

When You Are:

Planning to

Install Your

Computer

Getting Your
Computer
Ready to Use

Operat ing

Your

Computer

Operating and
Using the
Utilities

Programming
Your
Computer

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

You Can Find Information In:

What to Do Before Your Computer Arrives
or

Converting from System/34 to System/36

Setting Up Your Computer
Performing the First System Configuration For Your System
System Security Guide

Learning About Your "Computer
Operating Your Computer

Source Entry Utility Guide
Data File Utility Guide
Creating Displays
Work Station Utility Guide
Utilities Messages

Concepts and Programmer's Guide
System Reference

Sort Guide

Work Station Utility Guide
Programming with COBOL
COBOL Summary
COBOL Messages
Getting Started with the Interactive Definition Utility Guide
Distributed Data Management Guide
(communication manuals)
(communication message manuals)

System Messages
(message manuals)
System Problem Determination

Chapter 10. Data Division

Data Division Concepts

External Data

The Data Division of a COBOL source program describes all the data to be
processed by the object program. Two types of data can be processed:

• External data

• Internal data.

External data is contained in files. A file is a collection of data records existing
on an input/output device, such as a disk. A file can be a group of physical
records or a group of logical records. The Data Division source statements
describe the relationship between physical and logical records.

A physical record is a unit of data that is treated as a single object when it is
moved into or out of auxiliary storage. The size of a physical record is
determined by the particular input/output device on which you store it. The size
does not necessarily have a direct relationship to the size or content of the logical
information contained in the file.

A logical record is a unit of data with subdivisions that are logically related. A
logical record can be a physical record (that is, contained completely in one
physical unit of data), several logical records can be contained within one physical
record, or one logical record can extend across several physical records.

Record description entries, which you place after the FD (file description) entry
for a specific file, describe the logical records in the file. These entries also
describe the category and the format of data within each field of the logical
record and different values the data might be assigned.

The FD entry gives the physical aspects of the data such as the:

• Size relationship between physical and logical records

• Size and name(s) of the logical record(s)

• Labeling information.

Chapter lO.Data Division 10-1

Once the relationship between physical and logical records has been established, ..,.

only logical records are made available to the COBOL program. Thus, in this ..."

manual, a reference to records means logical records unless the term physical

records is used.

Internal Data

Program logic might develop additional data within storage. Such data is called
internal data.

The concept of logical records applies to internal data as well as to external data.
Internal data can thus be grouped into logical records that you can define with a
series of record description entries. You can define items that need not be so
grouped in independent data description entries.

Data Relationships

In the Data Division, you define the relationships of all data you want to use in a
program through a system of level indicators and level numbers.

• 	 A level indicator, together with its descriptive entry, identifies each file
description in a program. Level indicators are the highest level of any data
hierarchy with which they are associated.

• 	 A level number, together with its descriptive entry, indicates the properties of
specific data. You can use level numbers to describe a data hierarchy. These
level numbers can:

Indicate that this data has a special purpose
Be associated with, and be subordinate to, level indicators
Be used independently to describe internal data or data common to two
or more programs.

Data Division Organization

The Data Division is divided into three sections:

• 	 The File Section

• 	 The Working-Storage Section

• 	 The Linkage Section.

Each section has a specific logical function within a COBOL source program.
You can leave out a section from the source program when you do not need its
logical function.

10-2

Format

DATA DIVISION.

[FILE SECTION.

[file-descriPtion-entry or sort-merge-file-descriPtion-entry]

{record-descri pt ion-entry}. . .]

[WORKING-STORAGE SECTION.

[data-item-descriPtion-entry]

[record-desc.; pH on-ontry] . • .J

[LINKAGE SECTION.

[data-item-descriPtion-entry]

[rocord-do.cri ptt on-entry] • • .J

In the source program, you must place the Data Division sections in the order
shown.

Chapter lO.Data Division 10-3

File Section

The File Section contains a description of all externally stored data (FD entries)
and a description of each sort-merge file (SD entries) used in the program.

You must begin the File Section with the header FILE SECTION followed by a
period and a space. The File Section contains file description entries and
sort-merge file description entries. Each entry is followed by its associated record
description entry (or entries).

In a COBOL program, the file description entries (beginning with the level
indicators FD and SD) represent the highest level of organization in the File
Section. The file description entry provides information about the physical
structure and identification of a file, and gives the record name(s) associated with
that file. For a further description of the format and the clauses required in a file
description entry, see File Description Entry later in this chapter. For a complete
discussion of the sort-merge file description entry, see Data Division Sort/Merge in
Chapter 13.

The record description entry consists of a set of data description entries that
describe the records contained within a particular file. You can use more than
one record description entry; each is an alternative description of the same storage
area. For the format and the clauses required within the record description entry,
see Data Description later in this chapter.

Data areas that you describe in the File Section are not available for processing
unless you open the file containing the data area.

Working-Storage Section

In the Working-Storage Section, you can include description records that are not
part of data files, but are developed and processed internally. These records are
used for report description, counters, and other functions necessary in processing
data.

You must begin the Working-Storage Section with the section header
WORKING-STORAGE SECTION followed by a period and a space. The
Working-Storage Section contains record description entries and data description
entries for noncontiguous data items.

You must group data elements in the Working-Storage Section that bear a
definite hierarchical relationship to one another into records structured by level
number.

You need not group noncontiguous items in this section that bear no hierarchical
relationship to one another into records if they do not need to be subdivided
further. Instead, they are classified and defined as noncontiguous elementary
items. Define each in a separate data description entry that begins with the
special level number 77. The format of the data description entry is the same as
the format for the record description entry.

10-4

Linkage Section

The Linkage Section describes data made available from another program.

Record description entries and data description entries in the Linkage Section
provide names and descriptions, but storage within the program is not reserved
because the data area exists elsewhere. You can use any data description clause
to describe items in the Linkage Section, with one exception: You cannot use the
VALUE clause for any items other than level-88 items. For additional
information, see Data Division Subprogram Linkage in Chapter 13.

File Description Entry

In a COBOL program, the FD (file description) entry or the SD (sort-merge file
description) entry is the highest level of organization in the File Section.

Chapter 1O.Data Division 10-5

______ _______________

Format I-Sequential, Indexed, Relative Files

[FILE SECTION.

[FD file-name

[BLOCK CONTAINS [;nto.or-I integer-2{RECORDS }]
CHARACTERS

[RECORD CONTAINS [;nto.or-3 TO 1 ;nto.or-4 CHARACTERS]

LABEL {RECORD IS } {STANDARD}
RECORDS ARE OMITTED

~---------------------,
I[VALUE OF
I

implementor-name-l IS {data-name-I}
literal-I

I
I

I I

I: [.;mplementor-name-2 IS {~~!:~:~:;-2}] 0 0

]
0

I
:

I I

III [DATA {RECORD.li } data-name-3
RECORDS AREL ~

[. data-name-4] ...J:
I
~

[LINAGE IS {~ata-name-5} LINES [. WITH FOOTING AT {~ata-name-6}]
lnteger-5 lnteger-6

[• LINES AT TOP AT{~ata-name-7}'] [• LINES BOTTOM {~ata-name-8} 1]
lnteger-7 lnteger-8

r-;:-----------..,

I[CODE-SET IS alPhabet-name] . I
l.!:. ___________ .J

{record-de.cr; pt; on-entry} 0 oj oj0 0 0

10-6

http:record-de.cr

Format 2-TRANSACTION File

FD file-name

[RECORD CONTAINS [;nto.or-3 TO] ;nto.or-4 CHARACTERS]

LABEL {RECORDS ARE} {STANDARD}
RECORD IS O~ITTED

i----------------------~

I[PATA {RECORD IS } data-name-3 [, data-nilme-4] ...]rl
I RECORDS ARE

~----------------------~

record-description-entry

Coding Examples

The following coding example shows the clauses you will probably use most for a
format 1 file description entry. .

SEQUENCE ~iA IB
('AGEl SERIAL, •3 • ,

o 1 o D1,4 ~ IVI lION.
02 o IF 1 LlEi SEeTI N.
03 o iF D Fl LE- NA IE
040 IREt RO
05 i ilIA L R
08 i ;[IAT I(RD II.C, r­ .
07 ioll :OES 1(1 I N
08

09

1 0 i
1 1 o ~ K:ING­ IT A~ SE
1 2 o 111 'NAINE-D tl~! PTI
1 3 o 101 !RE I~ 1)­ ESC IP 10N.

Chapter 10.Data Division 10-7

L

The following example shows the Data Division in a program:

DATA DIVISION.

FILE SECTION.

FD INPUT-DATA

BLOCK CONTAINS 1 RECORDS

RECORD CONTAINS 80 CHARACTERS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE GEN-INFO SALES-DATA.

01 	 GEN-INFO.
03 EMPLOYEE-NAME.

05 FIRST-NAME PIC X(12).

05 LAST-NAME PIC X(12).

03 SOC-SEC-NUMBER PIC 9(9).

03 CHECK-SSN REDEFINES SOC-SEC-NUMBER PIC X(9).

03 AGE PIC 99.

03 BIRTH-DATE.

05 B-MONTH PIC 99.

05 B-DAY PIC 99.

05 B-YEAR PIC 99.

03 ANNUAL-SALARY PIC 9(5)V99.

03 CHECK-SALARY REDEFINES ANNUAL-SALARY PIC X(7).

* 	 THIS REDEFINES WILL BE USED TO SEE IF THE FIELD IS BLANK.
03 RECORD-ID PIC X.
03 FILLER PIC X(31).

01 	 SALES-DATA.

03 SALES-SSN PIC 9(9).

03 SALES-LOCATION PIC xx.

88 MICHIGAN VALUE IS 'MI'.

88 EASTERN-REGION VALUES ARE 'PA' 'NY'.

88 HEADQUARTERS VALUES ARE 'BA' THRU 'BZ'.

03 TOTAL-COMMISSION PIC 9(5)V99.

03 RECORD-CODE PIC X.

03 FILLER PIC X(61).
 J

FD 	 REPORT-OUT

LABEL RECORDS ARE OMITTED

RECORD CONTAINS 132 CHARACTERS

LINAGE IS 60 LINES

WITH FOOTING 59

LINES AT TOP 3

LINES AT BOTTOM 3

DATA RECORD IS PRINT-OUT.

01 	 PRINT-OUT PIC X(132) .

WORKING-STORAGE SECTION.

77 RECORDS-IN PIC 9(6) VALUE ZEROS.

77 DECLARATIVE-ERRORS PIC 9(4) VALUE ZEROS.

77 EOF-SW PIC X VALUE ZERO.

77 BAD-DATA-COUNTER PIC 9 (3) VALUE ZERO.

77 CHECK-IT PIC xx.

01 PRINT-FIELDS-EDITED.

03 FILLER PIC X(14) VALUE SPACES.
03 TOTAL-SALARY PIC $$$,$$$.$9BB.
03 COMMISSION-COSTS PIC $**,***,***.99B.
03 FILLER PIC X(65) VALUE ALL '-'.
03 FILLER PIC X(12)

VALUE ' ... END ... JOB'.

01 SALARY-COUNTER PIC 9(6)V99 VALUE ZEROS.

01 COMMISSION-COUNTER PIC 9(6)V99 VALUE ZEROS.

You must begin the file description entry with the level indicator FD followed by
a space.

10-8

File Name

The clauses that follow the file name are optional in many cases and can be in
any order; however, you must follow the FD entry with at least one record
description entry. When you use more than one record description entry, each
entry implies a redefinition of the same storage area. You must immediately
foilow the last clause in the FD entry with a period and a space.

,...------------ IBM Extension --------------,

Format 2-TRANSACTION File Considerations

A file description entry consists of a:

• Level indicator (FD)

• File name

• Series of independent clauses.

For a TRANSACTION file, the independent clauses you can use are the:

• RECORD CONTAINS clause

• LABEL RECORDS clause

• DATA RECORDS clause.

Only the LABEL RECORDS clause is required.

The LABEL RECORDS clause specifies whether or not labels are present. This
clause is treated as comments in a TRANSACTION file. You must include the
LABEL RECORDS clause in every file description entry.

The RECORD CONTAINS clause and the DATA RECORDS clause are
described under RECORD CONTAINS Clause and DATA RECORDS Clause
later in this chapter. You must have a record definition large enough to hold the
largest record defined by the display formats or SSP-ICF records processed by the
program.

1...-__________ End of IBM Extension __________....

You must place the file name after the level indicator, and you must use the same
file name as the one you used in the SELECT clause of the associated file control
entry. (See FILE-CONTROL Paragraph in Chapter 3.)

The file name must follow the rules of formation for a user-defined word; you
must include at least one alphabetic character. You must make the file name
unique within this program.

Chapter lO.Data Division 10-9

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause gives the size of a physical record. The BLOCK
CONTAINS clause is used by the compiler to determine the blocking factor for a
disk file. The BLOCK CONTAINS clause has no effect on the physical
formatting of the file as it resides on disk.

When the BLOCK CONTAINS clause is omitted, the compiler assumes that
records are not blocked; thus, this clause can be omitted when each physical
record contains only one complete logical record.

Format

[;nt••••-1[BLOCK CONTAINS TO] integer-2 {RECORDS }]
CHARACTERS

You must make integer-l and integer-2 unsigned, nonzero integers.

When you use neither the RECORDS phrase nor the CHARACTERS phrase, the
CHARACTERS phrase is assumed.

RECORDS Phrase: When you use the RECORDS phrase, the physical record
size is expressed as the number of logical records contained in each physical
record.

The compiler assumes that the block size must provide for integer-2 records of
maximum size, and provides any additional space needed for control bytes.

Note: Maximum record size is 4096; maximum block size is 9999.

CHARACTERS Phrase: When the CHARACTERS phrase is specified or
implied, the physical record size is given as the number of character positions
required to store the physical record no matter what USAGE the characters
within the data record have.

If you use only integer-2, the compiler converts the value to a number of records
that are to be blocked together. When you use both integer-l and integer-2, they
represent, respectively, the minimum and maximum character size of the physical
record, rounded up to the nearest whole record.

The compiler assumes that the block size must provide for integer-2 characters,
converted into a number of records, even when you use integer-l.

10-10

RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of a file's data records.

Format

[RECORD CONTAINS [; nteger-3 TO] ; nteger-4 CHARACTERS]

The RECORD CONTAINS clause is never required, because you completely
define the size of each record in the record description entries. When you use this
clause, the following rules apply:

• 	 You must make integer-3 and integer-4 unsigned, nonzero integers.

• 	 When you use both integer-3 and integer-4, integer-3 gives the size of the
smallest data record, and integer-4 gives the size of the largest data record.

• 	 You must not use integer-4 alone unless all the records are the same size. If
all records are the same size, integer-4 gives the exact number of characters in
the record.

• 	 You must give the record size as the number of character positions needed to
store the record internally; that is, size is given in terms of the bytes occupied
internally by the record's characters, regardless of the number of characters
used to represent the item within the record. The size of a record is
determined according to the rules for obtaining the size of a group item. For
a further description of record size, see the USAGE Clause later in this
chapter.

Note: When you leave out the RECORD CONTAINS clause, the record
lengths are determined by the compiler from the record descriptions. When
you have an entry within a record description that contains an OCCURS
DEPENDING ON clause, the compiler uses the maximum value of the
variable-length item to calculate the record length.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present or left out.
The LABEL RECORDS clause is required in every FD entry.

Format

LABEL {RECORD IS } {STANDARD}

RECORDS ARE OMITTED

Chapter lO.Data Division 10-11

STANDARD Phrase: The STANDARD phrase specifies that this file has labels
conforming to system specifications. You must use this phrase for disk files.

OMITTED Phrase: The OMITTED phrase specifies that no labels exist for this
file. You must use this phrase for files assigned to unit record devices.

V ALUE OF Clause

The VALUE OF clause serves only as documentation. It specifies the description
of an item in the label records associated with this file.

Format

r--------------------~
I[~ Qf implamentor-nama-l IS {data-name-l} I
I literal-l I
I I

:I [, i mplementor-name-2 IS {d~ta-nama-2}] 1 : I
I l1teral-2 I000

~--------------------~

DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names of
data records associated with this file. The DATA RECORDS clause is never
required.

Format

r----------------------~

:[DATA {RECORD IS } data-name-3 [, data-name-4] oj:
RECORDS ARE

0 0

I

~-------------~--------~
More than one data name indicates that this file contains more than one type of
data record. Two or more record descriptions for this file occupy the same
storage area. These records need not have the same description or length. The
order in which you list the data names is not important.

10-12

LINAGE Clause

The LINAGE clause may be used only for printer files. It gives the depth of a
logical page in terms of the number of lines. This clause also optionally gives the
line number at which the footing area begins, as well as the top and bottom
margins of the logical page. There is not necessarily a relationship between the
logical page size and the physical page size.

Format

IS {~ata-name-5} LINES [. WITH FOOTING AT_{~ata-name-6_} 1
lnteger-5 lnteger-6 .

[, LINES AT TOP [, LINES AT{~ata-name-1}.l BOTTOM_{~ata-name-8} 1
lnteger-1 lnteger-8

In the LINAGE clause, you must describe all data names and integers as
unsigned, integer data items.

LINAGE Integer-5/Data-Name-5: Integer-5 or the value in data-name-5 gives the
number of lines that can be written or spaced or both on this logical page. The
area of the page that these lines represent is called the page body. You must use
a value that is greater than O.

Chapter lO,Data Division 10-13

This page is intentionally left blank.

10-14

WITH FOOTING Phrase: Integer-6 or the value in data-name-6 gives the first
line number of the footing area within the page body. You must have a footing
line number that is greater than 0, but it must not be greater than the number for
the last line of the page body. The footing area extends between those two lines.
If you do not use this phrase, the assumed value is equal to that of the page body
(integer-5 or data-name-5).

LINES AT TOP Phrase: Integer-7 or the value in data-name-7 gives the number
of lines in the top margin of the logical page. If you do not use this phrase, 0 is
assumed.

LINES AT BOTTOM Phrase: Integer-8 or the value in data-name-8 gives the
number of lines in the bottom margin of the logical page. If you do not use this
phrase, 0 is assumed.

Figure 10-1 shows you how to use each phrase of the LINAGE clause.

LINAGE Clause Considerations: The logical page size that you give in the
LINAGE clause is the sum of all values you gave in each phrase except the
FOOTING phrase. If the LINES AT TOP and the LINES AT BOTTOM
phrases are 0, each logical page immediately follows the preceding logical page
with no additional spacing provided.

At the time an OPEN OUTPUT statement is performed, the values of integer-5,
integer-6, integer-7, and integer-8 are used to determine the page body, first
footing line, top margin, and bottom margin of the logical page for this file.
These values are then used for all logical pages printed for this file during a given
run of the program.

Data-name-5, data-name-6, data-name-7, and data-name-8 have the following
effects on the logical page:

• 	 Their values at the time an OPEN OUTPUT statement is performed
determine the following for the first logical page only:

Page body

First footing line

Top margin

Bottom margin.

• 	 Their values at the time a WRITE ADVANCING statement causes page
ejection determine the following for the succeeding logical page only:

Page body

First footing line

Top margin

Bottom margin.

Chapter 1O.Data Division 10-15

L

LINAGE-COUNTER Special Register: For each FD entry in which you use a
LINAGE clause, a separate LINAGE-COUNTER special register is generated.
LINAGE-COUNTER is initialized to 1 when an OPEN statement for this file is
performed. LINAGE-COUNTER is automatically modified by any WRITE
statement you use for this file.

When you refer to more than one LINAGE-COUNTER special register in the
PROCEDURE DIVISION, you must qualify each LINAGE-COUNTER with its
related file name. For example, LINAGE-COUNTER OF FILE-A.

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. You can refer to
LINAGE-COUNTER in Procedure Division statements; however, you must not
change LINAGE-COUNTER with these statements.

(to~
LINES AT TOP integer-7

ma.gin)

Logical
Page Page
Body Depth

WITH FOOTING integer-6

Fo~ting
Arja JLINAGE integer-5

(bottom
LINES AT BOTTOM integer-8

martn)

Figure 10-1. LINAGE Clause and Logical Page Depth

CODE-SET Clause

The CODE-SET clause is not required or used by the System/36 COBOL
compiler. If you include it in the source program, the compiler treats this clause
as a comment.

Format

r;:---.- - - - - - - - - -,
1[CODE-SET___________ IS alPhabet-name] ·1
~ ..J

10-16

DATA DESCRIPTION

All data you use in a COBOL program is described using a uniform system of
representation. The basic concepts of data description are discussed in this
chapter, as well as the actual COBOL clauses you use to describe data.

Data Description Concepts

You need to present most of the data processed by a COBOL program in
hierarchically arranged records. This is necessary because you must subdivide
most data for processing. To subdivide such records, COBOL uses a hierarchical
concept of levels.

For example, in a department store's customer file, one complete record could
contain all data about one customer. Subdivisions within that record could be
customer name, customer address, account number, department number of sale,
unit amount of sale, dollar amount of sale, previous balance, and other
information.

Chapter lO.Data Division 10-17

L

This page left intentionally blank

J

10-18

Level Concepts

Level Numbers

Because you must divide records into logical subdivisions, the concept of levels is
part of the structure of a record. Once you have subdivided a record, you can
further subdivide it to provide more detailed data references.

The basic subdivisions of a record (that is, those fields that you do not subdivide
further) are called elementary items. A record can be made up of a series of
elementary items or it may itself be an elementary item.

Because you might need to refer to a set of elementary items, you can combine
elementary items into group items. You can also combine groups into a more
inclusive group that contains two or more subgroups. Thus, within one hierarchy
of data items, an elementary item can belong to more than one group item.

You use a system of level numbers to organize elementary and group items into
records. You also use special level numbers to identify data items you want to
use for special purposes.

You need a separate entry for each group and elementary item in a record, and
you must assign each a level number. Use the following level numbers to
structure records:

01 This level number specifies the record itself and is the most-inclusive
level number you can use. You can make a level-Ol entry either a group
item or an elementary item.

02-49 These level numbers specify group and elementary items within a record.
Assign less-inclusive data items higher (not necessarily consecutive) level
numbers.

A group item includes all group and elementary items following it until a level
number less than or equal to the level number of this group is encountered.

You must give all elementary or group items immediately subordinate to one
group item identical level numbers that are higher than the level number of this
group item.

Figure 10-2 illustrates the concept of level numbers. Note that all groups
immediately subordinate to the level-Ol entry have the same level number. Note
also that elementary items from different subgroups do not necessarily have the
same level number and that elementary items can be used at any level within the
hierarchy. Figure 10-2 shows the COBOL record description entry in the left
portion of the figure: it shows the subdivision of the entry in the right portion of
the figure.

Note: You can also write level numbers 01 through 09 as 1 through 9.

Chapter 1O.Data Division 10-19

The items included in the
hierarchy of each level are

The COBOL record description entry is written as follows: indicated below:

01 RECORD-ENTRY. - This entry includes

05 GROUP-1. - This entry includes

10 SU BG ROUP-1. Th;, .nt"! ;nclud..l
15 ELEM·1 PIC

15 ELEM-2 PIC

10 SUBGROUP-2.
 -	 Th;, .n,,,! ;oolud..l
15 ELEM-3 PIC

15 ELEM-4 PIC

05 GROUP·2. - This entry includes

15 	 SUBGROUP-3. - This entry includes

25 ELEM-5 PIC

25 ELEM-6 PIC

15 SUBGROUP-4 PIC This entry includes itself

05 GROUP-3 PIC ... This entry includes itself

The storage arrangement is illustrated below:

~----------------------------RECORD-ENTRY------------------------------I

GROUP-1--------------..:l:----------GROUP-2-j

-SUBGROUP-1---'+I-'---SUBGROUP-2---+----SUBGROUP-3-j
 I
ELEM-1 I ELEM-2 I ELEM-3 I ELEM-4 I ELEM-5 I ELEM-6 I SUBGROUP-4 IGROUP-3

Figure 10-2. How the Record Description Entry Is Stored

Note: A PICTURE clause is required for every elementary item except an
indexed data item. This clause is discussed under PICTURE Clause later in this
chapter.

10-20

Special Level Numbers

Indentation

Classes of Data

Use special level numbers to identify items that do not structure a record. The
following are special level numbers:

66 	 Use this level number to identify elementary or group items that you
described with a RENAMES clause. Such items regroup previously defined
data items.

77 	 Use this level number to identify independent data description entries in the
Working-Storage or Linkage Section. These items are not subdivisions of
other items and are not themselves subdivided.

88 	 Use this level number to identify any condition-name entry that is
associated with a particular value of a conditional variable. An example is
given under VALUE Clause later in this chapter.

Note: You must give unique data names to level-77 and level-Ol entries in the
Working-Storage Section and Linkage Section because you cannot qualify either
entry. If you can qualify subordinate data names, you need not make them
unique.

You can begin successive data description entries in the same column as preceding
entries, or you can indent them according to level number. Indentation is useful
for documentation, but it does not affect the action of the compiler.

You can divide all data used in a COBOL program into four classes and six
categories. Every elementary item in a program belongs to one of the classes as
well as to one of the categories. Every group item belongs to the alphanumeric
class even if the subordinate elementary items belong to another class and
category. Figure 10-3 shows the relationship of data classes and categories.

Level of
Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric edited
Alphanumeric edited
Alphanumeric

Boolean Boolean

Figure 10-3 (Part 1 of 2). Classes and Categories of Data

Chapter 1O.Data Division 10-21

Level of
Item Class 	 Category

Group Alphanumeric 	 Alphabetic
Numeric
Numeric edited
Alphanumeric edited
Alphanumeric
Boolean

Figure 10-3 (Part 2 of 2). Classes and Categories of Data

IBM Extension

Boolean Data Facilities

Boolean data provides a means of modifying and passing the values of the
indicators associated with the display formats. A Boolean value of 0 is the
indicator's OFF status; a Boolean value of I is the indicator's ON status.

A Boolean literal contains a single 0 or 1 and is enclosed in quotes and
immediately preceded by an identifying B. The Boolean literal is defined as either
B'O' or B'I'. A Boolean character occupies 1 byte. You can use the figurative
constant ZERO as a Boolean literal, and the reserved word ALL with a Boolean
literal.

'--__________ End of IBM Extension __________-'

J
Standard Alignment Rules

The standard alignment rules for positioning data in an elementary item depend
on the data category of the receiving item (that is, the item into which you place
the data).

Numeric Items: When a numeric item is the receiving item, the following rules
apply:

• 	 The data is aligned on the assumed decimal point and, if necessary, truncated
or padded with O's. (An assumed decimal point is one that has logical
meaning but does not exist as a character in the data.)

• 	 If a decimal point is not explicitly specified, the receiving item is treated as
though an assumed decimal point is specified immediately to the right of the
field. The data is then treated as in the preceding rule.

Numeric Edited Items: The data is aligned on the decimal point and, if necessary,
truncated or padded with O's at either end, except when editing causes
replacement of leading O's.

10-22

Alphanumeric, Alphanumeric Edited, Alphabetic: For these data categories, the
following rules apply:

• 	 The data is aligned at the leftmost character position and, if necessary,
truncated or padded with spaces at the right.

• 	 If you use the JUSTIFIED clause for alphanumeric or alphabetic receiving
items, the above rule is modified as described in the JUSTIFIED clause. (See
JUSTIFIED Clause later in this chapter.)

Note: The JUSTIFIED clause must not be specified for any item for which
editing is specified.

Standard Data Format

COBOL makes data description as machine independent as possible. For this
reason, you describe the properties of the data in a standard data format rather
than a machine-oriented format.

The standard data format uses the decimal system to represent numbers no matter
what base is used by the system. You can include any characters in the
nonnumeric data that are in the native character set. That is, nonnumeric data is
not limited to just the COBOL character set or the nonnumeric COBOL
characters.

Character String and Item Size

In COBOL, the size of an elementary item is determined through the number of
character positions you used in its PICTURE character string. In storage,
however, the size is determined by the actual number of bytes the item occupies as
determined by the combination of its PICTURE character string and its USAGE
clause.

Normally, when an arithmetic item is moved from a longer field to a shorter one,
the compiler truncates the data to the number of characters represented in the
shorter item's PICTURE character string.

For example, if you move a sending field with PICTURE S99999 and the value
+ 12345 to a COMPUTATIONAL receiving field with PICTURE S99, the data is
truncated to +45. (See PICTURE Clause later in this chapter.)

Signed Data

There are two categories of algebraic signs used in COBOL:

• 	 Operational signs

• 	 Edi ting signs.

Chapter 1O.Data Division 10-23

L

Operational Signs

Editing Signs

Operational signs (+ -) are associated with signed numeric items and indicate
their algebraic properties. The internal representation of an algebraic sign
depends on the item's USAGE clause and optionally upon its SIGN clause. Zero
is considered a unique value regardless of the operational sign. An unsigned field
is always assumed to be positive or O.

Editing signs are associated with numeric edited items. Editing signs are
PICTURE symbols (+ - CR DB) that identify the sign of the item in edited
output.

J

10-24

DATA DESCRIPTION ENTRY

A record description entry or a data description entry gives the characteristics of a
particular data item. The maximum length for any item that is not otherwise
restricted is 32,767 bytes. The four general formats are:

Format 1

level-number {data-name} clause

FILLER

[REDEFINES Clause]

[USAGE clau se]

[SIGN Clause]

[OCCURS Clause]

1---------;,
I [SYNCHRONIZED Clause] IL·________ :.J

[JUSTIFIED clause]

[BLANK WHEN ZERO Clause]

[VALUE clause]

[PICTURE Clause].

Format 2-RENAMES Clause

" data-namo-' RENAMES data-namo-2 [{=UGH} data-namO-3] .

Chapter 1O.Data Division 10-25

L

Format 3

88 condition-name.{VALUE IS }literal-l
VALUES ARE

Format 4-Boolean Data

level-number{data-nume}clause
FILLER

[REDEFINES clause]

[PICTURE clause]

[USAGE clause]

[OCCURS cluuse]

~qt@i~@E"I~£!!
[JUSTIFIED clause]
[VALUE clause]
[INDICATOR clause].

Format 1

Use this format for record description entries (except for Boolean data) in all
sections and for level-77 entries in the Working-Storage and Linkage Sections.
The following rules apply:

• 	 You can make the level number any number from 01 through 49, or 77.

• 	 You can write the clauses in any order, with two exceptions:

You must immediately follow the level number with the
data-name/FILLER clause.
When you use the REDEFINES clause, you must place it immediately
after the data-name/FILLER clause.

• 	 You must use the PICTURE clause for every elementary item except index
data items.

• 	 You can use the BLANK WHEN ZERO, JUSTIFIED, PICTURE, and
SYNCHRONIZED clauses only for elementary items.

• 	 You must separate clauses either with a space or with a comma or a
semicolon followed by a space.

• 	 You must end each record description entry with a period followed by a
space.

10-26

L
Format l-RENAMES Oause

The RENAMES clause gives alternative, possibly overlapping, groupings of
elementary data items. This clause lets a single data name rename a group of
data items within a record.

You can write one or more RENAMES entries for a logical record. You must
place all RENAMES entries associated with one logical record immediately after
that record's last data description entry. You cannot use a level-66 entry to
rename a level-Ol, a level-77, a level-88, or another level-66 entry, or another data
name that contains an INDICATOR clause.

Note: You can use the RENAMES clause to rename an INDICATOR data item;
however, the new data name does not have an INDICATOR value associated
with it, and you cannot use it as an indicator.

Data-name-l identifies an alternative grouping of data items. You cannot use
data-name-l as a qualifier. You can qualify data-name-l only with the names of
level indicator entries or level-Ol entries.

Note: Level number 66 and data-name-l are not part of the RENAMES clause
itself and are included in the format only for clarity.

Chapter lO.Data Division 10-27

L

This page is intentionally left blank.

10-28

Data-name-2 or data-name-3 identifies the original grouping of elementary data
items; that is, you must have them name elementary or group items within the
associated level-Ol entry, and you must not give them the same data name. You
can qualify both data names.

You must not use the OCCURS clause in the data entries for data-name-2 and
data-name-3, or for any group entry to which these data entries are subordinate.
In addition, you must not use the OCCURS DEPENDING ON clause for any
item occupying storage between data-name-2 and data-name-3.

Data-Name-2 Phrase: When you do not use data-name-3, you can make
data-name-2 either a group item or an elementary item. When you make
data-name-2 a group item, data-name-l is treated as a group item. When you
make data-name-2 an elementary item, data-name-l is treated as an elementary
item.

Data-Name-2 THRU Data-Name-3 Phrase: When you use data-name-3,
data-name-l is a group item that includes all elementary items:

• 	 Starting with data-name-2 (if it is an elementary item) or the first elementary
item within data-name-2 (if it is a group item)

• 	 Ending with data-name-3 (if it is an elementary item) or the last elementary
item within data-name-3 (if it is a group item).

The key words THRU and THROUGH are equivalent.

You must not have the leftmost character in data-name-3 precede that in
data-name-2; you must have the rightmost character in data-name-3 follow that in
data-name-2. This means that you make data-name-3 subordinate to
data-name-2.

Valid and invalid uses of the RENAMES clause are given in Figure 10-4.

Note: The THRU option may not be used if the elementary items being renamed
include an item that has a packed decimal representation (USAGE IS COMP-3).
The RENAMES clause and the THRU option are accepted by the compiler, but
unexpected results may occur.

Chapter lO.Data Division 10-29

L

COBOL Specificatiom 	 Storage Layouts .J
Example 1 (Valid)

01 	 RECORD·I.

05 DN·l ... RECORD·I
I' 	 -I
05 DN·2 ...

05 DN·3 ... I DN·l DN·2 DN·3 I DN-4 I

05 DN-4 ...
 I,66 	 DN·6 RENAMES DN·l THROUGH DN·3. DN·6 ·1

Example 2 (Valid)

01 	 RECORD·II. RECORD·II
05 DN·l. 	 ,:

10 DN·2 ...
DN·l "I

10 DN·2A ... I DN·2 DN·2A I DN·5 "'I 05 DN·1A REDEFINES DN·l. ,.10 DN·3A ... 	 DN·1A ·1
10 DN·3 ... I DN·3A I DN·3 I DN·3B I10 DN·3B ...

05 DN·5 ...

66 DN·6 RENAMES DN·2 THROUGH DN·3. I-DN.6-1

Example 3 (Invalid)

01 	 RECORD·III. RECORD·III " 	 J05 DN·2. 	 ,:
10 DN·3 ...

DN·2 "I
10 DN-4 ... DN·3 DN-4 DN·5I 	 I I

05 DN·5 ...

66 DN·6 RENAMES DN·2 THROUGH DN·3. DN·6 is indeterminate

Example 4 (Invalid)

01 	 RECORD·IV. RECORD·IV

05 DN-l.
 1 : DN-l '1 'I10 DN-2A ...

10 DN-2B _.. I 	DN·2A DN·2B DN·3
10 DN-2C REDEFINES DN-2B. I I

I-DN.2C-!

15 DN·2D ... IDN.21 DN·2D I

05 Dn·3 ... DN-4 is indeterminate

15 DN-2 ...

66 	 DN-4 RENAMES ON·' THROUGH DN-2.

Figure 10-4. Valid and Invalid Uses of the RENAMES Clause

10-30

Format 3

This format describes condition names. A condition name is a name you give
that associates a value(s) or a range(s) of values (or both) with a conditional
variable.

A conditional variable is a data item that you can, in tum, associate with a
condition name. The following rules for condition-name entries apply:

• 	 Any entry beginning with level number 88 is a condition-name entry.

• 	 You must place the condition-name entries associated with a particular
conditional variable immediately after the conditional-variable entry. You
can make the conditional variable any elementary data description entry
except another condition name, an index data item, or a level-66 entry.

• 	 You can associate a condition name with a group item data description entry.
The following rules apply:

You must make the condition-name value a nonnumeric literal or

figurative constant.

You must not use a condition-name value that is larger in size than the

sum of the sizes of all the elementary items within the group.

You cannot include a JUSTIFIED or SYNCHRONIZED clause in any

element within the group.

You can use no USAGE other than USAGE IS DISPLAY within the

group.

• 	 You can use condition names both at the group level and at subordinate
levels within the group.

• 	 The relation test implied by the definition of a condition name at the group
level is performed according to the rules for comparing nonnumeric operands
regardless of the nature of elementary items within the group.

• 	 You must separate successive operands either with a space or with a comma
or a semicolon followed by a space.

• 	 You must end each entry with a period followed by a space.

• 	 You must not qualify the condition name when you use it in a REDEFINES
clause.

Examples of both elementary and group condition-name entries are given under
VALUE Clause later in this chapter.

Chapter 1O.Data Division 10-31

Level Numbers

IBM Extension

Format 4-Boolean Data

Use this format for Boolean data items in all sections. The following rules apply:

• 	 You must implicitly or explicitly define USAGE as DISPLAY.

• 	 In the OCCURS clause, you cannot use the ASCENDING/DESCENDING
KEY phrase for Boolean data items.

• 	 You must use the INDICATOR clause at an elementary level only.

• 	 You can compare a Boolean data item only with another Boolean data item.

• 	 You can use only EQUAL or NOT EQUAL comparisons for Boolean data
items.

L...-__________ End of IBM Extension __________-1

The level number gives the hierarchy of data within a record and also identifies
special-purpose data entries.

Format J
level-number

The following rules for level numbers apply:

• 	 A level number begins a:

Data description entry

Regrouped item

Condition-name entry.

• 	 You must begin level numbers 01 and 77 in area A.

• 	 You can begin level numbers 02 through 49,66, and 88 in either area A or
area B, and you must follow them with a space.

• 	 You can substitute single-digit level numbers 1 through 9 for level numbers 01
through 09.

10-32

Data Name or FILLER Clause

data-name
FILLER

REDEFINES Clause

A data name explicitly identifies the data being described; the key word FILLER
identifies an item that is never explicitly referenced in the program.

Format

In a data description entry, you must make the first word after the level number
either the data name or the key word FILLER. The data name identifies a data
item by referring to the field, not to a particular value. This data item can
assume a number of different values during the course of a program.

You can begin a data name anywhere in area B. You must place a period at the
end of a data name, and you must include at least one alphabetic character.

You cannot qualify entries at level numbers 01 and 77 in the Working-Storage
and Linkage sections, so you must use unique data names. You do not need
unique data names for subordinate data names that can be qualified.

The key word FILLER specifies an elementary item to which you never explicitly
refer to in a record. You can write the word FILLER anywhere in area B. You
must place a period at the end of the entry.

FILLER items are ignored in the following statements:

• MOVE CORRESPONDING

• ADD CORRESPONDING

• 	 SUBTRACT CORRESPONDING.

IBM Extension

You can use a FILLER item as a group item definition. You can then use the
appropriate data name to reference subordinate data items.

1-..__________ End of IBM Extension __________...J

The REDEFINES clause indicates that the same storage area can contain
different data items. Redefinition can save storage by letting you use the same
area for different purposes.

Format

level-number data-name-l 	REDEFINES data-name-2

Chapter 1O.Data Division 10-33

L

The level number and data-name-l are not part of the REDEFINES clause itself
and are included in the format only for clarity. J
If you use the REDEFINES clause, it must be the first entry following
data-name-I.

You must make the level numbers of data-name-l and data-name-2 identical and
you must not make them level-66 or level-88 entries.

Data-name-2 is the redefined item.

Data-name-l is the redefining item and is an alternative description for the
data-name-2 area.

Implicit redefinition is assumed when you make more than one level-Ol entry
subordinate to an FD entry. In such level-Ol entries, you must not use the
REDEFINES clause.

Redefinition begins at data-name-I and ends when a level number less than or
equal to that of data-name-2 is encountered. You cannot have an entry with a
level number numerically lower than those of data-name-l and data-name-2
between these entries.

In the following example, A is the redefined item, and B is the redefining item.
Redefinition begins with B and includes the two subordinate items B-1 and B-2.
Redefinition ends when the level-OS item C is encountered.

05 A PICTURE X(6) • J05 B REDEFINES A.
10 B-1 PICTURE X(2) •
10 B-2 PICTURE 9 (4) •

05 C PICTURE 99V99.

You cannot have a REDEFINES clause or an OCCURS clause in the data
description entry for data-name-2, the redefined item. You can make the
redefined item subordinate to an item that contains either clause. If you make the
redefined item subordinate to an item that contains an OCCURS clause, you must
not subscript or index data-name-2 in the REDEFINES clause (the redefined
item).

You cannot have an OCCURS DEPENDING ON clause in the redefined item,
the redefining item, or any items subordinate to them.

When you use data-name-l, the redefining item, with a level number other than
01, it must give a storage area of the same size as the redefined item data-name-2.

You can have more than one redefinition of the same storage area. You must
place the entries giving the new descriptions of the storage area immediately after
the description of the redefined area without having intervening entries that define
new character positions. Multiple redefinitions must all use the data name of the
original entry that defined this storage area. For example:

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

10-34

You must not have any VALUE clauses in the redefining entry (identified by
data-name-l) and any subordinate entries. This rule does not apply to condition
names.

You can redefine data items within an area without their lengths being changed.
For example:

05 	 NAME-2.

10 SALARY PICTURE xxx.

10 SO-SEC-NO PICTURE X(9).

10 MONTH PICTURE xx.

05 	 NAME-1 REDEFINES NAME-2.

10 WAGE PICTURE xxx.

10 EMP-NO PICTURE X(9).

10 YEAR PICTURE XX.

You can also rearrange data items within an area. For example:

05 	 NAME-2.

10 SALARY PICTURE xxx.

10 SO-SEC-NO PICTURE X(9).

10 MONTH PICTURE XX.

05 	 NAME-1 REDEFINES NAME-2.

10 EMP-NO PICTURE X(6).

10 WAGE PICTURE 999V999.

10 YEAR PICTURE xx.

When you redefine an area, all descriptions of the area are always in effect; that
is, redefinition does not cause any data to be erased and does not supersede the
previous description. Thus, if you have used B REDEFINES A, either of the two
procedural statements MOVE X TO B and MOVE Y TO A could be performed
at any point in the program.

In the first case, the area described as B would assume the value of X. In the
second case, the same physical area (described now as A) would assume the value
of Y. If the second statement is performed immediately after the first, the value
of Y replaces the value of X in the one storage area.

You need not make the USAGE of a redefining data item the same as that of a
redefined item. This does not, however, cause any change in existing data. For
example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.

05 C REDEFINES B PICTURE S99 USAGE

COMPUTATIONAL-4.

05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configuration of the DISPLAY value 8 is 1111 0000 1111 1000.
Redefining B does not change the bit configuration of the data in the storage
area; therefore, the two statements, ADD B TO A and ADD C TO A give
different results. In the first case, the value 8 is added to A (because B has
USAGE DISPLAY specified). In the second statement, the value -48 is added to
A (because C has specified USAGE COMPUTATIONAL-4 specified), and the bit
configuration (truncated to 2 decimal digits) in the storage area has the binary
value -48.

Unexpected results might occur if you move a redefining item to a redefined item
(that is, if B REDEFINES C and the statement MOVE B TO C is performed).

Chapter 1O.Data Division 10-35

Unexpected results might also occur if you move a redefined item to a redefining
item (from the previous example, unexpected results occur if the statement MOVE ~.
C TO B is performed).

You can use the REDEFINES clause for an item within any area being redefined
(that is, an item subordinate to a redefined item). For example:

05 	 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8) .

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE 9999V99.

10 WEEKLY-PAY REDEFINES

SEMI-MONTHLY-PAY PICTURE 999V999.

05 	 TEMPORARY-EMPLOYEE REDEFINES

REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause may also be specified for an item subordinate to a
redefining item. For example:

05 	 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY

PICTURE 999V999.

05 	 TEMPORARY-EMPLOYEE REDEFINES

REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8) .

10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.

10 CODE-H REDEFINES HOURLY-PAY

PICTURE 9999.

10-36

USAGE Clause

The USAGE clause specifies the format of a data item in storage. The USAGE
clause can be specified for an entry at any level; if it is specified at the group
level, it applies to each elementary item in the group. The usage of an elementary
item cannot contradict the usage of a group to which the elementary item belongs.

The format of the data specified by the USAGE clause may be restricted if certain
Procedure Division statements are used.

Format

COMPUTATIOHAL-3
COMP-3
COMPUTATIOHAL-4
COMP-4

COMPUTATIONAL
COMP
JHSPLAY
ItmEX J

When you do not use the USAGE clause at either the group or elementary level,
USAGE IS DISPLAY is assumed.

INDEX Phrase: The USAGE IS INDEX clause specifies that the data item
named has an indexed format and, therefore, is an index data item. The index
data item is an elementary item that you can use to save index-name values for
future reference.

The USAGE IS INDEX clause is described in detail under Using the Table
Handling Facilities in Chapter 13.

DISPLA Y Phrase: The DISPLAY option can be explicit or implicit. It specifies
that the data item is stored in character form, 1 character per byte. This
corresponds to the form in which information is represented for keyboard input
or for printed output. You can use USAGE IS DISPLAY for the following types
of items:

• Alphabetic
• Alphanumeric
• Alphanumeric edited
• Numeric edited
• Zoned decimal (numeric)
• Boolean.

Alphabetic, alphanumeric, alphanumeric edited, Boolean, and numeric edited
items are discussed in the description of the PICTURE clause later in this chapter.

Chapter lO.Data Division 10-37

L

Zoned Decimal Items: These items are sometimes referred to as external decimal
items. Each digit of a number is represented by a single byte. The 4 high-order
bits of each byte are zone bits; the 4 high-order bits of the low-order byte
represent the sign of the item. If the number is positive, these 4 bits contain hex
F. If the number is negative, these 4 bits contain hex D. The 4 low-order bits of
each byte contain the value of the digit. When you use zoned decimal items for
computations, the compiler performs the necessary conversions. The maximum
length of a zoned decimal item is 18 digits.

The only characters you can place in the PICTURE character string of a zoned
item are:

• 9 (one or more numeric character positions)
• S (one operational sign)
• V (one implied decimal point)
• P (one or more decimal scaling positions).

Examples of zoned decimal items are shown in Figure 10-5.

Computational Phrases: The term computational refers to the following phrases
of the USAGE clause:

COMPUTATIONAL or COMP (zoned decimal).

IBM Extension ------------.,

COMPUTATIONAL-3 or COMP-3 (packed decimal)

JCOMPUTATIONAL-4 or COMP-4 (binary).

'--__________ End of IBM Extension __________.....

A computational item represents a value to be used in arithmetic operations and
you must make it numeric. If you describe the USAGE of a group item with any
of these options, it is the elementary items within the group that have this usage.
The group itself is considered nonnumeric and you cannot use it in numeric
operations except with the CORRESPONDING phrase. The maximum length of
a computational item is 18 decimal digits.

The only characters you can place in the PICTURE character string of a
computational item are:

• 9 (one or more numeric character positions)
• S (one operational sign)
• V (one implied decimal point)
• P (one or more decimal scaling positions).

10-38

This page is intentionally left blank.

Chapter lO.Data Division 10-39

L

The COM PUTATIONAL phrase is in zoned decimal format. Each digit of the
number is represented by a single byte. The 4 leftmost bits of each byte are zone'~
bits; the 4 leftmost bits of the rightmost byte represent the sign of the item. The 4 'lflii
rightmost bits of each byte contain the value of the digit. You can place any of
the digits 0 through 9, plus a sign, in a zoned decimal item .

....------------- IBM Extension -------------,

Use the COMPUTATIONAL-3 phrase for packed decimal items. Such an item
appears in storage as 2 digits per byte, with the sign contained in the 4 rightmost
bits of the rightmost byte. If the number is positive, these 4 bits contain
hexadecimal F. If the number is negative, these 4 bits contain hexadecimal D.

You can place any of the digits 0 through 9, plus a sign, in a packed decimal
item. If you do not place an S in the PICTURE character string of a packed
decimal item, the sign position is occupied by a bit configuration that is
interpreted as positive, but does not represent an overpunch.

Use the COMPUTATIONAL-4 option for binary data items. Such items have
decimal equivalents consisting of the decimal digits 0 through 9, plus a sign.

The amount of storage occupied by a binary data item depends on the number of
decimal digits you define in its PICTURE clause:

Digits in Storage
PICTURE Clauses Occupied

1 through 4 2 bytes
5 through 9 4 bytes
10 through 18 8 bytes

The leftmost bit of the storage area is the operational sign.

Examples of packed decimal and binary items are shown in Figure 10-5.

'--__________ End of IBM Extension __________.....

10-40

L Item Description 	 Value Internal Representation*

F3 F4Zoned PIC S9999 DISPLAY 	 +1234 Fl F2
-1234 Fl F2 F3 04Decimal

1234 Fl F2 F3 F4

DISPLAY +1234 Fl F2 F3 F4
-1234 Fl F2 F3 F4

1234 Fl F2 F3 F4

PIC 9999

PIC S9999 DISPLAY SIGN LEADING +1234 Fl F2 F3 F4
-1234 01 F2 F3 F4
1234 Fl F2 F3 F4

PIC S9999 DISPLAY SIGN TRAILING SEPARATE +1234 Fl F2 F3 F4 4E

-1234 Fl F2 F3 F4 60
1234 Fl F2 F3 F4 4E

PIC S9999 DISPLAY SIGN LEADING SEPARATE +1234 4E Fl F2 F3 F4
-1234 60 Fl F2 F3 F4

(COMP applies to all zoned decimal data formats) 1234 4E Fl F2 F3 F4

Packed PIC S9999 COMP-3 +1234 01 23 4F

Decimal -1234 01 23 40

PIC 9999 COMP-3 	 +1234 01 23 4F
-1234 01 23 4F

Binary PIC S9999 COMP4 	 +1234 04 02
-1234 FB 2E

PIC 9999 COMP4 	 +1234 04 02

-1234 04 02

*The internal representation of each byte is shown as two hex digits. The bit configuration for each digit is as follows:

Hex Digit Bit Configuration 	 Hex Digit Bit Configuration

0 0000 8 1000
1 000·1 9 1001
2 0010 A 1010
3 "0011 B 1011
4 0100 C 1100
5 0101 0 1101
6 0110 E 1110
7 0111 F 1111

Notes:
1. 	The leftmost bit of a binary number represents the sign: a is positive, 1 is negative.
2. 	Negative binary numbers are represented in twos complement form.
3. Hexadecimal 4E represents the EBCDIC character +. 	Hexadecimal 60 represents the EBCDIC character-.
4. 	Specification of SIGN TRAI LING (without the SEPARATE CHARACTER option) is the equivalent of the

standard action of the compiler.

5. 	Hexadecimal 1 C, which is the DUP KEY, requires definition using a specific method. This method is found

in Appendix A.

Figure 10-5_ Internal Representation of Numeric Items

Chapter lO.Data Division 10-41

L

SIGN Clause

The SIGN clause gives the position and mode of representation of the operational
sign for a numeric entry.

Format

IS] {" l EADIHG "} [SEPARATE CHARACTERJ]
TRAIL IHG

You can use the SIGN clause only for a signed numeric data description entry
(that is, one with a PICTURE character string that contains an S), or for a group
item that contains at least one such elementary entry. USAGE IS DISPLAY
must be specified either explicitly or implicitly.

You can have only one SIGN clause for each data description entry. The SIGN
clause is required only when an explicit description of the properties or position of
the operational sign is necessary.

The SIGN clause defines the position and mode of representation of the
operational sign for the numeric data description entry to which it applies, or for
each signed numeric data description entry subordinate to the group to which it ~

apPlies.J

If you do not use the SEPARATE CHARACTER phrase, then:

• 	 The operational sign is presumed to be associated with the LEADING or
TRAILING digit position (whichever you used) of the elementary numeric
data item.

• 	 The character S in the PICTURE character string is not counted in
determining the size of the item (in terms of standard data format characters).

If you use the SEPARATE CHARACTER phrase, then:

• 	 The operational sign is presumed to be the LEADING or TRAILING
character position (whichever you used) of the elementary numeric data item.
This character position is not a digit position.

• 	 The character S in the PICTURE character string is counted in determining
the size of the data item (in terms of standard data format characters).

• 	 Use the + character for the positive operational sign.

• 	 Use the - character for the negative operational sign.

• 	 If you do not use a + or a - in the data at object time, an error occurs and
the program ends abnormally.

10-42

Every numeric data description entry with a PICTURE character string that
contains the symbol S is a signed numeric data description entry. If you also use
the SIGN clause for such an entry and conversion is necessary for computations
or comparisons, the conversion takes place automatically.

If you do not use a SIGN clause for a signed numeric data description entry, the
position and method of representation for the operational sign is determined as
explained in the USAGE clause description.

OCCURS Clause

The OCCURS clause specifies tables with elements that you can refer to by
indexing or subscripting. The OCCURS clause is described under Data Division
Table Handling in Chapter 13.

IBM Extension

OCCURS Clause with Boolean Data Items

If you use both the OCCURS clause and the INDICATOR clause at an
elementary level, a table of Boolean data items is defined with each element in the
table corresponding to an external indicator.

INDICATOR Clause

The INDICATOR clause associates a $SFGR or IDDU indicator number with a
Boolean data item. The format is:

IHDICATOR }integer]
[{INDICATORS

IHDIC

You must make the integer greater than or equal to I and less than or equal to
99.

You must use the INDICATOR clause only at an elementary level.

Since you can only have a value of 0 or I in an indicator, you can associate the
indicator only with a Boolean data item.

OCCURS Clause with the INDICATOR Clause

If you use both the OCCURS clause and the INDICATOR clause at an
elementary level, a table of Boolean data items is defined with each element in the
table corresponding to an external indicator. The first element in the table
corresponds to the indicator number you used in the INDICATOR clause, the
second element corresponds to the indicator that sequentially follows the indicator
you used in the INDICATOR clause.

Chapter 1O.Data Division 10-43

For example, if you coded the following:

7 SWITCHES PIC 1 OCCURS 10 TIMES
INDICATOR 16.

then:

SWITCHES (1) corresponds to $SFGR or IDDU indicator 16,
SWITCHES (2) corresponds to $SFGR or IDDU indicator 17, ...
SWITCHES (10) corresponds to $SFGR or IDDU indicator 25.

L-_________ End of IBM Extension _________---1

SYNCHRONIZED Clause

The SYNCHRONIZED clause gives the alignment of an elementary item on a
proper boundary in storage.

Format

~---------il

II [{SYNCHRONIZED } [L EFT] II
SYNC RIGHT1- - It.:. _________ ~

The SYNCHRONIZED clause is treated as documentation only. The
SYNCHRONIZED clause is never required. You can use it only at the
elementary level. SYNC is an abbreviation for SYNCHRONIZED and has the
same meaning.

10-44

JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning rules for a receiving item
of the alphabetic or alphanumeric categories.

Format

[{JUSTIFIEP} RIGHT]
JUST

You can use the JUSTIFIED clause only at the elementary level. JUST is an
abbreviation for JUSTIFIED and has the same meaning.

You must not use the JUSTIFIED clause:

• 	 For a numeric item

• 	 For any item for which you use editing

• 	 With leve1-66 (RENAMES) entries

• 	 With level-88 (condition-name) entries.

When you use the JUSTIFIED clause for a receiving item, the data is aligned at
the rightmost character position in the receiving item. Also:

• 	 If the sending item is larger than the receiving item, the leftmost characters
are truncated.

• 	 If the sending item is smaller than the receiving item, the unused character
positions at the left are filled with spaces.

• 	 If the sending and receiving items are the same size, the JUSTIFIED clause
does not affect the result.

When you leave out the JUSTIFIED clause, the rules for standard alignment are
followed.

The following shows the difference between standard and justified alignment:

Alignment Sending Field Value Receiving Field Value

Standard THE THEbb

Right justified THE bbTHE

Standard THEbb THEbb

Right justified THEbb THEbb

Chapter 1O.Data Division 10-45

BLANK WHEN ZERO Clause

[BLANK WHEN ZERO]

V ALUE Clause

[VALUE IS 1i taral]

The BLANK WHEN ZERO clause specifies that an item is to be filled entirely
with spaces when its value is o.

Format

You can use the BLANK WHEN ZERO clause only for elementary numeric or
numeric edited items. When you use it for a numeric item, the item is considered
to be a numeric edited item.

If you use the BLANK WHEN ZERO clause, the item contains nothing but
spaces when its value is o.

You must not use the BLANK WHEN ZERO clause for level-66 or level-88
items.

IBM Extension

\When you use both the BLANK WHEN ZERO clause and the asterisk (*) as a .filii
suppression symbol for the same data description entry, zero suppression editing
overrides the function of the BLANK WHEN ZERO clause.

'--__________ End of IBM Extension __________-'

The VALUE clause gives the initial contents of a data item, or the value(s)
associated with a condition name. The two formats for the VALUE clause are as
follows:

Format 1

10-46

Format 2

88 condi ti on-name {VALUE IS } 1 i teral-l [THROUGH
VALUES ARE THRU

General Considerations

Level number 88 and the condition name are not part of the format 2 VALUE
clause itself and are included in the format only for clarity. The use of the
VALUE clause differs with the Data Division section in which it is used.

File and Linkage Sections: You only use the VALUE clause in condition-name
entries.

Working-Storage Section: You use the VALUE clause in condition-name entries
and also to give the initial value of any data item; the data item assumes the given
value when the program begins to run. If the initial value is not explicitly
specified, it is unpredictable.

The key words THRU and THROUGH are equivalent.

You must not use the VALUE clause for any item with variable length.

For group entries, you must not use the VALUE clause if the entry or an entry

subordinate to it contains any of the following clauses:

• 	 JUSTIFIED

• 	 SYNCHRONIZED

• 	 USAGE (other than USAGE DISPLAY).

You must not use a VALUE clause that conflicts with other clauses in the data
description entry or in the data description of this entry's hierarchy. The
following rules apply:

• 	 Wherever you use a literal, you can substitute a figurative constant.

• 	 If the item is numeric, you must make all VALUE clause literals numeric. If
the literal defines the value of a Working-Storage item, the literal is aligned
according to the rules for numeric moves with one additional restriction: you
must not give the literal a value that requires truncation of nonzero digits. If
the literal is signed, you must place a sign symbol (S) in the associated
PICTURE character string.

Chapter lO.Data Division 10-47

L

Format 1 Considerations

Format 2 Considerations

• 	 You must give all numeric literals in a VALUE clause of an item a value that 1a
is within the range of values indicated by the PICTURE clause for that item. ...,

For example, for PICTURE 99PPP, the literal must be within the range 1000

through 99,000 or be O. For PICTURE PPP99, the literal must be within the

range .00000 through .00099.

• 	 If the item is an elementary or group alphabetic, alphanumeric, alphanumeric
edited, or numeric edited item, you must make all VALUE clause literals
nonnumeric. The number of characters in the literal must not be larger than
the size of the item.

• 	 The functions of the editing characters or attributes in a PICTURE clause are
ignored in determining the initial appearance of the item described. Editing
characters are included in determining the size of the item, however, so you
must include any editing character in the literal. For example, if you define
the item as PICTURE +999.99 and the value is + 12.34, then you should
write the VALUE clause as VALUE '+012.34'.

• 	 You can initialize no more than 32,767 bytes with a single VALUE clause.

This format gives the initial value of a data item in storage. Initialization is
independent of any BLANK WHEN ZERO or JUSTIFIED clause you used.

You must not use a format 1 VALUE clause for an entry that contains or is
subordinate to an entry in which you used a REDEFINES or OCCURS clause.

If you use the VALUE clause at the group level, you must make the literal
nonnumeric or a figurative constant. The group area is initialized without
consideration for the subordinate entries within this group. In addition, you must
not use the VALUE clause for subordinate entries within this group .

...------------- IBM Extension -------------,

Boolean Considerations: The values you can use for a Boolean literal are B'O',
B'l', and ZERO(S).

L..-__________ End of IBM Extension __________.....1

This format associates a value, values, or range(s) of values with a condition
name. You need a separate level-88 entry for each such condition name.

You must use the VALUE clause in a condition-name entry and you must make
it the only clause in the entry. Each condition-name entry is associated with a
preceding conditional variable. Thus, you must always precede every level-88
entry with either the entry for the conditional variable or with another level-88
entry when several condition names apply to one conditional variable. Such
level-88 entries implicitly have the PICTURE characteristics of the conditional
variable. ,.j

10-48

You can qualify every condition name with the name of its associated conditional
variable and with the qualifier(s) of the conditional variable. If the associated
conditional variable requires subscripts or indexes, you must subscript or index
each procedural reference to the condition name as required for the conditional
variable.

When you use only literal-I, the condition name is associated with a single value.

When you use literal-I, literal-3, and so on, the condition name is associated with
several single values.

When you use literal-l THRU literal-2, the condition name is associated with one
range of values.

When you use literal-I THRU literal-2, literal-3 THRU literal-4, and so on, the
condition name is associated with more than one range of values. You must
make literal-I less than literal-2, literal-3 less than literal-4, and so on.

You can use one or more single values and one or more ranges of values in a
single Format 2 VALUE clause.

You must make the type of literal in a condition-name entry consistent with the
data type of the conditional variable. In the following example,
CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables; the
associated condition names immediately follow the level-number 88. The
PICTURE clause associated with COUNTY-NO limits the condition-name value
to a 2-digit numeric literal. The PICTURE clause associated with CITY limits
the condition-name value to a 3-character nonnumeric literal. Any values for the
condition names associated with CITY-COUNTY-INFO cannot exceed 5
characters, and the literal (because this is a group item) must be nonnumeric:

05 CITY-COUNTY-INFO.
88 BRONX VALUE '03NYC' .
88 BROOKLYN VALUE '24NYC' .
88 MANHATTAN VALUE '31NYC' .
88 QUEENS VALUE '41NYC' .
88 STATEN-ISLAND VALUE '43NYC' .

10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW YORK VALUE 3l.
88 RICHMOND VALUE 43.

10 CITY PICTURE X (3) •
88 BUFFALO VALUE 'BUF' .
88 NEW-YORK-CITY VALUE 'NYC' .
88 POUGHKEEPSIE VALUE 'POK' .

05 POPULATION ...

The following example shows how to use the THRU option. In this example, the
number of miles a person drives to work each day is categorized.

05 	 MILEAGE PIC 9(2)V9.
88 LOW VALUE 0 THRU 09.9.
88 MED VALUE 10.0 THRU 19.9.
88 HIGH VALUE 20.0 THRU 99.9.

Condition names are used procedurally in condition-name conditions, and are
described under Conditional Expressions in Chapter 11.

Chapter 1O.Data Division 10-49

L

PICTURE Clause

The PICTURE clause gives the general characteristics and editing requirements of
an elementary item.

Format

You must use the PICTURE clause for every elementary item except an indexed
data item. You can use the PICTURE clause only at the elementary level. PIC is
an abbreviation for PICTURE and has the same meaning.

The character string is made up of certain COBOL characters used as symbols.
The allowable combinations determine the category of the data item. You can
include no more than 30 characters in the character string.

Symbols Used in the PICTURE Clause

The functions of each PICTURE clause symbol are defined in the following list.
Any punctuation character you include in the PICTURE character string is not
considered a punctuation character, but rather a PICTURE character string
symbol.

A Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B in the character string represents a character position into
which the space character will be inserted.

P The P indicates an assumed decimal scaling position and gives the
location of an assumed decimal point when the point is not within
the number that appears in the data item. The scaling position
character P is not counted in the size of the data item. Scaling
position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items or in items
that appear as arithmetic operands. In any operation converting
data from one form of internal representation to another, if you
describe the item being converted with the PICTURE symbol P,
each digit position you describe with a P is considered to contain
the value 0, and the size of the item is considered to include these 0
digit positions.

For example, PICTURE PPP99 DISPLAY defines a 2-character
item with a value that is 0 or that ranges from .00001 through
.00099. PICTURE 99PPP DISPLAY defines a 2-character item
with a value that is 0 or that ranges from 1000 through 99,000.

10-50

S

V

x

z

You can place the scaling position character P only to the left or
right of the other characters in the string as a continuous string of
Ps within a PICTURE description. The sign character S and the
assumed decimal point V are the only characters that you can
place to the left of a leftmost string of Ps. Because the scaling
position character P implies an assumed decimal point (to the left
of the Ps if the Ps are leftmost PICTURE characters; to the right
of the Ps if the Ps are rightmost PICTURE characters), the
assumed decimal point symbol V is redundant as either the
leftmost or rightmost character within such a PICTURE
description.

The symbol S is used in a PICTURE character string to indicate
the presence (but not the representation or, necessarily, the
position) of an operational sign. You must write the sign as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol S is not counted in determining
the size of the elementary item, unless you use the SEPARATE
CHARACTER option in an associated SIGN clause.

The V is used in a character string to indicate the location of the
assumed decimal point. You can use the V only once in a
character string. The V does not represent a character position
and, therefore, is not counted in the size of the elementary item.
When the assumed decimal point is to the right of the rightmost
symbol in the string, the V is redundant.

Each X in the character string represents a character position that
can contain any allowed character from the EBCDIC set.

Each Z in the character string represents a leading numeric
character position. When that position contains a 0, the 0 is
replaced by a space character. Each Z is counted in the size of the
item.

Chapter 1O.Data Division 10-51

L

r------------- IBM Extension ------------..,

1 	 A single 1 indicates a Boolean data item. If you place a 1 in the PICTURE
character string, it must be the only character.

"-__________ End of IBM Extension _________--'

9 	 Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

o 	 Each 0 in the character string represents a character position into
which the numeral 0 will be inserted. Each 0 is counted in the size
of the item.

/ 	 Each slash in the character string represents a character position
into which the slash character will be inserted. Each slash is
counted in the size of the item.

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. You cannot make the comma insertion
character the last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.
In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the item. J
You cannot make the period insertion character the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and
comma are exchanged if you use the clause DECIMAL-POINT IS
COMMA in the SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma, and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause.

+ (CR) -(DB) These symbols are editing sign control symbols. Each symbol
represents the character position into which the editing sign control
symbol will be placed. The symbols are mutually exclusive in one
character string. Each character used in the symbol is counted in
determining the size of the data item.

* 	 Each asterisk (check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a O. Each
asterisk is counted in the size of the item.

10-52

L

IBM Extension

Within a given data description entry, the use of the check protect symbol
overrides the BLANK WHEN ZERO clause.

L..-__________ End of IBM Extension __________...J

'CS' 	 The currency symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol $ or by the single character you used in the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph of the
Environment Division. The currency symbol is counted in the size
of the item.

Note: Because you can replace the currency symbol in the
CURRENCY SIGN clause, the term 'CS' is used throughout this
book rather than the actual currency symbol ($).

Figure 10-6 gives the order in which you must use PICTURE clause symbols.

Chapter 1O.Data Division 10-53

L

Second Symbol

First Nonfloating Floating

Symbol Insertion Symbols Insertion Symbols Other Symbols

I

$2 $2 A

B 0 I , $ 9 St}
I

t}
1

{g~} ~} {~f e}1 e} X

pi pi ,3V

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

I x x x x x x x x x x x x x x x x x

, x x x x x x x x x x x x x x x x

Nonfloating

Insertion x x x x x x x x x x

Symbols
 t}
t} x x x x x x x x x x X x x x

CRt x x x x x x x),. x x x x x x

DB

$ x

{~} x x x x x x x

{~} x x x x x x x x x x x

Floating

Insertion x x x x x x
e}
Symbols

x x x x x x x x x xe}
$ x x x x x x

p
 x x x x x x x x x x

9 x x x x x x x x x x x x x x x

x x x x x
A

Other X

Symbols S

V x x x x x x x x x x x x

p
 x x x x x x x x x x x x

p
 x x x x X

I Nonfloating insertion symbols + and -, floating insertion symbols Z, *, +, -, and $, and other symbol P appear twice in the above
table. The leftmost column and uppermost row for each symbol represents its use to the left of the decimal point position. The
second appearance of the symbol in the table represents its use to the right of the decimal point position.

2$ is the default value for the currency symbol. This value may be replaced by a character specified in the currency SIGN clause. At
least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or $ must be present in a PICTURE -character string.

3 The character 1 must appear alone in the character string.~

An X at an intersection indicates that the symbol{s) at the top of the column may, in a given character string, appear anywhere to
the left of the symbol (s) at the left of the row.

Braces ({ }) indicate items that are mutually exclusive.

Figure 10-6. PICTURE Clause Symbol Order

10-54

Character String Representation: You can use the following symbols more than
once in one PICTURE character string:

A B P X Z 9 0 / , + - * 'CS'.

Each time you use one of these symbols in the character string, it represents an
occurrence of that character or set of allowable characters in the data item.

An integer enclosed in parentheses immediately following any of these symbols
gives the number of times that symbol occurs consecutively. You cannot have
more than 32,767 consecutive occurrences.

For example, the following two uses of the PICTURE clause are equivalent:

PICTURE IS $99999.99CR

PICTURE IS $9(5).99CR.

You can use the following five symbols only once in one PICTURE character
string:

S V . CR DB.

Data Categories and PICTURE Considerations: The combinations of PICTURE
symbols that you can use determine the data category of the item. Rules for each
category follow.

• Alphabetic items:

You can use only the symbols A and B in the PICTURE character string.

You must use only the 26 letters of the alphabet and the space character

as the contents of the item in standard data format.

You must either specify or imply USAGE DISPLAY.

You must use a nonnumeric literal in any associated VALUE clause.

• Numeric items:

You can use only the symbols 9, P, S, and V in the PICTURE character
string.
You must have from I through 18 digit positions.
You must make the contents of a numeric item a combination of the
digits 0 through 9. You can use an operational sign in the numeric item.
If you place an S in the PICTURE, the contents of the item are treated as
a positive or negative value, depending on the operational sign present in
the data. If you do not place an S in the PICTURE, the contents of the
item are treated as an absolute value.
If you use a VALUE clause for an elementary numeric item, you must
make the literal numeric. If you use a VALUE clause for a group item
consisting of elementary numeric items, the group is considered
alphanumeric, and you must therefore make the literal nonnumeric.
You can make the USAGE of the item DISPLAY or
COMPUTATIONAL.

