0060

IBM System/3

Communications Control Program

System Design Guide

JIIIITL]

L

(1]

GC21-5165-1

1
M~
o
o
= S
o N
% o
- ({e)
= &
s—bb~ 9
oW o
my TS o
LODODOOO
P TTTTT
08900 O
SESsSe, ©
m11121| -—”
S0O0000 o
PDRLYLY ©
Eanmggy o
=R =E=X=X= =
SNNNNN 2
AL ©
= Q
a T
220888 286028 XXX o @ (11}
0000060 000002000 (11117 L] o 288
0000000 85960820868 00C8GE 200000 [I XXT) ee
ee®0€888s 000000000000 000000 ® ([1]
1 d.d o000 o000 206060¢
1 d (11 1) XX XY
® 20000
*333333sss . : :
: sasesess : 2. 3 :
s s i — - :
ssess s e : - -
sesss *3ssseess e’ : . eess

File No. $3-36

IBM System/3
Communications Control Program
System Design Guide

Program Numbers:
5702-SC1 (Models 8 and 10)
5703-SC1 (Model 4)
5704-SC1 (Model 15)
5704-SC2 (Model 15)
5705-SC1 (Model 12)

Feature 6011/6012/6033/6070/6071

Second Edition (September 1980}

This is a major revision of, and obsoletes, GC21-5165-0 and Technical
Newsletters GN21-5596, GN21-7969, GN21-5656, and GN21-5288. Changes or
additions to the text and illustrations are indicated by a vertical line to the left of
the change or addition.

This edition applies to the System/3 system control program versions listed below
and to all subsequent versions and modifications until otherwise indicated in new
editions or technical newsletters:

Program
Version Modification Number Feature Numbers Model
16 00 5703-SC1 6033 Model 4
16 00 5702-SC1 6033 Models 8 and 10
06 00 5705-SC1 6070, 6071 Model 12
08 00 5704-SC1 6033, 6070, 6071 Model 15A, B, C
05 00 5704-SC2 6011, 6012 Model 15D

Changes are periodically made to the information herein; these changes will be
reported in technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

| © Copyright International Business Machines Corporation 1977, 1980

This publication is a guide to designing an IBM
System/3 system that uses the Communications Control
Program (CCP). The manual is primarily intended for
customer system analysts/programmers and IBM
system engineers. This publication is applicable to
System/3 Models 4, 8, 10, 12, and 15. The following
subjects are included:

Application Design Concepts: Describes the
considerations for using various CCP program types,
programming facilities, and programming concepts in
designing applications to be run under CCP.

Direct Files: Describes the use of direct files in a CCP
environment and describes techniques for designing
direct files.

File Sharing: Describes the necessity for file sharing in a
CCP environment, and describes file sharing capabilities
and restrictions on the various System/3 models.

3270 Screen Design: Describes the human factors and
CCP performance aspects of designing screen formats
for the IBM 3270 Information Display System.

Use of Printers Under CCP: Describes the system
design and performance considerations for using the
system printer and terminal (remote) printers with CCP.

Task Chaining: Describes how the System/3 Model 15D
CCP task chaining facility can be used in CCP system
design.

Sort Under CCP: Describes system design aspects of
using CCP/Disk Sort to sort files under CCP.

System Security/Integrity: Describes the special
considerations involved in maintaining system security in
a CCP environment. Describes procedures for ensuring
the accuracy of information processed by the system
and stored in the system files.

Queuing Theory: Describes the application of simplified
queuing theory to CCP system design.

Performance Tips: Provides miscellaneous tips and
techniques for improving CCP performance.

Preface

This publication references several specific terminals in
the 3270 Information Display System. These references
are for illustration only and not necessarily
representative of all 3270 devices supported. For a list
of 3270 devices supported by System/3 CCP, refer to
the IBM System/3 Communications Control Program
System Reference Manual, GC21-7620.

This publication is oriented to the typical CCP user: one
who wants to use RPG Il and 3270 terminals with the
CCP Display Format Facility (DFF). The reader who
plans to use 3270 terminals is assumed to have
knowledge of 3270 operation and design, either from
IBM education, previous reading, or experience.
However, usefulness of the manual is not limited to RPG
11/3270 users. Most of the design concepts are
applicable regardless of the programming language and
terminal type used.

This guide is intended for readers who have had CCP
programming instruction and who have attended, or are
attending, the CCP system design class. The reader is
expected to use this manual to refresh his or her
knowledge, as supplementary reading, and for
subsequent reference. The reader is assumed to have
previous experience and/or training in:

« Programming and operating System/3 with CCP

« System/3 disk file organizations and processing
methods

« The particular terminal devices to be used

Related Publications

The publications related to CCP and System/3 data
communications are listed in Appendix B. See IBM
System/3 Bibliography, GC20-8080, for descriptions of
other System/3 publications.

CHAPTER 1. INTRODUCTION 1
System Performance 1
System Throughput. 1
Terminal Response Time., 1
Easeof Use 2
Expandability/Changeability 2
System Security and Integrity. 2
System Design. 2
Benefits Offered by CCP. 2
DesignData it e e 3
CHAPTER 2. APPLICATION DESIGN CONCEPTS. 7
Establishing Application Goals 7
CCP Application Program Types 8
SRT (Single Requesting Terminal) Program 8
MRT (Multiple Requesting Terminal) Program 8
Single Function and Multiple Functions 9
Single FunctionSRT 10
Single Function MRT. 1
Comparison of Single Function SRTand MRT 11
Multiple Independent FunctionSRT. 12
Multiple Independent Function MRT 12
Multiple, Dependent Function SRT 14
Multiple, Dependent Function MRT 15
tnterprogram Communication. 15
NEP (Never-Ending Program) 15
Summary. 16
MIF/MRT Technique. 16
CHAPTER 3. DIRECTFILES 17
Direct File Advantages 17
Disk Accesses 17
File Recovery e 17
FiteSharing L 17
Access Algorithmand Synonyms 18
Determining an Access Algorithm. 18
Handling Synonym Records. 18
Examples. 19
Example 1. 19
Example 2. 23
Example3 24
Transaction Filesas Direct Files. 25
Master Filesas Direct Files. 25
CHAPTER 4. FILESHARING. 27
FileUpdate Conflict 27

CCP/Disk SortFiles. 27

Analyzing File SharingConflicts 28
CHAPTER 5. 3270 SCREENDESIGN 29
Human Factors Considerations and Techniques. 29
General Guidelines 29
Specific Suggestions by Application Type 32
Example: Three Approaches to Screen Design for
FileUpdate. e it it e i e 33

Contents

Performance Considerations and Techniques 34
Display Format Facility (DFF) 34
Program Request Under Format (PRUF) 35
Headingsand Prompts 35
Attribute Characters 35
Field Descriptor Table (FDT) 36
PutOverride. & i it e i e e e 36
Overlay and Segmented Screens. 36

CHAPTER 6. USE'OF PRINTERSUNDERCCP 39

System Printer. i e e e e e e e 39
Spooling Printed OutputUnderCCP 41

Terminal Printers 41
Forms Design for Terminal Printers. 41
Program Design Techniques for Terminal Printers 44
Printer Busy Condition. 45
Using an NEP for Terminal Printing 46

CHAPTER 7. TASKCHAINING. a7

Breaking Applications into Small Programs 48

Running Batch Programs Under CCP. 48

Chaining to Resource Handlers 48
Transaction File Writer Program 48
Terminal Printer Program 52

CHAPTER 8. SORTUNDERCCP. 53

Considerations for Using CCP/Disk Sort 53

Transaction-Oriented Processing with CCP/Disk Sort. 53
ORDERSProgram i 54
XWRITEProgram. v v it it ot e e e et s e e e 55
INVWRT Program an. 56
SRTWRT Program i i e it e s e e et e u s 57
SORTProgram i it it it i it e i e 58
PIKWRT Program. i it i e e e e s e e e o n s 59

CHAPTER 9. SYSTEM SECURITY/INTEGRITY. 61

Transaction Logging i 61
TransactionData 61

Audit Trail. e 62
Implementingan Audit Trail 62

Control Proceduresottt e 63
Manual Control Procedures 63
Programmed Control Procedures 63
Data Processing Department Controls 65

DataSecurity e e e e e e e e e 66
Physical Security Measures. 66
Programmed Security Measures 67

BackupandRecovery 69
Hardware Backup. v v i it i e e 69
Data Backupand Recovery 70
File Recovery Procedures 71

CHAPTER 10. SIMPLIFIED QUEUING THEORY 73

Simplified Queuing Theory Equations 73
Simplified Queuing Theory Example. 74
Step 1. Define and Flowchart the Application75
Step 2. Determine Activity for Each Program Step 75
Step 3. Determine Transactions per Hour for Each
Online Application 77
Step 4. Calculate the Average Number of Characters
perTransaction 79
Step 5. Calculate Line Time to Transmit an Average
Transaction. 79
Step 6. Calculate Line Utilization 80
Step 7. Calculate Line Response Time. 80
Step 8. Calculate Disk Utilization 82
Step 9. Calculate Disk Response Time. 83
Step 10. Calculate Processing Unit Utilization 84
Step 11. Determine Response Time for Processing
Unitand Total System 86
Step 12. Determine System Size 88
CHAPTER 11. PERFORMANCE TIPS 91
CCP-Associated Buffers 91
UserRecord Area. 91
Output Hold Area. o i . 91
TP (Teleprocessing) Buffer. 92
LineBuffer 102
CCP Task Sizes i 102
Minimizing Storage Requirements 104
DFF Considerations0.... 104
CCP Disk ACCESSES o vt it et 105
Placement of Programs, Formats, and Files on Disk 107
Disk Utilization 108
Generation/Assignment Considerations 108
Considerations Using PRUF 109
Miscellaneous CCP Tipso 109
APPENDIX A. GLOSSARY 113
APPENDIX B. BIBLIOGRAPHY. 119
INDEX. . . .t i e e 121

vi

A communications-based system like System/3 with
CCP, is made up of dissimilar elements (personnel,
programming, devices) that operate at totally different
speeds. These elements are:

« Terminal operators

« Terminals

« The communication facility

« The system operator

« The processing unit and associated 1/0 devices
« Application programs

These elements must perform well together to satisfy
user requirements. Good system performance requires
good system design.

SYSTEM PERFORMANCE

Performance requirements vary widely among CCP
users, but there are quantitative and qualitative aspects
of performance that are important to all users.
Quantitative Aspects

« System throughput
« Terminal response time

+ Business response time

Qualitative Aspects

« Ease of use
« Expandability /changeability

« System security and integrity

Chapter 1. Introduction

System Throughput

System throughput is the total volume of work
performed by a computing system over a period of time.
Throughput is a primary concern of the CCP user and
should also be the direct concern of the designer.
Throughput is a measurable aspect of performance. The
designer of an online system frequently measures
throughput in terms of the number of transactions per
unit of time (hour, day) that the system can handle. The
users of the system may think of throughput as the
number of invoices, orders, or inquiries the system can
process over a period of time.

Terminal Response Time

To provide a viable system, the designer must balance
system throughput requirements against terminal
response time requirements. Terminal response time is
the time interval from when the terminal operator enters
data to the system until the keyboard is opened to
permit more data to be entered. Response time
requirements vary greatly among CCP users and even
among applications for a single user. For example, a
10-second to 30-second response may be adequate for
an inquiry application that is used occasionally, but a
1-second to 3-second response may be required for
high-volume data entry and order entry applications.

Minimum response time results when there are no
gueues in the system; that is, there are no units of work
waiting to be serviced by the different system facilities:
disk, processing unit, communication lines, or terminals.
Chapter 10, Simplified Queuing Theory further describes
response time and queues.

Business Response Time

Business response time is the total duration of time
required to satisfy a user (customer) transaction, inquiry,
or request. A complete business response may require
severa!l terminal responses, but the entire response must
be accomplished at one terminal even if other system
resources are idle. Imdividual terminal response times
surely contribute to good business response, but good
system design plays the most important part.

Introduction 1

Ease of Use

Ease of use is another important aspect of system
performance. If use of the terminal is easy for the
operator, if screens are carefully designed, if operator
keying is kept to a minimum, if applications are broken
into efficient, logical steps, and if the terminal operator
is shielded from the internal workings of the system, the
terminal operator can be more productive, make fewer
mistakes, and thus contribute to improved system
throughput.

Ease of use is important for other users also, such as
the system operator and the application programmer.
Clear and complete operating procedures should be
defined and documented to govern the system
operator's actions under all conditions. Recovery and
backup procedures should be carefully considered in the
system design and should be clearly documented for the
system operator. Application programs should be
written with clear, straightforward logic and should be
well documented. Standard methods of return code
checking and error handling should be considered
throughout the design of the user application programs.
Careful attention to program design will result in
programs that have fewer errors and are easier to
correct or modify.

Expandability/Changeability

Expandability and changeability are long-term measures
of system performance. If a system design does not
anticipate future expansion or changes, the system may
initially perform adequately, but require a major redesign
when facilities or functions are added. The system
designer should consider effects on the system of an
increased transaction load, system hardware changes, or
additional applications.

System Security and Integrity

System security and integrity are other long-term
aspects of performance. The concepts of system
security and integrity include requirements such as:

- Transaction logging

« Audit trail

Control procedures

Data security

Backup and recovery

These requirements must be an integral part of the
systemn design. If system security and integrity are
lacking, serious problems can occur when an audit is
required, when there is a system failure, when an error
occurs, or when an unauthorized person attempts to
access and perhaps modify data in the system.

SYSTEM DESIGN

Because online applications usually have a significant,
overall impact on the way the user organization is run, it
is vital that the eventual users of the system—
management, programmers, operators, and user
departments—be involved in the design process from the
beginning and that all of their needs and wants are
considered. In many cases, a phased approach to
design and implementation, with simple inquiry being
the first online application, allows a gradual changeover
from current methods, provides early success, and
allows the system designer to gain experience that can
be applied to later applications.

During the system design process, each facility and
application should be justified on its own, either
economically or as a necessary part of an integrated
system. Otherwise, the design process can become
unnecessarily complex and costly, and may result in a
system that has more capacity than is required for the
necessary functions and anticipated growth. It is
sometimes better to use batch processing or manual
methods for certain jobs and to use the online resources
in areas where they are clearly justified.

The system design process must be guided by cost
constraints and application requirements. To be
successful, the system designer must understand the
benefits that are expected from the online system and
must gather a great amount of data concerning the
proposed applications.

Benefits Offered by CCP

Online processing with CCP offers benefits that are not
possible in manual or batch data processing systems.
The following benefits might be analyzed dffferently in
terms of importance to the business, ease of
implementation, cost of facilities, measurability, and
whether the benefits will be immediate or in the future.

Fast Access to Information Design Data

Inquiry applications can provide a fast answer for a The CCP system designer must gather and analyze a
customer who is on the telephone or in the office. large amount of data, including:

Inquiry applications can provide improved customer
service, reduced look-up time, and fewer computer
printouts. Inquiry applications are a good place to start,
since they are often easy to define and implement.

Application descriptions

Messages and line control activities
Transaction descriptions

Terminal locations

Computer location

Present communication network layout and
description

Data security requirements

Man-machine interfaces

Message formats

Message destinations

Traffic statistics

Effective speeds of equipment and operators
Transmission line error rates

Rate of system growth

Throughput cobjectives for both online and batch
processing

Terminal response time requirements—business
response requirements

Logical file information

Reduced Job Complexity Type of error recovery req.uired.

Other information, determined in part by the
proposed applications

Improved Worker Efficiency

Because of the necessity for queuing and routing work
through various departments, many manual systems are
inefficient, inaccurate, and time-consuming. Online
applications enable an organization to operate on
information as soon as it is available, which results in
greater worker productivity. Online applications can
result in: less time spent waiting for information, less
time spent transferring information from one area to
another, less time spent restudying information that has
been delayed in processing, fewer requests for
additional information, and improved accuracy.

Complex calculations, procedures, and detailed
requirements can make a clerk’s task highly subject to
error. Applications such as order entry, pricing, and
accounts receivable can require considerable system
design effort because the system is handling many
complexities, but the benefits of improved accuracy and
improved customer service can be valuable.

Some of this design data must be particularly detailed
because of the important affect it has on network
design and, therefore, the performance of the system:

Message/transaction types
Message/transaction length

Messages /transactions per given time period
Message/transaction input-output ratios
Message/transaction priority classifications
Response time requirements

Peak traffic determination

Growth projections

Improved Resource Control

Applications such as inventory control in manufacturing
or distribution industries and reservations in hotels can
enable many interdependent users to access current
information. Improved control of limited or
time-dependent resources is often essential to the
functioning of an organization. A well-organized system
design effort is required to redirect the information flow
around the centralized system.

Introduction

Traffic Peaks

Traffic peaks must be considered; it is not sufficient to
total the work for a day and divide by the number of
hours to get an average. For example, a plotting of the
arrival of orders in a business might look like Figure 1.
The system should be designed to handle peak loads. It
may be possible for certain orders to be held off and
entered during slack periods to level the peaks. For
example, in Figure 1, all mail orders are received at 10
a.m. Perhaps the mail orders that cannot be processed
in the morning can be held off until late in the afternoon
so that telephone and walk-in orders can be processed
on a real-time basis during peak periods. In no case
should the average load be the maximum load capability
of the system.

Regardless of whether design is done manually or with
the assistance of specialized network design aids
provided by IBM, the design data collected is needed to
determine:

» Line and terminal loading

« Facility utilization

« Response time

« Queues in the system

Queuing Theory

An understanding of queuing theory (Chapter 10) helps
the system designer to use the design data to estimate
how much utilization to expect of a system resource and
to evaluate a design at intermediate stages. However,
resource utilization in a CCP system is not a simple
consideration and few designers can depend solely on
queuing analysis in designing CCP systems. Utilization
of resources can change from minute to minute and
there are so many variables that to pick any set and say
this is my system is usually invalid. Also, reliable data
may not be available early in the design stage.

CCP system design requires some experimentation and
adjustments to the initial design to improve
performance. Overdesign is often a desirable approach.
For example, the designer can allow for more disk
activity or communication line activity than he actually
expects, or can purposely overestimate the number of
transactions per hour that will be entered from
terminals. Judicious reductions in the areas of
overdesign can be the key to success of the design
project.

IBM Design Aids

The CCP system designer should be aware of the IBM
design aids available {such as performance analysis
programs) and what benefits can be gained from each.

One such design aid for the Model 15D is the System
Measurement Facility (program 5799-AYQ). When
enabled, this facility assembles status reports of the
operating system and selected 1/0O devices. This
information is useful for workload balancing within the
CCP system. Contact your IBM representative for
information concerning this and other design aids.

Order Sources:

~ = = Telephone Orders
Walk-in Orders

— « = Mail Orders
-+ Cumutative Customer Transactions
Mail
Orders
500 | o Peaks—\
' Customer Notification and ~.
] Administrative Activity . ‘
400 ! . '
Trans- | ,'. ‘s
actions ! se0lte, / * REXverage :QS
300 SOOI NN NN \\\\\\ \\\ N\ \\\\\\\\\\X\X\\\\‘L\\Transact,on N
i o '-,. . Load
200 '
! - "-..n""' ————— : ..”..
100 | - >~
- - S~
| ~
7 >~
0 T T T T T T T Y T | T Y
9 10 11 12 1 2 3 4 5 6 7 8 9
o
} — wm }
AM PM
Open Close
- Time >
Figure 1. Transaction Peaks
Introduction 5

This chapter presents broad concepts of implementing
applications in an online terminal or werk station
environment,

ESTABLISHING APPLICATION GOALS

An application designer must establish specific goals for
applications. In addition to specific application goals,
the following general goals should be considered for all
applications:

« Ease of use

Design decisions should be made in favor of ease of
use, not ease of coding or design. The person who
uses the terminal should see the system as an
easy-to-use tool. He expects to receive guidance
throughout the application in the form of messages
and definitions of the various options permitted.

However, once an operator understands his task well,

he should not be burdened with replying to repetitive
messages nor with reading long text to understand
where he is in the application. For example, if a
3270 display is being used and various function keys
are allowed, present the user with a legend of the
functions in a specific area of the screen where the
user can read it or easily ignore it if he is familiar
with the application. Error messages should also be
confined to one area of the screen. High intensity
and the audible alarm can be used to draw attention
to the message. Use default options where possible
to eliminate repetitive keying. For example, if special
discounting is allowed but seldom used, let the
operator specify when he wants it, but default to
normal when he specifies nothing. See Chapter 5,
3270 Screen Design for further information
concerning operator ease of use.

+ Logical and simple flow

Whether you solve the application problem with one
program or many programs using PRUF (program
request under format), the operator must never have
to understand how the application was coded. If you
design an application using several programs, lead
the operator through the sequence of programs by
including the name of the next program to be called
on the display.

Chapter 2. Application Design Concepts

Concurrent utilization of system resources

Dedicating most of the resources of the system to
one user at the expense of other concurrent users
can cause dissatisfaction. Some examples of this are:
allowing an application to be written as a large
program, so that other users cannot load their
programs because memory is not available; specifying
NOSHR (no share) for files on the PROGRAM
assignment statement so that a long running program
has a file dedicated to it at the expense of other
users who need access to the same file; running a
program that loops or does complex calculations and
thus makes excessive use of processing unit
instruction cycles (cycle bound). Consider that
applications will be run at the same time and that
other applications may be added to the system at a
later time.

Concurrent utilization of resources may increase the
response time of the terminal. But response time is
not the most important indicator of performance. For
example, consider the following:

An application is designed using two methods. The
first method uses one large program that remains in
memory. Two operators are employed and response
time averages 1.5 seconds each time the enter key is
pressed. One hundred characters are keyed for every
enter key operation.

The second method of design uses a series of three
programs, each small. The programs are loaded as
required. The average response time is 2.5 seconds
because program loads must take place. With the
first method, there is no memory remaining for other
concurrent applications; in the second, there is. Since
all keying is done offline, that is, between program
loads, the processing unit has processing time and
main storage available to service other users. Hence,
the total work accomplished may very well be greater
in the second case.

Application Design Concepts 7

« Minimum scheduling

The main advantage of online applications is that the
system can be responsive to the end user—it can do
work when he has work to do. If there are fewer
terminals than operators or more applications than
operators, obviously scheduling has to be done.
However, an application design where there are
sufficient operators and terminals available, but
because of the design they cannot all have access to
the system, should be considered unacceptable.

« Efficient design

When the first application is designed for a system,
the probability that more applications will be added
later—some known and some unforeseen—must be
considered. This requires writing efficient code,
designing files for the fastest processing, and using
as little main storage as possible. A batch program
is usually judged by whether it does the job and
produces accurate results. Online jobs must be
judged by those factors but also by size, modularity,
function, flexibility and response time. The key to
efficient design is that the system resources must be
shared, and rationing the resources from the
beginning will ensure that the maximum potential for
system growth can be realized.

CCP APPLICATION PROGRAM TYPES

In order to use CCP most efficiently, the application
designer must understand the CCP application program
types, classified on the basis of:

« The number of requesting terminals the program can
handie—one, or more than one.

+ The number of different kinds of functions or
transactions the program can handle—one, or more
than one. (A transaction is defined as the entry of
some unit of data, the processing of that data, and
the return of some response or answer.)

Specific coding examples of each type of program are
available in the CCP Programmer’s Reference Manual,
GC21-7579.

SRT (Single Requesting Terminal) Program

An SRT program is one that can service only one
requesting terminal on each execution of the program.
Each time the program is requested, CCP must load that
program into main storage. If two terminals request the
same program, each will have its own duplicate copy of
the program in main storage.

An SRT program can communicate with other terminals
while servicing a requesting terminal, but these would
be data terminals and would be attached to the
executing program either by being specified in the
assignment set or by being acquired by the program
using an acquire terminal operation code. In most
cases, an SRT program handles one terminai, which is
the requester.

MRT (Muitiple Requesting Terminal) Program

An MRT program can service more than one requesting
terminal on each execution of the program. An MRT
program, like an SRT program, is initiated by a
requesting command terminal. However, any
subsequent requests for the program by other terminal
users cause the additional requesting terminals to be
attached to the program already in main storage, rather
than to a separate copy. The maximum number of users
of the program is specified in the assignment set. Thus,
CCP controls the number of concurrent users of the
MRT program.

When a terminal attached to an MRT program is
finished processing, it is released from the program
under either program or operator control. If other
terminals are attached, they continue to process. If
there are no other terminals attached at this time, the
program ends (the program logic must set on LR in
RPG). Another request for the program causes it to
be again loaded from the object library.

The system designer should consider using an MRT
program to minimize the impact of program loading
when a program is called often and must be loaded into
main storage frequently during the course of a CCP run.
Program load time is dependent on the access time of
the specific disk drives used with the system; for
example, a program load from a 5444 is slower than
from a 3340. See Chapter 10, Simplified Queuing
Theory for further information about how to determine
when program residence in main storage is high enough
that an MRT approach should be considered.

Single Function and Multiple Functions

in addition to the SRT/MRT distinction, the system
designer must understand the distinction between singie
function and muitiple function programs.

If a program can only handle one kind of function, the
program is a single function program. The
characteristics of a single function program are:

» Program logic determines when the program
terminates.

+ Coding is straightforward and efficient.

« There is duplicate code if more than one copy resides
in main storage.

If a program can handle multiple functions, the program
is @ multiple function program. The characteristics of a
multiple function program are:

« Either the operator or program logic can determine
when the program terminates.

« Some coding logic is required to determine which
function is to be performed.

» There is unused code in the processing cycle {code
for functions not performed still takes up main
storage space).

When multiple functions are performed, the functions
are either independent of each other or dependent on
each other.

Summary of CCP Program Types

Combining these concepts—number of requesters;
number and relationship of functions—yields the
following breakdown of CCP program types:

+ Single function SRT (SF/SRT)

« Multiple independent function SRT (MIF/SRT)
« Multiple dependent function SRT (MDF/SRT)
« Single function MRT (SF/MRT)

« Multiple independent function MRT {(MIF/MRT)

« Multiple dependent function MRT (MDF/MRT)

Application Design Concepts

9

Single Function SRT

The single function SRT program type is the easiest to
write. A terminal operator requests a program (for
example, an inquiry), the program performs the function
and terminates. CCP attaches the terminal to the
program at program initiation and automatically releases
it at program termination. No code is needed in the

application program to perform either of these functions.

Initiate
program

Data with
request

Prepare
response

Put screen

format Put response

Terminate
Get data

Figure 2. Receiving Program Data in an SRT Program

10

PRUF (Program Request Under Format)

Figure 2 shows two methods of receiving data from a
terminal in an SRT program: with the program request
or after the program has been initiated. Where possible,
the data should accompany the program request.
Putting a format and waiting for the operator to respond
ties up parts of main storage during the keying
operation. Another operator's response time can be
adversely affected if main storage is not available.
However, in order to enter data with the program
request, the terminal operator must know exactly what
data format is acceptable. This contradicts one of the
basic CCP system design guidelines: ease of use. But
because CCP has the PRUF facility, good utilization of
storage and ease of use at the terminal can be achieved.
The program now becomes two programs with the flow
described in Figure 3.

Program 1 Program 2

Initiate
program

Initiate program
with data

Put PRUF
screen to Process
requester data

Terminate Put

response
to requester

This could be a special PRUF
put operation that prepares
the screen for another trans-
action. Thus, Program 1
would be called only when Finish
the operator does not have
the appropriate screen format.

processing

Terminate

Figure 3. PRUF Concept-Single Function SRT Program

Single Function MRT

A single function MRT requires minor additional code
compared to the previous example. The additional code
is required because an MRT must not go to end of job
unless all users are finished with the program.
Therefore, rather than simply terminate, the program
must release the requester and ask CCP if there are any
other terminals requesting the program. If there are, the
cycle must be performed again. Still using the PRUF
approach, the program logic shown in Figure 3 would be
modified as shown in Figure 4.

Program 1* Program 2

Initiate
program

Initiate program
with data

Put PRUF

Accept
screen to P
data
requester
Release Process
requester data
Terminate
Release
requester

* Program 1 would likely

remain an SRT,

Any
other
user

Terminate

Figure 4. PRUF Concept-Single Function MRT Program

Yes

Comparison of Single Function SRT and MRT

The major considerations in choosing between an SRT
or an MRT approach are use of main storage and
response times. (The terminal operator does not do
anything differently between the two approaches.) The
advantage of the SRT approach is the ability to have
multiple copies in main storage concurrently. The
advantage of the MRT approach is the potential for
reduced response time, since the program does not
have to be loaded for each request. Each approach also
has a disadvantage: the SRT must always include a
program load in its response time, and the MRT allows
only a single terminal to process through its code at one
time. (Terminals that are queued to an MRT have a
correspondingly greater response time.) The decision for
either approach is examined further later in this chapter.

Application Design Concepts 11

Multiple Independent Function SRT

Combining the programs in Figure 3 results in the logic
shown in Figure b.

This logic represents a multiple, independent function
SRT program or MIF/SRT. This complicates the code
somewhat, but cuts down by one the number of
programs needed. In Figure 5, a small amount of code
has been added to one program while doing away with
another. (The program must check for a 02 return code,
which indicates that initial input was not received with a
previously put PRUF format.)

A logical question would be: if it is good in some
instances to combine two functions, why not more?
Aithough the program in Figure 5 is performing two
functions, the terminal operator works in the same way
as with the single function SRT and the increase in
response time is minimal. If, on the other hand, more
functions are added as shown in Figure 6, the program
must monitor input and determine which subroutine to
follow. Since CCP is itself a monitoring program, it
seems redundant for an application program to do this.
If the functions are quite similar and all use the same
file, then the effect on performance may not be
significant. However, if the program becomes quite
large due to code or additional files, then the user is
affected by the reduction in available storage. In some
cases, file utilization could be affected as well. Finally,
the program takes longer to load than the smaller, single
function SRT.

Multiple Independent Function MRT

MIF/MRT programs differ from MIF/SRT programs only
in the method of releasing terminals and terminating the
program. However, in some situations, MIF/MRT
programs provide advantages. For example, main
storage in System/3 Models 8, 10, and 12 is more
limited than in Model 15. Also, for any of these models,
one program level can be devoted to batch work while
the other level is used for online processing with CCP.
An MIF/MRT may be useful in this environment
because the limited main storage available for CCP tasks
may make it impossible to load multiple copies of an
SRT program.

