullivan, T. R. Bashkow, D. Klappholz, "A Large Scale, Homo­
geneous Fully Distributed Parallel Machine, 11" 4th Annual Sym­
posium on Computer Architecture Proceedings, March 23-25, 1977.

3. H. Sullivan, T. R. Bashkow, "Parameters of CHoPP", These Proceed­
ings.

4. H. Sullivan, T.R. Bashkow, D. Klappholz, "High Level Lanugage
Constructs in a Self-Organizing Processor", These Proceedings.

5. J. L. Baer, "A Survey of Some Theoretical Aspects of Multiprocess­
ing", Computer Surveys, Vol. 5, No. 1, March 1973, p. 31.

6. D. Heller, "A Survey of Algorithms In Numerical Linear Algebra",
Technical Report, Department of Computer Science, Carnegie
Mellon University, Feb., 1976.

7. D. Kuck, et. al. "Measurements of Parallelism in Ordinary Fortran
Programs" Proceedings of the 1973 Sagamore Computer Conference
on Parallel Processing, Aug. 22-24.

8. D. K'llck. "Parallel Processing Architecture, A Survey", Proceedings
of the 1975 Sagamore Computer Conference on Parallel Processing,
August 19-22.

9. P. R. Reddy, et. al., "Hearsay· I Speech Understanding System"
An Example of the Recognition Process", IEEE Transactions on
Computers, Vol. C-25, No. 4, April, 1976, p. 422.

10. P. Enslow; Editor, "Multiprocessors and Parallel Processing", Wiley,
1974.

11. L.C. Widdoes, "The Minerva Multi-Microprocessor", Proceedings
3rd Annual Conference on Computer Architecture, Jan. 19-21,
1976.

12. R. J. Swan, S. H. Fuller, D. P. Siewiorek, "The Structure and Ar­
chitecture of Cm*: A Modular, Multi-microprocessor" Computer
Science Research Review, 1975-76, Dept. of Computer Science,
Carnegie Mellon University, p. 25.

162

13. W. A. Wulf, C. G. Bell "C. mmp - A Multi-Mini Processor", Fall
Joint Computer Conference, 1972, p. 765.

14. P. Enslow, "Multi-processor Architecture, A Survey", Proceedings
1975 Sagamore Computer Conference On Parallel Processing, Aug.
19-22.

15. E. Cohen, et. al. "HYDRA, Basic Kernel Reference Manual", Dept.
of Computer Science, Carnegie-Mellon University, No. 4, 1976.

16. H. Sullivan, T. R. Bashkow, D. Klappholz, L. Cohn "CHoPP, An
Overview. ln Preparation.

17. "Amdahl Warns Hopes For DDP For Beyond What's Available",
Computerworld, Vol. XI, No. 25, June 20, 1977.

18. P. Denning, "Fault Tolerant Operating Systems," Computer Survey,
Vol. 8, No. 4, Dec. 1976, p. 359.

19. A. Tanenbaum, "Structured Computer Organization", Prentice­
Hall, 1976.

20. P. Brinch-Hansen, "Operating System Principles", Prentice-Hall,
1973.

21. C.A.R. Hoare "Monitors, An Operating System Concept", CACM.
Vol. 17, No. 10, Oct. 1974.

22. R. McGill, J. Steinhoff, "A Multi~trocessor Approach To Numerical
Analysis, An Application To Gaming Problems", 3rd Annual Symp.
On Computer Architecture Proceedings, 1976.

HIGH LEVEL LANGUAGE CONSTRUCTS IN A SELF-ORGANIZING
PARALLEL PROCESSOR

Herbert Sullivan, Sullivan Associates, 200 West 79th Street
T.R. Bashkow, D. Klappholz

Dept. of Electrical Engineering and Computer Science
Columbia, University, New York, New York

SUMMARY

CHoPP [1,2] is an architecture for MIMD parallel processors
intended to support programs which consist of many short tasks. User
written programs on hundreds to thousands of processors will typically
run for less than one hundred instructions, and then be suspended,
awaiting some results generated by another task or be deleted and
replaced. Although the vast majority of parallel algorithms described in
the literature [3] operate in this manner, CHoPP is the first MIMD
architecture oriented toward such a high degree of task switching and
task interaction.

The basic framework for an appropriate language is generally
understood. Consider an ALGOL-like language with all the constructs
necessary for sequential programming. To this we add CALL P TASK
(borrowed from PL/I) which is used to initiate the parallel execution of
a procedure P. Since tasks run asynchronously in CHoPP (as in any
multitask machine), we need constructs for coordinating their activities.
Suppose a task X needs a result generated by a task Y. Then, at the
point where the result is needed, the code for X will contain the state­
ment WAIT result. At the point just after the result has been generated,
the code for Y will contain the statement SIGNAL result.

The WAIT statement causes X to suspend execution until Y
executes the SIGNAL statement; thus the activities of X and Y are syn·
chronized. These three constructs CALL TASK, WAIT, and SIGNAL,
when used in conjunction with the control statements in the language,
are adequate to express parallelism. (Of course, in a practical language, a
richer vocabulary would be provided). Adequate rules for the control of
access to variables are these: private variables may be used freely inside
a task; shared variables must always be guarded by a semaphore, or,
more generally, accessed through a monitor [4,5].

A program for creating large numbers of tasks may be written
by placing CALL (PI) TASK inside a DO loop where I is the index of the
loop. This will cause a single processor to sequentially create the tasks.
In CHoPP since task creation is a major activity, many processors must
concurrentlv create tasks: otherwise. manv processors would be idle

much of the time waiting for a new task, and the purpose of parallelism
would be vitiated. An algorithm in which a task creates two or more
tasks, each of which in turn create two or more tasks, etc., will imple­
ment the parallel creation of tasks, and create N tasks in order log N
time. The natural program for this algorithm uses recursion. It consists
simply of a procedure P which contains two or more CALL P TASK
statements. Note that P is calling itself as a parallel task; of course, each
successive activation of P will have different parameters. This algorithm
generates a tree of tasks, which we call the "spawning tree". Note the
unexpected role of recursion in the parallel program. Instead of being an
attractive but inefficient feature, as in sequential languages, it is the
natural way of achieving efficient task generation. The convenience of
recursion comes as an added benefit.

Every program in CHoPP starts as a single task in one processor
and spreads through the machine using the mechanism just described.
This does away with structures found in many previous multiprocessors,
namely, hardware for broadcasting tasks, a "host" machine which gener­
ates the broadcasts, and the sequential scheduling programs that run in
host machines.

163

Run time creation of tasks is not only required for efficiency, as
just explained, but also for the execution of many kinds of algorithms in
which it is ·not know, prior to execution, which parallel tasks will be
needed or, often, even how many tasks will be generated. Transmission
of data from one task to another does not, necessarily follow the spawn­
ing tree; in other words, communication takes place between tasks which
are not necessarily related as parent/child by task generation. How is
this communication to be expressed, in the parallel language?

The natural way to express commun1cat1on between tasKs ts oy
using a common name for each shared variable. This is consistant with
usual language conventions for communicating data between various
parts of sequential programs. To support recursion in the sequential
case, it is necessary to resolve name references, at run time, for each
activation of a subroutine. This is implemented by consulting a stack.
To support the more general type of communication between parallel
task activations, we suggest that it is necessary to permit run time com­
putation of names. When the same name for some variable is computed
by two tasks, that variable value may then be transmitted between
them. (Synchronization, as described above, must also be established.)
The functions necessary to match computed names, and supply the re­
quired pointers, are similar to those implemented in virtual_ memory
systems for resolving page references. For CHoPP, a mechanization of
such functions has been devised which employs no central tables or
central control mechanisms. [7]

1.

2.

3.

4.

5.

6.

7.

REFERENCES

H. Sullivan, T.R. Bashkow, "A Large Scale, Homogeneous, Fully
Distributed Parallel Machine, I" 4th Annual Symposium on Com­

puter Architecture Proceedings, March 23-25, 1977.
H. Sullivan, T.R. Bashkow, D. Klappholz, "~ large Scale, Homo·
geneous Fully DisJ;ributed Parallel Machin~, 11 4th Annual Sympos-
. on Computer Architecture Proceedings, March 23-25, 1977.
1um A s " Proceedings D Kuck, "Parallel Processing Architecture, urvey , .
of 1975 Sagamore Computer Conference on Parallel Processtng,

August 19-22. " CACM
C.A.R. Hoare, "Monitors, An Operating System Concept ' '

Vol 17 no 10 Oct 1974.
P. Bri~ch-~an,sen, "Operating System Principles", Prentice Hall,

1973.
Bobrow, D., Wegbreit, B "A Model and Stack Implementation of
Multiple Environments" .CACM, Vol. 16, No. 10, pages 951-602.

1973.
H. Sullivan, T.R. Bashkow, D. Klappholz, L. Cohn, "The Node
Kernel: Resource Management in a Self Organizing Parallel Pro­

cessor", These Proceedings.

PARAMETERS OF CHoPP
Herbert Sullivan, 200 West 79th Street

T.R. Bashkow, Dept. of Electrical Engineering and Computer Science, Columbia University
New York, New York

SUMMARY

The CHoPP architecture [1] is a radical departure from previous
MIMD machines, in that it is intended to support parallel tasks of ex·
tremely short duration. CHoPP is therefore designed to switch tasks,
reassign processors, etc. in a few microseconds. Functions which.hereto­
fore have been regarded as fundamentally global in nature, such as pro­
cessor scheduling and memory management; are accomplished without
central control mechanisms or central tables [2]. To support this kind
of activity the architecture of CHoPP employs many techniques reminis­
cent of SIMD architectures. Like conventional modern large scale com­
puters, and like vector processors, it employs extensive pipelining tech­
niques and a very high bandwith, shared, interleaved memory.

cepts:
CHoPP hardware implementation embodies three basic con-

1) CHoPP consists physically of N identical nodes, each of
which contains a processor, a memory bank, a switch. ele­
ment.

2) CHoPP nodes are connected by a high capacity multi­
stage network in the form of a binary k cube. Each node is
at the corner of this k cube and there must be 2k = N
nodes. Each node therefore has a unique address k bits
long.

3) All memory banks are interleaved to form a single main
memory which can be accessed by any node. The maxi­
mum distance from any processor to any memory bank is
k, so that for a 64K processor, for example, this maximum
distance is 16.

In this machine a memory access may be initiated by each
processor every machine cycle. Memory accesses are accomplished in the
following way. The processor assembles a packet giving its own address
(source). the d esired memory address (destination node memory bank
plus displacement within the bank.) and an operation (fetch instruction,
read data, write data, etc.). The message is then transmitted by relaying
from node-to-node until the memory is reached. The memory access is
made and a return packet is sent to the requesting processor. Thus in the
worst case there is a delay of 2k communication steps before the initia­
ting processor completes the memory reference operation. In addition,
there is the actual memory access time, plus possible queueing delays at
intermediate nodes. This total delay may be called the latency time.'

In order to ameliorate this effect, each node processor is, in
fact, a multi-tasking machine. It sends out packets not for a single task,
but for as many tasks as it needs to, in order to do some instructio'1 pro­
cessing at each machine cycle. We define a machine cycle as the time
required to:

• inspect any returning packet
• accomplish the operation (add, subtract, etc.) required

by th is packet.
• initiate a new packet.
How many tasks must it actively be running in order to keep

busy in this fashion? It must be running as many, on the average, as the
•average latency time requires. One can think of this as a pipelining tech­
,nique in which the depth of the pipe is not fixed but which grows to
just exactly the size required to satisfy the requirement that each pro­
cessor is doing some instruction processing at each machine cycle.

The architecture, as just described, has the remarkable property
that the CHoPP machine executes a fixed number of instructions per unit
time regardless of this latency time as will be shown below.

We will now discuss the parameters controlling this perform­
ance. Clearly, if I know the machine cycle time and the latency time
(average) I know the number of tasks (average) which must be active.
However, this assumes that:

• there are always enough new tasks available to be initiated
as running tasks.

• the network ba11dwidth and the memory bandwidth are
adequate to support this level of packet transmission.

to see that the instruction execution time is fixed, consider the
following simplified examples. Suppose that each task requires 100 ma­
chine cycles. (Each instruction requires some small number .of machine
cycles). After the packet for the first task is initiated, a packet for a
second task. is initiated, then a third, etc., until a response is received for
the 1st task. We can then expect a steady state condition in which a
packet is received and initiated on each machine cycle. Suppose the
latency time is L microseconds, and the machine cycle is L/10 micro­
seconds. Then we will initiate L/(L/10) = 10 tasks which will run to
completion i'n about 100 L microseconds.

If we somehow reduce the latency time to L/2 mjcroseconds,
we will then initiate (L/2)/L/10 = 5 tasks which will take 100 (L/2) = 50
L microseconds to run to completion. Therefore we will initiate 5 more
tasks which will complete in the next 50 L microseconds. Agail) we
have run 10 tasks in 100 L microseconds. As indicated earlier the speed
of the machine is fixed regardless of the latency time.

To see what this means, we will make some estimates in order to
see what performance can be expected from CHoPP. To continue with
our simplified discussion we assume an old fashioned 2 memory cycles
per instruction machine, thus 2 of the machine cycles are required for
each instruction. With present day circuitry we can conservatively allow
500 nanoseconds per machine cycle or 1 microsecond per instruction,
giving us a 1 MIP machine per node. The latency time, L, consists of 2
components, the actual memory cycle time Tm and the mean communi­
cation time delay in the network Tn.

164

Tm we can reasonably estimate as 500 nanoseconds. Tn is the
product of the mean number of nodes transversed, which will be k/2
going toward a memory plus k/2 returning for a total of k, and the mean
waiting time at a nodew. Queueing analysis shows thatw is of the order
of one processor machine cycle. Thus we expect the mean latency, L to
be 500 nanoseconds (1 + k) and the mean number of active tasks, ii, to
be: 500 nanoseconds (1 + k)

500 nanoseconds.
(1 + k) tasks

Table 1 shows these parameters for various sizes of machine. It
can be seen that both latency and task queue length are reasonable even
for the 64K machine because, of course, these values only increase logar­
ithmically with N. Moreover, the introduction of a local cache mem­
ory, which reduces memory accesses across the network, or in effect
reduces L, can be used to reduce these numbers substantially.

TABLE 1

k 4 7 10 13 16
N 16 128 1024 BK 64K

L 2.5 4 5.5 7 8.5

1i 5 8. 11 14 17

REFERENCES

1) H. Sullivan, T.R. Bashkow, "A Large Scale, Homogeneous, Fully
Distributed Parallel Machine, 1", 4th Annual Symposium on Com­
puter Architecture Proceedings, March 23-25, 1977.

2) H. Sullivan, T.R. Bashkow, D. Klappholz, L. Cohn ''The Node Ker­
nel; Resource Management in a Self-Organizing Parallel Processor",
These Proceedings.

3) R. N. Noyce, "From Relays to MPU's, "Computer, V 9, December
1976, p. 26.

A RECONFIGURABLE VARISTRUCTURE ARRAY PROCESSOR

G. Jack Lipovski, Anand Tripathi
Department of Electrical Engineering

University of Texas-Austin
Austin, Texas 78712

ABSTRACT

This paper describes a multiprocessing
system using conventional microprocessors which
are dynamically restructured to get the desired
word width and dynamically reconfigured to obtain
the desired memory height. The system is space
shared so that several tasks concurrently execute
in different blocks of the partitioned resources,
and communication is provided between and within
task blocks. The dynamic reconfiguration and
restructuring of the different processors and
memory modules an0 interprocessor and I/O
communications are achieved using an intercon­
nection network called an SW-banyan, the cost
of which is proportional to n Ln n, where n is
the number of modules to be interconnected. A
great deal of flexibility and power is available
by means of an inexpensive SW-banyan switching
network. The user has unprecedented capabilities
to configure and structure the machine to fit his
problem. When the problem allows it, very high
memory word width and thus bandwidth is
obtainable, so that memory is more effectively
used; but when word width is unwanted, as in
string manipulation, it can be efficiently
limited. This architecture therefore, seems very
well suited to "scientific" processing
requirements of the future.

1. Introduction

The cost effectiveness of the microproces­
sors opens the most exciting and challenging
research area of using an assemblage of micro­
processors to achieve the capabilities of large
machines. Some rather well researched techniques
for this include the reconfigurable multiproces­
sor approach and SIMD or vector approach. The
variable structure approach and the techniques
for communications between the cooperating
processors such as data flow techniques are also
under investigation. These will be described in
the following paragraphs.

The reconfigurable architecture uses a
cross-point switch to connect resources, like
memory modules and I/O devices to the processors.
These include the RW-400 [13] and the C ·romp [20].
We will use the term "configure" in this sense:
to connect resources to the processor to use it
more effectively. The SIMD or vector architec­
ture uses several data operators or ALUs
commanded by the same controller to execute the
same operation on each data contained in each
ALU. Early SIMD machines were associative
memories because the simplest data operator is
the comparator of an associative memory. More
recently, the n-bit-sliced microprocessors like

165

the Intel 3000 [8] and AM 2901 appear to make
more cost-effective data operators.

A very similar concept to SIMD, but not so
well researched, is the varistructure concept.
Such an architecture offers the prospect of
dynamically coupling the n-bit-sliced micro­
processors and their associated memory to get
the desired word-width as well as structure the
system for vector or array processing applica­
tions. We will use the term "structure" in this
sense: to modify the-apparent structure of the
memory to utilize it more effectively. The
first reference the varistructure concept
appears in a paper by Estrin [7] which suggests
a fixed part of the processing unit and a
variable part consisting of some registers and
functional units. Estrin suggested that the
variable part of the machine could be used to
expand the word-width. However, he did not
suggest any cost-effective way to do this.

More recently other investigators have
suggested varistructure architectures in terms
of dynamically coupling the n-bit-sliced micro­
processors in the system to fit the desired data
structures and word-widths [3,9,12,26]. The first
attempt to couple such microprocessors, by
Lipovski [9], used a fast tree structure, which
was difficult to schedule. In the architecture
proposed by Okada, Tajima and Mori [12] the
processing units are connected to their left and
right neighbors. Each processor i has data
paths to processors i±l, i±2, ..• i±2n. However
this architecture puts the restriction that the
processors coupled to make the desired word­
width processing unit be physically adjacent to
each other. Another varistructure architecture
was proposed by Lipovski [lo] in which proces­
sors communicate with their left and right
neighbors but the communication is actually done
by a carry-look-ahead-tree-like structure to
achieve speed and fail-soft capabilities. Again
the processors coupled to work on bytes of a
word must be physically adjacent to each other.
These architectures are suitable for only a
small number of processing eiements1 or for large
numbers of elements if the operation is CPU
bound, because their I/O capabilities signifi­
cantly degrade as the number of processing
elements in the array is made large.

In any computing system where a number of
independent processors concurrently and separ­
ately execute their own tasks (i.e. when the
resources are space-shared) the possibility for
them to. cooperate depends on interprocessor
communication. We will use the term "communi­
cate" in this sense: to provide means between

possibly independent processors to coordinate
tasks and pass data between them. Generally,
such "processors" can be extended to include
input/output devices. Communication is fundamen­
tally different from structuring or configuring.
Structuring and configuring relate intimately to
the fetch-execute cycle where as communication
relates indirectly to it (e.g. like input/output
operation). Either data or control or both are
communicated. One of the early key papers by
Conway ~]showed how 'Fork' and 'Join' can
specify the way independent processors can be
utilized, when available, to solve a problem.
Control communication is necessary to coordinate
this type of operation. More recently, Dennis'
data flow techniques [6 J show how data implicitly
carries control, so that data communication can
be used to coordinate independent processors.

The design of a flexible cost-effective
interconnection network for configuring,
structuring, and providing col!lillunication between
processing modules forms the core of an efficient
reconfigurable varistructure system of multiple
microprocessors. We are encouraged by the
discovery that all the three functions can be
obtained by the same inexpensive interconnection
network. The interconnection network used in the
proposed machine is called banyan network [15]
and has cost-function proportional to n Ln n as
compared to n2 of a cross-point switch, '•here
n is the number of processors and memory modules
to be inter.connected. The cost advantage of
n Ln n is obtained at the expense of reduced
total interconnection capacity. Preliminary
measurements indicate that in the order of 10% of
the possible interconnection structures are not
connectable (Le. they are blocked) [16 J • There­
fore these networks are blocking networks [4 J.
The objective of t~is paper is to show an
architecture that effectively utilizes an SW­
banyan for structuring, configuring and providing
communication between processing modules.

The next section shows how the resources are
interconnected in the SW-banyan. Its objective
is to show how simple and modular the hardware
is. The following section shows how the fetch
execute cycle and interprocessor communication
function. It shows how simple is the control of
the processors and switch. Software is briefly
discussed next. The final section summarizes our
results and points to further work.

2. Static Structure of the Architecture

The SW-banyan interconnection structure is
defined and its control is explained in the first
section. The internal organization of resources­
-processors, memory and I/O is discussed next.
Finally, interconnections to affect structuring,
configuring and communication are delineated.

2.1 Interconnection Structure

The interconnection network used in this
architecture belongs to the class of banyan

166

networks which were proposed by Goke [16] for
partitioning multiprocessor systems. For the
sake of completeness some of the important
properties of these networks, relevant to the
proposed architecture are briefly reviewed here.

A banyan can be defined as a particular
type of directed graph. A base in the banyan is
defined as a vertex having no arcs incident into
it and an apex is any vertex having no arcs
incident out from it and all the other vertices
are called intermediates. The graphical
representation of a banyan is a Hasse diagram of
a partial ordering (i.e. an irreflexive,
asymetric, intransitive graph) such that there is
one and only one path from any base to any apex.
Larger banyans can be synthesized from the
smaller banyan modules such that the resultant
network holds this property. A regular banyan
is one in which the number of arcs incident into
each vertex and incident out from each vertex are
constants called fan-out (F) and spread (S)
respectively. Our proposed machine uses the SW­
banyan [15] which can be obtained by recursively
expanding a cross bar structure. It can also be
obtained by replicating a tree. Draw an L-level
tree with fan-out F and with root at the top.
Then replicate the top (root-ward) branches S
times. Then replicate all the structure above
the next level of nodes S times. Continue
replicating at each lower level of nodes until
the bottom node is reached. Note that the
resulting SW-banyan is quite regular in three
dimensions. See Figure l(a).

Figure l(a) - Three dimensional
view of an SW-banyan
F=S=3, L=2

Interconnection of devices by means of a
banyan generally follows this strategy. Devices
to be explicitly connected are attached to base
nodes only. (In this paper, some devices are
attached to apex nodes, but these are implicitly
connected by the strategy given below.) The set
of the devices is partitioned, and a bus-like
interconnection for each block of the partition

Figure l(b) - An SW-banyan L=3, S=F=2

is to be set up in the switch. This bus-like
interconnection is actually graphically a tree of
bidirectional amplifiers such that any device on
the leaf of the tree can broadcast data to all
the leaves of the tree "instantaneously".
Several trees may be set up in an SW-banyan for
each block to provide independent bus-like inter­
connections for them. Setting up a tree having
n leaves can be done in one step using four
separate control lines, however it is easier to
understand using n+2 steps and two control lines.
Assume that other trees already utilize some arcs
and nodes, and some arcs or nodes are known to be
faulty. In the first i steps, i = 1, 2, •.. n
the ith selected leaf node broadcasts a signal
towards the apex, which is blocked if it
encounters a used or faulty node or arc. Each
node records the resulting signal it gets. An
apex node is a potential tree root if it gets
signal from each selected leaf of the tree. In
step n+l, exactly one potential root is selected
by a priority circuit. In step n+2 the selected
root broadcasts downwards as selected leaves
broadcast upwards; any arc getting a signal from
the selected root and any one of the selectec1.
leaves becomes connected to form the tree. This
algorithm is converted by DeMorgan's law into &.
one step algorithm.

We choose the SW-banyan because it is
capable of implementing all the three types of
interconnection strategies -- structuring,
configuring and communication -- as we will soon
show. The shared bus and shared memory tech­
nique characterized by Anderson and Jensen [lJ
would certainly e~perience the contention
problems and excessive delays which would limit
the size of the system. Store and forward
switching like Pierce loop [14 J and "perfect
shuffle" [18] are useful for packet switching
but not for bus like operations, so they would
not be suitable for structuring and configuring

167

by means of the fetch execute cycle operations in
a varistructure processor. The only flexible
interconnection structure known before the banyan
was the crosspoi.nt switch which is too expensive
for large systems. A banyan is flexible as a
crosspoint switch and is easier to control in
hardware. It makes the best interconnection
structure for structuring as it can make bus like
interconnections and carry-look-ahead links whose
delay is proportional to the log (number of
processors). Two banyan structures, the SW and
the CC banyans, are k11own [16]. The SW-banyan
switch is chosen for interconnection network
because it is easy to expand such a switch into
larger banyan switch without rewiring the inner
structure.

In this varistructure architecture,n-bit­
sliced microprocessors are connected to the
apexes, and the memory modules or I/O devices
are connected to the bases of the banyan network
as shown in Figure 4(a). Each link of the banyan
network contai.r.e>, fm: ~.nstance, 8 data lines,
16 address lines, 4 control lines for search and
set-up and three lines for carry-look-ahead
functions. Each node has a carry-look-ahead
logic circuit fabricated from standard TTL gates
as shown in Figure 2 a. The data lines and
address lines in a link will be used to connect a
tree, which will be used like a data bus or
address bus between processor and memory. They
can be fabricated from standard integrated
circuits like DM7833 quad transceivers [21] or
CD4066 [22] analog switches. However a specially
designed digital bidirectional amplifier, shown
in Figure 2b,[19,25] would be preferred for this
purpose for two reasons. It has higher noise
immunity as compared to CD4066 analog switch. It
does not require control signal to direct data
through the tree as compared to DM7833, which
requires additional logic to enable the tristate
gate in the direction of data flow through the
switch. Gt

c.
Figure z(a)carry-Look-Ahead tree at a node

+v

JM/OUT ----L
Le FT ,.,, ,
CONTROL

U_,ACM.tr

+v +v

fo llllSCM"'41') --.Ji..--.....p--

+v

'JN/OUT

RtfMT
,., ... ·•Ill)

* Circuttry to prevent current hogging
and to match critical del11y patha
is not shown in this figure. But
has to be added where * appears

Figure 2(b)A Bidirectional Amplifier

2.2 Processor, Memory and I/O Modules

We specify the structure of the processors,
memory and I/O modules to show what the SW­
banyan will connect together. The processor is,
by design, a rather conventional microprocessor.
Special memory is required so that a physical
page of memory can be assigned different page
numbers, in order that a collection of memory
modules can be freely assigned to store pages of
data required by a task. The logic is distri­
buted, so that each physical page has just the
required logic to associate different page
numbers to it. This technique is essential to
both configuring and structuring memory
efficiently. As a bonus, the logic is so similar
to that required for virtual memory that we find
it quite simple to incorporate it. Input/output
connections are provided to page data into and
out of memory modules at high data rates, and a
secondary memory is implemented to store pages
efficiently. Since a directory creates
attendant problems in a reconfigurable., vari­
structure machine and since the memory utiliza­
tion may well be sparse (i.e. a task may use
pages 0 to 5, 20 to 27 and 47) the secondary
memory should be intelligent enough to store
these efficiently without any external directory.
We discuss the processor first, then we describe
the memory and secondary memory modules in more
detail.

All the processors are connected at the
apexes of the network. These processors are
conventional byte slice microprocessors as shown
in Figure 3(a). It has a ROM for storing the
microinstructions, an ALU, a program counter and
an instruction register. As in most micropro­
cessors it sends 16 bit addresses to the memory
modules and I/O modules, sends or receives 8 bit
data bytes to or from them. However, it also

168

provides external accesses to its carry-look­
ahead logic (generate, propagate.and carry) and
a memory cycle state signal (indicating instruc­
tion fetch, data recall or data memorize). All
the processors in the system are identical and
should fit in an LSI chip.

~ '.MEMORY CYCLE STATE

....
CONTROL i-- ALU

ROM

::I
INSTRUCTION REGISTERS ,.......

PROG. COUNTER

--
1 II

ADDRESS DAT A

Figure 3(a) - Processor Module

c
p

G

The memory module consists of a RAM, for
example (lk x 8 bits) and support logic to imple­
ment a virtual memory system as described in [2].
The module contains a six bit page-number
register. The higher order six bits of the
address are compared with this page register.
If the match is successful in a memory module
then the lower order ten bits are used to address
the RAM in that module. Memory modules are
attached to the base nodes of the banyan. A
number of memory modules will be connected to a
processor by means of a tree formed within the
banyan, and each memory module will have a
different value in its page register. When a
processor sends an ad<lress to all the memory
modules through the tree, only one of the memory
modules connected to this processor has page
number register matching with the higher order
six bits of the address. See figure 3b.

This memory module can easily be extended to
support virtual memory. If none of the modules
match the page number then one of the pages has
to be swapped out. For this purpose support
hardware (such as age-use-counter and dirty bit)
can be provided on the virtual memory (VM) module.

Execution of a task requires a set of
secondary memory modules. For back up storage
a self managing secondary memory SMSM [11]
fabricated from charge-coupled devices or magne­
tic bubble memories is attached to an I/O port.
This memory is capable of storing variable length
records along with a label, and the record can

be accessed using this label. More signifi­
cantly, however, the hardware associated with
SMSM can search for the record by its label and
can delete,input or output data from that record.
Sparce pages can be efficiently stored using the
label as a page number. However, data described
by capabilities and data in stacks can also be
stored on SMSM without maintaining a directory
for the devices. Some other I/O ports are
connected to peripheral devices, such as tele­
types, to communicate with the external world,
or the controller of the banyan network.

ADDRESS DAT A

LOW ORDER BITS ADDR. DATA

RAM
[PAGE NO. l lK x 8

HIGH I
ORDEY COMP. l- ENABLE BITS

Figure 3(b) - Memory Module

2.3 Instruction and Data Trees

A task execution will generally require
some memory modules and I/O devices to be
connected to some available processors. A tree
structure, called the data tree, is created in the
SW banyan network with these memory modules and
I/O ports as the leaves and the processor as the
root. This is shown in Figure 4(a). This tree
is set-up using the four control lines in the
manner described in section 2.1 for search and
set-up. The processors are indistinguishable;
therefore we first choose the memory and I/O
ports to be connected and then connect them to
any available processor. This way the probabil­
ity of encountering the blocked paths is reduced.

A programmer may decide to use more than
one byte of precision (say p bytes) and possibly
he may decide to operate on vector of n ele~ents
in SIMD mode. Execution of such a task would
require p x n processors to be connected to their
respective memory modules using separate data

trees. Each separate data tree is set up
as in the previous paragraph. In the same
banyan now one inverted tree is formed as
pointed out by Goke [17], which connects
the processors which were the roots first
chosen for the data trees. In this invertea
tree, the processors are leaves

169

Figure 4(a) - Data trees in the SW-banyan

and an unused memory or I/O module is the root.
This tree will serve for instruction transmission
and linking the carries as discussed in section
3. The carries are broken by the processors, by
forcing propagate and generate to zero in the
carry-look-ahead circuits, after every p proces­
sors. The carry circuit can be connected so as
to either propagate to the left or to the right
for left shift/right shift operations or
propagate carries for addition. Thus n proces­
sing units are formed each of which operates on
word of length p x n bytes, and all of them
execute the same instruction as transmitted on
the instruction tree. The instruction tree is
shown in Figure 4(b) and the unfolded instruction
and data trees are shown in Figure 4(c). In the
dynamic structure, i.e. during every fetch­
execute cycle, connection of the instruction
trees will be made only during the fetch cycle
to get the instruction to each processor.

2.4 Memory Sharing Trees

The data and instruction trees discussed in
section 2.3 are used essentially as busses to
connect memory and I/O to processor and to
connect processors together. That is, the
amplifiers in the links of these trees are essen­
tially permanently on. A different tree is now
introduced to share memory. Oriented like an
instruction tree, the leaves of the memory-shar­
ing tree are processors that are selected to
share a page of memory and its root is a memory
module. An active chain, from the memory module
at the root to a processor at one of the leaves
is established from time to time. The amplifier
links in the active chain are turned on, and the

Figure 4(b) - Instruction trees in the SW-banyan

active chain is effectively appended to the data
tree of the processor and the end of the chain.
The other links of the memory-sharing tree are
not used for data paths, but are available to
form active chains when another is to be estab­
lished. Note that the data trees, even while
augmented by the active chains, are mutually
exclusive. The fetch-execute cycle will be
defined using these mutually exclusive data trees.
The machinery to extablish the active chains, an
arbiter, is identical to the carry-look-ahead
logic used in instruction trees. When an
instruction tree is created the machinery acts
as a carry-look-ahead generator, and when a
memory-sharing tree is formed it acts as an
arbiter.

3. Dynamic Aspects of the Architecture

Having presented the basic elements of the
architectures we now discuss how they work.
Specifically, the scheduler's actions, fetch­
execute cycle, and memory-sharing mechanisms are
considered.

3.1 Scheduler Mechanisms

The user specifies the desired precision
and vector size by means of dimension declara­
tions or it is determined by default. The
scheduler will try to set up the process when
the required resources are available. Data trees
are created one at a time; then an instruction
tree is created from the processors selected by
the data trees as discussed in section 2.1.
Failure to connect the data trees or the instruc­
tion trees would abort the process. A single
carry linkage is provided in the instruction
tree. Some of the processors are flagged to
always break the carry linkage by setting
generate and propagate to zero and the page

170

()l>MM 'J N OQE. '$"
(MllMO~') t<IO()e)

Figure data trees
and Instruction trees

numbers are inserted into the virtual memory
modules so that each data tree has necessary
pages for each byte-slice of data. Program
memory is inserted anywhere in the·data trees so
that each page of the program appears just once
in a data tree that is connected to the
instruction tree. Finally the memory is loaded
from the secondary memory and the process is
started.

Figure S(a) - Programmer's View

This is elaborated further with the help of
an example. Here the user requires two pages of
double precision numbers in a three element
vector. The programmer's view of the machine is
given in Figure S(a). Execution of this task
requires six processors and fifteen memory
modules three of which are used for storing
programs. In the machine these modules are
connected as shown in Figure S(b). This example
will be continued in the next section.

Figure S(b) - Configuration of switch

3.2 Fetch-Execute Cycle

The fetch-execute cycle operates in terms
of data and the instruction trees set up by the
scheduler. Consider execution of instruction
ADD 7 which is stored in page number 3. The
programmer views this machine in terms of
Figure S(a) where the instruction from page 3 is
sent to all the processors. We now show how the
instruction is fetched from page 3 to all the
processors and how data in each processor is
independently and concurrently recalled.

In the machine, at the beginning of the
fetch cycle, all the processors present the same
address to their memory modules, as the program
counters in all the processors have identical
values. Only one memory module matches the
address and pulls out the instructions from its
memory which is sent to all the processors
through the data and instruction trees. These
load the words into their instruction registers,
decode and execute the instructions.

In this example the instruction requires
word 7, which is on page 0, to be recalled. The
programmer views in terms of Figure S(a) where
the multiprecision vector word in page 0 is
recalled to the corresponding processors. The

171

address 7 is simultaneously generated by each of
the processors and transmitted on their respec­
tive data trees. One of the virtual memory
modules in each data tree,with page number 0,
matches this address and sends back the word on
the data tree. These six bytes of data are
recalled into six processors via the six disjoint
data trees assigned to this task. The instruc­
tion tree is disconnected for this cycle.

The processors appear to add the word
recalled from memory into their accumulators, as
suggested by Figure S(a). The instruction is
executed and the carries propagate through the
carry-look-ahead circuit created in the instruc­
tion tree. At the word boundaries, identified
by flags set, the carries are inhibited by
forcing propagation and genrate to zero, e.g. in
the processors second, fourth and sixth from the
right.

3.3 Shared Memory

When several processor request the shared­
memory module in the same cycle then the carry­
look-ahead circuit is used as an arbiter to grant
only one of the processors access to the shared
memory. The priorities can be assigned in a
fixed way or can be moved on a round-robin
fashion, as we now show.

All the processors except one have propagate
equal to 1 and any processor requesting shared
memory makes generate equal to 1. The carry
output is connected to the carry input to effect
"end-around carry".

By moving this propagate equal to zero
position dynamically among the processors sharing
the memory module, round-robin priority disci­
pline is implemented. If at any processor
carry-in= 1 is detected then.it means that
another processor which is to its right is
requesting the shared memory; therefore its
request is inhibited. The processor requesting
the shared memory and having carry-in = 0 is
granted access to the shared memory. This proces~
sc;ir sends an address to the shared memory and if
the page number matches then the active chain is
established between the processor and memory.
If a page is unavailable then the processor
would wait for a few cycles and try again. If a
processor's request is just inhibited because of
carry-in = 1 then it will try again in the next
cycle. Once access is granted, by means of the
active chain, the shared memory appears to be in
the data tree of the processor that was granted
access. It can address this shared memory in a
fetch-execute cycle as defined in section 3.2.
When the processor no longer needs to access the
shared memory, it releases it so that another
processor requesting it can be granted access.
It is expected that once a processor is granted
access to a shared memory page, it will use it
for several tens of cycles before releasing it.