Chapter to.Data Division 10-55

L

....------------ IBM Extension --------------,

You can make the USAGE be COMPUTA TIONAL-3 or

COMPUTATIONAL-4.

1...-__________ End of IBM Extension _________---'

Examples of numeric items are shown in Figure 10-7.

PICTURE

9999

Valid Range of Values

o through 9999

S99 -99 through +99

S999V9 -999.9 through +999.9

PPP999 o through .000999

S999PPP -1000 through -999000 and
through +999000 or zero

+1000

Figure 10-7. Examples of Numeric Items

• Alphanumeric items:

You must use either of the following for the PICTURE character string:
a. An entire string of the symbol X.
b. Combinations of the symbols A, X, and 9. The item is treated as
if the character string contained only the symbol X. A PICTURE
character string containing all A's or all 9s does not define an
alphanumeric item.

You can make the contents of the item in standard data format any

allowable characters from the EBCDIC character set.

You must either specify or imply USAGE DISPLAY.

You must use a nonnumeric literal in any associated VALUE clause.

• Alphanumeric edited items:

You can use the following symbols in the PICTURE character string:

AX9BO/

You must include at least one of the following combinations in the string:
a. At least one B and at least one X
b. At least one 0 and at least one X
c. At least one X and at least one /
d. At least one A and at least one 0
e. At least one A and at least one /

You can use any allowed character from the EBCDIC character set as the
contents of the item in standard data format.
You must either specify or imply USAGE DISPLAY.
You must use a nonnumeric literal in any associated VALUE clause. The
literal is treated exactly as given; no editing is performed.

10-56

PICTURE Clause Editing

Alphanumeric edited items are subject to simple-insertion editing only,
using the symbols 0, B, and /.

• Numeric edited items:

You can use the following symbols in the PICTURE character string:

B P V Z 9 0 / , . + - CR DB * 'CS'.

The combinations of symbols you can use are determined from the
PICTURE clause symbol order allowed (Figure 10-6), and the editing
rules (see the following section). The following additional rules also
apply:

a. You must include at least one of the following symbols in the
string:

B / Z 0 , . * + - CR DB.

b. You must represent the number of digit positions represented in
the character string in the range of 1 through 18 inclusive.
c. You must not have more than 30 total character positions in the
string (including editing characters).

You must use the digits 0 through 9 as the contents of those character
positions representing digits in standard data format.
You must either specify or imply USAGE DISPLAY.
You must use a nonnumeric literal in any associated VALUE clause. The
literal is treated exactly as specified; no editing is performed .

...-------------- IBM Extension ---------------,

Boolean items: You must have a single character 1 for the PICTURE character
string.

'--__________ End of IBM Extension __________-'

There are two general methods of performing editing in a PICTURE clause:

• Insertion

• Suppression and replacement.

There are four types of insertion editing:

• Simple insertion

• Special insertion

• Fixed insertion

• Floating insertion.

Chapter lO.Data Division 10-57

There are two types of suppression and replacement editing:

• Zero suppression and replacement with asterisks

• Zero suppression and replacement with spaces.

The type of editing you can use for an item depends on its data category. The
type of editing and the insertion symbols that you can use for each category are
shown in Figure 10-8.

Category Type of Editing Valid Insertion Symbols

Alphabetic Simple insertion B

Numeric None None

Alphanumeric None None

Alphanumeric Simple insertion B 0 /

edited

Numeric All B 0 / ,

edited

Boolean None None

Figure 10-8. Valid Editing for Each Data Category

Simple Insertion Editing: You can use this type of editing for alphabetic,
alphanumeric edited, and numeric edited items. The insertion symbols you can
use for each category are shown in Figure 10-8.

Each insertion symbol is counted in the size of the item and represents the
position within the item where the equivalent characters will be inserted.
Examples of simple insertion editing are shown in Figure 10-9.

PICTURE Character

String Value of Data Edited Result

X(10)/XX AlphanumerOl Alphanumer/Ol

X(5)BX(7) Alphanumeric Alpha numeric

A(5)BA(5) Alphabetic Alpha betic

99,B999,BOOO 1234 01,234,000

99,999 12345 12,345

Figure 10-9. Examples of Simple Insertion Editing

Special Insertion Editing: You can use this type of editing only for numeric
edited items.

The period is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point will be inserted.

You must not use both the actual decimal point and the assumed decimal point
(the symbol V) in one PICTURE character string.

10-58

Fixed Insertion Editing: You can use this type of editing only for numeric edited
items. Use the following insertion symbols:

'CS' (currency symbol)

+ - CR DB (editing sign control symbols)

• 	 In fixed insertion editing, you can use only one currency symbol and one
editing sign control symbol in one PICTURE character string.

• 	 Unless it is preceded by a + or - symbol, you cannot make the currency
symbol the leftmost character position in the character string.

• 	 When you use either + or - as a symbol, it must represent either the leftmost
or rightmost character position in the character string.

• 	 When you use CR or DB as a symbol, it must represent the rightmost two
character positions in the character string.

• 	 Editing sign control symbols produce results depending on the value of the
data item, as shown in Figure 10-10.

Examples of fixed insertion editing are shown in Figure 10-11.

Editing Symbol in Resulting Data

PICTURE Character Item Positive Resulting Data Item

String or Zero Negative

+ 	 + ­
-	 space ­
CR 	 2 spaces CR

DB 	 2 spaces DB

Figure 10-10. Editing Sign Control Results

PICTURE

Character String Value of Data Edited Result

999.99+ +6555.556 555.55 +

+9999.99 -6555.555 -6555.55

9999.99 + 1234.56 1234.56

$999.99 -123.45 $123.45

-$999.99 -123.456 -$123.45

$9999.99CR + 123.45 $0123.45

$9999.99DB -123.45 $0123.45DB

Figure 10-11. Examples of Fixed Insertion Editing

Chapter lO.Data Division 10-59

L

Floating Insertion Editing: You can use this type of editing only for numeric
edited items. The following symbols are used:

'CS' + - .

Within one PICTURE character string, these symbols are mutually exclusive as
floating insertion characters.

Specify floating insertion editing with a character string of at least two of the
allowable floating insertion symbols to represent leftmost character positions in
which these characters can be inserted.

The leftmost floating insertion symbol in the character string represents the
leftmost limit at which this character can appear in the data item. The rightmost
floating insertion symbol represents the rightmost limit at which this character can
appear.

The second leftmost floating insertion symbol in the character string represents
the leftmost limit at which numeric data can appear within the data item.
Nonzero numeric data can replace all characters at or to the right of this limit.

Any simple insertion symbols (B ° / ,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating character
string. If the period special insertion symbol is included within the floating string,
it is considered to be part of the character string.

In a PICTURE character string, there are two methods by which you can
represent floating insertion editing and perform editing:

• 	 Any or all leading numeric character positions to the left of the decimal point
are represented by the floating insertion symbol. When editing is performed,
a single floating insertion character is placed to the immediate left of the first
nonzero digit in the data or of the decimal point, whichever is the leftmost.
The character positions to the left of the inserted character are filled with
spaces.

• 	 All the numeric character positions are represented by the floating insertion
symbol. When editing is performed:

. If the value of the data is 0, the entire data item will contain spaces.
If the value of the data is not 0, the result is the same as in method 1.

To avoid truncation, you must have a PICTURE character string at least the sum
of:

• 	 The total number of character positions in the sending item

• 	 The total number of nonfloating insertion symbols in the receiving item

• 	 One character for the floating insertion symbol.

J

10-60

Examples of floating insertion editing are shown in Figure 10-12.

PICTURE Character
String Value of Data Edited Result

$$$$.99 .123 $.12

$$$9.99 .12 $0.12

$$,$$$,999.99 -1234.56 $1,234.56

+ +,+ + +,999.99 -123456.789 -123,456.78

$$,$$$,$$$.99CR -1234567 $1,234,567.00CR

++,+++,+++,+++ 0000.00

Figure 10-12. Examples of Floating Insertion Editing

Zero Suppression and Replacement Editing: You can use this type of editing only
for numeric edited items.

Use the symbols Z and * for zero suppression. These symbols are mutually
exclusive in the PICTURE clause.

The following symbols are mutually exclusive as floating replacement symbols in
one PICTURE character string:

Z * 	+ - 'CS' .

Specify zero suppression editing with a string of one or more of the allowable
symbols to represent leftmost character positions in which zero suppression and
replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period
special insertion symbol is included within the floating editing string, it is
considered to be part of the character string.

In a PICTURE character string, there are two methods by which you can
represent zero suppression and perform editing:

• 	 Any or all of the leading numeric character positions to the left of the decimal
point are represented by suppression symbols. When editing is performed,
any leading 0 in the data that appears in the same character position as a
suppression symbol is replaced by the replacement character. Suppression
stops at the leftmost character that:

Does not correspond to a suppression symbol
Contains nonzero data
Is the decimal point.

• 	 All the numeric character positions in the PICTURE character string are
represented by the suppression symbols. When editing is performed and the
value of the data is nonzero, the result is the same as in the preceding rule.
The following rules apply if the value of the data is 0:

-	 If you used Z, the entire data item contains spaces.

Chapter lO.Data Division 10-61

L

If you used *, the entire data item, except the actual decimal point,
contains asterisks.

IBM Extension

You can use the asterisk (*) as a suppression symbol and the BLANK
WHEN ZERO clause for the same entry. The asterisk overrides the
BLANK WHEN ZERO clause if you specify both.

'--__________ End of IBM Extension __________...1

Examples of zero suppression and replacement editing are shown in Figure 10-13.

PICTURE Value of Data Edited Result

**** ** 0000.00 **** **

ZZZZ.ZZ 0000.00

ZZZZ.99 0000.00 .00

****.99 0000.00 ****.00

ZZ99.99 0000.00 00.00

Z,ZZZ.ZZ+ + 123.456 123.45 +

*,***.** + -123.45 **123.45

,*,***.**+ + 12345678.9 12,345,678.90 +

$Z,ZZZ,ZZZ.ZZCR + 12345.67 $ 12,345.67

$B*, ***, ***.**BBDB -12345.67 $ ***12,345.67 DB

Figure 10-13. Examples of Zero Suppression and Replacement Editing

10-62

http:12,345.67
http:12345.67
http:12,345.67
http:12345.67
http:12,345,678.90
http:Z,ZZZ.ZZ

Procedure Division

Procedure Division Concepts 11-1

Dec1aratives 11-1

Procedures 11-2

Procedure Division Organization 11-3

Example of Statement Sequence in Procedure Division 11-4

Sample Procedure Division Statements 11-4

Categories of Sentences 11-5

Categories of Statements 11-5

Categories of Expressions 11-5

Sample Procedure Division Statements 11-6

Arithmetic Expressions 11-9

Arithmetic Operators 11-9

Arithmetic Statements 11-12

Arithmetic Statement Operands 11-12

Size of Operands 11-12

Overlapping Operands 11-13

Multiple Results 11-13

Intermediate Result Fields 11-14

Compiler Calculation of Intermediate Results 11-15

Data Manipulation Statements 11-17

Procedure Branching Statements 11-17

Compiler-Directing Statements 11-17

Conditional Expressions 11-18

Simple Conditions 11-18

Class Condition 11-18

Condition-Name Condition 11-19

Relation Condition 11-21

Comparison of Numeric Operands 11-23

Comparison of Nonnumeric Operands 11-23

Comparison of Numeric and Nonnumeric Operands 11-23

Operands of Equal Size 11 ~23

Operands of Unequal Size 11-23

Sign Condition 11-24

Switch-Status Condition 11-24

Complex Conditions 11-24

Procedure Division

L

Negated Simple Conditions 11-25

Combined Conditions 11-26

Evaluating Conditional Expressions 11-27

Abbreviated Combined Relation Conditions 11-29

Dec1aratives 11-31

Procedure Division Statements (Except Input/Output Statements) 11-33

ADD Statement 11-34

ROUNDED Phrase 11-35

SIZE ERROR Phrase 11-36

GIVING Phrase 11-36

CORRESPONDING Phrase 11-37

ALTER Statement 11-38

Segmentation Information 11-39

COMPUTE Statement 11-40

ROUNDED Phrase 11-40

SIZE ERROR Phrase 11-41

DIVIDE Statement 11-42

ROUNDED Phrase 11-43

SIZE ERROR Phrase 11-44

GIVING Phrase 11-44

ENTER Statement 11-45

EXIT Statement 11-46

GO TO Statement 11-47

Format I-Unconditional GO TO 11-47

Format 2-Conditional GO TO 11-48

IF Statement 11-49

Nested IF Statements 11-51

INSPECT Statement 11-54

INSPECT Statement Example 11-58

TALLYING Phrase 11-59

REPLACING Phrase 11-59

BEFORE and AFTER Phrases 11-60

INSPECT Statement Examples 11-61

Typical Uses 11-62

MOVE Statement 11-63

CORRESPONDING Phrase 11-64

Elementary Moves 11-65

Group Moves 11-67

MULTIPLY Statement 11-68

ROUNDED Phrase 11-68

SIZE ERROR Phrase 11-69

GIVING Phrase 11-69

PERFORM Statement 11-70

Format 1 11-70

Format 2 11-70

Format 3 11-70

Format 4 11-71

Varying One Identifier 11-75

Varying Two Identifiers 11-78

Varying Three Identifiers 11-82

Segmentation Information 11-85

STOP Statement 11-86

STRING Statement 11-87

Running the STRING Statement 11-88

STRING Statement Example 11-90

SUBTRACT Statement 11-92

ROUNDED Phrase 11-93

SIZE ERROR Phrase 11-94

GNING Phrase 11-94

CORRESPONDING Phrase 11-95

UNSTRING Statement 11-96

Sending Field 11-96

DELIMITED BY Phrase 11-96

Data Receiving Fields 11-97

DELIMITER IN Phrase 11-97

COUNT IN Phrase 11-97

POINTER Phrase 11-97

TALLYING Phrase 11-97

Running the UNSTRING Statement 11-98

UNSTRING Statement Example 11-101

USE AFTER EXCEPTION/ERROR Statement (EXCEPTION/ERROR

Declarative) 11-104

File-Name Phrase 11-104

INPUT Phrase 11-104

OUTPUT Phrase 11-104

I-0 Phrase 11-104

EXTEND Phrase 11-104

General Considerations 11-105

USE FOR DEBUGGING Statement 11-106

Procedure Division

Chapter 11. Procedure Division

This chapter contains a discussion of the Procedure Division concepts and
organization.

Also, this chapter discusses in alphabetic order the Procedure Division statements,
except for the input/output statements. The input/output statements are discussed
in alphabetic order in Chapter 12.

Procedure Division Concepts

Declaratives

You must include a Procedure Division in every COBOL source program. The
Procedure Division consists of optional Declaratives and procedures that contain
the sections or paragraphs, sentences, and statements that solve a data processing
problem.

The program begins running with the first statements in the Procedure Division,
not including Declarative sections. Unless the logic flow gives some other order,
statements are performed in the order in which they are given for compilation.
The end of the Procedure Division and the physical end of the program is that
physical position in a source program after which you place no more Procedure
Division statements.

A Declarative section provides a way to begin procedures that are performed
when an exceptional condition occurs that you want to test.

When you use Declarative sections, you must:

• Group them at the beginning of the Procedure Division

• Place the key word DECLARATIVES before the Declarative sections

• Place the key words END DECLARATIVES after the Declarative sections

• Divide the entire Procedure Division into sections.

Chapter II.Procedure Division 11-1

L

Procedures

A procedure is a paragraph, a group of paragraphs, a section, or a group of
sections within the Procedure Division. A procedure name is a user-defined name
with which you identify a paragraph or a section.

A section consists of a section header and zero, one, or more than one successive
paragraphs. A section header is a section name followed by the key word
SECTION, an optional priority number, and a period and a space. Priority
numbers are explained under Procedure Division Segmentation in Chapter 13. A
section name is a user-defined word with which you identify a section. Because
you cannot qualify a section name, you must make it unique. A section ends at
one of the following:

• Immediately before the next section header

• At the end of the Procedure Division

• At the key words END DEC LARA TIVES in the Declaratives portion.

A paragraph consists of a paragraph name and zero, one, or more than one
successive sentences. A paragraph name is a user-defined word followed by a
period and a space and identifies a paragraph. Because you can qualify a
paragraph name, it need not be unique. A paragraph ends at one of the
following:

• Immediately before the next paragraph name or section header J
• At the end of the Procedure Division

• At the key words END DECLARATIVES in the Declaratives portion.

If you place one paragraph within a section in a program, you must place all
paragraphs in sections.

A sentence consists of one or more statements and is ended by a period and a
space.

A statement is a syntactically valid combination of words (identifiers, figurative
constants, and so on) and symbols (literals, relational operators, and so on)
beginning with a COBOL verb.

An identifier consists of the word or words with which you can make a unique
reference to a data item through:

• Qualification

• Subscripting

• Indexing.

In any Procedure Division reference except the class test (see Class Condition later
in this chapter), if you do not make the contents of an identifier compatible with
the class you used in its PICTURE clause, results are unpredictable.

11-2

Note: You cannot use a level-88 (condition-name) entry as an identifier because
it is not a data item. You can use the associated conditional variable as an
identifier.

Procedure Division Organization

The structure of the Procedure Division is shown in the following formats:

Format 1

PROCEDURE DIVISION [USING datli-name-l [, data-name-2J . . . J .

[DECLARATIVES .

{section-name SECTION [segment-number] . declarative-sentence

[paragraPh-name. [sentenceJ .. oJ 0 0 00 0o}

END DECLARATIVES oJ

{section-name SECTION [segment-number]

[paragraPh-name. [sentence] •..J ...}

Chapter l1.Procedure Division 11-3

Format 2

J

PROCEDURE DIVISION [USING data-name-l[, data-name-2l ...J .

{paragraPh-name . [sentence] . . .}. . •

Example of Statement Sequence in Procedure Division

SEQUENCE l~ ..
, , . . ,.

B

,
COB'

' Gl' SlJ.lIAll U

1:t0'+ 0 10 lit 0 1: 1

020
 T ~
030 T - E eG 0
040 A P ­
050

060
 TS
070 S
080 T - E .
090 IIA P - A . , 100 III A E

Sample Procedure Division Statements J
PROCEDURE DIVISION.

DECLARATIVES.

ERROR-IT SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-DATA.
ERROR-ROUTINE.

IF CHECK-IT = '30' ADD 1 TO DECLARATIVE-ERRORS.
END DECLARATIVES.
BEGIN-NON-DECLARATIVES SECTION.
100-BEGIN-IT.

OPEN INPUT INPUT-DATA OUTPUT REPORT-OUT.
1l0-READ-IT.

READ INPUT-DATA RECORD AT END MOVE 'Y' TO EOF-SW.
ADD 1 TO RECORDS-IN.

200-MAIN-ROUTINE.
PERFORM PROCESS-DATA UNTIL EOF-SW = 'y'.
PERFORM FINAL-REPORT THRU FINAL-REPORT-EXIT.
DISPLAY 'TOTAL RECORDS IN = ' RECORDS-IN.
DISPLAY 'DECLARATIVE ERRORS = »> ' DECLARATIVE-ERRORS.
STOP RUN.

PROCESS-DATA.
IF RECORD-ID = 'G'

PERFORM PROCESS-GEN-INFO
ELSE

IF RECORD-CODE = 'C'
PERFORM PROCESS-SALES-DATA

ELSE
PERFORM UNKNOWN-RECORD-TYPE.

11-4

Categories of Sentences

There are three categories of sentences: conditional sentences, imperative
sentences, and compiler-directing sentences.

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, ended by a period and a space.

An imperative sentence is an imperative statement, which may consist of a series of
imperative statements, ended by a period and a space.

A compiler-directing sentence is a single compiler-directing statement, ended by a
period and a space.

Categories of Statements

Three categories of statements are used in COBOL: conditional statements,
imperative statements, and compiler-directing statements.

A conditional statement specifies that the truth value of a condition is to be
determined, and that the subsequent action of the object program is dependent on
this truth value. Figure 11-1 lists COBOL conditional statements.

An imperative statement specifies that an unconditional action is to be taken by
the object program. An imperative statement may also consist of a series of
imperative statements. Figure 11-2 lists COBOL imperative statements.

A compiler-directing statement causes the compiler to take a specific action during
compilation. Figure 11-3 lists the COBOL compiler-directing statements.

Categories of Expressions

Two categories of expressions are used in COBOL: arithmetic expressions and
conditional expressions.

Chapter 11.Procedure Division 11-5

L

Sample Procedure Division Statements

Decision IF

Input/Output

Arithmetic

Procedure
Branching

Data Movement

Table Handling

Ordering

Debug

DELETE INVALID KEY
READ AT END
READ ... INVALID KEY
REWRITE ... INVALID KEY
START ... INVALID KEY
WRITE ... AT END-OF-PAGE
WRITE ... INVALID KEY

ADD ... ON SIZE ERROR
COMPUTE ... ON SIZE ERROR
DIVIDE ... ON SIZE ERROR
MULTIPLY ... ON SIZE ERROR
SUBTRACT ... ON SIZE ERROR

PERFORM ... UNTIL

STRING ... ON OVERFLOW
UNSTRING ... ON OVERFLOW

SEARCH

RETURN ... AT END

EXHIBIT ... CHANGED

Figure 11-1. Conditional Statements and Their Categories

..JI

11-6

Arithmetic ADDl
COMPUTEl
DIVIDEl
INSPECT (TALLYING)
MULTIPLYl
SUBTRACTl

Data Movement ACCEPT (DATE, DAY, TIME)
INSPECT (REPLACING)
MOVE
STRING3
UNSTRING3

Ending 	 EXIT PROGRAM
STOP RUN

Input/Output 	 ACCEPT (mnemonic)
ACQUIRE
CLOSE
DELETE2
DISPLAY
DROP
OPEN
READ4
REWRITE2
SET6
START2
STOP literal
WRITE5

Ordering 	 MERGE
RELEASE
RETURN
SORT

Procedure 	 ALTER
Branching 	 CALL

EXIT
GO
PERFORM

Table Handling 	 SET

Figure 11-2 (Part 1 of 2). Categories of Imperative Statements

Without the SIZE ERROR option

Without the INVALID KEY option

Without the ON OVERFLOW option

4 	 Without the AT END or INVALID KEY options

Without the INVALID KEY or END-OF-PAGE options

6 	 When used to modify external switch values

Chapter !l.Procedure Division 11-7

Subprogram CALL

Linkage

Debug 	 EXHIBIT

READY TRACE

RESET TRACE

Figure 11-2 (Part 2 of 2). Categories of Imperative Statements

Library COpy

Declarative USE

Documentation ENTER

Figure 11-3. Categories of Compiler-Directing Statements

J

11-8

L
Arithmetic Expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic
statements. An arithmetic expression can consist of any of the following:

1. 	 An identifier described as a numeric elementary item

2. 	 A numeric literal

3. 	 Identifiers and literals (as defined in items 1 and 2) separated by arithmetic
operators

4. 	 Two arithmetic expressions (as defined in item 1,2, or 3) separated by an
arithmetic operator

5. 	 An arithmetic expression (as defined in item 1, 2, 3, or 4) enclosed in
parentheses.

You can precede any arithmetic expression by a unary operator.

Identifiers and literals appearing in an arithmetic expression must represent either
numeric elementary items or numeric literals on which arithmetic can be
performed.

Arithmetic Operators

You can use the five binary arithmetic operators and two unary arithmetic
operators shown in Figure 11-4 in arithmetic expressions. The arithmetic
operators are represented by specific characters that must be preceded and
followed by a space.

Binary
Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation7

Fractional exponents are not allowed

Chapter II.Procedure Division 11-9

L

Unary
Operator 	 Meaning

+ 	 Multiplication by + 1;

retains original sign

-	 Multiplication by -1;

changes sign

Figure 11-4. Binary and Unary Operators

You can use parentheses in arithmetic expressions to specify the order in which
elements are to be evaluated. Expressions within parentheses are evaluated first.
When expressions are contained within a nest of parentheses, evaluation proceeds
from the least-inclusive to the most-inclusive set.

When you do not use parentheses, or when parenthesized expressions are at the
same level of inclusiveness, the following hierarchical order is implied:

1. Unary operator

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction.

When exponentiation is used as an arithmetic operator, the exponential identifier

or literal must be a positive integer value.";

Parentheses either eliminate ambiguities in logic in which consecutive operations

appear at the same hierarchical level or modify the normal hierarchical sequence

of performance when the sequence needs to be modified. When the order of

consecutive operations at the same hierarchical level is not completely specified by

parentheses, the order is from left to right.

Figure 11-5 shows allowed arithmetic symbol pairs. An arithmetic symbol pair is

the appearance of two such symbols in sequence.

An arithmetic expression can begin only with a left parenthesis, a unary operator,

or a variable (that is, an identifier or a literal). An arithmetic expression can end

only with a right parenthesis or a variable. An arithmetic expression must contain

at least one reference to an identifier or a literal. There must be a one-to-one

correspondence between left and right parentheses in an arithmetic expression.

11-10

Second Symbol
....

I
Variable **
(identifier + unary +

First Symbol or literal) - unary - ()

Variable - p - - p
(identifier or
literal)

* / ** + - P - P P ­
unary + or p - - p ­
unary ­

(p - p p ­
) - p - - p

Figure 11-5. Valid Arithmetic Symbol Pairs

Note: p indicates a permissible pairing

- indicates that the pairing is not permitted

Chapter II.Procedure Division 11-11

L

Arithmetic Statements

Arithmetic statements are used for computations. You specify individual
operations by using the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements. You can use the COMPUTE statement to symbolically combine these
operations in a formula.

Arithmetic Statement Operands

Size of Operands

The data description of operands in an arithmetic statement need not be the same.
Throughout the calculation, the compiler supplies any necessary data conversion
and decimal point alignment.

The maximum size of each operand is 18 decimal digits. The composite of
operands (a hypothetical data item resulting from the superposition of the
operands aligned by decimal point) must not contain more than 18 decimal digits.

• 	 For the ADD and SUBTRACT statements, the composite of operands is
determined by superimposing all operands in a given statement except those
following the word GIVING.

For example, the items A, B, and C are defined in the Data Division as
follows:

01 	 A PICTURE S9(7)V9(5).

01 	 B PICTURE S9(lI)V99.

01 	 C PICTURE S9(l2)V9(3).

If the statement ADD A, B TO C is run, the composite of operands for this
statement consists of 17 decimal·digits. It has the following implicit
description:

Composite-of-Operands PICTURE S9(12)V9(5).

• 	 For the MULTIPLY statement, the composite of operands is determined by
superimposing all receiving data items.

• 	 For the DIVIDE statement, the composite of operands is determined by
superimposing all receiving data items except the REMAINDER data item.

• 	 For the COMPUTE statement, the restriction on composite of operands does
not apply.

11-12

Overlapping Operands

Multiple Results

When operands in an arithmetic statement share part of their storage (that is,
when the operands overlap), the result when the statement is run is unpredictable.

When an arithmetic statement has multiple results, the sequence of events is as
follows:

1. 	 The statement performs all arithmetic operations to find the result to be
placed in the receiving items and stores that result in a temporary location.

2. 	 A sequence of statements transfers or combines the value of this temporary
result with each single receiving field. The statements are considered to be
written in the same left-to-right order that the multiple results are listed.

For example, running the following statement:

ADD A, B, C TO C, D(C), E.

is the same as running the following series of statements:

ADD A, B, C GIVING TEMP

ADDTEMPTOC

ADD TEMP TO D(C)

ADD TEMP TO E.

TEMP is a compiler-supplied temporary result field. When the addition
operation for D(C) is performed, the subscript C contains the new value of C.

Note: It is your responsibility, in all arithmetic statements, to define data with
enough digits and decimal places to ensure accuracy in the final result.

Chapter II.Procedure Division 11-13

Intermediate Result Fields

This section discusses the conceptual compiler algorithms for determining the
number of integer and decimal places reserved for intermediate results (ir) of
arithmetic statements. The following abbreviations are used:

i 	 Number of integer places carried for an intermediate result

d 	 Number of decimal places carried for an intermediate result

dmax 	 In a particular statement, the larger of either:

• 	 The number of decimal places needed for the final result
field

• 	The maximum number of decimal places defined for any
operand except exponents and divisors.

opl 	 First operand in a generated arithmetic statement

op2 	 Second operand in a generated arithmetic statement

dl,d2 	 Number of decimal places defined for opl or op2, respectively

ir 	 Intermediate result field obtained from running a generated

arithmetic statement or operation. Irl, ir2, and so on

represent successive intermediate results. These intermediate

results are generated either in registers or in storage locations.

Successive intermediate results may have the same location.

When an arithmetic statement contains only a single pair of operands, no
intermediate results are generated. Intermediate results are possible in the
following cases:

• 	 In an ADD or a SUBTRACT statement containing multiple operands
immediately following the verb

• 	 In a COMPUTE statement specifying a series of arithmetic operations

• 	 In arithmetic expressions contained in an IF or a PERFORM statement

• 	 In the GIVING phrase with multiple result fields for ADD, SUBTRACT,
MULTIPLY, DIVIDE

• 	 In a COMPUTE statement specifying multiple result fields.

11-14

In such cases, the compiler treats the statement as a succession of operations. For
example, the following statement:

COMPUTE Y = A + B * C - D / E + F ** G

is replaced by

F**G yielding irl

MULTIPLYB BYC yielding ir2

DIVIDE E INTOD yielding ir3

ADD A TO ir2 yielding ir4

SUBTRACT ir3 FROM ir4 yielding ir5

ADD ir5 TOirl yielding Y

Compiler Calculation of Intermediate Results

The number of integer places in an ir is calculated as follows:

• 	 The compiler first determines the maximum value that the ir can contain by
performing the statement in which the ir occurs.

If an operand in this statement is a data name, the value used for the

data name is equal to the numeric value of the PICTURE character string

for the data name (for example, PICTURE 9V99 has the value 9.99).

If an operand is a literal, the actual value of the literal is used.

If an operand is an intermediate result, the value determined for the

intermediate result in a previous arithmetic operation is used.

If the operation is division:

a) If op2 is a data name, the value used for op2 is the minimum
nonzero value of the digit in the PICTURE character string for the
data name (for example, PICTURE 9V99 has the value 0.01).
b) If op2 is an intermediate result, the intermediate result is treated
as though it had a PICTURE character string, and the minimum
nonzero value of the digits in this PICTURE character string is used.

• 	 When the maximum value of the ir is determined by the above procedures, i
is set equal to the number of integers in the maximum value.

Chapter II.Procedure Division 11-15

• The number of decimal places contained in an ir is calculated as:

Operation 	 Decimal Places

+ or -	 dl or d2, whichever is greater

dl + d2

I dl - d2 or dmax, whichever is greater8

*

** 	 dmax if op2 is a data name; dl * op2 if op2

is an integral literal

Note: You must define the operands of any arithmetic statement with enough
decimal places to give the desired accuracy in the final result.

The following chart indicates the action of the compiler when handling
intermediate results:

Value of Value Value of
i + d ofd i + dmax 	 Action Taken

<19 = Any Any value i integer and d decimal

19 value places are carried for

ir

> 19 <dmax Any value 	 19 - d integer and d

decimal places are

carried for ir

=dmax

>dmax <19 	 i integer and 19 - i
decimal places are
carried for ir

= 19

> 19 	 19 - dmax integer and
dmax decimal places
are carried for ir

After a division operation in a COMPUTE statement with a ROUNDED option,
the number of decimal places carried in the intermediate result field is increased by
1.

11-16

Data Manipulation Statements

Movement and inspection of data are the functions of the following COBOL
statements: INSPECT, MOVE, STRING, and UNSTRING.

When the sending and receiving fields of a data manipulation statement share a
part of their storage (that is, when the operands overlap), the results when the
statement is run are unpredictable.

Procedure Branching Statements

Statements, sentences, and paragraphs in the Procedure Division are usually run
sequentially. The procedure branching statements allow alterations in the
sequence. The procedure branching statements are ALTER, EXIT, GO TO,
PERFORM, and STOP.

Compiler-Directing Statements

Compiler-directing statements provide instructions to the COBOL compiler. The
compiler-directing statements are COPY, ENTER, and USE.

Only the ENTER statement and the USE AFTER EXCEPTION/ERROR
statement are discussed in this chapter. The COPY statement is discussed under
Using the Library Copy Facility in Chapter 4. The USE FOR DEBUGGING
statement is discussed under Debugging Features in Chapter 6.

Chapter II.Procedure Division 11-17

Conditional Expressions

Simple Conditions

Class Condition

identifier IS

A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions can be
specified in IF, PERFORM, and SEARCH statements. The IF and PERFORM
statements are discussed in this chapter. The SEARCH statement is discussed in
Chapter 13.

A conditional expression can be specified in simple conditions and in complex
conditions. You can enclose both simple and complex conditions within any
number of paired parentheses; parentheses do not change the category of the
condition.

There are five simple conditions:

• Class condition

• Condition-name condition

• Relation condition

• Sign condition

• Switch-status condition.

A simple condition has a truth value of true or false. When a simple condition is
enclosed in paired parentheses, its truth value is not changed.

The class condition determines whether a data item is numeric or alphabetic.

Format

[NOT]{.NUMERIC }
ALPHABETIC

The identifier you are testing must be described implicitly or explicitly as USAGE
DISPLAY. The identifier is determined to be numeric only if the contents
consist of any combination of the digits 0 through 9, with or without an
operational sign.

If the PICTURE character string of the identifier you are testing does not contain
an operational sign, the identifier is determined to be numeric only if the contents
are numeric and an operational sign is not present.

11-18

Condition-Name Condition

condition-name

If the PICTURE character string of the identifier you are testing does contain an
operational sign, the identifier is determined to be numeric only if the item is an
elementary item, the contents are numeric, and a valid operational sign is present.

In the EBCDIC collating sequence, valid embedded operational signs are
hexadecimal F and hexadecimal D. For items described with the SIGN IS
SEPARATE clause, valid operational signs are + (hexadecima14E) and­
(hexadecimal 60).

You cannot use the NUMERIC test with an identifier described either as
alphabetic or as a group item that contains one or more signed elementary items.
The identifier being tested is determined to be alphabetic only if the contents
consist of any combination of the alphabetic characters A through Z and the
space.

You cannot use the ALPHABETIC test with an identifier described as numeric.

Figure 11-6 shows valid forms of the class test.

Type of Identifier 	 Valid Forms of the Class Test

Alphabetic 	 ALPHABETIC

NOT ALPHABETIC

Alphanumeric 	 ALPHABETIC

NOT ALPHABETIC

NUMERIC

NOT NUMERIC

Zoned Decimal 	 NUMERIC

NOT NUMERIC

Figure 11-6. Valid Forms of the Class Test

A condition-name condition causes a conditional variable to be tested to
determine whether its value is equal to any of the values associated with the
condition name (level-88 item).

Format

In conditions, you can use a condition name as an abbreviation for the relation
condition, because the specified condition name is equal to only one of the values
or ranges of values assigned to the specified conditional variable. The result of
the test is true if one of the values corresponding to the condition name equals the
current value of the associated conditional variable.

If you associate the condition name with a range of values or with several ranges
of values, the conditional variable is tested to determine whether or not its value
falls within the range(s), including the end values. The result of the test is true if

Chapter II.Procedure Division 11-19

one of the values corresponding to the condition name equals the value of its
associated conditional variable.

The following example shows the usage of condition names and conditional
variables:

01 GRADE-ID PIC 99.
88 PRIMARY-OTHER VALUE 1 THRU 3, 5, 6.
88 PRIMARY-FOUR VALUE 4.
88 JUNIOR-HI VALUE 7 THROUGH 9.
88 SENIOR-HI VALUE 10 THROUGH 12.

GRADE-ID is the conditional variable; PRIMARY-OTHER,
PRIMARY-FOUR, JUNIOR-HI, and SENIOR-HI are condition names. For
individual records in the file, only one of the values specified in the condition
name entries can be present. To determine the grade level of a specific record,
you can code any of the following:

IF PRIMARY-OTHER ...

(which tests for values 1, 2, 3, 5, 6)

IF PRIMARY-FOUR ...

(which tests for value 4)

IF JUNIOR-HI ...

(which tests for values 7, 8, 9)

IF SENIOR-HI ...

(which tests for values 10, 11, 12)

Depending on the evaluation of the condition-name condition, alternative paths
are taken by the object program.

11-20

Relation Condition

operand-l IS [NOT]

A relation condition causes a comparison between two operands, either of which
may be an identifier, a literal, or an arithmetic expression.

Format

GREATER THAN
LESS THAN
EQUAL TO operand-2
>
<
=

Operand-l is the subject of the relation condition; operand-2 is the object of the
relation condition. Operand-l and operand-2 may each be an identifier, a literal,
or an arithmetic expression. The relation condition must contain at least one
reference to an identifier. Except when two numeric operands are compared,
operand-l and operand-2 must have the same USAGE clause specified.

The relational operator specifies the type of comparison to be made. Figure 11-7
shows relational operators and their meanings. Each relational operator must be
preceded and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER Greater than or not greater than

THAN

IS [NOT] >

IS [NOT] LESS THAN Less than or not less than

IS [NOT] <

IS [NOT] EQUAL TO Equal to or not equal to

IS [NOT] =

Figure 11-7. Relational Operators and Their Meanings

r------------- IBM Extension -------------,

Boolean Considerations: The valid types of relation conditions that can be used
with Boolean data items are EQUAL TO and NOT EQUAL TO.

'---__________ End of IBM Extension __________----'

Chapter Il.Procedure Division 11-21

L

Rules for numeric and nonnumeric comparisons are given in the paragraph
following Figure 11-8. If either of the operands is a group item, nonnumeric
comparison rules apply. Figure 11-8 summarizes the permissible comparisons.

Second Operand

Fe' ZR
First Operand GR AL AN ANE NE NNL NL ZO BI PO AE BO IN 101

Group (GR) NN NN NN NN NN NN NN NN

Alphabetic (AL) NN NN NN NN NN NN NN NN

Alphanumeric (AN) NN NN NN NN NN NN NN NN

Alphanumeric edited (ANE) NN NN NN NN NN NN NN NN

Numeric edited (NE) NN NN NN NN NN NN NN NN

Figurative constant (Fe" and NN NN NN NN NN NN

nonnumeric literal (NNL)

Figurative constant ZERO NN NN NN NN NN NU NU NU NU 102

(ZR) and numeric literal (NL)

Zoned decimal (ZO) NN NN NN NN NN NN NU NU NU NU NU 102

Binary (BI) NU NU NU NU NU 102

Packed decimal (PO) NU NU NU NU NU 102

Arithmetic expression (AE) NU NU NU NU NU

Boolean data item (BO) or BO

Boolean literal

Index name (IN) 102 102 102 102 10 IV

Index data item (101) IV IV

BO = Comparison as described for Boolean operands.

NN = Comparison as described for nonnumeric operands.

NU = Comparison as described for numeric operands.

10 = Comparison as described for two index names or index data items.

IV = Comparison as described for index data items.

,FC includes all figurative constants except ZERO.

2Valid only if the numeric item is an integer.

Figure 11-8. Permissible Comparisons of Operands

11-22

Comparison of Numeric Operands: For numeric class operands, algebraic values
are compared. The length (number of digits) of the operands is not significant.
Zero is considered a unique value, regardless of the sign; unsigned numeric
operands are considered positive. Regardless of what you specified in their
USAGE clause, comparison of numeric operands is permitted.

Comparison of Nonnumeric Operands: A comparison of two nonnumeric
operands or of one numeric and one nonnumeric operand is made with respect to
the binary collating sequence of the character set in use.

Comparison of Numeric and Nonnumeric Operands: When you compare a
nonnumeric and a numeric operand, the following rules apply:

• 	 If the nonnumeric operand is a literal or an elementary data item, the numeric
operand is treated as though it were moved to an alphanumeric elementary
data item of the same size. The contents of this alphanumeric data item is
then compared with the nonnumeric operand.

• 	 If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size. The contents of this
group item is then compared with the nonnumeric operand. For further
discussion of the rules for alphanumeric and group move operations, see the
MOVE Statement later in this chapter.

Numeric and nonnumeric operands can be compared only when their USAGE,
explicitly or implicitly, is the same. In such comparisons, you should describe the
numeric operand as an integer literal or data item; noninteger literals and data
items should not be compared with nonnumeric operands.

The size of each operand is the total number of characters in that operand; the
size affects the result of the comparison. There are two kinds of operands to
consider: operands of equal size and operands of unequal size.

Operands of Equal Size: Characters in corresponding positions of the two
operands are compared, beginning with the leftmost character and continuing
through the rightmost character.

If all pairs of characters through the last pair test as equal, the operands are
considered equal. If a pair of unequal characters is encountered, the characters
are tested to determine their relative positions in the collating sequence. The
operand containing the character higher in the sequence is considered the greater
operand.

Operands of Unequal Size: If the operands are of unequal size, the comparison is
made as though the shorter operand were extended to the right with enough
spaces to make the operands equal in size.

Note: Valid comparisons for index names and index data items are discussed
under Using Table Handling Facilities in Chapter 13.

Chapter l1.Procedure Division 11-23

Sign Condition

The sign condition determines whether or not the algebraic value of a numeric
operand is greater than, less than, or equal to O.

Format

[J{ POSITIVE}
operand IS NOT =nVE

You must define the operand being tested as a numeric identifier or as an
arithmetic expression that contains at least one reference to an identifier.

The operand is POSITIVE if its value is greater than 0, NEGATIVE if its value is
less than 0, and ZERO if its value is equal to O. An unsigned operand is
POSITIVE or ZERO.

When you specify NOT, one algebraic test is run for the truth value of the sign
condition. For example, NOT ZERO is regarded as true when the operand tested
is positive or negative in value.

Switch-Status Condition

The switch-status condition determines the on or off status of an UPSI switch.

Format

condition-name

The condition name must be defined to be associated with the ON or OFF value
of a switch in the SPECIAL-NAMES paragraph.

The switch-status condition tests the value associated with the condition name.
The result of the test is true if the UPSI switch is set to the position
corresponding to the condition name.

Complex Conditions

A complex condition is a condition in which one or more logical operators act
upon one or more conditions. Complex conditions include:

• Negated simple conditions

• Combined conditions

• Negated combined conditions.

11-24

Each logical operator must be preceded and followed by a space. The logical
operators and their meanings are shown in Figure 11-9.

Logical
Operator

AND

OR

NOT

Figure 11-9.

Negated Simple Conditions

Meaning

Logical conjunction-the truth value is true when both
conditions are true.

Logical inclusive OR-the truth value is true when either
or both conditions are true.

Logical negation-reversal of truth value (the truth value
is true if the condition is false).

Logical Operators and Their Meanings

A simple condition is negated through the use of the logical operator NOT.

Format

HOT simple-condition

The simple condition you are negating can be a:

• Class condition

• Condition-name condition

• Relation condition

• Sign condition

• Switch-status condition.

The simple condition cannot be negated if the condition itself contains a NOT.

The negated simple condition gives the opposite truth value as the simple

condition. For example, if the truth value of the simple condition is true, then the
truth value of that same negated simple condition is false.

Placing a negated simple condition within parentheses does not change its truth

value. For example, the following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

Chapter I 1.Procedure Division 11-25

Combined Conditions

Two or more conditions can be logically connected to form a combined condition.

Format

The condition you are combining can be a:

• 	 Simple condition

• 	 Negated simple condition

• 	 Combined condition

• 	 Negated combined condition (the NOT logical operator followed by a
combined condition enclosed in parentheses).

Combinations of these conditions are specified according to the rules given in
Figure 11-10.

You never need parentheses when either AND or OR (but not both) are used
exclusively in one combined condition; however, parentheses may be needed to
find a final truth value when you use a combination of AND, OR, and NOT.
There must be a one-to-one correspondence between left and right parentheses
with each left parenthesis to the left of its corresponding right parenthesis.

Figure 11-10 summarizes the way in which conditions and logical operators can
be combined and put in parentheses. Figure 11-11 illustrates the relationships
between logical operators and conditions Cl and C2 in which Cl and C2 are any
of the preceding conditions.

11-26

Permissible Position in Conditional Expressions

When Not Leftmost. When Not Rightmost.
May Be Immediately May Be Immediately

Condition Element Leftmost Preceded By: Followed By: Rightmost

Simple condition Yes 	 OR OR Yes
NOT AND
AND)
(

OR No Simple condition Simple-condition No
AND) NOT

(

NOT Yes 	 OR Simple-condition No
AND (
(

(Yes 	 OR Simple-condition No
NOT NOT
AND (
(

) No Simple-condition OR Yes
) AND

)

Figure 11-10. Valid Combinations of Conditions, Logical Operators, and Parenthesis in a Conditional Expression

Value Value NOT NOT NOT NOT
for C1 for C2 C1 AND C2 C1 OR C2 (C1 AND C2) C1 AND C2 (C1 OR C2) C1 OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Figure 11-11. How Logical Operators Affect the Evaluation of Conditions

The truth value of a complex condition depends on the truth values of the simple
conditions and negated simple conditions that make up the complex condition.
The logical operators tell the compiler how to combine these individual truth
values.

Evaluating Conditional Expressions: If you use parentheses, logical evaluation of
combined conditions proceed in the following order:

1. 	 Conditions within parentheses are evaluated first.

2. 	 Within nested parentheses, evaluation proceeds from the least-inclusive
condition to the most-inclusive condition.

Chapter II.Procedure Division 11-2 7

If you do not use parentheses or they are not at the same level of inclusiveness,
the combined condition is evaluated in the following order: J
1. 	 Arithmetic expressions.

2. 	 Simple conditions, in the following order:

a. 	 Relation
b. 	 Class
c. 	 Condition name
d. 	 Switch status
e. 	 Sign

3. 	 Negated simple conditions in the same order as item 2.

4. 	 Combined conditions, in the following order:

a. 	 AND
b. 	 OR

5. 	 Negated combined conditions, in the following order:

a. 	 AND
b. 	 OR

6. 	 Consecutive operands at the same evaluation-order level. These are evaluated
from left to right.

For example, the expression

A IS NOT GREATER THAN B
OR A + B IS EQUAL TO C AND
D IS POSITIVE

is evaluated as if it were enclosed in parentheses as follows:

(A IS NOT GREATER THAN B) OR «(A+B) IS EQUAL TO C) AND (D
IS POSITIVE».

The order of evaluation is as follows:

1. 	 (A IS NOT GREATER THAN B) is evaluated, giving some intermediate
truth value; for example, tl.

2. 	 (A + B) is evaluated, giving some intermediate result; for example, x.

3. 	 (x IS EQUAL TO C) is evaluated, giving some intermediate truth value; for
example, t2.

4. 	 (D IS POSITIVE) is evaluated, giving some intermediate truth value; for
example, t3.

5. 	 (t2 AND t3) is evaluated, giving some intermediate truth value; for example,
t4.

11-28

6. 	 (tl OR t4) is evaluated, giving the final truth value, which is the result of the
expression.

Note: Every condition in the expression is always evaluated before a final truth
value is determined. You must ensure that any subscripted or indexed data items
stay within the boundaries described in the table.

Abbreviated Combined Relation Conditions

When you write relation conditions consecutively, and no parentheses are used
within the consecutive sequence, any relation condition after the first can be
abbreviated by either:

• 	 Omitting the subject

• Omitting the subject and the relational operator.

Format

GREATER THAH
LESS THAN

objectrelation-condition {~~D} [
HOT

]
;QUAl TO

<
=

The resulting combined condition must comply with the rules for element
sequence in combined conditions, as shown in Figure 11-10.

In any consecutive sequence of relation conditions, you can specify both forms of
abbreviation. The abbreviated condition is evaluated as if:

• 	 The last stated subject is the missing subject.

• 	 The last stated relational operator is the missing relational operator.

• 	 The word NOT is part of the relational operator in the forms NOT
GREATER THAN, NOT>, NOT LESS THAN, NOT <', NOT EQUAL
TO, and NOT =. .

• 	 NOT in any other position is a logical operator and, thus, results in a negated
relation condition.

Figure 11-12 shows examples of abbreviated combined relation conditions and
their nonabbreviated equivalent meanings.

Chapter l1.Procedure Division 11-29

Abbreviated

Combined

Relation - Condition Nonabbreviated Equivalent Meaning

A = B AND NOT «A = B) AND (A NOT LESS THAN C» OR (A
LESS THAN C OR D NOT LESS THAN D)

A NOT GREATER (A NOT GREATER THAN B) OR (A NOT

THANBORC GREATER THAN C)

NOTA = BORC (NOT (A = B) OR (A = C»
NOT (A = B OR NOT «A = B) OR (A LESS THAN C»

LESS THAN C)

NOT (A NOT = B NOT «(A NOT = B) AND (A NOT = C» AND

ANDCANDNOT (NOT (A NOT = D»)

D)

Figure 11-12. Abbreviated Combined Relation-Condition and Equivalent Meanings

J

11-30

Declaratives

The Declaratives section provides a method of invoking procedures that are run
when an exceptional condition occurs that you cannot normally test. Declarative
procedures are provided for processing exceptional input/output conditions and
for debugging procedures.

Format

PROCEDURE DIVISION[USING data-name-l [, data-name-2] ... J .

["Eel AR AHVES

{section-name SECTION [segment-number] . declarative-sentence

[paragraPh-name. [sentence] ...J ...} ...

END DECLARATIVES.J

You write declarative procedures at the beginning of the Procedure Division in a
series of Declarative sections. You precede each such section by a USE sentence
that identifies the function of this section. The series of procedures that follow
specify what actions are to be taken when the exceptional condition occurs. Each
Declarative section ends with either another section name followed by a USE
sentence or with the key words END DECLARATIVES.

You precede the entire group of Declarative procedures by the key word
DECLARATIVES, written on the line after the Procedure Division header; the
group is followed by the key words, END DECLARATIVES. The key words
DECLARATIVES and END DECLARATIVES must each begin in area A and
be followed by a period. You cannot have any other text on the same line.

In the Declaratives portion of the Procedure Division, you must follow each
section header (with an optional segment number) with a period and a space; this
is followed by a USE sentence with a period and a space. No other text can
appear on the same line. There are two forms of the USE sentence:

• USE AFTER EXCEPTION/ERROR

• USE FOR DEBUGGING.

Chapter ll.Procedure Division 11-31

The USE sentence itself is never run; instead, the USE sentence defines the
conditions that cause the immediately following procedural paragraphs to be run.
These paragraphs specify the actions to be taken. After the procedure is run,
control is returned to the routine that activated it.

Within a Declarative procedure, you must not reference any nondeclarative
procedure, except for the USE statement.

Within a Declarative procedure, no statement can be run that would cause the
running of a USE procedure that has been previously invoked and has not yet
returned control to the invoking routine.

A Declarative procedure ends when the last statement in the procedure has run.

In this chapter, only the USE AFTER EXCEPTION/ERROR procedure is
described. The USE FOR DEBUGGING procedure is described under
Debugging Features in Chapter 13.

J

11-32

Procedure Division Statements (Except Input/Output Statements)

The remainder of this chapter discusses the various statements used in the
Procedure Division. The input and output statements are discussed in Chapter
12.

Chapter 11.Procedure Division 11-33

ADD Statement

The ADD statement causes two or more numeric operands to be added and the
result to be stored. The formats of the ADD statement are as follows:

Format 1

ADD {identifier-I}!, identifier-2] lQ identifier-m[ROUNDED]

literal-I , literal-2

Format 2

ADD {identifer-I}'~ {identifier-?} , identifier-3
literal-l literal-2 , literal-3 J

[ON SIZE ERROR imperative-statement]

Format 3

ADD {CORRESPONDING}identifier-l TO identifier-2[ROUNDED]
CORR

[ON SIZE ERROR imperative-statement]

11-34

ROUNDED Phrase

In fonnats 1 and 2, each identifier, except those following the key word GIVING,
must name an elementary numeric item. In fonnat 2, each identifier following the
key word GIVING must name an elementary numeric or numeric edited item. In
fonnat 3, each identifier must name a group item. In all fonnats, each literal
must be a numeric literal.

In fonnat 1, all identifiers or literals preceding the key word TO are added
together, and this sum is added to and stored immediately in identifier-m. If you
specify as such, the sum is then added to and stored immediately in identifier-n,
and so on.

In fonnat 2, at least two operands must precede the key word GIVING. The
values of these operands are added together, and the sum is stored as the new
value of identifier-m and, if specified, identifier-n, and so on.

In fonnat 3, elementary data items within identifier-l are added to and stored in
the corresponding elementary items within identifier-2.

If the composite of the operands is 18 digits or less, the compiler ensures that
enough places are carried so that no significant digits are lost while the statement
is run.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

Chapter 11.Procedure Division 11-35

SIZE ERROR Phrase

GIVING Phrase

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. In the ADD
statement, the size error condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase, and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If an individual arithmetic operation causes a size error condition for an ADD
CORRESPONDING statement, the SIZE ERROR imperative statement is not
run until all individual additions or subtractions have been completed.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

11-36

L
CORRESPONDING Phrase

The CORRESPONDING phrase lets operations be performed on elementary
items of the same name. You simply specify the group items to which the
elementary items belong. The results are the same as if each pair of
CORRESPONDING identifiers had been referred to in a separate MOVE
statement.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as dl and d2.

A pair of subordinate data items, one from dl and one from d2, correspond if the
following conditions are true:

• 	 At least one of the subordinate items is elementary.

• 	 The two subordinate items have the same name and the same qualifiers up to
but not including dl and d2.

• 	 The subordinate items are not identified by the key word FILLER.

• 	 The subordinate items do not include a REDEFINES, a RENAMES, an
OCCURS, or a USAGE IS INDEX clause in their descriptions; if such a
subordinate item is a group, the items subordinate to it are also ignored.
However, dl and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

For example, two data hierarchies are defined as follows:

05 	 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A

10 ITEM-B

10 ITEM-C REDEFINES ITEM-B ...

05 	 ITEM-2

10 ITEM-A

10 ITEM-B

10 ITEM-C

If you specify ADD CORR ITEM-2 TO ITEM-I(X), ITEM-A and
ITEM-A(X) and ITEM-B and ITEM-B(X) are considered to be
corresponding. Thus, ITEM-A and ITEM-B of ITEM-2 are moved to
ITEM-I (X). ITEM-C and ITEM-C(X) are not included, because ITEM-C(X)
includes a REDEFINES clause in its data description.ITEM-l is valid as
either dl or d2.

• 	 Neither dl nor d2 is described as a level-66, -77, or -88 item or as a FILLER
or USAGE IS INDEX item.

Chapter I1.Procedure Division 11-3 7

ALTER Statement

The ALTER statement changes the transfer point specified in a GO TO
statement.

Format

ALTER procedure-name-l TO [PROCEED TO]prOCedUre-name-2

[. procedure-n.me-3 TO [PROCEED To]procedure-n.me-.]

procedure-name-I, procedure-name-3, and so on, must each name a Proce:dure
Division paragraph that contains only one sentence. That sentence must be a GO
TO statement without the DEPENDING ON phrase.

procedure-name-2, procedure-name-4, and so on, must each name a Proce:dure
Division section or paragraph.

When the ALTER statement is run, it modifies the GO TO statement in the
paragraph named by procedure-name-I, procedure-name-3, and so on.
Subsequent runs of the modified GO TO statement(s) cause control to be
transferred to procedure-name-2 and, if specified, procedure-name-4, and so on.
For example:

PARAGRAPH-l.

GO TO BYPASS-PARAGRAPH.

PARAGRAPH-1A.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-l TO PROCEED TO
PARAGRAPH-2.

PARAGRAPH-2.

Before the ALTER statement is run, when control reaches PARAGRAPH-I, the
GO TO statement transfers control to BYPASS-PARAGRAPH. After the
ALTER statement is performed, however, the next time control reaches
PARAGRAPH-I, the GO TO statement transfers control to PARAGRAPH-2.

Note: The ALTER statement acts as a program switch, allowing, for example,
one run sequence during initialization and another sequence during the bulk of
file processing. Because altered GO TO statements are difficult to debug, it is
preferable to test a switch and, based on the value of the switch, run a particular
code sequence.

11-38

http:To]procedure-n.me

Segmentation Information

A GO TO statement in a section whose priority is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different
priority. All other uses of the ALTER statement are valid and are performed.

Modified GO TO statements in independent segments may sometimes be returned
to their initial states. For further discussion, see Procedure Division Segmentation
in Chapter 13.

Chapter II.Procedure Division 11-39

COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic expression to one or
more data items.

Format

COMPUTg id.ntifi.r-l[ROUHOE~ ~ Id.ntifi.r-2~OUHDED J] ...

= arithmetic-expression [ON SIZE ERROR imperative-statement]

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on receiving data items imposed by the rules for the
ADD, SUBTRACT, MULTIPLY, and DIVIDE statements.

The identifiers that appear to the left of the equal sign must name either
elementary numeric items or elementary numeric edited items.

When the COMPUTE statement is run, the value of the arithmetic expression is
calculated; this value is then stored as the new value of identifier-I, identifier-2,
and so on, in tum.

The arithmetic expression can be any logical combination of identifiers, numeric
literals, and arithmetic operators.

An arithmetic expression consisting of a single identifier or literal that lets you set
identifier-I, and so on, equal to the value of that identifier or literal.

ROUNDED Phra~

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by I whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

11-40

SIZE ERROR Phrase

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. Division by
0, as well as 0 raised to the zero power, always causes a size error condition. In
the COMPUTE statement, the size error condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If an individual arithmetic operation causes a size error condition for ADD
CORRESPONDING and SUBTRACT CORRESPONDING statements, the
SIZE ERROR imperative statement is not run until all of the individual additions
or subtractions have been completed.

Note: When arithmetic operations must be combined, the COMPUTE statement
is more efficient than a series of separate arithmetic statements.

Chapter II.Procedure Division 11-41

DIVIDE Statement

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotient and remainder. The formats of the
DIVIDE statement are:

Format 1

DIVIDE {identifier-I} INTO identifier-2[ROUNDED]
literal-l

[• i dent i f i er- 3 [ROUNDED]]. . .

[ON SIZE ERROR imperative-statement]

Format 2

DIVIDE {identifier-~}{INTO}{identifier-2} GIVING identifier-3 [ROUNDED]
literal-I BY literal-2 J

[. identifier-4 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

Format 3

DIVIDE {i denti fi er-l}{INTO}fi denti fi er-2} GIVING i denti fi er-3 [ROUt'lDEQ]
literal-l BY lliteral-Z

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]

Each identifier except those following the key words GIVING and
REMAINDER must name an elementary numeric item. Each identifier following
the key words GIVING and REMAINDER must name an elementary numeric or
numeric edited item. Each literal must be a numeric literal.

11-42

ROUNDED Phrase

In format 1, the value of literal-lor identifier-l is divided into the value of
identifier-2; the quotient is then placed in identifier-2. If you specify identifier-3,
the value of literal-lor identifier-l is divided into identifier-3; the quotient is then
placed in identifier-3, and so on.

In format 2, the value of identifier-lor literal-l is divided into or by the value of
identifier-2 or literal-2. The value of the quotient is stored in identifier-3 and, if
specified, identifier-4, and so on.

In format 3, the value of identifier-lor literal-l is divided into or by identifier-2
or literal-2. The value of the quotient is stored in identifier-3, and the value of
the remainder is stored in identifier-4.

The remainder is defined as the result of subtracting the product of the quotient
and the divisor from the dividend. If identifier-3 (the quotient) is a numeric
edited field, the quotient used to calculate the remainder is an intermediate field
that contains the unedited quotient.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

When you specify the ROUNDED phrase in format 3, the quotient used to
calculate the remainder is an intermediate field that contains the quotient
truncated rather than rounded.

Chapter 11.Procedure Division 11-43

SIZE ERROR Phrase

A size error condition exists if, after decimal point alignment, the value of a result J

GIVING Phrase

exceeds the largest value that can be contained in the resultant field. Division by
oalways causes a size error condition. In the DIVIDE statement, the size error
condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

When the SIZE ERROR phrase is used in format 3, the following considerations
apply:

• 	 When the size error conditions occur on the quotient, no remainder J,j
calculation is meaningful. The contents of the quotient field (identifier-3) and

the remainder field (identifier-4) are unchanged.

• 	 When the size error occurs on the remainder, the contents of the remainder
field (identifier-4) are unchanged.

Note: In these two cases, you must analyze the results to determine which
situation has actually occurred.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

11-44

ENTER Statement

Because the System/36 COBOL compiler does not allow another source language
to be used in COBOL source programs, the ENTER statement is not required or
used by the System/36 COBOL compiler.

Format

If the ENTER statement is inserted in the source program, it is treated as a
comment. Statements in the language named in the ENTER statement must not
be included in the source program.

Chapter II.Procedure Division 11-45

EXIT Statement

The EXIT statement provides a common end point for a series of procedures.

Format

The EXIT statement lets you assign a procedure name at a given point in a
program. It has no other effect on the compilation or running of the program.

You must place the EXIT statement in a sentence by itself, and this sentence must
be the only sentence in the paragraph.

The EXIT PROGRAM statement is discussed under Subprogram Linkage in
Chapter 13.

Note: The EXIT statement is useful for documenting the end point in a series of
procedures. If an exit paragraph is written as the last paragraph in a Declarative
procedure or a series of performed procedures, it identifies the point at which
control is to be transferred. When control reaches such an exit paragraph and the
associated Declarative or PERFORM statement is active, control is transferred to
the appropriate part of the Procedure Division. When control reaches such an
exit paragraph and no associated PERFORM statement or Declarative procedure
is active, control passes through the EXIT statement to the first statement of the
next paragraph.

11-46

GO TO Statement

The GO TO statement transfers control from one part of the Procedure Division
to another. The formats of the GO TO statement are as follows:

Format I

GO TO [procedure-name-ll

Format 2

§Q TO procedure-name-l [, procedure-name-21 ••. , procedure-name-n

DEPENDING ON identifier

Each procedure name specified must name a paragraph or section in the
Procedure Division. The identifier must name an elementary integer item.

Format I-Unconditional GO TO

The unconditional GO TO statement causes control to be transferred to the first
statement in the paragraph or section named in procedure-name-l unless the GO
TO statement has been modified by an ALTER statement.

When an unconditional GO TO statement appears in a sequence of imperative
statements, it must be the last statement in the sequence.

When a paragraph is referred to by an ALTER statement, the paragraph can
consist only of a paragraph name followed by an unconditional GO TO
statement.

If procedure-name-l is not specified in an unconditional GO TO statement, an
ALTER statement must have been run before the GO TO statement. The GO
TO statement must immediately follow a paragraph name and must be the only
statement in the paragraph.

Chapter II.Procedure Division 11-47

Format 2-Conditional GO TO

Control is transferred to one of a series of procedures, depending on the value of
identifier. When the identifier has a value of I, control is transferred to the first
statement in the procedure named by procedure-name-I; if it has a value of 2,
control is transferred to the first statement in the procedure named by
procedure-name-2, and so on.

If the value of the identifier is anything other than a value within the range I
through n (in which n is the number of procedure names specified in this GO TO
statement), the conditional GO TO statement is ignored. Instead, control passes
to the next statement.

The maximum number of procedure names permitted for a conditional GO TO
statement is 99. The identifier field can be defined as containing up to 4 bytes.

11-48

IF Statement

The IF statement causes a condition to be evaluated, and provides for alternative
actions in the object program, depending on that value.

Format

I.E 	 conditionlTHENI {statement-l }[{ELSE statement-2 }]
.... NEXT SENTENCE ELSE NEXT SENTENCE

Statement-lor statement-2 can be anyone of the following:

• 	 An imperative statement
• 	 A conditional statement
• An imperative statement followed by a conditional statement.

If the condition tested is true, one of the following actions takes place:

• 	 Statement-I, if specified, is run. If statement-l contains a procedure
branching statement, control is transferred according to the rules for that
statement. If statement-l does not contain a procedure-branching statement,
the ELSE phrase, if specified, is ignored, and control passes to the next
sentence that can be run.

• 	 NEXT SENTENCE, if specified, is run; that is, the ELSE phrase, if specified,
is ignored, and control passes to the next sentence that can be run.

If the condition tested is false, one of the following actions take place:

• 	 ELSE statement-2, if specified, is run. If statement-2 contains a
procedure-branching statement, control is transferred according to the rules
for that statement. If statement-2 does not contain a procedure-branching
statement, control is passed to the next sentence that can be run.

• 	 ELSE NEXT SENTENCE, if specified, is run: statement-I, if specified, is
ignored, and control passes to the next sentence that can be run.

• 	 If ELSE clause is omitted, control passes to the next sentence that can be run.

• 	 The ELSE NEXT SENTENCE phrase can be omitted if it immediately
precedes the period that ends the conditional sentence.

Note: When the ELSE clause is omitted, all statements following the condition
and preceding the period for the sentence are considered to be part of
statement-I.

Chapter II.Procedure Division 11-49

.-------------- IBM Extension -------------,

THEN is accepted, but ignored, if present.

L..-_________ End of IBM Extension _________----l

11-50

Nested IF Statements

The presence of one or more IF statements within an initial IF statement
constitutes a nested IF statement.

statement-l and statement-2 in IF statements can consist of one or more
imperative statements or a conditional statement or both. When an IF statement
appears as statement-lor as part of statement-I, it is considered nested statement.
Nesting statements is much like specifying subordinate arithmetic expressions
enclosed in parentheses and combined in larger arithmetic expressions.

IF statements contained within IF statements must be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE encountered
must be considered to apply to the immediately preceding IF that has not already
paired with an ELSE.

Figure 11-13 shows the possible true or false combinations for the following
nested IF statement:

IF condition-l
statement-I-l
IF condition-2

IF condition-3
statement-3-l

ELSE
statement-3-2

ELSE
statement-2-2
IF condition-4

IF condition-5
statement-5-1

ELSE
statement-5-2.

Chapter l1.Procedure Division 11-51

--

True

IF condition-' I statement,-,

False

True~
IF condition-2

False
;

True

It condition-3 statemen~-3-'

False

I ELSE statement-3-2
I

ELSE statement-2-2

True~
IF condition-4

False

True

IF condition-5 statemenT.5-, --..j

False

ELSE statement-5-2
I

Next sentence in COBOL source pro9ram

Figure 11-13. Nested IF Statement-True or False Combinations

11-52

L
Note: Because the logic is often difficult to follow, nested IF statements should,
wherever possible, be avoided in a COBOL program. Often a series of simple IF
statements can be used in place of the nested IF statement.

For example, the following series of simple IF statements give results equivalent
to those achieved using the preceding nested IF statement example:

IF condition-l NEXT SENTENCE

ELSE GO TO PARA-2.

statement-I-I.

IF condition-2 NEXT SENTENCE

ELSE GO TO PARA-I.

IF condition-3 statement-3-1 GO TO PARA-2

ELSE statement-3-2 GO TO PARA-2.

PARA-I.

statement-2-2.

IF condition-4 NEXT SENTENCE

ELSE GO TO PARA-2.

IF condition-5 statement-5-1

ELSE statement-5-2.

PARA-2.

next-executable-statement.

Figure 11-13 illustrates the logic flow for the preceding series of simple IF
statements, also.

Chapter I1.Procedure Division 11-53

INSPECT Statement

The INSPECT statement specifies that characters in a data item are to be counted
or replaced or both. The formats of the INSPECT statement are:

Format 1

INSPECT identifier-l TALLYING

{{ALL }{identifier-3}}
{ , identifier-2 FOR { , lfADING literal-l

CHARACTERS

[{BEFOR E}IN IT I A L {i dent if i er-4}]} 0 0 0 } 0 0 0

AFTER literal-2

Format 2

INSPECT identifier-l REPLACING

CHARACTERS BY {i ?enti fi er-6.}[{BEFORE}INITIAl{i ?enti fi er-7}]
11teral-4 AFTER . 11teral-5

A.!.!. }{ {identifier-5} {identifier:.~}

{, { LEADING , literal-3 BY literal-4 ..

FIRST

[{"BEFORE}INITIAL{i denti fi er-7}].} o}
0 0 0 0 0

AFTER literal-5

11-54

• • •

Format 3

INSPECT identifier-l TALLYING

{{ ALL }{i denti fi er-3}}
, i denti fi er-2 FOR, lEADING 1 i teral-l .{

CHARACTERS

[{BEFORE}INITIAL{i denti fi er-4}]}. • •
AFTER literal-2

REPLACING

CHARACTERS AX {i dent i fi er-6}[{BEFORE}INITIAL{i denti fi er.-7}]

literal-4 AFTER literal-5

ALL }{ {i dent i f1 er-5} {i dent i fi er-6}

, { LEADING , literal-3 BY literal-4

FIRST

[{BEFORE}INITIA~{i denti fi er-7}]}
AFTER 11 teral-5 :

You must specify either the TALLYING or the REPLACING phrase. Also, you
can specify both the TALLYING and REPLACING phrases. If both
TALLYING and REPLACING phrases are specified (format 3), all tallying is
performed before any replacement is made.

identifier-l is the inspected item. identifier-l must be an elementary or group
item with a USAGE 15 DISPLAY.

All other identifiers except identifier-2 (the count field) must be elementary
alphabetic, alphanumeric, or zoned decimal items. Each is treated according to
its data category. Each data category is treated as follows:

• Alphabetic or alphanumeric items are treated as a character string.

Chapter 11.Procedure Division 11-55

• 	 Alphanumeric edited, numeric edited, or unsigned numeric (zoned decimal)
items are treated as though redefined as alphanumeric and the INSPECT
statement refers to the alphanumeric item.

• 	 Signed numeric (zoned decimal) items are treated as though moved to an
unsigned zoned decimal item of the same length, and then treated as though
redefined as alphanumeric. The INSPECT statement refers to the
alphanumeric item.