12

Initiate
program

Data
with
request

Put
PRUF
screen

Prepare
response

Put response
to requester

Finish
processing

Terminate

Figure 5. Multiple, Independent Function SRT Program

Initiate
program

Data

with Put PRUF
Because the program can perform request screen
several independent functions, it
must contain logic to determine
which function to perform,
Determine
function
1 2 3
Prepare Prepare Prepare
response response response
1 2 3
Put Put Put
response response response
1 2 3
Finish Finish Finish
processing processing processing
Terminate

Figure 6. MIF/SRT Program with More than Two Functions

Application Design Concepts

13

Multiple, Dependent Function SRT

Figure 7 is an example of MDF/SRT program logic.
This type of program is straightforward, but results in
large programs that remain in main storage until the
entire process is completed. Main storage is occupied
even though there is no processing being done by the
system. Each process could be done in a separate
program: by using PRUF PUTs to prepare the terminals
for the next step, storage will be used only when there
is data to process, and not during the keying time of the
terminal operator. The effect on the operator of using
many single function SRTs to perform the same
functions would be to increase the response time for
each step by the program load time. This increase in
response time must be weighed against the delay that
could occur if MDF/SRT programs are used and main
storage is not available when another operator requests
a program. Except for response time, the user should
not know which type of program (MDF/SRT or single
function SRTs) the programmer chose to implement. |f
the number of users is small, the MDF/SRT would give
a better response; however, the programmer should be
advised that a growth in number of work stations will
probably lead to a redesign.

Initiate
program

Put Put Put
screen screen screen
1 2 n
Get Get Get
screen screen screen
1 2 n
Process Process Process
step step step
1 2 n

Figure 7. MDF/SRT Program Logic

14

Put
last
screen

Terminate

Multiple Dependent Function MRT

The MDF/MRT is the most complicated structure to
code. Not only must the program keep track of which
step is next, but it must first identify the terminal and
then determine what processing is next for that specific
terminal. Whereas type MDF/SRT is more like batch
programming, type MDF/MRT adds a level of
complexity that may not be desirable in the System/3
environment.

An alternative to the MDF/MRT would be a
combination of single function SRT and MRT programs.
The availability of PRUF makes these types very useful
for solving application design; however, using them
involves some special considerations of interprogram
communication.

Interprogram Communication

MDF/MRT program information can be passed between
various processes within the program. With a
combination of single function SRTs and MRTs, on the
other hand, interprogram communication must be
accomplished by writing and reading the information
either to disk or to the terminal. Using the terminal to
pass information between programs adds characters to
a busy resource, the transmission line. For this reason,
it is usually better to use the disk as a holding area for
messages between different programs, since this facility
is not usually as heavily utilized as the transmission line.
However, this choice is not an absolute; if the
installation has 3270 screens attached to the system via
display adapter only, then the terminals provide an
excellent holding area, since the display adapter’'s
transmission rate is very fast.

The Model 15D (5704-SC2 only) portline function can
support task-to-task communications. Thus, a program
written to communicate with a program in another 156D
(via the portline statement) can communicate with a
program in the same 15D. Data is passed to the other
program entirely within the CCP communications
manager.

Also unigue to 5704-SC2, task chaining provides an
easy method of passing data between programs. Refer
to Chapter 7 in this manual for additional information
concerning task chaining with data.

Another consideration in choosing a method of passing
data between single function programs is the overhead
in the user task that is required. DFF
program-appended storage and output hold area
requirements add to the size of the user task if the
terminal is used for interprogram communication.
However, if the disk is used there is an overhead of
additional disk 1/0. The system designer should
carefully evaluate the advantages and disadvantages of
each technique in his particular circumstances before
choosing a method of interprogram communication.

NEP (Never-Ending Program}

A never-ending program is a user application program
which, once initiated, normally remains in memory until
CCP is shut down. The never-ending attribute can be
assigned to both SRT and MRT programs (PROGRAM
assignment statement). The same general
considerations described previously in this chapter for
SRTs and MRTs also apply when these programs are
NEPs.

On the System/3 Models 4, 8, 10, and 12, the main
storage occupied by an NEP is unavailable to other
tasks, even if the NEP terminates abnormally. On the
Model 15, the main storage is available again when an
NEP terminates.

There are several reasons for using an NEP:

« Program usage should be high enough so there is a
real advantage to keeping a program in main storage
to save program load time.

« The NEP may be a monitor program performing
repetitive functions and may not communicate with a
command terminal at all. Two basic examples are:

— A program that monitors a disk print file, checking
for documents to be sent to terminal printers. This
use of an NEP is discussed in detail in Chapter 6.

— A program that forwards messages to another
system and may also receive responses, which it
posts to files for later inquiry by terminal
operators. This is a common approach in
distributed systems where, for example, inventory
may be allocated or ordered from a central site
when the local site cannot fill an order. The
advantage in this case is that an operator need not
call the NEP but merely needs to post the request
to a disk file that the NEP is monitoring. Task
chaining (Model 15D) may also be used to
communicate with the NEP.

Application Design Concepts 15

SUMMARY

The primary consideration in choosing between the SRT
and MRT approaches is the amount of time that a
program will reside in main storage. If a program is
used infrequently, the program probably has to be
loaded when called and the MRT advantage is lost. At
what point is the use of a program frequent enough to
gain the MRT advantage? Simplified queuing theory
{Chapter 10) can be used as an aid in this evaluation,
but the final decision rests with the user.

Why not code every program as an MRT? in many
cases, this would present no problem. However, if the
program does extensive disk work between operator
interactions, a response advantage is gained by having
multiple copies of SRT programs running concurrently.
This advantage is not possible with the MRT approach
unless the user can have several copies of the same
MRT program, each with a unique name. If the copies
can be assigned by terminal, the effect of multiple
copies can be achieved.

As more users are added to the system, the serial use
of a program becomes more of a probiem. If several
users are queued waiting to be serviced by an MRT
program, the last user must wait for the preceding
terminals to be serviced; this wait time can become
excessive.

MIF/MRT Technique
The following technique may be useful in some cases:

1. Write every program as an MIF/MRT. The
functions are all similar and the terminal is
released upon completion of any function.

2. On the PROGRAM assignment statement for each
program, assign an MRTMAX value equal to the
number of terminals.

Now, by assignment set manipulation, the program can
be made to react in different ways. For example, with
low utilization and no change to the assignment set, the
program acts like an SRT. Should two requests occur at
approximately the same time, the response time of the
second is equal to the service time plus the wait time of
the first to complete rather than the wait time to load
another copy.

As the utilization of the program increases, the chances
of finding the program in memory increase, thus
improving response time whenever service time is less
than program load time. At some level of utilization, the
wait time for preceding terminals may exceed the wait
time for load. If this level is reached, then the
assignment set can be altered to remove the MRTMAX
keyword from the PROGRAM statement, and the
program reverts to an SRT with no change to the
program itself.

There is one disadvantage to this approach. If an SRT
releases a terminal rather than just terminating,
additional load is placed on the CCP disk drive since
transients must be used. Removing the code that
releases the terminal improves the response time.

Disk file organization can affect system throughput and
terminal response time in an online environment. Since
much of the file processing is random, the choice of file
organization is usually between indexed and direct.
Indexed organization offers a wide variety of processing
methods and ease of programming; however, direct file
organization provides some key advantages that can
contribute to an efficient CCP system design:

« Fewer accesses to the disk can greatly improve
response time.

« File recovery in the event of a system failure is easier
than for indexed files.

« Sharing files between programs is simplified.

These advantages can be critical to the performance of
the system, especially for files that are heavily used
{(many accesses to the file). However, this does not
mean that sequential and indexed files should never be
used in an online system. Sequential organization is
useful for files that are not processed randomly, such as
some logging files. Indexed organization may be
satisfactory for master files if the file is not too active, if
terminal response time is not critical, or if high
performance disk drives (such as 3344 on the System/3
Model 15D) are available.

DIRECT FILE ADVANTAGES

To appreciate the advantages of direct files over indexed
files for random processing in an online environment, it
is necessary to understand how indexed and direct files
are organized, loaded, and processed as described in
the following publications:

« IBM System/3 RPG |l Disk File Processing
Programmer’s Guide, GC21-7566

« IBM System/3 Disk Concepts and Planning Guide,
GC21-7571

« IBM System/3 Model 12 User's Guide, GC21-5142

Chapter 3. Direct Files

Direct file advantages are especially important for files
that are accessed (read, updated, added to) frequently,
require random processing, and must be accessed by

more than one program concurrently.

Disk Accesses

Direct files may require fewer accesses to the file than
indexed files for equivalent types of processing. This is
important because disk access arm contention can be a
major cause of poor response time.

For example, adding records to indexed files requires (1)
scanning the index, including added index entries, to
ensure the record does not already exist; (2) reading the
data area where the new record will reside; (3) writing
the record; (4) writing the new index entry. Adding a
record to a direct file requires reading the record to
verify one does not exist there already and writing the
new record.

Depending on how a direct file is organized for synonym
records, a direct file can require additional accesses.
See Access Algorithm and Synonyms and Examples in
this chapter for techniques of handling synonyms.

File Recovery

No file recovery is needed for direct files. If all files in a
system are direct, the system can simply be restarted
and processing can continue. Some method of
determining the last successful update may be
necessary. (For more discussion on file recovery
procedures, see Chapter 9.)

File Sharing

File sharing between programs is simplified when direct
files are used. Only two direct file access methods,
direct input (DG) and direct update (DU), are required
for processing direct files. Programs that process a file
in these ways are not restricted in sharing the file.

Direct Files 17

ACCESS ALGORITHM AND SYNONYMS

The key to implementing a direct file is defining an
access algorithm and synonym handling technique that
satisfies the processing requirements for the file while
preserving the advantages of direct files.

Determining an Access Algorithm

An access algorithm is whatever fixed (programmed)
method is used to dictate the position to be occupied by
each record. The algorithm can be simple or complex.
In any case, the algorithm must yield a positive, whole
number as a relative record number.

In the simplest case, the input to the program (the
control field) is used directly as the relative record
number. For example, loan number 3456 could be used
without change as relative record number 3456. Another
example of a direct technique is using direct files to
store large arrays of data. If element X(10) is desired,
then the tenth record in the file X is read. A control
field should be used directly as a relative record only if
there is not an excessive number of unused values
within the range of values for the control field. If there
are too many unused values (and, therefore, unused
record positions), an algorithm should be defined to
reduce the size of the file.

A formula can be used as an algorithm to determine the
record number. For example, if loan numbers start with
1001, then loan number 3456 will be relative record
number 2456 (3456 minus 1000). The formula can be
as complex as you need to make it. See Examples, in
this chapter, for more information and examples.

The control field containing alphameric data could also
be used as a basis for an access algorithm. The
algorithm must convert the alphameric data to a relative
record number. See Handling Synonym Records for an
example of using a customer name as the control field.

18

The choice of an access algorithm and, ultimately, the
decision whether or not to use a direct file is usually
based on how well synonym records can be handled. A
synonym record is a record in a direct file whose control
field yields the same relative record number as another
record. If the handling of synonyms requires a
significant number of additional disk accesses, one of

the important direct file advantages is lost. Also,

because access algorithm and synonym code must
reside in each program that uses a direct file, a risk is
involved: if the algerithm and synonym handling are
ever revised, it may be necessary to rebuild files and
modify all the programs that use those files.

Handling Synonym Records

Synonyms can be handled in many ways. Some of the
common ways are:

« Place synonyms in a separate part of the file,
following the home locations, the area used for home
records. A home record is a record that is stored in
the location indicated by its relative record number.

Home Locations Synonyms J

File Space

« Place synonyms in the next available blank location,
closest to the home location.

Synonyms

Relative @
Numb 53 54 b6 b7 b 59 60
Record Numbers [{ % [[il IL ‘| {

...‘53 54 55 5657 58 5960 ...

Record Positions

» Place synonyms in an area, next to the home
location, that is reserved for synonyms.

[Home I Synonyms |Home ISynonyms lHome | Synonyms

-t File Space >

In the first two methods, the record in the home
location must contain a pointer (record location) to the
synonym record. If there are two or more synonyms for
a home location, then the first synonym contains a
pointer to the second synonym, and so forth.

In the third method, synonyms are close to the home
location. For example, assume the control field for a file
is the first five characters of the customer’'s name. The
file contains space for 40,000 records and allowance for
three synonyms for each home record. The customer
name is converted to a decimal value as follows:

/ 7/I I TH
D4 C9 E3 Cc8 (EBCDIC code)

Illll
\\///

24938

F2 {zoned decimal)

{decimal)

The decimal value is then divided by 9999:
24938 + 9999 = 2.4940

Ignoring the whole number of the quotient, the home
location is calculated as follows:

(4940 x 4) + 1 = 19761

Since there may be many Smiths in the file, the program
may have to read records 19761, 19762, 19763, and
19764 to find the correct Smith. If extra synonyms are
required, the third synonym could point to the next
available space in the file (possibly the next home
location will not require all of its synonym locations).
Another possibility, to reduce the number of synonyms,
would be to accept six or more characters from the
customer name.

EXAMPLES

The general steps in building a direct file are as follows:
1. Define an access algorithm.
2. Decide how to handle synonym records.

3. Evaluate the direct file, perhaps by using a test
program.

4. Refine the algorithm and/or synonym handling.

The following examples illustrate direct file approaches
to some online file requirements.

Example 1

in the example used here, the major goals are to build a
file in which (1) the records can be accessed with an
average of slightly more than one disk access, (2) the
amount of disk space used for the file does not contain
excessive unused space, and (3) there is room for
growth within the file to easily accommodate new
records.

Defining the Algorithm

In this example, an item file, currently indexed, is to be
converted to a direct file for an online order entry
application. The key field is a five-digit item
number—four digits assigned by the user and the fifth
being a check digit. The four digits employed start with
1001, and the user merely assigns the next sequential
number to new items. Deleted item numbers are not
reused until number 9999 has been taken.
Approximately 20 new items are added per month, while
four items are dropped. Highest current number is
4317, but the file contains only 2,812 items. The
110-track allocation assumes 12 months growth.

As a first approach, the algorithm could be stated: The
direct file position for each record shall be equal to the
four-digit item number. Assume that the new record will
be a few bytes larger than the old record, and that the
file will ailso accommodate 12 months of growth before
reorganization. The algorithm would require a file of 161
tracks containing 4,557 record positions. The mapping
of items to direct file positions would appear as follows:

Item Number File Position

1st

. Unused
1000th
1001 «————— 10015t
1002 ———— 1002nd
1003 ——— 1003rd

4317 — 4317th

12
Months
Growth

4557 —— 4557th

Direct Files 19

This first approach, while yielding no synonyms, uses
only two-thirds of the record positions and most of the
unused space is at the beginning of the file.

Assume the algorithm is revised to state: The direct file
position for each record shall be equal to the four-digit
item number minus 1000. The file requires 126 tracks
containing 3,557 positions with the following mapping:

Item Number File Position
1001 1st
1002 - 2nd
1003 3rd
4317 3317th
4557 3557th

This approach, also yielding no synonyms, uses 85% of
the record positions—the unused portion is embedded
randomly within the file where items have been
dropped. Although each record only requires one disk
access, the file size still is 20% larger than the data
portion of the former file. The algorithm can be further
revised.

Now assume the algorithm states: The direct file
position for each record shall be found by subtracting
1000 from the four-digit item number, multiplying the
difference by 0.85, and half-adjusting the result. The file
will occupy 107 tracks with 3,023 positions under the
following mapping:

Item Number File Position
1001 1st
1002 2nd
1003 3rd
4317 2819th
4557 3023rd

20

This approach uses 99% of the record positions and the
file size is only 1% larger than the indexed data. It has,
however, introduced the possibility of synonym records;
item number 1004 (if it exists) will also be assigned to
direct file record position number 3 (same as 1003).
Similarly, item numbers 4316 and 4317 conflict, as do
4556 and 4557. Thus, the refinement of the algorithm
to meet the second major goal {minimum file space}
may now have impacted the first goal (minimum disk
accesses) since synonym records will take a minimum of
two accesses.

Handling Synonyms

Various methods of handling synonyms are described in
IBM System/3 Disk Concepts and Planning Guide,
GC21-7571, or IBM System/3 Model 12 User's Guide,
GC21-5142. Whatever method is used, it must
accomplish two overall goals: minimum accesses and
minimum file space. The more immediate goal is to
define {program) the manner in which a record will find
an alternate position when its first location choice is
filled.

Further analysis of the item file example might offer
some suggestions for synonym handling. Note that a
synonym can only occur about once in seven records.

The previous algorithm causes the following mapping
(asterisks identify synonyms):

Item Position Item Position

1001 —m8 — 1009 ——— 8

1002 ———— » 1010 ——— 9~

*

*

1003 —————— 1011 —————— 9

*

1004 —M8MMM 1012 ———— 10

1006 ———— 1013 — 11
1006 ——M8M83 1014 ————— 12

1007 ————— 1016 —— 13

N OdswWN =

1008 — 1016 ———— 14”7

Recall that approximately one in seven item numbers is
unused due to deleted items—the file is only 86 % full.
Thus, you might expect to find an unused position in the
direct file with about the same frequency as the
SYnonyms occur.

Assume the method of handling synonyms can be
stated: A synonym record will be placed in the next
higher numbered position that is unused. Since the file
uses only 85% of the range of numbers, 15% of the
numbers will not be used because they are deleted.
However, the deleted numbers are randomly distributed
through the entire range of numbers. Thus, there will be
some positions available in the file for synonym records.
(About every seventh number will be a synonym or
14%). Let's assume that of the first 40 item numbers,
items 1007, 1008, 1015, 1017, 1020 and 1039 are
among those deleted numbers.

Item Position

1017 ——— 147
1018 ——— 15
1019 — 16
1020 ——— 17
1021 —— 18

1022 — 19

1023 ———— 20™

1024 ——— 20”7

Direct Files

21

item Position Item Position

1001 ———1 10183 — 11
1002 —— 2 1014 ——— 12
1003 ———— 3 1016 ——— 14
1004 —— . 6 1018 ——+ 15
1005 ——— 4 1019 — 16
1006 ————— 5 1021 ~——— 18
1009 ——— 8 1022 —— 19
1010 ———— 9 1023 —— 20
1011 ——— 13 1024 —— 33
1012 ———— 10 1026 —— 21

Note the following:

+ Item number 1031 will occupy some position
numbered greater than 34.

+ Item number 1037 will occupy a higher numbered
position than will item number 1031.

+ Record positions 7 and 17 are unused.

+ After accessing a record, the program will have to
verify that the record is the one that the program
really wants; if it is not, the program must access a
synonym.

« There will not be more than two items with the same
relative record number; thus, most records require no
more than two disk accesses.

Note: This assumes that records are loaded into
home locations before synonym records are loaded in
a second run; this also assumes that there will be
few added records. If records are added after the
home records and synonyms are loaded, the home
locations for the added records may be occupied by a
synonym. Thus, the added record becomes a pseudo
synonym. If many records are added, it is likely that
most will have to be handled as synonyms. In this
situation, the technique described here may be less
useful, because performance tends to degrade as
records are added.

In this synonym-handling technique the average
synonym should be close to the first position searched.
Thus, a second access is necessary approximately 15%
of the time, and this access, hopefully, finds the record
not too distant from the home location.

22

Item Position Item

Position

1036 ———— 31
1037 ——— **
1038 ——— 32
25 1040 ———— 34

1033 ——— 28
1034 — 29
1035 ——— 30

At this point, the file should be loaded (home positions
only) and the synonyms added in a second pass. As the
synonyms are added in the next available higher
numbered position, a synonym pointer in the home
record will have to be updated to point to the synonym
record position.

Evaluating the Direct File

At this point, a program should be written to assess the
file organization in light of the goals for the file. The
program might measure factors such as:

» Number of accesses for the average record

» Which records require two accesses

+ Distance between record locations for synonyms
» Where the unused positions are in the file

« Which records require three accesses {(if any), four
accesses, etc

The data reported by the program should be analyzed in
terms of the user’s requirements. It may not be
sufficient just to report that records require 1.17
accesses on the average. Perhaps most of the
synonyms are on one end of the file rather than
randomly spaced. It could occur that the second access
for synonyms was averaging 41 tracks, and half the
synonyms were among the top 10% in file activity.
Such a condition might necessitate putting all synonyms
together in the middle of the file or in a separate file for
faster access. Perhaps the most active records should
be loaded first to guarantee that they will not be
synonyms.

Refining the Algorithm and/or Synonym Handling

To further meet the needs of your system, refinements
to the algorithm and/or synonym handling might be
added. For example:

« Load items 1024, 1377, and 1844 in a preliminary
pass so they will be found on the first access
(because they are the more active items).

« Subtract 3024 from each file position and change the

result to a positive number so the newer items will
appear at the front of the file.

» Chain to another file on a separate drive for
synonyms.

Example 2

Assume a customer master file contains three types of
records (A, B, and C) for three types of customers.
These records are in an indexed file where type A
records have keys (customer numbers) from 10000 to
49999, type B are numbered from 60000 to 79999, and
type C from 90000 to 99999. Each type of record is
arranged alphabetically by customer name.

The file was first loaded with approximately 500
alphabetized type C records, followed by 1,000
alphabetized type B records, and finally about 3,000
alphabetized type A records.

Additions have been made at the end of the file in the
following manner: first, the added record type is
determined (A, B, or C); then it is assigned an unused
customer number that corresponds to the alpha
sequence of the customer name according to a listing of
the file. When first loaded, the contents of the file were
as follows:

The file originally contained 4,725 records (space was
allowed for 6,000). Eighteen months later, the file
contains 5,638 records.

An analysis of the file indicates the following:

« The file is experiencing about 12% annual growth
and should probably be planned for about 6,600
records to meet one year's requirements.

. Customer numbers 10000-50000 are 8% used, while
the other numbers are 5% used.

. Synonym records should be kept as close as possible
to the home location.

. The best file design solution might be more than one
file and more than one type of file organization.

« If all the customer numbers will reside in one file, an
algorithm must take into account the necessity of
loading the type C customers at the front of the file,
followed by the types B and A.

« The ratio of A:B:C types is about 6:2:1.

A trial algorithm might try to accomplish the following
mapping:

Customer

Number File Record Number

Type
0001-0733 (1/9 x 6600 = 733)
0734-2200 (2/9 x 6600 = 1467}
2201-6600 {6/9 x 6600 = 4400)

90000-99999 C
60000-79999
10000-49999 A

sy}

In order to accomplish the mapping, the algorithm must:

. Convert the customer numbers 90000 to 99999 into a
set of relative record numbers from 1 to 733

. Convert the customer numbers 60000 to 79999 into a
set of relative record numbers from 734 to 2200

Record #0001
Record #0002
Record #0003

Record #0467
Record #0468
Record #0469

Record #1592
Record #1593
Record #1594
Record #1595

Customer #90000
Customer #90020
Customer #90040

Type C (alphabetical
by customer name)

Customer #60020
Customer #60040
Customer #60060

Type B (alphabetical
by customer name)

Customer #10000
Customer #10013
Customer #10026
Customer #10039

Type A {(alphabetical
by customer name)

Convert the customer numbers 10000 to 49999 into a
set of relative record numbers from 2201 to 6600

Direct Files 23

.
o
.

5

One method of doing these conversions is as follows:

+ If the customer number is greater than 89999,
subtract 89999 from it, then multiply the difference
by .0733 (the ratio of 733 positions to 10,000
numbers), and use the half-adjusted product for the
record position.

» If the customer number is less than 50000, subtract
9999 from it, then multiply the difference by 0.11 (the
ratio of 4,400 record positions to 40,000 record
numbers), add the half-adjusted product to 2200, and
use the sum for the record position.

» For all other customer names (60000 to 79999),
subtract 59999 from the number, multiply it by
0.0733 (the ratio of 1,467 record positions to 20,000
numbers), add the half-adjusted product to 733, and
use the sum for the record position.

The synonym handling technique might be the same as
in Example 1.

The test of success, as with Example 1, is to implement
the algorithm/synonym handling technique by loading
the file. Then the success can be measured by another
program which attempts to retrieve all records and
counts the number of accesses necessary. The results
of the second program dictate whether modifications are
necessary or desirable. To further test the file, a sample
program can be run in an online environment to see
whether response times at the terminals are acceptable.

24

Example 3

Other master files might have altogether different uses
and for that reason use different techniques. Consider a
rate file in a telephone revenue accounting application
wherein one record exists for every from-to location in
the United States. A call made from number (507}
286-5688 to (518) 392-5536 would require the retrieval
of a rate record from the master file that would have a
key of 507286518392. How can such a number be
equated to a relative record position on a direct file?

One algorithm might be to multiply the numbers 507286
and 518392 together and use the second, fourth, sixth,
eighth, and tenth digits of the product as the relative
record position. This technique might yield a random
distribution across a file for approximately 100,000
records. Another algorithm might be to take the second,
fourth, sixth, eighth, and tenth digits from the 12-digit
key. Thus, the first algorithm might locate the rate
record in relative position 69301 (262973004112), while
the second might place the same record in position
02613. Some records, for a given billing location, would
be far more active than the majority of the records.
These very active records might be placed in a separate
file which may or may not be direct.

The techniques described in the previous paragraph are
randomizing techniques. Many randomizing techniques
are employed by users of direct files. Regardless of
which technique is used, the concept and approach
should be well documented in each program that uses
the technique.

TRANSACTION FILES AS DIRECT FILES

Typically, transaction files (order records, deleted
invoices, purchase records, and other transaction
records) are the first in an online environment to
become direct files. The reason for this is that the
operator usually must page back and forth through these
files, add new records, delete old records, review all or
part of a file due to an inquiry and rely on very fast
response time at the terminal.

Another reason for using direct organization for
transaction files is that they can be updated easily by
multiple programs (a file that is processed as
consecutive output cannot be shared). Another program
can access the data and do further processing on the
data just as soon as the data is put into the file by an
update program. Communication between the programs
can be accomplished by the update program inserting a
special character in each record that contains valid data,
and the following program deleting that character as it
processes that data. Thus two or more programs can
loop through a direct file, filling it with data and
processing the data, because the updated information is
available immediately to other programs. For more
discussion on the use and design of transaction files,
see Chapter 9, System Security /Integrity.

MASTER FILES AS DIRECT FILES

The master files in online operations are also often
becoming direct files. In many instances, the user may
be converting from a batch system and already have
indexed master files. Changing these files from indexed
to direct could cause problems for the existing batch
applications that must also continue to use them. The
following paragraphs describe some compromise
solutions to satisfy the requirements of both the batch
and the online applications.

A master file that has served a batch design for a period
of time may have more information in it than is needed
for an online application. A new file could be created to
contain a subset of the information in the batch master
file; only those fields that are needed by the online
application would be retained. There may be other
deficiencies in the batch master file that can also be
corrected when a separate file is created for the online
applications. In addition to eliminating the unneeded
fields, the designer may want to add new fields that are
needed. In effect, a speciaiized master file is created to
serve very specific design needs--no extra fields, smaller
file, faster retrieval of information, and faster response
times at the terminals. There are some potential
problems with file integrity, since the same information
is now in two or more different files. There may also be
some additional file maintenance.

Can the benefits of this approach possibly outweigh the
disadvantages? The major consideration is whether or
not the online version of the master file contains fields
that will be updated and thus differ from the true master
file values. With careful planning and design, the
technique described in the following paragraph can solve
this problem.

Once a day, run a program that passes through the true
master file and creates the online version. Process
against the online version during the online run as if it is
the true master file, updating fields as required, or,
perhaps, creating a separate transaction file of updated
records. At the end of the online execution, or
concurrent with it, run a batch program against the
online master file or the separate transaction file to
update the indexed master file. At the end of the CCP
run there should be agreement between the indexed
master and the online master files, or reconciliation
between these files and the transaction records created
during the online execution. Further attempts to
reconcile field values among the files might be done
through a transaction log file.

Direct Files 25

26

Programs that are executing concurrently under CCP can
share the use of files. With some restrictions, files can
even be shared among programs that are running
concurrently in different partitions of the System/3
Model 15D. The system designer should give careful
attention to file sharing, because it can have a
significant effect on system throughput and terminal
response time. It is especially important to consider the
effects of file sharing in a transaction-oriented
processing environment, because multiple copies of the
same SRT program may be running concurrently using
the same files.

The purpose of this chapter is to describe how file
sharing affects CCP performance and to provide some
system design recommendations. The reader should
refer to the CCP Programmer’s Reference Manual for
specific file sharing guidelines and restrictions on various
System/3 models.

FILE UPDATE CONFLICT

When two programs are updating the same file and the
first program accesses a particular sector or block of
sectors of that file, CCP prevents other programs from
updating that data until the first program completes the
update. This is known as sector protect. The conflict
caused by this situation can result in a noticeable delay
in the execution of the second program; this delay might
show up as a degradation in response time at a
terminal. If the application is designed so that multiple
terminals call SRT programs that may update the same
records of a file, this conflict situation must be
considered.

The seriousness of file update conflicts can be greatly
reduced through proper design. The likelihood of
conflict can be reduced by using a minimum block size.
This reduces the probability that two programs will try
1o access the same block of sectors at the same time.

Chapter 4. File Sharing

Another way to reduce the likelihood of conflict is to
avoid using control records that are updated frequently
by different programs. Contention for access to a
control record becomes particularly noticeable if your
programs do considerable processing between reading
and updating the control record. Progroms that update
control records should be designed to read the record,
do minimum edit-type processing, update the record,
and then perform any extensive processing that is
required.

CCP/DISK SORT FILES

CCP/Disk Sort files should not be shared. The sort
work files and output files cannot be shared, and the
input file should not be shared with a program that adds
or updates the file while the sort program is in process.
In an online order entry transaction processing
application, where records entered into a transaction file
are to be sorted for each order, the records should be
written from the transaction file to a nonshared sort
input file (see Chapter 8, Sort Under CCP). If the
transaction file is used as the sort input file, the
terminals should not be allowed to add to or update the
transaction file while the sort program is in operation. In
most cases, this would be an unacceptably long lockout
time for the transaction file.

File Sharing 27

ANALYZING FILE SHARING CONFLICTS

File sharing considerations are quite complex. Perhaps
the best way to start analyzing potential conflicts in
applications is to make a chart listing all programs
{including maximum possible number of copies of SRTs)
across the top of the chart and all files down the side.
The files used by each program should be identified on
the chart. In this way, the files that are used by many
programs are identified and can be concentrated on for
file sharing considerations. Possible serious conflicts
can be identified by answering questions such as:

« Which programs must be operating at the same time?
« Can multiple copies of the file be used?

- Will different programs access the same records at
the same time?

« Do some programs require that the file not be
shared?

+ Is response time a consideration in programs using
this file?

