o llM

NetView™

Customization: Writing Command Lists

Release 3

Program Numbers
5665-362 (MVS/XA)
5664-204 (VM)

SC31-6015-0

Fifth Edition (May 1989)

This edition applies to Release 3 of the NetView™ licensed program, which runs under the following oper-
ating systems:

MVS/XA (NetView program number 5665-362)
MVS/ESA (NetView program number 5665-362)
VM (NetView program number 5664-204),

The licensed program described in this document and all licensed material available for it are provided by
1BM under terms of the Agreement for IBM Licensed Programs. Changes are made periodically to the
information herein; before you use this document in connection with the operation of IBM systems, consult
the latest IBM System/370, 30X X, 4300, and 9370 Processors Bibliography, GC20-0001, for the editions that
are applicable and current.

Any reference to an IBM licensed program in this document is not intended to state or imply that only IBM’s
program may be used.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not of itself constitute or imply a grant of any license or immunity
under any patents, patent applications, trademarks, copyrights, or other similar rights of IBM or of any third
party, or any right to refer to IBM in any advertising or other promotional or marketing activities. I1BM
assumes no responsibility for any infringement of patents or other rights of third parties that may result
from use of the subject matter disclosed in this document or for the manufacture, use, lease, or sale of
machines or programs described herein, outside of any responsibilities assumed via the Agreement for
Purchase of IBM Machines and the Agreement for IBM Licensed Programs.

Licenses under IBM’s utility patents are available on reasonable and nondiscriminatory terms and condi-
tions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing
should be directed in writing to the IBM Director of Commercial Relations, International Business Machines
Corporation, Armonk, New York, 10504.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or informa-
tion must not be construed to mean that IBM intends to announce such products, programs, or services in
your country. ‘

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch oftice serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may
address comments to IBM Corporation, Department E15, P.O. Box 12195, Research Triangle Park, North
Carolina 27709, U.S.A. IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

NetView is a trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1986, 1989
All Rights Reserved.

Contents

Part One. Basic Command List Topics 1
Chapter 1. Command ListOverview 3
WhatisaCommand List 3
How Command Lists CanHelpYou 3
How Command Listsare Created 5
WhoCanUse Command Lists 7
Loading Command Lists IntoStorage 7
Howto RunCommandLists 10
Using Network Commands in CommandLists 14
Writing Bilingual Command Lists 18
What an Operator Sees when a Command ListRuns 20

Part Two. Writing Command Lists in the Restructured Extended Executor Language 21

Chapter 2. Restructured Extended Executor Language Overview 23
Introduction to the Restructured Extended Executor Language 23
Coding Conventions for REXX Command Lists 24
NetView Restrictions on REXX Instructions 26
NetView Restrictions on REXX Functions 27
Using VM REXX CompressionTools 27
Writing REXX Function Packagesuuiiiunnnnn .. 28
Changing the Environment Addressed by REXX Command Lists 28
Using the TSO/E EXECIO Command 28
Using the NetView ALLOCATE and FREECommands 29
Nesting REXX Command Lists from Assembler, C,orPL/l 29
Parsingin REXXCommand Lists 29
Tracing REXX Command Lists 30
Return Codes in REXXCommandlLists 31
Recovering from Errors in REXX Command Lists 31
Chapter 3. REXX Instructions Provided by NetView 33
REXX TRAP Instruction 34
REXX WAIT Instruction 36
REXX MSGREAD Instruction 40
REXX FLUSHQ Instruction 42
Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE .. 42
REXX GLOBALV Instruction 44
Chapter 4. REXX Functions Provided by NetView 51
Session information 51
Terminal Information 52
Operator Information e 52
Command List information 53
Message Processing Information 53
Domain Information 56
Chapter 5. Examples of REXX Command Lists for NetView 57
TYPE Example e e 58

Contents il

TYPEITExample e, 59

PRINTExample i i e 60
CHKOPNUM Example i 62
CHKRSTAT Example i ii . 64
DSPRSTAT Example e 66
Part Three. Writing Command Lists in the NetView Command List Language 69
Chapter 6. Simple NetView Command List Language Command Lists 71
What the NetView Command List Languageincludes 71
Coding Conventions for NetView Command List Language Statements 72
Labels 75
Variables e e e e e e e 76
ComMmMeNtS e e 89
Null Statements e e e e e e e e e e e 89
Assignment Statements L. 90
Control Statements e 92
Built-in Functions 99
Sample Command List—Chapter Review 105
Chapter 7. NetView Command List Language Branching 107
&IF Control Statement 107
&GOTO Control Statement 109
&EXIT Control Statement 109
&WAIT Control Statement 111
Chapter 8. NetView Command List Language Giobal Variables 123
Task Global Variables, 124
Updating Task Global Variables 125
Common Global Variables 126
Scope of VariablesinCommandLists 127
Part Four. Advanced Command List Topics 133
Chapter 9. Message Automation 135
What Is NetView Message Automation 135
How NetView Release 3 Message Automation is Different 135
How to Define NetView Message-Driven Command Lists 136
Sending Messages to the MVS OperatorConsole 137
Routing Messages from Command Lists 142
Parsing Variables with PARSEL2R 144
Working with Multi-LineMessages 151
Using the SDOMAIN Command with the QUIET Option 158
Hints for Implementing Message Automation 161
How to Set Up for Migration 164
Chapter 10. Service Point Command Service Commands 165
Service Point Command Service 165
LINKDATA and LINKTESTResults 166
LINKPDResults i e 167
RUNCMD Results e 168
Appendixes 169

iv Netview Customization: Writing Command Lists

Appendix A. REXX Command List Reference Summary 171

Appendix B. NetView Command List Language Reference Summary 177
Appendix C. Comparison of REXX and NetView Command List Language ... 185
Comparison of REXX Instructions and NetView Command List Language
Control Statements 185
Comparison of REXX Functions and NetView Command List Language Control
Variables e e e e 188
Commands UsedinCommand Lists 193
Examples Comparing REXX and NetView Command List Language 193
Appendix D. Converting Command Lists Written in the NetView Command List
Languageto REXX e 209
Executing CNMS8001 Command ListonTSO/E 210
Executing CNMS8001 Command List on VM Operating System 212
Conditions CNMS8001 CannotConvert 213
Conditions CNMS8001 Might Not ConvertCorrectly 213
Improving the Performance of Converted Command Lists 214
Example of a Converted Command List F 215
Glossary, Bibliography,andIndexl ... 221
Glossary [R 223
Bibllography 241
NetView Publications i, 241
Other Network Program Products Publications 242
Related Publications e 243
Index e 245

Contents V

Vi NetView Customization: Writing Command Lists

Figures

Common REXX Startup Command List 4
Common NetView Command List Language Startup Command List 5
"REXX Command List to Activate a Network Control Program 5
NetView Command List Language Command List to Activate a Network
Control Program e 5
JCL to Define a Command ListDataSet 6
JCL to Define Concatenated Command List DataSets 6
CMDMDL Statement Syntax for Command Lists 7
LOADCL Command Syntax, 8
Examples of LOADCLCommands 8
DROPCL Command Syntax, 9
MAPCL Command Syntax 9
Example of NCCFIC Definition Statement 10
Example of PROFILE Definition Statement 11
Nested Command Lists 14
Example of a Bilingual Command List 19
TS Command Syntax, 30
TECommand Syntax 30
TRAP Instruction Syntax, 34
WAIT Instruction Syntax 37
WAIT CONTINUE InstructionSyntax 38
MSGREAD InstructionSyntax e 40
FLUSHQ Instruction Syntax 42
Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT
CONTINUE e e e e e 42
GLOBALV PUTT instructionSyntax 45
GLOBALV GETT Instruction Syntax 46
INITIALIZE1 Command List 47
UPDATE1 Command List 47
GLOBALV PUTC InstructionSyntax 48
GLOBALV GETC Instruction Syntax 49
TYPE Example 58
TYPEITExample e e 59
PRINTExample e 60
CHKOPNUM Example 62
CHKRSTATExample e ieee .. 64
DSPRSTAT Example i i 66
Suppression Characters 75
Labels in Command List Statements 76
Variable Substitution Example 77
Format for Passing Parameter Variables to a CommandList 78
RESC Command Listto Start LU100 78
RESC Command List with ParameterValues 78
Nonsequential Use of Parameter Variables ina Command List 79
Example of Passing Parameters, 79
Statements in MAJOR Example Command List 80
Statements in CONN Example Command List 81
Statement to Activate CONN Example Command List 81
Assignment Statement Syntax L L. 87
User Variables in Command List Statements 88
Comment Statements for internal Documentation 89
Assignment StatementSyntax o Lo 90

Figures Vil

viil

51.
52.
53.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

89.
90.
91.
92.
93.
94,
95.
96.
97.
98.
99,

100.
101.
102.

103.

&CONTROL Control StatementSyntax
&WRITE Control Statement Syntax
Example Command List Using&WRITE
Result of PATH Example Command List
&WRITE Statements to Send Operator Messages
&BEGWRITE Control StatementSyntax
&BEGWRITE with Variable Substitution
&BEGWRITE with No Variable Substitution
Result of ENDIT Example CommandList
&PAUSE Control StatementSyntax
Example &PAUSE Statement,
Syntax for Coding Built-in Functions in an Assignment Statement
Syntax for &CONCAT in Assignment Statements
&CONCAT Function to Build a Character String
Syntax of &LENGTH in Assignment Statements
Example Command List Using &LENGTH
Syntax for &NCCFID in Assignment Statements
Using &NCCFID Function to Start a Cross-Domain Session
Syntax for &NCCFSTAT in Assignment Statements
Example Command List Using &NCCFSTAT
Syntax for &SUBSTR in Assignment Statements
Example Command ListUsing &SUBSTR
Using &SUBSTR to Find the Domain Name from &APPLID
Review Command List
&IF Control StatementSyntax
Suggested &IF Coding to Avoid Problems with Null Values
Examples of Arithmetical Comparisons
Example Statements Using &IF Control Statement
&GOTO Control StatementSyntax
&EXIT Control StatementSyntax
STOPTAF Command List Using &IF, &GOTO, and &EXIT
&WAIT Control StatementSyntax
Example &WAIT Command Using MSGID=-Label Pairs
Syntax for Customizing an &WAIT Statement
Command List Issuing &WAIT forOneMessage
&TGLOBAL Control StatementSyntax
Example &TGLOBAL Control Statement
CLIST1 Command List to Define, Update, and Reference Task Global
Variables
UPDATE1 Command List to Update Task Global Variables
&CGLOBAL Control StatementSyntax
Example &CGLOBAL Control Statement
GLOBVAR1 Example Showing Scope of Global Variables
GLOBVAR2 Example Showing Scope of Global Variables
WTO Command Syntax i iinenunr..
WTOR Command Syntax
DOMCommand Syntax,
MSGROUTE Command Syntax
PARSEL2ZRCommand Syntax,
REXX PARSEL2R Example UsingSymbols
NetView Command List Language PARSEL2R Example Using Symbols
REXX PARSEL2R Example Using Patterns and Symbols
NetView Command List Language PARSEL2R Example Using Patterns
and Symbols e
REXX PARSEL2R Example Using LeadingBlanks

NetView Customization: Writing Command Lists

104.

105.
106.

107.
108.

109.
110.

1.
112
113.
114.
115.
116.
117.

118.

119.
120.
121.

122.
123.

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.

139.

140.
141.
142.
143.
144,
145.

NetView Command List Language PARSEL2R Example Using Leading

Blanks e 148
REXX PARSEL2R Example Using a Pattern that Contains a Variable ... 148
NetView Command List Language PARSEL2R Example Using a Pattern

that Containsa Variable 149
REXX PARSEL2R Example Using a Hexadecimal Pattern 149
NetView Command List Language PARSEL2R Example Using a

Hexadecimal Pattern, 149
REXX PARSEL2R Example Using Character Selectors 150
NetView Command List Language PARSEL2R Example Using Character
Selectors e e 150
Example Multi-Line Message 151
GETMSIZE Command Syntaxuu.... 152
IEE104] Message to Trigger an Automation Task Command List 152
GETMTYPE Command Syntax 163
GETMLINE Command Syntax e e 154
Command List Using Multi-Line Messages - REXX Example 156
Command List Using Multi-Line Messages - NetView Command List
Language Example 157
NetView Command List Language Command List Issuing SDOMAIN with
QUIET option e e 159
Message Automation Statement to Suppress Message 161
REXX Command List to Test Automation Command Lists 161
NetView Command List Language Command List to Test Automation
CommandlLists 162
REXX Command List to Generate a Multiple-Line Message 162
NetView Command List Language Command List to Generate a

Multiple-Line Message FE 162
GREETING Example—NetView Command List Language 194
GREETING Example—REXX 195
LISTVAR Example—NetView Command List Language 196
LISTVAR Example—REXX it 197
BROWSE Exampie—NetView Command List Language 198
BROWSE Example—REXX 199
ACTLU Example—NetView Command List Language 200
ACTLU Example—REXX i 201
GETCG Example—NetView Command ListLanguage 202
GETCG Example—REXX e 202
PPTUPDAT Exampie—NetView Command List Language 203
PPTUPDAT Example—REXX 203
ACTAPPLS Exampie—NetView Command List Language 204
ACTAPPLS Example—REXX 206
Syntax to Run CNMS8001 when SYS1.CNMSAMP is not Allocated to
SYSPROCOrSYSEXEC i 210
Syntax to Run CNMS8001 when SYS1.CNMSAMP is Allocated to

SYSPROCor SYSEXEC i 211
Syntax to Run CNMS8001 Command List on VM Operating System 212
Bilingual Command List Created by CNMS8001 216
Exampie of a Language Statement 226
NCP Examples e e 226
VTAM Examples e 226
Linksand PathControls 230

Figures iX

X NetView Customization: Writing Command Lists

Tables

©NOOOA®ND A

©

The NetView Library L XVi
Valid and Invalid User VariableNames 88
REXX Instruction Summary 172
REXX FunctionSummary 173
Built-in FunctionSummary 178
Control Statement Summary 179
Control Variable Summary 181
Comparison of NetView Command List Language Control Statements

and REXX Instructions o 186
Comparison of REXX Functions and NetView Command List Language
Control Variables 188

Tables Xi

xii Netview Customization: Writing Command Lists

About This Book

NetView Customization: Writing Command Lists describes how to write command
lists for the NetView™ program using either the Restructured Extended Executor
language (RExx) or the NetView command list language.

This book is intended to aid the customer in writing command lists. It primarily
contains general-use programming intertaces, which allow the customer to write
programs that use the services of the NetView program. However, this book also
provides the following types of information, which are explicitly identified where
they occur: Other product information, such as defining command lists within
NetView and implementing message automation is provided to aliow the customer
to use the NetView program. This information should never be used as program-
ming interface information.

Who Should Use This Book

NetView Customization: Writing Command Lists is designed for system program-
mers and network operators who are either using command lists or learning how
to write command lists. Before you read this book, you should be familiar with how
the NetView program is used in your network and what the operators’ tasks are.
This book does not provide descriptions of NetView operator commands. if a
command is unfamiliar, refer to NetView Operation.

How to Use This Book

This section includes information about the organization, the terms, and the coding
conventions used in this book.

How This Book Is Organized

This book is organized into the following sections:

“Part One. Basic Command List Topics” contains an overview of basic command
list topics that are common to command lists written in either RExx or the NetView
command list language.

“Part Two. Writing Command Lists in the Restructured Extended Executor
Language” contains information about how to write command lists using RExX.

“Part Three. Writing Command Lists in the NetView Command List Language”
contains information about how to write command lists using the NetView
command list language.

“Part Four. Advanced Command List Topics” contains information on advanced
topics that pertain to command lists written in either RExx or the NetView command
list language.

™ NetView is a trademark of International Business Machines Corporation.

About This Book Xiii

Appendix A, “REXX Command List Reference Summary” contains summary charts
of the instructions and functions provided by the NetView program for use in RExx
command lists.

Appendix B, “ NetView Command List Language Reference Summary” contains
summary charts of all control keywords, control variables, and built-in functions for
the NetView command list language.

Appendix C, “Comparison of REXX and NetView Command List Language,” con-
tains a comparison between the features of RExx and the NetView command list
language.

Appendix D, “Converting Command Lists Written in the NetView Command List
Language to REXX,” contains information about converting command lists written
in the NetView command list language to REXX.

Notes on Terms Used in This Book

Following is a list of terms and the meanings they have in this book. Unless other-
wise noted, the abbreviations for products refer to the latest version and release of
the product.

Term Meaning

command lists command lists written in RExX and command lists written in
the NetView command list language

member member in the specified data set (Mvs) and file name with a
file type of NCCFLST (VM)

MVS MVS/XA, and MVS/ESA (compatability mode)

REXX Restructured Extended Executor language (see note 1)

REXX Reference VM/SP System Product Interpreter Reference or TSO/E
REXX Reference

REXX User’s Guide VM/SP System Product Interpreter User’s Guide or TSO/E
REXX User’s Guide

VM VM/SP, VM/SP HPO, and VM/XA (see note 2)

VTAM VTAM V3R1.1, VTAM V3R1.2, and VTAM V3R2.

Notes:

1. NetView does not support REXX on VM/XA systems.

2. VM/XA runs in compatability mode.

Coding Conventions Used in This Book

xiv

The model statements are formatted according to a set of coding conventions
which are described in this section.

Braces { }
When braces enclose operands, this indicates that you must choose one
of the operands. Any accompanying commas or equal signs must be
included. Do not include braces when coding.

NetView Customization: Writing Command Lists

Brackets []
When brackets enclose an operand, this indicates a completely optional
specification. Any accompanying commas or equal signs are optional.
Do not include brackets when coding the specification.

Ellipsis
An ellipsis replaces a repetition of an operand or variable in syntax
statements. Replace ellipses with the appropriate operand or variable
when you code.

OR-sign |

The OR-sign separates choices for an optional or required specification.
If a group of options is enclosed by brackets, and the individual options
are separated by oR-signs, none of the options in the group has to be
chosen. Do not include the OR-sign when coding the specification.

UPPERCASE Characters
You must enter command names or operands shown in UPPERCASE,
BOLD characters exactly as they appear. These names are program
keywords.

lowercase Characters
Lowercase, italic characters describe the kind of program variable
information that must be supplied, rather than the literal information.
The actual value replaces the lowercase description.

underscored Characters
Underscored characters indicate default values. These values are auto-
matically assigned unless you specify a different value.

What Is New In This Book

in previous releases of NetView, this book was titled NetView Command Lists.

Major changes made to this book include information about the Restructured
Extended Executor (REXX) language. Release 3 of the NetView program has been
enhanced to support REXx command lists. As a result, some existing chapters in
this book have been changed to reflect new RExx information, and several new
chapters have been added.

Chapter 2, “Restructured Extended Executor Language Overview” on page 23
contains an introduction to RExx and explains how to write REXx command lists for
NetView.

Chapter 3, “REXX Instructions Provided by NetView” on page 33 contains detailed
information about using the new REXX instructions provided by NetView.

Chapter 4, “REXX Functions Provided by NetView” on page 51 contains detailed
information about using the new RExx functions provided by NetView.

Appendix A, “REXX Command List Reference Summary” on page 171 contains a
summary of the functions and instructions provided by the NetView program for
use in REXX command lists for NetView.

Appendix C, “Comparison of REXX and NetView Command List Language” on

page 185 contains a comparison between the features of RExx and the NetView
command list language.

About This Book XV

Appendix D, “Converting Command Lists Written in the NetView Command List
Language to REXX” on page 209 contains information about how to convert
command lists written in the NetView command list language to RExX.

Where To Find More Information

Table 1shows all of the publications in the NetView Release 3 library, arranged
according to related tasks. For more information on these and other related publi-
cations, see “Bibliography” on page 241.

Table 1. The NetView Library

Evaluation and Education

Network Program Products General Information GC30-3350
Bibliography and Master Index for NetView, NCP, and VTAM .GC31-6081
Learning about NetView: Operator Training (pC Diskettes) SK2T-0292
Planning

Network Program Products Planning SC30-3351
NetView Storage Estimates (PC Diskettes) SK2T-1988
Console Automation Using NetView: Planning SC31-6058

Installation and Administration

NetView Installation and Administration Guide SC31-6018
NetView Administration Reference SC31-6014
Network Program Products Samples : SC30-3352
NetView Tuning Guide SC31-6079

Customization

NetView Customization Guide SC31-6016
NetView Customization: Writing Command Lists SC31-6015
NetView Customization: Using PLI/l and C SC31-6037
NetView Customization: Using Assembler SC31-6078
Operation

NetView Operation Primer SC31-6020
NetView Operation SC31-6019
NetView Command Summary ‘ S$X75-0026
Diagnosis

NetView Problem Determination and Diagnosis LY43-0001
NetView Resource Alerts Reference SC31-6024
NetView Problem Determination Supplement for LD21-0023

Management Services Major Vectors 0001 and 0025

Xvi NetView Customization: Writing Command Lists

Part One. Basic Command List Topics

Chapter 1. Command ListOverview 3
WhatisaCommand List 3
How Command Lists CanHelpYou 3
Examples of Common Startup CommandLists 4
Examples of Activating a Network Control Program 5
How Command ListsareCreated 5
For MVS . e 6
For VM e 6
Who CanUse Commandlists 7
Loading Command Lists IntoStorage 7
HowtoRun CommandLists 10
NetView lnitialization 10
Operator Logon 11
Message Automation 11
Operator Command e 12
Another Command List 13
User-Written Command Processor 14
Using Network Commands in Command Lists 14
Using System Commands 14
Using Long RunningCommands 15
Usingthe VIEWCommand 16
Using Full-ScreenCommands, 16
Primary POl Task Restrictions 17
AUTOTASK OST Restrictions 18
Writing Bilingual Command Lists, 18
What an Operator Sees when a Command ListRuns 20

Part One. Basic Command List Topics 1

2 NetView Customization: Writing Command Lists

Basic Topics

Chapter 1. Command List Overview

This chapter is for those readers who need to understand what command lists for
the NetView™ program are, how to use them, how to create them, and how to run
them.

This chapter is intended to provide customers with an overview of using command
lists. It contains information on how to use, create, and run command lists. The
information in this chapter must not be used for programming purposes.

What Is a Command List

A command list is a set of commands and special instructions that are grouped
under one name like a computer program. For NetView, a command list can be
written in either RExx or the NetView command list language. When you type a
command list name at a terminal, the commands and instructions in that command
list are interpreted and executed. There are several ways to run command lists
besides entering a command list name at a terminal. For example, you can issue a
timer command to run a command list at a specified time or time intervals. You
can also run more than one command list at the same time under different tasks.
See “How to Run Command Lists” on page 10 for more information on how to run
command lists.

Command lists help you control your network and make the operators’ jobs easier.
Command lists obtain information from operators, other tasks, system resources,
or the contents of messages. The command list uses this information to perform
processing or to decide the next action. This flexibility lets you automate repetitive
or complex routine operations, perform resource recovery, and handle operations
consistently among different operators.

How Command Lists Can Help You
Command lists heip you autornate your system and network in the following ways:

¢ A command list can ask the operator questions and take action based on the
answers.

* A command list can display information on an operator’s screen.

* A command list can reword, delete, or reply to a message before the operator
sees it.

¢ A command list can wait for NetView to receive a message or group of mes-
sages and take action based on the message content.

¢ A command list can speed backup and recovery procedures (for example,
automatic recovery of a failing resource).

¢ A command list can tailor operator commands and procedures for your
network.

™ NetView is a trademark of International Business Machines Corporation.

Chapter 1. Command List Overview = 3

Basic Topics

¢ A command list can monitor and restart subsystems and programs (for
example, VTAM, CICS, and DB2).

System programmers or operators can write command lists to:

¢ Simplify entry of operator commands

* Ensure completeness and correct order when a sequence of commands must
be issued

¢ Provide for commands to be issued automatically when specific messages are
received during the operation of systems, networks, and applications

¢ Iimplement specialized operator dialogs that extend the operator’s role or
increase the efficiency and productivity of operators.

Command lists can save time and make the operator’s job easier in the following
ways:

¢ A command list can combine complex or multiple routine jobs or both. The
operator can do all the jobs by entering the command list name at the terminal.

¢ Complex 2r lengthy functions can be performed consistently among operators
by using the same command list.

Before you write a command list, it is important that you analyze your system and
network operating procedures and the tasks that your operators regularly perform.
Decide which of these jobs you want to automate using command lists. Start by
writing simple command lists and add the more complex functions as you gain
experience. This book does not describe how to use NetView operator commands.
if you need information about an unfamiliar command, see NetView Operation.

The following are examples of command lists that simplify network operation.

Examples of Common Startup Command Lists
If the operators need to set up terminal access facility (TAF) sessions with the Infor-
mation Management System (iMs) and the Host Command Facility (HCF), a
command list can be used instead of entering individual commands.

The sTARTUP1 command list in Figure 1 is an example of a RExx command list that
can be used to establish terminal access facility (TAF) sessions with iMS and HCF.

v /* STARTUP1 */ : =
'BGNSESS OPCTL,APPLID=INS1, SRCLU«TAFII LOGMODE=OPCTLLOG, SESSID=IMS"
*BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF11,L0GMODE=0PCTLLOG,SESSID=HCFA®
~ 'BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF12,L0GMODE=O0PCTLLOG, SESSID=HCFB'
Bar

anure 1. Common REXX Startup Command Llst
The sTARTUP2 command list in Figure 2 on page 5 is an example of a command list

written in the NetView command list language that can be used to establish the
same terminal access facility sessions.

4 Netview Customization: Writing Command Lists

Basic Topics

E STARTUPZ CLIST i ' i :

‘BGNSESS OPCTL,APPLID=IMS1, SRCLU—TAFH LOGMODE—OPCTLLOG SESSID—IMS

% BGNSESS ‘OPCTL,APPLID=HCF1,SRCLU=TAF11,L0GMODE=0PCTLLOG,SESSID=HCFA
BGNSESS OPCTL, APPLID—HCFl SRCLU-TAFlZ LOGMODE‘OPCTLLDG SESSID=HCFB

3; &EXIT .

Flgure 2. Common NetVuew Command Llst Language Startup Command List

Instead of having to remember and enter three commands, operators can now
simply enter the command list name STARTUP1 or STARTUP2. The command list starts
the three sessions and operators receive the same messages that they would
usually receive if they had entered all three commands.

Examples of Activating a Network Control Program
For operators who need to activate a Network Control Program (NCP), you can write
a command list to simplify the activation of the NcP. Figure 3 is an example of a
REXX command list that activates the NCP.

/* NCP1 */

W NET ACT ID‘NCPl LBAD—YES LOADSTA INKl‘

Figure 3. REXX Command List to Activate a Network Control Program

Figure 4 is an example of a command list written in the NetView command list lan-
guage that activates that same NCP.

NCP2 CLIST, =
V NET,ACT, ID—NCPI LOAD'YES LOADSTA—LINKl
&EXIT

Flgure 4 NetVIew Command Llst Language Command List to Actuvate a Network Control
Program

The operator can now use the NCP1 or NCP2 command list to activate NCP1.

These are examples of simple command lists, illustrating some basic command list
features. Both RExx and the NetView command list language provide the ability to
perform additional functions. Detailed information about writing command lists in
either language is provided in the following chapters.

" How Command Lists are Created

You can create command lists before NetView is started or while it is running.
Code each command list as a member of a command list data set. After you create
the command list data set, you can use facilities such as ispPF (for vMm and Mvs),
IEBUPDTE (for Mvs), or xeDIT (for vM) to update the command list.

NetView supports command lists in data sets that are concatenated across
volumes. The member name is the command list name unless another name was
defined for the command {ist on a cMDsSYN statement. For more information on

Basic Topics

For MVS

For VM

- //osxcw DD DSN=

//DSICLD DB DSN=datasetnamel,DISP=SHR
SHE - DSN=datasetname2,DISP=SHR
Yy A - DSN=datasetname3,DISP=SHR

// DSN=datasetnamen. E)ISP=SFER

CMDSYN, see NetView Administration Reference. The command list name can be
from 1- to 8-characters (0-9, A-Z, @, $, #). The command list name must begin with
a non-numeric character.

Note: When NetView is operating on an Mvs system and you plan to update or
create command lists while NetView is running, define your command list data sets
without secondary extents. Otherwise, a command list might be filed in a new
extent, and you will have to stop and restart NetView to use the command list.

Once a command list is created for Mvs, the existence of the member is sufficient
to allow an operator to run the command list. For vM, you must reaccess the mini-
disk to use the command list. This is all of the definition that is required to utilize
the command list unless it is to be scope-protected or driven by a message.

You must first create the data set that will be used to store the command lists.
Code each command list as a separate member of a command list data set. To
define the name of the command list data set to the NetView start procedure, code
the JcL pp statement for the psicLD as shown in Figure 5.

Flgure 5. JCL to Define a Command List Data Set

Data sets can be concatenated by coding the psicLD statement as shown in
Figure 6.

Flgure 6 JCL to Defme Concatenated Command L|st Data Sets

The first command list data set defined under psicLD must have the largest block
size of any concatenated command list data sets, or the first DD statement must
have a DCB=(BLKSIZE=XXXX) statement where xxxx is equal to the largest block size
of the concatenated data sets.

Note: To make sure your command lists are accessed when they have the same
name as IBM-supplied command list data sets, concatenate your command list
data sets before the IBM-supplied ones. Make sure the biock size is 3920 or less to
reduce paging caused by the block size exceeding the size of a page of memory.

You must create a file using the name of the command list as the file name with a
file type of NCCFLST. Be sure to access the minidisk after you define the command
list.

Note: If there is not a cMDMDL statement associated with a command list written in
the NetView command list language, the cLIST statement must be the first record of
the command list. See “General Coding Conventions” on page 72 for information
on coding a CLIST statement.

6 NetView Customization: Writing Command Lists

Basic Topics

Who Can Use Command Lists

Once a command list is created, the NetView operator can use that command list
by entering the command list name.

You can limit command list access to a specific group of operators by causing
NetView to scope check each command list when it is run. For each command list
you want scope checked, include the cMDMDL statement shown in Figure 7 in the
DSICMD member.

. cmdlistname ~ CMDMDL ~ MOD =DSICCP

Figure 7. CMDMDL Statement Syntax fo‘r Command Lists

Following the cMDMDL statement, enter the appropriate CMDCLASS statement to
reflect the restrictions that apply to your NetView system. For more information on
how to code cMDMDL and CMDCLASS statements, see NetView Administration Refer-
ence.

Note: You must restart NetView after the new definitions are included in DSICMD to
put the appropriate scope checking into effect.

With NetView commands, you can scope check certain keywords that are entered
with the commands using the KEYCLASS definition statement. However, you cannot
use KEYCLASS to scope check parameters that are entered with a command list.

If you need to scope check the parameters that are entered with a command list,
you can execute a command list from a L/l or ¢ program. The program can then
execute the command list and pass the parameters to the command list. For more
information on writing programs in pL/l or C, see NetView Customization: Using PL/!
and C.

Loading Command Lists Into Storage

NetView provides the ability to load command lists into main storage prior to exe-
cution.

Although it is not mandatory that you load a command list into main storage before
it is executed, pre-loading promotes improved performance of your computer
system. if you invoke a command list that has not been pre-loaded, it is loaded
into main storage, executed, and then dropped from main storage. Therefore,
every time the command list is executed, it must be retrieved from the auxiliary
storage device where it resides. By pre-loading the command list, it can be exe-
cuted multiple times without having to be retrieved from auxiliary storage each
time.

There are three NetView commands that allow you to move command lists into and
out of main storage, and list command lists that are currently in main storage:
LOADCL loads command lists into main storage shared by all operators.

DROPCL drops a command list that was previously loaded into main storage
using the LOADCL command.

MAPCL lists command lists that currently reside in main storage.

Chapter 1. Command List Overview 7

Basic Topics

A description of each command is provided on the following pages. For additional
information on the LOADCL, DROPCL, or MAPCL command, refer to NetView Operation.

The NetView program provides a sample REXX command list (CNMS8003) that can
help you manage the number of command lists that have been loaded into storage
using the LOADCL command. The sample uses the MAPCL and DROPCL commands to
conditionally drop commands from main storage. Browse the sample command
list for more information on how it works.

LOADCL Command
Use the LOADCL command to load command lists into main storage. Figure 8
shows the syntax of the LOADCL command. The operands can be entered in any
order.

LOADCL.

Figure 8. LOADCL Command Syntax

cmdlistnamel,...]
for Mvs, the names of the members within the DSICLD Mvs data set that contain
the command lists to be loaded into storage.

for vm, the names of the vM files that contain the command lists to be loaded
into storage. The file type must be NCCFLST.

Note: Any synonyms defined for a command list through the NetView CMDSYN
command can be used with the LOADCL command.

(REPLACE)
indicates that you want to load new copies of any of the command lists that
were previously loaded using LoabcL. When all of the current users have fin-
ished using the previously loaded copy, it is automatically dropped.

If a command list is already loaded and REPLACE is not specified, no load can
occur for that command list.

Note: If you change a command list that has already been loaded into main
storage, you must issue the LOADCL command with the (REPLACE) operand specified.
This loads the updated version of the command list into main storage so that it is
executed instead of the old version.

If you have command lists that are frequently executed, you can load them into
main storage when NetView is initialized. For example, if the command lists
STARTJOB and SETTERM are run often, you can load them into main storage by coding
the statements shown in Figure 9 in your initialization command list. After initial-
ization, the STARTJOB and SETTERM command lists will reside in main storage and
are available for execution.

i : AR

Figure 9. Exampleé 6f LOADCL Comman

i

GS

For more information on loading command lists into storage when NetView is ini-
tialized, refer to “NetView Initialization” on page 10.

8 Netview Customization: Writing Command Lists

Basic Topics

DROPCL Command

You can remove a command list from main storage by using the brROPCL command.
Figure 10 shows the syntax of the DROPCL command.

‘DROPCL *|cmdlistnamel[,...]

Figure 10. DROPCL Command Syntax

*

indicates that all storage-resident command lists should be removed from
main storage.

cmdlistnamel[,...]
for Mvs, the names of the members within the DsiCLD Mvs data set that contain
the command lists to be removed from storage.

for vM, the names of the vM files that contain the command lists to be removed
from storage. The file type must be NCCFLST.

Note: Any synonyms defined for a command list through the NetView CMDSYN
command can be used with the DROPCL command.

MAPCL Command

The maPCL command can be used to list all command lists currently residing in
main storage or to determine if a specific command list resides in main storage.
For information on output displayed for MAPCL, see NetView Operation. Figure 11
shows the syntax of the MAPCL command.

[..11

Figure 11. MAPCL Command Syntax

*ibmdl:stname

*

indicates that all storage-resident command lists should be listed. This is the
default if MAPCL is entered with no parameters.

cmdlistnamel,...]
for mvs, the names of the members within the DsICLD Mvs data set that contain
the command lists that can reside in main storage.

for vM, the names of the vM files that contain the command lists that can reside
in main storage. The file type must be NCCFLST.

If the command lists are storage-resident, they are listed.

Note: Any synonyms defined for a command list through the NetView cMDsYN
command are not supported by this command.

Chapter 1. Command List Overview 9

Basic Topics

How to Run Command Lists

You should design command lists that run with little outside help from operators.
Some of the ways command lists can be run are:

* By NetView initialization

¢ By operator logon to NetView

* By message automation

* By an operator command (including timer commands)
¢ By another command list

¢ By a user-written command processor.

NetView Initialization
You can define a command list to run automatically when NetView is started. The
NetView initialization command list runs under the PPT task. See “Primary POl
Task Restrictions” on page 17 for information about PPT restrictions.

You can run only one command list at initialization, but this command list can call
other command lists. “Another Command List” on page 13 explains the rules that
apply to cailing another command list. ’

Code the name of the command list you want to run on the NCCFIC definition state-
ment in DSIDMN. For example, if you want to run the seTup command list, code the
NCCFIC statement as shown in Figure 12.

Fbi'gure 12. 'Examp'l'e of NCCFIC Definition Statement

The default NCcFic statement coded in the sample DSIDMN shipped with NetView is:
NCCFIC IC=CNME1034 DSIMSGO1

This invokes command list cNME1034 (the default initialization command list) with
the parameter psiMsGo1. The parameter DSIMSGO1 is the name of the message auto-

mation table that will be in effect when NetView is initialized. If you want to use
another table, change this parameter.

For more information on NCCFIC, see NetView Administration Reference.
You can include many types of commands in your initialization command list. The
following list describes some of the commands you may want to include:

* To route unsolicited messages, include ASSIGN commands. ASSIGN commands
allow you to automatically set up unsolicited message routing for the opera-
tors.

* To start message automation, include AUTOMSG commands.

NetView already includes the bsiMsGo1 member to set up message automation,
and for running POFILTER when the hardware monitor is initialized. The
AUTOMSG command is coded as follows:

AUTOMSG MEMBER=DSIMSGO1

10 NetView Customization: Writing Command Lists

Basic Topics

¢ To establish authorized operators for the 1BM-supplied message automation
command lists, include the following statements:

&4CGLOBAL CGAUTHID1
&CGAUTHID1=operid

¢ To restore AT, EVERY, and AFTER commands that were entered with the SAvE -
option, include a RESTORE TIMER command. By putting the RESTORE TIMER
command in your initialization command list, you ensure that the saved TIMER
commands are restored at NetView initialization. By restricting use of the
RESTORE TIMER command to only the initialization command list, you ensure that
the timers are restored only once.

* To start operator tasks that handle your system and network automation,
include AUTOTASK commands.

* To load command lists into main storage, include LOADCL commands.

Operator Logon
You can define a command list to run automatically after the operator successfully
fogs on. Only one command list can be defined to run when an operator logs on,
but this command list can activate other command lists. Refer to “Another
Command List” on page 13 for rules that apply when calling another command list.
The name of the activating command list is coded in the operator’s profile.

Code the name of the command list you want to run in the operator’s profile using
the ic operand of the PROFILE statement. For example, if you want to run the HELLO
command list every time an operator logs on; and if the operator has a profile of
PROFBEG, the IC operand (as shown in Figure 13) should be added to this profile.

PROFBEG ' PROFILE IC=HELLO' ,
Figure 13. Example of PROFILE Definition Statement

Note: Some operator IDs are assigned by using the AUTOTASK command, which
runs network automation tasks. Operator tasks started by the AUTOTASK command
do not have a terminal attached (as specified in the PROFILE statement for its oper-
ator). Therefore, if an initial command list is to be run after the operator success-
fully logs on (as specified on the IC operand of the operator’s PROFILE statement),

the initial command list should not set any PF keys or invoke any NetView full-
screen displays.

For more information on the PROFILE definition statement, see NetView Adminis-
tration Reference.

Message Automation
A command list can be initiated by NetView upon receipt of a message. These
command lists can send a command as an automatic response to the message, or
they can use the GENALERT command to represent the event as an alert in the hard-
ware monitor data base. For the format of the GENALERT command, see NetView
Operation.

Command lists initiated by NetView upon receipt of a message contain a series of

commands to perform a function as a result of the message. For example, if the
message reported that an NCP failed, the command list can issue the vTam

Chapter 1. Command List Overview 11

Basic Topics

command to reactivate the NCP. See Chapter 9, “Message Automation” on
page 135.

Operator Command

The operator can enter a command list name from the terminal in the same way
any other command and operands are entered. When the name of the command
list is entered, the command list starts processing. Message responses and other
information can be sent to the operator, depending on how the command list is
written.

NetView operators can activate, stop, suspend, or restart command list processing
by entering the NetView commands GO, RESET, STACK, Or UNSTACK. For command
lists written in RExX, the commands are entered when the command list is waiting
for a response to a PARSE EXT, PARSE PULL, or WAIT instruction. For command lists
written in the NetView command list language, the commands are entered during
command list pauses or command list waits. The co command must precede any
data entered in response to a PARSE EXT Or PARSE PULL Or in response to an &PAUSE.
For more information about the GO, RESET, STACK, and UNSTACK commands, see
NetView Operation.

Operators can use the following NetView commands to run command lists at a
specified time or time interval:

AFTER instructs NetView to run the command list after a specified period of time.
AT instructs NetView to run the command list at a particular time.

DELAY instructs NetView to wait the specified amount of time and then run the
command list once.

EVERY instructs NetView to run the command list repeatedly at a certain time
interval.

You can set up the AT, DELAY, EVERY, and AFTER commands so the command list runs
even if the operator is not logged on at the time. This is done with the PPT operand.
However, some commands cannot be used in a command list running under the
PPT. Read “Primary POI Task Restrictions” on page 17 for more information.

Operators can use the cMD command to queue a command list at a different priority
than its default.

Command lists can be defined so that they always interrupt the processing of other
command lists. This is done using the TYPE= parameter of the cMDMDL statement in
the psicmp. For more information, see NetView Administration Reference.

To learn more about the AT, DELAY, EVERY, AFTER, and CMD commands, see NetView
Operation.

12 NetView Customization: Writing Command Lists

Basic Topics

Another Command List
One command list can activate another command list. When a command list is
running under the control of another command list, it is nested within the calling
command list. To nest a command list within another command list, code the
name of the called command list as a command within the controlling command
list. When NetView reaches a statement with the name of a command list, NetView
starts running the nested command list. When NetView reaches the end of the
nested command list, NetView returns control to the calling command list and proc-
esses the next statement.

Command lists written in RExx and command lists written in the NetView command
list language can call each other. A RExx command list can be invoked as a RExx
command, subroutine, or function. A RExx command list can call a command list
written in the NetView command list language as a command but not as a subrou-
tine or a function. A command list written in the NetView command list language
can call another command list written in the NetView command list language or a
REXX command list as a command. For information about RExx subroutines and
functions, see REXX User's Guide and REXX Reference.

When RExx command lists and command lists written in the NetView command list
language call each other, parameters can be passed from the calling command list
to the nested command list. However, when the nested command list is finished,
only a return code is returned to the calling command list. To pass variables
between the calling command list and the nested command list, use NetView
global variables. “REXX GLOBALYV Instruction” on page 44 provides information
about setting and retrieving global variables in RExx command lists. For informa-
tion on defining global variables in command lists written in the NetView command
list language, see Chapter 8, “NetView Command List Language Giobal Variables”
on page 123.

You can have 250 levels of externally nested command lists. This means that you
can write a command list which activates another command list. The nested
command list can activate a third command list. The third command list can then
activate a fourth, and so on. To visualize how this process works, see Figure 14
on page 14.

Note: Only ReExx command lists invoked as commands, external subroutines, or
external functions count as one of the 250 levels of externally nested command
lists. You can invoke up to 250 RExx command lists as internal subroutines and ‘
functions but they do not count toward the 250 levels of externally nested command
lists.

You should test each command list by itself before running the command list as
part of a nested chain of command lists. If a nested command list encounters an
unrecoverable error, the command list ends and passes the error back to the
command list from which it was called. If the calling command list is written in
REXX, it might be able to take action to recover from the error passed to it from the
nested command list. For information on coding RExx command lists that can
recover from errors, see “Recovering from Errors in REXX Command Lists” on
page 31. If the calling command list is written in the NetView command list lan-
guage, and an error occurs in the nested command list, the calling command list
also ends. if the calling command list was called by another command list, it con-
tinues to pass the error back to the command list from which it was called.

Chapter 1. Command List Overview 13

Basic Topics

1 2 3
CMDLISTA e d CMDLISTB — CMDLISTC
v
CMDLISTB —
4—...‘
5 v
CMDLISTC —_
4—_
4
v \ 4 JV
(last statement) ———(last statement) b (last statement)

Figure 14. Nested Command Lists

User-Written Command Processor
You can write a command processor that activates a command list. Command
processors are programs written in languages such as Assembler, pL/t, or ¢. For
information on how to write command processors, see NetView Customization:
Using Assembler.

Using Network Commands in Command Lists

You can use network commands in a command list. The following is a partial list of
some of the types of network commands you can include:

* NetView commands
¢ User-written NetView commands
* VTAM commands.

The commands used within command lists are still limited by the operator’s span .
of control and the scope of the commands.

Notes:
1. You cannot use the NetView RETURN command.

2. You can only use NetView and user-written commands that are defined on the
CMDMDL statement as reguiar or both (TYPE=R or TYPE=8).

3. You must use the appropriate prefix with session monitor (NLDM), hardware
monitor (NPDA), and status monitor (STATMON) commands.

The following sections describe how you can use NetView commands in command
lists.

Using System Commands
System commands can be used in command lists. The NetView command mvs is
available to enter mvs commands in command lists. For example, 'MvS S jobname'

or 'MvsDAL'. See NetView Operation for more information about the Mvs
command.

14 NetView Customization: Writing Command Lists

Basic Topics

Using Long Running Commands
You can use long running commands in your command lists. There are two types
of long running commands: minor and major. The type of long running command,
minor or major, and whether the command list uses the cMb command to queue
the command, determines whether the long running command or the issuing
command list receives execution priority.

Using Minor Long Running Commands
The NetView BGNSESS (FLSCN) and NCCF commands are minor long running com-
mands. When issued from a command list, a minor iong running command per-
forms syntax checking and other synchronous error tests. The value of the return
code (RC in REXX command lists or &RETCODE in command lists written in the
NetView command list language) contains the result of these tests. When the
issuing command list is complete, the minor long running command is executed.
Any errors that occur while the long running command is executing are reported in
messages. To access these messages, use message automation, the TRAP and
WAIT instructions (RExx), or the &wAIT control statement (NetView command list lan-

guage).

Notes:

1. When a task receives a message, a check is first made to determine if a
command list is waiting for a message. If not and if message automation is
being used, then the message is checked against the message automation
table. Once a message is used by a command list for wait processing (TRAP
and WAIT or &waIT), that same message cannot be used by a message auto-
mation table.

2. You do not need to issue the NCCF minor iong running command from a
command list because NetView ensures that the command facility screen is
displayed whenever line mode messages are presented.

To define a user-written command as a minor long running command, use the
DsipusH macro. See NetView Customization: Using Assembler for information on
DSIPUSH.

Using Major Long Running Commands
With the exception of the BGNSESS (FLSCN) and NCCF commands, all other long
running commands are major long running commands. When a major long running
command is issued from a command list, execution of the command list is sus-
pended while the command executes. It may be necessary for the operator to indi-
cate that the major long running command is complete by issuing a RETURN or END
command before the calling command list resumes processing.

If a command list issues a major long running command, and while the command
is executing, the same major long running command is entered, the first command
is canceled. The major long running command then passes control to the issuing
command list:

¢ When the issuing command list is written in REXX, it is recommended that you
code SIGNAL ON HALT. If you do not code SIGNAL ON HALT, the operator will see
inappropriate termination messages. You should code ExiT -5, and you should
not generate any messages in the HALT subroutine. See “Recovering from
Errors in REXX Command Lists” on page 31 for more information on coding
SIGNAL ON HALT.

Chapter 1. Command List Overview 15

Basic Topics

* When the issuing command list is written in the NetView command list lan-
guage, the command list is also canceled.

You can also cancel the calling command list with the uNlQUE command. See
NetView Operation for information on UNIQUE.

Queuing Long Running Commands
You can control the execution of long running commands by using the NetView cmp
command to queue them. When queued, all long running commands are proc-
essed in the same manner, regardiess of whether the command is minor or major.
Queuing a long running command causses it to be processed independently of your
command list. The result of the long running command does not influence the
result of the command list. When you queue a long running command, the return
code indicates the result of the queuing operation only. You cannot get a return
code from the queued command.

To ensure that TAF command output is displayed before the command list resumes
processing, use CMD HIGH BGNSESS FLSCN. [f the operator RoLLs from the current long
running command, the command list continues. |f the long running command is
canceled, the cancel is not passed back to the issuing command list. For more
information on TAF, see NetView Operation.

To delay the execution of NLDM until your command list is finished executing, is
stacked, is canceled, or is otherwise interrupted, use CMD LOW NLDM.

Using the VIEW Command

The view command can be used in command lists to display panels. The viEw
command has access to local and global variables set in the command list that
issues the vViEw command. See NetView Customization Guide for more information
on the ViEw command.

Using Full-Screen Commands
If a command list that is executed from a full-screen processor issues a full-screen
command, the NetView program can display the command facility screen before
displaying the output of the full-screen command. The command facility screen is
only displayed if the command list generates any other output that is displayed to
the operator. Display of the command facility screen suspends any AUTOWRAP
setting and prevents the full-screen output from being automatically displayed. To
minimize the possibility of displaying command facility screen output, define and
code the command list so that it does not generate any other output to be dis-
played. For example: '

* Code a cMDMDL definition statement with ECHO=NO for the command list. See
NetView Administration Reference for information on coding a CMDMDL state-
ment.

* Code TRACE ERRORS Or TRACE OFF at the beginning of a RExx command list or
&CONTROL ERR at the beginning of a command list written in the NetView
command list language. See REXX.Reference or REXX User’s Guide for infor-
mation on the TRACE instruction.

* Do not code any SAY instructions in a REXX command list or any &WRITE or
&BEGWRITE control statements in a command list written in the NetView
command list language.

* Do not issue any commands that have line mode output.

16 NetView Customization: Writing Command Lists

Basic Topics

Primary POI Task Restrictions
Command lists run under the primary poi task (PpT) when they meet any of the fol-
lowing criteria:

Routed to the PPT for execution as a result of message automation
Coded on an NCCFIC definition statement to run when NetView is initialized

Called with an AT, EVERY, AFTER, or EXcCMD command that uses the PPT as an
operand. (PPT on AT, EVERY, and AFTER allows the command to be run even
when the operator who scheduled it is not logged on.)

The following restrictions apply to command lists run under the PPT:

in general, full-screen commands and immediate commands cannot be used.
Do not use the following NetView commands:

— AUTOWRAP
— BGNSESS
— CLOSE

- GO

= INPUT

— LOGOFF
- MOVE

— ROUTE

- SET

— START

— STOP

— SWITCH
— WTO

— WTOR.

Do not use the foliowing REXx instructions:

— FLUSHQ

— MSGREAD

— PARSE EXT
— PARSE PULL
— TRAP

— WAIT.

Do not use the following NetView command list language control statements:

— &PAUSE
- &WAIT.

Do not execute command processors that use the Mvs/GCS STIMER macro.

Note: Command lists running under the PPT should not generate messages con-
taining non-Latin characters (double-byte character sets, such as Kanji) that wiil be
routed to the system console.

Chapter 1. Command List Overview 17

Basic Topics

AUTOTASK OST Restrictions
Some command lists run under an osT which is started by an AUTOTASK command
that sets up a subtask called an automation task. Command lists running under an
automation task can handle message automation.

Because an automation task handies message automation, it does not have a ter-
minal logged on to it. Therefore, neither full-screen commands nor commands that
support specific keyboard functions (such as SeT PF keys) are useful in automation
task command lists.

Writing Bilingual Command Lists

A command list can be written in Rexx, the NetView Command List language, or
both. A command list written in both languages is referred to as a bilingual
command list.

Bilingual command lists help to ensure that consistent results are achieved when a
common command list is executed by operators at multiple instailations. For
instance, you may have one installation that has the RExx interpreter installed and
another that does not. If you create a bilingual command list that can be executed
in both installations, you help to ensure that the results are consistent. All
command lists reside on the same fixed record length library.

NetView determines the language in which a command list is written by checking
the first record of the command list. A RExx command list starts with a comment,
so its first record must contain “/*” as the first two non-blank characters. The
comment must end with the “*/” characters. A command list written in the NetView
command list language must have the character string cLIST in the first 71 charac-
ters of its first record. The structure of the first record of a bilingual command list
is as follows:

1. Columns 1 and 2 must contain the characters “/* ”.

2. Beginning in column 3, there can be optional non-blank characters.

3. Following any non-blank characters, there must be one or more blank charac-
ters.

4. The character string cLiST must follow the one or more blank characters.

5. If any parameter variables are being passed, there must be one or more blank
characters between the cLIST character string and the parameter variables.

Note: You must code &EXiT at the end of the NetView command list language
portion of a bilingual command list. You must code the characters “*/” before the
beginning of the RExX portion.

18 Netview Customization: Writing Command Lists

Basic Topics

When processing a bilingual command list, NetView determines whether to
execute the RExx portion or the NetView command list language portion based on
the following criteria:

REXX Command List

Active? First Record Action

Yes I*... ' The RExX interpreter is invoked. The Rexx portion of the
command list is processed. The NetView command list
language portion of the command list is treated as a
comment.

Yes I'...'CLIST The REXX interpreter is invoked. The Rexx portion of the
command list is processed. The NetView command list
language portion of the command list is treated as a
comment.

No /... NetView issues an error message.

No /*...CLIST The NetView command list language interpreter is
invoked. The NetView command list language portion
of the command list is executed. The RExx portion of the
command list is ignored.

Yes|No Does not start The NetView command list language interpreter is

with /*... invoked.

Figure 15 provides an example of how bilingual command lists should be struc-
tured. Because the first line of the command list contains “/*” in columns 1 and 2
and ends with the character string cLiST, NetView recognizes the command list as
bilingual.

PTIONALLY, Y(v
B‘ENTIFIES THE. assmm

Figure 15. Example of a Bilingual Command List

For information on converting command lists written in the NetView command list
language into RExx or bilingual command lists, see Appendix D, “Converting
Command Lists Written in the NetView Command List Language to REXX” on
page 208.

Chapter 1. Command List Overview 19

|

Basic Topics

What an Operator Sees when a Command List Runs

You can control the amount of data displayed to the operator during the execution
of a command list. Responses to commands in the command list or messages the
command list sends to the terminal screen can be displayed to the operator.

To control the amount of data displayed to the operator during the execution of a
REXX command list, use the TRACE instruction (see REXX Reference), the TRAP
instruction, (see “REXX TRAP Instruction” on page 34), or the suppression char-
acter (see “Suppressing Display of Non-REXX Commands” on page 25).

To control the amount of data displayed to the operator during the execution of a
command list written in the NetView command list language, use the &CONTROL
control statement (see “&CONTROL Control Statement” on page 92), the awAIT sup-
PRESS control statement (see “Customizing the &WAIT Statement” on page 118), or
the suppression character (see “Conventions for Suppression Characters” on

page 74).

The commands and messages displayed during execution of a command list
appear in the message area of the NetView screen. Output from the command list
is preceded by a type code of C. For a complete description of the NetView screen
layout and the format of messages sent to the screen, see NetView Operation.

20 NetView Customization: Writing Command Lists

Part Two. Writing Command Lists in the Restructured
Extended Executor Language

Chapter 2. Restructured Extended Executor Language Overview23
introduction to the Restructured Extended Executor Language 23
Coding Conventions for REXX CommandLists 24
Record Size i e 24
UsingQuotes e e 24
Suppressing Display of Non-REXXCommands 25
NetView Restrictions on REXX Instructions 26
Pausing forOperatorinput, 26
Usingthe SAY Instruction 26
Usingthe CALL Instruction 27
NetView Restrictions on REXX Functions 27
Using the REXX LINESIZE Function 27
Using the REXX STORAGE Function 27
Using VM REXX CompressionTools oo, . 27
Writing REXX FunctionPackages 28
Changing the Environment Addressed by REXX Command Lists 28
Using the TSO/E EXECIO Command 28
Using the NetView ALLOCATE and FREE Commands 29
Nesting REXX Command Lists from Assembler, C,orPL/l 29
Parsingin REXXCommandLists 29
Tracing REXXCommand Lists 30
Return Codes in REXXCommand Lists 31
Recovering from Errors in REXX Command Lists 31
Chapter 3. REXX Instructions Provided by NetView 33
REXXTRAP Instruction e i 34
Using TRAP in Nested REXXCommand Lists 36
REXX WAIT Instruction 36
Checking the Result of a WAIT Instruction 38
Continuing to Wait for Additional Messages 38
Using NetView Commands with WAIT 39
Using WAIT in Nested Command Lists 40
REXX MSGREAD Instruction 40
Functions Setby MSGREAD i 40
REXX FLUSHQ Instruction 42
Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE .. 42
REXX GLOBALV Instruction 44
Setting Task Global Variables in REXX Command Lists 45
Retrieving Task Giobal Variables in REXX Command Lists 46
Examples of Command Lists that Set, Retrieve, and Update Task Global
Variables 47
Setting Common Global Variables in REXX Command Lists 48
Retrieving Common Global Variables in REXX Command Lists 49
Chapter 4. REXX Functions Provided by NetView 51
Session Information L e 51
Terminal Information 52
Operator Information 52
Command List information 53
Message Processing information o ... 53

Writing REXX Command Lists 21

Domain Information 56
Chapter 5. Examples of REXX Command Lists for NetView 57
TYPE Example 58
TYPEITExample 59
PRINT Example e 60
CHKOPNUM Example i 62
CHKRSTATExample 64
DSPRSTATExample i e e, 66

22 NetView Customization: Writing Command Lists

REXX Command Lists

Chapter 2. Restructured Extended Executor Language
Overview

This chapter offers a brief introduction to RExx. Not all of the features and syntax
rules of RExx are described in this manual. This manual focuses primarily on the
REXX instructions and functions provided by the NetView program. For more
detailed information about RExX, see your REXX Reference or REXX User’s Guide.

Notes:

1. In this book, REXX Reference refers to TSO/E REXX Reference for Mvs users
or VM/SP System Product Interpreter Reference for vM/SP users.

2. In this book, REXX User’s Guide refers to TSO/E REXX User’s Guide for Mvs
users or VM/SP System Product Interpreter User’'s Guide for vM/SP users.

3. NetView does not support REXX on VM/XA systems.

4. For NetView to support REXx on Mvs systems, TSO/E must be installed but does
not have to be active.

Introduction to the Restructured Extended Executor Language

REXX is an interpretive language. This means that the RExX interpreter operates
directly on the program as it executes, line-by-line and word-by-word. An inter-
preted language is different from other programming languages, such as COBOL,
because it does not have to be compiled before it is executed.

Each Rexx command list must begin with a comment. A comment is marked with
“/*" at the beginning and “*/” at the end. You can insert comments in your REXX
command list wherever necessary.