Shared memory provides a mechanism for indi­
visible operations like test and set, because a
processor is expected to have complete control of
a shared memory module for several cycles. We
propose that control communication use only this
mechanism. Processors e:icpecting a control signal
will continually check a shared memory module.
Unexpected control information might be communi­
cated by writing all software so that it perio­
dically checks a shared memory module. The round­
robin arbiter mechanism for accessing shared
memory should give each processor its opportunity
to access its control signals. However, some
form of interrupt may be necessary, to alert a
processor to look at its control signals. This
problem is now being studied.

4. Preliminary Remarks on Software

Although possibilities abound for using com­
plex, powerful software, some very simple soft­
ware techniques should be easily implemented to
take considerable advantage of this machine.
One technique might be. to schedule independent
four byte wide tasks for all users. Space sharing
this machine in this simple way is superior to
time sharing a conventional large machine, since
the scheduler need not find consecutively num­
bered pages to store a program (the switch can
allocate any collection memory modules to a data
tree) and since the operating system need not
bother to keep processors busy through swapping
programs in and out (the individual partitions
can be allowed to be idle since they form only a
small fraction of the system resources). More­
over, better utilization of memory and of I/O
resources should be feasible, since, resources can
be carefully assigned to the processors that need
them. Finally, fail-soft operation and memory
protection can be easily obtained.

Next, it should be easy to write compilers
where the instruction set is fixed but the object
processor word width is selectable at compile
time. If a program is heavily character string
oriented, the entire program can be compiled for
a one byte wide processor. A program that uses
a lot of 64 bit numbers could be compiled for an
eight byte wide processor. Although multi­
precision do-loops are not completely eliminated
(the program compiled for a one byte wide pro­
cessor may have to operate on occasional 3 byte
numbers) their frequency may be reduced. Stan­
dard programming languages can be used. New
languages that have vector capabilities. (like APL)
can also be written to use the SIMD features of
this machine. Herein, the scheduler gets rela­
tively fixed requests for processors ~nd other
resources, which it can effectively handle.
Multiple precision Do-loops and vector Do-loops
should be substantially reduced to reduce the
overhead in processing large numeric programs in
particular.

It should be possible to set up pipelines of
otherwise independent partitions of the resources
to increase throughput. For instance, a compiler
can be partitioned into a iexical analyser, a

172

parser, etc., and these can be put in different
partitions of the machine. Memory sharing can
be used to pass data and control between these
partitions. More generally, some simple forms of
data flow programming at the "subroutine level"
might be easy to implement. This simple utili­
zation of multiprocessing should be quite effec­
tive in this flexible machine.

The techniques above seem to be within the
reach of current software technology. More
exciting possibilities·exist in this machine,
however. As microprogrammers control multiple
registers and busses in parallel through horizon­
tal microprogramming techniques, they may control
complete computing partitions of this machine,
some of which can be vector (SIMD) processors,
in tightly coupled programs. Partitions might be
joined together and broken apart to execute sub­
tasks of a program. For instance, Mori et al
[12,24] are considering implementing floating
point operations in separate partitions of their
machine-one for the exponent and one for the
fraction. This may work well in this machine.
We are studying the use of a separate partition to
analyse descriptors for a partition operating as
a vector machine [23]. One advantage of this
concept is that the width of the vector machine
can be assigned at run time, and that width can
be different from what the user requested, yet
the resources will be efficiently used. High
level languages could be interpreted by similar
partitions.

This new kind of programming appears very
exciting. By analogy, a composer writes a theme,
an orchestrator divides the music for different
instruments, and the conductor coordinates the
music, We believe that exciting challenges lay
ahead for the orchestration of partitions - the
translation of algorithms already designed for
conventional machines into parallel forms to be
executed in different partitions, and the con­
ducting of partitions - the operating system and
hardware that keep the partitions synchronized.
In addition to loosely coupled multitasking using
fork and join, or their equivalent, horiz·ontal
microprogramming techniques will be used to
tightly couple the partitions. Orchestration may
become a new discipline in programming technology.

It is unlikely that all programmers will be
aware of orchestration. Rather, carefully orches­
trated subroutines will be available to the
average programmer. The programmer will simply
write programs to call up these subroutines. The
machine will be restructured and reconfigured as
directed by the subroutines at run time. This
kind of complex, powerful software may be able to
take full advantage of the machine.

It is not clear which level of advancement
can justify the cost of this machine. Since simple
identical processors and memory modules are used,
this machine offers the possibility at the outset
of being more cost-effective than large contem­
porary machines because it can take advantage of
LSI technology. However, the switch, though

inexpensive in comparison to other switches, is
still costly. It is our contention that by sim­
plifying scheduling, reducing software overhead,
providing pipelining and data flow control, we
can obtain significant advantages over current
designs. Moreover, it is our hope that orches­
tration will provide unprecedented power to this
machine.

5. Conclusions

A computer for scientific applications
should parallel inexpensive microprocessors to
cost-effectively achieve the throughput necessary
to solve massive problems such as weather predic­
tion, yet a number of small problems should be
able to cost effectively space-share the assem­
blage of microcomputers. Reconfigurability,
variable structure and memory sharing are emmi­
nently suited to this task. Although a switch,
even a banyan with cost n.ln n is a rather expen­
sive item and should not be used indiscriminantly,
we have shown that the same banyan can provide
reconfigurability, variable structure and memory
sharing, with little effort. The user has the
unprecedented freedom in specifying the apparent
width and height of this memory, and can effec­
tively manipulate one byte wide character strings
or n element vectors whose elements have preci­
sion p. Moreover, the scheduler has the capa­
bility to interconnect any available processors,
memories and I/O devices without restrictions,
such as using contiguous cells in a chain, and
very high input-output bandwidth is attainable
by connecting an I/O device to each data tree,
We confidently brandish our claim that this
architecture is the best yet described for
scientific applications.

6. Acknowledgements

The authors gratefully acknowledge extended
discussions with Jim Browne, Lyndon Taylor, and
Charlie Hoch, since this paper was extracted from
a proposal to build such a machine, and we have
all contributed some ideas to the proposal. The
authors are also deeply indebted to Rodney Goke
and Ryoichi Mori for continued dialogue on para­
llel machines.

REFERENCES

1. Anderson, G.A., Jensen, E.D., "Computer Inter­
connection Structures: Taxonomy, Charac­
teristics and Examples," Computing Surveys,
Vol. 7, No. 4, December 1975, pp. 197-213.

2. Anderson, J.A., Lipovski, G.J., "A Virtual
Memory for Microprocessors," The Second
Symposium on Computer Architecture, 1975,
pp. 80-84.

3. Arnold, R.G., Page, E.W., "A Hierarchical
Restructurable Multi-Microprocessor Architec­
ture," The 3rd Annual Symposium on Computer
Architecture, 1976, pp. 40-45.

173

4. Benes, V.E., "Optimal Rearrangeable Multistage
Connecting Networks, 11 Bell Systems Technical
Journal, July 1964, pp. 1641-1656.

5. Conway, Melvin E., "A Multiprocessor System
Design," Proceedings FJCC, 1963, pp. 140-146.

6. Dennis, J.B., Misunas, D.P., "A Preliminary
Architecture for a Basic Data Flow Processor,"
Proceedings of the Second Annual Symposium
on Computer Architecture, pp. 126-132.

7. Estrin, G., "Organization of Computer System-­
The Fixed-Plus-Variable Structure Computer,"
Proceedings of WJCC, 1960, pp. 33-40.

8. Intel Application Notes, Intel 3000, Intel
Corporation.

9. Lipovski, G.J., "A Varistructure Failsoft
Cellular Computer," Proceedings of the First
Annual Symposium on Computer Architecture,
1973, pp. 161-170.

10.. Lipovski, G. J. , "On a Varistructured Array of
Microprocessors," IEEE Trans. on Computers,
February 1977, pp. 125-138.

11. De Martinis, Manlio, Lipovski, G.J., Su,
S.Y.W., Watson, J.K., "Self Managing Secondary
Memory System," The 3rd Annual Symposium on
Computer Architecture, 1976, pp. 186-194.

12. Okada, Y., Tajima, M., Mori, R., "A Novel
Multiprocessor Array," Second Symposium on
Microarchitecture, Euromicro, 1976, North
Holland Publishing Company, pp. 83- 90.

13. Porter, R.E., "The RW-400--A New Polymorphic
Data System," Datamation, Vol. 6, 1960,
pp. 8-14. .

14. Pierce, J.R., "How Far Can Data Loops Go,"
IEEE Trans. on Communications, June 1972,
pp. 527-530.

15. Goke, R. , Lipovski, G. J. , "Banyan Networks
for Partitioning on Multiprocessor Systems,"
Proceedings of the First Annual Symposium on
Computer Architecture, 1973, pp. 21-30.

16. Goke, L.R., "Connecting Networks for Parti­
tioning Polymorphic Systems," Doctoral disser­
tation, Dept. of Electrical Engineering,
University of Florida, 1976.

17. Goke, L.R., personal communication.

18. Stone, H.S., "Parallel Processing with Perfect
Shuffle," IEEE Trans. on Computers, Vol.
C-20, No. 2, February 1971, pp. 153-161.

19. Vice, W.E., Lipovski, G.J., Brodersen, A.J.,
"On the Integrated Circuit Bidirectional
Amplifiers," IEEE Journal of Solid State
Circuits, Vol. SC-8, No. 5, October 1973,
pp. 3.81-388.

20. Wulf, W.A., Bell, C.G., "C.nnnp-A Multi­
Miniprocessor," AFIPS ·Proceedings, Vol. 41,
FJCC, 1972, pp. 122-131.

21. National Digital Integrated Circuits,
January 1974, pp. 9-8.

22. Fairchild Semiconductors MOS/CCD Data Book,
1974, pp. 4-124.

23. Lipovski, G.J. and Hoch, C.G., "A Vari­
structured Stack for Microcomputers," to
appear in Proc. Euromicro Symposium,
Amsterdam, October 1977.

174

24. Mori, R., private communications.

25. Vice, W.E., Broderson, A.J., and Lipovski,
G.J., Patent No. 3,882,274.

26. Lipovski, G.J., Patent No. 4,016,545, April
5, 1977.

PARALLEL PROCESSING RESEARCH IN COMPUTER SCIENCE:
RELEVANCE TO THE DESIGN OF A NAVIER-STOKES COMPUTER

Carl F, R. Weiman
Math and Computing Sciences

Old Dominion University, Norfolk, Virginia 23508

and

Chester E, Grosch
Institute of Oceanography

Old Dominion University, Norfolk, Virginia 23508

Abstract -- The design of a special purpose com­
puter for the numerical solution of problems in
fluid mechanics was discussed in meetings at RAND
Corporation in 1976-77 [9]. The number of compu­
tations required puts many important problems
beyond the reach of the most advanced computers
available today. Speedups attainable by techno­
logical advances and software optimization do not
help enough; large scale parallelism was deemed
necessary. Finite difference methods break the
continuous space of physical problems into dis­
crete compartments iterated over a region. Equa­
tions relate physical quantities in a small
neighborhood of compartments. Since these equa­
tions are identical over large regions, a design
was proposed which consisted of an array of identi­
cal microprocessor chips communicating with near­
est neighbors. Each chip carries out the computa­
tions expressed in the finite difference equations
corresponding to a single compartment and all
chips are simultaneously active. This design can
be viewed as a digital simulation of the
physical system. Reasonable numerical parameters
suggest arrays of 1002 chips, possibly in layers
or internally organized to model three dimensional
physical problems. The differences between this
design and other parallel machines is described,
Novel organization is made economically feasible
by recent advances in Large Scale Integration (LSI)
technology.

A Cellular Array Computer for Fluid Dynamics

There are many practical problems which
require the accurate and rapid calculation of
fluid-dynamic forces and flow phenomena. These
include aircraft and ship design, weather fore­
casting, and biological modelling. Progress in
providing advances in the quantitative analysis of
these problems is paced to a great extent by the
computing power available in the simulation of the
flow phenomena of interest. The major computation
in all cases involves solution of the Navier-Stokes
equations. Hence the solution of a very general
class of problems would be greatly facilitated by
the development of a special purpose Navier-Stokes
computer,

Increasing memory size permits the use of a
finer spatial resolution for a fixed volume of
fluid and/or the calculation of flows in larger
volumes. The number of operations per time step
increases at a slightly faster rate than the num­
ber of mesh points (or modes, for spectral

3
methods). In fact, it is easily shown that if N
mesh points are used in a calculation the number
of operations per time step is proportional to
N3tn2N for the best methods.

While there have been some improvements in
algorithms, progress has been tied to the develop­
ment of ever faster general-purpose computers,

175

The most recent "super-computers" incorporate
substantial amounts of pipelining and parallelism
in their CPUs in addition to using faster process­
ing elements. In short, high-speed computation
has been sought via faster and more complex CPUs.
It appears that all of today's "super-computers"
were designed to handle many different classes of
scientific computing problems. The cost of this
versatility appears to be that these architectures
are far from optimum for any class of problems.
In fact there are many important problems for
which the fastest existing computers are hopelessly
slow,

Recently, Dr. I. E. Sutherland [9] has sug­
gested an architecture which appears to be much
closer to optimum, for computational fluid dyna­
mics, than that of existing "super-computers."
This architecture is a two-dimensional array of
L•M cells, (see Figure 1).

«--?-.'

CELL ARRAY

I MEMORY I

DD •• D 0 IADDEl~
REGISTERS

ONE CELL

Figure 1: Schematic of the cell computer

Each cell can communicate directly with its near­
est neighbors "above" and "below" and to the
"left" and "right "• A single cell is assumed to
contain some memory, an adder and some registers,
The data is stored in memory. The registers are
used as working memory to store intermediate
results and the adder is used to perform binary
addition and multiplication by shift-and-add.
It is clear that local communication is relatively
cheap and long range communication may be prohi­
bitively expensive because of cell-to-cell propa­
gation.

The potential advantages of this architecture
are threefold: first, it appears possible to
build such a computer using existing technology
(each cell is only a few microprocessor chips,
perhaps a single chip) at fairly modest cost,
particularly if the intercellular connections are
minimized; second, technological developments in
the semiconductor industry, i.e,, advances in
Large Scale Integration (LSI) fabrication, are
leading toward increasing complexity and density
per chip ~ lower cost per chip; and third, if
the array of cells can be mapped onto the fluid
domain such that N2 operations can be performed
in parallel on N2 chips, the number of sequential
operations per time step can be reduced from
O(N3tn2N) to O(N tn2 N).

This architecture appears so promising that
it is worthwhile to examine a test case. The test
case considers the incompressible flow of a fluid
in a boundary layer adjacent to a rigid, imperme­
able, no-slip wall.

The objectives of this exercise are to deter­
mine: how well a standard algorithm fits a cell
computer; what modifications to the algorithm are
required; which part, if any, of the algorithm
dominates the calculation; which operation domi­
nates the calculation; how many operations are
required per time step; what is the memory
requirement per cell; and what is the computation
time per time step, using conservative estimates
of the transfer, multiply, and add times. The
computational region is 0 ~ x ~ x0 , 0 ~ y ~ 00 ,

0 < z < z , The equations of motion are, of
coilrse-;- tge Navier-Stokes equations for an
incompressible fluid

~~ 1 2+ at = - (~ • V)~ - Vp + R V u

'V • ~ = o.

(1)

(2)

Here R = U0 o/v is the Reynolds number, where U0

is a characteristic free stream speed, o is the
boundary layer thickness, and v is the kinematic
viscosity. The velocity, ~ = iu + jv + kw, has
components (u,v,w) in the x, y, and z directions
(i, j, and k are unit vectors), and pis the
pressure per unit density. A Poisson equation
for the pressure can be obtained by taking the
divergence of Eq. (1).

Appropriate boundary conditions for the
velocity are also specified such as: the inflow
velocity !ield on the plane x = 0 is given; the
velocity u • 0 on the plane y = 0, etc. Neumann
boundary conditions for the pressure field can be
obtained by evaluating equation (1) on the bounda-

176

ries, In order to represent the infinite physical
domain 0 ~ y < 00 in the finite computational
domain a mapping is used to transform the infinite
domain (0 < y < 00) onto the finite domain
(0 < s < 1). It has been shown IlO] that this
mapping yields highly accurate results with rela­
tively few grid points in those cases, as in this
problem, where the flow field at infinity is a
simple laminar flow. The only cost is that the
metric coefficients must be stored in each cell.

The physical space, 0 ~ x ~ x0 , 0 ~ s ~ 1,
0 ~ z ~ z0 is divided into L • M • N cells cen­
tered on the points (illx, j~s. k6z) where i = 1,
2, .. , , L; j = 1, 2, ... , M; and k = 1, 2, • , • , N.
The x component of the velocity is defined at the
center of the front and back faces of the cell,
i,e., ui~,j,k = u((i - ~)llx, j~s. k6z, t).

Similarly the s and z components of the velocity,
v and w are defined at the centers of top and bot­
tom and side faces of the cell. The pressure is
defined at point (i,j,k) in the center of the
cell,

A column is defined as all those fluid cells
at constant x; a row as all those fluid cells at
constant s; and a rod as all those fluid cells at
constant z, It will be assumed that one rod of
data, the (i,j) rod, is stored in cell (i,j).
This of course implies that cell (i,j) has some
multiple of N words of memory plus sufficient
memory for constants such as l/R, the metric
coefficients, etc.

The spatial differencing scheme is centered
second order. It can be shown that this approxi­
mation, when applied to Eqs. (1) and (2) with
appropriate boundary conditions is conservative
in the sense that mass is conserved for any R
and, in the limit R + oo, momentum, energy, and
enstrophy are also conserved.

The time differencing is the Adams-Bashforth
type. Let us define F¥-~,j, k as the righthand

side of Eq. (1) defined at (subscripts) the point
(illx, j~s. k6z) in space and at (superscript)
time n~t. Fi ·_L k and Fi . k-'- are defined in

,J ~. ,J' ~
a completely analogous way. Then the Adams­
Bashforth approximation to the time derivative is

n+l n ~t n n-1
ui-~,j,k = ui-~,j,k + ~ (3Fi-~,j,k - Fi-~,j,k)

(3)

In order to advance ~ and pn by one time

step it is necessary to calculate 'P1= (F~-~ . k)
Fn n ,J'

i · L k Fi . k-L) and solve the Poisson equa­
, J-~, ' n ,J, ~

tion for p • As one might expect the most diffi­
cult part of the calculation is the solution of
the Poisson equation with Neumann boundary condi­
tions. This problem is elliptic, i.e., non-local.
A direct solution, say by using an FFT in one
direction and a tridiagonal equation solver in
the other may be prohibitive because of the trans­
fer time cost. More importantly, these methods
are restricted to flows with very regular geome­
try; general geometries require the use of
relaxation methods.

We have assumed that the relaxation method

will be Red-Black SOR which requires only K rara­
llel iterations to converge if SOR requires K - 1
sequential iterat!ons. This method has been
s:lmulated using a model problem. The s:lmulation
confirms the est:lmate.

It should be noted that a "standard" relaxa­
tion method has been asstnned, We have not yet
examined other methods such as cell by cell
divergence-pressure method [12] or the use of
block or multigrid relaxation methods [5] 1 which
could increase the convergence rate,

The operation count for one t:lme step can be
obtained by writing the finite difference equa­
tions, finding where the required data are
stored, counting the number of transfers needed
to get these data into the registers in cell
(i,j) and the number and type of arithmetic
operations required. As an example, figure 2
shows cell (i,j) and its neighbors. All the
data, and only the data, required to calculate
F¥~,j,k' F~,j~,k' and Fi,j,k~ are shown in
this figure in the cells where they are stored,
It can be seen that twenty words of data must be
transferred to cell (i,j); of these twenty only
two, ui~, j-l, k and vi-l, j~,k' require a two
step transfer,

The number of in-cell transfers, cell-to­
cell transfers, additions, and multiplications
necessary to advance it and p by one t:lme step are:

IN CELL TRANSFERS a 48 N
CELL TO CELL TRANSFERS= (63 + 6fK') N
ADDITIONS = (208 + 8fK + 2 1n N) N
MULTIPLICATIONS = (93 + 3fK +24 ln2N) N
Number of words of memory = 18 + 12 N
Number of registers = 30

Here N is the number of mesh points in the
transverse flow direction (z direction} and the
product fK is the number of iterations for relaxa­
tion of the Poisson equation,

From an examination of this table, assuming
fK = 50 and N = 64, say, several facts become
apparent, If we take the in-cell transfer count
as unity, the cell-to-cell transfer count is
about 7, the addition count 14, and the multipli­
cation count is about 5. Because it is generally
true that the in-cell transfer t:lme and the addi­
tion t:lme are considerably smaller than the cell­
to-cell transfer t:lme and the multiplication time,
it is clear that the total calculation t:lme is
controlled by the cell-to-cell transfer and
multiplication counts and t:lmes, The ratio of the

(i-1,j+l) (i,j+l) (i+l,j+l)

vi-1,j~,k

(i-1,j)

u
3

i- 2•j ,k

vi-1,j~,k

wi-1,j ,k~ wi-1,j,k+~

pi-1,j ,k

(i-1,j-l)

Figure 2:

ui~,j+l,k

vi,j~,k v i,j+~,k-1

wi,j+l,k~

(i,j)

ui-~,j ,k ui-~,j ,k-1 ui-~,j, k+l

vi,j-~,k vi,j-~,k-1 vi,j-~,ktl

wi,j ,k-~ wi . k 3 ,J, - 2 wi,j ,k~

Pi,j,k Pi,j ,k-1

(i,j-1)

ui-~,j-1,k

v 3
i,j- 2,k

wi,j-1,k-~ wi,j-1,k~

Pi,j-1,k

::m
Data required to compute Fi . k

,J •

177

(i+l,j)

ui+~,j ,k ui~,j ,k .. l

v i+l,j-~,k

wi+l,j ,k~

(i+l,j-1)

ui+~,j-1,k

TIME AND MEMORY ESTIMATES

!

I Calculation
I Time for
!Interior Points
J per Time Step

Problem i (sec)

111 i
1/3 n:illion I

point
problem

!i2
l 1:1iliion

point
;>roblem

~?3

10 million
poir.t
p~obler:i

I
I

0.060

0.242

0.242

Calculation Calculation
Time for Time for the

Boundary.Points Pres,,ure Field
per Time Step per Time Step

(sec) (sec)

0.027 0.076

0.112 0.309

0.112 0.309

Calculation Total
Time for the Calculation

Velocity Field Time per
per Time Step Time Step

(sec) (sec)

0.011 0.087

0.045 0.354

0.045 o. 354

Memory
per Cell

(words/bits)

432/-14K "

1584/-SOK

11587/-50<

I Total

I Calculation
Tirle for

' One Time Step

!

on a Fast
Conventional

Computer
(sec)

i 20.0

I
81.9

839

* lK = 1024 TABLE 1

multiplication count to cell-to-cell transfer
count i& about one, so reducing either cell-to­
cell transfer time or multiplication time to zero
would result in a speedup of only a factor of two,

In order to gain some insight into the per­
formance capabilities of this type of array com­
puter, three sample problems will be considered:
(1) A (logical) array of 50 x 200 cells with
N • 32; 50 po,ints in the direction normal to the
boundary, 200 in the downstream direction and 32
in the cross-stream direction. It is believed
that this "one-third of a million point" problem
is the abselutely minimum problem of interest in
fluid dynamics. (2) A (logical) array of 50 x
200 cells with N = 128; 50 points normal to the
boundary, 200 in the downstream direction and 128
across the stream. The "million point" problem
is q'llllite interesting. (3) A (logical) array of
100: x 1000 cells with N = 128; 100 points normal
to the boundary, 1000 points in the downstream
direction and 128 points across the stream. This
"ten million point" problem is very interesting
because it allows study of important fluid flow
phenomena hitherto beyond our reach.

In order to calculate computation time per
time step it is necessary to make assumptions
about the in-cell transfer, cell-to-cell trans­
fer, addition, and multiplication times as well
as assume values for f and K. It will be assumed
that: In-cell transfer time is 100 nsec; Cell­
to-cell transfer time is 3 µsec; Addition time is
500 nsec; Multiplication time is 5 µsec; f is ~;
and K is 100. It will also be assumed that the
memory words are 32 bits and the registers are 64
bits long.

In order to compare the performance of this
cell computer to a conventional computer, opera­
tion counts and time estimates for the conven­
tional computer are needed. The operation counts
for a three-dimensional finite-difference tech-

178

nique for a conventional computer are in [6]. In
this technique, the spatial differencing is the
same as used in the analysis of the cell computer
performance, second-order central differences;
the time differencing is Leap-Frog; and a Fast
Poisson Solver is used. The downstream direction
has L points, the cross-stream direction N points
and the direction normal to the boundary has M
points, It will be assumed that, for the conven­
tional computer: Addition time is 100 nsec;
Multiplication time is 200 nsec; and Memory trans­
fer time is 1 µsec.

The time estimates for one time step are
given in Table 1 for each of the three problems.
These estimates are broken down in several ways
(all times are in seconds). Column one lists the
problems, In the second column the time to
advance the interior points one time step is
given, while the third column is the time required
to advance the boundary points one time step. The
sum of these is the total time required to advance
all the grid points one time step, and this is
given in column six. This total time is also the
sum of the time required to compute the pressure
field, given in column four; and the time required
to compute the velocity field, column five. The
total number of bits of memory required for each
problem is listed in column seven. Finally,
column eight is the total time required to calcu­
late one time step on a conventional computer.

From an examination of Table 1 it is clear
that most of the computation time of the array
computer is spent computing the pressure field
for the interior points of the grid; the ratio
of the calculation time for the interior to the
calculation time for the boundary is about 2,
while the ratio of the calculation time for the
pressure field to that of the calculation time
for the velocity field is about 7. this holds
true for all three problems, In short, the

dominant part of the calculation is the relaxation
solution of the pressure field on the interior of
the grid.

Although it is not shown in this table, pre­
cisely the opposite holds true for the calcula­
tion on the fast conventional computer using a
fast Poisson solver, wherein the ratio of the
velocity field calculation time to the pressure
field calculation time is about 3.

For problems #1 and #2, the ratio of total
calculation time on the conventional computer to
that of the array computer is -230. Increasing
the number of grid points in the cross-stream
direction from 32 to 128 changes this ratio by
less than 1 percent. However, increasing the num­
ber of cells from 104 to 105 (problem #3)
increases the ratio to about 2370. As was expec­
ted, the ten-fold increase in the number of cells
is fully reflected in the speed ratio, Note that
for problems #1 and #2 the speedup due to paral­
lelism reduces a week of computation time on a
sequential computer to under one hour. For prob­
lem #3, a week is reduced to about five minutes.
Thus calculations whose times and costs were pro­
hibitive on existing computers could be used
routinely as standard tools by researchers in
fluid dynamics and designers of vehicles such as
aircraft and ships.

The problem with 32 grid points in the cross­
stream, z, direction requires 432 words of memory,
about 14K bits per cell. Increasing the number of
grid points in the z direction to 128 increases
the size of the required cell memory to 1584 words
or about SOK bits. Problem #1 fits nicely into a
16K bit memory and problems #2 and #3 are good
fits to a 64K bit memory per cell.

Overview: Relevance to Parallel Processing

Far fewer parallel computers have been built
than sequential computers because of organizational
complexity and economic barriers in the past,
Processors were expensive, and iteration of compo­
nents implied iterated costs, plus control over­
head. Recent LSI advances have removed the
economic barrier for component iteration; once
design and set-up are paid for, chip reproduction
cost is vanishingly small. There has been a
corresponding scarcity of parallel processing
research in the computer science literature,
though recently such publications are increasing,
Let us now briefly survey the parallel processing
literature, relating :Important results to the
proposed Navier-Stokes computer design, The short
bibliography here points to major sources ranging
over a br.oad spectrum of research areas, leading
to most of the important work which has been
carried out since the sixties, Research in paral­
lel processing will be divided into the following
areas: construction of parallel computers, pro­
gramming languages for parallel computers, paral­
lel evaluation of ordinary arithmetic expressions,
parallel numerical algorithms and parallel gram­
mars in formal language theory. These are dis­
cussed in order below.

The cellular design proposed here shares
some characteristics with several existing paral­
lel machines but differs in ways which suggest

far greater computing power for the intended
application, The existing machines, compared
below with out design, are described in detail
[26] and [27],

ILLIAC IV can be viewed as an 8 x 8 array of
cells (PE's) arranged in a grid with communication
with nearest neighbors and control and I/O busses.
Each PE is a rather sophisticated general purpose
computer with seven working registers and 2K 64-
bit words of memory, Our cells, in contrast, con­
tain far less memory, smaller words, and more
limited processing capability, retaining only
enough computation power to evaluate some finite
difference expressions and communicate with near­
est neighbors, This permits LSI construction of
each PE on a single microprocessor chip. This
has important consequences which make the design
potentially thousands of times as effective as
ILLIAC IV, Reduced cost of components, accel­
lerated by chip replication, permits a design
with as many cells as mesh points in the physical
problem. Instead of a potential 64-fold speedup,
ratios in the range of several thousand to one,
relative to sequential processing, are quite
feasible, More important than the magnification
of scale is the fact that an 8 x 8 mesh is insuf­
ficient for most PDE problems, therefore much of
the 64-fold potential speedup of ILLIAC IV is lost
in overhead consisting of rearranging data to fit
in the small grid. This overhead is non-existent
for our design since the computation grid corres­
ponds exactly to the problem mesh. By restrict­
ing as much of the communication as possible to
nearest neighbors, i.e., avoiding long-distance
high-bandwidth data transfers, effective execution
rates of 5,000 to one million MIPs (millions of
instructions per second) are attainable with
present technology.

179

At the opposite end of the PE quantity-com­
plexity tradeoff s are associative processors such
as PEPE and the Goodyear STARAN. Far more cells,
but each with lesser capability, are used.
STARAN, for example, contains 32 256 word (256
bits each) memory arrays. Though the communica­
tions paths are not comparable with ILLIAC IV, if
the Bk words are regarded as cells, each is capa­
ble of a few simple logic operations between its
contents and those of a word to be matched.
Arithmetic must be synthesized from these opera­
tions via finite state logic in order to be car­
ried out in parallel. Parallelism is achieved by
having cells respond according to their contents
(associatively) rather than by address. The
individual words do not have enough processing
power to carry out the computations required for
mesh cells in reasonable PDE problems,

Taxonomies for parallel (or other sequential)
computers simplify comparisons between designs
by abstracting essential features. Choices of
what constitute essential features are moot and
can cause Procrustian classifications, particu­
larly when a new design such as the one proposed
is involved, A popular taxonomy is the division
of instructions (I) and data (D) into single (S)
or multiple (M) streams. For example, a pipeline
machine such as the CDC STAR-100 or Texas Instru­
ments ASC is classified as MISD since one data
stream is passing though an "assembly line" of

processors. Many parallel and vector machines,
including ILLIAC IV, are classified as SIMD be­
cause individual PE's contain different data, but
all carry out the same instruction sent by a con­
troller. While our design is clearly MD, it could
be regarded as either SI or MI, depending on how
closely one looks at program control architecture.
One alternative is to allow each chip to store a
few simple programs, such as the sequences of
instructions for boundary condition computations,
interior computations, and the null computation of
cells outside the region. This view yields an
MIMD classification though the number of distin­
guishable instruction streams is small if cells
are viewed as types (i.e., boundary vs. interior)
and large if viewed as individuals. All cells
ought to be synchronized to the same clock to pre­
serve integrity of the physical time modelled by
the computation system. If the clock is regarded
as the controller, the machine should be classi­
fied SIMD. Incidentally, we specifically avoid
the machine organization of hanging multiple
processors on the same bus as embodied in
Carnegie-Mellon's C.mmp [3]. That is, though the
clock bus may have a wide enough bandwidth (say 8
bits) to issue general orders to all cells, it is
never to be used for addressing individual cells
nor intercell communication. This eliminates
address conflict and dataflow bottlenecks (which
rapidly worsen as the number of cells increases)
but raises important questions about I/O. Loading
programs and data into the cells could be done by
feeding contents sequentially into one end of the
array and using the nearest neighbor data paths to
treat the entire array as a shift register, While
far slower than the computation this machine is
designed for, most of this machine's activity in
PDE applications is very heavily compute-bound
rather than I/O bound and the inconvenience is a
small price to pay at the beginning and end of
very long sequences of computations. The output
problem is more important than input when sequen­
ces of glimpses at the physical system are
desired, for example in displaying details of the
transition from laminar flow to turbulence. Tech­
nological solutions such as LED output or false
color video interpretation of register contents
may be possible.

Despite the difference between our design and
existing machines, there are many hardware
implementation details in the latter that are the
product of decades of experience and expertise;
these are worthy of thorough study for application
in our design.

Hardware organization has a large impact on
software; a clear programming language is essen­
tial if this machine is to be used effectively.
High level languages for array machines [13, 8]
have had to deal with the problem of arranging
vectors or matrices so that FORTRAN-like arith­
metic expressions can be simultaneously evaluated
by the parallel processors of a particular system,
Looping and indeiing required sophisticated analy­
sis (see SIGPLAN conference proceedings at GISS in
bibliography) compounded with the problems of com­
piling a high level language such as FORTRAN.
Since no rearrangement of cells occurs in our
design, and communication is only between nearest

neighbors, indexing can be avoided entirely. The
bookkeeping for sequencing through an array has
been done during the fabrication of the array of
chips, The subscripts in the finite difference
equations are replaced by the labels of a few
nearest neighbor cells. The simplicity of chip
operations and stereotypy of the calculations
means that we can get by with a simple assembly
type language for describing the behavior
(program) of a cell. The special purpose mission
of this machine obviates the need for a general
purpose high level language, thus saving consider­
able time and manpower in software development.

An area of parallel processing research which
does not appear very applicable to our design is
the parallel evaluation of ordinary arithmetic
expressions [16, 29], Basically, operands are
grouped by pairs (since operators are binary) for
simultaneous processing, pairing the results until
a single number is left. Nesting and operator
hierarchies introduce complications, but the over­
all idea is that the binary joining yields a tree
structure whose depth (number of time steps) is
log2 of the number of operands (m) in the original
expression, For the relatively short expressions
(small number of operands) in the finite differ­
ence equations, the log2 (m) speedup does not
appear to be great enough to pay for the overhead
of finding .the appropriate tree and arranging the
data in it. However, cell programs should embody
efficient arrangement of calculations.

Research in parallel numerical algorithms has
been intensively pursued, even prior to the like­
lihood of implementation [17]. Many publications
concern matrix methods for the solution of simul­
taneous finite difference equations on grids [28].
Most of the results are not applicable to our
proposed design because the row-column grids of
the matrices in those methods constitute a very
different representation of the problem mesh than
our array of cells, That is, such matrices really
correspond closely to a graph connectivity matrix
of the system, where mesh points and communication
paths correspond to nodes and arcs respectively.
Local interaction corresponds to a sparse matrix
whose number of rows (columns) is the number of
mesh points. Thus, for an n x n mesh, the matrix
is n2 x n2 and topology is totally different from
that of the mesh, depending strongly on the label­
ling of rows and columns. For our 100 x 100 mesh,
the matrix is 10,000 x 10,000; it is inconceivable
that such a matrix be represented by one chip per
element, Even if it were, sparseness implies
wasted hardware and the matrix simplification
methods in the literature [4] would require data
transfers over large distances by pivoting, trans­
pose and the like. Of course, the algorithms in
the literature do not involve such inefficient
data structures. Sparseness is exploited to yield
a few vectors of length n2 which get rearranged to
improve independence of operations and hence
parallelism, In sharp contrast, our design is a
relaxation machine and data rearrangement is
avoided as much as possible. Nevertheless, the
ingenious effort which has been expended in direct:
methods warrants intensive study for applications
here.

Stone's observations [25] on parallel versus

180

serial numerical algorithms are important enough
to mention here before concluding, Re notes that
efficient serial algorithms may be totally unlike
efficient parallel algorithms. that many
apparently inherently serial algorithms in fact
are not, that numerical convergence rates differ
in serial versus parallel algorithms, and that
arrangement of data structures is much more impor­
tant in parallel processing than serial, The last
point results from the fact that random access in
serial processing makes all locations equally
accessible; random access between all processors
in parallel is ruled out because of access con­
flicts or interconnection structures whose com­
plexity grows as the square of the number of
elements. Hence communication is restricted to,
for example, nearest neighbors, These observa­
tions suggest that much of what we know about
serial processing is not applicable to parallel
processing. This idea is confirmed on a fundemen­
tal level by recent developments in the theory of
formal languages [11], Study of formal systems
yields principles whose value in applications
includes determining algorithm design, programming
language principles, hardware complexity trade­
offs, and establishing ultimate limitations on
computation power [24], Recent results in paral­
lel grammars indicate that many problems which are
high on the complexity scale when algorithms are
stated sequentially are much simpler when parallel
operations are permitted, Detailed investigation
of a broad spectrum of formal languages find this
to be the general case rather than an exception
[19], Immediate applications include the design
of parallel programming languages. The powerful,
unexpected new results characteristic of this
field suggest long range applications in the
design of future parallel computers.