Each literal must be nonnumeric and may be any figurative constant except ALL.

The comparison operands of the T ALLYING phrase (literal-lor identifier-3, and
so on) and the REPLACING phrase (literal-3 or identifier-5, and so on) are
compared in the left-to-right order specified in the INSPECT statement. You can
specify a maximum of 15 comparison operands for each REPLACING and each
TALLYING phrase.

When the T ALLYING and REPLACING operands are the compared operands,
the following comparison rules apply:

1. 	 When both the TALL YING and REPLACING phrases are specified, the
INSPECT statement is run as if an INSPECT TALLYING statement were
specified and immediately followed by an INSPECT REPLACING statement.

2. 	 The qrst operand is compared with an equal number of leftmost contiguous
characters in the inspected item. The operand matches the inspected
characters only if both are equal, character for character.

3. 	 If no match occurs for the first operand, the comparison is repeated for each
successive operand until either a match is found or all operands have been
acted upon.

4. 	 If a match is found, tallying or replacing takes place as described in
TALLYING or REPLACING phrase descriptions. In the inspected item, the
first character following the rightmost matching character is now considered
the leftmost character position. The process described in comparison rules 2
and 3 is then repeated.

5. 	 If no match is found, the first character in the inspected item following the
leftmost inspected character is now considered the leftmost character position.
The process described in comparison rules 2 and 3 is then repeated.

6. 	 The actions taken in comparison rules 1 through 5, which are defined as the
comparison cycle, are repeated until the rightmost character in the inspected
item has either been matched or has been considered as the leftmost character
position. Inspection then ends.

Note: When either the BEFORE or the AFTER phrase is specified, the
preceding rules are modified as described in BEFORE and AFTER Phrases later
in this chapter.

Figure 11-14 illustrates INSPECT statement comparisons.

11-56

INSPECT 10-1 TALLYING 10-2 FOR ALL "u"

REPLACING ALL "u" BY ZEROS.

10-1 before
INSPECT 10-2 before I*1*1*10 1*1*J ~

INSPECTI I I
(initialized by

I I 1 TALLYING programmer)

TALLYING option: comparison operand: 10·2I I I contains:
I

1st
I I I

(True)
comparison rn I I 1= rn [Q

I
I I I I

2nd
(False)[E] 1=c:E] [Qcomparison

II I I
3rd I (False)I [ilJ

I rn [Qcomparison
I I

4th I
(True)

I [[]=rn 0comparison

I
REPLACING

REPLACING option: comparison operand: 1
I

(True)
5th rn rn 10-' ,h...god to Jcomparison

10 10 I * 1 0 1 * I * I

I I I

6th
(False) 10·' unchangedrn 1=0comparison

I I I
7th

(False) 10·' unchanged0J 1=0]

I I

comparison

8th
(True)w-c:EJ- I 10·' ch.ngod to Jcomparison I

I0 10 I* 10 I0 10 I
At the end of inspection:

10·1 10-2
contains: 10 10 1* 10 10 10 I contains: [3]
Figure 11-14. INSPECT Statement Results

Chapter 11.Procedure Division 11-57

INSPECT Statement Example

The following example shows an INSPECT statement:

DATA DIVISION.

WORKING-STORAGE SECTION.

01 ID-1 PIC X(10) VALUE 'ACADEMIANS'.

01 CONTR-1 PIC 99 VALUE 00.

01 CONTR-2 PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
* 	 THIS ILLUSTRATES AN INSPECT STATEMENT WITH 2 VARIABLES.

100-BEGIN-PROCESSING.
DISPLAY CONTR-1 ' , CONTR-2.

101-MAINLINE-PROCESSING.

PERFORM COUNT-IT THRU COUNT-EXIT.

STOP RUN.

COUNT-IT.

INSPECT ID-1

TALLYING CONTR-1 FOR CHARACTERS

BEFORE INITIAL 'AD' CONTR-2 FOR ALL 'MIANS'.

DISPLAY-COUNTS.

DISPLAY 'CONTR-1 'CONTR-1.

DISPLAY 'CONTR-2 'CONTR-2.

DISPLAY '*******************EOJ********************'.

COUNT-EXIT. EXIT.

* 	 RESULTANT OUTPUT

*00 00
*CONTR-1 = 02
*CONTR-2 = 01 J********************EOJ********************

11-58

TALLYING Phrase

REPLACING Phrase

identifier-2 is the tallying field and must be an elementary integer item defined
without the symbol P in its PICTURE character string. It is your responsibility
to initialize identifier-2 before the INSPECT statement is run.

identifier-3 or literal-l is the comparison operand. If the comparison operand is a
figurative constant, it is considered to be a I-character nonnumeric literal.

When you do not specify either the BEFORE or the AFTER phrase, the
following actions take place when the INSPECT TALLYING statement is run:

• 	 If you specified the ALL phrase, the tallying field is increased by I for each
nonoverlapping occurrence in the inspected item of the comparison operand.
This process begins at the leftmost character position and continues to the
rightmost.

• 	 If you specify the LEADING phrase, the tallying field is increased by I for
each contiguous nonoverlapping occurrence of the comparison operand in the
inspected item. This only happens if the leftmost such occurrence is at the
point where comparison began in the first comparison cycle for which the
comparison operand is eligible to participate.

• 	 If you specify the CHARACTERS phrase, the tallying field is increased by I
for each character (including the space character) in the inspected item. Thus,
running the INSPECT TALL YING statement increases the value in the
tallying field by the number of characters in the inspected item.

Identifier-5 or literal-3 is the comparison operand. Identifier-6 or literal-4 is the
replacement field.

The comparison operand and the replacement field must be the same length. The
following replacement rules apply:

• 	 If the comparison operand is a figurative constant, it is considered to be a
I-character nonnumeric literal. Each character in the inspected item
equivalent to the figurative constant is replaced by the single-character
replacement field, which must be I-character in length.

• 	 If the replacement field is a figurative constant, it is considered to be the same
length as the comparison operand. Each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced by the replacement field.

• 	 When the comparison operand and replacement fields are character strings,
each nonoverlapping occurrence of the comparison operand in the inspected
item is replaced by the character string specified in the replacement field.

• 	 Once replacement has occurred in a given character position in the inspected
item, no further replacement for that character position is made in this run of
the INSPECT statement.

Chapter ii.Procedure Division 11-59

When you do not specify either the BEFORE or the AFTER phrase, the
following actions take place when the INSPECT REPLACING statement is run:

• 	 If you specified the CHARACTERS phrase, the replacement field must be 1
character in length. Each character in the inspected field is replaced by the
replacement field. This process begins at the leftmost character and continues
to the rightmost.

• 	 If you specified the ALL phrase, each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced by the replacement field,
beginning at the leftmost character and continuing to the rightmost.

• 	 If you specified the LEADING phrase, each contiguous nonoverlapping
occurrence of the comparison operand in the inspected item is replaced by the
replacement field, provided that the leftmost such occurrence is at the point
where comparison began in the first comparison cycle for which this
replacement field is eligible to participate.

• 	 If you specified the FIRST phrase, the leftmost occurrence of the comparison
operand in the inspected item is replaced by the replacement field.

BEFORE and AFTER Phrases

When you specify either of these phrases, the preceding rules for counting and
replacing are modified.

identifier-4, identifier-7, literal-2, and literal-5 are delimiters. Counting and
replacement of the inspected item are bounded by their presence; however, the
delimiters themselves are neither counted nor replaced.

In the TALLYING phrase, if the delimiter (literal-2) is a figurative constant, it is
considered to be 1 character long.

In the REPLACING phrase, if you specify the CHARACTERS phrase, th,e
delimiter (literal-5 or identifier-7) must be 1 character long.

When you specify the BEFORE phrase, tallying and replacement of the inspected
item begins at the leftmost character and continues until the first occurrence of
the delimiter is encountered. If no delimiter is present in the inspected item,
counting and replacement continues to the rightmost character.

When you specify the AFTER phrase, counting and replacement of the inspected
item begins with the first character to the right of the delimiter and continues to
the rightmost character in the inspected item. If no delimiter is present in the
inspected item, neither counting nor replacement takes place.

11-60

INSPECT Statement Examples

The following examples illustrate some uses of the INSPECT statement. In all
instances, the COUNTR field is set to 0 before the INSPECT statement is run.

INSPECT 10-1 REPLACING CHARACTERS BY ZERO.

10-1 Before COUNTR After 10-1 After

1234567 0 0000000

HIJKLMN 0 0000000

INSPECT 10-1 TALLYING COUNTR FOR CHARACTERS
REPLACING CHARACTERS BY SPACES.

10-1 Before COUNTR After 10-1 After

1234567 7

HIJKLMN 7

INSPECT 10-1 REPLACING CHARACTERS BY ZEROS
BEFORE INITIAL QUOTE.

10-1 Before COUNTR After 10-1 After

456'ABEL 0 OOO'ABEL

ANOES'12 0 00000'12

'TWAS BR 0 'TWAS BR

Chapter II.Procedure Division 11-61

Typical Uses

INSPECT ID-1 TALLYING COUNTR FOR CHARACTERS

AFTER INITIAL'S' REPLACING ALL 'A'

BY '0'.

ID-1 Before COUNTR After ID-1 After

ANSELM 3 ONSELM

SACKET 5 SOCKET

PASSED 3 POSSED

INSPECT ID-1 TALLYING COUNTR FOR LEADING '0'
REPLACING FIRST 'A' BY '2' AFTER INITIAL 'C'.

ID-1 Before COUNTR After ID-1 After

OOACADEMYOO 2 00AC2DEMYOO

000 oALABAMA 4 00 o o ALABAMA

CHATHAMOOOO 0 CH2THAMOOOO

The INSPECT statement is useful for filling portions for all of a data item with
spaces or O's. It is also useful for counting the number of times a specific
character (for example, 0, space, asterisk) occurs in a data item. In addition, it
can be used to translate characters from one collating sequence to another ..

11-62

MOVE Statement

The MOVE statement transfers data from one area of storage to one or more
other areas. The formats of the MOVE statement are as follows:

Format 1

MOVE {identifier-I} TO identifier-2 [, identifier-3l ...

literal

Format 2

MOVE {CORRESPONDING}identifier-I TO identifier-2

CORR .

identifier-l and literal-l are the sending areas. identifier-2, identifier-3, and so on
are the receiving areas.

When you specify format 1, the identifiers can be either group or elementary
items. The data in the sending area is moved into the first receiving area
(identifier-2); it is then moved into the second receiving area (identifier-3), and so
on.

You cannot specify an index data item in a MOVE statement. Any subscripting
or indexing associated with the sending item is evaluated only once, immediately
before the data is moved to the first receiving field. Any subscripting or indexing
associated with the receiving items is evaluated immediately before the data is
moved into the receiving field.

For example, the result of the statement:

MOVE A (B) TO B, C (B).

is equivalent to

MOVE A (B) TO TEMP.
MOVE TEMP TO B.
MOVE TEMP TO C (B).

in which TEMP has been defined as an intermediate result item. The subscript B
changed in value between the time the first move, and the final move to C (B),
took place.

After a MOVE statement is run, the sending field(s) contains the same data as
before the statement was run.

Note: When using elementary data items that have been combined through the
RENAMES clause in both the sending and receiving fields, the sending field will
contain unpredictable data after the MOVE statement has been completed.

Chapter II.Procedure Division 11-63

CORRESPONDING Phrase
...;,"\

The CORRESPONDING phrase lets operations be performed on elementary
items of the same name. You simply specify the group items to which the
elementary items belong. The results are the same as if each pair of
CORRESPONDING identifiers had been referred to in a separate MOVE
statement; however, the individual MOVE statements reduce compile time.

The abbreviation CORR can be used in place of the key word
CORRESPONDING.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as dl and d2.

A pair of subordinate data items, one from dl and one from d2, correspond if the
following conditions are true:

• 	 At least one of the subordinate items is elementary.

• 	 The two subordinate items have the same name and the same qualifiers up to
but not including dl and d2.

• 	 The subordinate items are not identified by the key word FILLER.

• 	 The subordinate items do not include a REDEFINES, a RENAMES, an
OCCURS, or a USAGE IS INDEX clause in their descriptions; if such a
subordinate item is a group, the items subordinate to it are also ignored.
However, dl and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

For example, two data hierarchies are defined as follows:

05 	 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A

10 ITEM-B

10 ITEM-C REDEFINES ITEM-B

05 	 ITEM-2

10 ITEM-A

10 ITEM-B

10 ITEM-C

If you specify MOVE CORR ITEM-2 TO ITEM-I(X), ITEM-A and

ITEM-A(X) and ITEM-B and ITEM-B(X) are considered to be

corresponding, Thus, ITEM-A and ITEM-B ofITEM-2 are moved to

ITEM-I (X). ITEM-C and ITEM-C(X) are not included, because ITEM-C(X)

includes a REDEFINES clause in its data description. ITEM-l is valid as

either dl or d2.

• 	 Neither dl nor d2 is described as a level-66, -77, or -88 item, or as a lFILLER
or USAGE IS INDEX item.

;~
~

11-64

Elementary Moves

An elementary move is one in which both the sending and receiving items are
elementary items. Each elementary item belongs to one of the following
categories:

• 	 Numeric--Includes numeric data items and numeric literals

• 	 Alphabetic--Includes alphabetic data items and the figurative constant
SPACE/SPACES

• 	 Alphanumeric--Includes alphanumeric data items, nonnumeric literals, and all
figurative constants except ZERO and SPACE

• 	 Alphanumeric edited--Includes alphanumeric edited data items

• 	 Numeric edited--Includes numeric edited data items

e 	 Figurative constant ZERO/ZEROS/ZEROES.

IBM Extension

Boolean--Includes Boolean data items, Boolean literals, and the figurative
constant ZERO/ZEROS/ZEROES when the receiving item is Boolean.

1..-__________ End of IBM Extension __________--.J

Valid elementary moves take place according to the following rules:

• 	 Any necessary conversion of data from one form of internal representation to
another along with any specified editing in the receiving item takes place
during the move.

• 	 For an alphabetic receiving item:

Justification and any necessary space filling take place as described in the
JUSTIFIED clause. Unused character positions are filled with spaces.
If the size of the sending item is greater than the size of the receiving
item, excess characters at the right are truncated after the receiving item is
filled.

IBM Extension

If the sending item is Boolean, and the receiving item is alphanumeric or
alphanumeric edited, no data conversion takes place.

L--__________ End of IBM Extension __________---'

• 	 For an alphanumeric or alphanumeric edited receiving item:

Justification and any necessary space filling take place as described in the
JUSTIFIED clause. Unused character positions are filled with spaces.

Chapter II.Procedure Division 11-65

If the size of the sending item is greater than the size of the receiving
item, excess characters at the right are truncated after the receiving item is\
filled. ...".,
If the sending item has an operational sign, the absolute value is used. If
the operational sign occupies a separate character, that character is not
moved, and the size of the sending item is considered to be 1 less than its
actual size.

IBM Extension

If the sending item is Boolean, and the receiving item is alphanumeric or
alphanumeric edited, no data conversion takes place.

L...-__________ End of IBM Extension __________....1

• 	 For a numeric or numeric edited receiving item:

Alignment by decimal point and any necessary zero filling take place as
described under Standard Alignment Rules in Chapter 10, except where a's
are replaced because of editing requirements.
The absolute value of the sending item is used if the receiving item has no
operational sign.
If the sending item has more digits to the left or right of the decimal
point than the receiving item can contain, excess digits are truncated.
The results at object time may be unpredictable if the sending item
contains any nonnumeric characters. J

,...------------ IBM Extension -------------,

For a Boolean receiving item:

• 	 There is no data conversion.
• 	 The source field must be either alphanumeric or Boolean.
• 	 Running the MOVE statement does not affect the association of an indicator

number to the data name.

L...-_________ End of IBM Extension __________.....

Note: If the receiving field is alphanumeric or numeric edited, and the sending
field is a scaled integer (that is, it has a P as the rightmost character in its
PICTURE character string), the scaling positions are treated as trailing a's when
the MOVE statement is run.

Figure 11-15 shows valid and invalid elementary moves for each category.

11-66

Receiving Item Category

Sending Item
Category Alphabetic Alphanumeric

Alphanumeric Numeric Numeric
Edited Integer Noninteger

Numeric
Edited Boolean

Alphabetic and YES YES YES
SPACE

NO NO NO NO

Alphanumeric and YES
Figurative
constant'

YES YES YES YES YES YES

Alphanumeric YES
Edited

YES YES NO NO NO NO

Numeric Integer2 NO YES YES YES YES YES NO

Numeric NO
Noninteger2

NO NO YES YES YES NO

Numeric Edited NO YES YES NO NO NO NO

Boolean3 NO YES YES NO NO NO YES

ZERO/ZEROS/ NO
ZEROES

YES YES YES YES YES YES

YES

NO

=

=

move is valid
move is invalid

'Includes nonnumeric literals and all figurative constants but SPACE and ZERO
21ncludes numeric literals
31ncludes Boolean literals

Figure 11-15. Valid and Invalid Elementary Moves

Group Moves

A group move is one in which one or both of the sending and receiving fields are
a group item. A group move is treated exactly as though it were an alphanumeric
elementary move except that data is not converted from one fornl of internal
representation to another. In a group move, the receiving area is filled without
consideration for the individual elementary items contained within either the
sending area or the receiving area.

Chapter 11.Procedure Division 11-67

MULTIPLY Statement

The MULTIPLY statement causes numeric items to be multiplied and sets the
values of data items equal to the results. The formats of the MULTIPLY
statement are:

Format 1

MULTIPLY {identifier-I} BY identifier-2 [ROUNDED]
literal-I

[. ;dent;f;er-3 [ROUNDED]] .•. [ON SIZE ERROR ;mper.t;ve-statementJ

Format 2

MULTIPLY identifier-I} BY {identifier-2} GIVING identifier-3[ROUHDEO]
{
literal-I literal-2

Each identifier except those following the key word GIVING must name an
elementary numeric item. Each identifier following the key word GIVING must
name an elementary numeric or numeric edited item. Each literal must he a
numeric literal.

In format 1, the value of identifier-lor literal-l is multiplied by the value of
identifier-2; the product is then placed in identifier-2. If you specify identifier-3,
the value of identifier-lor literal-l is multiplied by the value of identifier·3; the
product is then placed in identifier-3, and so on.

In format 2, the value of identifier-lor literal-l is multiplied by the value of
identifier-2 or literal-2; the product is then stored in identifier-3, and, if specified,
identifier-4, and so on.

ROUNDED Phrase

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for itS...,)
storage, truncation occurs unless the ROUNDED phrase is specified. When the

11-68

SIZE ERROR Phrase

GIVIN G Phrase

ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. In the
MULTIPLY statement, the size error condition applies both to final results and
to intermediate results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

Chapter II.Procedure Division 11-69

PERFORM Statement

The PERFORM statement transfers control explicitly to one or more procedures
and implicitly returns control to the next statement that can be run after the
specified procedure(s) has run. The formats of the PERFORM statement are as
follows:

Format 1

Format 2

PERFORM procedure-name-l[{THROUGH}procedure-name-2]{~dentifier-l}
THRU lnteger-l

J

Format 3

PERFORM procedure-name-l[{i:::.UGH}procedure-namO-2] UNTIL condition-l

11-70

L
Format 4

PERFnRM procedure-namQ-l [G:::UG"yrocedure-nam.-2]

VARYING {identifier-I} {identifier-2}

index-name-l FROM index-name-2

literal-2

BY {identifier-3} UNTIL condition-I

literal-3

[
{:~::~~~!::=:} FROM {:~::~~~:::=~}AFTER

literal-S

BY {identifier-~} UNTIL condition-2

literal-6

[
{: ~::~~~!::=~} FROM {: ~::~~~!::=:}AFTER

literal-8

{ identifier-9} UNTIL condition-3]

literal-9

Each procedure name must name a section or a paragraph in the Procedure
Division.

When you specify both procedure-name-l and procedure-name-2, if either is a
procedure name in a Declarative procedure, then both must be procedure names
in the same Declarative procedure.

Each identifier must name a numeric elementary item.

Each literal must be a numeric literal.

Whenever a PERFORM statement is run, control transfers to the first statement
of the procedure named procedure-name-I. Control always returns to the
statement following the PERFORM statement. The point from which this
control returns is determined as follows:

• 	 If procedure-name-l is a paragraph name and you do not specify
procedure-name-2, the return is made after the last statement of
procedure-name-l is run.

Chapter l1.Procedure Division 11-71

L

• 	 If procedure-name-l is a section name and you do not specify
procedure-name-2, the return is made after the last sentence of the last
paragraph in that section is run.

• 	 If you specify procedure-name-2 and it is a paragraph name, the return is
made after the last statement of that paragraph is run.

• 	 If you specify procedure-name-2 and it is a section name, the return is made
after the last sentence of the last paragraph in the section is run.

The only necessary relationship between procedure-name-l and procedure-name-2
is that a consecutive sequence of operations is run beginning at the procedure
named by procedure-name-l and ending with the running of the procedure named
by procedure-name-2.

When you specify both procedure-name-l and procedure-name-2, GO TO and
PERFORM statements can appear within the sequence of statements contained in
these paragraphs or sections. When you specify only procedure-name-l,
PERFORM statements can appear within the procedure. A GO TO statement
can also appear, but should not refer to a procedure name outside the range of
procedure-name-I. If this is done, results are unpredictable and are not
diagnosed.

When the performed procedures include another PERFORM statement, the
sequence of procedures associated with the embedded PERFORM statement must
be totally included in or totally excluded from the performed procedures of the
first PERFORM statement: An active PERFORM statement that begins within
the range of performed procedures of another active PERFORM statement must
not allow control to pass through the exit point of the other active PERFORM
statement. Also, two or more such active PERFORM statements must not have a
common exit.

When control passes to the sequence of procedures by means other than a
PERFORM statement, control passes through the exit point to the next statement
that can be run, as if no PERFORM statement referred to these procedures.

Figure 11-16 illustrates valid sequences for PERFORM statements.

11-72

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU j d PERFORM f THRU j

f h

~ m

m f

~
x PERFORM a THRU m

a

f

m

d PERFORM f THRU j

Figure 11-16. Valid PERFORM Statement Sequences

The preceding rules refer to all four formats of the PERFORM statement. The
following sections give rules applying to each individual format.

Chapter II.Procedure Division 11-73

Format 1

Format 1 is the basic PERFORM statement. The procedure(s) referred to is run
once, and then control passes to the next runnable statement following the
PERFORM statement.

Format 2

Format 2 uses the TIMES phrase. identifier-l must name an integer item. The
procedure(s) referred to is run the number of times specified by the value in
identifier-lor integer-I. Control then passes to the next runnable statement
following the PERFORM statement. The following rules apply:

• 	 If integer-lor identifier-l is 0 or a negative number at the time the
PERFORM statement is initiated, control passes to the statement following
the PERFORM statement.

• 	 After the PERFORM statement has been initiated, any reference to
identifier· 1 or change in the value of identifier-l has no effect in varying the
number of times the procedures are run.

Format 3

Format 3 uses the UNTIL phrase. The procedure(s) referred to is performed until
the condition specified by the UNTIL phrase is true. Control is then passed to
the next runnable statement following the PERFORM statement.

If condition-l is true at the time the PERFORM statement is encountered, the
specified procedure(s) is not run.

Format 4

Format 4 uses the VARYING phrase. This phrase increments or decrements one
or more identifiers or index names according to the following rules. Once the
condition(s) specified in the UNTIL phrase is satisfied, control is passed to the
next runnable statement following the PERFORM statement.

No matter how many variables are specified, the following rules apply:

• 	 In the VARYING and AFTER phrases, when an index name is specified:

The index name is initialized and incremented or decremented according
to the rules for the SET statement. For a description of the SET
statement see Procedure Division Table Handling in Chapter 13.
In the associated FROM phrase, an identifier must be described as an
integer and have a positive value; a literal must be a positive integer.
In the associated BY phrase, an identifier must be described as an integer;
a literal must be a nonzero integer.

• 	 In the FROM phrase, when an index name is specified:

In the associated VARYING or AFTER phrase, an identifier must be
described as an integer. It is initialized as described in the SET
statement.

11-74

In the associated BY phrase, an identifier must be described as an integer
and have a nonzero value; a literal must be a nonzero integer.

• 	 In the BY phrase, identifiers and literals must have a nonzero value.

• 	 Changing the values of identifiers or index names or both in the VARYING,
FROM, and BY phrases when the procedures are running changes the
number of times the procedures are run.

The way in which operands are incremented or decremented depends on the
number of variables specified. In the following discussion, every reference to
identifier-n refers equally to index-name-n except when identifier-n is the object of
the BY phrase.

Varying One Identifier: The following actions take place:

1. 	 identifier-l is set equal to its starting value, identifier-2 or literal-2.

2. 	 condition-l is evaluated:

a. If it is false, steps 3 through 5 are run.
b. If it is true, control passes directly to the statement following the
PERFORM statement.

3. 	 procedure-l through procedure-2 (if specified) are run once.

4. 	 identifier-l is increased by identifier-3 (or literal-3), and condition-l is
evaluated again.

5. 	 Steps 2 through 4 are repeated until condition-l is true.

Figure 11-17 is a flowchart illustrating the logic of the PERFORM statement
when one identifier is varied.

Chapter II.Procedure Division 11-7 5

PERFORM
Statement
Begins

Set Identifier-1
Equal to Its
FROM Value

Exit

Fa/se

Run
Procedure-1
THRU
Procedure-2

Augment

Identifier-1

with Its

Current BY

Value

Figure 11-17. Format 4 PERFORM Statement Logic-Varying One Identifier

11-76

The following example shows a PERFORM statement varying one identifier.
This PERFORM logic is run 100 times.

WORKING-STORAGE SECTION.

77 SUB1 PIC 999.

77 TOTAL-HOLD PIC 99 VALUE 57.

77 HOLD-2 PIC 99 VALUE 10.

77 HOLD-THE-SUM PIC 99 VALUE ZERO.

01 TABLE-ELEMENT.

03 ELEMENTS-OF-TABLE OCCURS 100 TIMES PIC 9.

PROCEDURE DIVISION.

100-START-PROCESSING.

* THIS PERFORM LOGIC IS EXECUTED 100 TIMES.

PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT VARYING SUB1

FROM 1 BY 1 UNTIL SUB1 > 100.

* THIS ADD STATEMENT IS EXECUTED AFTER PERFORM IS DONE.

ADD TOTAL-HOLD HOLD-2 GIVING HOLD-THE-SUM.

DISPLAY 'TOTAL OF TWO VARIABLES = ' HOLD-THE-SUM.
PERFORM ANOTHER-WAY-TO-INITIALIZE THRU AWTI-EXIT.

* *************************
*
* THE TABLE WILL BE ALL ZEROS AND SHOULD PRINT AS SUCH.
*

DISPLAY '------------------THE-------TABLE----------'.

DISPLAY TABLE-ELEMENT.

STOP RUN.

SAMPLE-PERFORM.

MOVE ZEROS TO ELEMENTS-OF-TABLE (SUB1).

PERFORM-EXIT. EXIT.
ANOTHER-WAY-TO-INITIALIZE.

MOVE ZEROS TO TABLE-ELEMENT.
AWTI-EXIT. EXIT.

* ******************END OF PROGRAM**************************

Chapter II.Procedure Division 11-77

Varying Two Identifiers: The following actions take place:

1. 	 identifier-l and identifier-4 are set to their initial values, identifier-2 (or
literal-2) and identifier-5 (or literal-5), respectively.

2. 	 condition-l is evaluated:

a. 	 If it is false, steps 3 through 7 are run.
b. 	 If it is true, control passes directly to the statement following the

PERFORM statement.

3. 	 condition-2 is evaluated:

a. 	 If it is false, steps 4 through 6 are run.
b. 	 If it is true, identifier-4 is set to the current value of identifier-5, and

identifier-l is augmented by identifier-3 (or literal-3), and step 2 is
repeated.

4. 	 procedure-l through procedure-2 (if specified) are performed once.

5. 	 identifier-4 is increased by identifier-6 (or literal-6).

6. 	 Steps 3 through 5 are repeated until condition-2 is true.

7. 	 Steps 2 through 6 are repeated until condition-l is true.

Upon completion of the PERFORM statement, identifier-4 contains the current
value of identifier-5. identifier-l has a value that exceeds the last-used setting by
the increment or the decrement value (unless condition-l was true at the
beginning of the PERFORM statement run, in which case identifier-l contains the
current value of identifier-2).

11-78

Figure 11-18 is a flowchart illustrating the logic of the PERFORM statement
when two identifiers are varied.

PERFORM
Statement Begins

I dentifier-1
Identifier-4
Set to Initial
FROM Value

False

Run
Procedure-1
THRU
Procedure-2

'Augment
Identifier-4
with Its
Current
BY Value

Exit

Set Identif,ier-4
to Its Current
FROM Value

Augment
Identifier-1
with Its
Current
BY Value

Figure 11-18_ Format 4 PERFORM Statement Logic-Varying Two Identifiers

Chapter II.Procedure Division 11-79

The following example shows a PERFORM statement varying two identifiers.
This PERFORM logic is run 126 times. This program searches a table and gives '\
a total of female employees. ..""

DATA DIVISION.
FILE SECTION.
FD PRINTED-REPORT

RECORDS CONTAINS 132 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS REPORT-LINE.

01 REPORT-LINE PIC X(132).
FD EMPLOYEE-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS EMPLOYEE-RECORD.

01 EMPLOYEE-RECORD PIC X(80).
WORKING-STORAGE SECTION.
77 RECORDS-IN PIC 9(5) VALUE ZEROS.
77 EOF-SW PIC X VALUE 'N'.
01 HOLD-INPUT-RECORD.

03 EMPLOYEE-SEX PIC 9.
88 MALE VALUE IS 1.
88 FEMALE VALUE IS 2.

03 EMPLOYEE-RACE PIC 9.
88 RACE-CODES VALUES ARE 1 THRU 7.

03 EMPLOYEE-JOB-CLASS PIC 99.
88 JOB-CLASS VALUES ARE 01 THRU 18.
03 FILLER PIC X(76) VALUE SPACES.

01 EMPLOYEE-TABLE.
03 E-SEX OCCURS 2 TIMES. \

05 E-RACE OCCURS 7 TIMES."
07 E-JOB OCCURS 18 TIMES PIC 99.

77 SUB1 PIC 99.
77 SUB2 PIC 99.
77 SUB3 PIC 99.
77 TOTAL-WOMEN PIC 9(5) VALUE ZEROS.

11-80

L
PROCEDURE DIVISION.
100-START-IT.

OPEN INPUT EMPLOYEE-DATA OUTPUT PRINTED-REPORT.
MOVE ZEROS TO EMPLOYEE-TABLE.

200-READ-IT.

READ EMPLOYEE-DATA RECORD INTO HOLD-INPUT-RECORD

AT END MOVE 'Y' TO EOF-SW.

ADD 1 TO RECORDS-IN.

300-MAIN-LOGIC.

* THE PERFORM STATEMENT USING TWO
* VARIABLES WILL BE DONE 126
* TIMES BY THE COMPUTER.

PERFORM LOAD-TABLE UNTIL EOF-SW = 'Y'.
PERFORM FIND-NUMBER-OF-WOMEN VARYING SUB2 FROM 1 BY 1
UNTIL SUB2 > 7
AFTER SUB3 FROM 1 BY 1 UNTIL SUB3 > 18.
PERFORM WRITE-REPORT THRU WR-EXIT.
DISPLAY 'TOTAL RECORDS IN ' RECORDS-IN.
STOP RUN.

LOAD-TABLE.

MOVE EMPLOYEE-SEX TO SUB1.

MOVE EMPLOYEE-RACE TO SUB2.

MOVE EMPLOYEE-JOB-CLASS TO SUB3.

ADD 1 TO E-JOB (SUB1,SUB2,SUB).

PERFORM 200-READ-IT.

FIND-NUMBER-OF-WOMEN.

ADD E-JOB (2,SUB2,SUB3) TO TOTAL-WOMEN.

WRITE-REPORT.

MOVE TOTAL-WOMEN TO PRINT-OUT.

WRITE PRINT-OUT.

WR-EXIT. EXIT.

Chapter 11.Procedure Division 11-81

L

Varying Three Identifiers: The actions are the same as for varying two identifiers
except that identifier-7 goes through the complete cycle each time that identifier-4
is increased by identifier-6 or literal-6, which in turn goes through a complete
cycle each time identifier-l is varied.

'1~
,.""

Upon completion of the PERFORM statement, identifier-4 and identifier-7
contain the current values of identifier-5 and identifier-8, respectively. idellltifier-l
has a value exceeding its last-used setting by one increment or decrement value
(unless condition-l was true at the beginning of the PERFORM statement run, in
which case identifier-l contains the current value of identifier-2).

Figure 11-19 is a flowchart illustrating the logic of the PERFORM statement
when three identifiers are varied.

J

11-82

PERFORM
Statement Begins

Identifier-1
Identifier-4
Identifier-7
Set to Initial
FROM Values

Run
Procedure-1
THRU
Procedure-2

Augment
Identifier-7
with Its
Current
BY Value

False

Exit

Set Identifier-7
to Its Current
FROM Value

Augment
Identifier-4
with Its
Current
BY Value

Set Identifier-4
to Its Current
FROM Value

Augment
Identifier-1
with Its
Current
BY Value

Figure 11-19. Format 4 PERFORM Statement Logic-Varying Three Identifiers

Chapter II.Procedure Division 11-83

The following example shows a PERFORM statement varying three identifiers.
This PERFORM logic is run 250 times.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 SUB1 PIC 99.

77 SUB2 PIC 99.

77 SUB3 PIC 99.

77 TEST-IT PIC 99 VALUE 00.

77 TOTAL-RECS PIC 99 VALUE ZEROS.

01 COMPANY-TABLE.

05 	 DIVISION-IN OCCURS 10 TIMES.

10 DIVISION-NAME PIC X(10).

10 DIVISION-NUMBER PIC 9(4).

10 	 SECTION-IN OCCURS 5 TIMES.

15 	 UNIT-IN OCCURS 5 TIMES.

20 UNIT-NAME PIC X(5) .

20 UNIT-NUMBER PIC 9(4).

PROCEDURE DIVISION.
100-START-PROCESSING.

* ***

* 	 THIS PERFORM LOGIC IS EXECUTED 250 TIMES BY THE COMPUTER.

* 	 ***

PERFORM ZERO-OUT-BIG-TABLE VARYING SUB1 FROM 1 BY 1

UNTIL SUB1 > 10

SUB1 IS VARIED LAST BY THE COMPUTER.
*
AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 5 J

* 	 SUB2 IS VARIED ******2ND****** BY THE COMPUTER.
AFTER SUB3 FROM 1 BY 1 UNTIL SUB3> 5.

* 	 ******SUB3 IS VARIED FIRST BY THE COMPUTER******
PERFORM ADDRESS-THE-VARIABLES THRU ATV-EXIT.
DISPLAY 'VARIABLE TEST-IT = ' TEST-IT.
STOP RUN.

ZERO-OUT-BIG-TABLE.

MOVE ZEROS TO UNIT-IN (SUB1, SUB2, SUB3).

ADDRESS-THE-VARIABLES.

IF UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN

OF COMPANY-TABLE (3, 4, 5) = 0 ADD 1 TO TEST-IT.

ATV-EXIT. EXIT.

Note: The procedures run by a PERFORM statement are in effect a closed
subroutine that can be entered from other points in the program.

The Format 4 PERFORM statement is especially useful in table handling. One
Format 4 PERFORM statement can serially search an entire 3-dimensional table.

11-84

Segmentation Information

A PERFORM statement appearing in a permanent segment can have in its range
only one of the following:

• 	 Sections, each of which has a segment number less than 50

• 	 Sections or paragraphs wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have in its
range only one of the following:

• 	 Sections, each of which has a segment number less than 50

• 	 Sections or paragraphs wholly contained within the same independent
segment as the PERFORM statement.

Control is passed to the performed procedures only once each time the
PERFORM statement is run.

Chapter l1.Procedure Division 11-85

STOP Statement

STOP {RUt~ }
literal

The STOP statement halts the object program either temporarily or permanently.

Format

The literal can be numeric or nonnumeric and any figurative constant except the
ALL literal. If the literal is numeric, it must be an unsigned integer.

When you specify the STOP statement with a literal, the literal is displayed at the
user program display station if the program has an attached display station, or at
the system console if there is no attached display station and the running of the
object program is suspended. The program resumes running only after you
intervene.

Your action determines whether the job continues at the next statement that can
be run in the sequence, the job step is canceled, or the entire job is canceled.

When STOP RUN is specified, the program currently running ends, and control
returns to the system. If a STOP RUN statement is in a sequence of imperative
statements, it must be the last or the only statement in the sequence. You should J
close all files before a STOP RUN statement.

An implicit return to the calling program is always generated after the last
statement in the source program. In a main program, this is equivalent to a
STOP RUN. In a subprogram, this is equivalent to an EXIT PROGRAM.

For restrictions on the STOP RUN statement in calling and called programs, see
System Dependent Considerations in Chapter 2.

Note: The STOP literal statement is useful for special situations when you need
to intervene when the program is running.

11-86

STRING Statement

The STRING statement lets you join the partial or complete contents of two or
more data items into a single data item.

Format

STRING {identifier-I} [, identifier-2]. identifier-3}
literal-I , literal-2 DELIMITED BY{ literal-3 .

SIZE

, {identifier-4}[, identifier-5] ... identifier-6J][literal-4 , literal-5 DELIMITED BY{ literal-6 ..•
SIZE

INTO identifier-7[WITH POINTER identifier-8]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each may be any figurative constant
without the optional word ALL. When you specify a figurative constant, it is
considered a I-character nonnumeric literal.

All identifiers except identifier-8 (the POINTER item) must have a USAGE of
DISPLAY, explicitly or implicitly.

The sending fields are identifier-I, identifier-2, identifier-4, identifier-5, or their
corresponding literals.

The receiving field is identifier-7, which must be an elementary alphanumeric item
without editing symbols and without the JUSTIFIED clause in its description.

The delimiters are identifier-3, identifier-6, or their corresponding literals, or the
key word SIZE. The delimiters specify the character(s) delimiting the data to be
transferred; when SIZE is specified, the complete sending area is transferred.

When the sending field or any of the delimiters are elementary numeric items, you
must describe them as integers, and their PICTURE character strings must not
contain the symbol P.

The pointer field is identifier-8, which must be an elementary integer data item
large enough to contain a value equal to the length of the receiving area plus 1.
The pointer field must not contain the symbol P in its PICTURE character string.

Chapter l1.Procedure Division 11-87

Running the STRING Statement

When the STRING statement is run, data is transferred from the sending fields to
the receiving field. Sending fields are processed in the order in which they are
specified. The following rules apply:

• 	 Characters from the sending fields are transferred to the receiving field
according to the rules for alphanumeric to alphanumeric elementary moves
except that no space filling is provided.

• 	 When you specify the DELIMITED BY identifier/literal, the contents of each
sending item are transferred character by character beginning with the
leftmost and continuing until either a delimiter for this sending field is­
reached (the delimiter itself is not transferred) or the rightmost character of
this sending field has been transferred.

• 	 When you specify DELIMITED BY SIZE, each sending field is transferred in
its entirety to the receiving field.

• 	 When the receiving field is filled or when all the sending fields have been
processed, the operation is ended.

• 	 When you specify the POINTER phrase, an explicit pointer field is available
to the COBOL user to control placement of data in the receiving field. You
must set the explicit pointer's initial value to any value from 1 through the
character count value of the receiving field. The pointer field must be defined
as large enough to contain a value equal to the length of the receiving field. "'l
plus 1; this precludes arithmetic overflow when the system updates the pointer""
at the end of the transfer.

• 	 When you do not specify the POINTER phrase, a pointer is not available to
you; an implicit pointer with an initial value of 1 is used by the system.

• 	 When the STRING statement is run, the initial pointer value (explicit or
implicit) points to the first character position within the receiving field into
which data is to be transferred. Beginning at that position, data is then
positioned character by character from left to right. After each character is
positioned, the explicit or implicit pointer is incremented by 1. The value in
the pointer field is changed only in this manner. At the end of processing, the
pointer value always indicates one character beyond the last character
transferred into the receiving field.

• 	 If, at any time during or after a STRING statement has begun running, the
pointer value (explicit or implicit) is less than 1 or exceeds a value equal to
the length of the receiving field, no more data is transferred into the rc~ceiving
field, and if specified, the ON OVERFLOW imperative statement is run. The
ON OVERFLOW statement is not run unless there was an attempt to move
in one or more characters beyond the end of identifier-7.

• 	 If you do not specify the ON OVERFLOW phrase, control passes to the next
runnable statement when the preceding conditions occur.

11-88

After the STRING statement is run, only that part of the receiving field into
which data was transferred is changed. The rest of the receiving field contains the
data that was present before the STRING statement was run.

Figure 11-20 illustrates the rules for the STRING statement.

STRING Statement to be Run:

STRING 10-1 10-2 DELIMITED BY 10-3
10-4 10-5 DELIMITED BY SIZE

INTO 10-7 WITH POINTER 10·8.

Results:

10-4 at Run Time ID-l at Run Time ID-2 at Run Time ID-5 at Run Time

16171 s191*l ol 1112131*14151 IAI*IBICI IDIEI*IFIGI
!

Third Gr~up of

, I i I

First Group of
y
Second Group of

'i'
Fourth Group of

Characters Moved Characters Moved Characters Moved Characters Moved

I I
..-------11 I

10-3
(delimeter)
at Run Time

EJ ~~~~~~~~~~ 1112131A16171 S191*I OIDI EI*I FIGIZIZIZlzlZIZI

ID-7 After Being Run (initialized to ALL Z before being run)

IO-S
(pointer)
After Being Run

(initialized to 01 before being run)

Figure 11-20. STRING Statement Results

Chapter II.Procedure Division 11-89

STRING Statement Example

The following example illustrates some of the considerations that apply to the
STRING statement.

In the Data Division, you have defined the following fields:

01 RPT-LINE PICTURE X(120).
01 LINE-POS PICTURE 99.
01 LINE-NO PICTURE 9(5) VALUE 1.
01 DEC-POINT PICTURE X VALUE'. '.

In the File Section, you have defined the following input record:

01 RCD-01.
05 CUST-INFO.

10 CUST-NAME PICTURE X(15) .
10 CUST-ADDR PICTURE X(34) .

05 BILL-INFO.
10 INV-NO PICTURE X(6).
10 INV-AMT PICTURE $$,$$$.99.
10 AMT-PAID PICTURE $$,$$$.99.
10 DATE-PAID PICTURE X(8).
10 BAL-DUE PICTURE $$,$$$.99.
10 DATE-DUE PICTURE X(8).

Suppose you want to construct an output line consisting of portions of the
information from RCD-Ol. The line is to consist of a line number, a customer
name and address, an invoice number, a date due, and a balance due, truncated
to the dollar figure shown.

The record as read in contains the following information:

J.B. SMITHbbbbb

444bSPRINGbST., bCHICAGObILL. bbbbb

A14275

$4,736.85

$2,400.00

09/22/76

$2,336.85

10/22/76

In the Procedure Division, you initialize RPT-LINE to SPACES and set
LINE-POS (which is to be used as the POINTER field) to 4. Then you issue this
STRING statement:

STRING LINE-NO SPACE CUST-INFO

SPACE INV-NO SPACE DATE-DUE

SPACE DELIMITED BY SIZE

BAL-DUE DELIMITED BY DEC-POINT

INTO RPT-LINE WITH POINTER LINE-POS.

11-90

http:2,336.85
http:2,400.00
http:4,736.85

When the statement is run, the following actions take place:

1. 	 The field LINE-NO is moved into positions 4 through 8 of RPT-LINE.

2. 	 A space is moved into position 9.

3. 	 The group item CUST-INFO is moved into positions 10 through 58.

4. 	 A space is moved into position 59.

5. 	 INV-NO is moved into positions 60 through 65.

6. 	 A space is moved into position 66.

7. 	 DATE-DUE is moved into positions 67 through 74.

8. 	 A space is moved into position 75.

9. 	 The portion of BAL-DUE that precedes the decimal point is moved into
positions 76 through 81.

After the STRING statement has been run, RPT-LINE appears as shown in
Figure 11-21.

Note: You can write one STRING statement instead of a series of MOVE
statements.

Column

4 10 25

! ! I
00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL.

60 67 76

I I j
A14725 10/22/76 $2,336

Figure 11-21. STRING Statement Example Output Data

Chapter II.Procedure Division 11-91

SUBTRACT Statement

The SUBTRACT statement causes either one numeric item or the sum of two or
more numeric items to be subtracted from one or more numeric items and the
result to be stored. The formats of the SUBTRACT statement are:

Format 1

SUBTRACT {identifier-l}[, identifier-2]
literal-l , literal-2

Format 2

SUBTRACT identifier-l}[, identifier-2] ... FROM {identifier-3}
{ literal-l , literal-2 literal-3

GIVIHG ; dent; f; er-4 [ROUHDED1[. ;dent;f; er-5 [ROUHDEDl]
[ON SIZE ERROR imperative-statement]

Format 3

SUBTRACT {CORRESPONDING}identifier-l FROM identifier-2[ROUNDED]
~ORR

[ON SIZE ERROR imperative-statement]

In formats 1 and 2, each identifier except those following the key word GIVING
must name an elementary numeric item. In format 2, each identifier following the
key word GIVING must name a numeric elementary or numeric edited
elementary item. In format 3, each identifier must name a group item. In all
formats, each literal must be a numeric literal.

11-92

ROUNDED Phrase

In format 1, all identifiers or literals preceding the key word FROM are added
together, and this sum is subtracted from and stored immediately in identifier-3,
and then, if specified, subtracted from and stored immediately in identifier-4, and
so on.

In format 2, all identifiers or literals preceding the key word FROM are added
together and this sum is subtracted from identifier-3 or literal-3. The result of the
subtraction is stored as the new value of identifier-4, and, if specified, identifier-5,
and so on.

In format 3, elementary data items within identifier-l are subtracted from and
stored in the corresponding elementary data items within identifier-2.

If the total length of the operands is 18 digits or less, the compiler ensures that
enough places are carried so that no significant digits are lost.

Note: For all three formats of the subtract statement, if identifier-3 and
identifier-4 are the same data item, and identifier-l and identifier-3 are both
negative, truncation can occur.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

Chapter 11.Procedure Division 11-93

SIZE ERROR Phrase

GIVING Phrase

A size error condition exists if after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. In the
SUBTRACT statement, the size error condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
mUltiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmeti4;
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

11-94

CORRESPONDING Phrase

The CORRESPONDING phrase lets operations be performed on elementary
items of the same name. You simply specify the group items to which the
elementary items belong.

The abbreviation CORR is equivalent to the key word CORRESPONDING.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as dl and d2.

A pair of subordinate data items, one from dl and one from d2, correspond if the
following conditions are true:

• 	 Both of the subordinate items are elementary numeric data items.

• 	 The two subordinate items have the same name and the same qualifiers up to
but not including dl and d2.

• 	 The subordinate items are not identified by the key word FILLER.

• 	 The subordinate items do not include a REDEFINES, RENAMES,
OCCURS, or USAGE IS INDEX clause in their descriptions; if such a
subordinate item is a group, the items subordinate to it are also ignored.
However, dl and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

For example, two data hierarchies are defined as follows:

05 	 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A

10 ITEM-B

10 ITEM-C REDEFINES ITEM-B

05 	 ITEM-2

10 ITEM-A

10 ITEM-B

10 ITEM-C

If you specify SUBTRACT CORR ITEM-2 FROM ITEM-l(X), ITEM-A
and ITEM-A(X) and ITEM-B and ITEM-B(X) are considered to be
corresponding. Thus, ITEM-A and ITEM-B of ITEM-2 are subtracted from
ITEM-A and ITEM-B of ITEM-I (X). ITEM-C and ITEM-C(X) are not
included because ITEM-C(X) includes a REDEFINES clause in its data
description. ITEM-l is valid as either dl or d2.

• 	 Neither dl nor d2 is described as a level-66, -77 or -88 item, or as a FILLER
or USAGE IS INDEX item.

Chapter l1.Procedure Division 11-95

UNSTRING Statement

The UNSTRING statement causes consecutive data in a sending field to be
separated and placed into multiple receiving fields.

Format

UNSTRING ide~tifier-l

[
DELIMITED BY[A1l]{i~entifier-2}['

11teral-l
OR [A1l]{i~entifier-3}]

11teral-2
...1

INTO identifier-4[' DELH1ITER IN identifier-SJ[, COUNT IN identifier-6J

[, identifier-7[, DELIMITER IN identifier-BJ[, COUNT IN identifier-9J] ...

[WITH POINTER identifier-IOJ[TALLYING IN identifier-II]

[ON OVERFLOW imperative-statementJ

Each literal must be a nonnumeric literal; each can be any figurative constant
except the ALL literal. When you specify a figurative constant, it is considered to
be a I-character nonnumeric literal.

. 1.

..",

Sending Field

identifier-l is the sending field. It must be an alphanumeric data item.
transferred from this field to the receiving fields.

Data is

DELIMITED BY Phrase:
control the data transfer.

This phrase specifies delimiters within identifier-l that

The delimiters are identifier-2, identifier-3, or their corresponding literals. Each
identifier or literal you specify represents one delimiter. You can specify no more
than 15 delimiters, and each must be an alphanumeric data item.

If a delimiter contains 2 or more characters, it is recognized in the sending field
only if the delimiter characters are consecutive and, in the sequence specified,in
the delimiter item.

When you specify two or more delimiters, an OR condition exists, and each
nonoverlapping occurrence of anyone of the delimiters is recognized in the
sending field in the sequence specified. For example, if you specify DELIMITED
BY AB OR BC, either AB or BC in the sending field is considered a delimiter. An
occurrence of ABC is considered an occurrence of AB, and the search for another
delimiter resumes with C.

11-96

L
When you do not specify the DELIMITED BY ALL phrase and two or more

Data Receiving Fields

consecutive delimiters are encountered, the current data receiving field is filled
with spaces or O's according to the description of the data receiving field.

When you specify the DELIMITED BY ALL phrase, one or more consecutive
occurrences of any delimiter are treated as if they were only one occurrence, and
this one occurrence is moved to the delimiter receiving field, if specified. The
delimiting characters in the sending field are treated as an elementary
alphanumeric item and are moved into the current delimiter receiving field
according to the rules of the MOVE statement.

You can specify the DELIMITER IN and COUNT IN phrases only if you have
specified the DELIMITED BY phrase.

identifier-4, identifier-7, and so on, are the data receiving fields and must have a
USAGE of DISPLAY. These fields can be defined as:

• Alphabetic (without the symbol B in the PICTURE string)

• Alphanumeric

• Numeric (without the symbol P in the PICTURE string).

You must not define these fields as alphanumeric edited or numeric edited items.
Data is transferred to these fields from the sending field.

DELIMITER IN Phrase: The delimiter receiving fields are identifier-5,
identifier-8, and so on. These identifiers must be alphanumeric.

COUNT IN Phrase: The data-count fields for each data transfer are identifier-6,
identifier-9, and so on. Each field holds the count of delimited characters in the
sending field to be transferred to this receiving field; the delimiters are not
included in this count.

POINTER Phrase: The pointer field is identifer-lO: it contains a value that
indicates the relative starting position in the sending field. When you specify this
phrase, you must initialize this field to a value of at least 1 and not greater than
the count of the sending field, before the UNSTRING statement is run.

TALLYING Phrase: The field count is identifier-ll; it is incremented by the
number of data receiving fields acted upon when the UNSTRING statement is
run. When you specify this phrase, you must initialize it before the UNSTRING
statement is run.

The data-count fields, the pointer field, and the field-count field must each be
integer items without the symbol P in the PICTURE character strings.

Chapter II.Procedure Division 11-97

Running the UNSTRING Statement

When you initiate the UNSTRING statement, the current data receiving field is
identifier-4. Data is transferred from the sending field to the current data
receiving field according to the following rules:

• 	 If you do not specify the POINTER phrase, the sending field character string
is examined, beginning with the leftmost character. If you specify the
POINTER phrase, the field is examined beginning at the relative character
position specified by the value in the pointer field.

• 	 If you specify the DELIMITED BY phrase, the examination proceeds left to
right character by character until a delimiter is encountered. If the end of the
sending field is reached before a delimiter is found, the examination ends with
the last character in the sending field.

• 	 If you do not specify the DELIMITED BY phrase, the number of characters
examined is equal to the size of the current data receiving field, depending
upon its data category:

If the receiving field is alphanumeric or alphabetic, the number of
characters examined is equal to the number of characters in the current
receiving field.
If the receiving field is numeric, the number of characters examined is
equal to the number of characters in the integer portion of the current
receiving field.
If the receiving field is described with the SIGN IS SEPARATE clause,
the characters examined are one fewer than the size of the current
receiving field.
If the receiving field is described as a variable-length data item, the
number of characters examined is determined by the current size of the
current receiving field.

• 	 The examined characters, excluding any delimiter characters, are treated as an
alphanumeric elementary item, and are moved into the current data receiving
field according to the rules for the MOVE statement.

• 	 If you specify the DELIMITER IN phrase, the delimiting characters in the
sending field are treated as an elementary alphanumeric item and are moved
to the current delimiter receiving field according to the rules for the MOVE
statement. If the delimiting condition is the end of the sending field, the
current delimiter receiving field is filled with spaces.

• 	 If you specify the COUNT IN phrase, a value equal to the number of
examined characters, excluding any delimiters, is moved into the data count
field, according to the rules for an elementary move.

• 	 If you specify the DELIMITED BY phrase, the sending field is further
examined, beginning with the first character to the right of the delimiter.

• 	 If you do not specify the DELIMITED BY phrase, the sending field is further
examined, beginning with the first character to the right of the last character
examined.

11-98

• 	 After data is transferred to the first data receiving field (identifier-4), the
current data receiving field becomes identifier-7. For each succeeding current
data receiving field, the preceding procedure is repeated, either until all of the
characters in the sending field have been transferred or until there are no
more unfilled data receiving fields.

• 	 When you specify the POINTER phrase, the contents of the pointer field is
incremented by I for each examined character in the sending field. When the
UNSTRING statement is completed, the pointer field contains a value equal
to its initial value plus the number of characters examined in the sending
field.

• 	 When you specify the TALLYING phrase, and the UNSTRING statement is
completed, the tallying identifier contains a value equal to the initial value
plus the number of data receiving areas acted upon; this count includes any
null fields.

• 	 When an overflow condition exists, the UNSTRING statement stops running.
If you have specified the ON OVERFLOW phrase, that imperative statement
is run. If you have not specified the ON OVERFLOW phrase, control passes
to the next statement that can be run. An overflow condition exists when:

An UNSTRING statement is initiated and the value in the pointer field is

less than I or greater than the length of the sending field.

Or, all data receiving fields have been acted upon by the UNSTRING

statement, and the sending field still contains unexamined characters.

If you subscript or index any of the UNSTRING statement identifiers, the
subscripts and indexes are evaluated as follows:

• 	 Any subscripting or indexing associated with the sending field, the pointer
field, or the field-count field is evaluated only once, immediately before any
data is transferred.

• 	 Any subscripting or indexing associated with the delimiters, the data and
delimiter receiving fields, or the data-count fields, is evaluated immediately
before the transfer of data into the affected data item.

Figure 11-22 illustrates the rules for the UNSTRING statement.

Chapter 11.Procedure Division 11-99

L

The following UNSTRI NG statement has the results shown:

UNSTRING IO-SENO DELIMITED BY OEL-IO OR ALL ,.,
INTO 	 10-R1 DELIMITER IN 10-01 COUNT IN IO-C1

10-R2 DELIMITER IN 10-02
10-R3 DELIMITER IN 10-03 COUNT IN 10-C3
IO-R4 COUNT IN 1O-C4

WITH POINTER 10-P

TALLYING IN IO-T

ON OVERFLOW GO TO OFLOW-EXIT.

IO-SENO at Run Time

11 12131·1·141516171817171910 1AlB 1 C 101 ElF I
o

(All the data
receiving fields
are defined as
alphanumeric)

OEL-IO
at Run Time

10-R1 After IO-R2 After 10-R3 After
Being Run Being Run Being Run

10-01 10-C1 	 10-02 10-03 10-C3

c:J 0 	 E1
(after being run) 	 (after being (after being run)

run)

The run sequence is:

CD Three characters are placed in 10-R1.

o 	Because ALL * is specified. one * is placed
in 10-01.

® Five characters are placed in lO-R2.

o 	A ? is placed in 10-02. The current

receiving field is now 10-R3.

Figure 11-22. UNSTRING Statement Results

IO-R4 After
Being Run

10-C4 IO-P 10-T
(pointer) (tallying field)

0 [2E] @E]
(after being run ­
both initialized to
01 before run time)

® A 7 is placed in 10-03; IO-R3 is filled
with spaces; no characters are
transferred. so a is placed in lO-C3.

® 	 No delimiter is encountered before 5
characters fill I 0-R4; 5 is placed in
10-C4.

(j) 	 IO-P is updated to 18; 10-T is updated
to 05. There are still untransferrecl
characters in lO-SENO, so
the ON OVERFLOW exit is taken.

J

11-100

L
UNSTRING Statement Example

The following example illustrates some of the considerations that apply to the
UNSTRING statement.

In the Data Division, you have defined the following input record to be acted
upon by the UNSTRING statement:

01 	 INV-RCD.

05 CONTROL-CHARS PIC xx.

05 ITEM-INDENT PIC X(20) .

05 FILLER PIC X.

05 INV-CODE PIC X(10) .

05 FILLER PIC x.

05 NO-UNITS PIC 9 (6) .

05 FILLER PIC x.

05 PRICE-PER-M PIC 99999.

05 FILLER PIC x.

05 RTL-AMT PIC 9 (6) .99.

You have defined the next two records as receiving fields for the UNSTRING
statement. DISPLAY-REC is to be used for printed output. WORK-REC is to
be used for further internal processing.

01 	 DISPLAY-REC.

05 INV-NO PIC X(6) .

05 FILLER PIC X VALUE SPACE.

05 ITEM-NAME PIC X(20) .

05 FILLER PIC X VALUE SPACE.

05 DISPLAY-DOLS PIC 9 (6) .

01 	 WORK-REC.

05 M-UNITS PIC 9 (6) .

05 FIELD-A PIC 9 (6) .

05 WK-PRICE

REDEFINES

FIELD-A PIC 9999V99.

05 INV-CLASS PIC X (3) .

You have also defined the following fields for use as control fields in the
UNSTRING statement.

77 DBY-1 PIC X, VALUE IS I . I

77 CTR-1 PIC 99, VALUE IS ZERO.

77 CTR-2 PIC 99, VALUE IS ZERO.

77 CTR-3 PIC 99, VALUE IS ZERO.

77 CTR-4 PIC 99, VALUE IS ZERO.

77 DLTR-1 PIC x.

77 DLTR-2 PIC x.

77 CHAR-CT PIC 99, VALUE IS 3.

77 FLDS-FILLED PIC 99, VALUE IS ZERO.

Chapter II.Procedure Division 11-:1 0 1

In the Procedure Division, you have written the following UNSTRING statement
to move subfields ofINV-RCD to the subfields ofDISPLAY-REC and .~~
WORK-REC: .."",

UNSTRING INV-RCD DELIMITED BY
ALL SPACES OR 'I' OR DBY-l
INTO ITEM'-NAME COUNT IN CTR-l
INV-NO DELIMITER IN DLTR-l COUNT IN CTR-2
INV-CLASS
M-UNITS COUNT IN CTR-3
FIELD-A
DISPLAY-DOLS DELIMITER IN
DLTR-2 COUNT IN CTR-4
WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before the UNSTRING statement is issued, you place the value 3 in the
CHAR-CT (the POINTER item), so as not to work with the 2 control characters
at the beginning of INV-RCD. In DBY-l, you place a period as a delimiter, and
in FLDS-FILLED (the TALLYING item) you place the value O. The following
data is then read into INV-RCD as shown in Figure 11-23.

Column

1 10 20 30 40 50 60

I I I I I I I
jZYFOUR.pENNY -NAILS 707890/BBA 475120 00122 000379.50

Figure 11-23. UNSTRING Statement Example-Input Data

11-102

http:000379.50

When the UNSTRING statement is run, the following actions take place:

1. 	 Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in
ITEM-NAME, left-justified within the area, and the unused character
positions are padded with spaces. The value 16 is placed in CTR-l.

2. 	 Because you specified ALL SPACES as a delimiter, the 5 consecutive SPACE
characters are considered to be one occurrence of the delimiter.

3. 	 Positions 24 through 29 (707890) are placed in INV-NO. The delimiter
character / is placed in DLTR-l, and the value 6 is placed in CTR-2.

4. 	 Positions 31 through 33 are placed in INV -CLASS. The delimiter is a
SPACE, but because no field has been defined as a receiving area for
delimiters, the SPACE is merely bypassed.

5. 	 Positions 35 through 40 (475120) are examined and are placed in M-UNITS.
The delimiter is a SPACE, but because you have not defined a receiving field
as a receiving area for delimiters, the SPACE is bypassed. The value 6 is
placed in CTR-3.

6. 	 Positions 42 through 46 (00122) are placed in FIELD-A and right-justified
within the area. The high-order digit position is filled with a O. The delimiter
is a SPACE, but because you have not defined a field as a receiving area for
delimiters, the SPACE is bypassed.

7. 	 Positions 48 through 53 (000379) are placed in DISPLA Y-DOLS. The period
(.) delimiter character is placed in DLTR-2, and the value 6 is placed in
CTR-4.

8. 	 Because all receiving fields have been acted upon and 2 characters of data in
INV-RCD have not been examined, the ON OVERFLOW exit is taken, and
the UNSTRING statement is completed.

When the UNSTRING statement has run, DISPLAY-REC contains the following
data:

707890 FOUR-PENNY-NAILS 000379

WORK-REC contains the following data:

475120000122BBA

CHAR-CT (the POINTER field) contains the value 55, and FLD-FILLED (the
TALLYING field) contains the value 6.

Note: One UNSTRING statement can be written instead of a series of MOVE
statements.

Chapter 1 1.Procedure Division 11-103

L

USE AFTER EXCEPTION/ERROR Statement (EXCEPTION/ERROR Declarative)

The EXCEPTION/ERROR Declarative specifies procedures for input and output
exception or error handling that are to be run in addition to the standard system
procedures.

Format

file-name-l[, file-name-2]

INPUT

USE AFTER STANDARO{EXCEPTION} PROCEDURE ON OUTPUT

ERROR 1-0

EXTEND

The words EXCEPTION and ERROR are synonymous and can be used
interchangeably.

File-Name Phrase

This phrase is valid for sequential, indexed, relative, and TRANSACTION files.

When you specify this phrase, the procedure is run only for the file(s) named. No

file name can refer to a sort-merge file. For any given file, you can only specify

one EXCEPTION/ERROR procedure. For example, if an input file is specifically

named in one EXCEPTION/ERROR procedure, there must not also be an. , .

EXCEPTION/ERROR procedure for all INPUT files. "'"

INPUT Phrase

This phrase is valid for sequential, indexed, and relative files. When you specify
this phrase, the procedure is applicable to all files opened in INPUT mode.

OUTPUT Phrase

This phrase is valid for sequential, indexed, and relative files. When you specify
this phrase, the procedure is applicable to all files opened in OUTPUT mode.

1-0 Phrase

This phrase is valid for sequential, indexed, relative, and TRANSACTION files.
When you specify this phrase, the procedure is applicable to all files opened in
1-0 mode.

EXTEND Phrase

This phrase is valid for sequential files only. When you specify this phrase, the
procedure applies to all files opened in EXTEND mode.

11-104

General Considerations

The EXCEPTION/ERROR procedure is run when one of the following
conditions exists:

• 	 After completing the standard system input/output error routine

• 	 Upon recognition of an INVALID KEY or AT END condition when you
have not specified an INVALID KEY or AT END phrase in the input/output
statement

• 	 When status key 1 is not equal to 0 following an I/O operation.

After the EXCEPTION/ERROR procedure has run, control returns to the
statement immediately following the input/output statement that caused the error.

The EXCEPTION/ERROR procedure is performed when an input/output error
occurs during a READ, WRITE, REWRITE, START, DELETE, OPEN,
CLOSE, ACQUIRE, or DROP statement. For example, the procedure is
activated when an input/outpat statement fails on a file that is in the open status.

The EXCEPTION/ERROR procedure is not performed when a CLOSE statement
fails because the file is already closed.

Within a Declarative procedure, there must be no reference to any nondeclarative
procedure. In the nondeclarative portion of the program, there must be no
reference to procedure names that appear in an EXCEPTION/ERROR
Declarative procedure, except that PERFORM statements may refer to an
EXCEPTION/ERROR procedure or to procedures associated with it.

All input/output statements for a file must have an error handling routine. If you
do not specify an AT END or INV ALID KEY phrase, then you must specify an
EXCEPTION/ERROR procedure.

Within an EXCEPTION/ERROR Declarative procedure, no statement can be run
that causes the running of a USE procedure that has been previously invoked and
has not yet returned control to the invoking routine.

r------------- IBM Extension --------------,

TRANSACTION File Considerations

In an EXCEPTION/ERROR Declarative for the TRANSACTION file, only the
file-name or 1-0 phrases are allowed. All other phrases and all rules are the same
as those for any EXCEPTION/ERROR Declarative for any file.

L...-__________ End of IBM Extension __________.....1

Note: EXCEPTION/ERROR procedures can be used to check the status key
values whenever an input/output error occurs.

Care should be used when you specify EXCEPTION/ERROR procedures for any
file. Prior to successful completion of an initial OPEN for any file, the current

Chapter 11.Procedure Division 11-105

L

Declarative has not yet been established by the program; if any other I/O
statement is run for a file that has never been opened, no Declarative can receive
control. If this file has been previously opened, the last previously established
Declarative procedure receives control.

.1\

..",

For example, an OPEN OUTPUT statement establishes a Declarative procedure
for a file and it is then closed without error. During later processing, if a logic
error occurs, control will go to the Declarative procedure established when the file
was opened for OUTPUT.

USE FOR DEBUGGING Statement

This statement is discussed under Debugging Features in Chapter 6.

11-106

L

Input and Output Statements of the Procedure Division

ACCEPT Statement 12-2

Format 1 Considerations 12-3

Format 2 Considerations 12-5

Format 3 Considerations 12-6

ACQUIRE Statement 12-7

CLOSE Statement 12-8

DELETE Statement 12-10

Status Key--General Considerations 12-10

INVALID KEY Condition 12-10

DELETE Statement with Sequential Access Mode 12-11

DELETE Statement with Random or Dynamic Access Mode 12-11

Indexed Files 12-11

Relative Files 12-11

DELETE Statement Considerations 12-12

DISPLAY Statement 12-13

Format 1 Considerations 12-13

Format 2 Considerations 12-14

DROP Statement 12-15

OPEN Statement 12-16

Current Record Pointer 12-18

Format 1--Sequential Files 12-18

Format 2--Indexed and Relative Files 12-19

Format 3-TRANSACTION Files 12-20

READ Statement 12-21

Current Record Pointer 12-24

INTO Identifier Phrase 12-24

Format 1 and Format 2--Sequential Access 12-25

NEXT RECORD Phrase 12-25

AT END Condition 12-26

Format 3 and Format 4--Random Access 12-26

INVALID KEY Condition 12-26

Files with Relative Organization 12-27

Files with Indexed Organization 12-27

READ Statement with Dynamic Access Mode 12-27

Format 5 - Indexed File Extensions (Dynamic Access Only) 12-28

Input and Output Statements of the Procedure Division

Format 6 - TRANSACTION Files 12-28

TERMINAL Phrase 12-29

NO DATA Phrase 12-29

AT END Condition 12-29

REWRITE Statement 12-30

FROM Identifier Phrase 12-31

INVALID KEY Condition 12-31

REWRITE Statement for Sequential Files 12-31

REWRITE Statement for Indexed Files 12-32

REWRITE Statement for Relative Files 12-33

START Statement 12-34

KEY Phrase 12-34

INVALID KEY Condition 12-35

START Statement for Indexed Files 12-36

START Statement for Relative Files 12-36

WRITE Statement 12-37

FROM Identifier Phrase 12-40

Format 1 Considerations 12-40

ADVANCING Phrase 12-40

END-OF-PAGE Phrase 12-41

Format 2 Considerations 12-42

INVALID KEY Condition 12-42

Indexed Files 12-42

Relative Files 12-43

Format 3 Considerations 12-44

FORMAT Phrase 12-44

TERMINAL Phrase 12-45

STARTING Phrase 12-45

ROLLING Phrase 12-45

INDICATOR Phrase 12-46

L

Chapter 12.
 Input and Output Statements of the Procedure Division

COBOL input and output statements transfer data to and from files. In COBOL,
the unit of data made available to the program is a record. Provision is made for
operations such as the movement of data into buffers and internal storage,
validity checking, error correction (when feasible), and unblocking and blocking
of records.

The description of the file in the Environment Division and the Data Division
governs which input and output statements are allowed in the Procedure Division.

There is special processing for deleted records (deleted records are valid only for
relative and index files), and there are certain restrictions when using deleted
records. For a full explanation of the limitations associated with deleted record
processing, see Initial Considerations in Chapter 2.

In this chapter, the Procedure Division input and output statements are presented
alphabetically. Each statement format is followed by a discussion of its options.

Chapter 12.1nput and Output Statements of the Procedure Division 12-1

ACCEPT Statement

The function of the ACCEPT statement is to obtain low-volume data from the
device assigned as the system input device (SYSIN) or from a display station
(SYSLOG) or an SSP-ICF session. The ACCEPT statement causes the transfer
of data into the specified identifier. There is no editing or error checking of the
incoming data. The formats of the ACCEPT statement are:

Format 1

ACCEPT identifier[FROM mnemonic-name]

Format 2

ACCEPT i denti fi er]FROM {~:~E}
TIME

L---~__

Format 3 J
ACCEPT identifier[FROM mnemonic-name].