« Does application logic require that the file not be
modified while the program is executing?

« Can a program using this file be run in batch mode?

If file sharing is not really needed for certain programs,
make sure that NOSHR is specified for those programs
in the assignment set. Letting the parameter default to
SHR will cause additional processing overhead, because
each add or update record must be written out
individually instead of being written out when the buffer
is full.

By analyzing file sharing requirements carefully, the
system designer can reduce or perhaps eliminate file
sharing conflicts. With an understanding of what the
potential conflicts are, the system designer can design
applications to avoid the more likely trouble areas.

28

In online applications using display terminals, the key
objective is to service the terminal operator; therefore,
the system must be designed to service the terminal.
Good screen design can improve operator productivity
and improve the performance of the system.

This chapter focuses on the screen design
considerations related to using 3270 display terminals
with CCP. The reader should consult IBM 3270 Screen
Design Student Text, SR20-4441, for a comprehensive
discussion of the human factors aspects of 3270 screen
design, the various types of formats, relationships
between application types and screen types, and other
screen design considerations for the 3270 that are not
specifically related to CCP.

The screen design guidelines presented in this chapter
fall into two general categories:

« Human factors considerations: operator ease of use

« Performance considerations: efficient use of main
storage, processing time, and transmission facilities
for maximum throughput and satisfactory response
time

These two categories are interrelated: operator ease of
use affects system throughput and performance; a
proper interval of response time from the system
contributes to operator productivity and satisfaction.

HUMAN FACTORS CONSIDERATIONS AND
TECHNIQUES

Before very many screen design decisions can be made,
certain questions about the terminal operators must be
answered:

« What type of operators will be used? Are they

dedicated to this job and trained in the application, or

are they occasional operators? What is their aptitude
or skill level?

« How do the operators receive their input? By
telephone? From a handwritten order form?

« What is the previous experience of the operators?
Will they be willing to change their method of doing
the job? What will be the turnover rate?

Chapter 5. 3270 Screen Design

» What is the best response time for the operator?
Response time should be neither too fast nor too
slow. If the response time of the system is too slow,
the program can give a preliminary response or
acknowledgment to assure the operator that the
system is working. If response time is too fast, an
intentional delay can be built into the program to
prevent harassing the operator.

« What kind of keyboard are operators experienced
with?

« How will the system respond to operator errors?

General Guidelines

in general, input screens should be designed for ease of
key entry; output screens should be designed for ease
of reading. Keep in mind that the requirements of
application-trained operators are different from the
requirements of occasional operators.

Application-trained operators should require fewer
prompts and headings and can make more use of
short-form data and abbreviations. They also usually
require shorter response time for maximum productivity.
Occasional operators need more prompting and
assistance, but can usually tolerate longer response
times. Remember that operators who are proficient in
entering data do not look at the screen often and may
require the audible alarm to alert them to errors.

The following paragraphs should serve as a guide to the
screen designer.

3270 Screen Design 29

Display a Small Amount at One Time

The screen should be kept uncluttered and include only
meaningful information. For example, do not display the
entire record on an inquiry if the normal use is to look at
one or two fields. Instead, display only the necessary
fields and, perhaps, provide a function that allows the
operator to display the entire record when it is required.

The 1,920-character screen is not intended only for
displaying more data; part of the advantage of large
screens is that they allow more flexibility for designing
readable screens. In some applications, it may be
desirable to skip lines between each line of displayed
material and to limit the lines to 40 characters.
However, in applications where the user has large
volumes to display on a screen, these rules would be
unacceptable. For example, when providing order entry
screens for drug applications, one finds an item such as
toothpaste results in a large screen because of the many
different brands and sizes. In this kind of application,
limited line length and skipping of lines would likely not
be used.

Certain applications result in screens where data is
accumulated from screen to screen. Up to a point this
may be desirable; however, if the designer is not
careful, the screen gets too cluttered and eventually
contains useless information. The screen designer may
wish to use nondisplay fields for information that is not
needed by the operator. (The designer should be aware
that transmitting several screens can cause excessive
transmission time in a remote line environment.)

Clarity of Format

Clarity of format can be partly achieved by displaying a
small amount of data at one time to prevent a cluttered
screen. Format clarity can be improved by organizing
information in columns, avoiding unnecessary
indentations (left justifying), or eliminating unnecessary
punctuation.

The screen text must be clear to the operator. There
should be no questions as to the information desired,
yet the text should not be wordy. The designer should
avoid difficult words, symbols, abbreviations, and
contractions. If special codes or abbreviations are
necessary, the designer should include a means of
explaining them to the operator; for example, a program
function key could be used to request a help screen.

30

One Idea Per Display

Whenever possible, screen formats should contain
information concerning only a single aspect of an
application. For example, a format should not be used
to query a file and perform an update at the same time.
By concentrating on a single idea at a time, there is less
chance for error, faster entry of data, and easier screen
maintenance.

Shorter Operator Responses

Whenever possible, keep operator responses short.
These responses can include codes, mnemonics, or
abbreviations as long as the operator is trained to use
them. Cursor positioning by the operator should be kept
to a minimum. Instead, autoskip should be used,
formats should be designed that do not require the
operator to space over unused fields, and the cursor
should be positioned under program control.

Always Acknowledge Operator Input

Operator interaction with a display screen is always
conversational; therefore, the designer must always be
concerned about how long an operator waits for a
response. If the response will be slow in reaching the
operator, the program should immediately acknowledge
the receipt of the input. Always try to avoid a situation
where the operator is sitting at the terminal wondering
whether the input was ever received.

A good technique to use with large-volume output
screens to reduce operator wait time is to transmit the
screen in small blocks. This does not shorten the overall
response time, but it reduces the time the operator has
to wait before output begins to appear. In order to
transmit a screen in blocks, the application program can
issue an acquire terminal operation specifying an
attribute set that has a block length of 512 with DFF. A
disadvantage of this technique is that the screen blinks
as each block of data is received by the terminal. If
blinking is excessive, it may become irritating to the
operator.

Standards Between Screens

Every application has its own particular requirements,
but it is good practice to maintain certain standards
across applications, such as similar screen formats and
similar dialogue, abbreviations, codes, and mnemonics.
This is particularly important when the same operator is
performing more than one application. It is a poor
procedure to be constantly switching the operator
between different types of dialogue and screen formats.
The standards established within an application are even
more important than those between applications.

Use of PA and PF keys should be standardized between
formats and applications. For example, avoid having
PF1 perform a specified function for one screen and PF2
perform the same function for another screen. Of
course, it may be necessary to use a key in an
application-unique function, but a legend should then be
used to tell the operator about the nonstandard use of
the key.

Ease of Correction

The operator must be instructed in use of the ERASE
EOF key and ERASE INPUT key to correct input before
entry to the system. A procedure should also be
programmed whereby the operator can request a cleared
screen (that is, a format with no data in the variable
fields) or a menu screen.

Programmed procedures must also be established for
ease of correction after the data has been entered, such
as:

« Use high intensity for fields that are in error.
« Sound the audible alarm.
« Place the cursor at the field that is in error.

« Allow retrieval of previously entered data for
correction—especially important for data collection
applications.

Clarity of Instructions to Operator

The messages to the operator must be clearly
recognizable on the screen and be short but
understandable. The instructions can be displayed in
high intensity and set apart from the rest of the
information on the screen to attract the operator’'s
attention. The audible alarm is useful to alert the
operator to a message.

The location of messages on the screen should be
standardized across all applications. Frequently,
operator messages are placed at the bottom of the
screen. They can be set off from the other information
on the screen with special characters such as asterisks
or minus signs; however, this adds to the amount of
transmission required.

Provide Means for Help

Not only must the operator be told of problems, but he
or she should know what actions to take. These actions
must be included in the written operator’'s procedures
for the application. It may be desirable to program
certain routines that assist the operator when help is
required. This help can be obtained by entering special
commands in a specified field on the screen or pressing
a predefined PF or PA key.

Make the Operator Feel Comfortable

Most of the preceding guidelines can be summed up
with this one guideline. The operator is using the
terminal as a tool to do a job. As with any tool, the
terminal should be easy to use, make the job easier for
the user, and enable the user to do a better job. At the
same time, application programming and screen design
should take advantage of the operator’'s intelligence and
make the operator feel important; they should not bore,
scare, or harass the operator. Be sure to employ as
many features of the terminal as necessary to assure the
best possible job.

Whenever possible, give the well-trained operator the
opportunity to initiate shortcuts in going from one
screen to another. For example, do not always force the
operator back to a menu screen to seiect the next
screen to be displayed. PF keys can be used to
implement this facility.

3270 Screen Design 31

Specific Suggestions by Application Type

Some specific screen design suggestions for inquiry, file
update, and data entry types of applications are given
here. Relationships between application types and
screen types are described in the IBM 3270 Screen
Design Student Text. The reader is urged to refer to that
publication for information on those relationships.

Inquiry Applications: The following suggestions apply to
inquiry applications:

» Show only the data that is normally sought; provide
the option to the operator to look at more data if
necessary.

» Make limited use of headings on output screens.
Arrange fields so that the information returned stands
out without numerous headings.

+ Avoid extraneous information on output screens, such
as asterisks that are used to outline information.
Avoiding unnecessary information improves the
readability of the screen, reduces the size of the
format that must be stored on disk, and reduces the
amount of data transmitted.

File Update Applications: The followirng suggestions
apply to file update applications:

« If the file is being updated only (no records are being
added) the screen should contain only the item being
updated.

- If records are being added to the file, it may be
useful to retain previous additions on the screen.

« The operator should always enter data on the same
line, such as the bottom or a middie line. If error
conditions occur, the item in error is redisplayed with
high intensity and the audible aiarm.

32

Order Entry and Data Entry Applications: The following
suggestions apply to order entry and data entry
applications:

« The screen format should be compatible with the
input document used by the operator. The sequence
of fields on the input document should be the same
as the sequence on the screen. Either the screen
should be designed to conform to the document, or
the document should be designed to conform to the
screen format.

« Errors on the screen should be highlighted in some
way for the operator, such as by using the audible
alarm and high intensity.

= Fields on input screens should be laid out so that the
most frequently used fields are entered first, followed
by less frequently used fields. In this way, operator
productivity can be improved because the operator
will not have to tab across infrequently used fields.

- If operators will enter data based on verbal
(telephone) conversation, design the screen in the
sequence the operator usually directs the
conversation.

« In order entry applications, either the whole order is
kept on the screen as it is entered, or only the
previous entry is displayed to enable the operator to
keep his or her place. If only the previous entry is
displayed, a separate program {initiated by a function
key) should be available to display the entire order for
review. In data entry type applications such as
entering data into a file, one line of data should be
on the screen at a time to reduce the amount of data
transmitted and improve operator efficiency.

+ Be aware, when transferring an operator keying job
from a batch keying device {such as 3741) to an
online keying device (such as 3277), that the online
operator will always take longer to do the job due to
response time.

Example:. Three Approaches to Screen Design for
Fite Update

This example compares three different methods of
screen design for a file update application. Comparisons
are made from the following viewpoints:

» Operator keystrokes
» Number of characters transmitted

« Amount of editing and updating that the application
program must do

Assume the following data fields:

Field Length

ltem number 5
Description 25
Balance on hand

Balance on order

Cost

Selling price

Warehouse location

Vendor (supplier) 1

O oo O OOt

First Method

In this method, all data fields are output/input fields.
The terminal operator moves the cursor to the beginning
of the field that is to be changed and enters the new
data over the old. The cursor is initially positioned at the
balance on hand field, because the item number and
description are rarely changed.

e =\
ITEM 98602
DESC WIDGETS, L1O-IN
BALOH 93
BALOO 107
coSsT 1.92
SELL 3.14
WHLOC 98/26
VENDOR IBM
. | y,

|— Output/input Fields

Keystrokes: To change a field, the operator must:

. Tab (except to change balance on hand)

« Key data

- Press ERASE EOF

« Press ENTER

For example, 10 keystrokes are required to change the

cost field (two tabs, six characters, ERASE EOF, and
ENTER).

Characters Transmitted: All output/input fields are
returned to the program. Therefore, 92 characters are
transmitted (68 total data characters for the eight fields
plus three control characters per field).

Editing and Updating: All fields must be edited and
updated.

Second Method

In this method, the data fields are output fields and
updates are keyed into input fields. The terminal
operator moves the cursor to the beginning of the
appropriate input field and enters the change.

ITEM 98602
DESC WIDGETS, 1LO-IN

BALOH 93
BALGO 107
COSsT 1.92
SELL 3.14
WHLOC 98/26
VENDOR IBM

S N

1
Output Fields Input Fields

3270 Screen Design 33

Keystrokes: To change a field, the operator must:
« Tab

+ Key data

« Press ENTER

For example, nine keystrokes are required to change the
cost field {two tabs, six characters, and ENTER). ERASE
EOF is not required because data is being entered into
input fields.

Characters Transmitted: Only the changed fields are
returned to the program. For example, nine characters
are transmitted if the cost field is updated (six data
characters and three control characters); 16 characters
are transmitted if balance on hand and balance on order
fields are updated.

Editing and Updating: Only the fields that are actually
changed must be edited and updated.

Third Method

In this method, the data fields are output fields and
changes are entered into one free-form input field. The
cursor is initially positioned at the input field.

(")
A ITEM 98602
B DESC WIDGETS, 10-IN
C BALOH 93
D BALOO 107
E COST 1L.92
F SELL 3.14
G WHLOC 98/26
H VENDCR IBM
u)
Code Links Qutput Fields

Free-Form Input Field

34

Keystrokes: To change a field, the operator must:
« Key the code link {followed by a slash)

+ Key changed data

« Press ENTER

For example, nine keystrokes are required to change the
cost field {code link, slash, six characters, and ENTER).

Characters Transmitted: Only one field is returned to
the program. For example, 11 characters are transmitted
if the cost field is updated (code link, slash, six data
characters, and three control characters). If more than
one field must be changed, a separate transmission and
separate disk access are required for each.

Editing and Updating: Only the field that is changed
needs editing and updating.

PERFORMANCE CONSIDERATIONS AND
TECHNIQUES

The screen design techniques described in this section
can help to improve the performance of the system in
one or more of the following ways:

- Reduce the overall main storage requirement of CCP
user tasks

+ Reduce the amount of data transmitted
« Reduce operator time, errors, and keystrokes

« Make full use of available CCP facilities

Display Format Facility (DFF)

Despite the additional main storage requirement in CCP
for DFF, DFF should be used to design and generate
display formats. The benefits of DFF, ease of format
description and ease of programming, usually outweigh
the costs in terms of additional CCP overhead. DFF
offers the additional benefit of allowing formats to be
tested using the display format test routine prior to
using them in an application.

Program Request Under Format (PRUF)

One of the primary advantages of PRUF is that a
program does not have to be in main storage during a
lengthy operator keying operation. The following are
some screen design considerations when using PRUF:

« If the terminal receiving the PRUF format is also the
terminal that requested the program issuing the PRUF
format, ENDMSG-NO should be specified in the
PROGRAM assignment statement for the program.
This prevents positions 82 through 160 of the screen
from being cleared by an ending message when the
program terminates.

« Always keep positions 82 through 160 of the screen
open to receive system messages. This is required
because messages from the system, such as a
system operator shutdown request, can be sent to
the terminal while the terminal is not under user
program control (while the operator is keying into the
screen). In order to keep positions 82 through 160
open, do not define any fields for those positions at
display format generation time.

+ In some cases, the screen provides a convenient
buffer for passing control information and other data
from program to program in a PRUF string. This
technique can eliminate some disk file accesses for
temporary transitional data storage. There is a hazard
in passing information in nondisplay form, however,
since the operator can unknowingly destroy the data
by pressing the CLEAR key. If the operator should
not see the information, it is better to keep the data
in a disk file. In no case should the operator have to
repeat previous steps in the application and reenter
the input because of pressing the CLEAR key.

Headings and Prompts

Keep the wording in headings and prompts to a
minimum. Use common abbreviations; for example, use
QTY instead of QUANTITY. Also, use abbreviations
unique to the applications; for example, use ORD for
ORDERED QUANTITY and SHPD for SHIPPED
QUANTITY. In some instances, headings can be
omitted; for example, SOLD TO NAME & ADDRESS.
Standardize headings and prompts among formats.

If a series of screens with common headings is used,
consider transmitting the headings as a separate screen
format. This reduces the total amount of transmission,
since headings need only be transmitted once. Reducing
transmission time is especially important for remote
terminals, where transmission time is more critical than
for local terminals that are attached via the display
adapter. Headings can be transmitted separately by
means of the overlay screen technique. Subsequent
screens must not erase the initial heading screen.

Attribute Characters

Minimize the number of attribute characters on a screen.
Each attribute written to the screen requires five
transmission characters (two characters if the attribute is
being written to the present screen position). Attribute
characters are generated by the display format generator
routine, DFGR, based on the display format
specification.

To reduce the number of attributes on a screen, heading
lines should be used with the data entered below the
headings. In this way, only one attribute is used for
heading line. Avoid the sequence:
heading/data/heading/data on the same row, since
each heading requires its own attribute.

3270 Screen Design 35

Field Descriptor Table (FDT)

The FDT, as created by the format generator, must be
available in main storage during the execution of a user
task. The size of the largest FDT associated with a
program is specified in the PROGRAM statement during
the assignment run. The size specified is rounded up to
the next multiple of 256 bytes and that amount of
storage is allocated at program load time (plus an
additional amount, based on the number of terminals
and number of formats). The smaller the FDT, the
smaller is the main storage requirement for the task.
(See Chapter 11, Performance Tips for further
information about the FDT.)

The screen designer can reduce the size of the FDT in
the following two ways:

+ The number of fields defined in the screen format
can be reduced by eliminating unnecessary fields,
such as headings and prompts that are not essential,

or by combining two or more fields into a single field.

In order to know when it is advantageous to reduce
the number of fields, the designer should be aware
that 17 field description entries can fit into the first
256 bytes of the FDT and 18 entries can fit into each
succeeding 256 bytes. Therefore, it is advantageous
to reduce the number of fields defined if, by so
doing, an entire 256 bytes of FDT can be eliminated.
For example, if 37 fields are defined, three 256-byte
increments of storage are required for the FDT.
Eliminating two field definitions reduces the size
required for the FDT by 256 bytes. Thirty-five fields
(17 plus 18) will fit into two 256-byte increments of
storage.

« Output fields can be defined with an F specified in
column 16 (data source) of the DFF field definition
form. If F is specified in this column, CCP does not
build an FDT entry for a field. The F designation
should be used when output data is defined at
generation time and the field will not be used in put
override operations.

36

Put Override

Appropriate use of the put override operation can
improve system performance by reducing the amount of
data transmitted and by reducing the number of disk
accesses for formats. In many instances, especially in
error situations, use of a put override operation can
make retransmitting a full screen unnecessary. Some
suggested uses for the put override operation are:

« Put error messages to the screen.
« Highlight fields in error.
+ Position the cursor at the next field after an error.

« Change the status of an existing format, such as
restoring the display to its original condition.

« Highlight error messages on the screen. In some
applications, error messages can be kept on the
screen in nondisplay status. In case of error, a put
override operation can be used to change the
attributes of the message to display it, perhaps using
high intensity.

Overlay and Segmented Screens

Overlay screens can be used to reduce the amount of
data transmitted. Overlay screens can be used when
some data is to remain on the screen and a part of the
data is to be replaced. Screens can also be segmented,
with different parts used for the different steps in a
process. Figure 8 illustrates the use of overiay and
segmented screens.

If overlay or segmented screens are used in a PRUF
environment, Program A might terminate leaving a
screen that is composed of several different segments
from separate formats. If Program B, the PRUF read
program, is to receive the entire screen as input,
Program B must use a single format that defines all the
fields it needs, using identical field locations. The
format used by Program B can have a different name
from the formats used by Program A.

Overlay Screen ' . Format

Program A transmits
format @ to the terminal
and then repeatediy Format
transmits and receives
information using

format @

Format
Segmented Screen m @

Program A transmits
three formats (segments), Format (2)
each from a different
step in its processing.

Format @

Figure 8. Overlay and Segmented Screens

3270 Screen Design 37

38

Using printers in programs that run under CCP requires
special program design considerations. Two types of
printers can be used in CCP programs: the system
printer and terminal printers. The system printer is a line
printer on System/3 Models 8, 10, 12, and 15; and a
serial (matrix) printer (115 characters per second) on the
System /3 Model 4. Terminal printers are from the 3270
family (3284, 3286, 3288) with maximum rated speeds
of 40 cps, 66 cps, and 120 lines per minute,
respectively.

SYSTEM PRINTER

Coding for a system printer under CCP is identical to
coding for the printer in a batch program. However, the
following should be noted:

« On System/3 Models 4, 8, 10, or 12, special print
modules are available with the compilers. These are
used when creating an object program to be run
under CCP so that other tasks running under CCP are
not degraded because a print program is being
executed. These print modules also prevent an 1/0
attention from occurring if the printer is not ready.
An 1/0 attention would stop the system. In order to
have only one copy of the compiler, $MAINT can be
used, as shown in Figure 9, to rename the print
modules (and other unit record modules) before
compiling a program. It may be convenient to call an
appropriate procedure before compiling a program, as
shown in Figure 9. (See Compilation and Link Editing
in the CCP Programmer's Reference Manual,
GC21-7579, for details.)

- Only one program may use the system printer at a

time, with the following exceptions:

— If spooling is used by the CCP program level on
Model 12

— If spooling is used by the CCP partition on
Model 15

— If PRINTER-SHR is specified in the PROGRAM
assignment statement for Model 15 only, even if
there is no spooling

« The system printer may be made available to the
other programming level (Models 8, 10, and 12)
through a system operator command.

Chapter 6. Use of Printers Under CCP

Use of Printers Under CCP 39

Run $MAINT as follows after CCP generation (assume F1 is the RPG 11 compiler pack):

// LOAD $MAINT,F1

// RUN

// COPY FROM-F1,LIBRARY-R,NAME-$$ARFF , NEWNAME-$$XRFF ,TO-F1,RETAIN-P

// COPY FROM-F1,LIBRARY-R,NAME-$$MF .ALL,NEWNAME-$$XF, TO-F1,RETAIN-P

1442)

MFCU)

(

// COPY FROM-F1,LIBRARY-R,NAME-$$LPRT , NEWNAME-$$XPRT, TO~F1,RETAIN-P (Printer)
(
(

// COPY FROM-F1,LIBRARY-R,NAME-$$CP.ALL,NEWNAME-$$XP, TO~-F1,RETAIN-P

// END

3741)

Thereafter, to compite RPG programs for batch use:

// CALL RPGBCH,F1

// RUN

/7
//
//
Procedure //
RPGBCH //
//
/7
//

LOAD
RUN

COPY
COPY
COPY
COPY
COPY
END

$MAINT,F1

FROM-F1,LIBRARY-R,NAME-$$URFF, NEWNNAME-$ $ARFF, TO-F1,RETAIN-P
FROM~F1,LIBRARY-R,NAME-$$UPRT ,NEWNAME-$$LPRT, TO-F1,RETAIN-P
FROM-F1,LIBRARY~R,NAME-$$UF .ALL,NEWNAME-$$MF,TO-F1,RETAIN-P
FROM-F1,LIBRARY-R,NAME-$$UPIP,NEWNAME-$$CPIP,TO-F1,RETAIN-P
FROM-F1,LIBRARY-R,NAME-$$UPOP,NEWNAME-$$CPOP, TO-F1,RETAIN-P

To compile RPG programs for CCP use:

// CALL RPGCCP,F1

// RUN

(//

| //
Procedure //
RPGCCP ﬂ //

\ /7

LOAD
RUN

COPY
COPY
COPY
COPY
COPY
END

$MAINT, F1

FROM-F1,LIBRARY-R,NAME-$$XRFF,NEWNAME-$$ARFF,TO-F1,RETAIN-P
FROM-F1,LIBRARY-R,NAME-$$XPRT,NEWNAME-$$LPRT,TO-F1,RETAIN-P
FROM-F1,LIBRARY-R,NAME-$$XF.ALL,NEWNAME-$$MF,TO-F1,RETAIN-P
FROM-F1,LIBRARY-R,NAME-$$XPIP,NEWNAME-$$CPIP, TO-F1,RETAIN-P
FROM-F1,LIBRARY-R,NAME-3XPOP,NEWNAME-$$CPOP, TO-F1,RETAIN-P

Figure 9. Renaming Unit Record Data Management Modules for Compiling CCP or Batch Programs

40

Spooling Printed Output Under CCP

Output from print programs directed to the system
printer may be spooled on System/3 Models 12 and 15.
The advantage of this is that the system printer can be
concurrently used by programs in the batch partition.
There are some considerations:

« If only one task may use the printer at a time
(PRINTER-YES), and the DEFER-NO parameter was
specified in the OCL at startup, the spooling routines
close the spool print file when the CCP termination
routine is called for the task. This means that another
program requesting the printer will be refused until
the first task ends. This prevents mixing report lines
from multiple tasks.

« If the printer is to be used as a logging device or for
debugging purposes during testing, concurrent tasks
are allowed to print if DEFER-NQ is specified on the
// PRINTER OCL statement and PRINTER-SHR is
specified on the PROGRAM assignment statements.
Print lines will appear in the order they were put to
the spool file; the output will be mixed.

TERMINAL PRINTERS

Coding for terminal printers is more like coding for a
3277 display terminal than coding for a system printer.
The terminal printers work as follows: A data stream is
sent to the buffer of the printer. The data stream
includes such control characters as NL (new line} and
EM (end of message). When the user program gives the
order to start printing by means of WCC ({write control
character}, the buffer contents are printed. The program
that sends the output to the printer can either remain in
memory for turther processing or terminate. The
printing itself is an offline function.

The programmer can use PFGR (printer format generator
routine} and DFF to format printed output, catalog the
format in an object library, and access the format from
an application program. (See CCP Programmers
Reference Manual for details.)

The programmer can aiso use the terminal printers in a
program without using DFF. However, all the control
characters required by the 3270 system must be
included in the data stream the application program
builds.

Forms Design for Terminal Printers

Forms design for terminal printers is critical for good
performance. Since printing is done one character at a
time on serial (matrix) printers, the print heads must
move to the appropriate position on a print line. This
head movement takes time. Printing as far to the left as
possible reduces head movement. In addition, because
skipping to a new line is done with carriage returns, a
large form with little printing is inefficient. For this
reason, forms should be as short as possible.

Figure 10 is an example of an inefficient form design for

a terminal printer. Figure 11 shows how the form could
be designed for better performance.

Use of Printers Under CCP 41

The preprinted company
logo is on the left. The
print head must space over
it on each line.

\

QTY. SHP.

i
1
!
|
I
1
!
|
|
|
|
|
|
|
!
|
|
|
[

Putting all

™ fields on one
line would
shorten the

—
SOLD T10: SHIP TO:
A B C (name) (name)
c o . (address) {address)
(city) {city)
L (state) __] L {state)
— . _ _—
VIA: | TERMS | CUST. NO. /
SALESMAN
ITEM QTY. ORD. DESC. LIST

AMT.

form and
speed printing.

Quantity back ordered
is not always printed,
5o it would be better
to putit on the right.

Four lines are used for totals,
causing extra carriage returns, , TAX
Also, totals are printed on

the right, causing unnecessary
print head spacing.

Figure 10. Example of Inefficient Form Design for a Serial Printer

42

l_ 1
SOLD TO: SHIP TO:
{(name) (name) A B C
{address) (address)
{city) (city) C o.
I._ (state) __I I._ (state) __.l
| | |
CUST. NO. | VIA | TERMS | SLSMAN |
1 [T
! | | |
| L |
ITEM : DESCRIPTION I LiST i QTY. SHP Il AMT, I QTY. ORDER } QTY.B/O
[[i ' 1 [
I I I I | |
| ! | | ! |
| I l | | l
I I] | [I
I ! i | [|
I
I | | | I
I : I | I I
I ! | I I
| | I
I 1 |
l I I
I | I |
I I ! I
I | | l l
l | | | | |
I | [| | I
| I ' | I
| | | | | |
I | | | | |
| I I I | f
GROSS TAX DISCOUNT NET

Figure 11. Example of Efficient Form Design for a Serial Printer

Use of Printers Under CCP

43

Program Design Techniques for Terminal Printers

Assume an application requires entering and editing
data, validating by the operator, and printing a single
document. Figure 12 shows the flow of the application.

Two key points are illustrated in this example. First, the
terminal operator is free to do other work as soon as
the print program (program C) has issued a release
terminal operation. This means the operator can return
to program A and overlap the next operation with the
printing of the previous. Second, the number of buffer
loads to be put to the printer determines how long the
print program will be in main storage. If more than one
buffer load will be sent to the printer, the following
coding/design tip should be considered.

Assume that a form to be printed includes 3,000
characters of data, including control characters. Assume
the buffer size is 1,920 positions. Obviously the entire
form cannot be sent in one put operation. The second
put must occur after the first buffer load is printed.

If 1,900 characters were sent first, then 1,100, the
second put would be done after waiting for all the data
within the 1,900 to be printed. This would not be
efficient. The first put should be as short as possible,
perhaps 1,100 characters. After this is printed, the
second put of 1,900 can be done and the program can
immediately terminate. The 1,900 characters are printed
offline without using processing unit time.

44

Request
Program A

Program A
puts screen
format and
terminates

Operator verifies
data and
reguests print

)

Operator keys data
and presses ENTER

Program C
1s loaded

Program B
is loaded

Program C
releases the
requesting
terminal

Program B
edits data

Program B
displays

validation
screen and
terminates

/

{

Figure 12. Printing a Single Form

Program C

puts data
{ stream to

the printer

Program ¢
terminates

Printer Busy Condition

Figure 13 shows the logic of a program that is using a
terminal printer.

If the program requests a print operation, but a previous
print operation is not completed, CCP informs the
program that the printer is busy via a return code. It is
the user’'s responsibility to try the operation again. If the
data sent to the buffer on the first put is being printed
and the program has a second buffer to send, the
program loops between trying to put the second buffer,
getting a printer busy return code, and trying to put the
second buffer again. This prevents CCP from regaining
control and allowing another concurrent task to do work.

There are several methods of preventing CCP from
being shut out:

» Design the application so that forms are printed one
at a time and are short enough to fit into the buffer.
This is ideal but obviously for some applications
cannot be done.

« Use terminal printers for short reports and print long
reports or documents on the system printer.