References

[lJ Baer, J. L. , "A Survey of Some Theoretical
Aspects of Multiprocessing", ACM Computing
Surveys, Vol. 5 (March, 1973)"""""PP. 31-80,

[2] Batcher, K. E., "The Flip Network in STARAN",
in [7], pp, 65-72.

[3] Bell, C. G. and W. A. Wulf, "C,mmp - A Multi­
Mini-Processor", AFIPS Conference Proceed­
~ Vol. 41, 1972, pp. 765-778,

[4] Birkhoff, G, and A. George, "Elimination by
Nested Dissection", in [28], pp. 221-269.

[5] Brandt, A., "Multi-Level Adaptive Solutions
to Boundary-Value Problems," Institute for
Computer Appl:!.cations in Science and
Engineering Report 76-27, Institute for
Computer Applications in Science and
Engineering, NASA Langley, Hampton. Va., 1976.

[6] Case, K. M., A. M. Despain, E. A. Frieman,
F. W. Perkins, and J. F. Vesecky, "Problems
in Laminar Flow-Turbulent Flow," Stanford
Research Institute Technical Report JSR-74-2,
1975.

I7J Enslow, P. H,, (ed,) Proceedings of~ 1976
International Conference on Parallel Process­
.!!!&• IEEE. ACM. Wayne State University.

[8] Erickson. D, B., Array Processing .Qn ..!!.n.
Array Processor. in T21], pp. 17-24.

[9] Gritton. E, c .• W. s. King. I. Sutherland,
R. S. Gaines. C. Gazley, Jr., c. E. Grosch.
M, Juncosa. H, Peterson. Feasibility of .!!.

Special-Purpose Computer to Solve the
Navier-Stokes Equations, RAND Corporation,
R-2183-RC, (June, 1976), 74 pp.

[10] Grosch, C. E,, and S. A. Orszag, "Numerical
Solutions of Problems in Unbounded Domains:
Coordinate Transformations," Journal of
Computational Physics, (in press). 1977.

[ll] Herman, G. T. and G. Rozenberg, Developmen­
tal Systems and Languages, North-Holland,
1975,

[12] Hirt, C. W., and J, L. Cook, "Calculating
Three-Dimensional FJows Around Structures
and Over Rough Terrain," Journal of Computa­
tional Physics, Vol. 10, p, 324, 1972.

fl3] Lamport, L., On Programming Parallel Com­
puters, in f21J, pp. 25-33.

[14 J Lang, T. and H. S. Stone, "A Shuffle­
Exchange Network with Simplified Control",
~ ~· on Computers, Vol. C-25,
(January 1976), pp. 55-65.

Il5J Kohler, W. H., "A Preliminary Evaluation of
the Critical Path Method for Scheduling
Tasks on Multiprocessor Systems" IEEE Trans.
2!!,_Computers, Vol. C-24 (Dec. 1975),
pp. 1235-1238.

116] Kuck, D. J,, Multioperation Machine Computa­
tional Complexity in 25), pp. 49-82 •

181

.[17] Miranker, W. L., "A Survey of Parallelism
in Numerical Analysis", SIAM Review, Vol. 13,
No. 4, October 1971, pp. 524-547.

[18] Morris, D. and P. C. Treleaven, !_Stream
Processing Network, in [21], pp. 107-ll2 •

.[19 J Meshell, J. M. and J. Rothstein, "Bus Auto­
mata and Parallel Computation", Proc. 1976
Southeastern Symposium QB_ System Theory,
University of Tennessee, Knoxville,
pp. 246-252.

[zo] Meshell, J. M. and J. Rothstein "Parallel
Recognition of Patterns: Insights from For­
mal Language Theory", in [7], pp. 222-229.

[21 J Proceedings of !!.. Conference on Programming
Languages and Compilers for Parallel and
Vector Machines, March 18-19, 1975, Goddard
Inst, for Space Studies, N.Y., N.Y. ACM
SIGPLAN notices Vol. 10, No. 3, Sponsored by
ACM, SIGPLAN, NASA, GISS.

(22]

(23]

[24]

(25]

Proceedings-of the 1975 Sagamore Comiuter
Conference onl'aralldProcess~/¥,' IEE','
Syracuse University.

Rose, D. J. , "A Graph-Theoretic Study of the
Numerical Solution of Sparse Positive
Definite Systems of Linear Equations",
pp. 183-217 in Read, Graph Theory~~.,.
~. Acadanic Press, 1972.

Rothstein, J., "On the Ult:bnate Limitations
of Parallel Processing", (Best Paper Award)
in (7], pp. 206-212.

Ston~, H. s., 0 Problems of Parallel Computa­
tion", in (28], pp. 1-17.

182

I26J Thurber, K, J, Large !£!!.!!. Computer Archi­
tecture: Parallel and Associative
Frocessors Hayden, ROChelle Park, N.J.,
1°976,

f27] Thurber, K, J, and L. D. Wald, "Associative
and Parallel Processors", ~ Computing
Surveys, (Dec, 1975), pp. 215-255,

[28] Traub, J, F. (Ed,), Complexity .2£_ Seguen­
!!!.! ~Parallel Numerical Algorithms,
(Conf, Proc.) Academic Press, 1973,

(29] Winograd, s., On the Parallel Evaluation of
Certain Arithmeti"C"'Expressions. JACM,
Vol. 22, No. 4, pp. 477-492, 1975.

CONTROLLING THE ACTIVE/INACTIVE STATUS OF SIMD MACHINE PROCESSORS

Howard Jay Siegel
School of Electrical Engineering

Purdue University, West Lafayette, IN 47907

Masking schemes are used to control the
active/inactive status of each of the processing
elements (PE's) in an SIMD machine. Three schemes -
data conditional masks, general masks, and PE
address masks - are analyzed In terms of hardware
and software implementations, time and space re­
quirements, ability to activate arbitrary sets of
PE's, and ease of programmer use.

The ff address masking scheme uses an m-posi­
tion mask to specify which of N=2m PE's are to be
activated. Each position of the mask will contain
either a 0, 1, or X ("don't care") and the only
PE's that will be active are those whose address
matches the mask: 0 matches 0, I matches 1, and
either 0 or I matches X. Superscripts are repeti­
tion factors; square brackets denote a mask. The
structure of these masks allows them to perform
tasks such as activating the following set~ of
PE's: even numbered PE's - [xm-10]; the 21 PE's
beginning with J, where J > 2i and J =
• • • 0 i [. . . xi 1 i Jm-1 • ••J i+1Ji - Jm-1 •• .J i+lJ i ; every 2 th
PE beginning with J, whe1e J < 2i and J =
• . • [Xm-1. . .]
J1-1 .. ·J1Jo- J1-1 .. ·J1Jo •

A mask may accompany each instruction, or may
be executed whenever a change in the active status
of the PE's is required. Consider the task of
activating an arbitrary set of PE's with a set of
these masks. For example, if N=8,and only PE 0
and PE 7 are to execute instruction A, A must be
executed with [000] and then with [Ill]. The set
of masks is required to be of minimum size and
each PE to execute a given instruction must
execute it exactly once.
Theorem: The lower and upper bounds on the size
of the set of masks necessary to activate an
arbitrary set of PE's are N/2.
Proof: Lower bound: Let J be the set of PE
addresses whose binary representations each con­
tain an odd number of ones. If a mask has an X
in Its ith position, then it will activate two
PE's whose addresses are identical except for their
ith bit position, i.e., one address will have an
odd number of ones, the other even. Thus, for each
address in J, whose size is N/2, a separate mask
will be required. Upper bound: Consider the
arbitrary pair of PE's ym_ 1 ••• y2y10 and

Ym-i···Y2Y11. If both are to be activated use

This is a summary of Purdue TR-EE 77-25, supported
by NSF Grant OCR 74-21939 at the Princeton
University Electrical Engineering and Computer
Science Department and by the Purdue University
School of Electrical Engineering.

183

[y. 1 ••• y y X], if only the former use m- 2 l
[ym_ 1 ••• y2y10], If only the latter use
[ym_ 1 ... y2y11], and if neither clo nothing. Q

It is most likely that sets of PE's such
as J above will be anomalies, but this is highly
user dependent. By using a modified Karnaugh map
procedure the smallest set of masks necessary to
activate a given set of PE's can be computed.

A negative.!'.!_ address mask is the same as a
regular PE address mask, except it activates all
those PE's which do not match the mask. Negative
masks are prefixed with a minus sign. For
example, [-Im] activates all PE's except 1m, a
task which would require m regular PE address
masks. In most, but not all, cases the combina­
tion of negative and regular masks is better than
regular masks alone.
Theorem: The lower and upper bounds on the size
of the set of masks, consisting of both types of
masks, necessary to activate an arbitrary set of
PE's are N/2.
Proof: Simi Jar to previous theorem. 0
~~-To quantify the additional power negative
masks contribute consider the number of dis­
tinct masks formable from these two schemes,
where two masks are considered to be distinct if
they activate different sets of PE's.
Theorem: The number of distinct masks formable
from the set of all possible regular and negative
PE address masks is 2(3m-m).
Proof: The regular PE address masks form 3m
distinct masks. The mask [-xm] does not acti­
vate any PE's. A negative mask with m-1 X's
has an equivalent regular mask, e.g. [xm-ll] =
[xm- 1o]. Each negative mask with fewer than
m-1 X's is distinct from any regular mask. There
are 3m-(2m+l) such masks. <:)

Let n be the number of X's in a mask. A reg­
ular mask activates 2n PE's and a negative mask
activates N-2n PE's.

If two bits are used to represent each mask
position, then a fourth symbol, in addition to
O, 1, and X, could be used. For example,
"S" could mean "same as the bit to the right, 11 so
that [lSX] would activate PE's 4 and 7, or "D"
could mean "different from the bit to the right,"
so that [DDX] would activate PE's 2 and 5.

The PE address masking scheme and its varia­
tions present a clear and concise notation for
masking. If we assume each PE knows its own
address then, using data conditional statements
for software decoding, the notation of PE address
masks could be implemented without additional
hardware cos ts.

The analyses and comparisons presented in the
full paper aid the machine designer in choosing
a masking system and a method to implement it.

ARCHITECTURAL DESIGN CONSIDERATIONS FOR A
FAULT-TOLERANT ARRAY PROCESSING SYSTEM (a)

Alexander Thomasian (b) and Algirdas Avitienis
Computer Science Department

University of California, Los Angeles
Los Angeles, California 90024

Summary

A large number of architectural issues should
be resolved in designing parallel processing sys­
tems for large scale numerical computations. We
discuss here the approach adopted in a particular
case, the design study of an array processing sys­
tem called the Shared Computing Resource - SCR
[l], [2]. - - -

Reatization of high computationat capacity
for array processing. High computational capacity
is achieved in the SCR system by means of two ar­
rays of homogeneous units. An array of multifunc­
tional, high-speed arithmetic processors is pro­
vided to perform arithmetic operations on large
arrays of data. An array of address generators
handles the fetching and storing of array operands
residing in a large, high-bandwidth memory.

Reatization of high performance for array
processing. The evaluation of expressions involv­
ing array operands is speeded up in the SCR system
by allocating several arithmetic processors and
address generators to the computation. For exam­
ple, the evaluation of the vector expression:
A+BxC+D, requires two arithmetic processors and
four address generators. The evaluation of vector
expressions can be speeded up in the SCR system by
applying segmentation, which consists of breaking
down long computations into segments which are
then distributed among the units. Because of the
additional setup time overhead incurred when this
approach is applied, task segmentation is per­
formed considering the length of the vector oper­
ands involved in a computation and the availabil­
ity of other tasks to be executed in the system.
This leads to the space•sharing approach, where
several computations can execute concurrently in
the SCR system.

Scheduting of computations. A centralized
scheduling unit performs the scheduling of compu­
tations in the SCR system. The scheduler keeps
track of the status of the SCR units and initiates
a computation when the resources required for the
execution of a computation become available. When
a computation is scheduled for execution, a con­
trol unit sets up the assigned arithmetic proces­
sors and address generators, as well as the data
transmission paths among them. The assigned units

. then proceed autonomously with the computation and
a very simple intercommunication scheme is

(a) This research was sponsored by the National
Science Foundation, Grant No. MCS72-03633 A04.
(b) Dr. Thomasian is currently with the Computer
Engineering and Information Sciences Department at
Case Western Reserve University, Cleaveland, Ohio.

184

required to coordinate their operation. The
scheduling and setup overhead is acceptable in
the SCR system, since it is prorated over a large
number of array elements.

Continuous avaitabitity. Continuous availa­
bi 1 ity is achieved in the SCR system by applying
the pooling approach, such that computations are
assigned dynamically to the SCR units. It is as­
sumed that the arithmetic processors and address
generators have builtin checking capability to
detect hardware failures. When a unit fails, the
computation whose execution was suspended is re­
enqueued for execution. A prerequisite of this
scheme is that each computation can only request
a subset of the SCR units.

Memory bandmidth utitization. Due to the
high computational capacity associated with mul­
tiple functional units, the performance of the
system might be constrained by the bandwidth of
the memory holding the array operands. The per­
formance of the SCR system can hence be increased
by providing an interconnection network among the
arithmetic processors. The data-flow graphs of
array computations are then mapped into this in­
terconnection structure by setting up the
configuration required by the computation.

Conditionat processing of vector operands.
At a small additional cost in hardware complexity
and making use of the multiplicity of functional
units in the SCR system, efficient processing of
conditional expressions with vector operands can
be realized. More generally, the SCR system can
be shown to be suitable for the direct implemen­
tation of most array processing operators in APL.

[1]

[2]

References

A. Thomasian, and A. Avitienis, "A Design
Study of a Shared-Resource Computing System,"
Proceedings of the Third Annual Symposium on
Computer Architecture, January 1976, pp. 105-
112.

A. Thomas i an, "A Design Study of a Shared­
Resource Array Processing System," Technical
Report UCLA-ENG-7702, Computer Science
Department, University of California, Los
Angeles, April 1977 .

PEPE HARDWARE AND SYSTEM OVERVIEW

Alf John Evensen
System Development Corporation

Huntsville, Alabama 35805

Summary

The PEPE (Parallel Element Processing
Ensemble) hardware has been produced and is
currently installed at the Ballistic Missile
Defense Research Center. The Experimental
facility includes a partial PEPE machine and the
software system needed for coding, evaluating,
and demonstrating experimental BMD processes on
the machine. The PEPE operates in conjunction
with a Burroughs Bl700 Test and Maintenance
computer and a CDC 6400/7600 host computer.
This paper presents current details relative to
the existing physical and performance charac­
teristics which are shown in Tables 1 and 2.
PEPE is configured as shown in Figure 1.

Reference

[l] Evensen, A. J. and Troy, J. L,, "Introduc­
tion to the Architecture of a 288 Element
PEPE," Proceedings of the 1973 Sagamore
Computer Conference on Parallel Processing.

Table 1. PEPE Element Bay Characteristics

Partitioning

System Capability

Bay Profile

Element

Board Dimensions

Multilayer Configuration

Dual In-Line Packages

Power Diasipatiou/Board

Power Disaipation/Eleiaent

Power Supply Dimensions

5.2 Volt Supply Load

2.0 Volt Supply Load

DimensiOns

Cooling

4 rows with 9 elements/row (36 elements/bay)

8 bays (288) elements

4 ravs of element boards and each row

provided with individual power supply

(9 elements)

6 boards/element

1611 x 1811 x .111

8 copper PC layers: cs1, s 2 , GND, Vee•
VEE' GND, s3, s4)

300 DIPa/board (maximum) attached by

means of sockets

130 W (average)

20 kW

18" x 17. 75" x 2611

560 A/supply

544 A/supply

8411 Height X 82" Width X 3~" Deep

Chilled-water heat exchanger 1 with forced­

air dual blower

185

Table 2. Control Console Characteristics

PC Boards 3 Rows of 54 Boards/row

Board Partitioning 10 ACU

11 CCU

11 AOCU

Board Configuration

Power Dissipation

Dimensions

Cooling

PEPE
TEST &
MAINTENANCE
CONTROLLER

p.EPE CARD &
ELEMENT
TESTER

10 ACU Memory

24 Input/Output Units

l EMC-ODC

11 ICL

6 MCDU

78 Spare Positions

2 Door Mounted Signal Distribution

System Boards

6 Layers (S1 , GND, VCC' VEE' GND, S2)

Plus Wire Wrap

7 kW

8411 Height X 8211 Width X 30" Deep

Chilled Water Heat Exchanger With Forced­

air Dual Blower

LCM

LCM
ACCESS
CONTROL

CPU (CDC 7600)

ARITHMETIC
CONTROL UNIT

ELEMENT
BAY l

ELEMENT
BAY 2

ELEMENT
BAY 8

Figure 1. PEPE Functional Configuratiun

NUMERICAL WEATHER PREDICTION IN
THE PEPE PARALLEL PROCESSOR

Howard 0. Welch
System Development Corporation

Huntsville, Alabama 35805

Abstract -- The mapping of a generic numeri­
cal weather prediction model onto the PEPE paral­
lel associative array processor is described in
this paper. The case study demonstrates that the
PEPE array processor can apply significantly
greater computational power to the problem than
can be achieved with available conventional
computer architectures. The paper describes PEPE
architecture, mapping of the finite difference
approximations onto the array, conversion from
Fortran to Parallel Fortran, run time measure­
ments, and comparative results.

The study shows that PEPE architecture is
well matched to finite difference approximations
for the solution of partial differential equa­
tions even though there is no hardware provision
for parallel interelement data transfer, provided
the finite difference mesh is fairly large.

Introduction

The PEPE processor was designed expressly to
handle enormous real time data processing loads
of the types encountered in ballistic missile
defense (BMD) applications. PEPE was designed as
an augmentation of a commercial serial computer
to assume that part of the BMD data processing
load having the following characteristics:

1) Correlation of input data with the
existing data base by one or more
attributes.

2) Repetitive, highly arithmetic pro­
cessing on a large number of indepen­
dent data sets.

3) Multi-leveled ordering and search of a
large, complicated data base.

The PEPE computer architecture, a parallel
array with three independent processors per array
element and associatively addressed operand
memory, is well suited to this data processing
problem [lJ. The BMD requirements for radar
return correlation, digital filtering, tracking
and radar resource allocation are solved in the
three independent PEPE processing units described
in the following section.

PEPE, while designed specifically for the
BMD problem, has a general purpose instruction
set and the PEPE parallel Fortran language (PFOR)
does not limit the user to any specific appli­
cation [2]. There is therefore a reasonable
expectation that the potentially enormous data
processing power inherent in parallel associative
architecture might be applied to other problems
which currently severely stress or are beyond the

186

capability of the most powerful commercially
available computers.

The second order partial differential equa­
tions of fluid flow do not, in general, have
analytic solutions and hence are solved only with
numerical methods which require great computa­
tional power. Of these equations, those describ­
ing hydrodynamic flow, global weather models, and
magnetohydrodynamic models are of current inter­
est. [3J[4J[5]

Parallel computer architectures expressly
designed for solution of partial differential
equations have featured provision for interelement
data transfer to solve the finite difference
representations of the equations. This paper
shows that PEPE associatively addressed array
elements suffice for interelement data transfer
given a large finite difference lattice; and
furthermore that the PEPE unstructured array
architecture provides certain advantages over a
machine with direct hardware interelement communi­
cations.

SDC has selected the global weather modeling
problem as representative of the general class of
partial differential equations and has coded and
executed a benchmark supplied to SDC by the
Geophysical Fluid Dynamics Laboratory, Princeton
University. This paper describes the implementa­
tion and results of the benchmark effort.

PEPE Architecture

PEPE (Figure 1) consists of an ensemble of
independent digital processing elements, indefi­
nite in number, which operate in parallel under
global control. The current 288 element PEPE
configuration [lJ has three modules, each con­
sisting of an independent global control driving
an associated processing unit in each PEPE pro­
cessing element. The three processors in the
element share a common element data memory for
parallel operand storage. The three modules are
optimized for correlative data base search and
data input, floating point arithmetic and associa­
tive data base search and output respectively,
reflecting a design response to the BMD data
processing problem.

Each control unit has a data memory and a
program memory independ~nt of the other global
control units. The global control units have a
limited data processing capability, the instruc­
tion repertory being limited to logical test,
branch, index register and input/output control,
plus sufficient integer arithmetic to compute
indexes and addresses. This instruction set
serves primarily to control the parallel instruc-

tion sequence rather than to execute code
directly related to the solution. Parallel and
global control unit instructions are stored in
the program memory associated with the global
control unit.

INPUT
DATA

PEPE ARCHITECTURE

CORRELATION
CONTROL UNIT

' INPUT DATA i DECODED
INSTRUCTIONS

CORRELATION
UNIT

ELEMENT 1

CORRELATION
UNIT

ELEMENT N

Figure 1.

HOST COMPUTER

ARITHMETIC
CONTROL UNIT

MEMORY

MEMORY

OUTPUT
CONTROL UNIT

DECODED i
INSTRUCTIONS

ARITHMETIC
UNIT

OUTPUT
UNIT

ARITHMETIC
UNIT

OUTPUT
UNIT

PEPE Architecture

OUTPUT
DATA

t OUTPUT
DATA l DECODED
INSTRUCTIONS

Parallel instructions are decoded in the
global control units to cause a microinstruction
sequence of control pulses to be moved from a
wide bandwidth, read-only memory to the parallel
instruction bus for transmission and execution in
the processing elements. The control pulses
cause simultaneous and identical operations in
each of the active processing elements.

Each processing element has three units,
corresponding to and independently controlled by
the three global control units by means of three
instruction/data busses. Each processing element
has 2048 words of memory shared by the three
element processing units for parallel operand
storage.

Each of the three element processing units
has an associated activity indicator which can be
programmed active or inactive according to the
contents of the unit's accumulator or other
condition register. The parallel instruction
stream from a control unit is routed only to
active element processing units. A full set of
parallel instructions, analogous to logical test
and branch instructions, allow the programmer to
set activity and hence to control the set or
subset of elements which participate in proces­
sing. The subset can be selected by data attri­
bute rather than data location address, hence,
the claim for associative memory in PEPE. A
hardware extremum search algorithm is included in
the parallel instruction repertory [6]. This
instruction allows selection of the processing
element with the largest (or smallest) accumulator
value, providing a data ordering capability in
the PEPE hardware.

187

Consider the aggregate of element memory as
a two-dimensional MxN memory array with any
column formed by the M words of a single element
memory, and rows formed by the N PEPE processing
elements. Rows are addressed conventionally by
the parallel instruction operand address; each
row consists of a vector whose elements are
defined by the set of active processing elements,
where activity is specified by the activity
selection instructions described above. Arithme­
tic and logical operations are performed simul­
taneously on all vector elements so that data
access and manipulation in the row dimension,
i.e., across the processing elements, uses the
same processing time for n vector elements as for
one element in the array or for none. The PEPE
instruction f onnat has no direct hardware pro­
vision for addressing any specific physical
element and there is no provision for specifying
any set size (except for isolation of a single
element).

Direct communication between two physically
adjacent PEPE elements is not provided, reflec­
ting the BMD origins of PEPE architecture. The
only mechanism available for interelement data
transfer is to move data from a given element to
the global control unit and then back to other
elements. This process is serial in nature and
hence slower than purely parallel operations in
PEPE.

GFDL Benchmark

The Geophysical Fluid Dynamics Laboratory
(GFDL) benchmark is a program for evaluating
large computer performance. The benchmark
resembles currently used atmospheric simulation
models but does not contain a complete set of
consistent atmospheric processes. Its purpose
is the exercise of the computer rather than a
physical simulation.

Physical processes modeled in the bench­
mark include horizontal and vertical advection,
earth's rotational effects (Coriolis Force),
horizontal pressure gradient, non-linear horizon­
tal viscosity, and diffusion, and heat convec­
tion. Excluded physical processes include
vertical diffusion, a hydrologic cycle, radiation
and surface effects. See Appendix A for the
differential equations governing the model.

The prediction domain is the Northern and
Southern hemispheres, each projected on a polar
stereographic plane tangent at the pole. Pro­
vision is made to confine flow within a hemis­
phere. The vertical domain is divided into
nine spatially unequal layers defined in a
normalized pressure (sigma) coordinate system.
See Figure 2.

At each time step, the tendencies of the
prediction variables are evaluated in a vertical
slice of nine rows which form a plane of the
finite difference lattice. The total length of
each row is 161 points, although computations
are carried out at only a limit number of
points, the number being a function of latitude

and averaging 125 over a single time step.

-4--l--+---- k + l

--+--+--;1----- k

--+--+---<>----- k - l

i-lii+l

i - Longitudinal Index
j - Latitudinal Index
k - Altitudinal Index

Figure 2. Finite Difference Lattice

PEPE Implementation

General Characteristics

Time is advanced in the model by the equa-
tion

at + 1 = at - 1 + 2~t ~~t for all t > 0

where a represents any prediction variable and
the superscript refers to time.

The finite difference representations of
the equations take the form

t+l t-1
a. 'k = f(ai'k l.J J ,

t t
aijk, ai ± 1 j ± 1 k ± 1)

where the subscripts ref er to spatial position
in the finite difference lattice.

Data for the finite difference lattice are
stored in columns, 9 points deep. The predic­
tion variables require 39 single precision
computer words of storage,'hence the lattice of
161 x 125 columns requires about 785000 words
of storage. The integration algorithm requires
space for three complete sets of these data for
a total of 2.35 million computer words. This
storage requirement exceeds the capacity of
PEPE element memory so that mass storage,
accessed through the CDC 7600 host, is used.
The time update is performed one lattice plane
at a time. A plane represents all points at a
given latitude and may vary from 25 to 161
points. Each column of a plane is evaluated in
a PEPE element so that a complete plane is
processed as vectors of the prediction variables.

The PEPE correlation unit is used as the
input device. Data are read from mass storage
by the host, formatted into messages and trans­
mitted to PEPE. Two messages per lattice
column are required, one for the time step t - 1
values and one for the time step t values.
Since time t data from the adjacent lattice

188

columns are required for update of any column,
the correlation unit stores data from a given
column into the two logically adjacent elements.
It is not necessary that data from adjacent
lattice columns be stored in physically adjacent
PEPE elements since the associative addressing
of elements suffices to find logical adjacencies.

Adjacencies in latitude and altitude are
accessible directly in element memory and hence
do not require the redundant data storage de­
scribed above for the longitudinal adjacencies.

Programs

The PEPE implementation of the GFDL bench­
mark was designed according to the following
criteria:

1)

2)

3)

Provide maximum vector lengths for
the predictions for maximum execution
time reduction over the serial imple­
mentation.

Provide maximum overlap of correlation
unit and associative output unit
operations with arithmetic unit
operations.

No changes to the algorithm are made,
i.e., the data are processed in the
same order and with the same arithmetic
operations as in the serial implemen­
tation.

The code conversion for PEPE implementation
falls into 6 categories:

1) FORTRAN subroutines essentially un­
changed.

2) FORTRAN subroutines subtantially
modified.

3) Subroutines rewritten into PFOR,
either retaining their distinct
identity or incorporated into other
subroutines.

4) New FORTRAN code.
5) New PFOR code.
6) Deleted subroutines.

The serial implementation consists of 33
code segments (subroutines plus the main program)
with 631 lines of FORTRAN code excluding data
descriptors and nonoperable statements. The
PEPE implementation consists of 23 code segments
with 854 lines of code. Of this code, 229
lines are FORTRAN, executed in the host and 625
lines are PFOR executed in PEPE.

Of the host code, three subroutines are
directly taken from the serial implementation.
Two of them, DUMDAT and CONST are essentially
unchanged while the third, GFDL, is approxi­
mately 50% rewritten and radically restructured
to interface with the PEPE/7600 Real Time
Executive.

The PEPE or PFOR code consists of 17 code
segments. Twelve of these segments, totaling
519 lines of code, are direct translations to
PFOR of 30 FORTRAN subroutines totaling 481
statements. Many small subroutines were incor­
porated into the calling code segment, either
because the subroutine was specific to the data
structure of the serial implementation or
because the number of formal call parameters
appeared difficult to handle in the parallel
implementation.

Five new PFOR routines totaling 106 state­
ments were written. Four of these provide the
message handling code for input and output of
data and constants while the fifth is a segment
of the control program GFDL moved to PEPE.

The primary reasons for the 35% increase
in the number of lines of code appear to be
from four causes. First, calculation of some
intermediate variables is done three times; for
the i - 1, i, and i + 1 indexes, in order to
obviate any requirement for interelement data
transfer. Second, 18 FORTRAN subroutines were
incorporated into in-line code, in some cases
several times. Third, the new subroutines to
interface the host and PEPE represented new and
unique requirements. Last, certain routines
were highly logical and branched in the FORTRAN
version and did not efficiently convert to
PFOR.

Of the 625 lines of PFOR code, approximately
451 lines or 72% was directly transferred from
the FORTRAN with only a change in the index
specification of the data items.

Data Base Conversion. The major design
task in converting a program from serial to
parallel implementation is the conversion of
the data base. PEPE has a complicated data
memory structure in that it has element memory,
three global data memories and, in the case of
the CDC 7600, a large core, small core and mass
storage.

This conversion placed a major emphasis on
the PEPE configuration, hence little effort was
expended to simplify or .reduce host data storage
requirements even in cases where redundant or
nonrequired data space was used.

The mass storage interface was essentially
left unchanged, except for the initial mass
storage reads necessary to initialize PEPE at
the start of each time step.

Data is read from disc to the CDC 7600
Small Core Memory (SCM) and then to Large Core
Memory (LCM), one lattice plane at a time. The
plane of colatitudinal lattice points 9 rv1S
deep is stored in PEPE as columns with longitu­
dinal index i distributed across the PEPE
elements, i.e., each i entry is assigned to a
PEPE element. The immediately neighboring
columns, indexes i - 1, and i + 1 are also
stored in the i element so that there will be

189

no requirement for interelement data access
during the update. Three lattice planes,
indexes i - 1, j and j + 1 are also necessary
to evaluate the finite difference equations.
The time update equation requires the variables
for point ijk at the previous time step.

Finally, the overlapped I/O in PEPE requires
that space be allocated for plane j + 2 and for
the updated point at plane j - 1. This totals
14 lattice columns stored in each PEPE element
memory. Figure 3 illustrates the memory
configuration.

T T T
exi-lj+2 exij+2 exi+lj+2

T T T
exi-lj+l exij+l exi+lj+l

T T T
exi-lj ex .. exi+lj l.J

T-1 T T-1
exij+l exij-1 exij+2

T+l T+l
ex .. exij-1 l.J

Figure 3. PEPE Element Memory Map

Performance

Measurement Methods

The PEPE real time clock, counting at a
5 x 106 Hz rate, is used for all execution time
measurements. The clock provides measurements
to a 200 ns granularity. There are 8 additional
counters/timers in the PEPE arithmetic control
unit, under program control, which can measure
127 different PEPE hardware events or time
intervals assoc.iated with those events. Events
include control unit instruction execution,
parallel instruction execution, element memory
conflicts, etc. Timing in the eight counter/
timers takes place to a granularity of 100 ns.
PEPE instructions control the reading and
starting of the clock and counters.

Measurement Limitations

All ti.ming informa-tion was collected on
the Advanced Research Center PEPE hardware
which has 11 processing elements. Execution of
a problem which requires 161 elements maximum,
125 elements average, may be timed with confi­
dence on the 11 element PEPE due to the unstruc­
tured nature of the associative array archi­
tecture. The parallel instruction set execu­
tion time is not, in general, sensitive to the
number of active elements in the ensemble.
Parallel code executes in exactly the same
time with 11 elements, 125 elements or 161
active elements. The only exceptions to
this in the GFDL benchmark is in the
mixing ratio adjustment subroutine MRADJ
where interelement transfer of the mixing
ratio variable is required. The execution
time of this subroutine is strongly depen-
dent on the calculated value of mixing
ratio at each pressure altitude point in the
updated lattice plane. Since no valid values
of mixing ratio are calculated, execution time
for MRADJ benchmark represents an absolute
minimum.

Execution Time

Execution time is measured over a single
lattice plane and then extrapolated to a 161
plane time step. The lattice plane was selected
to have 125 columns, the average number of
columns per time step. A 125 column lattice
plane requires execution of 72254 instructions.
Of these, 42565 instructions are executed in
the parallel elements and 29689 are executed in
the control unit, with the control unit instruc­
tions substantially time overlapped with the
parallel instructions. The average length in
the 161 planes is 125, hence PEPE executes
125 x 42565 + 29689 = 5350314 instructions per
plane. Measured time per plane is .024703
seconds giving an effective average instruction
execution rate on the GFDL problem of 216.5
million instructions per second. A complete
time step of 161 lattice planes requires 3.977183
seconds to complete. This is a minimum time
due to the mixing ratio adjustment calculation.

Table I describes performance of various
machines executing 257 time steps on the GFDL
benchmark and the extrapolated time for PEPE to
execute the same problem. The estimated PEPE
time is a minimum time and would be larger if
the full 161 element PEPE were available to
allow MRADJ to run on correct data.

190

Table I. Comparison Execution Times

MACHINE TIME (MIN)

IBM 360/91 245
CDC 7600* - 205

IBM 360/195 120
TI ASC (FOUR PIPE) 20

PEPE/CDC 7600* 17

*EXTRAPOLATED TIME

Table II provides a breakdown of executed instruc­
tions and execution times of the subroutines in
the benchmark. Totals differ slightly from above
due to slight differences in measurement techni­
que and overhead.

Table II. Subroutine Execution Statistics

CONTROL PARALLEL EXECUTION
SUBROUTINE UNIT INST INST µS

NEXTRW 1544 2366 1336.8

IIRDIFl 1566 1556 1067 .4

INNERl 25765 36483 21282.0

UTAUP 195 440 217 .1

PSTAR 154 210 124.4

!INT 508 349 293. 0

KPHI 1144 1212 805.5

TTAUP 288 599 303.3

RTAUP 189 385 196. i

VTAUP 167 205 127 .2

MRADJ 111 92 69.4

Appendix A

GFDL Benchmark Differential Equations

au
at= (1)

av
at= -

a mu a mv a -
m[- (v -) + -(u -)] - -(wv) -ax p* ay p* 3Q

(2)

[f - m(& - '*-->]u - P*(~aa)P + F
¥* p* y y

aat(Pu) = -m2[L(ru) + L(rv)] - L[hw)r] + ax ay aQ

Fr + A(Pu)N

a
it1'*

2 -m
1 f (av) + av)dQ

0 ax ay

2 2
DT =L<~> _Lem v)

ax p* ay P*

2 2
D =Lem v> +b~> s ax p* ay h

K - .:..!. jD2 + D2
- 2 .,T s

m

P* dx
u = 2 dt

m
v = p* ~

2 dt
m

m = 802 + x2 ~ y2

802

f 14.584 x 10-5 (z-m)
m

M = 2m
802

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

191

u, v

T

heat convection where the lapse
rate exceeds moist adiabatic

; moisture adjustment to avoid
negative mixing ratio

GRID ORIENTED, PRESSURE WEIGHTED
HORIZONTAL WIND COMPONENTS

TEMPERATURE

R MIXING RATIO (MASS OF WATER VAPOR/
MASS OF DRY AIR)

P* PRESSURE AT SEA LEVEL

TIME ADVANCE

·(dCI) cit-l + 2At at t for all t > O

References

(20)

(21)

(22)

[l] Evensen, A. J. and Troy, J. L., "Introduc­
tion to the Architecture of a 288 Element
PEPE," Proceedings of the 1973 Sagamore
Computer Conference on Parallel Processing.

[2] Dingeldine, J. R., Martin, H. G. and
Patterson, Wm., "Operating System and
Support Software for PEPE," 1973 Sagamore
Conference on Parallel Processing.

J3] Gates, W. L., Balian, E. S., Kahle, A. B.,
and Nelson, A. B .. , "A Documentation of the
Mintz-Arikawa Two Level General Circulation
Model," APRA Document R-897-ARPA, December
1971.

[4] Daley, J. and Underwood, B. D., "Short Term
Weather Prediction on the Illiac IV," 1975
Sagamore Computer Conference on Parallel
Processing.

[5] Chapman, D. R., Mar~, H. and Pirtle, M. W.,
"Computers Vs. Wind Tunnels for Aerodynamic
Flow Simulations," Astronautics and Aero­
nautics, April 1975.

192

[6]. DiVecchio, M. C., "Design and Implementa­
tion of a High/Low Magnitude Search Instruc­
tion on PEPE," 1975 Sagamore Conference on
Parallel Processing.

PEPE APPLICATION TO BMD SYSTEMS

Charles E. Blakely
System Development Corporation

Huntsville, Alabama 35805

Abstract -- The PEPE Development Program,
for the past 4-1/2 years, has been concerned
primarily with the design and development of an
experimental hardware and software facility for
conducting research on parallel and associative
data processing techniques as applied to Ballistic
Missile Defense (BMD) service. Preliminary
investigative work on PEPE applications started
in January 1974 employing functional simulation
tools.

Concurrent with the functional simulations,
an analytic benchmarking effort on the hardware
was conducted. The benchmarks were primarily BMD
routines to collect data on the hardware
functions.