A Rexx command list consists of a series of clauses, each having a separate
purpose. In a simple RExx command list, the clauses are interpreted in the
sequence in which they are coded. You can control the sequence in which clauses
are executed by using specific commands that alter the processing order.

A REXX instruction tells the RExX interpreter to do something. A REXX instruction is
identified by its keyword, which must be the first item in the clause.

When an equal sign (=) is the second item in a clause, the clause is identified as
an assignment clause. Assignment clauses allow you to give a value to a variable.
Variables allow you to define different values for the clauses within a command
list.

When the second item in a clause is a colon (:), the clause is interpreted as a label.
Labels serve to identify the target statement for a transfer of control.

The REXX language allows you to call internal or external routines, called functions.
REXX function names must always be followed by parentheses. There can be up to
ten expressions, separated by commas, between the parentheses. An expression
is something that can be computed. The RExx interpreter performs the computation
named by the function and returns a result. The resuit is then used in the
expression in place of the function call. To use a function, place the function name

Chapter 2. Restructured Extended Executor Language Overview 23

REXX Command Lists

in the command list at the location where you want the result to be accessed.
There are also several built-in functions included in the REXX language that perform
pre-defined operations.

See REXX Reference or REXX User’s Guide for a complete description of the fea-
tures of the REXX language.

Coding Conventions for REXX Command Lists

This section describes the syntax rules that apply when coding RExx command lists
for NetView.

Record Size
The records in RExx command lists for NetView can be up to 80 characters in
length. If the first record of a RExx command list contains a sequence number in
columns 73 through 80, then all records in that command list will be truncated to 72
characters.

Using Quotes
To avoid variable substitution on a string in a RExx command list, enclose the string
in either single quotes (') or double quotes ("). The quotes signify that you do not
want REXX to perform variable substitution on the string. That is, you do not want
the REXX interpreter to interpret the string. When REXX encounters a quote (single
or double) on a command list statement, it stops interpreting until it reaches a
matching quote.

Do not enclose RExX instructions in quotes. REXX recognizes its own instructions
and does not perform variable substitution on them. Following are some examples
showing how quotes are used to prevent variable substitution with the REXX say
instruction:

SAY 'THIS IS A STRING WITH SINGLE QUOTES'
SAY "THIS IS A STRING WITH DOUBLE QUOTES"

These two instructions would display the following at your terminal:

THIS IS A STRING WITH SINGLE QUOTES
THIS IS A STRING WITH DOUBLE QUOTES

To use an apostrophe or double quotes within the text of a string enclosed in
quotes, you can do the following:

SAY "IT'S EIGHT 0'CLOCK. TIME TO BRING UP CICS."
SAY 'IT''S EIGHT 0''CLOCK. TIME TO BRING UP CICS.'
SAY 'PLEASE ENTER "GO NODENAME" OR "GO STOP"'

SAY "PLEASE ENTER ““GO NODENAME"" OR ""GO STOP"""

The first two instructions would both display the first line below, the last two
instructions would both display the second line:

IT'S EIGHT O'CLOCK. TIME TO BRING UP CICS.
PLEASE ENTER "GO NODENAME" OR "GO STOP"

Generally, you should enclose any NetView commands, or system commands
recognized by NetView, in quotes. The exception is when you want variable substi-
tution to take place on an operand of such-a command. If you want variable substi-
tution to take place, leave the operand outside of the quotes.

24 NetView Customization: Writing Command Lists

REXX Command Lists

For example, if you want to use the NetView INACT command in a command list to
deactivate a node named NODE1, you would code:

'INACT NODE1'

However, if the command list contains a variabie named NODE and you want to
deactivate the node whose name is the current value of the NODE variable, you
would code:

"INACT ' NODE

The following is another example of using quotes to have RExx perform variable
substitution on only part of a command:

ARG DDNAME
ADDRESS MVS 'EXECIO 1 DISKR ' DDNAME ' (STEM LINE'

This example would first parse the user’s input into a variable called DDNAME. The
TSO/E EXECIO command is then used to read a line of that DDNAME. ADDRESS MVS is a
REXX instruction, so it is not enclosed in quotes. The quotes begin before EXeECIO
because it is a TsSo/E command. The quotes end before DDNAME to allow REXX to
substitute the current value of the DDNAME variable into the Execio command. The
rest of the EXECIO command is enclosed in quotes so that variable substitution does
not take place on the STEM and LINE operands.

Suppressing Display of Non-REXX Commands
Use the RExX TRACE command to control the suppression or echoing of non-RExx
commands. The suPPCHAR command of the NCCFiD statement does not influence the
echoing of non-RExx commands.

When issuing a command that returns its status in the return code, you can
enhance the performance of your command list by suppressing synchronous output
from the command. To suppress synchronous output, code the suppression char-
acter defined on the NCCFiD statement twice. For example, if the suppression char-
acter is defined as a question mark and you coded the following in a REXX
command list:

*?7SET PF24 IMMED RETRIEVE'

no synchronous output from the command is displayed to the operator.

Use the double suppression character to enhance performance of commands that
produce line mode messages synchronously and when sufficient status is provided
by the return code. Using the double suppression character does not affect output
that is scheduled by a command (for example, D NET,APPLS) nor does it reliably
reduce output from a long running command (for example, NLDM).

Chapter 2. Restructured Extended Executor Language Overview 25

REXX Command Lists

NetView Restrictions on REXX Instructions

This section describes the restrictions that apply when coding RExX instructions in
REXX command lists for NetView.

Pausing for Operator Input
The REXX instructions PARSE EXT, PARSE PULL, PULL, and TRACE ? cause a command list
to pause for operator input.

Using the PARSE EXT or PARSE PULL instructions along with other instructions, you can
code command lists that ask the operator questions and pick up entered
responses. Use the RExX sAY instruction to describe what the operator should
enter. Code the PARSE EXT or PARSE PULL instruction after the sAy instruction to tem-
porarily stop the command list (unless, in the case of PARSE PULL, there is data on
the data stack). After the command list has temporarily stopped, the operator must
enter the NetView Go command before it will continue. Any data to be passed to
the command list must be entered as an operand or operands on the o command.
For example, to have the command list process a yes or no answer from the oper-
ator, you could code the following SAY and PARSE PULL instructions:

SAY 'ENTER "GO YES" OR "GO NO" TO CONTINUE'
PARSE UPPER PULL ANSWER

The operator could respond to the command list with either Go YES or GoNO. The
Go command causes the command list to continue processing, and the YES or NO
value is picked up by the PARSE PULL instruction.

Using the SAY Instruction
The REXX SAY instruction can have a character string of any length; however,
NetView can output only 32,728 characters at a time.

When you issue a REXX SAY instruction in a RExXx command list for NetView, a
12-character header precedes the data displayed on the operator’s screen. The
header contains the one-character NetView message type of the message
(HDRMTYPE()), followed by three blanks and the identifier of the domain under which
the command list is running (AppPLID()). For more information on HDRMTYPE() and
APPLID(), see Chapter 4, “REXX Functions Provided by NetView” on page 51.

Do not use MSGID() as the first item of output from a sAy instruction because the
message will be processed as a regular NetView message. This can cause the
message to be trapped by a TRAP instruction and can incorrectly satisfy a waiT
instruction.

26 NetView Customization: Writing Command Lists

REXX Command Lists

Using the CALL Instruction
When you use the CALL instruction in RExx command lists for NetView, it is recom-
mended that you enclose the command list you want to call within single quotes.
You can call only RExx command lists with the CALL instruction. Any parameters to
be passed to the called command list must be outside the quotes enclosing the
name of the command list. If you want to avoid variable substitution for a param-
eter, you must enclose the parameter in quotes. For example, if you code the fol-
lowing CALL instruction to call an external command list named cLisT2:

CALL 'CLIST2' P1,P2,'RESOURCE PU1 INACTIVE'
and cLisT2 contained the following ARG statement,
ARG RES1 RES2 STATUS

then the REs1 and RES2 variables are assigned the current values of Pt and P2 when
cLisT2 is called.

if you execute CcLIST2 as a command from another command list, for example:
'CLIST2' P1,P2,'RESOURCE PU1 INACTIVE'

then cLIsT2 receives the same values for the variables on the ARG statement, but the
value of the ARG() function is set to 1.

NetView Restrictions on REXX Functions

This section describes the restrictions that apply when coding RExx functions in
REXX command lists for NetView.

Note: Some Rexx functions return different values depending on the operating
system that the command list containing them is running under. For example,
DATE() returns the current date in different formats depending on the operating
system. The RExx functions provided by NetView return the same values regard-
less of the operating system.

Using the REXX LINESIZE Function

The REXX LINESIZE() function always returns the value 32,728 when used in RExX
command lists for NetView.

Using the REXX STORAGE Function

REXx command lists for NetView cannot use the REXX STORAGE() function.

Using VM REXX Compression Tools

NetView does not support the use of any VM REXX compression tools. lf you experi-
ence a problem with a command list that you compressed or optimized with a com-
pression tool, test the same command list without using the tool before you report
a problem to 1BM.

Chapter 2. Restructured Extended Executor Language Overview 27

REXX Command Lists

Writing REXX Function Packages

You can write your own REXX function packages for NetView. The NetView program
supplies two dummy directories to help you write function packages. One directory
is for a user function package (DSIRXUFP), and the other directory is for a local func-
tion package (DSIRXLFP). See REXX Reference for instructions on coding a real
directory and coding the interface to your function code. Link-edit the real direc-
tory and function code into load module psIRXUFP for a user function package or
DSIRXLFP for a local function package. As part of coding the interface to your func-
tion code, you need to use the NetView DSIRXEBS macro to obtain a new EVALBLOCK.
See Customization: Using Assembler for information on the DSIRXEBS macro.

See NetView Installation and Administration Guide and NetView Tuning Guide for
information on improving the performance of Rexx function packages for NetView.

Changing the Environment Addressed by REXX Command Lists

RExx command lists for NetView use NetView as the default addressing environ-
ment. If you want to change the environment, use the REXX ADDRESS instruction.
For example, if you want your command list to execute Mvs subcommands, you
must first change the addressing environment with an ADDRESS Mvs instruction.

In ADDRESS MVS, you can use the following TSO/E REXX commands:

¢ DELSTACK
s NEWSTACK
QSTACK
QBUF

* QELEM

¢ EXECIO

* MAKEBUF
¢ DROPBUF
¢ SUBCOM

s TS

* TE.

See TSO/E REXX Reference for more information on these commands.

Note: RExx command lists for NetView do not support ADDRESS ATTACH Or ADDRESS
LINK.

Using the TSO/E EXECIO Command

If you use the TSO/E REXX EXECIO command in a command list, code the command list
so that it issues an Execlo command with the FINIS option before the command list
completes its processing. If the command list using EXECIO is part of a nested chain
of command lists, code the chain so that one of the command lists issues EXECIO
with the FINIS option before the chain of command lists completes processing. This
enables you to use SIGNAL ON HALT to try to recover if EXECIO with the FINIS option
encounters an error closing a file. If the EXECIO command encounters an error, it
sets the RC variable to a non-zero return code. See TSO/E REXX Reference for
information on return codes used by the Exgcio command.

28 NetView Customization: Writing Command Lists

REXX Command Lists

See “TYPE Example” on page 58 and “PRINT Example” on page 60 for examples
of how EXECIO can be used in a REXXx command list.

Note: NetView running on a vM system does not support EXECIO.

Using the NetView ALLOCATE and FREE Commands

The NetView program provides the ALLOCATE and FREE commands to enable you to
dynamically aliocate and deallocate data sets from NetView. NetView supports
these commands on Mvs systems only. The commands closely resemble the TsO/E
commands for allocating and deallocating data sets. However, because these
commands are provided by the NetView program, you do not need to use the
ADDRESS MVS instruction when using these commands in a command list. Simply
enclose the commands in quotes as you do for other NetView commands. The
TYPE, TYPEIT, and PRINT examples in Chapter 5, “Examples of REXX Command Lists
for NetView"” on page 57 use the NetView ALLOCATE command. See NetView Oper-
ation for the syntax of the NetView ALLOCATE and FREE commands.

Nesting REXX Command Lists from Assembler, C, or PL/I

Each time a REXx command list is nested by an Assembiler, ¢, or PL/I command
processor, a unique REXX environment is created for that RExx command list. The
data stacks from any previous RExx command lists in the nested chain are not
passed to the additional unique environment. For example, if a REXx command list
calls a PL/t command processor and the PL/i command processor calls another REXX
command list, then an additional unique REXX environment is created for the
second RExXX command list.

The number of unique RExX environments that can be created at one time is limited
by Tso/e Rexx. Therefore, your nested chains are also limited in the number of RExx
command lists that can be called by the Assembler, ¢, or PL/i command processors.
See REXX Reference for information on the maximum number of environments in
an address space.

Parsing in REXX Command Lists

In a RExX command list, you can parse character strings using either the REXX PARSE
instruction or the NetView PARSEL2R command.

See REXX Reference for information on the REXx PARSE instruction.

See “Parsing Variables with PARSEL2R” on page 144 for information on using the
NetView PARSEL2R command. When you use PARSEL2R in a REXX command list,
enclose the command in quotes to avoid variable substitution. For example:

TITLE = *DON''T TREAD(ROUGHLY) ON ME, PLEASE'
"PARSEL2R TITLE Al A2 A3'

Chapter 2. Restructured Extended Executor Language Overview 29

REXX Command Lists

Tracing REXX Command Lists

During the creation of a RExx command list for the NetView program, you can see
how the RExX interpreter evaluates an expression using the TRACE START (TS)
command. The 78 command sets an indicator that is checked by the RExx inter-
preter when it starts to interpret a command list or when control is returned to a
command list after a nested command list completes execution. Figure 16 shows
the syntax of the TS command.

Figure 16. TS Command Syntax

After receiving the following message on an Mvs system:

CNM4311 REXX INTERACTIVE TRACE. ENTER 'GO TRACE OFF' TO END TRACE,
ENTER 'GO' TO CONTINUE.

or, after receiving the following message on a vM system:
+++Interactive trace. TRACE OFF to end debug, ENTER to continue.+++

enter Go to continue tracing, or enter GO TRACE OFF to end the trace. Also, after
receiving one of the messages indicating a trace point has been reached, you can
enter Go followed by a command or instruction you want to execute at that point in
the command list. For example, to set a variable to a certain value at that point in
the command list you could enter:

GO X=5

Or, to display the current value of a variable you could enter:
GO SAY 'VAR1 CURRENTLY IS 'VAR1

If you enter a TS command but decide that you do not want to run the trace before it
begins, use the TE command to cancel the trace. You can also use the TE command
to end a trace that is not interactive. Figure 17 shows the syntax of the TE
command.

Figure 17. TE Command Syntax

For more information on TS and TE, see NetView Operation.

30 NetView Customization: Writing Command Lists

REXX Command Lists

Return Codes in REXX Command Lists

The REXX return code variable, RC, is set after execution of each instruction,
command, or nested command list. You can use the ExiT statement in a nested
command list to end the command list and set RC to a value that is passed back to
the calling command list. RC is not given an initial value when a command list
begins.

Possible RC values and their meanings are:

Values Meaning

0 No error. The command, instruction, or nested command list
completed successfully.

-1 The command, instruction, or nested command list encountered
an error. The -1 return code passes control to the FAILURE label if
SIGNAL ON FAILURE is coded.

-3 The command or nested command list is not in the operator’s
scope of commands. The -3 return code passes control to the
FAILURE label if SIGNAL ON FAILURE is coded.

-5 The command list has been canceled. The -5 return code passes
control to the HALT label if SIGNAL ON HALT is coded.

Others Other return codes are set by individual commands, instructions,
or nested command lists.

Note: See “Recovering from Errors in REXX Command Lists” for more information
on using the SIGNAL instruction with NetView.

Recovering from Errors in REXX Command Lists

When an error occurs in a REXx command list, you can use the SIGNAL instruction to
cause processing to continue at a certain point. A command list can encounter an
error for the following reasons:

* An error exists in the coding of the command list itself.

¢ The command list is part of a nested chain, and one of the other command lists
in the chain contains an error that is passed back to the command list.

* An operator enters a command that causes an error in the command list.

If an error occurs, the SIGNAL instruction passes control to another part of the
command list. Depending on the error condition, the SIGNAL instruction can pass
control to three different labels in the command list:

® SIGNAL ON FAILURE passes control to a label named FAILURE when the error condi-
tion results in a negative return code. The only negative return codes returned
by NetView are —1 and —3. However, if your command list calls user written
commands, control is passed to FAILURE when any negative return code, except
—5, is returned.

If your command list recovers from the error, you can return the appropriate
return code to the calling command list. If your command list does not recover
from the error, pass the failure to the calling command list with ExiT —1.

Note: Regardless of whether SIGNAL ON FAILURE is coded, NetView only passes
the halt condition to the calling command list if you code EXIT —1.

Chapter 2. Restructured Extended Executor Language Overview 31

REXX Command Lists

¢ SIGNAL ON ERROR passes control to a label named ERROR when any command or

function in your command list returns a positive return code. Control is also
passed to ERROR when SIGNAL ON FAILURE is not coded and a command or func-
tion returns any negative return code except —5.

The return code you pass to any command list that nested your command list
should reflect the severity of the error. A zero (0) return code is recognized by
all NetView commands as an indication of successful completion, while all pos-
itive return codes indicate that an error occurred. The higher the return code,
the greater the severity of the error.

SIGNAL ON HALT passes control to a label named HALT when the command listis
canceled. A command list is canceled when:

— A RESET NORMAL command is executed on the current operator task while
your command list is running.

— A cLOSE IMMED command is executed on any task in your NetView while
your command list is running. The command list continues processing as
long as it does not issue NetView commands.

— During SNA sessions, an operator presses the ATTN key while your
command fist is running.

— A command issued by your command list is canceled or returns a return
code of —5.

— The operator’s terminal session is lost for any reason, including the oper-
ator entering the LOGOFF command, while the command list is running. The
command list continues processing as long as it does not issue NetView
commands.

To pass the HALT condition to any command list that nested your command list,
end the command list with ExIT -5.

Notes:

1. if you do not code SIGNAL ON HALT, NetView passes the halt condition to the
command list that nested your command list.

2. Whenever you call another RExx command list as a function or subroutine,
the following statement of the command list should test the RESULT variable
for the —5 cancel condition.

For more information on the SIGNAL instruction, see REXX Reference.

32 NetView Customization: Writing Command Lists

REXX Command Lists

Chapter 3. REXX Instructions Provided by NetView

This chapter describes the instructions used in RExx command lists for NetView.
These instructions are provided as part of the NetView program so RExx command
lists can perform specific NetView activities. Because these instructions are pro-
vided by NetView and are not standard RExx instructions, they can only be used in
command lists that execute in a NetView environment. These instructions do not
function in any RExX EXECs that are executing in non-NetView environments. The
instructions provided by NetView are internal commands, which means they can
only be used in command lists, and are not available for entry at operator con-
soles.

This chapter contains a description of each RExx instruction provided by the
NetView program, how the instruction works, and how to code the instruction in a
RExX command list. For more information on REXX syntax ruies, as well as informa-
tion on other REXX instructions, see REXX User’s Guide or REXX Reference.

See Appendix C, “Comparison of REXX and NetView Command List Language” on
page 185 for a complete list of the REXX instructions that are equivalent to NetView
command list language control statements. This list includes both instructions pro-
vided by NetView and instructions provided by Rexx itself. See “Examples Com-
paring REXX and NetView Command List Language” on page 193 for examples of
command lists written in the NetView command list language and the equivalent
REXX command lists.

The REXX instructions provided by the NetView program are:

* TRAP

o WAIT

* WAIT CONTINUE
¢ MSGREAD

* FLUSHQ

¢ GLOBALV.

The TRAP, WAIT, WAIT CONTINUE, and MSGREAD instructions are used in a command list
to monitor the operator station task (0sT) for specific messages or wait for a speci-
fied period of time.

You can use the TRAP instruction to define the messages for which the command
list should wait. When a TRAP instruction is issued, NetView begins monitoring the
operator task for an occurrence of a specified message. If the message is
received, it is stored in a message queue.

When a waIT instruction is issued, the command list stops processing until one or
more of the messages specified on the TRAP instruction are received or until the
specified period of time has elapsed.

The WAIT CONTINUE instruction causes the command list to wait for additional mes-
sages or the remainder of the specified period of time before resuming command
list processing.

If the operator task receives any of the messages specified on a TRAP instruction,
you can use the MSGREAD instruction to read the trapped messages from the

Chapter 3. REXX Instructions Provided by NetView 33

REXX Command Lists

message queue. The command list can then take action based on the content of
each message.

The FLUSHQ instruction is used to remove all trapped messages from the message
queue.

“Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE"” on
page 42 contains a command list that shows how the TRAP, WAIT, MSGREAD, and WAIT
CONTINUE instructions are used.

The GLOBALV instruction allows you to set and retrieve task and common global var-
iables in RExx command lists. “Examples of Command Lists that Set, Retrieve, and
Update Task Global Variables” on page 47 contains two command lists that show
how the GLOBALYV instruction is used.

REXX TRAP Instruction

Use the TRAP instruction to define messages that are to be trapped and to specify
whether the messages should be displayed to the operator once they are trapped.
The TRAP instruction can also be used to remove all messages from the list of mes-
sages to be trapped.

The TRAP instruction causes NetView to monitor the operator task for specified
messages. If the messages occur, they are trapped and added to the message
queue. Trapped messages can then be read using the MSGREAD instruction and can
satisfy a wAIT instruction. See “REXX MSGREAD Instruction” on page 40 and
“REXX WAIT Instruction” on page 36 for information on how these instructions are
used with the TRAP instruction.

The TRAP instruction does not clear the queue of messages trapped by the previous
TRAP. To clear the message queue, issue a FLUSHQ instruction. See “REXX
FLUSHQ Instruction™ on page 42 for more information on FLUSHQ.

Figure 18 shows the syntax of the TRAP instruction.

Notes:
1. The operands must be entered in the order shown in Figure 18.

2. The instruction is enclosed in single quotes to prevent variable substitution by
REXX.

" [[AND JSUPPRESS|DISPLAY]

- [MOREIONLY] -

Figure 18. TRAP Instruction Syntax

34 Netview Customization: Writing Command Lists

REXX Command Lists

AND
can be used to make the TRAP instruction syntax more readable. AND can only
be used between TRAP and SUPPRESS or TRAP and DISPLAY.

SUPPRESS|DISPLAY

SUPPRESS indicates that any messages matching the specified tokens
should not be displayed on the operator’s screen when received
by NetView.

DISPLAY indicates that any messages matching the specified tokens
should be displayed on the operator’s screen when received by
NetView.

MORE|ONLY

MORE indicates that the specified tokens should be added to-the list of
tokens that was specified on a previous TRAP instruction.

Note: Each message in the resulting list retains its own individual
setting of the SUPPRESS|DISPLAY option. This allows some messages
in the list to be suppressed while others are displayed.

ONLY indicates that the specified tokens replace the list of tokens speci-
fied on a previous TRAP instruction.

MESSAGES
indicates that the trapped items are messages.

token [,...]
1 {o 10 characters that identify the first token of the message or messages to be
trapped. Optionally, you can identify the domain of a message to be trapped.
If a domain identifier is specified, it precedes the token and is separated from
the token by a period (domainid.token). You can also use an asterisk (*) to
indicate that you are specifying a partial domain identifier or token. If you do
not specify a domain identifier, the message being trapped can be from any
domain.

Note: If you specify SUPPRESS and use an asterisk when specifying a domain
identifier or token, no messages matching the specified domain or token will
be displayed to the operator. For example, if you have a command list that
traps and suppresses all messages, no REXx messages are displayed to the
operator when the command list is run. This includes any REXX trace output
and messages if you are using the REXX TRACE instruction to debug the
command list.

Following are examples of how you can specify the messages you want to trap:

domainid.token = The command list traps any message whose domain identi-
fier matches the 1- to 5-character domainid and whose first
token matches token.

dom*.token The command list traps any message whose domain identi-
fier matches the partial domain identifier specified by dom*
and whose first token matches token. For example,
NCCF*.DSI4631 means trap a DSI4631 message from any domain
with an identifier that starts with NCCF (such as NCCFA or
NCCFB).

*.token The command list traps any message whose first token
matches token. The message can be from any domain.

Chapter 3. REXX Instructions Provided by NetvView 35

REXX Command Lists

token The command list traps any message whose first token
matches token. The message can be from any domain.

tok* The command list traps any message whose first token
matches the partial token specified by tok*. For example,
DSI* means trap any messages whose first token begins with
DSI (such as DSI4631 or DSI3861).

* The command list traps all messages.

Note: Use caution when coding * or *.* with sUPPRESS. This
causes no messages to be displayed to the operator.

Multi-line messages such as multi-line-write-to-operator (MLWTO) are treated as
one message. Therefore, only the message identifier of the first message in a
multi-line message is available to the TRAP, and the TRAP can be satisfied only
by that message identifier. Use GETMSIZE, GETMTYPE, and GETMLINE to access the
other messages in a multi-line message. See “Working with Multi-Line
Messages” on page 151 for more information on multi-line messages.

NO
indicates that NetView should stop trapping the messages that were specified
on the previous TRAP instruction.

TRAP sets the value of RC to indicate the processing results, as follows:

Code Meaning

0 Successful completion

4 TRAP only allowed from HLL or REXX command lists
12 Syntax error

144 Not in OST or NNT

18004 DSIMRBLD invalid parameter

18008 DSIMRBLD storage failure.

A sample command list, showing how the TRAP instruction can be used, appears in
“Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE" on
page 42. Also, several of the examples in Chapter 5, “Examples of REXX
Command Lists for NetView” on page 57 use TRAP, WAIT, and MSGREAD.

Using TRAP in Nested REXX Command Lists
You can code a TRAP instruction in a RExx command list that contains nested
command lists. Nested RExx command lists can also contain a TRAP instruction.
However, trapped messages are available only to the command list that issued the
TRAP instruction.

REXX WAIT Instruction

The WAIT instruction causes a command list to temporarily suspend processing
until a specified event occurs. The event can be one or more messages, a certain
period of time, or both. The first event that occurs satisfies the wair

Note: There are times when you cannot use waiT. Before coding wAIT, read
“Primary POI Task Restrictions” on page 17. Do not code wAIT with service point
service commands. For additional information, see Chapter 10, “Service Point
Command Service Commands” on page 165.

Figure 19 on page 37 shows the syntax of the wAIT instruction.

36 NetView Customization: Writing Command Lists

MEAA WVIININGHY =ivww

Notes:
1. The operands must be entered in the order shown in Figure 19 on page 37.
2. You must code a time interval (n SECONDS or n MINUTES), MESSAGES, or both.

3. The instruction is enclosed in single quotes to prevent variable substitution by
REXX.

”

| 'WAIT [n [SECONDS|MINUTES]] |
\ [FOR [MESSAGES]]"

R

Figure 19. WAIT instruction Syntax '

n
means the command list waits n SECONDS or MINUTES before resuming command
list processing.

When SECONDS is specified, the value of n can be from 0 to 2,678,400. When
MINUTES is specified, the value of n can be from 0 to 44,640. The equivalent of
2,678,400 seconds or 44,640 minutes is 31 days.

SECONDS|MINUTES

SECONDS means the command list waits n seconds before resuming proc-
essing.

MINUTES means the command list waits n minutes before resuming proc-
essing.

FOR
can be used to make the wAIT instruction syntax more readable.

MESSAGES
means the command list waits for a trapped message to be added to the
message queue before resuming processing. The specific messages for which
the command list should wait are defined using the TRAP instruction. if a time
interval is also specified, the command list waits for up to that amount of time
and then resumes even if one of the specified messages has not been
received. If one of the specified messages is already on the message queue,
the command list resumes without waiting. See “REXX TRAP iInstruction” on
page 34.

When NetView encounters a WAIT instruction in a RExx command list, the letter w is
displayed in the upper right-hand corner of the current command facility panel! if
the screen is refreshed as the result of a message being received or the ENTER key
being pressed. This notifies the operator that the command list has halted its proc-
essing and is waiting for a message or group of messages or for a specific period
of time. The first event that occurs satisfies the waIT.

Chapter 3. REXX Instructions Provided by NetView 37

REXX Command Lists

Checking the Result of a WAIT Instruction
The NetView event that satisfied the waIT is determined by the value of the RExx
EVENT() function. The RExx command list can check EVENT() and take appropriate
action based on its value. The possible values for EVENT() are:

M The message the command list is waiting for has arrived. The message can
be read using the MSGREAD instruction.

T The time period for which the command list was waiting has expired, and
processing is resumed.

The operator entered the G0 command, and processing is resumed.

E The WAIT or TRAP instructions were not coded correctly. For example, the
operands were not entered in the correct order or a WAIT instruction was
issued without a matching TRAP instruction. The command list resumes proc-
essing.

If a waIT instruction is never issued in a command list, the value of the EVENT() func-
tion is set to null.

WAIT sets the value of RC to indicate the results of processing, as follows:

Code Meaning

-1 DSIGET failure

0 Successful completion

4 WAIT only allowed from HLL or REXX command lists
8 Too many operands

12 Syntax error

144 Not in OST or NNT

152 WAIT issued without a previous TRAP

248 WAIT CONTINUE issued without a previous valid waIT.

A command list, showing how the waIT instruction can be used, appears in
“Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE” on
page 42. Also, several of the examples in Chapter 5, “Examples of REXX
Command Lists for NetView” on page 57 use TRAP, WAIT, and MSGREAD.

Continuing to Wait for Additional Messages
You can code a WAIT CONTINUE instruction in your RExx command list to cause the
command list to continue waiting before resuming command list processing.

Figure 20 shows the syntax of the WAIT CONTINUE instruction.

Note: The instruction is enclosed in single quotes to prevent variable substitution
by REXX.

‘WAIT CONTINUE'

Figure 20. WAIT CONTINUE Instruction Syntax
The options specified on the previous TRAP and WAIT instructions remain in effect for

the wAIT CONTINUE instruction. When processing resumes, the next instruction after
the WAIT CONTINUE is executed.

38 NetView Customization: Writing Command Lists

REXX Command Lists

For example, if you code the following instructions in a command list and one of
the messages specified on the TRAP instruction is received in 5 seconds:

'TRAP AND SUPPRESS MESSAGES MSG1, MSG2, MSG3'
‘WAIT 20 SECONDS FOR MESSAGES'
'MSGREAD'

'WAIT CONTINUE'
'MSGREAD' .

then the WAIT instruction is satisfied. The WAIT CONTINUE instruction waits up to 15
seconds (the difference between the 20 seconds specified on the wAIT instruction
and the 5 seconds already used to satisfy the wAIT instruction) to receive one of the
messages specified on the TRAP instruction before resuming command list proc-
essing. When processing resumes, the MSGREAD instruction following WAIT CONTINUE
is executed.

A sample command, showing how the WAIT CONTINUE instruction is used, appears in
“Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE"” on
page 42. Also, several of the examples in Chapter 5, “Examples of REXX
Command Lists for NetView” on page 57 contain examples of command lists that
use WAIT CONTINUE.

Using NetView Commands with WAIT
When a RExx command list is in a wait or pause state, operator commands that are
entered can be deferred. Whether the commands are deferred is based on the
NetView DEFAULTS, OVERRIDE, and CMD commands. See NetView Operation for infor-
mation on these commands.

The GO, STACK, UNSTACK, and RESET commands affect the processing of command
lists in a wait state as follows:

* GO ends a WAIT.

* STACK suspends command list processing and causes any commands that have
been deferred to be processed. You can enter any command or command list
for normal processing while a command list is suspended. The waIT is not sus-
pended, and events are still matched as they occur. The w, if present, does not
remain in the upper right corner of the NetView screen. The Go command is
rejected until the command list resumes processing.

* UNSTACK resumes command list processing. The WAIT resumes processing
events that were matched while the command list was suspended. The waIT
does not resume after expiration of a specified period of time if, while the
command list was suspended, you ran another command list that issues a wAIT
or &WAIT with a specified period of time.

¢ RESET ends a command list, as well as all command lists related to it by
nesting. RESET also drives HALT when SIGNAL ON HALT is coded.

For more information on the GO, STACK, UNSTACK, and RESET commands, see NetView
Operation.

Chapter 3. REXX Instructions Provided by NetView 39

REXX Command Lists

Using WAIT in Nested Command Lists
REXX command lists that call other command lists or are called by other command
lists can issue a WAIT instruction. The following considerations apply when using
WAIT with nested command lists:

¢ Messages that arrive for the waiting command list are queued until the nested
command list has finished processing.

¢ |f you specify the same message number on TRAP instructions.in both the
waiting and nested command lists, the message satisfies the waiT in the nested
command list.

REXX MSGREAD Instruction

The MSGREAD instruction causes NetView ta read a trapped message from the
message queue. The command list can then take action based on the message.
See “REXX TRAP Instruction” on page 34 and “REXX WAIT Instruction” on
page 36 for information on how these instructions are used with the MSGREAD
instruction.

When a MSGREAD instruction is issued, the oldest message in the queue is read and
removed from the queue. The message that is read is used to set MsGID(),
MSGCNT(), MSGORIGN(), and MsSGSTR(). The message text is used to set the parameter
variables MSGVAR(1) - MSGVAR(31). See “Functions Set by MSGREAD” for information
about the variables set by MSGREAD.

Figure 21 shows the syntax of the MSGREAD instruction.

Note: The instruction is enclosed in single quotes to prevent variabie substitution
by REXX.

Figure 21. MSGREAD Instruction Syntax

MSGREAD sets the value of RC to indicate the resuits of processing, as follows:
Code Meaning

-2 Syntax error

-1 DSIGET failure

0 Successful completion
4 No messages in queue.

A sample command list, showing how the MSGREAD instruction is used, appears in
“Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT CONTINUE” on
page 42. Also, several of the examples in Chapter 5, “Examples of REXX
Command Lists for NetView” on page 57 use TRAP, WAIT, and MSGREAD.

Functions Set by MSGREAD

NetView sets the values of the MSGCNT(), MSGID(), MSGORIGN(), MSGSTR(), MSGTYP(), and
MSGVAR(n) functions based on the information contained in a message read by a
MSGREAD instruction.

MSGCNT()
becomes the number of elements in the text of MSGSTR().

40 NetView Customization: Writing Command Lists

REXX Command Lists

MSGID()
becomes the message identifier of the last message read. The message iden-
tifier is the first token of the message (up to 10 characters). If the first token is
longer than 10 characters, MsGID() uses only the first 10 characters.

MSGORIGN() .
becomes the name of the domain from which the message was sent.

MSGSTR()
becomes the message text exactly as it is received by NetView. MSGSTR() does
not include the message identifier (the token used by the MsGID() function).

MSGTYP()
becomes the system message type of the last message read.

MSGVAR(n)
NetView changes the values of the MSGVAR(1) - MSGVAR(31) functions to reflect the
text of the message. Each MSGVAR(n) function is set to a token of the message.
Tokens are delimited by commas, apostrophes, or blanks. MSGVAR(1) is set to
the first token following the message identifier (the token used by the MsGID()
function). MSGVAR(2) is set to the next token to the right of MSGVAR(1), and so on
up to a maximum of 31 variables.

For example, if MSGREAD is used to read the following message:
DSIOO8I SPAN1 NOT ACTIVE

the functions are set as follows:

Variable Value
MSGORIGN() DOMO1

MSGID() DS1008!

MSGSTR() SPAN1 NOT ACTIVE
MSGCNT() 3

MSGVAR(1) SPAN1

MSGVAR(2) NOT

MSGVAR(3) ACTIVE
MSGVAR(4)-MSGVAR(31) null

Notes:

1. If MSGREAD reads a a multi-line message, the functions are set according to the
first line of the message. See “Working with Multi-Line Messages” on
page 151 for information concerning working with multi-line messages.

2. The MSGVAR(1) - MSGVAR(31) functions can be given values when a command list
is invoked in the same way the &1 - &31 NetView command list language
parameter variables can. (See “Parameter Variables” on page 77.) I
MSGVAR(1) - MSGVAR(31) are given values when the command list is invoked, save
those values in variables before issuing a MSGREAD instruction. This lets you
use the values after MSGREAD changes them.

3. After using MSGREAD, save the values of the message functions in variables
before issuing another MSGREAD instruction. This lets you use the values after
another MSGREAD changes them.

4. Before a MSGREAD instruction is issued, the values of MSGID(), MSGORIGN(),
MSGSTR(), and MSGTYP() are null. The value of MSGCNT() is 0. The MSGVAR(n) func-
tions retain any values they were given when the command list was run.

5. If you issue a MSGREAD instruction when the message queue is empty, the
values of MSGID(), MSGORIGN(), MSGSTR(), MSGTYP(), and MSGVAR(n) are set to null.
The value of MSGCNT() is 0.

Chapter 3. REXX Instructions Provided by NetView 41

REXX Command Lists

REXX FLUSHQ Instruction

The FLUSHQ instruction is used to remove all trapped messages from the message
queue, including the message currently being processed.
Figure 22 shows the syntax of the FLUSHQ instruction.

Note: The instruction is enclosed in single quotes to prevent variable substitution
by REXX.

~ 'FLUSHQ [MESSAGES]'

Figure 22. FLUSHQ instruction Syntax

Because the TRAP instruction does not clear the queue of messages trapped by a
previous TRAP, you should issue a FLUSHQ instruction between multiple TRAP
instructions coded in the same command list.

FLUSHQ sets the value of RC to indicate the results of processing, as follows:

Code Meaning
-1 Syntax error
0 Successful completion.

Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT
CONTINUE

This section contains an example of a command list that illustrates how the TRAP,
WAIT, MSGREAD, and WAIT CONTINUE instructions can be used in RExXx command lists.

Figure 23 is a REXXx command list named ACTLU. ACTLU issues a VTAM command to
activate a node specified by the user. Messages sent as the result of the activate
command are trapped, and the operator is notified of the result of the command
list. The comments in the example explain how the command list works.

/* THEN ISSUE REQUESY
v fR REQUESf RODENAME FROM USER
./~ ok, ALLOW USER To STOP

Figure 23 (Part 1 of 2). Sample Command List Using TRAP, WAIT, MSGREAD, and WAIT
CONTINUE

42 NetView Customization: Writing Command Lists

REXX Command Lists

G ;
IFm%ﬂ'NW'WH /% IF USER DID NOT CHOOSE STOP */
D0 ‘ /% PROCESS NODENAME */
TRAP AND SUPPRESS ONLY MESSAGES IST ' /* TRAP ALL VTAM MSGS */

‘V NET,ACT,ID='NODE = /* ISSUE VTAM ACTIVATE FOR NODE */
RCSAVE=RC : /* SAVE RETURN CODE IN RCSAVE */
'WAIT 30 SECONDS FOR MESSAGES' /* WAIT FOR 30 SECONDS */

.~ SELECT &

WHEN (EVENT()="M') THEN /* OUT OF WAIT - IS THERE A MSG? */

D0 /* PROCESS TRAPPED MESSAGE */
MSGREAD /% READ IN 1ST MESSAGE */

DO WHILE (RC=8) ~ /* IF RC~=0 THEN NO MORE MSGS */

CSELECT /* DETERMINE WHICH MESSAGE HIT %/

CWHEN (MSGID() = '1STOGIT) /* NODE NOT FOUND */

THEN SAY '==> LU UNKNOWN', /% INFORM USER ~ */

T 'TO YOUR VMM <==' ,
WHEN (MSGID() = 'ISTO93I') /* NODE NOW ACTIVE */

" THEN SAY ‘'==> TERMINAL', . - /* INFORM USER */
e MSGVAR(I) Now' , ;,,,;.;fnw / i
« 70THERWISE i IGNORE THE VTAM MESSAGE R |
2 1F RCSAVE=0 THEN S8 ,
. 'WAIT CONTINUE' .= /* CONTINUE WAITING ¢ ¥
ELSE DO , ’
SAY 'ERROR PROCESS!NG'“ /* ERROR ENCOUNTERED 7 */
. 'ACTIVATE COMMAND‘ _/* INFORM USER =~ */
«-v'SAY MSGSTR() /* DISPLAY MESSAGE TEXT */
O END , :
o ‘MSGREAD‘”"L"* "

;E ,/* OF SELECT FOR ISTOGII/ISTGQBI * o
- /* READ IN THE NEXT MESSAGE ~ */
- /*. DO WHILE RC=0, LOOP BACK ~ .*/ .

- /* PROCESS TRAPPED MESSAGE DO */
“»j‘/* OUT OF DO NHILE '

wHEN (£V£NT()—*£ isAVERc~=0) THEN /* CHECK FOR ERROR R
. /* TIMEOUT EVENTS ‘
SAY 'ERROR PROCESSING', /* ERROR ENCOUNTERED7

~ UACTIVATE COMMAND' /* INFORM USER - o

B WHEN (EVENT()='T') THEN /* WAIT TIMEOUT ENCOUNTERED 7 ¥/
~ SAY 'NO RESPONSE TO', *,/* INFORM USER e T
© 'ACTLU CLIST FOR 'NODE s |

OTHERNISE i e NP S */

- /* OF SELECT FOR ERROR/TIMEOUT */
I+ IF“NGDE*-'STOP' PROCESSING */

Flgure 23 (Part 2 of 2). Sample Command List Using TRAP WAIT MSGREAD and WAIT
CONTINUE

Chapter 3. REXX Instructions Provided by NetView 43

REXX Command Lists

REXX GLOBALY Instruction

The REXX GLOBALYV instruction allows you to set and retrieve global variables in RExX
command lists. Global variables allow multiple command lists, regardless of their
language, to share a common set of values. There are two types of global vari-
ables: task and common. Task global variables let you set and retrieve any
number of global variables in command lists running under a particular NetView
task. Common global variables let you set and retrieve global variables in
command lists running under any NetView task.

When you set a global variable using the GLOBALV instruction, NetView places that
variable in a global variable dictionary. If the variable is a task global variable, it
is stored in the global variable dictionary for the particular task under which the
command list is running. Only command lists running under the same task can
access that task’s global variable dictionary.

When you want to use a global variable in a command list, the GLOBALYV instruction
retrieves the global variable from the appropriate dictionary and places it in a REXX
variable of the same name. You can then perform arithmetic operations or other
manipulations on the RExx variable to suit the needs of your command list without
affecting the value of the global variable in the dictionary.

Command lists written in the NetView command list language use the &CGLOBAL
and &TGLOBAL control statements to access global variables.

When setting global variables using the GLOBALV instruction, follow these guide-
lines:

* The global variable name can be 1 to 31 alphanumeric characters. Valid
alphanumeric characters are A-Z, 0-9, #, @, ¢, $, _, |, ?, and period (.). The first
character cannot be a number or a period (.).

Note: The NetView command list language does not allow variable names to
contain a period, _, ¢, I, or ? and limits global variables to a length of 11 char-
acters. Therefore, if you want global variables you create in a RExXx command
list to also be accessible to command lists written in the NetView command list
language, make sure the global variable names are from 1 to 11 characters in
iength and do not contain a period, _, ¢, !, or 2.

* [f more than one global variable is specified on the GLOBALV instruction, the
variable names must be delimited by commas or blanks.

* The value of the global variable can be 255 characters long. For double-byte
character sets the maximum number of double-byte characters between the
shift-out and shift-in is 126.

+ You can give global variables a numerical value between -2147483647 and
2147483647.

See “Scope of Variables in Command Lists” on page 127 for information about the
scope of global variables in command lists.

44 NetView Customization: Writing Command Lists

REXX Command Lists

Setting Task Global Variables in REXX Command Lists
To set a task global variable from a RExx command list, use the GLOBALV PUTT
instruction. The GLOBALV PUTT instruction creates a task global variable with the
specified variable name and places it in the task global variable dictionary for the
task under which the command list is running.

Figure 24 shows how to code a GLOBALV instruction to set a task global variable.

Note: The instruction is enclosed in single quotes to prevent variable substitution
by REXX.

'GLOBALV PUTTvariable[...]'

Figure 24. GLOBALV PUTT Instruction Syntax
PUTT

indicates that task global variables with the specified variable names should
be set.

variable [,...]
the 1- to 31-character names of the task global variables to be set. See page
44 for a list of the characters that can be used for a variable name.

When a GLOBALV PUTT instruction is processed, the NetView program determines
whether a REXX variable already exists with the specified variable name. If a REXx
variable with the same name exists, the task global variable is created, and its
value is set to the value currently assigned to the REXX variable.

If no REXX variable exists with the variable name specified, a task global variable
with that name is created. The value of the task global variable is set to nuil.

If a task global variable already exists with the specified variable name, the value
of the task global variable is updated in the task global dictionary.

The command lists in “Examples of Command Lists that Set, Retrieve, and Update

Task Global Variables” on page 47 show how to set, retrieve, and update a task
global variable.

Chapter 3. REXX Instructions Provided by NetView 45

REXX Command Lists

Retrieving Task Global Variables in REXX Command Lists
To access a task global variable in a RExx command list, use the GLOBALV GETT
instruction. The GLOBALV GETT instruction retrieves the value of the specified task
global variable and assigns it to a RExx variable of the same name.

Figure 25 shows how to code a GLOBALV instruction to retrieve a task globai vari-
able.

Note: The instruction is enciosed in single quotes to prevent variable substitution
by REXX.

'GLOBALV

Figure 25. GLOBALV GETT Instruction Syntax

GETT
indicates that the task global variables with the specified variable names
should be retrieved.

variable [,...]
the 1- to 31-character names of the task global variables to be retrieved.

When a GLOBALV GETT instruction is processed, the NetView program retrieves the
current value of the specified task global variable from the task giobal variable dic-
tionary and places it in a RExX variable of the same name. If a RExX variable with
the same name does not already exist, the REXX variable is created, and its value is
set to the current value of the task global variable.

If no task global variable with the specified variable name exists, the value of the
REXX variable is set to null.

The command lists in “Examples of Command Lists that Set, Retrieve, and Update

Task Global Variables” on page 47 show how to set, retrieve, and update a task
global variable.

46 NetView Customization: Writing Command Lists

REXX Command Lists

Examples of Command Lists that Set, Retrieve, and Update Task Global
Variables

Figure 26 and Figure 27 are examples of RExx command lists that show how to set,
retrieve, and update a task global variable. The first command list is named
INITIALIZE1, and it executes the nested command list UPDATE1.

Figure 27. UPDATE1 Command List

Command list INITIALIZE1 creates a REXX variable called ToM and gives it a value of
5. A GLOBALV PUTT instruction is issued to set a task global variable named Tom.
Since a RExx variable with the name ToM already exists with a value of 5, the value
of task global variable ToM is also set to 5. INITIALIZE1 activates a nested command
list named UPDATE1.

Chapter 3. REXX Instructions Prdvided by Netview 47

REXX Command Lists

Command list UPDATE1 issues a GLOBALV GETT instruction to retrieve the current
value of task global variable ToM into a RExx variable named ToM. The value of
REXX variable TOM is checked to determine if it is null. If the value is nuli, its value
must be set to 0. Because the current value of RExx variable ToOM is 5, it is incre-
mented by 1, making its current value 6. The GLOBALV PUTT instruction causes the
value of task global variable ToM to be updated in the task global variable dic-
tionary.

When UPDATE1 completes execution, control is returned to the INITIALIZE1 command
list. INITIALIZE1 contains a GLOBALV GETT instruction to retrieve the current value of
task global variable Tom and place it in a REXX variable named ToM. The value of
REXX variable TOM is 6 because the current value of task global variable TOM is 6.
The sAY instruction displays the current value of the RExx variable Tom.

Setting Common Global Variables in REXX Command Lists
To set a common global variable in a RExx command list, use the GLOBALV PUTC
instruction. The GLOBALV PUTC instruction creates a common global variable with
the specified variable name and places it in the common global variable dictionary.

Figure 28 shows how to code a GLOBALYV instruction to set a common global vari-
able.

Note: The instruction is enclosed in single quotes to prevent variable substitution
by REXX.

Figure 28. GLOBALV PUTC Instruction Syntax

PUTC
indicates that common global variables with the specified variable names
should be set.

variable [,...]
the 1- to 31-character names of the common global variables to be set. See
page 44 for a list of the characters that can be used for a variable name.

When a GLOBALV PUTC instruction is processed, the NetView program determines if
a REXX variable already exists with the specified variable name. If a REXX variable
with the same name already exists, the common global variable is created, and its
value is set to the value currently assigned to the RExx variable.

If no REXX variable exists with the variable name specified, a common global vari-
able with that name is created. The value of the common global variable is set to
nuli.

if a common global variable already exists with the specified variable name, the
value of the common global variable is updated in the common global dictionary.

Note: Be careful if you have more than one command list running under different
tasks and accessing the same global variable. The last value that the variable is
set to is the value that is retrieved by any command list accessing the variable.
For example, a command list accesses a common global variable and then before
that command list updates the variable, another command list running under a dif-
ferent task accesses the variable. If both command lists update the variabie, the
variable assumes the value given to it by the command list that updates it last. To

48 NetView Customization: Writing Command Lists

REXX Command Lists

avoid having a common global variable being used by different command lists at
the same time, you should have all command lists that use the variable run under
the same task.

You can use the NetView-supplied command lists UPDCGLOB and SETCGLOB to update
and set common global variables under the PPT. See NetView Operation for infor-
mation on using UPDCGLOB and SETCGLOB.

See “CHKOPNUM Example” on page 62 and “CHKRSTAT Example” on page 64
for examples of how to set common global variables.

Retrieving Common Global Variables in REXX Command Lists
To access a common global variable in a RExx command list, use the GLOBALV GETC
instruction. The GLOBALV GETC instruction retrieves the value of the specified
common global variable and assigns it to a local RExx variable of the same name.

Figure 29 shows how to code a GLOBALV instruction to retrieve a common global
variable.

Note: The instruction is enclosed in single quotes to prevent variable substitution
by REXX.

'GLOBALV | GETC variable [..]"

Figure 29. GLOBALV GETC Instruction Syntax

GETC
indicates that common global variables with the specified variable names
shouid be retrieved.

variable [,...]
the 1- to 31-character names of the common global variables to be retrieved.

When a GLOBALV GETC instruction is processed, the NetView program retrieves the
current value of the specified common global variable from the common global
variable dictionary and places it in a RExx variable of the same name. If a REXX
variable with the same name does not already exist, the RExx variable is created,
and its value is set to the value currently assigned to the global variable.

If no common global variable with the specified variable name exists, the value of
the RExx variable is set to null.

See “CHKOPNUM Example” on page 62, “CHKRSTAT Example” on page 64, and

“DSPRSTAT Example” on page 66 for examples of how to retrieve common giobal
variables. :

Chapter 3. REXX Instructions Provided by NetView 49

50 NetView Customization: Writing Command Lists

REXX Command Lists

P—

Chapter 4. REXX Functions Provided by NetView

This chapter describes the functions used in RExx command lists for NetView.
These functions are provided as part of the NetView program so that command.
lists written in RExx can perform specific NetView activities. Because these func-
tions are provided by NetView and are not standard Rexx functions, they can only
be used in command lists that execute in a NetView environment. These functions
do not execute in any RExx EXECs that are executing in non-NetView environments.

Note: You can improve the performance of your RExx command list by limiting the
use of RExx functions provided by NetView. If the same function, provided by
NetView, is used several times in the command list without a change in value, use
the function once to set a local variable to the value of the function. After setting
the RExx function provided by NetView to a local variable, use the local variable in
place of the function. If the value of the function changes during execution of the
command list, you need to use the function each time to access its current value.
For more information on setting RExx variables, see “REXX GLOBALYV Instruction”
on page 44.

Included in this chapter is a description of each function provided by NetView, how

it works and how to code the instruction in a RExx command list. For more informa-
tion on RExx syntax rules, as well as information on other RExx functions, see REXX
User’s Guide or REXX Reference.

The functions provided by the NetView program are set based on system informa-
tion. To use a function, you must place the function name in the RExx command list
at the location where you want the information to be accessed. When the
command list runs, NetView gives the correct values to each function.

The functions let you obtain information about the operating environment, test con-
ditions in a command list, and take actions based on the results.

See Appendix C, “Comparison of REXX and NetView Command List Language” on
page 185 for a complete list of the RExx functions that are equivalent to NetView
command list language control variables. This list includes both functions pro-
vided by NetView and functions provided by RExX itself. See “Examples Comparing
REXX and NetView Command List Language” on page 193 for examples of
command lists written in the NetView command list language and the equivalent
REXX command lists.

Session Information

APPLID()
becomes the application program identifier for the task under which the
command list is running. APPLID() is always the NetView domain 10 appended
with a 3-character alphanumeric value assigned by NetView. For example, if
your domain ID is PARIS, APPLID() might be PARIS001.

OPSYSTEM()
becomes a character string that indicates the operating system for which
NetView was compiled. oPSYSTEM() can contain the following character values:

MVS/XA
VM.

Chapter 4. REXX Functions Provided by NetView 51

REXX Command Lists

TASK()

becomes the 3-character string PPT (primary poi task), oST {(operator station
task), or NNT (NetView-NetView task), depending on the task under which the
command list is running. TAsK() allows the same command list to run under any
of these tasks, because the command list can test for the task type and process
accordingly. For example, there are some restrictions for command lists
running under the PPT. See “Primary POl Task Restrictions” on page 17.

VTAM()

becomes a character string that indicates the level of the access method used.
The variable is returned in one of two formats depending on whether the level
of the access method includes a modification number.

If the level of the access method does not include a modification number, the
format of the variable is VTvr, where:

VT - indicates the access method is VTAM
v - indicates the version number of the access method
r - indicates the release number of the access method.

If the level of the access method does include a modification number, the
format of the variable is Vvrm, where:

V - indicates the access method is VTAM

v - indicates the version number of the access method

r - indicates the release number of the access method

m - indicates the modification number of the access method.

For example, for vTaM Version 3 Release 2, the function would return a value of
v132. For viraM Version 3 Release 1 Madification 1, the function would return a
value of va11.

Note: The value of vTam() is null if vTAM is not active.

Terminal Information
HCOPY()

becomes the name of the hard-copy log printer started by the operator. If there
is no hard-copy printer for this operator, HCOPY() is null.

LU

becomes the logical unit name for this operator terminal.

Operator Information
OPID()

becomes this operator’s ID.

52 NetView Customization: Writing Command Lists

REXX Command Lists

Command List Information

COMPNAME()
becomes the 16-byte name of the component running when the command list
was initiated. For example, if command list HELP is initiated, COMPNAME()
defines the active component so that the correct HELP command list is initiated.
COMPNAME() can contain the following character values:

DSINCCF DSINCCF
DSINPDA

DSINLDM

DSIVIEW 1
DSIVIEW 2
DSIVIEW 3
DSIVIEW 4
DSIVIEW 5
DSIVIEW 6
DSIVIEW 7
DSIVIEW 8
DSIVIEW 9
DSISTATMONRESUME
DSILBROWSERESUME
DSIVIEW APPL1

PARMCNT()
becomes the number of parameter variabies that were entered when a
command list was initiated.

Message Processing Information

MSGCNT()
is the number of elements of text in the message string of the last message
read by MSGREAD. MSGCNT() is used with MSGREAD and with the LINKPD command.

See “REXX MSGREAD Instruction” on page 40 for more information about
using functions with MSGREAD.

See “LINKPD Results” on page 167 for more information about the LINKPD
command.

MSGID()
becomes the message identifier of the last message read by MSGREAD. The
message identifier is the first token of the message (up to 10 characters). If the
first token is longer than 10 characters, MSGID() uses only the first 10 charac-
ters. If a reply ID is sent with the message, it is not used as the first token. For
an MLWTO message, MsGID() uses the first token of the first line of the first
message. MSGID() is used in message automation, with MSGREAD, and with the
LINKPD command. See Chapter 9, “Message Automation” on page 135 for
more information about message automation.

See “REXX MSGREAD Instruction” on page 40 for more information about
using functions with MSGREAD.

MSGORIGN()
is the domain where the last message read by MSGREAD originated. MSGORIGN()
is used for message automation, with MSGREAD, and with the LINKPD command.

See Chapter 9, “Message Automation” on page 135 for more information
about message automation. ‘

Chapter 4. REXX Functions Provided by NetView 53

REXX Command Lists

See “REXX MSGREAD Instruction” on page 40 for more information about
using functions with MSGREAD.

See “LINKPD Results” on page 167 for more information about the LINKPD
command.

MSGSTR()
is the message text of the last message read by MSGREAD. MSGSTR() does not
include the message identifier (the token used by the Msaip() function). For an
MLWTO message, MSGSTR becomes the message text of the first line of the
message. MSGSTR() is used with MSGREAD and with the LINKPD command.

See “REXX MSGREAD Instruction” on page 40 for more information about
using functions with MSGREAD.

See “LINKPD Results” on page 167 for more information about the LINKPD
command.

MSGVAR(n)
each MSGVAR(n) function is set to a token of the last message read by MSGREAD.
MSGVAR(1) is set to the token following the message identifier (the token used by
the MsaiD() function). MSGVAR(2) is set to the next token to the right of MSGVAR(1),
and so on, up to a maximum of 31 variables. MSGVAR(n) is used for message
automation, with MSGREAD, and with the LINKPD command.

See Chapter 9, “Message Automation” on page 135 for more information
about message automation.

See “"REXX MSGREAD Instruction” on page 40 for more information about
using functions with MSGREAD.

See “LINKPD Results” on page 167 for more information about the LINKPD
command.

The MsSGVAR(n) functions can be given values when a command list is invoked in
the same way the &1 - &31 NetView command list language parameter vari-
ables can. See “Parameter Variables” on page 77 for more information on
NetView command list language parameter variables.

SESSID()
is the D of the TAF session that sent the message. SESSID() is used in message
automation and with wait. See Chapter 9, “Message Automation” on page 135
for more information about message automation.

Note: If TAF starts a session with a SESSID() equal to the domain 1D, SESSID() will
not be set correctly, and message automation may not work.