« On Models 4, 8, 10, and 12, when generating a CCP
system, specify BSYPRT-YES in the $EBSC macro.
This enables CCP to detect the busy printer
condition. After the printer completes the print
operation, your program regains control. This option
enables your program to execute properly without
testing for the busy printer return code, and it allows
other tasks within the system to use system
resources while the matrix printer is busy.

- On Model 15D CCP {5704-SC2), when generating a
CCP system, specify BSYPRT in the $EFAC
statement. This includes the same support as
explained above for Models 4, 8, 10, and 12.

« On Model 15 CCP, use the WAIT operation code.
This facility, together with the interval timer
{hardware feature), allows an application program to
issue a wait of some seconds after determining the
printer is busy. This causes CCP to regain control,
service other tasks, and return to the print program
after the specified time interval.

On Models 8, 10, or 12, when BSYPRT-YES has not
been specified in the $EBSC macro, the user
program should contain code that forces a CCP
transient load so that CCP regains control. One way
to do this is to assign a dummy terminal name to a
terminal in the assignment set. After obtaining a
return code indicating the printer is busy, an acquire
terminal operation can be issued to the dummy
terminal with new attributes. When operation fails,
CCP takes control and allows another task to obtain
service. When CCP returns control, the print program
can retry the printer operation.

{nonprint logic)

Is printing
required

{nonprint logic)

Yes
-

|

Put data to
print buffer

L]

b o e o v e v o

Note: Not required if
BSYPRT-YES is
specified during
CCP generation.

Is printer
busy

Program
terminates

Figure 13. Logic of a Program that Uses a Terminal

Printer

Use of Printer Under CCP 45

Using an NEP for Terminal Printing

On a system with enough memory, a print program
could be implemented as an NEP. The program would
have the following characteristics:

= It would interrogate a direct disk file for documents
to be printed.

+ A header record in the direct file for each set of
transactions would designate the terminal printer to
which that file should be sent.

+ The program would use the WAIT operation code or
one of the other techniques described previously to
allow concurrent tasks to operate without
degradation.

The advantage of this approach is that a terminal
operator need not request a print program. The queue
for documents becomes a function of this program
rather than having multiple SRT print programs waiting
to be loaded. In effect, this simulates a print spool
function.

The task chaining facility of System/3 Mode! 15D CCP
allows user tasks 1o initiate other user tasks by means
of a task chain operation, without system operator or
terminal operator action. CCP handles a task chain
operation in a manner similar to a program request. A
program that is loaded by a task chain operation passes
through program load, resource allocation, open, close,
and terminate functions, like any other user task.

The requirements for using the task chaining facility are
as follows:

« The requesting program must issue a task chain
request (an output type operation) and identify an
output record area for the operation.

« The requesting program must place the requested
program’s name in the output record area. Data may
accompany the program name.

+ The requested program must issue an accept input
operation to receive data if data is passed from the
requesting program.

The task chaining facility is similar to the PRUF
(program request under format) facility: data may be
passed between programs through a record area, and
the requested program must issue an accept input
operation to receive the data. With PRUF, however, the
screen buffer is used as the record area for passing
data, and therefore, all programs must communicate
with a terminal. The requirement for operator
intervention is a disadvantage of using the PRUF facility
to request one program from another.

Chapter 7. Task Chaining

The task chain operation (with data) works as follows:
CCP moves the data from the output record area of the
requesting program to the get (invite) input area (see
index entry) of the TP buffer, and loads the program
named in the terminal name field of that output record
area. When the requested program issues an accept
input operation, the data is moved from the TP buffer to
the input record area of the requested program. This
passed data could be the name of the next program in
the chain and would be moved by the requested
program to its output record area and used to chain to
the next task. In this way, many programs could be
chained together, and the sequence of execution can be
determined in advance by the first task, or even
determined by program logic within each task in the
chain.

A chained task can communicate with the command
terminal that requested the first task in the chain by
issuing an acquire command mode terminal operation
for that terminal. However, the terminal must be either
in initial mode, or in command mode and not formatted
by a PRUF display.

Task chaining lends itself to online transaction-oriented
processing applications in the following ways:

« Task chaining is useful for breaking an application
into small, single function programs.

« Batch programs can be run under CCP without
operator intervention, because a chained task need

not communicate with a terminal.

« MRT/NEP (never-ending MRT) programs can be
chained and used as resource handlers.

Task Chaining 47

BREAKING APPLICATIONS INTO SMALL
PROGRAMS

Task chaining is a useful technique for dividing the
functions of an application among small, efficient
programs. For example, a small, simple program can
gather order entry information from terminals; and,
when an order is completed, that program can chain to
another program that will process the information. This
processing program may chain to a sort program which
in turn chains to a final program that prints out the
order. This allows an online application to be truly
oriented toward transaction processing, completely
handling one order at a time with small, efficient
programs that are loaded only when required. An
example of this use of the task chain operation is given
in Chapter 8, Sort Under CCP.

Before using task chaining in this way, the system
designer should assess the critical needs of the
application and the effect of task chaining on system
resources. Additional program loads with task chaining
may increase response time at the terminal. If fast
response time is the critical need of the application, then
task chaining probably should not be used. If, on the
other hand, the critical application requirement is that
several applications must operate concurrently in an
online transaction processing environment, then task
chaining may be a good technique to use. The concepts
of simplified queuing theory (Chapter 10) can be useful
in analyzing the effect of task chaining on system
resources.

RUNNING BATCH PROGRAMS UNDER CCP

Another use of the task chain facility is to run batch
programs under CCP. There are advantages to doing
this: for example, a batch job stream (cataloged
procedure} has five programs to be executed in
sequence. Four of these programs are 8K programs
while the fifth program is 22K and the largest program
in any other job stream is 12K. The batch partition size
must be large enough for the largest program (22K):
therefore, this main storage space must be reserved for
long periods of time even though the large program
executes for only a short time.

This same application could be rewritten to run under
CCP, with each program chaining to the next logical
step. The programs would then be in main storage only
while they are executing, and, because 10K of the 22K
partition can be assigned to the CCP partition, more
program tasks can execute concurrently under CCP.

48

CHAINING TO RESOURCE HANDLERS

Another use of task chaining is to code MRT/NEP
programs as resource handlers with other programs
chaining to these programs, passing data along with the
request. Two instances of this use are:

+ A program that writes records to the transaction file

» A program that performs write operations to the
terminal printers

Transaction File Writer Program

The first example of a resource handler program is a
program that writes records to a transaction file
(assumed to be a direct file). Since the program is an
NEP, it is always in main storage when CCP is running,
and therefore it can be coded to maintain record
address pointers within the program logic. Because
there are no forward and backward pointer records in
the transaction file to be accessed or updated, only one
disk access is required for each transaction record
added to the file. By reducing the number of disk seeks,
this way of using task chaining can significantly reduce
disk activity, thereby improving terminal response time
and system throughput.

Example

An MRT/NEP program that is used to control the
writing of records to a direct transaction file is serving
several terminals that are entering transaction records
into the same transaction file. It is desirable to tie
together all entries for a particular terminal. This is
accomplished by having each transaction record from a
terminal linked to the other transaction records from that
terminal.

There are various ways of linking records together. In
this example, reserved fields in each record are used as
linkage pointers. These pointers are the relative record
numbers of other records in a chain or queue that came
from the same terminal.

The first record in the transaction file is a master pointer
record that retains the status of all the terminal queues
in the transaction file. When the MRT/NEP program is
loaded, it first ioads this pointer record into a control
array so that the program can determine the status of
the file. When the MRT/NEP goes to end of job (at the
end of the CCP run), the final action it performs is to
update this pointer record from the control array.

The master pointer record contains the following entries
for each terminai:

« Symbolic terminal name
« Relative record number of the first record of an order

« Relative record number of the next available record to
be written into

» A flag byte that indicates whether this is the first,
middle, or last record of an order

Figure 14 shows how the master pointer record would
appear when the transaction file is created.

The first record from each of the terminals will be
written into record 2 through n + 1, where n is the
number of terminals to be served by the program. The
next available record (n + 2} is reserved for the first
terminal to enter data. The relative record number n + 2
will be written into the forward pointer field of the first
record from the terminal and the next available record
counter will be increased to n + 3. By this method,
record locations are reserved in advance, because the
forward pointers are established when the current record
is written.

000001 | TERMO1{000002 | 000002 | F|TERMO02]|000003 | 000003 | F|TERMO3

A 3
‘ I élag Indicating First Record of an Order

Relative Record Number Where Next Record from this
Terminal will be Written

Relative Record Number of First Record from this Terminal

Symbolic Terminal Name

Relative Record Number of this Record

Figure 14. Content of the Master Pointer Record when the Transaction File is Created

Task Chaining

49

The pointer values are contained in an array that has an

element for each terminal, as shown in the following

diagram:
Array
TERMO1 First Record Next Record F/M/L
TERMO02 First Record Next Record F/M/L
TERMO3 First Record Next Record F/M/L
TERMO0O4 First Record Next Record F/M/L
TERMO5 First Record Next Record F/M/L
TERMO6 First Record Next Record F/M/L
Symbolic Relative Relative Flag
Terminal Record Record Byte
Name Number Number
of First Where Next
Record of Record will
this Order be Written

The program maintains a counter that always points to
the next available record location. This counter is used
to update the next record field in the array. The array
element associated with a terminal is then written into
the transaction record when that record is written to the
file. In effect, the relative record number for the next
record from this terminal is reserved at this time.
Records are reserved in sequence, but are not
necessarily written in sequence.

For records other than first records, the first record field
points to the first record of the current order. For the
first records of an order, this field points to the first
record address of the previous order, so that records are
linked forward by record within an order and backward
by first records of all orders.

The logic of the program is illustrated in Figure 15.

50

Read trom

dummy
primary
input file

Chain to
record 1 of
transaction
file

Read
record 1

into control
array

Set next
record
pointer
to N+2

Shutdown
request

Yes

End
of order
indicated

Set on
end
flag

Change flag
byte from
LtoF
Move first
record
field to
output
l
::;Zl:zz]e Move next
on terminal record field
name to first record field
Move next
record field
to chain

address fieid

Figure 15. Logic of a Transaction File Writer Program

Change Move first
flag byte record
from M field to
to L output
Change Move next
flag byte record
from F pointer to next
to M record field
|
Add 1to
next record
pointer
Move next
record
field to
output

Write
output
record

End
flag on

Al
flag bytes

record 1
from control
array

Task Chaining

Terminal Printer Program

A second resource handler technique is using an
MRT/NEP program to perform the write operations to
the terminal printers. A single program of this kind can
take care of all the programming required to make
efficient use of these devices. One factor that has
made efficient use of these printers somewhat difficult
is that a program is notified when the printer receives a
message, but is not notified when the printer has
completed printing the message. A negative return code
is returned from an output operation to the printer if it is
still busy, but line activity is increased if a program
repeatedly retries the operation without an intervening
wait. By chaining to a single MRT/NEP for all terminal
printing, the user tasks can keep printers busy, reduce
pauses between messages, and yet not burden the
communication line by testing for busy conditions. The
following example describes a way to implement a
resource handler program for terminal printers.

Example

A program needing to make use of a printer chains to
the MRT/NEP printer task, passing the record to be
printed along with the request, including, if needed, an
identification of the terminal printer. The printer program
is residing in main storage with an accept input
operation pending.

The program uses the TP buffer as the storage medium
for the print queue by processing one message
completely before accepting input on the next message
waiting in the TP buffer.

CAUTION

If there is a backlog of messages queued in the TP
buffer using up all available space, subsequent task
chain requests are rejected and the request is not
queued by CCP. Terminal requests to the TP buffer are
queued and honored immediately when space becomes
available. Therefore, even when the requesting program
retries the request, space still may not be available and
the system may be limited to the speed of the terminal
printers.

52

The program accomplishes the task of keeping the
printer busy by performing variable waits. With the
timer support and the use of the wait op code, the
printer program puts a message to a printer and issues
a variable wait, dependent upon the number of
characters to be printed. One way to determine
message length in RPG Il programs when SUBR92 is
not used is to load the record from the requesting
program into an array with enough one-position
elements defined to hold the longest record and then to
scan backward through the array to find the first
nonblank element, thereby determining the number of
characters to be sent to the printer. This value
determines the output length value for the put operation
to the printer and is used as an algorithm to set the
value for the wait operation code. Number of characters
divided by characters per second plus time for printer
carriage return and line spacing equals seconds of wait.

Coding must be in the program to handle the -14 return
code, but the occurrence of this should be infrequent
with proper design.

In many cases, more than one printer is in the system,
and messages from a terminal are sent to a specific
terminal printer. Either the to printer name will have to
be passed with the task chain data or the from terminal
name will have to be passed with the program using an
array and a lookup operation to match a from terminal
name to the proper output printer.

The CCP/Disk Sort program is a program product that
is used to sort disk files according to user specifications.
The functions of CCP/Disk Sort are similar to the
functions of the System/3 Disk Sort Program, except
that a user of CCP/Disk Sort can generate a sort object
program that can be executed as a user task under CCP
control. Multiple sorts, each having a unique program
name, can be run concurrently under CCP. CCP/Disk
Sort object programs must be generated offline from
CCP.

Sort programs can be requested by the system operator,
a terminal operator, or by another program through a
chain task command (System/3 Model 15D only—see
Chapter 7, Task Chaining). The requested sort program
issues an accept input operation (PGMDATA-YES must
be specified on the PROGRAM assignment statement)
and then releases the requesting terminal, if the
requester was a terminal. Thus, a requesting terminal is
free for other work while the sort is running. The sort
program cannot communicate with a terminal while the
program is running. If the sort program is running when
a shutdown command is entered, the program is
allowed to complete before the shutdown process
begins.

For each sort program, the input file(s) must have
consecutive input (CG) access type, the work file must
have consecutive add (CA) access type, and the output
file must have consecutive output (CO) access type
(PROGRAM assignment statement).

The sort input file(s) may be shared, but the sort work
file and output file cannot be shared (NOSHR on the
PROGRAM assignment statement).

If task chaining is specified in the CCP/Disk Sort header
specification, a chain task request is issued by the
generated sort module for a task to follow the sort task.
The name of the task to be chained to by the sort
program must be passed to the sort program as
program data with the sort program request.

Chapter 8. Sort Under CCP

CONSIDERATIONS FOR USING CCP/DISK SORT

With CCP/Disk Sort, as with ali other system facilities,
tradeoffs must be made to make the operating
performance of the system fit your requirements. For
example, using CCP/Disk Sort may increase processing
unit utilization; nonshareable files may conflict with other
program requests; response time may increase; and
main storage availability may cause program requests to
be rejected. These are performance factors that must be
considered when using CCP/Disk Sort. Some of the
benefits you may realize are: workloads in using
departments can be spread throughout the day; master
file status can be current to the latest transaction; batch
run time requirements can be reduced; and the need to
shut down CCP may be reduced.

TRANSACTION-ORIENTED PROCESSING WITH
CCP/DISK SORT

The sort program can be used in online
transaction-oriented processing applications. For
example, the input items making up one order can be
sorted for that order. Sorting for each order will, of
course, increase the system time required for each order
and may well take more total time for one day’s
processing than if one sort were run to process all
orders at the end of the day.

Therefore, the decision whether or not to incorporate
sort programs into a transaction-oriented processing
application is not always an easy one to make. Order
entry applications are an obvious ptace to start using
CCP/Disk Sort, but the number of transactions (orders)
per day must be considered. If the system is near its
limit of transaction capabilities using batch sort
procedures, then CCP/Disk Sort programs probably
should not be used in an application. If, however, the
application bottleneck is that picking ticket slips are sent
to the warehouse twice a day with a resultant rush in
the warehouse workload, then perhaps full
transaction-oriented processing may be a wise course to
follow.

Figure 16 describes a transaction-oriented order entry

application using the facilities of task chaining and
CCP/Disk Sort.

Sort Under CCP 53

ORDERS Program

ORDERS is an SRT program that coliects orders entered
by an operator at a 3277 terminal. The ORDERS
program accesses the customer master and shipping
master files and updates the inventory master file. For
each item, the ORDERS program chains to the XWRITE
program, passing the transaction information with the
chain task request. The terminal operator presses a PF
key when the last item for an order has been entered;
this causes ORDERS to pass a last record flag to the
XWRITE program.

Customer
Master
ORDERS
\ Accept
Accept
Shipping orders
Master and pass to
resource
/ handler
Chain ‘ XWRITE
PF K
Inventory ey
Master
End
Data with XWRITE chain task request
last L
XWRITE | terminal | o0orq | invoice | customer warehouse item information
name flag number | number location

Assignment Statement

// PROGRAM NAME-ORDERS,PGMDATA-YES ’
FILES-'CUSTMAST/IR/SHR, SHIPMAST/IR/SHR,

INVENTRY/IRU/SHR',DFFMTERM-1,DFFNDF-n P
DFFSFDT-n

Figure 16 (Part 1 of 6). Example of Using CCP/Disk Sort and Task Chaining (Model 15D Only)

54

XWRITE Program

XWRITE is a never-ending program that accepts
transaction information from the ORDERS program and
writes transaction records to the transaction file
(XACTION). When XWRITE receives a last record flag
from the ORDERS program, XWRITE issues two chain
task requests. The first request is for the INVWRT
program, which prints the billing invoice on the system
printer. The second request is for the SRTWRT
program, which writes order items from the transaction

file to a sort input file.

XWRITE
Accept
Update
pointers L Transaction
and write File
records
< SRTWRT | Chain INVWRT >
Transaction Record
retative nextd invoice | customer | warehouse) - . terminal
record reclort number | number location ftem information name
or las

Data with SRTWRT chain task request

INVWRT

first
record

invoice
number

customer
number

Data with SRTWRT chain task request

SRTWRT

first
record

invoice
number

Assignment Statement

// PROGRAM NAME-XWRITE,NEVEREND-YES,PGMDATA-YES,

FILES-'XACTION/DO/SHR'

Figure 16 (Part 2 of 6). Example of Using CCP/Disk Sort and Task Chaining (Model 15D Only)

Sort Under CCP

55

INVWRT Program

INVWRT is an SRT program that reads order items from
the transaction file, reads shipping information from the
shipping master file, and prints billing invoices on the
system printer. INVWRT also updates the customer
master file.

Transaction

File
INVWRT
\ Accept
Write

Customer invoice Bitling

- - .
Master and update Invoice

/ customer \/—
Shipping Y
Master

End

Assignment Statement

// PROGRAM NAME-INVWRT,PRINTER-YES PGMDATA-YES,
ENDMSG~-NO, FILES-'CUSTMAST/IRU/SHR,
SHIPMAST/IR/SHR,XACTION/DG/SHR'

Figure 16 (Part 3 of 6). Example of Using CCP/Disk Sort and Task Chaining {(Model 15D Only)

56

SRTWRT Program

SRTWRT is an SRT program that writes records from
the transaction file to the sort program input file, chains
to the sort program, then goes to end of job. Because

SRTWRT uses the sort input file as CO {consecutive

output) access type, old data in the file is written over,
and the file can be reused.

SRTWRT

Transaction

Accept

Retrieve
transaction
records and

Fi e o Input
ile write into \ P
sort input
Chain SORT
End
Sort Input Record
invoic . . .
invoice | customer waref.mouse item information
number | number location

Data with SORT chain task request

SORTBI

PIKWRT

invoice
number

customer
number

Assignment Statement

// PROGRAM NAME-SRTWRT,PGMDATA-YES, ENDMSG-NO,
FILES-'XACTION/DG/SHR,SORTIN/CO/NOSHR'

Figure 16 (Part 4 of 6). Example of Using CCP/Disk Sort and Task Chaining (Model 15D Only)

Sort Under CCP

57

SORT Program

SORT is an SRT program that sorts transaction records
into warehouse location sequence and then chains to a
terminal print program (PIKWRT). Warehouse location
information is inserted into the transaction records by
the ORDERS program.

Sort
Input

Sort [Sort
Output
file \ P

Sort Chain [PIKWRT >
Work

Data with PIKWRT chain task request

invoice customer

PIKWRT number number

Assignment Statement

// PROGRAM NAME-SORT,PGMDATA-YES,ENDMSG-NO,SORT-YES,
FILES-'SORTIN/CG/NOSHR, SORTOUT/CO/NOSHR,
SORTWORK/CA/NOSHR'

Figure 16 {Part 5 of 6). Example of Using CCP/Disk Sort and Task Chaining (Model 15D Only)

58

PIKWRT Program

PIKWRT is an SRT program that prints a picking ticket
with a mailing label header on a remote terminal printer
at the warehouse location. Items are printed in
warehouse location sequence, as they appear in the sort

output file.

Sort
Output PIKWRT
\ Accept

c Write the
Mustomer picking

aster / ticket

Y

Shipping End
Master

Assignment Statement

// PROGRAM NAME-PIKWRT,PGMDATA-YES,ENDMSG-NO,
FILES-"'SORTOUT/CG/NOSHR,CUSTMAST/IR/SHR,
SHIPMAST/IR/SHR',DFFMTERM-1,DFFNDF-n,

DFFSFDT-n, TERMS~-"'PRINT'

Figure 16 {(Part 6 of 6). Example of Using CCP/Disk Sort and Task Chaining (Model 15D Only)

Picking
Ticket

Sort Under CCP

59

60

This chapter presents system security/integrity
considerations for an online system using local or
remote terminals. Some of the information applies
specifically to operating 3270 terminals under CCP, but
most of the information is applicable regardless of the
terminal type used.

System security is defined as protection of computer
data, programs, and devices against damage, loss,
unauthorized access, or unauthorized use. The scope of
system security also includes protection of other assets
against damage or loss through misuse of computer
facilities.

System integrity is defined as preservation of the
accuracy and completeness of data and programs. The
scope of system integrity includes the capability to
prove the accuracy and completeness of data and the
capability to restore the system and files after an
unscheduled interruption in processing.

in a batch environment, system security/integrity is
usually maintained by keeping copies of master files,
batch balancing and editing input transactions before
update, and keeping a control book. Source documents
are accompanied by transmittal slips and, since the
whole data processing operation takes place in a central
location, procedures for maintaining system

security /integrity can be relatively uncomplicated.

In an online environment with local or remote terminals,
the requirements are somewhat more complex. This
chapter covers the following five aspects of maintaining
system security/integrity in an online environment:

Transaction logging
Audit trail

Control procedures
Data security
Backup and recovery

In each of these areas, plans should be developed
concurrently with the application and should be an
integral part of the overall operating plan.

Chapter 9. System Security/Integrity

TRANSACTION LOGGING

In a batch system, input data that is used to update files
is normally recorded in cards or on diskettes. The
system reads the data in these records (transactions),
edits it, and writes it to disk. The resulting disk file
might then be sorted and used to update master files. If
a system failure occurs during the master file update,
the procedure is to copy master files back from backup
files, and then rerun the job. Effectively, input
transactions are being logged to disk before using the
data for update purposes.

In an online system, a somewhat similar approach can
be used; that is, transactions received from remote
terminals can be written to a transaction file (or
transaction log file) on disk. However, master files
would not usually be updated with this data in batch
mode, because an inquiry to a master file would provide
only information as of the most recent master file
update, and transaction-oriented processing could not
be done. Logging transactions to disk is a good
procedure because it allows rerunning a job, if
necessary, and thus restoring system integrity after a
failure. This is one of the reasons for logging all
transactions in an online system. Another reason is that
the disk file can be used to provide an audit trail
through the system (see Audit Trail and Control).

The $TRLOG program on the Model 15D can be used to
assist the user in applications requiring transaction
logging. This program provides both batch and CCP
programs with the ability to log data to tape. The data
logged can be used to create tape audit trails,
transaction logs, program use statistics, terminal use
statistics, and debug information.

Transaction Data

What data should be logged in the transaction file? This
question can only be answered by the requirements of
the system, and for this reason, recovery, restart, and
audit requirements should be kept in mind when
designing a system or new application. Not only do
master files have to be restored after a failure but
terminal operators must be able to start again from the
point at which the system failed; that is, they need to
know what transactions if any have to be reentered.

System Security/ Integrity 61

A checklist of data fields that can be contained in each
transaction record is given below. This list is a
suggested minimum for restart and audit purposes; the
actual fields depend on the needs of the application:

+ Record code

» Date and/or time of transaction (if timer support is
available) '

» Reference numbers, for example, account numbers
and order numbers

« Amount or value of transaction

« Content of master file fields before update

» Terminal name or identification code

» Operator name or identification

» Program name

» Master file name

The record code (if used) should be unique because it
can be used as an indication of what program created it
and which master file was updated by that transaction.
To ensure that the record codes are unique, a register

should be kept of all the codes allocated: this register
should be cross-referenced to program and master files.

’

The transaction file could be shared by all tasks running
in the system, and records could be added to it
whenever changes or updates are made to master files.
A benefit of logging all transactions to one file as they
occur is that it is possible to reproduce the sequence of
all transactions, whereas if separate files were kept for
each application, the entries would have to be time
stamped in order to establish this relationship. If timer
support is available, better performance may be possible
if each application has its own transaction file, because
the potential for disk access conflicts is reduced.

When you establish a record length for your transaction

file, make sure that you allow for new applications that
may require a longer record.

62

AUDIT TRAIL

An audit trail is a generalized recording of who did what
to whom, when, and in what sequence. For example, it
may be necessary to trace a receipt in an accounts
receivable application backwards from the master record
it updated to its point of origination.

An audit trail should provide the information that would
be used by someone outside of a data processing
department to prove that the system is doing the job
correctly. The audit trail additionally should provide this
person with sufficient information as to who, what, when,
and why so that errors can be identified and corrected.
If errors are discovered, it must be possible to isolate
the conditions that gave rise to the error: for example, it
may have been a program failure, a combination of
events, or even fraudulent action by someone in the
organization. After the reason for the error is identified,
the next question that must be answered is: Has this
occurred before and who or what was affected by the
error?

Implementing an Audit Trail

A good way to start planning the implementation of an
audit trail system is to discuss the system with the
financial controller, accountant, and perhaps a
representative of the company’s external auditor. Find
out what information they need to perform their function
and how they want the information presented. Perhaps
they would like to be able to put test transactions
through the system to verify the audit trail. There are
many different ways to handle an audit and each
company has its own specific needs.

The transaction logging file discussed earlier in this
chapter is a good place to start, since some of the
information stored there for restart purposes is also
required for the system audit function. Based on the
uses recommended for it so far, the transaction logging
file may be very large, but a transaction logging file is
the type of file that can be purged each day, and the
data contained in this file can be split into historical files
by application. For example, all transactions related to
accounts receivable could be written into a history file
for this application. Only the data required to
reconstruct the sequence of events by account need be
copied into this file. These application history files need
not be online at all times, but only when required for
audit purposes.

An audit trail can be a method of controlling or ensuring
system integrity after the event and, as such, can make
it possible to prove or check that transactions generated
by the day-to-day operations of your company have
been processed correctly. However, an audit trail alone
does not provide adequate control in a company’s daily
operations. Control procedures are also required that
will prevent errors.

CONTROL PROCEDURES

The objectives of control procedures are to ensure
accuracy and to prevent accidental or intentional
modification or loss of data. Control must be exercised
in two areas: manual procedures and programmed
procedures.

Manual Control Procedures

Manual control procedures apply in all areas of a
company operation. Discussion in this manual is limited
to control within the data processing department in an
online environment.

Manual control procedures are best achieved by the
division of duties among employees. One employee
should not be solely responsible for, or have full control
over, critical aspects of the business without some
counter check over which the employee does not have
control.

Programmed Control Procedures

In a batch environment, the conventional control
function of punch/verify, batch balance/edit of input
works well because of the centralized operation. The
accuracy of input is proved before being used to update
files and prepare reports. In an online system, the
source input is randomly entered at the terminals, and
data is not necessarily accumulated into batches before
submission to the computer system, so the control
function has to be slightly different.

This is not to say that online processing precludes the
use of batch control methods. On the contrary, if local
or remote 3741 data entry terminals were used for
remote data capture, the data submitted for processing
to the central system would still, in fact, be batched,
and the conventional control and error correction
procedures could be used to advantage.

Interactive Control

However, if the terminal is operating in an interactive
manner in which the program must accept input,
perform an edit, and update {if accepted), the control is
then more difficult to impose. For example, what
assurance do we have that the amount entered by the
terminal operator was the amount paid by the customer
in an accounts receivable application? There is little
point in asking the terminal operator to enter the
amount twice, since errors may be repeated. The
program could compare the amount entered with the
customer balance from the master record and, if equal,
accept the amount as correct. If the balances are
unequal, the program could issue a query to the
operator and allow the operator to either correct or
confirm the balance. As a final check, perhaps the
overall receipting operation could accumulate totals by
terminal and, in this manner, make any discrepancy
traceable to any one terminal operator.

The reconciliation of control totals with the actual
amounts taken should not be done by the terminal
operator who entered the amounts. Part of the
reconciliation statement should reflect all receipts where
the amount entered is confirmed, but less than the
outstanding balance. The supervisor then is able to
establish whether or not a pattern exists in the
nonbalance situations. The pattern would be that check
payments that can be verified were recorded accurately
but cash payments are less than the balance owing on a
fairly regular basis. Do not display the balance
outstanding to the receipting operator; simply display an
indication that the amounts differ, and display the
amount entered by the operator. If a customer requests
his outstanding balance, he could be referred to another
operator who can make the inquiry but is not able to
update the record.

Methods of control in an online terminal environment
depend upon circumstances. When determining
methods of control, the system designer must anticipate
the error situations that the terminal operator may
encounter and take appropriate precautions. An operator
working under pressure cannot be relied upon to do a
visual verification of every entry made. Check-digit
verification can be used for account numbers, and
related names and addresses can be displayed to ensure
posting to the correct account. Use of modulus 10 and
modulus 11 to calculate self-check digits is explained in
the following text.

System Security/ Integrity 63

Using Modulus 10 to Calculate Self-Check Digit: The
subroutine:

64

Multiplies each digit of the account number by the
corresponding digit of a weighting factor. A
five-digit weighting factor is used in this
example—~the X could be shifted to any digit of the
account number.

Accountnumber 5 2 0 5 § 3
Weighting factor 2 1 2 X 1 2
10 2 0 6 6

Adds each digit of the products:
1+0+2+0+6+6=15

Determines the next number divisible by 10 that is
higher than the sum computed in step 2.

From the sum 15, 20 is the next higher multiple
of 10.

Subtracts the sum computed in step 2 from the
number determined by step 3. The difference is
the self-check digit.

20-15=5

The number 5 is the self-check digit.

Using Modulus 11 to Calculate Self-Check Digit: The
subroutine:

Multiplies each digit of the account number by its
corresponding digit of the weighting factor.