[FOR {i~entifier-2}]
.llteral

12-2

Format 1 Considerations

You can use Format 1 to transfer data from an input device to the identifier. The
identifier can be a group item, an elementary alphabetic or alphanumeric item, or
a numeric data item with USAGE DISPLAY or USAGE COM PUTA TIONAL.

If you omit the FROM phrase, the system input device (requesting display station
or invoking procedure) is assumed. If the program is invoked by a procedure, a
record is read from the procedure for each ACCEPT statement until a /* is
encountered. If the records in the procedure are exhausted or if the program is
not invoked by a procedure, the requesting display station is used via SYSIN. If
end-of-file is encountered in the procedure, the requesting display station is used
via SYSIN and the program continues running as if no procedure had been
invoked but no notification of the original procedure will be displayed on the
status screens.

If you specify the FROM phrase, the mnemonic name must be associated with an
input or output device that you have specified in the SPECIAL-NAMES
paragraph. The input or output device can be the display station (REQUESTOR)
or the system operator's console (SYSTEM-CONSOLE). If the mnemonic name
is REQUESTOR and the job is entered by way of the JOBQ Command, the
system operator's console is used otherwise, SYSLOG is used and the requester
display station is prompted for input.

When the device is the system input device, the following rules apply:

• 	 An input record size of 120 characters is assumed.

• 	 If the identifier is more than 120 characters, characters beyond the length of
the identifier are truncated.

• 	 If the identifier is less than 120 characters, succeeding input records are read
until the storage area of identifier is filled. If the identifier is not an exact
multiple of 120 characters, that part of the last input record that does not fit
into the identifier is truncated.

When the device is the display station keyboard, the same rules apply as when the
device is the system input device except that the size is 60 characters.

Chapter 12.Input and Output Statements of the Procedure Division 12-3

The source of input data is dependent upon the type of program initiatioIll as
follows:

Method of Mnemonic name Mnemonic name Data Source
Program Associated with Associated with wbenFROM
Initiation System-Console Requestor Option Omitted

JOBQ System Console System Console Data from
next record in
the procedure.
If there is no
data in the
procedure, the
input comes
from the
system
console.

SRT System Console Display Station Display
Station

MRT System Console System Console Can produce
undesirable
results.
Specify the
FROM
option.

Input from the device can be stopped by entering a record beginning with /*. The
/* is moved into the ACCEPT identifier with blank padding or truncation on the
right. Any subsequent attempt to ACCEPT from the device is in error and no
further processing occurs. If the identifier is longer than the device size and the /*
is entered for a succeeding input record, the identifier is padded to the right with
blanks, and the /* is treated as input to the next ACCEPT from the device ..

12-4

FOl'8lat 2 Considerations

You can use Format 2 to transfer the system information (program date and
system time) to the identifier, using the rules for the MOVE statement without the
CORRESPONDING phrase. The identifier can be a group item, or an
elementary alphanumeric, alphanumeric edited, zoned decimal, packed decimal,
binary, or numeric edited item. The following discussion concerns the DATE,
DAY, and TIME phrases:

• 	 DATE has the implicit PICTURE 9(6) USAGE DISPLAY. The sequence of
data elements from left to right is: 2 digits for year of century, 2 digits for
month of year, 2 digits for day of month. Thus, July 4, 1982, is expressed as
820704.

The date is the last date specified in OCL for this job stream, or the current
program date if no date has been specified in OCL since sign-on. An MRT
program uses the system date at job initialization unless you explicitly specify
a date in the OCL for this job stream.

• 	 DAY has the implicit PICTURE 9(5) USAGE DISPLAY. The sequence of
data elements from left to right is: 2 digits for year of century, 3 digits for
day of year. Thus, July 4, 1982, is expressed as 82186, because July 4 is the
186th day of the year 1982.

• 	 TIME has the implicit PICTURE 9(8) USAGE DISPLAY. The sequence of
data elements from left to right is: 2 digits for hour of day, 2 digits for
minute of hour, 2 digits for second of minute, 2 digits for hundredths of
second. Thus, 2:41 p.m. is expressed as 14410000. The time returned is the
time when the ACCEPT statement is run.

The time is always rounded up to the nearest second; therefore, hundredths of
a second are always expressed as 00.

Chapter 12.Input and Output Statements of the Procedure Division 12-5

Format 3 Considerations

IBM Extension

Format 3 transfers data from the local data area or from the attribute record to
identifier-I.

If the mnemonic name is associated with LOCAL-DATA, the 512-byte local data
area associated with the requester display station is moved into identifier-I.

If the mnemonic name is associated with ATTRIBUTE-DATA, identifier-l must
describe an attribute data record. The attributes of the specified symbolic ID are
moved into identifier-I. The TRANSACTION file must be open for this request.

The move into identifier-l for both LOCAL-DATA and ATTRIBUTE-DATA
takes place according to the rules for the MOVE statement for analphanurneric
group move without the CORRESPONDING phrase.

The FOR phrase is allowed only when you associate the mnemonic name with
either ATTRIBUTE-DATA or LOCAL-DATA. The literal or identifier-2 is the
symbolic ID of the display station or SSP-ICF session for which data is retrieved.
A symbolic ID of blanks (or none specified) retrieves the attributes or local data
from the requester for which an input or output operation was most recently
performed. In a program that has no TRANSACTION file, the local data is
retrieved from the requester for SRT batch jobs. The symbolic ID must be a
2-character, alphanumeric data item or literal associated with the requester.

J
Note: If the program is an MRT program, there is a local data area for each
requester and an additional local data area for the program. Prior to the
successful completion of the first requester's first input or output operation, this
MRT local data area can be accessed. A symbolic ID of blanks will return the
MRT's local data area.

If the mnemonic name is associated with either SYSTEM-CONSOLE or
REQUESTOR, the FOR phrase is not valid.)

1....-_________ End of IBM Extension __________-'

12-6

ACQUIRE Statement

The ACQUIRE statement attaches a display station or an SSP-ICF session to the
TRANSACTION file.

Format

literal FOR file-name
identifier

The value of the literal or identifier specifies the symbolic identification of a
display station or an SSP-ICF session that is to be associated with the file name.
To be acquired, a display station must be in stand-by mode. To acquire an
SSP-ICF session, the session identifier must be specified by the SYMID.parameter
of the OCL SESSION statement for the job step.

If you specify a literal, it must be a 2-character, alphanumeric literal. If you
specify an identifier, it must refer to a 2-character, alphanumeric data item.

For display stations, the first character must be alphabetic (A through Z). For
SSP-ICF sessions, the first character must be numeric (0 through 9) and the
second character must be alphabetic (A through Z) or a special character ($, #, or
@).

The file name must refer to a file whose organization is TRANSACTION. For
additional information on TRANSACTION files and interactive processing, refer
to Chapter 7.

Chapter 12.Input and Output Statements of the Procedure Division 12-7

CLOSE Statement

The CLOSE statement stops file processing, with an optional lock.

Format

,..--------.,
IfREEL.}[WITH NO REWIND]I
~.UNIT FOR REMOVAL 1

fi le-name-l L.."'I .. _..;!I

WIT H~1:!.o2~ t!!.o_}.1

{LOCK

r--------

ifREEl}[WITH NO REWIND]1

iUN1T FOR REMOVAL I

, file-name-2
-;:UT~~ !¥~H!.tr _.lI

LLOCK r
J

Each file name specifies a file with which the CLOSE statement is used. The files
need not have the same organization or access method. The files must not be sort
or merge files.

A CLOSE statement can be run only for a file in an open mode. After a CLOSE
statement is successfully run, the record area associated with the file name is no
longer available. An unsuccessful CLOSE statement makes the record datil area
undefined.

After a CLOSE statement is successfully run for the file, an OPEN statemtmt for
the file must be run before any other input or output statement (except a
SORT/MERGE statement with the USING or GIVING phrase) can refer
explicitly or implicitly to the file. If you specify the FILE STATUS clause in the
file control entry, the associated status key is updated when the CLOSE statement
is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

12-8

http:H~1:!.o2

r------------- IBM Extension -------------,

TRANSACTION File Extended File Status Key: the extended file status key for
a TRANSACTION file is four characters long. Characters 1 and 2 contain the
ICF major return code; characters 3 and 4 contain the ICF minor return code.
ICF return codes are described in the manual Interactive Communications Feature:
Reference, SC21-7910. See Appendix D in this COBOL manual for a list of status
keys and their meanings.

L...-__________ End of IBM Extension __________...J

If the file is open and a CLOSE statement is unsuccessfully run, the
EXCEPTION/ERROR procedure (if specified) for this file is run. If a CLOSE
statement is not run for an open file before a STOP RUN statement for this
program is run, results are unpredictable.

When you specify the LOCK option, you ensure that the file cannot be opened
again in the program.

The REEL/UNIT option, the FOR REMOVAL option, and the NO REWIND
option are treated as comments.

For special considerations concerning spooled printer files, see Some Initial
Considerations in Chapter 2.

Chapter 12.Input and Output Statements of the Procedure Division 12-9

DELETE Statement

The DELETE statement logically removes a record from an indexed or a relative
file.

Format

DELETE filQ-namQ RECORD [INVALID KEY imPQratiVQ-statQment]

When the DELETE statement is run, the associated file must be opened in 1-0
mode. The file also must be created, as a delete-capable file. This is done by
specifying DFILE-YES on the FILE OCL statement or the BLDFILE procedure
when the file is created. For more information on creating delete-capable files,
see the manual System Reference. You must define the file name in an FD entry
in the Data Division, and it must be the name of an indexed or a relative file.
After a successful DELETE statement, the record is logically removed from the
file and can no longer be accessed. For indexed files, the space that the record
occupied cannot be used until the file is copied or reorganized. The DELETE
statement does not affect the contents of the record area associated with the file
name.

A record may be deleted by using a random access DELETE with no WITH J
DUPLICATES clause. This record is determined by the contents of the data
names defined in the RECORD KEY clause.

Status Key--General Considerations

If you specify the FILE STATUS clause in the file control entry, a value is placed
in the specified status key (the 2-character data item named in the FILE STATUS
clause) during the running of any request on that file; the value indicates the
status of that request. The value is placed in the status key before any
EXCEPTION/ERROR Declarative or INVALID KEY/AT END option
associated with the request is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

INVALID KEY Condition

The INVALID KEY condition can occur when a DELETE statement is run.
When the INVALID KEY condition is recognized, the actions are taken in the
following order:

1. 	 If you specify the FILE-STATUS clause in the file control entry, a value is
placed into the status key (status key 1 = 2) to indicate an INVALID KEY
condition (see Appendix D).

12-10

2. 	 If you specify the INVALID KEY option in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any EXCEPTION/ERROR declarative procedure specified for this file is not
performed.

3. 	 If you do not specify the INVALID KEY option, but you do specify an
EXCEPTION/ERROR declarative procedure for the file, the
EXCEPTION/ERROR procedure is performed.

When an INVALID KEY condition occurs, the input or output statement that
caused the condition is unsuccessful. If you do not specify the INV ALID KEY
option for a file, you must specify an EXCEPTION/ERROR procedure. If an
error other than an INVALID KEY condition occurs, the EXCEPTION/ERROR
procedure is run.

DELETE Statement with Sequential Access Mode

For a file in sequential access mode, the last I/O statement must be a successful
READ statement. When the DELETE statement is run, the system logically
removes the record retrieved by that READ statement. The current record
pointer is not affected by the DELETE statement.

You must not specify the INVALID KEY option for a file in sequential access
mode. You should, however, specify an EXCEPTION/ERROR procedure.

l.. DELETE Statement with Random or Dynamic Access Mode

In random or dynamic access mode, DELETE statement results depend on
whether the file organization is indexed or relative.

Indexed Files: When the DELETE statement is run in random or dynamic access
mode and WITH DUPLICATES is not specified in the RECORD KEY clause,
the system logically removes the record identified by the contents of the
RECORD KEY data item. If the file does not contain such a record, an
INVALID KEY condition exists.

When the DELETE statement is run in random or dynamic access mode and
WITH DUPLICATES is specified in the RECORD KEY clause for the file, the
last input or output statement for the file must have been a successful READ
statement. The record read by that statement is the one that is deleted. The
READ statement is required to ensure that the proper record is deleted when
there are duplicate records. The INVALID KEY clause must not be specified.

Relative Files: When the DELETE statement is run in random or dynamic access
mode, the system logically removes the record identified by the contents of the
RELATIVE KEY data item. If the file does not contain such a record, an
INVALID KEY condition exists.

Chapter 12.Input and Output Statements of the Procedure Division 12-11

DELETE Statement Considerations

JThe DELETE statement logically removes the record from the file. For relative
files, the space is then available for a new record with the same RELATIVE KEY
value. For indexed files, a new record with the same RECORD KEY value can
then be added.

12-12

DISPLAY Statement

The DISPLAY statement transfers low-volume data to an output device.

Format 1

DISPLAY_{ i denti fi er-l} [, i denti fer-2] • • • [UPON mnemoni c-name]

literal- 1 , literal-2

Format 2

UPON mnemonic-nameDISPLAY {identifier-I}[, identifier-2]

literal-l , literal-2

[FOR {literal-3 }]

identifier-3

Format 1 Considerations

The DISPLAY statement transfers the contents of each operand to the output
device in the left-to-right order in which the operands are listed. When a
DISPLAY statement is run, the data contained in the sending field is transferred
to the output device. The size of the sending field is the total character count of
all operands listed. If the total character count is less than the device's maximum
character count, the remaining rightmost characters are padded with spaces. If
the total character count exceeds the maximum, as many records are written as
are needed to display all operands. Any operand being printed when the end of a
record is reached is continued in the next record.

r------------ IBM Extension -------------,

Identifiers described as USAGE COMPUTATIONAL-3 or USAGE
COMPUTATIONAL-4 are converted to zoned decimal. No other items require
conversion. Signed noninteger numeric literals are allowed.

'--__________ End of IBM Extension __________---'

Signed values in numeric fields cause the last character to show both the sign and
the number. For example, if you do not specify SIGN WITH SEPARATE
CHARACTER and two numeric items have the values -34 and 34, they are
displayed as 3M and 34, respectively. If you specify SIGN WITH SEPARATE
CHARACTER, a + or a - sign is displayed as either leading or trailing,

Chapter 12.Input and Output Statements of the Procedure Division 12-13

depending on how you specified the number. If you specify a figurative constant
as one of the operands, only a single figurative constant is displayed. ..,J
If you omit the UPON phrase, data is written to the current SYSLIST device.
When you specify the UPON phrase, the mnemonic name must be associated in
the SPECIAL-NAMES paragraph with either the display station (REQUESTOR)
or the system operator's console (SYSTEM-CONSOLE). The maximum logical
record size is assumed for each device as follows:

Device Maximum Logical Record Size

SYSLIST 120 characters

Display station 120 characters

System console 120 characters

The location of the output data is dependent upon the type of program initiation
as follows:

Mnemonic name Mnemonic name UPON
Method of Associated with Associated with Option
Initiation System-Console Requestor Omitted

JOBQ System console System console Current
SYSLIST
device

SRT System console Display station Current
SYSLIST
device

MRT System console System console Current
SYSLIST
device

Format 2 Considerations

IBM Extension

Format 2 of the DISPLAY statement can be used when the mnemonic name is
associated with the system name LOCAL-DATA. For a description of the
LOCAL-DATA area, see the LOCAL statement in the chapter on OCL
statements in the System Reference.

Literal-lor identifier-l is written to the Sl2-byte local data area associated with
the requestor.

Literal-3 or identifier-3 must be the valid symbolic ID of an attached requester.
Identifier-3 must be a 2-character, alphanumeric data item; literal-3 must be a
2-character, nonnumeric literal.

'-_________ End of IBM Extension ___________-'

12-14

L
DROP Statement

The DROP statement releases a display station or an SSP-ICF session from its
association with the TRANSACTION file.

Format

,,',.,#1"".
i PROP { i teral .} FROM fi Ie-name

identifier

The value of the literal or identifier specifies the symbolic identification of the
attached display station or SSP-ICF session that is to be released.

If you specify a literal, it must be a 2-character alphanumeric literal. If you
specify an identifier, it must refer to a 2-character, alphanumeric data item.

You can only use the DROP statement with a TRANSACTION file. When a
TRANSACTION file is closed or is at the end of a program, all attached display
stations and SSP-ICF sessions are implicitly released.

Chapter 12.Input and Output Statements of the Procedure Division 12-15

OPEN Statement

The OPEN statement initiates the processing of files. The format of the OPEN
statement is as follows:

Format l--Sequential Files

r;:------~

INPUT fi la-name- 1J[REVERSED]1

I WITH NO REWIND 1

&.;. _____ ...1'

rr-----"'iI
: fi la-name-2I[REVERSED]1

1WITH NO REWIND 1
,,-----_.1
rr-----~

OPEN OUTPUT fi la-name-3 I[WITH NO REWIND]I
1______ :1

[fi l.-n.m.-~ ~~;;-;-~:jll ...•

,------~J
1-0 file-name-5.[. file-name-6) •••

EXTEND file-name-7 [. file-name-a) •••

Format 2--Indexed and Relative Files

INPUT file-name-l[, file-name-21 ...
OPEH { OUTPUT fil.e-name-3[, file-name-4J .. }. . .

1-0 file-nama-5[, file-name-61 .•.

Format 3--Transaction Files

OPEN 1-0 fi le-name-l ...

Each file name specifies a file with which the OPEN statement is used. The files
need not have the same organization or access method. Each file name must be
defined in an FD entry in the Data Division; it must not name a sort or merge
file.

12-16

L
A successful OPEN statement determines the availability of the file and places
that file in the open mode. Before the OPEN statement is successfully run for a
given file, no statement can be run, except for a SORT or MERGE statement
with the USING or GIVING phrase, that refers explicitly or implicitly to that
file. A successful OPEN statement makes the associated record area available to
the program; it does not obtain or release the first data record.

You must specify at least one of the phrases (INPUT, OUTPUT, 1-0, or
EXTEND). You can specify more than one file name in each phrase. The
INPUT, OUTPUT, 1-0, or EXTEND phrases can appear in any order.

The INPUT phrase lets you open the file for input operations. The 1-0 phrase
lets you open the file for both input and output operations. You can specify the
1-0 phrase only for disk storage or TRANSACTION files. You must not specify
the INPUT or 1-0 phrases when the file has not been created.

The OUTPUT phrase lets you open the file for output operations. You can
specify this phrase only when the file is being created. You must not specify the
OUTPUT phrase for a file that contains records or that did contain records that
have been deleted. All printer files used in COBOL programs are opened for
OUTPUT.

Note: The FILE OCL statement for an output file must contain a DISP-NEW
parameter for proper processing.

If the FILE OCL statement for an output file contains a DISP-OLD, then OPEN
will delete the file and open a new file by the same name as the data names
defined in the RECORD KEY clause. This applies only to indexed or alternative
indexed files.

The EXTEND phrase is valid only for sequential files and lets you open the file
for output operations. It is discussed under Format l--Sequential Files later in
this chapter.

You can open a file for INPUT, OUTPUT, 1-0, or EXTEND in the same
program. After the first OPEN statement runs for a given file, each subsequent
OPEN statement must be preceded by a successful CLOSE statement without the
LOCK phrase.

Note: System error diagnostics will be issued if there is a difference between the
key length as defined in the program and the key length as found in the index file
or the alternative index file.

If you specify the FILE STATUS clause in the file control entry, the associated
status key is updated when the OPEN statement is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

Chapter 12.lnput and Output Statements of-the Procedure Division 12-17

r------------ IBM Extension ---------------,

For indexed files, a file status of 95 is returned after a successful OPEN statement
when:

• 	 The WITH DUPLICATES phrase is specified and the index to the file does
not have the duplicates attribute.

• 	 The WITH DUPLICATES phrase is not specified and the index to the file
has the duplicates attribute.

Processing files when either of these conditions exist can cause unpredictable
results.

If an OPEN statement is not successful, the EXCEPTION/ERROR procedure (if
specified) for this file is run.

L...-__________ End of IBM Extension ___________-'

IBM Extension

TRANSACTION File Extended File Status Key: The extended file status key for

a TRANSACTION file is four characters long. Characters 1 and 2 contain the

ICF major return code; characters 3 and 4 contain the ICF minor return code.

ICF return codes are described in the manual Interactive Communications Feature:

Reference. See Appendix D in this COBOL manual for a list of status keys and"

their meanings."

L...-__________ End of IBM Extension __________-'

Both the REVERSED phrase and the NO REWIND phrase are treated as
comments.

Current Record Pointer

The current record pointer identifies which record is accessed by a sequential
input request. The OPEN statement positions the current record pointer at the
first record in the file.

The concept of the current record pointer has no meaning for files that are
accessed randomly, TRANSACTION files, or output files. The current record
pointer is not used for random only retrieval of input records or for output files.

Format I--Sequential Files

The EXTEND phrase lets you open the file for output operations. When an
OPEN EXTEND statement is run, the file is prepared for the addition of records
immediately following the last record in the file. Subsequent WRITE statements
add records as if the file had been opened in OUTPUT mode. You can specify
the EXTEND phrase when a file is being created. You can also specify the
EXTEND phrase for a file that contains records or that did contain records that
have been deleted.

12-18

The EXTEND phrase has no meaning for a printer file, and the file is opened for
output.

The OPEN INPUT or OPEN 1-0 statement sets the current record pointer to the
first record existing in the file. If no records exist in the file, the current record
pointer is set so that when the first READ statement is run, an AT END
condition results.

For an input file, if you specify SELECT OPTIONAL in the file control entry,
the OPEN statement causes the program to check for the presence or absence of
this file. If the file is absent, the first READ statement for this file causes the AT
END condition to occur.

For special considerations concerning spooled printer files, see Some Initial
Considerations in Chapter 2.

Figure 12-1 shows the open modes for sequential files and the statements that are
permitted with each mode.

Open Mode
Statement Input output Input/Output Extend

READ X X

WRITE X X

REWRITE X

Figure 12-1. Sequential File Open Modes, and Permissible Statements

Format 2--Indexed and Relative Files

When the OPEN INPUT or OPEN 1-0 statement is run, the current record
pointer is set to the first record existing in the file; the record with the lowest
record key value (indexed file) or lowest relative record number (relative file) is
considered to be the first record in the file. If no records exist in the file, the
current record pointer is set so that the first READ statement results in an AT
END condition.

Chapter 12.Input and Output Statements of the Procedure Division 12-19

Format 3-TRANSACTION Files

.------------ IBM Extension ------------.,

A TRANSACTION file must be opened with the 1-0 phrase.

'--_________ End of IBM Extension _________--'

Figure 12-2 shows the open modes for indexed and relative files, and the
statements that are permitted with each mode.

Open Mode

File

Access Mode Statement Input Output Input/Output

Sequential READ X X

WRITE X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Figure 12-2. Indexed and Relative File Open Modes, and Permissible Statements

12-20

L
READ Statement

The READ statement makes a record available to the object program.

For sequential access, the READ statement makes available the next logical
record from a disk file. For random access, the READ statement makes available
a specified record from a disk file. When the READ statement is performed, the
associated file must be open in the INPUT or 1-0 mode. The formats of the
READ statement are as follows:

Format 1-8equential Access (Sequential Files)

READ file-name RECORD [INTO identifier] [AT END imperative-statement]

Format 2-8equential Access (Relative and Indexed Files)

READ file-name [NEXT] RECORD [INTO identifier]

[AT END imperative-statement]

Format 3--Random Access (Relative Files)

READ file-name RECORD [INTO indentifier]

[INVALID KEY imperative-statement]

Chapter 12.Input and Output Statements of the Procedure Division 12-21

-- ----

--

--

Format 4--Random Access (Indexed Files)

READ file-name RECORD [INTO identifier]

[INVALID KEY imperative-statement]

Format 5--Indexed File Extensions (Dynamic Access Only)

READ file-name FIRST RECORD [~ i dentlfie']

LAST

PRIOR

[AT EttD imperative-statement]

Format 6--Sequential Access (TRANSACTION File)

READ file-name RECORD

[HIT 0 i denti fi er-l] [TERMINAL IS rdent ;t;e,-2} 1

literal-l

[NO DATA imperative-statement-I]

[AT END imperative-statement-2]

..........

The file name must be defined in a Data Division FD entry and must not name a
sort or merge file. If more than one record description entry is associated with
the file name, these records automatically share the same storage area; that is,
they are implicitly redefined. Before a READ statement is performed, the storage
area is filled with blanks.

12-22

After a READ statement is performed, only those data items within the range of
the current record are replaced; data items stored beyond that range are blanks.
Figure 12-3 illustrates this concept. If no data items are defined, the entire record
will be blank.

The FD entry for a disk file is:

FD INPUT-FILE LABEL RECORDS STANDARD.

01 RECORD-l PICTURE X(30).

01 RECORD-2 PICTURE X(20).

After RECORD-l is read, the input area contains:

ABCDEFGHDKLMNOPQRSTUVWXYZ1234

If RECORD-2 consists of:

01234567890123456789

After RECORD-2 is read, the input area contains:

01234567890123456789

(Characters in the input area following RECORD-2 are set to

blank.)

Figure 12-3. A READ Statement Example with Multiple Record Descriptions

If you specify the FILE STATUS clause in the file control entry, the associated
status key is updated when the READ statement is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

r------------- IBM Extension --------------,

TRANSACTION File Extended File Status Key: The extended file status key for
a TRANSACTION file is four characters long. Characters 1 and 2 contain the
ICF major return code; characters 3 and 4 contain the ICF minor return code.
ICF return codes are described in the manual Interactive Communications Feature:
Reference. See Appendix D of this COBOL manual for a list of status keys and
their meanings.

1...-__________ End of IBM Extension __________.....

Chapter 12.Input and Output Statements of the Procedure Division 12-23

Current Record Pointer

The current record pointer identifies which record will be accessed by a sequential
input request.

For a sequential READ statement, the following considerations apply:

• 	 If an OPEN or a START statement positioned the current record pointer, the
record identified by the current record pointer is made available.

• 	 If a previous READ statement positioned the current record pointer, the
current record pointer is updated to point to the next existing record in the
file; that record is then made available.

The concept of the current record pointer has no meaning for files that are
accessed randomly, TRANSACTION files, or output files. The current record
pointer is not used for random retrieval of input records or for output files.

Following an unsuccessful READ or START statement, the contents of the
associated record area and the position of the current record pointer are
undefined.

INTO Identifier Phrase

The identifier you specify must be the name of an entry in the Working-Storage
Section or the Linkage Section or of a record description for another previously .~

opened file. The file name and identifier must not refer to the same storage area.,

The INTO identifier phrase makes a READ statement equivalent to:

READ file-name RECORD.

MOVE record-name TO identifier.

After a successful READ statement, the contents of the current record become
available both in the record name and the identifier.

When you specify the INTO identifier phrase, the current record is moved from
the input area to the identifier area according to the rules for the MOVE
statement without the CORRESPONDING phrase. Any subscripting or indexing
associated with identifier is evaluated after the record has been read and
immediately before it is transferred to identifier.

You must not specify the INTO identifier phrase when the file contains records of
various sizes, as indicated by their record descriptions.

12-24

Format 1 and Format 2--Sequential Access

You must use formats land 2 for all files in sequential access mode and also for
files in dynamic access mode when record retrieval is sequential. A format 2
READ statement makes available the next logical record from the file. The
record that is considered next depends upon the file organization.

NEXT RECORD Phrase: The next record is the succeeding logical record in key
sequence. For indexed files, the key sequence is the ascending values of the
RECORD KEY. For relative files, the key sequence is the ascending values of
relative record numbers for records that exist in the file.

Before the READ statement is performed, the current record pointer must be set
by a successful OPEN, START, or READ statement. When the READ statement
is performed, the record indicated by the current record pointer is made available,
if it is still accessible through the path indicated by the current record pointer. If
the record is no longer accessible (for example, as a result of deletion of the
record), the current record pointer is updated to indicate the next existing record
in the file, and that record is made available.

For a file that allows duplicate keys (the extension, WITH DUPLICATES, is
specified in the RECORD KEY clause), the duplicate records are retrieved in a
first-in, first-out sequence.

For files in sequential access mode, the NEXT phrase can, but need not, be
specified.

If you specify the RELATIVE KEY clause in the file control entry for
sequentially accessed relative files, the READ or START statement updates the
RELATIVE KEY data item to indicate the relative record number of the record
being made available.

Chapter 12.Input and Output Statements of the Procedure Division 12-25

A T END Condition: If no succeeding logical record exists in the file when the
READ statement is performed, an AT END condition occurs, and the READ
statement is unsuccessful. The following actions are taken, in the following order:

1. 	 If you specify the FILE STATUS clause, the status key is updated to indicate
an AT END condition.

2. 	 If you specify the AT END phrase, control is transferred to the AT END
imperative statement. Any EXCEPTION/ERROR procedure for this file is
not performed.

3. 	 If you do not specify the AT END phrase, any EXCEPTION/ERROR
procedure for this file is performed.

When the AT END condition is recognized, the position of the current record
pointer is undefined, and a sequential access READ statement for this file must
not be run without one of the following first being run:

• 	 A successful CLOSE statement followed by a successful OPEN statement

• 	 A successful START statement for this file

• 	 A successful random access READ statement for this file (dynamic access).

If an error other than an AT END condition occurs, the EXCEPTION/ERROR
condition is run.

Format 3 and Format 4--Random Access

You must specify format 3 or 4 for indexed and relative files in random access
mode and also for files in the dynamic access mode when record retrieval is
random.

INVALID KEY Condition: The INVALID KEY condition can occur when a
random access READ statement is run. When the INVALID KEY condition is
recognized, the actions are taken in the following order:

1. 	 If you specify the FILE-STATUS clause in the file control entry, a value of 2
is placed in status key 1 to indicate an INVALID KEY condition (see
Appendix D).

2. 	 If you specify the INVALID KEY phrase in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any EXCEPTION/ERROR declarative procedure specified for this file is not
performed.

3. 	 If you do not specify the INVALID KEY phrase, but you do specify an
EXCEPTION/ERROR declarative procedure for the file, the
EXCEPTION/ERROR procedure is performed.

When an INVALID KEY condition occurs, the input or output statement that
caused the condition is unsuccessful. If you do not specify the INVALID KEY
phrase for a file, you must specify an EXCEPTION/ERROR procedure. If an

12-26

error other than an INVALID KEY condition occurs, the EXCEPTION/ERROR
procedure is run.

The manner in which the READ statement is performed depends on the file
organization, as explained in following sections.

Files with Relative Organization: The format 3 READ statement sets the current
record pointer to the record whose relative record number is contained in the
RELATIVE KEY data item and makes that record available. If the file does not
contain such a record, the INVALID KEY condition exists, the position of the
current record pointer is undefined, and the READ statement is unsuccessful.

Files with Indexed Organization: The format 4 READ statement causes the value
of the RECORD KEY data item to be compared with the value of the
corresponding key data item in the file records until the first record having an
equal value is found. The current record pointer is positioned to this record,
which is then made available. If no record can be identified, an INVALID KEY
condition exists, the position of the current record pointer is undefined, and the
READ statement is unsuccessful.

IBM Extension

For a file that allows duplicate keys (WITH DUPLICATES is specified in the
RECORD KEY clause), only the first record in a series of records with duplicate
keys can be retrieved when ACCESS IS RANDOM is specified in the file control
entry. Each duplicate record must be retrieved using sequential READ
statements. Therefore, it is recommended that files with duplicate keys be
processed with sequential or dynamic access.

'--__________ End of IBM Extension __________~

READ Statement with Dynamic Access Mode

For files with indexed or relative organization, you can specify a dynamic access
mode in the file control entry. In dynamic access mode, you can specify either
sequential or random record retrieval, depending on the format used.

For sequential retrieval, you must specify format 2 with the NEXT phrase. All
other rules for sequential access apply.

For random retrieval, you must specify format 3 or 4. All other rules for random
access apply.

IBM Extension

For a file that allows duplicate keys (WITH DUPLICATES specified in the
RECORD KEY clause), sequential retrieval must be used to read any record with
a duplicate key except the first such record.

1...-__________ End of IBM Extension __________---1

Chapter 12.Input and Output Statements of the Procedure Division 12-27

Each successful sequential or random READ updates the current record pointer
to the logical record.

Format 5 - Indexed File Extensions (Dynamic Access Only)

r------------- IBM Extension -------------,

READ FIRST, LAST or PRIOR may be used for indexed files with DYNAMIC
access and with a device type of DATABASE.

For records where the current record pointer is indicating the first existing record
in the file, then if PRIOR is specified, an End-Of-File (EOF) condition will exist.

If READ PRIOR is issued when the current record pointer is undefined, a "no
current record pointer for I/O request" condition will be met. For example, if
READ PRIOR is issued after an end of file condition is encountered, then this
error will occur.

For files which are empty (null file), an End-Of-File condition will exist for any
READ operation.

In all remaining incidences:

• 	 If FIRST is specified, the current record pointer is updated to indicate the
first existing record in the file and that logical record is made available.

J• 	 If LAST is specified, the current record pointer is updated to indicate the last
existing record in the file and that logical record is made available.

• 	 If PRIOR is specified, and the current record pointer is not positioned at the
first record in the file, then the current record pointer is updated to indicate
the preceding existing record and that logical record is made available.

If you READ past the end of the file, or run any other operation that produces a
file status of 94 (no current record pointer for I/O request), then you cannot
recover by using READ PRIOR. You must specify a START statement, READ
FIRST, READ LAST, or a RANDOM READ statement to recover.

Format 6 - TRANSACTION Files

Format 6 must be used for the TRANSACTION file. The format 6 READ
statement makes a record available from the TRANSACTION file.

The TRANSACTION file must be open in the 1-0 mode at the time the READ
statement is performed.

A successful READ statement fills in the terminal ID and function key fields of
the CONTROL-AREA, if specified.

12-28

TERMINAL Phrase: The record to be made available by a READ statement is
determined as follows:

,
• 	 If you s~cify the TERMINAL phrase, the data record is made available

either from identifier-2 or from literal-l when identifier-2 is blank.
Identifier-2 or literal-l must be the symbolic ID of an attached display station
or an SSP-ICF session. Identifier-2 must be a 2-character, alphanumeric data
item; literal-l must be a 2-character, nonnumeric data item. When both
identifier-2 and literal-l are blank, the READ statement is performed as
though the TERMINAL phrase were omitted.

• 	 When you omit the TERMINAL phrase, the default values are as follows:

a single display station or SSP-ICF session is attached to the file, the
default value is that display station or SSP-ICF session.
multiple display stations or SSP-ICF sessions, or both, are attached to the
file, there is no default value. The data record made available is the first
record input from any attached display station or SSP-ICF session.

Note: Use of the TERMINAL phrase forces the next input to come from the
specified display station or SSP-ICF session, unless literal-l and identifier-2
contain blanks.

NO DA TA Phrase: When you specify the NO DATA phrase, the imperative
statement specified is performed if a record cannot immediately be made available
at the time the READ statement is run. After the imperative statement is run, the
next sequential statement is performed.

When you do not specify the NO DATA phrase, the program waits until a record
becomes available.

A T END Condition: The AT END condition occurs when there are no attached
display stations or SSP-ICF sessions for which an invite is outstanding when an
input operation (READ) was requested, and the program is not an NEP
(never-ending, or long-running, program). The AT END condition occurs for an
NEP when there are no attached display stations or SSP-ICF sessions with an
outstanding invite, and a STOP SYSTEM command has been entered.

Input is implicitly invited with each WRITE statement, but can be suppressed by
an option on the $SFGR format or selected SSP-ICF predefined formats. When
the AT END condition occurs, the READ statement is unsuccessful, and
imperative-statement-2 is performed.

L..-__________ End of IBM Extension __________.....

Additional information can be found under the READ Statement, AT END
Phrase, in Chapter 7.

Chapter 12.1nput and Output Statements of the Procedure Division 12-29

REWRITE Statement

The REWRITE statement logically replaces an existing record in a disk file.
When the REWRITE statement is performed, the associated disk file must be
open in 1-0 mode.

Format

RE1.JRITE record-name [FROM ;dent;f;er] [INVALID KEY ;mperat;ve-statement]

The record name must be the name of a logical record in the File Section of the
Data Division. You must not associate the record name with a sort or merge file.
You can qualify the record name, but you must not subscript or index it. The
number of character positions in the record name must equal the number of
character positions in the record being replaced.

The REWRITE statement replaces an existing record in the file with the
information contained in the record name.

After a successful REWRITE statement, the logical record is no longer available
in the record name unless the associated file is named in a SAME RECORD
AREA clause. In this case, the record is also available as a record of the other
files named in the SAME RECORD AREA clause.

The current record pointer is not affected when the REWRITE statement is run.

The data item(s) specified in the RECORD KEY clause must be given a value
prior to the running of the WRITE statement.

Note: Alternative index considerations:

• 	 A duplicate key error is produced if an index is set over a sequential file
or relative file and duplicate keys are not allowed. This error would
result even if a program access to the file is sequential or relative when
attempting to WRITE or REWRITE a record which happens to have
the same KEY value as an existing record.

• 	 Any WRITE to the alternative index file built over a relative file will
result in an invalid operation error status.

If you specify the FILE STATUS clause in the file control entry, the associated
status key is updated when the REWRITE statement is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

12-30

FROM Identifier Phrase

L 	 The identifier you specify must be the name of an entry in the Working-Storage
Section or the Linkage Section or of a record description for another previously
opened file. The record name and the identifier must not refer to the same
storage area. When the FROM identifier phrase is specified, an implicit move
operation is performed according to MOVE statement rules without the
CORRESPONDING phrase.

The FROM identifier phrase makes a REWRITE statement equivalent to:

MOVE identifier TO record-name

REWRITE record-name.

After a successful REWRITE statement, the current record may no longer be
available in the record name, but is still available in the identifier.

INVALID KEY Condition

The INV ALID KEY condition can occur when a REWRITE statement is run.
When the INVALID KEY condition is recognized, the actions are taken in the
following order:

1. 	 If you specify the FILE-STATUS clause in the file control entry, a value of 2
is placed in status key I to indicate an INVALID KEY condition (see
Appendix D).

2. 	 If you specify the INVALID KEY phrase in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any EXCEPTION/ERROR declarative procedure specified for this file is not
performed.

3. 	 If you do not specify the INVALID KEY phrase, but you do specify an
EXCEPTION/ERROR declarative procedure for the file, the
EXCEPTION/ERROR procedure is performed.

When an INVALID KEY condition occurs, the input or output statement that
caused the condition is unsuccessful. If you do not specify the INVALID KEY
phrase for a file, you must specify an EXCEPTION/ERROR procedure. If an
error other than an INVALID KEY condition occurs, the EXCEPTION/ERROR
procedure is run.

REWRITE Statement for Sequential Files

For files accessed sequentially, the last successful input or output statement for
the file must be a READ statement. When the REWRITE statement is run, the
record retrieved by that READ statement is logically replaced.

You must not specify the INVALID KEY phrase for a file with sequential
organization. You must specify an EXCEPTION/ERROR procedure.

Chapter 12.Input and Output Statements of the Procedure Division 12-31

REWRITE Statement for Indexed Files

The record replaced is specified by the value contained in the RECORD KEY
clause. 	 The following condition holds if the indexed file has sequential access,
random access, or DUPLICATE keys allowed; the last I/O operation to the file
must be a READ and the RECORD KEY must not change between the READ
and the REWRITE.

IBM Extension

If the WITH DUPLICATES phrase is specified in the RECORD KEY clause for
the file, the last input or output statement for the file must have been a successful
READ statement. The record read by that statement is the one that is replaced.
The READ statement is required to ensure that the proper record is replaced
when there are duplicates.

You should not change the primary key value for the record between the READ
and subsequent REWRITE statements. If this is done, a File Status code 21
(sequence error) is issued.

'"-__________ End of IBM Extension _________----'

If the file is accessed randomly or dynamically and WITH DUPLICATES is not
specified in the RECORD KEY clause, any record referenced by the RECORD
KEY clause is rewritten.

.-------------- IBM Extension ---------.----, J
Note: 	 You cannot change the value of the primary key through an alternative

index. Thus, you cannot change the value of a record which is physically
associated with the primary index of aftle.

The record to be rewritten is determined by using the value (s) found in the
data item(s) defined in the RECORD KEY clause. When using RANDOM
or DYNAMIC access, the WITH DUPLICATES phrase is not specified in
the RECORD KEY clause.

'"-__________ End of IBM Extension ___________--'

An INVALID KEY condition exists when the access mode is sequential or is
random or dynamic and the WITH DUPLICATES phrase was specified in the
RECORD KEY clause, and the value contained in the RECORD KEY of the
record to be replaced does not equal the RECORD KEY data item of the last
record retrieved from the file.

If this condition exists, the INV ALID KEY imperative statement is performed,
the REWRITE statement is unsuccessful, the updating operation does not take
place, and the data in the record name is unaffected.

12-32

L
REWRITE Statement for Relative Files

For relative files in the sequential access mode, you must not specify the
INVALID KEY phrase. You must specify an EXCEPTION/ERROR procedure.

When the access mode is random or dynamic, you specify the record to be
replaced in the RELATIVE KEY data item. If the file does not contain the
record specified, an INV ALID KEY condition exists, and if specified, the
INVALID KEY imperative statement is performed. The updating operation does
not take place, and the data in record-name is unaffected.

Chapter 12.Input and Output Statements of the Procedure Division 12-33

START Statement

The START statement provides a means of positioning within an indexed or
relative file for subsequent sequential record retrieval. When the START
statement is performed, the associated indexed or relative file must be open in
INPUT or 1-0 mode.

Format

IS 	EQUAL TO
IS 	=

START fi1.-no•• [KEY IS GREATER THAN data-no••-1 [. dato-namo-2 [. data-na••-.]] i
IS 	>
IS 	NOT lESS THAN
IS 	NOT -<­

[INVALID KEY imperative-statement]

KEY Phrase

The file name must name a file with sequential or dynamic access. You must
define the file name in an PD entry in the Data Division, and you must not name
a sort or merge file.

J
When you do not specify the KEY phrase, the EQUAL TO relational operator is
implied.

When you specify the KEY phrase, the comparison specified in the KEY
relational operator is made between data-name-l and the corresponding key field
associated with the file's records. Data-name-l, data-name-2, and data-name-3
can be qualified; they cannot be subscripted or indexed. The current record
pointer is positioned to the logical record in the file with a matching key field.

Data-name-l must refer to one of the following:

• 	 The data-item named in the RELATIVE KEY clause associated with
file-name.

• 	 The data-item named in the RECORD KEY clause.

• 	 A data-item in the file referred to by file-name, and that has the same starting
position as the RECORD KEY, and a length less than or equal to that of the
RECORD KEY.

12-34

IBM Extension

When you specify the KEY phrase and more than one data name is used, the data
names (data-name-l, data-name-2, and data-name-3) are interpreted as combining
to form a noncontiguous key; provided there is more than one data name in the
RECORD KEY clause of the ASSIGN statement, the device type DATABASE is
used, and the file is an INDEXED file.

For any data names used to form the key, except the last (rightmost) one, the
starting location and length must be the same as described for the file in the
RECORD KEY clause. For the last data name only, the starting location must
be the same as described for the file in the RECORD KEY clause; the length can
be equal to or less than the length of the corresponding data name in the
RECORD KEY clause. This last case (when the length of the last data item in
the key phrase is less than the length of the corresponding data name in the
RECORD KEY clause) represents a partial key.

Note: The name of any data name in the KEY phrase of the START statement
need not be the same as the corresponding RECORD KEY data name. Only the
positions and the size (except for the case described above) are critical.

'--__________ End of IBM Extension __________---'

INVALID KEY Condition

The INVALID KEY condition can occur when a START statement is run.
When the INV ALID KEY condition is recognized, the actions are taken in the
following order:

1. 	 If you specify the FILE-STATUS clause in the file control entry, a value of 2
is placed in status key 1 to indicate an INVALID KEY condition (see
Appendix D).

2. 	 If you specify the INVALID KEY phrase in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any EXCEPTION/ERROR declarative procedure specified for this file is not
performed.

3. 	 If you do not specify the INVALID KEY phrase, but you do specify an
EXCEPTION/ERROR declarative procedure for the file, the
EXCEPTION/ERROR procedure is performed.

When an INVALID KEY condition occurs, the input or output statement that
caused the condition is unsuccessful. If you do not specify the INVALID KEY
phrase for a file, you must specify an EXCEPTION/ERROR procedure. If an
error other than an INVALID KEY condition occurs, the EXCEPTION/ERROR
procedure is run.

If the comparison is not satisfied by any record in the file, an INVALID KEY
condition exists; the position of the current record pointer is undefined, and the
INVALID KEY imperative statement, if specified, is performed.

Chapter 12.Input and Output Statements of the Procedure Division 12-35

L

If you specify the FILE STATUS clause in the file control entry, the associated
status key is updated by the START statement.

The first character of the status key is known as status key I; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

START Statement for Indexed Files

When you do not specify the KEY phrase, the key data item used for the
EQUAL TO comparison is the RECORD KEY.

When you specify the KEY phrase, the key data item used for the comparison is
the data name, which must be either:

• 	 The RECORD KEY.

• 	 An alphanumeric data item subordinate to the RECORD KEY whose
leftmost character position corresponds to the leftmost character position of
the RECORD KEY. This data item can be qualified.

The current record pointer identifies which record will be accessed by a sequential
input request. The START statement positions the current record pointer at the
first record in the file that satisfies the implicit or explicit comparison specified in
the START statement.

If the operands in the comparison are of unequal length, the comparison proceeds
as if the longer field were truncated on the right to the length of the shorter field.
All other numeric and nonnumeric comparison rules apply except that the
PROGRAM COLLATING SEQUENCE clause, if specified, has no effect.

The concept of the current record pointer has no meaning for random access files
or output files.

START Statement for Relative Files

When you specify the KEY phrase, the data name must be the RELATIVE KEY
data item.

Whether or not you specify the KEY phrase, the key data item used in the
comparison is the RELATIVE KEY data item. The current record pointer is
positioned to the logical record in the file whose key satisfies the comparison.

12-36

L
WRITE Statement

The WRITE statement releases a logical record for an output or input/output file.
You can specify a WRITE statement for:

• Relative files opened in OUTPUT or 1-0 mode

• Indexed sequential files opened in OUTPUT mode

• Indexed random and dynamic files opened in OUTPUT or 1-0 mode

• Sequential files opened in OUTPUT or EXTEND mode

• TRANSACTION files.

The formats of the WRITE statement are:

Format 1

WRITE record-name[FROM identifier-I]

fi denti fi er-2}[LINE 1
rnteger LINES

{ BEFORE}ADVANCIHG

AFTER

{ mnemon ie-name}
PAGE

Format 2

WRITE record-name[FROM identifier] [INVALID KEY imperative-statement]

Chapter 12.Input and Output Statements of the Procedure Division 12-37

•••••

Format 3-TRANSACTION File

......
H}t\(.•. ..·..•.. i< .•. .•..•• •.••• •.• •.....• •. .••. ••.•..•. ·.·....·ii ..

WRITE record-name[FROM identifier-I]

FORMAT IS{identifier-2}]
[literal-l

[TERMINAL I S {i den t i fie r - 3}]

literal-2

STARTING AT lINE{identifier-4}]
[. literal-3

{ BEFORE} ROLLING {LINES} {i dent if i er-s}

AFTER LINE literal-4

{ THROUGH} {i dent i fi er-6} {up }

THRU literal-S DOWN

{ literal-6 } {LINES}

identifier-7 LINE

[{~:~~:~}{:~E};dont'f'O'-8 1
iiW?••.........• .·············i.""'

The record name must be the name of a logical record in the File Section of the
Data Division. The record name can be qualified, but must not be associated
with a sort or a merge file.

The maximum record size for the file is established at the time the file is created
and cannot subsequently be changed. User-defined record lengths that are not
compatible with the record length specified in the file may result in a nonzero file
status at open time and the following results during output to the file:

• 	 A user-defined length greater than file-specified length causes truncatioll. If
the file is empty, the larger record length is used.

• 	 A user-defined length less than file-specified length causes padding with
blanks.

The WRITE statement releases a logical record to the file associated with the
record name. After the WRITE statement is performed, the logical record is no
longer available in the file associated with the record name, unless either of the
following is true:

12-38

• 	 The associated file is named in a SAME RECORD AREA clause. If so, the
record is also available as a record of the other files named in the SAME
RECORD AREA clause.

• 	 The WRITE statement is unsuccessful because of a boundary violation an
attempt to write beyond the externally defined boundaries of a file.

If either condition is true, the logical record is still available in the file associated
with the record name.

The current record pointer is not affected by the WRITE statement..

The number of character positions required to store the record in a file mayor
may not be the same as the number of character positions defined by the logical
description of that record in the COBOL program. See the descriptions of the
PICTURE and USAGE clauses under Data Description Entry in Chapter 10.

The data items specified in the RECORD KEY clause must be given a value prior
to the running of the WRITE statement.

Note: Alternative index considerations:

• 	 A duplicate key error is produced if an index is set over a sequential file
or relative file and duplicate keys are not allowed. This error would
result even if a program access to the file is sequential or relative when
attempting to WRITE or REWRITE a record which happens to have
the same KEY value as an existing record.

• 	 Any WRITE to the alternative index file built over a relative file will
result in an invalid operation error status.

If you specify the FILE STATUS clause in the file-control entry, the associated
status key is updated when the WRITE statement is performed, whether or not it
is successful.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

r------------- IBM Extension --------------,

TRANSACTION File Extended File Status Key: The extended file status key for
a TRANSACTION file is four characters long. Characters 1 and 2 contain the
ICF major return code; characters 3 and 4 contain the ICF minor return code.
ICF return codes are described in the Interactive Communications Feature:
Reference, SC21-791O. See Appendix D in this COBOL manual for a list of status
keys and their meanings.

'--__________ End of IBM Extension __________---'

Chapter 12.Input and Output Statements of the Procedure Division 12-39

FROM Identifier Phrase: The identifier specified must be the name of an entry in

the Working-Storage Section or the Linkage Section or of a record description for .'~

another previously opened file. The record name and the identifier must not refer ...""

to the same storage area. When the FROM identifier phrase is specified, an

implicit move operation is performed according to MOVE statement rules without

the CORRESPONDING phrase.

The FROM identifier phrase makes a WRITE statement equivalent to:

MOVE identifier TO record-name

WRITE record-name.

After a successful WRITE or REWRITE statement, the current record may no
longer be available in the record-name, but is still available in identifier.

Format 1 Considerations

This format is valid only for sequential files.

When an attempt is made to write beyond the externally defined boundaries of
the file, the WRITE statement is unsuccessful, and an EXCEPTION/ERROR
condition occurs. The status key, if specified, is updated, and you must specify an
explicit or implicit EXCEPTION/ERROR procedure for the file.

The ADVANCING and END-OF-PAGE phrases control the vertical positioning
of each line on a printed page.

ADVANCING Phrase: If you omit the ADVANCING phrase, automatic line
advancing is provided. The default statement is AFTER ADVANCING 1 LINE.
If you specify the ADVANCING phrase, the following rules apply:

• 	 If you specify BEFORE ADVANCING, the line is printed before the page is
advanced.

• 	 If you specify AFTER ADVANCING, the page is advanced before the line is
printed.

• 	 If you specify identifier-2, the page is advanced the number of lines equal to
the current value in identifier-2. Identifier-2 must name an elementary integer
data item. Identifier-2 can be O.

• 	 If you specify an integer, the page is advanced the number of lines equal to
the value of the integer. The integer can be O.

• 	 If you specify the mnemonic name, a page eject or space suppression takes
place. You must equate the mnemonic name with function-name-l in the
SPECIAL-NAMES paragraph. This phrase is not valid if you specify a
LINAGE clause in the FD entry for this file.

• 	 When you specify PAGE, the record is printed on the logical page before or
after (depending on the phrase used) the device is positioned to the next
logical page. If PAGE has no meaning for the device used, then depending

12-40

on the phrase you specified, BEFORE or AFTER ADVANCING I LINE is
provided.

If the FD entry contains a LINAGE clause, the repositioning is to the first
printable line of the next page as specified in that clause.

Note: 	 Given the above FD entry condition, if the first WRITE statement run after
the opening of the file has and AFTER ADVANCING PAGE, a blank page
will precede the remainder of the output.

!fyou omit the LINAGE clause from the FD entry, the repositioning is to
line one of the next page.

Given the above FD entry condition, if the first WRITE statement run after
the opening of the file has and AFTER ADVANCING PAGE, the output
line is printed on line one of the first page.

If you specify the LINAGE clause for this file, the associated
LINAGE-COUNTER special register is modified while the WRITE statement is
performed, according to the following rules:

• 	 If you specify ADVANCING PAGE, LINAGE-COUNTER is reset to 1.

• 	 If you specify ADVANCING identifier-2 or integer, LINAGE-COUNTER is
incremented by that value.

• 	 If you omit the ADVANCING phrase, LINAGE-COUNTER is incremented
by 1.

• 	 When the device is repositioned to the first printable line of a new page,
LINAGE-COUNTER is reset to 1.

END-OF-PAGE Phrase: The key words END-OF-PAGE and EOP are
equivalent.

When you specify the END-OF-PAGE phrase, the FD entry for this file must
contain a LINAGE clause. When you specify END-OF-PAGE, and the logical
end of the printed page is reached during the WRITE statement, the
END-OF-PAGE imperative statement is performed.

You specify the logical end of the printed page in the associated LINAGE clause.

An END-OF-PAGE condition is reached when a WRITE END-OF-PAGE
statement causes printing or spacing within the footing area of a page body. This
occurs when such a WRITE statement causes the value in the
LINAGE-COUNTER to equal or exceed the value you specified in the WITH
FOOTING phrase of the LINAGE clause. The WRITE statement is performed,
and then the END-OF-PAGE imperative statement is performed.

An automatic page overflow condition is reached whenever any given WRITE
statement with or without the END-OF-PAGE phrase cannot be completely
performed within the current page body. This occurs when a WRITE statement
would cause the value in the LINAGE-COUNTER to exceed the number of lines
for the page body specified in the LINAGE clause. In this case, the line is

Chapter 12.1nput and Output Statements of the Procedure Division 12-41

printed before or after the device is repositioned to the first printable line on the. "'\.

next logical page, as specified in the LINAGE clause. If you specified the ...",

END-OF-PAGE phrase, the END-OF-PAGE imperative statement is then

performed.

The END-OF-PAGE condition and the automatic page overflow condition occur

simultaneously when:

• 	 You do not specify the WITH FOOTING phrase of the LINAGE clause.
This happens because there is no distinction between the END-OF-PAGE
condition and the page overflow condition.

• 	 You specify the WITH FOOTING phrase, but a WRITE statement would
cause the LINAGE-COUNTER to exceed both the footing value and the
page body value specified in the LINAGE clause.

Format 2 Considerations

Format 2 is valid only for indexed and relative files.

INVALID KEY Condition

The INVALID KEY condition can occur when a WRITE statement is run.
When the INVALID KEY condition is recognized, the actions are taken in the
following order:

1. 	 If you specify the FILE-STATUS clause in the file control entry, a value of 2
is placed in status key I to indicate an INVALID KEY condition (see
Appendix D).

2. 	 If you specify the INVALID KEY phrase in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any EXCEPTION/ERROR declarative procedure specified for this file: is not
performed.

3. 	 If you do not specify the INVALID KEY phrase, but you do specify an
EXCEPTION/ERROR declarative procedure for the file, the
EXCEPTION/ERROR procedure is performed.

When an INV ALID KEY condition occurs, the input or output statement that
caused the condition is unsuccessful. If you do not specify the INVALID KEY
phrase for a file, you must specify an EXCEPTION/ERROR procedure. If an
error other than an INVALID KEY condition occurs, the EXCEPTION/ERROR
procedure is run.

Indexed Files: Before the WRITE statement is performed, you must set the
record key (the RECORD KEY data item, as defined in the file control entry) to
the desired value. RECORD KEY values must be unique within a file unless
WITH DUPLICATES is specified in the RECORD KEY clause. When the
WRITE statement is performed, the system releases the record.

When you specify ACCESS IS SEQUENTIAL in the file control entry, the file
must be opened for OUTPUT for a WRITE statement. Records must be written

12-42

in ascending order of RECORD KEY values. If not written in ascending order,
an INVALID KEY condition exists.

When you specify ACCESS IS RANDOM or ACCESS IS DYNAMIC in the file
control entry, records can be written in any user-specified order.

You must specify the INVALID KEY phrase if an explicit or implicit
EXCEPTION/ERROR procedure is not specified for this file. An INVALID
KEY condition is caused by any of the following:

• 	 You specified ACCESS IS SEQUENTIAL, the file is opened OUTPUT, and
the value of the record key is not greater than that for the previous record (or
equal to, if WITH DUPLICATES is specified in the RECORD KEY clause).

• 	 The value of the record key equals that of an already existing record and
duplicate keys are not allowed.

• 	 An attempt is made to write beyond the externally defined boundaries of the
file.

• 	 The record being written creates a duplicate key in another index that does
not allow duplicate keys.

Notes:

1. 	 If the file is opened for OUTPUT, does not allow duplicate keys, and has
RANDOM or DYNAMIC access (unordered load), duplicate keys are not
checked when the WRITE statement is run. This check is done at end-of-job or
when the file is reopened. Ifyou want duplicate key checking at the time the
WRITE statement is run, open the file for I-a.

2. 	 The BYPASS- YES parameter on the FILE OCL statement lets you suppress
duplicate key checking when adding a record to an indexed file. It is your
responsibility to ensure that duplicate keys are not added. The BYPASS-YES
parameter is not intended as support for duplicate keys. Specifying the
BYPASS-YES parameter can improve system performance, but results in
nonstandard COBOL file processing. For more information on the
BYPASS- YES parameter, see the FILE Statement in the manual System
Reference.

Relative Files: The WRITE statement is valid for both OUTPUT and 1-0 files.

For OUTPUT files, the WRITE statement causes the following actions:

• 	 If you specify ACCESS IS SEQUENTIAL, the first record released has
relative record number 1; the second, number 2; the third, number 3; and so
on. If you specify RELATIVE KEY in the file control entry, the relative
record number of the record just released is placed in the RELATIVE KEY
while the WRITE statement is performed.

• 	 If you specify ACCESS IS RANDOM or ACCESS IS DYNAMIC, the
RELATIVE KEY must contain the desired relative record number for this
record before the WRITE statement is issued. When the WRITE statement is

Chapter 12.Input and Output Statements of the Procedure Division 12-43

performed, this record is placed at the specified relative record number
position in the file if this relative record position is vacant.

For 1-0 files, when you specify ACCESS IS RANDOM or ACCESS IS
DYNAMIC, new records are inserted into the files. The RELATIVE KEY must
contain the desired relative record number for this record before the WRITE
statement is issued. When the WRITE statement is performed, this record is
placed at the specified relative record number position in the file.

You must specify a delete-capable file for this format of WRITE to work
correctly.

Using this format of WRITE with non-delete capable files may produce
unexpected results that are in contradiction to COBOL standards.

You must specify the INVALID KEY phrase if you do not specify an explicit or
implicit EXCEPTION/ERROR procedure for this file.

An INVALID KEY condition is caused by either of the following:

• 	 You specified ACCESS IS RANDOM or ACCESS IS DYNAMIC, and the
RELATIVE KEY specifies a record that already contains data.

• 	 An attempt is made to write beyond the externally defined boundaries of the
file.

Format 3 Considerations

IBM Extension

Format 3 is valid only for the TRANSACTION file.

The WRITE Statement releases a logical record to the TRANSACTION file.
This file must be opened in the 1-0 mode at the time the WRITE statement is
performed.

Literal-l and literal-2 must be nonnumeric. Literal-3, literal-4, literal-5, and
literal-6 must be numeric.

Identifier-2 must be an alphabetic or alphanumeric data item, and identifil~r-3
must an alphanumeric data item. Identifier-4, identifier-5, identifier-6, and
identifier-7 must be elementary numeric items. Identifier-8 must be either an
elementary Boolean data item specified without the OCCURS clause or a group
item that has Boolean data elementary items subordinate to it.

FORMA T Phrase: The WRITE statement specifies the format used for output.
This format must be one of the following:

• 	 a system-defined special format

• 	 a screen format contained in the ¥SFGR load member specified in the
associated ASSIGN clause

12-44

• 	 an IDDU communications format contained in the IDDU format file
specified in the associated ASSIGN clause.

The record you specified with the record name is sent to the specified or implied
destination using the named format. You must specify a format for the first
WRITE verb to be performed. If subsequent WRITE operations do not include a
FORMAT phrase, the format used most recently for this TRANSACTION file is
used. The FORMAT phrase contains the name of the screen or IDDU format
used when data is written to the display station.

Writing to the Error Line: If the format name used for the write operation is the
literal 'ERRLINE', System/36 COBOL generates a write to the error line of the
display station instead of a write with format. A line written to the error line
cannot exceed 78 characters. A write operation to the error line causes the last
line of output on the display station to be saved and the output record to replace
the bottom line on the display. When you press the RESET key, the original line
reappears.

Note: A WRITE statement that writes to the error line cannot specify BEFORE
or AFTER ROLLING.

Interactive Communications Feature: Special format names are recognized by
data management that provide you with SSP-ICF functions. The uses of these
special format names and the functions of ICF are described in the Interactive
Communications Feature: Reference. Because the system-defined special format
names begin with two dollar signs ($$), you should not begin your display format
names with $$.

Data formats may be defined in the files through the Interactive Data Definition
Utility (IDDU). These formats are used by the Advanced Program-to-Program
Communications (APPC) subsystem of the SSP-ICF.

TERMINAL Phrase: The TERMINAL phrase is used to specify where the
record is to be sent. If you do not specify the TERMINAL phrase for a single
device file, that device is the destination. If you do not specify the TERMINAL
phrase for a multiple device file, the most-recent source or destination identifier is
used as the destination.

STARTING Phrase: The STARTING phrase contains the starting line number
for display formats that use the variable start line option. If the value of this
element is less than 01, a value of 01 is assumed. The maximum value is 1 less
than the size of the display. If the display format does not specify this phrase,
display station data management (DSDM) ignores this value.

ROLLING Phrase: The ROLLING phrase lets you move the data currently
displayed at the display station. All or part of the data on the display can be
rolled up or down. The lines that are rolled are cleared and can have another
display format written into them.

You specify rolling on the WRITE statement that is writing a new format to the
display station. You must specify the number of lines you want to roll, how
many lines you want to roll these lines, and whether the roll operation is up or
down.

Chapter 12.Input and Output Statements of the Procedure Division 12-45

L

Rolling ignores field attributes. The data is rolled exactly as it appears on the
display. Its associated attributes (for example, whether it is an input field or an
input/output field) are not rolled with the data and are lost; therefore, after a field
has been rolled, it is no longer input-capable.

For an example of using the ROLLING phrase, see WRITE Statement in Chapter
7.

INDICATOR Phrase: You can use the INDICATOR phrase to specify the name
of an area that contains indicator information.

Indicators that are provided in the indicator area (identifier-8), but not specified
on the $SFGR or IDDU formats are ignored.

'--__________ End of IBM Extension _________---1

12-46

Using the Additional COBOL Functions

USING THE SEGMENTATION FEATURE 13-2

Segmentation Concepts 13-2

When Segments are Beneficial 13-2

Program Segments 13-2

Permanent Segments (0 through 49) 13-2

Independent Segments (50 through 99) 13-3

Segmentation Logic 13-3

Segmentation Control 13-3

Size of the Object Program 13-4

PROCEDURE DIVISION SEGMENTATION 13-5

Special Segmentation Considerations 13-5

ALTER Statement 13-5

PERFORM Statement 13-5

SORT and MERGE Statements 13-5

Transfer of Control 13-6

Calling and Called Programs 13-6

USING THE SORT/MERGE FACILITIES 13-7

SORT/MERGE Concepts 13-7

Sort Concepts 13-8

Merge Concepts 13-8

SORT/MERGE Programming Considerations 13-9

Disk Storage Requirements 13-9

Performance Considerations 13-9

Environment Division SORT/MERGE 13-10

FILE-CONTROL Paragraph 13-10

I-O-CONTROL Paragraph 13-10

Data Division SORT/MERGE 13-12

Procedure Division SORT/MERGE 13-13

SORT Statement 13-14

MERGE Statement 13-15

SORT Statement and MERGE Statement Phrases 13-15

ASCENDING/DESCENDING KEY Phrase 13-16

COLLATING SEQUENCE Phrase 13-17

USING Phrase 13-17

GIVING Phrase 13-17

Using the Additional COBOL Functions

L

SORT INPUT PROCEDURE Phrase 13-18

SORT/MERGE OUTPUT PROCEDURE Phrase 13-19

SORT or MERGE INPUT/OUTPUT PROCEDURE Control 13-19

RELEASE Statement (Sort Function Only) 13-20

RETURN Statement 13-21

USING THE TABLE HANDLING FACILITIES 13-22

Table Handling Concepts 13-22

Table Definition 13-22

Table References 13-24

Subscripting 13-25

Indexing 13-27

Restrictions on Subscripting and Indexing 13-28

Table Initialization 13-28

Data Division Table Handling 13-30

OCCURS Clause 13-30

Fixed-Length Tables 13-31

Variable-Length Tables 13-31

ASCENDING/DESCENDING KEY Phrase 13-32

INDEXED BY Phrase 13-33

USAGE IS INDEX Clause 13-33

Procedure Division Table Handling 13-34

Relation Conditions 13-34

SEARCH Statement 13-36

Format 1 13-37

VARYING Index-Name-l Phrase 13-37

VARYING Identifier-2 Phrase 13-38

Format 2 13-40

WHEN Condition-Name-l Phrase 13-40

WHEN Relation Condition Phrase 13-40

SEARCH Example 13-42

SET Statement 13-44

Format 1 Considerations 13-45

Format 2 Considerations 13-45

LINKAGE BETWEEN MODULES 13-46

Standard Linkage 13-48

USING INTER-PROGRAM COMMUNICATION 13-49

Subprogram Linkage Concepts 13-49

Transfers of Control 13-50

Common Data 13-50

COBOL Language Considerations 13-50

System Considerations 13-51

Data Division Subprogram Linkage 13-52

Record Description Entries 13-52

Data Item Description Entries 13-53

Procedure Division Subprogram Linkage 13-53

CALL Statement 13-53

USING Phrase 13-54

EXIT PROGRAM Statement 13-55

STOP RUN Statement 13-55

Segmentation Considerations 13-55

Subprogram Linkage Feature Examples 13-56

Considerations When Using Inter-Program Communication 13-58

Chapter 13. Using the Additional COBOL Functions

This chapter describes additional System/36 COBOL functions that can help make
your programs more efficient. Included are detailed discussions of:

• 	 The Segmentation Feature, which provides for better storage use and for
larger programs

• 	 The Sort/Merge function, which provides a convenient way of arranging
records

• 	 The Table Handling function, which provides a method for data reference

• 	 Linking modules that are written in other System/36 languages

• 	 Considerations when using the Inter-Program Communication Feature.

Chapter 13. Using the Additional COBOL Functions 13-1

USING THE SEGMENTATION FEATURE

The Segmentation Feature helps you optimize storage in the Procedure Division
by letting you subdivide that division for overlays both physically and logically.

Segmentation Concepts

Although segmentation is not required, you usually write the Procedure Division
of a source program as a consecutive group of sections. Each section is composed
of a series of closely related operations that perform a particular function.

When you use the Segmentation Feature, you must divide the entire Procedure
Division into sections. You must classify each section in the division according to
physical and logical attributes by a system of segment numbers. Segment
numbers must be in the range 0 through 99.

When Segments are Beneficial: Segmentation should be used when overlays are
required, to indicate which sections of your program should form overlays, and
which sections should remain in main storage. The execution time of your
program will increase, but this feature may decrease the region size required for
program execution. Under certain circumstances, segmented programs can be
faster than nonsegmented programs. Assume that you have a program designed
to read a large disk file, record running statistics, then print this information in
the form of a graphic chart. Assume that the graphic output is complex enough
to require a large amount of code. In this situation, you should create a J
segmented structure: one program to do the printing, and a second program to
read the disk and calculate.

Program Segments

Two types of program segments are available:

• Pemlanent

• Independent.

Permanent Segments (0 through 49)

A permanent segment composes the fixed portion (sometimes called root segment)
of the load module. A permanent segment cannot be overlaid by any other part
of the program. It is always present in its last-used state.

The fixed portion is the part of the load module that logically resides in main
storage while the load module is running.

13-2

Independent Segments (50 through 99)

Segmentation Logic

Segmentation Control

An independent segment is the part of the load module that can overlay or be
overlaid by another independent segment. An independent segment is always
considered to be in its initial state each time it is made available to the program.

In a segmented program, you classify the sections by a system of segment
numbers. All sections with the same segment number constitute a program
segment with that priority. You must make the segment number an integer
ranging in value from 0 through 99. Segments with segment numbers ranging
from 0 through 49 are pennanent segments. Segments with segment numbers
ranging from 50 through 99 are independent segments. If you leave a segment
number out of the section header, the segment number is assumed to be o. You
must use segment numbers under 50 (pennanent segments) for sections in the
declaratives portion of the Procedure Division.

Use the following criteria when you assign segment numbers and segment types:

• 	 Frequency of use--Place sections that are used often or sections that must be
available for references at all times within pennanent segments. Place
less-frequently used sections within independent segments.

• 	 Frequency of reference--The more frequently you refer to a section, the lower
the segment number you should use. The less frequently you refer to a
section, the higher the segment number you should use.