The remainder of this section contains descriptions of message information func-
tions that are used only for message automation. More information about these
functions can be found in MVS Systems Programming Library: Systems Macros
and Facilities, Vol. 2.

Some of these message information functions are filled with values only after
NetView receives a message through the subsystem interface (ssi). The message
information functions that have null values until NetView receives a message
through the ssi are:)

o AREAID()
¢ DESC()

« JOBNAME()
o JOBNUM()

54 Netview Customization: Writing Command Lists

REXX Command Lists

¢ MCSFLAG()
¢ MSGTYP()
¢ ROUTCDE()
¢ SMSGID()
» SYSCONID()
* SYSID().

AREAID()
provides a one-letter (A-Z) identifier for the area on the console screen that
displays the message.

DESC()
provides the system descriptor codes in a binary series of on (1) and off (0)
characters, representing the descriptor code bits in order.

HDRMTYPE()
provides the 1-character NetView message type of the message. NetView
message types are described in NetView Customization: Using Assembler.

Note: HDRMTYPE is a NetView-supplied message function.

JOBNAME()
provides the 1- to 8-character Mvs JoB name identifier. Because the JOBNAME is
the name of the job that originated the message, it may not always be the
same as the name of the job to which the message is referring. For exampile,
this can occur when Mvs issues a message about the NetView job. Also,
JOBNAME can contain the name of an initiator (instead of the actual jobname)
when a job is started or terminated. If the message is issued during startup or
termination, extract the job name from the message text rather than using the
JOBNAME variable.

JOBNUM()
provides the 8-character Mvs JoB number identifier. Depending on the Mvs
release, JOBNUM() can be a character string such as ‘JoB 4’ or simply a
number such as ’ 4,

Note: The appropriate number of blanks are imbedded within JOBNUM to
ensure a total length of 8 characters.

LINETYPE()
provides the multi-line write-to-operator (MLwTO) line type, as follows:

C The line is a message control line.
L The line is a message label line.
D The line is a message data line.
DE The line is the last message data line.
E The line is the last message line and contains no data.
blank The message is a single-line message.
MCSFLAG()

provides the system message flags in a binary series of on (1) and off (0) ches
corresponding to the following meanings:

first Send message conditionally to console SYSCONID()
second Send message unconditionally to console SYSCONID()
third RESP

fourth REPLY
fifth BRDCST
sixth HRDCPY only

seventh NOTIME
eighth NOCPY.

Chapter 4. REXX Functions Provided by NetView 55

REXX Command Lists

MSGTYP()
provides the system message type as three consecutive binary characters. An
on character (1) in one of the positions corresponds to the following meanings:

first SESS

second JOBNAMES

third STATUS.
REPLYID()

provides a 3-character reply identifier for WTOR command replies. See
“WTOR" on page 140 for more information about the wror command.

ROUTCDE()
provides the system routing codes in a binary series of on (1) and off (0) char-
acters, representing the routing code bits in order.

SMSGID()
provides an 8-character value that identifies a particular instance of a
message. This control variable is used by the bom command to identify action
messages to be removed from the display. See “DOM” on page 141 for more
information about boMm.

SYSCONID()
provides the console number (in decimal) that is to receive the message.

SYSID()
provides an identifier for the Mvs system that sent the message.

WTOREPLY()
is the reply sent by the operator in response to a wTor command. See
“WTOR” on page 140 for more information about the wTorR command.

Domain Information

NVCNT()
becomes the number of NetView domains with which you can establish a

cross-domain session.

NVID(n)
returns the NetView domain identifier of a domain with which you can establish
a cross-domain session. If an invalid domain identifier is specified in n, an
error is returned. To obtain the local domain identifier, use the ApPLID() func-
tion. APPLID() returns the local domain i10 appended with a 3-character alphanu-
meric value assigned by NetView.

NVSTAT(name)
indicates whether you have an active session with a domain. If no name is
specified or an invalid name is specified, an error is returned.

56 NetView Customization: Writing Command Lists

REXX Command Lists

Chapter 5. Examples of REXX Command Lists for NetView

This section contains examples of RExx command lists written for NetView. These
examples show how the instructions and functions provided by NetView and the

standard RExX instructions and functions can be used together in RExXx command
lists executing in a NetView environment.

Chapter 5. Examples of REXX Command Lists for NetView 57

REXX Command Lists

TYPE Example

************************** L LDt s e

s TYPE COMMANB/LIST

2 THIS COMMAND LIST. DISPLAYS MEMBERS OF A DATA SET AT THE
'(INVOKING) USER S NETVIEK TERMINAL ONE LINE AT A TIME

,DATASETNAME = FULLY QUALIFIED DATA SET NAME B
~(INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL.]

; ARG DATASETNAME e & %?"'*“’/ ,PARSE CLIST INPUI

IF DATASETNAME~“fE PARMCMT():> 1 THER /* NO CLIST INPUT 7
Do - ~/* NAME NOT SPECIFIED

‘ﬁj SAY ‘INCORRECT SYNTAX USED : [_“:‘{,‘} /* ISSUE ERROR MSG
- SAY 'CORRECT SYNTAX IS : o [* ISSUE HELP MSG
o TYPE DATASET. MAME(MEMBER) ot f* ISSUE HELP MSG . */-
. /* SET RETURN CODE ~ */
~ NAME NOT SPECIFIED -
CORRECT NAME/SYNTAX
SRR b LS S e S e % NAME WAS SPECIFIED
.. ' TRAP AND SUPPRESS ONLY MESSAGES *“~3” /* TRAP/SUPPRESS MSGS

', *ALLOCATE DA('DATASETNAME') SHR FREE'/" /* ALLOC/CONNECT FILE -

~ 'WAIT FOR MESSAGES* - /* WAIT FOR MESSAGES
| 'MSGREAD' o

S ; . /* READ A MESSAGE IN . */
 “TRAP NO MESSAGES' © . J* DISABLE TRAP MSGS
. IF (MSGID()~=*CNM272£ } THEM /% IS MSG CNM2721 2 - %/
Do , ;_u;fiﬁygf“/* ~ CNM2721 MSG
- SAY MSGID() MSGSTR()<=:”““" wooooo f* DISPLAY MESSAGE ¥
i ENB e o [* - CNM2721 MSG
CELSE J* MSG IS CNM2721

b0 o /* PROCESS CNM2721 MSG
i BDNAME SGVAR(1) /* SAVE DYNAMIC DDNAME
- ADDRESS MVS ‘EXECIG 1 DISKR *DDNAME VARl 1ST LINE ou STACK #/
DO WHILE RC=0 /¥ WHILERC = 0 o wf
PULL RECORD PULL LINE FROM STACK *f
SAY SUBSTR(RECORD 1 68) DISPLAY LINE TO USER */ -
: - PUT NEXI LINE ou STACK*/

/% WHILE RC = 0 5;;,;;, */
st R /* PUT OUT COMPLETE MSG */
»'MESSAGE 3001 rvps CLIST is NOW FINISHED®
: /% PROCESS CNMZ72I MSG */
“/* NAME WAS SPECIFIED */

RETURN ”f:i;g /* RETURN TO CALLER/EXIT */

Fvgure 30 TYPE Example

58 NetView Customization: Writing Command Lists

REXX Command Lists

TYPEIT Example

G]

/**/

L /* TYPEIT COMMAND LIST T */
e /* e a———————— ’) */
o */
. /* FUNCTION: THIS COMMAND LIST DISPLAYS MEMBERS OF A DATA SET AT THE */
N ~ (INVOKING) USER'S NETVIEW TERMINAL ONE LINE AT A TIME. */
I ’ ~ */
/% INPUT PARMS DATASETNAME = FULLY QUALIFIED DATA SET NAME *f

/* (INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL. */
- /* */
/* OUTPUT: LINE = EACH LINE WITHIN THE MEWBER SPECIFIED BY THE USER. */
s ‘/* ‘l‘/

/% CLIST FLOW : (AFTER CHECKING FOR PROPER INPUT PARMS) */
_ /* - ALLOCATE THE DATA SET & MEMBER SPECIFIED TO NETVIEM oy
J* = READ ALL LINES OF MEMBER ONTO STACK WITH 'EXECIO * DISKR' %/
- LOOP THROUGH STACK UNTIL NO MORE RECORDS EXIST <QUEVED()=0> */
‘= PUT. OUT THE FIRST 68 CHARACTERS OF THE LINE (FOR READABILITY) */
- PUT OUT CNM3091 AT THE END */
- CLOSE THE FILE WITH 'EXECIO @ DISKR ... (Fnis WHETHER A
/% ERROR OCCURS OR NOT. ~
/**/
SIGNAL ON HALT = ;* [,; »,*_§ " /* PROCESS TERMINATION */
ARG DATASETNAME . /% PARSE CLIST INPUT =~ */

e i)
I N I)
i . 1.1

fﬁ=1F DATASETHAME=" ! i PARMCNT() > 1 THEN /% NO CLIST INPUT 2 "%/
©oDo . [* NAME NOT SPECIFIED */
© " SAY *INCORRECT SYNTAX USED « "f’i‘~'”' /* ISSUE ERROR MSG =~ */

- 'SAY 'CORRECT SYNTAX IS : ' . [* ISSUE HELP MSG = %/
" SAY ' TYPE DATASET.NAME(MEMBER) ' /* ISSUE HELP MSG -~ . */
: S 0% SET RETURN CODE . %/
. /* NAME NOT SPECIFIED */

_/* CORRECT NAME/SYNTAX — */
o g 0 /* NAME WAS SPECIFIED */
‘TRAP AND DISPLAY ONLY MESSAGES CNMZ?ZI‘ /* TRAP/DISPLAY CNM2721 */
'ALLOCATE DA('DATASETNAME') SHR FREE' /* ALLOC/CONNECT FILE %/
'WAIT 5 SECONDS FOR MESSAGES' . J* WAIT FOR MESSAGES */
©'MSGREAD' - ~© /* READ A MESSAGE IN */
" 'TRAP NO MESSAGES' S [* DISABLE TRAP MSGS . %/
IF (MSGID()*"CNMZ?ZI) THEN S [* IS MSG CNM2721 7. */
. DO ;} o [* - CNM2721 MSG */

SAY MSGID() nsasra() ~/* DISPLAY MESSAGE ~ */
BN /%o CNM2I2I MSG ¥/
ELSE e MSG IS CONM2T2T %/

D0 S~ PROCESS CNM2721 MSG %/
" DDNAME = woau(nsesrn() 1) ' /* SAVE DYNAMIC DDNAME */
 ADDRESS MVS ‘EXECIO * DISKR 'DDNAME /* READ DATA ONTO STACK */

'DD UNTIL QUEUED() L /* WHILE RC = 0 ‘ */

Figure 31 (Part 1 of 2). TYPEIT Example ‘

Chapter 5. Examples of REXX Command Lists for NetView 59

REXX Command Lists

SA SUBSTR(RECORB‘ I,

Figure 31 (Part 2 of 2). TYPEIT Example

PRINT Example

**********************t****

PRI NT COWARB £IST

'ALLOCATE SYSOUT(A} FREE RECFM(FB
‘LRECL(8@) BLKSIZE(4000)'

WAIT FOR ME SAGES“

‘MSGREAD .

Figure 32 (Part 1 of 2). PRINT Example

60 NetView Customization: Writing Command Lists

REXX Command Lists

LT SRS R

~ ,vxr (nsein()-ﬂ='cnnz721 IE THEN i /* IS MSG CNWTZL 7 %/
00 oI M ¥

SAY MSGID() nseswx() . /% DISPLAY MESSAGE */
OB L% - CNM2T2I MSG %
COELSE o S /% MSG IS CNM2721 %/
o S . ./* PROCESS 1ST CNM2721 */
'DDNAMEO = MSGVAR(1) : - /* SAVE OUTPUT DDNAME */

*mwmmmwmmmwﬁmwmmmyv
“ALLOCATE DA('DATASETNAME') SHR FREE'/* ALLOC/CONNECT FILE */
'WAIT FOR MESSAGES' /* WAIT FOR MESSAGES = */
~UMSGREAD' - . J* READ A MESSAGE IN ~ */
 'TRAP NO MESSAGES' . /* DISABLE TRAP MSGS ~ */
IF (Mssxe()~='tunz721*) THEN S /% IS MSG CNM2721 2 %/
) ' J* - CNM2721 MSG — */
memmummm'g,ﬂpﬁmmmmma~fﬁ
; o o % -~ CNM2721 MSG]
L /* MSG IS CNM2721 %/
- /* PROCESS 2ND CAM2721 */
R(1) ~J* SAVE INPUT DDNAME =~ = */ .
ADDRESS nvs ’EXECIO 1 DISKR ’DDNAMEI /* READ. 151 LINE %]
: : J*WHILERC =0 %/
- ADDRESS MVS' *£x5c10 1 exsxw ’DDNAMEO /* HRITE LINE OUT */
- ADDRESS MVS 'EXECIO 1 DISKR 'DDNAMEI /* READ NEXT LINE * o
/*WHILERC =90 %/
~z¢* PUT OUT COMPLETE MSG */ i

o PROCESS ZND CNM2721 ,‘*/ :
“%/* PROCESS 1ST CW2721 %/
m]*’NAME WAS ‘SPECIFIED - k] e

/* uzwuan ?e CALLER/EX!T */ o

Figure 32 (Part 2 of 2). PRINT Example

Chapter 5. Examples of REXX Command Lists for NetView 61

REXX Command Lists

CHKOPNUM Example

ey ?*THE FOLLOWING~REXX COMMANB LIST IS A FAIRLY SIMPLE EXAM

. /* OF HOW SOME OF THE BASIC REXX FUNCTIONS AND NETVIEW- SPECIFIC i

- /* FUNCTIONS CAN BE USED IN A COMMAND LIST. IT ILLUSTRATES THE USAGE*[

o /* OF SUCH THINGS AS THE REXX 'PARSE' INSTRUCTION, AND THE NETVIEW o
5 a"“NAIT‘ 'MSGREAD‘ AND *GLOBALV‘ COMMMANDS

* NUMBER oF OPERATORS CURRENTLY LOGGED Ok AND NILL KEEP THE,Z
~ INFORMATION IN COMMON GLOBAL VARIABLES. THE INFORMATION
* COLLECTED CAN LATER BE RETRIEVED BY USING THE 'DISPLAY'

,AND UPDATE APPROPRIATE COMMON GLOBAL VARIABLES
f* = WILL ANALYZE THE VALUE: IN THE COMMON GLOBAL o
;iVARIABLES AND. DISPLAY THE RESULTS %

< wILL DEFAULT ro *'f

W*""USAGE BMPLEE o b
~/* 1. EXECUTE THE FOLLONING T0 CAUSE rus NUMBER OF OPERATORS
. /*u;;f»ro BE CHECKED EVERY HOUR (COULD BE ANY TIME psnxou) .
- /% -> 'EVERY 01:00,PPT,CHKOPNUM! ey o
:/**‘z;~Ar ANY TIME, EXECUTE THE FOLLOWING COMMAND TQ DISPLA¥ TH
/* RESULTS OF THE PREVIOUS EXECUTIONS: '
* -> 'CHKOPNUM DISPLAY . - o
; f;,RESULTS WILL BE DISPLAYED ou YOUR IERMINAL

D CHANGE coas DATE DESCRIPTION

/*‘ - ,_‘- - - o

/****************‘k***‘k**k***

~ PARSE ARG OPTION /* GET INPBf IF ANY

'j./* GET VALUES FOR COMMO& GLOBA[VARIABLES USED BY THIS EXEC"
i 'GLOBALV GETC CHKOPTIMES CHKOP&UM CHKOPMAX‘ nnid

| IF oprron - 'DISPLAY‘ THEn oo o H,. »€ /* WAS 'DISPLAY‘ REQSTD? *f

IF CHKOPTIMES s THEN i /* ANYTHING T& DISPLAY?'Y*/
SAY ‘NUMBER OF OPERATORS HAS NEVER BEEN CHECKED ‘/* N0~'GIVE ERROR*/

Figure 33 (Part 1 of 2). CHKOPNUM Example

62 NetView Customization: Writing Command Lists

REXX Command Lists

ELSE DO; /* YES, DISPLAY RESULTS */
SAY 'NUMBER OF OPERATORS HAS BEEN CHECKED 'CHKOPTIMES' TIMES'
SAY 'AVERAGE NUMBER OF OPERATORS LOGGED ON IS: ‘CHKOPNUM/CHKOPTIMES
SAY 'MAXIMUM NUMBER OF OPERATORS LOGGED ON IS: 'CHKOPMAX

END; : /* END DISPLAY RESULTS */
EXIT 6 /* EXIT FROM COMMAND LIST*/
- END; | | /% END DISPLAY OPTION */

. CUROPNUM = 0 L |
- 'TRAP AND SUPPRESS MESSAGES OPERATOR:,END' /* TRAP LIST RESPONSE */

LIST STATUS=0PS' /* ISSUE LIST COMMAND */
DO UNTIL MSGID()="END' /* LOOP TILL END OF MSGS */
'WAIT FOR MESSAGES' /% WAIT FOR RESPONSE */

" 'MSGREAD' /* YES, READ IN MESSAGE */
- IF MSGID() = 'OPERATOR:' THEN /* 1S 1T AN OPERATOR LINE*/

" CUROPNUM = CUROPNUM +1 ' /% YES,INCREMENT # OPS */

_ ELSENOP . [*No, MUST BE 'END' MSG */

IF CHKOPTIMES = '' THEN CHKOPTIMES =1 - /* INCREMENT # TIMES CHKD*/
- ELSE CHKOPTIMES = CHKOPTIMES + 1 ‘ i o

~'IF CHKOPNUM = '' THEN CHKOPNUM = CUROPNUM /* INCREMENT #OPS ON SYS */
“"ELSE CHKOPNUM = CHKOPNUM + CUROPNUM - ,
- IF CHKOPMAX = '' THEN CHKOPMAX = CUROPNUM /* INCREMENT MAX IF NEED */

;:ELSE IF CHKOPMAX < CUROPNUM THEN CHKOPMAX = CUROPNUM

@;/* PUT NEW VALUE BACK INTO THE COMMON GLOBAL VARIABLE DICTIONARY cowf
f'GLOBALV PUTC CHKOPTIMES, CHKOPNUM, CHKOPMAX®

é}EXIT 6 /% END OF COMMAND LIST %/

Figure 33 (Part 2 of 2). CHKOPNUM Example

Chapter 5. Examples of REXX Command Lists for NetView 63

REXX Command Lists

CHKRSTAT Example

;fﬁummmmmwmwmmmmnwrmmw
5f1nsrRuc1:on, AND THE uETszw ‘waT' (FOR MESSAGES AND TIME),,; =

S ACTIVE, AND INCREMENTS A COMMON | GLOBAL VARIABLE THAT L
EFLECYS THE RUMBER OF TIMES IT WAS IN THAT STATE. THIS

4’ . /*'k**************'k***

‘;PARSE UPPER ARG RESNAME

IF RESNAME =1 THEN DO,
SAY ‘RESOURCE NAME MUST E PRGVIDED‘
©EXIT 99
END

: ,/* SET UPV RAP FOR POS IBLE R SPQNSES TU ‘D
~/* COMMAND, AND WAIT FOR MESSAGE -TO ARRIVE - .
. *TRAP AND SUPPRESS MESSAGES ISTO971 1STO751 EST453I' ‘
‘D NET,ID='RESNAME =
‘WALT 6& SECONDS FOR MESSAGE

PIFMSMEMDMTMMW WWGWEHMRMSMEMDHH il Rp
IF EVENT() -= 'M" THEN DO SR
SAY ' NO RESPONSE
EXIT 99
END

OM VT2 M RESOURCE“’OUNT NOT UPDATED *"

: /* REAU MESSAGE.,IF xr IS rsree7r qzssus wsz AGAIN AND THE NEXT
/* MESSAGE READ SHOULD BE IST&TSI WHICH HAS THE STATUS INFO .
C'MSGREAD' .
~ IF MSGID() V*zsregzz THEN oo
'"WAIT CONTINUE'
‘MSGREAD'

Figure 34 (Part 1 of 2). CHKRSTAT Example

64 NetView Customization: Writing Command Lists

REXX Command Lists

/* 1F THE MESSAGE IS NOT ISTO75I, DO NOTHING, AND THE STATUS WILL */

. /* DEFAULT TO INACTIVE. TIF IT IS ISTO751, GET THE 2ND LINE OF THE */

~/* MULTI-LINE MESSAGE AND GET THE CURRENT STATE FROM THAT LINE */
IF MSGID() = 'ISTO751' THEN DO gt , : -

‘GETMLINE STATLINE ' 2 ' ’ [R

/* 1F STRING CONTAINS IST4861 THEN PARSE OUT RESOURCE STATUS .- = */ .

IF INDEX(STATLINE,'IST4861') >0 THEN - . '
PARSE VALUE STATLINE WITH MSGTXTI ’CURRENT STATE =! RESSTATE

N

 END :

/% IF THE CURRENT STATE IS ACTIVE OR ACTIVE w/sessxou THEN GET 5
/* INCREMENT AND UPDATE THE COMMON GLOBAL VARIABLE WITH THE NAME ~ */
- /* "RESOURCE NAME' CONCATENATED WITH '@A'. NOTE THAT SINCE THE */

. /* GLOBALV COMMAND REQUIRES THE VARIABLE NAME, A VARIABLE HAS ol
| /* TO BE SET TO THE VARIABLE NAME, SINCE IT IS DYNAMICALLY = */

. /* CONSTRUCTED. THE REXX INTERPRET INSTRUCTION MUST ALSO BE USED ~ */

/%70 PERFORM OPERATIONS ON THE DYNAMICALLY CONSTRUCTED VARIABLE ¢/

- IF RESSTATE = *ACTIV' | RESSTATE = 'ACT/S' THENDO
" VARNAME = RESNAME||'@A' st o

*GLOBALYV GETC 'VARNAME
_INTERPRET 'ACT# *'VARNAME' G BT S e
I DATATYPE(ACT#) = 'NUM' THEN ACT# =1 /% TF NON-NUMERIC

. ELSE ACT# = ACT# + 1 r) e

-~ INTERPRET VARNANE '=ACT#*
= ‘GLOBALVKPUTC 'VARNAME

L IF THE CURRENT STATE IS NoT ACTIV£ OR ACTIVE H/SESSION THEN GET -
- /* INCREMENT AND UPDATE THE COMMON GLOBAL VARIABLE WITH THE NAME
 /* "RESOURCE NAME' CONCATENATED WITH '@NA'. NOTE THAT SINCE THE
- /* GLOBALV COMMAND REQUIRES THE VARIABLE NAME, A VARTABLE HAs
~/* T0 BE SET T0 THE VARIABLE NAME, SINCE IT IS DYNAMICALLY
© /* CONSTRUCTED. ~THE REXX INTERPRET INSTRUCTION MUST ALSO BE US£D
/%10 PEFFORM. OPERATIONS ON THE DYNAMICALLY CONST&UCTED VARTABLE
ELSE DO : SR ,
 VARNAME = RESNAME]]" @NA
_'GLOBALY GETC 'VARNAME
INTERPRET 'NACTE ='VARNAME =~
IF DATATYPE(NACT#) = ’NUM’ THEN NACT#.
© ELSE NACT# = NACT# + 1 -
. INTERPRET VARNAME'=NACT#‘¢
- 'GLOBALV PUTC 'VARNAME
Ny

* IF NON-NUMERIC */

Figure 34 (Part 2 of 2). CHKRSTAT Example

Chapter 5. Examples of REXX Command Lists for NetView 65

REXX Command Lists

DSPRSTAT Example

©/* THE FOLLOWING REXX COMMAND LIST GOES ALONG WITH THE PREVIOU /
/*' EXAMPLE (CHKRSTAT), AND SHOWS MANY OF THE SAME TYPE OF FUNCTIONS *

Vi] |ANY OST OPERATOR TO DISPLAY *
“/* THE RESULTS OF SEVERAL EXECUTIONS OF THE CHKRSTAT COMMAND LIST ~ */
~ FOR A SPECIFIC RESOURCE. IT COULD BE USED AS AN AID IN =~

~ DETERMINING HOW OFTEN A RESOURCE IS ACTIVE, BASED ON THE INTERVALS*

i EA = RESNAME['@A" * SET THE VAR NAME acT /
" VARNAMENA = RESNAME||' @NA" * SET THE VAR NAME NACT *
_'GLOBALY GETC ' VARNAMEA _/* GET THE ACTIVE INFO
- 'GLOBALV GETC ‘VARNAMEN - | /* GET THE INACTIVE INFO. */
g «w * PUT ACTIVE # IN VAR = */
* pUT INACTIVE # IN VAR,V

Figure 35 (Part 1 of 2). DSPRSTAT Example

66 NetView Customization: Writing Command Lists

REXX Command Lists

,SAY ‘RESOURCE 'RESNAME’ STATISTICS',

'SAY ' NUMBER OF TIMES RESOURCE WAS ACTIVE : 'RACT
SAY ' NUMBER OF TIMES RESOURCE WAS INACTIVE' RINACT
PERCENTACT = RACT/(RACT+RINACT)*100||'%’ - /* DETERMINE PERCENT */
SAY ' PERCENTAGE OF TIMES RESOURCE WAS ACTIVE' *PERCENTACT '

Figure 35 (Part 2 of 2). DSPRSTAT Example

Chapter 5. Examples of REXX Command Lists for NetView 67

68 Netview Customization: Writing Command Lists

Part Three. Writing Command Lists in the NetView Command
List Language

Chapter 6. Simple NetView Command List Language Command Lists 71
What the NetView Command List Language Includes 71
Coding Conventions for NetView Command List Language Statements 72
General Coding Conventions 72
Conventions for Continuation Statements 73
Conventions for Double-Byte Character Set Text 74
Conventions for Suppression Characters 74
Labels e 75
Variables e 76
Variable SubstitutionOrder 76
Parameter Variables e e e e e e 77
Control Variables e 81
UserVariables 87
Comments 89
Null Statements e 89
Assignment Statements L 90
Control Statements e 92
Writingtothe Operator 93
Using NetView Commands with &PAUSE o8
An Example Using &PAUSE e 99
Built-In Functions e 99
&CONCAT Built-In Function 100
&LENGTH Built-in Function 100
&NCCFID Built-In Function 101
&NCCFSTAT Buift-in Function 102
&SUBSTR Built-In Function 103
Sample Command List—Chapter Review 105
Chapter 7. NetView Command List Language Branching 107
&IF Control Statement e 107
&GOTO Control Statement 109
&EXIT Contro!l Statement 109
&WAIT Control Statement 111
Coding an &WAIT Control Statement 112
Using NetView Commands with &WAIT 116
Control and Parameter Variables Used with &WAIT 116
Using &WAIT in Nested CommandLists 118
Customizing the &WAIT Statement 118
Suggestions for Coding &WAIT 120
Sample Using &WAIT e 120
Chapter 8. NetView Command List Language Global Variables 123
Task Global Variables e 124
Updating Task Global Variables 125
Common Global Variables 126
Scope of Variablesin Command Lists 127

Part Three. Writing Command Lists in the NetView Command List Language 69

70 NetView Customization: Writing Command Lists

Ehapter 6.

NetView Command List Language Command Lists

Simple NetView Command List Language

Command Lists

In this chapter, you will learn the basics of writing command lists for the NetView
program using the NetView command list language. This chapter also describes
how variables, assignment statements, and buiit-in functions fit together and how
to combine them in command lists.

in simple command lists, each statement is interpreted in the order it appears.

One or more segments of your application processing are performed in sequence
as coded. Simple command lists do not give you the flexibility to skip around some
segments, to perform alternate segments, or to repeat processes. These features
are included in the NetView command list language, and you will learn about them
in Chapter 7, “NetView Command List Language Branching” on page 107.

A comprehensive sample command list, with examples of each type of statement in
this chapter, appears in “Sample Command List—Chapter Review” on page 105.
Also, see “Examples Comparing REXX and NetView Command List Language” on
page 193 for samples of command lists written in the NetView command list lan-
guage and the equivalent RExx command lists.

What the NetView Command List Language Includes

The NetView Command list language is made up of statements, each having a sep-
arate function. NetView uses the following six types of command list statements:

¢ Command
e Comment
e Control

e Assignment
e Label

¢ Null.

You can use the following features of the command list language within command
list statements:

¢ Parameter variables
¢ Control variables

e User variables

¢ Global variables

¢ Built-in functions.

All of these, except global variables, are discussed in detail in later sections of this

chapter. Globa! variables and descriptions of passing parameter values are
described in Chapter 8, “NetView Command List Language Global Variables.”

Chapter 6. Simple NetView Command List Language Command Lists 71

NetView Command List Language Command Lists

The NetView command list language also gives you the capability to write applica-
tion code to perform repetitive or alternate processing (if-then or loop structures).
These features are implemented with the following control statements:

* &IF

&GOTO
&EXIT '
&WAIT.

These control statements are discussed in Chapter 7, “NetView Command List
Language Branching.”

Note: Command lists can interrupt the processing of other command lists. This is
done using the cMbMDL statement in the psicmMp. For more information, see Netview
Administration Reference.

Coding Conventions for NetView Command List Language
Statements

Like any other language, the NetView command list language requires that you
follow syntax rules. The following coding conventions for NetView are divided into
sections describing the conventions for general coding, continuation characters,
suppression characters, and double-byte character sets.

Note: The syntax diagrams used in this book are formatted according to the
coding conventions described under “Coding Conventions Used in This Book” on
page Xiv.

General Coding Conventions
Use the following coding conventions when writing command lists in the NetView
command list language:

¢ Optionally, code a cLIST statement as the first line of your command list. Code
CLIST statements as follows:

— Optionally, code a label. The label must begin in column one.

— Code the characters CLIST beginning in column two or later. cLIST must be
preceded by at least one biank.

Note: On vm systems, if the command list is not defined on a cmombDL defi-
nition statement, you must start the command list with a cLisT statement. It
is not optional.

o Leave column 72 blank for all statements.

¢ Do not use columns 73-80. They are reserved for optional sequence numbers.
¢ Code at least one blank after a label (if there is one) or before a keyword.

¢ Code at least one blank between a control statement and the first operand.

¢ Separate operands with one or more blanks, or a single comma with no blanks.
¢ Code any number of leading or trailing blanks on your statements.

¢ Use lowercase letters only as comments or part of a message sent to the oper-
ator. In all other cases, use uppercase for alphabetical characters A-Z.

72 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

¢ Code statements so that their maximum length is 240 characters after variable
substitution. To familiarize yourself with how variable substitution works, see
“Variable Substitution Order” on page 76.

¢ Code comment lines with an asterisk (*) in the first column followed by the
comment. Comment records cannot appear on the first line of a command list.

¢ Code the command list so that it ends by processing the last command list
statement, or by reaching an &EXIT statement. An operator entering RESET also
ends the command list.

Conventions for Continuation Statements
Use a plus sign (+) or a hyphen (-) as a continuation character to continue a state-
ment that is too long to fit on one line. Code the continuation character as the last
non-blank character before column 72 on the line to be continued.

Note: Do not code a comment between the beginning and end of a continued
statement.

¢ The plus sign causes the text of the continuation line to begin where the pius
sign was placed without any of the blanks leading up to the first non-blank
character on the continued line.

The plus sign causes these lines:

S&WRITE THIS STATEMENT IS CODED +
AS +
THREE LINES

to become this single statement:
THIS STATEMENT IS CODED AS THREE LINES

* The hyphen causes NetView to keep all the blanks at the end of the line with
the hyphen (up to but not including column 72) and then fill the line to its end
with characters from the beginning of the continuation line. The hyphen itself
is replaced by a blank. When filling a line with characters from the beginning
of the continuation line, NetView presentation services does not split a word
across lines of an output screen. The iast character used for filling in from the
continuation line must be a blank or the last character on the line.

For example, if you coded the following &WRITE statement to be displayed on an
80-character-wide terminal:

S8WRITE STATEMENT CONTINUED WITH THE HYPHEN TO KEEP -
BLANKS

all the blanks from the P in KEEP to the B in BLANKS would be kept. The first line
would write 64 characters to the output screen (41 characters of text plus 23
bianks from the end of the text to column 72). The output screen has 68
columns to be used for display (80 minus the 12-character prefix), so the
hyphen would cause the first four characters of the second line to be placed at
the end of the first line. In the example, this would be two blanks and the
letters BL. However, since NetView presentation services will not split a word
across lines of the output screen, the example would be displayed as:

STATEMENT CONTINUED WITH THE HYPHEN TO KEEP
BLANKS

Chapter 6. Simple NetView Command List Language Command Lists 73

NetView Command List Language Command Lists

Conventions for Double-Byte Character Set Text
A double-byte character set (DBCS) is a character set in which each symbol is
represented by a two-byte code rather than one-byte codes. For example, Kanji is
a language used in Japan that is too rich in symbols to display ail the characters
using one-byte codes. Therefore, a double-byte character set is used. Double-byte
character set support is available for Mvs/xa only.

In the following, DBCs refers to double-byte character set characters. The term
“Latin characters” refers to the English character set, a-z and A-Z.

e Use a Latin character set to code NetView commands and command lists used
as commands.

e DBCS data input is not supported.

¢ Enclose all pacs strings within shift-out (X'OE’) and shift-in (X'0OF’) codes. Be
sure there are an even number of characters in each DBCs string (if you are
using an editor and terminal that supports double-byte characters this is done
automatically).

¢ Label names and variable values can be coded in pacs characters. Restrict
them to a length of 11 bytes.

* When pBCs labels and variables are displayed on a pBCs terminal, the shift-out
and shift-in codes appear as blanks.

e DBCS text can be split across multipie lines, using an EBcDIC plus sign (+) or
hyphen (-) as a continuation character.

¢ When writing DBCS text in a &BEGWRITE, the SuB option is required.

¢ Comments can contain DBCS strings enclosed by shift-out (X‘OE’) and shift-in
(X'0F’) codes.

* &WRITE, &CONCAT, and &SUBSTR are enabled for double-byte character sets.

Conventions for Suppression Characters
You can define a suppression character with the sUPPCHAR operand of the NCCFID
definition statement and use it to prevent a command list command or statement
from appearing on the operator’s screen. See NetView Administration Reference
for more information about the NCCFiD definition statement.

The following rules apply when coding suppression characters:
¢ Code the suppression character in column 1 of the statement.

* Only the first line of a continued statement can be suppressed when the
command list is listed using the LIST CLIST= command.

* When you browse a file, you can see every line, even suppressed lines.
In Figure 36 on page 75, the question mark (?) has been defined as a suppression

character. The first and last lines of the command list in the example wiil be sup-
pressed.

74 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

F;mm,@ TR (T S T

7% COMMAND LIST UPDATED 2/5/87 BY OPERATOR IRENE
START DOMAIN=81 ..

SWRITE ENTER GO NH£N MESSAGE 9518091 ARRIVES FROM &1
* &PAUSE

;’?ROUTE &1 OPERI 123456

Figure 36. Suppresslon Characters

When issuing a command that returns its status in the return code, you can sup-
press synchronous output from the command by coding the suppression character
twice. For example, if you coded:

2?2SET PF24 IMMED RETRIEVE

in a command list, no synchronous output from the command list is displayed to
the operator.

Use the double suppression character to enhance performance on commands that
produce line mode messages synchronously and when sufficient status is provided
by the return code. Using the double suppression character does not affect output
that is scheduled by a command (for example, D NET,APPLS) nor does it reliably
reduce output from a long running command (for example, NLDM).

Labels

Labels identify command list statements for control of flow, or internal documenta-
tion, or to indicate the target statement for a transfer of control. You will learn how
to use transfer of control in Chapter 7, “NetView Command List Language
Branching” on page 107.

Labeis can be coded on any command list statement, except a comment statement.
This means you can code labels on commands, control statements, assignment
statements, and null statements. if NetView cannot find the label, processing
stops, and NetView issues an error message.

Code the label as the first non-blank word in the command list line. A label con-
sists of an eBcbiC hyphen (-) followed by one to eleven characters (A-Z, 0-9, #, @,
$). Start the command list statement after the label, ieaving at least one blank
between the label and a keyword. Labels can be used on null lines, so you do not
have to code a command list statement after a label.

You can also code other labels. All labels must be unique within a command list.
If you have two identical labels in one command list, NetView ends the command
list. You can also code labels as internal comments to show where different parts
of your command list start. For example, you can use labels to highlight certain
processing routines.

Chapter 6. Simple NetView Command List Language Command Lists 75

NetView Command List Language Command Lists

Figure 37 shows examples of labeled command list statements.

Figure 37. Labels in Command List Statements

Note: Labels are used with &BEGWRITE to show where a message stops. Variables
are not allowed in labels, but you can code a variable as the label name with the
&BEGWRITE, &GOTO, or &WAIT statements. These statements for transfer of control are
described in Chapter 7, “NetView Command List Language Branching” on

page 107. '

Variables

Variables let you accept from an operator, or define for yourself, different values
for the statements within a command list. With variables, you can write a
command list that operates correctly in many different situations. There are four
types of variables:

¢ Parameter
¢ Control

e User

¢ Global.

In this section you will learn how to use parameter, control, and user variables.
This section also describes how to use the NetView PARSEL2R command to parse
variables in a command list. See Chapter 8, “NetView Command List Language
Global Variables” on page 123 for a description of global variables.

Variable Substitution Order

Variable substitution is performed when NetView scans each statement from right
to left and substitutes values for each variable. This is done as follows:

1. Each element is scanned from right to left for an ampersand (&).

Note: The value of X'50' (ampersand in the English character set) is ignored
within double-byte character sets.

¢ |f found, the ampersand and the rest of the element to the right are substi-
tuted with the value of that variable.

¢ If no value exists, the variable becomes null.

o |f the first character to the right of the ampersand is a number, the variable
is assumed to be a parameter variable. NetView then scans to the right
and takes any following numbers as part of the parameter variable. When
NetView comes to a blank or a letter, the search stops. If a special char-
acter (non-alphanumeric) is found, it delimits the variable name.

For example, &21A is taken as &21 and is replaced by the value of &21.
Therefore, &21A becomes valueA. For another example, if an element
contains &A=28xyz, NetView first substitutes the value of &xyz, then NetView
replaces &A with the value it has just substituted for &xyz. ‘

76 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

2. The scan resumes at the next character to the left, and the search for an
ampersand continues. If found, the ampersand and the entire syntactical
element to the right, including the previous substitution, are taken as the name
of a variable and are replaced by its value. Note that the value substituted is
not scanned for an ampersand.

If the element is the target of an assignment statement, the scan stops on the
second character to preserve the variable name that will be assigned a value.
For example, the statements in Figure 38 set the value of user variable &A1 to

Figure 38. Variable Substitution Example

Variable substitution is not done on the following features of the language:
¢ The &PAUSE statement

The variables are assigned values when you enter a Go command. For
more information, see “&PAUSE Control Statement” on page 97.

¢ The &THEN clause on an &IF statement

If the &IF clause is true, the &THEN clause is made into a statement and
processed as if it had been coded separately. For more information,
see “&IF Control Statement” on page 107.

¢ Any statements in an &BEGWRITE NOSUB series of messages

For more information, see “"&BEGWRITE Control Statement” on
page 95.

Control keywords

For more information, see “&CONTROL Control Statement” on
page 92.

Built-in functions

For more information, see “Built-In Functions” on page 99.

Parameter Variables
A parameter variable is a positional variable that is defined at the time a command
list is run. You specify parameter variables by entering them as operands fol-
lowing the name of the command list that you are running. Parameter variables
have the following characteristics:

* Identified within the command list by a numbered position, for example, &1
¢ Entered following the command list name at run time
¢ Delimited by commas, apostrophes, or blanks.

Chapter 6. Simple NetView Command List Language Command Lists 77

NetView Command List Language Command Lists

When you code your command list with parameter variables, use the following
guidelines:

¢ You can use up to 31 parameter variables in a single command list.

You can use the same parameter variables more than once in a command list.
The value of a parameter variable can be 238 characters long.

Parameter variables can contain either numerical or character values.

A parameter variable can have a numerical value between -2147483647 and
2147483647.

o e o o

Note: When NetView receives a message coded in an &wAIT statement, it sets the
four control variables (&MSGORIGIN, &MSGID, &MSGCNT, and &MSGSTR) and then
changes the values of the parameter variables (&1 - &31) to reflect the information
in the received message. See “Control Variables” on page 81 for information on
these variables. LINKPD sets the same control and parameter variables. See
“LINKPD Results” on page 167 for more information on the LINKPD command.

Passing Variable Information to a Command List
When activating a command list that uses parameter variables, the operator enters
the command list name followed by a value for each parameter variable in the
command list. Figure 39 shows the format for an operator passing up to 31 param-
eter variables to a command list.

Figure 39. Format for Passing Parameter Variables to a Command List

The first value after the command list name replaces &1 in the command list, the
next value replaces &2, and so on. For example, the second parameter variable in
a command list would be coded &2 at the place where you want the value of that
parameter.

Assume that you wrote a command list named RESC to start resource LU100 as
shown in Figure 40.

Figure 40. RESC Command List to Start LU100

If you want the command list to use parameter variables, you can change it to acti-
vate or inactivate any resource. Figure 41 shows how the command list looks with
parameter variables.

Figure 41. RESC Command List with Parameter Values

78 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

The operator can then start resource LU100 by entering RESC ACT,LU100.

When the command list runs, &1 and &2 are replaced with the positional
parameters: &1 with ACT, and &2 with Lu100. The command list takes the values for
&1 and &2 from the entered operands in the order in which the operands were -
entered after the command list name.

Note: The operator who uses the command list must be told how many parameter
variables to supply and what values to provide. For more information, see
“&BEGWRITE Contro! Statement” on page 95.

If a command list is activated by a message, each word of the message becomes a
separate parameter variable. This is explained in more detail in Chapter 9,
“Message Automation” on page 135.

How Parameter Variables Are Used in the Command List
There is no set order for placing the parameter variables in the command list.
Figure 42 shows that you can use &2 before &1.

©V NET,82,ID=81
Figure 42. Nonsequential Use of Parameter Variables in a Command List
&1 is given the first value the operator enters, and &2 is given the second value.

If there are two or more parameter variables in one command list statement, the
rightmost variable is changed first. NetView continues to scan right to left and
replaces the next variable. You can use this to change the meaning of some of
your parameter variables. If you need to test how many parameters an operator
entered or what parameter values were entered, use the control variables
&PARMCNT and &PARMSTR. They are described in “Contro! Variables” on page 81.

Passing Parameter Variables to a Nested Command List
You can code parameter variables on the command list statement that activates
the nested command list. These parameter variables follow the same basic rules
as other parameter variables. One added function is that you can pass either
actual values or other variables as parameter variables. If you pass other vari-
ables, make sure these variables are known to the next activated command list.
Here are some examples of passing parameters.

Command List CALLER contains a line of code such as:

CALLEE LTNES, TERMS,CORMS
Figure 43. Example of Passing Parameters

Here is how command list CALLEE picks up these variables:

Variable Value
&1 LINES
&2 TERMS
&3 CDRMS

Chapter 6. Simple NetView Command List Language Command Lists 79

NetView Command List Language Command Lists

Command list MAJOR is activated by entering MAJOR ALPHA,BETA and contains the fol-
lowing statements:

;,3&56.555:' :
§ MINOR’&A,&l,&Z~

Figure 44. Statements in MAJOR Example Command List

Here is how command list MINOR picks up these variables:

Variable Value
&1 55

&2 ALPHA
&3 BETA

Command list MINOR takes the value of &a (55) as its first parameter, the value of
MAJOR’s first parameter (ALPHA) as its second parameter, and the value of MAJOR’S
second parameter (BETA) as its third parameter.

Using Text Strings or Special Characters in Parameters
If you need to use a blank, apostrophe, or comma as part of a value, you must
make the value a special character string by using single quotes. If you want a text
string to be taken as the value for one parameter, it must also be made a special
character string.

A special character string is any text that meets one of the following requirements:

¢ Text that is preceded by a delimiter and a single quote, and is followed by
either a single quote and a delimiter or a single quote that is the rightmost
non-blank.

¢ Text that is preceded by a single quote that is the leftmost non-blank, and is
followed by a single quote and a delimiter

¢ Text that is preceded by a single quote that is the leftmost non-blank, and is
followed by a single quote that is the rightmost non-blank.

Suppose you activate a command list named RESC by entering the following:
RESC ACT,'LU200,LOGMODE=S3270"

The parameter variables in the RESC command list would contain the following

values:
&1 = ACT
&2 = LU200,L0GMODE=S3270

Now suppose you activated the REsC command list by entering:
RESC ACT,LU200,L0GMODE=S3270

The parameter variables in this case contain the values:

&1 = ACT
&2 = LU200
&3 = LOGMODE=S3270

80 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

Null Parameter Values

Use a comma immediately following another comma (,,) to give a parameter vari-
able a null value when it is followed by other non-null parameters. After the last
non-null parameter, all remaining parameter variables up to &31 are automatically
given null values. Null parameters are useful when a value is not required. For
example, assume you wrote a command list called CONN that contained the fol-
lowing statements::

; BGNSESS s i
i opcn. APPLID—&l sacw=&2 sessm=&3 LOGMODE=&4 .
g
F

|gure 45 Statements in CONN Example Command Llst

if you do not want to specify all the values, you can enter the following:

Figure 46. Statement to Activate CONN Exampie Command List

In this example, HCF is &1, &2 is null, SESSHCF is &3, and &4 is null. The extra
comma between HCF and SESSHCF tells the command list that &2 is null and that
SESSHCF should be &3. if you only used one comma, the command list takes
SESSHCF for &2 and incorrectly uses SESSHCF as the SRCLU.

1f you allow null parameter variables, you must test for them in your command list
and provide default vaiues. Otherwise, as in the example, the BGNSESS command
issued with srcLU= null would get a syntax error.

- Control Variables

Time and Date

Control variables are set by NetView based on system information. To use a
control variable, place the variable name in the command list at the location where
you want the information to be accessed. When the command list runs, NetView
gives the correct values to each control variable. Use the LISTVAR command to
view the values of your variables (except for &PARMCNT, &PARMSTR, and &RETCODE).
For more information on LISTVAR, see NetView Operation.

The control variables let you obtain information about the operating environment,
test conditions in the command list, and take actions based on the results.

For more information on contro! variables used with the sPcs commands LINKDATA
and LINKTEST, see “LINKDATA and LINKTEST Results” on page 166.

&DATE
becomes the current date in the format mm/dd/yy, where mm is the month, dd
is the day, and yy is the year.

&TIME
becomes the cru time in the format hh:mm, where hh is the hour and mm is the
minutes. The time is based on a 24-hour clock, so 3 o’clock p.m. is shown as
15:00 (12:00 noon + 3:00 p.m. = 15:00).

Chapter 6. Simple NetView Command List Language Command Lists 81

NetView Command List Language Command Lists

Session Information
&APPLID
becomes the application program identifier for the task under which the
command list is running. &APPLID is always the NetView domain 10 appended
with a 3-character alphanumeric value assigned by NetView. For example, if
your domain ID is PARIS, &APPLID might be PARIS001.

&NCCFCNT
becomes the number of NetView domains with which the operator can estab-
lish a cross-domain session.

&OPSYSTEM
becomes a character string that indicates the operating system for which
NetView was compiled. &0PSYSTEM allows the same command list to run under
different operating systems by allowing the command list to test for the type of
operating system and process accordingly. &OPSYSTEM can contain the fol-
lowing character values:

MVS/XA
VM.

&TASK

becomes the 3-character string PPT (primary Pol task), OST (operator station
task), or NNT (NetView-NetView task), depending on the task under which the
command list is running.

&TASK allows a command list to run under any of these tasks, because the
command list can test for the task type and process accordingly. This is
required because there are restrictions on command lists running under some
tasks. See “Primary POl Task Restrictions” on page 17 for an example of
these restrictions.

&VTAM
becomes a character string that indicates the level of the access method used.
The variable is returned in one of two formats depending on whether the level
of the access method includes a modification number.

If the level of the access method does not include a modification number, the
format of the variable is VTvr, where:

VT - indicates the access method is VTAM
v - indicates the version number of the access method
r - indicates the release number of the access method.

If the level of the access method includes a modification number, the format of
the variable is Vvrm, where:

V - indicates the access method is VTAM

v - indicates the version number of the access method

r - indicates the release number of the access method

m - indicates the modification number of the access method.

For example, for vTAM Version 3 Release 2, the variable returns a value of v132.
For vraM Version 3 Release 1 Modification 1, the variable returns a value of
V31,

Note: The value of avraMm is null if vTAM is not active.

82 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

Terminal information
&HCOPY
becomes the name of the hard-copy log printer started by the operator. If there
is no hard-copy printer for this operator, 8HCOPY is null.

&LU :
becomes the logical unit name for the operator terminal.

Operator information
&OPID
becomes this operator’s ID.

Command List Information
&COMPNAME
the 16-byte name of the component running when the command list was initi-
ated. For example, if command list HELP is initiated, &COMPNAME defines the
active component so that the correct HELP command list is initiated. &COMPNAME
can contain the following character values:

DSINCCF DSINCCF
DSINPDA

DSINLDM

DSIVIEW 1
DSIVIEW 3
DSIVIEW 4
DSIVIEW 5
DSIVIEW 6
DSIVIEW 7
DSIVIEW 8
DSIVIEW 9
DSISTATMONRESUME
DSILBROWSERESUME
DSIVIEW APPL1

&PARMCNT
becomes the number of parameter variables entered when the command list
was initiated. For example, if command list RESC is initiated by entering RESC
ACT,LU200, then &PARMCNT becomes 2. If there were no parameter variables,
&PARMCNT would be 0.

&PARMSTR
becomes the string of parameter values used when the command list was initi-
ated. &PARMSTR does not include the command list name. For example, if
command list RESC is initiated by entering RESC ACT,LU200, then &PARMSTR
becomes ACT,LU200. If there are no parameter variables, &PARMSTR is null.
&PARMSTR must not exceed 255 characters.

&RETCODE
is the return code set by either the most recent command processor or the
most recently activated or nested command list.

&RETCODE is initialized to zero. &RETCODE is set by a command processor or
nested command list. When you write a command list that is called by another
command list, you can set a return code on the &exiT statement in the nested
command list. You can use &RETCODE to test this return code in the calling
command list. See “&EXIT Control Statement” on page 109.

Chapter 6. Simple NetView Command List Language Command Lists 83

NetView Command List Language Command Lists

On the &EXIT statement, you can set the return code to 0, -1, or a positive
integer. NetView can set the return code to 0, -1, -2, or -3. You cannot code -2
or -3 on the &EXIT statement, but you can test for them. All other negative
return codes are reserved.

Here are the possible values and meanings of &RETCODE:

Values Meaning
0 No error.
Positive integer You define the meaning. If &CONTROL ERR is in effect, the

command is echoed to the screen.

-1 An error was found. This command list and all nested
command lists end. Message Dsi197i is issued for this
command list.

-2 A command in the command list is not correct. The
message Dsi209! is displayed with the incorrect
command. The command is ignored, and the command
list continues.

-3 A command in the command list is not in the operator’s
scope of commands. The incorrect command list state-
ment is displayed along with message psi210.. The
command is ignored, and the command list continues.

-5 A command list is terminated as the result of a RESET or
other failure.

Message Processing Information
‘ &MSGCNT

is the number of elements of text in a message string. &MSGCNT is used with
&WAIT and with the LINKPD command.

See “Control and Parameter Variables Used with &WAIT” on page 116 for
more information about using control variables with awAIT.

See “LINKPD Resuits” on page 167 for more information about the LINKPD
command.

&MSGID

is the message identifier of the message most recently received by NetView.
The message identifier is the first token of the message (up to 10 characters).

If the first token is longer than 10 characters, &aMsGID uses only the first 10 char-
acters. If a reply ID is sent with the message, it is not used as the first token.
For an MLWTO, &MSGID uses the first token of the first line of the message.
&MSGID is used in message automation, with &waIT, and with the LINKPD
command. See Chapter 9, “Message Automation” on page 135 for more infor-
mation about message automation.

See “Control and Parameter Variables Used with &WAIT” on page 116 for
more information about using control variabies with &waAiIT.

See “LINKPD Results” on page 167 for more information about the LINKPD
command. :

&MSGORIGIN

is the domain where the message originated. &MSGORIGIN is used for message
automation, with &waAIT, and the LINKPD command.

84 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

See Chapter 9, “Message Automation” on page 135 for more information
about message automation.

See “Control and Parameter Variables Used with &WAIT"” on page 116 for
more information about using control variables with &wAaiT.

See “LINKPD Results” on page 167 for more information about the LINKPD
command.

&MSGSTR
is the message text of the message most recently received by NetView.
&MSGSTR does not include the message identifier (the token used by the aMsGID
control variable). &aMSGSTR is used with &wWAIT and with the LINKPD command.

See “Control and Parameter Variables Used with &WAIT” on page 116 for
more information about using control variabies with awaAIT.

See “LINKPD Resuits” on page 167 for more information about the LINKPD
command.

&SESSID
is the TAF session ID where the message originated. &SEsSID is used in
message automation and with awAiT. See Chapter 9, “Message Automation”
on page 135 for more information about message automation.

Note: If TAF starts a session with an &SEssID equal to the domain 1D, &SESSID will
not be set correctly, and message automation may not work.

The remainder of this section contains descriptions of control variables that are
used only for message automation. More information on these control variables
can be found in MVS Systems Programming Library: Systems Macros and Facili-
ties, Vol. 2.

Some of the message information control variables are filled with values only after
NetView receives a message through the subsystem interface (ssi). The message
information control variables that have null values until NetView receives a
message through the ssi are:

¢ &AREAID

¢ &DESC

* &JOBNAME

¢ &JOBNUM

¢ &MCSFLAG

s &MSGTYP

+ &ROUTCDE

* &SMSGID

* &SYSCONID
s &SYSID.

&AREAID
provides a one-letter (A-Z) identifier for the area on the console screen that
displays the message.

&DESC
provides the system descriptor codes in a binary series of on (1) and off (0)
characters, representing the descriptor code bits in order.

H

Chapter 6. Simple NetView Command List Language Command Lists 85

NetView Command List Language Command Lists

&HDRMTYPE
provides the 1-character NetView message type of the message. NetView
message types are described in NetView Customization: Using Assembler.

Note: &HDRMTYPE is a NetView-supplied message control variable.

&JOBNAME
provides the 1- to 8-character Mvs yJoB name identifier. Because the JOBNAME is
the name of the job that originated the message, it may not always be the
same as the name of the job to which the message is referring. For example,
this can occur when Mvs issues a message about the NetView job. Also,
JOBNAME can contain the name of an initiator (instead of the actual jobname)
when a job is started or terminated. lf the message is issued during startup or
termination, extract the job name from the message text rather than using the
JOBNAME variable.

&JOBNUM
provides the 8-character Mmvs JOB number identifier. Depending on the mvs
release, &JOBNUM can be a character string such as ‘JoB 4/, or simply a
number such as ’ 4.

Note: The appropriate number of blanks are imbedded within JOBNUM to
ensure a total length of 8 characters.

&LINETYPE
provides the multi-line write-to-operator (MLWTO) line type, as foliows:

C The line is a message control line.
L The line is a message label line.
D The line is a message data line.
DE The line is the last message data line.
E The line is the last message line and contains no data.
blank The message is a single-line message.
&MCSFLAG

provides the system message flags in a binary series of on (1) and off (0) codes
corresponding to the following meanings:

first Send message conditionally to console &SYSCONID
second Send message unconditionally to console &sysconip
third RESP

fourth REPLY

fifth BRDCST

sixth HRDCPY only

seventh NOTIME
eighth NOCPY.

&MSGTYP
provides the system message type as three consecutive binary characters. An
on character (1) in one of the positions corresponds to the following meanings:

first SESS

second JOBNAMES

third STATUS.
&REPLYID

provides a three-character reply identifier for wTor command replies. See
“WTOR” on page 140 for more information about the WTOR command.

86 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

&ROUTCDE
provides the system routing codes in a binary series of on (1) and off (0) char-
acters, representing the routing code bits in order.

&SMSGID
provides an 8-character value that identifies a particular instance of a
message. This control variable is used by the boM command to identify action
messages to be removed from the display. See “DOM” on page 141 for more
information about bom.

&SYSCONID
provides the console number (in decimal) that receives the message.

&SYSID
provides the identifier of the Mvs system that sent the message.

&WTOREPLY
is the reply sent by the operator in response to a WTOR command. See
“WTOR” on page 140 for more information about the wTorR command.

Panel Information
&VIEWAID
returns the AID key that the operator used to enter panel input.

The possible values and meanings for &VIEWAID are as follows:

Values Meaning

PF1-24 Programmed function (PF) key. PF1, PF2, ...PF24.
PA1-3 Program access (PA) key. PA1, PA2, or PAS.
ENTER The ENTER key.

&VIEWCURCOL
returns the panel column where the cursor was positioned when the AID key
was pressed.

&VIEWCURROW
returns the panel row where the cursor was positioned when the AID key was
pressed.

User Variables
User variables are variables you create and set within the command list. User var-
iables are set with an assignment statement or an &PAUSE control statement.
Figure 47 shows the syntax of an assignment statement.

. &uservariable = expression

-

Figure 47. Assignment Statement Syntax

The user variable is set to the value of the expression. For example, &A = 3 sets
the user variable &A to 3. You will learn more about assignment statements in
“Assignment Statements” on page 90.

The &PAUSE control statement halts the command list, allows the operator to enter
data, and picks up the value of the user variable from the operator when the
command list continues. &PAUSE is described in “&PAUSE Control Statement” on
page 97.

Chapter 6. Simple NetView Command List Language Command Lists 87

NetView Command List Language Command Lists

When you create user variables, observe the following rules:
¢ The first character must be an ampersand (&).

¢ The first character following the ampersand must be a letter or a symbol, not a
number. Otherwise, NetView treats it as a parameter variable.

* The ampersand is followed by 1 to 11 characters. A-Z, 0-9, #, @, and $ are
valid characters.