Accountnumber 5 2 0 6 3 2
Weighting factor 6 5 4 3 2 X

30 10 0 18 6

Adds the products:
30+10+0+18+ 6 =64

Determines the next number divisibie by 11 that is
higher than the sum computed in step 2.

From the number 64, 66 is the next higher
multiple of 11.

Subtracts the sum computed in step 2 from the
number determined by step 3. The difference is
the self-check digit.

66 -64 =2

The number 2 is the self-check digit.

Online Batch Control

If a system requires that a terminal operator enter data
in a batch mode using source documents for reference,
the method of control could be very similar to the
method of control for a batch operation. The control
could take the form of requiring the operator to enter
first a batch header record that contains a count of the
number of records to be entered and a total of the value
of these records. Each data record entered would be
edited against master file records, and error messages
would be displayed at the terminal, allowing corrective
action to be taken. No master file update is done at this
time. As each data record is accepted by the system, it
is written to the transaction file.

The count and value fields in the header record are
reduced for each transaction. When the cperator
indicates the end of the batch by pressing a PF key on
the 3270 terminal, rather than the ENTER key, the
program updates the master files if these control fields
are zero. If, however, the header control fields are not
zero, the program displays the record entered and the
balance in the control fields. The operator can then
make the necessary corrections and again indicate the
end of the batch. If the net effect of the changes now
satisfies the imbalance value, then the program performs
the update task.

In effect, the balance and edit function has been
removed from the data processing department, and the
responsibility for accurate data entry has been placed in
the user departments. The terminal operator in the user
department must be provided with sufficient data to
enable the operator to make the necessary corrections.

Data Processing Department Controls

In addition to the control within user departments,
procedures must be adhered to within the data
processing department. The data processing department
should not generate any input transactions to the
system. All transactions should originate from outside
the department. The responsibility of the computer
department should be limited to ensuring that
information entrusted to its care is not lost, destroyed or
distorted.

When CCP is shut down, the normal batch-type controls
should be applied for processing files updated or
created by the online system. For example, before
purging the transaction log file, extract from it totals by
record type and application. These totals should be
reconciled with master file opening and closing balances
before making backup copies of master files for
security. The reason for doing this is to make sure that
all updates have been made to master files; there may
have been a system failure during the day and, if the
recovery procedures were not done correctly, there may
be some records in the transaction file that have not
updated their corresponding master records. As far as
user departments are concerned, they have entered their
data correctly, so it is up to the data processing
department to process it correctly.

System Security/ Integrity 65

DATA SECURITY

Data security can be defined as the protection of data
aginst damage, loss, unauthorized access, or
unauthorized use. Two basic aspects of data security
are considered here; they are (1) physical security
measures and (2) programmed security measures.

Physical Security Measures

Physical security measures traditionally include locks on
doors, alarms, guards, fireproof safes, and off-site
storage. These measures are concerned with protecting
tapes, disk files, printed reports, and programs against
destruction, such as by fire, and against access by
unauthorized people. Most organizations recognize that
fire can destroy data files, and they protect against this
by storing copies of master files in fireproof safes or in
vaults that are remote from the data processing center.
It must also be recognized that it can be just as
damaging to an organization’s operation if confidential
information falls into the wrong hands as if this
information is physically destroyed.

All of these security considerations are as important in
an online environment as they are in a batch
environment. However, in an online environment, there
are some additional areas of concern. The distributed
nature of a terminal network makes the control of
access more difficult. The person using a terminal may
not be visible to the system operator, and therefore it is
more difficult to verify that the person is authorized to
use the terminal. Data security in this kind of
environment requires a combination of physical and
programmed security measures.

66

Risk Versus Cost

When evaluating physical security measures, two
questions must be asked: What is the risk of a
particular event occurring? What would the cost be to
the company if the event did occur? The answers to
these questions should be assessed by management
outside the data processing department. Absolute
security is impractical, if not impossible, to achieve,
therefore, the security budget should be allocated to
cover the risks where the threat of loss is the greatest.

For example, the loss of certain data due to fire might
cost the company $40,000. The probability that this fire
might occur is once in 20 years. On the other hand, an
event that causes a $20 loss and is likely to occur every
working day is a greater risk. Calculating the cost per
year of a particular loss can be a useful way to establish
the relative importance of the loss.

Types of security threats are:

» Physical hazard: fire, water damage, power loss,
wind, explosions, civil disorder

» Hardware/program failure
-« Carelessness: terminal operator, system operator

« Malicious damage: programmer, operator, terminal
user

+ Crime: fraud, embezzlement

The above list can be expanded into a table that gives
yearly risk probability and estimated dollar loss to your
operation. The probability times the dollar loss provides
the yearly weighted risk values. The sum of the
weighted risk values is the estimated loss if no security
measures are taken. It is then reasonable to assume
that annual operating expenses {including depreciation of
capital equipment) equal to the aggregate estimated
iosses could be justified for security measures.

Fraud Protection

A final aspect of physical security that should receive

close attention is that of fraud protection. The following

are suggested measures to protect the system against
fraud:

+ Balance cash and accountable items frequently.

» Apply strict validity checks.

« Control access to tape and disk libraries.

« Batch balance and control online files.

« Log and review computer operator actions.

+ Thoroughly test and review new programs or changes
to existing programs before including them in the
system program.

- Aliow only official operators into the computer area.

» Control access to data and terminals.

- Divide user and staff responsibilities.

+ Restrict the knowledge of how the total system
works to the fewest possible people.

» Set up an internal audit group whose function is to
continuously review the system for security breaches.

- Maintain an orderly operation. Do not leave tapes,
disks, and listings lying around the computer area.

+ Keep a high standard of documentation but make
sure that this documentation is kept in a secure
location.

Programmed Security Measures

In a batch environment, controi of access to information
in files is a function of the data processing department
staff. If a printout of sensitive information is required by
management, a request is submitted, usually to the data
processing manager, who perhaps retains control of the
only copy of the program to do the job. The resulting
printout and any carbon paper used are then handed to
the person requesting the printout. In a remote terminal
operation, where all files are online, access controls
must be built into a system, otherwise sensitive
information could be available to any person who had
access to a terminal.

When designing a system or application in a remote
terminal environment, the designer should look at the
data to be stored in the files and decide:

« What level of security must be applied to this data?
« Which group of people needs access to this data?

« To what extent is modification allowed and by
whom?

The information stored in computer files can be
classified according to the degree of security required to
prevent unauthorized access. For example, the following
classifications might be used:

Top secret

Secret

Company confidential
Unclassified

The type of data that might be allocated to these
categories depends upon an organization's security
policy. Some information may be of such a sensitive
nature that management would never allow the data to
be stored in computer files.

System Security/Integrity 67

Besides being classified by degree of security, data can
be classified departmentally. For example, production
planning information should be of little interest to
anyone in the payroll and personnel departments. The
reverse situation, however, is not necessarily true.
Payroll and personnel information is generally of interest
to anyone in the company. It is necessary, therefore, to
inhibit access to data on the basis of a need to know.
Data access can also be inhibited on the basis of what
the terminal operator should be allowed to do with the
data. Even within one department employees have
different responsibilities: some may be allowed to
access only parts of a data file and not be permitted to
make any changes, while others in the same department
are allowed to access greater portions of the data and in
some cases make changes to, add to, or delete records
from the file.

Sign-On Security

The password used for CCP sign-on must be considered
the lowest level of security; it provides, at best,
protection against the casually interested outsider. It
would not be difficult for a more determined individual
to discover the password and sign on to the system.

The user security interface to CCP ($CCPAU) allows
sophisticated techniques to be used and allows the
passwords to be changed as frequently as required.
Changing a password provides better security and the
more frequently it is changed, the greater the protection.
However, frequent changes give rise to other problems,
such as the need to advise authorized users more
frequently of the new password and the possibility of
confusing the passwords. If an operator writes down
the password instead of memorizing it, security is
immediately compromised.

Sign-on security, whatever the method used, has a
limitation in that too many people need to know the
current password(s) and the more people who know it,
the lower is the level of security.

68

Access to Data Files

Three general methods of limiting access to data files
are described here:

+ Using another password, in addition to the sign-on
password

Using CCP symbolic file support

« Manipulating terminal names

Using Additional Password(s): An easy way to limit
access to data files is to use another password that is
checked by the program as the first data field entered
from the terminal with the program request. If this
password is coded in the program, then it is necessary
to recompile the program whenever the password needs
to be changed. A better way to check passwords wouid
be to have the passwords recorded in an execution-time
table of valid passwords that are related to employee
numbers within a department. Each employee would
then be given a unique password that he should
memorize and not divulge to anyone.

The operator should not enter password data with the
program request, since this data would be displayed on
the screen. Rather, a first time routine should be
included in the program to prompt the operator with a
brief message to ENTER PASSWORD. The input fields
for this screen format would be coded as nondisplay
field types {type 7 or 8). The operator, after being
prompted, would enter department number, employee
number, and unique password. The program would then
use the combined department number/employee
number as an argument to look up the table of
passwords for a password that corresponds to the
operator's entry. If the operator’'s entry was not the
password assigned to the operator in the table, the
program could put an appropriate message to the screen
and allow the operator to try again. If, on the second
attempt, the passwords do not match, the program
should release the terminal, put a message to the
system operator, and record the event on a sign-on type
log record.

The log records should contain as much information as
possible within the constraints of log record size. These
records should be analyzed regularly for frequency of
occurrence by type, location, terminal, employee
number, and time, in order to pick up patterns as soon
as possible. If a pattern does emerge, it could indicate
that someone is attempting to enter the system without
authorization.

in order to establish departmental security where
information can only be accessed by authorized
personnel in that department, individual password table
files have to be set up for each data file. As a further
precaution, the terminal names or IDs could be included
in these table files.

Some individuals within the company may need
authorized access to files and programs that cross
departmental boundaries. These people would have
their employee numbers and passwords included in
more than one table file.

In order to protect against unauthorized modification of
data or deletion of records, another byte could be added
to the table entry and coded according to type of access
allowed. This byte value could then be used to set an
indicator that conditions execution of portions of the
program code. An update type program could then be
selectively restricted to allow inquiry only.

A limitation in these security procedures is the fact that
if someone were to gain access to the disk containing
the password table files, then this individual would have
complete access to all data in the system until the
passwords were changed. For this reason, the disk
containing the password tables should be protected as
well as possible.

Symbolic File Technique: An easy way to secure files
accessed by SRT programs is to write the programs to
use SYMFILE support, so that the operator must use the
/FILE command to reference the file. To change the
password (actual file name), the user needs only to
change the assignment set and the OCL.

Manipulating Terminal Names: The following technique
can be used to allow a certain kind of transaction to be
done by only one operator using one of a selected
group of terminals: Alternate TERMNAMES can be
supplied to the selected terminals and the TERMS
parameter of the PROGRAM assignment statement can
be used to require that the requesting terminal’s
symbolic name be its alternate name. This requires that
(1) the operator know the alternate name and enter a
/NAME command to change the doing business as
name of terminal, and (2) that only one terminal at a
time can be used to run the transaction.

BACKUP AND RECOVERY

The goal of system backup plans and procedures should
be to minimize the impact of any breakdown in the
system and to recover from this breakdown as quickly
and economically as possible.

Most backup procedures used for batch systems also
apply to online systems. However, there are additional
backup considerations in online systems. In online
applications, the entire business can become dependent
upon the system; therefore, the system must have
reliable backup and recovery procedures.

Hardware Backup

Mutual hardware backup plans between users with
similar equipment have long been used for batch
oriented systems. However, this type of arrangement is
generally not practical in an online environment. Even if
an identically configured system could be located, the
delays and difficulty of establishing the necessary data
links would preclude relying on this approach to
hardware backup.

Online system hardware backup plans can vary
according to the business requirements and the cost of
implementing those plans. Hardware backup can range
from having a spare terminal or a standby modem to
completely duplicating the central system. The actual
level of hardware backup provided must be determined
by weighing the cost against the possible business loss
if the backup is not there when it is needed.

System Security/ Integrity 69

Data Backup and Recovery

Damaged or destroyed hardware can be replaced,
sometimes quickly, but lost data may be impossible to
replace or prohibitively expensive to replace.
Installations have had the central data processing facility
completely destroyed by fire and, because there was
good data backup, have recovered so quickly that their
customers were not aware of any disruption in service.
Other installations without data backup have had minor
programming failures that caused them to lose the
pointers to their transaction files, resulting in a great
financial loss and immeasurable loss in customer
satisfaction. The data in this case was not lost, but it
could not be read or recreated because of inadequate
data backup and recovery procedures.

The level of data protection can vary greatly without a
significant difference in cost of implementation. The
development of a backup plan and the testing of that
plan can provide a potential return far greater than the
time and effort involved. Developing a backup plan
includes analyzing the effect of a system failure on each
step of an application, defining appropriate recovery
procedures, and testing those procedures. It is
important that the procedures be tested. A crisis
situation is not the time to find the shortcomings of a
backup plan.

For backup and recovery purposes, data can be divided
into different categories. These are:

« Historical data

« Master files

« Data processed but not distributed
« Data logged but not processed

+ Data received but not logged

70

Historical Data

Historical or archives data is not used in day-to-day
processing and is retained on some media (such as
cards, magnetic media, or microfilm) in some secure
location, preferably off site. Any audit of the backup
plans should include trying to reconstruct current files
from these historical files. The audit should verify such
considerations as:

« Are the files always available?

+ Is the storage media compatible with present
hardware?

« Is the media protected against modification or
deterioration?

» Are copies of the programs that process this data
protected in the off-site location also? Is program
documentation available?

» How current are master files that are reconstructed
directly from these archives? What would be the cost
of making the reconstructed files more current?

« Are operating procedures and run books available?

« Is the data stored the right data?

Master Files

Master files are those files used in day-to-day
operations. Many users keep backup copies of all
master files on site and update them on a daily basis.
In this way, no more than one day's processing can be
lost and the transactions for that day are logged in the
transaction log file. The transaction log file is retained
until the daily update run has been completed
successfully.

Data Processed but not Distributed

If a system failure occurs during the day’s processing,
then data that has been processed but not distributed
must be considered. Master files have been updated,
but the output of the application is stored within the
system and is not recoverable. The transactions cannot
simply be rerun or the master files would reflect double
activity. A method that can be used is to. have the
application programs that process the transaction file
flag the header record of all orders processed. The
recovery program would be designed to begin
processing at the last order printed or distributed to
terminals and to process all the following transaction
records, but not actually update master files on flagged
orders.

Data Logged but not Processed

When the recovery program has processed all the
flagged orders, another category of data must be
recovered: the records in the transaction file that have
been received from the terminals but have not been
processed. If a system failure occurs, these records
must not be reentered by the terminal operators. The
operators must be notified as quickly as possible not to
enter more data because a recovery is in process. The
recovery program must scan the transaction file and
identify for the terminal operator the last record correctly
entered in the transaction file. If transactions are linked
together by terminal within the transaction file, the logic
of the recovery program can be much more
straightforward. The example in Chapter 7, Task
Chaining illustrates this type of linkage.

Data Received but not Logged
Data that has been received but not logged must be

reentered by the terminal operators. This data was in
main storage at the time of the failure and is now lost.

Loss of Transaction File Data

In many instances, the transaction file is the key factor
in a successful recovery from a system failure.
Transaction file data that is lost or unusable will have to
be reentered from terminals. If tape support is available,
the effect of losing transaction file data can be reduced
by running a program in the batch partition to copy the
transaction file to tape on a regular basis. If tape is not
available, transaction file data can be made less critical
if master files are backed up on a daily basis. If a
failure occurs in this case, a maximum of one day’s
input has to be reentered. If the master files are backed
up twice a day, then a maximum of one-half day’s input
has to be reentered. Even orders that have been
processed and printed have to be reentered so that
master files can be correctly updated. The printing of
the output can be bypassed for the duplicates to
prevent wasting forms.

Whichever method is used, the time required to reenter
records should be balanced against the time required to
back up files.

File Recovery Procedures

In the event that the CCP partition is abnormally
terminated, the system operator should have predefined
procedures available to assist in recovering files. If none
of the files used with CCP are add or output (load) files,
no special procedures are needed except to start the
CCP partition again. However, if add or output files are
used, the file recovery programs provided with the
system ($CCPRB or $RINDX) and $COPY can be used
to recover the file.

System Security/ Integrity 71

$CCPRB

The $CCPRB program works only on files defined for
the last CCP execution. It does not require any file OCL
statements. $CCPRB designates a new file {output or
load) as an existing file, and indicates that a consecutive
file is full. For each consecutive file, a user-written
program should be run after $CCPRB is run to search
the file for the last add or output record and copy all the
valid records to a temporary file. If the consecutive file
is defined to CCP as an add file, the temporary file
should then be copied back on top of the file CCP will
use, so that the file pointers reflect the last valid added
record. For an output file, the existing file should be
deleted after it has been copied, so that the CCP
start-up OCL will create another output file. At the end
of the day the last built file should be merged with the
temporary file from before the abnormal termination.
Add files or direct files should be used instead of
consecutive output files because less system operator
intervention is required to recover files.

For indexed files, $CCPRB sorts the keys and indicates
the location of the last data record entered into the file.
For indexed add files, $CCPRB sorts the added keys
into the existing keys.

For further information concerning $CCPRB, see IBM

System/3 Models 8, 10, and 12 CCP S ystem Operator’s
Guide, GC21-7581.

72

$RINDX and $COPY

For systems that are supported by $RINDX and the
ACCESS and SELECT statements of $COPY, different
procedures should be defined. $RINDX can be used to
recover batch files and CCP files. File OCL is needed for
this program. $RINDX ignores file OCL statements that
do not refer to an indexed file; therefore, a copy of CCP
start-up OCL could be used as input to this program.
Because this program only works on existing indexed
files {load to an old empty file also), it is suggested that
an empty indexed file be defined before CCP start-up
(by using $COPY or by writing a program that creates a
file but does not output records to the file). If an
indexed file must be created under CCP, the file shouid
be defined as an add file in the CCP program instead of
an output file. Then, when an abnormal termination
does occur, $RINDX should be run (using file OCL
statements) to recover the added records. CCP can then
be started again and the application programs can
continue to add to the existing file.

To restore consecutive add files, $COPY should be used
and the location and number of records parameters in
the CCP start-up OCL must be used. After an abnormal
termination of the partition, this location and number of
records must be used in a $COPY run to copy the file to
a temporary file. A user-written program should then be
run to search for valid records and copy those records
back over the original file used with CCP. Then CCP
can be started up again. It is suggested that the add
access be used instead of the output or load access,
since system design is easier and less operator
intervention is required for recovery. In all cases, the
files should be predefined (create a dummy or empty
file) before CCP start-up so the location and size of the
file is known if $COPY is needed to restore the file or
parts of it.

For further information concerning $RINDX, see one of
the following publications:

- IBM System/3 Model 12 System Control
Programming Reference Manual, GC21-5130

« IBM System/3 Model 15 System Control
Programming Reference Manual, GC21-5077

« IBM System/3 Model 15 System Control
Programming Concepts and Reference Manual,
GC21-5162

A queue is a waiting line or list formed by items in a system
that are waiting for service. Queuing theory equations
describe what happens in a system when queues develop
and the resulting effects on system performance; these
equations are quite complex. However, a basic knowledge
of queuing theory helps the designer of a CCP system to
determine system requirements and to understand the
effects of queues on the performance of the system. For
this reason, this chapter describes a simplified method of
using queuing theory.

SIMPLIFIED QUEUING THEORY EQUATIONS

The response time for one transaction is a function of the
arrival rate (A) of all like transactions and the service

time (S) required to process these transactions. Response
time to deposit money in a bank is a function of how many
deposits must be made and how long a deposit takes. Both
A and S must be in the same time units. For tele-
processing messages, this is usually given in seconds. The
utilization (U) of a facility by a transaction is the product
of the arrival rate and service times:

U (%) = arrival rate x service time
or
U{%)=AxS
Utilization ﬁay also be defined as the ratio of the actual

transactions serviced to the total transactions that could
be serviced:

actual transactions serviced
total transactions possible

U (%)=

The utilization of a facility is limited to 100%. if the
product of the arrival rate and the service time is greater
than 100%, more than one facility is required to handle
the arriving transactions.

Chapter 10. Simplified Queuing Theory

The next step contains the simplifying assumptions which
make this an estimate rather than an equation. If a facility
is used, transactions wanting to use that facility will have
to wait. The number of transactions waiting, or queued
(Q), can be estimated to be the utilization divided by 1
minus the utilization:

utilization
O T T T
1 - utilization
or
u
Q-=
1-u

The utilization of a facility will be between 0% and 100%
or between 0 and 1. If a facility had a utilization of 75%,
the Q = .75/(1 - .75), which means the queue contains on
the average three transactions.

Before a transaction can use a facility, it must wait for the
facility to service all transactions in the queue ahead of
itself. This wait time (W) is the product of the number on
the queue (Q) and the service time (S):

Wait = queue x service
or

W=QxS

Finally, the response time for a transaction is equal to the
wait time (W) plus its service time (S):

Response = wait + service time
or
R=W+S§
If a transaction must use several facilities serially, then the

total response time for that transaction is the sum of the
response times for each facility.

Simplified Queuing Theory 73

SIMPLIFIED QUEUING THEORY EXAMPLE

The remainder of this chapter outlines how the information
above can be used to study a system that includes the
following applications: order entry, inventory, cash
application and production inquiry.

The system requirements of an online system (for example,
how much processing unit main storage is required) are a
function of the number of transactions that must be
handled during a user’s peak hour workload. Simplified
queuing theory is a method of arriving at these require-
ments. Doing a volume study to determine system size
involves the following steps:

1. Define and flowchart the application to be done.
Use transaction-oriented program steps.

2. For each program step or transaction, determine:
a. How much key entry time.
b. How many disk accesses.
¢. How many characters will be passed between
the terminal and the processing unit.

3. Caiculate the number of transactions per hour (at
peak load hour, if applicable) for each application.

4, Determine the total number of transactions and
the total number of characters involved in the online
applications. Calculate the average number of
characters that make up a transaction.

5. For each line speed, calculate the line time required

to transfer an average transaction between a 3270
terminal and the processing unit.

74

10.

11.

12.

Based on the total number of transactions to be
handled in an hour, determine the line utilization
for different line speeds.

Calculate line response time.

Based on the total number of transactions to be
handled in an hour, the average number of disk seeks
per transaction, and the disk seek times for different
disk drives, determine disk utilization.

Calculate disk response time.

Based on the total number of transactions to be
handled in an hour and the average processing unit
service time for each transaction, determine the
processing unit utilization.

Calculate processing unit response time.

Based on the total number of transactions in an hour
by program and the processing unit time required

to process that load by program, determine the
number of user task areas needed and therefore,

the required processing unit size.

Step 1. Define and Flowchart the Application

Define the applications in terms of transaction-oriented
program steps. The following is a sample order entry
application. The flowcharts for the other applications are
shown in the descriptions for step 2.

Order Entry

[

Sold To

Ship To

Miscellaneous

Y

Items

Print

Step 2. Determine Activity for Each Program Step

For each program step, determine:

©

Key entry time (estimate, using three keystrokes per
second).

Number of characters to be sent between the terminal
and the processing unit. This number should represent
the total characters in and out, including both data and
control characters. The number of control characters

can be estimated at .20 times the number of data
characters.

- Number of disk accesses.

Order Entry

Program Step 1 {Sold To): Enter and validate customer
information.

- Key time = 12 seconds
e Line = 400 characters
One disk read indexed and one disk write direct = 4
seeks
Program Step 2 (Ship Toj: Same as sold to program.
Program Step 3 (Miscellaneous): Enter and validate
miscelianeous information.
« Key time = 20 seconds
» Line = 400 characters
< Disk (write) = 2 seeks
Program Step 4 (Items): Enter and validate items, and
allocate inventory.
= Key time = 6 seconds
= Line = 100 characters

Disk = 8 seeks

Simplified Queuing Theory

75

Program Step 5 (Print): Print invoices: sort invoices into
warehouse sequence; update accounts receivable.

° Key time = 0 seconds

* Line = 1,900 characters

* Disk = 26 seeks

Inventory

Stock Receipts

-

Inquiry

Inventory
Update

]

Program Step 1 (Inquiry): Retrieve vendor orders.

* Key time = 10 seconds
* Line = 1,200 characters

> Disk = 12 seeks

Program Step 2 (Inventory Update): Validate and update

inventory; close orders; print warehouse routing.

Key time = 40 seconds

* Line = 200 characters

= Disk = 30 seeks

76

Cash Application

Cash Receipts

Y

Inquiry

Apply
Cash

Program Step 1 (Inquiry): Retrieve open items.

* Key time = 3 seconds
* Line = 1,500 characters

+ Disk = 8 seeks

Program Step 2 (Apply Cash):

Key time = 20 seconds

* Line = 100 characters

Disk = 12 seeks

Production Inquiry

Edit and update open items.

Parts
Inquiry

Program Step 1 (Inquiry): Retrieve parts information.

Key time = 3 seconds
Line = 200 characters

Disk = 2 seeks

Step 3. Determine Transactions per Hour for Each Online
Application

Using (1) the total number of transactions required to
accomplish an application, (2) the application volumes, and
(3) the total hours available to handle the load, determine
how many transactions must be processed in an hour to
complete the job. The total for all applications represents
the workload the system must be able to handle.

Example: Order Entry

= Transactions per order:

Sold to 1
Ship to 1
Miscellaneous 1
Items 12
Print _1_
16 Transactions required to do
one average order
* Volumes:
L.ocal 1,600 orders
Remote 750 orders
Total 2,250 orders

* Orders per hour (convert to peak hourly load):
60% of daily volume done in first 4 hours

.60 x 2,250 orders/day + 4 hours = 337.5 orders/hour

Simplified Queuing Theory

77

Summary Chart

The following chart summarizes the total transactions per
hour for the system.

Volume Transactions Total
Application per Day per Application per Day

Order entry 2,250 16 36,000

21,600

Stock receipts 450 2 900

Cash receipts 600 2 1,200
Production

inquiry 2,250 1 2,250

1,350

Hours to
Complete

8

4

8

4

System transaction total

———

Transactions
per Hour

60% processed in 4 hours?
5,400!
112

225

60% processed in 4 hours!

338

6,075

160% of these transactions must be processed in a 4-hour period. Use these numbers to compute

the transactions per hour.

78

Step 4. Calculate the Average Number of Characters per

Transaction

The following chart summarizes the number of characters
per transaction and the total characters per hour for each

application program step.

Transactions
{Peak Load)
per Hour
337.5 sold to
337.5 ship to
337.5 miscelianeous
4,050.0 items (12 x 337.5)
337.5 print
56.0 inventory inquiry
56.0 inventory update
112.5 cash inquiry

112.5 cash application

338.0 production inquiry
6,075.0

1,777,250 characters per hour

Number of

Characters on Total

TP Line per
Transaction

400

400

400
100
1,900
1,200
200
1,600
100

200

6,075 transactions per hour

Characters
per Hour

135,000
135,000
135,000
405,000
647,250
67,200
11,200
168,750
11,250

67,600

1,777,250

= 293 characters per

transaction average
(rounded)

Step 5. Calculate Line Time to Transmit an Average
Transaction

For each line speed, calculate the line time required to
transfer an average transaction to (or from) the processing
unit. This example does not consider line turnaround times.
Turnaround times should be considered in actual use of
queuing theory.

Line Speeds in Equivalent Time in Seconds

Bits per Second Characters per to Transfer 293

{bps} Second {cps) Characters/Transaction
2,400 300 .98

4,800 600 .49

7,200 9200 .33

9,600 1,200 .25

Direct attach’ 5,000 .06

1The direct attach line speeds vary from 1,000 to 5,000 characters

per second depending upon the length of the data. The shorter
the message being sent to the terminal the lower the effective data
rate will be.

Simplified Queuing Theory 79

Step 6. Calculate Line Utilization
If the transaction volume per hour of the system is known,

the line speed that provides optimal utilization can be
chosen.

+ Transactions/hour x average/characters/transaction =
characters/hour

6,075 x 293 = 1,779,975
¢ Characters/hour + 3,600 = characters/second
1,779,975 + 3,600 = 494

¢ Utilization (U) = characters/second = line speed in
characters per second

or = actual used + total available

* Queue=U/1-u

Line Speeds
bps cps Utilization Queue
4,800 600 .823 4.65
7,200 900 .549 1.22
9,600 1,200 .412 .70
Display adapter 5,000 .099 11
Display adapter 1,000 .494 .98

Step 7. Calculate Line Response Time

Line response times can be calculated as follows:

Service Time

Service time is defined as the line time required to send or

receive a transaction. Service time for an average transaction

{293 characters—see step 4) can be calculated as follows,
assuming a 4,800 bps line (600 characters/second):

Service time = 293 characters average/transaction +
600 characters/second

S = .49 second line time required to send/receive
293 characters

80

Utilization
Assuming two balanced 4,800 bps lines (each line handling
one-half of the transaction volume), line utilization can

be calculated as foliows:

1/2 x 494 characters/second (see step 6) = 247
characters/second

U = actual used *+ total available
= characters/second + 600 characters/second

= .41 or 41% utilization

Wait Time

Wait time is defined as the time a transaction must spend in
the queue waiting to be serviced. This time is based on (1)
the length of the queue; that is, how many transactions

are pending, and (2) the service time; that is, the line time
to send or receive a transaction.