Some results of the PEPE benchmarking study
for a Kalman Filter are presented and discussed
in the paper. The PEPE results are compared with
the results for several other computers bench­
marked with the same filter.

The results of the BMD benchmark studies
have provided data for comparing the performance
of PEPE, CDC 7600, CDC 7700, TI-ASC and CRAY-1.

Curves are presented for the combined radar
scheduling and object tracking function for the
PEPE, CDC 7700, and the CRAY-1. These curves
indicate that the PEPE can out perform the other
computers for systems as small as 108 elements.

Introduction

The PEPE (Parallel Element Processing
Ensemble) Development Program, for the past 4-1/2
years, has been concerned primarily with the
design and development of an experimental hardware
and software facility for conducting research on
parallel and associative data processing techni­
ques as applied to Ballistic Missile Defense
(BMD) service. The experimental facility includes
a partial PEPE machine and the support software
system needed for coding, evaluating, and demon­
strating experimental tactical processes operating
on the machine in a simulated BMD environment.

Preliminary investigative work on PEPE
applications work involved an analysis of the
utility of PEPE as an adjunct to the CDC 7700
data processor. The study objective was to find
out if it were possible to secure a moderate
improvement in the data processing performance
with no hardware modification other than the
addition of PEPE to standard CDC 7700 interfaces,
and with minimal change to existing software.
The study successfully achieved its objective
with a rather simple implementation of PEPE in a
fast response "offloading" configuration, and led
to another study to develop a more sophisticated,
higher performance implementation, but still with

193

the constraint that changes to existing software
be minimal. Results of this study were demon­
strated using functional simulations. This study
successfully achieved its objectives in July
1975.

The above demonstration was followed by a
study in which the minimum software breakage
constraints were relaxed. The results of this
study, which permitted a much higher performance
implementation, were demonstrated by functional
simulations.

Concurrent with the functional simulations,
an analytic benchmarking effort on the hardware
was conducted. The benchmarks were primarily BMD
routines to collect data on the hardware func­
tions. The results of the BMD benchmark studies
have provided data for comparing the performance
of PEPE and the CDC 7600, CDC 7700, TI-ASC and
CRAY-1.

Benchmarks have also been run which permit
a comparison of PEPE with the STAR-100, IBM
370/195, AMDAHL 470/V6 and the TI-ASC 4 pipe.

Curves have been derived for the combined
radar scheduling and object tracking functions on
the CDC 7700, PEPE and the CRAY-1. These data
indicate that the PEPE can outperform the other
systems with PEPE limited to 108 parallel ele­
ments.

Offload Studies and Results

A study was made to identify the heavy
resource users in a BMD system, and to investi­
gate their behavior throughout a threat. The six
highest resource users were identified as:

Radar Interface Processing
Object Tracking Processing
Interceptor Control Processing
Track Initiate Returns Processing
Track Initiate Designation and Beam

Pointing Processing
Passive Object Discrimination Processing

The three tasks with the most potential for
implementing on PEPE were Radar Interface Pro­
cessing, Object Tracking and Passive Discrimi­
nation. The main considerations in choosing
these tasks were the CPU resources required by
the tasks, commonality of data base, and inherent
parallelism. The average CPU resource require­
ments for the three tasks were 28.32%, 21.39% and
9.4%, respectively, for Radar Interface Proces­
sing, Object Tracking and Passive Discrimination.

A design, implementing these three functions
on PEPE, was generated and implemented in an
existing functional simulator. The Object

Tracking and Passive Discrimination tasks were
implemented in PFOR [l] (Parallel FORTRAN) di­
rectly on the parallel elements controlled by the
Arithmetic Control Unit (ACU); however, the Radar
Interface Processing (radar scheduling) had to be
redesigned for implementation· on PEPE. The
redesigned task consisted of two parts: (1) a
radar returns sorting task (SORT) and (2) a radar
pulse schedular (SCHED). SORT was designed to be
implemented on the Correlation Control Unit (CCU)
while SCHED would operate on the Associative
Output Control Unit (AOCU).

A PEPE/7700 system was designed with the
radar data processing subsystem interface con­
nected to the PEPE as shown in Figure 1. The
Radar Interface, Object Track task and the
Passive Discrimination function were implemented
on the PEPE as described above. The incoming
data were sorted in the PEPE CCU and those data
not needed in PEPE were transmitted directly to
the 7700.

TRACK
RETURNS

CDC 7700

RADAR RETURNS

loops. Additional statistics obtained from the
simulator are shown in the table below.

HOST ONLY 7700-PEPE 7600-PEPE

AVERAGE CPU 1 USAGE (%) 95.1 36.6 86. 7

AVERAGE CPU 2 USAGE (%) 82.5 61.7 ---
AVERAGE CPU USAGE 88.8 49.2 86. 7

LCM USAGE (%) 17 .4 13.2 12.6

LOOP 1 WAIT (MSEC) 1.419 1.257 1. 747

LOOP 2 WAIT (MSEC) 1.882 .172 1. 742

LOOP 3 WAIT (MSEC) 1..725 .268 3.473

LOOP 4 WAIT (MSEC) 3.011 .446 7.680

LOOP 6 WAIT (MSEC) 8.317 1.044 12. 973

LOOP 7 WAIT (MSEC) 13.164 .499 20.527

All of the data in the table are average
percent utilizations and wait times in milli­
seconds. Data with respect to maximum, minimum
and standard deviation (cr) for CPU usage are
presented in the following table.

7700 PEPE/7700

CPU 1 CPU 2 CPU 1 CPU 2 7600 PEPE/7600

MAXIMUM 100% 100% 64. 7% 81.5% 100% 100%

MINIMUM 65.2% 48.8% 16.4% 39.9% 100% 57%

AVERAGE 95.2% 82.8% 36.6% 61.7% 100% 86.7%

STD DEVIATION 8.72% 10. 95% 9.89% 9.03% 0 11.1%

Continuous curves of CPUl and CPU2 loading
are shown in Figures 2 and 3, respectively. The

PEPE unbalance between CPUl and CPU2 loading was
caused by dedicated tasks left on CPU2.

AOCU

RADAR
COMMAND

EM

EM

0
0

0

0

EM

CCU

OBJECT
TRACK
RETURNS

Figure 1. PEPE/7700 Data Flows

A simulation of the above system, employing
the SDC PEPSIE executive, was implemented and
driven by a simple threat generator. The results
of the simulation runs indicate that the average
7700 CPU loading was reduced by 40%, queue build­
ups were almost eliminated, 7700 CPUl peak loading
never exceeded 65% utilization, 7700 CPU2 peak
loading never exceeded 80% and polling loops
delays were significantly reduced for all polling

~

~

~
~

~

194

100.0

80.0

4- 7700

60.0 60.0

40.0 40.0

~ PEPE/7700

20.0

o.o
o.o 2.0 4.0 6.0 8.0 10.0 12.0

SIMULATION TIME

Figure 2. CPU! Utilization Versus Time

100.0

.,_ 7700

80.0

...__ PEPE/7700

60.0

40.0 40.0

20.0

o.o
0.0 2.0 4.0 6.0 8.0 10.0 12.0

SIMULATION TIME

Figure 3. CPU2 Utilization Versus Time

Subsequent to the simulation study, the most
important resource users implemented on PEPE have
been benchmarked on the hardware. The results of
these studies are presented in the next section.

BMD Benchmarks

The results of a PEPE benchmarking study for
a Kalman Filter object tracking routine are
presented in this section. The particular
filter implementation employed in this study was
a seven state fully coupled version developed by
Teledyne Brown Engineering several years ago for
a Computer Comparison study. The filter is
referred to as the TKPRC subroutine throughout
this paper.

The TKPRC subroutine was run on the TI-ASC
and compared with the CDC 7600. The code was
then extensively revised to adapt it to the ASC
as a result of this Comparison (2]. The recoded
version for the ASC showed a very substantial
reduction in execution time, which was attributed
to the increase in code vectorization. The
subroutine executed in virtually a pure vector
mode at this point.

The initial code as run on the ASC was then
executed on the CDC 7600. The one exception was
that the ASC FORTRAN extensions were replaced by
standard FORTRAN statements for the CDC 7600. It
is interesting to note that the execution time on
the 7600 was approximately 20% less due to the
vectorizing done for the ASC.

The filter implemented on the CRAY-I was the
version run on the CDC 7600. Thus the subroutine
TKPRC was initially optimized for the TI-ASC when
run on the CDC 7600 and the CRAY-1. The filter
initially implemented on PEPE was the original
unoptimized version of TKPRC. It was subsequently
optimized for matrix operations as described in
the next section.

195

Implementation On PEPE

The original version of the TKPRC subroutine
was translated directly from the FORTRAN code to
PFOR. The time required to plan the conversion,
prepare the coding sheets, and obtain the first
debug run was 8 hours .

When this version was run and timed on PEPE,
the execution time was 6.98 milliseconds. An
examination of the code revealed that the covar­
iance matrix prediction process was extremely
inefficient on PEPE. The covariance matrix
prediction process was recoded in PFOR (not
assembler) and new timing runs made. Subse­
quently, all the matrix operations were recoded.
The recoding consisted of removing a total of 20
lines of FORTRAN code and adding 12 lines of new
code. The results of this change was to reduce
the run time to 4.10 milliseconds.

Results

Table I contains the results of running and
timing the subroutine TKPRC on the PEPE hardware.
Several interesting results are contained in
Table I. The most impressive result is the large
reduction in the number of sequential instructions
executed when the matrix multiply was optimized
(reduced to 4920 from 20,964). This largely
accounted for the reduction from 6.8588 to 4.1446
milliseconds run time. Another interesting
result is the 2.57 MIPS effective speed for the
ACU. This result is due to the overlapping of
the parallel and sequential instruction executions.

Table I. Data for One Cycle of Filter
for N Objects

MATRIX MULTIPLY BEST SO
ORIGINAL CODE OPTIMIZED FAR

NO. OF PARALLEL
INSTRUCTIONS
EXECUTED 6349 5744 5656

NO. OF SEQUENTIAL
INSTRUCTIONS
EXECUTED 20964 4920 5684

RUN TIME 6. 8588 MILLISEC 4 .1446 MILLI SEC 4 .1036

PARALLEL INST. TIME 4. 2435 MlLLlSEC 3. 9870 MILLI SEC 3. 9699

SEQUENTIAL INST. TIME 2 .1066 MILLI SEC 0. 5040 MILLISEC 0.4804

MIPS 3.98 2. 57 2.52

Figure 4 shows a comparison of the run times
for the CDC 7600, TI-ASC and the PEPE. The data
for the CDC 7600 and the TI-ASC were taken from
(2]. Figure 4 shows a crossover at 7 targets for
the PEPE versus the CDC 7600. This means that
the PEPE is more efficient for object tracking
alone when the number of targets exceed 7.
Stated another way, the full PEPE is 41 times as
powerful as the CDC 7600 while tracking 288
targets. When compared with the TI-ASC, the
crossover is at 8 targets or 36 times more
powerful for a full target load.

13.0

12.0

2 3 5 6 8 9 10 11 12 13 14 15 16 17

N-OBJBCTS

Figure 4. TRACK Benchmark - Subroutine TKPRC,
Serial/Vector Crossover

The results for the TKPRC benchmark on the
CRAY-1 are for the CDC 7600 optimized version of
the filter [3]. That is, the filter on the 7600
would be approximately 15% better than the
results from [2]. The filter was hand coded in
assembler for the CRAY-1 since a FORTRAN Compiler
did not exist at that time._3Employing the
results from [3] of 2.17*10 seconds for 64
objects, the PEPE is 2.4 times more powerful than
the CRAY-1 for object track. The crossover is at
121 targets. These results are considered to be
an optimistic upper bound for the CRAY-1 due to
the fact that a Fortran compiler was not used in
the tests.

Multiple Task Performance

The preceeding results were derived for a
single function, object tracking, operating on
each computer. The true performance of a computer
can only be assessed when multiple tasks are
present. In this section the preceeding results
are extrapolated to the combined task of object
tracking and radar scheduling. Since TKPRC track
filter benchmark has been run on all the computers
discussed in this paper, run time equations can
be derived. The method for deriving timing
estimates for the combined functions is discussed
below.

Figure 5 contains the plotted data for TKPRC
on the CRAY-1 computer. The data have been
reduced to run times for one iteration versus N
objects. The best fit to the data appeared to be
a straight line of the form

y = m x + b.

The results for the data in Figure 5 are

y(CRAY TKPRC) = .2939 + .02923 N

where y is the run time in milliseconds. The
data in Figure 4 can also be fitted to derive a

196

similar curve for the CDC 7600 [4]. The results
were

y(7600 TKPRC) = .5 + .SN milliseconds.

Run time estimates for the RADAR SCHEDULER
function (operating on the 7600) were derived
from the PEPE applications simulator results.
The time required to consider M objects for
scheduling by the Radar Interface Processing
function (in milliseconds) was found to be

y(7600 SCHED) = .35889 + .1298 M. (a)

Run times for Radar Scheduler operating on
the CRAY-1 were derived in the following manner.
Assume that Radar Scheduler would be implemented
in the sequential unit of the CRAY-1 since it
does not appear to len.d itself to vectorizing.
The cycle time of the CRAY-1 is 12 nanoseconds
which is 2.2 times as fast as the 27.5 nano­
seconds for the 7600. Using these assumptions,
the equation for the CRAY-1 Radar Scheduler run
time in milliseconds is

y(CRAY SCHED) = .163 + .059 M.

The above equations do not contain any
allowances for differences in the number of
machine cycles required to execute an instruc­
tion, overhead, interrupts, etc. Since the
sequential and vector operations are mutually
exclusive in the CRAY-1, the combined run time
for Object Tracking and Radar Scheduling is given
by

y(SCHED + TKPRC) = .02923 N + .059 M + .457.

The PEPE run time for the TKPRC track
filter is a constant of 4.1 milliseconds for up
to 288 objects or the maximum number of elements
in the system. Therefore, the PEPE TKPRC equa­
tion, in milliseconds, is

y(PEPE TKPRC) = 4.1.

The PEPE run time for the Radar Scheduler
function taken from the Simulator mentioned above
is given by

y(PEPE SCHED) .4 + .0432 M.

(a)Subsequent studies have shown that the
coefficient of M may be as large as .25.

"'
~ .,
"' H
li1
i::i
[;!
H

2.25

LillEAR FIT T • .2939 + .02923N

2.00

1. 75

1.50

1.25

1.00

• 75

.50

.25

.00
8 16 24 32 40 48

N-OBJECTS

Figure 5. CRAY-1 Timing Data for the
TKPRC Benchmark

56

The above equations have been plotted on
Figure 6 as a function of the number of objects
in track plus the number of instances inputted
for radar scheduling [5]. The results indicate
that a PEPE can outperform the other systems for
systems as small as 3 cabinets (or 108-elements)
of parallel elements. Larger systems permit
large reserves for growth.

PEPE(TKPllC)

'·'

i:E' n ~-~~ n
-~ ciS :~ ,_ ~c ~~

Figure 6. Combined TKPRC and TRIP Run Times

Matrix Factorization

A matrix factorization benchmark, employed
in a benchmarking effort at the Systems Engineer­
ing Laboratory University of Michigan [6] was

197

programmed and run on the PEPE. This benchmark
is an example of the application of a problem,
for which the machine was not designed, to the
PEPE. The matrix factorization process requires
the transfer of data between the elements which
is an essentially serial process in the present
design. Figure 7 shows the PEPE results super­
imposed on the University of Michigan results.
It is evident from these data that PEPE is
competitive on this problem for very large
matrices. The fitted equation for these data is

T(nanoseconds) = 6544.28 + 5705.0N + 4417.86 N2

10

.1

.01

i
M

.001

.0001

BEST HATH.IX FACTORIZATION TIMES

ASC (1&4-PIPES)
CDC 7600
CllAY-1
STAI 100
IBM 370/195
AMDAHL 470/V6
PEPE

.00001

10 100

MATRIX SIZE (N)

Figure 7. Best Matrix Factorization
Times

Summary and Conclusions

It has been demonstrated through simulati"ons
and benchmarking that the PEPE can be introduced,
as designed, into existing BMD systems and
assume approximately one-half of the CPU load.
If PEPE were designed into the system at the
beginning, it is estimated that it could assume
up to 75% of the CPU loading. The PEPE system
provides for considerable growth by adding cabinets
of parallel elements up to 288.

Benchmarking efforts are continuing to
demonstrate the application to other areas of the
BMD problem, such as the processing of optical
data.

Note

The data and conclusions presented in this
paper are the results of a preliminary evaluation
effort. These conclusions do not represent an

official BMDSCOM position since further detailed
studies are now underway utilizing a different
design configuration.

References

[l] Dingeldine, J. R., "Parallel Fortran (PFOR),
PEPE Assembly Language (PAL) User's Manual,"
Contract No. DAHC60-73-C-0060, System
Development Corporation, TM-HU-046/400/0l,
1 August 1976.

(2) Bakkegard, I. G,, Eris, D., "ASC Timing
Study," System Development Corporation,
Contract No. DAHC-60-73-C-0094, TM-(L)-HU-
180/000/00, 20 December 1974.

{3] Pessoney, M. D., "CRAY-1 Vector Code Bench­
mark Results," Analysis International
Corporation', Project No. PF2174, Document
No. HSV/76-001, 1 March 1976.

[4) Moore, P,, "CRAY-1 Benchmark Report,"
System Development Corporation, Contract No.
DASG6075-C-0047, Report No. TM-HU-
215/000/00, 5 December 1975.

[5] Blakely, C. E., "PEPE Benchmark Studies:
Object Tracking and Radar Scheduling,"
System Development Corporation, TM-HU-
059/000/00, Contract Number DAHC60-73-C-
0060, 16 May 1977.

[6] Calahan, D. A,, Joy, W. N,, Orbits, D. A .• ,
"Preliminary Report on Results of Matrix
Benchmarks on Vector Processors," Dept. of
Electrical and Computer Engineering, Systems
Engineering Laboratory, The University of
Michigan, SEL Report No. 94, 24 May 1976.

Bibliography

[l] SDC Tech Memo, "Preliminary Hardwite Demon­
stration (PHSD) PEPE Implementation Specif i­
cations," 1 April 1971, TM-WP-04/025/00.

[2] SDC Demonstration, Functional Simulation of
PHSD on the MS! PEPE.

[3] TRW Systems Group, "PEPE Utilization Study,"
1 July 1974, TSD-K4055, 74.6914.06-053.

[4] SDC, "PEPE Applications to Site Defense
Preliminary Study Results, Phase I," 16
December 1974, TM-HU-049/000/00.

[5] TRW Systems Group, "PEPE Utilization Study
Interim Report, Parts I, II & III," 1 April
1975, TSD-K5037*/PEPE 75.6914.06-039.

[6] SDC, Phase II PEPE-Site Defense Utilization
Study Final Report, 30 July 1975, TM-HU-
049/007 /00.

(7] SDC, Phase II PEPE-Site Defense Utilization
Study Interim Report, Parts I, II & III, 15
April 1975, TM-HU-049/005/00.

(8] TRW Systems Group, "Phase II PEPE Functional
Simulator User's Manual," 1 August 1975,
TSD-K5072*/PEPE, 75.6914.06-073.

(9] TRW Systems Group, "Phase II, PEPE Utiliza­
tion Study Final Report," 1 August 1975,
TSD-K5071*/PEPE, 75.6914.06-073.

(10] SDC TM, "PEPE Installation Requirements for
Site Defense (SD) System Development Center
(SDC)," 3 February 1975, TM-HU-049/001/00.

[ll] SDC TM, "PEPE Installation Requirements for
Site Defense (SD) KMR-Defense Unit (DU)," 26
February 1975, TM-HU-049/002/00.

, [12] TRW Systems Group, "Phase II PEPE Utiliza­
tion Study Extension Final Report," 1
December 1975, TSD-5109*/PEPE, 75.6914.06-
lll.

198

[13] SDC, "Parallel Element Processing Ensemble
(PEPE) Program Plan," 1 May 1976, TM-HU-
052/000/00.

[14) TRW System Group, "Phase III PEPE Functional
Users Manual," 1 September 1976, No. 75-412.

[15) TRW Systems Group, "Phase II PEPE Utiliza­
tion Study Extension Final Report," 29
November 1976, No. 75-412.

[16] SDC, "PEPE Large Host Applications," 1
December 1976, CDRL. No. BOOS, TM­
HU-049/008/00.

(17.) SDC, "PEPE Hardware Reference Manual," J. L.
Troy, 1 February 1977, TM-HU-051/001/00.

[18] SDC, "Parallel Fortran (PFOR), PEPE Assembly
Language (PAL) User's Manual," J. R.
Dingeldine, 1 August 1976, TM-HU-046/400/01.

[19) SDC, "Version One Real-Time Operating
System User's Manual - Preliminary," H. G.
Martin, 2 March 1976, N-HU-00016/400/01.

(20] SDC, "System Functional Design Specification
Volume II," TM-HU-048/001/03, 2 February
1977.

[21) SDC, "System Functional Design Specification
Volume I," TM-HU-048/000/01, 13 April 1973.

A PARALLEL PROCESSOR APPROACH FOR SEARCHING DECISION TREES

Duane David Marshall
System Development Corporation

Huntsville, Alabama 35805
zoS ·· '837- 7610

Abstract -- The use of a decision tree to
represent a decision making problem is well­
known. Current methods for examining the entire
decision tree are too time consuming. One way
to overcome this difficulty is to use a parallel
processor computer. A brief description of the
capabilities of a parallel associative processor
is given and performance results for a tree
search algorithm are included. Results indicate
that the parallel approach examines the tree
much faster than the previously used sequential
algorithms.

Introduction

Many decision processes may be expressed as
a decision tree as shown:

This tree is composed of a set of nodes and
branches where each node represents the selection
of an alternative and the branch leading from a
node represents the decision made. Here, each
decision is assumed to have only two possible
alternatives. Since a tree with N decisions has
a total of zN different combinations, a problem
with more than 50 decisions is impractical to
approach directly in this format.

In general terms, a problem has some objec­
tive or goal which the decision-maker sets. His
difficulty lies in the fact that he is attempting
to reach his goal while not breaking a set of
predetermined restrictions. This problem is
usually described as

Maximize
Subject to:

F(X)
G(X) < B

where the problem is specified in terms of the
decisions X.

A sequential algorithm for the solution of
this problem was developed by Balas in 1965 [l]
and uses the decision tree approach. Essentially,
the algorithm searches the entire solution tree
one node at a time to identify those decisions
which allow the decision-maker to maximize his
objective while remaining within the restrictions.
As the algorithm progresses in its search,
information collected about the problem is used

199

to discard portions of the solution tree before
they are examined in detail. Hence the name
"implicit" enumeration. Studies have shown that
implicit enumeration is practical only for
problems with less than 100 to 150 decisions.
Even for small problems with 50 variables or
less, the solution time for the sequential
algorithm may be several minutes.

The Problem

An example of a decision tree structure is
to be found in the resouce allocation problem of
assigning interceptors to targets or assigning
returns to known targets. Leal [4] has described
the use of a decision tree structure to the
problem of interceptor allocation. He proposes
that the decision tree formulation be used in
combination with artificial intelligence techni­
ques to "teach" a program to respond quickly
during a BMD attack. This prior "learning" by
the defense system monitor would allow many poor
alternatives to be discarded and enable the
system to perform at a high level of effective­
ness. In order to develop this artificial
intelligence program, the learning program must
investigate the entire solution tree many times.
However, since the current method used to search
the decision tree is a sequential search over
the tree where only one decision is examined at
a time, solution times for a problem with many
alternatives are excessive. Thus, any model of
sufficient complexity to be useful will have a
decision tree too large to be processed in a
reasonable amount of time using a sequential
computer.

A Parallel Processing Solution

Morefield [6,7,8] has proposed that one
potential means to overcome this problem lies in
the use of parallel processors to search the
decision tree. In order to study the tree
search methods using a parallel associative pro­
cessor, an algorithm has been developed which
examines many nodes of the solution tree simulta­
neously [SJ. This algorithm is based on the
sequential search method which has been studied
extensively in the literature [1,2,3]. Essen­
tially, the algorithm uses a modification of the
sequential algorithm to generate many candidate
nodes simultaneously. Each candidate is assigned
to a processing element. All processors perform
exactly the same arithmetic operations in exam­
ining their own candidates. Once a "good"
solution is found, that information is shared
among all the processing elements to efficiently
search the tree. In general, the solution tree
tends to grow exponentially as the algorithm
progresses. A mechanism is included in the
algorithm to recognize a limited number of

processing elements and to function within
that limitation.

In order to study the parallel algorithm, a
program has been written which simulates the
gross functional characteristics of a parallel
associative processor using the parallel algo­
rithm. The basic criterion used for comparison
of the sequential and parallel algorithms is the
number of algorithm (sequential or parallel)
iterations required to find and verify the
existence of an optimal solution. Preliminary
studies indicate that a parallel associative
processor can solve these decision problems in a
fraction of the time required by a sequential
processor. Representative results with the
parallel algorithm on a test problem of
Petersen's [9] are given in Figure 1.

100

90

80

" c
0

•.-!
70 µ

rn
M

~
H

60 a .a
µ
•.-!
M
0 50
"'
<
.... rn 40 .,;
µ

" w
~

" 30 w

"'
0
µ 20

" w
u
M
w 10 ...

0

I
I
I
I
I Expected I
I Experimental
\
\
\
\
\ \ .

\
\

\
\

' ' ',
'

............ _

1 2 3 4 5 6 7 8 9
Number of Processing Elements

Figure 1. Performance of the Parallel
Algorithm with a Variable
Number of Processor Elemeqts

Results

Table 1 shows the experimental estimates
obtained for the solution of several test
problems.

Table 1. Experimental Results

Number of Sequential Parallel Algorithm (Number of PEs)
Problem Decisions Algorithm 2 l 10

1 6 .002 .002 .001 .001

2 10 .006 .004 .003 .003

3 15 .037 .018 .010 .007

4 20 .160 .053 .020 .014

5 28 .672 .191 .057 .029

6 39 1.369 .600 .192 .099

7 50 13.052 5. 742 2.129 .688

10

200

Estimated solution times were obtained by
multiplying the sequential algorithm solution
time by the ratio of the number of parallel
algorithm iterations to the number of sequential
algorithm iterations. Times were obtained using
a CDC 7600 computer.

In general, the parallel solution method
becomes more attractive as the number of pro­
cessing elements increa.ses. However, ·tests show
that each problem has a certain limit beyond
which the addition of processing elements has
little effect on the algorithm performance. If
the sequential algorithm required M iterations,
a parallel associative processor with N pro­
cessing .elements would solve the problem in less
than M/N iterations. In fact, as the number of
decisions increases, the solution rate becomes
much less than the M/N ratio. The reason for
this lies in the way in which the decision tree
is built as shown in Figure 2. The sequential
algorithm essentially builds a "tall" tree in
that one branch is examined in depth, whereas
the parallel algorithm builds a "wide" tree in
that many branches are examined simultaneously.
The process of building a "wide" tree enables
the parallel algorithm to discard "unfavorable"
alternatives faster than the sequential algorithm.
The performance of the sequential algorithm
would be competitive with the parallel algorithm
only if a "good" solution is found in the
extreme upper left side of the decision tree,
i.e., the sequential algorithm builds the decision
tree top to bottom and left to right. The
parallel algorithm builds the tree top to bottom.

Sequential
Algorithm

Parallel
Algorithm

Figure 2. Comparison of Tree Construction
After Only Three Algorithm
Iterations

Machine Architecture

The architecture of a parallel processor to
use the parallel algorithm is extremely simple.
Essentially, the machine would consist of a
control unit and an ensemble of processing
elements as shown in Figure 3. The control unit
would require a small memory and would need to
block transfer a large number of words to all
elements simultaneously. The processing elements
would require a parallel indexing capability in
order to implement the parallel algorithm effi­
ciently. Element memory would be on the order

of one thousand (decimal) words. The ensemble
should contain at least as many processing
elements as the number of decisions in the
original problem.

CONTROL
UNIT

• • •

- Figure 3. Parallel Processor Architecture

Additional Questions

Additional research is required to describe
the best way to use the parallel algorithm.
Since each processing element is working its own
independent problem, is there some way to share
information to make the search more efficient?
Can some internal measure. of how efficiently the
parallel algorithm is working be developed? When
a "good" solution is found by one processor, how
may the other processors make the most efficient
use of this information? These are only some of
many additional questions which remain to be
considered concerning the parallel algorithm.

201

Conclusions

A parallel algorithm for use on a parallel
associative processor has been developed to
search through a decision tree. Preliminary
experiments indicate that the solution times
using this method are much better than those of
the sequential method. This results enables
large decision problems to be solved exactly
rather than relying on some search heuristic
which may or may not lead to an acceptable
solution.

References

[]] Balas, E., "An Additive Algorithm for
Solving Linear Programs with Zero-One
Variables," Operations Research, July, 1965.

[2] Geoffrion, A. M., "Integer Programming by
Implicit Enumeration and Balas' Method,"
SIAM Review, September, 1967.

[3] , "An Improved Implicit Enumeration
Approach for Integer Programming," Operations
Research, 1969.

[4] Leal, Antonio, "Adaptive Decisions in
Ballistic Missile Defense," IEEE Transations
on Systems, Man and Cybernetics, May, 1977.

[SJ Marshall, D. D., "The Solution of 0-1 Pro­
gramming Problems: A Parallel Processing
Approach," Ph.D. Dissertation, The Univer­
sity of Alabama in Huntsville, Huntsville,
Alabama, 1977 •

[6] Morefield, C. L., "Solution of Multiple
Choice Estimation Problems via 0-1 Integer
Programming," IEEE Conference on Decision
and Control, November, 1974.

[7] . , "Applications of 0-1 Integer Pro-
gramming to a Track Assembly Problem,"
IEEE Conference on Decision and Control,
December, 1975.

[BJ , "Application of Bayesian Decision
Theory to Multitarget Surveillance Pro­
blems," Proceedings of the IEEE 1976 National
Aerospace and Electronics Conference.

[9] Petersen, C. C., "Computational Experience
with Variants of the Balas Algorithm Applied
to the Selection of R&D Projects," Management
Science, May, 1967.

PARALLELISM IN SORTING

Franco P. Preparata
Coordinated Science Laboratory*

University of Illinois
Urbana, Illinois 61801

Abstract

In this paper we describe a family of paral­
lel sorting algorithms for a multiprocessors sys­
tem. These algorithms are enumeration sorts, i.e.,
they are based on subdividing the keys into sub­
sets and determining for each key the number of
smaller keys (count) in every subset. The novelty
is that parallel merging is used to implement the
acquisition of the counts. By using Valiant's
merging scheme, n keys can be sorted in parallel
using nlog2n processors in time Clog2n; if memory

fetch conflicts are not allowed, then for

0 <a::; 1 sorting on nl+a processors runs in time
(C'/a)log2n + o(log2n).

1. Introduction

The efficient implementation of comparison
problems, such as merging, sorting, and selection,
by means of multiprocessor computing systems has
attracted considerable attention in recent years.
One of the earliest fundamental results is due to
K. E. Batcher [l], who proposed a sorting network
consisting of comparators and based on the prin­
ciple of iterated merging; as is well-known, such

2
scheme sorts n keys with O(n(logn)) comparators

in time O((logn) 2). Batcher's network is readily
interpreted, in a more general framework, as a
system of n/2 processors with access to a common
data memory of n cells: obviously, the network
structure induces a nonadaptive schedule of memory
accesses. After the appearance of Batcher's paper,
substantial work was aimed at filling the gap be-

2
tween the upper-bound O((logn)) on the number of
steps which is achievable by a network of compara­
tors and the lower-bound O(logn); the lack of
success, however, convinced several workers to
look for more flexible forms of parallelism.

The first scheme shown to sort n keys in
time O(logn) is due to D. E. Muller and F. P.
Preparata [2], but it requires a discouraging

2
number of O(n) processors. Subsequently, new re-
sults were obtained on parallel merging by F.
Gavril [3]. L. G. Valiant [4] must be credited

*Also, Departments of Electrical Engineering and
Computer Science.

This work was supported in part by the National
Science Foundation under Grant MCS76-17321 and in
part by the Joint Services Electronics Program
under Contract DAAB-07-72-C-0259.

202

with addressing the fundamental question of the
intrinsic parallelism of some comparison prob­
lems and with the development of faster algo­
rithms than were previously known. In particular,
in [4] he described an algorithm for merging with
.;;;;,. processors two sorted sequences of n and m

keys, respectively, (n::; m), in 2loglogn+O(l)(l)
comparison steps; this algorithm can then be ap­
plied to sort n keys with n processors in
2logn•loglogn+O(logn) steps, His method assumes
a computational model in which there is no pen­
alty for memory-processor alignment and the over­
head ,corresponding to the reassignment of sets of
processors to subsequences to be merged, is
ignored.

A new family of sorting algorithms has been
recently discovered by D. Hirschberg [5]. Assum­
ing as a computation model a parallel processing
system of the SIMD type (single-instruction
stream, multiple-data stream) with random access
capabilities to a common memory, Hirschberg shows
that n keys can be sorted in time O(k logn) with

nl+l/k processors, where k is an arbitrary in­
teger~ 2. These schemes are not free of memory
fetch conflicts (simultaneous reading of the same
location by more than one processor) and Hirsch­
berg poses as an open question the possibility of
achieving analogous performances without memory
fetch conflicts.

In this paper we shall present two results.
The first, discussed in Section 2, is an algo­
rithm for sorting n keys in time C logn (where C
is a constant) with nlogn processors: this algo­
rithm combines a number of known techniques, and
makes crucial use of Valiant's merging algorithm.
The second result (Section 3) is a family of very
simple sorting algorithms, which have the same
running time as Hirschberg's, but use basically
different techniques and are entirely free of
memory fetch conflicts. As our computation model
we adopt a system of several identical processors,
each capable of random-accessing a common memory
with no alignment penalty. Store, fetch, and
arithmetic operations have unit costs, and fetch
conflicts are disallowed when appropriate.

All of the algorithms described in this
paper - as well as Hirschberg's [5] - are in­
stances of enumeration sorting, in Knuth's termi­
nology ([6], p. 73). In these methods each key
is compared with all the others and the number of
smaller keys determines the given key's final

(!)Throughout this paper "log" means
"logarithm to the base 2".

position. Specifically, three distinct tasks are
clearly identifiable in enumeration sorting
algorithms:

(i) count acquisition. The set of keys is
partitioned into subsets and for each
key we determine the number of smaller
keys in each subset (this informal de­
scription momentarily assumes that all
keys are distinct);

(ii) rank computation. For each key the sum
of the counts obtained in (i) gives the
final position (rank) of that key in the
sorted sequence;

(iii) data rearrangement. Each key is placed
in its final position according to its
rank.

Less informally, an enumeration sorting scheme
has the following format, where we asstnne for
simplicity that, for some given integer r, n=kr.
Data structures to be used are arrays of keys.
By A[i:j] we denote a sequence A[i]A[i+l] •.• A[j].

Input:

Output:

1. begin

2. c(ij)
.R,

c<H)
.£,

3.

4.

end

A[O:n-1], the array of the keys to
be sorted, integer r
A[O:n-1], the array of the sorted
keys.

Define A.[O:r-1]<- A[ir:(i+l)r-1],
for i=0,7 .. ,k-1.

(l[A.(h) IA.[h]::; A.[.tJ}I for j
I J J i

\
ll[A.(h) IA.[h] < A.[£J}I

J J].
for j

I [A. [h] IA. [h] ::; A.[£] ,h < .l} u
].].].

[A. [h] IA. [h] <A C£J,h > n I
].].

k-1 (..)
rank(A.[.l])<- l; C l.J

]. . 0 .£,
J=

A[rank(Ai[.R,])] ,_Ai[.£,]

<

>

i

i

Note that count acquisition, rank computation, and
data rearrangement are performed, respectively, in
steps 2, 3, and 4. Also, the algorithm must in­
sure that all ranks be distinct, which is a cru­
cial condition for the data rearrangement task
(otherwise memory store conflicts would occur).
This clearly poses no problem when the keys are
all distinct. In the opposite case, some conven­
tion must be adopted for the ordering of sets of
identical keys. One such convention is that sort­
ing be stable (see [6], p. 4), that i~ the initial
order of identical keys is preserved in the sorted
array. Thus, all of our sorting schemes will be
stable. This is reflected in the rules for the

computation of the parameters C(ij) in Step 2 of
the above algorithm. .R,

The simple algorithm proposed by Muller and
Preparata in [2] is a crude example of enumeration
sorting, in which the sets Ai are chosen to be

singletons. With this choice, each key is com­

pared with every other key, thereby using O(n2)

203

processors; similarly, rank computation uses
2

O(n) processors, since O(n) processors are
assigned to each key. The time bound O(logn) is
due to Step 3 (counting in parallel the ntnnber of
l's in a set of n binary digits), whereas Steps 2
and 4 run in constant time in our present model.