¢ Double-byte character set (DBCS) variable names are not supported. All vari-
able names must be written using Latin characters. See “Conventions for
Double-Byte Character Set Text” on page 74 for more information about becs
characters in command lists.

¢ The value of the user variable can be 255 characters long. For DBCS charac-
ters, the maximum number of double-byte characters between the shift-out and
shift-in is 126.

¢ You can give user variables a numerical value between -2147483647 and
2147483647. The only characters you can use in a numerical value are 0-8.
The numerical value can be immediately preceded by a character indicating
whether the value is positive (+) or negative (—).

Note: You can create a user variable that NetView has already defined as a
control statement, control variable, or built-in function. However, you cannot use
that NetView function in this command list.

Table 2 shows some examples of user variable names.

Table 2. Valid and Invalid User Variable Names

Valid Invalid Reason Why Invalid

&A &2A Will be read as &2, a param-
eter variable

&USERNAME &INVALIDUSERNAME Too long

&@23456 &A% % is an invalid character

Figure 48 shows how to manipulate user variables in assignment statements to set
parameters and to communicate with the operator.

_ 4PAUSE VARS SONE &TWO
- BONE + &TWO

Figure 48. User Variables in Command List Statements

88 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

Comments

You will find it very helpful to code comments in a command list. Command lists
with comments are easier to maintain and expand.

You can use comments to show:

¢ When the command list was created and updated

* Who wrote the command list

¢ The function of the command list

¢ What input and output is expected

¢ Whether this command list depends on other programs or on other command
lists.

To write a comment, code an asterisk (*) as the first non-blank character of the
command list line. Ensure that you do not use a string of hyphens to separate
sections of the command list.

Figure 49 shows how comments are used for a title block and other internal doc-
umentation.

%% CLIST: SAMPLE
*%% DATE: 1-‘2-87 BY: JANE DOE
ek PURPOSE : :

%% SAMPLE ti.IST
_g;‘***; © CLIST MANUAL
%+ INPUT: 'SAMPLE'
%%k ON THE TERMINAL -

2 **'k*********** *********************‘k**'h************************“*

"SHOW BSE OF C{)HCEPTS OF CﬁAPTER 2 ‘N

.OLLONED B‘I A’v»‘ﬂESSAG’E YOU HANT ’DISPU&YED

**f*. FIRST ISSHE T‘HE kCLEAR COMMAND TO GIVE US A CLEAN SCRE’EN

Figure 49. Comment Statements for internal Documentation

Null Statements

Another type of command list statement is the null statement. A null statement
contains all bianks or a label followed by all bilanks. A null statement with a label
can be the target of flow control {conditional processing) statements or &BEGWRITE
statements. See “Labels” on page 75 for details about using labels.

You can use a null statement to help format a message to the operator or to break
up a long command list so that it is easier to read and update. If a null statement is
part of a message written with an &BEGWRITE statement, it is sent to the operator as
a blank line. If a null statement is used to break up the command list, it is ignored
by NetView when the command list is run.

Chapter 6. Simple NetView Command List Language Command Lists 89

NetView Command List Language Command Lists

Assignment Statements

Assignment statements are used to give values to variables and do arithmetic
operations within a command list. Figure 50 shows the syntax of an assignment
statement:

Figure 50. Assignment Statement Syntax
There must be a biank before and after the equal sign.

When the command list runs, the value of the user variable is set to the value of
the expression. For example, if you had the assignment statement &A = 5, the
value of &A becomes 5. If you had the assignment statement &B = &1, the value
of &B is set to the value of &1, and &1 keeps its value.

An expression is one of the following:

A Constant
A constant consists of alphanumeric characters that are not replaced by
other values. The values are fixed. For example, if you code the fol-
lowing assignment statement:

&VAR = 5
the value 5 is assigned to user variable &vAR.

If you want to use a constant string that contains a blank, comma, apos-
trophe, or hyphen, make it a special character string by using single
quotes. For example:

&NAME = 'JOHN B. DOE'
is a constant string containing blanks.

The constant cannot be longer than 255 characters. If it is a number,
the constant must be between -2147483647 and 2147483647. The only
characters you can have in a numerical value are 0-9. The numerical
value can be immediately preceded by a character indicating whether
the value is positive (+) or negative (—).

A Variable
A variable can be a parameter variable, control variable, user variable,
or global variable.

The following assignment statement:
&PARMVAR = &4
assigns the value of parameter variable &4 to user variable &PARMVAR.

To assign the value of control variable &0PiD to user variable &USERVAR,
code the following:

&USERVAR = &OPID

90 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

Note: You cannot use a control statement as a variable, even if the
control statement is enclosed in single quotes. For example, you could
not have the following assignment statements:

&A = &IF
&A = '&WAIT ERROR'
An Arithmetic Operation

The addition and subtraction operations are allowed in an assignment
statement. The format is two numbers separated by a plus (+) or minus
(-) sign. You can also use a variable that will be set to a number. The
only characters you can use in a numerical value are 0-9. The numer-
ical value can be immediately preceded by a character indicating
whether the value is positive (+) or negative (—).

The plus or minus sign must be separated from the numbers on each
side by at least one blank unless it indicates a positive or negative
number (-2, -4). For example, both 4 -2 and 4 - -2 are correct, but 4 -2
will not work.

The results of the arithmetic operation must be between -2147483647
and 2147483647.

The following assignment statement shows how you can use a control
variable in an arithmetic operation:

&SUM = 38 — BPARMCNT

The value of control variable a8PARMCNT is subtracted from 38, and the
resulting value is assigned to user variable &sum.

In arithmetic expressions with ieading zeros, the leading zeros are not
shown in the result. For example, assume &A is 01 and you code the
following:

& =8 + 1
The value of &C becomes 2, not 02.

A Built-in Function
A built-in function can be used in an assignment statement. The resuit
of the operation is placed in the user variable. See “Built-In Functions”
on page 99 for a detailed description.

The foliowing examples show how to code built-in functions in assign-
ment statements:

&STRZ = BSUBSTR &STRING 2 1
&STR1 = &SUBSTR &STRING 1 1
&NEWSTR = &CONCAT &STR5 &STR4
BNEWSTR = ZCONCAT &NEWSTR &STR3

To review a command list that contains all of the concepts covered in this chapter,
see “Sample Command List—Chapter Review” on page 105.

Chapter 6. Simple NetView Command List Language Command Lists 91

NetView Command List Language Command Lists

Control Statements

Control statements are unique command list statements that the way NetView acts
on other statements in the command list. The control statements in this chapter
can be used for either straight-line coding or in conjunction with the statements
described in Chapter 7, “NetView Command List Language Branching” on

page 107 for structured conditional processing.

The NetView command list language lets you use structured programming tech-
niques in writing your automation applications. You can use control statements to
to change the strict sequential order of processing. Command list control state-
ments allow you to do the following:

* Send messages to the operator from the command list

Control the order in which commands are run

Ask the operator to enter information needed to continue the command list
Wait for a solicited message to arrive before continuing the command list.

Each command list control statement begins with the control symbol in the form
&word. Only one control statement can be coded on a line, except when using &IF.

After reading the descriptions of the control statements, you should have a general
idea of the capability of these basic statements. Read the sections that follow for
details concerning each control statement.

The control statements are:

&CONTROL
indicates the command list statements shown on the operator’s screen while
the command list is running.

&WRITE
writes a message to the designated operator.

&BEGWRITE
writes a message or series of messages to the operator. &BEGWRITE is a short-
ened form of begin writing.

&PAUSE
halts the command list until the operator enters information needed to continue
the command list.

&CONTROL Control Statement
&CONTROL lets you indicate which command list statements are displayed at the
operator’s terminal while the command list is running. The indicated command list
statements are displayed after all substitutions have been made and before the
command list statements run. The display of the command list statements from
&CONTROL ALL or &CONTROL CMD can be used to help debug your command list.

Set aCONTROL at the beginning of the command list. You can change the &CONTROL
setting within the command list as many times as necessary. &CONTROL is in effect
from that point in the command list until the next &CONTROL statement is reached.
For instance, if you just added a new section of code to a command list, you can
display the entire new section of code but view only the errors for the existing
sections of code. Code this control statement by typing &CONTROL followed by a
blank and then by an operand. Figure 51 on page 93 shows the syntax of the
&CONTROL control statement.

92 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

% &CONTROL - [ALLICMD|ERR]
Bt e e R e e b e e
Figure 51. &CONTROL Contro! Statement Syntax
&CONTROL ALL
displays all command list statements at the operator’s terminal. Each state-
ment is displayed just before it is processed. This is a good choice when you
first write the command list and want to test it. Once your command list is
tested, &CONTROL CMD or &CONTROL ERR is a better choice. When processing for
this command list is complete, message DSI013), COMMAND LIST clistname COMPLETE
is displayed. If you code &CONTROL without any operands, or if you do not code
&CONTROL, &CONTROL ALL is the default.

&CONTROL CMD
displays all commands at the operator’s terminal. Each command is displayed
just before it runs. The other command list statements—such as comments,
control statements, and other command list language statements—are not dis-
played unless they contain an error. When processing for this command list is
complete, message DSI013i, COMMAND LIST clisthame COMPLETE is displayed.

&CONTROL ERR
displays only statements that contain errors and commands that have non-zero
return codes. If &CONTROL ERR is in effect at the end of a command list,
message DsSI0131 is not displayed.

The control statement, &CONTROL ERR, is coded in “Sample Command List—Chapter
Review” on page 105 for displaying incorrect statements and those commands
with non-zero return codes.

Writing to the Operator
&WRITE and &BEGWRITE send messages to the operator terminal. &WRITE only sends a
one line message, whereas &BEGWRITE allows multi-line messages to be sent.
These statements are used, for example, to tell the operator what the command list
is doing.

The messages are sent to the operator regardiess of the &CONTROL setting. If you
code a command on an &WRITE control statement, the text is sent to the operator as
a message, but it is not run as a command list command.

Do not confuse the use of &WRITE and &BEGWRITE with the use of command list com-
ments. Comments are for the person writing the command list and are not sent to
the operator unless &CONTROL ALL is set; 8WRITE and &BEGWRITE send messages to
the operator.

If you are sending more than one message line or displaying a table that takes up
the whole screen, you might want to issue the NetView CLEAR command first. The
CLEAR command erases the screen and causes whatever you are writing to the
operator to begin at the top of the screen. If you do not want commands and
control statements that complete correctly to be displayed with what you are
writing to the operator, make sure &CONTROL ERR is in effect before issuing the
CLEAR command.

Chapter 6. Simple NetView Command List Language Command Lists 93

NetView Command List Language Command Lists

&WRITE Control Statement
&WRITE sends one line of text to the operator. NetView performs variable substi-
tution on the message text before sending the message to the operator. If you do
not want substitution performed on the message text, use &BEGWRITE. If you do not
include message text, NetView sends a blank line to the operator. The syntax for
&WRITE statements is shown in Figure 52.

Figure 52. &WRITE Control Statement Syntax

If you want to include blanks in front of the first character of the line, code a non-
blank character after &WRITE.

The period causes this line:

SWRITE . THIS LINE WILL START IN COLUMN 8

to print like this:

. THIS LINE WILL START IN COLUMN 8

Otherwise, the line will shift left until the first non-blank character is in column 1.

The following line has no period:

&WRITE THIS LINE WILL SHIFT TO COLUMN 1
so it prints like this:

THIS LINE WILL SHIFT TO COLUMN 1

Figure 53 is an example of a command list called PATH that uses the aWRITE control
statement and a vTAM command.

Figure 53. Example Command List Using &WRITE

Activating this command list by entering PATH HD3790N1 causes the operator to see a
display similar to the following.

bl STATUS OF VTAM SVITCHED/ 'ATH '" FO 4 H03790N1 ok
D NET,PATHS, ID=HD3796N1 e
1STO971 i Sl
IST1481 ~ DIAL OUT PATH INFORMATION FOR PHYSICAL UNIT. HD3790N
. IST149T LINE GRP TELEPHUNE NUMBER OR LINE NAME ' PID sm CNT
. IST168IL. : EGROUP4OG
A
- IST1681 -EGROUP5G
OMAN
©IST314L END -

Figure 54. Result of PATH Example Command List

94 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

Notice that the &1 in the awWRITE statement is replaced by the value HD3790N1 before it
is sent to the operator. Because &CONTROL CMD was coded, the command is also
shown. The rest of the display is the response to the vTAM command.

Figure 55 shows several awWRITE statements, which send one-line messages to the
operator.

g

. CLEAR '
. BMRITE >>> THE SUM OF BOKE + &THO 1s «-->&sun

‘&NRITE THE MIRROR IMAGE IS' &NEWSTR ' g
’&WRITE TOTAL CHARACTERS ENTERED: &LEN

”i&wRITE i END OF SAMPLE cusr sz w0

Flgure 55 &WR!TE Statements to Send Operator Messages

&BEGWRITE Control Statement
You can use &BEGWRITE to write a series of lines to the operator terminal. You can
also control whether variables are replaced before sending the messages. The
syntax for &BEGWRITE statements is shown in Figure 56.

'4BEGWRITE [SUB| osum{ label]

Figure 56. &BEGWRITE Control Statement Syntax

&BEGWRITE is coded differently than &WRITE. You code &BEGWRITE on a line by itself,
one line above the first operator message you wish to send. You can aiso specify a
label on &BEGWRITE. The label tells the command list where the messages end and
command list processing continues. See “Labels” on page 75 for more informa-
tion about labels.

You can indicate that you want variables replaced by their actual values before the
messages are sent to the operator. If you do not indicate a choice, variables are
not replaced.

&BEGWRITE SUB -/abel
causes NetView to carry out substitution on the message text before sending
the messages to the operator. See “Variable Substitution Order” on page 76
for information on how NetView carries out variable substitution.

If there are blanks before the first character on a message line, the line is
shifted left until the first non-blank character is in column 1. If you want the
blanks sent to the operator’s screen, code a nonblank character in column 1. i
you are using &BEGWRITE to write a message containing double-byte character
set (DBCS) characters, you must use the suB option. These coding rules are the
same as those for &WRITE.

&BEGWRITE NOSUB -/abe/
writes the messages to the operator exactly as they are typed, with no variabie
substitution. In other words, &1 is sent as &1, not as the value of &1. Use this
operand to write about the command list variables in your messages. NOSUB

Chapter 6. Simple NetView Command List Language Command Lists 95

NetView Command List Language Command Lists

does not remove blanks. It displays the text exactly as it is entered. if you
code &BEGWRITE without an operand, NetView assumes NOSUB.

-label
indicates the line that follows the text to be displayed to the operator. If you
code a label in the statement, this label must be on a statement following the
end of the message text lines in the command list. The command list lines
between &BEGWRITE and the statement with the label are sent to the operator.
The command list statement with the label is not sent to the operator; it is proc-
essed as the next command list statement. If NetView cannot find the label, the
rest of the command list statements are sent to the operator as comments and
the command list is ended. If there is no label on &BEGWRITE, only the first
command list statement after RBEGWRITE is sent to the operator.

You can code a variable for your label on &BEGWRITE, but make sure the vari-
able is replaced by a valid value.

Figure 57 shows an example of 8BEGWRITE with variable substitution.

Figure 57. &BEGWRITE with Variable Substitution

In some cases, you might not want variable substitution. In Figure 58, the
&BEGWRITE shows the operator how to use the ENDIT command list.

 $BEGWRITE NOSUB -OVER -
T END FULL SCREEN SESSION
* TYPE "ENDIT 1,&2,83"
REPLACE &1,82,83 WITH
_ THE APPLID NAMES OF THE
 FLSCN SESSIONS TO BE

Figure 58. &BEGWRITE with No Variable Substitution

96 NetView Customization: Writing Command Lists

NetView Command List L.anguage Command Lists

The ENDIT command list is called by entering ENDIT. The operator sees the foliowing
messages: '

P
? T0 END FULL SCREEN SESSTONS,

. TYPE "ENDIT 1,82, 83"

* REPLACE &1,42,83 WITH

" THE APPLID NAMES OF THE
g FLSCN SESSIONS TO BE ENDED

Figure 59. Result of ENDIT Example Command List

Notice that &1, &2, and &3 are not replaced by their values when the messages are
sent to the operator.

&PAUSE Control Statement
Using the &PAUSE control statement along with other commands, you can code
command lists that ask the operator questions and pick up the entered responses.
Use the &BEGWRITE and &WRITE control statements to send instructions to the oper-
ator. For example, you can code the command list to instruct the operator to enter
the NetView Go command followed by a value or values for a user variable. Then
code the &PAUSE statement to temporarily halt the command list. The command list
pauses until the operator enters the Go command to continue processing or the
RESET command to end the command list. The &PAUSE command can be coded to
allow the command list to pick up the operands following the Go commands and
take them as user variables. See “User Variabies” on page 87 for more informa-
tion about this subject.

Note: There are times when you cannot use &PAUSE. Do not use &PAUSE in an auto-
mation task command list or a command list that runs under the Primary poi Task
(ppT). For more information about automation task command lists, see “NetView
Release 3 Automation Task” on page 136. For more information on PpPT
restrictions, see “Primary POl Task Restrictions” on page 17.

You can code &PAUSE three different ways. Figure 60 shows the syntax for &PAUSE
statements.

&PAUéE | [NOINPU WARs vanable[]lSTRING vanable]

anure 60 &PAUSE Control Statement Symax

&PAUSE NOINPUT
pauses until the operator enters the Go or RESET command. No operands are
allowed with the o command. If the operator enters operands, an error
message is displayed. If you code &PAUSE without any operands, &PAUSE
NOINPUT is assumed.

&PAUSE VARS variable [...]
pauses until the operator enters the Go command with or without the correct
number of operands, or the RESET command. The operator is told by a previous
&WRITE Or &BEGWRITE statement to enter operands with the Go command. Each
operand is taken as a user variable coded on the &PAUSE VARS statement.
These variables can then be used in the command list.

Chapter 6. Simple NetView Command List Language Command Lists 97

NetView Command List Language Command Lists

&PAUSE STRING variable
pauses until the operator enters the Go command with or without a string, or
the RESET command. The operator is told by a previous &WRITE or &BEGWRITE
statement to enter operands with the GO command. The entire string of oper-
ands is taken as one user variable. The variable can then be used in the
command lists.

When the command list interprets an &PAUSE control statement, NetView puts the
letter P on the upper right-hand corner of the terminal screen to show the operator
that the command list is in pause state. Pause state means that the command list
has halted and is waiting for input from the terminal.

Note: If a command list in pause state was called by an NNT session, the p indi-
cator is not displayed on the osT screen.

Using NetView Commands with &PAUSE

The operator can enter the NetView commands GO, RESET, STACK, and UNSTACK
during a pause. See NetView Operation for details of these network commands.

STACK and UNSTACK let the operator suspend and then resume command list proc-
essing during an &PAUSE. Once the STACK is issued, the operator can enter any
network commands.

Note: While an &PAUSE is suspended with the STACK command, the P is removed
from the upper right-hand corner of the screen. The P reappears after UNSTACK is
issued. After UNSTACK is issued, the operator enters Go either with or without oper-
ands to continue the command list, or enters the RESET command to end the
command list. RESET also ends any nested command lists.

The operands on the GO command are positional. This means the first operand
becomes the first user variable, the second operand becomes the second user var-
iable, and so on. Operands are separated by either a blank or a comma. If you
want to include a blank or a comma as part of one variable, use either &PAUSE
STRING or put the operand between single quotes.

You should code a user variable for each expected operand. if the operator enters
more operands on the Go command than expected by the command list, the extra
operands are ignored. If the operator enters fewer operands than expected, the
remaining variables are set to null. The operator can also skip over one operand
by coding two commas in a row.

You should always precede pauses for operator input with messages telling the
operator what to enter. Use the &aWRITE or &BEGWRITE statements to send this infor-
mation.

Note: It is important to remember that the operator can invoke your command list
from any NetView component. If you expect the command list to run from compo-
nents other than the command facility, use the NetView command NCCF in the
command lists to present the operator with the command facility screen and
command screen input area. (Do this before issuing any messages.) If the
command list is running in the command facility, the NCCF command has no effect.

98 NetView Customization: Writing Command | ists

NetView Command List Language Command Lists

An Example Using &PAUSE

Figure 61 contains a portion of a command list that shows how you can ask for
information from an operator.

PR R S

&BEGWRITE SUB -ENDTEXT
. ENTER 'G0' FOLLOWED BY YOUR LAST NAME
FIRST NAME, AND MIDDLE INITIAL
ENDTEXT ,
GET THE INPUT FROM THE USER
PAUSE VARS &LAST &FIRST &MI

Fugure 61. Example &PAUSE Statement

The example writes a message to the operator asking for the operator’s last name,
first name, and middle initial. The command list pauses until the operator enters a
GO or RESET command. To continue processing the current command list, the oper-
ator enters the Go command followed by the string required by the command list.

If the operator enters:
GO SMITH JOHN A

the value of &LAST becomes sMiTH, the value of &FIRST becomes JOHN, and the value
of ami becomes A. These variables can then be used by other statements in the
command list.

Built-in Functions

Built-in functions perform predefined operations. They are used as expressions
either in an assignment statement or in an &IF control statement. See “&IF Control
Statement” on page 107 for information on the &F control statement. In an assign-
ment statement, the value of the user variable is set to the resuit of the built-in
function’s operation.

Be careful not to confuse built-in functions with variables. Although they appear
similar, they are not the same. A built-in function looks like a variable because
they both start with an ampersand (&). Here is the difference:

¢ A variable is replaced by its value when the command list runs. The variable
is really just a place holder for the value.

¢ A built-in function is never replaced by a value. It is an action indicator rather
than a place holder.

These are the built-in functions you can use:

¢ &CONCAT

® S&LENGTH

® &NCCFID

¢ S&NCCFSTAT
® &SUBSTR.

Chapter 6. Simple NetView Command List Language Command Lists 99

NetView Command List Language Command Lists

Figure 62 shows the format to use for coding built-in functions for an assignment
statement.

_ &uservariable =

Built-In Function {&variable|constant}

Figure 62. Syntax for Coding Built-in Functions in an Assignment Statement

The examples in this section use built-in functions in assignment statements.
Examples with buiit-in functions in the &IF control statement are in “&IF Control
Statement” on page 107.

In an &iF control statement, the result of the built-in function is used as one or both
of the compared expressions. For example, you might use the &LENGTH built-in
function to compare the lengths of two variables.

&CONCAT Built-In Function
&CONCAT concatenates the values of two variables, two constants, or a variable and
a constant to form a new value. &CONCAT is a shortened form of concatenate. The
syntax of the &CONCAT built-in function is shown in Figure 63.

. ~&u3er#ariabfé ONCA'E {&vari bletconstant} {&variable!constant

Flgure 63 Syntax for &CONCAT in Assignment Statements

Ensure that when the two items are joined, the resulting value does not exceed 255
characters. If the combined value exceeds 255 characters, it is truncated to 255
characters. If the value of both items being joined is null, the value of
&uservariable is nuil.

When &CONCAT is used to concatenate two double-byte character set (DBCS) strings
it removes adjacent shift-in (SI) and shift-out (s0) characters.

Figure 64 shows how &CONCAT is coded to concatenate the values of five variables
into one new variable.

&NEWSTR = &CONCAT &NEWSTR &STR3

~ SNEWSTR = &CONCAT &NEWSTR &STR2
'SNEWSTR = &CONCAT &NEWSTR &STRI

Figure 64. &CONCAT Function to Build a Character String

&LENGTH Built-In Function

&LENGTH returns the length of a variable or a constant. Figure 65 shows the syntax
of &LENGTH.

Figure 65. Syntax of &LENGTH in Assignment Statements

100 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

The value of &uservariable is set to the length of the constant or variable. If the
variable on the right of the equal sign is null, the length is 0, and the value of the
user variable becomes 0.

Figure 66 is an example of you how to use &LENGTH. Suppose you called command
list SAMP by entering SAMP LU2525. Assume the name of the hard-copy printer
(&HCOPY) control variabie was HC5s.

B e » e

saMP CLIST
| SHCLENGTH = &LENGTH SHCOPY = =~
SRESLEN = &LENGTH &1 =

T

Figure 66. Example Command List Using &LENGTH

After processing, the variable settings are:

Varlable Vajue
&HCOPY HC55 .
&HCLENGTH 4

&1 LU2525
&RESLEN 6

User variable 8HCLENGTH is set to the length of the hard-copy device name. The
hard-copy device is HC55. HCSS5 has four characters, so &HCLENGTH becomes 4.
&RESLEN becomes the length of the first parameter variable. The first parameter
variable is LU2525, so &RESLEN becomes 6.

&NCCFID Built-In Function

&NCCFID indicates the NetView domain identifier of a domain with which you can
establish a cross-domain session. The value of &NCCFID is not necessarily the
domain identifier of your domain. To use this built-in function, code &nccFip fol-
lowed by a number. For more information on defining domains to NetView, see
NetView Installation and Administration Guide and NetView Administration Refer-
ence.

The command list can use &NCCFID to automatically start or stop a cross-domain
session. Figure 67 shows the syntax of NCCFID.

&Nccéjb numbeg

Figure 67. Syntax for &NCCFID in Assignment Statements
The number is either a constant or a variable. The largest number permitted is the
value of &NCCFCNT, the control variable that shows the total number of cross-
domain sessions this operator can start.

Figure 68 on page 102 is an example of you how to use &NCCFIC.

Chapter 6. Simple NetView Command List Language Command Lists 101

NetView Command List Language Command Lists

&DOML = &NCCFID 1
- &DOM2 = &NCCFID 2
. &DOM3 = BNCCFID
- START DOMAIN=8DOM
' START DOMAIN=8DOM2 -
- START DOMAIN=8D0M3

Figure 68. Using &NCCFID Function to Start a Cross-Domain Session

Assume the DOMAINS table has these entries:

1 ALPHA
2 BETA
3 GAMMA

After processing, the user variables are set as follows:

Variable Value
&DOM?1 ALPHA
&DOM2 BETA
&DOM3 GAMMA

The command list uses &NCCFID to index the first three entries of the DOMAINS table.
&DOM1 is set t0 ALPHA, the first domain listed. abomz2 is set to BETA, the second
domain. &DoM3 is set to the third domain, GAMMA. These three domains are then
started with the NetView START command.

In this exampie, the operator must know there are three domains that can be
started. You can also use the &iF control statement to test &NCCFCNT to find the
number of domains and start them.

&NCCFSTAT Built-Iin Function

&NCCFSTAT indicates whether you have an active cross-domain session with a
domain. Figure 69 shows the syntax of &NCCFSTAT.

 &uservariable. &NCCFSTAT domain

Figure 69. Syntax for &NCCFSTAT in Assignment Statements

In this case, domain is either a domain name or a variable that becomes a domain
name.

The &uservariable variable is replaced by the characters AcT if the operator has an
active cross-domain session with the domain. The user variable is replaced by the
characters INACT if the operator does not have an active cross-domain session with
the domain.

For example, you can write a command list to check the status of a domain and

start that domain if it is not active. Assume you activated the STARTEM command
list in Figure 70 on page 103 by entering STARTEM NCCFA.

102 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

- STARTEM CLIST
&CONTROL ERR
~ &STATUS = &NCCFSTAT &1
- &IF &STATUS = INACT &THEN START DOMAIN=81
&IF &STATUS = ACT &THEN &WRITE DOMAIN &1 IS ALREADY ACTIVE

Figure 70 Examplie Command List Usmg &NCCFSTAT

After processing, the variables are set as follows:

Variable Value
&1 NCCFA
&STATUS ACT|INACT

The parameter variable &1 is set to NCCFA, and the status of domain NCCFA is
checked. If you have an active cross-domain session with NCCFA, &STATUS is set to
ACT. If not, &STATUS is set to INACT. The &IF statement tests whether &STATUS is set to
ACT or INACT (for more information, see “&lIF Control Statement” on page 107).

If NCCFA is inactive, the command list starts it. If NCCFA is active, you receive this
message:

DOMAIN NCCFA IS ALREADY ACTIVE

&SUBSTR Built-In Function

&SUBSTR uses part of a variable to form the value of a new user variable. &sUBSTR is
a shortened form of substring. Figure 71 shows the syntax of &4SUBSTR.

&uservanable = &SUBSTR &vanable stan‘ [Jength] ;
Fugure 71 Syntax for &SUBSTR in As&gnment Statements

&SuUBSTR takes the variable and starts at position start for length characters.
Suppose you had the following statements:

 &HOLD = ACF/VTAM i
| &FIRST = &SUBSTR 8HOLD 13
 BSECOND = - SSUBSTR 8HOLD 5 4

Fugure 72 Example Command Llst Usmg &SUBSTR

After processing, the user variables are set as foliows:

Variable Value
&HOLD ACF/VTAM
&FIRST ACF
&SECOND VTAM

The first line of Figure 72 sets the value of variable &HOLD to ACF/VTAM,. In the next
line, &suBsTR starts at the first character of aHoLD (the letter A) and moves three

Chapter 6. Simple NetView Command List Language Command Lists 103

NetView Command List Language Command Lists

characters to the right (to the character F). The letters ACF become the value of the
variable &FIRsST. In the last line, &SUBSTR starts at the fifth character of &aHoLD (the
letter v) and goes for a length of four (to the character M). The letters vTaM are put
into variable aseconD. The starting positions are determined as shown:

Note: The first starting position is 1, the second is 2, and so on. Zero is not a valid
position. Because the largest variable value is 255 characters, it is invalid to have
a starting point greater than 255.

You do not have to specify a length. if the length is not specified, the remainder of
the string to the right beginning with the starting position becomes the substring.
NetView never pads substrings with blanks. If you specify a length that is too long,
NetView assumes no length was specified and uses the entire string beginning at
the starting position. If the length is 0, or the starting position is beyond the vari-
able length, the result of asuBsTR is null.

Figure 73 shows how you can use a substring of the &APPLID control variable to
determine the name of the domain running the command list.

- GETDOMID CLIST

~ &CONTROL ERR

- * DETERMINE THE LENGTH OF THE APP znh

_ SLENAPPL = SLENGTH &APPLID =

 * SUBTRACT 3 TO GET THE LENGTH OF ras ooquu xa
SLENAPPL = &LENAPPL - 3 '

4%3MMATwwm105mwwmwamaummosmmmx

~ * THE VALUE OF 3DOMAIN WILL BE THE DOMAIN ID -
&DOMAIN = &SUBSTR SAPPLID 1 &LENAPPL

“;* &DOMAI& Now COMTAINS THE DOMAIN 0

anure 73 Usmg &SUBSTR to Fmd the Domain Name from &APPLID

Using &SUBSTR with DBCS Characters
When using double-byte character set characters along with Latin characters (A-Z;
a-z), &suBsTR will adjust the variable as follows:

Start byte = shift-out character No adjustment

Start byte = shift-in character Replace by blank

Start byte = first half of double-byte Replace by blank and shift-out
character

Start byte = second half of double-byte Replace by shift-out character

Last byte = shift-out character ~ Replace by blank

Last byte = shift-in character "~ No adjustment

Last byte = first half of double-byte Replace by shift-in character

Last byte = second half of double-byte Replace by shift-in character
and blank.

104 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

Following is an example of the asuBsTR statement used on a double-byte character
set (DBCS) and Latin character string:

&DBCS = 'AB<D1D2D3>EFG'

where A, B, E, F, G are Latin characters, < is the shift-out character, > is the shift-in
character, and D1, D2, D3 are double-byte characters. Using this value, &aSUBSTR
works like this:

&FIRST= &SUBSTR &DBCS 1 3
'AB<' (interim string)
‘AB ' (recovery string)

&SECOND = &SUBSTR &DBCS 3 5
= '<DID2' (interim string)
= '<Dl> ' (recovery string)
&THIRD = &SUBSTR &DBCS 4 5

'DiD2D' (interim string)
' <D2D' (interim string)
' <D2>' (recovery string)

nnnn

Note: The pBCs delimiters are 1 byte long; the DBCS codes are 2 bytes long.

Sample Command List—Chapter Review

kel CLIST' SAMPLE :
; ek DATE: 1-2-87 BY JANE DOE
Lo ?URPOSE S LG
SAM?LE CLIST TO SHOH USE OF CONCEPTS Of CHAPTER 6 IN
::*** NETVIEW CUSTOMIZATION: WRITING COMMAND LISTS - ‘

“:} Ak INPUT'~ *SAMPLE* FOLLOHED BY A MESSAGE ’!OU NANT DISPLAYED

& -ON_THE TERMINAL o

E:**********************************
kkk g i

1 ***********************A e

#x FIRST ISSUE THE CLEAR COMMAND TO GIVE US A CLEAN SCREEN .
CLEAR ;
il NOW LETS SHON THE USE OF &PARMSTR AHD PGSITIONAL VARIABLES, A
. *%* AND THEN GET SOME USER INPUT..

LV‘ 4BEGWRITE SUB ~ENDWRITE . ~

'ﬁ**i*********xjL

ww M&PARMSTR

ekl Ll PR

‘,,‘&1&2&3&4&5

ke

e

a1 812 &13 &14 &15

Figure 74 (Pan 1 of 2). Review Command List

Chapter 6. Simple NetView Command List Language Command Lists 105

NetView Command List Language Command Lists

M, mmzsmmmmmnmcuﬂ _ «
(STIME . 8DATE i

(IR T T}

ENTER '60° OLLOWED BY THO NUMBERS

'« AND THIS CLISY'NILL RETURN THE SUM

C-ENDWRITE .

* WPAUSE VARS &ONE 8THO
- &SUM = &oue*+ &m0

© CLEAR '

*1f&wa1Te >>> HE su& os &ons + &rwo rs s &suu

f;*** LETS DEMONSTRATE THE USE GF SOME CONTROL VARIABLES ,‘>:
- %%k THEN ASK FOR MORE USER INPUF S b e
o &ID f &NCCFID e

,7>>> HELLO 80P, -
2> Y0U CAN INITIATE CROSS- DOMAIN szsszons wxru .

an FOR SOME CHARAC?ER MANIPULAUOR
ENTER 'GO* FOLLOWED BY A FIVE-CHARACTER STRING
HE CLIST NILL PRINT OUT THE MIRROR IMAGE T0 YOU.

ET THE INPUT FROM THE USER
. &PAUSE VARS &STRING -
%+ REVERSE FIVE CHARACTERS BY SEPARATING THE CHARACTERS
<% USING THE 8SUBSTR FUNCTION THEN RECOMBINING IHEMAUSING'
| ** THE - SCONCAT FUNCTION e
k**t
 8STRS = &SUBSTR &STRING 5

: &STR&,é 8SUBSTR &STRING 4 vfw /
8STR3 = &SUBSTR &STRING 31
8STR2 = &SUBSTR &STRING 21
(&STRI = &SUBSTR &STRING 1 1
_SNEWSTR = &CONCAT &STR5 &STR4 |
BNEWSTR = SCONCAT SNEWSTR 8STR3.
_8NEWSTR = &CONCAT &NEWSTR iSTR2
BNEWSTR = &CONCAT SNEWSTR 8STRL

f *v*é:
B &WRITE THE MIRROR IMAGE Is: &NENSTR
©dkeded
ek TELL THEM HOM MANY CHARACTERS WERE ENTERED
*+ BY USING THE BLENGTH FUNCTION

© &LEN = &LENGTH &STRING , g
_ WWRITE TOTAL CHARACTERS ENTERED. &sz i%~‘fyg.u'f
wir LET THE USER KNOW THIS CLIST IS DONE
~ BNRITE *** END OF SAMPLE CLIST, BYE ¥+

Figure 74 (Part 2 of 2). Review Command List

106 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

Chapter 7. NetView Command List Language Branchil;a

This chapter guides you through the NetView command list language features that
let you code conditional and unconditional branching logic in command lists.

The &IF statement allows you to perform conditional branching based on logical or
arithmetical comparisons. The result of a test or comparison in an &ir statement
determines which alternative to perform. Conditional processing statements give
you the flexibility to code if-then and loop structures.

The &GoT0 statement allows you to perform unconditional branching.
The &EXIT statement lets you code logical exit points within a command list.

The &wAIT statement allows you to wait for expected events before processing con-
tinues.

See “Examples Comparing REXX and NetView Command List Language” on

page 193 for samples of NetView command list language command lists that show
how these control statements can be used. The equivalent RExx command lists are
also included.

&IF Control Statement

You can initiate a conditional branch by coding an &iF control statement. The &IF
control statement lets you specify processing based on a certain condition. The
condition is formed with two expressions and a logical or arithmetical operator.

A logical or arithmetical expression is evaluated while processing the &iF state-
ment. When the condition is true, the &THEN clause is processed. When the condi-
tion is false, processing continues at the statement following the &F control
statement. Figure 75 shows the syntax of the &iF control statement:

%

e

Figure 75. &lF Contro! Statement Syntax

comparison
The comparison clause is in the form: expression1 symbol expression2,

expression1 is any expression that can be used in an assignment statement.
It can be a constant, a variable, an arithmetic operation, or a
built-in function. For more information on these, see “Assign-
ment Statements” on page 90.

symbol stands for the logical or arithmetical operator in the comparison
clause. It is coded with one of the following mathematical
symbols:

Symbol Meaning

= (oreq) Equal

= (orNe) Not equal
(orLT) Less than
(orat) Greater than

vV A

Chapter 7. NetView Command List Language Branching 107

NetView Command List Language Command Lists

<= (OrLg) Less than or equal

= (orGe) Greater than or equal
—> (orNG) Not greater than
—< (orNL) Not less than

Note: You can use either the symbol code or the 2-character
letter code. Both mean the same thing.

expression2 is the second term of comparison. It follows the same rules as
expressiont.

&THEN
separates the comparison from the command list statement that is processed if
the condition is true. You must code &THEN in every &IF statement.

Note: Be sure to code the ampersand (&) with &THEN. The ampersand identi-
fies the word as part of the control statement.

statement
The command list statement that is processed if the comparison is true. If the
comparison is not true, this statement is ignored. The statement can be any
NetView command list statement.

Variables coded in the comparison expressions are replaced by their values before
the comparison is checked. If the variable has a null value, you get an error. For
example, if you code the expression &A = &B, and &8 is null, NetView cannot do the
comparison. To avoid problems, put a period as the first character of each
expression where a null value is possible. For example, the following iine shows
this suggested solution.

CGIF .8A = .38 STHEN 8GOTO -label

Figure 76. Suggested &IF Coding to Avoid Problems with Null Values

If either &A or &B is nuil, the comparison fails, but you do not get an error. If &A
and &B are both 6, NetView reads the statement as .6 = .6 and the comparison is
still true. You can use a period to test if a variable is null. For example, the com-
parison .&1 = . is true when &1 is null.

You cannot use this code suggestion with arithmetical operations. In this case,
ensure that the result is not null to avoid receiving an error.

Figure 77 shows some examples of comparisons.

CWPARMCNT LE5
7>3+81

Figure 77. Examples of Arithmetical Comparisons

108 NetVview Customization: Writing Command Lists

NetView Command List Language Command Lists

Figure 78 shows four examples that use the &iF control statement.

?&IF &APPLID NCCFAGOI &TﬂEN &USERVAR =10

&IF &NCC}'ID ﬁCCFA &TﬂEN &GOTO -PROCZ

&IF &1 = 1.0200 &THEN VARY NET ACT ID=&1

12/25 &THEN &WRITE HAPPY HDLI’DAY

&IF &SUBSTR &DATE 1 5

Figure 78. Example Statements Using &IF Control Statement

&GOTO Control Statement

&GOTO unconditionally transfers control to another part of the command list. &GoTO
lets you rerun statements or jump ahead to a statement of the command list. A
statement label identifies the target or destination statement. When you use both
&IF and &GOTO, you can test for various conditions and go to different parts of the
command list, depending on the resuits. Figure 79 shows the syntax of the &GoTo
control statement.

&GOTO -Jabei

anure 79 &GOTO Control Statemam byntax

-label
identifies the target statement in this command list where processing will con-
tinue.

When NetView interprets the aGOTO statement, it searches the command list for a
statement starting with this same label. NetView transfers control to that statement
and continues the command list processing. The statement identified by the label
can be before or after the aGOTO statement.

You can code a variable for your label as long as the variable is replaced by a
value before NetView processes the &aGoTo statement. See “Labels” on page 75
for further information about labels.

&EXIT Control Statement

When the command list reaches the &exiT control statement, the command list
processing ends.

You can use &EXIT with &IF to check the command list and exit if there is an error.
You can use &exIT with &GOTO to control the flow of the command list. Figure 80
shows the syntax of the &EXIT control statement.

Figure 80. &EXIT Control Statement Syntax

Chapter 7. NetView Command List Language Branching 109

NetView Command List Language Command Lists

number
is an error return code. It can be equal to -1, 0, or any positive number up to
2147483647. To debug potential problems in nested command lists, code a
return code on &EXIT.

The return code you set on the &EXIT control statement is placed in the &RETCODE
control variable. The calling command list can test &RETCODE and take action
based on the return code. See “Command List Information” on page 83 for more
information about &RETCODE.

You can define your own meanings for the positive numbers. If you code a nonzero
return code on the &EXIT statement, and if &CONTROL ERR is in effect, the command
list command that generated the nonzero return code is echoed on the screen.

When a command list returns a -1, that command list, and all command lists in the
nested chain, end. If you do not code a return code on &ExiT, or if the command list
ends when the last line is processed and there is no &EXIT statement, a zero return
code is set.

Figure 81 is an example command list named STOPTAF that uses the ENDSESS
command to stop all terminal access facility sessions. The command list checks
for errors. To start the command list enter STOPTAF or STOPTAF ALL. If you forget
what the command list does or forget what to enter, you can use STOPTAF ? to get
help.

Figure 81. STOPTAF Command List Using &IF, &GOTO, and &EXIT

If you enter STOPTAF or STOPTAF ALL, only the results of the two ENDSESS commands
are displayed.

if you enter STOPTAF FLSCN, the following message is displayed:

YOU ENTERED: STOPTAF FLSCN WHICH IS NOT CORRECT
ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS

110 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

If you enter STOPTAF ?, the following message is displayed:

ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS

&WAIT Control Statement

Sometimes you might want a command list to wait for a specific event or message.
You then define what event will cause the command list to resume processing with
the await control statement. The command list can wait for any message with a 1-
to 10-character message identifier.

Note: &waiT cannot be used when operating under the PPT task, or when using
service point service (sPsc) commands. See “Primary POl Task Restrictions” on
page 17 for more information using awaAIT under the PPT task. For additional infor-
mation about using &WAIT with sPSC commands, refer to Chapter 10, “Service Point
Command Service Commands” on page 165.

If you use &WAIT in an automation task command list, be sure to specify a reason-
able time-out value. For instructions on how to code a time-out event, see “The
Event=-Label Pair” on page 113.

&WAIT does the following in a command list:

* |t causes NetView to monitor the operator station task (0sT) for specific mes-
sages and takes action if the message arrives. For example, the command list
issues a vTAM command to activate a resource. When vTAM sends the message
saying the resource is active, the &WAIT initiates a specific action based on the
successful activation of the resource.

¢ |t initiates a specific action if a message does not arrive in a specified period of
time. For example, for your installation, you want to display resources if the
activation message does not arrive within § minutes.

Therefore, you can use &WAIT in the following applications:

¢ The command list starts a session with an application program, such as IMS/VS,
or another NetView domain. The &wAIT causes NetView to monitor the operator
station task for messages indicating the session is started; this satisfies the
&WAIT condition. When the &wAIT condition is fulfilied, the command list
resumes processing and sends the logon and other information.

¢ The command list issues requests for status information from vTam, and then
processes or reformats this information before sending it to the NetView oper-
ator.

&WAIT and aPAUSE work differently. With &PAUSE, the command list does not con-
tinue until the operator enters the Go command. Operands on the Go command are
used in the command list. However, because &WAIT causes the command list to
wait for a specific event or events, GO is only used to resume the command list if
the event never occurs. When a command list is in a wait state, NetView ignores
operands on the Go command. RESET, STACK, and UNSTACK work the same way for
&WAIT and &PAUSE.

Chapter 7. NetView Command List Language Branching 111

NetView Command List Language Command Lists

Coding an &WAIT Control Statement
There are several ways to code an &wAIT statement. This section discusses the
basic format. “Customizing the &WAIT Statement” on page 118 discusses ways to
customize &WAIT.

When the command list gets to an awaIT control statement, NetView displays the
letter w on the upper right-hand corner of the terminal screen if the screen is
refreshed as the result of a message being received or the ENTER key being
pressed. This notifies the operator that a command list process is in a wait state.
Wait state means the command list has halted its processing and is waiting for a
specific message or group of messages. When the specific message arrives, the
control variables and the parameter variables are set to their current values.
Figure 82 shows the syntax of the &wWAIT control statement.

Figure 82. &WAIT Control Statement Syntax

'command"

‘ is any command or command list that you can issue from NetView. This
command is optional. It is usually the command from which the command list
is waiting for messages. For example, if you want the command list to wait for
a successful session startup, the entire BGNSESS command is coded between
single quotes. Be sure to code command list continuation characters before
the event=-label pairs. The command is run as soon as it is reached in the
command list.

Note: The w signifying a wait state, if present, remains in the upper right
corner of the screen while this initial awaiT command is processed. The w tells
the operator that NetView is still waiting for messages. If the operator enters
GO before this command or command list completes processing, the Go is
rejected with message DSI0161 NOT IN PAUSE OR WAIT STATUS. When the command
or command list is complete, the Go is accepted. RESET ends a command list
that is in a wait state. If you enter the STACK command, the w, if present, does
not remain in the upper right-hand corner of the screen.

You can code one of the NetView timer commands, AT, EVERY, Or AFTER, in the
&WAIT statement. if the scheduled command is a command list, it cannot run
until either the current command list is complete or the STACK command is
entered.

event=-label
is an event=-label pair. You can code as many of these pairs as you want on
an &WAIT statement, up to the limit of 255 characters. The event is usually a
message for which the command list is waiting. The event can be a trigger that
ends the wait state before the message arrives. The &wAIT statement causes
NetView to scan all messages sent to the operator. If a message matches one
of the events coded, the command list goes to the line with the specified label
and continues processing from the labeled statement. For more information on
the types of events that can satisfy an awaiT, see “The Event=-Label Pair” on
page 113.

Note: While you can code several event=-label pairs, the first message, or other
condition, that matches one of the events stops the command list from waiting for

112 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

more messages. You can change this if you want to process several messages
with one &WAIT statement. See “Customizing the &WAIT Statement” on page 118.

When NetView receives the message it is waiting for, the message is displayed on
the operator terminal, as are all NetView messages. However, in this case, the
message type is W unless the message satisfying the &WAIT originated from a
command list, in which case the message type remains C. If you do not want the
operator to see this message see “Customizing the &WAIT Statement” on

page 118.

NetView only checks messages that are intended for the operator screen. if you
have coded exit routine DSIEX02A (output to the operator), the 8WAIT control state-
ment may not be able to match the message. For instance, if DSIEX02A deletes the
message, &WAIT does not match it. Since the operator does not receive the
message, neither does the waiting command list. Therefore, you should only wait
for messages that are displayed on the NetView console.

The Event=-Label Pair
The event=-label pair on the &wWAIT statement lets you pass control to a statement
with a label when one of four types of events occurs. The label is a standard labe!
as described in “Labels” on page 75. The label coded on the &awAIT statement can
be a variable, but parameter variables should not be used.

You can pass control to the label on an awaIT statement by specifymg an event=-
label pair. The events you can use are:

e token

* *ERROR
* *nn

* “ENDWAIT.

token
The event occurs when NetView receives a message matching token.
token is 1 to 10 characters that identify the first token of the message or
messages for which the command list is waiting. Optionally, you can
identify the domain of a message for which the command list is waiting.
If a domain identifier is specified, it precedes the token and is sepa-
rated from the token by a period (domainid.token). You can also use an
asterisk (*) to indicate you are specifying a partial domain identifier or
token. If you do not specify a domain identifier, the message for which
the command list is waiting can be from any domain.

Following are examples of some of the ways you can specify the mes-
~ sages for which you want the command list to wait:

domainid.token The event occurs when NetView receives any
message whose domain identifier matches the 1- to
5-character domainid and whose first token matches
token.

dom*.token The event occurs when NetView receives any
message whose domain identifier matches the partial
domain identifier specified by dom* and whose first
token matches token. For example, NCCF*.DSi463|
means the event occurs when a DS1463I message is
received from any domain with an identifier that
starts with NCCF (such as NCCFA or NCCFB).

Chapter 7. NetView Command List Language Branching 113

NetView Command List Language Command Lists

*.token The event occurs when NetView receives any
message whose first token matches token. The
message can be from any domain.

token The event occurs when NetView receives any
message whose first token matches token. The
message can be from any domain.

tok* The event occurs when NetView receives any
message whose first token matches the partial token
specified by tok*. For example, bsi* means the event
occurs when NetView receives any message whose
first token begins with DSt (such as Ds14631 or DSI3861).

* The event occurs when NetView receives any
message.

Muiti-line messages such as multi-line write-to-operator (MLWTO) are
treated as one message. Therefore, only the message identifier of the
first message in a multi-line message is available to the awAiT, and the
&WAIT can be satisfied only by that message identifier. Use GETMSIZE,
GETMTYPE, and GETMLINE to access the other messages in a multi-line
message. See “Working with Multi-Line Messages” on page 151, for
more information on multi-line messages and an example of using
&WAIT with muiti-line messages.

Note: When using a token event, messages not related to the
command issued by the &wAIT can be matched to the event and,
depending on the options on the awAIT statement, can be suppressed. If
the command list is suspended and the suPPRESS option is in effect on
the awAIT statement, any messages received by the task are suppressed
before the command list is resumed.

*ERROR
This event occurs when the command specified on the awAIT statement
returns a nonzero return code. If you do not code "ERROR, NetView con-
tinues to wait for the messages associated with this command even if
the command ends with an error. If NetView is waiting for a message
that says the command was successful, the operators running this
command list will be delayed until someone issues GO or RESET. |f
*ERROR is satisfied, the message control variables are set as follows:

Control Variable Value
&MSGID *ERROR
&MSGORIGIN » null
&MSGSTR null
&MSGCNT 0

NetView issues the messages, so do not issue &MSGID (*ERROR) or
&MSGSTR (NULL) at the designated label.

Note: Messages associated with the command can be received before
the command returns a non-zero return code. If such a message is
coded on an event=-/abel pair, control is passed to the first statement
whose event has occurred. For instance, if you code the name of the
&WAIT command on a MSGID=-/abe/ pair, and you also code an

*ERROR = -/abel pair, NetView honors the MsGID=-/abel pair first because
that event occurs first. -

114 Netview Customization: Writing Command Lists

Error Conditions

NetView Command List Language Command Lists

*nn
This event occurs after nn seconds. If no other event occurs, the awAIT
ends and control passes to the labeled statement. You can code a
value between 1 and 32767 seconds (9 hours, 6 minutes, 7 seconds).
you do not code *nn and none of the events of the &wWAIT are satisfied,
&WAIT continues until the operator enters a GO or RESET command.

If a nested command list contains an &awWAIT statement with *nn event,
the *nn of the original command list is ignored.

*ENDWAIT ‘
This event occurs when the operator or a command list issues a Go
command. If you do not code *ENDWAIT=-/abel, the GO command con-
tinues processing with the statement following the &wAIT command.

if an error condition occurs, NetView should be able to go to another part of the
command list and take appropriate action. Consider the types of errors you can -
have and plan to handie them by coding *ERROR, *nn, and *ENDWAIT events.

Coding Message =-Label Pairs

Ending an &WAIT

The order in which you code MsGiD=-/abel pairs is important. NetView scans the
pairs in the order you code them, from left to right.

For example, assume you code the statement in Figure 83.

LL,IST1231=-SPECIAL

Figure 83. Exampie &WAIT Command Using MSGID =-Label Pairs

When NetView receives i1ST123I, it goes to the label -ALL, not -SPECIAL. You should
code IsT123! before IST*.

You can code as many events as required on one &WAIT control statement up to 255
characters. Remember to use continuation characters if the event pairs take up
more than one line. Code the message and domain identifiers in the order that you
want them processed. NetView scans the list from left to right until a match is
found.

An &WAIT can be ended in one of the following ways:

¢ By the operator entering the Go command. Processing continues with the next
statement unless *‘ENDWAIT is specified on the &WAIT statement. If *ENDWAIT is
specified on the awaIT statement, processing continues with the statement
marked by the label.

¢ By the operator entering the RESET command. The command list (and all of its
nested command lists) ends.

¢ By coding *ERROR on the awAIT statement. If the command specified on the
&WAIT statement ends with an error, the command list continues processing at
the statement marked with the label. If you do not code *ERROR in this situation,
the &wWAIT does not end until the operator enters GO or RESET.

Chapter 7. NetView Command List Language Branching 115

NetView Command List Language Command Lists

* By coding *nn on the awaIT statement. The command list continues processing
at the statement specified by the label if another event does not occur within nn
seconds.

¢ Upon receipt of a message matching an event=-label pair. The command list
continues processing with the statement marked with the label.

Using NetView Commands with &WAIT
When a command list written in the NetView command list language is in a pause
or wait state, operator commands that are entered can be deferred. Whether the
commands are deferred is based on the NetView DEFAULTS, OVERRIDE, and CMD com-
mands. See NetView Operation for information on these commands.

The GO, STACK, UNSTACK, and RESET commands affect the processing of command
lists in a wait state as follows:

* GO ends the wait. If “ENDWAIT is coded, processing continues with the labeled
statement.

* STACK suspends command list processing and causes any commands that have
been deferred to be processed. You can enter any command or command list
for normal processing while a command list is suspended. The &waIT is not
suspended, and events are still matched as they occur. The w, if present, does
not remain in the upper right corner of the NetView screen. The co command
is rejected until the command list resumes processing.

® UNSTACK resumes command list processing. The &WAIT resumes processing
events that were matched while the command list was suspended. The awaAIT
does not resume after expiration of a specified time if, while the command list
was suspended, you ran another command list that used &wAIT or waIT with a
time specified.

¢ RESET ends a command list that is in a wait state, as well as all command lists
related to it by nesting.

For more information on the GO, STACK, UNSTACK, and RESET commands, see NetView
Operation.

When processing MLWTO messages received in response to an &WAIT control state-
ment, use the GETMLINE, GETMSIZE, and GETMTYPE commands. For more information
about these commands, see “Working with Multi-Line Messages” on page 151.

Control and Parameter Variables Used with &WAIT
NetView sets the values of the &MSGCNT, &MSGID, &MSGORIGIN, &MSGSTR, and &MSGTYP
control variables and the &1- &31 parameter variables based on the receipt of a
message coded on an &WAIT control statement.

&MSGCNT
becomes the number of elements of the text of &aMSGSTR.

&MSGID
becomes the message identifier of the message received. The message identi-
fier is the first token of the message (up to 10 characters). If the first token is
longer than 10 characters, &MSGID uses only the first 10 characters.

&MSGORIGIN
becomes the name of the domain where the message originated.

116 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

&MSGSTR

becomes the message text exactly as it is received by NetView. &aMsGSTR does
not include the message identifier (the token used by the &msGiD control vari-
able).

&MSGTYP

becomes the system message type of the message received.

&1 - &31

NetView changes the values of the &1 - &31 parameter variables to reflect the
text of the message. Each parameter variable is set to a token of the message.
Tokens are delimited by commas, apostrophes, or blanks. &1 is set to the first
token following the message identifier (the token used by the &aMsaID control
variable). &2 is set to the next token to the right of &1, and soon up to a
maximum of 31 variables.

Following is an example of how the variables are set when the following message
from domain poMo1 is intercepted by an awaIT:

DSIG08I SPAN1- NOT ACTIVE

Variable Value
&MSGORIGIN DOMO1

&MSGID DSI008|

&MSGSTR SPAN1 NOT ACTIVE
&MSGCNT 3

&1 SPAN1

&2 NOT

&3 ACTIVE

&4 - &31 NULL

Notes:

1.

if NetView receives a multi-line message, the control variables and parameter
variables are set according to the first line of the message. See “Working with
Multi-Line Messages” on page 151 for information concerning working with
multi-line messages.

. If &1 - &31 are given values when the command list runs, save the parameter

variables in user variables before invoking the &wAIT control statement. This
lets you use the original values after awAIT changes them.

After issuing an &WAIT control statement, save the values of the control vari-
ables in user variables before issuing another awaAIT control statement. This
lets you use the values after another awaAIT changes them.

If you are using &WAIT CONTWAIT, be careful when using the control variable
a&MsGID before the awAIT has ended. If an &WRITE or &BEGWRITE is used to display
&WAIT as the first character in the text, the output can be suppressed or cause
the command list to loop. If the awAIT SUPPRESS option is in effect, an &wWRITE or
&BEGWRITE, with &MSGID as the first character string of the text, matches the
MsGiD=-/abel operand of the active await. Therefore, the text of the awWRITE or
&BEGWRITE is not sent to the operator’s screen. If an &WAIT CONTINUE statement
is encountered after a MsGiD=-/abel is matched, and there is no other state-
ment to end the command list or the &wAIT, the command list will loop.

Chapter 7. NetView Command List Language Branching 117

NetView Command List Language Command Lists

Using &WAIT in Nested Command Lists
The command in the &awaiT statement can be a command list. The nested command
list can contain an &aWAIT statement too. You should be aware of the following con-
siderations when using &wAIT with nested command lists:

¢ Messages that arrive for the waiting command lists are queued until the nested
command list is finished processing.

¢ If you specify the same message number on &wAIT statements in both the
waiting and nested command lists, the message satisfies the await in the
nested command list.

s If you specify timer events using *nn on awaiT statements in both the waiting
and nested command lists, the timer event of the waiting command list is can-
celed.

Customizing the &WAIT Statement

The previous sections described the simplest form of the &wAIT command, where
the first message received that satisfies the wait is displayed on the operator’s ter-
minal and causes the command list to continue processing.

This section describes how to customize the awaiT statement for even more flexi-
bility.