Wait = queue x service

Q=U+(1-U)

A1+ {1 -.41)

.70 transactions pending on the average

W=QxS

.70 x (293 character average + 600
characters/second)

.34 second average wait time

Line Response Time

Line response time for online application transactions

{using two 4,800 bps lines) is shown in the following chart:

Program
Steps

Sold to

Ship to
Miscellaneous
Items

Print

Inventory inquiry

Inventory update
Cash inquiry

Cash application

Production inquiry

Characters/
Transaction

400

400

400

100

1,900

1,200

200

1,500

100

200

Actual
Service

.66

.66

.66

7

3.16

2.00

.33

2,50

a7

.33

Average
Wait

.34

.34

.34

.34

.34

.34

.34

.34

.34

34

Average
Response
(Seconds)
1.00
1.00
1.00

.51
3.50
2.34

.67
2.84

.51

.67

Simplified Queuing Theory

81

Step 8. Calculate Disk Utilization * Disk utilization is a function of how many seeks and how

much time is required for each seek:
Disk utilization can be determined based on the number of

transactions per hour, the number of disk seeks per trans- Total transactions/hour x
action, and the disk seek time for the disk drive, as follows: average seeks/transactions = total seeks/hour
* Calculate transactions per hour and seeks per hour: 6,075 x 8.3 = 50,503
Disk Seeks/ Total Seeks Total seeks/hour + 3,600 seconds/hour =
Transactions per Hour Transaction per Hour total seeks/second
337.5 sold to 4 1,350 50,503 +~ 3,600 = 14.0
337.5 ship to 4 1,350 Disk utilization = total seeks/second x disk time in
seconds/seek (for 3340)
337.5 miscellaneous 2 1,350
U= AxS
4,050.0 items 8 32,400
= 14.0 x .0358
337.5 print 26 8,775
= 501 or 50.1% utilization
56.0 inventory inquiry 12 672
Queue = U=+ (1-U)
56.0 inventory update 30 1,680
= .601+(1-.501)
112.5 cash inquiry 8 900
= 1.0 seeks pending on the average
112.5 cash application 12 1,350
338.0 production inquiry 2 676

6,075.0 transactions per hour system totals 50,503 seeks per hour
 Calculate seeks per transaction:

Total seeks/hour =+ total transactions/hour =
average number of seeks/transaction

50,503 ~ 6,075 = 8.3

* Determine average disk seek times:

3340 Seek 25 ms
Rotational delay 10.8 ms
35.8 ms
5445 Seek 60 ms
Rotational delay 125 ms
725 ms

5444 Seek 126 ms (high speed)
Rotational delay 20 ms
146 ms

82

Step 9. Calculate Disk Response Time
= Wait time = gueue X service

W= QxS

1.0 seeks x .0358 seconds/seek

(0.036 seconds

il

Response time = wait time + service

R

W+S

.036 seconds + .0368 seconds

i

.072 seconds

The following chart summarizes disk response times for
transactions in each program step:

Average Average Total Disk
Seeks/ Response/Seek Response/Transaction
Programs Transaction (Seconds) {Seconds)
Scid to 4 .072 .288
Ship to 4 .072 .288
Miscelianeous 2 .072 .144
ltems 8 .072 .576
Print 2% .072 1.872
fnventory inquiry 12 .072 .864
Inventory update 30 072 2.160
Cash inquiry S .072 676
Cash application 12 .072 .864
Production inquiry 2 .072 .144

Simplified Queuing Theory 83

Step 10. Calculate Processing Unit Utilization

Processing unit utilization is a function of the average
processing unit service time per transaction and the peak

hour transaction volume.
¢ Processing unit service time:
Transactions per
Peak Hour
337.5 ship to
337.5 sold to
337.5 miscellaneous
4,050.0 items (12 x 337.5)
337.5 print
56.0 inventory inquiry
56.0 inventory update
112.5 cash inquiry
112.5 cash application

338.0 production inquiry

6,075.0 total transactions

Processing Unit Time' to

Average time to process a transaction =

it

Process per Transaction Processing Unit Time
{in Seconds) in Seconds per Hour
A 33.75
1 33.75
1 33.75
.5 2,025.00
.8 270.00
A 5.60
.8 44.80
A 11.25
.8 90.00
A 33.80

2,581.70 seconds of processing unit time

total processing unit time
total transactions

2,581.7 seconds + 6,075 transactions

.4 seconds per transaction

The processing unit service time is an estimate. Programs using multiply and/or divide tend to run longer because
these calculations may take up to .15 seconds to execute. Use an average of 25 microseconds to execute one line

of RPG Il code.

84

* Processing unit utilization:

Total transactions/hour x average time/transaction =
total processing unit time in seconds required per hour

6,075 x .4 = 2,430

Processing unit utilization = total time in seconds
divided by 3,600

2,430+ 3,600

.67 or 67% utilization

Queue = U+ (1-U)

.67+ (1-.67)

2.0 transactions pending processing

Wait time = queue x service

20x .4

.8 seconds average wait

Simplified Queuing Theory 85

Step 11. Determine Response Time for Processing Unit
and Total System

Average processing unit response time (service time plus

wait time) for each program step is shown in the following
chart:

Average Total

Service Average Wait Processing Unit
Time Time Response Time

Programs {Seconds) (Seconds) {Seconds)

Ship to A .8 .9

Sold to A .8 9

Miscellaneous A .8 .9

Items .5 8 1.3

Print 8 .8 1.6

Inventory inquiry .1 .8 .9

Inventory update .8 .8 1.6

Cash inquiry 1 .8 .9

Cash application .8 .8 1.6

Production inquiry .1 .8 .9

86

The average system response time per transaction is shown
in the following chart (load and termination times are added
to those response times determined previously):

Program

Sold to

Ship to
Miscelianeous
Items {MRT)
Print

Inventory inquiry
Inventory update
Cash inquiry
Cash application

Production inquiry

Line + Disk +

1.00

1.00

1.00

.51

3.50

2.34

.67

2.84

.51

.67

.288

.288

.144

.576

1.872

.864

2.160

576

.864

.144

Response Time in Seconds

Processing
Unit

1.3

1.6

1.6

1.6

+ Load'
1.0
1.0
1.0
A2
1.0
1.0
1.0
1.0
1.0

1.0

+ Termination

Total

System
Response

Time

3.688

3.688

3.544

2.536

8.472

5.604

5.930

5.816

4.474

3.214

' oad time for SRT programs on 3340 disk systems is estimated as 1.0 second {for 5444s it would be
2.0 and 1.0 respectively); termination time is estimated as .5 seconds.
2 Attachment time to a resident MRT program is estimated as .1 seconds; release time is estimated as .05 seconds.

Simplified Queuing Theory

87

Step 12. Determine System Size

The size of the processing unit required is based on how
many user task areas are needed to handle the programs.,
When a user program is resident in main storage, it occupies
a tasking area. Each tasking area can be utilized 0% to 100%.
To compute the utilization of a tasking area for a specific
program, use the formula:

transactions per hour x system response
3,600 seconds per hour

= utilization

Computing the utilization for each program using this
formula yields the following results:

Transactions Average System Program Residency Utilization of a
Programs per Hour Response (Seconds) per Hour (in Seconds) Tasking Area
Sold to 3375 3.688 1,245 .35
Ship to 337.5 3.688 1,245 .35
Miscellaneous 337.5 3.544 1,196 .33
Items (MRT) 4,050.0 2.536 10,271 2.85
Print 337.5 8.472 2,859 .79
Inventory inquiry 56.0 5.604 314 .09
Inventory update 56.0 5.930 332 .09
Cash inquiry 112.5 5.816 654 .18
Cash application 112.56 4474 503 14
Production inquiry 338.0 3.214 1,086 .30
5.47 Total

A simple way to determine the minimum number of areas
required is to add the utilization for all programs and round
up to the nearest whole number:

Number of user task areas required = 5.47

{or rounded up) = 6

Programs utilizing a task area less than 100% can share a
task area with other programs that do not require a
dedicated task area (less than 100% utilization}. When the
task area utilization computation results in greater than
100% utilization (/tems in this analysis has a utilization

of 285%), multiple task areas with duplicate copies of the
program are needed. In this case, three copies of /tems

are required to handle the transaction volumes.

The user task areas could be utilized as follows:

MRT MRT MRT SRT SRT SRT
® Soid To ® Ship To
® Miscellaneous | ® Production
fnquiry
ltems 1 | ltems 2 | Items 3 | ® Inventory ® Inventory Print
Inguiry Update
® Cash ® Cash
Application Inguiry
95% 91% 92% 79%

Utilization: 95% 95%

If a task size of 14K bytes for each program is assumed,
this analysis would indicate a system that would have a
minimum of 84K bytes available for user tasks. The
total utilizations for each task area are high and would
not allow for growth in transaction volumes or for
additional applications. A larger system should be

considered in this case.

Your IBM representative has additional design and
performance analysis facilities. Contact your representative
for a more complete and detailed analysis.

Simplified Queuing Theory

89

90

This chapter contains specific tips and techniques that
can be used to improve the performance of a CCP
system.

CCP-ASSOCIATED BUFFERS

All CCP input and output data passes through several
buffer areas. There are four buffer areas associated with
a user task:

« The user record area described with the file

« The output hold area used by the display format
facility (DFF)’

« The TP buffer (TPBUF) specified at startup’
« The line buffers

The lengths of these areas can affect the performance
of a CCP system and, in some cases, changing the
length of an area can improve performance. Each of
these areas is described in the following paragraphs to
aid the user in determining the best length to use for
these areas to achieve maximum performance.

User Record Area

An input/output area is reserved for each file in a
program. The length of this area is determined by the
record length of a file and is specified in the user
program. This area is part of the user program after
compilation. Output data is placed in this area by the
user program; input data is placed in this area by an
input operation.

Output Hold Area

The output hold area is allocated by CCP only if the
terminals in the assignment set use DFF (DFF3270-YES
specified on the TERMATTR assignment statement).
CCP uses this area to merge output text and user data
for all DFF output operations.

0On the Model 15, the TP buffer functions as the output hold
area.

Chapter 11. Performance Tips

On System/3 Meodels 4, 8, 10, or 12, CCP allocates a
hold area for each BSCA line (maximurn of two areas).
The hold areas are appended to the DFF module that

executes in the user program area.

On a Model 15, the hold area i1s dynamically aliocated
by CCP. Program 5704-SC1 uses a location in the TP
buffer for the hold area. Program 5704-SC2 uses an
area in either the TP buffer or an optional 2K DFF buffer
{one for each BSC line), as specified by the DFFBUF
parameter of the BSCALINE assignment statement. The
hold area for a Mode! 15 is used only for user DFF put
operations {see the paragraphs that describe the TP
buffer use for the Model 15 and 15D in this section for
additional information).

The length of the output hoid area is specified on the
BLKL (block length) parameter of the TERMATTR
assignment statement. For best performance, the size of
the area should be large enough to hold the largest
output display format in this assignment set. However,
on the Model 15, if the total buffer area is too small to
handle the traffic, decreasing the size of the put area
should help improve total throughput. To determine the
BLKL value, find the length of the largest output display
format (the sizes are printed by the display format
generator routine) and round that size up to the next
.25K. If multiple TERMATTR statements are specified,
the largest BLKL value is used for the output hold area
size.

Specifying a value (512 minimum) smaller than the
length of the largest output display format causes the
format to be sent to the terminal in blocks. Blocking
usually causes the screen to blink as each block of text
is displayed on the terminal. The advantage to blocking
is that part of the format can be displayed on a terminal
in about half the time required to display an entire
(unblocked) message. The total time to display the
entire format is about the same for both blocked and
unblocked formats.

If the majority of the formats require about 500 bytes
and only a few require 1,000 to 1,500 bytes, then a
BLKL value of 512 should be specified to more
efficiently use the TP buffer. As an alternative, the large
formats could be divided into smaller formats. On the
Model 15D (5704-SC2) with DFF buffer support
specified, the hold area is 2,048 bytes (2K) for each
BSC line that supports DFF buffers.

Performance Tips 91

TP (Teleprocessing) Buffer

The TP buffer is an area of main storage used by CCP
tasks as a temporary bufter to hold the pararneter list
and input or output data. The minimum size of the TP
buffer is specified on the MINTPBUF parameter of the
SYSTEM assignment statement.

TP Buffer for Models 4, 8, 10, and 12

The TP buffer for Models 4, 8, 10, and 12 is logically
one area as shown in Figures 17 and 18.

Output Operations: For output operations (Figure 17),
this area is used only for put-no-wait operations (for
DFF put operations, the output hold area is used; for
non-DFF put wait operations, the data is moved directly
from the user record area to the line buffer). When a
put-no-wait operation is specified, the parameter list and
output data stream are moved from the user area {170
area in the user program) to the TP buffer until the fine
buffer for that operation is freed. [f the TP buffer does
not have sufficient space to contain the parameter list
and data, the put-no-wait operation is handled as a put
wait operation.

Input Operations: For input operations (Figure 18), the
TP buffer receives terminal and console data from the
line buffer(s). For invite input and DFF get operations,
CCP first examines the input parameter lists to
determine the largest required buffer space. If sufficient
space is available in the buffer, the space is allocated
and CCP proceeds to poll the terminals for data. |f data
is received from one terminal and data is to be invited
from other terminals, another area in the TP buffer is
allocated before polling the other terminals for input.

If CCP determines that sufficient TP buffer space is not
available, CCP waits until space is released before
polling the terminals. Buffer space is released after an
accept input operation moves data from the TP buffer to
the user 1/0 area.

92

The TP buffer is also used to store commands and
program requests received from a terminal. The space
allocated from the TP buffer before polling a command
terminal includes space for the largest program
characteristics table (PCT) entry and the amount of data
expected from a terminal. If the space allocated for the
input data is more than that required for the data
recerved, the excess space is freed. Polling is not
initiated on a line until sufficient TP buffer space is
available.

The calculations for determining the minimum value for
the TP buffer are described in IBM System/3 Models 8,
10, and 12 CCP System Reference Manual, GC21-7588.
An estimated operating size for the TP buffer can be
calculated using the formula given below. The optimal
value can then be determined by varying the size of the
TP buffer until optimal performance is achieved. The
operating value for MINTPBUF is:

MINTPBUF value = 1.2 x ([T + 1] x L)
where:

T is the number of tasks generated in your CCP
system.

L is the average length of the following two values:

» The maximum length of text to be put by the user
programs

» The maximum length of text to be received by the
user programs

The value for MINTPBUF is always rounded up to the
next .26K boundary at startup; therefore, the value for
the buffer area calculated at startup is always equal to
or larger than the value specified at assignment or
startup.

Console
Qutput

Console
r::> 10
Buffer

)
s
2
Q
=
| | { Put Wait
Input | | Output
Record | User | Record [Put No-Wait! > TPf
Area I Program | Area Buffer
| e
| I 1 >
- 2
S °
a s
TR =3
T =
(@]

Hold .
Area DFF Put Line 1/2

Output : Line Buffer
~
/

Lig sufficient room does not exist in the TP buffer, put no-wait operations
are changed to put wait operations.

Figure 17. TP Buffer Usage for Output Operations on the System/3 Models 4, 8, 10, and 12

Performance Tips 93

Input
Record
Area

User
Program

P e s e]

i< Get/Accept

TP
Buffer

K Invite

Line
Buffer
Line 1

K Invite

Line
Buffer
Line 2

Invite

Console
1/0
Buffer

<]

Console

Figure 18. TP Buffer Usage for Input Operations on the System/3 Models 4, 8, 10, and 12

94

TP Buffer for the Model 15

The following section describes the TP buffer for
Models 15 (5704-SC1)} and 15D (5704-SC2) not using
DFF buffer support.

The TP buffer for a Model 15 is logically separated into
three areas as shown in Figure 19:

« Put data area: Used for put parameter lists and for
output data.

« Put/get area: Used for put parameter lists and get or

put data.

« Invite parameter list area: Used for invite parameter
lists.

At CCP startup, the TP buffer is automatically allocated
into the three areas. The following steps show the
calculation of the lengths of these areas:

« Put data area: The length of this area is determined
as follows:
— If all terminal attributes in this assignment set are
DFF, then the area is 516 bytes long.
— If all terminal attributes in this assignment set are
non-DFF, then the length is the greater of
MAXRECL + 4 or BLKL + 23.

— If the terminal attributes in this assignment set are

both DFF and non-DFF, then the length is the
greater of the two preceding values.

« Put/get area: CCP requires as a minimum that this
area be large enough to handle the largest

system-initiated invite input or program request from

the system operator console.

The length of the largest system-initiated invite input

is the largest of the following values:
- PGMREQL + PCT + 4

PGMREQL is the length of the longest possible
program request as specified on the SYSTEM

assignment statement. The size of the largest PCT

is calculated using the following formula:
PCT =34 + (4 x NF) + (2 x NT)

NF is the number of disk files used by the
program.

NT is the number of terminals specified on the
TERMS parameter of the PROGRAM
assignment statement.

— PRUFLNG + PCT + 11

PRUFLNG is the largest PRUFLNG value specified
on a PROGRAM assignment statement. PCT is

calculated the same as in the preceding formula.
— COMMANDL + 4

COMMANDL is the value specified on the
SYSTEM assignment statement.

The area required for program requests from the
system operator console is calculated as follows:

104 + PCT

PCT is calculated the same as in the preceding
formula.

The above caiculation is the minimum value accepted
by CCP for the put/get area. The estimated
operating size can be calculated using the formula
given below. The optimal value can then be
determined by varying the size of the put/get area
until optimal performance is achieved. The estimated
operating size is:

Size = 1.2 x {((IN+ 1) x L)
where:

N is the number of CCP tasks generated into the
DSM system. If there is the probability that many
MRT programs will be executing concurrently,
increasing this number by one for each MRT may
yield improved throughput.

L is the average of (1) the minimum put/get area
size calculated above and (2) the average length of
text expected to be sent to or returned from a

terminal.

Invite parameter list area: The length of this area is
calculated as follows:

(N x 23) + 4 for 5704-SC1
(N x 20) + 4 for 5704-SC2

N is the number of input capable terminals.

Performance Tips g5

Put ‘ Put Line Output
Output Put Data ‘ Buffer
Record Area’ Line 1/2
Area | L _ _ Put
Put
Console /0

User Put/G 1/0 ‘—

ut/Get K Invite Buffer
Program Area

e T I —

Input Line Input
ReF::ord K____Invite Input Buffer/ <—
ine 1/2
Area <_Accept Input Line
Invite
Parameter
List Area

Lig on put operations the put«data area is not available, the output data is
placed in the put/get area.

Figure 19. TP Buffer Usage for Input/Output Operations on the System/3 Mode! 15 or Model 15D without DFF Buffer Support

96

Remember that the total TP buffer size is obtained by
CCP from the MINTPBUF keyword on the SYSTEM
assignment statement. Thus, the values calculated for
put area, put/get area, and the invite parameter list area
should be added together and the result should be used
for this keyword.

All input data must pass through the TP buffer; that is,
the data is moved from the line buffer into the put/get
area of the TP buffer. The input data remains in the TP
buffer until the task for which it is destined indicates
that the area is free. User tasks free this area by issuing
an accept input operation. The amount of TP buffer
needed by the input data depends upon the status of
the terminal. For example, a terminal in command,
non-PRUF mode requires less TP buffer (PCT +
program data) than a terminal in command, PRUF mode
(PCT + format data).

The Model 15 does not have separate output hold
areas; the put and put/get areas function as the output
hold area for all lines. The put data area of the TP
buffer insures only that eventually an area will be free
such that a put operation can be performed. The BLKL
value given should be large erough to handie the largest
put operation to assure the immediate handling of an
output operation. If the TP buffer is only large enough
for one put operation at a time, and two lines are being
used, system performance is degraded.

For DFF put operations, CCP attempts to get main
storage equal to the output text length of the DFF
format. Assuming the output text is larger than the area
available, CCP again requests main storage using the
previous length (rounded up to a multiple of 256 bytes)
minus 256 bytes. If the request is successful on the
second or succeeding try, the output text is blocked. If
the length is reduced to 512 bytes and the request still
fails, the program requesting the put operation is placed
in a wait state until main storage becomes available.
(This usually means that the put area is currently being
used and will be available soon.)

For example, a user program issues a DFF put with a
length of 950 bytes. The buffer is allocated as follows
(areas not shaded are available):

516 Bytes Put Data Area

1000 Bytes Put/Get Area

Invite
Parameter
List Area

The total output text (950 bytes) does not fit into the
put data area. The put/get area does contain sufficient
space for the output text and the put operation is
performed.

Suppose the buffer is allocated as follows:

516 Bytes Put Data Area
100 Bytes
Put/Get Area
8
768 Bytes
Invite

l = ’} Parameter
y List Area

Performance Tips 97

In this case, the buffer is fragmented in such a way that
there is not sufficient buffer space to contain the entire
text, and the text is blocked using the 768 bytes in the
put/get area.

Suppose the buffer is allocated as follows:

516 Bytes Put Data Area
150 Bytes
Put/Get Area
400 Bytes
Invite
Parameter
List Area

In this case, the largest area available for output text is
in the put data area. The output text is sent in blocks
using the put data area.

For non-DFF put operations, a get storage request is
performed using the length of the output text. If the
output text does not fit in the available area, the
program requesting the put operation is placed in a wait
state until sufficient TP buffer becomes available.

98

The number of terminals is also a factor in determining
the size of the TP buffer: the size of the invite
parameter list area is calculated at startup time using the
number of input capable terminals. The more terminais
specified, the larger the invite parameter list area will be.
Besides this area, the number of terminals affects the
overall size of the TP buffer. For exampie assume the
put/get area is large enough to hold only two input
messages, there are more than two input-capable
terminals on the system, and the probabilities are such
{due to transaction arrival rate) that two transactinong wiil
always be pending (which is to say the put/get area of
the TP buffer will always be in use): in this case, all
output will be funneled through the put area of the
buffer. System performance will be degraded because
output requests are processed serially rather than
concurrently.

If, in this example, two BSC lines are used. both may
NOt be active at the same time because of the funneling
effect. Better performance may be achieved in this case
by specifying a size for the TP buffer large enough to
handle both the maximum number of concurrent input
messages and two maximum output data streams. This
would allow put requests for each BSC iine to be
operated on concurrently.

As a minimum value, it two BSC lines are used, the TP
buffer should be large enough to hold twice the
maximum input data stream. If the TP buffer does not
have enough available space for two input data streams,
then only one line is polled.

On the Model 15D {5704-SC2), when the system
operator issues a display terminals command or a
secondary display user's command, the word WAIT will
appear on the terminal name line if at that point in time
a program operation is waiting for the TP buffer in order
to complete. The wait indication on the display does not
necessarily mean that a performance problem exists
regarding the TP buffer. However, if the frequency of
wait indications increases as terminal response times
increase, the TP buffer size could be the limiting
resource causing the ionger response trnes.

TP Buffer for the Model 15D (5704-SC2) with DFF
Buffer Support

The TP buffer for a Model 15D with DFF buffer support
is logically separated into the areas shown in Figure
19.1:

» Put data area: Used for put parameter lists, non-DFF
output data, and DFF output data for BSC lines
without a DFF buffer.

+ Put/get area: Used for put parameter lists, get data,
non-DFF output data, and DFF output data for BSC
lines without a DFF buffer.

+ Invite parameter list area.

» DFF buffers (one for each BSC line with DFF buffer
support): Used for DFF output data.

Note: The DFF buffers are not included in the TP
buffer size.

At CCP startup, the TP buffer and the DFF buffers are
automatically allocated. The following steps show the
calculation of the lengths of these areas:

» Put data area: The length of this area is determined
as follows:

— If all terminal attributes in this assignment set are
DFF, then the area is 516 bytes long.

— If all terminal attributes in this assignment set are
non-DFF, then the length is the greater of
MAXRECL + 4 or BLKL + 23.

— If the terminal attributes in this assignment set are
both DFF and non-DFF, then the length is the
greater of the two preceding values.

Put/get area: CCP requires as a minimum that this
area be large enough to handle the largest
system-initiated invite input or program request from
the system operator console.

The length of the largest system-initiated invite input
is the largest of the following values:

— PGMREQL + PCT + 4

PGMREQL is the length of the longest possible
program request as specified on the SYSTEM
assignment statement. The size of the largest PCT
is calculated using the following formula:

PCT =34 + (4 x NF) + (2 x NT)

NF is the number of disk files used by the
program.

NT is the number of terminals specified on the
TERMS parameter of the PROGRAM
assignment statement.

— PRUFLNG + PCT + 11

PRUFLNG is the largest PRUFLNG value specified
on a PROGRAM assignment statement. PCT is
calculated the same as in the preceding formula.

— COMMANDL + 4

COMMANDL is the value specified on the
SYSTEM assignment statement.

Performance Tips 99

The area required for program requests from the
system operator console is calculated as follows:

104 + PCT

PCT is calculated the same as in the preceding
formula.

The above calculation is the minimum value accepted
by CCP for the put/get area. The estimated
operating size can be calculated using the formula
given below. The optimal value can then be
determined by varying the size of the put/get area
until optimal performance is achieved. The estimated
operating size is:

Size =12 x{(N+ 1) x L)
where:

N is the number of CCP tasks generated into the
DSM system. If there is the probability that many
MRT programs will be executing concurrently,
increasing this number by one for each MRT may
yield improved throughput.

L is the average of (1) the minimum put/get area
size calculated above and (2) the average length of
text expected to be sent to or returned from a

terminal.

+ Invite parameter list area: The length of this area is
calculated as follows:

(N x 20) + 4
N is the number of input capable terminals.

« DFF buffer: The length of each allocated buffer is
2,048 bytes (2K).

100

DFF output for any BSC line with an optional DFF buffer
is processed through that buffer. Each buffer can
handle a DFF format that is up to 2,048 bytes long if
the line buffer is large enough to contain the entire
format (see Line Buffer in this section for information
concerning the line buffer size). If a DFF format is
longer than 2,048 bytes or the line buffer is smaller than
the length of the longest format, the format is
transmitted in blocks.

Specifying DFFBUF may enhance the performance if TP
buffer utilization is at its maximum.

For maximum performance when using DFF buffer
support, specify a DFF buffer for each BSC line used for
a DFF put operation, and specify a line buffer size that
is large enough to handle the longest format (DFF or
non-DFF) expected. For example, if the longest DFF
format is 512 bytes (or less), some improvement in
performance may be possible if two or more BSC lines
use a DFF buffer. This improvement is obtained
because two or more DFF put operations can be
scheduled and these operations can be in various stages
of transmission at any given time.

Each DFF buffer allocated reduces the user program
area (UPA) by 2K bytes.

Put

Put

Line
Buffer

Console
1/0
Buffer

K Invite Input

Line
Buffer

)

Put
Output Put Data
Record Area!
f = Area e e =
Put!
User Put/Get
Program Area
Input
Record
Area K__Accept Input
Invite
Parameter
List Area
DFF Buffer
BSC Line 1
DFF Buffer
’ BSC Line 2
\ J
_ DFF Output Data
-
:> DFF Buffer
BSC Line 3
\ j > DFF Buffer
BSC Line 4

kL JJ U J T

1lf on put operations the put data area is not available, the output data is
placed in the put/get area.

Output
3270

1/0

1

Input

Maximum of four {one for each
BSC line) DFF buffers (optional).

Figure 19.1 TP Buffer Usage for Input/Output Operations on the System/3 Model 15D (5704-SC2) with Optional DFF Buffer Support

Performance Tips 101

Line Buffer

All input and output text passes through the line buffer.
There is a line buffer associated with each line. The size
of the line buffer is determined by the BLKL value
{rounded up to the next .25K boundary) of the
TERMATTR assignment statement associated with this
line.

This space is doubled if DBLBUF-YES is specified on
the BSCALINE assignment statement or if ASCII
transmission code is specified {see note). Double
buffering may reduce data transmission time in a
multiple block transmission environment (for example, if
a 3270 sends data to the computer in blocks of 256
characters or less). However, double buffering uses
more storage than single buffering.

The size of the line buffer is determined by the lengths
of the input text and the output text. For 3270 terminals
only 256 is needed for input, but any size could be
needed for output text. Thus, if the system has limited
main storage available, it is best to specify a single
buffer of 512 bytes. To improve response time, specify
a larger line buffer so that fewer of the output
messages need to be blocked. If further improvement in
response time is desired and the system has sufficient
main storage, double buffering can be specified.

Note: If ASCII is specified, an additional buffer, equal to
the line buffer, is allocated for translation of the output
text from EBCDIC to ASCII.

Figure 20 shows the interaction of the line buffer, TP
buffer, and the user area for CCP operations.

102

CCP TASK SIZES

In addition to specifying the size of the TP buffer, the
user must specify a minimum size for an area to load
and execute user tasks. This area is called the minimum
user program area (MINUPA) and is specified on the
SYSTEM assignment statement. The size of this area
depends on the size of the user tasks that are being
executed. The storage requirements of each user task
are calculated using the following elements:

» The size of the object program

« The size of the largest DFF field descriptor table
(FDT) used by the user task

+ The number of terminals and formats used by the
task

The last two elements form the program appended
storage (PAS) for DFF. The minimum size for each
element is .25K.

The TASKSIZE parameter (5704-SC2 only) should be
considered for calculating user program storage
requirements.

The size of the object program is obtained from the
compiler listing. The size of the FDT is obtained from
the display format generator listing. The amount of
storage required for terminal information and format
information is calculated as follows:

Storage required = 127 + (37 x NT) + (18 x NF)
where:

NT is the number of terminals

NF is the number of formats
Once the sizes of the elements are known, the size of
each is rounded up to the next .25K boundary. The
sizes of the elements are then added together to form

the storage requirements of the user task. On a Model
15, this total is rounded up to the next 2K boundary.

Operation

Put' (Models 4, 8,
10, and 12—no DFF)

Get (Models 4, 8,
10, and 12—no DFF)

Put-Then-Get!
(invalid for DFF)

DFF Put or
DFF Put-No-Wait

Get (Model 15)
DFF Get

DFF Accept Input
DFF Stop Invite

Put (Model 15)
Put-No-Wait
{no DFF)

Invite Input

Accept Input or
Stop Invite Input

TP Buffer

Output or
Hold Area DFF Buffer Line Buffer
Models 4, 8, 10, 12 Model 15
DFF adds DFF adds
control > control
characters characters
DFF strips
control
characters
> Held until
line buffer
is free >
Hold for

accept input

! For console operations, console buffer is used instead of the line buffer.

Figure 20. Buffer Interaction

Held from
previous
invite input

Performance Tips

103

Minimizing Storage Requirements

Knowing how each element is developed allows some
judgment to be made on where storage requirements
can be reduced, especially if one of the elements is just
over a .25K boundary. Some techniques are to:

+ Define fields with a type F output field class. This
reduces the FDT by 14 bytes for each field defined
as type F, but the fields defined with this
classification cannot be modified using a put override
operation.

» Combine two fields into one. This eliminates an FDT
entry.

» Redesign a format as two formats. This reduces the
size of the FDT, but input data can be received only
from the format last sent to a terminal.

+ Define each line of data as a unique format. This
reduces storage requirements, but this method
increases line and disk activity.

+ Use the most efficient program design (MRT, SRT,
etc) for the application. This affects storage
utilization (see Chapter 2 for additional information).

Techniques for reducing RPG | program size are given
in the RPG Il Reference Manual, SC21-7504.

Model 12 Examples

For example, a task to be executed on a Model 12 has
an object program size of 7,158 bytes (7.0K or 7,168
bytes, rounded to the next .25K), an FDT size of 140
bytes (256 bytes rounded), and two terminals with one
format for a size of 219 bytes (256 bytes rounded). The
total storage required for this user task is 7.5K bytes.
The FDT and terminal/format requirements for this task
are already at minimum sizes (.25K each): the only way
to reduce the storage requirements for this task would
be to reduce the size of the object program by at least
246 bytes, to 6.75K.