In the more complex procedures to be later
described, the operations of rank computation
and data rearrangement are essentially carried
out as in the basic scheme described above. The
main difference occurs with regard to count acqui­
sition. In the Muller-Preparata method the counts
are acquired by comparing each key with every
other. The comparison of two keys A[i] and A[j]
could be viewed as merging°""A'[i] and A[j]. Suppose
now that, rather than dealing with single keys we
deal with sorted sequences of keys A.[O:r-1] a~d
1_ [O:r-1], where r > 1 and, say j < l. We easily

realize that the ntnnber of keys in A.[O:r-1]
J

which are no greater than Ai[.R,] (.l=O, ... ,r-1), as

well as the ntnnber of keys in A.[O:r-1] which are
].

less than Aj[h] (h=O, ... ,r-1), can be obtained by

merging the two sequences A.[O:r-1] and A.[O:r-1].
]. J

In fact,let B[0:2r-l]bethe array obtained by merg­
ing the two sorted arrays Aj[):r-1] and Ai[O:r-1],

with the ordering convention ~[s] ::; [s+l]

(k=i,j) and B[s] $ B[s+l]. Suppose also that the
merging be stable, that is, the order of identical
keys in the--concatenated array A.[O:r-l]A.[O:r-1]

is preserved in B[0:2r-l]. If B[qJ =A.[~], then
].

there are (q-.l) entries of A.[O:r-1] in B[O:q-1]

which are no greater than A.[£]; similarly if
].

B[q] = Aj[h], then there are (q-h) entries of

A.[O:r-1] in B[O:q-1] which strictly less than
]. --

Aj[h]. This is central idea of the algorithms

to be described.

2. A Fast Parallel Sorting Algorithm

In this section we assume that in our compu­
tational model memory fetch conflicts are permit­
ted. To provide the feature required by Valiant's
merging algorithm, that a key be simultaneously
compared with several other keys, we may assume
that the processors have broadcast capabilities.
The only overhead we shall neglect is the re­
assignment of processors to the operation of
merging pairs of subsequences, as occurs in
Valiant's method [4]. Notice that this model of
parallel computation coincides with that required
by Valiant's merging algorithm.

We assume inductively that the following
algorithm, SORTl, for p < n requires at most
l.plogpj processors to sort p keys. Since SORTl
is recursive, the following presentation consti­
tutes a constructive extension of the inductive
step to the integer n. The induction can be
started with n ~ 4.

Algorithm SORTl

begin

1. k ... r1ognl ' r ... I,µ/ r1ognl J

2. Define arrays S[O:k;O:k;0:2r-l] and R[O:k;
O:k;O:r-1] (three-dimensional arrays)
and A.LO:r-1] ... A[ir:(i+l)r-1] (i=O, ••• ,

1

k-1), ~[O:n-kr-1] +- A[kr:n-1].

Comment: When n=kr, array ~ is obviously

vacuous. Array S is d~fined for simpli­
city as having 2r(k+l) cells, although
the algorithm will only make use of the
cells S[i;j: q] for which i < j.

J. Ai[O:r-1] SORT(Ai[O:r-1]) (i=O, ••• ,k-1)

~[O:n-kr-1] +- SORT(~[O:n-kr-1]).
Comment: This step is a parallel recur­
sive call of SORTl and it involves sort­
ing in parallel k sets of r keys each and,
possibly, one set of (n-kr) keys. By the
inductive hypothesis it uses at most
k l.rlogrj + L(.n-kr) log(n-kr)j processors.
Since n-kr < r1ognl , the nwnber of .Proces­
sors used is less than r1osn1·L1,µ111ognlJ.

log I.A/ r1ognlJ J + Lrlognl logrlognlJ

::;; nlog(n/ r1ognl) + r1ognl logrlognl
= nlogn-log r1ognl (n- r1ognl) ::;; nlogn-1
$ l..nlogn.J , for n :2: J. For the sake of
uniformity, array ~ is now extended to

size r, where each cell of ~[n-kr:r-1]

is filled with a dummy sentinel larger
than any key.

4. S[i;j;O:r-1] +-Ai[O:r-l](i=O, .•• ,k-1;

j=i+l, ••. ,k)
S[i;j;r:2r-l] ... A.[O:r-l](i=O, ••• ,j-1;
j=l, .•• ,k) J
Comment: This is a copying operation
whose objective is to obtain
S[i;j;0:2r-l]=Ai[O:r-l]Aj[O:r-l] for all

pairs (i,j) with i < j. In our model,
this operation could be done with maximal
parallelism. However, using only (k!l)r

processors, the (k!l)2r elementary copy­

ing operations are completed in two time
units. For later convenience we assume
that the record associated with key A.[t]

1

contains a IABEL consisting of the pair
of integers (i,t).

5. S[i;j;0:2r-l] +-MERGE (S[i;j;O:r-1],
S[i ;j; r: 2r-l]) (i=O, ••• ,k-1 ;j=i+l, •.• ,k)
Comment: This step uses Valiant's merging
algorithm and runs in time c1loglogr, for

some constant c1, using ~!l)r processors.

The original version of Valiant's merging
algorithm can be readily modified, so that,
whenever two keys are identical the
indices of their respective subarrays are
compared.

204

6. Let (x,t) IABEL s[i;j ;q]
If x=i then R[i;j;t] +- q-t else
i(j;i;t]--;::-q-t ~
(i=O, ••• ,k-1; j=i+l, ••• ,k; q=0, ••• ,2r-l)

7. R[i;i;t] +- t (i=O, ••• ,k;t=O, ••• ,r·l).
Comment: Steps 6 and 7 complete the count
acquisition task. In fact after Step 7

the content of R[i;j;~] is ciij), in the

terminology of Section 1. Step 6 can be
executed in two time units using (k!l f
processors, whereas Step 7 uses (k+l)r
processors and runs in one time unit.

k-1
8. rank(Ai(t]) +- E R[i;j ;t] (i=O, ••• ,k;

j=O
t=o, .. . ,r-1)
Comment: This step implements the rank
computation. For any pair (i,t) the sum
can be computed with L(k+l) /2j processors
in time r1og(k+l)l "" loglogn. The total
number of processors used is therefore
n L<k+l) /2J •

9. A[rank(Ai[t])J +- Ai[t] (i=O, ••• ,k;

t=O, ••• ,r-1)

end

To complete the analysis of the algorithm,
w(e oj:erve that none of Steps 4-7 uses more than

k+l processors, but
2

k(k+l) = Ln/r1 l1Jr1 u(r1ognl+1)< r1ogn+1l r 2 ogn ogn 2 _ n 2
Also, Step 8 uses nl(k+l)/2J:::;; n(r1ognl+l)/2

Since for all n :2: 4 (n r1ognl +l) /2 < l..nlogn.J, the
inductive hypothesis on the number of processors
is extended.

Finally, let T(n) denote the running time of
the algorithm for n keys. Since r""' n/logn we
obtain

T(n) = T(__!!__) + c2loglogn + CJ lgn
for some constants c2 and CJ. It is easily veri-

fied that a function of the form c2(logn)+o(logn)

is a solution of the above recurrence.

J. Parallel Sorting Algorithms with no

Memory Fetch Conflicts

We shall now consider a family of algorithms

for sorting n numbers in parallel with nl+a pro­
cessors (0 <a$ 1) in time (C'/a)logn+o(logn),
for some constant C'. Each of these algorithms
has the same performance as the corresponding
algorithm by Hirschberg [5], although no memory
fetch conflict occurs in this case. Again, we
make the inductive hypothesis that for p < n,

Algorithm SORT2 requires pl+a processors to sort
p keys. The format of SORT2 closely parallels
that of SORTl, with a few crucial differences to
be noted.

Algorithm SORT2

begin

1. k ~ inCll, r ~ Ln/lnCllJ

2. Define arrays s[O:k; O:k; O:Zr-1],
R[O:k;O:k;O:r-1]
and A.[O:r-lJ ~ A[ir:(i+l)r-1]

1.

(i=O, ••. ,k-1), ~[O:n-kr-1] ~ A[kr:n-1].

3. Ai[O:r-1] ~ SORT2(Ai[O:r-l]) (i=O, ... ,k-1)

Conunent: This parallel recursive call of
SORT2 sorts k sets of r keys each and. pos­
sibly, one set of n-kr < k keys. By the

inductive hypothesis, at most krl+ci+
l+CI !:;.

(n-kr) = N processors are used. Since
l+CI Cl Cl Cl n-kr<k, then N<kr +(n-kr)·k = kr(r -k)

+Il'kCI. Also kr=rncii · [.µ/ rn'1J Sn, whence

N< (rCI kCl+kCI)"'- (1-Cl)CI l+Cl-Cl2< l+CI h n - u·n =n n ,w ere

we hava used the approximation r ~ n1-CI.
Steps 1-3 are analogous to the correspond­
ing ones in SORTl; however, the copying
operation implemented by Step 4 of SORTl
must be considerably modified, as shown by
the following Steps 4-6, to avoid fetch
conflicts. Here again, Ak is extended to
size r as in SORTl.

4. S[i;k;O:r-1] ~ A.[O:r-1] (i=O, ... ,k-1)
1.

S[O;j ;r:2r-l] ~ A,[O:r-1] (j=l, ... ,k)
J

5. for m ~ 0 step 1 until llog(k+l)l - 2 do

S[i;j-2m;O:r-l] ~ S[i;j;O:r-1]

(j=k-2m+l, ... , k; i=O, .•• , j -2m -1)

S[i+2m;j;r:2r-l] ~ S[i;j;r;2r-l]

(i=0, ..• ,2m-l;j=i+2m+l, ... ,k)

6. Let llog(k+l)l - 1 = v.

S[i;j-2v;O:r-l] ~ S[i;j;O:r-1]

(j=2v+l, ... ,k; i=O, .•• ,j-2v-l)

s[i+2v;j;r:2r-l] ~ s[i;j;r:2r-l]

i=O, •.. ,k-2v-l;j=i+2v+l, ••• ,k)
Conunent: Steps 4-6 jointly replicate each

A.[O:r-1] the required number k of times.
1.

Step 4 is an initial copy; Step 5 consists of

(logrk+ll -1) stages, each of which doubles the
ranges of the indices; Step 6 accounts for the
fact that k may not be a power of 2 and com­
pletes filling the array S. Clearly this
copying operation is implemented in
logrk+ll+l ~ cilogn+l time units. A straight­
forward analysis shows that the largest
number of processors used in any of these
stages is at most 5/16 of the total number
(k+l)2r of cells of S to be filled. It is
al~o easily shown that (5/16)(k1~ 2r ~ (5/16)

Cl Cl 1-CI l+CI (n +l)n ·n < n for any n ~ 1 and Cl > O.

205

7. S[i;j;0:2r-1] ~MERGE (S[i;j;O:r-1],

s[i;j ;r:2r-l])
(i=O, ... ,k-l;j=i+l, ... ,k).

Conunent: This step uses a stable version
of Batcher's merging algorithm [l], which
is easily obtained by requiring that when­
ever two identical keys are encountered
their subarray indices be compared. The
following facts about Batcher's merging
algorithm are well-known: (i) no fetch
conflict occurs because at any stage (or,
time unit) each key is compared with
exactly one key; (ii) (k;l)r ~ [(nCl+l)nCl/2]·

nl-ci < nl+a processors are used; (iii)
merging is completed in logr ~ (1-a)logn
time units.

8. Steps 8, 9, 10, and 11 of this algorithm
are respectively identical to Steps 6, 7,
8, and 9 of SORTl and are therefore
omitted. The latter are clearly free of
memory fetch conflicts. The analysis of

SORT! showed that at most max((k2l)r,

n L(k+l) /2j l processors were used in any .
of those s~eps. In the present case, we

have already shown that (k~l)r < nl+ci;

similarly we conclude nl(k+l)/2J S
Cl l+CI n(n +1)/2 < n .

From the performance viewpoint, all steps

f h 1 . hm . l+CI o t e a gorit require at most n processors,
as postulated. This extends the inductive
hypothesis on the number of processors used by
the algorithm. As to the running time T(n), we
note the following: Steps 4-6 jointly require
cilogn+l time units; Step 7 requires (1-ci)logn
time units; Step 10 requires cilogn time units;
Steps 8,9, and 11 run in constant time. Since
Step 3 is a recursive call of SORT2 on sets of

1-CI r ~ n elements, we obtain for T(n) the
recurrence equation

1-CI
T(n) = T(n) + (ClCl+Cz)logn + c3
for some constants Ci, CZ' and c3. It is easily

verified that a function of the form
[(Cia + Cz)/ci]logn + o(logn) is a solution of

this equation, whence T(n) S (C'/ci)logn+o(logn).

References

1. K. E. Batcher, "Sorting networks and their
applications," Proc. AFIPS Spring Joint
Computer Conference, Vol. 32, pp. 307-314,
April 1968.

2. D. E. Muller and F. P. Preparata, "Bounds
to Complexities of Networks for Sorting and
for Switching, 11 Journal of the ACM, Vol. 22,
No. 2, pp. 195-201, April 1975.

3. F. Gavril, "Merging with parallel process­
ors," Conun. ACM, Vol. 18, 10, pp. 588-591,
October 1975.

4. L. G. Valiant, "Parallelism in Comparison
Problems," SIAM Journal of Computing, Vol. 4,
3, pp. 348-355, September 1975.

206

5. D. s. Hirschberg, ''Fast Parallel Sorting
Algorithms," Tech. Rep., Department of Electr.
Eng., Rice University, Houston, Texas,
January 1977.

6. D. E. Knuth, The Art of Computer Programming.
Vol. III: Sorting and Searching, Addison­
Wesley, Reading, Mass., 1972.

A PARALLEL 1RIANGULATION PROCESS FOR
SPARSE MA1RICES*

Omar Wing and Jolm W. Huang
Department of Electrical Engineering

and Computer Science
Coltnnbia University

New York, New York 100Z7

Abstract

We consider the problem of triangulating a
sparse matrix in a number of steps such that in
each step all of the arithmetic operations that
can be done in parallel are so executed. Our
object is to minimize the number of such steps
and at the same time to minimize the number of
such operations. These two requirements are not
compatible and both depend on the ordering of
the matrix. A reordering algorithm which is a
compromise is proposed. For a given ordering,
an algorithm to sequence the operations in order
to complete the triangulation in minimal number
of steps is presented and bolfilds on the number
of processors required are given. Experimental
results on matrices of order 500 are reported.

Backgrolfild

The triangulation of an nxn sparse matrix
A= [aij] consists of a series of steps each of
which requires one of the following two sets of
arithmetic operations:

For k = 1, Z, ... , n-1 and for each
~j f 0

j > k

and for each pair aik ~j f 0

i > k,
j > k

(1)

(Z)

A total of Zn - Z sequential steps are re­
quired to triangulate A. We shall call (1)
the divide operation and (Z) the "update"
operation. In (Z) if a .. = 0 but

1-J
aik 31<j f 0, a fill-in is generated. It is
obvious that if we have sufficient number of
processors, the divide operations for each row
k can be done in parallel. Also, for each k,
the update operations for all pairs
aij ~j f 0 can be done in parallel. More-
over, if A is very sparse, it is possible that
the divide and update operations of several rows
be done at the same time. The total number of
steps to triangulate A might therefore be less
than Zn -z.
*Research supported by NSF ENG-76-0Z870.

207

For example, in the following matrix

1 z 3 4

1

[:
x

~] z x x (3)
3 x x
4 x x

the divide operations of rows 1 and Z can be done
simultaneously in step 1. In step Z, the update
operations of a4z, a44 and a33 can be done

at the same time. In step 3, a34 is divided

by a33 and a34 is updated. Finally in

step 4 a44 is updated. Thus the ma.tr.ix is

triangulated in four steps.

In this paper, we propose an algorithm to
compute the minimum number of steps for tri­
angulating a sparse matrix once the ordering of
A is given. We next give upper and lower
bolfilds on the number of processors required.
Lastly, we present an algorithm to find an
optimal ordering of A to meet the two require­
ments of minimization of the number of arithmetic
operations and the number of triangulation steps.

Triangulation Graph

In order to expose the parallelism among
the divide and update operations, we use a lfilit­
execution-time model [l] to represent the tri­
angulation process. This model is defined as a
directed, acyclic graph, G(V,E), with node
set V and arc set E defined as follows.

V = { v. Iv- represents either a divide or
i i update operation,

i = 1, Z, ... , m}

The total nwnber of operations is m and we
assume that it takes a processor one time lfilit
to execute an operation, and no preemption is
allowed.

E = {(vi, v .) I v. E- v, v. '° v, i f j , and
J]_ J

the operation represented by
v. needs the results of the
operation represented by
v .. }

]_

In the graph, an arc goes from vi to vj.

Implicit in the definition of E is a set
of precedence relations which are specified by
a sequential description of the divide/update
operations. Corresponding to each sequential
description is a graph G CV, E) , which we shall
henceforth call a triangulation graph.

As an example, consider the following matrix

1 2 3 4 5 6 7

1 x x
2 x x
3 x x x
4 x x x (4)
5 x x x
6 x x x
7 x x x

One possible sequence of operations to tri­
angulate the matrix is listed in Table 1. Its
triangulation graph is shown in Fig. 1.

The parallelism that exists among the oper­
ations is now clear from the graph. Operations
1, 3, 8 and 7 can be done in parallel in one
step. Operations 2, 12, 4 and 11 can be done
in parallel in the next step, and so forth. It
is also clear from the graph that the minimum
ntnnber of time steps to triangulate the matrix
is 7.

We shall define the length of a path of
G(V,E) as the nwnber of nodes from the starting
node to the end node and we let D denote the
length of the longest path of G. D then is
the minimtnn nwnber of steps to complete the tri­
angulation according to a sequence of operations
implied by E of G(V,E). For the example
shown, D = 7 • The triangulation in the order
given results in two fill-ins.

Now suppose that we reorder the matrix as
follows.

1 5 7 4 6 3 2

1 x x
5 x x x
7 x x x
4 x x x (5) 6 x x x
3 x x x
2 x x

No fill-ins are created but now D = 12 if we
sequence the operations row by row from top to
bottom and colurrm by coltnnn from left to right.
Thus the minimtnn nwnber of time steps and the
number of fill-ins and hence arithmetic opera­
tions depend on the ordering of the matrix.

Rearrangement of Nodes

In Fig. 1, both v6 and v9 are update

operations on a66 . From the expressions:

208

v6: a66 + a66 - a63 a36 (6)

vg: a66 + a66 - a64 a46 C7)

we see that regardless in which order these two
operations are executed, the final a66 used in

v15 will be the same. If we remove v9 from the

longest path and place it between v7 and v6,

we obtain the same final triangulation but D
will be reduced by 1. In the sequential descrip­
tion of the operations, operation 6 of Table 1
is now placed after operation 9. The new graph
is shown in Fig. 2. Thus by postponing opera­
tion 6 we succeed in reducing the triangulation
steps by one.

In general, before a matrix element is sub­
ject to a divide operation, it may have to be
updated several times, i.e.

R,

a .. + a .. - E a.k a. . (8)
lJ lJ k=l 1 KJ

Ntnnerically, it does not matter which product in
the swmnation is subtracted from aij first.

Our object is to find a sequence which minimizes
D. In the next three sections, we describe how
this is done.

Depth of a Node

In G(V,E) we shall call a node without
any predecessor an initial node. Nodes v1 , v8 ,

v3 and v7 in Fig. 2 are initial nodes. The

operations they represent are available for exe­
cution in the first time step.

We define the depth dr of node v r as the

maximtnn path length from an initial node to vr,

and it signifies the earliest time at which the
operation of vr can be executed. The depths

of the nodes of Fig. 2 are shown in Table 2.
Clearly the depth of the termination node of G
is D.

Operation Set and Depth Set

We have seen that a matrix element a.. is
lJ

in general subject to a series of update opera­
tions. It is convenient to associate with each
a. . an opera ti on set n. . and a depth set ti ..
lJ lJ lJ

defined as follows.

if and only if opera­
tion vk applies to

aij , and we write

nij = { ... vk' ... 'vj
... } if oper­

ation vk pre-

cedes operation
vj"

•\j : ~E tiij if ~ is the depth

of vke nij"

For example, from Table 1 and Fig. 1 we have

01s = {vl}

Q33 = { V4}

n66 = { v6, vg}

tilS = {l}

ti33 = { 2}

0n = {vl2'vl4'vl6}

ti66 = { 4, S}

ti77 = { 2,4, 7}

On the other hand, in Fig. 2, we have

n66 = { vg, v6}

0n = {vl2'vl4'vl6}

ti66 = { 2,4}

ti77 = { 2,4,6}

Thus, by altering the sequence of operations of
n66 the depth associated with each operation

may be changed and in this case the final D is
reduced from 7 to 6.

Given an ordering of the rows, the order in
which the matrix elements are processed is
fixed. However, within the set of operations
applied to each matrix element it is possible to
vary the sequence of update operations to ob­
tain a different triangulation graph, and hence
a different number of steps necessary to tri­
angulate the matrix.

Minimal D

In the following, we give an algorithm by
which for a given ordering of A the update
operations in each nij are sequenced such that

D is minimized. The sets nij and tiij are

constructed at the same time as the ordering of
A is generated. We denote the ordering of the
rows by p(l), p(2), ... , p(n).

Algorithm 1

(i) Input:

(ii) Output:

Matrix A. We ass\.Dlle all
diagonal elements and
pivots are nonzero.

An ordered sequence of
operations in each nij'

the depth sets and D.

209

(iii) Initialization: nij = { cj>} for all i,j

tiij = { 0} for all i,j

r = O

(iv) Procedure I
bef in

or k + 1 step 1 until n-1 do
oegin

end

call Procedure II (described in Alih
gorithn 2) to determine the k
pivoting row; let it be row q;

p(k) + q ;
for each j such that a J. 'f 0 and
- q
j ~ { p (l),p (2)' ... ,p (k)}
do
-begin

r + r+l ;
vr + a label assigned to the di-

vide operation on aqj ;

dr + Max { tiqq U tiqj} + 1 (A)

tiqj + tiqj U { dr} ;
n.+n.U{v}

qJ qJ r
end

for each i such that aiq 'f 0 and

end

each j such that aqj 'f 0 and

i,j ~{ p(l) ,p(2) ' ... ,p(k)}. do
begin

r + r+l ;
v r + a label assigned to an update

operation on a .. . l.J
d + Max { ti. U ti . } + 1 (B)

r iq qJ
while 3 d'E ti.. :. d'=d do

l.J ' r
be~in

+ d + 1 (C)
endr r

call Insert(dr,tiij) (Insert dr

into ti . . so that d E ti ..
l.J l.J

are in ascending order.);
call Insert(v ,n.J.) (Insert r -- r l.

end

into n.. so that v en ..
l.J r l.J

are in the same order as
dEti ...)

l.J

p(n) + q such that q \ { p (1) ,p (2),
... p(n-1)};
D +Max { ~(n) 1p(n) l

(v) Connnents :

Statement (A) signifies that the divide oper­
ation on an element a . nrust take place at

qJ
least one time step later than the latest opera­
tion on the pivot or itself.

Statement (B) says that an update operation

on a .. should take place at least one step
1J

later than the latest operation on aiq or aqj'
irrespective when the previous operation on aij
took place. In this way we are guaranteed that
the last operation on aij is completed at the
earliest time step. Now, if in ilij there is
already an element with value dr' then dr is
increased by one until it is different from eve:ry
dEilij' This step is necessa:ry because no two
operations can be applied to the same matrix ele­
ment at the same time. The while-loop of (C) ac­
complishes this.

A formal proof that D obtained from Al­
gorithm 1 is minimal is long and would require
the introduction of additional new concepts. It
will not be given in this paper. A plausible
argument that the algorithm does produce a mini­
mal D is that each of the three key steps of
the algorithm ensures that eve:ry operation on a
matrix element is assigned the smallest possible
depth.

For the matrix of (4), if p(k) = k as
shown, D is found to be 6 by Algorithm 1, and
the triangulation graph is that of Fig. 2. From
the graph, it is not difficult to determine that
at least three parallel processors are required to
triangulate the matrix in 6 steps. .An optimal
schedule using three processors is· shown in
Fig. 3. In this schedule, all operations having
the same depth are not executed at the same time.
In general, the scheduling problem is NP-com­
plete [2]. In the following, we consider the
bounds on the mininrum m.unber of processors.

B01mds on the Nunber of Processors

We define the level ntunber,
vr of G(V,E) as:

of a node

{pi !Pi is- a path
length from vr
to the terminat­
ion node.}

The level nunbers of the nodes of Fig. 2 are
shown in Table 2. Each level nunber indicates
the last time step by which the operation
represented by vr must be executed, if the
triangulation is to be completed in D steps.

Let the nunber of nodes in G CV ,E) which
have the same level ntunber, say i, be f i.
Then an upper bound on the nunber of processors
to triangulate the matrix in D steps is clear­
ly

Bu= ~{filiE{l,2, ... ,D}} (9)
1

210

A lower bound can be defined as

rkt fkl
Bf= Max . i = 1,2, ... ,D (10)

1

The meaning of Bf as defined is as follows.
From the previous comments on level nunbers, for

i
each step i, i = 1,2, .•• ,D, all r fk

k=l
operations must be completed in i steps, and

i
at least (r fk)/i processors are needed. The

k=l
maximum of the last quantity is then a lower
bound on the nunber of processors required.

Applying (9) and (10) to the graph of Fig. 2,
we get Bu = 4 and Bf= 3. An optimal
schedule using three processors is shown in Fig. 3.

Reordering Algorithm

We noted earlier that the ntunber of tri­
angulation steps D depends on the ordering of
the rows of the matrix. For a given ordering,
the total nunber of operations is fixed. It ap­
pears therefore that the smaller D is, the more
operations can be done in parallel. However,
the strategy to minimize D alone would leave
the generation of fill-ins and hence the nunber
of arithmetic operations uncontrolled, and it is
possible that the ntunber of parallel processors
required is mreasonable. Also, as the matrix
begins to fill, less and less arithmetic opera­
tions of different pivoting rows can be done in
parallel and D would increase.

Clearly the best that one can do realistical­
ly is to do as much local minimization as pos­
sible [3]. It is not easy to discern the re­
lationship between D and reordering, and we
propose the following scheme as a reordering al­
gorithm.

Algorithm 2

(i) Input:

(ii) Output:

Matrix A; the order of
A, n; the first k-1
pivoting row nunbers,
p(l) ,p(2) ' .•. ,p(k-1);
and the depth sets of
a.. that have been con-
1J

structed up to the time
this procedure is called.

The next pivoting row
ntunber, q.

(iii) I~itialization: Relative weight assigned
to minimization of
arithmetic operations,
W ; and relative weight

a
assigned to minimization
of D, wb.

(iv) Procedure II

begin
-----:tor each j such that j ~ { p (1) ,p (2),

-:-:-:-,p (k-1)} do
begin -
-CY()) +number of update/divide oper­

ations if rQW j is picked
as the next pivot ;

for each mf{ p(l) ,p(2), ... ,p(k-1),
}Tdo

beg)
L (j + l.: (Max { /':, . }

m JIB
+ Max{6. .})

ffiJ

+Max{/':, .. }
JJ

or

(A)

L(j) + Max{t:,. U /':,. U /':, .. } (B)
m JIB ffiJ JJ

C(j) + Wa"O(j) + Wb·L(j) ;

find j* such that C(j*)
Min { C(j)}

J
q j*

end
elld

end

Note that in statements (A) and (B), the depth
sets are the current ones that have been con­
structed up to the time the procedure is called,
but this is the best that one can do since we
are only interested in local minimization. The
quantity L(j) has the significance that in­
tuitively, among the pivot candidates which call
for about the same number of update/divide oper­
ations, the one which requires the least number
of time steps to complete all of the update
operations, up to the time the procedure is
called, of the elements on the pivoting row and
column should be chosen as the next pivot.

By adjusting the weights Wa and Wb'
different degrees of importance are assigned to
operation COllilt and depth. If Wb = 0, then

the reordering algorithm becomes Markowitz al­
gorithm [4]. If W = 0, reordering is based a
on consideration of reducing D alone.

Experimental Results

The proposed reordering algorithm was ap­
plied to a number of sparse matrices of order
ranging from 100 to 500. The results of four
cases are given in Tables 3 to 6. The matrix
of Table 3 has a bandwidth much larger than that
of the matrix of Table 4. Tables 3 and 5 refer
to the same matrix except that L(j) of option

211

(A) is used in Table 3 and option (B) is used in
Table 5. Similarly for Tables 4 and 6. The fol­
lowing remarks can be made.

(1) The depth D in all cases is a small
fraction of 2n-2, in fact, much smaller than
n. This is to say that maximum utilization of
parallelism would significantly reduce the num­
ber of sequential steps necessary to triangulate
A. For example, in Table 3, column 3, we see
that 26895 steps are necessary to triangulate A
if only one processor is used. The matrix can
be triangulated in 91 steps, but more than 378
processors would be required.

(2) As Wb/Wa increases, thus giving more
relative importance to minimization of D, more
fill-ins are generated. D does decrease for
the case with small bandwidth. If the bandwidth
is large, the reduction in D is counterbalanced
by increase of fill-ins.

(3) While there is no rational basis to de­
termine what the best ratio of Wb to Wa
should be, our experiments indicate that going
to the extreme of Wb/Wa = 104 does not result

in significant decrease of D. It seems that a
good reordering algorithm is one which uses
Markowitz's scheme to find the pivots and uses
L(j) to break a tie, if any.

(4) The results of the experiments are not
sensitive to whether option (A) or (B) is used.

Conclusion

We have shown that a high degree of parallel­
ism exists among the operations in the triangu­
lation process of a sparse matrix. Recognizing
this, we take advantage of as much parallelism
as possible in every step of the process. In
contrast with array processing of matrices [S],
our approach assigns operations on matrix ele­
ments on different rows to parallel processors.
In this way we are able to reduce the total num­
ber of steps to triangulate the matrix, and as
we have seen, the reduction is dramatic and the
number can be significantly smaller than the or­
der of the matrix.

The important results of this paper are:
(1) an algorithm to sequence the operations of
a triangulation process so as to minimize the
number of time steps required; (2) a lower and
upper bound on the number of parallel processors
required in order to triangulate a matrix in
minimal number of time steps; and (3) an al­
gorithm to reorder the matrix to obtain local
minimization of the number of operations and the
number of triangulation steps.

References label o;eeration
[l] R. Sethi, "Algorithms for minimal-length 1 alS + alS I all schedules," in Computer and Job/Shop

Scheduling Theory, E.G. Cofflliari Jr. (ed.), 2 ass + ass - as1 alS
Wiley-Interscience, N.Y., 1976, pp.Sl-98. 3 a23 + a23 I a22

[2] J .D. Ullman, ''NP-complete scheduling prob- 4 a33 + a33 - a32 a23
lems," J. of Computer and S}'.stem Sciences, s a36 + a36 I a33 vol. 10, 1975, pp.384-393.

6 a66 + a66 - a63 • a36
[3] I.S. Duff, "A survey·of sparse matrix re- 7 a46 + a46 I a44 search," Proceedings of the IEEE, vol. 6S ,

no. 4, Aprll 1977, pp.S00-53S. 8 a47 + a47 I a44

[4] H.M. Markowitz, "The elimination form of the 9 a66 + a66 - a64 a46
inverse and its applications to linear pro- 10 a67 + a67 - a64 a47
granuning," Management Science, vol. 3, 19S7, 11 a +a - a a pp.2S8-269. 76 76 74 46

[S] D.A. Calahan, "Parallel solution of sparse 12 a +a - a a
77 77 74 47 simultaneous linear equations," Proc. 11th 13 as7 + aS7 I ass Allerton Conference on Circuit ana Srstems

Theory, 1973, pp. 729-73S. 14 a77 ... a77 - a7S aS7
lS a67 + a67 I a66
16 a77 + a77 - a76 • a67

Table 1

Figure 1

Table 2

212

label operation
dr u

-1.!:L on r

1 alS 1 2

2 ass 2 3

3 a23 1 1

4 a33 2 2

s a36 3 3

6 a66 4 4

7 a46 1 2

8 a47 1 3

9 a66 2 3

10 a67 2 4

11 a76 2 s

12 a77 2 4

13 aS7 3 4
14 a77 4 s

lS a67 s s

16 a77 6 6

Table 2

p -1'

3 V7 VB vlO v6 VIS

2 V3 V4 V9 VIZ v14

1 vl Vz VS v16 vll v16

1 2 3 4 s 6

An optimal schedule of operations
of matrix A using 3 processors.

Figure 3

...::. ,,. t

213

Order of matrix: SOO
Number of nonzero elements: 2060
Density: 0.82%

Operation weight

Depth weight

Fill-ins

Total nonzeros

Total operations

Depth

B u

Average:
Total op./D

Order of matrix:

100.0 100.0

0.0 0.1

267S 2630

473S 4690

2S943 ~48ll
9S 94

ll43 1089

S73 S7S

341 329

273.1 263.9

Table 3

Number of nonzero elements :
Density:

Operation weight 100.0 100.0

Depth weight 0.0 0.1

Fill-ins 933 982

Total nonzeros 288S 2934

Total operations 4S19 4761

69 62

6ll 674

168 163

80 101

Average:
Total op./D 6S.S 78.9

Table 4

1.0

1.0

2866

4926

2689S

91

ll38

604

378

29S.S

soo
19S2
0. 78%

1.0

1.0

llS9

3lll

SS32

S3

7S9

316

1S9

104.4

0.01

100.0

3S94

S6S4

36308

93

139S

7S4

S23

390.4

0.01

100.0

1S19

3471

7S08

sz

884

4Sl

2S7

147.8

Order of matrix: 500
Number of nonzero elements: 2060
Density: 0.82%

·~ Operation weigh

Depth weight

Fill-ins

Total nonzeros

100.0

0.0

2675

4735

100.0

0.1

2653

4713

Total operation s 25943 25287

Depth 95 92

1143 958

I 573 546

341 347

Average:
Total op./D 273.1 274.9

Table 5

1.0

1.0

2638.

4698

24835

94

1089

551

329

264.2

Order of matrix 500
Number of nonzero elements: 1952
Density: O. 78%

Operation weight 100.0 -100.0 1.0

Depth weight 0.0 0.1 1.0

Fill-ins 933 972 994

Total nonzeros 2885 2924 2946

Total operations 4519 4729 4788

Depth 69 65 59

611 667 700

168 171 193

80 93 112

Average:
Total op./D 65.5 72.8 81.2

Table 6

0.01

100.0

3294

5354

31019

95

1177

611

419

326.5

0.011

100.0

1374

3326

6437

43

877

440

281

149.7

214

VECTOR REDUCTION OPERATIONS ON CRAY-1
AND THEIR PERFORMANCE

T. L. Jordan
C-Division

Los Alamos Scientific Laboratory
Los Alamos, NM 87545

Summary

The CRAY-1 computer architecture has a con­
ventional scalar vocabulary plus a limited yet
powerful vector vocabulary. Although the scalar
performance of CRAY is about twice that of the CDC-
7600 or IBM 360-195, vector performance is typical­
ly at the 40 to 70 megaflop rate with some impor­
tant applications such as matrix multiplication and
matrix inversion performing at demonstrated rates
of 100 to 140 megaflops.

The aforementioned vector rates are applicable
to functions or operations which produce vector
valued results from vector operands or mixed scalar
and vector operands. When the results are scalar
and functions of vector operands, i.e., reduction
operations, then the hardware is not so explicitly
equipped to provide the kind of speeds shown above.
For the more important functions of the latter
type, summing a vector, computing a dot product and
searching a vector for its maximum or minimum, one
asks to what extent performance can be improved
over optimal scalar code through the use of the
vector hardware. For some reduction operations,
CRAY-1 has a peculiar instruction that explicitly
assists the implementation the first two functions.
No similar instruction is available for finding the
maximum (minimum) value of a vector and its index.
Hence, in addition to describing the implementa­
tions we have used for the first two functions, we

215

present in some detail a vector search algorithm.
The performance as a function of vector length is
also given.

The logic for handling the vector sum problem
and the dot product are intrinsically the same.
One divides up the vectors involved into m seg­
ments including the residue segment, i.e., n = 64
(m - 1) + RESIDUE, where n is the total vector
length. Operating on these segments as vectors
one obtains 64 or less partial sums. These par­
tial sums are then collapsed to 8 partial sums
through the use of the aforementioned special
recursive hardware instruction. Finally, one then
forms a scalar sum from 8 elements to produce the
desired sum. The asymptotic time to do this is
1 cycle per element for the sum and 2 cycles per
element for the dot product. However, for smaller
vector lengths this degrades to scalar rates.

Despite the absence of explicit hardware
aids, excellent performance for large vectors can
be obtained through software for the problem of
finding the index of the maximum (minimum) value
of a vector. The asymptotic rate at which each
comparison can be made is between 2 and 3 machine
cycles per compare. A detailed description of
the software technique used to achieve this speed
is presented.

IMAGE MAGNIFICATION

J. M. Vocar
Digital Technology

Goodyear Aerospace Corporation
Akron, Ohio 44315

Summary

The processing necessary to convert raw
input data into a convenient fonn which can be
analyzed by man or machine generally requires
many calculations for each input pixel. With
every pass of an observation satellite, thousand
upon thousands of such input pixels are being
received. The demand to convert this data into a
usable form is stressing the capacity of existing
digital (sequential) processors.