• 	 Logical relationships--Give identical segment numbers to sections that
frequently communicate with each other (you need not make sections with the
same segment number adjacent in the source program).

The logical sequence of the program is the same as the physical sequence of the
program except for specific transfers of control. The load module must be
resequenced if a segment has its section scattered throughout the source program.
When the load module is reordered, the compiler provides control transfers to
maintain the logic flow of the source program. When necessary, the compiler
inserts instructions necessary to load or to initialize a segment. Within a source
program, you can transfer control to any paragraph in a section. You need not
transfer control to the beginning of a section.

Running of the segmented load module begins in the fixed portion. All tables,
literals, and system control blocks are included in the fixed portion. When you
have CALL statements in a segmented program, nonsegmented subprograms are
loaded with the fixed portion of the main program.

If a segmented program calls a subprogram, you can have the CALL statement in
any segment.

Chapter 13.Using the Additional COBOL Functions 13-3

When a segmented COBOL subprogram contains independent segments, you must. ~,
use one of the following link-edit techniques: ...,

1. 	 First technique:

a. 	 Compile both called and calling programs with the OBJECT phrase in the
PROCESS statement to create a module that can be relocated (subroutine
member).

b. 	 Invoke the overlay linkage editor with OCL or the OLINK command.
c. 	 Use the OCL MODULE statement to give the mainline module name

and the names of any subprogram modules that contain independent
segments.

2. 	 Second technique:

a. 	 After setting up the appropriate segment arrangement in both the
subprogram(s) and the main program, compile the subprogram(s) with
the PROCESS statement OBJECT phrase.

b. 	 Compile and link the main program with the subprogram(s).

Note: Segment names must be unique within the main program and all of its
subprograms. The compiler assigns a name to each segment by using the first
three characters of the program name, an asterisk, and the segment number, in
that order.

Refer to the OLE Guide for additional information.

Size of the Object Program

When using the Segmentation Feature, you can direct the overlay linkage editor
to construct an object program of a particular size. You do this by giving the size
of main storage available for running in the MEMORY SIZE clause of the
OBJECT-COMPUTER paragraph. The overlay linkage editor then tries to
produce a program that will use the available space. You are informed if the
program does not fit in the space given. If you leave out the MEMORY SIZE
clause, the size of the compiler region is assumed.

13-4

PROCEDURE DIVISION SEGMENTATION

In the Procedure Division of a segmented program, classify segments by segment
numbers. Include the segment number in the section header.

Format

section-name SECTION [segment-number] .

Special Segmentation Considerations

When you use segmentation, there are restrictions on the ALTER, PERFORM,
and SORT and MERGE statements. You also need to give special consideration
to transfer of control, calling programs, and called programs.

ALTER Statement

You can change a GO TO statement within an independent segment only with an
ALTER statement that is within the same segment. You can change a GO TO
statement in a permanent segment with an ALTER statement in any segment of
the program.

PERFORM Statement

You can use a PERFORM statement in a permanent segment to refer only to
sections wholly contained within the fixed portion of the program or to sections
wholly contained within one independent segment.

You can use a PERFORM statement in an independent segment to refer only to
sections wholly contained within the fixed portion of the program or sections
wholly contained within the same independent segment as the PERFORM
statement.

Note: When you reference procedures within an independent segment with a
PERFORM statement, you must not pass control outside that independent
segment. Also, when you reference the fixed portion with a PERFORM
statement in an independent segment, you must not pass control to another
independent segment from the fixed portion. Return linkages might be destroyed,
and an abnormal termination is likely to occur.

SORT and MERGE Statements

If you place a SORT or MERGE statement in the fixed portion, then you must
place any SORT input procedures or SORT/MERGE output procedures
completely in either the fixed portion or one independent segment.

If you place a SORT or MERGE statement in an independent segment, you must
place any SORT input procedures or SORT/MERGE output procedures

Chapter 13.Using the Additional COBOL Functions 13-5

L

Transfer of Control

completely in either the fixed portion or the same independent segment as the
SORT or MERGE statement.

The Segmentation Feature imposes no restrictions on transfers of control as long
as you keep the control path within the range of permanent segments. Permanent
segments are logically identical and you can treat them as though the program
was not segmented.

If independent segments are involved in the transfer of control, restrictions do
apply. Independent segments are loaded into main storage under control of the
system management routines. You must assume that logically, only one
independent segment at a time is present in main storage, even though this may
not be the case physically. You must not perform statements that depend on the
presence of any given independent segment, other than the one in which the
statements appear, in main storage at any given time.

Calling and Called Programs

You can place the CALL statement anywhere within a segmented program.

When you place a CALL statement in an independent segment, that segment is in

its last-used state when control returns to the calling program if the subprogram

or sections of the subprogram are not segmented.

13-6

USING THE SORT/MERGE FACILITIES

You will probably often need to arrange records in a particular order or sequence.
Sorting and merging facilities help you do this. While you can use either facility
to order records, the functions and capabilities of a sort and a merge are different.

A sort operation will give you an ordered file from one to eight input files that
might be completely unordered as to sort sequence. Thus, the sort facility accepts
unordered sort input and produces ordered sort output.

A merge operation will give you an ordered file from two to eight input files, each
of which is already ordered in the merge sequence.

r------------- IBM Extension --------------,

Input files need not be sequenced before doing a merge operation.

1...-__________ End of IBM Extension __________....J

COBOL has special language features that assist in sort and merge operations so
that you need not program these operations in detail.

For an explanation of messages that are issued by the Systemj36 SORT program
after it has been invoked by a COBOL object program, see the Sort Guide or the
manual Systems Messages.

SORT /MERGE Concepts

Sorting and merging have always been a large percentage of the workload in
business data processing. COBOL standardizes the specification of these facilities
making them easy for you to use and to change. Alternatively, you can use the
Systemj36 SORT program to perform these facilities as a separate job step. The
COBOL language supports these operations through the:

• File control entry in the Environment Division

• SD (sort-merge file description) entry in the Data Division

• SORT and MERGE statements in the Procedure Division.

Describe the sort or merge file through the:

• File control entry in the Environment Division

• SD entry in the Data Division.

The sort or merge file is the working file used during the sort or merge; you can
consider it an internal file. However, a sort or merge file, like any file, is a set of
records, and you can consider a sort-merge file description a particular type of file
description.

Chapter 13.Using the Additional COBOL Functions 13-7

Sort Concepts

Merge Concepts

Process the sort-merge file through a Procedure Division SORT or MERGE
statement. The statement gives the key field(s) within the record upon which the
sort or merge is to be arranged. You can use ascending or descending keys.
When you use more than one key, a mixture of the two sequences is allowed. The
sequence of sorted or merged records conforms to the mixture of keys you used.

Through the SORT statement, you have access to input procedures (used before
sorting) and output procedures (used after sorting) that can add, delete, alter, edit,
or otherwise change the records in the input or output files. Your COBOL
program can contain any number of sorts, each of them with its own independent
input or output procedures. During performance of the SORT statement, these
procedures are automatically performed at the given point in processing; thus,
extra passes through the sort file are avoided.

You will usually organize a COBOL program containing a sort so that one or
more input files are read and operated on by an input procedure. Within the
input procedure, use a RELEASE statement (corresponding to the WRITE
statement) to place a record in the sort file. That is, when the input procedure is
completed, you have created a sort file by placing records one at a time into the
sort file through the RELEASE statement. If you do not want to change the
records before the sorting operation begins, use the SORT statement USING
option to release the unchanged records to the sort file.

After all the input records have been placed in the sort file, the sort operation is
performed. This operation arranges the entire set of sort file records in the
sequence specified by the keyes).

After the sort operation is completed, you can make sorted records available from
the sort file, one at a time, through a RETURN statement for change in an
output procedure. If you do not want to change the sorted records, use the
SORT statement GIVING option to name the sorted output file.

Through the MERGE statement, you can access output procedures (used after
merging) that can change the records in the output file. Your COBOL program
can contain any number of merge operations, each with its own independent
output procedures. While the MERGE statement is performed, these procedures
are automatically performed at the given point in processing.

MERGE statement performance begins the merge processing. This operation
compares keys within the records of the input files and arranges the records
within the merged file in the sequence specified by the keyes).

You can make merged records available, one at a time, through a RETURN
statement for change in an output procedure. If you do not wish to change the
merged records, use the MERGE statement GIVING option to name the merged
output file.

l3-8

SORT/MERGE Programming Considerations

This section describes things you should consider when performing sort or merge
operations.

Disk Storage Requirements

Whenever you use an input procedure with a SORT statement or an output
procedure with a SORT or MERGE statement, you must have disk space
available for COBOL to use for the sort or merge file. You must use a FILE
OCL statement for each such sort or merge file. When you use both the USING
and GIVING options for a SORT or MERGE statement, the system
automatically allocates an intermediate work area to hold the sort or merge
records. Thus, you need not use a FILE OCL statement for such a sort or merge
file.

The System/36 SORT program called by the COBOL program requires a work
area in which to perform the sort. You can create this work area with a FILE
OCL statement with a NAME-WORK parameter. If you do not use this
statement, the sort program allocates a scratch file large enough to perform the
desired sort or merge operation. See the Sort Guide for details on the size of this
work file.

Note: If you use a RESERVE OCL statement, you can reserve disk space for the
scratch files that the sort program uses. If you do not reserve enough space, an
error message is issued. This message lets you either allocate more space or
cancel the job.

Performance Considerations

You can usually improve performance by using the USING or GIVING phrase
on the SORT or MERGE statement. You can usually get the best performance
by using both phrases. These phrases let you bypass writing the input records
into the sort or merge work area (by RELEASE statements) and reading the
sorted records from the sort or merge work area (by RETURN statements).

When using input and output procedures, you must not use a BLOCK
CONTAINS clause on the SD statement for the sort or merge file. System/36
COBOL always defaults to one record, the minimum blocking factor. To control
the blocking factor for SORT files, refer to the discussion of the DBLOCK
parameter of the FILE OCL statement in the manual System Reference.

Chapter I3.Using the Additional COBOL Functions 13-9

L

Environment Division SORT/MERGE

In the Environment Division, you must:

• 	 Write file control entries for each file you use as input to or output from a
sort or merge operation

and

• 	 Write a file control entry for each unique sort file or merge file.

FILE-CONTROL Paragraph

For a description of input and output files of a sort or merge operation, see
FILE-CONTROL Paragraph in Chapter 9.

I-O-CONTROL Paragraph

In the I-O-CONTROL Paragraph, use the SAME SORT AREA or SAME
SORT-MERGE AREA clause.

Format

SAME 	 [~RD 1AREA FOR fi le-name-2{, fi le-name-3} •••
SORT-MERGE

The SAME SORT AREA or SAME SORT-MERGE AREA clause reduces the
storage area assigned to a given SORT or MERGE statement.

In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

The SAME SORT AREA or SAME SORT-MERGE AREA clause gives one
storage area for sort/merge operations by each named sort or merge file; that is,
the storage allocated for one such operation is available for reuse in another.

When you use the SAME SORT AREA or SAME SORT-MERGE AREA clause,
you must use at least one file name to name a sort or merge file. You can also
use files that are not sort or merge files. The following rules apply:

• 	 You can use more than one SAME SORT AREA or SAME SORT-MERGE
AREA clause; however, you must not name one sort or merge file in more
than one such clause.

13-10

• 	 If you name a file that is not a sort or merge file in both a SAME AREA
clause and in one or more SAME SORT AREA or SAME SORT-MERGE
AREA clauses, you must also include all the files in the SAME AREA clause
in that SAME SORT AREA or SAME SORT-MERGE AREA clause.

• 	 Files that you name in a SAME SORT AREA or SAME SORT -MERGE
AREA clause need not have the same organization or access.

• 	 Files you name in a SAME SORT AREA or SORT-MERGE AREA clause
that are not sort or merge files do not share storage with each other unless
you name them in a SAME AREA or SAME RECORD AREA clause.

• 	 Files you name in a SAME SORT AREA or SAME SORT-MERGE AREA
clause that are not sort or merge files must not be open during the
performance of a SORT or MERGE statement that refers to a sort or merge
file named in the clause.

Rules for the specification of the SAME RECORD AREA clause are given under
I-O-CONTROL Paragraph in Chapter 9.

Chapter 13.Using the Additional COBOL Functions 13-11

L

Data Division SORTIMERGE

In the File Section, you must write an FD entry for each file that is input to or
output from the sort/merge operation, as well as a record description entry. In
addition, you must have an SD (sort-merge file description) entry for each sort or
merge file.

Format

[SD fi Ie-name

[RECORD COHTAIHS [;nto.or-l TO] ;nto.or-2 CHARACTERS]

rr----------------------~

:[DATA {RECORD IS }data-name-l [. data-name-2] ...].:

I RECORDS ARE I

~----------------------~
{record-descri pt ion-entry}. . •]

Place the level indicator SD, which identifies the beginning of the SD entry,
before the file name. You must use a sort or merge file as the file name.

The clauses that follow the file name are optional, and their order of appearance
is not important. Both the RECORD CONTAINS clause and the DATA
RECORDS clause are described in Chapter 10.

You must place one or more record description entries after the SD entry;
however, no input/output statements can be performed for this file.

The following example illustrates the File Section entries you need for a sort or
merge file:

SD SORT-FILE.

01 SORT-RECORD PICTURE X(80).

13-12

L
Procedure Division SORTIMERGE

In the Procedure Division, you include MERGE and SORT statements to
describe the merge and sort operations and, optionally, sort input procedures or
sort/merge output procedures. A sort input procedure must contain a RELEASE
statement that makes each record available to the sort operation. A sort/merge
output procedure must contain a RETURN statement that makes a
sorted/merged record available to the output procedure.

You can include more than one SORT or MERGE statement in the Procedure
Division. You can place these statements anywhere except in the Declaratives
section or in the sort input or sort/merge output procedures.

You must describe files given in the USING and GIVING phrases of the SORT
and MERGE statements explicitly or implicitly in their file control entries as
having sequential organization.

USE procedures are not performed if they reference files given on a USING or
GIVING phrase of a SORT or MERGE statement. The USING or GIVING
files are not accessed by COBOL, but by the sort program. If you also reference
these files in an I/O statement within an output procedure or a SORT input
procedure, a USE procedure for the given file is invoked when necessary.

Chapter 13.Using the Additional COBOL Functions 13-13

L

SORT Statement

The SORT statement:

• 	 Accepts records from one or more files

• 	 Sorts the records according to the specified keyes)

• 	 Makes records available either through an output procedure or in an output
file.

The maximum number of files accepted by the SORT statement is eight.

Format

SORT file-name-l ON{ASCENDIHG }KEY data-name-l [, data-name-2J .

DESCENDING

ON{ASCENDING }KEY data-name-3 [, data-name-4] ...][DESCENDING

[COLLATING SEQUENCE IS alphabet-name]

IINPUT PROCEDURE IS soct;on-namo-l [{~UGH}soct;on-namO-2])

I
USING file-name-2 [, file name-3J ...

OUTPUT PROCEDURE IS 50ct;on-namo-3[{~UGH}soct;on namo-_])

GIVING file-name-4

File-name-l is the name you give in the SD entry that describes the records being
sorted.

When the SORT statement is performed, all records contained in file-name-2,
file-name-3, and so on are accepted by the sort/merge program and then sorted
according to the keyes) specified. These input files must not be open at the time
the SORT statement is performed; they are automatically opened and closled by
the SORT operation, and all implicit functions are performed. The files are
closed as if you wrote the CLOSE statement without any optional processing.

J

13-14

MERGE Statement

The MERGE statement combines from two through eight identically sequenced
files that have already been sorted according to an identical set of ascending or
descending keys on one or more keys. This statement makes records available in
merged order to an output procedure or output file.

Format

MERGE file-name-l OH{ASCENDING }KEY data-name-l [, data-name-Z] •

DESCENDING

[ON{ASCEHDIHG }KEY data-name-3 [, data-name-4] • . .J . . .

DESCENDING

[COLLATING SEQUENCE IS alphabet-name]

USING fi le-name-2,. fi le-name-3 [, fi le-name-41 ..•

OUTPUT PROCEDURE IS s.ction-nom.-l[{~UG~}5ection nome-2]

GIVING file-name-5

File-name-! is the name you give in the SD entry that describes the records being
merged. You must not reuse any file name in the MERGE statement.

When the MERGE statement is performed, all records in file-name-2, file-name-3,
and so on are accepted by the sort/merge program and then merged according to
the key(s) given. These files must not be open when the MERGE statement is
being performed. They are automatically opened and closed by the MERGE
operation, and all implicit functions are performed. The files are closed as if you
used a CLOSE statement with no optional processing.

SORT Statement and MERGE Statement Phrases

Most SORT and MERGE statement phrases apply to both the statements. The
common SORT/MERGE statement phrases are:

• The ASCENDING/DESCENDING KEY phrase

• The COLLATING SEQUENCE phrase

• The USING phrase

• The GIVING phrase

• The OUTPUT PROCEDURE phrase.

The INPUT PROCEDURE phrase applies only to the SORT statement.

Chapter 13.Using the Additional COBOL Functions 13-15

ASCENDING/DESCENDING KEY Phrase

This phrase specifies that records are to be processed in an ascending or
descending sequence based on the given sort or merge keys.

Each data name gives a KEY data item on which the sort or merge will be based.
In each such data name, you must identify a data item in Ii record associated with
file-name-I. The following rules apply:

• 	 A specific KEY data item must be physically located in the same position and
have the same data format in each input file; however, it need not have the
same data name.

• 	 If file-name-I has more than one record description, then you need to
describe the KEY data items in only one of the record descriptions.

• 	 KEY data items must be fixed-length items.

• 	 KEY data items must not contain an OCCURS clause or be subordinate to
an item that contains an OCCURS clause.

• 	 You can use no more than 12 KEY data items.

• 	 The total length of all KEY data items must not be greater than 256 bytes.
These 256 bytes can include bytes used by the compiler. Generally, you will
use I additional byte per key for each numeric key given. For a merge
operation, 3 additional bytes are used to maintain relative record position. .)
The maximum number of bytes used by the compiler is 15; therefore, you ..."
have at least 241 bytes, and possibly all 256 bytes, depending on the type of
operation and the data types of the keys given.

• 	 KEY data items can be qualified; they cannot be subscripted or indexed.

The KEY data items are listed in order of decreasing significance, regardless of
how they are divided into KEY phrases. Using the format as an example.,
data-name-I is the most-significant key, and records are processed in ascending or
descending order on that key; data-name-2 is the next most significant key, and
within data-name-I, records are processed on data-name-2 in ascending or
descending order. Within data-name-2, records are processed on data-name-3 in
ascending or descending order; within data-name-3, records are processed on
data-name-4 in ascending or descending order.

The direction of the sort or merge operation depends on the use of the
ASCENDING or DESCENDING key words as follows:

• 	 When you use ASCENDING, the sequence is from the lowest key value to
the highest key value.

• 	 When you use DESCENDING, the sequence is from the highest key value to
the lowest.

• 	 If the KEY data item is alphabetic, alphanumeric, alphanumeric edited, or
numeric edited, the sequence of key values depends on the collating sequence
you used.

13-16

• 	 The key comparisons are performed according to the rules for comparison of
operands in a relation condition. See Relation Condition in Chapter 10.

COLLATING SEQUENCE Phrase

USING Phrase

GIVING Phrase

This phrase gives the collating sequence to be used in nonnumeric comparisons
for the KEY data items in this sort or merge operation.

You must use the alphabet name in the SPECIAL-NAMES paragraph
alphabet-name clause. You can use anyone of the alphabet-name phrase options
with the following results:

• 	 When you use NATIVE, the EBCDIC collating sequence is used for all
nonnumeric comparisons.

• 	 When you use STANDARD-I, all nonnumeric comparisons are made as if
the data items were translated from EBCDIC into ASCII. For more
information on the translation of EBCDIC items into ASCII, see Appendix F.

• 	 When you use the literal phrase, the collating sequence established by the use
of literals in the alphabet-name clause is used for all nonnumeric
comparisons.

When you leave out the COLLATING SEQUENCE phrase, the PROGRAM
COLLATING SEQUENCE clause (if used) in the OBJECT-COMPUTER
paragraph gives the collating sequence to be used. When you leave out both the
COLLATING SEQUENCE phrase and the PROGRAM COLLATING
SEQUENCE clause, the EBCDIC collating sequence is used.

When you use the USING phrase, all input files automatically transfer to
file-name-I. At the time the SORT or MERGE statement is performed, these
input files must not be open; the COBOL compiler opens, reads, and closes these
files automatically. If you use EXCEPTION/ERROR procedures for these files,
the COBOL compiler makes the necessary linkage to these procedures.

The input files must have sequential organization.

You must describe all input files in an FD entry in the Data Division, and their
record descriptions must describe records of the same size as the record you
described for the sort or merge file. If the elementary items that make up these
records are not identical, you describe the input records as having an equal
number of character positions as the sort record.

When you use the GIVING phrase, all the sorted or merged records in
file-name-l transfer automatically to the output file (MERGE file-name-5 or
SORT file-name-4). At the time the SORT or MERGE statement is performed,
this output file must not be open; the COBOL compiler opens, writes, and closes
the file automatically. If you use EXCEPTION/ERROR procedures for the
output file, the COBOL compiler makes the necessary linkage to these procedures.

Chapter 13.Using the Additional COBOL Functions 13-17

The output file must have sequential organization.

You must describe the output file in an FD entry in the Data Division, and its
record description(s) must describe records of the same size as the record you
described for the sort or merge file. If the elementary items that make up these
records are not identical, you must describe the output record as having an equal
number of character positions as the sort or merge record.

SORT INPUT PROCEDURE Phrase

This phrase specifies the section name(s) of a procedure that is to modify input
records before the sorting operation begins.

Use section-name-l to give the first (or only) section in the input procedure.
Optionally, use section-name-2 to identify the last section of the input procedure.

You must make the input procedure one or more sections that you write
consecutively and that do not form a part of any output procedure. You must
include at least one RELEASE statement in the input procedure in order to
transfer records to the sort file.

You must not let control pass to the input procedure except when a related SORT
statement is being performed, because the RELEASE statement in the input
procedure has no meaning unless it is controlled by a SORT statement. You can
include any procedures in the input procedure that are needed to select, create, or
modify records. The following restrictions apply to the procedural statements
within an input procedure:

• 	 You must not include any SORT or MERGE statements in the input
procedure.

• 	 You must not include ALTER or GO TO statements in the input pfOi~edure if
they refer to procedure names outside the input procedure. The performance
of a CALL statement to another program that follows standard linkage
conventions, as well as the performance of USE declaratives, are not
considered transfers of control outside an input procedure; hence, they can be
activated within these procedures.

• 	 You must not include any transfers of control to points inside the input
procedure in the remainder of the Procedure Division, except for the return of
control from a Declaratives Section.

If you use an input procedure, control passes to the input procedure when the
SORT program input phase is ready to receive the first record. The compiler
places a return mechanism at the end of the last section of the input proce:dure
and when control passes the last statement in the input procedure, the records
that have been released to file-name-l are sorted. The RELEASE statement
transfers records from the Input Procedure to the sort file, which is then used in
the input phase of the sort operation.

13-18

SORT/MERGE OUTPUT PROCEDURE Phrase

This phrase specifies the section name(s) of a procedure that is to modify output
records from the sort or merge operation.

Use section-name-3 to give the first (or only) section in the output procedure.
Optionally, use section-name-4 to identify the last section of the output procedure.

You must make the output procedure one or more sections that you write
consecutively and that do not form a part of any input procedure. You must
include at least one RETURN statement in the output procedure in order to
make sorted/merged records available for processing.

When all the records are sorted or merged, control passes to the output
procedure. The RETURN statement in the output procedure is a request for the
next record.

You must not let control pass to the output procedure except when a related
SORT or MERGE statement is being performed, because RETURN statements
in the output procedure have no meaning unless they are controlled by a SORT
or MERGE statement. In the output procedure, you can include any procedures
needed to select, modify, or copy the records that are being returned one at a time
from the sort or merge file. There are three restrictions on the procedural
statements within the output procedure:

• 	 You must not include any SORT or MERGE statements in the output
procedure.

• 	 You must not include ALTER, GO TO, or PERFORM statements in the
output procedure if they refer to procedure names outside the output
procedure. The performance of a CALL statement to another program that
follows standard linkage conventions, as well as the performance of USE
declaratives, are not considered transfers of control outside an output
procedure; hence, they can be activated within these procedures.

• 	 You must not include any transfers of control to points inside the output
procedure in the remainder of the Procedure Division, except for the return of
control from a Declaratives Section.

When you use an output procedure, control passes to it after the sort or merge
file (file-name-l) has been placed in sequence by the sort or merge operation. The
COBOL compiler places a return mechanism at the end of the last section in the
output procedure. When control passes to the last statement in the output
procedure, the return mechanism ends the sort or merge, and passes control to the
next performable statement after the SORT or MERGE statement.

SORT or MERGE INPUT/OUTPUT PROCEDURE Control

The INPUT or OUTPUT PROCEDURE phrases function in a manner similar to
format 1 of the PERFORM statement (the simple PERFORM). For example,
naming a section in an OUTPUT PROCEDURE phrase causes performance of
that section during the sort or merge operation to proceed as if you named that
section in a PERFORM statement. As with the PERFORM statement,
performance of the section ends after performance of its last statement. You can

Chapter 13.Using the Additional COBOL Functions 13-19

use the EXIT statement as the last statement in Input and Output Procedures.
This is useful for documentation purposes.

RELEASE Statement (Sort Function Only)

The RELEASE statement transfers records from an input/output area to the
initial phase of a sort operation.

You can use the RELEASE statement only within an input procedure associated
with a SORT statement. You must use at least one RELEASE statement within
an input procedure.

When the RELEASE statement is performed, the current contents of the record
name are placed in the sort file (that is, made available to the initial phase of the
sort operation).

Format

RELEASE record-name [FROM identifier]

You must use a record associated with the SD entry for file-name-l for the record
name. You can qualify the record name.

When you use the FROM identifier phrase, the RELEASE statement is equivalent
to the statement:

MOVE identifier to record-name

followed by the statement:

RELEASE record-name.

Moving takes place according to the rules for the MOVE statement without the
CORRESPONDING option.

You must not refer to the same storage area with the identifier and the record
name.

After the RELEASE statement is performed, the information in the record name
is no longer available unless you use file-name-l in a SAME RECORD AREA
clause, in which case the record name is still available as a record of the other
files named in that clause. When you use the FROM identifier phrase, the
information is still available in the identifier.

When control passes from the input procedure, the sort file consists of all those
records placed in it by performance of RELEASE statements.

13-20

RETURN Statement

RETURN file-name

The RETURN statement transfers records from the final phase of a sort or merge
operation to an input/output area.

You can use the RETURN statement only within an output procedure associated
with a SORT or MERGE statement. Within this output procedure, you must use
at least one RETURN statement.

Format

RECORD [INTO identifier] AT EHD imperative-statement

When the RETURN statement is performed, the next record from the file name is
made available for processing by the output procedure.

You must describe the file name in a Data Division SD entry.

If you associate more than one record description with the file name, these
records automatically share the same storage; that is, the area is implicitly
redefined. After the RETURN statement runs, only the contents of the current
record are available. If any data items are beyond the length of the current
record, their contents are undefined.

When you use the INTO identifier phrase, the RETURN statement is equivalent
to the statement:

RETURN file-name followed by the statement:

MOVE record-name TO identifier.

Moving takes place according to the rules for the MOVE statement without the
CORRESPONDING phrase. Any subscripting or indexing you associated with
the identifier is evaluated after the record returns and immediately before it moves
to the identifier.

The record areas you associated with the file name and identifier must not be the
same storage area.

After all records have returned from the file name, the AT END imperative
statement is performed, and no more RETURN statements can be performed.

Chapter 13.Using the Additional COBOL Functions 13-21

USING THE TABLE HANDLING FACILITIES

You will probably often use tables in data processing. A table is a set of logically
consecutive items, each of which has the same data description as the other items
in the set. The items in a table can be described as separate and adjacent items;
however, you might find this approach unsatisfactory for two reasons. From a
documentation standpoint, the similarity of the data items is not apparent;
secondly, repetitive coding to reference unique data names becomes a severe
problem. Thus, you can use a method of data reference which lets you refer to all
or to part of one table as a single object.

Table Handling Concepts

In COBOL, you define a table with an OCCURS clause in its data description.
The OCCURS clause specifies that the named item is to be repeated as many
times as you state. The named item is considered a table element, and its name
and description apply to each repetition (or occurrence) of the item. Because the
occurrences are not given unique data names, you can refer to a particular
occurrence only by giving the data name of the table element, together with the
occurrence number of the desired item within the element.

The occurrence number is known as a subscript and when you supply the

occurrence number of individual table elements, you are subscripting. You can

also use a related technique called indexing for table references. Both subscripting.,:,.

and indexing are described in the following sections. ..."

Table Definition

COBOL lets you define and use tables in one, two, or three dimensions.

To define a one-dimensional table, you write an OCCURS clause as part of the
definition of a table element. You must not place the OCCURS clause in the
description of a group item that contains the table element; that is, you must not
use an OCCURS clause for a Ol-level item. For example:

01 	 TABLE-ONE.
05 	 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-A PIC X(4).
10 ELEMENT-B PIC 9(4).

TABLE-ONE is the group item that contains the table. ELEMENT-ONE names
the table element of a one-dimensional table that occurs three times.
ELEMENT-A and ELEMENT-B are elementary items subordinate to
ELEMENT-ONE.

To define a two-dimensional table, define a one-dimensional table within each
occurrence of another one-dimensional table.

13-22

For example:

01 TABLE-TWO.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-A PIC X(4).
15 ELEMENT-B PIC 9(4).

ELEMENT -ONE is an element of a one-dimensional table that occurs three
times. ELEMENT-TWO is an element of a two-dimensional table that occurs
three times within each occurrence of ELEMENT-ONE. ELEMENT-A and
ELEMENT-B are elementary items subordinate to ELEMENT-TWO.

To define a three-dimensional table, define a one-dimensional table within each
occurrence of another one-dimensional table, which is itself contained within each
occurrence of another one-dimensional table. For example:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES

PICTURE X (8) .

In this example, TABLE-THREE is the group item that contains the table.
ELEMENT-ONE is an element of a one-dimensional table that occurs three
times. ELEMENT-TWO is an element of a two-dimensional table that occurs
three times within each occurrence of ELEMENT-ONE. ELEMENT-THREE is
an element of a three-dimensional table that occurs two times within each
occurrence of ELEMENT-TWO. Figure 13-1 shows the storage layout for
TABLE-THREE.

Chapter 13.Using the Additional COBOL Functions 13-23

L

ELEMENT-ONE ELEMENT-TWO ELEMENT -THREE
(Occurs Three Times) (Occurs Three Times) (Occurs Two Times)

ELEMENT-ONE (1) ELEMENT-TWO (1, 1) ELEMENT -THREE (l, 1, 1)

ELEMENT-THREE (1, 1,2)

ELEMENT-TWO (1, 2) ELEMENT-THREE (1, 2, 1)

ELEMENT-THREE (1, 2, 2)

ELEMENT-TWO (1, 3) ELEMENT-THREE (1, 3, 1)

ELEMENT-THREE (1, 3, 2)

ELEMENT -ONE (2) ELEMENT-TWO (2, 1) ELEMENT -THREE (2, 1, 1)

ELEMENT-THREE (2, 1,2)

ELEMENT-TWO (2, 2) ELEMENT-THREE (2, 2, 1)

ELEMENT-THREE (2, 2, 2)

ELEMENT-TWO (2, 3) ELEMENT-THREE (2, 3,1)

ELEMENT-THREE (2, 3, 2)

ELEMENT-ONE (3) ELEMENT-TWO (3, 1) ELEMENT-THREE (3, 1, 1)

ELEMENT-THREE (3, 1,2)

ELEMENT-TWO (3, 2) ELEMENT -THREE (3, 2, 1)

ELEMENT-THREE (3, 2, 2)

ELEMENT-TWO (3,3) ELEMENT-THREE (3, 3, 1)

ELEMENT-THREE (3,3,2)

Figure 13-1. Storage Layout for TABLE-THREE

Table References

Whenever you refer to a table element or to any item associated with a table
element, your reference must indicate which occurrence you want.

For a one-dimensional table, the occurrence number of the desired element gives
the complete information. For tables of more than one dimension, you must
supply an occurrence number for each dimension. In the three-dimensional table
defined in the previous discussion, for example, a reference to
ELEMENT-THREE must supply the occurrence number for ELEMENT -ONE,
ELEMENT-TWO, and ELEMENT-THREE. You can use either subscripting or
indexing, described in the following paragraphs, to supply the necessary
references.

13-24

Subscripting

Subscripting lets you provide table references by using subscripts. A subscript is
an integer value that gives the occurrence number of a table element. You can
use subscripts only when you reference an individual item within a table element.

Format

{data~n~me-I } [{OF}data-name-2] . . .
condltlon-name IN

(subscript-I[, subscript-2[, subscript-3]])

necessary. Note that when you use qualification, it is data-name-l that is
subscripted, not data-name-2.

You can represent the subscript by either a literal or a data name.

You must make a literal subscript an integer, and you must give it a value of I or
greater. You can give the literal a positive sign or make it unsigned. You cannot
use negative subscript values. For example, the following are valid literal
subscript references to TABLE-THREE:

ELEMENT-THREE (1, 2, 1)
ELEMENT-THREE (2, 2, 1).

You must describe a data name subscript as an elementary numeric integer data
item. You can qualify a data-name subscript; you cannot subscript or index it.
(See Indexing later in this chapter.) For example, assuming that SUBl, SUB2,
and SUB3 are all items subordinate to SUBSCRIPT-ITEM, valid data-name
subscript references to T ABLE-THREE are:

ELEMENT-THREE (SUB1, SUB2, SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF
SUBSCRIPT-ITEM, SUB2 OF SUBSCRIPT-ITEM,
SUB3 OF SUBSCRIPT-ITEM).

You must write the set of one to three subscripts within a balanced pair of
parentheses immediately after data-name-l or its last qualifier. You can
optionally place one or more spaces before the opening parenthesis.

When you use more than one subscript, you must separate each subscript from
the next either by a space or by a comma and a space.

When you need more than one subscript, write them in the order of successively
less-inclusive data dimensions. For example, in the table reference
ELEMENT-THREE (3, 2, 1), the first value (3) refers to the occurrence within
ELEMENT-ONE, the second value (2) refers to the occurrence within
ELEMENT-TWO, and the third value (1) refers to the occurrence within
ELEMENT-THREE.

The lowest subscript value you can use i£ 1. This value points to the first
occurrence within the table element. The next sequential elements are pointed to

Chapter 13.Using the Additional COBOL Functions 13-25

by subscripts with values 2, 3, and so on. The highest subscript value you can use
in any particular table element is the maximum number of occurrences you used
in the OCCURS clause. In the example in the preceding paragraph, the highest
possible subscript value for ELEMENT-ONE is 3; for ELEMENT-TWO, 3; and
for ELEMENT-THREE, 2.

Figure 13-2 shows subscripting using a three-level table. In this example,
UNIT-NUMBER could also be referenced as UNIT-NUMBER (3, 4, 5).

WORKING-STORAGE SECTION.

77 SUB1 PIC 99.

77 SUB2 PIC 99.

77 SUB3 PIC 99.

77 TEST-IT PIC 99 VALUE 00.

77 TOTAL-RECS PIC 99 VALUE ZEROS.

01 COMPANY-TABLE.

05 	 DIVISION-IN OCCURS 10 TIMES.
10 DIVISION-NAME PIC X(10).
10 DIVISION-NUMBER PIC 9(4).
10 SECTION-IN OCCURS 5 TIMES.

15 	 UNIT-IN OCCURS 5 TIMES.
20 UNIT-NAME PIC X(5).
20 UNIT-NUMBER PIC 9(4).

PROCEDURE DIVISION.
100-START-PROCESSING.

PERFORM ZERO-OUT-BIG-TABLE VARYING SUB1 FROM 1 BY 1
UNTIL SUB1 > 10

* 	 SUB1 IS VARIED LAST BY THE COMPUTER.
AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 5

* 	 SUB2 IS VARIED ******2ND****** BY THE COMPUTER.
AFTER SUB3 FROM 1 BY 1 UNTIL SUB3 > 5.

* ******SUB3 IS VARIED FIRST BY THE COMPUTER******.
PERFORM ADDRESS-THE-VARIABLES THRU ATV-EXIT.
DISPLAY 'VARIABLE TEST-IT = ' TEST-IT.
STOP RUN.

ZERO-OUT-BIG-TABLE.
MOVE ZEROS TO UNIT-IN (SUB1, SUB2, SUB3).{. . ~l ADDRESS-THE-VARIABLES.

SublcrlptlnQ ~{ IF UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN
OF COMPANY-TABLE (3, 4, 5) = 0 ADD 1 TO TEST-IT.

ATV-EXIT. EXIT.

Figure 13-2. Subscripting with a Three-Level Table

13-26

Indexing

Indexing lets you provide table references by using indexes. An index is a
compiler-generated storage area used to store table element occurrence numbers.
The index contains a value that corresponds to an occurrence number.

Format

data-name }< {i ndex-nalne-l [{+}l i teral-2 l}
{ condition-name (literal-l [-]

(

,{i ndex-name-2 ~{~}l i teral-4 ~}[, {i ndex-name-3 ~ {~}li teral-6 ~}l
literal-3 literal-5)

Each index name identifies an index to be used in table references. You specify
the index name through the OCCURS clause.

Each index named is a compiler-generated storage area, 2 bytes long. You can
use two forms of indexing:

• Direct

• Relative.

In direct indexing, you give the index name the form of a subscript. In relative
indexing, you follow the index name with all of the following items:

• A space

• A+ora­

• Another space

• An unsigned numeric literal.

The literal is considered to be an occurrence number and is converted to an index
value before being added to or subtracted from the index name index.

You must make an index value correspond to a table element occurrence not less
than I or greater than the highest permissible occurrence number. This restriction
applies to both direct and relative indexing.

You must initialize an index name through a SET, PERFORM (format 4), or
SEARCH ALL statement before using it in a table reference.

You can use one or more index references (direct or relative) together with literal
subscripts.

Chapter 13.Using the Additional COBOL Functions 13-27

Further information on index names is given later in this chapter in the
description of the INDEXED BY phrase of the OCCURS clause.

Restrictions on Subscripting and Indexing

Table Initialization

• 	 You must not subscript or index a data name when using it as a subscript or
qualifier.

• 	 You cannot subscript when you cannot index.

• 	 You can modify an index only with a PERFORM (format 4), SEARCH, or
SET statement.

• 	 When you use a literal in a subscript, you must make it a positive or unsigned
integer.

• 	 When you use a literal in relative indexing, you must make it an unsigned
integer.

Note: Improper subscripting or indexing can cause an abnormal end of your
program. For more information, see The Abnormal Program End in Chapter 6.

You can place static values or dynamic values in a table. Static values remain the
same through every run of the object program. When this is true, you can give
the initial values of table elements in Working-Storage in one of two ways:

• 	 You can first describe the table as a record containing consecutive
subordinate data description entries, each of which contains a VALUE clause
for the initial value. You can then redescribe the record through a
REDEFINES entry that contains a subordinate entry with an OCCURS
clause. Because of the OCCURS clause, the subordinate entries of the
redefined entry are repeated. For example:

01 	 TABLE-ONE.

05 ELEMENT-ONE PICTURE X VALUE '1'.

05 ELEMENT-TWO PICTURE X VALUE '2'.

05 ELEMENT-THREE PICTURE X VALUE '3'.

05 ELEMENT-FOUR PICTURE X VALUE '4'.

01 TABLE-TWO REDEFINES TABLE-ONE.

05 OCCURS-ELEMENT OCCURS 4 TIMES

PICTURE X.

• 	 If the subordinate entries do not require separate handling, you can give the
VALUE of the entire entry in the entry that names the table. The lower-level
entries then contain OCCURS clauses, and show the hierarchy of the table
structure. You must not place VALUE clauses in the subordinate entries.
For example:

01 TABLE-ONE VALUE '1234'.

05 TABLE-TWO OCCURS 4 TIMES

PICTURE X.

Dynamic values might change during one run of the object program or from one
run to another. If the dynamic values are always the same at the beginning of

13-28

values. If the initial values change from one run to the next, you can define the
table without initial values, and you can place the changed values in the table
before any table reference is made.

Figure 13-3 shows two ways of initializing a table with zeros.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 SUBl PIC 999.

77 TOTAL-HOLD PIC 99 VALUE 57.

77 HOLD-2 PIC 99 VALUE 10.

77 HOLD-THE-SUM PIC 99 VALUE ZERO.

01 TABLE-ELEMENT.

03 ELEMENTS-OF-TABLE OCCURS 100 TIMES PIC 9.

PROCEDURE DIVISION.
100-START-PROCESSING.

PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT VARYING SUBl
FROM 1 BY 1 UNTIL SUBl > 100.
ADD TOTAL-HOLD HOLD-2 GIVING HOLD-THE-SUM.

* 	 THIS ADD STATEMENT IS EXECUTED AFTER THE PERFORM IS DONE.
DISPLAY 'TOTAL OF TWO VARIABLES = ' HOLD-THE-SUM.
PERFORM ANOTHER-WAY-TO-INITIALIZE THRU AWTI-EXIT.

* ************************
* THE TABLE WILL BE ALL ZEROS AND SHOULD PRINT AS SUCH.
*
*
* 	 *************************

DISPLAY '------------------THE-------TABLE----------'.
STOP RUN.

SAr1PLE-PERFORM.
MOVE ZEROS TO ELEMENTS-OF-TABLE (SUB1).

PERFORM-EXIT. EXIT.
ANOTHER-WAY-TO-INITIALIZE.

MOVE ZEROS TO TABLE-ELEMENT.
AWTI-EXIT. EXIT.

Figure 13-3. Initializing a Table with Zeros

Chapter 13.Using the Additional COBOL Functions 13-29

Data Division Table Handling

The COBOL Data Division clauses you use for Table Handling are the OCCURS
clause and the USAGE IS INDEX clause.

OCCURS Clause

The OCCURS clause eliminates the need to use separate entries for repeated data
items. It also supplies the information necessary for the use of subscripts or
indexes. The format of the OCCURS clause is as follows:

Format

OCCURS {integer-l TO integer-2 TIMES DEPENDING ON data-name-l}
[integer-2 TIMES

ASCENDIHG }KEY IS data-name-2 [, data-name-31 ...J[{PESCENDING

[IHDEXED BY ;ndox-namo-l [, ;ndox-namo-21 •••J]
J

The subject of an OCCURS clause is the data name of the data item containing
the OCCURS clause. Except for the OCCURS clause itself, data description
clauses used with the subject apply to each occurrence of the item describt:d.

When you refer to the subject in a statement other than a SEARCH statement, or
if the subject is the object of a REDEFINES clause, you must subscript or index
the subject. When you subscript or index the subject, it refers to one occurrence
within the table element.

Whenever you refer to the subject in a SEARCH statement or the subject is the
object of a REDEFINES clause, you must not subscript or index the subject.
When you do not subscript or index the subject, it represents the entire table.

You must have less than 32,768 occurrences in the table and it must be less than
32,768 bytes long.

You can qualify all data names that you use in the OCCURS clause. Y011 cannot
subscript or index them.

Yau must make all integers positive, nonzero integers.

13-30

Fixed-Length Tables

Variable-Length Tables

You cannot use the OCCURS clause in a data description entry in which you:

• 	 Have a level-Ol, -66, -77, or -88 number.

• 	 Describe an item of variable size (an item is of variable size if any subordinate
entry contains an OCCURS DEPENDING ON clause).

• 	 Describe redefined data items. (However, you can have a redefined item that
is subordinate to an item containing an OCCURS clause.) See the
REDEFINES Clause in Chapter 10.

When you do not use an OCCURS DEPENDING ON clause, integer-2 gives the
exact number of occurrences.

You must make integer-2 greater than 0 and less than 32,768.

Because you are allowed three subscripts or indexes, you can use three nested
levels of this format of the OCCURS clause.

When you use the OCCURS DEPENDING ON clause, integer-l represents the
minimum number of occurrences, and integer-2 represents the maximum number
of occurrences. You must make the value of integer-lone or greater; you must
also make it less than integer-2. You must make integer-2 less than 32,768. The
length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

Data-name-l gives the object of the OCCURS DEPENDING ON clause. The
object is the data item with a current value that represents the current number of
occurrences of the subject item. The object of the OCCURS DEPENDING ON
clause:

• 	 Must be described as a positive integer; that is, if you describe data-name-l as
a signed item, then it must contain positive data at running time.

• 	 Must not occupy any storage position within the range of this table; that is,
the object must not occupy any storage position from the first character
position in this table through the last character position in this record
description entry.

• 	 Must contain a value within the range of integer-l and integer-2, inclusive.

The value of the object of the OCCURS DEPENDING ON clause specifies that
part of the table element available to the object program. Items with occurrence
numbers that are larger than the value of the object are not available. If during
run time, the value of the object is reduced, the contents of items with occurrence
numbers that are larger than the new value of the object are unpredictable.

When you refer to a group item containing a subordinate OCCURS
DEPENDING ON item, the current value of the object determines which part of
the table area is used in the operation.

Chapter l3.Using the Additional COBOL Functions 13-31

L

In one record description entry,you can follow any entry that contains an
OCCURS DEPENDING ON clause only by items subordinate to it. You cannot
have the OCCURS DEPENDING ON clause subordinate to another OCCURS
clause; however, you can have the format I OCCURS clause subordinate to the
OCCURS DEPENDING ON clause; in this way, you can specify a table of up to
three dimensions.

ASCENDING/DESCENDING KEY Phrase

The ASCENDING/DESCENDING KEY phrase specifies that the repeate:d data
is arranged in ascending or descending order according to the values contained in
data-name-2, data-name-3, and so on. You should list the data names in
descending order of significance. The SEARCH ALL statement uses the
ASCENDING/DESCENDING KEY data items to search the table element.

Determine the order by using the rules for comparison of operands. (See R.elation
Condition in Chapter 11.)

You must make data-name-2 the name of the subject entry or the name of an
entry subordinate to the subject entry. If data-name-2 names the subject entry,
that entire entry becomes an ASCENDING/DESCENDING KEY. If
data-name-2 does not name the subject entry, then data-name-2, data-name-3, and
so on:

• Must be subordinate to the subject of the table entry itself

• Must not be subordinate to any other entry that contains an OCCURS clause

• Must not themselves contain an OCCURS clause.

The following example illustrates the specification of
ASCENDING/DESCENDING KEY data items:

WORKING-STORAGE SECTION.
01 CURRENT-WEEK PICTURE 99.
01 TABLE-RECORD.

05 	 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE
EMPLOYEE-NO INDEXED BY A, B.
10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.
10 WEEK-RECORD OCCURS 52 TIMES

ASCENDING KEY IS WEEK-NO
INDEXED BY C.
15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATENESSES PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, and the key for
WEEK-RECORD is subordinate to that subordinate entry.

When you use the ASCENDING/DESCENDING KEY phrase, the following
rules apply:

• You must list keys in decreasing order of significance

13-32

INDEXED BY Phrase

• 	 You must make sure that the data present in the table is arranged in
ascending/descending key sequence according to the collating sequence in use.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE and in ascending order of EMPLOYEE-NO
within WAGE-RATE. Records in WEEK-RECORD must be arranged in
ascending order o(WEEK-NO. If they are not, SEARCH ALL statement results
will be unpredictable.

The INDEXED BY phrase gives the indexes that you can use with this table
element. You must use the INDEXED BY phrase if you use indexing to refer to
this table element.

Each index name must follow the rules for formation of a user-defined word; you
must make at least one character alphabetic. Each index name specifies an index
to be created by the compiler for use by the program. These index names are not
data names, and you do not identify them elsewhere in the COBOL program;
instead, you can regard them as special registers for the use of this object program
only. They are not regarded as data or part of any data hierarchy, so you must
make each one unique. You can reference an index name only with a
PERFORM, SET, or SEARCH statement; as a parameter in the USING phrase
in a CALL statement; or in a relational condition comparison.

USAGE IS INDEX Clause

The USAGE IS INDEX clause specifies that the data item named has an index
format. Such an item is an index data item.

Format

An index data item is an elementary item that you can use to save index name
values for future reference. Through the SET statement, you can assign an index
name value to an index data item. An index value corresponds to the
displacement for an occurrence number in the table, that is (occurrence-number 1)
* entry length.

You can directly refer to an index data item only in:

• 	 A SEARCH statement

• 	 A SET statement

• 	 A relation condition

• The USING phrase of the Procedure Division header

Chapter 13.Using the Additional COBOL Functions 13-33

L

• 	 The USING phrase of the CALL statement.

You can make an index data item part of a group item you referred to in a
MOVE statement or an input/output statement.

An index data item saves values equivalent to table occurrences; however, you do
not necessarily define it as part of any table. Thus, when you directly reference
an index data item in a SEARCH or SET statement or indirectly in a MOVE or
an input/output statement, there is no conversion of values when the statement is
performed.

You can write the USAGE IS INDEX clause at any level. If you described a
group item with the USAGE IS INDEX clause, it is the elementary items within
the group that are index data items. The group itself is not an index data item,
and you cannot use the group name in SEARCH and SET statements or in
relation conditions. You cannot have a USAGE clause of an elementary item
that contradicts the USAGE clause of a group to which the item belongs.

You cannot have an index data item that is a conditional variable. The index
data item cannot have a subordinate level-88 entry.

You cannot use the SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK
WHEN ZERO, or VALUE clauses to describe group or elementary items that
you described with the USAGE IS INDEX clause.

Procedure Division Table Handling

Relation Conditions

In the Procedure Division, you can use the SEARCH and SET statements with
indexed tables. There are also special rules involving table handling elements
when you use them in relation conditions.

Comparisons involving index names or index data items conform to the following
situations:

• 	 When you compare two index names, you are actually comparing the
corresponding occurrence numbers.

• 	 When you compare an index name with a data item (other than an index data
item) or an index name with a literal, the occurrence number that corresponds
to the value of the index name is compared with the data item or literal.

• 	 When you compare an index data item with an index name or another index
data item, the actual values are compared without conversion. Results of any
other comparison involving an index data item are undefined.

Figure 13-4 shows comparisons you can make for index names and index data
items.

13-34

Second Operand

Data name
Index (numeric

First Operand Index-name' Data Item2 integer only) Numeric Literal (integer only)

Index-name' Compare Compare without Compare Compare occurrence number with literal
occurrence conversion occurrence
number number with

data-name

Index Data Item2 Compare Compare without Invalid Invalid
without conversion
conversion

Data name (numeric Compare Invalid
integer only) occurrence

number with
data name

Numeric Literal Compare Invalid
(integer only) occurrence

number with
literal

'See OCCURS Clause earlier in this chapter.
2See USAGE IS INDEX Clause earlier in this chapter.

Figure 13-4. Comparisons You Can Make for Index Names and Index Data Items

Chapter 13.Using the Additional COBOL Functions 13-35

SEARCH Statement

The SEARCH statement searches a table for an element that satisfies the given
condition, and adjusts the associated index to indicate that element. The formats
for the SEARCH statement are:

Format 1

SEARCH identifier-I[VARYING {~dentifier-2}] [AT END imperative-statement-I]
lndex-name-I

condition-l{imperative-statement-2.}
NEXT SENTENCE

[WHEN condition-2fimperative-statement-3}]
lHEXT SENTENCE

Format 2

SEARCH ALL identifier-I [AT END imperative-statement-I]

data-name-I {IS EQUAL TO}{identifier-3 }
IS =

condition-name-I

Ii teral-l
arithmetic-expression-l

AND {data-name-2e~ ~QUAL

condition-name-2

TO

.

}{identifier-4
literal-2
arithmatic-expression-2

}}

im perative-statement-2}{ NEXT SEIHENCE

You must include an OCCURS clause with the INDEXED BY phrase in the
Data Division description of identifier-I.

When you use identifier-l in the SEARCH statement, identifier-l must refer to all
occurrences within the table element. You must not subscript or index
identifier-I.

You can make identifier-I:

• 	 A data item that is subordinate to a data item that contains an OCCURS
clause

13-36

Format 1

~

• 	 Part of a two- or three-dimensional table. For each dimension of the table in
this case, you must use an INDEXED BY phrase in the data description
entry.

Performing the SEARCH statement changes only the value of the index name
associated with identifier-l (and, if present, of index-name-l or identifier-2); to
search an entire two- or three-dimensional table, you must perform a SEARCH
statement for each dimension. Before each performance of a SEARCH statement,
you must perform SET statements to reinitialize the associated index names.

In the AT END and WHEN phrases, control passes to the next sentence after the
imperative statement is performed if you did not end any of the given imperative
statements with a GO TO statement.

Performance of a format 1 SEARCH statement causes a serial search to be
performed, beginning at the current index setting.

If the value you use for the index name associated with identifier-l is not greater
than the highest possible occurrence number, the following actions take place
when the search begins:

1. 	 The condition(s) in the WHEN phrase are evaluated in the order you wrote
them.

2. 	 If none of the conditions are satisfied, the index name for identifier-l is
incremented to correspond to the next table element, and step I is repeated.

3. 	 If upon evaluation one of the WHEN conditions is satisfied, the search ends
immediately, and the imperative statement associated with that condition is
performed. The index name points to the table element that satisfied the
condition.

4. 	 If the end of the table is reached (that is, the incremented index name value is
greater than the highest possible occurrence number) without the WHEN
condition being satisfied, the search ends as described in the next paragraph.

If, when the search begins, the value of the index name associated with identifier-l
is greater than the highest possible occurrence number, the search immediately
ends, and if used, the AT END imperative statement is performed. If you leave
out the AT END phrase, control passes to the next sentence.

You can make each WHEN phrase condition any condition as described under
Conditional Expressions in Chapter 11.

VARYING Index-Name-I Phrase: When you leave out the VARYING
index-name-l phrase, the first (or only) index name for identifier-l is used for the
search. When you use the VARYING index-name-l phrase, one of the following
actions takes place:

• 	 If index-name-l is an index for identifier-I, this index is used for the search;
otherwise, the first (or only) index name is used.

Chapter 13.Using the Additional COBOL Functions 13-37

• 	 If index-name-l is an index for another table element, the first (or only) index
name for identifier-l is used for the search; the occurrence number
represented by index-name-l is incremented by the same amount as the search
index name and at the same time.

VARYING Identijier-2 Phrase: When you use this phrase, the first (or only)index
name for identifier-l is used for the search.

You must make identifier-2 either an index data item or an elementary integer
item. During the search, one of the following actions takes place:

• 	 If identifier-2 is an index data item, then whenever the search index is
incremented, the specified index item is incremented by the same amount at
the same time.

• 	 If identifier-2 is an integer data item, then whenever the search index is
incremented, the given data item is incremented by 1 at the same time.

13-38

Figure 13-5 is a flowchart of a format 1 SEARCH operation containing two
WHEN phrases_

SEARCH Statement
Begins

GT AT END**

True WHEN Condition-1

True WHEN Condition-2**

I mperative­ ***

Statement~1

...
Imperative­

Statement-2

*••Imperative­
Statement-3

False

Increment Index­
Name for
Identifier-1
(index-name-1
if applicable)

**
Increment Index­
Name-1 (for
another table)
or Identifier-2

• Index setting equals highest permissible occurrence number.
** These operations are included only when called for in the statement.

*** 	 Each of these control transfers is to the next sentence unless the
imperative~tatement ends with a GO TO statement.

Figure 13-5. Format 1 SEARCH with Two WHEN Phrases

Chapter l3.Using the Additional COBOL Functions 13-39

Format 2

Performance of a format 2 SEARCH ALL statement causes a serial search to be
performed, beginning with the first element of the table. You need not initialize
the search index with SET statements, because its setting is varied during the
search operation. The index used is always the index that is associated with the
first index name you used in the OCCURS clause.

If the WHEN phrase cannot be satisfied for any setting of the index within this
range, the search is unsuccessful. If you use the AT END phrase, the AT END
imperative statement is performed. If you do not use the AT END phrase,
control passes to the next sentence. In either case, the final setting of the index is
not predictable.

If the WHEN phrase can be satisfied, control passes to imperative-statemc::nt-2,
and the index contains a value indicating an occurrence that allows the WHEN
condition(s) to be satisfied.

WHEN Condition-Name-l Phrase: If you use the WHEN condition name:-I
phrase, you must give each condition name a single value only, and you must
associate each with an ASCENDING/DESCENDING KEY identifier for this
table element.

WHEN Relation Condition Phrase: If you use a WHEN relation condition, the
following considerations apply:

• 	 Data-name-I or data-name-2 must give an ASCENDING/DESCENDING
KEY data item in the identifier-I table element and must be indexed by the J
first identifier-I index name, along with other indexes or literals as required.
You can qualify each data name.

• 	 Identifier-3 and identifier-4 must not be an ASCENDING/DESCENDING
KEY data item for identifier-lor an item that is indexed by the first index
name for identifier-I.

• 	 Literal-lor literal-2 must be a positive or an unsigned numeric integer.

• 	 Arithmetic-expression-l or arithmetic-expression-2 can be any of those
defined under Arithmetic Expressions in Chapter 11 with the following
restriction: You must not have any identifier in the arithmetic expression that
is an ASCENDING/DESCENDING KEY data item for identifier-l or an
item that is indexed by the first index name for identifier-I.

• 	 When you use an ASCENDING/DESCENDING KEY data item either
explicitly or implicitly in the WHEN option, you must also use all preceding

. ASCENDING/DESCENDING KEY data names for identifier-I.

The results of a SEARCH ALL operation are predictable only when both of the
following apply:

• 	 You must place the data in the table in ascending or descending key sequence

• 	 You provide a unique table reference with the contents of the
ASCENDING/DESCENDING keys used in the WHEN clause.

13-40

L
Notes:

1. 	 You cannot use index data items as subscripts or indexes, because of the
restrictions on direct reference to them. Using a direct indexing reference
together with a relative indexing reference for the same index name lets you
reference two different occurrences of a table element for comparison.

2. 	 When you make the object of the VARYING phrase an index name for
another table element, one format 1 SEARCH statement looks at two table
elements at once.

3. 	 One format 4 PERFORM statement can search an entire multidimensional
table.

4. 	 To ensure correct performance of a PERFORM or SEARCH statement for
a variable-length table, you must make sure that the object of the OCCURS
DEPENDING ON clause (data-name-l) contains a value that correctly
gives the current length of the table.

Chapter 13.Using the Additional COBOL Functions l3-41

SEARCH Example

The following example searches an inventory table for items that match those
from the input data. The key is INVENTORY-NUMBER.

DATA DIVISION.
FILE SECTION.
FD SALES-DATA

BLOCK CONTAINS 1 RECORDS

RECORD CONTAINS 80 CHARACTERS

LABEL RECORDS STANDARD

DATA RECORD IS SALES-REPORTS.

01 	 SALES-REPORTS PIC X(80).
FD 	 PRINTED-REPORT

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS OMITTED
DATA RECORD IS PRINTER-OUTPUT.

01 	 PRINTER-OUTPUT PIC X(132).
FD 	 INVENTORY-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 40 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS INVENTORY-RECORD.

01 	 INVENTORY-RECORD.
03 I-NUMBER PIC 9(4).
03 INV-ID PIC X(26).
03 I-COST PIC 9(8)V99.

WORKING-STORAGE SECTION.

77 EOF-SW PIC X VALUE 'N' .

77 EOF-SW2 PIC X VALUE 'N' .

77 SUBI PIC 99.

77 RECORDS-NOT-FOUND PIC 9{S) VALUE ZEROS.

77 TOTAL-COSTS PIC 9(10) VALUE ZEROS.
 J
01 HOLD-INPUT-DATA.

03 INVENTORY-NUMBER PIC 9999.
03 PURCHASE-COST PIC 9(4)V99.
03 PURCHASE-DATE PIC 9 (6) •
03 FILLER PIC X(64) .

01 PRINTER-SPECS.
03 PRINT-LINE.

05 OUTPUT-ITEM-NUMBER PIC ZZZ9.
05 FILLER PIC X(48) VALUE SPACES.
05 TOTAL-COSTS-O PIC $(8) .99.

01 PRODUCT-TABLE.
05 INVENTORY-NUMBERS OCCURS 50 TIMES

ASCENDING KEY ITEM-NUMBER
INDEXED BY INDEX-I.

07 ITEM-NUMBER PIC 9 (4) .
07 ITEM-DESCRIPTION PIC X(26).
07 ITEM-COST PIC 9(8)V99.

13-42

L
PROCEDURE DIVISION.
IOO-START-IT.

OPEN INPUT SALES-DATA INVENTORY-DATA OUTPUT PRINTED-REPORT.
MOVE HIGH-VALUES TO PRODUCT-TABLE.

READ-INVENTORY-DATA.
READ INVENTORY-DATA AT END MOVE 'Y' TO EOF-SW2.

LOAD-TABLE-ROUTINE.
PERFORM LOAD-IT VARYING SUBI FROM I BY I UNTIL SUBI > 50.

110-READ-IT.
READ SALES-DATA INTO HOLD-INPUT-DATA AT END
MOVE 'Y' TO EOF-SW.

200-MAIN-ROUTINE.
PERFORM PROCESS-DATA UNTIL EOF-SW = 'y'.
MOVE ZEROS TO OUTPUT-ITEM-NUMBER.
MOVE TOTAL-COSTS TO TOTAL-COSTS-O.
PERFORM WRITE-REPORT THRU WRITE-REPORT-EXIT.
DISPLAY 'RECORDS NOT FOUND = ' RECORDS-NOT-FOUND.
STOP RUN.

PROCESS-DATA.
SEARCH ALL INVENTORY-NUMBERS AT END
PERFORM KEY-NOT-FOUND THRU NOT-FOUND-EXIT
WHEN INVENTORY-NUMBER IS = ITEM-NUMBER (INDEX-I)

MOVE ITEM-NUMBER (INDEX-I) TO OUTPUT-ITEM-NUMBER
MOVE ITEM-COST (INDEX-I) TO TOTAL-COSTS-O
ADD ITEM-COST (INDEX-I) TO TOTAL-COSTS
PERFORM WRITE-REPORT THRU WRITE-REPORT-EXIT.

PERFORM IIO-READ-IT.

KEY-NOT-FOUND.

ADD 1 TO RECORDS-NOT-FOUND.
NOT-FOUND-EXIT. EXIT.
LOAD-IT.

MOVE INVENTORY-RECORD TO INVENTORY-NUMBERS (SUBI).
PERFORM READ-INVENTORY-DATA.

WRITE-REPORT.
WRITE PRINTER-OUTPUT FROM PRINTER-SPECS.

WRITE-REPORT-EXIT. EXIT.
* ********END SAMPLE SEARCH PROGRAM********************

Chapter l3.Using the Additional COBOL Functions 13-43

L

SET Statement

The SET statement can:

• 	 Establish reference points for table handling operations by setting index
names to values you associated with table elements

• 	 Transfer values between index names and other elementary data items

• 	 Alter the status of external UPSI switches

• Alter the value of conditional variables.

The formats of the SET statement are:

Format 1

SET {idantifier-l [, identifier-21 .} {identifier-3}
index-name-l [, index-name-21 . TO 	 index-name-3

integer-l

Format 2

SET index-name-4 [, index-name-Sl ...{up BY }{identifier-4}

DOWN BY integer-2

Format 3

mlnpmonic-name-l[, mnemonic-name-21 ••. TO ON

OFF

Format 4

ET condition-name-l[, condition-name-2J •.. TO

You relate index names to a given table through the INDEXED BY phrase of the

OCCURS clause. Index names that you used in the INDEXED BY phrase are ..'\

automatically defined. ...""

13-44

Format 1 Considerations

Format 2 Considerations

You can make integer-l and integer-2 signed. You must make integer-l positive.
You must make all identifiers either index data items or numeric elementary items
described as integers; however, you must not have identifier-4 name an index data
item.

When the SET statement is performed, one of the following actions occurs:

• 	 Index-name-l is converted to a value that corresponds to the same table
element to which either index-name-3, identifier-3, or integer-l corresponds.
If identifier-3 is an index data item, no conversion takes place.

• 	 If identifier-l is an index data item, it is set equal to either the contents of
index-name-3 or the contents of identifier-3 when identifier-3 is also an index
data item. You cannot use integer-l in this case.

• 	 If identifier-l is not an index data item, it is set to an occurrence number that
corresponds to the value of index-name-3. You can use neither identifier-3
nor integer-l in this case.

When the SET statement is performed, the contents of index-name-4 are
incremented (UP BY) or decremented (DOWN By) by a value that corresponds
to the number of occurrences represented by the value of integer-2 or identifier-4.
You must make the value of the index correspond to an occurrence number of an
element in the associated table.

r------------- IBM Extension ------------,

Format 3 Considerations

You must associate each mnemonic name with an external switch (UPSI-O
through UPSI-7), the status of which you can alter.

The status of each external switch is modified to ON if you use the ON keyword,
or OFF if you use the OFF keyword.

Format 4 Considerations

You must associate each condition name with a conditional variable.

The literal in the VALUE clause that you associated with the condition name is
moved to the conditional variable according to the rules for elementary moves. If
you used more than one literal in the VALUE clause, the first literal in that
VALUE clause is moved.

'--__________ End of IBM Extension __________--'

Chapter 13.Using the Additional COBOL Functions 13-45

LINKAGE BETWEEN MODULES

This section describes standard linkage conventions to use between modul,es
produced by the System/36 language compilers or assemblers: COBOL,
FORTRAN IV, and Assembler. If you use standard linkage conventions, you can
code routines in the language most appropriate to the function being performed.
Figure 13-6 illustrates the standard linkage convention described on the following
pages.

J

13-46

ASSEMBLER MODULE (MODAl CALLS enROL MODULE (MODBl
! .

EXTRN MODB
MODA START X'OOOO'

*
*
:~

* B MODB CALL COBOL MODULE MODB
DC AL2(PLlST) PARAIIETER LIST

* CONTROL RETURNS HERE AFTER ~JJB EXECUTION

* :;::
:;::
~;::

:;::

,:~ PARAMETER LI ST
PLI ST EQU * DC AL2(SAVA I ADDRESS OF SAVE AREA

DC AL2(PARM1l ADDRESS OF FIRST PARAMETER
DC AL2(PARM2l ADDRESS OF SECOND PARAMETER

*
DC XL2'FFFF' END OF PARAMETER LIST INDICATOR

* PARAMETERS
PARM1 EQU

DC
*
CL5'FIRST'

PARM2 EQU
DC

*
CL6'SECOND'

*
*
*
* SAVE AREA
SAVA DC XL1,'BO' INDICATOR BYTE - CALLING PROGRAM IS ASSEMBLER

DC CL6'MODA' CALLING PROGRAM'S NAME
END MODA

SAMPLE SYSTEM/»X LINKAGE*
* COBnL MODULE (MODCl CALLS ASSEMBLER MODULE (MODD)*
*
XR1. EClU J, EQUATE REGISTER VALUES
XR2 EQU 2
ARR EQU 8
IAR EQU 1,6

* ENTRY MODD
t~ODD 	 START X'OOOO'

ST SAVAR1,XR1 SAVE INDEX REGISTER ONE VALUE
LA SAVA,XR1 POINT XR1 TO MODD'S SAVE AREA
USING SAVA,XR1 ESTABLISH XR1 AS BASE REGISTER
ST S.~VAR2(,XR1) ,XR2 SAVE INDEX REGISTER TWO VALUE
ST SAVART(,XR1),ARR SAVE ARR VALUE
L SAVART(,XR1l ,XR2 POINT XR2 TO ARR VALUE
L 1,(,XR2l,XR2 POINT TO SECOND BYTE OF ADDRESS
ALC SAVART(,XR1l,TWO(,XR1,l JUMP ARR VALUE PAST PARAMETER
L 3(,XR2l ,XR1 GET ADDR OF PARAM 1 INTO XR~

L 5(,XR2l ,XR2 GET ADDR OF PARAM 2 INTO XR2
* BODY OF ROUTINE.* RETURN TO CALLING PROGRAM*
*

L SAVAR2(,XR1),XR2 	 RESTORE XR2 VALUE
L SAVAR),(,XR1l ,XRl RESTORE XR~ VALUE
L SAVART.IAR BRANCH TO NEXT SEO. INSTRUCTION
SAVE AREA* SAVA 	 DC XL~'30'
DC CL6'MODD'

SAVAR1 DC XL2'OO'
SAVAR2 DC XL2'OO'
SAVART DC AL2(OO)

WORK VALUE* TWO 	 DC IL2'2'
END MODD

Figure 13-6. Standard Linkage

Chapter l3.Using the Additional COBOL Functions 13-47

L

Standard Linkage

Standard linkage is accomplished as follows:

1. 	 You must define a save area for each module as follows:

For a subprogram:

Byte 0 Bit 0 o Not a main program
Bits 1-3 000 FORTRAN IV

001 COBOL
011 Assembler

Bits 4-7 0000 Reserved

Bytes 1-6 EBCDIC name,
left-adjusted

Bytes 7-8 Value of
index register 1 (XRl) at entry

Bytes 9-10 Value of
index register 2 (XR2) at entry

Bytes 11-12 Return point
in calling program

For a main program:

Byte 0 Bit 0 1 Main program
Bits 1-3 000 FORTRAN IV

001 COBOL
011 Assembler

Bits 4-7 0000 Reserved

Bytes 1-6 EBCDIC name,
left-adjusted

Note: Main program refers to the program with the highest level of control.