If another Model 12 task has an object program size of
5,510 bytes (5.5K rounded), an FDT size of 284 bytes
{.5K rounded), two terminals and one format for a size
of 219 bytes (.25K rounded), storage requirements can
be reduced by decreasing the size of the object program
and the FDT. Reducing the object program by 134
bytes reduces the storage requirement by 256 bytes.
Reducing the FDT by 28 bytes reduces the storage
requirement by ancther 256 bytes.

104

Model 15 Example

On a Model 15, the total storage requirement for a user
task is rounded up to the next 2K boundary. Here it is
even more important to take a closer look at the
elements in a task for storage saving techniques. For
example, a Model 15 task has an object program size of
6,236 bytes (6.25K rounded), an EDT size of 154 bytes
(.25K rounded), and two terminals and three formats for
a size of 255 bytes {.25K rounded). The total storage
for this task is 6.75K, rounded to the next 2K boundary
is 8.0K. Removing 768 bytes (.75K) from the object
program (all other elements are already at minimum)
reduces the total user task storage requirements by
2,048 bytes {2K).

DFF CONSIDERATIONS

Figure 21 shows the disk accesses for DFF operations.
The table indicates the following considerations:

« If only one format is used in a program, there are
fewer accesses for the succeeding uses of the format
{only one disk read from the format index in CCPFILE
and only one read of the FDT from the library).

« The proximity of CCPFILE to the object library affects
response time. This is important not only for reading
the format index, but for every program load (DFF or
non-DFF) since the PCT must be read for each
program load.

+ Processing transients is faster than reading from the
object library since the disk head is more likely over
the transient area. Thus a put override operation is
faster than a put operation.

« There are 42 format entries in each sector of the
format index. The index is read into the FDT area,
which is part of the storage area that is appended to
user programs for DFF operations. Thus the size of
the FDT area determines how much of the index is
read in at one time. The index is in the order in
which the format directory entries exist in the library.
Thus, if frequently used entries are loaded into the
library first, they will be found faster and executed
faster.

» Unused formats should be deleted from the library
because they may cause unnecessary reads of the
format index.

Number of | Area

Operation Item Accessed Accesses Accessed

Put Read format index® 1® CCPFILE
Read FDT from disk@ 1 Obiject library
Read 3270 text ! 1@ Obiject library

Put override Read FDT® 1 Object library
Build text® 2 Transient©

Copy Build text® 1 Transient@

Accept input | Read format index (PRUF)® 1 CCPFILE
Read FDT from disk® 1 Object library

Invite input No disk accesses

! Always done.

Read only if last format used is not the same as the current format.

Read only for the first time format is used in the program.

One access if not blocking, or one access for each block, if blocking.

. These reads are in addition to those required to support the operation.
Additional reads required if index is not in the first read. The index

is read into the FDT area.

N

3

Figure 21. Disk Accesses for DFF Operations

CCP DISK ACCESSES For example, an SRT program that has disk files and
releases the requesting terminal requires the following
Figure 22 shows the number of disk accesses for number of accesses, assuming no performance options:
program loads and terminations. It is usually slightly
faster for the user task to release a requesting terminal Models 4,8, Models 15A,
on a Model 15A, B, and C, and then execute termination 10,and 12 B,and C Model 15D
than to allow CCP termination routines to release the
terminal (seven transient loads rather than eight). On the Load:
Model 15D, however, it is faster to allow CCP Transients 20 14 14
termination to release the terminal (two transient loads Other 1 1
rather than five). $CCPFILE 1 ! L
Object
library 1 1 1

Following is a listing of the number of transient loads

for certain CCP operations:
P Terminate 12 12 7

Number of
Operation Transients Total 34 29 24

Get attributes

Acquire terminal
Acquire/set attributes
Release terminal
Release/keep

Accept input (nonresident)
Stop invite

Task chain

NW=HbwhPw-=

Performance Tips 105

106

Number of Disk Accesses]
Models 4, Models 15
Operation Program 8,10,and 12| A, B, and C | Model 15D
Program load | MRT (already loaded) 5 3 3©
MRT or SRT (not in storage)
Program request and allocation | 11 5 5®
If disk 1 — —
If required terminals 1 - -
If unit record devices 1 1 1
File allocate {each chain
of DTFs) 1 1 1
Open (each chain of DTFs):
Disk O ® 7 8 8®, 0,0
Printer® 4 4 £
Card device@ 5 5 5@
Disk and printer® 9 9 9@)
Disk, printer and card
device® 10 10 109
Disk (FORTRAN files)@ 4 3 O]
PTAM files@ 5 5 O,
Buffer prime Wait Wait No wait
Relative record file - i —
CCP/Disk Sort work file 2 5 5@
Read PCT from $CCPFILE 1 1 1
Program load 1 1 1
Program Termination 5 4 2
termination | Terminals (each) 2 each 2+ 2 each 0@
Close (one of the following):
Disk files® 5 4 6.0
CCP/Disk Sort work file 1 2 2
MFCU/1442 4 3 3
Printer 4 3 3
Disk, printer, 1442, and MFCU | 7 5 7@
PTAM 4 3 3

Select one of these.

Add this to normal disk open.

If there is not a mixture of 5444 and 5445 type files, subtract 1.

Only one per chain of DTFs (if two files in program, double the disk accesses, etc).
For CCP/Disk Sort modules, each output and input file is opened and closed separately.
© None if RESREQ option selected.

One if RESREQ option selected.

2 + 2 each if abnormal termination.

None if resident open/close selected.

Add one for multivolume direct.

Add one for multivolume indexed.

Add one for multivolume files.

11

Figure 22. Number of Disk Accesses for Program Loads and Termination

PLACEMENT OF PROGRAMS, FORMATS, AND If a significant amount of space is required for programs

FILES ON DISK and formats, it could be more efficient in terms of
minimal disk access time to place formats and

The IBM System/3 Model 15 3340 Direct Access $CCPFILE on the CCP program pack (for example R1),

Storage Facility Reference Manual, GC21-5111, contains and put application programs at the end of the other

a comparison of the 5444, 5445 and 3340 simulation area on the same drive.

characteristics, such as access and rotation times, bytes

of storage, track and cylinder capacities. F1 R1

Without movement of the read head, a 5444 can access Data Area Source | Object | Object | File |

1 cylinder {2 tracks or 48 256-byte records). A 5445
read head can also access 1 cylinder without moving (20 ~———Arm Movement ———
tracks or 400 records). A 3340 can access .6 logical

cylinders (12 tracks or 576 records). A logical cylinder

on a 3340 (20 tracks) thus cannot be accessed without This would require a minimal source library size on the

some arm movement—five arm movements will read 3 CCP simulation area.

logical cylinders. On a 3344, 1.5 logical cylinders can be

read at one time, thus two arm movements will read 3 The $CCPFILE should be placed (by giving the

logical cylinders. LOCATION parameter) immediately against the end of
the object library. The F1 or IPL pack should only

For performance reasons, all of the CCP modules except contain those modules really needed to run the system.

the transients are loaded onto the CCP production pack The compiier, the sort modules and utility programs

by CCP generation and then the transients are loaded. such as $COPY, SLABEL, $MAINT should be placed on

The transients require approximately 320 records or another drive along with batch application programs.

sectors. Thus, if the object library starts on a particular This effort will reduce arm contention and allow more

boundary on a 3348 data module (depending on the space for CCP programs and formats.

support you require} it is possible for all of the
transients to reside in an area which would not require
any disk arm movement. It is also possible on a 3348
data module for the transients to overlap a physical area
and require an extra 10 ms (minimum arm movement
time) to access some transients.

The most active formats and programs should be copied
to the CCP production pack after a CCP generation so
that minimal arm movement is required between the
CCP transients and your programs and formats. Less
active programs and formats should be copied to the

library last.
CCP Modules Most Active Most Active | Least Active
($CC. . .modules) | User Programs | Formats Programs and Formats

Performance Tips 107

DISK UTILIZATION

CCP performance is determined to a great degree by the

demand upon the disk facility as well as the speed of
the disk facility. Following are some considerations
affecting the demand on the disk facility.

File and Library Placement: In order to avoid disk arm
contention, CCP, DSM, and data files should be on
separate disk drives if possible. Disk access times

increase if CCP and the data files are on the same drive,

because there can be no disk 1/0 overlap.

If multiple files are located on one data area, place the
most active files in the center of the area so that
accesses to the infrequently used files will average out.
The more evenly the data files are distributed, the less
waiting there will be and the better the response time.
This applies to all System/3 models, especially those
that have 5444 and 5445 disk drives.

For systems that use spooling, the spool file should be
on a separate drive because of high disk activity when

spooling. Ideally, the record length of any file should be
256 characters in length, a size evenly divisible into 256,

or a multiple of 256. This is because all data

managements read from a disk into the program area in
even multiples of 256 (256 characters equal one sector).

If record length is 256 characters, a read of only 256 is

necessary into the user program. If record length is 300

it is possible that the record could spread over 3
sectors. Thus 3 sectors would have to be read in. In
this case, if program A read in a record to be updated,
and program B is updating the file also and wanted the
record immediately preceding the record read by
program A, then B wouid have to wait until program A
updated its record before B could read the record it
wanted.

GENERATION/ASSIGNMENT CONSIDERATIONS

Generation and assignment statements can be used to
balance the desired speed of CCP against the resulting
size of CCP. The optimum size of the CCP code is
achieved when more storage results in no appreciable
decrease in response time and using less storage
increases response time. It is usually best to set up for
optimum CCP performance and then decrease the size
of CCP if storage is exhausted.

108

Following are some tips that affect the speed/size
relationship:

+ Memory-resident polling (RESPOL-YES) improves
response time but requires more storage. If
RESPOL-NO is specified, the batch partition may be
degraded due to transient finds for polling.

« Generating CCP with minimum resident code
(MINRES-YES) decreases storage requirements but
degrades response time. Specifying MINRES-YES
can also degrade the performance of a batch
partition, since the CCP partition and batch partition
will compete for use of the system transient area.

*+ A lockout could result if BSCA, BSCC, and MINRES
are specified simultaneously. Should this occur,
regenerate CCP with MINRES-NO.

» Memory-resident accept input (ACCEPT-YES, Model
15 only) improves response time but increases main
storage requirements; the code necessary for this
often-used operation is memory resident rather than
loaded from disk as a transient when needed.

+ Do not include unused terminals in the assignment
set. The more terminals in your assignment set, the
more storage is required (approximately 90 bytes for
each terminal).

+ (5704-SC2 only) If TP buffer utilization is at a
maximum, the memory resident DFF buffer area
(BSCALINE DFFBUF-YES) may improve data
transmission and terminal response time. It increases
main storage requirements, however, since it exists in
addition to the put area normally built into the TP
buffer.

+ Using the interval polling feature (INTPOL parameter
at CCP generation and POLTIME parameter at
assignment) may cause less registered processing
unit meter time in a relatively inactive CCP
environment. However, response time may be
degraded, because CCP will be polling less
frequently.

» Generating the system with busy printer support
{BSYPRT-YES) simplifies the coding of terminal
printer programs by eliminating the need to test for
the busy condition (-14 return code) in the program.
This support also allows CCP and other tasks to
execute while the printer is busy since the printing
task will not regain control until the print operation is
complete.

CONSIDERATIONS USING PRUF

Some considerations for using PRUF programs follow
(see Program Request Under Format in Chapter 5, 3270
Screen Design for additional considerations):

« A full buffer of data can be passed from one program
to another. In effect, the 3270 is used for storing
intermediate data. This can increase line activity, but
it decreases disk accesses by eliminating the need to
pass data through disk storage.

« Main storage is more efficiently used; for example,
instead of a single program to handle multiple
terminals and multiple transactions, a series of 8K or
10K programs are loaded as if they are overlays.
However, the time required for additional program
loads may cause an increase in terminal response
times.

« Sector protection is not in effect when one program
in a PRUF string reads a disk sector and goes to end
of job and another program updates the file. If a
record is to be updated in a later program, the record
may need to be temporarily flagged to reserve
inventory quantities, or other data, to prevent another
terminal from updating the same record.

« With PRUF, operators are entering data to a screen
format put to a terminal by a program that has since
gone to end of job. If the system operator requests
shutdown at this time, there is no way to notify the
system operator that the terminal operator still has
work to perform; consequently, CCP proceeds with
shutdown. The system operators in a PRUF
environment must be aware of this possibility.
Operating procedures should be established to ensure
that the terminal operators are informed of a pending
shutdown so they can complete their work as soon
as logically possible. The system operator should
issue a delay shutdown command that does the
following:

1. Sends a warning message to all the terminal
operators informing them of the pending
shutdown.

2. Allows sufficient time for the terminal operators to
complete their work before shutdown proceeds.

« Pressing the CLEAR key on a terminal clears the last
format written to the screen. If the format on the
screen was a PRUF format, it cannot be rewritten to
the screen because the program that initially wrote
the format to the terminal has gone to end of job.
Logic, such as a help format, or RECOVERY program
should be included in systems using PRUF so that
the PRUF screen can be rewritten to the terminai.

« Pressing a PA key causes only the AID byte to be
returned to CCP. No program request data is
returned to CCP when a PA key is pressed. When
requesting a PRUF program, the ENTER or PF keys
must be used.

« Disk utilization is more efficient if a terminal operator
using a PRUF format can enter the maximum amount
of data before requiring program intervention. That
is, as the time between transactions increases, disk
utilization decreases. However, response time may
increase if many separate transactions are entered on
one screen, because editing them takes longer.

MISCELLANEOUS CCP TIPS

Terminals in ERP (Model 15 Only): Terminals left in ERP
{error recovery procedure) may cause fragmentation of
the TP buffer. Terminals should be either removed from
ERP or varied offline.

Loops in a CCP Task: Beware of loops in CCP user
tasks. An endless loop in a CCP user task stops the
other level on Models 8, 10, and 12, and, if CCP is the
highest priority partition, the other partition{s) on a
Model 15. Within the CCP area on Models 4, 8, 10, and
12, an endless loop stops all other user tasks; on Model
15, an endless loop stops all lower priority tasks.

Attention Identification Keys: Be aware that attention
identification keys are not available on all 3270
keyboards.

Performance Tips 109

PA Keys: When the operator of a terminal presses a
PA key to cause attention, only the AID character is
transmitted from the 3270 to the processing unit; no
data is transmitted. Only the PF and ENTER keys cause
data to be transmitted. The ENTER key should be used
as much as possible in the normal application flow—in
fact, exclusively if possible. An operator is slowed and
more prone to errors if other AID keys are required on a
regular basis.

Right Adjustment and Negative Input: Right adjustment
and negative input are handled automatically for numeric
input fields as follows:

* A numeric field is written to the screen as null
characters (hexadecimal 00) when the original format
write is performed.

+ On subsequent input, trailing nulls are removed,
shifting the remaining field contents to the right.

+ If the field contains a - (minus sign) as the right
character, the - is removed and the number is treated
as a negative number.

« Auto skip only works when the rightmost field
position is entered; the right tab key must be used to
get to additional input fields if a field is only partially
filled.

Some examples of a 5-position numeric input field
follow:

Keying Position

1 2 3 4 5 Read As

7 5 (right tab) 00075

7 5 - (right tab) 0007N (-75)

7 5 /] (right tab) 00750 (blank = zero)

110

Output/Input Fields Carrying Negative Values: Special
processing is required to use negative values with
output/input fields, because the 3270 hardware cannot
represent a negative zero. For example, a 3-byte
output/input field containing minus ten cents (unedited)
is transmitted to the 3270 as X' FOF1D0’, but is loaded
to the 3270 buffer as X'FOF150°, which displays as 01&.
When this hexadecimal character string is received by
DFF (to which an output/input numeric modified field
cannot be defined), DFF passes it to a user program
without signing or justifying it. Therefore, the field
appears to be plus ten cents when the field is processed
numerically by the user program (the low order X'50" is
equivalent to X'FO’ when used arithmetically in the
System/3). To pass a negative value via a 3270 buffer,
the user should edit the value with trailing minus sign to
a DFF output/input field. To receive the field, the user
should redefine the last character as an alphameric
character and test it for an &. If the character is an &,
then the whole field should be forced to a negative field.
When using PRUF, the user has another option:
separate display formats can be used to write the data
and to receive the data. The formats should differ in
that the field is defined as output/input for writing and
as input for reading.

Clear Key and Data Mode Escape: Pressing the CLEAR
key on a 3270 terminal sets the entire buffer to nulls
(hexadecimal 00). Programs should be written to check
for this return code and, upon receiving it, rewrite the
previous screen format.

On systems without data mode escape, the CLEAR
return code is immediately given to the program. On
systems with data mode escape, the CLEAR return code
is not indicated to the application program until the next
time the operator presses an attention-causing key
{ENTER, PF key, PA key). It is, therefore, recommended
that data mode escape not be generated into CCP
unless it is to be used.

Messages to the Terminal Operator: Messages (what to
do next, what was just done, what error just occurred)
to the terminal operator are easier to find if they are set
up on a message line that is in a constant location on all
display formats.

Link Editing CCP Programs: CCP programs must be
link edited on a system that has been generated to
support CCP because of the CCP subroutines {such as
SUBR92 and CCPCI0) and, on Models 4, 8, 10, and 12,
because of the special unit record data management.

DFF Formats: The time required to load additional
display formats into program-appended storage can be
minimized by having only one regularly used format.

Record Identifying Indicators: When using
READ/EXCPT logic, remember that the record
identifying indicators are turned off by RPG Il when the
program goes through the normal input cycle logic (after
detail and LO calculations).

Model 15 Programs: A user program cannot exceed
32K including the program appended storage (but
excluding external buffer size and the MORCOR option
for memory resident overlays on the Model 15D). The
RPG 1l H-specification Size to Execute (columns 12
through 14} should not be used, except to force the
program into overlays. Any value specified in these
columns that is less than the value needed by the
program to execute forces overlays. On the Model 15, if
a value is specified that is more than that required for
the program to execute, the excess storage is wasted. If
the program uses DFF, the program appended storage is
added to the program when it is loaded.

Compiling Model 15 Programs: A COMPILE
LINKADD-8000 must be provided when compiling a
Model 15 CCP program. Batch programs are link edited
at 4000. If an RPG Il program is to execute in both a
batch and CCP environment, the overlay linkage editor
must be a separate step, with COMPILE LINKADD-8000
and RLD-YES specified. This step is automatic for
FORTRAN and COBOL compilers and the CCP/Disk
Sort program.

IDELETE Mode on the Model 15: If IDELETE mode is
not specified before CCP start-up, the system will
appear to be in a wait state, waiting for a response to
the tenth message before another could appear on the
system console.

Memory Resident Overlays: In some cases, using
memory resident overlays is not efficient use of user
program areas. The IBM System/3 Model 15 Overlay
Linkage Editor Reference Manual contains additional
information concerning the two memory resident overlay
techniques, REMAP and MOVE.

Performance Tips 111

112

This page is intentionally left blank.

For definitions of communications and data processing
terms that are not included in this glossary, see |IBM
Data Processing Glossary, GC20-1699, or publications
listed in Appendix B, Bibliography.

$CCPFILE: A CCP control file on a disk in which,
during CCP assignment stage, the user defines one or
more specific operating environments for CCP. Each
operating environment consists of a set of terminals,
files, and programs that can be used during a particular
run of the CCP.

addressing: In communications, the means whereby the
originator or control station selects the unit to which it is
going to send a message.

AID character: Attention identification character.

algorithm: A prescribed set of well-defined rules or
processes for the solution of a problem in a finite
number of steps. In using direct files, an access
algorithm describes how the contents of a key field are
used to determine a relative record location.

application: Data processing work that is accomplished
with the assistance of a computer.

application program: A program written for or by a
computer user that applies to his own work.

assignment stage: The special preparatory CCP run
during which the user defines one or more sets of
specific operating environments in which CCP can run.

attention identification (AID) character: A code that
is set in a 3270 display station when the operator takes
an action that produces an |/0 pending condition. The
character identifies the action or key that caused the
condition to be generated. The AID is set when the
display station operator presses a program access key,
ENTER key, TEST REQ key, or program function key;
when a selector pen attention occurs; or when a
successful operator identification card read-in occurs. It
also identifies device addresses assigned to printers.

Appendix A. Glossary

attribute (3270): A characteristic of a display field. The
attributes of a display field include: protected or
unprotected; numeric-only or alphameric input control;
displayed, nondisplayed, display intensified;
selector-pen-detectable or nondetectable; and modified
or not modified.

attribute character (3270): A code that defines the
attributes of the display field that follows. An attribute
character is the first character in a display field, but it is
not a displayable character.

batch mode: The operating method in which programs
are being executed such that each is completed before
the next is started.

batch program: An application program that processes
a series of related transactions that have been grouped
together. Batch programs can run under disk system
management control and under CCP control.

batch data: Data, such as transactions, that is grouped
to be transmitted or processed in a continuous series.

binary synchronous transmission: Data transmission
in which synchronization of characters is controlled by
timing signals generated at the sending and receiving
stations.

block mode operations: Operations that result in all
data from an operation in the program up to ETB (end
text block) being moved into or from the user
programs’s record area.

BSCA: Binary synchronous communications adapter.
CCC: Copy control character.

command interrupt mode: The operating mode of a
terminal following data mode escape until the program
execution is resumed by a RUN command (the terminal

reenters data mode)} or until the terminal is released by a
RELEASE command (terminal enters command mode).

Glossary 113

command mode: The operating mode of a command
terminal following a successful sign-on, up to and
including the program request. Foliowing program
termination, a terminal returns to command mode until
another program request is made or until sign-off.

command terminal: A terminal that is capable of
commanding CCP services related to requesting a
program. Terminals are designated as either command
terminals or data terminals at assignment time.

common carrier: Any government-regulated company
that furnishes communication services and facilities to
the general public; for example, a telephone or telegraph
company.

communication management: A major function of
CCP that controls terminal input/output.

communications service subroutine: A relocatable
subroutine provided by CCP that is link-edited to user
programs. The subroutine is called by the user program
whenever the program requires a communications
service, such as sending and receiving messages.

consecutive processing: A mode of file processing in
which records are processed in the order they appear in
the file. Contrast with random processing.

control station: The primary or controlling computer in
a multipoint telecommunications configuration.

copy control character (CCC): A character used in
conjunction with the 3270 copy command to specify
that a particular operation, or combination of operations,
is to be performed at a display station or printer in the
data that is to be copied.

copy operation: A 3270 DFF operation that copies the
contents of the buffer from one display station or printer
to another display station or printer attached to the
same control unit.

cursor: A unique symbol (an underscore) that identifies
a character position in a 3270 screen display, usually the
character position at which the next character to be
entered from the keyboard will be displayed.

data entry application: A communications-based
system application in which terminals are in relatively
prolonged communication with an application program
{as opposed to the typical inquiry application), for
example, entering data for document preparation (such
as invoice preparation), or entering data directly into
data files from a terminal.

114

data mode: The operating mode of a terminal when it
is under control of a user program, until the program
terminates, the terminal is released by the program, or
the data rode escape characters are entered. While in
data mode, a terminal is not in direct communication
with CCP.

data mode escape: A special CCP command,
consisting of a unique string of six characters entered at
a requesting terminal while the terminal is in data mode.
The data mode escape command temporarily suspends
a terminal’'s communication with a program and places
the terminal in command interrupt mode.

data security: The protection of data against damage,
loss, unauthorized access, or unauthorized use.

data stream: All data transmitted through a
communication channel on a single operation, including
data link control, device control, and data characters.

data terminal: A terminal that is not capable of
commanding CCP services. A data terminal is always
either in standby mode (not polled for input by CCP) or
in data mode {under control of an application program).

dedicated program: A program running under CCP that
requires sole use of the CCP user program area.

designator character: A character that immediately
follows the attribute character in a 3270
selector-pen-detectable field. The designator character
controls whether a detect on the field will or will not
cause an attention. For a nonattention-producing field,
the designator character also determines whether the
modified data tag for the field is to be set or reset as
the result of a selector-pen detect.

DFF: 3270 Display Format Facility of CCP.

direct file: A disk file organization in which, for
purposes of storage and retrieval, there is a relationship
between the contents of the records and their locations
in the file. Contrast with sequential file and indexed file.
See also algorithm.

display adapter: An IBM device that converts the
binary data stream from the device buffer into signals
on the communication line, and vice versa. The display
adapter provides for the local attachment of 3277
displays and of 3284, 3286, and 3288 printers to
System /3.

file management: A major function of CCP that
controls the use of data files by programs running under
CCP.

home record: A record in a direct file that is stored in
the location indicated by its relative record number
(home location).

implied invite input: An invite input that is not actually
issued by the user program, but exists because data is
allowed with the program request. Implied invite inputs
are included in the count of outstanding invite inputs in
the communications parameter list for certain
operations.

indexed file: A disk file organization in which records
are arranged in logical sequence by key. Indexes to
these keys permit records to be processed either
randomly or sequentially. Contrast with direct file and
sequential file.

initial mode: The operating mode of a command
terminal before a sign-on at the terminal has been
accepted by CCP.

inquiry: A communications-based system application in
which, typically, a single transaction or request for
information is entered from a terminal and a response is
returned to the terminal.

inquiry with update: A communications-based system
application in which records of transactions entered
from terminals are used to interrogate and update one
or more master files maintained by the system
{synonymous with inquiry and transaction processing).

integrated display adapter: See display adapter.
integrity: See system integrity.

interface: In application programming under CCP, the
data areas (parameter list and record area),
communications service subroutines, and defined
operations by which user programs and CCP
communicate with each other.

line buffer: The internal main storage area associated
with a communication line from which data is
transmitted to a terminal or into which data is received
from a terminal. Data in this area includes device and
line control characters inserted or removed by CCP.

local display adapter: See display adapter.

local terminal: In the CCP environment, a 3270
Information Display System device attached to the
system via the display adapter. Contrast with remote
terminal.

master file: A file that is either relatively permanent or
that is treated as an authority in a particular job.

MDT: Modified data tag.

message mode operations: Operations that result in
all blocks of data including the EOT signal being sent or
received in a single operation.

MLMP: Multiline/multipoint BSCA input/output control
system {IOCS), the base data management and 10CS
included in the CCP for binary synchronous
communications.

modified data tag (MDT): A bit in the attribute
character of a 3270 display field which, when set on,
causes the field to be read on an input operation. The
modified data tag may be set by (1) a keyboard input to
the field, (2) a selector-pen detection in the field, (3) a
card read-in operation, or (4) program control. The
modified data tag may be reset by (1) a selector-pen
detection in the field, (2) program control, or (3) ERASE
INPUT key.

MRT program: Multiple requesting terminal program.

multipoint line: A line interconnecting several stations.
Synonymous with multidrop line.

multiple requesting terminal (MRT) program: A type
of application program under CCP that can process
additional requests for it even though it is still
processing an earlier request.

multitasking: (CCP) The concurrent execution of one
or more user tasks under control of CCP.

NEP: Never-ending program.

never-ending program: A user application program,
which, after it has been initiated, normally remains in
main storage and does not go to end of job until CCP is
shut down.

nonswitched line: A connection between a remote

terminal and a computer that does not have to be
established by dialing.

Glossary 115

null character: A hex 00 character on a 3270 that
occupies a position in the storage buffer and is
displayed as a blank.

object library: An area on disk storage used to store
object programs, routines, and, if DFF is used, display
formats.

object program: A fully compiled program that is ready
to be loaded into the computer system.

OCL: Operation control language.

offline: Pertaining to equipment, devices, or processes
not under active control of the processing unit.

online: Pertaining to equipment, devices, and processes
that are under active control of the processing unit.

online system: A system in which the input data enters
the computer directly from the point of origin or in
which output data is transmitted directly to where it is
used.

order entry application: A form of data entry
application in which transactions (such as sales orders)
are entered into the system from terminals.

output/input field: One of four classes of fields
defined under the 3270 Display Format Facility.
Output/input fields contain data that has been supplied
either during format generation or during execution of
the application program; this data can be changed by
the terminal operator using the keyboard.

password security option: An optional CCP feature,
selected during assignment, which requires a terminal
operator to enter a predetermined password before CCP
will allow the terminal to enter commands.

physical file: See symbolic file.

point-to-point line: A line that connects a single
remote station to the computer; it may be either
switched or nonswitched.

polling: A technique by which each of the terminals on
a multipoint line is periodically interrogated to
determined whether it requires servicing.

procedure: A named collection of related OCL

statements, and possibly utility control statements, that
perform a particular task.

116

program management: The major function of CCP that
fetches programs, allocates system resources to
programs, manages the concurrent execution of two or
more programs, purges programs from main storage,
and optionally maintains a count of the number of times
each application program is requested.

program request: A command, consisting of a program
name entered at a terminal or the system operator’s
console, that causes CCP to initiate execution of an
application program.

program request count: The optional CCP program
management function of maintaining a count of the
number of times each application program is requested.

program request under format (PRUF): A method of
requesting a program from a display format on a 3277
or 3275. The entire screen can be used to pass data
with the program request. The name of the program to
be requested appears as the first input field from the
3270 terminal.

program-selected terminal: From the point of view of
the application program, a terminal that is selected by
an application program for input/output, as opposed to
a terminal that requested the program (see requesting
terminal). Program-selected terminals can be either
required (must be allocated to the program before the
program can run) or acquired (allocated dynamically to
the program as it is running).

program termination code: A two character code
provided by CCP when an application program has been
cancelled by CCP because of certain coding errors or
program logic errors, or because the system operator
requested canceliation of the program. This code
identifies the reason for the cancellation.

protected field: A 3270 display field for which the
display operator cannot use the keyboard or operator
identification card reader to enter, modify, or erase data.

PRUF: Program request under format.

queue: A waiting line or list formed in a system by
items that are waiting for service.

random processing: The treatment of data without
respect to its location in external storage and in an
arbitrary sequence, governed by the input against which
it is to be processed. Contrast with consecutive
processing and sequential processing.

record mode operations: Application program input
and output operations that result in a single record of a
data block being moved into or out of the program’s
record area.

relative record number: In a direct file, the location of
a record in relation to the beginning of the file.

remote job entry: Submission of job control
statements and data from a remote terminal to a central
system, causing the jobs to be scheduled and executed
by the central system.

remote terminal: In the CCP environment, a device
attached to the system via the BSCA or MLTA. Contrast
with Jocal terminal.

requesting terminal: From the point of view of the
application program, a terminal that requested the
program, as opposed to a terminal that is selected by
the program (see program-selected terminal). Requesting
terminals are always command terminals.

response time: See terminal response time.