This ever increasing amount of input data is
forcing the image processing community to examine
hardware in which many parameters are treated
simultaneously; i.e., parallel processors, to
handle the processing load. While the maximum
processing capability of these processors is
usually impressive, the capability can be realized
only if the data can be de livered to the process­
ing elements efficiently.

To determine the suitability of a STARAN(a)
parallel processor in the area of digital image
processing, a cubic convolution interpolation
algorithm for image magnification was implemented
on a 2-way STARAN-B series machine. The program
magnified an arbitrarily sized, arbitrarily­
located rectangular subset of 8-bit pixels
imbedded within a 512 x 512 input image into a
512 x 512 output image. Independently specified,
noninteger X and Y magnifications were performed
using two-dimensional cubic convolution resampling
procedures.

The developed magnification program has
practical value. Magnification is an essential
requirement in the areas of scene examination and
finger print analysis. The cubic convolution
reconstruction filter can also be used as a pre­
lude to further image enhancement techniques.

When an image is magnified, the spaces
in between the given pixels must be filled in.
These intermediate pixel values are generally
supplied using one of the three following most
popular methods: 1) pixel replication, 2) bi­
linear interpolation, or 3) cubic convolution.

This paper presents a brief discussion of the
advantages and shortcomings of each of these three
approaches, including aliasing and roll-off
effects. The cubic convolution approach is shown
to be clearly superior to the other two methods.

(a)T.M. Goodyear Aerospace Corporation,
Akron, Ohio 44315

216

The use of STARAN to perform cubic convolution,
including algorithm implementation and the
program performance is described.

It was found that the magnification process
could be perfonned in less than 0.4 seconds.
Approximately 30 add or multiply operations were
required for each output pixel, and about 7.5
million of such operations were performed during
the magnification process.

The results of the work described show
STARAN to be a highly efficient and effective
tool in processing image data, e.g., in the areas
of resampling and reconstruction. The processing
power of STARAN, with its flexible routing and
high band width, make it particularly adaptable
to digital image processing. References [J) - [7)
detail the STARAN organization and several
processing techniques.

References

[1] K. E. Batcher, The Multi-Dimensional Access
Memory in STARAN, 1975 Sagamore Computer
Conference on Parallel Processing.

[2] K. E. Batcher, The Flip Network in STARAN,
1976 International Conference on Parallel
Process ing.

[3] R. Bernstein, Scene Correction (Precision
Processing) of ERTS Sensor Data Using
Digital Image Processing Techniques, Third
ERTS Symposium, Vol. I, Section A, NASA
SP-351, December 10-14, 1973.

[4) Samuel S. Rifman, Evaluation of Digital
Correction Techniques for ERTS Images -
Final Report, TRW Systems Group Report
20634-6003-TU-00, March 1964.

[5] J.M. Vocar, Image Magnification: Elementary
with STARAN, Goodyear Aerospace Corporation,
GER-16342, August 1976.

[6] APPLE Programming Manual, Goodyear Aerospace
Corporation, GER-15637B, Revision 2,
December 1975.

(7] STARAN Reference Manual, Goodyear Aerospace
Corporation, GER-15636B, Revision 2,
December 1975.

ALGORITHM DEVELOPMENT FOR PIPELINED PROCESSORS

P.M. Kogge
IBM Federal Systems Division

owego, NY 13827

Summary

Although processors using pipelined tech­
niques have been available for over a decade (for
example, the IBM System/360, Model 91), only re­
cently have they become sufficiently general, with
flexible enough controls over the pipeline itself,
to allow development for a single pipeline of a
whole range of complex algorithms, such as the
Fast Fourier Transform, optimal filter derivation,
interpolations, etc, Examples of such processors
include the IBM 3838 the Proteus Arithmetic
Element, the IBM 2938, and others. However, the
development of efficient algorithms for such
processors is greatly different than for conven­
tional processors. This paper discusses some of
the tradeoffs involved in the development of such
algorithms.

The typical system hierarchy of such proces­
sors includes a pipelined arithmetic unit contain­
ing adders, multipliers, etc. Operands for this
unit come from a small high-speed "local store".
Since there is never enough memory in the local
store to hold the largest problems, there is
typically a large "main store" with some kind of
"storage-to-storage transfer" unit between it and
"local store". Pipelining exists in at least
three different levels: within the arithmetic
modules themselves, within the interconnection
of arithmetic modules and the "local store", and
with the overlap of arithmetic operations and
data transfers between memories. Efficient al­
gorithms must consider all three levels.

Clearly the major constraint on the total
speed of an algorithm is the rate at which the
innermost loop of calculations can be performed.
For a pipelined processor, however, we must care­
fully choose how many calculations to include in
the inner loop to maximize performance. In most
cases it is necessary to "balance" the number of
operands accessed from the "local store" with the
number of each type of operation occuring in one
iteration of the inner loop in the arithmetic
processor unit. As an example, the inner loop
of an FFT is often considered to be what is known
as a "2-point Butterfly," which is simply re­
peated over and over with different data. On
many pipelines, however, this calculation uses up
all the "local store" bandwidth while leaving the
arithmetic unit only 50% utilized. However, by
expanding the inner loop to include four butter­
flies in a certain pattern both the arithmetic
modules and the "local store" can be 100% util­
ized, with twice the performance of the simpler
inner loop.

Another related problem occurs when the in­
ner loop involves a recurrence, that is, when a

217

series x1, ••• xn is to be computed, and Xi de­
pends on Xi-1• ••• Xi-m• Direct implementations
of this on a pipeline are inefficient since the
calculation of xi+l cannot start until Xi is com­
plete. There are techniques, however, that allow
many different recurrences to be "backed up" or
"overlapped" to the point where a pipeline can
more quickly compute them (cf. Kogge (1,2]).

Once the exact form of the inner loop has
been defined, the pipelined arithmetic unit can
be programmed to execute them. Typically this
involves starting the next iteration of the inner
loop as soon as the current iteration has freed
up the first stage in the pipeline. However,
there are often "collisions" where more than one
iteration attempt to use the same stage at the
same time. When this occurs it is necessary to
insert non-compute delays into the program that
actually lengthen the time per iteration, but
have the opposite effect of bringing the total
number of iterations executed per second back up
to the theoretical maximum. Such delays are
typically implemented by leaving results in in­
ternal registers for short periods of time.
Davidson, et al [3] has developed some good tech­
niques for determining optimal delay placement.

Finally, the choice and implementation of
the inner loop cannot proceed without concern for
the uppermost level of pipelining - namely the
overlap of data transfers between memories with
the arithmetic computations performed in the
arithmetic processor. Data sets must be segmented
into pieces small enough to fit into "local store,"
but large enough so that the overhead involved in
synchronizing the transfers with the computations
is kept to a minimum. Additionally, the existence
of data segmenting at all may force a complication
to the inner lbop of the calculations to allow
carry-over of intermediate results from segment
to segment.

References

[l] Kogge, P.M. 1973. "Maximal Rate Pipelined
Solutions to Recurrence Problems", First
Annual Symposium on Computer Architeci:iire,
University of Florida, Dec. 1973, pp 71-76.

[2] Kogge, P.M. 1974. "Parallel Solution of
Recurrence Problems," IBM Journal of Research
and Development, March, 1974, pp 138-148.

[3] Davidson, E.S., et al 1975. "Effective Con­
trol for Pipelined Computers", IEEE Computer
Society Conference COMPCON Feb. 1975,
pp 181-184.

PARALLEL PREFIX COMPUTATIONt

Richard E. Ladner and Michael J. Fischer
Department of Computer Science

University of Washington
Seattle, Washington 98195

Abstraat - The pref ix problem is to compute
all the products x1 ox2o,,,o~ for 1 s k Sn,

where o is an associative operation. Using a
recursive construction, we obtain a product cir­
cuit to solve the prefix problem which has depth
exactly r1og2nl and size bounded by 4n • An

application yields fast, small Boolean circuits to
simulate finite state transducers. By simulating
a sequential adder, we obtain a Boolean circuit
for n-bit binary addition which has depth
2 rlog2nl + 2 and size bounded by 14n . The size

can be decreased significantly by permitting the
depth to increase by an additive constant.

1. Introduction

Let o be an associative operation on a
domain D The prefix problem is to compu.te,
for given x1, ••• ,xn e D, each of the products

x1ox2o .. ,.o~ , 1 s ks n .

By analogy with Boolean combinational
circuits [6], [7], we consider product circuits,
which are directed acyclic oriented graphs. Each
node of in-degree 2 represents a product of its
two inputs. All other nodes have in-degree 0 and
are labelled with an integer between 1 and n •
These are the input nodes. With each node v we
associate an element of D in the obvious way.

We consider two complexity measures on a
product circuit N • C(N) , the size, is the
number of product nodes in N , ana:--n(N) , the
depth, is the maximum number of product nodes on
any directed path in N • For example, the cir­
cuit of Figure 1 has depth 3, size 4 and computes
x1ox3ox3ox2ox3 • Note that it also computes

t

and

Figure 1. A product circuit. (All arcs
are directed downwards.)

This research was supported in part by NSF
Grant No .• DCR-12997-AOl through a subcontract
from M.I.T. and by NSF Grant No. GJ-43264.

218

The depth of a circuit corresponds to the
computation time in a parallel computation envi­
ronment, whereas the size represents the amount
of hardware required. For the prefix problem, it
is straightforward to construct a circuit of
size n-1 , the minimum possible, but its depth
is also n-1 • Similarly, it is not difficult to
find a circuit of depth exactly r1og2nl , the

minimum possible, but the inunediate recursive

construction yields a circuit of size Q(nlogn)!~)
In Section 2, we find a solution to the prefix
problem of minimum depth r1og2nl and size < 4n.

The reader familiar with logical networks
will notice many similarities between our methods
and those used in constructing fast, linear-size
circuits for binary addition, such as the "carry­
lookahead" method [9]. Indeed, our methods,
applied to the binary addition problem, yield a
circuit which has linear size and depth
2flog2n1 + 2. Brent has an adder of depth

log2n + O(flog2n) but has size Q(nlog2n) [2].

Krapchenko has a linear size adder of depth only
log2n + O(llog2n) [5], [7]. It appears, however,

that our circuit is quite competitive with Brent's
and Krapchenko's circuits for small values of n •

The construction involves two steps. First,
given an arbitrary finite state transducer, we
obtain in Section 3 a circuit for simulating the
machine on inputs of length n which has depth
O(log n) and size O(n) . Applying that construc­
tion to the simple machine for binary addition of
Figure 2 and analyzing the constant carefully
yields the desired result. The details are
presented in Section 4.

00/1
00/0 f="\
0111 G© GJ_) 10/1 ~~~~~~

11/0

Figure 2. A sequential adder.

01/0
10/0
11/1

2. Circuits for the Prefix Problem

In this section, we define a family of cir­
cuits Pk(n) for solving the prefix problem on

n inputs. For each k , the depth D(Pk(n)) =

Q(g) iff g O(f) •

k + flog2nl •

for all n ~ 0

k
The size, C(Pk(n)) < 2(1 + 1/2)n

and 0 s k s f log2nl • For small

n , the size is substantially smaller than this
bound would suggest.

The recursive construction of P0 (n) is

shown in Figure 3, and the construction of Pk(n)

for k ~ 1 is shown in Figure 4. When n = 1 ,
Pk(n) is simply a single input node and contains

no products. In the figures, circles represent
concatenation nodes.

fn/21 Ln/2J
~ ' ... ~ I I I

Figure 3. The construction of P0 (n).

n inputs

That the constructions achieve the desired
depth follows easily by induction given the addi­
tional fact, also proved by induction, that the
last output in Pk(n) has depth exactly r1og2nl,

even when k > 0 . The correctness of the con­
struction is also easily shown by induction and
is left to the reader.

Then S satisfies

the following recurrences:

s0 (n) s 1 <fn/21> + s 0 <Ln/2j} + Ln/2j

n ~ 2 ;

Sk(n) sk-1 (rn/21) + n - 1 ,

n even and n ~ 2 • k ~ 1

Sk(n) sk-l <fn/21> + n - 2

n odd and n ~ 3 , k ~ 1

sk (1) = 0 ' k ~ 0

In case n is a power of 2 , we get exact
solutions

s 0(n) 4n - F(2 + log2n) - 2F(3 + log2n) + 1 '

s 1(n) 3n - F(l + log2n) - 2F(2 + log2n)

and more generally,

k k-1 s 0(n/2) + n•(2 - 1/2) - k

k 2(1 + 1/2)n - F(2 + log2n - k)

- 2F(3 + log2n - k) + 1 - k

--~~~~~~~J~~~~~~~~~~-"

0

I

219

~ this line absent
if n even

Figure 4. The construction of
Pk(n), k ~ 1.

holds for all k ' 0 ~ k ~ log2n . Here, F(m)
th denotes the m Fibonacci number, and

F(m)
<j>m _ $m

where 1 +rs and = <j>=--
rs 2

<j>
1 - rs

(cf. [3]). Thus, for large and =-2-- n

fixed k , Sk(n) is bounded by

2(1 + l/2k)n - a •n o. 69424 ... , where ak > 0 is k
a constant depending only on k . Some values of
Sk(n) are shown in Figure 5.

k

0 1 2 3 4 5 6 7

1 0
2 1 1
4 4 4 4
8 12 11 11 11

n 16 31 27 26 26 26
32 74 62 58 57 57 57
64 168 137 125 121 120 120 120

128 369 295 264 252 248 247 247 247

Figure 5. Sk(n) for n a small

power of 2

When n is not a power of 2 , we do not
have an exact solution, but it is easily veri~

fied by induction that Sk(n) < 2(1 + l/2k)n - 2,

n ~ 1 . In fact we know that Pk(n) is not

optimal for n not a power of two. For example,
C(P0 (9)) = 13 , but the circuit of Figure 6 has

size only 12 since

minimal depth 4.

s1 (8) = 11 , and it also has

Figure 6. A solution to the
9-input prefix problem.

220

It is an open problem to determine just how to
split the circuit to optimize the construction
using the methods of Figures 3 and 4.

There is an analogy between product circuits
and addition chains [8], [4]. Let D be the
natural numbers, o be ordinary addition, and fix
each input to 1 • Then the minimum size circuit
to compute a number n is exactly the length of
the shortest addition chain for m . A pref ix
circuit on n inputs under this interpretation ·
constructs each of the integers from 1 to n
Unlike most of the work on addition chains, we
are interested in the depth as well as in the
size. As with addition chains, analysis becomes
much more difficult for n not a power of 2 .

3. Application to Finite State Machines

A classic example of a sequential process is
a finite state transducer (cf. Booth [l]). Given
an input of length n and an initial state we
show below how to compute in parallel the output
and final state. This method leads to the con­
struction of fast Boolean circuits that simulate
finite state transducers.

We use the Mealy model of finite .state
transducer which is a five-tuple M = (Q,E,6,o,y)
where Q is a finite set of states, E is the
input alphabet, 6 is the output alphabet,
o Q x E + Q is the transition function and
y Q x E + 6 is the output function.

For each input symbol a we define a
function Ma : Q + Q by qMa = o(q,a) . (The

argument to Ma is on the left.) Given an input

word the state qM oM o ... oM is
al a2 ak

the state of M after reading a'i'"'ak starting

in state q , where
sition.

denotes functional compo-

A parallel algorithm to compute the output
and final state given the input a 1a2 ••. ak and

the initial state is:

1.

2.

Compute

Compute

M ' al
N = 1

M , .•• ,M in parallel.
a2 an

M , N2 = M oM , •.. , N
a 1 a 1 a 2 n

M oM o,.,oM by a parallel prefix
al a2 an

algorithm.
3. Compute q1

in parallel .
4. Compute b1 = y(q0 ,a1) , b2 = y(q 1,a2), ···•

bn = y(qn-l'an) in parallel.

The output is b1b 2 •.• b0 and the final state

is qn .

Let cl(dl) be the size (depth) of com-

puting Ma ' cz(dz) be the size (depth) of com-

puting functional composition, C3(d3) be the size

(depth) of computing functional evaluation, and
c 4 (d4) be the size (depth) of computing y(q,a).

Given an input of length n and an initial state,
the size and depth to compute the output and
final state is

SIZE ~ cz c(n) + (c 1 + c 3 + c 4)n

DEPTH ~ dz d(n) + dl + d3 + d4 '

where c(n) (d(n)) is the size (depth) of a
product circuit to solve the prefix problem.
(Note: we assume the state q0 can be coded or
decoded at no cost.)

There are several ways of obtaining Boolean
circuits from this method. One simple way is to
represent the Ma's as s x s Boolean matrices

where s is the number of states. Functional
composition is Boolean matrix multiplication and
functional evaluation is the Boolean product of a
matrix and a vector. For this representation
using the standard matrix multiplication algo­
rithm and the prefix circuit P0 (or Pk for

fixed k) we can construct a Boolean circuit
for inputs of length n with linear size and
depth (1 + logzs)logzn + d where d is a

constant depending only on M .

4. Application to Binary Addition

Consider the finite state transducer A of
Figure Z. There are three functions A00 , A01 =

A10 , A11 on states which are closed under

composition. We represent them by a pair of bits
g,p (for generate and propagate, respectively)
as shown in Figure 7. The composition table is
shown in Figure 8, and the evaluation table in
Figure 9.

input function

x y g p

0 0 0 0 g x /\ y

1 0 0 1 p x@y

0 1 0 1

1 1 1 0

Figure 7. Computation of the function
from the inputs.

ZZl

0 0
function

glpl 0 1

1 0

g

p

Figure 8.

state
s

0

1

function

gzPz

0 0 0 1 0

0 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 1 0

gz v (gl A Pz)

pl /\ Pz

Composition table.

function
g p

00 01 10

0 0 1

0

t = g v (s A p)

Figure 9. Evaluation table.

From Figure 7 the inputs can be represented
by the initial g,p pair, so we get the output
table shown in Figure 10.

input
g p

0 0 0 1 1 0

0 0 0
state

t 1 1 0 1

z = t El) p

Figure 10. Output table.

By observation we can calculate the
constants

2

3

2

1

1

2

2

The basic costs for addition are SIZE s
3c(n) + Sn and DEPTH s 2d(n) + 4 . There are
certain refinements that can be made.

1. Let the input state be the constant 0 . The
evaluation table reduces to t = g . There
is no "evaluation" so there is no need to
compute p at the last level before step 3.
This results in a total savings of 3n in
size and 2 in depth, so SIZE s 3c(n) + 2n
and DEPTH s 2d(n) + 2 •

2. We may obtain an n-bit adder with the state
as an additional "carry-in" input by forming
an (n+l)-bit adder which starts in state 0
and uses the lowest order bits to simulate
the incoming state. This observation leads
to an adder of SIZE s 3c(n + 1) + 2n and
DEPTH s 2d(n + 1) + 2 .

3. These techniques can also be used to con­
struct ones-complement adders. Because of
the "end-around" carry the input state is a

0

function of the input numbers. The input
state is computed in step 2 which makes it
available for step 3 where it is used. In
this case the adder has SIZE s 3c(n) + Sn
and DEPTH s 2d(n) + 4

Using the results of Section 2 and the
observation 1 above there exists Boolean circuits
to compute n-bit sums (with no carry in) of

6 and SIZE s (8 + 7)n
2

DEPTH s 2log2n + 2k + 2

for 0 s k s log2n .

Notice that if we set k = log2n then we

obtain a circuit of SIZE s Sn + 6 and
DEPTH s 4log2n + 2 . These bounds are similar

to those obtained for the "carry-lookahead"
adder [9]. We believe that our circuit Pk(n)

for k = log2n is essentially the same as the

"carry-lookahead" adder.

The table of Figure ll illustrates the
trade-offs that can be made between size and
depth in small adders. The numbers of Figure 11
are based on those of Figure S together with
observation 1.

k
2 3

DEPTH SIZE DEPTH SIZE DEPTH SIZE DEPTH SIZE

4 6 20 8 20 10 20

8 8 S2 10 49 12 49 14 49

number 16 10 12S 12 113 14 110 16 llO
of bits 32 12 286 14 2SO 16 238 18 23S

64 14 632 16 S39 18 S03 20 491

128 16 1363 18 1141 20 1048 22 1012

Figure 11. DEPTH and SIZ.E of small adders.

222

References

[l] T. L. Booth, Sequential Machines and Auto­
mata Theory, John Wiley and Sons, Inc., New
York, (1967).

(2] R. Brent, "On the addition of binary
numbers," IEEE Transactions on Computers,
vol. C-19, no. 8, (1970), pp. 7 58-7 59.

[3J D. E. Knuth, The Art of Computer Programming,
Volume 1, Addison-Wesley, Reading, Mass.,
(1968).

[4] D. E. Knuth, The Art of Computer Programming,
Volume 2, Addison-Wesley, Reading, Mass.,
(1969).

[SJ V. M. Krapchenko, "Asymptotic estimation of
addition time of a parallel adder," Engl.
transl. in Syst. Theory Res., Vol. 19,
(1970), pp. 105-122; orig. in Probl. Kibern.
12. pp. 107-122.

223

[6J M. S. Paterson, "An introduction to Boolean
function complexity," Societe Mathematigue
de France Asterisgue 38-39, (1976), pp. 183-
201. Also appeared as technical report
STAN-CS-76-557, Computer Science Department,
Stanford University, (August, 1976).

[7] J. E. Savage, The Complexity of Computing,
John Wiley and Sons, New York, (1976).

[8] A. SchC:lnhage, "A lower bound for the length
of addition chains," Theoretical Comp. Sci.
..!_, (1975), pp. 1-12.

(9J C. Tung, "Arithmetic," in Computer Science,
A. F. Cardenas, L. Presser, M. A. Marin,
eds., Wiley-Interscience, New York, (1972).

TOWARD AN ARITHMETIC FOR PARALLEL COMPUTATION

Jerome Rothstein
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

614-422-7027

Abstract

A new positional binary number system was
devised in an attempt to avoid carrying in addi­
tion. It originated from the groupoid string
formalism, previously shown to have the computa­
tion universality of Turing machines and the
parallel capabilities of cellular and bus auto­
mata. It is uniquely defined by the natural
conditions (a) a number is doubled by adding a
copy, shifted one place left, to the original
number, where digits are added mod 2, and (b)
adding 1 to any number adds 1 mod 2 at precisely
one place. Arithmetical, combinatorial, and
parallel computational properties of the binary
system are discussed and some properties of
similar systems with higher radix briefly noted.

I. Introduction

At the 1976 International Conference on
Parallel Processing the writer [l] developed a
groupoid string formalism (based on earlier work
on patterns [2]) and proved that groupoid string
systems (a) had the computation universality of
Turing machines, (b) corresponded in a simple
detailed manner to one-dimensional cellula1 auto­
mata, and (c) had a natural parallel comput1tion
potentiality which led to developing bus auto­
mata which actually realized it to a considerable
degree. The success of the groupoid string
approach, both in effectively speeding up Turing
machine algorithms and in recognizing many kinds
of formal languages, led to the hope that arith­
metic computations might also be sped up if they
could be properly formulated as groupoid string
processes.

The first problem is to find a number
system, compatible with a groupoid string view­
point, with some kind of parallel possibility
inherent in its "local" structure. For example,
addition might be done everywhere along a string,
in parallel, without having to worry about carry
chains. A positional notation seems mandatory
to keep string length within reasonable bounds.
We sought a binary system based on addition mod
2 as the underlying groupoid. Having the one
dimensional infinite shift register in mind as
the "active tape" suggested that integers corre­
spond to finite strings over (0,1), with infinite
strings of O's understood as preceding and
following the integer. The set of positive
integers and zero, {I}, is then, in a regular
notation in which the infinite 0-strings are
omitted,

* I = A+ 1 + 1(0+1) 1 (1.1)

Here the null symbol corresponds to 0, 1 to 1,

224

and the remaining positive integers correspond
biuniquely to members of the infinite set of
strings l(o+l)*l in a manner to be determined.
Word length is required to increase monotonically
with increase in size of the integer represented,
with. doubling an integer increasing the length by
1. It turns out that forming a daughter string,
earlier used to generate patterns in the plane
[2] where the groupoid operation is $ (addition
over (O,l) mod 2), corresponds exactly to adding
a left shifted copy of the original string to it­
self without carrying. We take this daughter
string as representing the integer which is twice
the integer represented by the original string.
We then obtain the powers of 2 as successive rows
of Pascal's triangle taken mod 2. To avoid carry
chains it is certainly necessary that addition of
unity initiate no chain. The number must then
change in precisely one digit, i.e., the number
system is a grey code.

These properties define the number
uniquely (up to direction of reading).
it was so awkward to work with at first

system
However,
that it

seemed doomed to remain a mere curiosity. For
example, given an integer in this system, there
was no easy way to find the next higher integer.
But eventually properties of the system began to
emerge suggesting that it could be useful in
handling some combinatorial problems by parallel
computation, even if arithmetic remained diffi­
cult. It began to seem likely that a dimly per­
ceived inversion of what was easy and what was
hard between this number system and conventional
ones had deep roots and could lead to interesting
developments in computability theory generally
and in parallel computation in particular.

A particularly intriguing feature of this
kind of number system is the beautiful way in
which arithmetic properties of numbers are asso­
ciated with symmetries of patterns generated by
the daughter string process. A new kind of geo­
metry of numbers, profoundly different from
Minkowski's, which has algebraic and combinato­
rial features and is also related to the archi­
tecture of cellular and bus automata may emerge
from this line of research. The possibility of
arithmetizing the generation of geometrical
pattern, and the emergence of patterns as pro­
perties of classes of strings again suggest that
this number system deserves prolonged study even
if it should be utterly useless for numerical
computations of conventional kinds.

In the following sections we develop enough
of the groupoid formalism to show how it connects
both with algorithmic pattern generation and with
parallel computation via cellular and bus auto­
mata. The two naturally meet in Pascal's tri­
angle, from which multiplication by 2 arose
naturally. We then derive the number system for

the integers and extend it to numbers of the
form N2-n for all integer N and n. This gives
binary approximations for all reals to any de­
sired accuracy. These non-integers have a possi­
bly null non-repeating part followed by an
infinite periodic string, the number of digits in
the period being a power of two. Some geometric
and combinatorial aspects of the number system
are presented, and it is shown that many pecu­
liarities making the system awkward for conven­
tional computations are helpful from the view­
point of parallel operations on cellular and bus
automata. After a discussion of ternary and
higher bases, a tentative assessment of the
significance of these number systems is made.

II. Groupoid String Systems, Patterns,
and Bus Automata

A groupoid (G, o) is a set G closed under a
binary operation o, i.e., given arbitrary ele­
ments a and b of G, their combination by means of
that operation yields an element of G, say c. In
symbols

or
a o b = c

o: G x G + G
(2 .1)
(2. 2)

A finite groupoid is conveniently specified by
its multiplication table.

If the symbols representing groupoid ele­
ments are taken as an alphabet and used to gene­
rate strings by concatenation, we can form a
daughter ill!!!& di di+l •••• , from any

string which can be called the parent string
••.• pi Pi+l •••• by

(2.3)

The strings can be finite, infinite to the left,
right or both. We denote the set of all possible
strings by Gw, the finite strings by G*, the left
and right semi-infinite strings by G-00 and G00

respectivelyi and the set of two-way infinite
strings by G-00 • A groupoid string system is a
subset of Gw closed under the (unary) daughter
operation (or relation). The descendant relation
between strings is the transitive closure of the
daughter relation, and its converse is the
ancestor or ancestral relation. A string system
is often conveniently represented as a set of
directed trees. Nodes are strings and edges are
drawn only from parent to daughter. Fig. 2.1
illustrates the system of finite binary strings
over {O,l} under addition modulo 2. Flow is to
the root, and there are two distinct trees with
roots 0 and 1.

A two-sided identity (unit, neutral element)
and/or an annihilator (zero) can always be
adjoined to any groupoid if not already present,
and each is unique. Denoting an identity by e
and an annihilator by z, they satisfy

e o a = a o e = a
z o a a o z = z

and uniqueness follows from e o e' e'

(2.4)
(2.5)

e and

225

"' "'
1001 0110

\, ..I
101

"' 11 +

t

.!'010\

1100 0011

t t

"' "' 0001 1110

'-oof

"' 01 +

t

110
I' '\

1011 0100

t t

0

1

"' "'
1111 0000

\,oo/

"'
+ 00

t

111

I' ' 1010 0101

t t

"' "' 1000 0111

\i101'

+ 10

t

011

11/i ~010
t t

$ 0 1

0 0 1
1 1 0

Fig, 2.1 Groupoid String System Over
({O,l},$) Consisting of All
Finite Strings, Where Arrows
Point from Parent Strings to
Daughter Strings

z oz'= z = z'. The string system of Fig. 2.1
is embeddable in c±00 over (z,0,1) by matching the
strings in that system to the strings in c±00 con­
sisting of those strings preceded and followed by
infinite "rays" of z's, and defining z as the
daughter of any element of G. The daughter of a
finite string with z at one end and e at the other
has the same length as the parent. Such systems
are ultimately periodic under iterated daughter
transformations, as are infinite periodic strings.
The latter give rise to an infinite set of "wall­
paper" designs [2], the former to shift-register
sequences. With infinite strings of e's preced­
ing and following a word whose end letters are
not e, each generation increments the length of
the non-e positions by unity. Omitting the semi­
infinite e-strings gives the generalization of
Pascal's triangle for addition, starting from 1,
to the general groupoid starting with an arbi-

trary groupoid string. Figures 2,2 and 2,3 illus­
trate the process for the cyclic groups of order 2
and 3 respectively, starting from 1, giving
Pascal's triangle modulo 2 and 3.

1
11
101

1111
10001

110011
1010101

11111111
100000001

1100000011
10100000101

111100001111
1000100010001

11001100110011
101010101010101

1111111111111111
10000000000000001

110000000000000011
1010000000000000101

11110000000000001111
100010000000000010001

1100110000000000110011
10101010000000001010101

111111110000000011111111
1000000010000000100000001

11000000110000001100000011
101000001010000010100000101

1111000011110000111100001111
10001000100010001000100010001

110011001100110011001100110011
1010101010101010101010101010101

11111111111111111111111111111111
'100000000000000000000000000000001

Fig. 2.2 Pascal's Triangle Mod (2)

Computation of daughter strings is perform­
able in parallel on a one-dimensional cellular
automaton (CA), essentially a "shift-register
accumulator" whose "logic" embodies groupoid
multiplication; see Fig. 2.4 (applied to Equation
(2.3)). For discussion of how the groupoid
formalism covers the general CA, thus achieving
computation universality via simulation of an
arbitrary Turing machine, see Rothstein [l]. That
paper also describes the genesis and parallel
speed-up aspect of bus automata (BA), giving
further references to both the CA literature and
the work of the writer and his former students,
C.F.R. Weiman and J.M. Meshell.

As noted, the CA can compute a complete
daughter string, in parallel, in the time needed
for one operation. To compute a parent string
from a daughter string requires a BA; see
Fig. 2.5. The BA is here one-dimensional, i.e.,
it utilizes a linear array of similar finite
state automata. A0 , A1 , A2 , ... ~· The

states of individual automata, s 0 , s1 , ... sm' are

labeled by the groupoid elements, which, in this
case, are also the input and output alphabets.
Ordinarily the state, input, and output alphabets

226

1
11

121
1001

11011
121121

1002001
11022011

121212121
1000000001

11000000011
121000000121

1001000001001
11011000011011

121121000121121
1002001001002001

11022011011022011
121212121121212121

1000000002000000001
11000000022000000011

121000000212000000121
1001000002002000001001

11011000022022000011011
121121000212212000121121

1002001002001002001002001
11022011022011022011022011

121212121212121212121212121
1000000000000000000000000001
11000000000000000000000000011

121000000000000000000000000121
1001000000000000000000000001001

11011000000000000000000000011011
121121000000000000000000000121121

Fig. 2.3 Pascal's Triangle Mod (3)

Fig. 2.4 Shift Register Computation
of Daughter String

Fig. 2.5 Bus Automaton Explained by
Means of a Connected Linear
Array of Automata {Ai}

are designated by distinct sets of symbols, e.g.
respectively as

K {so• sl, s }
m

(2.6)

r foo, al, a } (2. 7)
n

e {90, e1, e } (2.8)
r

The effect of input cr. on state s. is to induce a
J l.

transition to state sk' and produce output ek'
which can be written

(2.9)

In the present case we can both take

K = r = e = c (2.10)

and replace the resulting right side of (2.9),
namely (dk, dk), simply by dk. We then have

(2 .11)

where pi, pj, ~ are elements of G replacing si'

crj, and (sk, 8k) respectively. We use the symbol

for the groupoid operation in (2,11) instead of
the concatenative notation of (2.9) to stress that
each automaton Ai is designed to embody the group-

oid multiplication table in its state transition
function. The arrows drawn in Fig. 2.5 signify
that (2.9) applies in the sense that the tail of
an arrow at s. of A. is drawn with its head at s.

l. l. J
of Ai+l if pi is the input of Ai, di the output

(a Moore machine is here chosen for definiteness,
a similar discussion applies to Mealy machines).
The BA concept combines the automata Ai with

communication busses controlled locally by them
for calculation of a parent string in terms of a
daughter string. The arrows become bus sections.
They are hooked up as part of the setting-up con­
dition in which the di string is used as input.

The pi string is now the output activated by a

continuous path (through arrows) between end
markers or the like bounding the di string. As

semigroups are associative groupoids, this leads
to immediate recognition of regular languages and
thus to Turing machine speed-up in a number of
steps one more than the number of tape turn­
arounds [1] •

III. The Binary Parallel Number System

We now derive the number system briefly des­
cribed in I, beginning with a statement of the
fundamental theorem.

Theorem 3.1 There exists a binary number
system unique up to reversal of reading direction,
satisfying (i) 1 designates the integer one;
(ii) the double of any integer is obtained by add­
ing a copy of that integer, shifted one place to

227

the left, to the original integer, where addition
in each place is modulo two; (iii) the number of
digits representing any integer can not exceed
the number of digits representing a larger
integer; and (iv) addition of one to any integer
changes one and only one digit.

The proof depends on a string of subsidiary
results which will be stated and proved as theo­
rems because of their interest both for the num­
ber system and for string patterns. In the sequel
integers are understood to be in this system.

Theorem 3.2 The powers of two are given by
successive rows of Pascal's triangle mod 2 and are
palindromes.

Proof: The rule for constructing Pascal's
triangle is clearly expressible as the daughter
string algorithm for addition; for mod 2 addition
it is the doubling rule (ii) of the hypothesis of
Theorem 3.1. The symmetry of Pascal's triangle
makes the strings read the same backwards and
forwards, i.e., they are palindromes. Fig, 2.2
gives the powers of 2 from zero to 32.

Theorem 3.3 For any integer N, the integers
2n N, n = 0, 1, 2, ••• , are given by the success­
ive rows of the trimmed Pascal triangle whose
first row is N; equivalently the product of N and
2n is calculated as in conventional binary except
that the final additions are performed mod 2.

Proof: The first half of the theorem is
established as in the proof of Theorem 3.2; it is
simply the doubling rule iterated. Before estab­
lishing the second half, we refer to Fig. 3.1,

3
6

12
24
48
96

192

111 1
1001 11

11011 101
101101 1111

1110111 10001
10011001 110011

110101011 1010101

11011 12
Xllll 8

11011
11011

11011
11011

10011001 = 96

1
2
4
8

16
32
64

Fig. 3.1 Three Times a Power of Two

illustrating the case N = 3 (proof that 3 is
uniquely 111: (a) it can have no more than three
digits because 4 is 101; (b) it must have more
than two digits because 2 = 11 is the only permis­
sible two digit number as 01, 10, and 00 would be
partially or totally "absorbed" in the semi­
infinite a-strings; (c) the only possibility left
is 111). To see that the method of the illustra­
tive multiplication example is again but another
form of the doubling rule, compare doubling and
quadrupling as illustrated by Fig. 3.2. The
number xn xn-l .•• x0 is shown with a copy left

shifted and added to the original string to
double it, and this result is again duplicated as
shown to quadruple the number. The unshifted

1
1
1

1
101

xn xn-1 ''' xo

xn xn-1

xn xn-1

xn xn-1

Fig. 3.2 Multiplication by a Power of Two

member of the shifted double clearly lines up with
the shifted member of the unshifted double. They
"cancel" in mod 2 addition, leaving only the
result of adding a copy shifted two places left to
the original string as the quadruple of the orig­
inal number. The asserted result now follows by
induction.

Theorem 3.4 The doubles of two numbers which
differ in only one place differ in two adjacent
places.

Proof: Let the numbers be xn xn-l ..• xk

x and x x 1 • • • X. . • • x , where 0 = 1 and
o n n- K .Q.

1 = O, and call them N and N respectively. We
have

x xn-1 ~ ~-1 x n 0

x ~+l ~ xl x n 0

2N Yn+l yn yk+l yk Y1 yo

x xn-1 ~ .:'.:k-1
x n 0

x ~+1 ~ xl x n 0

2N Yn+l yn yk+l yk Y1 Yo

where we have used the easily proved theorem for
addition mod 2 that

x $ y = z implies x e y = z (3.1)

This theorem clearly generalizes by induction
to multiplication by 2n as stated in the next
theorem.