2. 	 You must define one or more parameter lists for each module that calls
another module as follows:

Bytes 0-1 	 Address of save of area in this
program

Bytes 2-3 	 Address of first parameter

Bytes Address of nth parameter
(2n) - (2n + 1)

Bytes (2n 	+ 2) XL2'FFFF' to indicate end of
parameter list

Notes:

a. 	 You must include the first 2 bytes, as well as the end-of-parameter-list
indicator (XL2'FFFF) in all parameter lists. If no parameters are to be
passed, the parameter list is only 4 bytes long. In this case, bytes 3 and 4
are hex FFFF.

13-48

b. 	 Addresses in parameter lists refer to the first byte (byte with the lowest
address) of the item.

3. 	 When control reaches a program entry point, the address recall register
(ARR) must point to a 2-byte field containing the first byte of the parameter
list.

The assembler language code to call a COBOL subprogram would normally
be as follows:

EXTRN SUBR
B SUBR
DC AL2(PARAMS)

RETNPT EQU *

Note: The pointer to the parameter list points to the left byte of the save
area address.

4. 	 Normal return is accomplished by placing in the hardware instruction address
register (IAR) a value that is 2 larger than the contents of the ARR when the
program was entered.

5. 	 You must save index registers 1 and 2 (XRl and XR2) upon entry into the
called program's save area, and restore them at exit.

6. 	 You need not restore the address recall register, but you must determine the
return address and place it in the called program's save area.

USING INTER-PROGRAM COMMUNICATION

You can often solve complex data processing problems by using separately
compiled but logically interdependent programs that at run time, form logical and
physical subdivisions of a single run unit. A run unit is the total
machine-language program necessary to solve a data processing problem; it
includes one or more object programs, and can include object programs from
source programs written in System/36 FORTRAN IV, System/36 Assembler, and
System/36 COBOL.

Subprogram Linkage Concepts

When you subdivide the solution of a problem into more than one program, the
constituent programs must be able to communicate with each other through
transfers of control or through reference to common data.

Chapter 13.Using the Additional COBOL Functions 13-49

L

Transfers of Control

Common Data

In the Procedure Division, a calling program can transfer control to a called
program, and a called program can itself transfer control to yet another called
program; however, a called program must not directly or indirectly call the
program that called it. For example, if program A calls program B, program B
calls program C, and program C then calls program A, the results will be:
unpredictable.

When control passes to a called program, the program runs normally. When a
called program completes processing, the program can do any of the following:

• Transfer control back to the calling program

• Call another program

• End the run unit.

Program interaction might require that both programs have access to the same
data.

In a calling program, describe the common data items in the same manner as
other File and Working-Storage Section items. Allocate storage for these items in
the calling program.

Describe common data items in the Linkage Section of a called program but do
not allocate storage to them in the called program. If a calling program is also a
called program, you can describe common data items in the Linkage Section of
the calling program. In this case, do not allocate storage for these items in this
calling program itself, but rather in the program that called the calling program.
For example, program A calls program B, which calls program C. You can
describe data items in program A in the Linkage Sections of programs Band C
and make the one set of data available to all three programs.

When control transfers from the calling to the called program, you must furnish a
list of the common data items in both programs. The sequence of identifiers in
both lists determines the match of identifiers between the calling and called
programs. A corresponding pair of identifiers in the list names a single set of
data that is available to both programs. While the called program is running, any
reference to one of these identifiers is a reference to the corresponding data of the
calling program.

COBOL Language Considerations

In the Data Division of the source programs, you define the common data items
to be used by both the calling and called programs. In the calling program, you
can define these items in the File, Working-Storage, or Linkage Sections. In the
called program, you must define these items in the Linkage Section. You need
not give common data items the same name and data description, but you must
make them the same number of characters.

13-50

System Considerations

In the Procedure Division, you use the USING phrase to make the list of
common data items. The USING phrase names those data items available to both
programs. In the called program, only those items named in the USING list of
the called program are available from the data storage of the calling program.
Figure 13-7 illustrates this concept.

A CALL statement in the calling program transfers control to the first
nondeclarative procedural statement in the called program. When the called
program has completed running, control returns to the calling program by an
EXIT PROGRAM statement. You can end the entire run unit with a STOP
RUN statement in either program.

Calling Program Description Called Program Description

WORKING-STORAGE SECTION. LINKAGE SECTION.
01 PARAM-LIST 01 USING-LIST.

05 PARTCODE PIC A. 10 PART-ID PIC X(5).
05 PARTNO PIC X(4). 10 SALES PIC 9(5).
05 U-SALES PIC 9(5)

.
PROCEDURE DIVISION

PROCEDURE DIVISION USING USING-LIST.

CALL 'CALLPG'
USING PARAM-LIST

Figure 13-7. Common Data Items in Subprogram Linkage

Note: In the calling program, the code for parts (PARTCODE) and the part
number (PARTNO) are referred to separately. In the called program, the code
for parts and the part number are combined into one data item (PART-ID);
therefore, in the called program, a reference to PART-ID is the only valid
reference to them.

The main COBOL program and all called programs are part of the same load
module. When control transfers to the called program, it is already in storage,
and a branch to the called program takes place. Subsequent performing of the
CALL statement makes the called program available in its last-used state, if
segmentation on the called program has not been requested.

Chapter 13.Using the Additional COBOL Functions 13-51

L

Data Division Subprogram Linkage

In the Data Division of a called program, you specify in the Linkage Section
those data items that are common with the calling program.

Format

LINKAGE SECTION.

[data-item-descriPtion-entrv]

[record-descri pti on-entry] ...

The Linkage Section has meaning only if this object program functions under
control of a CALL statement that contains the USING phrase.

The Linkage Section describes data available within the calling program and
referred to in both the calling and called programs. Do not allocate space in the
called program for items described in the Linkage Section. Procedure Division
references to these data items are resolved at object time by equating the reference
in the called program to the location used in the calling program. For index
names, no such correspondence is established. Index name references in the
calling and called programs always refer to separate indexes.

You can refer to items defined in the Linkage Section in the Procedure Division
only if the items are one of the following:

• 	 Operands of a USING phrase in this program

• 	 Data items subordinate to such a USING phrase operand

• 	 Items associated with such a USING operand (such as condition names or
index names).

You must make each Linkage Section record name and nonconsecutive data name
unique, because you cannot qualify them. Descriptions of each clause valid in the
Linkage Section are given under Data Description in Chapter 10. In addition,
record description entries and data item entries must be considered. A brief
description of each is provided.

Record Description Entries

You must group items that have a hierarchical relationship with one another into
level-OJ records according to the rules for formation of record descriptions. You
can use data description clauses to complete the description of the entry. Except
for level-88 condition names, you must not use the VALUE clause.

13-52

Data Item Description Entries

You can define items that have no hierarchical relationship with each other as
nonconsecutive items with level number 77. You must use the following clauses:

• Level number 77

• Data name

• PICTURE or USAGE IS INDEX.

Other data description clauses are optional and, when necessary, can complete the
description of the item. Except for level-88 condition names, you must not use
the VALUE clause.

Procedure Division Subprogram Linkage

In the Procedure Division, you use the CALL statement to transfer control
between COBOL object programs.

The USING phrase can be used in the CALL statement and in the Procedure
Division header of the called program to reference common data.

You can use the EXIT PROGRAM statement to end processing of the called
program. You can use the STOP RUN statement to end the run unit.

CALL Statement

You use the CALL statement to transfer control from one object program to
another within the run unit. You must include a CALL statement in the calling
program at the point where another program is to be called.

Performing the CALL statement passes control to the first nondeclarative
instruction of the called program. Control returns to the calling program at the
instruction following the CALL statement.

You can include CALL statements in called programs; however, a called program
must not contain a CALL statement that directly or indirectly calls itself.

You can call up to 100 subprograms in a calling program.

Format

Chapter 13.Using the Additional COBOL Functions 13-53

L

USING Phrase

Literal-l must be nonnumeric and must conform to the rules for formation of a
program name. The first six characters of the literal make the correspondence
between the calling program and the called program. You must make the literal
the program name of the called subprogram.

Performing the CALL statement passes control to the called subprogram. The
first time a called program is entered, its state is that of a fresh copy of the
program. Each subsequent time a called program is entered, the state is as it was
upon the last exit from that program as long as no segmentation or overlays are
in the program. Thus, you should consider that some of the following statements
may be in their last-used state:

• GO TO statements that you have altered

• Data items

• PERFORM statements.

The USING phrase makes data items from a calling program available to the
called program. If the called program does not use data items from the callingJ
program, you can leave out the USING phrase. If data must be passed, you must
place the USING phrase in two places:

• The CALL statement of the calling program

• The Procedure Division header of the called program.

You must make the identifiers specified in the USING phrase of the Procedure
Division header data items defined in the Linkage Section of the called program.
You can define the identifiers specified in the calling program in the File,
Working-Storage, or Linkage Section.

You must make identifiers level-Ol or -77 items. You can qualify them .

...------------- IBM Extension --------------,

You can use level numbers other than 01 or 77 for the data names in the USING
phrase of the CALL statement in the calling program. You can index or
subscript these data names.

L..-__________ End of IBM Extension __________--'

You must make the data names specified in the USING phrase of the Procedure
Division header data items defined in the Linkage Section of the called program
with a level number 01 or 77.

13-54

The number of identifiers you use in the USING phrase of the CALL statement
must equal the number of data names you use in the USING phrase of the
Procedure Division header. You can use no more than 15 identifiers or data
names.

Note: Unpredictable results may occur if the number of identifiers in the
Procedure Division Header does not match the number of identifiers in the CALL
statement, and if the data descriptions of the identifiers and data names do not
correspond by position.

You do not need to make the names of identifiers and data names correspond,
but you must not use the same identifier or data name more than once in the
same USING phrase.

EXIT PROGRAM Statement

The EXIT PROGRAM statement specifies the logical end of a called program.

Format

paragraph-name. fXlI PROGRAM

You must precede the EXIT statement with a paragraph name, and you must
make it the only statement in the paragraph.

If control reaches an EXIT PROGRAM statement while operating under the
control of a CALL statement, control returns to the point in the calling program
immediately following the CALL statement. If control reaches an EXIT
PROGRAM statement and no CALL statement is active, control passes through
the exit point to the first sentence of the next paragraph. The EXIT PROGRAM
statement is required to exit from the called program.

STOP RUN Statement

The STOP RUN statement is discussed under the STOP Statement in Chapter 11.

Segmentation Considerations

You can place a CALL statement anywhere within a segmented program; the
compiler ensures that the proper logic flow is maintained. Therefore, if you place
a CALL statement in an independent segment, that segment is made available in
its last-used state when control returns from the called program.

Chapter 13.Using the Additional COBOL Functions 13-55

L

Subprogram Linkage Feature Examples

The CALL statement is illustrated in the following program example:

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLSTAT.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 RECORD-2 PIC X.
01 RECORD-1.

as SALARY PICTURE S9(S)V99.
as RATE PICTURE S9V99.
as HOURS PICTURE S99V9.

PROCEDURE DIVISION.

CALL 'SUBPRG' USING RECORD-1, RECORD-2.

STOP RUN.

13-56

L
The following called subprogram is associated with the preceding calling program:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPRG.

DATA DIVISION

LINKAGE SECTION.

01 PAYREC.

10 PAY PICTURE S9(5)V99.
10 HOURLY-RATE PICTURE S9V99.
10 HOURS PICTURE S99V9.

01 CODE PIC X.

PROCEDURE DIVISION USING PAYREC, CODE.

EXIT-SUBPRG-PARAGRAPH.
EXIT PROGRAM.

Processing begins in the calling program, CALLSTAT. When the first CALL
statement is performed, control transfers to the first statement of the Procedure
Division in SUBPRG, which is the called program.

When SUBPRG receives control, the values within RECORD-l are made
available to SUBPRG; however, in SUBPRG they are referred to as PAYREC.
The data items within PA YREC and CODE contain the same number of
characters as RECORD-l and RECORD-2. When processing within SUBPRG
reaches the EXIT PROGRAM statement, control returns to the calling program.

Chapter 13.Using the Additional COBOL Functions 13-57

Considerations When Using Inter-Program Communication

Inter-Program Communication lets you maintain a single version of a common
processing routine. You can integrate changes made to this routine throughout
your applications by recompiling this common processing routine and then
recompiling any or all modules that call this routine.

Because a COBOL program can call other language programs as well as another
COBOL program, you must create a program save area for each COBOL
program to maintain pertinent data for each program. Therefore, you could
notice a sizable increase in the amount of overhead space that your program uses
if the number of subprograms being used is significant.

Some of the information in this save area is used to maintain the program register
values, as well as supply parameter data to a given subprogram.

Data items you define in the Linkage Section of a program indicate that the
particular data is used by a calling or called program. Since COBOL routines
pass parameters by sending the actual address of the parameters, any reference to
an item in the Linkage Section will have to contain run time logic to resolve the
actual address of the data item. If you use numerous references in a subprogram
to an item defined in the Linkage Section, much more space is needed to run the
program because of the logic needed to resolve these references.

One way to avoid this problem is to move the desired Linkage Section item into
another similarly defined item in the Working Storage Section, at the start of the. ~'~
subprogram. Then, before returning to the calling program, you can move the"
Working Storage item back to the Linkage Section item.

13-58

Using Ideographic Characters

GRAPHIC Option 14-1

Rules for Ideographic Literals 14-1

Compiler Checking of Ideographic Literals 14-2

Examples of Ideographic Literals 14-3

Continuing Ideographic Literals on a New Line 14-4

Testing for Ideographic Support 14-5

Subroutines That Handle Ideographic Data 14-5

Move Ideographic Data and Insert Control Characters -- CBINST 14-6

Move Ideographic Data and Remove Control Characters -- CBREMV 14-7

Using Ideographic Characters

L

Chapter 14. Using Ideographic Characters

This chapter describes the System/36 ideographic support in COBOL. For
COBOL to successfully process ideographic data, your system must have the
ideographic version of the SSP, and ideographic-capable input and output devices.

An ideographic character is a pictogram or graphic that requires two bytes of
storage, whereas an alphanumeric character requires only one byte of storage.

With ideographic support, COBOL can process IBM-supplied or user-defined
character sets. The IBM-supplied ideographic character set consists of 3226 Kanji
characters, and 481 additional characters.

In general, COBOL handles ideographic characters in the same way it handles all
alphanumeric data. Therefore, it is up to you to know (or have the COBOL
program check) which data items contain ideographic characters, and to make
sure the program receives and processes all ideographic data correctly.

GRAPHIC Option

For the COBOL program to recognize the use of ideographic characters, specify
the GRAPHIC keyword on the PROCESS statement. The GRAPHIC
compile-time option indicates to the COBOL compiler that ideographic literals
can be present in the program.

If you do not specify the GRAPHIC option, ideographic literals are not
recognized by the COBOL compiler. See Chapter 4 for more information about
the PROCESS statement.

Rules for Ideographic Literals

Ideographic literals follow the same rules as alphanumeric literals, with the
following additional requirements:

• 	 A shift-out (S/O) control character (hex "OE") must immediately follow the
opening quotes. The S/O character indicates the start of a string of
ideographic characters.

• 	 The ideographic literal must end with a shift-in (S/I) control -.:haracter (hex
"OF") followed immediately by quotes. The S/I character indicates the end of
a string of ideographic characters.

Chapter 14.Using Ideographic Characters 14-1

Note: Although this discussion uses the term quotes to describe the delimiters for
literals, the characters used as delimiters can vary depending on the option you l•

specify on the PROCESS statement. If you specify the APOST option, ..."
apostrophes (') are used as delimiters. Otherwise, quotation marks (") are used as
delimiters. In this discussion, quotes refers to either apostrophes or quotation
marks. The delimiter used does not affect the rules for ideographic literals. For
more information about the APOST compile-time option, see the description of
the PROCESS statement in Chapter 4.

You can use any ideographic character in an ideographic literal. Each
ideographic character has a two-byte hexadecimal representation. (An
ideographic blank also occupies two bytes.) An ideographic literal should consist
of only ideographic characters. Mixing ideographic characters and standard
alphanumeric characters in the same literal causes COBOL to handle the entire
literal as an alphanumeric literal.

Because each ideographic character occupies two bytes of storage, define any field
that can contain ideographic data as having an even number of bytes. Because an
ideographic literal must contain both the S/O and S/I control characters, the
minimum length of an ideographic literal is two bytes.

The maximum length of an ideographic literal is 120 bytes, including the S/O and
S/I control characters. Since each ideographic character occupies two bytes, a
maximum of 59 ideographic characters can be coded in one COBOL ideographic
literal.

Compiler Cbecking of Ideographic Literals 	 J
When you specify the GRAPHIC option on the PROCESS statement, and the
compiler finds a literal that begins with quotes immediately followed by the S/O
control character, the compiler checks for a valid ideographic literal. This is done
by scanning two bytes at a time.

The following conditions cause a literal to be diagnosed as an invalid ideographic
literal:

• 	 An odd number of bytes are found between the S/O and S/I control
characters.

• 	 The terminating S/I control character is not immediately followed by quotes.

• 	 The ideographic literal takes up more than one line and does not follow the
rules for continuation of ideographic literals. (See Continuing Ideographic
Literals on a New Line, below).

If a literal is found to be an invalid ideographic literal, the compiler processes the
literal as a standard alphanumeric literal.

14-2

Examples of Ideographic Literals

Figure 14-1 shows an example of ideographic literals:

These positions contain
an ideographic literal.

/
~ SE~UENCE

18 COBOL STATEMENT ! IOENTI FICATION
(PAGEl SERIAL glA , , /

3 4 • 7 • 74 2. 36 44 52 5. 60 7

t .o 1 " : I 1JI
7.

I Io 2 1 ' 1 I r i !
~. 103 1 7,1 100 lIT -1 I PIC X(,8) I VA lUE IS '~ .

04 1 111 10Ol IT -2 I p,re)((1 QJ) i VIA LUE- IS '~ I~ , . 1

, I I05 1 1

I 06 I I i
,

I 1\
, 1

,o 71 1 I I I 1 I 1
,o 8 I i I I

09 ! 1
1 1 ! i : I

,
 1 0 1 I 'NJO E '~ ~. TO 'IDlo,l,l T-1 I 1

1 1 I I I
I I ,
1 1 2 I 1 I I . I ' I I 1

I \

These positions contain These positions contain
an ideographic literal. an ideographic literal.

Figure 14-1. Example of Ideographic Literals

Chapter 14.Using Ideographic Characters 14-3

Continuing Ideographic Literals on aNew Line

To continue an ideographic literal on another line of source code, do all of the
following:

• 	 Place a SII control character in either column 71 or column 72 of the
continued line. If the SII is in column 71, column 72 must contain a blank.

• 	 Place a hyphen (-) in column 7 (the continuation area) of the next line.

• 	 Place quotes immediately followed by a SIO control character and the rest of
the literal in Area B of the continuation line(s).

The SII control character, quotes, and SIO control character that indicate a
continuation are not counted in the length of the ideograp~c literal; the initial
SIO and final SII control characters are counted. Figure 14-2 shows an example
of how to continue ideographic literals:

The S/I control character is placed in
column 71 or column n to indicate

, I

that the literal is continued on the

, I

next line. (Column 72 must be blank
First Part of an

Second Part of an 	 if the S/I con~ol charal;ter is placed
Ideographic Literal

Ideographic Literal ",In oolumn 71.) ~
SEQUENCE >­

18 	 COBQL STATEMENT "'" - I IDENTIFICATION
,(PAGE) SERIAL

3 , , 7 , 12 , :!O 24 is 32 36 , .. 52

56 c sa no ,

slA

I I I : : I I " 	 I 76"I"!
 Jo 2 i : i 11!75il11 Ole LII T-5 I PHI (3'0) VI>. LUE IS ' 1ft I rI\!

I

03 	 -i I '~ I~' I i I I I

,­

"
04 I ' i 1 L 	 1

I

05 I II , I 	 I '
I i

i 06 i I I I I I I I I
1
 1

1; 1 i 	 I , I
o 7 i I I I

1 0181 I \ ' ,

J ..;.... I OVE 'I~ , fjrJ I I'

I 0 9 ;1 	 I 'I~ J \ ' I ITO I DO Lin -14. I 1 I

I ' 0 I I 	 I i , I i I i 1\ I \ I .

1 fl

1

I
I , 1 JI i I \ 	 i i\' I i I I

I
 .~

First Part of anContinuation of

the I iteral starts Ideographic Literal

in Area B.

A hyphen indlcates
Second Part of an

that this is a
Ideographic Literal

continuation line.

Figure 14-2. Example of continuing Ideographic Literals

14-4

Testing for Ideographic Support

To test whether ideographic support is available to your program, you can use the
ATTRIBUTE-DATA mnemonic-name with the ACCEPT statement to access the
attribute record. See SPECIAL-NAMES Paragraph in Chapter 7 for a
description of the ATTRIBUTE-DATA mnemonic-name and for an example of
using the ACCEPT statement.

The following values are returned in the attribute record for a display station:

Byte 9 	 Display type
A - Alphanumeric or Katakana
I - Ideographic

Byte 10 	 Keyboard Type
A - Alphanumeric or Katakana
I - Ideographic

Byte 11 	 Sign-on mode
A - Alphanumeric or Katakana
I - Ideographic

Byte 12 	 Work station mode
N - Not 132-character capable.
I - 132-character capable but

currently in 80-character
mode.

2 - 132-character capable and
currently in 132-character
mode.

Bytes 13 - 16 	 Reserved

Subroutines That Handle Ideographic Data

COBOL provides two subroutines to handle ideographic data. These subroutines
are necessary to move ideographic data to a field of different length, and to insert
or remove the S/O and S/I control characters.

System/36 requires that ideographic data be enclosed in the S/O and S/I control
characters. Because you might need to send ideographic data to, or receive
ideographic data from another system that does not require the S/O and S/I
control characters, COBOL provides two subroutines to aid in that process. They
are:

• 	 CBINST -- This subroutine moves ideographic data and inserts the S/O and
S/I control characters.

• 	 CBREMV -- This subroutine moves ideographic data and removes the S/O
and S/I control characters.

Chapter 14.Using Ideographic Characters 14-5

Both subroutines have the same calling sequence:

CALL 'CBINST' USING 	 data-name-l, data-name-2, data-name-3,
data-name-4, data-name-5.

CALL 'CBREMV' USING 	 data-name-l, data-name-2, data-name-3,
data-name-4, data-name-5.

The data-names are elementary items with the following definitions:

data-name 	 Definition Purpose

data-name-1 	 PIC X() ... Sending field

data-name-2 	 PIC X() ... Receiving field

data-name-3 	 PIC X(1) ... Return code

data-name-4 	 PIC 9(3) Length of
USAGE IS sending field
COMP

data-name-5 	 PIC 9(3) Length of
USAGE IS receiving field
COMP

JThe maximum length of the sending and receiving fields is 256 bytes.

Move Ideographic Data and Insert Control Characters -- CBINST

CBINST is a move and edit subroutine that moves the contents of one field into
another field. If the S/O and S/I control characters are not found in the first and
last positions of the field to be moved, CBINST inserts them into the field when it
is moved.

If you want the receiving field to contain all the data that is in the sending field,
you must specify a receiving field length that is two positions longer than the
length of the sending field. The two extra positions are to hold the S/O and S/I
control characters. If you specify a receiving field that is longer than the sending
field plus two, the data is padded on the right when it is moved. If the receiving
field is specified either longer or shorter than the sending field plus two positions,
the S/I control character is still placed in the rightmost position.

Subroutine CBINST produces return codes that show the status of the move
operation. Figure 14-3 gives those return codes and their meanings:

14-6

Return
Code 	 Explanation

0 	 Move executed; no errors.

1 	 Move executed; padding
occurred to the left of the
S/I control character.

2 	 Move executed; data
truncated to the left of the
S/I control character.

3 	 Move executed; S/O and S/I
control characters already
present.

4 	 Move not executed. Either
odd field length found,
length of zero found, length
greater than 256 bytes, or
invalid character found in
field length.

Figure 14-3. Return codes for subroutine CBINST

If more than one return code can be issued, only the return code with the highest
value is issued.

Move Ideographic Data and Remove Control Characters
CBREMV

CBREMV is a move and edit subroutine that moves the contents of one field to
another field. If the S/O and S/I control characters are found as the first and last
characters in the field, CBREMV removes them.

If you want the receiving field to contain all the data that was present in the
sending field, you must specify a receiving field length that is two positions less
than the length of the sending field. This allows two positions for each
ideographic character, while removing the S/O and S/I control characters (and the
two positions they occupied). If you specify a receiving field longer than the
sending field minus two positions, all the data from the sending field is moved
and the receiving field is padded on the right with blanks. If the receiving field is
shorter than the sending field minus two positions, the data being moved is
truncated on the right.

Subroutine CBREMV produces return codes that show the status of the move
operation. Figure 14-4 gives those return codes and their meanings:

Chapter 14.Using Ideographic Characters 14-7

Return
Code 	 Explanation

0 	 Move executed; no errors.

1 	 Move executed; padding

occurred on the right.

2 	 Move executed; data

truncated on the right

control character.

3 	 Move executed; S/O and S/I

control characters not found

in sending field.

4 	 Move not executed. Either

odd field length found,

length of zero found, length

greater than 256 bytes, or

invalid character found in

field length.

Figure 14-4. Return codes for subroutine CBREMV

If more than one return code can be issued, only the return code with the highest
value is issued.

14-8

Problem Determination

How to Use this Procedure 15-1

Identifying COBOL Problems 15-2

Contacting Your Service Representative 15-7

Problem Determination

J

Chapter 15. COBOL Problem Determination

If a problem occurs while you are using COBOL, the cause of the problem may
not be obvious. An error in your application or in system operation could have
caused the problem. The problem determination procedure in this chapter can
help you solve or circumvent the problem. If you need more information, refer to
the following publications before contacting your service representative:

• 	 IBM System/36 System Problem Determination - 5360 (SC21-7919) if you use
a System/36 System Unit 5360

• 	 IBM System/36 System Problem Determination - 5362 (SC21-9063) if you use
a System/36 System Unit 5362

• 	 Chapter 13 in the Operating Your Computer - 5364 (SC21-9085) if you use a
System/36 Unit 5364.

<.... How to Use this Procedure

The Problem Determination procedure is arranged in a sequence of questions that
you can answer with a Yes or No. Based on your answer, you are directed to
another question or to a recommendation for action.

Start at the beginning of the procedure and follow the question-and-answer
sequence, answering each question to which you are directed based on your
previous answer. If the problem is a condition that requires more detailed
procedures, you are referred to those procedures.

Chapter IS.Problem Determination 15-1

L

Identifying COBOL Problems

When a COBOL problem occurs, you can use the following series of questions to
identify its possible cause:

l. 	 Have changes been made to the user program since the last time it ran
successfully?

j
No Yes

Read on, but consider what has been changed. For example, have
operating procedures changed, are new device files being used, or
have program changes been applied recently? A good starting point
for problem determination is a changed item.

2. 	 Are you having a nonprogramming problem, such as spooled output that is not
produced or a device ,that is not working?

1
No Yes

You probably have a system problem. Call your system operator
and have the operator use the appropriate procedure in the the
appropriate manual referred to at the beginning of this chapter.

3. 	 Have all mM PTFs (Program Temporary Fixes) that apply to the curmnt
release of COBOL been installed? (Check with your system operator)

!
Yes No

Install the program changes you have received that have not yet
been applied and run the program again.

4. 	 Are you using the current release of SSP?

Yes No

~ Install the current release of SSP.

5. 	 Have all IBM PTFs you have received that apply to the current release of SSP
been installed?

Yes No
Install the program changes you have received that have not yet

~ been applied.

6. 	 Have any non-mM changes been made to COBOL or to SSP?

1
No Yes

If COBOL has been changed, install its current release and program
changes (PTFs), and run the program again. If SSP has been
changed, install its current release and program changes (PTFs).

15-2

7. 	 Are you using the current release of COBOL? The release number is printed on
the first line of the source listing for any COBOL program listed using
SOURCE.

!
Yes No

Install the current release of COBOL and compile or run the
program again.

8. 	 Is the running time of the program much greater than you expect?

No 	 Yes
The program may be in a loop. Use the ATTN key to interrupt the
program. Use TRACE and DEBUG statements to find out whether
the program is in a loop. If a loop is found, cancel the program.
Correct the problems in the program. Run the program again.

Note: For further information about loops see Chapter 6 ­
Debugging Your Program.

9. 	 Are no I/O operations taking place but you expect them to occur?

No 	 Yes
Check the status codes to see which one applies to your program.
Check your program. Correct any errors. Run your program again.

10. 	 Did you encounter an abnormal program end while executing your program?

No Yes

Check if:

• 	 A field you are using as a subscript or an index contains an
invalid value, that is, a value less than 1 or greater than the
OCCURS integer for the table. Correct the problems in the
program. Run the program again.

• 	 The arguments passed in a CALL statement do not match those
in the Procedure Division header in number, position, and
description. Correct the problems in the program. Run the
program again.

• 	 An attempt has been made to return from the root or first
segment in an overlay program to an independent segment that
has been overlaid. Check your program for such a problem.
Correct the problems in the program. Run the program again.

Note: For further information about Abnorn1al Program End see
Chapter 6 - Debugging Your Program.

Chapter IS.Problem Determination 15-3

11. Does your program execute, but you receive unexpected results?

No Yes

• 	 A field you are using as a subscript or an index contains. an
invalid value, that is, a value less than 1 or greater than the
OCCURS integer for the table. Check your subscripts or
indexes to see that they are not out of range. Check all E, C,
and W messages. Make sure that the object is from the last
compile in case the output library was changed or the load
module was not stored. Correct the problems in the program.
Recompile and run the program again.

• 	 The arguments passed in a CALL USING statement do not
match those in the Procedure Division header in number,
position, and description. Check to see that the parameters
match in the CALL USING. Check all E, C, and W messages.
Make sure that the object is from the last compile in case the
output library was changed or the load module was not stored.
Correct the problems in the program. Recompile and run the
program again.

Note: For further information about Abnormal Program End see
Chapter 6 - Debugging Your Program.

12. 	 Does the SOURCE printout show the correct program?

Yes No

Check if the program was not replaced the last time changes were

made. Compare the SOURCE printouts of the program to a

SOURCE printout made before the last changes were entered.

Determine whether they match. Enter the changes again.
I 	

J

15-4

13. 	 Did you receive a compiler listing at compile time?

Yes 	 No

Check if:

• 	 You chose NOPRINT as the Listing output option on the
COBOLC procedure. Change CRT or NOPRINT to PRINT as
the Listing output option on the COBOLC procedure.
Recompile your program using the COBOLC procedure.

• 	 You coded NOSOURCE on the *PROCESS statement. Use
SEU jDSU to change NOSOURCE to SOURCE on the
*PROCESS statement or choose SOURCE as the Override
source print option of the COBOL or COBOLC procedure.
Recompile your program using the COBOL or COBOLC
procedure.

• 	 You chose NOSOURCE as the Override source print option on
the COBOL, COBOLONL or COBOLC procedure. Change
NOSOURCE to SOURCE as the Override source print option
of the COBOL, COBOLONL or COBOLC procedure.
Recompile your program using the COBOL or COBOLC
procedure.

• 	 Your display station is configured to the wrong printer. Use the
SSP procedure DISPLAY STATUS to see how the system is
configured. Reconfigure the display station to the correct
printer.

14. 	 Was a Load Module produced at compile time that cannot be found?

No Yes
Look at the prolog on the compiler listing to see if the name of the
output library you are looking for is the same as the Output library
name you specified on the COBOL, COBOLONL or COBOLC
procedure. Look for the load module in the library you specified in
the COBOL or COBOLC procedure.

15. 	 Was a Load Module (Executable Program) produced at compile time?

Yes No

Check if:

• 	 You coded NOLINK on the *PROCESS statement. Use
DSUjSEU to change NOLINK to LINK on the *PROCESS
statement or choose LINK as the Create executable option on
the COBOL or COBOLC procedure. Recompile your program
using the COBOL or COBOLC procedure.

• 	 You chose NOLINK as the Create executable module option on
the COBOL or COBOLC procedure. Change NOLINK to
LINK as the Create executable module option on the COBOL
or COBOLC procedure. Recompile your program using the
COBOL or COBOLC procedure.

Chapter IS.Problem Determination 15-5

L

16. 	 Was an Object Module produced at compile time that cannot be found?

No Yes
Look at the prolog on the compiler listing to see if the name of the
output library you are looking for is the same as the Output library
name you specified on the COBOL or COBOLC procedure. Look
for the subroutine module in the library you specified in the: COBOL
or COBOLC procedure.

17. 	Was an Object Module (non-executable program) produced at compile time?

Yes No

Check if:

• 	 You did not code OBJECT on the *PROCESS statement. Use
SEU /DSU to change NOOBJECT to OBJECT on the
*PROCESS statement or choose OBJECT as the override
creation of non-executable module option of the COBOL or
COBOLC procedure. Recompile your program using the
COBOL or COBOLC procedure.

• 	 You chose NOOBJECT as the Create Non-executable module
option on the COBOL or COBOLC procedure. Change
NOOBJECT to OBJECT as the Create Non-executable module
option on the COBOL or COBOLC procedure. Recompile your
program using the COBOL or COBOLC procedure.

18. 	 Was a diagnosed source member produced at compile time?

Yes No

Check if:

• 	 You chose NODSM as the Create diagnosed source member
option on the COBOLC procedure. The prolog of the compiler
listing tells you what option you chose. Change NODSM to
DSM as the Create diagnosed source member option on the
COBOLC procedure. Recompile your program using the
COBOLC procedure.

• 	 You received a compiler error that canceled the compilation.
Check all E, C, and W messages. Make sure that the object is
from the last compile in case the output library was changed or
the load module was not stored. Correct the problems in the
program. Recompile and run the program again.

If after using this procedure, you or your system operator have not solved the
problem, consult the System Problem Determination manual for your system unit
referred to at the beginning of this chapter before calling the service
representative.

15-6

L
Contacting Your Service Representative

If you cannot solve a problem using the problem determination procedures listed
in this chapter and in the appropriate System Problem Determination manual
referred to at the beginning of this chapter, you may want to contact your service
representative. Before contacting your service representative, prepare the
following:

• 	 For compile time problems:

A task dump at the time of the failure

Run the APAR procedure and include the entire history file

A diskette copy of the COBOL user source program

A diskette copy of the user procedure

A diskette copy of the user source copy members

A listing of the source compilation.

• 	 For execution time problems, provide the above required information as well
as:

A diskette copy of the user files

A diskette copy of the user display screens

A diskette copy of the user execution procedure

A diskette copy of the user subprograms

A diskette copy of the user load module.

The procedures for obtaining the above information are explained in the System
Problem Determination Guide.

Chapter I5.Problem Determination 15-7

J

15-8

L

System-Dependent Considerations

GENERAL CONSIDERATIONS A-I

Library Name, Program Name, and Text Name A-I

Source Statements A-I

PROGRAM STRUCTURE A-2

CALL Statement A-7'

Source Program Library A-2

User-Defined Words A-2

Files A-2

Disk Data Management A-2

Indexed and Relative File Contents A-2

ENVIRONMENT DIVISION CONSIDERATIONS A-3

ASSIGN Clause A-3

ASSIGN Clause (Transaction files) A-4

RESERVE Clause A-4

SAME RECORD AREA Clause A-5

SAME AREA or SAME SORT-MERGE Clause A-5

OBJECT-COMPUTER MEMORY SIZE Clause A-5

KEY Clause A-5

DATA DIVISION CONSIDERATIONS A-6

BLOCK CONTAINS Clause A-6

RECORD CONTAINS Clause A-6

LINAGE Clause A-6

OCCURS Clause A-6

Item Size A-6

Index and Subscript Literals A-6

PROCEDURE DIVISION CONSIDERATIONS A-7

Using Option: A-7

COMPUTE Statement A-7

GO TO DEPENDING ON Statement A-7

INSPECT Statement A-7

SORT/MERGE Statement A-7

STOP Statement A-7

UNSTRING Statement A-7

TRANSACTION FILE CONSIDERATIONS A-8

Representation of Hexadecimal Values A-8

System-Dependent Considerations

J

J

Appendix A. System-Dependent Considerations

This appendix describes the various system-defined limits and flexibilities that
apply to System/36 COBOL. You should consider these items when designing a
COBOL program for System/36.

GENERAL CONSIDERATIONS

Library Name, Program Name, and Text Name

You must specify unique entries for the library name, the program name, and the
COpy text name. Although these names can be a maximum of 30 characters
long, they must meet the following restrictions:

• The library name entry must be unique within the first 8 characters.

• The program name entry must be unique within the first 6 characters.

• The COpy text name entry must be unique within the first 8 characters.

Source Statements

Your System/36 COBOL program can contain no more than 65,535 source
statements.

Appendix A.System Dependent Considerations A-I

PROGRAM STRUCTURE

An application is easier to code and to maintain when it is designed carefully.
You can use structured programming and top-down design to help you create
programs that are easier to code and to maintain. Programs created in this
manner are also usually more efficient.

If you are not familiar with structured programming, many manuals are available
that can help you with this technique, including the IBM Structured Programming
Textbook, SR20-7149, the IBM Structured Programming Workbook, SR20-7150,
or Improved Programming Technologies, An Overview, GC20-1850.

Following is a short description of one method of developing an application. This
method is an example of top-down design. For a more detailed description of how
to develop an application, see the Concepts and Programmer's Guide.

Source Program Library

If you do not specify the OFlIN option of the COpy statement, the library
defaults to the LIBRARY option of the PROCESS statement (unless ovenridden
by a COBOL procedure). If you do not specify the LIBRARY option, and it was
not overridden, the default value is #LIBRARY.

User-Defmed Words

Your program can contain no more than 32,767 user-defined words.

Files

In a COBOL program, you can define a maximum of 25 files using file
description (FD) and sort-merge file description (SD) entries.

Disk. Data Management

System/36 offers you the flexibility of defining and processing indexed and relative
files as if they were defined as physical sequential files. You can also define and
process sequential indexed files as if they were defined as relative files. For more
information on file organization and access modes, see File Processing Summary
in Chapter 9.

Indexed and Relative File Contents

Position 1 of indexed or relative files cannot contain hexadecimal FF (for
NATIVE collating sequence, this corresponds to HIGH-VALUE). Binary fields
(COMPUTATIONAL-4) should be avoided in position 1, because they could
contain this value. The key for an indexed file cannot exceed 120 characters. The
key for a relative file must be no longer than 7 bytes.

A-2

ENVIRONMENT DIVISION CONSIDERATIONS

ASSIGN Clause

The ASSIGN clause associates a file with an external medium. The assignment
name has the following format for printer and disk files:

Device-Type-Name

Denee-Type:

Dence-
Type Use

PRINTER printer files

DISK disk files

Name: 1- to 8-character field specifying the external name by which the file is
known to the system. This is the name that appears in the NAME field on the
OCL FILE statement.

IBM Extension

ASSIGN Clause (DATABASE Files)

Device DATABASE DISK files with
Type: IBM extensions

Note: The DATABASE device type is a superset of the DISK device type which
allows additional IBM extensions such as noncontiguous keyprocessing and
READ FIRST, LAST or PRIOR.

AppeDfjix A.System Dependent Considerations A..3

L

RESERVE Clause

ASSIGN Clause (Transactionfdes): Using the ASSIGN clause, you associate the
TRANSACTION file with devices through the use of the assignment name.

Format:

Device-Type-Filename 1 [-F ormat-Type 1], Filename2

[-Format-Type2]

Device-Type:

Device

Type Use

WORKSTATION
 communications

and display

station files

Filename: The name of the SFGR load member containing screen formats or,
the IDDU format file containing communications formats. Filename is not
required if only system-defined special formats are used.

Format-Type:

Format- Use

Type

filename is an SFGR load member

S filename is an SFGR load member

C filename is an IDDU format file

Assignment-name-3 is treated as a comment.

The value for each field, 'filename' and 'Device-Type', is the same as the values
above.

Note: Only one IDDU format file containing communication formats and one
SFGR load member containing screen formats can be specified in an ASSIGN
clause.

1--_________ End of IBM Extension __________-1

This clause must specify a value of 1 or 2; at least 1 buffer is required for a file.
If you omit this clause, I buffer is reserved. If you specify a value greater than 2,
2 buffers are reserved.

A-4

L
SAME RECORD AREA Clause

You can specify no more than 15 SAME RECORD AREA clauses in a COBOL
program.

SAME AREA or SAME SORT-MERGE Clause

You can specify more than 15 SAME AREA clauses in a COBOL program.

OBJECT-COMPUTER MEMORY SIZE Clause

This clause must specify an integer from 1 through 65,536.

KEY Clause

The RELATIVE KEY data name can have a maximum length of 7 bytes; the
RECORD KEY data name can have a maximum length of 120 bytes in total.

Appendix A.System Dependent Considerations A-5

DATA DIVISION CONSIDERATIONS

BLOCK CONTAINS Clause

The maximum block size is 9999 characters.

RECORD CONTAINS Clause

The maximum record length is 4096 bytes.

LINAGE Clause

The maximum size of the logical page is 32,767 lines. The logical page size is the
sum of the number of lines in the body, top margin, and bottom margin of the
page.

OCCURS Clause

The literals in the OCCURS clause must have a value of 1 through 32,767.

Item Size

If no other restrictions apply, the maximum item size is 32,767.

Index and Subscript Literals

An index or subscript literal must have a value of 1 through 32,767.

A-6

PROCEDURE DIVISION CONSIDERATIONS

CALL Statement

Your program can call no more than 100 subroutines. Called subroutines can
also reside in the overlay area of the program being run. All subroutines that you
want to overlay must have a category number greater than 7 when link-edited.
For a further description of overlay, refer to Link Editing with Overlay in Chapter
4.

Using Option: A maximum of 15 operands can be specified for the USING
option.

COMPUTE Statement

The maximum size of each operand is 18 decimal digits. Division by 0 always
results in a size error condition.

GO TO DEPENDING ON Statement

You can specify a maximum of 99 branch points in a GO TO DEPENDING ON
statement.

INSPECT Statement

You can specify a maximum of 15 comparison operands
(TALLYING/REPLACING) in an INSPECT statement.

SORT/MERGE Statement

You can specify a maximum of 12 KEYS and 8 input files in any SORT or
MERGE statement.

STOP Statement

When you specify STOP literal and the literal is nonnumeric, the literal is limited
to 120 characters.

UNSTRING Statement

You can specify a maximum of 15 delimiters in an UNSTRING statement, and
each delimiter must be an alphanumeric data item.

Appendix A.System Dependent Considerations A-7

TRANSACTION FILE CONSIDERATIONS

If your display station is attached to a TRANSACTION file, and a SYSLIST
procedure was run or an OCL statement was performed that changed the
SYSLIST device to CRT, unpredictable results can occur when low-volume data
is sent to the display station by the COBOL program (through low-volume input
or output statements, such as DISPLAY, EXHIBIT, or ACCEPT).

Display station contention and unpredictable results may also occur when using
SYSLOG in a procedure prior to executing a program operating with one or more
TRANSACTION files.

RepreSentation of Hexadecimal Values

To represent a hexadecimal character in a COBOL program, you must be familiar
with the internal representation of numbers.

For example, the DUP KEY of the display terminal is a hexadecimallC which
has to be converted to a form that a COBOL program can use. First of all, a
variable must be defined in the following way:

A PICTURE 9 COMP-4.

The use of COMP-4 allows the storing of hexadecimal values. Second, the
hexadecimal value 'IC' must be changed to its corresponding decimal value. The
hexadecimal-decimal conversion tables in the IBM System/36 Functions Reference
Manual SC21-9436 provide the corresponding decimal value of 28.

This would mean that the following statement would cause 'OOIe' to be stored:

01 B PICTURE 9 COMP-4 VALUE IS 28.

Next, a REDEFINES clause eliminates errors that would occur from moving
from one data type to another.

01 B REDEFINES A.
05 FILLER PICTURE X.
05 DUP-KEY PICTURE X.

At this point, DUP-KEY is equal to hexadecimal 'Ie' and can be used for data
comparison in the procedure division of the program.

A..8

Special Purpose Subroutines

1255 Magnetic Character Reader (MCR) Interface Subroutines B-1

Enhanced Timer Subroutine B-4

Shutdown Status Test Subroutine B-5

Special Purpose Subroutines

J

Appendix B. Special Purpose Subroutines

System/36 COBOL provides the following subroutines that allow you to use
special features of the system:

• 	 CBMICR, CBMICO, CBEMCR, and CBEMCO read document information,
using the 1255 Magnetic Character Reader (MCR)

• 	 CBFTOD provides the time of day in system units (8.192 milliseconds)

• 	 CBSTOP interrogates the system shutdown status.

1255 Magnetic Character Reader (MCR) Interface Subroutines

The four special COBOL 1255 Magnetic Character Reader (MCR) interface
subroutines let you access document information read by the 1255 MCR. The
CBMICR and CBMICO subroutines provide a function equivalent to that found
in 1255 MCR subroutine SUBR08. The CBEMCR and CBEMCO subroutines
provide a function equivalent to that found in 1255 MCR subroutine SUBR25.

The subroutines provide two ways to process document information:

1. 	 CBMICR and CBEMICO use system and stacker specifications to describe
the job to be done by the 1255.

2. 	 CBEMCR and CBEMCO use a device control language (DCL) program to
describe the job to be done by the 1255 MCR. The subroutine's parameter
list is the data management interface between the subroutine and the DCL
program. The parameter list takes the place of the system and stacker
specifications used in the SUBR08 COBOL program. The DCL program is a
separate assembler-like program that runs in the attachment I/O controller for
the 1255 MCR.

Appendix B.Special Purpose Subroutines B-1

L

The subroutines provide both an open and a read function. A call to an open '. '\.'

subroutine (CBMICO or CBEMCO) is required before you can read records from ..."

the 1255 MCR. When a call to a read subroutine (CBMICR or CBEMCR)

returns an end-of-file condition, no more records can be read until a second open

call has been executed.

Formats of the subroutine calls are as follows:

• 	 CALL 'CBEMCO' USING data-name-l

• 	 CALL 'CBMICO' USING data-name-l

• 	 CALL 'CBEMCR' USING data-name-2

• 	 CALL 'CBMICR' USING data-name-2.

For subroutines CBEMCO and CBMICO, data-name-l must refer to a structure
having the following format:

01 	 Data-name-1.
05 Data-name-a PICTURE 9.
05 Data-name-b PICTURE 9(4) USAGE COMP-4 VALUE integer-1.
05 Data-name-c PICTURE 9(4) USAGE COMP-4 VALUE integer-2.
05 Data-name-d PICTURE 9(3) USAGE COMP-4 VALUE integer-3.
05 Data-name-e PICTURE X(integer-2).
05 Data-name-f.
05 Data-name-g PICTURE XX VALUE HIGH-VALUE. J

where:

• 	 Data-name-a is the return code generated after each read operation. Return
code values and meanings are:

o - Successful completion

I - End-of-file condition

3 - Permanent error.

• 	 Data-name-b is the length of the system and stacker specifications, or
SUBR25 parameter list array (contained in data-name-f). Integer-l must be
equal to or be a multiple of the number 80.

• 	 Data-name-c is the length of the input buffer (contained in data-name-e).
Integer-2 must be eight bytes larger than the desired buffer size, to allow for
System/36 boundary alignment. The buffer must be large enough to
accommodate at least ten records.

• 	 Data-name-d is the length of the input record. When the data structure is
used with CBMICO, the length must be 55 bytes and is provided only for
proper spacing of data.

B-2

• 	 Data-name-e is the input buffer. It must include eight additional bytes for
boundary alignment. The size must agree with the value coded in
data-name-c.

• 	 Data-name-f is the system and stacker specifications or SUBR25 parameter
list array. The size of the array must match the value coded in data-name-b.
For a discussion of the array contents, see the manual, Using and
Programming the 1255 Magnetic Character Reader. Use the SUBR08 system
and stacker specification format for CBMICO, and use the SUBR25
parameter list format for CBEMCO.

• 	 Data-name-g is the delimiter used by the open subroutine to check the
accuracy of the structure. If your program contains a variable number of
stacker specifications, be sure to move this field to the position following the
last specification and place the proper value in data-name-b before calling the
open subroutine.

For subroutines CBEMCR and CBMICR, data-name-2 is the logical record area
into which the read subroutine places an input record each time the subroutine is
called. The length must be at least 55 bytes for CBMICR and it must not be less
than the value in data-name-d for CBEMCR. Figure B-1 shows the format of
the standard 55-character input record for CBMICR. The input record format
for CBEMCR is user-defined. Refer to the manual, Using and Programming the
1255 Magnetic Character Reader, for a detailed explanation of how to use the
1255 MCR. The manual contains in-depth explanations of the following:

• 	 Subroutines SUBR08 and SUBR25

• 	 System and stacker specifications

• 	 The SUBR25 Parameter List and Device Control Language (DCL) program

• 	 The input record format.

Indicator Stacker User Type Field Serial Transit Account Process Amount
Number Data Validity Number Routing Number Control

Indicators
IL I l I (I (I (
I I I , ., , , , , :f-

Positions 1 2 3 4 5 9 10 19 20 28 29 38 39 44 45 55

Figure B-1. Format of the input record

Appendix B.Special Purpose Subroutines B-3

L

Enhanced Timer Subroutine

The CBFTOD subroutine allows you to get better timing resolution than with the
ACCEPT TIME statement. With CBFTOD, you can obtain the time of day
either in system units of 8.192 milliseconds, or in the normal "HHMMSS" format.
CBFTOD also provides the system date.

This subroutine is called by the COBOL statement:

CALL 'CBFTOD' USING identifier-I, identifier-2 [identifier-3]

where:

• 	 Identifier-! is the date, defined as PICTURE 9(6).

• 	 Identifier-2 is the time of day. Define identifier-2 as PICTURE 9(9) COMP-4
when getting the time in system units of 8.192 milliseconds. Otherwise, define
identifier-2 as PICTURE 9(6) for the standard "HHMMSS" format.

• 	 Identifier-3, when specified, indicates that the time of day is to be provided in
8.192-millisecond units. If you specify identifier-3, it must have a value of 1,
and must be defined as PICTURE 9. If you do not specify identifier-3, the
time of day is provided in the "HHMMSS" format.

If CBFTOD detects an error in the parameter list, the subroutine sets to ZERO
the date returned in identifier-I. After calling this subroutine, you should check
the date field to make sure a zero value was not returned.

The following errors can be detected by the CBFTOD subroutine:

• 	 More than three parameters were passed.

• 	 Identifier-3 was specified but was not equal to 1.

J

B-4

Shutdown Status Test Subroutine

The shutdown status test subroutine, CBSTOP, is a special System/36 feature.
The CBSTOP subroutine is used to determine whether the system operator has
requested system shutdown. This subroutine is called by the COBOL statement:

I CALL 'CBSTQP' USING identifier

where identifier is a one-character numeric item defined in the Working-Storage
or Linkage section with explicit or implicit usage of DISPLAY in the calling
program. Upon return from CBSTOP, the identifier will contain one of the
following values:

o- Shutdown has not been requested

1 - Shutdown has been requested.

Appendix B.Special Purpose Subroutines B-5

B-6

L

Language Summary and Comparison

Assumptions for System/36 COBOL Language C-I
Summary of System/36 COBOL Language C-3

Summary of Elements in the Nucleus C-4
Summary of Elements in the Table Handling Module C-17
Summary of Elements in the Sequential 1-0 Module C-19
Summary of Elements in the Relative 1-0 Module C-24
Summary of Elements in the Indexed 1-0 Module C-28
Summary of Elements in the Sort-Merge Module C-33
Summary of Elements in the Debug Module C-36
Summary of Elements in the Inter-Program Communication Module C-38
Summary of Elements in the Segmentation Module C-39
Summary of Elements in the Library Module C-40

Language Summary and Comparison

L

Appendix C. Language Summary and Comparison

Assumptions for System/36 COBOL Language

1. 	 The low-intermediate FIPS level of ANS 1974 COBOL is supported, except
for restrictions noted under the Level of Language Support in Chapter 1. This
level requires the following processing modules: INUC, 1 TBL, ISEQ, lREL,
ISEG, lUB, IDEB, lIPC.

Summary of the Four Levels of FIPS COBOL

LOW LII HII HIGH
1 1 2 2 NUC-Nucleus
1 1 2 2 TBL-Table Handling
1 1 2 2 SEQ-Sequential I/O

1 2 	 2 REL-Relative I/O
2 INX-Indexed I/O
2 SRT-Sort-Merge

RPW-Report Writer
1 2 SEG-Segmentation
1 2 LIB-Library
2 2 DEB-Debug
2 2 IPC-Inter-Program

Communication
1 2 2 COM-Communication

Legend:

L/I Low-intermediate
H/I High-intermediate

Not incl uded in the referenced level
1 The processing module must be implemented at ANS level 1
2 The processing module must be implemented at ANS level 2

2. 	 A large selection of elements from higher-level ANS modules are provided, as
well as existing and new IBM extensions. System/3 COBOL, System/34
COBOL, and System/36 COBOL support requirements are used to complete
this selection. Elements supported appear under the column S/34 and S/36 in
this appendix.

3. 	 As required by FIPS, a mechanism is provided for flagging elements that are
not in a given FIPS level.

Appendix C.Language and Summary Comparison C-l

L

4. Compiler options are those provided by System/3 COBOL and System/34
COBOL, as well as options for the following:

• Cross-reference listing

• Syntax-check only compile (no code generation)

• Identification of statements that do not adhere to FIPS-Ievels.

C-2

Summary of System/36 COBOL Language

Figures C-1 and C-2 explain the headings and the codes used in the summaries of
System/36 COBOL processing modules on the following pages.

Column

Headings Explanation

ANSI 	 1974 ANS COBOL standard, level 1 of those modules

considered for inclusion in System/36 COBOL

ANS2 	 1974 ANS COBOL standard, level 2 of those modules

considered for inclusion in System/36 COBOL

S/3 	 System/3 COBOL and System/34 PRPQ COBOL

language (ANSI 1968 Standard)

S/34 	 System/34 COBOL language

S/36 	 System/36 COBOL language

Figure C-I. 	 Column Headings for Summaries of COBOL Processing Modules

Code Explanation

X Element is allowed (additional notes may apply).

- Eleptent is not allowed.

a,b,c, ... Indicated parenthetical note follows.

* 	 An asterisk beside any entry in this column indicates that
the element applies only for System/34. System/36 will
treat it as comments.

1 	 Allowed, but treated as comments.

2 	 Allowed, but with restrictions.

3 	 System/3 compiler gives a diagnostic, but gives proper

result.

4 	 System/3 compiler supports the same function, but via

different syntax.

5 	 ANS 1974 standard indicates this is partly implementer

defined, or it is dependent on specific hardware

components.

6 	 Allowed, but IBM-defined limits exist (in accordance

with code 5).

7 	 System/3 compiler diagnoses this as an error.

8 	 System/3 compiler does not allow this to be omitted; if it
is omitted, System/3 compiler gives a diagnostic but
recovers according to 1974 ANS COBOL rules.

9 	 Supported by System/36 only.

Figure C-2. Explanation of Codes for Summaries of COBOL Processing Modules

Appendix C.Language and Summary Comparison C-3

Summary of Elements in the Nucleus

ANS 1 ANS2 S/3 S/34

X X X X

X X X X

X X X

X X

X X X X

X X X X

X X X

X X X

X X X

X X X X

X X X

X X X X

S/36

X

X

X

X

X

X

X

X

X

X

X

X

Elements

LANGUAGE CONCEPTS

Character Set

Characters used for words: 0 •
through 9 and A through Z ­
(hyphen)

• 	Characters used in punctuation:

SpaceO, equal sign(=), and quote(")

comma and semicolon

apostrophe instead of quote
(**IBM Extension**)

• 	Characters used in editing:

B+-.,Z*$

OCRDB

J
Characters used in arithmetic •
operations: + - * / **

• 	 Characters used in relation
conditions: = > <

Separators

Quote("), period(.), and spaceO •
• Semicolon and comma

Character strings

• 	COBOL words

Words up to 30 characters
are supported

User-defined words

Figure 	 C-3 (Part 1 of 13). Summary of Elements in the Nucleus

~

C-4

ANS 1 ANS2 S/3 S/34 S/36 Elements

X X X X X • Data name

X X X X Data name need not
begin with an
alpha character

X X X X X Level number

X X X X X Mnemonic name

X X X X X Paragraph name

X X X X X Program name

X X X X X Routine name

X X X X X Section name

X X X X 	 Condition name

System names

X X X X X • Computer name

X X X X X • Implementer name

X X X X X Language name •
Reserved words

~
X X X X X • Key words

X X X X X • Optional words

Figurative constants: •
X X X X X 	 ZERO, SPACE

X X X X 	 ZEROS, ZEROES,
SPACES

X X X X X 	 HIGH-VALUE,
LOW-VALUE,
QUOTE

X X X X 	 HIGH-VALUES,
LOW -VALUES,
QUOTES, ALL literal

Figure C-3 (Part 2 of 13). Summary of Elements in the Nucleus

Appendix C.Language and Summary Comparison C-5

L

ANS 1 ANS2 S/3 S/34 S/36 Elements

X X X X • Special-character words:
Arithmetic operators and
relational operators

• Connectives

X X X X Qualifier connectives:
OF, IN

X X X X Series connectives:
, (separator comma)
; (separator semicolon)

X X X X Logical connectives:
AND, OR, AND NOT,
OR NOT

X • Special register: TALL Y
(**ANS 1968**)

• Literals

X X X X X Numeric literals: 1 to 18
digits

X X X X X Nonnumeric literals: 1 to
120 characters

X X X X X • PICTURE character strings

X X X X X • Comment entries

Qualification Rules

X X X X X • Unqualified references to unique
names

X X X X • Qualified references to nonunique
names

X X X X Data names, paragraph names,
condition names

X X X Text names

Reference Format

X X X X X • Sequence number

• Continuation of lines

Figure C-3 (Part 3 of 13). Summary of Elements in the Nucleus

C-6

ANS 1 	 ANS2 S/3

X 	 X X

X X

X X X

X X X

X X X

X X X

X X X

X X X

X

X X X

X

X X X

X X X

X,5 X,5 X

X,5 X,5 X

X X

X X X

X X

X X

X X

Figure C-3 (Part 4 of 13).

S/34 S/36 Elements

X X - Nonnumeric literals

X X - Words and numeric literals

• Comment lines

X X - Asterisk (*) comment line

X X Stroke (j) comment line

IDENTIFICATION DIVISION

X X • PROGRAM-ID paragraph

X X AUTHOR paragraph•
X 	 X INST ALLA TION paragraph•
X 	 X DATE-WRITTEN paragraph •
X 	 X DATE-COMPILED paragraph •
X X • SECURITY paragraph

REMARKS paragraph (** ANS•
1968 **)

ENVIRONMENT DIVISION

Configuration Section

X X • SOURCE-COMPUTER paragraph

X X • OBJECT -COMPUTER paragraph

X X - Computer name

X X - MEMORY SIZE clause

X X - PROGRAM COLLATING
SEQUENCE clause

X X • SPECIAL-NAMES paragraph

X X - Alphabet-name clause

X X • STANDARD-1option

X X • NATIVE option

Summary of Elements in the Nucleus

Appendix C.Language and Summary Comparison C-7

L

ANS 1 ANS2 S/3 S/34

X,5 X,5 X

X X

X X X X

X X X X

X,5 X,5 X X

X X

X

X

X X

X X X X

X X X X

X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

S/36

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Elements

• 	Implementer-name phrase ...J
• Literal option

- CURRENCY SIGN clause

- DECIMAL-POINT clause

- Implementer-name IS

mnemorUc-name

• 	IBM allows CO1, CSP

• 	IBM allows CONSOLE

• 	IBM allows REQUESTOR,

SYSTEM-CONSOLE

• 	IBM allows UPSI-O

through UPSI-7

ON STATUS IS •
condition-name

• 	OFF-STATUS IS

condition-name

• 	IBM allows

LOCAL-DATA,

ATTRIBUTE-DATA,
 ..JSYSTEM-SHUTDOWN

- Implementer-name series

DATA DIVISION

Working-Storage Section

Data description entry •
• 	BLANK WHEN ZERO clause

• 	Data-name or FILLER clause

• 	JUSTIFIED (or JUST) clause

• 	Level number

- Valid (logical) values

Figure C-3 (Part 5 of 13). Summary of Elements in the Nucleus

C-8

ANS 1 ANS2 S/3 S/34 S/36 Elements

X 	 X X X X • 01 through 10

X X X X 11 through 49•
X X X • 66 (RENAMES)

X X X X X • 77

X X X X • 88

Valid (physical)
appearance

X X X X X • Two digits supported
(01, 02, ...)

X X X X • One-digit abbreviation
supported (1, 2, ... , 9)

X X X X X • PICTURE (or PIC) clause

X X X X X Character string may
contain 30 characters

X X X X X Data characters: X9

X X X X X Data character: A

X X X X X Operational symbol: S

X X X X X Operational symbol: V

X X X X X Operational symbol: P

Fixed insertion characters:

X X X X X B + -.,$

X X X X X OCRDB

X X X X /

X X X X X Replacement or floating
characters $ + - Z *

X X X X X Currency sign substitution

-X X X X X Decimal point substitution

X X X X X REDEFINES Clause •
X 	 X X X May be nested

Figure C-3 (Part 6 of 13). Summary of Elements in the Nucleus

Appendix C.Language and Summary Comparison C-9

L

ANS 1 ANS2 S/3 S/34 S/36 Elements

X

X X X

X,5 X,5 X,I

X X X

X X X

X,5 X,5 X

X

X

X X X

X X X

X

X

X

X,5 X,a

X X X

X X X

X X X

X X X

Figure C-3 (Part 7 of 13).

C-lO

X X 	 • RENAMES clause J
X X • SIGN clause

X,I X,I • SYNCHRONIZED (or SYNC)

clause

X X 	 • USAGE clause

X X - DISPLAY

X X - COMPUTATIONAL
(or COMP)

X X - COM PUT A TIONAL-3
(or COMP-3)
(**IBM/Codaysl**)

X X - COMPUTATIONAL-4
(or COMP-4)
(**IBM/Codaysl**)

X X 	 • VALUE clause

X X - Literal

X X - Literal series

X X Literal-l THRU literal-2 JX X - Literal range series

PROCEDURE DIVISION

X,a X,a 	 Arithmetic Expressions (a = exponent
identifier/literal must be positive
integral value)

Conditional Expressions

X X • Simple condition

X X - Relation condition

X X • Relational operators

X X 	 - [NOT] GREATER
THAN

Summary of Elements in the Nucleus

ANS 1 ANS2 S/3 S/34 S/36 Elements

X X X X [NOT] >

X X X X X [NOT] LESS THAN

X X X X [NOT] <

X X X X X [NOT] EQUAL TO

X X X X X [NOT] =

X X X X X • Comparison of numeric
operands

X X X X X • Comparison of nonnumeric
operands

X X X X Operands of unequal
size are permitted

X X X X X Class condition

X X X X Condition-name condition

X X X X Sign condition

X X X X X Switch-status condition

X X X X • Complex condition

X X X X Logical Operators AND, OR,
NOT

X X X X Negated simple condition

X X X X Combined and negated
combined condition

X X Abbreviated combined
relation condition

X X X X X Arithmetic Statements

X X X X X • Arithmetic operands limited to 18
digits

X X X • Multiple results in arithmetic
statements

X X X X X ACCEPT Statement

X,5 X X,6 X,6 X,6 • At least one transfer of data
supported

Figure C-3 (Part 8 of 13). Summary of Elements in the Nucleus

Appendix C.Language and Summary Comparison C-ll

ANS 1 ANS2 S/3

X X

X

X X

X

X

X X X

X X X

X X X

X

X X X

X

X X X

X X X

X

X X X

X X X

X X

X X

X,5 X

X

X X

X X

X X X

X,5 X X,6

X

S/34

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X,6

X

S/36

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X,6

X

Elements

FROM mnemonic-name phrase •
• 	FROM CONSOLE phrase (**IBM

Extension**)

• 	FROM DATE phrase

FROM DAY phrase•
• FROM TIME phrase

ADD Statement

• 	Identifier/literal series

• 	 TO identifier

• 	 TO identifier series

GIVING identifier•
• 	GIVING identifier series

ROUNDED phrase•
SIZE ERROR phrase•

• 	CORRESPONDING phrase

JALTER Statement

Procedure name •
• Procedure-name series

COMPUTE Statement

• 	 Arithmetic expression

Identifier series •
• 	ROUNDED phrase

SIZE ERROR phrase•
DISPLAY Statement

• 	At least one transfer of data
supported

Multiple transfers of data supported •
Figure C-3 (Part 9 of 13). Summary of Elements in the Nucleus

C-12

ANS 1 ANS2 S/3 S/34 S/36 Elements

X X X X X • Identifier/literal

X X X X X • Identifier/literal series

X X X X • UPON mnemonic-name phrase

X • UPON CONSOLE phrase (**IBM
Extension**)

X X X X X DIVIDE Statement

X X X X X • INTO identifier

X X X • INTO identifier series

X X X X X • By identifier/literal

X X X X X • GIVING identifier

X X X • GIVING identifier series

X X X • REMAINDER phrase

X X X X X • ROUNDED phrase

X X X X X • SIZE ERROR phrase

X X X X X ENTER Statement

X X X X X EXIT Statement

X X X X X GO TO Statement

X X X X • Procedure name can be omitted

X X X X X • DEPENDING ON phrase

X X X X X IF Statement

X X X X X • Imperative statement can contain
multiple verbs

X X,3 X X • Not limited to imperative
statements

X X,3 X X • Nested statements

X X X X X • ELSE phrase

X X X X X • NEXT SENTENCE phrase

X EXAMINE Statement (**ANS 1968**)

Figure C-3 (Part 10 of 13). Summary of Elements in the Nucleus

Appendix C.Language and Summary Comparison C-13

ANS 1 ANS2

X X

X X

X

X X

X X

X X

X X

X

X X

X X

X X

X

X X

X X

X

X X

X

X X

X X

S/3

X

X

X

X

X

X

X

X

X

X

X

X

S/34

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

S/36

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Elements

• 	 Only single-character literals

• 	 TALLYING phrase

- ALL/LEADING/UNTIL
FIRST option

INSPECT Statement

• 	Single-character identifiers or
literals

• 	 Multiple-character identifiers or
literals

TALLYING phrase •
- BEFORE/AFTER INITIAL

option

• 	REPLACING phrase

TALLYING and REPLACING •
phrases

TALLYING and REPLACING •
series

MOVE Statement

TO identifier •
Identifier series •

• 	 CORRESPONDING phrase

MULTIPL Y Statement

BY identifier •
• 	 BY identifier series

• 	 GIVING identifier

GIVING identifier series •
• 	ROUNDED phrase

• SIZE ERROR phrase

NOTE Statement (UANS 1968**)

Figure C-3 (Part 11 of 13). Summary of Elements in the Nucleus

C-14

ANS 1 ANS2 S/3 S/34 S/36 Elements

X X X X X PERFORM Statement

X X X X X • Procedure name

X X X X X • THRU phrase

X X X X X • TIMES phrase

X X X X • UNTIL phrase

X X,2 X X • VARYING phrase

X X X X X STOP Statement

X X X X X • Literal

X X X X X • RUN

X X X STRING Statement

X X X • Identifier/literal series

X X X • DELIMITED BY phrase

X X X • POINTER phrase

X X X • ON OVERFLOW phrase

X X X X X SUBTRACT Statement

X X X X X • Identifier/literal series

X X X X X • FROM identifier

X X X • FROM identifier series

X X X X X • GIVING identifier

X X X • GIVING identifier series

X X X X X • ROUNDED phrase

X X X X X • SIZE ERROR phrase

X X X • CORRESPONDING phrase

X X X UNSTRUNG Statement

X X X • DELIMITED BY phrase

X X X • INTO series

Figure C-3 (Part 12 of 13). Summary of Elements in the Nucleus

Appendix C.Language and Summary Comparison C-lS

L

AN81 	 AN82 8/3 8/34 8/36 Elements

X X X - DELIMITER phrase J
X X X - COUNT phrase

X X X POINTER Phrase•
X 	 X X TALLYING phrase •
X X X • ON OVERFLOW phrase

Figure C-3 (Part 13 of 13). Summary of Elements in the Nucleus

C-16

Summary of Elements in the Table Handling Module

ANS 1 ANS2

X X

X X

X X

X X

X X

X X

X

X

X

X

X X

X,5 X,5

X

X

X

X

S/3

X

X

X

X

X

X

X

X

S/34

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

S/36

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Elements

LANGUAGE CONCEPTS

U ser-Defined Words

• 	 Index name

Subscripting

I level supported •
• 2 or 3 level supported

Indexing

• I, 2, or 3 levels supported

DATA DIVISION

OCCURS clause

• 	 Integer TIMES

• 	Integer-l TO integer-2
DEPENDING on data-name

• 	 ASCENDING/DESCENDING
data-name

Data-name series•
• 	 ASCENDING/DESCENDING

series

• INDEXED BY index-name series

USAGE IS INDEX Clause

PROCEDURE DIVISION

SEARCH Statement

• 	VARYING phase

AT END phase•
• 	WHEN phase

Figure C-4 (Part 1 of 2). Summary of Elements in the Table Handling Module

Appendix C.Language and Summary Comparison C-17

L

AN81 AN82 8/3

X

X

X

X

X X X

X X X

X X X

X X X

X X X

X X X

Figure C-4 (Part 2 of 2).