To customize your &WAIT statements use the following syntax.

&WAIT [DISPLAY|SUPPRESS]
.7 [ENDWAIT|CONTWAIT]

Figure 84. Syntax for Customizing an &WAIT Statement

DISPLAY|SUPPRESS
determines whether a message that matches a wait event is displayed at the
operator’s terminal. The DISPLAY and SUPPRESS options can be changed at any
point in a command list. Once messages have been suppressed, you must
code another aWAIT statement with the DISPLAY operand to begin displaying
messages again.

DISPLAY indicates that the message the command list is waiting for is to
be displayed at the operator’s terminal upon arrival to
NetView. This is the default value.

SUPPRESS indicates that any messages that have satisfied an awAIT are
not displayed.

Note: When surPReSS is in effect, you do not know whether
messages have been received. Therefore, it is possible that
all of the messages will not be processed when an operator
issues a GO or RESET command to end an &wAIT.

ENDWAIT|CONTWAIT
indicates whether the command list should continue to wait for additional
events or should end the wait after the first event that satisfies the awaiT. The
ENDWAIT and CONTWAIT options can be changed at any point in a command list.
Once CONTWAIT has started, you must code another &wAIT statement with the
ENDWAIT operand to return to the default value.

118 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

ENDWAIT sets up processing for the next event=-label pair to be proc-
essed. This is the default value. ENDWAIT indicates that the
current, or the next, event=-label pair ends after the first
event that satisfies the awaiT. Although ENDWAIT does not end a
wait already in process, operators can still use the Go '

- command to end the wait. The RESET command, which ends a
wait, also ends the command list.

CONTWAIT indicates that the next awAIT event=-/abel statement encount-
ered waits for additional events until the wait is ended. This
enables one aWAIT statement to process more than one event.
This is useful when you want to retrieve more than one
message from a single command, such as a LIST command.

CONTINUE
directs the command list to continue waiting for the next event that satisfies the
original awaiT statement. CONTINUE is used only when &awWAIT CONTWAIT is speci-
fied prior to the &wWAIT event=-J/abel. If you want the wait to continue after
event processing is finished, code &awAIiT CONTINUE. This directs the command
list to continue waiting for the next event that satisfies the original awAIT state-
ment.

The operands of this format are optional and can be coded in any order. However,
they cannot be coded on the awAiT event=-label statement. The &wAIT statement
does not put the command list into a wait state. Instead, it indicates how the
command list processes the next &WAIT event=-label control statement.

If you update this statement using SUPPRESS, CONTWAIT, or CONTINUE, the new settings
remain in effect for the rest of the awAIT statements in the command list, including
an &WAIT currently in process. To reinstate the initial settings, you must code
another awAIT statement with the appropriate operands. If you activate a nested
command list, the default settings are in effect for that command list unless an
&WAIT statement is coded for the nested command list.

Ending &WAIT if CONTWAIT is in Effect
“Ending an &WAIT” on page 115 described ways to end a wait when a command
list is waiting for only one event. When the command list is waiting to match more
than one event, you can end the wait in one of the following ways:

¢ By entering the Go command at the terminal.

If an &WAIT CONTINUE was the last awAIT statement encountered, processing con-
tinues with the next command list statement following the &awWAIT CONTINUE state-
ment. If the "ENDWAIT event is coded, processing continues at the label
statement. if no event=-label match has occurred, processing continues with
the line following the awAIT statement.

¢ By coding the Go command in the command list statement that follows an awAIT
ENDWAIT statement.

If the ‘ENDWAIT event is coded, processing continues at the label statement. If
no event=-label match occurred, processing continues with the line following
the o command.

s By coding “ERROR as the event on the awAIT statement.

If the command specified on the &wAIT statement ends with an error, the
command list continues processing at the statement specified with a label.

Chapter 7. NetView Command List Language Branching 119

NetView Command List Language Command Lists

The awAIT does not end unless an error occurs. However, if there is an error in
the command list and you do not have *ERROR coded, the wait may never end.

¢ By coding *nn on the awaIT statement.

The command list continues processing at the statement specified with a label
if the event does not occur within nn seconds.

* By coding *ENDWAIT on the &WAIT statement.

The command list continues processing at the statement specified with the
label when the operator enters the Go command.

¢ By coding &ExiT following a label.
This causes the command list to end normally.
* By entering the RESET command.
The command list, including the command list that initiated it, ends.

Note: Because awWAIT CONTWAIT queues NetView messages, you should also code
&WAIT CONTINUE to receive these queued messages. If you code &WAIT CONTWAIT with
SUPPRESS and end the wait, you could lose some messages.

Suggestions for Coding &WAIT

It is best to use the awAIT [ENDWAIT|CONTWAIT] options in the following way:

1. Set up options for the awAIT event=-/abel statement by coding awAIT with
CONTWAIT, SUPPRESS, or their defaults.

2. Enter an awaAIT state by using an awAIT event=-label statement.

* |f QWAIT ENDWAIT is specified before the awAlT event=-label statement, or is
in effect by defauit, the first matched event ends the wait, and command
list processing continues. See “Ending an &WAIT” on page 115.

* If RWAIT CONTWAIT is specified, the receipt of the first event does not end the
&WAIT unless this event is specified in “Ending &WAIT if CONTWAIT is in
Effect” on page 119. The command list goes to the label specified for the
event and continues processing.

To complete this section of the command list, do one of the following:
— Continue the wait by coding &WAIT CONTINUE.

— Specify that the next event is the last of this wait by coding awaiT
ENDWAIT and then &WAIT CONTINUE.

— End the wait by coding the awAIT ENDWAIT statement and GO command
in the command list.

— End the command list by coding &ExIT.

3. Continue the command list according to the results of step 2.

Sample Using &WAIT

This section contains an example of the &wAiIT statement in a command list.

Figure 85 on page 121 is an example illustrating the use of awWAIT to wait for one
message. The command list is named ACTONE, and it issues a vTAM command to
activate a logical unit. The command list traps the messages responding to the
activate command, then reformats the messages and writes them to the operator’s
screen. This command list is activated by entering ACTONE NODET1.

120 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

&CONTROL ERR
‘* ACTONE COMMAND LIST

&% THIS COMMAND LIST ISSUES A VTAM *v NET ACT“ CGMMAND TRA?S ITS
i'% MESSAGES AND REFORMATS THEM. ~
%***t**************%**************
gn* , .

“ % IF THERE IS NO INPUT PARAMETER ASK FOR ONE

| &IF .81 = . &THEN &GOTO -BADIN

©* SAVE THE INPUT PARAMETER

CRLU = 8l - : ;

© > END THE WAIT WITH THE FIRST MESSAGE AND DO NOT DISPLAY THE
_* INPUT MESSAGE ON THE SCREEN

~8WAIT ENDWAIT SUPPRESS s

- * ISSUE WAIT WITH THE COMMAND N P N
tg&HAIT 'V NET,ACT,ID=4LU', IST093I=-REFORM *ERROR-—FAIL +,‘ e
- 1ST1051=-FAIL, *ENDWAIT=—GOIN (e i
;»-REFORM A : o "
g* REFORMAT MESSAGE 1570931 {suctassruL) AND WRITE TO THE SCREEN

% 81 IN THE FOLLONING LINE 15 NOT THE QRIGINAL &1 :

BACTIV = 81" “

- 8WRITE VTAM MESSAGE 1519931 uAs RECEiVED'
 BHRITE BACTIV 1S NOW ACTIVE -
- 86070 —£NDALL t,
=FAIL - L
o REFORMAT MESSAGE 1571051 (UNS”CCESSFBL) no,wRITE 70 TﬂE SCREE
- &WRITE &LU COULD NOT BE ACTIVATED
- 8G0TO -ENDALL ;%‘;
C -GOIN :
~* IF "GO" ISSUED, INDICATE TRAT MESSAGES ﬂAVE NGT BEEN Rscazvea
_ BWRITE “GO" NPUT COMMAND LIST ACTONE -—Z&LU<IS NOT ACTIVE NOW
- &GOTO -ENDALL :
- -BADIN ";’:“" %
- BWRITE RE-CALL COMMAND LIST ACTONE WITH PARAMETER,OF LU TO BE ACTIVATED

- =ENDALL - L e »

- &WRITE CGMMANU LIST ACT NE con LET£
g:&EXIT e :

R

Fvgure 85 Command List Issuing &WAIT for One Message

The ACTONE command list waits for one of the following messages:

ISTO931 modename ACTIVE
IST1051 modename NODE NOW INACTIVE

The command list is activated by entering ACTONE and operand NODE1. The operand
is the name of the logical unit to be activated. This operand supplies the vaiue for
parameter variable &1.- Receipt of a message indicating success (isT0931) or failure
(1sT1051) caused the wait to end because ENDWAIT was specified. Processing con-
tinues at the specified |abel (-REFORM for 1sT093I, -FAIL for 1ST1051). The awaited mes-
sages are not displayed because SUPPRESS was specified, but any other messages
are displayed.

Chapter 7. NetView Command List Language Branching 121

NetView Command List Language Command Lists

Upon successful activation of NODE1, the following message text is displayed on the
operator’s terminal:

122 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

Chapter 8. NetView Command List Language Global
Variables

This chapter describes the syntax and use of global variables that are used in
command lists written in the NetView command list language. You will learn how
to assign values to global variables used in command lists running under the same
task and how to assign values to global variables that can be passed between
command lists that are running under different tasks.

Global variables allow values to be defined, referenced, and updated by different

. operators. Values are passed to a command list for updates, and the updated
values are passed back to the first command list. For example, command list
CLISTA can assign a value to a task global variable, &vAR1, and then activate its
nested command list, cLISTB. The nested command list, CLISTB, can check the value
assigned to &vAR1 by CLISTA, update the value, and return control to CLISTA. The
original command list, CLISTA, now has access to the value assigned to &vAR1 by
CLISTB.

There are two types of global variables; task and common. Task global variables
let you define, reference, and update any number of global variables to a particular
task. The common global variable aliows definition of user variables that can be
referenced by command lists running under any task, as opposed to task global
variables, which can only be referenced by a single task.

When you create global variables, follow these rules:

¢ The global variable can be 1 to 11 characters. A-Z, 0-9, #, @, and $ are valid
characters.

Note: If you want global variables you create in a RExx command list to also
be accessible to command lists written in the NetView command list language,
make sure the global variable names are from 1 to 11 characters in length and
do not contain a period, _, ¢, 1, or 2.

¢ |f more than one global variable is specified on the GLOBALvV.

¢ On the definition statement, an ampersand (&) should not be coded with the
global variable name except where you want variable substitution performed.
Substitution occurs for any variable with an ampersand. Whenever you use the
global variables (except when defining them), you must append an ampersand
to the variable name, just as you would for user variables.

* You need two ampersands when referencing a global variable indirectly. See
“How Parameter Variables Are Used in the Command List” on page 79 and
“Variable Substitution Order” on page 76 for more information on indirect ref-
erencing of variables.

¢ The value of the global variable may be 255 characters long. For Kanji the
maximum number of double-byte characters between the shift-out and shift-in
is 126.

* You can give global variables a numerical value between -2147483647 and
2147483647.

Chapter 8. NetView Command List Language Global Variables 123

NetView Command List Language Command Lists

Task Global Variables

A task global variable can only be referenced by command lists that run under the
same task. '

Use the following control statement as a model to define any variable as a task
global variable. Figure 86 shows the syntax of the &aTGLOBAL control statement.

_ &TGLOBAL variable [.

Figure 86. &TGLOBAL Control Statement Syntax

This statement defines the listed variables as task global variables. This means
that, from this statement in the command list, &variable1 refers to a task giobal
variable. The value of any variable defined by this statement is whatever was most
recently assigned to it by another command list running under the same task. If no
value was defined, the value is null. If the &TGLOBAL statement is not used in each
command list before a variable is referenced, that variable defaults to a local user
variable.

Here is an example using the &aTGLOBAL control statement.

Figure 87. Example &TGLOBAL Control Statement

The first line consists of a local user variable set to the value JOHN. The second
line defines two task global variables as follows:

* ABC becomes task global variable &ABC. The value of &ABC is null because a
value was not defined.

* &NAME becomes task global variable &JOHN. The value of &JOHN is null because
a value has not been defined.

See “Scope of Variables in Command Lists” on page 127 for information on the
interaction of task global variables with user variables and common global vari-
ables.

If more than one variable name is specified on the &TGLOBAL statement, the vari-
able names must be delimited by commas or blanks.

The following are suggestions for using task global variables:

* The PROFILE IC can set task global variables to indicate a message suppression
level or message compression that is different for different types of operators.
Command lists driven by various messages can test these variables to deter-
mine what information a particular operator needs.

* Any command list can set up and initialize any number of parameters for
another command list running under the same operator task. This provides
improved nested command list communication because task global variables
can return information from a nested command list.

124 NetView Customization: Writing Command Lists

NetView Command List Language Command Lists

* Task global variables can maintain accurate information about the network
regardless of operators logging on and off. Task global variables can keep
cumulative information from unsolicited access method messages. For
example, notification of a failing resource can be used to recover the resource.
With a global variable, a count of the number of retries can be maintained to
prevent a loop.

Updating Task Global Variables

Figure 88 and Figure 89 are exampies of command lists. The first command list is
named CLIST1, and it contains the nested command list uPbATE1. These command
lists show how to define, reference, and update a task global variable.

THIS STATEMENT DEFINES TOM AS A TASK GLOBAL VARIABLE.
&TGLOBAL TOM i

* THIS ASSIGNMENT STATEMENT GIVES THE TASK GLOBAL
_VARIABLE, *TOM", A VALUE OF8: Soie &b L

st e
T THIS STATEMENT CALLS A NESTED COMMAND LIST NAMED UPDATEL.
TOM IS A PARAMETER THAT IS PASSED TO COMMAND LIST UPBATEI. S
: ,upDAm oM CmE
% THIS STATEMENT WILL WRITE vALuE oF TGM
SURITE TOM = 8TOM o
&EXIT

F|gure 88 CLIST1 Command L|st to Defme Update and Reference Task Global Variables

* THIS STATEMENT DEFINES &1 AS A TASK GLOBAL VARIABLE. -
. * &1 IS SET TO THE VALUE OF THE POSITIONAL PARAMETER e
* TOM, WHICH ON THE FIRST PASS IN THIS CASE s 5. ¢ Sl

&TGLOBAL &1 i A

. * THIS STATEMENT TESTS fOR A NULL VALUE AND INITIALIZES

‘THE .TASK GLOBAL VARIABLE PASSED AS &1 TO A VALUE OF

0 IF THE VALUE WAS NULL. =

~THE -TASK GLOBAL VARIABLE PASSED AS &1 IS REFERENCED £
~ AS 881, THE VALUE OF %1 IS EQUAL TO THE VALUE OF TOM, .
'WHICH WAS PASSED TO COMMAND LIST UPDATE FROM CLISTI. :

AIF .881 EQ . ATHEN 831 =0 . = o

* THIS STATEMENT UPDATES THE TASK GLOBAL VARIABLE &&1,

* BY AN INCREMENT OF 1. G

* THIS UPDATED VALUE OF &&1 PASSED BACK TO CLISTI

tAS TASK VARIABLE ATOM. o

* %{s‘r&'s&

Figure 89. UPDATE1 Command List to Update Task Global Variables

cLisT1 defines a task global variable, Tom. The value of the task global variable Tom
is null until a value is assigned using the assignment statement, &ToM = 5. CLIST1
activates a nested command list named UPDATE1.

Chapter 8. NetView Command List Language Global Variables 125

~

NetView Command List Language Command Lists

UPDATE1 defines a task global variable, &1. Task global variable &1 receives the
value passed from cLisT1 through the positional parameter ToM. The NetView
program scans variables from right to left, so the &7 part of &&1 is evaluated first,
and the value of &1 is equal to the value of TOM. The value of task global variable
&1 is referenced as &&1. The initial value of &&1 is 5, and then &&1 is incre-
mented by 1 using the &&1 = &&1 + 1 statement.

The updated value is returned to task global variable &TOM in cLisTt. The &WRITE
TOM = &TOM statement displays the updated value of the &ToM task global variable.

Common Global Variables

Use the &cGLOBAL control statement to define any variable as a common global var-
iable. Figure 90 shows the syntax of the &CGLOBAL control statement.

s

Figure 90. &CGLOBAL Control Statement Syntax

This statement defines the listed variables as common global variables. The value
of any variable defined by this statement is whatever was most recently assigned
to it by any other command list. If no value has been defined, the value is null. If
the &caLoBAL statement is not used in each command list before a variable is refer-
enced, that variable defaults to a local user variable.

Following is an example using the &CGLOBAL control statement.

Figure 91. Example &CGLOBAL Control Statement

The first line consists of a local user variable set to the value JoHN. The second
line defines two common global variables as follows:

* ABC becomes common global variable saBc. The value of &ABC is null because
a value has not been defined.

* &NAME becomes common globai variable &JOHN. The value of &JOHN is null
because a value has not been defined.

Note: Be careful if you have more than one command list running under different
tasks and accessing the same global variable. The last value that the variable is
set to is the value that is retrieved by any command list accessing the variable.
For example, a command list accesses a common global variable and then before
that command list updates the variabie, another command list running under a dif-
ferent task accesses the variable. If both command lists update the variable, the
variable assumes the value given to it by the command list that updates it last. To
avoid having a common global variable being used by different command lists at
the same time, you can have ail command lists that use the variable run under the
same task.

126 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

See “Scope of Variables in Command Lists” on page 127 for information on the
interaction of common global variables with user variables and task global vari-
ables.

If more than one variable name is specified on the &CGLOBAL statement, the vari-
able names must be delimited by commas or blanks.

You can use the NetView-supplied command lists UPDCGLOB and SETCGLOB to update
and set common global variables under the PPT. See NetView Operation for infor-
mation on using UPDCGLOB and SETCGLOB.

Scope of Variables in Command Lists

If a global variable is defined with the same name as a local variable, the value of
the local variable is lost. The global variable does not receive the value of the
local variabie. The value of the global variable is null until a value is assigned.

If a common global variable is defined after the task global variable has been
defined and has the same name as a task globa! variable, the value of the task
global variable remains unchanged. However, the value of the task global variable
can no longer be accessed by this command list unless the variable is redefined
using &TGLOBAL.

If a task global variable is defined after the common global variable has been
defined and has the same name as a common global variable, the value of the
common global variable remains unchanged. The value of the common global var-
iable, however, can no longer be accessed by this command list unless the vari-
able is redefined using &CGLOBAL.

GLOBVAR1 and GLOBVAR2 (Figure 92 on page 128 and Figure 93 on page 130) illus-
trate the scope of user variables, task global variables, and common global vari-
ables within individual command lists and command lists running under different
tasks. These two command lists give you examples of the following variable
manipulations:

* Assigning values to user variables

¢ Defining task global variables

¢ Defining common global variables

¢ Setting values for common global variables

¢ Changing common global to task global variables.

In the examples, the values of the different variables are shown in parentheses.
Notice how the values start out as nulls before values are assigned.

The examples assume that the command lists are run under different tasks and
that GLOBVAR1 is run before GLOBVAR2. Because the command lists run under dif-
ferent tasks, they do not access the same task giobal variables. Because GLOBVAR1
runs before GLOBVAR2, GLOBVAR2 accesses the values that GLOBVAR1 sets for
common giobal variables.

Chapter 8. NetView Command List Language Global Variables 127

NetView Command List Language Command Lists

PRIRT THEI_, \(ALUES ‘

SNAME (JON)
SADDR (BAHAMA)

SPROF (REALTOR)
ANAME (DOUGLAS)

(Part 1 of 3). GLOBVAR1 Example Showing Scope of Global Variables

Figure

128 Netview Customization: Writing Command Lists

NetView Command List Language Command Lists

I E— S
¢ ***DEFINE COMMON GLOBAL VARIABLES
aﬁ*********t***********************}»4
- 3CGLOBAL NAME ADDR NUMBER -
SBEGWRITE SUB -ENDTG3 '
FROM GLOBVAR1: AFTER CGLOBAL VARIABLES DEFINED

VARIABLE VARIABLE . VARIABLE .
TYPE . NAME ' VALUE
LOCAL PROF ~ &PROF (REALTOR)
TASK CALLS BCALLS (5)
COMMON NAME - BNAME (NULL)
COMMON ADDR &ADDR (NULL)
COMMON NUMBER o &NUMBER (NULL)

* NOTE THAT THE VALUES ASSIGNED TO TASK GLOBAL
. VARIABLES NAME AND ADDR HAVE BEEN REPLACED.BY' ;
_;» COMMON GLOBAL VARIABLES NAME AND ADDR. THESE
- ARE NULL AS uo VALUE HAS BEEN Assxeneo TO THEM YET"“
—ENDTGB e , i
- +**ASSIGN VALUES TO COMMON GLOBAL VARIABLES
1k**
,wma#mmm ‘ o
~ BADDR = PHOENIX
~ BNUMBER = 10 o
~ 8BEGWRITE SUB ~EﬂDTG4 : : e
~~FROM GLOBVARI: AFTER CGLOBAL VARIABLES ASSIGNED
 VARIABLE = VARIABLE VARIABLE -
TYPE - NAME. . VALUE
PROF ~~ &PROF (REALTOR)
. CALLS - BCALLS (8)
C NAME BNAME (WILLIAM)
© o ADDR BADDR - (PHOENIX) e
: NUMBER i &NUMBER (19)- 4

-ENDTG4

ig* CHANGE ONE COMMON GLOBAL VARIABLE BACK TO A TASK GLOBAL YARIABLE

’Z**H2”

&TGLOBAL NAME i
.~ XBEGWRITE SUB ~ENDT65 : ‘
. FROM GLOBVARI: AFTER FINAL TGLOBAL STATEMENT
G VARIABLE VARIABLE VARIABLE
: . NAME ~1~»,- VALUE -
. &PROF (REALTOR)
- ANAME . {DOUGLAS)
C&CALLS (5)
“RADDR (PHOENIX) i
. &NUMBER (19) oy

Flgure 92 (Part 2 of 3). GLOBVAR1 Example Showmg Scope of Global Vanables

Chapter 8. NetView Command List Language Global Variables 129

NetView Command List Language Command Lists

Figure 93 (Part 1 of 3). GLOBVAR2 Example Showing Scope of Global Variables

130 NetView Customization: Writing Command Lists

NetView Command List Languag'e Command Lists

ASSIGN VALUES TO THE TASK GLOBAL VARIABLES

ok dedd o de Rt dede ek de ok ek ke ke kAR AR KA IR T hdhkdkkhd

| &NAME -= DAVID sy
| &ADDR RALEIGH
&CALLS = o
&WRITE ENTER 'G0* TO CONTINUE:
&PAUSE
CLEAR

- &BEGWRITE SUB ~ENDTGZ
~ FROM GLOBVAR2: AFTER VALUES ASSIGNED T0 TGLDBAL VARIABLES ;
‘ VARIABLE VARIABLE . VARIABLE .- . :
-~ TYPE ~ NAME ~ VALUE

. LOCAL o PROF &PROF (BARBER)
CTASK _ff; NAME BNAME (DAVID)

TASK BADDR (RALEIGH)
RATASK e :

. &CALLS (1)

ot o
*+DEFINE COMMON GLOBAL VARIABLES

 &CGLOBAL NAME ADDR NUMBER
| BRITE ENTER '60' T0 CONTINU
CBPAUSE
CCLEARR
SBEGNRITE SUB -ENDTG3 |
FROM GLOBVAR2: AFTER CGLOBAL VARIABLES DEFINED

VARIABLE . . VARIABLE ~ VARIABLE
TYPE . NAME VALUE
 LOCAL . PROF ' ®PROF (BARBER)
TASK CALLS BCALLS {1) -
 COMMON ~ NAME ;;\7'Q;~ SNAME (WILLIAM)
 COMMON ~ ADDR “/:i”&ADDR (PHOENIX)
COMMON e VNUMBER ,_&NUMBER (10) =

NOTE THAT THE VALUES ASSIGNED T0 TASK GLOBAL
VARIABLES NAME AND ADDR HAVE BEEN REPLACED BY .
 THE VALUES ASSIGNED TO COMMON GLOBAL VARIABLES
" ‘NAME ‘AND ADDR, . IF GLOBVAR1 HAD NOT BEEN RiJN
FIRST, NAME AND ADDR WOULD BE NULL.

7i_;-£nor63

F:gure 93 (Part 2 of 3). GLOBVAR2 Example Showmg Scope of Global Variables

Chapter 8. NetView Command List Language Global Variables 131

NetView Command List Language Command Lists

- * CHANGE ORE E.‘OMMO ‘GLOBAL VARIABLE BACK TG'A TASK GLOBA
VARIABLE :

’_’j&'EGLOBAL NAME

&PROF (BARBER)
&NAME (DAVID)
&CALLS (1)
SADDR (PHOENIX
&NUMBER (19' '

GLOBAL VARIABLE NAME AGAIR AS THE MOS'E RECEK e
. DECLARA'EIO ‘

Figure 93 (Part 3 of 3). GLOBVAR2 Example Showing Scope of Global Variables

132 NetView Customization: Writing Command Lists

Part Four. Advanced Command List Topics

Chapter 9. Message Automation 135
What Is NetView Message Automation 135
How NetView Release 3 Message Automation is Different 135
How NetView Release 3 Differs FromNCCF 136
How NetView Release 3 Differs from NetView Release1 136
How to Define NetView Message-Driven Command Lists 136
Sending Messages to the MVS OperatorConsole 137
WTO 138
WTOR . . 140
DOM e 141
Routing Messages from Command Lists 142
Parsing Variables with PARSEL2R 144
Using Symbols in a Parsing Template 146
Using Patterns ina Parsing Template 147
Using Character Selectors in a Parsing Template 150
Working with Multi-Line Messages, 151
GETMSIZE 152
GETMTYPE . . . 153
GETMLINE e 154
Examples of Command Lists Processing MLWTO Messages 156
Using the SDOMAIN Command with the QUIET Option 158
Hints for Implementing Message Automation 161
Suppressing Messages e 161
Determining What Task Controls a Command List 161
Testing Automation Command Lists 161
Recovering From Looping Command Lists 163
Considering Operator Interaction 163
Other Common Automation Problems 163
How to Set Up for Migration 164
For Migrating from NCCF to NetView Release 3: 164
For Migrating from NetView Release 1toRelease 3: 164
For Both Types of Migration:, 164
Conversion Considerations for MVS/OCCF 164
Chapter 10. Service Point Command Service Commands 165
Service Point Command Service 165
Service Point Command Service ReturnCodes 166
LINKDATA and LINKTESTResults 166
LINKPD Results 167
RUNCMD Results et 168

Part Four. Advanced Command List Topics 133

134 NetView Customization: Writing Command Lists

Advanced Topics

Chapter 9. Message Automation

This chapter provides the following information about message automation for the
NetView program:

¢ A definition of message automation

* How message automation for NetView Release 3 differs from NCCF and NetView
Release 1

¢ How to define command lists for message automation

* How to send messages from a message automation command list to the Mvs
operator console

* How to route messages from message driven command lists
* How to parse variables using the PARSEL2R command
* How to process multi-line messages

* How to use the sDOMAIN command with the QUIET option to return messages for
automation processing

¢ How to migrate to NetView Release 3 message automation.

This chapter is intended to help the customer perform message automation using
command lists. It primarily contains guidance in implementing message auto-
mation. Unless specifically stated otherwise, the information in this chapter must
not be used for programming purposes. However, this chapter also provides
general use programming interfaces, which are explicitly identified when they
occur. These interfaces are provided to allow the customer to write programs that
use the services of the NetView program.

What Is NetView Message Automation

NetView message automation is a process that allows you to automate system
response to messages. This allows you to have command lists and commands that
are issued automatically when specific messages occur during operations. To
learn more about setting up message automation for your system, see NetView
Installation and Administration Guide.

How NetView Release 3 Message Automation is Different

NetView Release 3 message automation differs from NccF and NetView Release 1.
However, NetView Release 3 and NetView Release 2 have the same message auto-
mation. The following sections describe the differences in NetView message auto-
mation between Release 3 and NccF and Release 1.

A utility program, DSICNVRT, is provided with NetView Release 3 to help you in
migrating NCCF or NetView Release 1 to Release 3 message automation. See “How
to Set Up for Migration” on page 164 for information about migrating to NetView
Release 3 message automation. More detailed information about migrating to
NetView Reiease 3 is available in the NetView Installation and Administration
Guide.

Chapter 9. Messaae Automation 138

[RESTE———

Advanced Topics

Note: You do not need to migrate your message automation from Release 2 to
Release 3.

How NetView Release 3 Differs From NCCF

NCCF allows VTAM messages to be automated by treating the message as a
command instead of a message. The message ID is checked to see if it is defined
as a command verb. if it is, the rest of the message is used as the operands of the
command. To provide a command list to handle a message under NCCF, you simply
use the message ID as your command list name, and create a CMDMDL statement for
the command list name in DSICMD.

NetView message automation in Release 3 allows the command list to be driven by
the same message as it was under NCCF, by using an IF-THEN automation statement
in the message automation member of DSIPARM. If you are using MvS/OCCF for
message automation, read “Conversion Considerations for MVS/OCCF” on

page 164.

How NetView Release 3 Differs from NetView Release 1
NetView Release 3 message automation differs from NetView Release 1 in the way
message automation is defined and in the new AUTOTASK command, which allows
you to set up an automation task. If you are using Mvs/OCCF for message auto-
mation, read “Conversion Considerations for MVS/OCCF” on page 164.

NetView Release 3 Message Automation Definition
In NetView Release 1, you use a MSGCMD statement in the message automation
member instead of an IF-THEN automation statement. The MSGCMD statement associ-
ated a message containing a given text string with the name of a command list. If
NetView received a message defined by MSGCMD, it would run the command list
with the entire message as its parameter string (ARG(1) or &PARMSTR). In NetView
Release 3, you can use the IF-THEN automation statement to parse the message into
variables for the command list to use.

NetView Release 3 Automation Task
NetView Release 3 also provides the AUTOTASK command for creating automation
subtasks. These function like Operator Station Tasks (0sTs) except that they are
not logged on to a terminal and do not depend on an active vTaM session. There-
fore, messages can be processed under automation tasks to bring up VTAM, JES2,
JES3, and other system components automatically. New commands have been
added to support the automation task.

How to Define NetView Message-Driven Command Lists

To define a message-driven command list, code an IF-THEN automation statement in
a message automation member of DSIPARM.

After you code the IF-THEN automation statement in the message automation
member, issue the AUTOMSG command using the name of that specific message
automation member. You can enter the AUTOMSG command at a terminal, from a
command list, or in an initialization command list at system startup. For the syntax
of the AuTOMSG command, see NetView Operation.

There is no need to pass the message text as a parameter string to your command

list, as was done in NCCF and NetView Release 1. Important variable information in
the text of a message can be parsed into variables in the IF portion of an IF-THEN

136 NetView Customization: Writing Command Lists

Advanced Topics

automation statement. You can use the variables as parameters of the command
list you call as an action in the THEN portion of the statement. This allows you to
ignore certain characters of the message text (such as commas and apostrophes)
instead of treating them as command syntax elements. For a complete definition of
the syntax of the IF-THEN automation statement, see NetView Administration Refer-
ence.

Sending Messages to the MVS Operator Console

This section describes general-use programming interfaces, which allow the cus-
tomer to write programs that use the services of the NetView program. This
section ends where “Routing Messages from Command Lists” on page 142 begins.

There are three NetView commands that can be used in message automation
command lists to send and remove messages to and from the Mvs system console.
These commands run in an Mvs environment only. The three commands are:

WTO sends a message to the Mvs operator console.
WTOR sends a message to the Mvs operator console and waits for a reply.

DOM cancels a wro.

When a command list is driven from a message automation table, certain RExx
message functions or NetView command list language message contro! variables
are assigned values when the command list starts. These values are based on the
message that drives the command list. These message functions or control vari-
ables are also assigned values when a MSGREAD instruction is issued or an &wWAIT
control statement is satisfied within the command list. The values are replaced
after each MSGREAD or &WAIT. The values assigned by message automation,
MSGREAD, or &WAIT are called the system values.

The wTo and WTOR commands use the values of the message functions or contro!
variables as input when the commands are processed. However, before you issue
a WTo or wTor command, you have the option of changing the system values to
your own user-assigned values.

You cannot assign a value to a RExx function. Therefore, with RExx you must assign
a value to a variable with the same name as the function (but without the paren-
theses at the end). For example, a MSGREAD instruction reads a message and that
message assigns MCSFLAG() a value of 10000100. if you want to change the value
before issuing a wTo command, you could use the following assignment statement
to give a new value to the MCSFLAG variable:

MCSFLAG = '01000100'

Before processing the wro or wToR command, a RExx command list checks to see if
any variables with the same names as the message functions have been set. If so,
the command list uses the user-assigned values as input to the command. If not,
the command list uses the current system values contained in the functions.

The MSGREAD instruction does not change the user-assigned variable values. If you
want to go back to using the system values that MSGREAD assigns to the functions,
use the REXX DROP instruction to drop the variables before issuing the wTo or wToOR
command (for example, DROP MCSFLAG). See REXX Reference for information on
the DROP instruction.

Chapter 9. Message Automation 137

Advanced Topics

WTO

With the NetView command list language, you can use assignment statements to
directly change the values of the message control variables. For example, to
change the value of &MCSFLAG, you could use the following assignment statement:

&MCSFLAG = 01000100

When processing a WTo or WTOR command, a NetView command list language
command list uses the current values of the message control variables regardless
of whether the value is a system value or user-assigned value.

WTO is a NetView command that allows you to send a message to the Mvs operator
console. In an automation task command list written to process an MvS WTO
message, you can use the NetView wro command as an alternative to automatic
processing. For example, use a wro command for instances that require operator
intervention, such as adding paper to a printer or choosing among several proc-
essing alternatives.

Figure 94 shows the syntax of the wTo command.

Note: The command is enclosed in single quotes to avoid substitution by RExX.
When coding wto in command lists written in the NetView command list language,
do not include the quotes.

- 'WTO messagetext'

Figure 94. WTO Command Syntax

messagetext
is the message you want to send to the system console. You can send a char-
acter string or use a variable name set to the value of the message you want to
send.

For rRexx command lists, character strings should be enclosed within quotes
with the command. If you use a variable, put a blank after the command, close
the quotes, then put the name of the variable outside the quotes. For example,
if the message is contained in a variable named MsG1, you would code:

'WTO 'MSG1

Incorrect usage of the wro command to display multi-line messages can cause the
Mvs operator’s console to hang.

The wto command does not provide error checking to enforce proper usage of the
REXX variables or the NetView command list language control variables that are
used as input to the command.

The wro command uses the values of the following REXX variables or NetView
command list language control variables as input:
e AREAID, &AREAID

Note: If the wTo command is not issued for a MLWTO message, (the LINETYPE
variable or the &LINETYPE control variable is blank), then AREAID or &AREAID is not
used or checked for a valid value.

* DESC, &DESC
¢ LINETYPE, &LINETYPE

138 NetView Customization: Writing Command Lists

Advanced Topics

* - MCSFLAG, &MCSFLAG
MSGTYP, &MSGTYP
ROUTECDE, &ROUTCDE
SMSGID, &SMSGID
SYSCONID, &SYSCONID.

e o o

The values of these variables determine how the wro command is processed. The
variables provide the same input as the keywords on an Mvs wTo macro. Ifa
command list does not set the variables before issuing the wro command, their
values default to the current system values. For RExx command lists, the current
system values are contained in the functions that correspond to the variable
names. For example, the current system value for the REXX SYSCONID variable is
contained in the sYSCONID() function.

For more information on the RExx variables used as input to wTo, see “Message
Processing Information” on page 53. For more information on the NetView
command list language control variables used as input to wTo, see “Message Proc-
essing Information” on page 84. For more information on the Mvs wTo macro, see
MVS System Programming Library: System Macros and Facilities, Vol. 2.

The wro command returns values in the following RExX variables or NetView
command list language control variables:

* RC, &RETCODE
s SMSGID, &SMSGID.

The return code, RC or &RETCODE, indicates the processing results as follows:

Code Meaning

0 Processing successful

8 No storage available to continue processing
100 invalid AREAID Or &AREAID

104 invalid SMSGID or &SMSGID length

108 Invalid SMSGID or &SMSGID value

112 Invalid SYSCONID or &SYSCONID length
116 Invalid SYSCONID or &SYSCONID value

120 internal decimal convert failure

124 Command List dictionary update failure
128 Null text without end specified

132 Command is not allowed under PPT

136 Invalid LINETYPE or &LINETYPE.

A return code with a value greater than 200 indicates that the return code was
passed from the Mvs WTO macro. Subtract 200 from the value of the return code.
The new value corresponds to the return code that was passed from the Mvs wTo
macro. Look up the meaning of the Mvs wTo macro return code in MVS System Pro-
gramming Library: System Macros and Facilities, Vol. 2. For example, if you
receive a return code of 208, look in the Mvs documentation for the meaning of
return code 8 from the Mvs wTo macro.

Chapter 9. Message Automation 139

Advanced Topics

WTOR

WTOR is a NetView command that allows you to send a message to the Mvs operator
console and request a reply. Command lists that use the wror command will not
complete until an operator replies. Therefore, use wTor with care. If the command
list is written in REXX, the operator reply is stored in the WTOREPLY variable, and the
iD of the system console that replied is stored in the syscoNip variable. If the
command list is written in the NetView command list language, the operator reply
is stored in the control variabie awTOREPLY, and the 1D of the system console that
replied is stored in &SYSCONID.

Figure 95 shows the syntax of the WTorR command.

Note: The command is enclosed in single quotes to avoid substitution by REXx.
When coding WTOR in command lists written in the NetView command list language,
do not include the quotes.

Figure 95. WTOR Command Syntax

messagetext
is the message you want to send to the system console. You can send a char-
acter string or use a variable name set to the value of the message you want to
send.

For REXX command lists, character strings should be enclosed within quotes
with the command. If you use a variable, put a blank after the command, close
the quotes, then put the name of the variable outside the quotes. For example,
if the message is contained in a variable named MsG1, you would code:

'WTOR 'MSG1

The wTor command does not provide error checking to enforce proper usage of the
REXX variables or the NetView command list language control variables that are
used as input to the command.

The wTOR command uses the values of the follgwing REXX variables or NetView
command list language control variables as input:

* DESC, &DESC
MCSFLAG, &MCSFLAG
MSGTYP, &MSGTYP
ROUTECDE, &ROUTCDE
SYSCONID, &SYSCONID.

e o o

The values of these variables determine how the wTor command is processed.
The variables provide the same input as the keywords on an MvsS WTOR macro. if a
command list does not set the variables before issuing the wToR command, their
values default to the current system values. For REXx command lists, the current
system values are contained in the functions that correspond to the variable
names. For example, the current system value for the REXX SYSCONID variable is
contained in the SYSCONID() function.

If the command list is invoked from a message automation table, the current
system values are set according to the message that activated the command list.
Also, the current system values are reset according to messages that are proc-

140 NetView Customization: Writing Command Lists

DOM

Advanced Topics

essed within the command list by MSGREAD for REXXx command lists or &WAIT for
command lists written in the NetView command list language.

For more information on the RExx variables used as input to WTOR, see “Message
Processing Information” on page 53. For more information on the NetView
command list language contro! variables used as input to wTOR, see “Message
Processing Information” on page 84. For more information on the MvS WTOR macro,
see MVS System Programming Library: System Macros and Facilities, Vol. 2.

The wTor command returns values in the following RExx variables or NetView
command list language control variabies:

* RC, &RETCODE
¢ SYSCONID, &SYSCONID
¢ WTOREPLY, &WTOREPLY.

The return code, RC or &RETCODE, indicates the processing results as follows:

Code Meaning

0 Processing successful

100 Null message text or running under PPT

104 SYSCONID Or &SYSCONID more than 10 digits

108 SYSCONID Or &SYSCONID not humeric

112 Task posted to terminate

116 WTOREPLY Oor &WTOREPLY command list dictionary update faiiure.

DOM is used in an automation task command list to remove a WTo message from
the operator console. You can use DOM to remove action messages after checking
to see that the action was taken. DoM uses the sMSGID variable in RExx command
lists or the &sMSGID control variable in NetView command list language command
lists to determine which message to remove. If you do not assign a value to SMSGID
or &sMsGiD, the current system value is used. The wro command resets the value
of SMSGID or &SMSGID each time the command issues a message. For REXX, if the
SMGSID variable is not set, wTo uses the value contained in the sMsGID() function.
See “Message Processing Information” on page 53 for more information about
SMSGID or see “Message Processing information” on page 84 for more information
about &SMSGID.

Figure 96 shows the syntax of the poM command.

Note: The command is enclosed in single quotes to avoid substitution by RExX.
When coding boM in command lists written in the NetView command list language,
do not include the quotes.

Figure 96. DOM Command Syntax
The poM command does not provide error checking to enforce proper usage of the

REXX variables or the NetView command list language control variables that are
used as input to the command.

Chapter 9. Message Automation 141

Advanced Topics

The return code, RC or &RETCODE, indicates the processing results as follows:

Code Meaning

0 Processing successful
4 Syntax error
8 No storage available to continue processing

100 SMSGID or &SMsGID had too many numerics
104 SMSGID or &SMSGID was not numeric
108 Not invoked from a command list.

Routing Messages from Command Lists

This section describes general-use programming interfaces, which allow the cus-
tomer to write programs that use t!ie services of the NetView program. This
section ends where “Parsing Variables with PARSEL2R” on page 144 begins.

In message driven command lists, use the MSGROUTE command to route the
message driving the command list to operators or groups of operators. Use
MSGROUTE when the decision where to route the message cannot be made in the
message automation table. For example, use MSGROUTE if you need to check the
value of global variables or the message text of a line other than the first line in a
multi-line write-to-operator message, before you decide where to route the
message.

When MSGROUTE routes a message, message automation does not process the
message a second time. :

Figure 97 shows the syntax of the MSGROUTE command.

Note: The command is enclosed in single quotes to avoid substitution by RExx. If
you want to use variables for any parts of the command, leave the variable name
outside of the quotes. When coding MSGROUTE in command lists written in the
NetView command list language, do not include the quotes.

t'MSGkOBTE | '6per L.

[action-name(Y|N

Figure 97. MSGROUTE Command Syntax

operf,...]
the operator identifier of the operators to whom the message is routed. The
operator identifier must be defined to NetView with an OPERATOR definition
statement. See NetView Administration Reference for information on the OPER-
ATOR definition statement. The maximum length of an operator identifier is 8
characters. You can code as many operator identifiers as needed.

You can also specify group identifiers for the groups of operators to whom the
message is routed. The group identifier must be defined to NetView with the
ASSIGN command. See NetView Operation for information about the ASSIGN
command. The maximum length of a group identifier is 8 characters, and it
must begin with a plus (+) sign. :

142 NetView Customization: Writing Command Lists

Advanced Topics

action-name(Y|N)
the actions NetView should take when routing the message. Any or all of the
following action-names can be specified:

BEEP

DISPLAY

HCYLOG

HOLD

determines whether an audible alarm is sounded when the
message is displayed. If BEEP is not specified, the default is BEEP(N).

determines whether the message is displayed. If DISPLAY is not
specified, the default is DISPLAY(Y).

determines whether the message is placed in the hard-copy log. If
HCYLOG is not specified, the default is HCYLOG(Y).

determines whether the message is held on the operator’s screen
after it is displayed. If HOLD is not specitied, the default is HOLD(N).

NETLOG(N)|(Y [indicator-number] [*] [oper[,...]1] [+grp[,...1])

determines whether the message is placed in the NetView log and
whether the message activates a status monitor important message
indicator for specified operators or groups of operators. If NETLOG is
not specified, the default is NETLOG(Y).

indicator-number identifies the status monitor important
message indicator.

* means the message is logged as important
for the operator task that the message is
routed to, or the current operator task (the
task where the message is intercepted for
automation checking).

operf,...] the operator identitier of the operators for
whom the message is logged as important.
The operator identifier must be defined to
NetView with an OPERATOR definition state-
ment (see NetView Administration
Reference). The maximum length of an oper-
ator identifier is 8 characters. You can code
as many operator identifiers as needed.

+grpi,...] the group identifier of the groups of opera-
tors for whom the message is logged as
important. The maximum length of a group
identifier is 8 characters, and it must begin
with a plus (+) sign. Define group identifiers
with the AsSIGN command. See NetView
Operation for more information about the
ASSIGN command.

If the operator is not in status monitor or log browse but is logged
on, message CNM039l is displayed:

CNMB39I AN IMPORTANT MESSAGE HAS BEEN LOGGED -
PLEASE BROWSE THE NETVIEW LOG.

Chapter 9. Message Automation 143

Advanced Topics

If only an indicator-number is specified, the message is logged as
important for the authorized receiver. The following example
shows how NETLOG is coded with only an indicator-number:

MSGROUTE OPER1 NETLOG(Y 2)

The message is routed to oPER1. The message is also placed in the
NetView log and is logged as an important message with a status
monitor important message indicator number of 2.

If an indicator-number and a list of operators or groups of operators
are specified, the message is logged as important for the operators
and groups of operators listed. The following example shows how
a message is logged when an indicator-number and a list of opera-
tors and groups of operators are specified:

MSGROUTE OPER4 NETLOG(Y 2 * OPER1 +GRP5 OPER6)

The message is routed to OPER4. The message is also placed in the
NetView log and is defined as an important message with a status
monitor important message indicator number of 2. The message
activates a status monitor important message indicator for OPER1,
OPERS, all of the operators assigned to group +GRP5, and the current
operator. If operators OPER1 and OPER6 are also assigned to group
+GRP5, each operator receives oniy one copy of message cNMo39l (if
they are not in STATMON).

SYSLOG
determines whether the message is placed in the system log. If
SYSLOG is not specified, the default value is SYSLOG(N).

The return code, RC or &RETCODE, indicates the processing results, as follows:

Code Meaning -

8 Operator or group identifier not specified or greater than 8 characters

12 Invalid value for message action

16 MSGROUTE not entered from a RExX or NetView command list language
command list

20 MSGROUTE not issued from a message driven RExx or NetView command list
language command list, or from the message automation table

24 Operator or group identifier or message action not in operator’s scope

28 Storage request failed

32 psiMas failed to route message.

Parsing Variables with PARSEL2R

This section describes general-use programming interfaces, which allow the cus-
tomer to write programs that use the services of the NetView program. This
section ends where “Working with Multi-Line Messages” on page 151 begins.

The pARSEL2R command allows you to extract data from the character-string value

of a variable and assign the extracted data to one or more variables using a set of
rules called a “parsing template”. To parse variables with the NetView command
list language, you must use the PARSEL2R command. However, in REXX you can use
either PARSEL2R or the REXX PARSE instruction. See REXX Reference for more infor-
mation on the PARSE instruction.

Figure 98 on page 145 shows the syntax of the PARSEL2R command.

144 NetView Customization: Writing Command Lists

Advanced Topics

Note: The command is enclosed in single quotes to avoid substitution by RExX.
When coding PARSEL2R in command lists written in the NetView command list lan-
guage, do not include the quotes.

"*PARSEL2R sourcevariable parsingtemplate’

Figure 98. PARSEL2R Command Syntax

sourcevariable
identifies a command list variable. In RExx command lists, sourcevariable
must be coded within the quotes. In command lists written in the NetView
command list language, sourcevariable must be coded without an ampersand.
PARSEL2R extracts data from the value of the variable you named as the
sourcevariable.

parsingtemplate
is a list of symbols, patterns, or character selectors, or a combination of any of
these, separated by blanks. PARSEL2R uses this list as a template when parsing
the source variabie.

Symbols are command list variable names. In RExx command lists, code
command list variable names inside the single quotes. In command lists
written in the NetView command list language, code command list variable
names without an ampersand. For more information on using symbols, see
“Using Symbols in a Parsing Template” on page 146.

Patterns are coded using slashes (/) as delimiters. A pattern is the part of the
source variable that you want to match. For more information on using pat-
terns, see “Using Patterns in a Parsing Template” on page 147.

A character selector is coded using an asterisk (*) for each single character
you want to extract from the source variable. For more information on using
character selectors, see “Using Character Selectors in a Parsing Template” on
page 150.

PARSEL2R sets the return code (RC or &RETCODE) to indicate the processing results as
follows:

Code Meaning

0 Processing successful

8 No storage available to continue processing

100 Not enough parameters

104 Blank input buffer

108 Command list dictionary lookup of source variable failure
112 Invalid hexadecimal data in template

116 Command list dictionary update failure

120 Trailing slash (/) missing.

For examples of how PARSEL2R can be used with multi-line write-to-operator
(MLWTO) messages, see “Examples of Command Lists Processing MLWTO
Messages” on page 156.

The following sections describe how to use symbols, patterns, and character selec-
tors in a parsing template.

Chapter 9. Message Automation 145

Advanced Topics

Using Symbols in a Parsing Template

The symbols in the parsing template identify command list variables. In RExx
command lists, code command list variables within the quotes that enclose
PARSEL2R. In command lists written in the NetView command list language, code
command list variables without the ampersand. If only symbols appear in the
parsing template, the source variable data is assigned token-by-token from left to
right. Tokens are defined as a string of non-blank characters. Tokens in the.
source variable are separated from each other by one or more blanks. The tokens
are assigned to the command list variables you identified with symbols in the
parsing template.

Figure 99 shows three lines from a REXx message automation command list that
uses a parsing template containing only symbols. Figure 100 shows the NetView
command list language equivalent.

S TITLE = 'DOH”T TREAD (ROUGHLY): ON ME PLEASE
~ "PARSEL2R TITLE Al A2 A3 A4 A5 A6 A
‘ ‘PARSELZR TITLE Bl BZ B3’

- &TITLE =
 PARSEL2R rms AL A2 A3 A8 A5 A6 A7
 PARSELZR TITLE B1 B2 B3

Figure 100. NetVnew Command Llstﬂ Léngdage PARSELZR Egéfhple Using Symbols

The resulting values of the variables show how the token-by-token assignment
from left to right works. The foliowing table shows the resulting values for the RExx
and NetView command list language variables:

REXX NetView

Variable Variable Value

A1l &A1 DON'T

A2 &A2 TREAD(ROUGHLY)
A3 &A3 ON

A4 &A4 ME,

A5 &AS5 PLEASE

A6 &A6 null

A7 &A7 null

B1 &B1 DON'T

B2 &B2 TREAD(ROUGHLY)
B3 &B3 ON ME, PLEASE

Note: The value of B3 or &B3 is not a single token, but the remainder of the source
variable after the PARSEL2R parsed it into the first two symbols.

Except for the last variable, leading blanks and trailing blanks are removed from
each token in the string before it is assigned to a variable. Variable 83 or &83
would have leading or trailing blanks, if TITLE contained extra blanks before ON or
after PLEASE.

146 Netview Customization: Writing Command Lists

Advancea 1 0pics

Using Patterns in a Parsing Template

A pattern is a character or string of characters expected to appear within the
source variable. It is coded in the PARSEL2R parsing template using slashes (/) as
delimiters. Patterns are used within a parsing template to divide the source vari-
able into segments.

When a pattern that you coded in the parsing template occurs in the source vari-
able, the preceding portion of the source variable is treated as a segment. The
symbols you defined in the parsing template preceding the pattern are used to
parse the tokens in the corresponding segment of the source variable.

Note: If you want to use a slash as a part of a pattern, code two consecutive
slashes within the delimiter slashes. PARSEL2R reads this as one slash to be
matched in the source variable. Two consecutive slashes by themselves (outside
of delimiters) means to end the parse.

Figure 101 shows how a parsing template containing patterns and symbols can be
used in a REXx message automation command list. Figure 102 shows the NetView
command list language equivalent.

PARSIT . pON' 1T TREAD(ROUGHLY) ON ME, PLEASE'
‘PARSELZR PARSIT AL A2 A3 /(/ B1 B2 B3 /)/ c1 cz c3 /,/ 01 DZ 93' ‘

F|gure 101 REXX PARSELZR Example Usmg Patterns and Symbols

| SPARSIT = 'DON'T TREAD(ROUGHLY) ON ME, PLEASE' . ¢
 PARSELZR PARSIT AL A2 A3 /(/ B1 B2 B3 /)/ c1 ez, c3 / / 01 uz B3

F»gure 102 NetVuew Command Llst Language PARSELZR Example Usmg Paﬁerns and
Symbols

The following table shows the resulting values for the RExx and NetView command
list language variables:

REXX NetView

Variable Variable Value
A1 &A1 DON'T
A2 &A2 TREAD
A3 &A3 null

B1 &B1 ROUGHLY
B2 &B2 null

B3 &B3 null

C1 &C1 ON

c2 &C2 ME

C3 &C3 null

D1 &D1 PLEASE
D2 &D2 null

D3 &D3 nutl

Figure 103 on page 148 is another example of a parsing template containing pat-
- terns and symbols. Figure 104 on page 148 is the NetView command list language
equivalent.

Chapter 9. Message Automation 147

Advanced Topics

PARSIT =

ROUGHLY, ON ME'
/ ha

DON'*T TREAD
“'PARSELZR PARSIT Al AZ A3 /

Figure 103. REXX PARSEL2R Example Using Leading Blanks

&PARSIT = 'DON'T TREAD ROUGHLY or@ ME'

. PARSELZR PARSIT Al A2 A3 /,/

Figure 104. NetView Command List Language PARSEL2R Example Using Leading Blanks

The following table shows the resulting values for the rRexx and NetView command
list language variables:

REXX NetView

Variable Variable Value

Al &A1 DON'T

A2 &A2 TREAD

A3 &A3 ROUGHLY
A4 &A4 ON ME

Note that because the variable right before a pattern (A3 or &A3 in the previous
examples) is treated as the last variable in a segment, the leading and trailing
blanks are not removed.

If the parsing template were specified as:
PARSEL2R PARSIT Al A2 A3 AX /,/ A4

then the blanks would be removed from the A3 or &A3 variable, and the AX or &Ax
variable would be null.

You can use variables as part of a pattern (between the slashes). When a variable
is part of a pattern, it needs to be coded outside of the quotes in a RExx command
list or with an ampersand in command lists written in the NetView command list
language.

Figure 105 shows three lines from a RExx command list that uses a parsing tem-
plate with a pattern containing a variable. Figure 106 on page 149 shows the
NetView command list language equivalent.

© PARSIT = ‘DON''T TREAD (ROUGHLY) ON ME'
. 'PARSEL2R PARSIT AL A2 /('A0')/ B1*"

Figure 105. REXX PARSEL2R Example Using a Pattern that Contains a Variable

148 NetView Customization: Writing Command Lists

Advanced Topics

ey

A0 = ROUGHLY
- &PARSIT = DON'T TREAD (ROUGHLY) ON ME
PARSELZR PARSIT Al A2 / (&AB) / Bl

?
i
o
L

Flgure 106 NetVuew Command List Language PAHSEL2R Example Using a Pattern that
Contains'a Variable

The following table shows the resulting vailues for the Rexx and NetView command
list language variables:

REXX NetView

Variable Variabie Value
Al &A1 DON'T
A2 &A2 TREAD
B1 &B1 ON ME

In the REXXx example, because Ao is outside the the quotes, its value is used as part
of the pattern. The pattern becomes (ROUGHLY). Likewise in the NetView command

" list language example, because &0 is outside the quotes, its value is used as part
of the pattern. The pattern becomes (ROUGHLY).

You can also use hexadecimal codes in the parsing template pattern. Code a
hexadecimal pattern using an x before the slashes. PARSEL2R matches the
hexadecimal code in the template with the character in the source variable that
corresponds to your system.

Figure 107 shows how to code a parsing template, containing a hexadecimal
pattern, in a RExx command list. Figure 108 shows the NetView command list lan-
guage equivalent.

‘PARSELZR PARSIT Al Az X/SB/ AB' :

Fugure 107 REXX PARSELZR Example Usmg a Hexadecnmal Pattern

PARSELZR PARSIT Al A2 X/SB/ A3

Flgure 108 NetV'ew Command L|st Language PARSEL2R Example Usmg a Hexadeclmal
Pattern

Using patterns and symbols in a parsing template gives you a powerful tool to use
when coding your command lists. For example, you can use PARSEL2R to code a
source variable in your command list that contains a small table. You can also use
the combination of symbols and patterns to search the source variable and assign
a token to a variabie, based on the matching pattern. This table can contain a
string of alternating variables and labels. You can then use PARSEL2R to match a
variable with a label to define the flow of logic within your command list.

Chapter 9. Message Automation 149

Advanced Topics

Using Character Selectors in a Parsing Template
Character selectors in a PARSEL2R are coded as one or more asterisks (*}, indicating
that the preceding symbol must be assigned one or more characters from the
source variable. If a character selector does not follow a symbol in the template
(that is, it is coded at the beginning of the template or following a pattern), PARSEL2R
skips that number of characters.

For example, if the source variable is:
DSIG391 MSG FROM CNMO1PPT: COMMON GLOBAL VARIABLES HAVE BEEN SET

and the parsing template is:
JFROM / DOMNAM **%%x TASK [:/

then the following values are assigned:

DOMNAM or &DOMNAM = CNMO1
TASK or &TASK = PPT

Character selectors are usually used to break up a single token into muitiple vari-
ables.

Figure 109 and Figure 110 show a parsing template using character selectors to
change the value of a REXX message variable or a NetView command list language
control variable. When the command list is entered, MCSFLAG or &MCSFLAG is set to
00000110. The command list statements set bit 6 to 0.

Figure 110. NetView Command List Language PARSEL2R Example Using Character
Selectors

After executing the command list statements in the previous examples, the value of
MCSFLAG Or &MCSFLAG is 00000010.