Theorem 3.5 The multiples by 2n of two num­
bers which differ in one place differ in at most
(n+l) contiguous places, namely those correspond­
ing to l's in the number 2n, where the rightmost 1
of 2n lines up with the ~ in which the two

original numbers differ.
Proof: Form the trimmed Pascal's triangle

starting from N = xn •.. x0 , and put a bar over

~ as in the proof of Theorem 3.4. Then the bars

propagate just as the l's do in Pascal's tri­
angle, for (3.1), via commutativity of e, shows
that

x e y = z implies x $ y = z, (3.2)

i.e., two bars (l's) combined give none (0). But
this is just what the theorem states.

A similar proof, which we omit, proves the
further generalization stated in the next theorem.

Theorem 3.6 If two integers are right justi­
fied and comparisons of digits in the various

228

positions are encoded as 1 when they differ and 0
when they are the same, then the differences in
their multiples by 2n are encoded as the multiple
by 2n of the first encoding.

Theorem 3,4 is needed to construct the num­
ber system, while 3.5 and 3.6 are of interest in
bus automata and groupoid pattern investigations.

We now prove Theorem 3.1. We already know
that 1, 2, 3, 4 are respectively 1, 11, 111, 101,
and that given the doubling rule, if we know the
integers 1 through N, the even numbers from N to
2N are determined, leaving only the odd numbers
between N and 2N to be found. By Theorem 3.4 two
successive evens differ in two adjacent places, so
by (iv) of the hypothesis of Theorem 3.1 the odd
number between them differs in precisely one of
those two places from each of the two evens. We
need only show that all the numbers from (N+l) to
2N, for N a power of~ have one more digit than
N, and give the string for one odd integer, e.g.
N+l, to conclude that all the representations of
the integers are uniquely determined to 2N.
Uniqueness would then follow, by induction on n,
N=2n, for all the integers; the base of the
induction having already been amply provided by
the truth of the theorem for n=0,1,2. Note that
5, 6, 7, 8 must all have four digits and begin and
end in 1, just as in the argument leading to 111
for 3. End O's are excluded; no three digit
strings are available for 5; 6 and 8 have four
digits by the doubling rule, so 7, which can not
have fewer digits than 6 nor more than 8 also has
four; 5 can have no more than four and must have
more than three, and so exactly four. As 6 and 8
are 1001 and 1111 respectively, 5 and 7 are 1101
and 1011, not necessarily respectively. Note that
5 has only the two possibilities of prefixing or
suffixing a 1 to 4 = 101, that 3 can be regarded
as either prefixing or suffixing a 1 to 2 = 11,
and that the two cases are mirror images. In
accordance with the custom of forming larger num­
bers by adjoining digits on the left we take 1101
for 5, thus having only the choice 1011 for 7,
The four four-digit numbers exhaust all possibili­
ties for filling the two center places. The same
situation recurs in the next "octave", 9 through
16. The doubling process always converts strings
beginning and ending in 1 into strings beginning
and ending in 1, the interpolated odds must do
likewise, and by Theorem 3.4 adoption of the pre­
fix convention for 5 forces it for 9, and by
induction for 2n+1, n > 3. The 3 interior places
in the five-digit numbers use all possible
"fillings" for the 8 integers they represent.
The next octave of integers thus must again all
have one more place, doubling the numbers of
"fillings" which again exactly accommodate the
new integers. By induction this is always the
case, whence the representations of all the
integers are unique up to a mirror reflection of
the entire system. The choice is a reading direc­
tion convention common to all number systems.

This completes the proof of Theorem 3,1, but
armed only with that result one might despair of
ever being able to count in this number system.
The only simply specified odd numbers are
{2n + 1 I n = 0,1,2 ... }. One would then have to
find consecutive evens in each of their octaves

between which each one could fit, the other of
the two possibilities then being the right one
for that slot. Then one would have to find
another place where this last number might have
fitted, plug the other possibility in that place
and so on, until all slots are filled. However,
observe that the arguments given to build up the
integers from 1 to zn, with the list, in order
and right justified, can be applied to the suc­
cession of digit changes needed to count from
n n+l 2 +l to 2 • The only novelty is that now the

left justified reversed list is added mod 2,
digit by digit to zn, where the list lines up its
left-most digits one place to the left of the
left-most digit of zn. Fig. 3.3 illustrates the
process applied to 1 through 4 to obtain 5

1 1 1101 5 1011 11001 13
2 11 + 1001 6 1001 + 11101 14
3 111 1011 7 1101 10101 15
4 101 1111 8 1111 10001 16

"""101 1111

Fig. 3.3 Counting in Octaves

through 8, and the latter reversed to obtain 13
through 16 via addition of 8. The process is
amenable to parallel operation, e.g., in a planar
BA, the l's in zn complementing the digits of the
corresponding columns of the list, O's leaving
them unchanged (blanks are interpreted as O's).
The above can be viewed as an extension of the
doubling rule, applied to a power of 2, to addi­
tion of a power of two to any number not exceed­
ing it. We state it as Theorem 3.7.

Theorem 3.7 To find the sum of any integer
and a power of two not less than that integer,
shift the reversed integer one place left from
where it would be if left justified with the
power of two and sum digit by digit mod 2.

Applied interatively this immediately proves
the correctness of the following algorithm to
convert conventional binary to parallel binary.

Theorem 3.8 To find the representation of
an integer given in conventional binary (a) left­
shift the smallest power of 2 indicated by it
with respect to the left justified list of the
remaining powers of 2; (b) add the first two
numbers; (c) reverse the result and add to the
next; (d) repeat a, b, c, alternating reversals
and additions until one number remains.

This algorithm can be inverted to convert a
given number to conventional binary.

Theorem 3.9 To convert a parallel binary
number with n digits to conventional binary, first

add 2n-l, digit by digit, mod 2. If the result is

a string of n O's the number is 2n-l. If not, add

in 2n-l again, restoring the original number, and

repeat the process with 2n-Z right justified,

writing 1 in the 2n-Z position of the sought con­
ventional binary number. The result of the addi­
tion will have a string of k O's to the right,
k ~ 1. Cross them off and write (k-1) O's in the
next (k-1) positions of the sought conventional

229

binary number, The procedure is then repeated
with the reversed shortened string of (n-k)

n ... k.,.l
digits (add 2 , right justified, mod 2 in
each place, etc.), giving further digits of the
binary number sought, and so on until the string
has been reduced to a power of 2.

Proof: The procedure reverses the steps of
the previous theorem, for what was called addi­
tion is also subtraction mod 2. It alternately
tests whether the given or modified string is a
power of two and subtracts an appropriate power
of two.

A procedure similar to that of Theorem 3.7

works to add 2n to all numbers from 2n+l to 2n+l
Theorem 3.10 To add zn to any number from

2n+l to 2n+l shift the integer left one place
from where it would be if right justified with
the power of 2, and sum digit by digit mod 2.

Proof: The sums sought are the numbers from
n+l n+2

2 +l to 2 • From the way they would be con-
structed by the octave counting method it is
clear that the procedure given is equivalent to
doubling the zn part first and then adding from
1 to zn.

We list a few useful miscellaneous results
in the next theorem, most proved already.

Theorem 3.11 All numbers begin with 1 and
end with 1, and have an even number of l's if
they are even and an odd number of l's if they
are odd. The largest number with (n.+l) digits

is Zn, the smallest is 2n-l+l.
Proof: The assertions needing proof are

those on the number of l's. Let N have k l's.
Then 2N will have (2k-2k 1) l's, where k' is the
number of places in which l's of the shifted copy
are above l's of the original copy. Then 2N, for
arbitrary N, has 2(k-k') l's, i.e., all even num­
bers have an even number of l's. Odd numbers
differ by one, in their number of l's, from the
evens, by (iv) of Theorem 3.1.

The next theorem is of particular interest
as it shows that mere counting by octaves to zn
also computes the set of binomial coefficients

(¥),inaugurating the study of "parallel
combinatorics".

Theorem 3.12 If the integers from 1 to 2n
are tabulated, either left or right justified,
then the number of digit changes (alternations)
in the rth column from either end (blanks are

counted as 0' s) is precisely J!;
Proof: The theorem is true by inspection of

Fig. 3.3 for n ~ 2. Assume it is true for n=k
and consider the right justified list of integers

from 1 to 2k+l. By the discussion in connection
with Fig. 3.3 which led to Theorem 3.7, the num­
ber of digit changes in the first k columns of
the second half of the list is the same, column
by column, as those of the first half. We thus
form the total number of changes for case k+l by
adding the changes for two contributions, offset
by one, of case k. But this is identical with
the rule by which Pascal's triangle is con­
stru.cted, whence the numbers of changes are given

by (kt~ and the theorem is established.

Fig, 3,4 gives a Markov algorithm for
doubling a number and illustrates its use, As
the markers move in one direction their action
can be simulated by a finite state machine, show­
ing once again that doubling is "immediate" on a
BA. As only one marker at most is ever present

aO + Oa 1101 5
al + lS allOl
so + la lSlOl
Sl + OS lOSOl
s + .1 lOlal
a + .A lOllS
A + a 10111 = 10

Fig. 3.4 Markov Algorithm for Doubling

the only critical features of the priority order­
ing of productions are that marker introduction
has lowest priority, and that all conclusive pro­
ductions, as a group, have next lowest priority.
Markov algorithms for daughter strings over gen­
eral groupoids are readily transcribable from
their multiplication tables. For example, in G*,
where daughters are one letter shorter than their
parents, with G = {g1 , g2 , •.• , gn} and

gi 0 gj = gk, we can write

aOgi + giai

aigj + gk
(3.3)

a. + .A
1

A + ao

for the algorithm which computes the daughter for
all finite strings of lengths greater than one,
and leaves strings of length one unchanged.
There are (n+l) markers, but if the groupoid has
an identity e, n markers suffice as a0 can be re-

placed by ae. The productions above are multiple,

except for the last, the first, second and third
standing for n, n2, and n different ones, the
second representing the multiplication table,
essentially.

The algorithm of Fig. 3.4 is easily modified
to multiply by 2n: replace the last rule by
A+ afaa ... a, keeping the other rules unchanged

and also applicable to af and sf except that the

conclusive productions for a and S cease to be so
and become conclusive only for af and Sf. Simi-

larly we can easily write a groupoid nth genera­
tion descendant Markov algorithm. The markers
still move in one direction, so the computation
is still immediate on a suitable BA. This can be
generalized to the equivalent of a Turing machine
speed-up theorem distinct from the one cited
earlier.

We close this chapter with some observations
on addition and multiplication in parallel bi­
nary. First the simple rules for adding suffi­
ciently high powers of 2 to a number or to multi-

230

ply by a power of 2 fail in general. For
example, if one computes 3 x 3 by the rule of
Theorem 3.3, namely as in conventional binary
except that the final additions are mod 2, the
answer is 15 while 3 x 5 gives 27. Addition is
particularly frustrating, for given some big
number, there still seems to be no simple way
even to tell what digit to change in order to add
1 to it (short of finding where it occurs in the
list of integers and going to its successor).
The difficulty stems from the way powers of 2 are
folded into an integer; adding two numbers con­
taining a common power of two still seems to
require replacing the two contributions of that
power by the next higher power. Carrying has
thus not been avoided, in essence. It may well
be that Theorems 3.8 and 3.9 will have to be
utilized in some form to do many ordinary arith­
metical tasks, even on a BA, but conversion is
rapid both ways and may of ten be necessary only
in part. Hopefully results like Theorem 3.12
will ultimately abound and have important
practical applications.

IV. Extension to Fractions 2-~

It is known that the direct product of any
number of cyclic groups of order 2 is a group
(hence a groupoid) satisfying the "self-solving"
conditions

a o b = c => a = b o c => b = c o a (4.1)

as well as being commutative and unipotent. This
means that in Pascal's triangle mod 2 not only
are successive rows daughters of their immediate
predecessors (remember that the rest of the half­
plane is covered by 0-strings) but strings
parallel to the sides, terminating on the sides
of the original triangle are parents of the
parallel strings immediately above them. As the
original sides, 111 ... , give 1 when doubled, we
immediately deduce that the successive semi­
infinite strings parallel to one side, starting
with that side represent the successively higher
negative powers of 2. Using (4.1), rewritten in
the notation of (2.3), permits us to write

(4. 2)

and to interpret the resulting recursive algo­
rithm for finding the parent string as division
by 2.

Fig. 4.1 shows how both of the foregoing
developments can be combined in an extended
Pascal half-plane pattern. The horizontal arrow
points to the vertex of the original Pascal tri­
angle, the vertical arrow to that of the Pascal
triangle made up of inverse powers of 2 calcula­
ted by (4.2). The infinite half-plane to the
left of the common side of the two triangles is
covered with O's, and an infinite triangle of O's
fills the rest of the half-plane containing the
two triangles.

For N = 2n2 3n3 5ns ••. pllp the halving pro­
cess will not give infinite strings (as usual we
suppress infinite 0-strings) until the n2 powers

I
1 Pascal to Infinity

1
1 0 1 0 0 0 0 0 1 0 . .

1 1 1 1 0 0 0 0 1 1 . . .
Half-Plane 1 0 0 0 1 0 0 0 1 0
of Zeros 11 1 0 0 1 1 0 0 1 1 . . .

1 0 1 0 1 0 1 0 1 0 . . .
1 1 1 1 1 1 1 1 1 1 1 1 1 .

----71000000000000
1 1 0 0 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 0 0 . . .
1 1 1 1 0 0 0 0 0 0 . . .

1 0 0 0 1 0 0 0 0 0 . . .
1 1 0 0 1 1 0 0 0 0 . . .

1 0 1 0 1 0 1 0 0 0 . . .

Zeros to
Infinity

1 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 1 0 \

1 1 0
1 Pascal to 1 0

Infinity 1 0

t
Fig. 4.1 Positive and Negative Powers of Two

of 2 are eliminated, i.e., the new N is odd.
Eventually the process produces a trimmed tri­
angle from which the periodic infinite part of
2-nN is read off parallel to its sides. See
Fig. 4.2, which shows the process for 9 = 11111.
The vertical arrow indicates the left end digit

1
1 0

1 1 0 0
1 0 1 0 1 1 1 1 0 1 0 1 0 0

1 1 1 1 1 0 0 0 1 1 1 1 1 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0

1 1 0 0 0 1 1 0 1 1 0 0 0 1 1
~101001011010010

1 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 . 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 . . •
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0

Fig. 4.2 2-~ for N 9

of 9. The horizontal arrow indicates the 1,
which together with the 1 beginning the infinite
string of l's of 9/2, bounds the "top", 11001,
of a trimmed Pascal triangle whose rows are 2nl3.
The lines parallel to its bottom side give the
periodic parts of 2-n9, The 9 is also the top of
a trimmed triangle (whose rows are 2n9). This
relation between 9 and 13 is reciprocal for
2-n13 has its periodic part given by the side
strings of 2n9. Every odd number is clearly
paired in this way with an odd number with the
same number of digits. Some, like 1, 3, 11 and
15 (respectively 1, 111, 10011 and 10101), pair
with themselves.

231

The connection between Pascal's triangle and
the negative powers of a binomial is old. Just
as its rows give the coefficients of (l+x)n, so
do the infinite sequences ("sides") parallel to
one side give the coefficients occurring in the
series expansions of (1-x)-n. Proofs of many
results of this chapter can be devised by using
such standard theorems with the binomial
coefficients taken mod 2.

We now designate a power of 2 by T, with
superscript (positive or negative integer or
zero) when needed, whether the string be finite
(integer, 2n), or infinite to the right
(fraction, 2-n). We have TO= 1, Tl= 11,
Tn = (n+l)th row of Pascal's triangle,
T-1 = 1111 ... , fi-2 = 10101 ... , and so on,
with T-n = (n+l)t "side" of Pascal's triangle.
The difference between 2n and Tn is that the
latter admits an interpretation as an operator on
all binary strings, while the former is a number
which is Tn(l). The set of operators
{Tn Jn= ... -2, -1, 0, 1, 2, ... } is clearly
the free commutative group on one generator iso­
morphic to integer addition, and Tn(l) = 2n.
Explicitly,

(4.3)

(4.4)

(4.5)

The operation T is essentially the daughter
algorithm for 2-way infinite strings, with finite
and semi-infinite strings understood as having
two or one semi-infinite string(s) of identities
in the remaining places. It thus has meaning for
an arbitrary groupoid. The interpretation of Tn
as an operator on strings over an arbitrary
groupoid is not generally the corresponding des­
cendant or ancestor function, encoded as a binary
word. The operator T2, for example, encoded as
101, can be interpreted as element by element
groupoid multiplication of the operand string
with a copy of itself shifted two places left.
For the daughter function (2.3) it is natural to
take the first "factor" from the shifted string.
For the general groupoid string ... ai ai+l ai+2 •..

the "grand-daughter" element is
(ai o ai+l) o (ai+l o ai+2), not (ai ~ ai+2) as

in {(O, 1), @}and as called for by T •
One might question the need for introducing

T-notation; except in the case at hand, where it
appears to be only multiplication by a power of
2, it has limited applicability, and so little
interest. However, the notation makes it clear
that substituting Tm for the l's of Tn for all
n, i.e., writing Tm for the l's of Pascal's tri­
angle generalized to the half-plane transforms
that half-plane into itself by a "translation" of
m along the "row coordinate". The interpretation
of the (Tm, 0)-strings as appropriately shifted
$-addition of as many copies as there are occur­
rences of Tm in the string verifies their equiva­
lence to the 2n+m rows of the Pascal half-plane.
But now, for ~ interpretation of the ~ of
Pascal's triangle as Tm's, for fixed positive or
negative ~· we can carry through the entire chain

of reasoning .£1. which the number system~~
structed. We can therefore take the entire list
of positive integers, replace the l's throughout
by any one Tm, perform the indicated shifted $­

additions, and come out with the list of integer
multiples of Tm(l). In short, we obtain 2mN
whether m be negative or positive.

We sum up the main results obtained in this
chapter by stating them as theorems.

Theorem 4.1 The negative powers of 2 are
right semi-infinite binary strings lying parallel
to one side of Pascal's triangle and beginning
with an element of the other side. The side it­
self represents 2-l and successive contiguous
parallel strings represent successively higher
powers, the nt being 2-n. When Pascal's tri­
angle is augmented with the strings produced
successively by the parent string algorithm, with
the initial l's of the set of ancestor strings
continuing the alignment of the side of the ori­
ginal triangle containing the initial l's of the
positive powers of 2, then a half-plane is
covered by three regions (a) the original Pascal
triangle, (b) a triangle of O's, (c) a Pascal
triangle whose left side is parallel to the rows
of the original triangle, and whose right side is
a continuati0n of the left side of the original
triangle.

Theorem 4.2 The string representing 2-nN
for any positive integer N, and for m any posi­
tive or negative integer or zero, is obtained by
multiplying the strings representing 2-n and N as
in ordinary binary except that the final addi­
tions are mod 2.

V. Related Number Systems

In this chapter we summarize our initial
results on two kinds of number system, or better,
two compatible methods for constructing number
systems related to the parallel binary system
discussed heretofore, and make some observations
about possibilities for more general systems.

The first is the natural generalization from
base 2 to any base. The second, based on the
observation that one penalty for requiring both
monotonic increase in number of digits with
increasing integer size and the grey code pro­
perty was loss of the neat multiplication algo­
rithm of powers of 2, requires instead that
multiplication of any two integers be done the
same way as-it is done for the base. There may
be many other properties, the presence of which
would partially or completely define a complete
unambiguous representation of the number system.
One must procede very cautiously, however, for it
is easy to demand properties which are, in fact,
incompatible. We close with some remarks on
generalization of the underlying groupoid from
cyclic ~roups to general groups, semigroups,
quasigroups, and general groupoids.

From Fig. 3.4 and the Markov algorithm (3.3)
it is easy to see that the daughter string algo­
rithm is easily adapted to the design of a bas.e
k number system. It multiplies a string by k.
The rows of Pascal's triangle mod k represent the
powers of k, and inverse powers, together with
the positive powers, fill out a half-plane as

232

1
1 .

1 0 0 1 0 0 0 0 0 2 0
1 1 0 1 1 0 0 0 0 2 2

1 2 1 1 2 1 0 0 0 2 1
1 0 0 2 0 0 1 0 0 2 0

1 1 0 2 2 0 1 1 0 2 2
1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0

1 2 1 0 .

Fig. 5.1 3-n in Base 3

before. Fig. 2.3 gives that part of Pascal's
triangle representing 3n for 0 s n S 33 and
Fig. 5.1 gives a portion of the half-plane repre­
senting 3-n, 0 Sn. Note that the triangle above
the triangle of O's has 1212 ... for one of its
sides; only in base 2 does it coincide with the
original Pascal triangle. In base k that side
becomes l(k-1) l(k-1) We have proved uni-
queness of the system of integers in base 3,
assuming monotonicity and the grey code property
as before. The argument is much more laborious
than for binary (omitted for lack of space)
because the rule for multiplication by 3 leaves
two empty slots between the triples of consecu­
tive integers. Uniqueness was proved by showing
that only one way of building the system "from
the ground up" avoided inconsistencies later on.
In the resulting system negative numbers "mirror"
the positives in a pleasing fashion. Using the
build-up process "backwards" through Q__g_i~es, for
the negative of ab c ... the string ab c ... ,
where barred elements are inverses of unbarred
ones, 0 = 0, l = 2, 2 = 1. Fig. 5.2 gives the
Markov process for multiplication by the base k
and a part of the number system in base 3. While
there is little doubt that para~lel systems in
any base can be constructed, our experience in
proving uniqueness for base 3 and the large num­
ber of possibilities for base 4 led to low prior­
ity for attempting to prove uniqueness for all
bases, particularly in view of the possibility of
non-uniqueness suggested by the second class of
number systems, to which we now turn.

As the multiplicative properties of the
powers of 2 are simple (as in standard binary,
except that the final sums are performed mod 2),
but complicated if neither factor in a product of
two factors is a power of 2, we examined the con­
sequences of requiring that multiplication always
be performable in that fashion. It turns out that
"gaps" and inversions appear (inversion here means
having the smaller of two integers with a larger
number of digits). The gaps, naturally, are
filled in some fashion by assigning primes to them
in some fashion, and there seems to be nothing yet
visible to restrict how one should assign strings
to primes ("in order" no doubt, but what is that
order). Unique factorization exists as does a
simple algorithm to test divisibility, and all of
the foregoing apparently applies to any base.

To take a specific case, take 1 for 1, and 11
for 2 as before, getting the same strings as

before for 2n. We can take 111 for 3 and thus
get the same expressions for 2n3 as before. But
now 9 must be 10101; compare it with 8, which is
still 1111, and we see the grey code property is
gone. If we choose the previous number for 5,
1101, then 15 is now 100011, whereas 16 is 10001,
and the monotonicity property is also gone. Our
investigation to date suggests that these infeli­
cities are invariable companions of the simpli­
fied multiplication rule. There is consolation
in that division is easy: the recursive rela­
tions involved in computing reciprocals are
easily solved, and dividing by n is the same as
multiplying by l/n. To illustrate we compute
1/3, 3 = 111. Let the string sought be
a1a 2a 3 Then we must have

ala2a3a4 ai+2

ala2a3 ai+l

ala2 a.
l.

1 0 0 0 0

from which we easily find that 1/ 3 is 110110110
This string is periodic; the 2-way infinite
string is one of many studied earlier in connec­
tion with patterns [2]. Indeed, if a daughter
element be written below and between the two
parent elements of which it is the product so
that all three are at the vertices of an equi­
lateral triangle, then in the periodically
covered part of the plane the l's are on the
vertices of a network of hexagons with O's at
their centers (Fig. 5.3). Our research has thus
come full circle: study of groupoid string pat­
terms [2] has led to "number systems" which may
well become powerful tools for investigating

233

1 1 0 1 1 0 1 1 0 1
1 0 1 1 0 1 1 0 1 1

1 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1

1 1 0 1 1 0 1 1 0 1

Fig. 5.3 Periodic Covering of the
Plane by 110110 ••.

aspects of pattern, symmetry, and geometric
configuration.

The last possibility for generalization con­
sidered here is that of admitting more general
groupoids than cyclic groups. If associativity,
unique solvability, or commutativity are sacri­
ficed one might think that all chances of build­
ing a number system have been lost. Many might
think that even abandoning cyclic groups (single
generating element) for more general groups would
have similar effects. However, we have shown that
many different quasigroups (groupoids) with unique
two-sided solvability) can generate precisely the
same totality of patterns in the plane. A single
pattern-equivalent class can contain associative,
non-associative, commutative, and non-commutative
quasigroups, and direct products of as many dif­
ferent ones as desired. Considered as algebraic
systems, they are often strongly non-isomorphic.
It would be rash, therefore, to deny the possibi­
lity that such systems might be useful for paral­
lel computation. Semigroups, too, in spite of the
fact that inverses of elements usually can not be
defined, should not be ruled out either, both be­
cause of the intimate connection between them and
finite state machines and because at least one
cyclic group is associated with every idempotent,
be it an identity or an annihilator.

VI, Concluding Remarks

Although a truly parallel arithmetic has not
yet been constructed, those found may have pattern
and combinatorics so firmly woven into their very
structure that they may permit new attacks to be
mounted on some very difficult problems. They
have intriguing "nesting" possibilities, like the
substitution of Tm for the l's of Pascal's tri­
angle, and a totally new mix of "local" and
"global". They approach additive and multiplica­
tive properties of numbers more from the multipli­
cative side, in contrast to traditional mathema­
tics (e.g., Peano's axioms). We therefore feel
they have great interest and much promise, despite
the profound problems they present.

References

1. J. Rothstein, "On the Ultimate Limitations of
Parallel Processing'', Proc. 1976 International
Conf. on Parallel Processing, pp. 206-212,
(IEEE and Wayne State U., Detroit, Aug. 1976).

2. J. Rothstein, "Patterns and Algorithms", Proc.
9th Symp. on Adaptive Processes (IEEE and~U-.~
of Texas, Austin, Dec. 1970).

RESPONSE TIME OF PARALLEL PROGRAMS

Richard J, Lipton and Frederick G. Sayward
Department of Computer Science

Yale University
New Haven, Connecticut 06520

Abst:r>act -- The response time of a parallel
program is defined to be the maximum delay between
successive activities of an event. Response times
are dependent on two factors: the parallel pro­
gram's structure and the program's scheduler pol­
icies. It is shown that under weak assumptions
about the scheduler policy, the imposition of an
N-fair policy in which each event gets a chance
to execute at least every N scheduler steps, the
response time becomes dependent only on program
structure: either the response time is infinite
or it is linear in N (i.e., scN for some c>O).
Also presented are decision procedures for deter­
mining whether or not the response time is in­
finite and for determining the exact linear rela­
tionship in N (i.e., the minimum c).

1.0 Introduction

The response time of a parallel program is
the maximum time that an event in the program may
ever wait for a chance to execute. Response time
is clearly important in realtime programs: large
or unbounded response time may cause the program
to fail. Even nonrealtime programs may be ser­
iously degraded if the response time is too large.

Response time of a parallel program is not
easily computed. Often it is only determined by
empirical observation. The fundamental question
addressed in this paper is:

How can one compute the response time
of a parallel program?

Previous studies of this question [1,4,8] have
shown that, under certain assumptions about how
programs are scheduled, one can show that parti­
cular events execute infinitely often. While
this type of information is useful, there are sit­
uations where it is inadequate: e.g., in a real­
time program for data acquisition, knowing that
an event will eventually execute does not guaran­
tee that data (for example) will not be lost.

In order to get a more useful analysis of
the response time of a parallel program we will
make stronger assumptions about how our parallel
programs get scheduled. In all of the previous
work very weak scheduling assumptions have been
made. Here we will assume instead that we have
scheduling where each event of the parallel pro­
gram gets a chance to try to execute at least
every N scheduling steps (N>O), in the worst
case. To avoid scheduling anomalies, it is nec­
essary that N be at least as large as the number
of events in the program. Even in this case, of
course, some events may get their chances faster
than others; however, no event ever waits longer
than N steps to be "looked" at by the scheduler.

Clearly, an event may not be· able to execute
every N steps; it may have to wait for some other
event to occur. In particular·, if r is the res-

This work is sponsored in part by the Office of
Naval Research Grant N00014-75-C-0752.

234

ponse time of some event, then r > N is possible.
A basic question is then:

As a function of N, what values can r take?

For example, can r be N square, i.e., can r grow
non-linearly in N? The answers to these questions
are contained in the :r>esponse time theorem: as N
grows, either

(1) the response time of an event becomes
infinite (i.e., in the worst case it
can wait forever), or

(2) the response time is linear in N (i.e.,
it is bounded by cN, for some constant
c) •

To fully describe the response time behavior
of a parallel program we must consider the ques­
tion of how one can compute the smallest such c
(our main theorem gives an upper bound) after
having determined that the response time is fi­
nite? The answers to these questions are given
by providing decision procedures for the follow­
ing questions:

(1) given an event e of a parallel program,
can e ever have infinite response time?

(2) given a constant c>O, is the response
time of escN for all N?

These questions are reduced to questions about
suitably encoded vector addition systems [10].

The remainder of this paper has the following
organization. In section 2 we give a formal model
of parallel programs and their computations and
show how this model relates to the parallel pro­
gramming notations found in the literature. The
scheduler of a parallel program is presented in
section 3. A scheduler is shown to be just an
alternative characterization of a program's com­
putations. In section 4 we introduce the sched­
uler restrictions necessary for our main result.
The response time definition and the response
time theorem are given in section 5. In section
6 this result is shown to include as special cases
several schedulers used in actual systems. In
section 7 the afore-mentioned decision procedures
are presented.

2.0 Pa:ra.Ziei PI'og!.>ams

A paraZZeZ program P is a finite directed
graph G, a distinguished node q1 of G, and edges

which are labelled with elements from a finite
set E. Intuitively, the nodes of G are the states
of P. If

(5_)---=-->~
is an edge, the; we have~ folowing semantics:

"If P is in state qi, then event e can

occur resulting in P going into state qj."

Clearly, so far, P is nothing more than a finite
state diagram. As an aside, while our main theo-

rem depends on the assumption of finite states,
our basic definitions and indeed several of our
results can be generalized to allow infinite
state parallel programs.

Formally, a parallel program P is a 4-tuple
P = (Q,E,q 1,T) where:

(1) Q is a finite set of states, denote
Q = {q1,q2•••••qn}.

(2) E is a finite set of events, denote
E = {1,2, ••• ,m}.

(3) q1 is a distinguished sta;rt state.

(4) T is the state transition funation:
T:Q x E ---> Q.

It should be noted that this definition is
by no means novel. It links well with path ex­
pressions [1] and many other such definitions.
Also, note that we have deliberately defined a
parallel program to be a rather unstructured ob­
ject. The usual notions of process, semaphores,
instruction counters and so forth, are implicit
rather than explicit.

As an example of a parallel program, consider
the following directed graph, which we will call
example 1:

This corresponds to a parallel program represented
in the semaphore notation of [5] as follows:

semaphore s (initially 1)
parbegin

repeat l: P(s);
repeat 3: P (s) ;

parend;

2:V(s) forever
4:V(s) forever;

Indeed, our model of parallel programs is capable
of representing the control aspects of any para­
llel program which uses bounded value semaphores.

2.1 ParaZZel Program Computations
In order to study the response time of para­

llel programs, it is necessary to introduce the
notion of an event blocking. Thus our definition
of a parallel program's computations must include
both event execution and event blocking. To this
end, let the elements of E be called event exeau­
tions. Then the elements of E'={e'jeEE} are
called event bloakings. The elements EA=E u E'
are called event aativities.

We will define a parallel program's computa­
tions to be certain finite and infinite strings
over EA. Intuitively, an event e may execute
whenever the program's control is in a state q
where e is eligible to execute (i.e., T(q,e) is
defined). An event e may block whenever the pro­
gram is in a state where e cannot execute, the
program has passed through a state where e could
have executed but didn't, and e hasn't executed
in the meantime. To formally define those
strings over EA which satisfy this intuitive no­
tion, we introduce the following function on EA*:

Definition: The function state:EA* ---> Q is de­
fined as follows:

235

(1)' state(A) m ql

(2)

(3)

For eEE and xEEA*,
state(xe) = T(state(x),e)
For e 1 EE' and xEEA*,
state(xe') = state(x} only if
(a) T(state(x),e) is undefined, and
(b) for some event f, x=yfz such that

T(state(y),e) is defined and not
substr(fz,e).

where substr is the usual substring
predicate.

Note that the ways in which state can be un­
defined correspond to illegal event executions and
blockings. For example, if P is in state q and
T(q,e) is undefined, then e is not eligible to
execute. Likewise, if T(q,e) is defined, then e
can't block. We are now ready to define the, com­
putations of a parallel program.

Definition: The aomputations of a parallel pro­
gram P are members of the set C, the union of the
following two sets:

(1) CF={xEEA*jstate(x) is defined}.
(2) CI={x an infinite string over EAj

state(y) is defined for all finite pre­
fixes y of x}.

The set CF is called the set of finite aomputa­
tions of P and CI the infinite aomputations.
Note that CI may be empty and that C is closed
under finite prefix.

For later use, we distinguish a (possibly
empty) subset of the finite computations:

Definition: A finite computation xECF is called
terminating if for all events e of P both state
(xe) and state(xe') are 1mdefined. A computation
terminates when no further event activity is pos­
sible.

The following are examples of legal and il­
legal computations, in terms of regular expres­
sions, for the parallel program presented above.

Legal
(1)
(2)

(3)

Illegal
(1)

(2)

(12 + 34)* - no event ever blocks
13'2(12)* - event 3 remains blocked

forever
123(1')* - event 1 is forever blocking

(2' + 4')+ - events 2 and 4 may never
block

12341' - event 1 is ineligible to block
since it can execute.

Note that example 1 has no terminating computa-
tions.

2.2 Parallel Program Total State

At any point during the execution of a para­
llel program P a (possibly empty) subset of the
events will be blocked. We define the total
state of the program to be the state of P's con­
trol coupled with the subset of currently blocked
events.

Definition: A total state of a parallel program
Pis a member of the set T•{(q,B)jqEQ and B£E}.

Note that T is finite for finite state para-

llel programs. Given any computation we can com­
pute the total state via the following function:

Definition: The totaZ state function tstate:C--­
-> T is defined as:

(1) tstate(A) = (q 1 ,~)
(2) Let xf€C, B~E, q€Q and tstate(x)=(q,B).

(a) If f=e then tstate(xf)=(T(q,e),
B-{e}).

(b) If f=e' then tstate(xf)=(q,Bu{e}).

3. O ParaZZeZ Program SaheduZers

We have defined the computations of a para­
llel program P to be sequences of event executions
and blackings. Which particular computation is
produced by the execution of P is determined by
the decisions made in an agent entirely external
to P; namely, by the saheduZer. The scheduler
maintains a data structure that contains informa­
tion such as the state in which P's control lies
and the blocking status of P's events. We will
call this data structure the saheduZer state. A
saheduZer step consists of the scheduler deter­
mining which events are eligible for event acti­
vity, using a saheduZing poZiay to determine
which one of those events will execute or block,
and then reflecting this decision by appropriate
changes to the data structure (i.e., making a
scheduler state transition). The scheduler re­
peats this cycle as long as there are events
eligible for event activity.

In this section, we will formally define the
scheduler of a parallel program independently of
any scheduling policies. We show that this is
just an equivalent characterization of a parallel
program's computations. Thus, in subsequent sec­
tions when scheduling policies are introduced, we
will be effectively restricting the computations
that parallel programs produce.

3.1 SaheduZer State

Let P be a parallel program having n states
and m events. The scheduler state will consist
of three types of information:

(1) The program state.
(2) For each event, a deZay which indicates

the number of scheduler steps which
have passed since the event's last
activity.

(3) An event status set which indicates
whether or not an event is eligible to
bZoak.

Accordingly, we have the following formal defini­
tion:

Definition: Let P be a parallel program having m
events. A aaheduZer state S is an element of the
set SS = Q x D x B where:

(1)
(2)

(3)

Q is the state set of
D=NN x NN x ••• x NN
where NN={0,1,2, ••• }.
B={O,l} x {0,1} x •••

P.
(m times)

x {0,1} (m times).

The ith member of D indicates the delay of the ith
event and the ith member of B indicates the block­
ing status of the ith event, with 0 indicating in­
eligibility.

In order to facilitate future presentation

236

we now introduce several projection functions on
scheduler states. Let S=(q;d1 ,d2 , •.• ,dm;b 1,b2 ,

.•• ,bm) be an arbitrary element of SS. We have

(1) pstate:SS ---> Q by pstate(S) = q.
(2) deZay:SS x E ---> NN by deZay(S,i) di.

(3) bZoaked:SS x E ---> {true,faZse} by
bZoaked(S,i)={if b.=l then true else faZse}.

l.

(4) bZoakedset:SS ---> 2(E) by bZoakedset(S)
{i/bZoaked(S,i)} where 2(E) is the power
set of E.