8/34 8/36 Elements

X X • WHEN phase series ..J
X X ALL phase •
X X WHEN phase•
X X • AT END phase

X X SET Statement

X X • Index -name /identifier series

X X • Index name

X X • UP BY identifier/integer

X X • DOWN BY identifier/integer

X X • Index-name series

Summary of Elements in the Table Handling Module

C-18

L
Summary of Elements in the Sequential 1-0 Module

S/34 S/36 	 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X File name •
X X • Record name

X X 1-0 Status

Special Register

X X • LINAGE-COUNTER

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

X X • FILE-CONTROL paragraph

X X File control entry
•
X X SELECT clause

X X • OPTIONAL phrase

X X - ASSIGN clause

• 	FOR MULTIPLE
REEL/UNIT phrase
(**ANS 1968**)

X X - ORGANIZATION IS

SEQUENTIAL clause

X X - ACCESS MODE IS

SEQUENTIAL clause

X X - FILE STATUS clause

X X - RESERVE integer AREA(S)
clause

-	 RESERVE NO/integer
ALTERNATE AREA(S)
clause (**ANS 1968**)

Summary of Elements in the Sequential 1-0 Module

ANS 1 ANS2

X X

X X

X X

X

X X

X X

X X

X

X X

X X

X X

X X

X

Figure C-5 (part 1 of 5).

S/3

X

X

X,2

X

X

X

X

X

X,4

X

X

Appendix C.Language and Summary Comparison C-19

ANSI ANS2 S/3

X,I

X,I

X X X

X X X,2

X X X

X X X

X

X

X,5

X X X

X X X

X X X

X X X

X

X,5 X,5

X X X,l

X X X,1

X X X,1

X X X

X X X

X X X,7

S/34

X

X

X

X

X

X

X,I

X

X

X

X

X

X,1

X,I

X,l

X,1

X

X

X

S/36

X

X,1

X,1

X,I

X

X

X,I

X

X

X

X

X

X,1

X,1

X,1

X,I

X

X

X

Elements

- PROCESSING MODE clause
(**ANS 1968**)

• 	FILE-LIMIT clause (**ANS
1968**)

I-O-CONTROL paragraph •
- RERUN clause

- SAME AREA clause

- SAME AREA series

- SAME RECORD AREA
clause

- SAME RECORD AREA series

- MULTIPLE FILE TAPE
clause

DATA DIVISION

FILE SECTION

File description entry •
• 	Record description entry

• 	BLOCK CONTAINS clause

- Integer
RECORDS/CHARACTERS

-	 Integer-l TO integer-2
RECORDS/CHARACTERS

• 	CODE-SET clause

• 	 DATA RECORDS clause

- Data name

- Data-name series

LABEL RECORDS clause •
-	 STANDARD

-	 OMITTED

Figure C-5 (Part 2 of 5). Summary of Elements in the Sequential 1-0 Module

C-20

ANS 1 ANS2 S/3 S/34 S/36 Elements

X

X

X

X

X X

X X

X,5 X,5

X,5 X,5

X 	 X

X

X

X X

X X

X

X,5 	 X,5

X,5

X,5

X,5

X X

X X

X

X X

X,2

X,2

X

X

X,I

X,I

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X,I

X,I

X,I

X,I

X,I

X

X

X

X,I

X

X,l

X

X

X

X

X

X

X

X

X

X

X,I

X,I

X,I

X,I

X,I

X

X

X

X,I

X

X,l

X

X

X

X

• 	 LINAGE clause

FOOTING phrase

- TOP phrase

BOTTOM phrase

RECORD CONTAINS clause •
- Integer-I TO

integer-2 CHARACTERS

• 	VALUE OF clause

Implementer-name
IS literal

- Implementer-name
IS literal series

- Implementer-name

IS data-name

Implementer-name

IS data-name series

PROCEDURE DIVISION

CLOSE statement

Single file name•
• File-name series

• REEL/UNIT

- WITH LOCK phrase

WITH NO REWIND phrase

FOR REMOVAL phrase

OPEN Statement

• Single file name

• File-name series

• INPUT phrase

Figure 	 C-5 (Part 3 of 5). Summary of Elements in the Sequential 1-0 Module

Appendix C.Language and Summary Comparison C-21

L

ANS 1 ANS2 S/3 S/34 S/36 Elements

~
X,5 - REVERSED phrase

X,5 X,l X,l WITH NO REWIND phrase
-

X 	 X X X X • OUTPUT phrase

X,5 X,l X,l NO REWIND phrase -

X,5 	 X,5 X X X • I-O phrase

X,5 X X EXTEND phrase •
X X X • INPUT,OUTPUT,I-O,EXTEND

series

X X X X X READ Statement

X X X X X • INTO identifier

X X X,8 X X • AT END phrase

X,5 X,5 X,4 X X REWRITE Statement

X X X X X From identifier •
X 	 X X X USE Statement

X X X X • 	EXCEPTION/ERROR
PROCEDURE clause J

X X X X - ON file name

X X X X - ON INPUT

X X X X - ON OUTPUT

X X X X - ON I-O

X 	 X X - ON EXTEND

X X X - ON file-name series

X X X X X WRITE Statement

X X X X X FROM identifier •
X 	 X,5 X X X BEFORE/AFTER ADVANCING •

phrase integer

X,5 X,5 X X X - Integer

X,5 X X X - Identifier

Figure C-S (Part 4 of 5). Summary of Elements in the Sequential 1-0 Module

..)

C-22

ANSI ANS2 S/3 S/34 S/36 Elements

X,5 X,5 X X X - LINE(S) option

X,5 X,5 X X X - PAGE

X,5 X X X - Mnemonic name

X,5 X X X • AT END-OF-PAGEjEOP phrase

X INVALID KEY phrase (....ANS•
1968**)

Figure C-S (Part 5 of 5). Summary of Elements in the Sequential 1-0 Module

Appendix C.Language and Summary Comparison C-23

Summary of Elements in the Relative 1-0 Module

ANS 1 ANS2 S/3

X X X

X X X

X X

X X X

X X X

X X X

X X X

X X X,4

X X X

X X

X X

X X X

X X

X

X

X

X X

Figure C-6 (Part 	1 of 4).

S/34 S/36 	 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X File name •
X X • Record name

X X 1-0 Status

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

X X • FILE-CONTROL paragraph

X X • File control entry

X X - SELECT clause

X X - ASSIGN clause

X X - ORGANIZATION IS

RELATIVE clause

JX X - ACCESS MODE clause

X X • SEQUENTIAL

X X - RELATIVE KEY

phrase

X X • RANDOM

X X - RELATIVE KEY

phrase

- ACTUAL KEY phrase
(**ANS 1968**)

X X • DYNAMIC

X X - RELATIVE KEY

phrase

X X - FILE STATUS clause

Summary of Elements in the Relative 1-0 Module

C-24

ANS 1 ANS2 S/3 S/34 S/36 Elements

L-	 X

X X

X X

X X

X X

X

X

X X

X X

X X

X X

X

X X

X X

X X

X X

X X

X

X,I

X,1

X

X

X

X

X

X

X

X

X,I

X,I

X,I

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X,I

X,I

X,I

X

X

X

X

X,I

X,I

X,l

X

X

X

X

X

X

X

X,I

X,I

X,I

X

X

- RESERVE integer AREA(S)
clause

- RESERVE NO/integer
ALTERNATE AREA(S)
clause (**ANS 1968**)

• 	 FILE-LIMIT clause (**ANS
1968**)

• 	PROCESSING MODE clause
(**ANS 1968**)

• 	 1-0 CONTROL paragraph

- RERUN clause

- SAME AREA clause

- SAME AREA series

- SAME RECORD AREA
clause

- SAME RECORD AREA series

DATA DIVISION

FILE SECTION

• 	File description entry

Record description entry •
• 	BLOCK CONTAINS clause

Integer
RECORDS/CHARACTERS

Integer-l TO integer-2
RECORDS/CHARACTERS

• 	DATA RECORDS clause

- Data name

- Data-name series

• 	LABEL RECORDS clause

- STANDARD

Figure C-6 (Part 2 of 4). Summary of Elements in the Relative 1-0 Module

Appendix C.Language and Summary Comparison C-25

L

ANS 1 ANS2 S/3

X X X,7

X X X

X X X

X,5 X,5 X,l

X,5 X,5 X,l

X,5 X,5

X,5

X,5

X X X

X X X

X X X

X,5 X,5 X

X X X

X X

X X X

X X X

X X X

X X X

X X X

X,5 X,5 X

X X X

X X X

X X X

Figure C-6 (Part 3 of 4).

S/34 S/36 Elements

- ~.)X X OMITTED

X X RECORD CONTAINS clause
•
X X - Integer-l TO integer-2

CHARACTERS

X,l X,l • VALUE OF clause

X,l X,l Implementer-name IS literal

X,l X,l - Implementer-name IS literal

series

X,l X,l Implementer-name IS

data-name

X,l X,l Implementer-name IS

data-name series

PROCEDURE DIVISION

X X CLOSE Statement

X X • Single file name

X X • File-name series

X X • WITH LOCK phrase J
X X DELETE Statement

X X • INVALID KEY phrase

X X OPEN Statement

X X • Single file name

X X File-name series •
X X INPUT phrase•

X X • OUTPUT phrase

X X • 1-0 phrase

X X INPUT, OUTPUT, and 1-0 series
•
X X READ statement

X X • INTO identifier

Summary of Elements in the Relative 1-0 Module

..J

C-26

ANSI ANS2 S/3

X

X X X,8

X X X,8

X,5 X,5 X

X X X

X X X

X,1

X

X

X

X X

X X

X X

X X

X X

X X

X

X X X

X X X

X X X,8

Figure C-6 (Part 4 of 4).

S/34 S/36 Elements

X X • NEXT phrase

X X • AT END phrase

X X • INVALID KEY phrase

X X REWRITE Statement

X X FROM identifier
•
X X INVALID KEY phrase •

SEEK Statement (**ANS 1968**)

X X START Statement

X X • KEY IS phrase

X X INVALID KEY phrase •
X X USE Statement

X X • EXCEPTION/ERROR

PROCEDURE phrase

X X - ON file-name

X X - ON INPUT

X X - ON OUTPUT

X X - ON 1-0

X X - ON file-name series

X X WRITE Statement

X X • FROM identifier

X X INVALID KEY phrase
•
Summary of Elements in the Relative 1-0 Module

Appendix C.Language and Summary Comparison C-27

L

Summary of Elements in the Indexed 1-0 Module

ANS 1 ANS2 S/3

X X X

X X X

X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X

X X X

X

X

S/34

X

X

X

X

X

X

X

X,4

X

X

X

X

X

X

S/36

X

X

X

X

X

X

X

X,4

X

X

X

X

X

X

X

Elements

LANGUAGE CONCEPTS

U ser-Defined Words

• 	File name

• Record name

1-0 Status

ENVmONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL paragraph •
• 	 File control entry

- SELECT clause

- ASSIGN clause

- ORGANIZATION IS
INDEXED clause

J-	 ACCESS MODE clause

• 	SEQUENTIAL

• 	RANDOM

• 	DYNAMIC

-	 RECORD KEY clause

WITH DUPLICATES
•
phrase

(**IBM Extension**)

• 	Noncontiguous key

(**IBM Extension**)

-	 ALTERNATE RECORD

KEY clause

• 	WITH DUPLICATES

phrase

Figure C-7 (Part 1 of 5). Summary of Elements in the Indexed 1-0 Module

J

C-28

ANSI ANS2 S/3

L X

X 	 X

X X

X

X,I

X,1

X X X

X X X

X X X

X X X

X

X

X

X X X

X X X

X X X

X X X

X

X 	 X X,l

Figure C-7 (Part 2 of 5).

L

S/34 S/36 Elements

- NOMINAL KEY clause

(**IBM Extension**)

X X - FILE STATUS clause

X X - RESERVE integer AREA(S)

clause

- RESERVE NO/integer

ALTERNATE AREA(S)

clause (**ANS 1968**)

- FILE-LIMIT clause

(**ANS 1968**)

- PROCESSING MODE IS

clause (**ANS 1968**)

X X I-O-CONTROL paragraph
•
X X - RERUN clause

X X - SAME AREA clause

X X - SAME AREA series

X X - SAME RECORD AREA
clause

X X - SAME RECORD AREA series

X X - APPLY CORE-INDEX series
(**IBM Extension**)

DATA DIVISION

FILE SECTION

X X • File description entry

X X • Record description entry

X X BLOCK CONTAINS clause
•
X X - Integer

RECORDS/CHARACTERS

X X Integer-l TO integer-2 -

RECORDS/CHARACTERS

X,I X,I • DATA RECORDS clause

Summary of Elements in the Indexed 1-0 Module

Appendix C.Language and Summary Comparison C-29

ANS 1 ANS2 S/3

X X X,l

X X X,l

X X X

X X X

X X X,7

X X X

X X X

X,5 X,5 X,l

X,5 X,5 X,l

X,5 X,5

X,5

X,5

X X X

X X X

X X X

X,5 X,5 X

X X

X X

X X X

X X X

X X X

X X X

X X X

Figure C-7 (Part 3 of 5).

S/34 S/36 Elements

X,l X,l - Data name ..J
-X,l X,l Data-name series

X X • LABEL RECORDS clause

X X - STANDARD

X X OMITTED

X X RECORD CONTAINS clause •
X X - Integer-l TO integer-2

CHARACTERS

X,l X,l • VALUE OF clause

X,l X,l - Implementer-name IS literal

X,l X,l Implementer-name IS literal -

series

X,l X,l Implementer-name IS

data-name

X,l X,l Implementer-name IS

data-name series

PROCEDURE DIVISION

X X CLOSE Statement

X X • Single file name

X X • File-name series

X X WITH LOCK phrase
•
X X DELETE Statement

X X • INVALID KEY phrase

X X OPEN Statement

X X Single file name
•

X X • File-name series

X X • INPUT phrase

X X OUTPUT phrase
•

Summary of Elements in the Indexed 1-0 Module

..J
C-30

L
AN81 AN82 8/3 8/34 8/36 Elements

X,5 X,5 X

X X X

X X X

X X X

X

X

X X X,8

X X X,8

X,5 X,5 X

X X X

X X X,8

X X

X X,4

X X,8

X X

X X

X X

X X

X X

X X

Figure C-7 (Part 4 of 5).

X X 1-0 phrase•
X X INPUT, OUTPUT, and 1-0 series•
X X READ Statement

X X • INTO identifier

• KEY IS phrase

X • FIRST phrase (**IBM
Extension**)

X • LAST phrase (**IBM Extension**)

X PRIOR phrase (**IBM •
Extension**)

X X • NEXT phrase

X X • AT END phrase

X X • INVALID KEY phrase

X X REWRITE Statement

X X FROM identifier
•
X X • INVALID KEY phrase

X X START Statement

X X • KEY IS phrase

X Noncontiguous key (**IBM •
Extension**)

X X • INVALID KEY phrase

X X USE Statement

X X • EXCEPTION/ERROR

PROCEDURE phrase

X X - ON file name

-X X ON INPUT

X X ON OUTPUT

X X - ON 1-0

Summary of Elements in the Indexed 1-0 Module

Appendix C.Language and Summary Comparison C-31

L

ANS 1 ANS2 Sf3 Sf34 Sf36 Elements

X X X - ON file-name series ..J
X X X X X WRITE Statement

X X X X X FROM identifier•
X X X X X INVALID KEY phrase•
Figure C-7 (Part 5 of 5). Summary of Elements in the Indexed 1-0 Module

C-32

L
Summary of Elements in the Sort-Merge Module

S/3
ANS 1 ANS2

X X

X X

X X

X X

X X

X

X

X

X

X

X X

X X

X X

X X

X X

X X

Figure C-8 (Part 1 of 3).

S/34 S/36 	 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X File name •
ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

X X • FILE-CONTROL paragraph

X X • File control entry

X X SELECT clause
-

X X - ASSIGN clause

X X • 1-0 CONTROL paragraph

X X - SAME RECORD AREA

clause

X X - SAME RECORD AREA series

X X - SAME SORT/SORT-MERGE
AREA clause

X X - SAME SORT/SORT-MERGE
AREA series

DATA DIVISION

FILE SECTION

X X • File description entry

X X Record description entry
•
X X • DATA RECORDS clause

X X - Data name

X X - Data-name series

X X • RECORD CONTAINS clause

Summary of Elements in the Sort-Merge Module

Appendix C.Language and Summary Comparison C-33

L

ANS 1 ANS2 Sf3

X X

X

X

X

X

X

X

X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

S/34

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Sf36

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Elements

- Integer-l TO integer-2
CHARACTERS

PROCEDURE DIVISION

MERGE Statement

• 	KEY data name

- Data-name series

• 	ASCENDING series

DESCENDING series•
Mixed•
ASCENDING/DESCENDING

• 	COLLATING SEQUENCE phrase

• 	USING phrase

OUTPUT PROCEDURE phrase•
GIVING phrase•

RELEASE Statement

• FROM phrase J
RETURN Statement

• 	 INTO phrase

• 	AT END phrase

SORT Statement

Program may contain one SORT •
statement

Program may contain multiple
•
SORT statements

KEY data name
•
- Data-name series

ASCENDING series
•
DESCENDING series•

Figure C-8 (Part 2 of 3). Summary of Elements in the Sort-Merge Module

C-34

ANS 1 ANS2 S/3 S/34 S/36 Elements

X X X X • Mixed
ASCENDING/DESCENDING

X X X COLLATING SEQUENCE phrase •
X X X X • INPUT PROCEDURE phrase

X X X X USING phrase •
X X X X OUTPUT PROCEDURE phrase•
X X X X • GIVING phrase

Figure C-8 (Part 3 of 3). Summary of Elements in the Sort-Merge Module

Appendix C.Language and Summary Comparison C-35

Summary of Elements in the Debug Module ..)
ANS 1 ANS2 S/3 S/34

X X X

X X X

X X X

X X X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

S/36

X

X

X

X

X

X

X

X

X

X

X

Elements

LANGUAGE CONCEPTS

Special Registers

• DEBUG-ITEM

ENVmONMENT DIVISION

CONFIGURATION SECTION

• 	 SOURCE-COMPUTER paragraph

- WITH DEBUGGING MODE
clause

PROCEDURE DIVISION

USE FOR DEBUGGING Statement

• 	 Procedure name

Procedure-name series •
• 	 ALL PROCEDURES ..)

ALL REFERENCES OF identifier•
series

• 	File-name series

• 	 Cd-name series

EXHIBIT Statement (**IBM
Extension**)

• 	NAMED/CHANGED NAMED
option

• 	 Identifier series

READY TRACE Statement (**IBM
Extension**)

RESET TRACE Statement (**IBM
Extension**)

Figure C-9 (Part 1 of 2). Summary of Elements in the Debug Module

C-36

L
ANS 1 ANS2 S/3 S/34 S/36 Elements

ALL DIVISIONS

X X X X Debugging Lines (permitted after the
OBJECT -COMPUTER paragraph)

Figure C-9 (Part 2 of 2). Summary of Elements in the Debug Module

Appendix C.Language and Summary Comparison C-37

L

Summary of Elements in the Inter-Program Communication Module

ANS 1 ANS2 S/3 S/34 S/36 	 Elements

DATA DIVISION

X X X X X 	 Linkage Section

PROCEDURE DIVISION

Procedure Division Header

X X X X X • USING phrase

X X X X X CALL Statement

X X X X X • Literal

X • identifier

X X • ALL PROCEDURES

X X X X X • USING phrase

X 	 ON OVERFLOW phrase •
X 	 CANCEL Statement

JX X X X X 	 EXIT PROGRAM Statement

Figure C-IO. Summary of Elements in the Inter-Program Communication Module

C-38

L

L

Summary of Elements in the Segmentation Module

ANS 1 ANS2 S/3 S/34 S/36 	 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X X X X 	 • Segment number

ENVIRONMENT DIVISION

CONFIGURATION SECTION

• OBJECT-COMPUTER paragraph

X 	 X,I X,I - SEGMENT-LIMIT clause

PROCEDURE DIVISION

X X X X X Segment Numbers

X X X X X • Fixed segment number 0-49

X X X X X • Independent segment number 50-99

X X X • 	 Sections with the same number need
not be contiguous

Figure C-l1. Summary of Elements in the Segmentation Module

Appendix C.Language and Summary Comparison C-39

L

Summary of Elements in the Library Module

ANS 1 ANS2 S/3 S/34 S/36 	 Elements

LANGUAGE CONCEPTS

User-Defined Words

X,5 X,5 X X 	 X Text name •
X,5 X X 	 • Library name

ALL DIVISIONS

X X X X X COpy Statement

X X X X X Text name •
X X X • OFlIN library-name

X X X REPLACING phrase•

Figure C-U. Summary of Elements in the Library Module

C-40

File Processing Summary and Status Key Values

File Processing Summary and Status Key Values

Appendix D. File Processing Summary and Status Key Values

Figure D-l lists the required and optional entries for various types of supported
file structures. Following are the codes used:

Code Explanation

Not applicable

C Optional entry; treated as comments
only

I Optional for a file opened for input or
input-output

R Required

X Required; syntax-checked, but treated
as documentation

N Optional for an input file; treated as
comments

0 Optional

Appendix D.File Processing Summary and Status Key Values D-l

L

Disk Disk
Disk Rei Disk Rei Disk Rei Idx Disk Idx Disk Idx Work

Device Type Printer Seq Seq Random Dynamic Seq Random Dynamic Station

ENVIRONMENT DIVISION

RERUN ... RECORDS C C C C C C C C C

SAME 0 0 0 0 0 0 0 0 0

AREA C C C C C C C C C

RECORD AREA 0 0 0 0 0 0 0 0

SORT AREA 0 0 0 0 0 0 0 0 0

SORT MERGE AREA 0 0 0 0 0 0 0 0 0

SELECT R R R R R R R R R

ASSIGN R R R R R R R R R

OPTIONAL I

ORGANIZATION 0 0 R R R R R R R

SEQUENTIAL 0 0

RELATIVE R R R

INDEXED R R R

TRANSACTION R

ACCESS 0 0 0 R R 0 R R 0

SEQUENTIAL 0 0 0 0 0

RANDOM R R

DYNAMIC R R

RESERVE C 0 0 C C 0 C C

RELATIVE KEY 0 R R

RECORD KEY R R R

DUPLICATES 0 0 0

FILE STATUS 0 0 0 0 0 0 0 0 0

CONTROL-AREA , . 0

Figure D-l (Part 1 of 3). File Processing

D-2

Disk Disk
Disk Rei Disk Rei Disk Rei Idx Disk Idx Disk Idx Work

Device Type Printer Seq Seq Random Dynamic Seq Random Dynamic Station

DATA DIVISION

LABEL RECORDS X X X X X X X X X

STANDARD R R R R R R R 0

OMITTED R 0

VALUE OF C C C C C C C C C

BLOCK CONTAINS 0 0 0 0 0 0 0 0

RECORD CONTAINS 0 0 0 0 0 0 0 0 0

DATA RECORDS 0 0 0 0 0 0 0 0 0

CODE-SET C C C C C C C C

LINAGE 0

PROCEDURE DIVISION

OPEN R R .R R R R R R R

INPUT 0 0 0 0 0 0 0

OUTPUT R 0 0 0 0 0 0 0

1-0 0 0 0 0 0 0 0 R

NO REWIND C C

REVERSED N

EXTEND 0

CLOSE R R R R R R R R R

REEL/UNIT C C C C C C C C C

REMOVAL C C C C C C C C C

NO REWIND C C C ·C C C C C C

NO REWIND C C C C C C C C C

WITH LOCK 0 0 0 0 0 0 0 0 0

READ I I I I I I I I

NEXT I I I I

FIRST 1*

1*

PRIOR 1*
LAST

INTO I I I I I I I I

AT END I I I I I I

INVALID KEY I I I I

* Allowed only for OATABAS.E device type

Figure D-I (Part 2 of 3). File Processing

L
Appendix D.File Processing Summary and Status Key Values D-3

Disk Disk
Disk Rei Disk Rei Disk Rei Idx Disk Idx Disk Idx Work

Device Type Printer Seq Seq Random Dynamic Seq Random Dynamic Station

WRITE 0 0 0 0 0 0 0 0 0

FROM 0 0 0 0 0 0 0 0 0

INVALID KEY 0 0 0 0 0 0

ADVANCING 0

AT END-OF-PAGE 0

FORMAT IS R

INDICATOR 0

START 0 0 0 0

KEY 0 0 0 0

INVALID KEY 0 0 0 0

REWRITE 0 0 0 0 0 0 0

FROM 0 0 0 0 0 0 0

INVALID KEY 0 0 0 0 0 0

DELETE 0 0 0 0 0 0

INVALID KEY 0 0 0 0

USE 0 0 0 0 0 0 0 0 0

EXCEPTION tERROR 0 0 0 0 0 0 0 0 0

FOR DEBUGGING 0 0 0 0 0 0 0 0 0

Figure D-I (Part 3 of 3). File Processing

D-4

Status Status
Key 1 Key 2 Meaning

0 Successful completion

0 No further information

I Initial READ from a REQUESTOR (IBM
Extension)

1 0 At end of file (no outstanding invites)

2 Invalid key

1 Sequence error!

2 Duplicate key when duplicates are not
allowed

3 No record found

4 Boundary violation--indexed or relative file

3 Permanent error

0 No further information2

4 Boundary violation--sequential file

93 Other errors (IBM Extension)

0 Invalid update, add, or output operation

2 Logic error (I/O to unopened file, file
locked, already OPEN, already CLOSED,
or invalid operation)4

4 No current record pointer for I/O request

5 Invalid or incomplete file information5

9 Undefined

A STOP requested by system operator

C Acquire operation failed; display station
not in standby mode

Figure D-2 (Part 1 of 2). Status Key Values and Meanings

Appendix D.File Processing Summary and Status Key Values D-5

L

Status 	 Status
Key 1 	 Key 2 Meaning

D 	 Terminal operator released display station
with INQUIRY key

E 	 Program released its requestor; I/O rejected

F 	 Acquire operation failed; either operator
signed on is unauthorized or program is
unauthorized to use resources

G 	 Input data rejected; buffer too small

H 	 Acquire operation failed, resource is
unavailable or currently owned by another
program

I 	 Write operation failed; input data already
received by data management

K 	 IDDU format not found or cannot be
retrieved

N 	 Temporary error (error during

communications session)

Figure 0-2 (Part 2 of 2). Status Key Values and Meanings

This can also occur when the primary key was invalidly changed when updating a
key for a multiple index file.

2 	 This can occur when a remote file is used and one of the following conditions exist
when the I/O operator is requested:

• 	 The remote system reported a "permanent error" condition.
• 	 A communication failure occurs.
• 	 For the input operation, the record number is larger than the maximum value

that can be handled in the requesting system.

Program termination will not always occur.

4 	 This can occur when the operation performed on an open file is not possible; for
example,

• 	 Reading and output file.
• 	 Writing to an input file.
• 	 Updating a file that is not opened as I/O.

This can occur when either of the following conditions exist when the file is opened:

• 	 WITH DUPLICATES is specified on the RECORD KEY clause, and duplicate
keys are not allowed for the file.

• 	 WITH DUPLICATES is not specified on the RECORD KEY clause, and
duplicate keys are allowed for the file.

D-6

EBCDIC and ASCII Collating Sequences

EBCDIC Collating Sequence E-2
ASCII Collating Sequence E-5

EBCDIC and ASCII Collating Sequences

Appendix E. EBCDIC and ASCII Collating Sequences

This appendix contains the ascending collating sequences for the following
character sets:

• EBCDIC (Extended Binary Coded Decimal Interchange Code)

• ASCII (American National Standard Code for Information Interchange).

The tables show:

• Decimal positions within the sequence

• The binary representation

• The symbol

• The meaning for each character

• The matching decimal position within the other sequence.

Note: When you are using the literal option of the alphabet-name clause, you
must add 1 to the number shown in this appendix to specify the corresponding
character. (The numbers in this appendix run from 0 through 255; the numbers in
the literal option run from 1 through 256.)

Appendix E.EBCDIC and ASCII Collating Sequences E-l

L

EBCDIC Collating Sequence J
Collating Binary ASCn
Sequence Representation Symbol Meaning Number

0 00000000 0

64 01000000 SP Space 32

74 01001010 ¢ Cent sign 91 *

75 01001011 Period, decimal point 46

76 01001100 < Less-than sign 60

77 01001101 (Left parenthesis 40

78 01001110 + Plus sign 43

79 01001111 I Vertical bar, logical OR 33 *

80 01010000 & Ampersand 38

90 01011010 Exclamation point 93 *
91 01011011 $ Dollar sign 36

92 01011100 * Asterisk 42

93 01011101) Right parenthesis 41

94 01011110 Semicolon 59

95 01011111 ---, Logical NOT 94

96 01100000 Minus, hyphen 45

97 01100001 I Slash 47

J
106 01101OlO Broken vertical bar 124 *
107 0110lOll , Comma 44

108 01101100 % Percent sign 37

109 01101101 Underscore 95

110 01101110 > Greater-than sign 62

111 01101111 ? Question mark 63

Note: The symbols with an asterisk(*) in the rightmost column are not matched
with the same symbol in the other collating sequence.

E-2

Collating Binary
Sequence Representation

121 01111001

122 01111010
123 01111011
124 01111100
125 01111101
126 01111110
127 01111111

129 10000001
130 10000010
131 10000011
132 10000100
133 10000101
134 10000110
135 10000111
136 10001000
137 10001001

145 10010001
146 10010010
147 10010011
148 10010100
149 10010101
150 10010110
151 10010111
152 10011000
153 10011001

161 10100001
162 10100010
163 10100011
164 10100100
165 10100101
166 10100110
167 10100111
168 10101000
169 10101001

Note:

Symbol Meaning

\ Grave accent

Colon
Number sign
@ At sign
I Apostrophe, prime

Equal sign
Quotation mark

a
b
c
d
e
f
g
h

j
k
I
m
n
0

P
q
r

Tilde
s
t
u
v
w
x
y
z

ASCII

Number

96

58
35
64
39
61
34

97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114

126
115
116
117
118
119
120
121
122

The symbols with an asterisk (*) in the rightmost cotumn are not matched
with the same symbol in the other collating sequence.

Appendix E.EBCDIC and ASCII Collating Sequences E-3

L

Collating

Sequence

-

192

193

194

195

196

197

198

199

200

201

208

209

210

211

212

213

214

215

216

217

224

226

227

228

229

230

231

232

233

240

241

242

243

244

245

246

247

248

249

255

/

Binary ASCII

Representation Symbol Meaning Number

11000000 { Left brace 123

11000001 A 65

11000010 B 66

11000011 C 67

11000100 D 68

11000101 E 69

11000110 F 70

11000111 G 71

11001000 H 72

11001001 I 73

11010000 } Right brace 125

11010001 J 74

11010010 K 75

11010011 L 76

11010100 M 77

11010101 N 78

11010110 0 79

11010111 P 80

11011000 Q 81

11011001 R 82

11100000 \ Reverse slant 92

11100010 S 83

11100011 T 84

11100100 U 85

11100101 V 86

11100110 W 87

11100111 X 88

11101000 Y 89

11101001 Z 90

11110000 0 48

11110001 1 49

11110010 2 50

11110011 3 51

11110100 4 52

11110101 5 53

11110110 6 54

11110111 7 55

11111000 8 56

11111001 9 57

Note: The symbols with an asterisk (*) in the rightmost column are not matched
with the same symbol in the other collating sequence.

E-4

ASCII Collating Sequence

,
I

Collating
Sequence

0

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Binary EBCDIC

Representation Symbol Meaning Number

00000000 Null 0

00100000 SP Space 64

00100001 ! Exclamation point 79 *

00100010 " Quotation mark 127

00100011 # Number sign 123

00100100 $ Dollar sign 91

00100101 % Percent sign 108

00100110 & Ampersand 80

00100111 I Apostrophe, prime 125

00101000 (Left parenthesis 77

00101001) Right parenthesis 93

00101010 Asterisk 92
*
00101011 + Plus sign 78

00101100 , Comma 107

00101101 - Hyphen, minus 96

00101110 Period, decimal point 75

00101111 / Slash 97

00110000 0 240

00110001 1 241

00110010 2 242

00110011 3 243

00110100 4 244

00110101 5 245

00110110 6 246

00110111 7 247

00111000 8 248

00111001 9 249

00111010 Colon 122

00111011 , Semicolon 94

00111100 < Less-than sign 76

00111101 = Equal sign 126

00111110 > Greater-than sign 110

00111111 ? Question mark 111

01000000 @ At sign 124

Note: The symbols with an asterisk (*) in the rightmost column are not matched
with the same symbol in the other collating sequence.

Appendix E.EBCDIC and ASCII Collating Sequences E-5

L

Collating Binary EBCDIC

Sequence Representation Symbol Meaning Number
 J
65 01000001 A 193

66 01000010 B 194

67 01000011 C 195

68 01000100 D 196

69 01000101 E 197

70 01000110 F 198

71 01000111 G 199

72 01001000 H 200

73 01001001 I 201

74 01001010 J 209

75 01001011 K 210

76 01001100 L 211

77 01001101 M 212

78 01001110 N 213

79 01001111 0 214

80 01010000 P 215

81 01010001 Q 216

82 01010010 R 217

83 01010011 S 226

84 01010100 T 227

85 01010101 U 228

86 01010110 V 229

87 01010111 W 230

88 01011000 X 231

89 01011001 Y 232

90 01011010 Z 233

91 01011011 [Left bracket 74 *

92 01011100 \ Reverse slant 224

93 01011101] Right bracket 90 *

94 01011110 A Circumflex 95

---, Logical NOT

95 01011111 Underscore 109

96 01100000 \ Grave accent 121

/

Note: The symbols with an asterisk (*) in the rightmost column are not matched
with the same symbol in the other collating sequence.

E-6

Collating Binary EBCDIC

Sequence Representation Symbol Meaning Number

97 01100001 a 129

98 01100010 b 130

99 01100011 c 131

100 01100100 d 132

101 01100101 e 133

102 01100110 f 134

103 01100111 g 135

104 01101000 h 136

105 01101001 i 137

106 01101010 j 145

107 01101011 k 146

108 01101100 1 147

109 01101101 m 148

110 01101110 n 149

111 01101111 0 150

112 01110000 P 151

113 01110001 q 152

114 01110010 r 153

115 01110011 s 162

116 01110100 t 163

117 01110101 u 164

118 01110110 v 165

119 01110111 w 166

120 01111000 x 167

121 01111001 y 168

122 01111010 z 169

123 01111011 { Left brace 192

124 01111100 I Vertical line 106 *

125 01111101 } Right brace 208

/ 126 01111110 - Tilde 161

Note: The symbols with an asterisk (*) in the rightmost col1,!IDn are not matched
with the same symbol in the other collating sequence.

Appendix E.EBCDIC and ASCII Collating Sequences E-7

L

E-8

IBM American National Standard COBOL Reserved Words

Reserved Words Used by the System/36 COBOL Compiler F-l

Reserved Words Not Used by the System/36 COBOL Compiler F-4

IBM American National Standard COBOL Reserved Words

Appendix F. IBM American National Standard COBOL Reserved
Words

No word in the following two lists should appear as a programmer-defined name.

Reserved Words Used by the System/36 COBOL Compiler

Words preceded by an asterisk (*) are not included in the American National
Standard COBOL, X3.23-1974, reserved word list.

ACCEPT

ACCESS

*ACQUIRE
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND

*APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT

*ATTRIBUTE-DATA
AUTHOR

BEFORE

BLANK

BLOCK

BOTTOM

BY

CALL
*CHANGED
CHARACTER
CHARACTERS

CLOSE
CODE-SET
COLLATING
COMMA
COMP

*COMP-3
*COMP-4
COMPUTATIONAL

*COMPUT A TIONAL-3
*COMPUTATIONAL-4
COMPUTE
CONFIGURATION
CONTAINS

*CONTROL-AREA
COPY
CORR
CORRESPONDING
COUNT

*CORE-INDEX
*CSP
CURRENCY

*COI

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME

DEBUG-SUB-l
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARA TIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DISPLAY
DIVIDE
DIVISION
DOWN

*DROP
DUPLICATES
DYNAMIC

ELSE
END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP
EQUAL
ERROR
EVERY
EXCEPTION

*EXHIBIT
EXIT
EXTEND

Appendix F.IBM American National Standard COBOL Reserved Words F-l

LOW-VALUE REEL
FD LOW-VALUES RELATIVE
FILE RELEASE
FILE-CONTROL MEMORY REMAINDER
FILLER MERGE REMOVAL
FIRST MODE RENAMES
FOOTING MODULES REPLACING
FOR MOVE * REQUESTOR

*FORMAT MULTIPLE RERUN
FROM MULTIPLY RESERVE

RESET
GIVING *NAMED RETURN
GO NATIVE REVERSED
GREATER NEGATIVE REWIND

NEXT REWRITE
HIGH-VALUE NO RIGHT
HIGH-VALUES NOT * ROLLING

NUMERIC ROUNDED
IDENTIFICATION RUN
IF OBJECT-COMPUTER
1-0 OCCURS SAME
I-O-CONTROL OF SD
IN OFF SEARCH
INDEX OMITTED SECTION
INDEXED ON SECURITY

*INDIC OPEN SEGMENT
*INDICATOR OPTIONAL SEGMENT-LIMIT
*INDICATORS OR SELECT :J
INITIAL ORGANIZATION SENTENCE
INPUT OUTPUT SEPARATE
INPUT-OUTPUT OVERFLOW SEQUENCE
INSPECT SEQUENTIAL
INSTALLATION PAGE SET
INTO PERFORM SIGN
INVALID PIC SIZE
IS PICTURE SORT

PLUS SORT-MERGE
JUST POINTER SOURCE
JUSTIFIED POSITIVE SOURCE-COMPUTER

*PRIOR SPACE
KEY PROCEDURE SPACES

PROCEDURES SPECIAL-NAMES
LABEL PROCEED STANDARD
LAST PROGRAM STANDARD-l
LEADING PROGRAM-ID START
LEFT *STARTING
LESS QUOTE STATUS
LINAGE QUOTES STOP
LINAGE-COUNTER STRING
LINE RANDOM SUBTRACT
LINES READ SYNC
LINKAGE RECORD SYNCHRONIZED

RECORDS *SYSTEM-CONSOLE

LOCK

*LOCAL-DATA
REDEFINES * SYSTEM-SHUTDOWN

F-2

TALLYING

TERMINAL

THAN

*THEN
THROUGH
THRU
TIME
TIMES
TO
TOP

*TRACE
TRAILING

*TRANSACTION
*TRUE

UNIT
UNSTRING
UNTIL
UP
UPON

*UPSI-O
*UPSI-l
*UPSI-2
*UPSI-3
*UPSI-4
*UPSI-5
*UPSI-6
*UPSI-7
USAGE

USE
USING

VALUE
VALUES
VARYING

WHEN
WITH
WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

Appendix F.IBM American National Standard COBOL Reserved Words F-3

L

Reserved Words Not Used by the System/36 COBOL Compiler

CANCEL
CD
CF
CH
CLOCK-UNITS
COBOL
CODE
COLUMN
COMMUNICATION
CONTROL
CONTROLS

DE
DESTINATION
DETAIL
DISABLE

EGI
EMI
ENABLE
ESI

FINAL

GENERATE
GROUP

HEADING

INDICATE
INITIATE

LENGTH
LIMIT
LIMITS
LINE-COUNTER

The reserved words in the following list are not used by the System/36 COBOL
compiler and should not be used if compatibility with other American National
Standard COBOL compilers and CODASYL COBOL is desired.

MESSAGE

NUMBER

PAGE-COUNTER
PF
PH
POSITION
PRINTING

QUEUE

RD
RECEIVE
REFERENCES
REPORT
REPORTING
REPORTS
RF
RH

SEND
SUB-QUEUE-!
SUB-QUEUE-2
SUB-QUEUE-3
SUM
SUPPRESS
SYMBOLIC

TABLE
TAPE
TERMINATE
TEXT
TYPE

~

F-4

Glossary

abbreviated combined relational condition. A combined
condition that omits a common subject, or a common
subject and common relational operator, from a
consecutive sequence of relation conditions. For
example, (A and B) or (A and C) can be abbreviated A
and (B or C).

access mode. A method used to read a specific logical
record from, or to write a specific logical record into a
file assigned to an input/output device. Access can be
sequential (records are referred to one after another in
the order in which they appear in the file), it can be
random (the individual record can be referred to in a
nonsequential manner), or it can be dynamic (records
can be accessed sequentially or randomly, depending on
the form of the specific input/output request).

actual decimal point. The representation, using the
decimal point character (. or ,), of the decimal point
position in a data item. The actual decimal point
appears in printed reports and requires a position in
storage. Contrast with assumed decimal point.

advanced program-to-program communication (APPC).
SSP-ICF communications support that allows System/36
to communicate with other systems having the same
support. APPC is the way that System/36 puts the IBM
SNA LU-6.2 protocol into effect.

alphabet name. A user-defined word, in the
SPECIAL-NAMES paragraph, that names a character
set or collating sequence.

alphabetic character. A character that is one of the 26
uppercase characters of the alphabet, or a space.

alphanumeric character. Any character in the
computer's character set.

alphanumeric edited character. An alphanumeric data
item whose PICTURE character string contains at least
one B, 0, or 1.

alternative index. An index that is built after an
indexed file or an alternative indexed file is created and
that provides a different order for reading or writing
records in the file. Contrast with primary index.

American National Standard Code for Information
Interchange (ASCn). The code developed by for
information interchange among data processing systems,
data communications systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters.

American National Standards Institute (ANSI). An
organization sponsored by the Computer and Business
Equipment Manufacturers Association for establishing
voluntary industry standards.

ANSI. See American National Standards Institute.

APPC. See advanced program-to-program
communication.

arithmetic expression. An arithmetic expression can be
an identifier for a numeric elementary item, a numeric
literal, such identifiers and literals separated by an
arithmetic operator, or an arithmetic expression
enclosed in parentheses.

arithmetic operator. A symbol (1 character or a
2-character set) that indicates the arithmetic operation
to be performed. Arithmetic operators include: +
(addition), - (subtraction), * (multiplication), / (division),
.. (exponentiation).

ascending key. The values by which data is ordered
from the lowest value to the highest value of the key
according to the rules for comparing data items.

ascending key sequence. The arrangement of data in
order from the lowest value of the key field to the
highest value of the key field. Contrast with descending
key sequence.

ASCII. See American National Standard Code for
Information Interchange.

assignment name. A word that associates a file name
with an external device.

assumed decimal point. A logical decimal point position
that is used to align a value properly for calculation; the
assumed decimal point does not occupy a storage

Glossary G-I

L

position in a data item. Contrast with actual decimal
point.

AT END condition. A condition that occurs when the
following statements are run: a READ statement for a
sequentially accessed file; a RETURN statement if a
logical record does not exist for the associated sort or
merge file; a SEARCH statement if the search operation
ends without satisfying the condition specified in any of
the associated WHEN phrases.

binary item. A numeric data item that is represented
within the computer in binary digits (that is, as a
number in the base 2). If the number is signed, the sign
is the leftmost bit in each item.

block. A group of records that is recorded or processed
as a unit. Same as physical record.

Boolean data. A category of data items that are limited
to a value of one or zero.

Boolean literal. See literal.

buffer. An area of storage, temporarily reserved for
performing input or output, into which data is read or
from which data is written.

called program. A program that is the object of a
CALL statement combined at object time with the
calling program to produce a run unit.

calling program. A program that executes a CALL to
another program.

character. One of a set of indivisible symbols that can
be arranged in sequence to express information.

character set. All the valid COBOL characters.

character string. A sequence of characters that form a
COBOL word, a literal, a PICTURE character string, or
a comment entry.

class condition. A condition that states that the content
of an item is all alphabetic or all numeric.

clause. An ordered set of consecutive COBOL
character strings whose purpose is to specify an
attribute of an entry.

COBOL (common business-oriented language). A
high-level programming language, similar to English,
that is used primarily for commercial data processing.

COBOL character set. The following 51 characters:

Character Meaning

0, 1, ...,9 Digit

A, B, ... , Z Letter
Space (blank)

+ Plus sign
Minus sign (hyphen)

• Asterisk
Stroke (virgule, slash)
Equal sign

$ Currency sign
Comma (decimal point)
Semicolon
Period (decimal point)
Quotation mark
Left parenthesis
Right parenthesis

> Greater than symbol
< Less than symbol

collating sequence. The sequence in which characters
are ordered within the computer for sorting, combining,
or comparing.

column. A character position within a print line. The
columns are numbered from 1, by 1, starting at the
leftmost character position of the print line and
extending to the rightmost position of the print line.

combined condition. A condition that is the result of
connecting two or more conditions with the AND or the
OR logical operator.

comment. An annotation in the Identification Division
or Procedure Division of a COBOL source program. A
comment is ignored by the compiler. As an IBM
extension, comments may be included at any point in a
COBOL source program.

comment entry. An entry in the Identification Division
that is not translated by the compiler.

comment line. A source program line that is not
translated by the compiler. The comment line can be
used to document the program. A special form of the
comment line can be used to cause page ejection before
the comment line is printed.

compilation time. The time during which a source
program is translated from a high-level language to a
machine language program.

compiler. A program that translates instructions written
in a high-level programming language into machine
language.

compiler directing statement. A statement that controls
what the compiler does rather than what the user
program does.

complex condition. A condition in which one or more
logical operators (AND, OR or NOT) act upon one or
more conditions. Complex conditions include negated

G-2

simple conditions, combined conditions, and negated
combined conditions. See conditional expression and
simple condition.

compound condition. A statement that tests two or
more relational expressions. The result can be true or
false.

computer name. A system name that identifies the
computer upon which the program is to be compiled or
run.

condition. An expression in a program for which a
truth value can be determined at run time. Conditions
include the simple conditions (relation condition, class
condition, condition-name condition, switch-status
condition, sign condition) and the complex conditions
(negated simple conditions, combined conditions,
negated combined conditions).

condition name. A name assigned to a specific value,
set of values, or range of values, within the complete set
of values that a conditional variable can possess. Or, it
is the name assigned to a status of an IBM-defined
switch.

condition-name condition. A condition that states that
the value of a conditional variable is one of the set of
values assigned to a condition-name associated with the
conditional variable.

conditional expression. A simple condition or a complex
condition specified in an IF, a PERFORM, or a
SEARCH statement. See complex condition and simple
condition

conditional statement. A statement that causes a
condition to be evaluated to a value of either true or
false and that controls program flow depending on this
value.

conditional variable. A data item, one or more values
of which has a condition-name assigned to it.

CONFIGURATION SECTION. A section of the
Environment Division of the COBOL program. It
describes the overall specifications of computers.

connective. A work or a punctuation character that
associates a data name, paragraph name, condition
name, or text name with its qualifier, links two or more
operands in a series, or forms a conditional expression.

constant. A data item with a value that does not
change. Contrast with variable.

control storage. Storage in the computer that contains
the programs used to control input and output
operations and the use of main storage. Contrast with
main storage.

currency sign. The character $.

currency symbol. The character defined by the
CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. If no CURRENCY SIGN clause is present,
the currency sign is used. See currency sign.

current record. The record that is currently available to
the program.

current record pointer. An internal mechanism that is
used in sequential retrieval of the next record.

data clause. A clause that appears in a data description
entry in the Data Division and that provides
information describing a particular attribute of a data
item.

data description entry. An entry in the Data Division
that describes the characteristics of a data item.

data dictionary. A folder that contains field, format,
and file definitions.

DATA DIVISION. One of the four main component
parts of a COBOL program. The Data Division
describes the files to be used in the program and the
records contained within the files. It also describes any
internal Working-Storage records that will be needed.

data hierarchy. The relationship between a group item
or record and the group data items and elementary data
items that make it up.

data item. A character or a set of consecutive
characters (excluding literals in either case) defined as a
unit of data by the COBOL program.

data name. A user-defined word that names a data
item. When used in the general formats, data name
represents a word that cannot be subscripted, indexed,
nor qualified unless specifically permitted by the rules of
that format. (See identifier) An index name is not a
data name.

DDM. See Distributed Data Management

debugging line. A COBOL statement run only when the
WITH DEBUGGING MODE clause is specified.
Debugging lines can help determine the cause of an
error.

debugging section. A Declaratives section that receives
control when an identifier, a file name, or a procedure
name is encountered in the Procedure Division.

declaratives. A set of one or more special-purpose
sections, written at the beginning of the Procedure
Division, that can be used for input/output error
checking or debugging.

Glossary G-3

L

Division, that can be used for input/output error
checking or debugging.

declarative sentence. A compiler-directing statement
that specifies when a debugging procedure or an
exception/error procedure is to be run.

delimiter. A character or a sequence of consecutive
characters that marks the end of a unit of data and is
not part of that unit of data.

descending key. The values by which data is ordered
from the highest value to the lowest value of the key, in
accordance with the rules for comparing data items.

descending key sequence. The arrangement of data in
order from the highest value of the key field to the
lowest value of the key field. Contrast with ascending
key sequence.

Development Support Utility (DSU). An editor that can
be invoked through either the DSU procedure or the
corresponding Help screen.

digit. Any of the numerals from 0 through 9.

direct file. See relative file.

display format. Data that defines (or describes) a
display.

display screen. The part of the display station on which
information is displayed.

display station. A device that includes a keyboard from
which an operator can send information to the system
and a display screen on which an operator can see the
information sent or receive information from the
system.

Distributed Data Management (DDM). A feature of the
System Support Program Product that allows an
application program to work on files that reside on a
remote system.

division. One of the four major parts in a COBOL
program: Identification, Environment, Data, or
Procedure.

division header. The reserved words and punctuation
that indicate the beginning of one of the four divisions
of a COBOL program.

DSU. See Development Support Utility

dynamic access. An access mode in which records can
be read from or written to a file in a nonsequential
order (see random access) and read from a file in a

sequential order (see sequential access) during the scope
of the same OPEN statement.

EBCDIC. See extended binary-coded decimal
interchange code.

EBCDIC character. Anyone of the symbols included
in the 8-bit EBCDIC set.

editing character. A single character or a fixed
2-character combination used to format output.

elementary item. A data item that is described as not
being logically subdivided.

entry. Any descriptive set of consecutive clauses ended
by a period and written in the Identification,
Environment, or Data Division of a COBOL source
program.

ENVIRONMENT DIVISION. One of the four main
component parts of a COBOL program. The
Environment Division describes the computers upon
which the source program is compiled and those on
which the object program is executed; it also provides a
linkage between the logical concept of files and their
records, and the physical aspects of the devices on
which files are stored.

exponent. A number, indicating to which power
another number (the base) is to be raised.

EXTEND mode. An open mode in which records are
added to the end of a sequential file.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 eight-bit characters.

external decimal item. See zoned decimal item.

figurative constant. A reserved word that repr,~sents a
numeric or character value, or a string of repeated
values. The word can be used instead of a literal to
represent the value.

FILE-CONTROL. The name and header of an
Environment Division paragraph in which the data files
for a given source program are named and assigned to
specific input/output devices.

file description entry. An entry in the File Section of
the Data Division that contains information about the
identification, the physical structure, and the record
name of a file.

file name. The name used by a program to identify a
file.

file organization. The permanent file structure
established at the time a file is created.

G-4

FILE SECTION. A section of the Data Division, that
contains descriptions of all externally stored data (or
files) used in a program. Such information is given in
one or more file description entries.

function-name. A name, defined by IBM, that identifies
system logical units, system-supplied information,
printer control characters, or program switches.

group item. A named set of consecutive elementary or
group items.

hierarchy. A set of entries that includes all subordinate
entries to the next equal- or higher-level number.

IDDU. See Interactive Data Definition Utility.

IDDU communications format. A feature of the
Interactive Communications Feature, that allows data to
be sent or received between your program and a remote
program.

IDDU format file. A file that contains data definitions.

IDENTIFICATION DIVISION. One of the four main
component parts of a COBOL program. The
Identification Division identifies the source program and
the object program and, in addition, may include such
documentation as the author's name, the installation
where written, and the date written.

identifier. A data name that is unique or is made
unique by the correct combination of qualifiers,
subscripts, or indexes.

ideographic. Pertaining to two-byte characters
consisting of pictograms, symbolic characters, and other
types of symbols.

imperative statement. A statement that specifies that an
action is always to be taken. An imperative statement
can consist of a sequence of imperative statements.

implementor name. A system name that identifies the
external medium of a COBOL file and the name by
which it is known to the system.

independent data item. A data item in the
Working-Storage Section that has no relationship with
other data items.

index. A computer storage position or register, the
contents of which identify a particular element in a set
of elements.

index data item. A data item in which the contents of
an index can be saved.

index name. A user-defined word that names an index.

indexed data name. A data name followed by one or
more index names enclosed in parentheses, which is
used to reference an element or a set of elements in a
table.

indexed file. A file in which the key and the position of
each record is recorded in a separate portion of the file
called an index. Contrast with direct file and sequential
file.

indicator. An internal switch that communicates a
condition between parts of a program or procedure.

input file. A file that is opened in the input mode.

input mode. An open mode in which records can be
read from the file.

input-output file. A file that is opened in the 1-0 mode.

INPUT-OUTPUT SECTION. In the Environment
Division, the section that names the files and external
media needed by an object program. It also provides
information required for the transmission and handling
of data when an object program is run.

integer. A numeric data item or literal that does not
include any character positions to the right of the
decimal point. When the term integer appears in
formats, integer must be an unsigned numeric literal and
must be nonzero unless the rules for that format
explicitly state otherwise.

Interactive Communications Feature (SSP-ICF). A
feature of the System Support Program Product that
allows a program to interactively communicate with
another program or system.

Interactive Data Definition Utility (IDDU). The part of
the System Support Program Product that you can use
to define the characteristics of data and the contents of
files.

INVALID KEY condition. A run-time condition in
which the value of a key for an indexed or relative file
incorrectly refers to the file.

1/0 CONTROL. The name and the header for an
Environment Division paragraph in which object
program requirements for specific input/output
techniques are specified. These techniques include rerun
checkpoints, the sharing of same areas by several data
files, and the use of a storage-resident cylinder index.

1/0 mode. An open mode in which records can be read
from, written to, or deleted from a file.

Kanji. The ideographic character set used by the
Japanese to represent their native language.

Glossary G-5

Katakana. A native Japanese character set that is used mnemonic name. A user-defined word associated with a
primarily to write foreign words phonetically. function name in the Environment Division.

key. One or more characters used to identify the record mode. A method of operation
and establish the record's order within an indexed file or
a direct (relative) file. .~ MRO. See memory resident overlays.

key word. A reserved word that is required by the
syntax of a COBOL statement or entry.

language name. A system name that specifies a
particular programming language.

level indicator. Two alphabetic characters (FD or SD)
that identify the type of file description entry.

level number. A numeric character (1 through 9) or a
2-character set (01 through 49, 66, 77, 88) that begins a
data description entry and establishes its level in a data
hierarchy. Level numbers 66, 77 and 88 identify special
properties of a data description entry.

library name. A user-defined word that names a
library.

LINKAGE SECTION. A section of the Data Division
that describes data made available from another
program.

literal. A symbol or a quantity in a source program
that is itself data, rather than a reference to data.

logical operator. A reserved word that defines the
logical connection between conditions or negates a
condition: OR (logical connective--either or both),
AND (logical connective--both), and NOT (logical
negation).

logical order. The order in which records are
sequentially read from a file. For sequential and
relative files, the logical order corresponds to the
physical order of the records in the file. For indexed
files, the logical order is based on the order of the keys
in the index portion of the file.

logical record. The most inclusive data item. The level
number for a logical record is 01.

main program. The highest-level program involved in a
run unit.

main storage. The part of the processing unit where
programs are run. Contrast with control storage.

memory resident overlays. An option that makes a
program request that its overlays remain in main
storage.

merge file. The temporary file that contains all the
records to be combined by a MERGE statement.

MRT program. See multiple requester terminal program.

multiple requester terminal (MRT) program. A program
that can process requests from more than one display
station or SSP-ICF session at the same time using a
single copy of the program. Contrast with single
requester terminal (SRT) program.

name. A word that defines a COBOL operand. A
name is composed of not more than 30 characters.

native character set. The default character set
associated with the computer specified in the
OBJECT-COMPUTER paragraph.

native coUating sequence. The default collating
sequence associated with the computer specified in the
OBJECT-COMPUTER paragraph.

negated combined condition. The NOT logical operator
immediately followed by a combined condition in
parentheses.

negated condition. A condition that is made opposite
(either true or false), by the NOT logical operator.

negated simple condition. The NOT logical operator
immediately followed by a simple condition.

nest. To incorporate a structure or structures of some
kind into a structure of the same kind. For example, to
nest one loop (the nested loop) within another loop (the
nesting loop); to nest one subroutine (the nested
subroutine) within another subroutine (the nesting
subroutine).

Network Resource Directory (NRD). An area on disk
that lists the files on remote systems that can be
accessed using Distributed Data Management (DDM).

next executable statement. The st(}.tement to which
control is transferred after the current statement runs.

noncontiguous item. A data item in the
Working-Storage Section of the Data Division that
bears no relationship with other data items.

noncontiguous key. A key that can be made up of three
record fields. These fields may be separated by non-key
fields.

G-6

nonnumeric items. A data item that is alphanumeric,
alphabetic, or Boolean.

nonnumeric literal. See literal.

NRD. See Network Resource Directory

numeric. Pertaining to any of the digits 0 through 9.

numeric edited item. A numeric item whose PICTURE
character string contains valid editing characters.

numeric item. An item whose contents must be

numeric. If signed, the item can also contain a

representation of an operation sign.

numeric literal. See literal.

OBJECT-COMPUTER. The name of an Environment
Division paragraph in which the computer upon which
the object program will be run is described.

object program. A set of instructions in

machine-runnable form. The object program is

produced by a compiler from a source program.

I	object-time subroutine. An internal system subroutine
that the compiler sets up links to when link-editing.

. Object-time subroutines are stored in #COBLIB.

open mode. The state of a file after performing an
OPEN statement for that file and before performing a
CLOSE statement for that file. The particular open
mode is specified in the OPEN statement as either
INPUT, OUTPUT, 1-0, or EXTEND.

operand. The object of a verb or an operator; that is,
an operand is the data or equipment governed or
directed by a verb or operator.

optional word. A reserved word included in a statement
format that is intended to make that statement easier to
read.

output file. A file that is opened in either the output
mode or the extend mode.

output mode. An open mode in which records can be
written to the file.

OUTPUT PROCEDURE. A procedure that provides
special processing of records when they are returned
from the sort or merge function.

overflow condition. A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

overlay. A program segment that is loaded into main
storage and replaces all or part of a previously loaded
program segment.

overlay structure. A graphic representation showing the
relationship of segments of an overlay program and how
the segments are arranged to use the same main storage
area at different times.

packed decimal format. A format in which each byte
(except the rightmost byte) within a field represents two
numeric digits. The rightmost byte contains one digit
and the sign. For example, the decimal value + 123 is
represented as 0001 0010 0011 1111. Contrast with
zoned decimal format.

pad. To fill unused positions in a field with dummy
data, usually zeros or blanks.

paragraph. In the Procedure Division, a paragraph
name followed by a period and a space and by zero,
one, or more sentences. In the Identification and
Environment divisions, a paragraph header followed by
zero, one, or more entries.

paragraph header. A reserved word, followed by a
period and a space, that indicates the beginning of a
paragraph in the identification and Environment
Divisions.

paragraph name. A user-defined word that identifies
and begins a paragraph in the Procedure Division.

parameter. A variable or a literal that is used to pass
data values between calling and called programs.

phrase. An ordered set of one or more consecutive
COBOL character strings that forms part of a clause or
a Procedure Division statement.

physical record. A unit of data that is moved into or
out of the computer.

procedure. One or more successive paragraphs or
sections within the Procedure Division, which directs the
computer to perform some action or series of actions.

PROCEDURE DIVISION. One of the four main
component parts of a COBOL program. The Procedure
Division contains instructions for solving a problem.
The Procedure Division may contain imperative
statements, conditional statements, paragraphs,
procedures and sections.

procedure name. A paragraph name or a section name
in the Procedure Division.

program name. A user-defined word that identifies a
COBOL source program.

Glossary G-7

pseudo-text. A sequence of character strings or
separators bounded by, but not including, pseudo-text
delimiters. Pseudo-text is used in the COPY
REPLACING statement for replacing text strings.

pseudo-text delimiter. Two contiguous equal signs
(= =) used to delimit pseudo-text.

qualified name. A name that has been made unique by
the addition of one or more qualifiers.

qualifier. A name used to uniquely identify another
name.

random access. An access mode in which records can
be read from, written to, or removed from a file in any
order.

record. A collection of fields that is treated as a unit.

record area. A storage area reserved for processing the
record described in a record description entry in the File
Section.

record description entry. The total set of data
description entries associated with a particular record.

record name. A data name for a record described in a
record description entry.

relation character. One of the characters that expresses
a relationship between two operands: = (equal to), >
(greater than), < (less than).

relation condition. A condition that relates two
arithmetic expressions and/or data items.

relational operator. A reserved word, a relation
character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation
characters used to express a relation condition.

relative file. Same as direct file.

reserved word. A word used in a source program to
describe an action to be taken by the program or by the
compiler, respectively. It must not appear in the
program as a user-defined name or a system name.

routine. A set of statements in a program that causes
the system to perform an operation or a series of related
operations.

run. To cause a program, utility, or other machine
function to be performed.

run unit. A set of one or more object programs that
function as a unit at execution time to provide a
problem solution.

section. A section header followed by a set of zero,
one, or more paragraphs or entries, called a section
body. Each section consists of the section header and
the related section body.

section header. A combination of words, followed by a
period and a space, that indicates the beginning of a
section in the Environment, Data, or Procedure
Division.

section name. A user-defined word that names a section
in the Procedure Division.

sector. An area on a disk track or a diskette track
reserved to record information.

sentence. A sequence of one or more statements; the
last statement ends with a period followed by a space.

separator. A punctuation character used to delimit
character-strings.

sequential access. An access mode in which records are
read from, written to, or removed from a file based on
the logical order of the records in the file.

sequential file. A file in which records occur in the
order in which they were entered. Contrast with direct
file and indexed file.

sequential processing. The processing of records in the
order in which they exist in a file.

serial search. A search in which the members of a set
are consecutively examined, beginning with the first
member and ending with the last member.

SEU. See source entry utility.

shift-in control character. A character (hexadecimal
'OF') that indicates the end of a string of ideographic
characters. Contrast with shift-out control character.

shift-out control character. A character (hexacecimal
'OE') that indicates the start of a string of ideographic
characters. Contrast with shift-in control character.

sign condition. A condition that states that the value of
a data item is less than, equal to, or greater than zero.

simple condition. Any single condition chosen from the
set: relation condition; class condition; condition-name
condition; switch-status condition; sign condition. See
complex condition and conditional expression.

single requester terminal (SRT) program. A program
that can process requests from only one display station
or SSP-ICF session from each copy of the program.
Contrast with multiple requester terminal program.

G-8

SOURCE-COMPUTER. The name of an Environment
Division paragraph describing the computer upon which
the source program will be compiled.

source entry utility (SEU). The part of the Utilities
Program Product used by the operator to enter and
update source and procedure members.

source program. A set of instructions that are written
in a programming language and that must be translated
to machine language before the program can be run.

special character. A COBOL character that is neither
numeric nor alphabetic. Special characters in COBOL
include the space 0, and the period (.), as well as the
following: + - * / = $, " () ; < >.

special registers. Compiler-generated data items used to
store information produced by specific COBOL features
(for example, the DEBUG-ITEM special register).

special-character word. A reserved word that is an
arithmetic operator or a relation character.

SPECIAL-NAMES. The name of an Environment
Division paragraph and the paragraph itself in which
names supplied by IBM are related to mnemonic names
specified by the programmer. In addition, this
paragraph can be used to exchange the functions of the
comma and the period or to specify a substitution
character for the currency sign in the PICTURE string.

SRT program. See single requester terminal program.

SSP. See System Support Program Product.

SSP-ICF. See Interactive Communications Feature.

standard data format. The format in which data is
described as to how it appears when it is printed rather
than how the data is stored in the computer.

statement. A syntactically valid combination of words
and symbols, beginning with a verb, that is written in
the Procedure Division.

subprogram. A called program.

subscript. An integer or variable whose value refers to
a particular element in a table or an array.

subscripted data name. A data name that has been
made unique through the use of a subscript.

switch-status condition. A condition that states that a
switch is currently on or off.

SYSIN. An SSP routine to support input from the
system device.

SYSLOG. AN SSP routine to support input and
output (logoff messages) to a device.

SYSTEM-CONSOLE. A COBOL function name
associated with the operator's keyboard/display.

system-defined special format. A feature of the
Interactive Communications Feature that begins with
two dollar signs ($$), and provides SSP-ICF functions
for COBOL users.

system name. An IBM-defined name that has a
predefined meaning to the COBOL compiler. System
names include computer names, language names, device
names, and function names.

System Support Program Product (SSP). A group of
licensed programs that manage the running of other
programs and the operation of associated devices, such
as the display station and printer. The SSP also
contains utility programs that perform common tasks,
such as copying information from diskette to disk.

S/I. See shift-in control character.

S/O. See shift-out control character.

table. A set of logically consecutive data items that are
defined in the Data Division by means of the OCCURS
clause.

test condition. A statement that, when taken as a
whole, may be either true or false, depending on the
circumstances existing at the time the expression is
evaluated.

text name. A user-defined word that identifies library
text.

text word. Any character string or separator, except the
space, in copied COBOL source or in pseudo-text.

TRANSACTION file. An input/output file used to
communicate with display stations and SSP-ICF
sessions.

unary operator. A plus sign (+) or a minus sign (-),
which precedes a variable or a left parenthesis in an
arithmetic expression and which has the effect of
multiplying the expression by + 1 or -1, respectively.

UPSI switch. See user program status indicator switch.

user-defined word. A word, required by a clause or a
statement that must be supplied by the user in a clause
or statement.

user program status indicator (UPSI) switch. One of a
set of eight switches that can be set by and passed
between application programs and procedures.

Glossary G-9

user-defined word. A word, required by a clause or a
statement that must be supplied by the user in a clause
or statement.

user program status indicator (UPSI) switch. One of a
set of eight switches that can be set by and passed
between application programs and procedures.

variable. A name used to represent a data item whose
value can change while the program is running.
Contrast with constant.

verb. A COBOL reserved word that expresses an action
to be taken by a COBOL compiler or an object
program.

word. A character string of not more the 30 characters
that forms a user-defined word, a system name, or a
reserved word.

work station. A device that lets people transmit
information to or receive information from a computer;
for example, a display station or printer.

WORKING-STORAGE SECTION. A section name
(and the section itself) in the Data Division. The
section describes records and noncontiguous data items
that are not part of external files but are developed and
processed internally. It also defines data items whose
values are assigned in the source program.

zoned decimal format. A format for representing
numbers in which the digit is contained in bits 4 through
7 and the sign is contained in bits 0 through 3 of the
rightmost byte; bits 0 through 3 of all other bytes
contain Is (hex F). For example, in zoned dec:imal
format, the decimal value of + 123 is represented as
1111 0001 1111 0010 1111 0011. Contrast with packed
decimal format.

zoned decimal item. A numeric data item that is
represented internally in zoned decimal format.