150 NetView Customization: Writing Command Lists

Advanced Topics

Working with Multi-Line Messages

This section describes general-use programming interfaces, which allow the cus-
tomer to write programs that use the services of the NetView program. This
section ends where “Using the SDOMAIN Command with the QUIET Option” on
page 158 begins. '

Some commands return a reply that appears to be a sequence of separate mes-
sages, when in fact the reply is a single multi-line write-to-operator (MLWTO)
message. NetView treats a MLWTO message as a single message. Only the first
message identifier that appears as part of a MLWTO message is made available to
satisfy a REXX TRAP instruction, or a NetView command list language &wAIT
command. The first line of a muiti-line message is also the only line used for com-
parisons in message automation tabies.

Figure 111 shows a MLWTO message as it would appear on a NetView operator’s
screen. The message is in response to a LIST KEY=PF1 command. The MLWTO
message appears to be a sequence of several separate messages, but the single
quote that appears as the message type identifier, identifies the message as a
single MLWTO message from NetView. A double quote identifies a multi-line
message from an 1BM product other than NetView. An equal sign identifies a
user-written multi-line message.

CNCCF - NETVIEW . NCFO1 OPERL ©1/21/88 11:15:23 . -
D% ONCFOL LIST KEYsPFL " . oo e
T U R

© DSI6O6I DISPLAY OF PF/PA KEY SETTINGS

| DSI6O7I KEY m-nnTYPE-mon COMMAND.
. DSIGO8I PF1 IMMED,APPEND = PFHELP .~ -
© DSI6091 END OF PF/PA KEY. DISPLAY

Figure 111. Example Multi-Line Message

TRAP, &WAIT, and message automation table processing use only the first line of a
multi-line message. However, NetView provides three commands that allow you to
work with multi-line messages in a command list. These commands aliow you to
work with information in each individual line of a multi-line message. The three
commands are:

GETMSIZE determines the number of lines of a multi-line message.
GETMTYPE determines the line type of a specific line in a multi-line message.

GETMLINE assigns the text of a specific line of a multi-line message to a specified
variable.

Chapter 9. Message Automation 151

Advanced Topics

GETMSIZE

GETMSIZE is a command used in command lists to determine the number of lines in
a multi-line message. Use this command in a command list that was driven by
message automation or that has processed a message using MSGREAD (REXX) or
&WAIT (NetView command list language).

Figure 112 shows the syntax of the GETMSIZE command.

Note: The command is enclosed in single quotes to avoid substitution by REXX.
When coding GETMSIZE in command lists written in the NetView command list lan-
guage, do not include the quotes.

Figure 112. GETMSIZE Command Syntax

variablename
identifies a command list variable coded in this command. If the command list
is written in the NetView command list language, the ampersand should be
removed from the variable name. GETMSIZE sets the value of the variable to the
number of lines in the muiti-line message. |f the message is a single-line
instead of a multi-line message, the variable value is set to 1.

GETMSIZE sets the return code (RC or &RETCODE) to indicate the processing resuits,
as follows:

Code Meaning

0 Successful completion, variable has been set
8 No storage available to continue processing
100 No variable was specified

104 Error in multi-line message

108 Aninvalid variable name was given.

For example, assume the following statement is coded in an automation command
list:

GETMSIZE NUMLINES

If the command list containing this command is triggered by the message in
Figure 113, the variable &NUMLINES is set to the value of 7.

00008 00001 09066/99306
JES2ES2 IEFPROC NS S

IEFPRO€ ONT 'S BASENET BASENET VIAM NSW S

L&
5
TCAS OWF S NETVRELZ NETVREL2 NETVIEW NS S
NEIVIEW;;NNS:cS'. et burs oo e

Figure 113. IEE104I Message to Trigger an Automation Task Command List

See “Examples of Command Lists Processing MLWTO Messages” on page 156 for
examples of command lists that show how GETMSIZE is used with MLWTO messages.

152 NetView Customization: Writing Command Lists

GETMTYPE

Advanced Topics

GETMTYPE is a command used in command lists to determine the line type of an
individual line in a multi-line message. Use this command in a command list that
was driven by message automation or that has processed a message using
MSGREAD (REXX) or &WAIT (NetView command list language).

Figure 114 shows the syntax of the GETMTYPE command.

Note: The command is enclosed in single quotes to avoid substitution by REXx.
When coding GETMTYPE in command lists written in the NetView command list lan-
guage, do not include the quotes.

e 2
e
I

‘GETMTYPE variablename number" ,

Figure 114. GETMTYPE Command Syntax

variablename
identifies a command list variable coded in this command. If the command list
is written in the NetView command list language, the ampersand should be
removed from the variable name. GETMTYPE sets the value of this variable as
one of the following line types:

blank The message is a single-line message.

C The line is a control line.

L The line is a label line.

D The line is a data line.

DE The line is a data end line.

E The line is an end line without data.
number

specifies the number of the line in the multi-line message for which you want
line type information. For single-line messages, the value of number must be
1.

When coding an actual number for number in REXX command lists, the number
should be inside the quotes that enclose GETMTYPE. For example:

'GETMTYPE TYPE1 3'

When coding a variabie for number in RExx command lists, leave a blank after
variablename and close the quotes. Code the name of the variable that con-
tains the value for number outside the quotes. For example, if the value of
number is contained in a variable named NuM1, you would code:

'"GETMTYPE TYPE1 'NUM1

GETMTYPE also sets the return code (RC or &RETCODE) to indicate the processing
results, as follows:

Code Meaning

0 Processing successful

8 No storage available to continue processing

100 Either variablename or number was omitted

104 number has too many digits

108 number is not a numeric value

112 number does not equal 1 for a single-line message
116 Requested line number does not exist

120 Internal command list processing error

Chapter 9. Message Automation 153

Advanced Topics

'GETMLINE

124 Internal command list processing error
128 variablename invalid.

For example, you can use GETMTYPE along with GETMSIZE in a command list to test
each line of a multi-line message for the type. If you use a variable name for the
number field in the GETMTYPE command, you can test each line. Using GETMSIZE,
you can code your command list to test the correct number of lines for each
message it receives. If the command list received the message illustrated in
Figure 113 on page 152:

¢ the line type of the first line would equal C

¢ the line type of the second and third lines would equal L

* the line type of the fourth through the sixth line would equal D
¢ the line type of the seventh line would equal DE..

GETMLINE is used within a command list to assign the text of an individual line of a
multi-line message to a specified variable. Use this command in a command list
that was driven by message automation or that has processed a message using
MSGREAD (REXX) or &WAIT (NetView command list language).

Figure 115 shows the syntax of the GETMLINE command.

Note: The command is enclosed in single quotes to avoid substitution by REXX.
When coding GETMTYPE in command lists written in the NetView command list lan-
guage, do not include the quotes.

'GE"TMUN. vari ’3b’9n me number"

Figure 115. GETMLINE Command Syntax

variablename
identifies a command list variable coded in this command. If the command list
is written in the NetView command list language, the ampersand should be
removed from the variable name. GETMLINE assigns the value of the line you
specify to this variable name.

number
identifies the number of the line in the multi-line message from which you want
to obtain the value.

When coding an actual number for number in REXX command lists, the number
should be inside the quotes that enclose GETMLINE. For exampie:

'GETMLINE LINE1 2'

When coding a variable for number in RExx command lists, leave a blank after
variablename and close the quotes. Code the name of the variable that con-
tains the value for number outside the quotes. For example, if the value of
number is contained in a variable named NuM1, you would code:

'"GETMLINE LINE1 'NUM1

154 Netview Customization: Writing Command Lists

Advanced Topics

GETMLINE also sets the return code (RC or &RETCODE) to indicate the processing
results, as follows:

Code Meaning

0 Processing successful

8 No storage available to continue processing
100 Either variablename or number was omitted
104 number has too many digits

108 number is not a numéric value

112 number does not equal 1 for a single-line message
116 Requested line number does not exist

120 Internal command list processing error

124 Internal command list processing error

128 variablename invalid.

For example, an automation task command list written in the NetView command
list language contains the following two lines:

&NUM = 2
'GETMLINE SECOND &NUM

These two lines in a command list place the text of the second line of a multi-line
message into the command list variable &SECOND.

See “Examples of Command Lists Processing MLWTO Messages” on page 156 for

example command lists that show how GETMLINE can be used with MLWTO mes-
sages.

Chapter 9. Message Automation 155

Advanced Topics

Examples of Command Lists Processing MLWTO Messages
The command lists in Figure 116 and Figure 117 on page 157 are examples of
how you can code your command list to process based on the information in the
individual lines of a multi-line message. Figure 116 is written in RExx. Figure 117
is written in the NetView command list language.

: /*#******************************

e SESSCNT COMMAND LIST

ek e e de e e e de e e e K e e AR e

Two mformatmnal messages that d1splay the numbe
~7 OPCTCL. and FLSCN sessmns to the operator. -

,‘_’epcrLcnr =g
_ FLSCNCNT =0
_ *TRAP AND SUPPRESS MESSAGES 0

e ‘/* init OPCTL counter .
_/* init FLSCN counter
 /* TRAP the MLWTO msq

- PLISTSESS® i ot S /* issue the command
< 'WALT -5 SECONDS FQR MESSAGES' T ~f* WAIT for. the msg
CSELECT. o e /% SELECT an: EVENT

 WHEN EVENT() = 'M‘ THEN pf,f . [* message received
Do U f . [* process the message
’*”"MSGREAD' o : - [* read the message in
o 'GETMSIZE ! NUMLINES ~ . [* get number of lines *[”
L DO CNTR = 4 10 NUMLINES oo f* Toop thru MLNTQ buf
o 'GETMLINE LINE' CNTR - %ﬁ; /* get a line in buf
o . [* parse the line
! 'PARSELZR LINE APPLNM SRCLUNM SESSNM TYPE RESTLINE®
- IF TYPE = OPCTL! THEN - .,’*y UPCTL sesswnv
Lo OPCTLCRT OPCTLCNT + I - /* yes,increment cou
LOELSE VR 3 /* must be FLSCN sess
% FLSCNCNT = FLSCNCNT + /* increment count *
TRAP NO- MESSAGES‘k ,“end message trapptng*
~ 'FLUSHQ MESSAGES‘ . * flush message queue */
= END .

/* loop thru MLWTO buf */
- END - - /* process the message */
OTHERNISE /* event not a message'*/‘

¥ SAY ‘ERROR PROCESSING LISTSESS COMMAKD‘ . /* issue an error msg '*/
, ENOV /* SELECT an EVENT xf
L issue messages to operator mth count cf FE.SCN & OPCTL sessmns *f
 SAY ‘YOU HAVE ' OPCTLCNT ' OPCTL SESSIONS ACTIVE AND* .

. SAY Aol ; S FLSCNCNY ' FLSCN SESSIONS ACTIVE‘

F:gure 116 Command Llst Usmg Multi Lme Messages REXX Example

156 NetView Customization: Writing Command Lists

AQvancea 1o0pics

CONTRDL ERR

%'k*******************”k**‘k***,’

wﬁ:«gj‘:{%« i MW
i F]

- COMMAND LIST AUTHTOTE f{? fﬁff i .

 THIS COMMAND LIST DISPLAYS A COUNT OF HOW MANY MESSAGES (OR’GROUPS
 OF MESSAGES, USING THE * SUFFIX) HAVE BEEN ASSIGNED 0 BE S
- ROUTED TO SPECIFIC AUTHORIZED RECEIVERS ‘

* IT 18 CALLED AS_FOLLONS"' AUTHTOTE

e O S I O

AUTHTOTE DISPLAY

! AUTHTOT!E suPPREss

IS THE DEFAULT) AND A COUNT OF THE TOTAL NUMBER OF ASSIGNMENTS
MADE AND THE LAST FORM WILL SIMPLY DISPLAY THE TOTAL NUMBER

;* SAVE IHE INPUT PARAMET
80PT =81

i * INITIALIZE THE cou«rﬁa FOR THE NUMBER OF MESSAGES ASSIGNED 10
- * AUTHORIZED RECEIVERS .
RCOUNT =0
.~ * SET THE COUNTER FOR THE NUMB£R OF THE MESSAGE LIN£ ?o BE o
o PROCESSED T0 1. THE wAIT STATEMENT PROCESSES THE FIRST MESSAGE LINE. -
8MSZI = 0 s

 * ISSUE THE COMMAND AND £«T£R wAIT STATE
. SWAIT ENDWAIT 80PT =

© BWAIT ‘LIST MSG=AUTH', 0816361-~COUNTER 9515431 =-NOEXI
 *60=-TIMEOUT, *ENDWAIT--GOIN
~=NXTLINE WA

% ADD 1 TO THE COUNTER FOR NUMB£R OF LINES PROCESSED
- AMSZI = 8MSZI + 1
. * IF THE NUMBER OF THE LINE TO BE PROCESSED IS GREATER “THAN THE
~* NUMBER IF LINES IN THE MESSAGE, THEN DISPLAY THE RESULT :
- &IF 8MSZI = &NUMLINES &THEN &GOTO -ENDIT =~ =
-~ * ASSIGN THE TEXT OF THE NEXT LINE OF THE HESSAGE ?9 MSGTXT
- GETMLINE MSGTXT &MSZI - et -
. * PARSE MSGTXT SO THAT THE MESSAGE 1D OF THE LiNE ISn LACED N
~* THE MSGID VARIABLE.
- PARSEL2R MSGTXT MSGID MSGSTR
_ &IF BMSGID = DSI6421 &THEN &GOTO »ENDI ;
" &IF BMSGID = DSI6431 &THEN &GOTO -NOEXIT
- 8IF &MSGID = DSI6361 &THEN &GOTO -COUNTER -
&GOTO -NXTLINE

Figure 117 (Part 1 of 2). Command List Using Multi-Line Messages - NetView Command
List Language Example

Chapter 9. Message Automation 157

Advanced Topics

NOEXIT
* THIS INSURES THAT THE OPERATOR IS INFORMED OF THE RESULTS O
“THE COMMAND WHEN NO MESSAGES HAVE BEEN ASSIGNED, BUT THE

;§*e- MESSAGE INFORMING THE. OPERATOR HAS BEEN SUPPRESSED.

ff* oF LINES FOR THE MESSAGE
IR aMszL = 1 &THEN 860TO -LIN
‘;-COUNTERI

Figure 117 (Part 2 of 2). Command List Using Multi-Line Messages - NetView Command
List Language Example

Using the SDOMAIN Command with the QUIET Option

This section describes general-use programming interfaces, which allow the cus-
tomer to write programs that use the services of the NetView program. This
section ends where “Hints for Implementing Message Automation” on page 161
begins.

The hardware monitor SDOMAIN command can be issued with the QUIET option from
a command list, to set the domain and return a message for automation. To trap
the message in a RExx command list, issue the SDOMAIN command after issuing a
TRAP instruction but before issuing a waiT command. To trap the message in a
command list written in the NetView command list language, issue the SDOMAIN
command from the awAIT statement.

| NetView supplies a sample command list written in the NetView command list lan-
guage that issues this command (see Figure 118 on page 159). In this command
list, whenever an SDOMAIN message occurs that is not tested on the &wAIT state-
ment, the message is written to the command facility panel and the command list
stops execution.

.M“/ .

The most common messages produced by the SDOMAIN command are:

158 NetView Customization: Writing Command Lists

Advanced Topics

BNJ911l Current domain now XXX, was YYYy

BNJ9121 Attempting a cross domain session to an incompatible level of NetView
BNJ924l Attempting a cross domain session with an undefined domain

BNJ9261 sp/sDOMAIN command failed, current domain is unchanged.

Figure 118is an exa.mple of how to invoke the SDOMAIN command with the QUIET
option from a command list.

B e

: CLIST

~ &CONTROL ERR : _
L kkkdek ke k Rk kkdkkhkkhkkddkkdkdkkdkkkddkkhdkkkikkhkhkdhkkhk Tk kkkhhdkkdkdk ki kkddhkhihkdkikd
~* (C) COPYRIGHT IBM CORP. 1988 ' ' ‘

* LAST CHANGE:

* DESCRIPTION: THIS COMMAND LIST ISSUES THE SDOMAIN QUIET COMMAND

* .~ WHICH INITIATES A CROSS DOMAIN SESSION WITHOUT :
“s¢~i“jrcA'al,‘; DISPLAYING THE NPDA MAIN MENU. IF THE SDOMAIN QUIET
* o COMMAND 1S ‘SUCCESSFUL, THE ALERTSD COMMAND IS ISSUED
* CNMEGO44 CHANGED ACTIVITY:

* CHANGE CODE DATE ~ DESCRIPTION -

v o o e o 0 v e o - i 2 e e e e

“.**v

% THE FIRST (AND ONLY) PARAMETER EXPECTED BY THIS COMMAND LIST IS THE *
% DOMAIN NAME FOR WHICH THE ALERTSD INFORMATION IS DESIRED, idmeeok
;) ***t
- &DOMAINID = &1 ‘ 2 :
: **
* TF A DOMAIN NAME IS NOT PASSED TO THE COMMAND LIST, THEN SET THE o
~* DOMAIN NAME TO THE DOMAIN THE USER IS LOGGED ONTO. -~ . =
A**
 &IF .&DOMAINID NE . &THEN &soro -XDOMAIN ' s
&DOMPART = BLENGTH SAPPLID
~ &DOMPART = &DOMPART - 3 ‘¢ :
~ &DOMAINID = &SUBSTR &APPLID 1 &DOMPART < ;
ﬂ***&**********
‘INVOKE THE SDOMAIN COMMAND WITHIN THE &WAIT STATEMENT TO TRAP THE
* MESSAGES PUT OUT BY HARDWARE MONITOR. = R
**; i
hOMATI o e , ,) ,
BWAIT CDNTNAIT SUPPRESS
&WAIT ’NPDA SDOMAIN &DGMAINID QUIET‘
" BNJ9111=-NPDACM
vaNJQIZI—-INCOMPAT,
'BNJ9241=-BADXDOM
 BNJ926I=-SDFAIL
- *ERROR=-ERROR
';*1G=-TIMEBUT !
&sozo -ERROR .

L2 B AR L T T

Fugure 118 (Part 1 of 2) NetVtew Command Llst Language Command List Issuing
SDOMAIN with QUIET option

Chapter 9. Message Automation 159

Advanced Topics

Figure 118 (Part 2 of 2). NetView Command List Language Command List Issuing
SDOMAIN with QUIET option

160 NetView Customization: Writing Command Lists

AQvEanucu » s ——

Hints for Implementing Message Automation

This section provides suggestions to help you effectively implement message auto-
mation.

Suppressing Messages
You can suppress some messages so that the operator never receives them. To
suppress messages with NetView message automation, make an entry in the
message automation member. Assume, for instance, that you do not want the
message 1ST4001 TERMINATION IN PROGRESS FOR APPLID app/nm to be displayed.
Figure 119 shows what the message automation statement looks like.

IF ﬁSGID='1ST4BOi‘ THEN DISPLAY(K), 7

anure 119 Message Automatlon Statemem to Suppress Message

Determining What Task Controls a Command List
if you are not sure what type of task a command list will run under, have the
command list check the TAsk() function or &TASK control variable in the beginning of
the command list. You can then use conditional processing to make the command
list flexible enough to run differently under different tasks. See REXX User’s Guide
and REXX Reference or Chapter 7, “NetView Command List Language Branching”
on page 107 for more information about conditional processing.

Testing Automation Command Lists
You can test command lists invoked from the message automation table by using
SAY in REXX command lists or &WRITE or &BEGWRITE in command lists written in the
NetView command list language. This method works if the message automation
table does not check for the message type (HDRMTYPE() or 8HDRMTYPE) or the
optional system information. For example, you can send a message to an auto-
mation task to trigger the message-driven command list under that automation
task. This allows you to test your automation command lists by enabling you to
send messages that you expect the command list to handle during regular proc-
essing.

Figure 120 shows an example of a RExx command list using the SAY instruction that
you could use to generate test messages.

/* COMMAND LIST TO TEST AUTONATION COMMAND }.ISTS *] S

}{TRACE ERRORS
' PARSE ARG PARMS

Figure 120. REXX Command List to Test Automation Command Lists

Figure 121 on page 162 shows an example of a command list written in the
NetView command list ilanguage using &WRITE that you could use to generate test
messages.

Chapter 9. Message Automation 161

Advanced Topics

i A

Figure 121. NetView Command List Lang
Command Lists

ti

utomation

You can then test the text of any single line message by typing the following as a
NetView command, or within another command list:

TESTMSG your message text here

Figure 122 is a REXX command list that shows how to use the sAy instruction to gen-
erate a multiple-line message:

Figure 122. REXX Command List to Generate a Multiple-Line Message

Note: There must be 67 characters or blanks enclosed by the single quotes on
each line of the sAy instruction, except the last line.

Figure 123 is a command list written in the NetView command list language that
shows how to use &BEGWRITE to generate a muitiple-line message:

8 & P e R & £ Brdeie s

Figure 123

SO

. NetView Command List Language Command List to Generate a Multiple-Line
Message

In this example, it is necessary to type the message text into the command list
before running, so the multiple-line message format can be produced. You can run
the command list by typing TESTMLN as a NetView command.

162 NetView Customization: Writing Command Lists

Advanced Topics

Recovering From Looping Command Lists
It is possible to write command lists that will loop. For example, if you write a
command list that is driven by a message issued by a command in the same
command list, looping will occur. If a looping message-driven RExx command list
has a wAIT, or a looping message-driven NetView command list language command
list has an &WAIT or &PAUSE, issue the STACK command from the operator’s console
to recover. Then turn off message automation with the command AuTomMsG oFF. If
there is no WAIT in a REXX command list or &WAIT or &PAUSE in a command list written
in the NetView command list language, you can issue the AUTOMSG OFF command
from your terminal. Once the looping has stopped, you can revise the command
list.

Considering Operator Interaction
Command lists used for automation of unsolicited messages should not ask the
operator for data. For example, a RExXx command list using a wAIT or a NetView
command list language command list using either &PAUSE VARS or &WAIT, requiring
a Go command, is inappropriate. Consider how messages from a command list
affect operator requests, and try to make automation command lists interfere as
little as possible because automation runs at the same time that operators enter
requests.

Other Common Automation Problems
Message automation is invoked after the command facility exit routines (for
example, DSIEX02A, DSIEX08, DSIEX11) have been called, so changes made to mes-
sages in these routines affect message automation. For example, if a message is
deleted by DsIEx02A, NetView does not invoke automation for that message. If a
message is assigned to SYSOP or LOG as the primary receiver, NetView does not
invoke automation for that message. Since message automation does not occur in
the preceding instances, the pisPLAY keyword in the message automation member
does not have any effect.

If the message processing facility is used to suppress a message with AUTO=YES
coded and this message is used to drive a command list, when the command list is
driven and a wTo is issued, the wTo is also suppressed. You must change the
setting of the MCSFLAG() function or the &MCSFLAG control variable for the wto to be
displayed. See Figure 109 on page 150 for an example of how to change a func-
tion or control variable.

If a multi-line write-to-operator (MLWTO) message is used to drive a command list
and a wTo is issued from the command list, the wTo may or may not be displayed,
depending on the setting of LINETYPE() or &LINETYPE. You should check the setting of
LINETYPE() Or &LINETYPE, and if your wTo is a single line message, change the setting
of LINETYPE() or &LINETYPE to a blank.

Chapter 9. Message Automation 163

Advanced Topics

How to Set Up for Migration

NetView comes with a utility program called psicNvRT that helps you in converting
Nccr, and NetView Release 1 message automation to NetView Release 3 message
automation. You will find the JcL statements or vM EXEC to run the program in the
NetView sampLiB. See the NetView Installation and Administration Guide for details
on how to run the DSICNVRT utility.

You must perform the following tasks when migrating to NetView Release 3
message automation.

For Migrating from NCCF to NetView Release 3:
If you have any cMDMDL statements in DSICMD to support the NCCF method of
VTAM-only message automation, do one of the following:

¢ For Mmvs systems, set up the INPUT DD statement in your JcL to reference your
DSICMD member.

¢ For vM systems, set up the INPUT FILEDEF in the EXEC file to reference your DSICMD
file.

The DSICNVRT program produces a message automation statement in the file speci-
fied as output for every CMDMODL that defines a command list starting with iST.

For Migrating from NetView Release 1 to Release 3:
If you have been using NetView Release 1 message automation, do one of the fol-
lowing:

* For mvs systems, set up the iINPUT and OUTPUT DD statements in your JcL for each
message automation member and then run DSICNVRT to convert each of them.

* For vM systems, set up the FILEDEFs in your exec file for each message auto-
mation member and then run DSICNVRT to convert each of them.

For Both Types of Migration:
Review the output of DSICNVRT to ensure that the command lists that it calls are con-
sistent with your previously existing command lists. Make the necessary adjust-
ments to take advantage of the extensions to message automation in Release 3.

Conversion Considerations for MVS/OCCF

if you are automating Mvs messages using MVS/OCCF, pay extra attention to the con-
version process. In Mvs the job entry subsystems (JES2 and JEs3) offset the actual
text of a message by inserting a job identifier. If you coded your message auto-
mation for Mvs system messages using an offset to read the message 1D in the first
column, instead of the Mvs job ID, you have to convert manually instead of using
DSICNVRT. In NetView Release 3 the program offsets the job identifier in the
message for you. When the Mvs system message crosses the NetView interface,
the message ID starts in the first column. The job identifier is still available in the
form of the function JOBNUM() in a REXX command list or the control variable
&JOBNUM in a command list written in the NetView command list language. For
more information about &J0BNUM, see “Message Processing Information” on

page 84. Refer to “Message Processing Information” on page 53 for more infor-
mation about JOBNUM().

164 Netview Customization: Writing Command Lists

Advanceda 10pics

'(L:hapter 10. Service Point Command Service Commands

This chapter describes how to use the service point command service (SPCS) com-
mands in command lists.

Service Point Command Service

The service point command service is a set of commands that supports and
enhances the NetView program’s control of service points, for example, the
NetView/PC™. A service point application manages non-SNA devices, such as
front-end line switches and muitipiexers. You can send commands to the service
point application to do problem determination for these devices.

There are four NetView sPCs commands that are used with NetView/PC for problem
determination:

* LINKTEST — requests that the service point test a given link or link segment.

* LINKDATA — requests that the service point return device data for a given link or
link segment.

* LINKPD ~ requests problem determination analysis from the service point on a
given link or link segment.

* RUNCMD — sends service point application commands to the service point appli-
cations from NetView.

See NetView Operation for the syntax of the LINKTEST, LINKDATA, LINKPD, and RUNCMD
commands.

The spcs commands are long running commands that suspend the command list
when they are executed. The command list resumes when the spcs command is
complete.

Note: The REXX WAIT instruction and the NetView command list language awaAIT
control statement should not be used with the spcs commands. Use message-
driven command lists to trap messages generated from the spcs commands, with
the exception of:

¢ LINKPD messages DSI5331, DSI5344, DSI5351, DSI5361, and DsSis82l. These five messages
are set to values you can use in the form of control and parameter variables.
See “LINKPD Results” on page 167 for more information on LINKPD resuits.

¢ Responses to RUNCMD with the CLISTVAR keyword. CLISTVAR causes the
responses to be stored in variables. See “RUNCMD Results” on page 168 for
more information on RUNCMD resulits.

™™ NetView/PC is a trademark of International Business Machines Corporation.

Chapter 10. Service Point Command Service Commands 165

Advanced Topics

Service Point Command Service Return Codes

After the command is completed, RC for command lists written in REXX or &RETCODE
for command lists written in the NetView command list language contains one of
the following values:

Code Meaning

0 The command succeeded.

4 The command failed or CLISTVAR was specified with RUNCMD and no
response was returned.

16 The command was cancelled by the CANCMD.

24 Some command list data was truncated.

28 The service point application returned more than 132 responses for the

RUNCMD with the CLISTVAR keyword.

LINKDATA and LINKTEST Results

LINKDATA and LINKTEST can be used in command lists to manage service points, for
example NetView/PC. The formats of these commands can be found in NetView
Operation.

You can use the following LINKDATA and LINKTEST variable names in your command
lists. Use the variable name without the ampersand for RExx command lists. Use
the variable name with the ampersand for NetView command list language
command lists. The italicized letters in the variable names will be replaced with
the following values:

* pp — path number (01)
* rr—resource number (01-99)
¢ ee — entry number (01-99).

Note: Path number is always equal to ‘01’ for LINKTEST and LINKDATA.

DSIPATHCNT or &DSIPATHCNT
Number of paths returned. It is always equal to '01' for LINK com-
mands. The path count is the origin of the value of pp in the following
variable names.

DSlppRC or &DSlppRC
Number of resources for path pp. The resource count is the origin of
the value of rr in the following variable names.

DSlpprrEC or &DSlpprrEC
Number of entries for resource rr on path pp. The entry count is the
origin of the value of ee in the following variable names.

DSlpprrRN or &DSlipprrRN
Name of resource rr on path pp

DSlpprrRT or &DSipprrRT
Type of resource rr on path pp

DSlpprreeDN or &DSlpprreeDN
Name of data item ee for resource rr on path pp

DSipprreeDT or &DSlpprreeDT
Type of data item ee for resource rr on path pp. Possible values are:

¢ BIT STRING
e CHARACTER

166 NetView Customization: Writing Command Lists

Advanced Topics

¢ DECIMAL
¢ HEXADECIMAL.

DSlpprreeDV or &DSlpprreeDV
Value of data item ee for resource rr on path pp.

LINKTEST Additional Variables
In addition, LINKTEST uses the following variables:

DSIREQUEST or &DSIREQUEST
Number of tests requested

DSIACTUAL or &DSIACTUAL
Actual number of tests executed

DSITESTTYPE or &DSITESTTYPE
Indication of the type of test data reported. Possible values are:

¢ BACKGROUND
* REQUESTED.

DSIRESULT or &DSIRESULT
Indication of the overall results of the test execution. Possible values
are:

* PASSED
¢ FAILED
¢ INDETERMINATE.

LINKPD Results

Results from the LINKPD command are returned in messages that can be used in a
command list to automate the recovery of resources controlled by a service point,
for example, NetView/PC. LINKPD results can be used as the RExx functions
MSGCNT(), MSGID(), MSGORIGN(), MSGSTR(), MSGTYP(), and MSGVAR(1) - MSGVAR(31), or the
NetView command list language control variables &MSGCNT, &MSGID, &MSGORIGN,
&MSGSTR, &MSGTYP, and the parameter variables &1 - &31. For more information
about the RExX functions MSGORIGN(), MSGID(), MSGCNT(), MSGSTR(}, and MSGTYP(), see
“Message Processing Information” on page 53. For more information about
MSGVAR(1) - MSGVAR(31), see “Functions Set by MSGREAD” on page 40. For more

" information about the NetView command list language control variables &MSGCNT,
&MSGID, &MSGORIGN, &MSGSTR, and &aMSGTYP see “Message Processing Information”
on page 84. For more information about parameter variables used in command
lists written in the NetView command list language, see “Parameter Variables” on
page 77.

Chapter 10. Service Point Command Service Commands 167

Advanced Topics

RUNCMD Results

If you use RUNCMD without the CLISTVAR keyword, responses from the service point
application that performed the RUNCMD are sent to the network operator’s terminal,
and a return code is set (RC or &RETCODE). See “Service Point Command Service
Return Codes” on page 166 for a description of the different return codes.

If you use RUNCMD with the CLISTVAR keyword, the command results in the following:

* A return code is set (RC or &RETCODE). See “Service Point Command Service
Return Codes” on page 166 for a description of the different return codes.

¢ If the command completes with a return code of 0, 24, or 28, the following vari-
ables are set. Use the variable name without the ampersand for RExx
command lists. Use the variable name with the ampersand for NetView
command list language command lists. '

DSIRUNCNT or &DSIRUNCNT
Contains the number of responses returned from the service point
application. The variable has a value from 001 to 132.

DSIRUNxxx or &DSIRUNXxxx
Contains the different responses from the service point application.
The responses are numbered from 001 to 132.

Note: The responses from the service point must be character data and cannot be
longer 255 characters.

168 Netview Customization: Writing Command Lists

Appendix-;;

Appendix A. REXX Command List Reference Summary 171
Appendix B. NetView Command List Language Reference Summary 177
Appendix C. Comparison of REXX and NetView Command List Language ... 185
Comparison of REXX Instructions and NetView Command List Language
Control Statements 185
Comparison of REXX Functions and NetView Command List Language Control
Variables 188
Commands UsedinCommand Lists 193
Exampies Comparing REXX and NetView Command List Language 193
GREETING Example—NetView Command List Language 194
GREETING Example—REXX e, 195
LISTVAR Example—NetView Command List Language 196
LISTVAR Example—REXX e 197
BROWSE Example—NetView Command List Language 198
BROWSE Example—REXX 199
ACTLU Examplie—NetView Command ListLanguge 200
ACTLU Example—REXX 201
GETCG Example—NetView Command List Language 202
GETCG Example—REXX e 202
PPTUPDAT Example—NetView Command List Language 203
PPTUPDAT Example—REXX i, 203
ACTAPPLS Example—NetView Command List Language 204
ACTAPPLS Example—REXX 206
Appendix D. Converting Command Lists Written in the NetView Command List
Languageto REXX e 209
Executing CNMS8001 Command Liston TSO/E 210
Executing CNMS8001 Command List on VM Operating System 212
Conditions CNMS8001 CannotConvert 213
Conditions CNMS8001 Might Not Convert Correctly 213
Improving the Performance of Converted CommandLists 214
Example of a Converted Command List 215

Appendixes 169

170 NetView Customization: Writing Command Lists

Appendix A. REXX Command List Reference Summary

This appendix contains separate summary charts of the RExxX instructions and func-
tions provided by the NetView program. In each chart, the entries are listed in
alphabetical order.

In the instruction summary chart, the instruction is followed by its operands, a brief
description, and where to find more information in this book.

in the function table, the function is followed by its description and where to find
more information in this book.

A complete list of all RExx instructions and functions can be found in REXX Refer-
ence or REXX User’s Guide.

Notes:

1. In this book REXX Reference refers to TSO/E REXX Reference for Mvs users or
VM/SP System Product Interpreter Reference for vm users.

2. in this book REXX User’s Guide refers to TSO/E REXX User’s Guide for mvs
users or VM/SP System Product Interpreter User’s Guide for vM users.

Appendix A. REXX Command List Reference Summary 171

Table 3. REXX Instruction Summary

Instruction Operands Description Location
FLUSHQ [MESSAGES] Removes all trapped See
messages from the “REXX
message queue. FLUSHQ
Instruction”
on
page 42.
GLOBALV PUTT variablel,...] Sets and retrieves the See
GETT variablel[,...] variables specified as “REXX
task global variabies. GLOBALYV
Instruction”
on
page 44.
GLOBALV PUTC variablel,...] Sets and retrieves the See
GETC variable[,...] variables specified as “REXX
common global vari- GLOBALV
ables, Instruction”
on
page 44.
MSGREAD None Reads a trapped See
message from the “REXX
message queue. MSGREAD
Instruction”
on
page 40.
TRAP [[AND] SUPPRESS|DISPLAYT] Defines the messages See
[MORE|ONLY] to be trapped. “REXX
MESSAGES TRAP
token [,...] Instruction”
on
page 34.
TRAP NO MESSAGES Indicates that the list of See
messages to be “REXX
trapped that was speci- TRAP
fied on a previous TRAP Instruction”
instruction should be on
removed. page 34.
WAIT [n [SECONDS|MINUTES]] Causes a command list See
[FOR [MESSAGES]] to temporarily suspend “REXX
processing until a spe- WAIT
cific event occurs. You Instruction”
must code a time on
interval, MESSAGES, or page 36.
both.
WAIT None Causes a command list See
CONTINUE to continue waiting “Contin-
before resuming proc- uing to
essing. The options Wait for
specified on the pre- Addi-
vious TRAP and WAIT tional
instructions remain in Messages”
effect for WAIT CONTINUE. on
page 38.

172 NetView Customization: Writing Command Lists

Table 4 (Page 1 of 3). REXX Function Summary

Function Value Location

APPLID() The application program See “Session Information” on page 51.
identifier for the task
under which the command
list is running (NetView
domain ip appended with
a 3-character alphanu-
‘meric value assigned by
NetView).

AREAID() A one-letter (A-Z) identi- See “Message Processing Information”
fier for the area on the on page 53.
console screen that dis-
plays the message.

COMPNAME() The 16-byte name of the See “Command List Information” on
component that was page 53
running when the
command list was initi-
ated.

DESC() The system descriptor See “Message Processing Information”
codes in a binary series on page 53.
of on (1) and off (0) char-
acters, representing the
descriptor code bits in
order.

EVENT() The NetView event that See "Checking the Result of a WAIT
satisfied the waIT instruc- Instruction” on page 38.
tion.

HCOPY() The name of the hard- See "Terminal Information” on
copy log printer started by page 52.
the operator.

HDRMTYPE() The 1-character NetView See “Message Processing Information”
message type of the on page 53.
message.

JOBNAME() The 1- to 8-character Mvs See “Message Processing Information”
JOB nhame identifier. on page 53.

JOBNUMY) The 8-character mvs JoB See “Message Processing Information”
number identifier. on page 53.

LINETYPE() The multi-line write-to- See “"Message Processing Information”
operator (MLWTO) line on page 53.
type.

LU() The logical unit name for See “Terminal Information” on
this operator terminal. page 52.

MCSFLAG() The system message See “Message Processing Information”
flags in a binary series of on page 53.
on (1) and off (0) codes.

MSGCNT() The number of elements See “"Message Processing Information”
of text in the message on page 53.
string of the last message
read by MSGREAD.

MSGID() The message ip of the last See “Message Processing Information”

message read by
MSGREAD.

on page 53.

Appendix A. REXX Command List Reference Summary 173

Table 4 (Page 2 of 3). REXX Function Summary

Function

Value

Location

MSGORIGN()

The domain where the
last message read by
MSGREAD originated.

See “Message Processing Information”
on page 53.

MSGSTR()

The message text of the
last message read by
MSGREAD.

See "Message Processing Information”
on page 53.

MSGTYP()

The system message type
presented as three con-
secutive binary charac-
ters.

See “Message Processing Information”
on page 53.

MSGVAR(n)

The value of each element
of message text of the last
message read by
MSGREAD.

The MsaVAR(n) functions
can also be given values
when a command list is
invoked in the same way
the &1 - &31 NetView
command list language
parameter variables can.

See “Functions Set by MSGREAD" on
page 40.

NVCNT()

The number of NetView
domains with which you
can establish a cross-
domain session.

See “Session information” on page 51.

NVID(n)

The NetView domain iden-
tifier of a domain with
which you can establish a
cross-domain session.

See “Domain Information” on page 56.

NVSTAT(name)

Indicates whether you
have an active session
with a domain.

See “Domain Information” on page 56.

OPIDY)

The operator’s iD.

See “Operator Information” on
page 52.

OPSYSTEM()

A character string that
indicates the operating
system under which a
command list is running.

See “Session Information” on page 51

PARMCNT()

The number of parameter
variables that were
entered when a command
list was initiated.

See “Command List Information” on
page 53.

REPLYID()

A three-character reply
identifier for wror
command replies.

See “Message Processing Information”
on page 53.

ROUTCDE()

The system routing codes

in a binary series of on (1)

and off (0) characters,
representing the routing
code bits in order.

174 Netview Customization: Writing Command Lists

See “Message Processing Information”
on page 53.

Table 4 (Page 3 of 3). REXX Function Summary

Function Value

Location

The ID of the TAF session
that sent the message.

SESSID()

See “Message Processing information’
on page 53.

SMSGID() The 8-character value that
identifies a particular

instance of a message.

See “Message Processing Information”
on page 53.

SYSCONID() The console number (in
decimal) that is to receive

a message.

3

See “Message Processing Information’
on page 53.

SYSIDY) The identifier of the Mvs
system that sent the

message.

”

See “Message Processing Information
on page 53.

TASK() The 3-character string PPT
(primary pol task), osT
(operator station task), or
NNT (NetView-NetView
task), depending on the
task under which the
command list is running.
TAsSK() allows the same
command list to run under
any of these tasks,
because the command list
can test for the task type
and process accordingly.

See “Session Information” on page 51.

VTAM() A character string indi-
cating the level of the

access method used.

See “Session Information” on page 51.

WTOREPLY() The reply sent by the
operator in response to a

WTOR command.

See “Message Processing Information”
on page 53.

Appendix A. REXX Command List Reference Summary 175

176 Netview Customization: Writing Command Lists

prendix B.
Summary

NetView Command List Language Reference

N

This appendix contains separate summary charts of all control statements, control
variables, and built-in functions used in the NetView command list language. In
each chart, the entries are listed in alphabetical order.

In the built-in function and control statement charts, the function or statement is fol-

lowed by its operands, a brief description, and where to find more information in
this book.

In the control variable table, the variable is followed by its vaiues and where to tind
more information in this book.

Appendix B. NetView Command List Language Reference Summary 177

Table 5. Built-in Function Summary

Function Operands Description Location
&CONCAT variable variable Joins the values of two See
constant constant variables or constants to “&CONCAT
variable constant form a new value. Built-in
constant variable Function”
on
page 100.
&LENGTH variablejconstant Provides the number of See
characters in a variable “&LENGTH
or a constant. Built-in
Function™
on
page 100.
&NCCFID number Provides the identifier of a See
domain with which you “&NCCFID
can establish a cross- Built-In
domain session. Function”
on
page 101.
&NCCFSTAT domain Indicates whether you See
have an active session "&NCCFSTAT
with a domain. Built-in
Function”
on
page 102.
&SUBSTR variable start [length] Puts part of a variable into See
another variable. “&SUBSTR
Built-in
Function”
on
page 103.

178 NetView Customization: Writing Command Lists

Table 6 (Page 1 of 2). Control Statement Summary

Control

Statement Operands Description Location

&BEGWRITE [SUBINOSUB] [-/abel] Writes a series of mes- See
sages to the operator. “&BEGWRITE

Control
Statement”
on page 95.

&CGLOBAL variable [,...] Defines the variables See
listed as common “Common
global variables. Global

Variables”
on
page 126.

&CONTROL [ALL|CMDI|ERR] Indicates which See
command list state- “&CONTROL
ments are displayed to Control
the operator. Statement”

on page 92.

&EXIT [number] Ends the command list. See “&EXIT

Control
Statement”
on

page 109.

&GOTO -label Transfers control to See
another part of the “&GOTO
command list. Control

Statement”

on

page 109.

&IF comparison &THEN state- Tests a logical compar- See “&IF
ment ison and takes action Control

based on the results. If Statement”
the comparison is true, on
the &THEN clause is page 107.
processed.

&PAUSE NOINPUT| Halts the command list See

VARS variable [...]| until the operator types “&PAUSE
STRING variable in GO or RESET. The Control
operator can enter var- Statement”
iables in the command on page 97.
list by coding them as
operands on the GO
command.

&TGLOBAL variable [,...] Defines the variables See “Task
listed as task global Global
variables. Variables”

on

page 124.

S&WAIT ['command'] Halts the command list See
event=-label [,...] until a specific “Coding an

message or group of &WAIT
messages is received. Control

Statement”

on

page 112.

Appendix B. NetView Command List Language Reference Summary 179

Table 6 (Page 2 of 2). Control Statement Summary

Control
Statement Operands Description Location
&WAIT [DISPLAY|SUPPRESS] Determines whether See "Cus-
messages for the next tomizing
&WAIT should be dis- the &WAIT
played to the operator. Statement”
on
_ page 118.
&WAIT [ENDWAIT|CONTWAIT] Establishes whether See “Cus-
the next awAIT can wait tomizing
for more than one the &WAIT
event. Statement”
on
page 118.
&WAIT [CONTINUE] Establishes whether See "Cus-
the next awAIT con- tomizing
tinues waiting after the the &WAIT
event has been satis- Statement”
fied. on
page 118
&WRITE message text Sends a one-line See
message to the oper- “&WRITE
ator. Control
Statement”
on page 9%4.

180 NetView Customization: Writing Command Lists

Table 7 (Page 1 of 3). Control Variable Summary

Variable Value Location

&APPLID The application program identifier for the See “Session
task under which the command list is Information” on
running (NetView domain 10 appended with page 82.

a 3-character alphanumeric value assigned
by NetView).

&AREAID A one-letter (A-Z) identifier for the area on See “Message
the console screen that displays the Processing
message. Information” on

page 84.

&COMPNAME The 16-byte name of the component that See "Command
was running when the command list was List Information”
initiated. on page 83.

&DATE The current date in the format MM/DD/YY. See “Time and

Date” on page 81.

&DESC The system descriptor codes in a binary See “"Message
series of on (1) and off (0) characters, Processing
representing the descriptor code bits in Information” on
order. page 84.

&HCOPY The name of the hard-copy log printer See "Terminal
started by the operator. Information” on

page 83.

&HDRMTYPE The 1-character NetView message type of See “Message

the message. Processing
Information” on
page 84.
&JOBNAME The 1- to 8-character Mvs JoB name identi- See “Message
fier. Processing
Information” on
page 84.
&JOBNUM The 8-character mvs JOB number identifier. See “Message
Processing
Information” on
page 84.

&LINETYPE The muliti-tine write-to-operator (MLwTO) line See “Message

type. Processing
Information” on
page 84.

&LU The logical unit name for the operator ter- See “"Terminal

minal. Information” on
page 83.
&MCSFLAG The system message flags in a binary See "Message
series of on (1) and off (0) codes. Processing
Information” on
page 84.
&MSGCNT The number of elements of text in a See “Control and

message string.

Parameter Vari-
ables Used with
&WAIT” on
page 116.

Appendix B. NetView Command List Language Reference Summary 181

Table 7 (Page 2 of 3). Control Variable Summary

Variable Value Location
&MSGID The message iD of the message most See “Control and
recently recsived by NetView. Parameter Vari-
ables Used with
&WAIT” on
page 116.
&MSGORIGIN The domain from which the message was See “Controi and
sent. Parameter Vari-
ables Used with
&WAIT" on
page 116.
&MSGSTR The message text of the message most See “Control and
recently received by NetView. Parameter Vari-
ables Used with
&WAIT” on
page 116.
&MSGTYP The system message type presented as See “Message
three consecutive binary characters. Processing
Information” on
page 84.
© &NCCFCNT The number of NetView domains with which See “Session
the operator can establish a cross-domain Information” on
session. page 82.
&OPID The operator’s ID. See “Operator
Information” on
page 83.
&OPSYSTEM A character string that indicates the oper- See “Session
ating system under which a command list is Information” on
running. page 82.
&PARMCNT The number of parameter variables that See “Command
were entered when a command list was ini- List Information”
tiated. on page 83.
&PARMSTR The string of parameter variables used See “Command
when the command list was called. List Information”
on page 83.
&REPLYID A three-character reply identifier for wror See “Message
command replies. Processing
Information” on
page 84
&RETCODE The return code set by either the most See “Command
recent command processor or most List Information”
recently activated or nested command list. on page 83.
The user can set &RETCODE with the &exXIT
control statement to any positive value or to
-1. &RETCODE can be tested to determine
command list processing.
&ROUTCDE The system routing codes in a binary series See “Message

of on (1) and off (0) characters, repres-
enting the routing code bits in order.

182 NetView Customization: Writing Command Lists

Processing
Information” on
page 84

Table 7 (Page 3 of 3). Control Variable Summary

Variable Value Location
&SESSID The 1D of the TAF session that sent the See Chapter 9,
message. “Message
Automation” on
page 135
&SMSGID * The 8-character value that identifies a par- See “Message
ticular instance of a message. Processing
information” on
page 84.
&SYSCONID The console number (in decimal) that will See "Message
receive a message. Processing
Information” on
page 84.
&SYSID The identifier of the Mvs system that sent See “Message
the message. Processing
Information” on
page 84.
&TASK The 3-character string PPT (primary PoOI See “Session
task), ost (operator station task), or NNT Information” on
(NetView-NetView task), depending on the page 82.
task under which the command list is
running. &TAsK allows the same command
list to run under any of these tasks,
because the command list can test for the
task type and process accordingly.
&TIME The cpu time in the format hh:mm. See “Time and
Date” on page 81.
&VIEWAID The AiD key that the operator used to enter See “Panel
panel input. Information” on
page 87.
&VIEWCURCOL The panel column where the cursor was See “Panel
positioned when the Aib key was pressed. Information” on
page 87.
&VIEWCURROW The panel row where the cursor was posi- See “Panel
tioned when the AID key was pressed. Information” on
page 87.
&VTAM A character string indicating the level of the See “Session
access method used. Information” on
page 82.
&WTOREPLY The reply sent by the operator in response See “Message
to a wror command. Processing
Information” on
page 84.
&1 - &31 The value of each element of message text See “Control and

of the last message received by NetView.
&1-831 can also be given values when a
command list is invoked.

Parameter Vari-
ables Used with
&WAIT” on
page 116.

Appendix B. NetView Command List Language Reference Summary 183

184 Netview Customization: Writing Command Lists

Appendix.C. Comparison of REXX and NetView Command
List Language

This appendix provides a quick comparison between the features of RExx and the
NetView command list language.

Comparison of REXX Instructions and NetView Command List
Language Control Statements

Table 8 on page 186 shows the task performed by each control statement used in
the NetView command list language and provides the equivalent RExx instruction.
The table is in alphabetical sequence based on the name of the NetView command
list language control statement. The last column of the table indicates whether the
corresponding REXX instruction is a standard instruction provided by RExx or
whether it is an instruction provided by the NetView program. If the instruction is a
standard RExX instruction, an R appears in this column. If the instruction is pro-
vided by the NetView program, an N appears in this column. instructions provided
by the NetView program can only be used in conjunction with NetView. These
instructions are not supported by the RExx interpreter and cannot be used in RExx
EXECS executed in a non-NetView environment.

Appendix C. Comparison of REXX and NetView Command List Language 185

Table 8 (Page 1 of 2). Comparison of NetView Command List Language Control State-

ments and REXX Instructions

NetView Pro-
Control State- REXX vided
ment Task Instruction Task By
&BEGWRITE Writes a series of None Use the REXX SAY R/N
messages to the instruction or the
operator. NetView ViEw
command.

&CGLOBAL Defines the vari- GLOBALV Sets and retrieves N
ables listed as global variables.
common global vari-
ables.

&CONTROL Indicates which TRACE Indicates whether R
command list state- the result of each
ments are displayed expression is dis-
to the operator. played to the oper-

ator.

&EXIT Ends the command EXIT Ends the command R
list. list.

&GOTO Transfers controi to SIGNAL Transfers control to R
another part of the another part of the
command list. command list.

&IF Tests a logical com- IF Tests a logical com- R
parison and takes parison and takes
action based on the action based on the
results. If the com- results. If the com-
parison is true, the parison is true, the
&THEN clause is THEN clause is proc-
processed. essed.

&PAUSE Halts the command PARSE Reads the next R
list until the oper- EXTERNAL string from the ter-
ator types in Go or minal input buffer
RESET. (system external

event queue).
PARSE Reads the next R
PULL string from the
program stack
(system-provided
data queue).
&TGLOBAL Defines the vari- GLOBALV Sets and retrieves N

ables listed as task
global variables.

186 Netview Customization: Writing Command Lists

global variables.

Table 8 (Page 2 of 2). Comparison of NetView Command List Language Contro! State-

ments and REXX Instructions

NetView
Control State- REXX
ment Task Instruction

Task

Pro-
vided
By

&WAIT Halts the command TRAP
list until a specific
message or group
of messages is
received.

Defines the mes-

sages to be trapped.

Trapped messages
can later be used in
conjunction with the
MSGREAD and WAIT
instructions to
control command
processing.

N

WAIT

Halts.the command
list until a specific
event occurs. The
event can be one or
more messages, a
specific period of
time, or both. The
EVENT() function can
be used to deter-
mine the result of
the waiT command.

WAIT
CONTINUE

Causes the
command list to
wait for additional
messages before
resuming proc-
essing with the
statement after the
WAIT CONTINUE.

MSGREAD

Causes trapped
messages to be
read.

FLUSHQ

Removes all
trapped messages
from the message
queue.

&WRITE Sends a one-line SAY
message to the
operator.

Sends a one-line or
multiple-line
message to the
operator. The REXX
SAY instruction can
have a character
string of any length;
however, NetView
will output only

32,728 characters at

a time.

Appendix C. Comparison of REXX and NetView Command List Language 187

Comparison of REXX Functions and NetView Command List
Language Control Variables

Table 9 shows the tasks performed by the various control variables used in the
NetView command list language and the equivalent RExx functions. The last
column of the table indicates if the RExx function is a standard function provided by
REXX or if it is a function provided by the NetView program. If the function is pro-
vided by the NetView program, it can only be used in conjunction with NetView and
is not supported by REXX.

Table 9 (Page 1 of 5). Comparison of REXX Functions and NetView Command List Lan-

guage Control Variables

Pro-

NetView Control REXX Func- vided

Variable Task tion Task By

&APPLID The application APPLID() The application N
program identi- program identi-
fier for the task fier for the task
under which the under which the
command list is command list is
running. running.

&AREAID A one-letter (A-Z) AREAID() A one-letter (A-Z) N
identifier for the identifier for the
area on the area on the
console screen console screen
that displays the that displays the
message. message.

&COMPNAME The 16-byte COMPNAME() The 16-byte N
name of the com- name of the com-
ponent that was ponent that was
running when the running when the
command list command list
was initiated. was initiated.

&CONCAT Joins the values I Joins the values R
of two variables of two variables
or constants to or constants to
form a new form a new
value. value.

&DATE The current date DATE() The local date in R
in the format various formats.
mm/ddlyy.

&DESC The system DESC() The system N
descriptor codes descriptor codes
in a binary series in a binary series
of on (1) and off of on (1) and off
(0) characters, (0) characters,
representing the representing the
descriptor code descriptor code
bits in order. bits in order.

&HCOPY The name of the HCOPY() The name of the N

hard-copy iog
printer started by
the operator.

188 NetView Customization: Writing Command Lists

hard-copy log
printer started by
the operator.

Table 9 (Page 2 of §). Comparison of REXX Functions and NetView Command List Lan-
guage Control Variables

Pro-

NetView Control REXX Func- vided

Variable Task tion Task By

&HDRMTYPE The i-character HDRMTYPE() The 1-character N
NetView NetView
message type of message type of
the message. the message.

&JOBNAME The 1- to JOBNAME() The 1-to N
8-character Mvs 8-character mvs
job name identi- job name identi-
fier. fier.

&JOBNUM The 8-character JOBNUM() The 8-character N
MvVS job number Mvs job number
identifier. identifier.

&LENGTH Determines how LENGTH Determines how R
many characters many characters
are in a variable are in a variable
or a constant. or a constant.

&LINETYPE The multi-line LINETYPE() The multi-line N
write-to-operator write-to-operator
(MLWTO) line type. (MLwTO) line type.

&LU The fogical unit LU() The logical unit N
name for this name for this
operator ter- operator ter-
minal. minal.

&MCSFLAG The system MCSFLAG() The system N
message flags in message flags in
a binary series of a binary series of
on (1) and off (0) on (1) and off (0)
codes. codes.

&MSGCNT The number of MSGCNT() The number of N
elements of text elements of text
in a message in the message
string. string of the last

message read by
MSGREAD.

&MSGID The message 1D MSGID() The message Ip N
of the message of the last
most recently message read by
received by MSGREAD.

NetView.

&MSGORIGIN The domain from MSGORIGN() The domain N
which the where the last
message was message read by
sent. MSGREAD origi-

nated.
&MSGSTR The message text MSGSTR() The message text N

Appendix C. Comparison of REXX and NetView Command List Language

of the message
most recently
received by
NetView.

of the last
message read by
MSGREAD.

189

Table 9 (Page 3 of 5). Comparison of REXX Functions and NetView Command List Lan-
guage Control Variables

Pro-
NetView Control REXX Func- vided
Varlable Task tion Task By
&MSGTYP The system MSGTYP() The system N
message type message type
presented as presented as
three consec- three consec-
utive binary char- utive binary char-
acters. acters.
&NCCFCNT The number of NVCNT() The number of N
NetView domains NetView domains
with which you with which you
can establish a can establish a
cross-domain cross-domain
session. session.
&NCCFID The NetView NVID(n) The NetView N
domain identifier domain identifier
of a domain with of a domain with
which you can which you can
establish a cross- establish a cross-
domain session. domain session.
&NCCFSTAT Indicates NVSTAT(name) Indicates N
whether you whether you
have an active have an active
session with a session with a
domain. domain.
&OPID The operator’s ID. OPID() The operator’s ID.
&OPSYSTEM A character OPSYSTEM() A character
string that indi- string that indi-
cates the oper- cates the oper-
ating system ating system
under which a under which a
command list is command listis
running. running.
&PARMCNT The number of PARMCNT() The number of N
parameter vari- parameter vari-
ables that were ables that were
entered when a entered when a
command list command list
was initiated. was initiated.
&PARMSTR The string of ARG(1) The string of R
parameter vaiues arguments used
used when the when the
command list command list
was initiated. was initiated.
&REPLYID A three-character REPLYID() A three-character N

reply identifier
for wTor
command
replies.

190 NetView Customization: Writing Command Lists

reply identifier
for wToR
command
replies.