(5) totaZstate:SS ---> T by totaZstate(S)
(q,bZoakedset(S)),

3.2 SaheduZes and the SaheduZer

A aaheduZe for a parallel program P will be
the non-empty sequence of scheduler states that
correspond to a particular computation of P and
the saheduZer of P will be all schedules. We
will show that P's scheduler is isomorphic to P's
computation set.

Definition:
has m event.

Let P be a parallel program which
Let Z=S 1,s2 , ••• be a finite or in-

finite sequence of scheduler states. Then Z is a
saheduZe for P if and only if

(1) s1=(q1 ;O,O, ... ,O;O,O, ... ,0) (2m zeroes)

(2) For i>l, let Si=(q;d1 , ••• ,dm;b 1, ..• ,bm)

and Si+ 1 = (q' ; d 1' ' • • • 'dm' ; b 1' ' ••. 'b m') .

Exactly one of the following two cases
must hold:

(a) There is an event e in P such that

(i)
(ii)

(iii)

T(q,e)=q'.
dj'={if j=e then 0 else dj+l}

b.'={if j=e then 0 else {if
J

T(q,j) is defined then l else
bj}}.

In this case we say e exeautes and
denote by Si R(e) Si+l'

(b) There is an event e in P such that

(i) T(q,e) is undefined and q'=q.
(ii) dj'={if j=e then 0 else dj+l}.

(iii) bj'={if j=e then l else bj},

In this case we say e bZoaks and de­
note by Si R(e') Si+l'

Definition: Let P be a parallel program. Then
the saheduZer for P is the set S={Z a sequence of
scheduler stateslz is a schedule for P}.

Theorem: Let P be a parallel program. Then the
set of P's computations C is isomorphic to P's
scheduler S.

Proof: We only sketch the proof. Define the
function makesah:C ---> S as follows:

(1) makesah(A)=(q1;o,o, ... ,O;O,O, .•. ,O)

(2) For xf€C where f€EA and makesah(x)=S,
makesah(xf)=S' such that S R(f) S'.

It should be clear that makesah is well-defined,
one-to-one, and onto.

Notation: We let makeaomp denote the inverse
function of makesah.

As with computations, we will talk of finite,
infinite, and terminating schedules.

4.0 Initial Saheduler Poliay

In this section we introduce three schedu~
ling policies, the first two are common in the
literature -- the third new, which allow us to
develop our concept of response time.

4.1 The Busy Wait Free Policy
Recall that in example 1 we had z=l23(1')*

as a legal computation in which event 1 is for­
ever blocking. Although the program is techni­
cally executing, it is essentially doing nothing.
This phenomenon has been dubbed busy wait [5]
and great care has been taken to avoid it in the
design of operating systems [3,6,9]. Hence, our
first scheduling policy will be a "busy wait free"
policy.

Definition: Let Z=S1s 2 ••• be a schedule for a

parallel program P. Z is called busy wait free
if for all i~l, Si R(e') Si+l implies not blocked

(Si,e).

Intuitively, under the busy wait free policy
once an event e blocks e may not block again until
e has executed at least once. This rules out
123(1')* as a computation but 1231'(43)* is still
legal. The busy wait free scheduler for P is then

Definition: The set SF={Z€SIZ is busy wait free}
is called the busy wait free scheduler for P.
and the allowable computations under the busy
wait free policy are

De inition: The members of the set CF={makecomp
(Z) Z€SF} are called the busy wait free computa­
tions of P.

The following result is immediate from the
definitions of busy wait free schedules and com­
putations.

Lerrnna 1: Let w€C. Then W€CF iff, for all events
e and decompositions w=xe'ye'z, we have subst1'
(y,e).

4.2 The Release Poliay

As noted above, even with the busy wait free
policy we have z=1231'(43)* as a legal computa­
tion for example l. In z event l blocks but is
never released (i.e., it never executes again
even though it is capable of doing so). This is,
in general, unacceptable. For example, event l
could represent a data recording process and we
would want it to eventually be executed if it has
data to record. Satisfying this criterion has
been called showing that an event executes "in­
finitely often" (if it is capable of doing so)
[1,4,11]. Necessary for showing that an event
executes infinitely of ten is the imposition of a
"release" scheduling policy.

Definition: Let Z=s1s2 ••• be a busy wait free

schedule for a parallel program P. Z is called a
release schedule if for all i~l and arbitrary

237

distinct events e and f, we have Si R(e) Si+l'

not bloaked(Si,e), and blocked(Si,f) imply

(pstate(Si),f) is undefined.

Intuitively, under the release scheduling
policy when there is a choice between executing
either blocked or non-blocked events a blocked
event is chosen. Thus 1231'(43)* is ruled out as
a computation for example 1 since for the second
and subsequent executions of event 3 the blocked
event 1 could have been executed. We now have

Definition: The set SFR={Z€SFIZ is a release
schedule} is called the release scheduler for P.
and the allowable computations under the release
scheduling policy are:

De inition: The members of the set CFR={makecomp
(Z) Z€SFR} are called the release computations
of P.

The following result is innnediate from the
definitions of release schedules and computarions:

Lerrnna 2: Let w€CF. Then w€CFR iff, for all dis­
tinct events e and f and decompositions w=xey, we
have xfy€CF and blocked(x,f) imply blocked(x,e).

Here, blocked(x,e) is the expected predicate on
tstate(x).

4.3 The N-Fair Policy

Under the release scheduling policy we still
have z=(123(43)*4)* as a legal computation for
example 1. In z event 1 executes infinitely often
but from any execution of 1 to its subsequent exe­
cution an arbitrary number of scheduler steps may
pass. In certain applications this would be in­
tolerable. To remedy this situation we introduce
an "N-fair" scheduling policy.

Definition: Let Z=s1s2 ••• be a release schedule

for a parallel program P. Let N be a fixed inte­
ger ~ 1. Z is called an N-fair schedule if for
all i~l and all eEE, not bloaked(Si,e) implies
delay(Si,e) ,,; N.

Intuitively, under the N-fair scheduling pol­
icy events which are not blocked will undergo
event activity (execute or block) within N sched­
uler steps from the point of their last execution.
Of course, blocked events may have to wait longer
than N scheduler steps or forever, depending on
the structures of the particular program. Thus
in z event 1 would wait for at most N/2 execu­
tions of event 3 since the N-fair policy would
force the scheduler to consider event 1 at that
time. We now have the following definitions:

Definition: For fixed N~l, the set SN={ZESRIZ is
an N-fair schedule} is called the N-fair sahed­
uler for P.
and the allowable computations under the N-fair
scheduling policy are:

Definition: For fixed N~l, the members of the
set CN={makeaomp(Z)IZ€SN} are called the N-fair
aomputations of P.

The following results are iDD11ediate from the
definitions of N-fair schedules and computations:

Lerrma 3: Fix ~l and let w,;CFR. Then w,;CN iff.
for all events e.;E and decompositions w=xyz with
IYl>N, not eubetr(y,e), and not eubetr(y,e'), we
have bZocked(x,e).

Here IYI denotes the length of the string y.

Lemma 4: Fix M>N<!:l. Then CN.£CM•

Pefore proceeding, we present a lemma which
will be crucial in proving our response time re­
sults.

LeTmla o: For a fixed N~l, let x.;CN with the fol­
lowing properties:

(1) x-yz with lzl•M>N.
(2) tetate(y)=tetate(yz)

Then for all i<!:l, xi,;CM where xi=yzz ••• z (i copies
of z).

Fzooof: Note that by the determinism of T we have
tetate(x)=tetate(xi) for all i<!:l. For i=l, xi=

X€CM by Lemma 4. Fix i>l.

(1) If x1 is not in C, then we contradict

x being in C.
(2) If xi is not in CF, then we contradict

Lemma 1.
(3) If xi is not in CR, then we contradict

LeDDlla 2.
(4) Suppose that event e is the reason why

xi is not in CM. There are three sub-

cases:

(a) If eubstr(z,e), then we contradict
Lemma 3.

(b) If not eubstr(z,e) and bZoaked(x,e)
then we contradict Lemma 3.

(c) If not eubetr(z,e) and not bZocked
(x,e), then we contradict x being
in CN.

4.3.1 IrrpZementation Considsrations

Implementing the busy wait free and release
scheduling policies is a rather trivial task:
the decisions to be made in a scheduler step can
be determined entirely from the scheduler state
independently of past or future decisions (i.e.,
the scheduler would be a Markov process). Note,
however, that this is not true when an N-fair
policy is in effect. When making a decision on
event activity the scheduler must consider not
only past decisions (i.e., event delays) but also
the structure of the parallel program under con­
sideration since a faulty decision. might make
violation of the N-fair policy inevitable. Thus,
some degree of "lookahead" must be done. While
this can always be done for finite state parallel
programs, there will be some infinite state pro­
grams which require infinite lookahead and thus
N-fair scheduling becomes impossible.

As can readily be seen in example 1, low
values of N can severely restrict the scheduler.
For example, under 2-fair scheduling there are
only four computations: 12, 13', 34, and 31'.
Since each computation is non-terminating, we
have an anomalous situation. In general, we
should choose N at least as large as the number
of events in the program.

238

5.0 Response Time of Paraiiei Programs

Recail in the computation z=(l23(43)*4)*
for example 1, under N-fair scheduling once event
1 executes it will wait at most N scheduler steps
to execute again. We call this time of
waiting the response time of an event. We will be
concerned with the ?UOrst case response time of an
event for all possible schedules since a parallel
program with acceptable worst case behavior is
acceptable in general.

In most applications we would like all events
to have finite response times. Moreover, we would
like these finite response times to be "accep­
table" in some sense. Suppose we have a two
event parallel program P in which it is known that
both events, say e and f, have finite response
time for all values of N. Suppose further that
event e has acceptable response time r(e) for N=t
but f's response time is unacceptable for N<St.
Hence, we must adopt a St-fair scheduling policy
to have any hope that both events will have ac­
ceptable response time. A basic question is: how
is event e's response time affected by this in­
crease in N? In this section we answer the ques­
tion by showing that e's response time will in­
crease only linearly in N.

We have the following definitions:

Definition: Let e be any event of a parallel pro­
gram P and for N~l, let z..s1s2 ••• be in SN. The

response time of e in Z, denote r(e,N,Z), is

case 1: Z is a terminating schedule with Sn the

final scheduler state and bZocked(Sn,e). Then

r(e,N,Z) is infinity.

case 2: Otherwise, r(e,N,Z)=max{deZay(S.,e)li<!:l}.
~~~ 1 

The N-reeponee time of e, denote r(e,N), is 
r(e,N)=max{r(e,N,Z)IZ.;SN}. 

Hence, there are two ways that r(e,N) might 
be infinite: the program could terminate with e 
blocked, or e might block and never execute again 
in spite of the fact that the program never ter­
minates. This latter condition has been defined 
as "individual starvation" [7]. 

The following result is iDD11ediate from the 
definitions: 

Lemma 6: Let e be any event of a parallel pro­
gram P and for N~l, let Z=s 1s 2 ••• be in SN. If 

r(e,N,Z) > N then e is blocked in Z for r(e,N,Z) 
consecutive scheduler steps. 

5. 1 Response Time Theorem 

We first prove the following lemma, which 
holds for general string systems. 

Lemma 7: Let A be a finite set, w,;A*, and N~2. 
If lwl~2IAIN+2, then there exists an aEA such 
that w can be decomposed as w=xayaz with IYl>N. 

Proof: (by induction on IA!) If IAl=l then 
)w]~2N+2. The form of w must be w=aya where 
JyJ~2N>N. 

Assume the result holds for IAl<k, for fixed 
k~2. If IAl=k then lw]~2kN + 2>2N + 2. Assume a 
is the first character of w and decompose w as 



w=axy where lxl=N + 1. We have two cases: 

(1) If substr(y,a) we are done. 
(2) If not substr(y,a) then y is in 

(A-{a})* and IA-{a}l=k - 1. We have 
I a I + 1 x I + I y I ~2kN + 2. Thus 
IYl~2kN + 2 - 1 - N - 1=2kN - N. Since 
2 - N50, we have lyl~2kN - N + 2 - N = 
2(k-l)N + 2. By the induction hypothe­
sis on y, there is b€A-{a} such that y 
can be decomposed as y=x 1 by 1bz' and 
Jy' I > N. 

We are now ready to prove our main result. 

Response Time Theorem: Let P be a parallel pro­
gram having n states and m events. For any event 
e of P either: 

(1) There exist N~2 such that for all M~N 
r(e,M) is infinity, or 

(2) For all N~2 there is a constant c>O 
such that r(e,N)5cN. 

Proof: Assume that r(e,N) is finite for all N~2. 
Suppose there is an ~2 such that for all con­
stants c>O we have r(e,M)>cM. 

Let d=n2m=]TJ be the number of total states 
of P and look at the constant c 1=2d + 1. There 
must be a schedule Z in SM such that r(e,M,Z)>c 1M. 
Let Z=s1s 2 •.• and let Y=totalstate(s 1)totalstate 

(S2) .... 

By Lemma 6 we can decompose Y as Y=x1x2x3 
where JX2 J=c'M and e is always blocked in x2 • 

Thus, Jx2 J=c'M=(2d+l)M=2dM+M~2dM+2. Applying 

Lemma 7 to x2 , there is a total state X such that 

x2=x4xx5xx6 and Jx5 J>M. Clearly, e is blocked in 

x. 
Rewriting Y, we have Y=X1x 4xx5xx6x3 as the se-

quences of P's total states which correspond to 
the schedule Z. 

Let Ll=JX1x4xJ - l~O and L2=IX5Xi - l>M. 

Look at the computation corresponding to the 
schedule Z: z=makecomp(Z). We can decompose z 
as z=z 1z2z3 where Jz1 ]=Ll and Jz2 J=L2. 

By the above arguments we have tstate(z1)= 

tstate(z1z2), blocked(z1 ,e), and e doesn't execute 

in z2 (i.e., not substr(z2,e)). Also, z1z2€CM 

and lz2 J=L2>M, Hence, by Lemma 5, z1z2z2z2 ••• is 

in CL2 and it follows that r(e,L2) is infinity. 
Thus, with this contradiction, r(e,M)5cM for all 
M~2. 

As an interesting sidelight of this proof 
we have established an upper bound on c to be 

1 + n2m+1 • 

6.0 Additional Scheduler Policies 

We have defined only the minimum amount of 
scheduler policies needed to prove the response 
time theorem. Observe that the N-fair scheduler 
will make an arbitrary choice when more than one 
blocked event is capable of executing. Because 

239 

of this; it possible that an event may have an in­
finite response time even though it is always 
capable of executing. A way to avoid this is by 
a FIFO sched:uZing policy, as has been suggested 
in [6,9]. We have 

Definition: Let P be a parallel program and for 
fixed N~2, let Z=S 1s2 •.• be in SN. Z is called 

an N-fair FIFO schedule if for all i>l and arbi­
trary distinct events e and f, the following 
holds: Si R(e) Si+l' blocked(Si,f), and T(pstate 

(Si),f) defined imply delay(Si,e)~Zay(Si,f). 

In this def inintion note that the release 
policy guarantees blocked(Si,e). Intuitively, in 

FIFO scheduling when there is a choice of execu­
ting several blocked events, an event which has 
been blocked for a maximum number of scheduler 
steps is chosen. Since the FIFO policy is a 
restriction of N-fair scheduling, we have the 
following corollary: 

Corollary 1: The response time theorem holds un­
der an N-fair FIFO scheduling policy. 

In certain applications it is desirable that 
the choice among blocked events be made on the 
importance of the events rather than on the egal­
itarian FIFO rule. This is called priority sched­
uling [3]. Each event is given a priority as 
follows: 

Definition: Let P be a parallel program. A pri­
ority function is a total mapping 6:E ---> NN. 

When several blocked events are capable of execu­
ting, the choice is made on the basis of maximum 
priority: 

Definition: Let P be a parallel program with pri­
ority function 6. For fixed N~2, let Z=S 1s 2 ••• 

be in SN. Z is called an N-fair 6 priority sched­
ule if for all i~l and arbitrary distinct events 
e and f, the following holds: Si R(e) Si+l' 

blocked(Si,f), and T(pstate(Si),f) defined imply 

6(e)~6(f). 

Note, unlike FIFO scheduling, it is possible 
under priority scheduling for an event to have in­
finite response time even though it is always 
capable of executing. Since priority scheduling 
is a restriction of the N-fair policy, we have 

Corollary 2: The response time theorem holds un­
der an N-fair priority scheduling policy. 

7.0 Response Time Decision Procedures 

There are two additional questions we must 
answer in order to completely describe the res­
ponse time behavior of a parallel program: 

(1) Given an event e of a parallel program 
P, is the response time of e ever in­
finity? 

(2) What is the minimum constant c>O which 
describes the linear growth of r(e,N) 
as N grows? 

We will answer these questions by providing deci­
sion procedures for the following: 

(a) Does there exist an N~2 such that r(e,N) 



is infinite? 
(b) Given c>O is r(e,N)~cN for all N~2? 

The answer to question (1) follows directly from 
(a). Question (2) is answered by (b) and the 
observation in section 5 that the minimum con-

m+l 
stant is bounded above by 1 + n2 

The decision procedures for (a) and (b) will 
be by reduction to questions about suitably en­
coded vector addition systems. 

7.1 Veator Addition Systems 

In this section we briefly review the defi­
nition of vector addition systems [10], their 
decision procedures that we will use, and relate 
these systems to our definition of a parallel 
program's scheduler. 

Definition: A veator addition system of degree k, 
denote VAS, is a 2-tuple W=(v,V) where: 

(1) The start veator ve:NNk=NN X NN X ••• x .NN 
(k times). 

(2) Vis a finite set of veators, each in 
ZZ X ZZ X ••• X ZZ (k times) where 
ZZ={. .• ,-2,-1,0,l,2, ••• }. 

Definition: The reaahahiZity set of a VAS W, de­

note R(W), is a subset of NNk recursively defined 
as follows: 

(1) V€R(W). 
(2) for X€R(W) and we:W, x+we:R(W) iff, x+w~O. 

We will be using the following two problems 
which are concerned with the reachability set of 
a VAS. 

Definition: The boundedness probZem: given an 
arbitrary x~O is there a y€R(W) such that y~x? 

Definition: The reaahahiZity probZem: given an 
arbitrary x~O, is x€R(W)? 

A decision procedure for the boundedness problem 
can be found in [10]. The decidability of the 
reachability problem has recently been claimed in 
[13]. 

A link between a parallel program's schedu­
ler and vector addition systems is that a VAS can 
represent any finite state control activity [10]. 

7.2 A High LeveZ VAS Language 

Rather than work with vectors of integers, 
it will be more convenient and convincing to give 
the VAS reductions in terms of a "high-level" 
nondeterministic VAS language. This approach has 
been previously used in [12]. 

There are five statement types in the lan­
guage: initialization of variables, assignment, 
nondeterministic branch, testing the finite 
state control, and updating the finite state con­
trol. All but the first statement types may have 
a statement label. The syntax and semantics are 
as follows: 

Ini tiaZization 

var v1=a1 ,v2=a2 , ••. ,vn=an 

The distinct variables v1 ,v2 , •.• ,vn are initial­

ized to the respective natural numbers a1 ,a2 , ••• , 

240 

a • Variables not initialized start at zero. 
n 

Assignment 

vl <--- "1 + cl, •.. ,vn <--- vn +en 

where the v's are distinct variables and the e's 
are integers. The assignment can take place only 
if x. + c.~O for aZZ i. Otherwise, the VAS com-

1 1 

putation terminates. 

Guessing 

guess(s1,s2 , •.. ,sn) 

This statement causes a nondeterministic branch 
to one of the statements labelled s 1 ,s2 , ••• ,sn. 

If n=l then the branch is deterministic. 

Testing Event Aativity 

event(character) 

This statement is used to see which events are 
eligible for event activity. It returns a list 
of eligible events, each prefixed by the supplied 
character. If no event activity is possible 
(i.e., the parallel program has terminated), then 
the list consists exclusively of the supplied 
character. For example, if events 1 and 2 can 
execute and event 3 can block, then event(s) re­
turns sl,s2,s3. If no event activity can take 
place, the list would be s. Event is always used 
in conjunction with the guess statement, e.g., 
guess(event(s)). 

Testing for a BZoaked Event 

bZocked(e,s) 

This statement causes a branch to statement s if 
event e is blocked. If e isn't blocked then the 
statement acts like a no-op. 

Updating the ControZ 

update (f) 

Here f is either an event execution (e) or an 
event blocking (e'). This statement reflects in 
the finite state control the result of event acti­
vity f. 

Globally, VAS programs are listed one state­
ment per line and execution commences at the first 
statement. Execution proceeds sequentially until 
a guess is encountered, whence several nondeter­
ministic computations may be spawned. A computa­
tion may terminate in the ways listed above or by 
executing the last statement in the list (when it 
is not a guess statement). Although not listed 
above, we also have a no-op statement with the 
obvious semantics. 

7.3 VAS Reduations 

We now show that the questions posed above 
are reducible to questions about suitable VAS sys­
tems. 

Theorem 2: Let P be a paral.lel program having n 
states and m events. For an event e of P the 
question of whether or not there is an N~2 such 
that r(e,N) is infinity is reducible to a bounded­
ness question. 

Proof: The vector addition system will have the 
following coordinates: 



<finite state control, local control, 
dl,.,. ,dm,Ml, ••• ,Mm,B> 

To facilitate the presentation of the VAE program 
we will employ obvious abbreviations described in 
coDD11ents and the following two macros: 

zePOdeZay(<l>,<2>} 
1: d<l> <--- d<l> - l,M<l> <--- M<l> + 1 

guess (1, <2>) 

This macro takes two string inputs and does the 
usual concatenation. Its function is to try to 
set the delay counting variable d<l> to zero. 

suadeZay (<l>) 
bZoaked(<l>,l) 
d<l> <--- d<l> + l,M<l> <--- M<l> - 1 

1: no-op 
The purpose of this macro is to increase the de­
lay count variable d<l> of a nonblocked event. 

The VAE program is as follows: 

var M1=1,M2=1, ••• ,Mm=l 

coDDllent: guess N 

10: Ml <--- M1 + 1, ••• ,Mm<--- Mm+ 1 

guess(l0,20) 

coDD11ent: Simulate P - guess to start phase 3 when­
ever e blocks 

20: guess(event(2)) 
2: guess(20) 

comment: the following group of statements is re­
peated for lSiSm, 

2i: zePOdeZay(i,2ii) 
2ii: update(i) 

coDD11ent: the following statement is repeated for 
each j not equal to i. 

suade Zay (j ) 
guess(20) 

comment: the following group of statements is re­
peated for each i not equal to e. 

2i': zePOdeZay(i,2ii') 
2ii' : update (i') 

comment: the following statement is repeated for 
each j not equal to i. 

suadeZay (j) 
guess(20) 

2e': zerodeZay(e,2ee') 
2ee': update(e') 

comment: the following statement is repeated for 
each j not equal to e. 

suade Zay (j ) 
guess(20,30) 

comment: simulate P assuming that e never exe­
cutes again. 

30: B <--- B + 1 
guess (event (3)) 

3: guess(30) 

comment: as in phase 2, the following group of 
statements is repeated. However, here it is re­
peated for each i not equal to e. 

241 

3i: zerodeZay(i,3ii) 
3ii: update (i) 

comment: the following statement is repeated for 
each j not equal to i. 

suode Zay (j ) 
guess(30) 

comment: the following group of statements is re­
peated for each i not equal to e. 

3i': zePOdeZay(i,3ii') 
3ii': update(!') 

comment: the following statement is repeated for 
each j not equal to i. 

suadeZay (j) 
guess(30) 

comment: by busy wait free, 3e' is impossible. 

3e: guess(3e) 

The result follows since r(e,N) is always finite 
iff, B is bounded. 

Several comments are in order about this VAE 
program. In phase 1, by nondeterminism, every 
value of ~2 is considered. In phase 2, the N­
fair execution of the parallel program is simu­
lated. An event activity as dictated by the 
finite state control is nondeterministically 
chosen and appropriate event delay counts are per­
formed on the d variables. The variable pairs 
di and Mi play a crucial role in that they force 

only N-fair computations to be considered. Note 
that di + Mi=N is invariant. When an event is 

executed or blocked we try to set di to zero. 

The crucial part of the simulation is to observe 
that even if di isn't set exactly to zero (it 

will be in some computation) we still get N-fair 
computations since M-fair computations are N-fair 
computations for M<N. Similarly, di is increased 

by 1 whenever event i is blocked and another event 
activity takes place. 

Phase 3 is started nondeterministically when­
ever event e blocks in phase 2. The purpose of 
phase 3 is to assume e will never execute again 
and reflect this in variable B. If e does exe­
cute, then phase 3 loops forever and B is bounded. 
If the parallel program terminates (i.e., no 
event activity with e blocked) or e is never exe­
cuted again, the B grows unboundedly. 

For the second VAS reduction we will simply 
modify the above VAS program. 

Theo:ztem 3: Given c>O, whether or not r(e,N)scN 
for all N~2 is reducible to a reachability ques­
tion. 

Proof: A variable D is added to the above VAS 
program with an initial value of D=c + 1. State­
ment 10 is changed to 
10: Ml <---Ml + 1,.,, ,Mm<--- Mm+ 1,D <--- D + c 

Hence, after phase 1 completes D has a value of 
cN + 1. 

A fourth phase is added at the end of the 
program as follows: 



40: D <--- D - l,B <--- B - 1 
guess(40) 

The purpose of the fourth phase is to see if B 
ever is ~ D. If so, then there must be some VAS 
computation in which B=D and thus r(e,N)>cN. 
This happens only when D=B=O can be reached. It 
remains only to make changes to the VAS program 
to nondeterministically start phase four. They 
are: 

(1) Change statement 2 to 2: guess(40). 
(2) Change each guess(30) in phase 3 to 

guess(30,40). 

Hence, r(e,N)>cN iff, D=B=O is reached. 

8.0 ConcZ.usions 

We have introduced the notion of an N-fair 
scheduling policy as a condition which allows the 
development of theoretical results on the response 
time behavior of parallel programs. We have 
shown that for any event either the response time 
is infinite or it is linear in the choice of N, 
that one can determine which is the case, and 
that one can compute the exact linear relation­
ship in the finite case. 

Although the methods used would seem to in­
dicate that computing the exact response time be­
havior of a parallel program is an intractable 
task, the development of heuristics for computing 
good upper bounds on response time is under in­
vestigation. 

Refe!'ences 

[l] J, Cadiou and J. Levy. 
''Mechanizable Proofs about Parallel 

Programs." 
Fourteenth Symposium on SUJitching and 

Automata, October 1973. 

[2] R. H. Campbell and A. N. Haberman. 
"The Specification of Process Synchronization 

by Path Expressions." 
Proc. I111i,1b.. Symp. on Operating Systems Theory 

and' Ii':rR:retice, April 1974. 

[3] E. G. Co.ffman and P. J. Denning. 
Operating systems Theory. 
Prentice Hall,, Englewood Cliffs, 1973. 

[4] E. s. Cohen. 
"A Semantic·Ml:idel for Parallel Systems with 

Schedu:1ing. ''' 
Proc. Secanil Symp. on rnncipZ.es of 

Prograrrming Langua.ges, 87-94. 

[5] E. W. Dijkstra.. 
"Cooperating S'e:q:uential Processes." 
In Programning JiJfmgµages, ed. F.. Genuys, 

Academic Press·,, New" ~rk, 1968, 43-112. 

[6] E. w. Dijkstra. 
"The Structure of the THE Multiprogramming 

System." 
CACM l 7 ,10 (May 1968) 341-34 7. 

[7] E. w. Dijkstra. 
"Hierarchical Ordering of Sequential 

Processes." 
ACTA Info!'!Tlatica 1,2 (1971) 115-138. 

242 

[8] P. J. Gilbert and w. J, Chandler. 
"Interference Between Commw:iicating Parallel 

Processes." 
CoTlDTI. of the ACM 15,6 (June 1972) 427-437. 

[9] C. A. R. Hoare. 
"Monitors: An Operating System Structuring 

Concept." 
CACM 17,10 (October 1974) 549-562. 

[10] R. Karp and R. Miller. 
"Parallel Programming Schemata." 
J, Computer and Systems Science, May 1969, 

147-195. 

[11] R. J, Lipton. 
"On Synchronizing Primitive Systems." 
Proc. Si:cth Annual. Symp. on the Theory of 

Computing, May 1974. 

[12] R. J. Lipton. 
"The Reachability Problem Requires 

Exponential Space." 
Research Report #62, Dept. of Computer 

Science, Yale University, January 1976. 

[13] G. s. Sacerdote and R. L. Tenney. 
"The Decidability of the Reachability 

Problem for Vector Addition Systems." 
In Proc. of the Ninth Annual. ACM Symp. on 

the Theory of Computing, ACM (1977), 
61-76. 



Algorithmic Analysis Of Control Structure Behavior 

by 

R.M. Mattheyses and S.E. Conry* 

Clarkson College, Potsdam, NY 13676 

Summary 

It is frequently convenient to view an asyn­
chronous digital system involving parallel pro­
cessing as being comprised of two parts: a con­
trol structure and a device structure. In this 
paper we are primarily concerned with analysis of 
the control structure for such a system. 

The control structures studied in this paper 
are modular in nature. Their primitive elements 
are control modules which behave in much the same 
manner as many which have been previously proposed 
[1-4]. We have incorporated these modular control 
structures in a model for parallel processing sys­
tems and obtained necessary and sufficient condi­
tions under which the control structure of such a 
system is well behaved. (Similar problems have 
been investigated by others [2,5].) When presen­
ted with a control structure of significant size, 
one i1111llediately asks whether or not that control 
structure is well behaved. In this paper, three 
algorithms for determining whether or not a con­
trol structure is well behaved are presented and 
analyzed. 

The first algorithm discussed is based di­
rectly on the necessary and sufficient conditions 
for "good behavior" that have been obtained. The 
two other algorithms are based on a more genera­
tive approach to the analysis of control struc­
tures. We define what is effectively a reduction 
system for control structures and show that a 
control structure is certainly well behaved if it 
reduces to a singleton node using the reduction 
rules given. This approach to the analysis of 
control structures is very similar in flavor to 
the analysis of control flow graphs for sequential 
programs presented in [6,7]. 

Some well behaved control structures exhibit 
peculiar structural configurations which cannot be 
analyzed directly using the reduction rules given. 
In these cases, some transformation of the control 
structure is necessary if reduction to a singleton 
is to be achieved. Two algorithms based on the 
"reduction rules" approach to control structure 
analysis are presented and compared. Each incor­
porates a different approach to analyzing the 
gra~h when structural peculiarities are present. 

Both of the "reduction rules" algorithms 
begin by applying these rules until either a sin-

* Formerly Susan Conry Meyer. 

This work was supported in part by the Na­
tional Science Foundation under grant number 
MCS76-07681A01. 

243 

gleton node is produced or no further reduction 
can be done. If a singleton is produced, both 
algorithms terminate and return the result that 
the control structure is well behaved. If, on 
the other hand, no further reductions are possible, 
there are two possibilities. 

The first "reduction rules" algorithm applies 
the direct algorithm to the remainder of the con­
trol structure at this point. The second algo­
rithm performs local transformations on the remain­
ing control structures and proceeds, attempting 
to reduce still further. 

References 

[1] J.B. Dennis, Modular, Asynchronous Control 
Structures for a High Performance Processor, 
Record of the Project MAC Conference on Con­
current Systems and Parallel Computation, 
June 1970, pp. 55-80. 

[2] J. Bruno and S.M. Altman, A Theory of Asyn­
chronous Control Networks, IEEE Trans. Com­
puters C-20, 6 (June 1971), pp. 629-638. 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

M. Yoeli and J.A. Brzozowski, A Model of Par­
allel Computation Structures, Report CS-76-43, 
University of Waterloo, October 1976. 

R.M. Keller, Towards a Theory of Universal 
Speed Independent Modules, IEEE Trans. Compu­
ters, C-20, 1974, pp. 21-33. 

O. Herzog and M. Yoeli, Control Networks for 
Asynchron0us Systems, Part I, Technical 
Report #74, Dept. of Computer Science, 
Technion, Haifa, 1976. 

R. Farrow, K. Kennedy, and L. Zucconi, Graph 
Gra1111llers and Global Program Data Flow Analy­
sis, Proceedings of the 17th Annual Symposium 
on Foundations of Computer Science, October 
1976, pp. 42-55. 

K. Kennedy and L. Zucconi, Applications of a 
Graph Gra1111ller for Program Control Flow Analy­
sis, Conference Record of the Fourth ACM 
Symposium on Principles of Programming Lan­
guages, January 1977, pp. 72-85. 

J. Hopcroft and R. Tarjan, Efficient Algor­
ithms for Graph Manipulation, Co1111ll. ACM, 16, 
6, June 1973, pp. 372-378. 



1977 INTERNATIONAL CONFERENCE 

ON 

PARALLEL PROCESSING 

L I S T 0 F R E F E R E E s 

T. Agerwala w. Grossky R. Miller 

Arv ind M. Hack D. Misunas 

K. Batcher B. Hays G. Nutt 

G. Baudet L. Higbie s. Oleynick 

P. Borgwardt J. Howard D. Padua 

D. Boyd M. Hu F. Preparata 

P. Bruce Berra K. Irani L. Presser 

M. Chandy c. Jensen c. V. Ramamoorthy 

I. N. Chen J. Jensen R. Rao 

T. c. Chen R. Johnso.n s. S. Reddi 

L. Cheung R. Jump o. Reimann 

E. Coffman, Jr. D. Kafura s. Robertson 

J. Cornell T. Kehl J. Rothstein 

M. Daya R. Keller s. Saunders 

R. DeMillo K. Kim K. Schaffer 

J. Dennis T. Kimura H. Schmitz 

H. Downs A. Klayton H. Shapiro 

c. Ellis v. Klee A. Shaw 

P. Enslow L. Kleinrock J. Shore 

D. Farber P. Kogge H. Siegel 

T. Feng H. Kung D. Siewiorek 

E. Feustel L. Lamport A. J. Smith 

M. Flynn D. Lawrie E. Stabler 

c. c. Foster E. Lazowska K. Thurber 

G. Foster L. Levy G. Tjaden 

M. Freedman D. Lipkie F. Tung 

M. Freeman J. Lipovski o. Wing 

w. Gaertner c. Liu D. Wise 

o. Garcia M. Liu R. Wishner 

M. Gonzalez H. Love M. Wolfe 

K. Gostelow w. Meilander A. Yao 

I. Greif s. Meyer R. Zingg 

244 



1976 I NT ERNA TI ONAL CONFERENCE 

ON 

PARALLEL PROCESSING 

A u T H 0 R I N D E x 

Author Page Author Page 

Avizienis, A. 184 Kim, K. 118 

Babic, G. 137 Klappholz, D. 1S7, 163 

Bashkow, T. 1S7,-163, 164 Kogge, P. 217 

Batcher, K. 140 Ladner, R. 218 

Berg, H. 44 Leung, J. 9S 

Blakely, c. 193 Levy, L. S6 

Boulis, R. 144 Lipovski, G. 16S 

Bozyigit, M. S3 Lipton, R. 234 

Chen, I. lSS Liu, M. 137 

Coffman, E. G., Jr. 9S Love, H., Jr. 1S3 

Cohn, L. 1S7 Marshall, D. 199 

Comte, D. 87 Mattheyses, R. 243 

Conry, s. 243 Meyer, R. 93 

Cutler, M. S4 Miranker, G. 77 

Dang, N. 5S Misunas, D. 38 

Darr, T. 139 Nett, E. 100 

El-Dessouki, o. S7 Nielsen, I. S2 

Evans, M. S7 Paker, Y. S3 

Evansen, A. 18S Pardo, R. 137 

Faiss, R. 144 Park, T. 52 

Fischer, M. 218 Preparata, F. 202 

Freeman, M. 56 Robinson, J. 128 

Giloi, W. 44 Rothstein, J. 224 

Grosch, c. 17S Sayward, F. 234 

Curd, J. 94 Schindler, s. 26, 31 

Handler, w. 7 Schroeder, M. 93 

Hennings, D. 26, 31 Sergeant, G. SS 

Hifdi, N. 87 Shapiro, H. 67 

Hsu, T. 136 Siegel, H. 183 

Huang, J. 207 Sigmund, V. 16 

Huen, W. 57 Slutz, D. 9S 

Huske, E. S7 Steinacker, M. 26, 31 

Jacobs, W. S6 Sullivan, H. 1S7, 163, 164 

Jacobsen, R. 38 Syre, J.-c. 87 

Jensen, J. 108 Thomasian, A. 184 

Jenson, M. 118 Tripathi, A. 16S 

Jordan, T. 21S Vocar, J. 216 

24S 



Author 

Watson, I. 

Weiman, C. 

Welch, H. 

1976 INTERNATIONAL CONFERENCE 

ON 

PARALLEL PROCESSING 

A U T H 0 R 

94 

175 

186 

246 

I N D E X 

Westervelt, F. 

Wing, o·. 
Zimmerman, C. 

1 

207 

52 