RVI: A signal from a receiving device to a device that is
transmitting to interrupt its transmission as soon as
possible.

SCP: System control program.
security: See data security and system security.

seek: To position the access mechanism of a direct
access device at a specified position.

selector-pen-detectable {SPD) field: One of four
classes of fields defined under the 3270 Display Format
Facility. SPD fields allow the terminal operator to enter
data by using the selector pen.

sequential file: A file organization in which records are
arranged in a physical sequence. The records are not
necessarily in logical sequence. Contrast with direct file
and indexed file.

sequential processing: A treatment of data with
respect to its location in external storage, and in a
sequence governed by the logical order of the data in
the file. Contrast with consecutive processing and
random processing.

serial printer: A printer that prints characters one at a
time. Contrast with a line printer, which prints a line at
a time. Synonymous with character printer.

shutdown: The finai stage of CCP operation, during
which CCP allows programs currently executing or
scheduled to finish processing, then closes files,
adapters, and communication lines.

sign-on: The procedure performed at a terminal while it
is in initial mode. This procedure may include entering
only the /ON command, or entering the /ON command
with a password or other user-specified security data.

single requesting terminal (SRT) program: A type of
application program under CCP that can process a
request from only one requesting terminal during its
execution.

source library: An area on disk used to store source
programs, OCL procedures, and control statements.
Contrast with object library.

source program: A computer program written in a
source language, such as RPG I, before the program is
compiled.

SPD field: Selector-pen-detectable field.
SRT program: Single requesting terminal program.

standby mode: The mode of a data (noncommand)
terminal when it is not under control of a user program.

startup: The initial phase of CCP operational stage,

during which all necessary initialization occurs, including
opening of disk files, adapters, and communication lines,
and the completion of various tables and control blocks.

subhost: A telecommunications system which, while
directly controlling a group of terminals, is itself a
tributary station to another central processor.

switched line: A communication line in which the
connection between the computer and remote station is
established by dialing.

symbolic file: A file reference {symbolic name) which
allows, on separate executions of a program, reference
to different files, known as physical files. A symbolic file
is related by the terminal operator to a specific physical
file by means of a /FILE command.

synonym record: A record in a direct file whose control

field yields the same relative record number as another
record.

Glossary 117

system control programming: IBM-supplied
programming that is fundamental to the operation and
maintenance of the system. |t serves as an interface
with program products and user programs.

system integrity: Preservation of the accuracy and
completeness of data and programs.

system security: Protection of computer data,
programs, and devices against damage, loss,
unauthorized access, or unauthorized use.

system task: A unit of work for the processing unit
from the standpoint of CCP, consisting of a CCP
function (as opposed to a user application, or user task)
that must be performed by CCP, such as
communications management.

system throughput: The total volume of work

performed by a computing system over a period of time.

task: See system task and user task.

task identification: An identifying character associated
with a task which differentiates between that task and
other tasks running concurrently under CCP.

terminal: A device capable of sending and/or receiving
information over a communication channel.

terminal attributes: Characteristics of a terminal from
the point of view of CCP and CCP application programs
including block length, record length, data format, and
other information.

'’

terminal reference identifier: A unique two-character
identifier, assigned to each terminal during CCP
assignment stage, that is used by CCP and the system
operator to refer to a specific terminal. Any of the 64
graphic EBCDIC characters may be used.

terminal response time: The time interval from when
the terminal operator enters data to the system until the
keyboard is opened to permit more data to be entered.
throughput: See system throughput.

transaction: The entry of some request or unit of data,

the processing of the request or unit, and the return of
Some response or acknowledgment.

118

transaction file: A file containing relatively transient
data to be processed in combination with a master file.
For example, in a payroll application, a transaction file
indicating hours worked might be processed with a
master file containing employee name and rate of pay.

transaction-oriented processing: A method of
processing data in which each different type of
application transaction is processed by a separate
program, as opposed to processing multiple transaction
types in a single program.

translation: Under CCP, conversion of the transmission
line data code (if not EBCDIC) into EBCDIC or
conversion from EBCDIC into transmission line data
code.

tributary station: A secondary or noncontrolling device
in a8 multipoint telecommunications configuration.

truncation: Loss of excess data when the length of
data received from a terminal is greater than the
maximum input length specified in the parameter list or
when more data is provided in an output operation than
the line buffer for the terminal can hold {in record mode
output operations, if the output length exceeds the
record length specified in the terminal attributes set).

unprotected field: A 3270 display field for which the
terminal operator can manually enter, modify, or erase
data.

user task: A unit of work for the processing unit from
the standpoint of CCP, consisting of a user program (as
opposed to a system function, or system task) that must
be executed by CCP.

WCC: Write control character.

work station: Elements of data processing equipment
through which a system’s end user has access to a
computer as required for the performance of his job
{work) at the physical location (station) where he
performs his job tasks.

write control character (WCC): A character used in
conjunction with 3270 write operations to specify that a
particular operation, or combination of operations, is to
be performed at a display station or printer.

This appendix contains a list of CCP publications and
related programming and data communications
publications. For a complete list of System/3
publications, see IBM System/3 Bibliography,
GC20-8080.

ccep

» IBM System/3 Communications Control Program
General Information Manual, GC21-7578

« IBM System/3 Communications Control Program
Terminal Operator’'s Guide, GC21-7580

« IBM System/3 Communications Control Program
Messages Manual, GC21-5170

» IBM System/3 Communications Control Program
Programmer’'s Reference Manual, GC21-7579

« IBM System/3 Models 8, 10, and 12 Communications
Control Program System Reference Manual,
GC21-7588

« IBM System/3 Models 8, 10, and 12 Communications
Control Program System Operator’s Guide,
GC21-7581

« IBM System/3 Model 15 Communications Control
Program System Reference Manual, GC21-7620

« IBM System/3 Model 15 Communications Control
Program System Operator's Guide, GC21-7619

» IBM System/3 Model 4 Introduction, GC21-5146
« IBM System/3 Model 4 Communications Control

Program Concepts and System Design Guide,
GC21-5148

- IBM System/3 Model 4 CCP Programmer's Reference

Manual, GC21-5150

« IBM System/3 Model 4 Operator's Guide, GC21-5149

+ IBM System/3 Model 15D System Measurement
Facility Reference and Logic Manual, GC21-5207

« IBM System/34 and System/3 Model 15D Distributed

Disk File Facility Reference Manual, SC21-7869

Appendix B. Bibliography

Programming
« IBM System/3 RPG Il Reference Manual, SC21-7504

« IBM System/3 Models 4 and 6 RPG Il Reference
Manual, SC21-7517

» IBM System/3 RPG Il Telecommunications
Programming Reference Manual, SC21-7507

« IBM System/3 RPG Il Auto Report Feature Reference
Manual, SC21-5057

« IBM System/3 RPG Il 3270 Display Control Feature
Reference and Logic Manual, SC21-5161

« Introduction to RPG I, GC21-7514

» IBM System/3 RPG Il Disk File Processing
Programmer's Guide, GC21-7566

» IBM System/3 Disk Concepts and Planning Guide,
GC21-7571

« IBM System/3 RPG Il Additional Topics Programmer’s
Guide, GC21-7567

« IBM System/3 Subset American National Standard
COBOL Referernce Manual, GC28-6452

+ IBM System/3 FORTRAN [V Reference Manual,
SC28-6874

- IBM System/3 Basic Assembler Reference Manual,
SC21-7509

« IBM System/3 Disk Sort Reference Manual,
SC21-7522

Bibliography 119

MLTA and Supported Terminals

IBM System/3 Multiple Line Terminal Adapter RPQ
Program Reference and Component Description
Manual, GC21-7560

IBM 2740 Communications Terminal Models 1 and 2
Component Description, GA24-3403

IBM 2741 Communication Terminal, GA24-3415

IBM 1050 Data Communication S ystem Principles of
Operation, GA24-3474

IBM 3767 Models 1 and 2 Communications Terminal
Component Description Manual, GA27-3096

BSCA and Supported Terminals/Systems

General Information: Binary Synchronous
Communications, GA27-3004

IBM System/3 Models 4 and 6 Components Reference
Manual, GA34-0001

IBM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236

IBM 3270 Information Display System Component
Description, GA27-2749

An Introduction to the IBM 3270 Information Display
System, GA27-2739

Operator's Guide for IBM 3270 Information Display
Systems, GA27-2742

IBM System/3 3735 Support Program Coding Manual,
GC21-5096

IBM 3735 Programmer’s Guide, GC30-3001

IBM 3740 Data Entry S ystems Programmers Guide,
GC21-5071

IBM 3741 Data Station Reference Manual, GA21-9183

120

IBM System/7 Binary Synchronous Communications
Module (RPQ) Programming Guide and Reference
Manual, SC34-1510

IBM System/7 System Summary, GA34-0002
IBM System/3 Multiline /Multipoint Binary
Synchronous Communications Reference Manual,

GC21-7573

IBM System/3 MULTI-LEAVING Remote Job Entry
Work Station Support Reference Manual, GC21-7621

IBM System/3 Model 15 MULTI-LEAVING Remote Job
Entry Work Station Support Reference Manual,
GC21-5115

IBM System/3 DATA/3 Reference Manual, SC21-5102

General Data Communications

Data Communication Concepts, GC21-5169

Introduction to Data Communications S ystems,
ZR20-4542

IBM Terminals —Student Text, SR20-4452

Introduction to Data Communications Network
Design—Student Text, SR20-4482

IBM 3270 Screen Design—Student Text, SR20-4441

-14 return code (task chain example) 52
$CCPAU 68
$CCPFILE

format in 104

location on disk 107

proximity to object library 104
$CCPRB program 72
$COoPY

location on disk 107

used in file recovery 72
$LABEL, location on disk 107
SMAINT

location on disk 107

used to rename print modules 39
$RINDX program 72
$TRLOG program 61

accept input (nonresident) transient
loads 105
access algorithm

defining 19

determining 18

synonym records 18
ACCESS statement (3COPY) 72
access to data files, controlling 66, 68
accuracy of data, controlling 63
acquire/set attributes, transient
loads 105
acquire terminal, transient loads 105
active files

location on disk 108

using direct file 17
active formats, location on disk 107
adding applications, design
considerations 8
adding records

disk accesses 17

file recovery 17

indexed files 17
advantages offered by CCP 2
AID character 110
algorithm, defining 19
analyzing file sharing conflicts 28
application

breaking into small programs 48

design concepts 7

flow 7

goals, establishing 7

program types 8

programs, location on disk 107

Index

apphlication-trained operators 29
archives data, backup 70
arm contention, reduce 107
arm movement (disk) 107
array

example 50

storing in direct file 18

used to control transactions 49
arrival rate {transactions) 73
ASCII, buffer allocation 102
assignment considerations 108
attention identification keys 109
attribute characters, 3270 screen
design 35
audible alarm

used for errors 31

used for instructions 31
audit trail

definition 62

implementing 62

system integrity 62
auditing data recovery procedures 70
autoskip 30, 110

backup and recovery 69
backup procedures 69
batch environment
control procedures 63
system security/integrity 61
batch partition, affect of MINRES-YES 108
batch programs
location on disk 107
renaming print modules 40
running under CCP 48
task chaining with 47
benefits offered by CCP 2
billing invoices, example 56
blinking screen 91
BLKL 95, 102
block size, affect on file lockout 27
blocking display screens 30, 91
BSC line 100
BSCALINE DFFBUF-YES 108
BSYPRT-YES 108
buffer interaction 103
buffer loads, terminal printer 44
buffers, CCP-associated 91
business response time 1

Index

121

ccp
advantages 2
application program types 8
associated buffers 91
disk accesses 105
modules, when loaded 107
performance 108
program types, summary 9
task loops 109
task sizes 102
CCP/disk sort
benefits 53
considerations for using 53
files, file sharing restriction 27
main storage utilization 53
program 53
terminal response time 53
CCPCIO 111
chaining (see task chaining)
chaining transaction records, example 48
characters per transaction,
determining 79
characters transmitted, examples 33, 34
check-digit verification 63

choosing between SRT and MRT, summary 16

classifying data 67
CLEAR key 110

caution in using 35

PRUF consideration 109
CLEAR return code 110
COMMANDL 95
communication between programs 15

PRUF technique 35

using direct file 25
communication, interprogram 15
compiler, location on disk 107
compiling CCP and batch programs 40
compiling Model 15 programs 111
concurrent utilization of system
resources 7
consecutive add files, recovery 72
consecutive file, recovery 72
content checklist, transaction record 62
control array 49

example 50
control characters transmitted 75
control characters, printer 41
control field, as the relative record
number 18
control procedures 63

batch environment 63

data processing department 65

interactive 63

manual 63

online batch 65

online system 63

programmed 63

3741 data entry 63
control record

affect on file lockout 27

example 49

122

cost versus risk 66
cursor positioning 30
example 33, 34
put overrides 36
customer master file, example 54
cylinder (logical) 107

data access, controlling 66

data backup and recovery 70

data entry applications, screen design 32
data logged but not processed, backup 71
data mode escape 110

data processed but not distributed,
backup 71

data processing department control
procedures 65

data received but not logged, backup 71
data recovery 70

data security, definition 66

data transmitted, reducing 36
DEFER-NO parameter 4|

defining the algorithm, example 19
dependent functions 9

design aids, IBM 4

design concepts, application 7

design datas, use 4 :
determining an access algorithm 18
DFF (see display format facility)

DFFBUF 100

DFFBUF-YES 108

direct attach line speeds 79

direct file
advantages 17
building 19

disk accesses 17

evaluating 22, 24

examples 19, 23, 24

master file 25

randomizing technique 24

transaction files 25
disk access arm contention 17
disk accesses 82, 106

affect of PRUF 109

CCP 105

determining 75

direct files 17

evaluating 22, 24

for DFF operations 105

for program ioads 106

for termination 106

indexed files 17

reducing 36

reducing by task chaining 48
disk arm contention 108
disk files, sector protection 27
disk response time, calculating 83
disk seeks (see disk accesses)

disk utilization 108
calculation 82
PRUF consideration 109
display format facility (DFF)
benefits 34
buffer support, Model 15D 99
buffer, BSC lines 101
considerations 104
formats 111
operations, disk accesses 105
output hold area 91
put operations, Model 15 97
double buffering 102

ease of use 2
ease of use, operator 7
editing, examples 33, 34
EM (end of message) 41
ENDMSG-NO, use with PRUF 35
ENTER key 110
ERASE EOF key 31
example 33
ERASE INPUT key 31
error correction
interactive 63
online batch 65
error correction/prevention 63
error messages, put overrides 36
errors, identifying reasons 62
execution-time table, used for
passwords 68
expandability 2
external buffer size 111
memory resident overlays 111

FDT {field descriptor table} 36, 102
field descriptor table (FDT) 36, 102
reducing size of 36, 104
3270 screen design 36
file and library placement 108
file lockout, file sharing 27
file recovery 17
file recovery procedures 71
{see also recovery)
file sharing 17, 27
analyzing conflicts 28
CCP/disk sort files restriction 27
direct transaction file 25
file lockout 27
sort output file restriction 27, 53
sort work file restriction 53
sort work files restriction 27
system performance 27
system throughput 27
terminal response time 27

file sharing {(continued)
transaction file 27
transaction-oriented processing 27
file update, screen design example 33
files, placement on disk 107
format index in CCPFILE 104
formats, placement on disk 107
forms design for terminal printers 41
fragmentation of TP buffer 98
fraud protection, list of measures 67
free-form input field, example 34
functions of a program 9

generation/assignment considerations 108
get (invite) input area, used for task
chaining 47

get attributes, transient loads 105

handling synonym records 18
example 21
hardware backup 69
heading and prompts 35
high intensity
put overrides 36
used for instructions 31
historical data, backup 70
home location, definition 18
human factors 29

IBM design aids 4
IDELETE mode on the Model 15 111
implementing an audit trail 62
independent functions 9
indexed add files, recovery 72
indexed files
disk accesses 17
in online environment 17
recovery 72
indexed master files 25
input fields, example 33
input operations, use of TP buffer 92
inquiry applications
benefits 3
screen design 32
interactive control procedures 63
interprogram communication 15
interval polling feature 108
interval timer, printer busy condition 45
INTPOL parameter 108
inventory master file, example 54
invite parameter list area 95, 96
INVWRT program 56

Index

123

key entry time 75

key field 19
keystrokes, operator 33
keyword, MRTMAX 16

library

location on disk 107

placement of files 108
limiting access to data files 68
fine buffers 91, 102
Iine response time, calculating 80, 81
line speeds. direct attach 79
line time, calculating 79
line turnaround times 79
line utilization, calculating 80
link editing CCP programs 111
linking records together, example 48
load file, recovery 72
lockout, file 27
log records, for password security 68, 69
logging transactions 61, 62
logical cylinder on a 3340 107
loops in a CCP task 109
loss of data, controlling 63
loss of transaction file data 71

mailing label, application example 59
main storage

reducing requirements 104

tasking areas 88

utilization (CCP/disk sort) 53
manual control procedures 63
master files

as direct files 25

backup 70

indexed 25
master pointer record, example 49
MAXRECL 95
MDF/MRT (multipie dependent function
MRT) 15
MDF/SRT (multiple dependent function
SRT) 14
MDF/SRT program logic 14
memory-resident accept input 108
memory-resident DFF buffer area 108
memory resident overlays 111
memory-resident polling 108
message backlog, caution note 52
messages to the terminal operator 111
messages, location on screen 31
meter time, processing unit 108
MIF {multiple independent function) 9, 12
MIF/MRT (multiple independent function
MRT) 12

124

MIF/MRT technique 16
MIF/SRT program, illustration
MIF, technique 16

minimizing storage requirements

13

minimum put/get area size 95

minimum resident code 108

104

minimum user program area (MINUPA}

MINRES-NO 108
MINRES-YES 108
MINTPBUF formula 92
MINTPBUF parameter 92, 97

MINUPA {minimum user program area)
modification of data, controlling 63

modulus 10 63
modulus 11 63
MORCOR option 111

MRT (muitiple requesting terminal)

program 8
multiple dependent function
multiple independent functio
single function 11
technique 16

15
n 1

MRT and SRT, choosing between
48, 51

MRT/NEP program, example
MRTMAX keyword 16

multiple dependent function MRT

multiple dependent function SRT 1

multiple function program 9

muitiple independent function MRT
multiple independent function SRT
multiple requesting terminal (MRT)

program 8
(see also MRT)

negative input 110

2

1

15

4

12
12

NEP (never-ending program) 15, 46

example 55
reasons for using 15

never-ending program (NEP) 15

NL (new line) 41

nondisplay data, PRUF caution

nondisplay field types, used for

password 68

NOSHR assignment parameter
caution against 7

null characters 110

35

28

number of characters transmitted,

determining 75

object library location on disk
object program size 102
occasional operators 29
online batch control procedures

107

65

102

102

online environment, system
security/integrity 61
online system, control procedures 63
operator ease of use 7
operator keystrokes, examples 33, 34
operators
application-trained 29
occasional 29
order entry application
example of flow 75
screen design 32
transaction-oriented 53
using CCP/disk sort 53
ORDERS program 54
output fields
example 33, 34
F in column 16 36
output file, recovery 72
output hold area 91
Model 15 91, 97
Models 4, 8, 10, and 12 91
output/input fields
example 33
negative values 110
output operations, use of TP buffer 92
output record area, task chaining 47
overlay and segmented screens 36
illustration 37
used to transmit headings 35

PA and PF keys, standardized use 31
PA keys 110
PAS (program appended storage} 102
passing data between programs 15
PRUF technique 35
using screen buffer 47
password security 68
log records 68, 69
PCT 95, 104
peak transaction load 4
peak workload 74
performance requirements 1
performance tips 91
performance, screen design
considerations 34
PF and PA key 31
PF key 110
PFGR {(printer format generator
routine) 41
PGMREQL 95
physical security measures 66
cost versus risk 66
picking ticket, application example 59
PIKWRT program 59
placement of files on disk 107
placement of formats on disk 107
placement of programs on disk 107

POLTIME parameter 108
portline statement 15
print modules
printer 39
renaming example 40
printed output
formatting 41
spooling under CCP 41
printer
busy condition 45, 108
data stream 41
design considerations 39
form design 42, 43
print modules 39, 40
program (terminal) 52
simulated spooling 46
terminal 41
use under CCP 39
printer busy condition 4%
interval timer 45
task chaining technique 52
WAIT operation code 45
PRINTER OCL statement 41
PRINTER parameter on PROGRAM statement 41
PRINTER-SHR 39
processing unit
determining 74
meter time 108
size 88
utilization 84
program-appended storage 111
program appended storage (PAS) 102
program design
considerations, printers 39
terminal printers 44
program functions 8, 9
program load 104
affect of task chaining 48
disk accesses for 105
minimizing 8, 9
program load time, affect of PRUF 109
program iogic, MDF/SRT 14
program request under format {PRUF) 35
advantages 35
considerations using. 109
example 10
illustration 10
nondisplay data caution 35
overlay screen consideration 36
screen design considerations 35
single function MRT program 11
single function SRT program 10
program step, analyzing 75
program terminations, disk accesses
for 105
program types, CCP 8
programmed control procedures 63
programmed security measures 67
programs, placement on disk 107
protecting data (see data security)

Index

125

PRUF consideration 109
PRUFLNG 95

put data area 95

put/get area 95

put operation 104

put override operation 36, 104

queue, definition 73
queuing theory
(see also simplified queuing theory)
dependence on 4
example 74
simplified 73

randomizing techniques 24
receiving data, SRT program 10
record identifying indicators 111
record length, optimal 108
recovery

(see also file recovery)

consecutive 72

consecutive files 72

indexed add files 72

indexed files 4, 72

load file 72

output file 72

procedures 69
reducing storage requirements 104
relationship of functions within a
program 9
relative record number 18
release/keep, transient loads 105
release terminal, transient loads 105
renaming unit record data management
modules 40
resident code, minimum 108
resident polling, memory 108
resource handler

chaining 48

example 48, 52
resource utilization 4
RESPOL-YES 108
response time

(see also terminal response time)

business 1

for a transaction 73

location of CCPFILE 104

processing unit, example 86

queuing theory equations 73

system, example 86

terminal 1
right adjustment 110
rotational delay 82
RPG 1l H-specification, restriction 11
running batch programs under CCP 48

126

scheduling work 8
screen design (see 3270 screen design)
sector protection
PRUF consideration 109
updating files 27
security classification 67
security measures
physical 66
programmed 67
segmented screens 36
ilustration 37
SELECT statement ($COPY) 72
self-check digits 63
sequential files, in online
environment 17
serial {matrix) printers 41
service time
calculation 80
definition 80
transactions 73
sharing files (see file sharing)
shipping master file, example 54
SHR assignment parameter 28

" shutdown, PRUF consideration 109

sign-on security 68
simplified queuing theory 73
example 74
single function MRT 11
comparison 11
PRUF concept 11
single function MRT program,
illustration 11
single function program 9
single function SRT 10
comparison 11
illustration 10
PRUF concept 10
single requesting terminal (SRT)
program 8
{see also SRT program)
size of CCP code 108
sort input file
access type 53
sharing 27, 53
sort moduiles, location on disk 107
sort output file
access type 53
sharing restriction 27, 53
SORT program 58
sort under CCP 53
sart work file
access type 53
sharing restriction 27, 53
sorting consideration, transaction
file 27
spool file, location on disk 108
spooling printed output under CCP 41
spooling, use of printer 39)

SRT (single requesting terminal)
program 8
choosing between SRT and MRT 11
methods of receiving data 10
multiple dependent function 14
multiple independent function 12
single function 10
SRT programs
INVWRT program 56
ORDERS program 54
PIKWRT program 59
SORT program 58
SRTWRT program 57
SRTWRT program 57
standards between screens 31
stop invite 105
storage requirements, reducing 104
SUBR92 111
summary CCP program types 9
symbolic file technique for password
security 69
synonym records
example 21
goals for handling 21
handling 18
placement in file 18
system design
design data (list) 3
general approaches 2
over-designing 4
system failure, recovering from 69
system growth 8
system integrity 2, 61
audit trail 62
definition 61
System Measurement Facility 4
system messages, PRUF requirement 35
system performance 1
affect of TP buffer size 97
file sharing 27
tips 91
system printer 39
design considerations 39
system resources
affect of task chaining 48
concurrent utilization 7
system security 2, 61
batch environment 61
definition 61
online environment 61
system size, determining 74, 88
system throughput 1
affect of buffer size 91
affect of file organization 17
definition 1
file sharing 27
how measured 1
importance 1
task chaining 48

table, execution-time 68
tape backup 71
task areas, number needed 88, 89
task chaining 47
affect on program loads 48
affect on system resources 48
interprogram communications 15
MRT/NEP resource handler 48
printer busy 52
system throughput 48
terminal response time 48
TP buffer full, caution 52
transient loads 105
with batch programs 47
with CCP/disk sort 53
with transaction-oriented processing 47
task size
CCP 102
example 89
task-to-task communications 15
TASKSIZE parameter 102
teleprocessing buffer (see TP buffer)
terminal printer program, using task
chaining 52
using an NEP for 46
terminal printers 39, 41
forms design for 41
program design techniques for 44
using task chaining 48
terminal response time 1
{see also response time)
affect of file organization 17
CCP/disk sort 53
definition 1
disk access arm contention 17
file sharing 27
minimum 1
task chaining 48
terminals in ERP, affect on TP buffer 109
throughput 1
(see also system throughput)
timer support
example 52
transaction record 62
TP buffer {TPBUF) 91
affect of terminals in ERP 109
example of allocation (Model 15) 97
fragmentation of 98
how freed 97
Model 15 95
Model 15D
with DFF buffer support 99
without DFF buffer support 95
Models 4, 8, 10, and 12 92
operating size 92
task chaining caution 52
two BSC lines 98
WAIT indication 98
TPBUF 91

index

127

traffic peaks 4, 5
transaction data, logging 61
transaction file 61

as direct files 25

example 48, 55

sharing 62

sharing consideration 27

sorting consideration 27

using task chaining to write 48
transaction file data, loss of 71
transaction file writer program 48
transaction file writer program, logic
transaction log file 61
transaction logging

$TRLOG program 61

online system 61
transaction logging fite

size consideration 62

used for audit trail 62
transaction-oriented processing

CCP/disk sort 53

file sharing 27

order entry application 53

task chaining with 47
transaction peaks 4, 5
transaction peaks, illustration 5
transaction record

content checklist 62

timer support 62
transaction, definition 8
transactions per hour 82

determining 77
transients 104

when loaded 107
transmission time

affect of double buffering 102

reducing 35
transmitted characters 33, 34
type F output field class 104

unit record data management 111
renaming modules 40

update applications, screen

design 32, 33, 34

updating files, sector protection 27

use of printers under CCP 39

user performance requirements 1

user record area 91

user record area, description 91

user security interface to CCP 68

128

b1

using an NEP for terminal printer 46

utility programs, location on disk 107

utilization (U) of a facility 73
utilization of resources 4, 5 7
calculation 80
disk calculation 82
processing unit 84
program 88
tasking area 88
utilization, disk 82, 108

volume study, steps in 74

WAIT indications, TP buffer 98
wait op code, example 52
WAIT operation code, printer busy
condition 45
wait state 97
wait time 73, 80
calculation 80
definition 80
WCC (write control character}) 41

XWRITE program 55

3270 screen design 29
attribute characters 35
field descriptor table (FDT) 36
file update example 33, 34
guidelines 29
heading and prompts 35
human factors 29
large-volume output 30
operator considerations 29
performance considerations 34
PRUF considerations 35
screen blinking 30

3340 data accesses 107

3741 data entry, control procedures

5444 data access 107

5445 data access 107

63

GC21-5165-1

IBM System/3

Communications Control Program

System Design Guide

V'S’ 3yl Ul pajlew j1 Asessaoau abeisod oN ¢

$SaIppy
*Alddns NOA UOIIBULIO U 8yl 8SN O} 8NUHUOD ‘3SINOD O

‘Aew no “Jaa3leym uonebiqo Aue Buriinoul Jnoyum areisdosdde sanaljaq 3
Aem Aue ui Ajddns NOA uolleWIIOjUL 34} JO Aue 3INGLIISIP pue asn Aew K g|

uoneziuebin
10 Auedwo)

awepN

uawuwion Jquinpy abey

*SS94PPER pue BWEU JNOA apn|dul

noA papiaocid ‘apew Buiaq jou sy abueys e Aym noA a1 4o ‘uoieagnd 10443 laquinpy abey
8yl Ajlie|2 10 1231109 |jiMm 3p "Wuoy pred-abeisod siyl Buisn Ag 11 1noqe
SN |91 asea|d “uonedjqnd siy) Ul uoijewrioju Buipesisiu Jo ajeINddRU| Aldes o (U0 Os pue ‘uoileaisn|ji ‘|eaiydesbodAl) uoniedtqnd ui Joai3

‘uOIIBD0| JNOA 1S31e3U 331130 Youesq NG| 3yl 01 JO aAllEIuasaIdal Wg| 4NOA 01 Pa1daAIP 8g pINoYs ‘018 ‘suoiedljqnd |euoippe 4oy sisanbay “110ddns
Bulww esboud pg| ut sabueys ‘swaisAs g g) 1noge suoiisanb jeduysa | suoiledstjgnd o) seBueyd 3sanbed 10 s1011e uOEIGNd AJ1IUBPE 03 A|UO WO, SIY) 3SN asedld

WHO4 INJWWK 5.43av3ad

GC21-5165-1

Fold and tape

Please do not staple Fold and tape

NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BU
FIRST CLASS

SINESS REPLY MAIL
PERMIT NO, 40 ARMONK, N. Y,

POSTAGE WILL BE PAID BY . . .

IBM CORPORATION
General Systems Division
Development Laboratory
Publications, Dept. 245

Ro

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30055
{U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

chester, Minnesota 55901

I

Please do not staple Fold and tape

— — — — — — aurbuoyy in-

£/S Wai

1sAg weiboud [013u0n SUOIEIIUNWWOY

(9€-€S "ON 21t4) 8pingy ubis

L-G9LG-120D wsn ul pawlyg

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International W -
44 South Broadway

White Plains, New York 10601 e
U.S.A.

(International)

L-G9LG120D VSN Ul palullg (9E-ES ‘ON 3jid) apIng ubisag waisAg weiboly [011U0D suonedlunwwoyd /s NG|

GC21-5165-1