Table 9 (Page 4 of 5). Comparison of REXX Functions and NetView Command List Lan-
guage Control Variables

Pro-
NetView Control REXX Func- vided
Variable Task tion Task By
&RETCODE The return code RC The return code R
set by either the set by the most
most recent recently exe-
command cuted host
processor or command or sub-
most recently command or the
activated or most recently
nested command activated or
list. nested command
list.
&ROUTCDE The system ROUTCDE() The system N
routing codes in routing codes in
a binary series of a binary series of
on (1) and off (0) on (1) and off (0)
characters, characters,
representing the representing the
routing code bits routing code bits
in order. in order.
&SESSID The iD of the TAF SESSID() The 1D of the TAF N
session that sent session that sent
the message. the message.
&SMSGID The 8-character SMSGID() The 8-character N
value that identi- value that identi-
fies a particular fies a particular
instance of a instance of a
message. message.
&SUBSTR Puts partof a SUBSTR Puts partof a R
variable into variable into
another variable. another variable.
&SYSCONID The console SYSCONID() The console N
number (in number (in
decimal) that will decimal) that will
receive a receive a
message. message.
&SYSID The identifier of SYSID() The identifier of N
the mvs system the mvs system
that sent the that sent the
message. message.
&TASK The 3-character TASK() The 3-character N
string PPT string PPT
(primary POl (primary POI
task), osT (oper- task), ost (oper-
ator station task), ator station task),
Or NNT OF NNT
(NetView-NetView (NetView-NetView
task), depending task), depending
on the task under on the task under
which the which the
command list is command list is
running. running.
Appendix C. Comparison of REXX and NetView Command List Language 191

Table 9 (Page 5 of 5). Comparison of REXX Functions and NetView Command List Lan-
guage Control Variables

Pro-
NetView Control REXX Func- vided
Varlable Task tion Task By
&TIME The cpu time in TIME() The cpu time in R
the format various formats.
hh:mm.
&VTAM A character VTAM() A character N
string indicating string indicating
the level of the the level of the
access method access method
used. used.
&WTOREPLY The reply sent by WTOREPLY() The reply sent by N
the operator in the operator in
response to a response to a
WTOR command. WTOR command.
&1 - &31 The value of each MSGVAR(n) The value of each N

element of
message text of
the last message
received by
NetView. These
variables can
also be given
values when the
command list is
invoked.

192 NetView Customization: Writing Command Lists

element of
message text of
the last message
read by MSGREAD.
These variables
can also be given
values when the
command list is
invoked.

Commands Used in Command Lists

Following is a list of NetView commands that are for use in command lists. These
commands can be used in command lists written either in RExX or the NetView
command list language. When using the commands in a RExx command list, you
should enclose the parts of the command that you do not want variable substitution
to take place on in single quotes. The list shows where in the book the command
is described:

DOM See “DOM” on page 141.

GETMLINE See “GETMLINE” on page 154.

GETMSIZE See “GETMSIZE” on page 152.

GETMTYPE See “GETMTYPE"” on page 153.

MSGROUTE See “Routing Messages from Command Lists” on page 142.
PARSEL2R See “Parsing Variables with PARSEL2R” on page 144.

SDOMAIN (with QUIET option)
See “Using the SDOMAIN Command with the QUIET Option” on

page 158.
WTO See “WTO” on page 138.
WTOR See “WTOR"” on page 140.

Examples Comparing REXX and NetView Command List Language

This section contains examples of command lists. Each example is first shown
written in the NetView command list language. Following the NetView command
list language example is an example of a RExx command list that performs the
same functions.

Appendix C. Comparison of REXX and NetView Command List Language 193

‘GREETING Example—NetView Command List Language

fk*i*****i&************** ek ook de e de ek ek ek A

Figure 124. GREETING Example—NetView Command List Language

194 NetView Customization: Writing Command Lists

GREETING Example—REXX

B
»2 /**/
;/* */
/* GREETING - SHOW SIMPLE EXAMPLE OF WAITING AND TRAPPING %
e USING THE DATE COMMAND ‘ o */
I ' */
~/* NOTE: WHEN DATE IS ENTERED, THE FOLLOWING IS RETURNED: */
/* - */
_ /* CNM350I DATE : TIME = HH:MM DATE = MM/DD/YY ' */
H /**/
 'TRAP AND SUPPRESS ONLY MESSAGES CNM3501 * /* TRAP DATE MESSAGE */
© 'DATE* ~/* ISSUE COMMAND) */
- 'WAIT 10 SECONDS FOR MESSAGES‘ /* WAIT FOR ANSWER */
erELECT /% RESULT IS BACK, PROCESS IT... */
- WHEN (EVENT()='M) rasn . /* DID WE GET A MESSAGE? */
00 o SRR NES L e e ek
: 'MSGREAD" , /¥ .. READIT ™ e)
»;,,‘ HOUR—SUBSTR(MSGVAR(S) 1 2) - /* ... PARSE OUT THE HOUR %/
CSELECT - ~/* GIVE APPROPRIATE GREETING... ~ */
“WHEN (HOUR<12) THEN L +BEFORE NOON?]
O SAY 'GOOD MORNING' B
Stwueu“(unua<1a) THEN /*».,,BEFORE s)
SAY 'GOOD AFTERNOON' o
OTHERWISE . /* _,.MUST BE NIGHT = %
SAY *G00D EVENING’ TR e e
END ke o X OFSELECT s o ¥
WHEN (EVENT()='E) THEN' “/* DID WE GET AN ERROR? */
~ SAY ERROR OCCURED WAITING FOR DATE COMMAND RESPONSE'
WHEN (EVENT()='T') THEN ~ ~ /* DID WE GET A TIMEOUT? */
_ SAY 'NO MESSAGE RETURNED FROM DATE COMMAND“"’ ~ (5 M
OTHERWISE i R e e
END /* OF SELECT g e

Flgure 125 GREETlNG Example—REXX

Appendix C. Comparison of REXX and NetView Command List Language 195

LISTVAR Example—NetView Command List Language

- SEE THE NETVIEW. OPERATIONS MANUAL AND/OR ENTER HELP CLISTNAME
_ FOR A DESCRIPTION OF FUNCTION AND SYNTAX FOR THIS CLIST.

i************** aiato

WRITE cn&ssaz LISTVAR
MWRITE CNM3531 LISTVAR ¢ '
WRITE CNM353I LISTVAR : ‘A
WRITE CNM3531 LISTVAR : *
&WRITE CNM353T LISTVAR : '
WRITE CNM3531 LISTVAR
‘SWRITE CNM3531 LISTVAR : 'DATE'
_ &WRITE CNM353I LISTVAR : 'TI
wazrs CNM3531 LISTVAR

S A L L
i*********‘*i&***********f**** KhRkkhE

VTAK IS NOT ACTIVE AT THIS HME .

A **

Figure 126. LISTVAR Example—NetView Command List Language

196 NetView Customization: Writing Command Lists

LISTVAR Example—REXX

',/**/

197

* S * ’I
ﬁ” /* THE LISTVAR COMMAND LIST WRITTEN IN REXX */
; * . *
}, /**/
SELECT ,
WHEN MSGVAR(1)='?' THEN ~/* HELP REQUESTED ? */
'HELP LISTVAR' /* GO GET HELP */
WHEN MSGVAR(1)-='"' THEN /* ANY PARMS SPECIFIED ? */
TMESSAGE 306E,LISTVAR' ‘MSGVAR(1) J* NO PARMS ALLOWED - */
OTHERWISE - /* ALL OK, LIST OUT VARIABLES*/.
Do ; ; i : ; :
“SAY “CNM3531 LISTVAR : *OPSYSTEM' = "0OPSYSTEM() .-
" © SAY "CNM3531 LISTVAR : 'VTAMLVL' = "VTAM() L
o0 SAY SCNM3531 LISTVAR : 'APPLID' = “APPLID() ;;"fl f,';‘ PR
“SAY "CNM3531 LISTVAR : *OPID' = *QPID() A e e
' SAY "CNM353I LISTVAR : ‘W' =*w() Sn R
© SAY "CNM353I LISTVAR : 'TASK' = *TASK() ;
SAY "CNM3531 LISTVAR : 'DATE' = *DATE(USA) e
SAY “CNM3531 LISTVAR ¢ 'TIME' = *SUBSTR(TIME(),1,5) ,
SAY "CNM3531 LISTVAR : 'NCCFCNT' = “NCCFCNT. : s
SAY “CNM353I LISTVAR 3 *HCOPY' = “HCOPY() s : -
IF VTAM() = ' THEN : /* IS VTAM ACTIVE 2.0 = Coxf
SAY 'CNM3861 LISTVAR : VTAM IS NOT ACTIVE AT THIS TIME' .
END ~ : - /* OF THE LIST VARIABLES */
) END - J* OF SELECT e f/
- RETURN /* RETURN TO CALLER */
Figure 127. LISTVAR Example—REXX
Appendix C. Comparison of REXX and NetView Command List Language

BROWSE Example—NetView Command List Language

“n CLIST i
&CONTROL ERR Tk : .

~ * SEE THE NETVIEW OPERATIONS MANUAL AND/OR ENTER HELP CLISTNAME

~* FOR A DESCRIPTION OF FUNCTION AND SYNTAX FOR THIS CLIST.

g *** :

f(C) COPYRIGHT IBM CORP 1986 1988

g LAST CHANGE- 93/31/88 152 58 51 *fﬂ ssz-aogaxssa

| IEBCOPY SEhECT MEMBER=((CNME5001‘BRONSE R)):;'"y

: ’cunesaei CHANGED Acrrvrrv‘ , :
~ CHANGE CODE - DATE DESCRIPTIO&

- - - o o - o e i

$P1—P053950 NV1R3 880331 MTS JUST EXIT IF INVALI& RETURN CODE

*,**»‘»:&*&,**#

t********** -
*********#**
* IF FIRST PARM IS A ? THEN GOTO HELP. OTHERWISE DISPLAY A~ =
* . SCREEN TO THE USER IN BRONSE MODE.;>; ?7‘ Tt

&IF .&1 EQ .7 &THEN 8GOTO -HELP o
SIF &PARMCNT NE 1 &THEN &GOTO HELP P e

“* . IF THE PARM IS NETLOGN THEN BRONSE THE NETLOG
,&IF .&1 EQ .NETLOGA &THEN &GOTO -LOG :

~ &IF .81 EQ .NETLOGI &THEN &GOTO -LOG:‘{ e

&IF .&1 EQ .NETLOGS &THEN &GOTO -LOG -

(8IF .81 EQ NETLOGP &THEN &GOTG -6

CVIEW 1 &1 SERL G
&VIEWRC = &RE?CODE J.iv o
&IF &VIEWRC EQ O &THEN &EXIT AVIEWRC
&IF &VIEWRC EQ 4 &THEN &GOTO -SCODE
&IF &VIEWRC EQ 8 &THEN &GOTO -SCODE

- &IF &VIEWRC EQ 12 &THEN &GOTO -SCODE

~ &IF &VIEWRC EQ 16 &THEN &GOTO -SCODE

'&IF &VIEWRC EQ 24 &THEN &GOTO -SCODE

~ &IF &VIEWRC EQ 28 &THEN &GOTO -SCODE
&IF VIEWRC EQ 32 &THEN &GOTO -SCODE -
&IF S&VIEWRC EQ 36 STHEN 8GOTO -scooa’~=~ '

- &EXIT '

- -SCODE 3
SHOWCODE &VIEWRC &1
&EXIT &VIEWRC
-L0G BN
STATMON &1
SEXIT
-HELP G
HELP BROWSE

& &EXIT :

e

Flgure 128 BROWSE Example——NetV|ew Command List Language

198 Netview Customization: Writing Command Lists

BROWSE Example—REXX

**********'k***/'

é,/

;/* THE BROWSE EXAMPLE WRITTEN IN REXX S */
/***********************************'k**********************************/
CIF {MSGVAR(1)="2"){, RN /* HELP REQUESTED OR */
% - (MSGVAR(2)~="")1{, : R /* 2 OR MORE PARMS OR */
gﬁk {MSGVAR(1) ='Y) THEN s © " /* NO PARMS ENTERED */
L “YHELP BRONSE' .o .- J* GO ISSUE GET HELP . ¥/

CELSE i . SR :
IF MSGVAR(1)= ’NETLOGA‘ /* ACTIVE . OR */
- MSGVAR(1)=*NETLOGP' - /* PRIMARY DR */
MSGVAR{1)=*NETLOGS' pmE s " :/* SECONDARY -~ QR ' */
MSGVAR(1)='NETLOGI* - THEN /% INACTIVE o

MSGUAR(L) ;’/* GO USE STATMON BROWSE */

v /* GO VIEW THE MEMBER Y
© /*BADRC? e
3/* ISSUE SHONCODE ol

Figure 129. BROWSE Example—REXX

Appendix C. Comparison of REXX and NetView Command List Language 199

ACTLU Example—NetView Command List Languge

 *ERROR=-ERROR +
1STQ611=-1STO61
1ST0931=-1STA93

NOWN To<YouafvrA&i<;=

j(-IST@ga DA e e
: &NRITE ==> TERMIRAL &1 Naw &z <==
o &EXIT :
],-NULLPARM : e

 SWRITE PLEASE ENTER "eo KODENAME“ oa “GO 'STOP" TO CONTINU
- &PAUSE VARS &P1 :
" &IF &P1 = 'STOP*
~ &NODE = &P1 -
;,&GOTO -WA

&THEN &Exzr

chure 130 ACTLU Example—NetVnew Command List Language

200 Netview Customization: Writing Command Lists

ACTLU Example—REXX

— . S ——
/* ACTLU COMMAND LIST - REXX VERSION */
/* FUNCTION': TO ACTIVATE A VTAM NODE. */,
L /* INPUT : 1 PARAMETER, THE NAME OF THE NODE. : ‘
/**/
IF MSGVAR(1) = '* THEN © " /* NO FIRST PARAMETER ? */
D0 /* THEN ISSUE REQUEST */
'SAY 'PLEASE ENTER “GO NODENAME"',/* REQUEST NODENAME FROM USER */
'0R "GO STOP" TO CONTINUE' ~ /* OR, ALLOW USER TO STOP CLIST */

PARSE PULL NODE - /* NODE = NODENAME OR STOP */
: e /* THEN ISSUE REQUEST %/
/* FIRST PARAMETER EXISTS */

~ /* ASSUME IT IS A NODE NAME */
~/* IF NODE='STOP' CLIST ENDS */

/* DID USER CHOOSE TO STOP ?
v /* PROCESS NODENAME - e */
:T~*TRAP AND SUPPRESS ONLY MESSAGES IST* - /* TRAP ALL VTAM MSGS ok
,'V NET ACT,ID="NODE . . /* ISSUE VTAM ACTIVATE FOR NODE */

©/* VALID NODE NMAME 2~ */
PO s, mmmcmz=er“3,'v
'WAIT 30 SECONDS FOR MESSAGES‘ ~/* WAIT FOR 30 SECONDS */

F £vauz()='n*'xuen oo f* OUT OF WAIT - IS THERE A MSG?'*/ s
_ . /* PROCESS ‘TRAPPED MESSAGE‘~ i

v 1 /* READ IN IST MESSAGE = */
D0 wHILE:(ac=o).a;k - /* IF RC~=0 THEN NO MORE MSGS %/
,..’SELECT e /* DETERMINE WHICH MESSAGE HIT %/
©WHEN (MSGID() = *ISTE6LI') /* NODE NOT FOUND */
 THENSAY '==> LU UNKNOWN ', /* INFORM USER - */

Y70 YOUR VIAM <= ‘_.* o
WHEN (MSGID() = 'ISTO93I') 1* NODE NOW ACTIVEV*/ i
THEN SAY '==> TERMINAL ', /* INFORM USER */
MSGVAR(1)' NOW ', '
MSGVAR(2) 'e==
OTHERWISE e IGNORE THE VIAM MESSAGE x/

‘ - /* CONTINUE WAITING ey

/* OF SELECT FOR ISTB&II/IST093I */
/* READ IN THE NEXT MESSAGE */
. /* DO WHILE RC=D, LOOP BACK ~ */
. /* PROCESS TRAPPED MESSAGE 00 \;ﬂ*/

/* OUT OF DO WHILE, CHECK FOR

. ERROR OR TIMEOUT EVENTS ~ */
- , j/* CHECK RESULT OF THE wAIT ox
~ HHEN (EVENT()='E") TNEN - /* ERROR ENCOUNTERED pE
. SAY "ERROR PROCESSING ','i*'INFORM USER ~v* -?‘; a*/

’“~?1‘ACTIVATE COMMAND*

wusu (EVENT()="T') THEN *:NAIT‘TIMEOUT £NCOUNTERED ? Y,

- SAY 'NO RESPONSE TO ', /* INFORM USER ey
- ACTLU CLIST FOR NODE ; i
OTHERWISE NP */

J* OF SELECT FOR ERROR/TIMEOUT x)
- /* IF RC=0 (VALID NODENAME) */
/* IF NODE-~='STOP' PROCESSING ~ */

Figure 131. ACTLU Example—REXX

Appendix C. Comparison of REXX and NetView Command List Language 201

GETCG Example—NetView Command List Language

 GETCG CLIST
~ &CONTROL ERR

: *************************i **

\}{‘;* GETCG COMMAND LIST

ek

: **** KA

© 8CGLOBAL &1
 MESSAGE 3091 sarca COMMON
st

F|gure 132. GETCG Example—NetView Command List Language

GETCG Example—REXX

Figure 133. GETCG Example—REXX

202 Netview Customization: Writing Command Lists

uﬁmew comAuo LIST LANGUAGE VERSIO

PPTUPDAT Example—NetView Command List Language

PPTUPDAT CLIST

- &CONTROL ERR ,

SRR KRR AT KRRk RAA I KK F KA KA I KA KoKk R KK d AT K SRR KA AT A IR KAk ek obde ot
. * THIS COMMAND LIST SETS ANY COMMON GLOBAL VARIABLE ON THE PPT.

- * USE THE EXCMD COMMAND TO RUN IT ON THE PPT.

R

: * EXAMPLE: EXCMD PPT PPTUPDAT AAAAAAAA BBBBBBBB.....
Pow WHERE AAAAAAAA IS THE NAME OF THE COMMON GLOBAL VARIABLE.
% WHERE BBBBBBBB..... IS THE VALUE FOR THE COMMON GLOBAL VARIABLE

dekdkkkhkhkhkkkhhhkhhkhdhkhhdhhkkhkhkhkkkkhdkhkhkkrkhhkhrhhhhrkhkhdhkhhhkhrhhkhdhhkkhkhhik

“8CGLOBAL &1

C&IF .&TASK NE .PPT &THEN 8G0TO -ERROR

881 =

MESSAGE 3091 PPTUPDAT COMMON GLOBAL VARIABLE UPDATE coupme

L SEXIT

_~ERROR £
'MESSAGE 3091 PPTUPDAT CANNOT UPDATE comou GLOBAL VARIABLES +

-~ FROM NON-PPT TASK

REXIT

Figure 134. PPTUPDAT Example—NetView Command List Language

PPTUPDAT Example—REXX

***/

%{/* THIS COMMAND LIST SETS ‘ANY COMMON GLOBAL VARIABLE ON THE PPT. */

g}/* USE THE EXCMD COMMAND TO RUN IT ON THE PPT. : ’ */
. -/* EXAMPLE: EXCMD PPT PPTUPDAT AAAAAAAA BBBBBBBB..... o */
~/* WHERE AAAAAAAA IS THE NAME OF THE COMMON GLOBAL VARIABLE. : */

. /* WHERE BBBBBBBB...... IS THE VALUE FOR THE COMMON GLOBAL VARIABLE */
>ﬂ/***/
CTRACE E. o .

-~ /* IF TASK IS NOT THE PPT, ISSUE AN ERROR MESSAGE TO USER v */
“IF TASK() == 'PPT' THEN :

. 'MESSAGE 3091 PPTUPDAT CANNOT UPDATE COMMON GLOBAL VARIABLES ',

. " *FROM NON-PPT TASK'
’ELSE i ‘

D0 ' ' /* TASK IS PPT */
INTERPRET VALUE(MSGVAR(I)) e MSGVAR(Z) /* BUILD &&1 = &2 CMD = */
GLOBALY PUTC - MSGVAR(1)" ax /* PUT COMMON GLOBAL VAR*/
'MESSAGE 3091 PPTUPDRX COMMON GLOBAL VARIABLE UPDATE COMPLETE'

T ; /*TASKISPPT R

Figure 135. PPTUPDAT Example—REXX

Appendix C. Comparison of REXX and NetView Command List Language 203

ACTAPPLS Example—NetView Command List Language

eLIst

BCONTROL ERR e ; .

Q**#***
n‘* i Bt . R E N . E oot EesE £

* ACTAPPLET
Je

o DISPLAY ONLY THE Acrrve APPLS 5

»*

' NETVIEN COMMARD LIST LANGUAGE VERSION |

***********************t***#

* WRITE THE HEADER =
&WRITE ACTIVE APPLICAIIONS:
HRITE =======: o
~* WAIT ON THE DISPLAY COMMAND G
SWAIT CONTWAIT SUPPRESS «
&WAIT 'D NET,APPLS', IST3501--FIRST *—-ALLELSE
~* ALL NON- INFORMAYIONAL MESSAGES 60 HERE
C-ALLELSE e o
SWAIT CONTINUE;»TfF
% THE MULTILIME wto u:ru THE APPL INFORMATIOR COMES HERE
_-FIRST
* DETERMINE THE NUMBER oF LINES
- GETMSIZE NUMLINES %
- *INITIALIZE LINE NUMBER CDUNTER AND TOTAL ACTIVE APPLS
&I = g j,-,JZ“
C&TOTALACT =@~ «»;; j:;~v~
- *.70P OF THE MLNT& LOOP “' i
o-LooP S
% SET NUMBER OF ACTIVE APPLS Eouua N THIS LINEATO G
SNUMACT =0
* IF WE HAVE PARSED ALL THE LINES wE ARE DONE
_ &IF SNUMLINES = &I &THEN 8GOTO -ALLDONE
- * DETERMINE THE NUMBER OF LINES IN THE MLWTO
~ GETMLINE LINE &I s
_* PARSE OUT THE. LINE AI A2 A3 ARE APPL NAMES st
- PARSEL2R LINE MSG AL S1 A2 S2 A3 S3
* IF THERE IS NO STATUS, DONE WITH rn:s LINE
_&IF &S1. = . &THEN 8GOTO -NOCHECK S
| * CHECK TO SEE IF THE STATUS OF APPL 1 Is ACTIVE.
_&IF &S1 = 'ACTIV' &THEN 8GOTO -Al1ACT
&IF &S1 = ' ' ACTIV' &THEN 8GOTO -AIACT ‘ﬁ~» S
“ &IF &SI ACTIV' &THEN &GOTO -A1ACT
“* APPLL IS NQT‘ACTIVE BLANK 1T 0UT. e
&ST = theen I

ﬂ

8AL = e
* CHECK THE NEXT APPL
8GOTO -CHECKAZ - ~=-f; B
* THIS APPL IS ACTIVE i R e e
-A1ACT : ! e U Gt i

* BUMP NUMBER ACTIVE couur
SNUMACT = SNUMACT + 1

Figure 136 (Part 1 of 2). ACTAPPLS Example—NetView Command List Language

204 NetView Customization: Writing Command Lists

» <CHECKA2

‘% CHECK TO SEE IF THE STATUS OF APPL 2 15 ACTIVE

“&IF 852. = . &THEN &GOTO -CHECKA3 = -« . -

< BIF &S2 = 'ACTIV‘ &THEN &GOTO -A2ACT

- &IF 852 = ' ACTIV' &THEN &GOTO -A2ACT

S8IF &S2 = * ACTIV' &THEN &GOTO -A2ACT

“* APPL2 IS NOT ACTIVE, BLANK IT OUT

B s2 = !

A2 =

&GOTO -CHECKA3

- * THIS APPL IS ACTIVE

© «A2ACT

~* BUMP NUMBER ACTIVE counr :

- RNUMACT = &NUMACT + 1

- -CHECKA3 -

- BIF &S3. = . &THEN &6GOTO -NOCHECK

. RIF 8S3 = 'ACTIV' &THEN &GOTO -A3ACT

BIF &S3 = ' ACTIV' &THEN &GOTO -A3ACT

RIF 8S3 = ' ACTIV' &THEN &GOTO -A3ACT

* APPLB 1S NOT ACTIVE BLANK IT OUT .

SRS3 =t

CBA3 = U :;' i ,;,;‘;~f

3&GOTO NOCHECK

~* THIS APPL IS ACTIV£

C-AACT g

% BUMP NUMBER ACTIVE COUNT

BNUMACT = &NUMACT + 1 de
-NOCHECK ;

. * ENABLE THE DISPLAYING

BWAIT CONTWAIT DISPLAY

T% ANY ACTIVE ON THIS LINE 2

“RIF &NUMACT = 0 &THEN &GOTO -NOWRITE

e

¥ DISPLAY THE ACTIVE APPLICATIONS.
 BWRITE 8A1 8A2 BA3 e

- -NOWRITE et
* BUMP THE LINE COUNTER
M=asl |
* BUMP THE TOTAL ACTIVE COUNTER
&TOTALACT = &TOTALACT + &NUMACT
* GO PROCESS THE NEXT LINE
860TO -LOOP

* THE PARSING IS DONE
- ~ALLDONE 2 S

-+ DISPLAY THE NUMBER OF ACTIVE APPLICATIONS
BWRITE NUMBER OF APPLICATIONS ACTIVE: STOTALACT
N
g&sxxr

—

Flgure 136 (Part 2 of 2). ACTAPPLS Example—NetView Command List Language

Appendix C. Comparison of REXX and NetView Command List Language

205

ACTAPPLS Example—REXX

APPLRX : DISPLAY ONLY THE ACTIVE APPLS

- /*****‘i*****

CTRACEE
/* WRITE THE HEADER
© 'CLEAR' . [*.
SAY ' ACTIVE APPLICATIONS /* 1ST HEADER MSG -
© SAY 's======= /* 2ND HEADER MSG

_‘TRA? SUPPRESS ONLY‘MESSAGES STOS /* TRAP HEADER &

“ ~/* DATA MESSAGES
 /* ISSUE D NET CMD
/* WAIT FOR RESP.
~ /[* READ 1ST MESSAGE
J*IsT3sOL Z
/* NO- CONT. WAIT

: 'B NET APPLS-: ;
~'WAIT 5 SECONDS FOR MESSAGES
_ 'MSGREAD'

D0 WHILE (MSGID()
- "WAIT CONTINUE'

| 'WSGREAD' /* READ NEXT MSG
END ft S /% END IST350T

/R AT THIS POINT AN IST3501 MLWTO BUFFER MSG HAS BEEN RECEIVED -
CNUMACT =@ . /* INIT. TOTAL CNYR

-~ OUTLINE=" r~.¢,"‘

: : /* CLEAR OUTLINE
;_GETMSIZE NUMLINES..

/* GET NUM LINESW

/* LOOP THRU BUFFER
/* GET MLWTO LINE */
/* PARSE LINE INTO ¥,
© /* MESSAGE ID
" [* 1ST APPL/STATUS
' /* 2ND APPL/STATUS
~/* 3RD APPL/STATUS
L/ ISTG&GI? e
" /1* YES ww e e
/* APPLL ACTIVE 7
/* ADD APPL Al
/* APPL2 ACTIVE 2‘»"
.. /* ADD APPL A2.
. /* APPL3 ACTIVE. z
. /* ADD APPL A3 ¥,
. J* ISTO8OI PROCESS */>
~;;;/# LOOP: THRU. BUFFER *

D0 I=1 TO NUMLINES
= ’GETMLINE LINE' I

CALL ADDACT(AI) ey
HIF LEFT(S2,8)= 'Acrxv‘ THEK
_ CALL ADDACT(A2) =
IF LEFT(S3,8)= 'ACTIK“
CALL.ADDACT(A3}

, END
: END

Figure 137 (Part 1 of 2) ACTAPPLS Example—-REXX

206 Netview Customization: Writing Command Lists

= IF NUMACT//3—=0 THEN ' P /* NEED ANOTHER SAY?*/

_ SAY OUTLINE o/ PUT LINE OUT %/

“SAY ' >==== END OF DISPLAY ====<' ' /% EOD MESSAGE

- SAY 'NUMBER OF APPLICATIONS ACTIVE: ' NUMACT /ﬁ,:/* STATUS MESSAGE

CEXIT IESEMRS I s

-~ ADDACT: ' ‘ e B N

~/* ADD THE APPL NAME GIVEN TO THE QUTPUT LIST. IF THERE ARE EXACTLY .~ .

© ° FIVE ENTRIES, THEN PUT OUT THE LINE = 7 oo &)

: ARG APPL P S L

- OUTLINE=OUTLINE7||* *||LEFT(APPL,8) = .

. NUMACT=NUMACT+1 .

- IF NUMACT//3=0 THEN

- DO ,
SAY OUTLINE
OUTLINE=' '

~ END
“~RETURN

Flgure 137 (Part 2 of 2) ACTAPPLS Example—-REXX

Appendix C. Comparison of REXX and NetView Command List Language 207

208 Netview Customization: Writing Command Lists

Appendix D. Converting Command Lists Written in the
NetView Command L|st Language to REXX

The NetView program provides a sample REXX EXEC that you can use to convert
command lists written in the NetView command list language to RExX. The EXEC is
shipped as NetView sample CNMS8001. You can rename the sample, but this section
assumes you use the CNMsS8001 name.

You can use CNMs8001 to convert a command list written in the NetView command
list language list to a bilingual command list or a RExx-only command list. The
bilingual command list contains both the existing NetView command list language
version of the command list and the new RExx version. During the conversion,
CNMs8001 reads each line of the NetView command list language version of the
command list and writes the equivalent line in the RExx version. The records in the
bilingual command list and the RExx-only command list are up to 80 characters in
length and do not have sequence numbers. '

There are some NetView command list language conditions that cCNMs8001 cannot
convert and there are other conditions that might not be converted correctly. When
these conditions occur, CNMs8001 writes messages to a warning file to notify you of
any conversion problems. See “Conditions CNMS8001 Cannot Convert” on
page 213 and “Conditions CNMS8001 Might Not Convert Correctly” on page 213
for information on conversion restrictions.
CNMS8001 can be executed on the following operating systems:

¢ VM

* TSO/E running under MVS/XA.
Notes:

1. cNMss001 cannot run under the NetView environment.

2. To run cNMs8001, the REXX interpreter must be installed.

Appendix D. Converting Command Lists Written in the NetView Command List Language to REXX 209

Executing CNMS8001 Command List on TSO/E

You can execute CNMS8001 on a TSO/E system running under Mvs/XA in one of two
ways. The method you use depends on whether your SYS1.CNMSAMP data set is allo-
cated to the SYSPROC or SYSEXEC DD statement for the TSO/E session. The CNMS8001
EXEC is contained in the SYS1.CNMSAMP data set.

Figure 138 shows the syntax for running cNMS8001 if SYS1.CNMSAMP is not allocated
to SYSPROC or SYSEXEC. Figure 139 on page 211 shows the syntax for running
CNMS8001 if SYS1.CNMSAMP is allocated to SYSPROC or SYSEXEC.

8001)" '

[(NOSUPP|(SUPP]"
Figure 138. Syntax to Run CNMS8001 when SYS1.CNMSAMP is not Allocated to SYSPROC
or SYSEXEC
?

indicates that the cNMss001 help screens should be displayed.

inputds
specifies the Mvs data set name of the NetView command list language
command list being converted.

outputds
specifies the Mvs data set name that you want to contain the converted
command list.

warnds
specifies the Mvs data set name that you want to contain the warning file
created during the conversion.

(NOSUPP|(SUPP

(NOSUPP this optional parameter specifies that you want outputds to be a
bilingual command list. If you do not specify (NOSUPP or (SUPP,
(NOSUPP is the default.

(supp this optional parameter specifies that you want outputds to be a
REXX only command list.

Notes:

1. The string of inputds, outputds, warnds, and optionally the (NOSUPP or (SUPP
parameter are enclosed in a set of single quotes. Within that set of single
quotes, each individual data set name is enclosed within two more sets of
single quotes. If a data set name is not enclosed in two sets of single quotes,
the high level qualifier for that data set name defaults to the user iD.

For example, if the following command was entered by OPER1:

EXEC 'SYS1.CNMSAMP(CNMS8001)*' '''USER.CLIST(CLIST1)''
' 'USER.CLIST1(REXX1)'' CLIST(WARN1)'

CNMss001 would convert the NetView command list language command list in
USER.CLIST(CLIST1) to a bilingual command list and place the bilingual command
list in USER.CLIST(REXX1). Any warning or error messages would be placed in
OPER1.CLIST(WARN1). The high level identifier for CLIST(WARN1) defaults to OPER1,
because the data set name is not enclosed in two sets of single quotes.

210 NetView Customization: Writing Command Lists

2. The members for the converted command list and the warning file cannot be in
the same data set. The data sets for the converted command list and the
warning file cannot be allocated by another job (for example, if NetView is
running you cannot put the output into the atlocated NetView command list data
sets).

Figure 139 shows the syntax for running cNMs8001 if SYS1.CNMSAMP is allocated to
SYSPROC OF SYSEXEC.

:CNMS8001 ?|'inputds' ‘outputds® ‘warnds' [(NOSUPP|(SUPP]

E
&
g

b

Figure 139. Syntax to Run CNMS8001 when SYS1.CNMSAMP is Allocated to SYSPROC or

SYSEXEC
?
indicates that the cNMS8001 help screens should be displayed.
inputds
specifies the Mvs data set name of the NetView command list language
command list being converted.
outputds
specifies the Mvs data set name that you want to contain the converted
command list.
warnds
specifies the mvs data set name of the warning file created during the conver-
sion.
(NOSUPP|(SUPP
(NOSUPP this optional parameter specifies that you want outputds to be a
bilingual command list. if you do not specify (NOSUPP or (SUPP,
(NOSUPP is the default.
(SUPP this optional parameter specifies that you want outputds to be a
REXX only command list.
Notes:

1. Each individual data set name is enclosed within a set of single quotes. If a
data set name is not enclosed in single quotes, the high level qualifier for that
data set name defaults to the user ip.

For example, if the following command was entered by OPER1:
CNMS8001 'USER,CLIST(CLIST1)' 'USER.CLIST(REXX1)® CLIST1(WARN1) (SUPP

CNMss8001 would convert the NetView command list language command list in
USER.CLIST(CLIST1) to a REXX command list and place the RExx command list in
USER.CLIST(REXX1). Any warning or error messages would be placed in
OPER1.CLIST(WARN1). The high level identifier for CLIST(WARN1) defaults to OPER1,
because the data set name is not enclosed in single quotes.

2. The members for the converted command list and the warning file cannot be in
the same data set. The data sets for the converted command list and the
warning file cannot be allocated by another job (for example, if NetView is
running you cannot put the output into the allocated NetView command list data
sets).

Appendix D. Converting Command Lists Written in the NetView Command List Language to REXX 211

Executing CNMS8001 Command List on VM Operating System

Figure 140 shows the syntax of the statement used to run the cNMs8o01 command
list on the VM operating system.

ONMSSOM 2Ninputfn [mputft [mputfm]]
[outputfn outputft outputfm
warnfn warnft warnfm} . -

[(NOSUPP|(SUPP]

Flgure 140. Syntax to Run CNMSBOM Corhménd Llst on VM Operating System

?
indicates that the cNMs8001 help screens should be displayed.

inputfn
specifies the vM file name of the NetView command list language command list
being converted.

inputft
specifies the vM file type of the NetView command list language command list
being converted. If you do not code a file type or you code an asterisk (*), the
file type defauits to cLisT.

inputfm

specifies the vM file mode of the NetView command list language command list
being converted. If you do not code a file mode or you code an asterisk (*), the
file mode defaults to A.

Note: If you want to change any of the default file specifications for the output file

or the warning file, you must specify a value or asterisk (*) for each of the following
six operands:

outputfn
specifies the vM file name of the command list created during the conversion.
If you use the default file specifications for the output and warning files or you
code an asterisk (*) for this parameter, the file name defaults to the name spec-
ified in inputfn.

outputft
specifies the vM file type of the command list created during the conversion. If

you use the default file specifications for the output and warning files or you
code an asterisk (*) for this parameter, the file type defaults to Exec.

outputfm
specifies the vM file mode of the command list created during the conversion.
if you use the default file specifications for the output and warning files or you
code an asterisk (*) for this parameter, the file mode defaults to A.

warnin
specifies the vM file name of the warning file created during the conversion. If
you use the default file specifications for the output and warning files or you
code an asterisk (*) for this parameter, the file name defaults to the name spec-
ified in inputfn.

warnft
specifies the vM file type of the warning file created during the conversion. If
you use the default file specifications for the output and warning files or you
code an asterisk (*) for this parameter, the file type defaults to WARNING.

212 Netview Customization: Writing Command Lists

warnfm
specifies the vM file mode of the warning file created during the conversion. If
you use the default file specifications for the output and warning files or you
code an asterisk (*) for this parameter, the file mode defauits to A.

(NOSUPP|(SUPP.

(NOSUPP this optional parameter specifies that you want outputfn to be a
bilingual command list. If you do not specify (NOSUPP or (SUPP,
(NOSUPP is the default.

(SUPP this optional parameter specifies that you want outputfn to be a
REXX only command list.

Conditions CNMS8001 Cannot Convert

There are some conditions that cNMS8001 cannot convert. When these conditions
occur, the line in the NetView command list language command list is not con-
verted. Each unconverted line is highlighted in the output file with three exclama-
tion marks (!!!) at the beginning and the end of the line. A message containing the
output file name and the line number of each line that could not be converted is
written in the warning file.

The conditions that cannot be converted are:
¢ &BEGWRITE control statements having a label that is a variable.

¢ NetView command list language variables that cNMS8001 converts to REXX func-
tions and that are objects of assignment statements.

Conditions CNMS8001 Might Not Convert Correctly

There are some conditions that cNMssoo1 might not be able to convert correctly.
When these conditions occur, messages are written in the warning file that instruct
you to check the output file to verify that the conversion was done correctly. In
most cases, the messages list the line numbers of the lines that might not have
been converted correctly.

Some of the conditions that might not convert correctly are:

* &TGLOBAL and &CGLOBAL commands

A list of the variables specified on &CGLOBAL or &TGLOBAL commands is provided
in the warning file. Check the RExx portion of the output file to verify that these
variables are assigned correctly.

* &WAIT commands

The awAIT commands are converted, and messages are written to the warning
file to inform you that various awaiT commands were converted. Check the
RExX portion of the output file to verify that the new TRAP, WAIT, and MSGREAD
commands can perform the desired operations.

- o Parentheses and logical operators that are in a string.

These lines are converted, and messages are written to the warning file that
contain the line numbers of the converted lines. Check the RExx portion of the
output file to ensure that the parentheses and logical operators were converted
correctly.

Appendix D. Converting Command Lists Written in the NetView Command List Language to REXX 213

¢ Strings that contain a single quote followed by the letter X

These lines are converted, but, in some cases, the REXX interpreter perceives
this condition as hexadecimal. Messages containing the line numbers of any
lines having strings that contain a single quote followed by the letter X are
written in the warning file. Check the RExx portion of the output file to verify
that these strings were not interpreted as hexadecimal.

¢ Lines that contain an odd number of quotes in a string

These lines are converted, but quote placement may not be correct. Messages
are written to the warning file that list the line number of each line containing
an odd number of quotes. Check the Rexx portion of the output file to verify that
the quotes were placed correctly.

® &A&B type variables

CNMs8001 converts these variables. However, if the value that is put into the &B
portion of the variable when the command list is run contains invalid REXx
symbols, the RExx command list created by cNMs8001 will not execute.

Another condition that might cause problems when you run a converted command
list is the default initial value of variables. No messages are written to the warning
file for this condition. If a RExx variable is not assigned an initial value, its value
defaults to the name of the variable. If a NetView command list language variable
is not assigned an initial value, its value defaults to null. Therefore, if the logic of a
command list written in the NetView command list language depends on a variable
having a default initial value of null, the RExx version of the command list created
by cNMS8001 will not run correctly.

Also, CNMsS8001 assumes that the converted command list will always be called as a
command and not as a subroutine or function. Therefore, the NetView command
list language &1 - &31 variables are always converted to the REXX MSGVAR(1) -
MSGVR(31) functions and not ARG(1) - ARG(31).

Improving the Performance of Converted Command Lists

When the cNMS8001 conversion tool converts a command list, it does not attempt to
optimize the performance of the RExx command list it creates. RExX has many more
features and functions than the NetView command list language. Because CNMS8001
only converts each line in the NetView command list language command list to its
REXX equivalent, you can still enhance the performance of the RExx command list by
manually adding additional Rexx features and functions. After fixing those condi-
tions that cNMssoo01 could not convert or that might not have been converted cor-
rectly, go back and review the RExx command list to determine if its performance
could be improved.

Some of the things you can do to improve the performance of a converted
command list are:

* Improve the program structure by using REXX instructions such as CALL, DO, IF,
and SELECT.

* Use REXX arithmetic operators that are not available in the NetView command
list language. For example, muitiply (*) and divide (/).

¢ Use Rexx functions that have no NetView command list language equivalent.
For example, REVERSE(), POS(), DATATYPE(), WORDS(), and many others.

214 NetView Customization: Writing Command Lists

* Reduce the use of the RExx functions provided by NetView. Using these func-
tions is inefficient in terms of performance. If the same function, provided by
NetView, is used several times in the command list without a change in value,
use the function once to set a local variable to the value of the function. After
setting the REXx function provided by NetView to a local variable, use the local
variable in place of the function. If the value of the function changes during
execution of the command list, you need to use the function each time to
access its current value.

For complete information about the features and functions of RExx, see REXX Ref-
erence or REXX User’'s Guide.

Example of a Converted Command List

The command list in Figure 141 on page 216 is an example of a bilingual
command list created using CNMs8001. The NetView command list language portion
of the command list was used as input to CNMS8001.

Appendix D. Converting Command Lists Written in the NetView Command List Language to REXX 215

e CLIST T0 BE CONVERTE
RIS i

 &CONTROL ERR
* SEE THE NETVIEW OPERATION MANUAL AND/OR ENTER HELP CLISTNAME.
FOR A DESCRIPTION OF FUNCTION AND SYNTAX FOR THIS CLIST.

: **‘k*******************

cupvaxsﬂr:xen conp~ 1986 ?198?~

LISTSESS APPLI&-&
Lzsrssss sacau~&z

 CAMEL007 CHANGED ACTIVITY' e
 CHANGE CODE DATE DESCRIPTION

; *********ka********f***;***-Ig*********’*_*****************#*t*y**t‘k**‘***#

&IF .&P1 EQ .7 &THEN 8GOTO -HELP
- &IF .&P1 EQ . &THEN &GOTO -HELP
 &IF .&P1 EQ .ALL &THEN &GOTOQ ~LAEL
- 8IF .&P1 EQ .0 &THEN &GOTO -OPCT
_ &IF .&P1 EQ .OPCTL &THEN &GOTO -OPCT
_&IF .&P1 EQ .F &THEN 8GOTO -FLSC
~ &IF .&P1 EQ .FLSCN &THEN &GOTO -FLSC -
_ &IF .&P1 EQ .A &THEN &GOTO -APPL
- &IF .&P1 EQ .S &THEN &GOTO -SRCL

_ INVALID PARAMETER (,~~ -
_ MESSAGE. 306E, LSESS, 41
?&Exxr‘ -

Flgure 141 (Part 1 of 4) Blhngual Command Llst Created by CNMS8001

216 NetView Customization: Writing Command Lists

i***
~=LALL

* - - COMMAND ENTERED: LSESS ALL

FRCONTROL CMD - - :

L ISTSESS

- &CONTROL ERR

SEXIT

;***
- —OPCT

~* COMMAND ENTERED: LSESS O OR LSESS OPCTL

&CONTROL CMD

LISTSESS OPCTL

“&CONTROL ERR'

CREXIT ‘
**
-FLSC S

. mmmoanuwaﬁsrokwssnwu

‘**

APPL e
 COMMAND ENTERED' LSESS APPLID (OF FIVE CHARACTERS)
IF .82 EQ . &THEN &GOTO -ERROR

CONTROL CMD ;

ISTSESS - APPLID =aP2

**

SRCL T i
commanp ENTERED~ LSESS 0 OR LSESS OPCTL

IF .82 EQ . STHEN 860TO -ERROR

CONTROL CMD S

ISTSESS sncLu-&pz L

CONTROL ERR

EXIT :
**
| -ERROR el

'MESSAGE 330E,LSESS, szcona

REXIT

**

~ END OF CLIST */
REXX CONVERSIONS */

Figure 141 (Part 2 of 4). Bilingual Command List Created by CNMS8001

Appendix D. Converting Command Lists Written in the NetView Command List Language to REXX 217

/* CLIST */ -
 TRACEE : ' ’ ‘ o
~ /* SEE THE NETVIEW OPERATIONS MANUAL AND/OR ENTER HELP CLISTNAME*/
_/* FOR A DESCRIPTION OF FUNCTION AND SYNTAX FOR THIS CLIST.*/

k **'k*/‘

(CX COPYRIGHT IBM CORP. 1985 1987

LISTSESS FLSCN
LISTSESS APPLID= &2
LIS?SESS SRCLU‘&Z

& ANGEB ACTIVITY* R
CHANGE CODE DATE . - DESCRIPTION -

fHENASIGNAL HEL?;-
THEN SIGNAL HELP -

', OPCTL* THEN SIGNAL OPCT =
*.F' THEN SIGNAL FLSC

= '.A' THEN SIGNAL APPL
".5" THEN STGNAL SRCL
!INVALID PARAMETER*/

/ COMMAN[} ENTERED' LSESS ALL*
“TRACEC -

'LISTSESS,‘
- TRACE E
EXIT

Flgure 141 (Part 3 of 4) Blhngual Command Llst Created by CNM38001

218 NetView Customization: Writing Command Lists

/***/

J* COMMAND ENTERED: LSESS 0 OR LSEsS GPCTL*/
"TRACE ¢ %
- 'LISTSESS OPCTL'
TRACE E :
EXIT _ S
A/***k***************************/
L FLSC:
/% COMMAND ENTERED: LSESS F OR LSESS FLSCN*/
TRACEC e
 1LISTSESS FLSCN'
TRACE E ~
XIT

: /***i*/

F "‘ 'MSGYAR(Z) s‘t‘ ! THEN SIGNAL ERROR

LISTSESS APPbe- 92

Figure 141 (Part 4 of 4). Bilingual Command List Created by CNMS8001

Appendix D. Converting Command Lists Written in the NetView Command List Language to REXX 219

220 NetView Customization: Writing Command Lists

Glossary, Bibliography, and Index

Glossary 223
Bibliography .. R 241
NetView Publications e 241
NetView/PC Publications 242
Other Network Program Products Publications 242
VTAM Pubiications 242
NCP, SSP,and EP Publications 242
Related Publications 243
IndeX . .. e e 245

Glossary, Bibliography, and Index 221

222 NetView Customization: Writing Command Lists

Glossary

This glossary defines important NCP, NetView,
NetView/PC, SSP, and VTAM abbreviations and terms.
It includes information from the IBM Dictionary of Com-
puting, SC20-1699. Definitions from the American
National Dictionary for Information Processing are
identified by an asterisk (*). Definitions from draft pro-
posals and working papers under development by the
International Standards Organization, Technical Com-
mittee 97, Subcommittee 1 are identified by the symbol
(TCS7). Definitions from the CCITT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the Consultative Com-
mittee on International Telegraph and Telephone of the
International Telecommunication Union, Geneva, 1980
are preceded by the symbol (CCITT/ITU). Definitions
from published sections of the ISO Vocabulary of Data
Processing, developed by the International Standards
Organization, Technical Committee 97, Subcommittee 1
and from published sections of the /ISO Vocabulary of
Office Machines, developed by subcommittees of ISO
Technical Committee 95, are preceded by the symbol
(1S0).

For abbreviations, the definition usually consists only of
the words represented by the letters; for compiete defi-
nitions, see the entries for the words.

Retference Words Used in the Entries

The following reference words are used in this
glossary:

Deprecated term for. Indicates that the term should
not be used. It refers to a preferred term, which is
defined.

Synonymous with. Appears in the commentary of a
preferred term and identifies less desirable or less
specific terms that have the same meaning.

Synonym for. Appears in the commentary of a less
desirable or less specific term and identifies the
preferred term that has the same meaning.

Contrast with. Refers to a term that has an opposed
or substantively different meaning.

See. Refers to multiple-word terms that have the
same last word.

See also. Refers to related terms that have similar
(but not synonymous) meanings.

ACB name. (1) The name of an ACB macroinstruction.
(2) A name specified in the ACBNAME parameter of a
VTAM APPL statement. Contrast with network name.

accept. For a VTAM application program, to establish
a session with a logical unit (LU) in response to a CINIT

request from a system services control point (SSCP).
The session-initiation request may begin when a ter-
minal user logs on, a VTAM application program issues
a macroinstruction, or a VTAM operator issues a
command. See also acquire (1).

access method. A technique for moving data between
main storage and input/output devices.

accounting exit routine. In VTAM, an optional installa-
tion exit routine that collects statistics about session
initiation and termination.

ACF. Advanced Communications Function.

ACF/NCP. Advanced Communications Function for the
Network Control Program. Synonym for NCP.

ACF/SSP. Advanced Communications Function for the
System Support Programs. Synonym for SSP.

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM.

acquire. (1) For a VTAM application program, to ini-
tiate and establish a session with another logical unit
(LU). The acquire process begins when the application
program issues a macroinstruction. See also accept.
(2) To take over resources that were formerly con-
trolled by an access method in another domain, or to
resume control of resources that were controlled by
this domain but released. Contrast with release. See
also resource takeover.

activate. To make a resource of a node ready to
perform the functions for which it was designed. Con-
trast with deactivate.

active. (1) The state a resource is in when it has been
activated and is operational. Contrast with inactive,
pending, and inoperative.. (2) Pertaining to a major or
minor node that has been activated by VTAM. Most
resources are activated as part of VTAM start proc-
essing or as the result of a VARY ACT command.

adaptive session pacing. Synonym for adaptive
session-leve! pacing.

adaptive session-level pacing. A form of session-level
pacing in which session components exchange pacing
windows that may vary in size during the course of a
session. This allows transmission to adapt dynamically
to variations in availability and demand of buffers on a
session by session basis. Session pacing occurs
within independent stages along the session path
according to iocal congestion at the intermediate
nodes. Synonymous with adaptive session pacing.

Glossary 223

See pacing, session-level pacing, and virtual route
pacing.

Advanced Communications Function (ACF). A group of
IBM licensed programs (principally VTAM, TCAM, NCP,
and SSP) that use the concepts of Systems Network
Architecture (SNA), including distribution of function
and resource sharing.

alert. (1) In SNA, a record sent to a system problem
management focal point to communicate the existence
of an alert condition. (2) In the NetView program, a
high priority event that warrants immediate attention.
This data base record is generated for certain event
types that are defined by user-constructed filters.

allocate. A logical unit (LU) 6.2 application program
interface (APIl) verb used to assign a session to a con-
versation for the conversation’s use. Contrast with
deallocate.

API. Application program interface.

application program. (1) A program written for or by a
user that applies to the user’s work. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

application program interface (APl). (1) The formally
defined programming language interface between an
IBM system control program or licensed program and
its user. (2) The interface through which an application
program interacts with an access method. In VTAM, it
is the language structure used in control blocks so that
application programs can reference them and be identi-
fied to VTAM.

attaching device. Any device that is physically con-
nected to a network and can communicate over the
network.

authorization exit routine. In VTAM, an optional instal-
lation exit routine that approves or disapproves
requests for session initiation.

authorized receiver. In the NetView program, an
authorized operator who receives all the unsolicited
and authorized-receiver messages not assigned to a
‘specific operator.

automatic logon. (1) A process by which VTAM auto-
matically creates a session-initiation request to estab-
lish a session between two logical units (LUs). The
session will be between a designated primary logical
unit (PLU) and a secondary logical unit (SLU) that is
neither queued for nor in session with another PLU.
See also controlling application program and controi-
ling logical unit. (2) In VM, a process by which a
virtual machine is initiated by other than the user of
that virtual machine. For example, the primary VM

224 NetView Customization: Writing Command Lists

operator’s virtual machine is activated automatically
during VM initialization.

available. In VTAM, pertaining to a logical unit that is
active, connected, enabled, and not at its session limit.

BIU segment. In SNA, the portion of a basic informa-
tion unit (BIU) that is contained within a path informa-
tion unit (PIU). It consists of either a request/response
header (RH) followed by al! or a portion of a
request/response unit (RU), or only a portion of an RU.

blocking of PIUs. In SNA, an optional function of path
control that combines muitiple path information units
(PIUs) into a single basic transmission unit (BTU).

boundary function. (1) A capability of a subarea node
to provide protocol support for attached peripheral
nodes, such as: (a) interconnecting subarea path
control and peripheral path control elements, (b) per-
forming session sequence numbering for low-function
peripheral nodes, and (c) providing session-level
pacing support. (2) The component that provides these
capabilities. See also boundary node, network
addressable unit (NAU), peripheral path control,
subarea node, and subarea path control.

boundary node. (1) A subarea node with boundary
function. See subarea node (including illustration).
See also boundary function. (2) The programming
component that performs FID2 (format identification
type 2) conversion, channel data link control, pacing,
and channel or device error recovery procedures for a
locally attached station. These functions are similar to
those performed by a network control program for an
NCP-attached station.

browse. A way of looking at a file that does not allow
you to change it.

buffer. A portion of storage for temporarily holding
input or output data.

call. (1) * (ISO) The action of bringing a computer
program, a routine, or a subroutine into effect, usually
by specifying the entry conditions and jumping to an
entry point. (2) To transfer control to a procedure,
program, routine, or subroutine. (3) The actions nec-
essary to make a connection between two stations.

(4) To attempt to contact a user, regardless of whether
the attempt is successful.

CALLOUT. The logical channel type on which the data
terminal equipment (DTE) can send a call, but cannot
receive-one.

calling. * (ISO) The process of transmitting selection
signals in order to establish a connection between data
stations.

chain. (1) A group of logically linked records. (2) See
RU chain.

channel-attached. (1) Pertaining to the attachment of
devices directly by input/output channels to a host
processor. (2) Pertaining to devices attached to a con-
trolling unit by cables, rather than by telecommuni-
cation lines. Contrast with link-attached. Synonymous
with local.

character-coded. Synonym for unformatted.
CICS. Customer Information Contro! System.
CLIST. Command list.

command. (1) A requestfrom a terminal for the per-
formance of an operation or the execution of a partic-
ular program. (2) in SNA, any field set in the
transmission header (TH), request header (RH), and
sometimes portions of a request unit (RU), that initiates
an action or that begins a protocol; for example: (a)
Bind Session (session-control request unit), a
command that activates an LU-LU session, (b) the
change-direction indicator in the RH of the last RU of a
chain, (c) the virtual route reset window indicator in a
FiD4 transmission header. See also VTAM operator
command.

command facility. The component of the NetView
program that is a base for command processors that
can monitor, control, automate, and improve the opera-
tion of a network.

command list. A list of commands and statements
designed to perform a specific function for the user.
Command lists can be written in REXX or in NetView
command list language.

command processor. (1) A program that performs an
operation specified by a command. (2) In the NetView
program, a user-written module designed to perform a
specific function. Command processors, which can be
written in assembler or a high-level language (HLL),
are invoked as commands.

communication line. Deprecated term for telecommu-
nication line and transmission line.

communication management configuration host node.
The type 5 host processor in a communication manage-
ment configuration that does all network-control func-
tions in the network except for the control of devices
channel-attached to data hosts. Synonymous with com-
munication management host. Contrast with data host
node.

communication management host. Synonym for com-
munication management configuration host node. Con-
trast with data host.

component. A command that (a) controls the termi-
nal’s screen (using the DSIPSS macro
(TYPE = ASYPANEL) or the VIEW command), (b) aliows

the operator to enter NetView commands, and (c) can
resume when such commands are complete.

composite end node (CEN). A group of nodes made up
of a single type 5 node and its subordinate type 4 nodes
that together support type 2.1 protocols. To a type 2.1
node, a CEN appears as one end node. For example,
NCP and VTAM act as a composite end node.

configuration. (1) (TC97) The arrangement of a com-
puter system or network as defined by the nature,
number, and the chief characteristics of its functional
units. The term may refer to a hardware or a software
configuration. (2) The devices and programs that
make up a system, subsystem, or network. (3) In CCP,
the arrangement of controllers, lines, and terminals
attached to an IBM 3710 Network Controller. Also, the
collective set of item definitions that describe such a
configuration.

configuration services. In SNA, one of the types of
network services in the control point (CP) and in the
physical unit (PU); configuration services activate,
deactivate, and maintain the status of physical units,
links, and link stations. Configuration services also
shut down and restart network elements and modify
path control routing tables and address-transilation
tables. See also maintenance services, management
services, network services, and sessijon services.

connection. Synonym for physical connection.

control program (CP). The VM operating system that
manages the real processor’s resources and is respon-
sible for simulating System/370s for individual users.

controlling application program. In VTAM, an applica-
tion program with which a secondary logical unit (other
than an application program) is automatically put in
session whenever the secondary logical unit is avail-
able. See also automatic logon and controlling logical
unit.

controlling logical unit. In VTAM, a logical unit with
which a secondary logical unit (other than an applica-
tion program) is automatically put in session whenever
the secondary logical unit is available. A controlling
logical unit can be either an application program or a
device-type logical unit. See also automatic logon and
controlling application program.

control statement. A statement in a command list that
controls the processing sequence of the command list
or allows the command list to send messages to the
operator and receive input from the operator.

converted command. An intermediate form of a
character-coded command produced by VTAM through
use of an unformatted system services definition table.
The format of a converted command is fixed; the unfor-
matted system services definition table must be con-
structed in such a manner that the character-coded

Glossary 225

command (as entered by a logical unit) is converted
into the predefined, converted command format. See
also unformatted.

cross-domain. In SNA, pertaining to control of
resources involving more than one domain.

Customer Information Control System (CICS). A
licensed program that enables transactions entered at
remote terminals to be processed concurrently by
user-written application programs. It aiso includes
facilities for building, using, and maintaining data
bases.

data host. Synonym for data host node. Contrast with
communication management configuration host.

data host node. In a communication management con-
figuration, a type 5 host node that is dedicated to proc-
essing applications and does not control network
resources, except for its channel-attached or communi-
cation adapter-attached devices. Synonymous with
data host. Contrast with communication management
configuration host node.

data link. In SNA, synonym for link.

data link control (DLC) layer. in SNA, the layer that
consists of the link stations that schedule data transfer
over a transmission medium connecting two nodes and
perform error control for the link connection. Examples
of data link control are SDLC for serial-by-bit link con-
nection and data link control for the System/370
channel.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several pre-
scribed arrangements and described by control infor-
mation to which the system has access.