G-lO

Index

abbreviated combined relation conditions

description 11-29

examples 11-29

abnormal program end

due to improper indexing 13-28

due to improper subscripting 13-28

due to Invalid Address 6-22

due to Invalid Operation 6-22

ACCEPT Statement

function 12-2

in Procedure Division 12-2-12-6

use with TRANSACTION File 7-32

ACCESS IS DYNAMIC

relative key optional 9-30

WRITE statement 12-43

ACCESS IS SEQUENTIAL

relative key required 9-30

WRITE statement 12-42

ACCESS MODE clause

indexed file considerations 9-30

relative file considerations 9-31

sequential file considerations 9-30

use with TRANSACTION file 7-25

access modes

dynamic 9-18

random 9-18

sequential 9-18

ACQUIRE Statement

format 7-33, 12-7

in Procedure Division 12-7

use with TRANSACTION File 7-33

actual decimal point 10-57

ADD statement

CORRESPONDING phrase 11-37

description 11-34

GIVING phrase 11-36

ROUNDED phrase 11-35

SIZE ERROR phrase 11-36

uses 1J-35

address, relative 5-5

Advanced Program-to-Program Communication 7-1,

ADVANCING Phrase 12-40

AFTER ADVANCING phrase of WRITE

statement 12-40

AFTER Phrase

use with INSPECT statement 11-60

algebraic signs

categories

editing 10-23

operational 10-23

alignment rules

alphabetic 10-22

alphanumeric 10-22

alphanumeric edited 10-22

numeric edited items 10-22

numeric items 10-22

ALL

figurative constant 1-19

literal 1-19

ALL PROCEDURES 6-4

allowed characters

COBOL program 1-11

nonnumeric literal 1-13

numeric literal 1-13

user-defined word 1-15

alphabet name 1-15

alphabet-name clause

ALSO phrase 9-13

COLLATING SEQUENCE phrase and 9-13

description 9-13

literal phrase 9-13

NATIVE phrase 9-13

PROGRAM COLLATING SEQUENCE clause

and 9-13

rules 9-13

STANDARD-l phrase 9-13

alphabetic characters

COBOL character set 1-11

description 1-11

in CURRENCY SIGN clause 9-15

alphabetic item

alignment rules 10-22

PICTURE clause considerations 10-54

alphanumeric edited item

alignment rules 10-22

PICTURE clause considerations 10-55

alphanumeric item.

alignment rules 10-22

JUSTIFIED clause 10-22

PICTURE clause considerations 10-54

RECORD KEY data item 9-32

status key 9-33

ALTER statement 11-38, 13-5

altered GO TO statement 11-38

alternative index 9-18

alternative index. 12-32

American National Standard COBOL

IBM extensions to 1-6

reserved words F-l

AND logical connective 1-18

AND NOT logical connective 1-18

ANS COBOL

See American National Standard COBOL

ANSI status keys 7-25

apostrophe

punctuation character 1-12

used as quotes 1-11,4-32

within nonumeric literal 1-13

Index X-I

12-45

APPC
See Advanced Program-to-Program Communication

application development process 2-6

arrange options 2-8

block diagram 2-13

create menus 2-14

flowchart 2-11

layouts

for files 2-9

for input displays 2-9

for output displays 2-9

report 2-9

menu tree 2-8

program functions 2-11

routines 2-14

run procedure 2-14

steps in development 2-6

test menus 2-14

test program 2-14

test run procedure 2-14

what application should do 2-8

write the program 2-14

APPLY clause 9-37

Arabic numerals

in COBOL character sets 1-11

arithmetic 1-5

expressions 11-9

operators 1-5, 11-9

binary 11-9

unary 11-9

statements 2-3, 11-12

ADD 11-34

COMPUTE 11-40

DIVIDE 11-42

MULTIPLY 11-68

SUBTRACT 11-92

arithmetic operation, order rules 11-28

arithmetic statement operands 11-12

ASCENDING/DESCENDING KEY phrase 13-16,

13-32

ASCII

alphabet-name clause and 9-13

collating sequence E-5

COLLATING SEQUENCE phrase and 13-17

ASCII collating sequence E-5

ASSIGN clause 9-28, A-4

description A-3

printer & disk files 9-28

transaction files 9-29

use with TRANSACTION file 7-24

assumed decimal point 10-57

asterisk (*)

comment lines 3-8

preceeds comment line 1-20

AT END condition

EXCEPTION/ERROR Declarative and 11-105

AT END Phrase

in Procedure Division 12-26

READ statement considerations 12-19

use with TRANSACTION file 7-39

X-2

with READ statement 12-29

ATTRIBUTE-DATA 7-17

batch processing 8-1

sample programs

COBOL sort example 8-20

indexed file creation 8-6

indexed file retrieval 8-12

indexed file updating 8-8

relative file creation 8-14

relative file retrieval 8-18

relative file updating 8-16

sequential file creation 8-2

sequential file updating and extension 8-4

BEFORE ADVANCING phrase 12-40

BEFORE phrase

use with INSPECT statement 11-60

binary operators

addition 11-9

division 11-9

exponentiation 11-9

multiplication 11-9

subtraction 11-9

blank lines 3-8

BLANK WHEN ZERO clause 10-44

BLOCK CONTAINS clause 10-10, A-6

Boolean

character 1-14

data 7-28

data facilities 10-21

formation rules 10-31

literal 1-14, 7-28, 10-47

special clause considerations

INDICATOR clause 7-29

OCCURS clause 7-29

PICTURE clause 7-29

USAGE clause 7-29

VALUE clause 7-29, 10-47

use with OCCURS clause 10-42

use with relation conditions 11-21

braces 1-5

brackets, square 1-5

optional 1-5

CALL statement A-7

example 13-56

for subprogram linkage 13-53

linkage 4-39

calling and called programs

CALL statement linkage 4-39

L

common data 13-50

data name references 4-40

description 4-38

EXIT PROGRAM 4-40

external names 4-42

external references 4-42

link-editing

overlay linkage editor 4-42

with overlay 4-46

without overlay 4-43

Procedure Division segmentation 13-6

STOP RUN 4-40

with USING option 4-40

capital letters

reserved words 1-5

categories of data

alphabetic 10-21

alphanumeric 10-21

alphanumeric edited 10-21

Boolean 10-21

numeric 10-21

numeric edited 10-21

CBINST 14-6

CBREMV 14-7

character string

description 1-10, 10-23

literals 1-13

nonnumeric literals 1-13

representation 10-54

characters

alphabetic 1-11

ideographic 14-1

numeric 1-11

special 1-11

characters allowed

COBOL program 1-11

nonnumeric literal 1-13

numeric literal 1-13

user-defined word 1-15

CHARACTERS phrase 10-10

characters, alphabetic

COBOL character set 1-11

description 1-11

in CURRENCY SIGN clause 9-15

class condition

description 11-18

format 11-18

classes of data

alphabetic 10-21

alphanumeric 10-21

Boolean 10-21

numeric 10-21

clauses 1-5

ACCESS MODE 7-25, 9-30

Alphabet-Name 9-13

APPLY 9-37

ASSIGN 7-24, 9-28, 9-29, A-3

CONTROL-AREA 7-26, 9-33

CURRENCY SIGN 9-15

data name 10-32

DATA RECORDS 7-27, 10-12

DECIMAL POINT IS COMMA 9-16

entry 1-10

FILE STATUS 7-24,9-33

FILLER 10-32

Function-Name-l 9-10

Function-Name-2 7-22

INDICATOR 7-29, 10-42

JUSTIFIED 10-43

KEY A-5

LABEL RECORDS 7-27, 10-11

LINAGE 10-13, A-6

MEMORY SIZE 9-8

MULTIPLE FILE 9-37

OCCURS 7-29, 10-42, 13-30, A-6

optional 1-5

ORGANIZATION 7-24, 9-30

PICTURE 7-29, 10-49

PROGRAM COLLATING SEQUENCE 9-9

RECORD CONTAINS 7-27, 10-11, A-6

RECORD KEY 9-32

REDEFINES 10-32

RENAMES 10-26

required 1-5

RERUN 9-36

RESERVE 9-29, A-4

rules for use 1-10

SAME 9-36

SAME AREA A-5

SAME SORT-MERGE A-5

SEGMENT-LIMIT 9-9

SELECT 9-27

SIGN 10-41

SYNCHRONIZED 10-43

USAGE 7-29, 10-36

USAGE IS INDEX 13-33

VALUE 7-29, 10-45

VALUE OF 10-12

WITH DEBUGGING MODE 6-2, 9-8

CLOSE Statement

FOR REMOVAL phrase 12-9

format 12-8

in Procedure Division 12-8

LOCK 12-17

REEL/UNIT phrase 12-9

use with TRANSACTION File 7-34

COBOL

character set 1-11

coding form 3- I

procedures

COBOLC 4-11

COBOLONL 4-4

COBSDA 4-15

COBSEU 4-10

BLANK WHEN ZERO 10-44 menu 4-1

BLOCK CONTAINS 10-10, A-6 use 4-1

CODE-SET 10-16 program structure 1-9

Index X-3

L

terms

clause 1-10

paragraph 1-10

section 1-10

statement 1-10

COBOL language

assumptions for C-l

components I-II

considerations for subprogram linkage 13-50

description I-I

extensions 7-2

level of support 1-2

special features

merging 13-7

segmentation 13-2

sorting 13-7

structure of 1-3

summary of C-3

COBOLC Procedure

using the first display 4-11

using the second display 4-13

WITH DEBUGGING MODE clause 6-2

COBOLONL procedure

description 4-4

using the first display 4-4

using the second display 4-6

using the third display 4-9

WITH DEBUGGING MODE clause 6-2

COBSDA procedure 4-15

COBSEU procedure 4-10

CODE-SET clause 10-16

coding

errors to avoid 3-18

forms 3-1

rules 3-1

collating sequence

ASCII E-5

EBCDIC E-2

COLLATING SEQUENCE phrase 13-17

column

continuation area 3-2

debugging line 3-2

sequence number 3-2

1 through 6 3-2

12 through 72 in Area B 3-3

7 3-2

8 through 11 in Area A 3-3

combined conditions 11-26

comma (,)

editing character 1-12

interchange with decimal point 9-9

interchange with semicolon 9-6

programming use 1-12

punctuation character 1-12

separator 1-21

series connective 1-18

command keys 7-16

comment

description 1-20, 3-8

entry 1-20

in Identification Division 9-3
line

occuring in operand-l 4-26

occuring in operand-2 4-26

use 1-20

Common Business Oriented Language

See COBOL

common data 13-50

COMP phrase 10-37-10-41

comparison

of nonnumeric operands 11-23

of numeric and nonnumeric operands 11-23

of numeric operands 11-23

compilation date in source listing 9-3

compiler

calculation of intermediate results 11-15

compiler-detected errors 3-18

compiler-generated line number 5-3

identifying compiler problems 6-35

major features 1-4

output 5-3

prolog 5-3

compiler-directing sentence 11-5

statement categories

compiler-directing 11-5

conditional 11-5

imperative 11-5

compiler-directing statement 11-5

complex conditions

definition 11-24

types

combined 11-26

negated combined 11-26

negated simple 11-25

composite of operands 11-12

COMPUTATIONAL phrase 10-37-10-41

COMPUTE statement A-7

description 11-40

ROUNDED phrase 11-40

SIZE ERROR phrase 11-41

condition name 1-15

data description entry 10-30

definition 10-30

description 3-15

entry rules 10-30

formation rules 1-15

condition-name condition

description 11-19

format 11-19

conditional

expression 11-18

expressions

evaluation of 11-27

sentence 11-5

statement 11-5

statements 2-3

variable 10-30

conditions, complex

definition 11-24

types

X-4

L

combined 11-26

negated combined 11-26

negated simple 11-25

conditions, simple
abbreviated combined 11·29
comparison of nonnumeric operands 11·23
comparison of numeric and nonnumeric

operands 11-23

comparison of numeric operands 11-23

description 11-18, 11-19, 11-21, 11·24

format 11·18, 11·19, 11·21, 11-24

operands of equal size 11-23

operands of unequal size 11-23

Configuration Section

ACCESS MODE clause 9·30

Alphabet·Name clause 9·13

APPLY clause 9·37

CURRENCY SIGN clause 9-15

DECIMAL POINT IS COMMA clause 9·16

description 9·6

FILE·CONTROL paragraph 9·23

format 9-7

I·O·CONTROL paragraph 9·35

MULTIPLE FILE clause 9·37

OBJECT·COMPUTER paragraph

MEMORY SIZE clause 9·8
PROGRAM COLLATING SEQUENCE

clause 9·9
SEGMENT·LIMIT clause 9-9

RECORD KEY clause 9-32

RERUN clause 9-36

RESERVE clause 9·29

rules 9-8

SAME clause 9-36

SELECT clause 9-27

SOURCE-COMPUTER paragraph 9-8

SPECIAL-NAMES paragraph

connectives
logical

AND 1-18

AND NOT 1·18

OR 1-18

OR NOT 1-18

qualifier

IN 1-18

OF 1-18

series 1-18

considerations, system·dependent A·l

continuation

area 3·2

column 7 3-2

line 3·2

of lines 3·7

CONTROL-AREA clause

description 9-33

use with TRANSACTION file 7·26

control transfers

explicit 3-17

implicit 3-17

segmentation considerations 13-6

subprogram linkage concepts 13-50

controlling your compilation 4-15

COPY statement

description 4-23

examples 4·27

format 4·23

REPLACING phrase 4-24

CORE-INDEX 9-37

CORRESPONDING phrase

use with ADD statement 11·37

use with MOVE statement 11-64

use with SUBTRACT statement 11-95

COUNT IN phrase 11·97
CR PICTURE symbol

description 10-23

sign control symbol 10-51

creating display screen formats

steps for 7-8

using display format specifications 7·8

using screen design aid (SDA) 7-8

credit symbol

description 10-23

sign control symbol 10·51

currency sign

See also dollar sign

clause 9·15

editing character 1-12

use 1-12

CURRENCY SIGN clause 9·15
current record pointer

OPEN statement 12·18

READ statement 12·24

START statement 12-24

data
external

FD entry 10·1

file definition 10-1

logical records 10-1

physical records 10-1

internal 10·2
relationships

level indicator 10-2

level number 10-2

data alignment

alphabetic 10-22

alphanumeric 10-22

alphanumeric edited 10·22

numeric edited items 10·22

numeric items 10·22

data attribute specification 3-16

data classes

alphabetic 10·21

alphanumeric 10·21

Boolean 10-21

Index X-5

numeric 10-21

data conversion

DISPLAY statement and 12-13

in an elementary MOVE statement 11-12

data description

Boolean data facilities 10-21

categories of data 10-21

character string 10-23

classes of data 10-21

concepts 10-17

editing signs 10-23

indentation 10-21

item size 10-23

level numbers 10-19

levels 10-19

operational signs 10-23

signed data 10-23

special level numbers 10-20

standard data format 10-22

data description entry

BLANK WHEN ZERO clause 10-44

format 1 rules 10-25

format 2-RENAMES clause 10-26-10-29

format 3 (describes condition names) 10-30

format 4-Boo1ean data 10-31

JUSTIFIED clause 10-43

level numbers 10-31

OCCURS clause 7-29, 10-42

PICTURE clause 7-29, 10-49

REDEFINES clause 10-32

SIGN clause 10-41

SYNCHRONIZED clause 1043

USAGE clause 7-29, 10-36

VALUE clause 7-29, 10-45

zoned decimal items 10-37

Data Dictionary name 4-4

Data Division

character string representation 10-54

concepts 10-1

data description 10-17

data description entry 10-24

data relationships 10-2

description 1-9, 10-1

entry rules

level indicator 3-6

level number 3-6

external data 10-1

File Description Entry 10-5

flagging 4-32

internal data 10-2

map 5-3

MERGE 13-12

organization

file section 10-4

linkage section 10-5

working-storage section 10-4

punctuation rules 3-9

SORT 13-12

sort/merge considerations 13-12

subprogram linkage 13-52

table handling
ASCENDING/DESCENDING KEY

phrase 13-32

INDEXED BY phrase 13-33

USAGE IS INDEX clause 13-33

TRANSACTION file 9-19

data hierarchies

concepts 10-2

used in qualification 3-11

data item

description entry concepts 10-19

figurative constant length and 1-19

signed 10-23

size and character-string 10-23

data item description entry

ADD statement considerations 11-34

breaking apart 11-96

concatenating 11-87

description 10-24

general format 10-6

MOVE statement considerations 11-63

subject of OCCURS clause 13-30

SUBTRACT statement considerations 11-92

data manipulation statements 2-3

INSPECT statement 11-54

MOVE statement 11-63

STRING statement 11-87

UNSTRING statement 11-96

data name 1-15

data name clause 10-32

data organization for disk files

indexed 9-20

record types 9-20

relative 9-21

sequential 9-20

data receiving fields (UNSTRING) 11-97

data record size specification 10-11

DATA RECORDS clause

description 1O-l2

format 1O-l2

use with TRANSACTION file 7-27

data reference

condition name 3-15

explicit 3-15

implicit 3-15

in Procedure Division 3-16

indexing 3-10

methods of 3-10

qualification 3-10

subscripting 3-10

data relationships

level indicator 10-2

level numbers 10-2

data transfer

ACCEPT statement 12-2

DISPLAY statement 12-13

STRING statement 11-87

UNSTRING statement 11-96

data truncation

ACCEPT statement 12-2

X-6

literal restrictions 10-46

rules 10-59

DATE-COMPILE paragraph 9-3

date of compilation in source listing 9-1

DATE, ACCEPT statement 12-5

DAY, ACCEPT statement 12-5

DB (debit) PICTURE symbol

description 10-51

editing sign control symbol 10-58

numeric edited items 10-56

DDM
See Distributed Data Management

DEBUG-ITEM 1-18

debugging

abnormal program end

due to Invalid Address 6-22

due to Invalid Operation 6-22

compile-time switch 6-2

example of debugging 6-15

EXHIBIT Statement 6-10

features 6-2

line 3-2, 3-8, 6-7

D 3-2, 6-7

definition 6-7

loops 6-20

description 6-20

errors causing loops 6-21

tracing a loop 6-20

main storage dumps 6-24

example 6-33

interpreting a dump 6-24

MRTSAM debugging 7-57

object-time switch 6-3

steps for debugging your program 6-1

TRACE statement 6-8

READY TRACE 6-8

RESET TRACE 6-8

USE FOR DEBUGGING DECLARATIVE 6-3

WITH DEBUGGING MODE 6-2

decimal point (.)

editing character 1-12

period 1-12

punctuation character 1-12

DECIMAL POINT IS COMMA clause 9-16

DECLARATIVES 3-6

EXCEPTION/ERROR 7-31, 11-31

format in Procedure Division 11-31

rules 11-1

USE FOR DEBUGGING 6-3,11-31

default attributes are implicit 3-16

DELETE statement

considerations 12-12

format 12-10

in Procedure Division 12-10

INY ALID KEY condition 12-10

status key considerations 12-10

with Random or Dynamic Access Mode 12-11

with Sequential Access Mode 12-11

DELIMITED BY ALL phrase (UNSTRING) 11-97

DELIMITED BY phrase 11-96

delimiter

in INSPECT statement II-54

in STRING statement 11-87

in UNSTRING statement 11-96

DEPENDING ON phrase of GO TO statement 11-38

DEPENDING ON phrase of OCCURS clause 13-31

DESCENDING KEY phrase of OCCURS

clause 13-32

descriptive code

D-O I level data names 5-5

F-FD level file names 5-5

designing the program

file considerations 2-4

input 2-1

output 2-1

processing 2-1

steps for design 2-1

top-down 2-5

development process 2-6

arrange options 2-8

block diagram 2-13

create menus 2-14

flowchart 2-11

layouts

for files 2-9

for input displays 2-9

for output displays 2-9

report 2-9

menu tree 2-8

program functions 2-11

routines 2-14

run procedure 2-14

steps in development 2-6

test menus 2-14

test program 2-14

test run procedure 2-14

what application should do 2-8

write the program 2-14

device 7-1

diagnostic messages

severity levels

C-conditional 5-6

E-error 5-6

W -warning 5-6

direct indexing 13-27

disk data management A-2

disk file processing 9-18

DISPLAY phrase 10-36

display screen format

steps for 7-8

using display format specifications 7-8

using screen design aid (SDA) 7-8

display screen layout sheet 2-2, 7-8

DISPLA Y Statement

format 12-13

in Procedure Division 12-13

use with TRANSACTION File 7-35

Distributed Data Management 9-19

DIVIDE statement

description 11-42

Index X-7

GIVING phrase 11-44

ROUNDED phrase 11-43

SIZE ERROR phrase 11-44

uses 11-42

division header 3-3, 3-5

divisions

Data Division 1-9

Environment Division 1-9

Identification Division 1-9

order of 1-9

Procedure Division 1-9

dollar sign

See also currency sign

editing character 1-12

use 1-12

DROP Statement

format 12-15

in Procedure Division 12-15

use with TRANSACTION File 7-36

dumps 6-24

example 6-33

interpreting a dump 6-24

DUP KEY 10-41

duplicate keys

INVALID KEY condition 12-43

suppressing duplicate key checking 12-43

WITH DUPLICATES phrase 9-32

with multiple indexed files 9-21

dynamic access

DELETE statement 12-11

READ statement 12-21

dynamic access mode 9-18

dynamic values in a table 13-28

EBCDIC

character set 1-11

COBOL characters 1-11

collating sequence

HIGH-VALUE 1-19

LOW-VALUE 1-19

editing characters 1-11

EBCDIC collating sequence E-2

alphabet-name clause 9-13

HIGH-VALUE figurative constant 1-19

LOW-VALUE figurative constant 1-19

use with NATIVE 13-17

editing

insertion editing

fixed 10-56

floating 10-56

simple 10-56

special 10-56

PICTURE clause

insertion 10-56

suppression and replacement 10-56

suppression and replacement editing

examples 10-61

rules 10-60

symbols 10-60

use with numeric edited items 10-60

zero suppression and replacement with

asterisks 10-57

zero suppression and replacement with

spaces 10-57

editing signs 10-23

elementary item

alignment rules 10-22

as subscript 13-25

classes and categories 10-21

description 10-19

level number concepts 10-19

MOVE statement operand 11-63

elementary moves description 11-65

ellipsis 1-5

END DECLARATIVES 3-6

end file processing 12-8

end of execution STOP RUN statement 11-86

End-of-file 7-40

-end of procedures, documenting 11-46

enhanced timer subroutine B-4

ENTER statement 11-45

entry 1-10

BLANK WHEN ZERO clause 10-44

clause 1-10

definition 1-10, 3-5

format 1 rules 10-25

format 2-RENAMES clause 10-26-10-29

format 3 (describes condition names) 10-30

format 4-Boolean data 10-31

JUSTIFIED clause 10-43

level numbers 10-31

OCCURS clause 7-29, 10-42

PICTURE clause 7-29, 10-49

REDEFINES clause 10-32

SIGN clause 10-41

SYNCHRONIZED clause 10-43

USAGE clause 7-29, 10-36

VALUE clause 7-29, 10-45

zoned decimal items 10-37

Environment Division

access modes 9-18

dynamic 9-18

random 9-18

sequential 9-18

coding example 9-5

Configuration Section 9-6

description 1-9,9-4

entry 3-5

file control

ASSIGN clause 7-24

ASSIGN clause - printer & disk files 9-28

ASSIGN clause - transaction files 9-28

FILE STATUS clause 7-24

ORGANIZATION clause 7-24

file control entry 7-23

X-8

FILE-CONTROL paragraph 13-10

flagging 4-32

format 9-4

OBJECT-COMPUTER paragraph 9-8

paragraph 3-5

rules 9-4

SORT/MERGE 13-10

SPECIAL-NAMES paragraph

Function-Name-2 Clause 7-22

equal sign (=)

punctuation character 1-12

relation character 1-12

use 1-12

EQUAL TO relational operator in WHEN phrase of
SEARCH ALL 13-36

ERRLlNE 7-42, 12-45

error handling routines

AT END phrase 11-105, 12-26

EXCEPTION/ERROR procedure 11-105, 12-27

INVALID KEY phrase 11-105, 12-31

error line 7-42, 12-45

errors

causing loops 6-21

classes

detected by compiler 3-18

run-time errors 3-19

coding errors 3-18

common errors

faulty punctuation 3-18

incomplete syntax 3-18

misspellings 3-18

misuse of reserved words 3-18

EXCEPTION/ERROR Declarative

EXTEND phrase 11-104

File-Name phrase 11-104

format 11-104

general considerations 11-105

1-0 phrase 11-104

INPUT phrase 11-104

OUTPUT phrase 11-104

use with TRANSACTION file 7-31

EXCEPTION/ERROR procedure

CLOSE statement 12-9

DELETE statement 12-11

REWRITE statement 12-31

sort/merge 13-17

START statement 12-35

execution flow

ALTER statement changes 11-38

general rule 11-1

GO TO statement 11-38

PERFORM statement changes 11-71

SEARCH ALL statement 13-40

SEARCH statement rules 13-37

STOP statement halts 11-86

execution results

INSPECT statement 11-54

STRING statement 11-89

UNSTRING statement 11-103

execution rules

INSPECT statement 11-54

PERFORM statement 11-74

STRING statement 11-88, 11-89

UNSTRING statement 11-98

USE FOR DEBUGGING procedure 6-3

execution status, status key usage 9-33

execution suspension of STOP statement 11-86

EXHIBIT Statement 6-10

EXIT PROGRAM statement 13-55

EXIT statement 11-46

explicit references 3-15, 10-36

exponentiation operator 11-9

expressions

arithmetic 11-18

conditional 11-18

simple 11-18

EXTEND phrase 11-104

extensions 1-6

use of 2-4

external data

description 10-1

FD entry 10-1

file definition 10-1

record

logical 10-1

physical 10-1

external decimal item 10-37

FD entry 1-1

BLOCK CONTAINS clause 10-10

CODE-SET clause 10-16

DATA RECORDS clause 10-12

description 10-1

format I-sequential, indexed, relative files 10-6

format 2-TRANSACTION file 10-7

highest level of organization 10-5

in Data Division 10-1

LABEL RECORDS clause 10-11

LINAGE clause 10-13

RECORD CONTAINS clause 10-11

rules 10-8

VALUE OF clause 10-12

Federal Information Processing Standard
See FIPS

field

data types 7-11

input 7-11

input/output 7-11

output 7-11

override operation 7 -14

figurative constants

ALL 1-19

functions of 1-19

plural

high-values 1-19

Index X-9

low-values 1-19 	 for output 2-4

quotes 1-19 formation rules 1-15, 10-9

spaces 1-19 rules for use 10-9
 J
zeroes 1-19

zeros 1-19

rules 1-19

singular

high-value 1-19

low-value 1-19

quote 1-19

space 1-19

zero 1-19

file

definition 10-1

merge 13-7

sort 13-7

file consideration in program design 2-4

file control

entry 7-23

paragraph 7-23, 9-23-9-27

file-control entry

file processing entries 9-23

sort/merge considerations 13-12

TRANSACTION file 7-23, 9-26

FILE-CONTROL paragraph 9-23

formats 9-23

function of 9-23

File Description (FD) entry 1-1

BLOCK CONTAINS clause 10-10

CODE-SET clause 10-16

DATA RECORDS clause 10-12

description 10-1

format I-sequential, indexed, relative files 10-6

format 2-TRANSACTION file 10-7

highest level of organization 10-5

in Data Division 10-1

LABEL RECORDS clause 10-11

LINAGE clause 10-13

RECORD CONTAINS clause 10-11

rules 10-8

VALUE OF clause 10-12

File Description (SD) entry

concepts 13-12

format 13-12

sort/merge considerations 13-12

File Description Entry

BLOCK CONTAINS clause 10-10

CODE-SET clause 10-16

DATA RECORDS clause 10-12

FD entry 10-5

file name 10-9

LABEL RECORDS clause 10-11

LINAGE clause 10-13

RECORD CONTAINS clause 10-11

VALUE OF clause 10-12

file label specification 10-11

file name

definition 2-4

disk file 2-4

for input 2-4

X-lO

workstation 2-4

File-Name phrase 11-104

INPUT phrase 11-104

file 	processing D-2, D-4

disk 9-18

summary 9-18

File Section

description 10-4

rules 10-4

VALUE clause 10-46

FILE STATUS clause 9-33

CLOSE statement 12-8

DELETE statement 12-10

description 9-33

READ statement 12-21

REWRITE statement 12-30

START statement 12-34

TRANSACTION file considerations 9-33

use with TRANSACTION file 7-24

files A-2

maximum number A-2

FILLER 10-32

FIPS

flag levels 4-30-4-36

flagger 4-30

selecting the correct level 4-30

standard modules used 4-31

subset of ANS COBOL 4-30

summary of levels C-l

1975 High-intermediate level

Data Division 4-33

Environment Division 4-33

global items 4-33

Identification Division 4-33

Procedure Division 4-33

1975 High level

Data Division 4-32

Environment Division 4-32

global items 4-32

Identification Division 4-32

Procedure Division 4-32

1975 Low-intermediate level

Data Division 4-34

Environment Division 4-34

global items 4-34

Identification Division 4-34

Procedure Division 4-35

1975 Low level

Data Division 4-36

Environment Division 4-36

global items 4-36

Identification Division 4-36

Procedure Division 4-36

FIRST phrase of INSPECT REPLACING
statement 11-60

FIRST phrase of READ statement 12-22

fixed insertion editing 10-56

examples 10-58

rules 10-58

use 10-58

flXed-length tables 13-31

floating insertion editing 10-56

examples 10-60

in a PICTURE character string 10-59

uses 10-59

footing area, LINAGE clause 10-13

FOR Phrase

use with TRANSACTION file 7-32

format notation

braces 1-5

brackets 1-5

square 1-5

description 1-5

ellipsis 1-5

words

key 1-5

optional 1-5

reserved 1-5

user-defined 1-5

FORMAT Phrase

use with TRANSACTION file 7-42

FROM identifier phrase

ACCEPT statement 12-3

FROM phrase 12-31

function key 7-26

function name

ACCEPT statement 12-2

SPECIAL-NAMES paragraph 9-9

function-name-1 clause

clause 9-10

description 9-10

function-name-2 clause

description 9-11

format 9-7

switch-status condition 9-11

general description of System/36 COBOL 1-1

GIVIN G phrase 13-17

use with ADD statement 11-36

use with DIVIDE statement 11-44

use with MULTIPLY statement 11-69

use with SUBTRACT statement 11-94

global items

1975 High FIPS COBOL flagging 4-32

1975 High-Intermediate FIPS COBOL

flagging 4-33

1975 Low FIPS COBOL flagging 4-36

1975 Low-Intermediate FIPS COBOL

flagging 4-34

GO TO statement

conditional GO TO 11-48

description 11-47

unconditional GO TO 11-47

graphic 14-1

greater than sign (>)

relation character 1-12

group moves 11-67

hexadecimal digit bit configurations 10-40

hexadecimal representation A-8

hierarchical order of arithmetic expressions 11-10

hierarchy 3-11

HIGH-VALUE(S) 1-19

hyphen (-)

allowed in user-defined words 1-15

in continuation area 3-7

not allowed as program name 9-3

I-O-CONTROL paragraph

APPLY clause 9-37

MULTIPLE FILE clause 9-37

RERUN clause 9-36

SAME clause 9-36

1-0 phrase 11-104, 12-17

IBM extensions 1-6

use of 2-4

ICF 7-1

IDDU

See Interactive Data Definition Utility
Identification Division

coding example 9-2

comment entries 9-3

DATE-COMPILED paragraph 9-3

description 1-9, 9-1

flagging 4-32

format 9-1

optional paragraphs 9-3

PROGRAM-ID paragraph 9-2

punctuation rules 3-9

identifier

ACCEPT statement operand 12-2

breaking apart 11-96

definition 11-2

description 3-14

DISPLAY statement operand 12-13

formats 3-14

indexing 3-14, 11-2

INSPECT statement operand 11-54

INTO identifier phrase 12-24

qualification 3-14, 11-2

replacing characters in 11-54

subscripting 3-14, 11-2

ideographic characters

definition 14-1

Index X-II

__ .. 1.

graphic 14-1

literals 14-1

compiler checking 14-2

continuation on a new line 14-4

examples 14-3

pictogram 14-1

subroutines to handle data 14-5

CBINST 14-5

CBREMV 14-5

insert control characters 14-6

remove control characters 14-7

testing for support 14-5

IF statement

description 11-49

format 11-49

nested IF 11-51

imperative sentence 11-5

imperative statement 11-5

implicit references 3-15, 10-36

IN

considerations in program design 2-3

data 2-3

files 2-3

in 3-11

qualifier connective 1-18

records 2-3

incompatible data 3-16

incrementing index-name values 13-45

incrementing operands PERFORM VARYING

rules 11-74

indentation 3-7, 10-21

independent segments 13-3

index name

assigning values 13-45

comparison rules 13-34

description 13-27

formation rules 1-15

in PERFORM statement 11-74

rules for formation 1-15

SET statement operand 13-45

INDEX phrase 10-36

indexed and relative file contents A-2

INDEXED BY phrase 13-33

indexed files

access mode allowed 9-22

organization for disk files 9-20

Indexed I/O module 1-3

indexing

direct 13-27

relative 13-27

restrictions 13-28

use 3-14

use with tables 13-27

INDICATOR clause

description 10-42

format 10-42

use with TRANSACTION file 7-29

INDICATOR Phrase

use with TRANSACTION file 7-45

initialization

data items with INSPECT statement 11-54

DEBUG-ITEM special register 6-5

LINAGE-COUNTER 10-16

of index 13-27

of table 13-28

input 2-1

input-output section

description 9-17

FILE-CONTROL paragraph 9-23

format 9-17

I-O-CONTROL paragraph 9-35

INPUT phrase 12-17

input statements 2-3

input/output

EXCEPTION/ERROR Declarative 11-104

INPUT/OUTPUT PROCEDURE control 13-19

input/output statements

ACCEPT statement 12-3

CLOSE statement 12-8

DELETE statement 12-10

DISPLAY statement 12-13

OPEN statement 12-16

READ statement 12-21

REWRITE statement 12-30

START statement 12-34

WRITE statement 12-37

insertion editing

fixed 10-56, 10-58

floating 10-56, 10-59

simple 10-56, 10-57

special 10-56, 10-57

INSPECT statement A-7

BEFORE/AFTER phrase 11-56

. comparisons 11-57

description 11-54

examples 11-58, 11-61

format 11-54

REPLACING phrase 11-55

TALLYING phrase 11-55, 11-59

uses 11-62

Inter-Program communication 13-49

Interactive Communications Feature

attaching session to program 7-3

attribute record 7-20

Interactive Data Definition Utility 7-1

intermediate result fields 11-14

internal data 10-2

internal data concepts

numeric items 10-40

operational signs 10-23

internal decimal items 10-39

internal representation

interpreting output 5-3

INTO identifier phrase 12-24

INVALID KEY condition

in DELETE statement 12-10

in READ statement 12-26

in REWRITE statement 12-31

inventory management sample TRANSACTION

program 7-59

X-12

item size A-6
items

alphabetic 10-54

alphanumeric 10-55

alphanumeric edited 10-55

numeric 10-22, 10-54

numeric edited 10-22

optional 1-5

required 1-5

zoned decimal 10-37

joining items together (concatenation) 11-87

JUST

See JUSTIFIED clause

JUSTIFIED clause

rules 10-43

Kanji 14-1

KEY clause A-5

KEY phrase

OF OCCURS clause 13-16

of START statement 12-34

key words 1-5

LABEL RECORDS clause

description 10-11

format 10-11

use with TRANSACTION file 7-27

language

assumptions for C-l

components 1-11

considerations for subprogram linkage 13-50

description 1-1

extensions 7-2

level of support 1-2

special features

merging 13-7

segmentation 13-2

sorting 13-7

structure of 1-3

summary of C-3

language name

as system name 1-16

in ENTER statement 11-17

layouts

for files 2-9

for input displays 2-9

for output displays 2-9

report 2-9

LEADING phrase 10-41

left parenthesis

punctuation character 1-12

separator 1-21

length of figurative constant 1-19

less than (<)

relation character 1-12

level

concepts 10-19

number

defining data relationships 10-2

description 10-31

formation rules 1-16

in Data Division 10-19

rules for use 10-31

specialleve1s 10-20

01 & 77 in Area A 3-3

02-49 in Area B 3-3

66 in Area B 3-3

88 in Area B 3-3

of language support 1-2

level indicator

begins in Area A 3-3

defining data relationships 10-2

level-Ol records 10-19

level 02-49 item 10-19

level-66 entry

description 10-20

format 1-16

level-77 entry

description 10-21

format 1-16

level-88 entry

description 10-21

format 1-16

library

copy facility 4-22

Library module 1-3

name 1-15

user library 4-22

LINAGE clause A-6

considerations 10-15

format 10-13

LINAGE-COUNTER Special Register 10-16

LINES AT BOTTOM phrase 10-15

LINES AT TOP phrase 10-15

rules for use 10-13

WITH FOOTING phrase 10-15

LINAGE-COUNTER 1-18

LINAGE-COUNTER special register 10-16

LINES AT BOTTOM phrase 10-15

LINES AT TOP phrase 10-15

link -edi ting

of Calling and Called programs 4-42

Link editing with overlay A-7

linkage

between modules 13-46

Index X-13

inter-program communication 13-49

standard 13-48

subprogram concepts 13-49

linkage editor output 5-10

linkage editor statistics 5-10

Linkage Section 13-52

description 10-5

VALUE clause 10-46

list of F-1-F-4

literal phrase

description 9-13

example 9-14

literals

alphabet name I-IS

as character string 1-12

Boolean 1-13

description of 1-13

ideographic 14-1

index and SUbscript A-6

Nonnumeric 1-13

Numeric 1-13

of alphabet-name clause 9-13

load module

OCL LOAD statements 5-1

requesting a run 5-1

running of 5-1

load module run

OCL statements 5-1

output

compiler 5-3

compiler example 5-7

linkage editor 5-10

run job step example 5-12

requesting a run 5-1

LOCAL-DATA 7-16,9-10

LOCK phrase 12-17

logic

segmentation 13-3

logical connectives

AND 1-18

AND NOT 1-18

OR 1-18

OR NOT 1-18

logical operators 1-5

logical record 10-1

long-running program 7-40

loops 6-20

description 6-20

errors causing loops 6-21

tracing a loop 6-20

LOW VALUE(S) 1-19

J

Magnetic Character Reader B-1

main storage dumps 6-24

example 6-33

interpreting a dump 6-24

maximum length

nonnumeric literal 1-13

numeric literal 1-14

of COBOL word 1-13

of data description entry 10-24

of operand 11-12

MCR B-1

memory resident overlays

controlling compilation 4-21

description 4-49

performance considerations 4-49

with second COBOLC screen 4-15

with second COBOLONL screen 4-8

MEMORY SIZE clause 9-8

MERGE

concepts 13-8

description 13-15

disk storage requirements 13-9

file 13-7

format 13-15

in Environment Division 13-10

FILE-CONTROL paragraph 13-10

I-O-CONTROL paragraph 13-10

in Procedure Division 13-13

INPUT/OUTPUT PROCEDURE control 13-19

performance considerations 13-9

programming considerations 13-9

RETURN statement 13-21

statement 13-5

messages
severity levels

C-conditional 5-6

E-error 5-6

W -warning 5-6

minus sign (-)

arithmetic operator 1-12

editing character 1-12

in numeric literal 1-14

sign 1-12

use 1-12

mnemonic name 1-15

modules

load 1-7

object 1-7

program structure

general description 1-9

MOVE statement

CORRESPONDING phrase 11-64

description 11-63

elementary moves 11-65

group moves 11-67

MRO

X-14

L
controlling compilation 4-21 items 10-22
description 4-49 literal 1-14
performance considerations 4-49 operands
with second COBOLC screen 4-15 comparisons 11-23
with second COBOLONL screen 4-8

MRT 7-2
coding considerations 7-4
end-of-file condition 7-40
initiation 7-3
sample of MRT logic 7-4
TRANSACTION file processing 9-20
used with Read Under format 7-15

OBJECT-COMPUTER paragraph 9-8
object-time switch 6-3 '

MULTIPLE FILE clause 9-37 OCCURS clause A-6

multiple resquester terminal 7-2
coding considerations 7-4
end-of-file condition 7-40

description 10-42
fixed-length tables 13-31
table handling 13-30

initiation 7-3 use with TRANSACTION file 7-29

sample of MRT logic 7-4
TRANSACTION file processing 9-20
used with Read Under format 7-15

variable-length tables 13-31
OCL statements

jjDATE 5-2

multiple results 11-13
MULTIPLY statement

jjFILE 5-2
jjLOAD 5-2

description 11-68
GIVING phrase 11-69
ROUNDED phrase 11-68
SIZE ERROR phrase 11-69

jjLOCAL 5-2
jjRUN 5-2
jjSWITCH 5-2

OF qualifier connective 1-18
OLE

See overlay linkage editor
OLINK procedure 4-48
omission of optional words 1-18
OMITTED phrase 10-12
ON OVERFLOW 11-88

NATIVE phrase 9-13 OPEN Statement
negated simple condition 11-25 current record pointer 12-18
NEP in Procedure Division

See never-ending program indexed and relative file format 12-16, 12-19
nested IF statements 11-51-11-53 initializes LINAGE-COUNTER 10-16
never-ending program 7-40 rules 12-17
next executable statement 3-17 sequential file format 12-16, 12-18
NEXT RECORD phrase 12-25 transaction file format 12-16, 12-20
NEXT SENTENCE 11-49 use with TRANSACTION File 7-37
NO DATA Phrase operand

in Procedure Division 12-29 arithmetic statement 11-12
use with TRANSACTION file 7-39 nonnumeric 11-23

NO REWIND phrase 12-18 numeric 11-23
noncontiguous key considerations 9-33 of equal size 11-23
nonnumeric of unequal size 11-23

literal 1-13 overlapping 11-13
operands size 11-12

comparisons 11-23 operation control language
notations See OCL statements

C-COPY 5-4 operational signs 10-23
O-error occurred in PROCESS statement 5-4 operators
S-line out of sequence 5-4 arithmetic 1-5

Nucleus module 1-3 binary 11-9
numerals, Arabic logical 1-5

in COBOL character sets 1-11 unary 11-9
numeric optional paragraphs 9-3

alphanumeric 10-22 optional words 1-5
alphanumeric edited 10-22 OR logical connective 1-18
edited items 10-22

Index X-I5

__ 1.

OR NOT logical connective 1-18

order of symbols in PICTURE clause 10-53

ORGANIZATION clause

indexed file considerations 9-30

relative file considerations 9-30

sequential file considerations 9-30

use with TRANSACTION file 7-24

output 2-1

compiler 5-3

considerations in program design 2"2

data files directed to

display stations 5-3

printers 5-3

storage devices 5-3­

display screen layout· sheet 2-2

displayed 2-2

messages

diagnostic 5-3

informative 5-3

object/load output

printed 2-2, 5-3

printer layout sheet 2-2

screen design aid utility 2-2

stored 2-2

OUTPUT phrase 11-104

output statements 2-3

overlapping operands 11-13

overlay linkage editor

communicating with 4-46

cross reference 5-10

functions 4-42

map 5-10

OFFSET option 5-10

output 5-10

PROCESS statement 5-10

with overlay 4-46

without overlay 4-43

overlays

controlling compilation 4-21

description 4-49

performance considerations 4-49

with second COBOLC screen 4-15

with second COBOLONL screen 4-8

overriding fields 7-14

packed decimal items 10-39

page body 10-13

paragraph

DATE-COMPILED 9-3

definition 11-2

description 1-10

FILE-CONTROL 9-23, 13-10

header 3-3, 3-5

I-O-CONTROL 9-35, 13-10

name 11-2

OBJECT-COMPUTER 9-8

optional 9-3

PROGRAM-ID 9-2

SOURCE-COMPUTER 9-8

SPECIAL-NAMES 7-16,9-9

paragraph names

formation rules 1-16

parentheses

left 1-12

right 1-12

separators 1-21

use in arithmetic expressions 11-10

PERFORM statement 13-5

description 11-70

rules for use 11-73

segmentation information 11-85

valid sequences 11-73

varying one identifier 11-75

varying three identifiers 11-82

varying two identifiers 11-78

period (.)

editing character 1-12

period 1-12

punctuation character 1-12

separator 1-22

special insertion symbol 10-57

permanent segments 13-2

phrases 1-10

ADVANCING 12-40

AFTER 11-60

ASCENDING/DESCENDING KEY 13-16,13-32

AT END 7-39, 12-26

BEFORE 11-60

CHARACTERS 10-10

clause 1-10

COLLATING SEQUENCE 13-17

COMP 10-37, 10-41

COMPUTATIONAL 10-37, 10-41

CORRESPONDING 11-37, 11-64, 11-95

COUNT IN 11-97

definition 1-10

DELIMITED BY 11-96

DELIMITER IN 11-97

DISPLAY 10-36

EXTEND 11-104

File-Name 11-104

FOR 7-32

FORMAT 7-42

FROM identifier 12-31

GIVING 11-36, 11-44, 11-69, 11-94, 13-17

1-0 phrase 11-104

INDEX 10-36

INDEXED BY 13-33

INDICATOR 7-45

INPUT 11-104, 12-17

INTO 12-24

KEY 12-34

LEADING 10-41

LINES AT BOTTOM 10-15

LINES AT TOP 10-15

X-16

LOCK 12-17

NEXT RECORD 12-25

NO DATA 7-39, 12-29

NO REWIND 12-18

OMITTED 10-12

OUTPUT 11-104

POINTER 11-97

RECO RDS 10-10

REPLACING 11-59

REVERSED 12-18

ROLLING 7-43

ROUNDED 11-35, 11-40, 11-43, 11-68, 11-93

SEPARATE CHARACTER 10-41

SIZE ERROR 11-36, 11-41, 11-44, 11-69, 11-94

SORT INPUT PROCEDURE 13-18

SORT/MERGE OUTPUT PROCEDURE 13-19

STANDARD 10-12

STARTING 7-43

statements 1-10

TALLYING 11-59

TERMINAL 7-39, 7-43, 12-29

TIMES 11-74

TRAILING 10-41

USING 13-17,13-54

VARYING Identifier-2 13-38

VARYING Index-Name-l 13-37

WITH FOOTING 10-15

physical record 10-1

physical record size 10-10

pictogram 14-1

picture character strings 1-20

PICTURE clause

description 10-49

editing

insertion 10-56

suppression and replacement 10-56

format 10-49

symbols 10-49-10-53

use with TRANSACTION file 7-29

plus sign (+)

arithmetic operator 1-12

editing character 1-12

in numeric literal 1-14

sign 1-12

printer layout sheet 2-2

problem determination 15-1-15-7

procedure

name 11-2

rules 11-2

procedure branching statements 2-3

ALTER statement 11-38

GO TO statement 11-47

IF statement 11-49

PERFORM statement 11-70

STOP statement 11-86

Procedure Division

arithmetic expression 11-9

arithmetic operators 11-9

arithmetic statement operands 11-12

ari thmetic statements 11-12

compiler-directing statements 11-17

complex conditions 11-24

combined 11-26

definition 11-24

evaluation of expressions 11-27

negated combined 11-26

negated simple 11-25

concepts 11-1

conditional expression 11-18

data manipulation statements 11-17

data references 3-16

Declaratives 11-31

description 1-9

flagging 4-32

indentifier 11-2

nested IF statement II-51

organization 11-3

paragraph 3-5, 11-2

paragraph name 11-2

procedure branching statements 11-17

procedure name 11-2

procedures 11-2

punctuation rules 3-9

section 11-2

section header 11-2

section name 11-2

segmentation 13-5

sentence 3-5, 11-2

sentence categories

compiler-directing 11-5

conditional 11-5

imperative 11-5

simple conditions 11-18

class 11-18

condition-name 11-18

relation 11-18

sign 11-18

switch-status 11-18

statement 11-2

subprogram linkage 13-53

table handling 13-34

PROCESS statement

format 4-16

options 4-16

use 4-16

using COPY 4-29

processing, required 2-3

PROGRAM COLLATING SEQUENCE clause 9-9

program design

file considerations 2-4

input 2-1

output 2-1

processing 2-1

steps for design 2-1

top-down 2-5

program execution debugging switch 6-1

PROGRAM-ID paragraph 9-2

program linkage

called and calling programs 4-37

description 4-37

Index X-I7

program loops 6-20

description 6-20

errors causing loops 6-21

tracing a loop 6-20

program name 1-15,9-2
program processing 1-7

COBOL compiler 1-7

compilation 1-7

link -edi ting 1-7

object module 1-7

running the load module 1-7

source program 1-7

source statements 1-7

SSP 1-7

System Support Licensed Program 1-7

program segments

independent 13-3

permanent 13-2

program spacing

blank lines 3-8

comment lines 3-8

continuation of lines 3-7

debugging lines 3-8

indentation 3-7

program structure 2-5, A-2

pseudo-text

delimiter (= =) 1-22

replacement rules 4-24

rules for use 1-22

separator 1-22

punctuation

character 3-9

rules

in Data Division 3-9

in Environment Division 3-9

in Identification Division 3-9

in Procedure Division 3-9

qualification

description 3-11

restrictions 3-14

rules 3-13

qualifier connectives

IN 1-18

OF 1-18

quotation mark

punctuation character 1-12

separator 1-21

QUOTE(S) 1-19

quotient 11-42

random access

description 9-22

indexed files 9-30

relative files 9-31

relative key required 9-30

WRITE statement 12-43

random access mode 9-18

READ Statement

AT END condition 12-26

current record pointer 12-24

in Procedure Division 12-21

indexed file extensions 12-22

INTO identifier phrase 12-24

INVALID KEY condition 12-26

NEXT RECORD phrase 12-25

NO DATA phrase 12-29

random access

indexed files 12-22

relative files 12-21

rules 12-22

sequential access

relative and indexed files 12-21

sequential files 12-21

TRANSACTION file 12-22

TERMINAL phrase 12-29

use with TRANSACTION File 7-38

Read Under Format 7-15

READY TRACE 6-8

receiving field

alignment rules 10-22

record

logical lO-1

physical 10-1

RECORD CONTAINS clause A-6

description 10-11

format 10-11

rules for use 10-11

use with TRANSACTION file 7-27

RECORD KEY clause 9-32

description 9-32

rules 9-32

record name
formation rules 1-15

RECORDS phrase 10-10

REDEFINES clause

format 10-32

rules 10-32-10-35

references

explicit 3-15

implicit 3-15

relation characters 1-18

relation condition

abbreviated combined 11-29

comparison of nonnumeric operands 11-23

comparison of numeric and nonnumeric

operands 11-23

X-I8

L
comparison of numeric operands 11-23 INVALID KEY condition 12-31
description 11-21 right parenthesis
format 11-21 punctuation character 1-12
operands of equal size 11-23 separator 1-21
operands of unequal size 11-23

relational operator 11-21
relationships of data

level indicator 10-2
level numbers 10-2

relative address 5-5
relative files

file-control entry description 9-31
format 9-25

Relative 1-0 module 1-3
relative indexing 13-27
relative key

ACCESS MODE clause 9-31

SELECT statement 9-25

relative organization
access modes allowed 9-21
for disk files 9-21

RELEASE statement 13-20
remote data files 9-19
RENAMES clause 10-26
replacement and suppression

examples 10-61
rules 10-60
symbols 10-60
use with numeric edited items 10-60
zero suppression and replacement with

asterisks 10-57
zero suppression and replacement with

spaces 10-57
REPLACING phrase

use with INSPECT statement 11-59
representation of hexadecimal values A-8
requester 7-2
required processing 2-3
RERUN clause 9-36
RESERVE clause 9-29, A-4
reserved words

printed in capital letters 1-5
types 1-17

connectives 1-17

figurative constants 1-17

key 1-17

optional 1-17

special-character 1-17

special registers 1-17

RESET TRACE 6-8
RETURN statement 13-21
REVERSED phrase 12-18
REWRITE statement

alternative index considerations 12-30
for indexed files 12-32
for relative files 12-33
for sequential files 12-31
format 12-30
FROM identifier phrase 12-31
in Procedure Division 12-30

ROLLING Phrase
use with TRANSACTION file 7-43

ROUNDED phrase
use with ADD statement 11-35
use with COMPUTE statement 11-40
use with DIVIDE statement 11-43
use with MULTIPLY statement 11-68
use with SUBTRACT statement 11-93

routine name 1-15
rules

coding 3-1
division header 3-5
formation 1-15, 10-9
punctuation 3-9
qualification 3-13
section header 3-5
standard alignment 10-22

run-time errors 3-19
running a load module

OCL statements 5-1
output

compiler 5-3
compiler example 5-7
linkage editor 5-10
run job step example 5-12

requesting a run 5-1

SAME AREA clause A-5
SAME clause 9-36
SAME SORT-MERGE clause A-5
sample skeleton program 3-4
screen design aid utility 2-2

use with TRANSACTION file 7-1
SD entry

concepts 13-12
format 13-12
sort/merge considerations 13-12

SDA
See screen design aid utility

SEARCH statement
beginning at current index pointer 13-37
beginning at first table entry 13-40
example 13-42
rules 13-36
use 13-36

section
definition 11-2
description 1-10
file 10-4
header 11-2
linkage 10-5, 13-52

Index X-19

name 11-2

working-storage 10-4

SEGMENT-LIMIT clause 9-9

segment numbers

formation rules 1-16

independent 13-3

permanent 13-2

segmentation

concepts 13-2

considerations in subprogram linkage l3-55

control 13-3

feature use 13-2

format 13-5

in Procedure Division l3-5

logic 13-3

MERGE statement 13-5

module 1-3

program segments 13-2

special considerations

ALTER statement 13-5

calling and called programs l3-6

PERFORM statement 13-5

SORT statement 13-5

transfer of control 13-6

Segmentation module 1-3

segments

independent 13-3

permanent 13-2

SELECT clause 9-27

rules 9-27

selecting the correct FIPS level 4-30

sending field

definition 11-66

in MOVE STATEMENT 11-63

in STRING statement 11-88

in UNSTRING statement 11-96

sentence

compiler-directing 11-5

conditional 11-5

definition 1-10

description 11-2

imperative 11-5

SEPARATE CHARACTER phrase 10-41

separators 1-21

sequence numbers 3-2

sequential access mode 9-18

ACCESS MODE clause 9-30

DELETE statement 12-11

description 9-21

READ statement 12-25

sequential files 9-22

WRITE statement 12-40

sequential files

description 9-22

FILE-CONTROL paragraph 9-27

format 9-23

organization 9-22

Sequential I/O module 1-3

sequential organization

access modes allowed 9-21

X-20

for disk files 9-20

series connectives 1-18

SET statement 13-44-13-45

sharing storage 9-35

shutdown status test subroutine B-5

sign

algebraic 10-23

editing 10-23

minus (-) 1-12

operational 10-23

plus(+) 1-12

SIGN clause 10-41

sign condition

description 11-24

format 11-24

sign control symbols 10-51

signed data 10-23

simple conditions

class 11-18

condition-name 11-18

relation 11-18

sign 11-18

switch-status 11-18

simple insertion editing 10-56

example 10-57

use 10-57

single requester terminal 7-2

coding considerations 7-3

end-of-file condition 7-40

initiation 7-3

TRANSACTION file processing 9-20

used with Read Under format 7-15

SIZE ERROR phrase

use with ADD statement 11-36

use with COMPUTE statement 11-41

use with DIVIDE statement 11-44

use with MULTIPLY statement 11-69

use with SUBTRACT statement 11-94

size of operands 11-12

skeleton program example 3-4

small letters, user-defined words 1-5

SORT

concepts 13-8

description 13-14

disk storage requirements 13-9

file 13-7

format 13-14

in Data Division 13-12

in Environment Division 13-10

FILE-CONTROL paragraph l3-10
I-O-CONTROL paragraph 13-10

in Procedure Division 13-13

INPUT/OUTPUT PROCEDURE control 13-19

performance considerations 13-9

programming considerations 13-9

RELEASE statement 13-20

RETURN statement 13-21

statement 13-5

statement phrases

ASCENDING/DESCENDING KEY 13-16

L
COLLATING SEQUENCE 13-17 blank lines 3-8

GIVING 13-17

SORT INPUT PROCEDURE 13-18

SORT/MERGE OUTPUT

PROCEDURE 13-19

USING 13-17

SORT INPUT PROCEDURE phrase 13-18

Sort-Merge module 1-3

SORT/MERGE

concepts 13-7, 13-8

description 13-14, 13-15

disk storage requirements 13-9

file 13-7

format 13-14, 13-15

in Data Division 13-12

in Environment Division 13-10

FILE-CONTROL paragraph 13-10

I-O-CONTROL paragraph 13-10

in Procedure Division 13-13

INPUT/OUTPUT PROCEDURE control 13-19

MERGE statement 13-15

performance considerations 13-9

Procedure Division

programming considerations 13-9

RELEASE statement 13-20

RETURN statement 13-21

SORT statement 13-14

SORT/MERGE statement phrases 13-15

statement 13-5

statement phrases

ASCENDING/DESCENDING KEY 13-16

COLLATING SEQUENCE 13-17

GIVING 13-17

SORT INPUT PROCEDURE 13-18

SORT/MERGE OUTPUT

PROCEDURE 13-19

USING 13-17

use of facilities 13-7

SORT/MERGE OUTPUT PROCEDURE

phrase 13-19

SORT/MERGE statement A-7

SOURCE-COMPUTER paragraph 9-8

source language debugging

compile-time switch 6-2

DEBUG-ITEM special register 6-5

debugging lines 6-7

object-time switch 6-3

USE FOR DEBUGGING procedures 6-3

source program

definition 1-7

source statements A-I

maximum number A-I

source statements, storing and retrieving 4-22

space

as part of literal 1-22

punctuation character 1-12

rules for use 1-22

separator 1-22

SPACE(S) 1-19

spacing

comment lines 3-8

continuation of lines 3-7

debugging lines 3-8

indentation 3-7

special character words 1-18

arithmetic operators 1-18

relation characters 1-18

special considerations 3-5

division header

rules 3-5

paragraph header 3-5

paragraph name 3-5

section header

rules 3-5

special features

debugging 6-2

special insertion editing 10-56

uses 10-57

special level numbers

use 10-20

66 level 10-20

77 level 10-21

88 level 10-21

SPECIAL-NAMES paragraph 9-9

special registers 1-17

DEBUG-ITEM 1-18, 6-5

LINAGE-CLAUSE 1-18

LINAGE-COUNTER 10-16

square brackets 1-5

optional 1-5

SRT 7-2

coding considerations 7-3

end-of-file condition 7-40

initiation 7-3

TRANSACTION file processing 9-20

used with Read Under format 7-15

standard alignment rules

alphabetic 10-22

alphanumeric 10-22

alphanumeric edited 10-22

numeric edited items 10-22

numeric items 10-22

standard COBOL format

COBOL coding form 3-1

description 3-1

standard data format 10-22

standard format notation

braces 1-5

brackets 1-5

square 1-5

description 1-5

ellipsis 1-5

words

key 1-5

optional 1-5

reserved 1-5

user-defined 1-5

STANDARD phrase 10-12

STANDARD-I phrase

Index X-21

---,.

of alphabet-name clause 9-13

START statement

format 12-34

in Procedure Division 12-34

KEY phrase 12-34

STARTING Phrase

use with TRANSACTION file 7-43

statements 1-10

ACCEPT 7-32, 12-2

ACQUIRE 7-33, 12-7

ADD 11-34

ALTER 11-38, 13-5

arithmetic 11-12

CALL 13-53, A-7

CLOSE 7-34, 12-8

compiler-directing 11-5, 11-17

COMPUTE 11-40, A-7

conditional 11-5

data manipulation 11-17

definition 11-2

DELETE 12-10

description 1-10

DISPLAY 7-35, 12-13

DIVIDE 11-42

DROP 7-36, 12-15

ENTER 11-45

EXIT 11-46

EXIT PROGRAM 13-55

GO TO 11-47

IF 11-49

imperative 11-5

INSPECT 11-54, A-7

MERGE 13-5, 13-15

MOVE 1I-63

MULTIPLY 11-68

nested IF 11-51

OPEN 7-37, 12-16

PERFORM 11-70, 13-5

phrase 1-10

procedure branching 11-17

Procedure Division 1-10

READ 7-38, 12-21

RELEASE 13-20

RETURN 13-21

REWRITE 12-30

rules for use 1-10

SEARCH 13-36

sentence 1-10

SET 13-44

SORT 13-5, 13-14

SORT/MERGE A-7

START 12-34

STOP 11-86, A-7

STOP RUN 13-55

STRING 11-87

SUBTRACT 1I-92

types

arithmetic 2-3

conditional 2-3

data manipulation 2-3

input 2-3

output 2-3

procedure branching 2-3

UNSTRING 11-96, A-7

USE AFTER EXCEPTION/ERROR 11-104

WORKSTN OCL 7-6

WRITE 7-41

status key 12-8

status key values D-5

status-switch condition

description 11-24

format 11-24

STOP RUN statement 13-55

STOP statement 11-86, A-7

STRING statement

description 11-87

example 11-90

format 11-87

rules 11-88

running 11-88

string, character

description 1-10, 10-23

literals 1-13

nonnumeric literals 1-13

representation 10-54

structured programming 2-5

subfield contents of DEBUG-ITEM special

register 6-5

subprogram linkage concepts

CALL statement 13-53

common data 13-50

EXIT PROGRAM linkage 13-55

in Data Division 13-52

in Procedure Division 13-53

language considerations 13-50

Linkage section 13-52

segmentation considerations 13-55

STOP RUN statement 13-55

system considerations 13-51

transfers of control 13-50

USING phrase 13-54

subroutines

enhanced timer B-4

shutdown status test B-5

1255 Magnetic Character Reader Interface B-1

subscripting

restrictions 13-28

use 3-14

use in tables 13-25

SUBTRACT statement

CORRESPONDING phrase 11-95

description 11-92

GIVING phrase 11-94

ROUNDED phrase 11-93

SIZE ERROR phrase 11-94

summary of COBOL language C-3

summary of elements

in Debug Module C-36

in Indexed 1-0 module C-28

in Inter-Program Communication module C-38

X-22

L
in Library module C-40

in Nucleus C-4

in Relative 1-0 module C-24

in Segmentation module C-39

in Sequential 1-0 module C-19

in Sort-Merge module C-33

in Table Handling module C-17

suppression and replacement editing

examples lO-61

rules lO-60

symbols 10-60

use with numeric edited items 10-60

zero suppression and replacement with

asterisks 10-57

zero suppression and replacement with

spaces lO-57

suppression of sequence numbers 3-2

switches

compile-time 6-2

object-time 6-3

SYSTEM-SHUTDOWN 7-22

UPSI 7-22

symbols

character string representation 10-54

order of use lO-52

used in PICTURE clause 10-49-10-52

SYNCHRONIZED clause lO-43

syntax of program

system-dependent A-I

system names 1-16

computer names 1-16

definition 1-16

function names 1-16

implementor names 1-16

language names 1-16

SYSTEM-SHUTDOWN internal switch 7-22

table

definition 13-22

fixed-length tables 13-31

initialization 13-28

references 13-24

indexing 13-27

restrictions 13-28

subscripting 13-25

Table Handling
ASCENDING/DESCENDING KEY

phrase 13-32

concepts 13-22

in Data Division 13-30

in Procedure Division 13-34

INDEXED BY phrase 13-33

OCCURS clause 13-30

relation conditions 13-34

SET statement 13-44

USAGE IS INDEX clause 13-33

VARYING Identifier-2 phrase 13-38

VARYING Index-Name-l phrase 13-37

using Table Handling Facilities 13-22

variable-length tables 13-31

Table Handling module 1-3, C-17

T ALLYING Phrase

use with INSPECT statement 11-59

TERMINAL Phrase

in Procedure Division 12-29

use with TRANSACTION file 7-39, 7-43

testing a program selectively 6-19

text name

COpy statement operand 4-24

formation rules 1-16

qualification format 3-13

THROUGH lO-46

THRU lO-46

TIME, ACCEPT statement 12-5

TIMES phrase 11-74

top-down design 2-5

TRACE Statement

READY TRACE 6-8

RESET TRACE 6-8

TRAILING phrase 10-41

TRANSACTION file

Data Division considerations

Boolean Data Facilities 7-28

DATA RECORDS clause 7-27

file description entry 7-27

INDICATOR CLAUSE 7-29

LABEL RECORDS clause 7-27

OCCURS CLAUSE 7-29

PICTURE CLAUSE 7-29

RECORD CONTAINS clause 7-27

USAGE CLAUSE 7-29

VALUE CLAUSE 7-29

description 7-1

Environment Division considerations

ACCESS MODE clause 7-25

ASSIGN clause 7-24

ATTRIBUTE-DATA 7-17

CONTROL-AREA clause 7-26

file control entry 7-23

FILE STATUS clause 7-24

Function-Name-2 Clause 7-22

LOCAL-DATA 7-16

ORGANIZATION clause 7-24

SPECIAL-NAMES paragraph 7-16

Procedure Division considerations

ACCEPT Statement 7-32

ACQUIRE Statement 7-33

AT END Phrase 7-39

CLOSE Statement 7-34

DISPLAY Statement 7-35

DROP Statement 7-36

End-of-file considerations 7-40

EXCEPTION/ERROR Declaratives 7-31

FOR Phrase 7-32

FORMAT Phrase 7-42

INDICATOR Phrase 7-45

Index X-23

NO DATA Phrase 7-39

OPEN Statement 7-37

READ Statement 7-38

ROLLING Phrase 7-43

STARTING Phrase 7-43

TERMINAL Phrase 7-39, 7-43

WRITE Statement 7-41

processing 9-19

requester 7-2

use in writing a program 7-8

use with WORKSTN OCL statement 7-6

transfer of data

into DEBUG-ITEM special register 6-4

transfers of control

explicit 3-17

implicit 3-17

segmentation considerations 13-6

subprogram linkage concepts 13-50

truncation

ACCEPT statement 12-2

literal restrictions 10-46

rules 10-59

unary operators 11-9

unblocked file, BLOCK CONTAINS clause 10-10

unconditional GO TO statement 11-47

underlined capital letters, key words 1-5

unsigned field considered positive or zero 10-23

unsigned numeric literal considered positive 1-14

UNSTRING statement A-7

COUNT IN phrase 11-97

data receiving fields 11-97

DELIMITED BY phrase 11-96

DELIMITER IN phrase 11-97

description 11-96

example 11-10 1

POINTER phrase 11-97

rules 11-100

running the statement 11-98

sending field 11-96

UNTIL phrase of PERFORM statement 11-74

UP/DOWN phrase of SET statement 13-44

UPON phrase of DISPLAY statement 12-14

UPSI switches 7-22,9-11

UPSIO through UPSI-7 as function-names 9-11

USAGE clause

description 10-36

COMP phrase 10-37-10-41

COMPUTATIONAL phrase 10-37-10-41

format 10-36

use with TRANSACTION file 7-29

USAGE IS INDEX clause 13-33

USE AFTER EXCEPTION/ERROR statement

EXTEND phrase 11-104

File-Name phrase 11-104

X-24

format 11-104

general considerations 11-105

1-0 phrase 11-104

INPUT phrase 11-104

OUTPUT phrase 11-104

USE FOR DEBUGGING DECLARATIVE 6-3

user-defined words 1-5, A-2

user program status indicator

See UPS I switches
USING phrase

SORT/MERGE statement phrase 13-17

use in subprogram linkage 13-54

valid and invalid elementary move table 11-67

valid characters in CURRENCY SIGN clause 9-15

VALUE clause

description 10-45

format 1 10-45

format 2 10-45

general considerations 10-46-10-48

rules for use 10-5

use in File section 10-46

use in Linkage section 10-46

use in Working-Storage section 10-46

use with TRANSACTION file 7-29

VALUE OF clause 10-12

variable

conditional 10-30

variable-length tables 13-31

VARYING Identifier-2 13-38

VARYING Index-Name-I 13-37

verbs

as key word 1-17

lists of 11-6

WITH DEBUGGING MODE clause 6-2, 9-8

WITH DUPLICATES phrase 12-18

WITH FOOTING phrase 10-15

WITH NO REWIND phrase of CLOSE

statement 12-8

words

key

functional 1-17

required words 1-17

verbs 1-17

reserved

connectives 1-17

figurative constants 1-17

key 1-17

optional 1-17

library name 1-15

mnemonic name 1-15

program name 1-15

record name 1-15

routine name 1-15

text name 1-15

Working-Storage Section

description 10-4

VALUE clause 10-47

WORKSTN OCL statement 7-6

use in writing a program

SDA 7-8

WRITE Statement

ADVANCING phrase 12-40

description 12-37

END-OF-PAGE phrase 12-41

indexed files 12-42

INVALID KEY condition 12-42

relative files 12-42

sequential files 12-40

TRANSACTION file 12-44

use with TRANSACTION File 7-41

zero suppression

editing 10-61

examples 10-62

replacement with asterisks 10-58

replacement with spaces 10-58

ZERO(S)(ES) 1-19

zoned decimal items 10-38

INumerics I

00-99 segment numbers, formation rules 1-16

01 level-number description 10-19

01-49 level numbers, formation rules 1-16

02-49 level-number description 10-19

1255 Magnetic Character Reader B-1

1974 Standard COBOL 4-30

1975 PIPS COBOL flagging

high 4-32

high-intermediate 4-33

low 4-36

low-intermediate 4-34

66 level number

description 10-21

format 1-16

77 level number

description 10-21

format 1-16

88 level number

description 10-21

format 1-16

Index X-25

L

)(-26

L

IBM System/36:

Programming with COSOL SC21-9007-3

What Is Your Opinion of This Manual?

Your comments can help us produce better manuals. Please take a few minutes to evaluate this manual as soon as you become
familiar with it. Circle Y (Ves) or N (No) for each question that applies. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

FINDING INFORMATION USING INFORMATION
Y N Is the table of contents helpful? V N Does the information apply to your situation?

What would make it more helpful? Which topics do not apply?

V N Is the index complete? V N Is the information accurate?
List specific terms that are missing. What information is inaccurate?

Y N Are the chapter titles and other headings meaningful? V N Is the information complete?
What would make them more meaningful? What information is missing?

V N Is information organized appropriately? V N Is only necessary information included?
What would improve the organization? What information is unnecessary?

V N 	 Does the manual refer you to the appropriate places V N Are the examples useful models?

for more information?
 What would make them more useful?

List specific references that are wrong or
missing.

Y N Is the format of the manual (shape, size, color)
effective?

What would make the format more effective?
UNDERSTANDING INFORMATION

V N Is the purpose of this manual clear?
What would make it clearer?

OTHER COMMENTS

V N Is the information explained clearly? Use the space below for any other opinions about this manual
Which topics are unclear? or about the entire set of manuals for this system.

V N Are the examples clear?

Which examples are unclear?

YOUR BACKGROUND

V N 	 Are examples provided where they are needed? What is your job title?
Where should examples be added or deleted?

What is your primary job responsibility?

V N 	 Are terms defined clearly? How many years have you used computers?
Which terms are unclear?

Which programming languages do you use?

V N 	 Are terms used consistently? How many times per month do you use this manual?
Which terms are inconsistent?

Your name

V N Are too many abbreviations and acronyms used?
 Company name

Which ones are not understandable? Street address
City, State, ZIP

L· V N Are the illustrations clear?
No postage necessary if mailed in the U.S.A.

Which ones are unclear?

--- ---------- ---- - ---- - - ---

SC21-9007-3

Fold and tape Please do not staple

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Development Laboratory
I nformation Development, Department 532
Rochester, Minnesota 55901

Fold and tape

-
==-=':'=

International Business Machines Corporation

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

.g ""Cl

OJ
3

<0," '~'...J'
:E
;:;'
:T

(")

o
tIl
o
r

Fold and tape
c
en
l>

L

Programming with COBOL SC21-9007-3

READER'S COMMENT FORM

Please use this fonn only to identify publication errors or to request changes in publications. Direct any
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision
of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s) :

Please contact your nearest IBM branch office to request
additional publications.

Name

Company or
Organization

Address

No postage necessary if mailed in the U.S.A. City State Zip Code

L

SC21-9007-3 I
I

..Jo c..

Fold and tape Please do not staple Fold and tape

NO POSTAGE
NECESSARY IF III II I
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Development Laboratory
Information Development, Department 532
Rochester, Minnesota 55901

Fold and tape Please do not staple Fold and tape

Cf)
()
N

to
oInternational Business Machines Corporation o
-.J
W