DBCS. Double-byte character set.
ddname. Data definition name.

deactivate. To take a resource of a node out of
service, rendering it inoperable, or to place it in a state
in which it cannot perform the functions for which it was
designed. Contrast with activate.

deallocate. A logical unit (LU) 6.2 application program
interface (API) verb that terminates a conversation,
thereby freeing the session for a future conversation.
Contrast with allocate.

definite response (DR). In SNA, a value in the
form-of-response-requested field of the request header.
The value directs the receiver of the request to return a
response unconditionally, whether positive or negative,
to that request. Contrast with exception response and
no response.

226 Netview Customization: Writing Command Lists

definition statement. (1) In VTAM, the statement that
describes an element of the network. (2) In NCP, a
type of instruction that defines a resource to the NCP.
See Figure 142, Figure 143, and Figure 144. See also
macroinstruction.

opeTands
,suboperands suboperands'
'START] rA' (8,C) ' 'KEYwORDI=D. KEYWORD2=(E, F) |
statément posiIional keyLord
Iidentifier operands operands
statément

Figure 142. Example of a Language Statement

definitionlstatement
I 3l

subo?erands
f 1
IBUILDl lEA=(ca0[,ca1][,caZ](,ca3])l
T T
definition keyword
statement operand
identifier

Figure 143. NCP Examples

definition keyword operand
statement L)
identifier suboperands

P DISCNT=({YES|NO][,F|NF] |)

T
definition statement

VARY NET,ACT, ID=name,RNAME=(namel,...,namel3)
operator positional suboperands
command operands
operator | T

operands

T
operator command

Figure 144. VTAM Examples

i

device. An input/output unit such as aterminal,
display, or printer. See attaching device.

dial-out. Refers to the direction in which a switched
connection is requested by a host or an NCP.

directory. In VM, a control program (CP) disk that
defines each virtual machine’s normal configuration.

disabled. In VTAM, pertaining to a logical unit (LU)
that has indicated to its system services control point
(SSCP) that it is temporarily not ready to establish
LU-LU sessions. An initiate request for a session with

a disabled logical unit (LU) can specify that the session
be queued by the SSCP until the LU becomes enabled.
The LU can separately indicate whether this applies to
its ability to act as a primary logical unit (PLU) or a sec-
ondary logical unit (SLU). See also enabled and inhib-
ited.

display. (1) To present information for viewing,
usually on a terminal screen or a hard-copy device.
(2) A device or medium on which information is pre-
sented, such as a terminal screen. (3) Deprecated
term for panel.

domain. (1) An access method, its application pro-
grams, communication controllers, connecting lines,
modems, and attached terminals. (2) In SNA, a system
services control point (SSCP) and the physical units
(PUs), logical units (LUs), links, link stations, and all the
associated resources that the SSCP has the ability to
control by means of activation requests and deacti-
vation requests. See system services control point
domain and type 2.1 node control point domain.. See
also single-domain network and multiple-domain
network.

domain operator. In a multiple-domain network, the
person or program that controls the operation of the
resources controlled by one system services control
point. Contrast with network operator (2).

double-byte character set (DBCS). A character set,
such as Japanese, in which each character is repres-
ented by a two-byte code.

downstream. In the direction of data flow from the host
to the end user. Contrast with upstream.

DR. (1) in NCP and CCP, dynamic reconfiguration.
(2) In SNA, definite response.

drop. Inthe IBM Token-Ring Network, a cable that
leads from a faceplate to the to the distribution panel in
a wiring closet. When the IBM Cabling System is used
with the IBM Token-Ring Network, a drop may form part
of a lobe.

dynamic reconfiguration (DR). The process of
changing the network configuration (peripheral PUs
and LUs) without regenerating complete configuration
tables.

EBCDIC. " Extended binary-coded decimal inter-
change code. A coded character set consisting of 8-bit
coded characters.

echo. The return of characters to the originating SS
device to verify that a message was sent correctly.

element. (1) A field in the network address. (2) The
particular resource within a subarea identified by the
element address. See also subarea.

Emulation Program (EP). An IBM control program that
allows a channel-attached 3705 or 3725 communication
controller to emulate the functions of an IBM 2701 Data
Adapter Unit, an IBM 2702 Transmission Control, or an
IBM 2703 Transmission Control. See also network
control program.

enabled. In VTAM, pertaining to a logical unit (LU) that
has indicated to its system services control point
(SSCP) that it is now ready to establish LU-LU sessions.
The LU can separately indicate whether this prevents it
from acting as a primary logical unit (PLU) or as a sec-
ondary logical unit (SLU). See also disabled and inhib-
ited.

end node. A type 2.1 node that does not provide any
intermediate routing or session services to any other
node. For example, APPC/PC is an end node. See
composite end node, node, and type 2.1 node.

EP. Emulation Program.
ER. (1) Explicit route. (2) Exception response.

error-to-traffic (E/T). The number of temporary errors
compared to the traffic associated with a resource.

E/T. Error-to-traffic.

event. (1) In the NetView program, a record indicating
irregularities of operation in physical elements of a
network. (2) An occurrence of significance to a task;
typically, the completion of an asynchronous operation,
such as an input/output operation.

exception response (ER). In SNA, a value in the
form-of-response-requested field of a request header
(RH). An exception response is sent only if a request is
unacceptable as received or cannot be processed.
Contrast with definite response and no response. See
also negative response.

EXEC. Ina VM operating system, a user-written
command file that contains CMS commands, other
user-written commands, and execution control state-
ments, such as branches.

exit routine. Any of several types of special-purpose
user-written routines. See accounting exit routine,
authorization exit routine, logon-interpret routine,
virtual route selection exit routine, EXLST exit routine,
and RPL exit routine.

EXLST exit routine. in VTAM, a routine whose address
has been placed in an exit list (EXLST) control block.
The addresses are placed there with the EXLST macro-
instruction, and the routines are named according to
their corresponding operand; hence DFASY exit
routine, TPEND exit routine, RELREQ exit routine, and
so forth. All exit list routines are coded by the VTAM
application programmer. Contrast with RPL exit
routine.

Glossary 227

explicit route (ER). In SNA, the path control network
elements, including a specific set of one or more trans-
mission groups, that connect two subarea nodes. An
explicit route is identified by an origin subarea
address, a destination subarea address, an explicit
route number, and a reverse explicit route number.
Contrast with virtual route (VR). See also path and
route extension.

feature. A particular part of an IBM product that a cus-
tomer can order separately.

FID. Format identification.

field-formatted. Pertaining to a request or response
that is encoded into fields, each having a specified
format such as binary codes, bit-significant flags, and
symbolic names. Contrast with character-coded.

flow control. In SNA, the process of managing the rate
at which data traffic passes between components of the
network. The purpose of flow control is to optimize the
rate of flow of message units, with minimum congestion
in the network; that is, to neither overflow the buffers at
the receiver or at intermediate routing nodes, nor leave
the receiver waiting for more message units. See also
adaptive session-level pacing, pacing, session-level
pacing, and virtual route pacing.

flushing. In logical unit (LU) 6.2, the process of
sending through the network all remaining buffered
data generated by a transaction program. The trans-
action program issues the flush verb to begin the
process. It also occurs if the network operator issues
the command.

format identification (FID) field. In SNA, a field in each
transmission header (TH) that indicates the format of
the TH; that is, the presence or absence of certain
fields. TH formats differ in accordance with the types of
nodes between which they pass. The six FID types are:

FIDO, used for traffic involving non-SNA devices
between adjacent subarea nodes when either or
both nodes do not support explicit route and virtual
route protocols.

FID1, used for traffic between adjacent subarea
nodes when either or both nodes do not support
explicit route and virtual route protocols.

FID2, used for traffic between a subarea node and
an adjacent type 2 peripheral node.

FID3, used for traffic between a subarea node and
an adjacent type 1 peripheral node.

FID4, used for traffic between adjacent subarea
nodes when both nodes support explicit rcute and
virtual route protocols.

FIDF, used for certain commands (for example, for
transmission group control) sent between adjacent
subarea nodes when both nodes support explicit
route and virtual route protocols.

228 Netview Customization: Writing Command Lists

frame. (1) The unit of transmission in some local area
networks, including the IBM Token-Ring Network, it
includes delimiters, control characters, information,
and checking characters. (2) In SDLC, the vehicle for
every command, every response, and all information
that is transmitted using SDLC procedures.

full-screen mode. A form of panel presentation in the
NetView program where the contents of an entire ter-
minal screen can be displayed at once. Full-screen
mode can be used for fill-in-the-blanks prompting. Con-
trast with line mode.

GCS. Group control system.

generation. The process of assembling and link
editing definition statements so that resources can be
identified to all the necessary programis in a network.

generic alert. Encoded alert information that uses
code points (defined by IBM and possibly customized
by users or application programs) stored at an alert
receiver, such as the NetView program.

group. In the NetView/PC program, to identify a set of
application programs that are to run concurrently.

group control system (GCS). A component of VM that
provides multiprogramming and shared memory
support to virtual machines. It is a saved system
intended for use with SNA products.

half-session. In SNA, a component that provides func-
tion management data (FMD) services, data flow
control, and transmission control for one of the ses-
sions of a network addressable unit (NAU). See also
primary half-session and secondary half-session.

hard copy. A printed copy of machine output in a visu-
ally readable form; for example, printed reports,
listings, documents, summaries, or network logs.

hardware monitor. The component of the NetView
program that helps identify network problems, such as
hardware, software, and microcode, from a central
control point using interactive display techniques.

HCF. Host Command Facility.

help panel. An online display that tells you how to use
a command or another aspect of a product. See task
panel.)

High Performance Option (HPO). A licensed program
that is an extension of VM/SP. It provides performance
and operation enhancements for large system environ-
ments.

Host Command Facility (HCF). An IBM licensed
program that enables a user at a System/370 terminal

to access applications in systems such as the 8100 or
System/36.

host node. A node providing an application program
interface (API) and a common application interface.
See boundary node, node, peripheral node, subarea
host node, and subarea node. See also boundary func-
tion and node type. :

HPO. High Performance Option.

IMS. Information Management System/Virtual Storage.
Synonymous with IMS/VS.

IMS/VS. Information Management System/Virtual
Storage. Synonym for IMS.

inactive. Describes the state of a resource that has not
been activated or for which the VARY INACT command
has been issued. Contrast with active. See also inop-
erative.

information (I) format. A format used for information
transfer.

Information/Management. A feature of the
Information/System licensed program that provides
interactive systems management applications for
problem, change, and configuration management.

Information Management System (IMS). A general
purpose system whose full name is Information Man-
agement System/Virtual Storage (IMS/VS). It enhances
the capabilities of OS/VS for batch processing and tele-
communication and allows users to access a
computer-maintained data base through remote termi-
nals.

inhibited. In VTAM, pertaining to a logical unit (LU)
that has indicated to its system services control point
(SSCP) that it is not ready to establish LU-LU sessions.
An initiate request for a session with an inhibited LU
will be rejected by the SSCP. The LU can separately
indicate whether this applies to its ability to act as a
primary logical unit (PLU) or as a secondary logical
unit (SLU). See also enabled and disabled.

initiate. A network services request sent from a logical
unit (LU) to a system services control point (SSCP)
requesting that an LU-LU session be established.

inoperative. The condition of a resource that has been
active, but is not. The resource may have failed,
received an INOP request, or is suspended while a
reactivate command is being processed. See also
inactive.

Interactive System Productivity Facility (ISPF). An iBM
licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application

programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

interface. * A shared boundary. An interface might be
a hardware component to link two devices or it might
be a portion of storage or registers accessed by two or
more computer programs.

ISPF. Interactive System Productivity Facility.

item. In CCP, any of the components, such as commu-
nication controllers, lines, cluster controllers, and ter-
minals, that comprise an IBM 3710 Network Controller
configuration.

JCL. Job control language.

job control language (JCL). * A problem-oriented lan-
guage designed to express statements in a job that are
used to identify the job or describe its requirements to
an operating system.

Kanji. Anideographic character set used in Japanese.
See also double-byte character set.

keyword. (1) (TC97) A lexical unit that, in certain con-
texts, characterizes some language construction. (2) -*
One of the predefined words of an artificial language.
(3) One of the significant and informative words in a
title or document that describes the content of that doc-
ument. (4) A name or symbol that identifies a param-
eter. (5) A part of a command operand that consists of
a specific character string (such as DSNAME =). See
also definition statement and keyword operand. Con-.
trast with positional operand.

keyword operand. An operand that consists of a
keyword followed by one or more values (such as
DSNAME =HELLO). See also definition statement.
Contrast with positional operand.

keyword parameter. A parameter that consists of a
keyword followed by one or more values.

line. See communication line.

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen
mode.

link. In SNA, the combination of the link connection
and the link stations joining network nodes; for
example: (1) a System/370 channel and its associated
protocols, (2) a serial-by-bit connection under the
control of Synchronous Data Link Control (SDLC). A
link connection is the physical medium of transmission.
A link, however, is both logical and physical. Synony-
mous with data link. See Figure 145 on page 230.

Glossary 229

Subarea Host Node

Type 5 PU

Boundary L SSCP
Function

Channel Subarea Link

Another
Subarea Node

SBLC

Subarea

Link
Communication Controller

Type 4 PU

Subarea Path Control

Subarea Path Control

Peripheral Host Node

Type 2.1 PU

LU

Channel Peripheral Link

Boundary
Function

Peripheral Path Control

Peripheral Path Control

Figure 145. Links and Path Controls-

link-attached. Pertaining to devices that are physically
connected by a telecommunication line. Contrast with
channel-attached. Synonymous with remote.

link connection segment. A portion of the configuration
that is located between two resources listed consec-
utively in the service point command service (SPCS)
query link configuration request list.

230 NetView Customization: Writing Command Lists

SDLC Peripheral
Links

Type 2 Type 2.1

foad module. (ISO) A program unit that is suitable for
loading into main storage for execution; it is usually the
output of a linkage editor.

local. Pertaining to a device that is attached to a con-
troliing unit by cables, rather than by a telecommuni-
cation line. Synonymous with channel-attached.

focal address. In SNA, an address used in a peripheral
node in place of an SNA network address and trans-
formed to or from an SNA network address by the
boundary function in a subarea node.

logical unit (LU). In SNA, a port through which an end
user accesses the SNA network and the functions pro-
vided by system services control points (SSCPs). An
LU can support at least two sessions—one with an
SSCP and one with another LU—and may be capable of
supporting many sessions with other LUs. See also
network addressable unit (NAU), peripheral LU, phys-
ical unit (PU), system services control point (SSCP),
primary logical unit (PLU), and secondary logical unit
(SLU).

logical unit (LU) services. In SNA, capabilities in a
logical unit to: (1) receive requests from an end user
and, in turn, issue requests to the system services
control point (SSCP) in order to perform the requested
functions, typically for session initiation; (2) receive
requests from the SSCP, for example to activate LU-LU
sessions via Bind Session requests; and (3) provide
session presentation and other services for LU-LU ses-
sions. See also physical unit (PU) services.

logical unit (LU) 6.2. A type of logical unit that sup-
ports general communication between programs in a
distributed processing environment. LU 6.2 is charac-
terized by (1) a peer relationship between session part-
ners, (2) efficient utilization of a session for multiple
transactions, (3) comprehensive end-to-end error proc-
essing, and (4) a generic application program interface
(API) consisting of structured verbs that are mapped
into a product implementation.

logoff. In VTAM, an unformatted session termination
request.

logon. In VTAM, an unformatted session initiation
request for a session between two logical units. See
automatic logon and simulated logon. See also
session-initiation request.

logon-interpret routine. In VTAM, an instaliation exit
routine, associated with an interpret table entry, that
translates logon information. It may also verify the
logon.

LU. Logical unit.

LU type. In SNA, the classification of an LU-LU session
in terms of the specific subset of SNA protocols and
options supported by the logical units (LUs) for that
session, namely:

The mandatory and optionai values allowed in the
session activation request.

The usage of data stream controls, function man-
agement headers (FMHs), request unit (RU) param-
eters, and sense codes.

Presentation services protocols such as those
associated with FMH usage.

LU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined.

LU-LU session. In SNA, a session between two logical
units (LUs) in an SNA network. It provides communi-
cation between two end users, or between an end user
and an LU services component.

LU-LU session type. A deprecated term for LU type.
LU 6.2. Logical unit6.2.

macroinstruction. (1) An instruction that when exe-
cuted causes the execution of a predefined sequence of
instructions in the same source language. (2) in
assembler programming, an assembler language state-
ment that causes the assembler to process a prede-
fined set of statements called a macro definition. The
statements normally produced from the macro defi-
nition replace the macroinstruction in the program.

See also definition statement.

maintenance services. in SNA, one of the types of
network services in system services control points
(SSCPs) and physical units (PUs). Maintenance ser-
vices provide facilities for testing links and nodes and
for collecting and recording error information. See
also configuration services, management services,
network services, and session services.

major node. In VTAM, a set of resources that can be
activated and deactivated as a group. See node and
minor node.

management services. In SNA, one of the types of
network services in control points (CPs) and physical
units (PUs). Management services are the services
provided to assist in the management of SNA networks,
such as problem management, performance and
accounting management, configuration management
and change management. See also configuration ser-
vices, maintenance services, network services, and
session services.

message. (1) (TC97) A group of characters and
control bit sequences transferred as an entity. (2) In
VTAM, the amount of function management data (FMD)
transferred to VTAM by the application program with
one SEND request.

“migration. installing a new version or release of a

program when an earlier version or release is already
in place.

minidisk. Synonym for virtual disk.

minor node. In VTAM, a uniquely-defined resource
within a major node. See node and major node.

Glossary 231

module. * A program unit that is discrete and identifi-
able with respect to compiling, combining with other
units, and loading; for example, the input to or output
from an assembler, compiler, linkage editor, or execu-
tive routine.

monitor. In the IBM Token-Ring Network, the function
required to initiate the transmission of a token on the
ring and to provide soft-error recovery in case of lost
tokens, circulating frames, or other difficuities. The
capability is present in all ring stations.

muitiple-domain network. In SNA, a network with more
than one system services control point (§8SCP). Con-
trast with single-domain network.

Mulitiple Virtual Storage (MVS). An IBM licensed
program whose full name is the Operating
System/Virtual Storage (OS/VS) with Muitipie Virtual
Storage/System Product for System/370. It is a soft-
ware operating system controiling the execution of pro-
grams.

Muitiple Virtual Storage for Extended Architecture
(MVS/XA). An IBM licensed program whose full name
is the Operating System/Virtual Storage (OS/VS) with
Muitiple Virtual Storage/System Product for Extended
Architecture. Extended architecture allows 31-bit
storage addressing. MVS/XA is a software operating
system controlling the execution of programs.

MVS. Multiple Virtual Storage operating system.

MVS/OCCF. Mulitiple Virtual Storage/Operator Com-
munication Control Facility.

MVS/XA. Multiple Virtual Storage for Extended Archi-
tecture operating system.

NAU. Network addressable unit.
NCCF. Network Communications Control Facility.

NCP. (1) Network Contro! Program (IBM licensed
program). Iis full name is Advanced Communications
Function for the Network Control Program. Synony-
mous with ACF/NCP. (2) Network control program
(general term).

negative response (NR). In SNA, a response indicating
that a request did not arrive successfully or was not
processed successfully by the receiver. Contrast with
positive response. See exception response.

NetView. A system 370-based IBM licensed program
used to monitor a network, manage it, and diagnose its
problems.

NetView command list language. An interpretive lan-

guage unique to the NetView program that is used to
write command lists.

232 NetView Customization: Writing Command Lists

NetView-NetView task (NNT). The task under which a
cross-domain NetView operator session runs. See
operator station task.

NetView/PC. A PC-based IBM licensed program
through which application programs can be used to
monitor, manage, and diagnose problems in IBM
Token-Ring networks, non-SNA communication
devices, and voice networks.

network. (1) (TC97) An interconnected group of
nodes. (2) In data processing, a user application
network. See path control network, public network,
SNA network, subarea network, type 2.1 network, and
user-application network.

network address. In SNA, an address, consisting of
subarea and element fields, that identifies a link, a link
station, or a network addressable unit. Subarea nodes
use network addresses; peripheral nodes use local
addresses. The boundary function in the subarea node
to which a peripheral node is attached transforms local
addresses to network addresses and vice versa. See
local address. See also network name.

network addressable unit (NAU). In SNA, a logical unit,
a physical unit, or a system services control point. Itis
the origin or the destination of information transmitted
by the path control network. Each NAU has a network
address that represents it to the path control network.
See also network name, network address, and path
control network.

Network Communications Control Facility (NCCF). An
iBM licensed program that is a base for command
processors that can monitor, control, automate, and
improve the operations of a network. Its function is
included and enhanced in NetView’s command facility.

network control (NC). In SNA, an RU category used for
requests and responses exchanged for such purposes
as activating and deactivating explicit and virtual
routes and sending load modules to adjacent periph-
eral nodes. See also data flow control layer and
session control.

Network Control Program (NCP). An IBM licensed
program that provides communication controlier
support for single-domain, multiple-domain, and inter-
connected network capability. lts full name is
Advanced Communications Function for the Network
Control Program.

network control program. A program, generated by
the user from a library of IBM-supplied modules, that
controls the operation of a communication controller.

network identitier (network ID). The network name
defined to NCPs and hosts to indicate the name of the
network in which they reside. It is unique across all
communicating SNA networks. communication among
domains.

Network Logical Data Manager (NLDM). An IBM
licensed program that coliects and correlates
session-related data and provides online access to this
information. It runs as an NCCF communication
network management (CNM) application program. its
function is included and enhanced in NetView’s session
monitor.

network name. (1) in SNA, the symbolic identifier by
which end users refer to a network addressable unit
(NAU), a link, or a link station. See also network
address. (2) In a multiple-domain network, the name
of the APPL statement defining a VTAM application
program is its network name and it must be unique
across domains. Contrast with ACB name. See unin-
terpreted name.

network operator. (1) A person or program respon-
sible for controlling the operation of all or part of a
network. (2) The person or program that controls all
the domains in a multiple-domain network. Contrast
with domain operator.

Network Problem Determination Application (NPDA).
An IBM licensed program that helps you identify
network problems, such as hardware, software, and
microcode, from a central control point using interac-
tive display techniques. It runs as an NCCF communi-
cation network management (CNM) application
program. its function is included and enhanced in
NetView’s hardware monitor.

network services (NS). In SNA, the services within
network addressable units (NAUs) that control network
operation through SSCP-SSCP, SSCP-PU, and SSCP-LU
sessions. See configuration services, maintenance
services, management services, and session services.

NLDM. Network Logical Data Manager.
NNT. NetView-NetView task.

node. (1) In SNA, an endpoint of a link or junction
common to two or more links in a network. Nodes can
be distributed to host processors, communication con-
trollers, cluster controllers, or terminals. Nodes can
vary in routing and other functional capabilities. See
boundary node, host node, peripheral node, and
subarea node (including illustration). (2) In VTAM, a
point in a network defined by a symbolic name. See
major node and minor node. :

node name. In VTAM, the symbolic name assigned to
a specific major or minor node during network defi-
nition.

node type. In SNA, a designation of a node according
to the protocols it supports and the network address-
able units (NAUs) that it can contain. Five types are
defined: 1, 2.0, 2.1, 4, and 5. Type 1, type 2.0, and type
2.1 nodes are peripheral nodes; type 4 and type 5
nodes are subarea nodes. See also type 2.7 node.

no response. In SNA, a value in the
form-of-response-requested field of the request header
(RH) indicating that no response is to be returned to the
request, whether or not the request is received and
processed successfully. Contrast with definite
response and exception response.

notify. A network services request that is sent by an
SSCP to a logical unit (LU) to inform the LU of the status
of a procedure requested by the LU.

NPDA. Network Problem Determination Application.
OCCF. Operator Communication Control Facility.

online. Stored in a computer and accessible from a
terminal.

operand. (1) (ISO) An entity on which an operation is
performed. (2) * That which is operated upon. An
operand is usually identified by an address part of an
instruction. (3) Information entered with a command
name to define the data on which a command
processor operates and to control the execution of the
command processor. (4) An expression to whose
value an operator is applied. See also definition state-
ment, keyword, keyword parameter, and parameter.

operator. (1) In a language statement, the lexical
entity that indicates the action to be performed on oper-
ands. (2) A person who operates a machine. See
network operator. See also definition statement.

Operator Communication Control Faclility (OCCF). A
licensed program that allows communication with and
the operation of remote MVS or VSE systems.

operator profile. In the NetView program, the
resources and activities a network operator has control
over. The statements defining these resources and
activities are stored in a file that is activated when the
operator logs on.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task
for each network operator who logs on to the NetView
program. See NetView-NetView task.

OST. Operator station task.

pacing. In SNA, a technique by which a receiving com-
ponent controls the rate of transmission of a sending
component to prevent overrun or congestion. See
session-level pacing, send pacing, and virtual route
(VR) pacing. See also flow control.

page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To move back and
forth among the pages of a multiple-page panel. See
also scroll. (3) (I1SO) In a virtual storage system, a

Glossary 233

fixed-length block that has a virtual address and that
can be transferred between real storage and auxiliary
storage. (4) To transfer instructions, data, or both
between real storage and external page or auxiliary
storage.

panel. (1) A formatted display of information that
appears on a terminal screen. See also help panel and
task panel. Contrast with screen. (2) In computer
'graphics, a display image that defines the locations and
characteristics of display fields on a display surface.

parameter. (1) (ISO) A variable that is given a con-
stant value for a specified application and that may
denote the application. {2) Anitem in a menu for
which the user specifies a value or for which the
system provides a value when the menu is interpreted.
(3) Data passed to a program or procedure by a user
or another program, namely as an operand in a lan-
guage statement, as an item in a menu, or as a shared
data structure. See also keyword, keyword parameter,
and operand.

path. (1) In SNA, the series of path control network
components (path control and data link control) that are
traversed by the information exchanged between two
network addressable units (NAUs). See also explicit
route (ER), route extension, and virtual route (VR).

(2) In VTAM when defining a switched major node, a
potential dial-out port that can be used to reach that
node. (3) In the NetView/PC program, a complete line
in a configuration that contains all of the resources in
the service point command service (SPCS) query link
configuration request list.

path control (PC). The function that routes message
units between network addressable units (NAUs) in the
network and provides the paths between them. It con-
verts the BlUs from transmission control (possibly seg-
menting them) into path information units (PiUs) and
exchanges basic transmission units (BTUs) and one or
more PlUs with data link control. Path control differs
for peripheral nodes, which use local addresses for
routing, and subarea nodes, which use network
addresses for routing. See peripheral path control and
subarea path control. See also link, peripheral node,
and subarea node.

path control (PC) layer. In SNA, the layer that
manages the sharing of link resources of the SNA
network and routes basic information units (BiUs)
through it. See also BIU segment, blocking of PiUs,
data link control layer, and transmission control layer.

path control (PC) network. In SNA, the part of the SNA
network that includes the data link control and path
control layers. See SNA network and user application
network. See also boundary function.

PC. (1) Path control. (2) Personal Computer. Its full
name is the IBM Personal Computer.

234 Netview Customization: Writing Command Lists

peripheral host node. A node that provides an applica-
tion program interface (API) for running application
programs but does not provide SSCP functions and is
not aware of the network configuration. The peripheral
host node does not provide subarea node services. It
has boundary function provided by its adjacent
subarea. See boundary node, host node, node, periph-
eral node, subarea host node, and subarea node. See
also boundary function and node type.

peripheral LU. In SNA, a logical unit representing a
peripheral node.

peripheral node. In SNA, a node that uses local
addresses for routing and therefore is not affected by
changes in network addresses. A peripheral node
requires boundary-function assistance from an adja-
cent subarea node. A peripheral node is a physical
unit (PU) type 1, 2.0, or 2.1 node connected to a
subarea node with boundary function within a subarea.
See boundary node, host node, node, peripheral host
node, subarea host node, and subarea node. See also
boundary function and node type.

peripheral path control. The function in a peripheral
node that routes message units between units with
local addresses and provides the paths between them.
See path control and subarea path control. See also
boundary function, peripheral node, and subarea node.

peripheral PU. In SNA, a physical unit representing a
peripheral node.

Personal Computer (PC). The IBM Personal Computer
line of products including the 5150 and subsequent
models.

physical connection. In VTAM, a point-to-point con-
nection or muitipoint connection. Synonymous with
connection.

physical unit (PU). in SNA, a type of network address-
able unit (NAU). A physical unit (PU) manages and
monitors the resources (such as attached links) of a
node, as requested by a system services control point
(SSCP) through an SSCP-PU session. An SSCP acti-
vates a session with the physical unit in order to indi-
rectly manage, through the PU, resources of the node
such as attached links. See also peripheral PU and
subarea PU.

physical unit (PU) services. In SNA, the components
within a physical unit (PU) that provide configuration
services and maintenance services for SSCP-PU ses-
sions. See also fogical unit (LU) services.

PLU. Primary logical unit.

POl. Programmed operator interface.

positional operand. An operand in a language state-
ment that has a fixed position. See also definition
statement. Contrast with keyword operand.

positive response. A response indicating thata
request was received and processed. Contrast with
negative response.

PPT. Primary POI task.

primary half-session. In SNA, the half-session that
sends the session activation request. See also primary
logical unit. Contrast with secondary half-session.

primary logical unit (PLU). In SNA, the logical unit (LU)
that contains the primary half-session for a particular
LU-LU session. Each session must have a PLU and
secondary logical unit (SLU). The PLU is the unit
responsible for the bind and is the controlling LU for
the session. A particular LU may contain both primary
and secondary half-sessions for different active LU-LU
sessions. Contrast with secondary logical unit (SLU).

primary POl task (PPT). The NetView subtask that
processes all unsolicited messages received from the
VTAM program operator interface (POIl) and delivers
them to the controlling operator or to the command
processor. The PPT also processes the initial
command specified to execute when the NetView
program is initialized and timer request commands
scheduled to execute under the PPT.

problem determination. The process of identifying the
source of a problem; for example, a program compo-
nent, a machine failure, telecommunication facilities,
user or contractor-installed programs or equipment, an
environment failure such as a power loss, or a user
error.

profile. In the Conversational Monitor System (CMS)
or the group control system (GCS), the characteristics
defined by a PROFILE EXEC file that executes automat-
ically after the system is loaded into a virtual machine.
See also operator profile.

programmed operator interface (POI). A VTAM func-
tion that allows programs to perform VTAM operator
functions.

PU. Physical unit.

public network. A network established and operated
by communication common carriers or telecommuni-
cation Administrations for the specific purpose of pro-
viding circuit-switched, packet switched, and
leased-circuit services to the public. Contrast with
user-application network.

PU-PU flow. In SNA, the exchange between physical
units (PUs) of network control requests and responses.

recelve pacing. In SNA, the pacing of message units
that the component is receiving. See also send pacing.

record. (1) (ISO) In programming languages, an
aggregate that consists of data objects, possibly with
different attributes, that usually have identifiers
attached to them. In some programming ianguages,
records are called structures. (2) (TC97) A set of data
treated as a unit. (3) A set of one or more related data
items grouped for processing. (4) In VTAM, the unit of
data transmission for record mode. A record repres-
ents whatever amount of data the transmitting node
chooses to send.

release. For VTAM, to relinquish control of resources
(communication controliers or physical units). See also
resource takeover. Contrast with acquire (2).

remote. Concerning the peripheral parts of a network
not centrally linked to the host processor and generally
using telecommunication lines with public right-of-way.

remove. In the IBM Token-Ring Network, to take an
attaching device off the ring.

reset. On a virtual circuit, reinitialization of data flow
control. At reset, all data in transit are eliminated.

resource. (1) Any facility of the computing system or.
operating system required by a job or task, and
including main storage, input/output devices, the proc-
essing unit, data sets, and control or processing pro- -
grams. (2) In the NetView program, any hardware or
software that provides function to the network.

resource takeover. in VTAM, action initiated by a
network operator to transfer control of resources from
one domain to another. See also acquire (2) and
release. See takeover.

response. A reply represented in the control field of a
response frame. It advises the primary or combined
station of the action taken by the secondary or other
combined station to one or more commands. See also
command.

Restructured Extended Executor (REXX). An interpre-
tive language used to write command lists.

return code. * A code [returned from a program] used
to influence the execution of succeeding instructions.

REXX. Restructured Extended Executor.
route. See explicit route and virtual route.

route extension (REX). in SNA, the path control
network components, including a peripheral link, that
make up the portion of a path between a subarea node
and a network addressable unit (NAU) in an adjacent
peripheral node. See also path, explicit route (ER) and
virtual route (VR).

Glossary 235

routing. The assignment of the path by which a
message will reach its destination.

RPL exit routine. In VTAM, an application program exit
routine whose address has been placed in the EXIT
field of a request parameter list (RPL). VTAM invokes
the routine to indicate that an asynchronous request
has been completed. See EXLST exit routine.

RU chain. In SNA, a set of related request/response
units (RUs) that are consecutively transmitted on a par-
ticular normal or expedited data flow. The request RU
chain is the unit of recovery: if one of the RUs in the
chain cannot be processed, the entire chain is dis-
carded. Each RU belongs to only one chain, which has
a beginning and an end indicated by means of control
bits in request/response headers within the RU chain.
Each RU can be designated as first-in-chain (FIC),
last-in-chain (LIC), middle-in-chain (MIC), or
only-in-chain (OIC). Response units and expedited-flow
request units are always sent as only-in-chain.

scope of commands. In the NetView program, the
facility that provides the ability to assign different
responsibilities to various operators.

screen. An illuminated display surface; for example,
the display surface of a CRT or plasma panel. Contrast
with panel.

scroll. To move all or part of the display image verti-
cally to display data that cannot be observed within a
single display image. See also page (2).

secondary half-session. In SNA, the half-session that
receives the session-activation request. See also sec-
ondary logical unit (SLU). Contrast with primary
half-session.

secondary logical unit (SLU). In SNA, the logical unit
(LU) that contains the secondary half-session for a par-
ticular LU-LU session. An LU may contain secondary
and primary half-sessions for different active LU-LU
sessions. Contrast with primary logical unit (PLU).

secondary logical unit (SLU) key. A key-encrypting key
used to protect a session cryptography key during its
transmission to the secondary half-session.

segment. (1) in the IBM Token-Ring Network, a
section of cable between components or devices on the
network. A segment may consist of a single patch
cable, multiple patch cables connected together, or a
combination of building cable and patch cables con-
nected together. (2) See link connection segment.

send bacing. In SNA, pacing of message units that a
component is sending. See also receive pacing.

sequence number. A number assigned to a particular

frame or packet to control the transmission flow and
receipt of data.

236 Netview Customization: Writing Command Lists

service point (SP). An entry point that supports appli-
cations that provide network management for
resources not under the direct control of itself as an
entry point. Each resource is either under the direct
control of another entry point or not under the direct
control of any entry point. A service point accessing
these resources is not required to use SNA sessions
(unlike a focal point). A service point is needed when
entry point support is not yet available for some
network management function.

service point command service (SPCS). An extension
of the command facility in the NetView program that
allows the host processor to communicate with a
service point by using the communication network
management (CNM) interface.

session. In SNA, a logical connection between two
network addressable units (NAUs) that can be acti-
vated, tailored to provide various protocols, and deacti-
vated, as requested. Each session is uniquely
identified in a transmission header (TH) by a pair of
network addresses, identifying the origin and destina-
tion NAUs of any transmissions exchanged during the
session. See half-session, LU-LU session, SSCP-LU
session, SSCP-PU session, and SSCP-SSCP session.
See also LU-LU session type and PU-PU flow.

session control (SC). In SNA, (1) One of the compo-
nents of transmission control. Session control is used
to purge data flowing in a session after an unrecover-
able error occurs, to resynchronize the data flow after
such an error, and to perform cryptographic verifica-
tion. (2) A request unit (RU) category used for requests
and responses exchanged between the session control
components of a session and for session activation and
deactivation requests and responses.

session data. Data about a session, collected by the
NetView program, that consists of session awareness
data, session trace data, and session response time
data.

session-initiation request. In SNA, an Initiate or logon
request from a logical unit (LU) to a control point (CP)
that an LU-LU session be activated.

session-level pacing. In SNA, a flow contro! technique
that permits a receiver to control the data transfer rate
(the rate at which it receives request units) on the
normal flow. It is used to prevent overioading a
receiver with unprocessed requests when the sender
can generate requests faster than the receiver can
process them. See also pacing and virtual route
pacing.

session monitor. The component of the NetView
program that collects and correlates session-related
data and provides online access to this information.

session services. In SNA, one of the types of network
services in the control point (CP) and in the logical unit
(LU). These services provide facilities foranLUor a
network operator to request that the SSCP initiate or
terminate sessions between logical units. See config-
uration services, maintenance services, and manage-
ment services.

shared. Pertaining to the availability of a resource to
more than one use at the same time.

simulated logon. A session-initiation request gener-
ated when a VTAM application program issues a
SIMLOGON macroinstruction. The request specifies a
logical unit (LU) with which the application program
wants a session in which the requesting application
program will act as the primary logical unit (PLU).

single-domain network. In SNA, a network with one
system services control point (SSCP). Contrast with
multiple-domain network.

SLU. Secondary logical unit.
SMF. System management facility.
SNA. Systems Network Architecture.

SNA network. The part of a user-application network
that conforms to the formats and protocols of Systems
Network Architecture. It enables reliable transfer of
data among end users and provides protocols for con-
trolling the resources of various network configura-
tions. The SNA network consists of network
addressable units (NAUs), boundary function compo-
nents, and the path control network.

solicited message. A response from VTAM to a
command entered by a program operator. Contrast
with unsolicited message.

SP. Service point.
SPCS. Service point command service.

span. In the NetView program, a user-defined group of
network resources within a single domain. Each major
or minor node is defined as belonging to one or more
spans. See also span of control.

span of control. The total network resources over
which a particular network operator has control. All
the network resources listed in spans associated
through profile definition with a particular network
operator are within that operator’s span of control.

SSCP. System services control point.

SSCP-LU session. in SNA, a session between a
system services control point (SSCP) and a logical unit
(LU); the session enables the LU to request the SSCP to
help initiate LU-LU sessions.

SSCP-PU session. In SNA, a session between a
system services control point (S§SCP) and a physical
unit (PU); SSCP-PU sessions allow SSCPs to send
requests to and receive status information from indi-
vidual nodes in order to control the network configura-
tion.

SSCP-SSCP session. In SNA, a session between the
system services control point (S8SCP) in one domain
and the SSCP in another domain. An SSCP-SSCP
session is used to initiate and terminate cross-domain
LU-LU sessions.

SSP. System Support Programs (IBM licensed
program). lts full name is Advanced Communications
Function for System Support Programs. Synonymous
with ACF/SSP.

statement. A language syntactic unit consisting of an
operator, or other statement identifier, followed by one
or more operands. See definition statement.

station. (1) One of the input or-output points of a
network that uses communication facilities; for
example, the telephone set in the telephone system or
the point where the business machine interfaces with
the channel on a leased private line. (2) One or more
computers, terminals, or devices at a particular
location.

status monitor. A component of the NetView program
that collects and summarizes information on the status
of resources defined in a VTAM domain.

subarea. A portion of the SNA network consisting of a
subarea node, any attached peripheral nodes, and their
associated resources. Within a subarea node, all
network addressable units, links, and adjacent link
stations (in attached peripheral or subarea nodes) that
are addressable within the subarea share a common
subarea address and have distinct element addresses.

subarea host node. A host node that provides both
subarea function and an application program interface
(AP1) for running application programs. It provides
system services control point (SSCP) functions,
subarea node services, and is aware of the network
configuration. See boundary node, communication
management configuration host node, data host node,
host node, node, peripheral node, and subarea node.
See also boundary function and node type.

subarea node. In SNA, a node that uses network
addresses for routing and whose routing tables are
therefore affected by changes in the configuration of
the network. Subarea nodes can provide gateway func-
tion, and boundary function support for peripheral
nodes. Type 4 and type 5 nodes are subarea nodes.
See boundary node, host node, node, peripheral node,
and subarea host node. See also boundary function
and node type.

Glossary 237

subarea path control. The function in a subarea node
that routes message units between network address-
able units (NAUs) and provides the paths between
them. See path control and peripheral path control.
See also boundary function, peripheral node, and
subarea node.

subarea PU. In SNA, a physical unit (PU) in a subarea
node.

subsystem. A secondary or subordinate system,
usually capable of operating independent of, or asyn-
chronously with, a controlling system.

supervisor call (SVC). A request that serves as the
interface into operating system functions, such as allo-
cating storage. The SVC protects the operating system
from inappropriate user entry. All operating system

" requests must be handled by SVCs.

supervisor call (SVC) instruction. An instruction that
interrupts the program being executed and passes
control to the supervisor so that it can perform a spe-
cific service indicated by the instruction.

suppression character. In the NetView program, a
user-defined character that is coded at the beginning of
a command list statement or a command to prevent the
statement or command from appearing on the opera-
tor’s terminal screen or in the network log.

SVC. (1) Supervisor call. (2) Switched virtual circuit.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. The X.25 equiv-
alent of a switched line.

system management facility (SMF). A standard feature
of MVS that collects and records a variety of system
and job-related information.

system services control point (SSCP). In SNA, a
central location point within an SNA network for man-
aging the configuration, coordinating network operator
and problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating as
peers, can divide the network into domains of control,
with each SSCP having a hierarchical control relation-
ship to the physical units and logical units within its
domain.

system services control point (SSCP) domain. The
system services control point and the physical units
(PUs), logical units {LUs), links, link stations and all the
resources thut the SSCP has the ability to control by
means of activation requests and deactivation
requests.

Systems Network Architecture (SNA). The description

of the logical structure, formats, protocols, and opera-
tional sequences for transmitting information units

238 NetView Customization: Writing Command Lists

through and controlling the configuration and operation
of networks.

System Support Programs (SSP). An IBM licensed
program, made up of a collection of utilities and small
programs, that supports the operation of the NCP.

TAF. Terminal access facility.

takeover. The process by which the failing active sub-
system is released from its extended recovery facility
(XRF) sessions with terminal users and replaced by an
alternate subsystem. See resource takeover.

task. A basic unit of work to be accomplished by a
computer. The task is usually specified to a control
program in a multiprogramming or multiprocessing
environment.

task panel. Online display from which you communi-
cate with the program in order to accomplish the pro-
gram’s function, either by selecting an option provided
on the panel or by entering an explicit command. See

. help panel.

TCAS. Terminal control address space.

telecommunication line. Any physical medium such as
a wire or microwave beam, that is used to transmit
data. Synonymous with transmission line.

terminal. A device that is capable of sending and
receiving information over a link; it is usually equipped
with a keyboard and some kind of display, such as a
screen or a printer.

terminal access facility (TAF). In the NetView
program, a facility that allows a network operator to
control a number of subsystems. In a full-screen or
operator control session, operators can control any
combination of such subsystems simultaneously.

terminal control address space (TCAS). The part of
TSO/VTAM that provides logon services for TSO/VTAM
users.

TERMINATE. In SNA, a request unit that is sentby a
logical unit (LU) to its system services control point
(SSCP) to cause the SSCP to start a procedure to end
one or more designated LU-LU sessions.

time-out. (1) (ISO) An event that occurs at the end of
a predetermined period of time that began at the occur-
rence of another specified event. (2) A time interval
allotted for certain operations to occur; for example,
response to polling or addressing before system opera
tion is interrupted and must be restarted.

time sharing option (TSO). An optional configuration of
the operating system that provides conversational time
sharing from remote stations.

token. A sequence of bits passed from one device to
another along the token ring. When the token has data
appended to it, it becomes a frame.

transmission control (TC) layer. in SNA, the layer
within a half-session that synchronizes and paces
session-level data traffic, checks session sequence
numbers of requests, and enciphers and deciphers
end-user data. Transmission control has two compo-
nents: the connection point manager and session
control. See also half-session.

transmission line. Synonym for telecommunication
line.

TS0. Time sharing option.

type 2.1 node (T2.1 node). A node that can attach to an
SNA network as a peripheral node using the same pro-
tocols as type 2.0 nodes. Type 2.1 nodes can be
directly attached to one another using peer-to-peer pro-
tocols. See end node, node, and subarea node. See
also node type.

type 2.1 node (T2.1 node) control point domain. The
CP, its logical units (LUs)}, links, link stations, and all
resources that it activates and deactivates.

unformatted. in VTAM, pertaining to commands (such
as LOGON or LOGOFF) entered by an end user and
sent by a logical unit in character form. The
character-coded command must be in the syntax
defined in the user’s unformatted system services defi-
nition table. Synonymous with character-coded. Con-
trast with field-formatted.

uninterpreted name. In SNA, a character string that a
system services control point (SSCP) is able to convert
into the network name of a logical unit (LU). Typically,
an uninterpreted name is used in a logon or Initiate
request from a secondary logical unit (SLU) to identify
the primary logical unit (PLU) with which the session is
requested.

unsolicited message. A message, from VTAMto a
program operator, that is unrelated to any command
entered by the program operator. Contrast with solic-
ited message.

upstiream. In the direction of data flow from the end
user to the host. Contrast with downstream.

user. Anyone who requires the services of a com-
puting system.

user-application network. A configuration of data proc-
essing products, such as processors, controliers, and
terminals, established and operated by users for the
purpose of data processing or information exchange,
which may use services offered by communication

common carriers or telecommunication Adminis-
trations. Contrast with public network.

USERVAR. Contains an application name used to
route a session-establishment request to the currently
active application subsystem.

value. (1) (TC97) A specific occurrence of an attri-
bute, for example, “blue” for the attribute “color.” (2) A
quantity assigned to a constant, a variable, a param-
eter, or a symbol.

variable. in the NetView program, a character string
beginning with & that is coded in a command list and is
assigned a value during execution of the command list.

verb. (1) In SNA, the general name for a transaction
program’s request for communication services. (2) in
VTAM, a programming language element in the logical
unit (LU) 6.2 application program interface (API) that
causes an LU 6.2 function to be performed.

virtual disk. (1) A logical subdivision (or alt) of a phys-
ical disk pack in the VM operating system that has its
own virtual device address, consecutive virtual cylin-
ders, and a volume table of contents (VTOC) or disk
label identifier. (2) Synonymous with minidisk.

Virtual Machine (VM). A licensed program whose full
name is the Virtual Machine/System Product (VM/SP).
It is a software operating system that manages the
resources of a real processor to provide virtual
machines to end users. As a time-sharing system
control program, it consists of the virtual machine
control program (CP), the conversational monitor
system (CMS), the group control system (GCS), and the
interactive problem controi system (IPCS).

virtual route (VR). In SNA, a logical connection (1)
between two subarea nodes that is physically realized
as a particular explicit route, or (2) that is contained
wholly within a subarea node for intranode sessions. A
virtual route between distinct subarea nodes imposes a
transmission priority on the underlying explicit route,
provides flow control through virtual-route pacing, and
provides data integrity through sequence numbering of
path information units (PIUs). See also explicit route
(ER), path, and route extension.

virtual route (VR) pacing. in SNA, a flow contro! tech-
nique used by the virtual route control component of
path control at each end of a virtual route to control the
rate at which path information units (PIUs) flow over the
virtual route. VR pacing can be adjusted according to
traffic congestion in any of the nodes along the route.
See also pacing and session-level pacing.

virtual route selection exit routine. In VTAM, an
optional installation exit routine that modifies the list of
virtual routes associated with a particular class of
service before a route is selected for a requested
LU-LU session.

Glossary 239

Virtual Storage Extended (VSE). An IBM licensed
program whose full name is the Virtual Storage
Extended/Advanced Function. It is a software oper-
ating system controlling the execution of programs.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VM. Virtual Machine operating system. Its full name is
Virtual Machine/System Product. Synonymous with
VM/SP.

VM/SP. Virtual Machine/System Product operating
system. Synonym for VM.

240 NetView Customization: Writing Command Lists

VR. Virtual route.

VSE. Virtual Storage Extended operating system. Syn-
onymous with VSE/AF.

VSE/AF. Virtual Storage Extended/Advanced Function
operating system. Synonym for VSE.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program). Its full name is Advanced
Communications Function for the Virtual Telecommuni-
cations Access Method. Synonymous with ACF/VTAM.

VTAM operator command. A command used to
monitor or control a VTAM domain. See also definition
statement.

Bibliography

NetView Publications

Learning About NetView: Operator Training
(SK2T-0292) is an interactive PC-based operator
training package that teaches SNA and basic network
management concepts to new and inexperienced
NetView operators. This training package uses
graphics, animation and interactive NetView product
simulations in a series of lessons to teach the basics of
NetView operation.

NetView Installation and Administration Guide
(SC31-6018) helps system programmers install and
prepare the NetView program for operation. Itis
arranged in a simplified, step-by-step style and is
meant to be used in conjunction with the sample
network documented in Network Program Products
Samples.

NetView Administration Reference (SC31-6014) is for
system programmers and network operators who need
a complete understanding of the NetView resource defi-
nition statements. This book lists each statement in
alphabetical order giving its purpose and location.

NetView Tuning Guide (SC31-6079)1 describes methods
for controlling and improving the performance of the
NetView Release 3 program. It is designed for system
programmers who need to understand how NetView
tuning values are determined and optimized.

NetView Customization Guide (SC31-6016) is designed
for system programmers and others who want to cus-
tomize the NetView program to reflect their network’s
needs or operating procedures. This book focuses on
the different application programming interfaces that
can be customized and explains how to modify NetView
help panels and probiem determination displays.

NetView Customization: Using PL/I and C (SC31-6037)
describes the ways system programmers can tailor the
NetView program to satisfy unique requirements or
operating procedures. It discusses the uses and
advantages of user-written programs (exit routines,
command processors, and subtasks). It also provides
instructions in designing, writing, and installing user-
written programs in PL/I and C.

NetView Customization: Using Assembler (SC31-6078)
describes the ways system programmers can tailor the
NetView program to satisfy unique requirements or
operating procedures. It discusses the uses and

1 When available.

advantages of user-written programs (exit routines,
command processors, and subtasks). It also provides
instructions in designing, writing, and installing user-
written programs in Assembler.

NetView Customization: Writing Command Lists
(SC31-6015) explains how to simplify network operator
tasks by using command lists. It provides step-by-step
instructions for writing simple and advanced command
lists and for migrating from NCCF message automation
to NetView message automation.

NetView Operation Primer (SC31-6020) provides a
basic description of the network management task for
new network operators. Topics include starting and
stopping a network, controlling resources, monitoring a
network, and gathering the necessary data to report a
probiem.

NetView Operation (SC31-6019) provides system pro-
grammers and experienced network operators a com-
prehensive explanation of network management using
the NetView program. Topics include detailed
command explanation and pane! flows, as well as infor-
mation on how the various components interact with
each other.

NetView Command Summary (SX75-0026) is a refer-
ence card that provides network operators with the
format of all the commands and the commonly used
NetView command lists. The commands are listed in
alphabetical order by component.

NetView Problem Determination and Diagnosis
(LY43-0001) aids system programmers in identifying a
NetView problem, classifying it, and describing it to an
18M Support Center.

NetView Problem Determination Supplement for Man-
agement Services Major Vectors 0001 and 0025
(LD21-0023) describes major vectors 0001 and 0025 for
system programmers and network operators involved
in problem determination or diagnosis. The supple-
ment may be used for the generic alert option and
other problem determination tasks.

NetView Resource Alerts Reference (SC31-6024) lists
the messages sent by NetView-supported hardware
and software resources. It helps system programmers
analyze the messages into their component parts:
action codes, event types, message text, and qualifiers.
The book is a reference for those who need more infor-
mation than online help provides.

Bibliography 241

NetView Storage Estimates (SK2T-1988) is an interac-
tive PC-based tool that helps the user estimate storage
requirements for NetView. This tool can be used for
planning, installation, and tuning purposes. Itis
intended for network planners, system programmers,
and IBM service personnel.

Console Automation Using NetView: Planning
(SC31-6058) describes an approach to automate the
way a system handles messages and responses to
alerts. It includes information you should know before
beginning such automation, as well as sample plans
and proposals you might find useful in promoting your
automation concept. This book inciudes planning infor-
mation for MVS, VM, and VSE users of the NetView
program.

NetView/PC Publications

NetView/PC Planning, Installation, and Customization
(SC31-6002) provides planning, installation, and
customization information on NetView/PC and explains
the communication requirements upstream to the host
and downstream to supported devices. Information
relating to the required pc environment and host pro-
ducts that support NetView/PC is also provided. It also
discusses topics that are of general interest when you
are ordering your equipment.

NetView/PC Application Program
Interface/Communications Services Reference
(SC31-6004) is a reference for 0s/2 programmers who
use the API/Cs and for system programmers who write
command processors to run under NetView. The Ari/CS
provides a means for vendor and other external appli-
cations to use the communication services of
NetView/PC.

NetView/PC Operation (SC31-6003) describes how to
operate the program and diagnose problems in
NetView/PC.

NetView/PC Quick Reference (SX75-0016) describes all
of the functions of the F-keys throughout the
NetView/PC program.

Other Network Program
Products Publications
For more information about the books listed in this

section, see Bibliography and Master Index for
NetView, NCP, and VTAM.

2 This book will be availgble by December 1988.

242 NetView Customization: Writing Command Lists

Network Program Products General Information
(GC30-3350)

Network Program Products Planning (SC30-3351)
Network Program Products Samples (SC30-3352)

Bibliography and Master Index for NetView, NCP, and
VTAM (GC31-6081)2

VTAM Publications

The following list shows the books for vraM v3aR2. For
information about the books for VTAM Vv3R1, V3R1.1, or
V3R1.2, see any VTAM V3R2 book or the Network Program
Products Bibliography and Master Index.

VTAM Installation and Resource Definition (SC23-0111)
VTAM Customization (LY30-5614)

VTAM Directory of Programming Interfaces for Cus-
tomers (GC31-6403)

VTAM Operation (SC23-0113)

VTAM Messages and Codes {(SC23-0114)
VTAM Programming (SC23-0115)

VTAM Programming for LU 6.2 (SC30-3400)
VTAM Diagnosis Guide (LY30-5601)

VTAM Data Areas for MVS (LY30-5592)
VTAM Data Areas for VM (LY30-5593)
VTAM Data Areas for VSE (LY30-5594)

VTAM Reference Summary (LY30-5600)

NCP, SSP, and EP Publications

The following list shows the related books for NCP v4
and NCP V5.

NCP, SSP, and EP Generation and Loading Guide
(SC30-3348)

NCP, SSP, and Related Products Directory of Program-
ming Interfaces for Customers (GC31-6202)

NCP Migration Guide (SC30-3252 for NCP V4 and
SC30-3440 for NCP V5)

NCP, SSP, and EP Resource Definition Guide
(SC30-3349 for NCP V4 and SC30-3447 for NCP V5)

NCP, SSP, and EP Resource Definition Reference
(SC30-3254 for NCP V4 and SC30-3448 for NCP V5)

NCP and EP Reference Summary and Data Areas
(LY30-5570 for NCP V4 and LY30-5603 for NCP V5)

NCP Customization Guide (LY30-5571 for NCP V4
LY30-5606 for NCP V5)

NCP Customization Reference (LY30-5612 for NCP V4
and LY30-5607 for NCP V5)

SSP Customization (LY43-0021)
NCP, SSP, and EP Messages and Codes (SC30-3169)
NCP, SSP, and EP Diagnosis Guide (LY30-5591)

NCP and EP Reference (LY30-5569 for NCP V4 and
LY30-5605 for NCP V5)

Related Publications

Planning for a 9370 SNA Distributed Network
(GC30-3475)

MVS System Programming Library: System Macros and
Facilities (GC28-1151)

VMISP System Product Interpreter User’s Guide
(referred to in this book as REXX User’s Guide)
(SC24-5238)

VM/SP System Product Interpreter Reference (referred
to in this book as REXX Reference) (SC24-5239)

TSO/E REXX User’'s Guide (referred to in this book as
REXX User’s Guide) (SC28-1882)

TSO/E REXX Reference (referred to in this book as
REXX Reference) (SC28-1883)

Bibliography 243

244 NetView Customization: Writing Command Lists

Index

A

activating a command list
See running a command list
ADDRESS instruction 28
AFTER command, used to schedule a command
list 12
ALLOCATE, NetView command 29
allocating a data set for NetView 29
ALL, &CONTROL operand 93
AND, TRAP operand 35
APPLID
NetView command list language control
variable 82
REXX function 51
AREAID
NetView command list language control
variable 85
REXX function 55
arithmetic operations in assignment statements 91
Assembler command processors, nesting a REXX
command list from 29
ASSIGN command 143
assignment
clauses, REXX 23
statements, NetView command list language 90
AT command, used to schedule a command list 12
automation task 18
automation, message
See message automation
AUTOTASK
command 11
OST restrictions 18
AUTOWRAP setting 16

BEEP, MSGROUTE operand 143
BEGWRITE control statement 95
bilingual command list 18
built-in functions
NetView command list language
definition of 99
in an assignment statement 91
summary of 178
&CONCAT 100
&LENGTH 100
&NCCFID 101
&NCCFSTAT 102
&SUBSTR 103
REXX 24

.

Cc

C command processors, nesting a REXX command list
from 29
CALL instruction, using 27
calling another command list 13
CGLOBAL control statement 126
clauses, REXX 23
CLEAR command 93
CMD
command 16, 39
&CONTROL operand 93
CMDCLASS statement 7
CMDMDL statement 7
CNMS8001 EXEC 209
coding conventions
bilingual command list 18
NetView command list language 72
continuation statements 73
double-byte character text 74
suppression character 74
syntax 72
REXX
coding non-REXX commands in a REXX command
list 24
record size 24
suppressing display of a non-REXX
command 25
syntax 24
used in this book xiv
command list
activating
See running a command list
bilingual 18
converting NetView command list language to
REXX 209
creating 5
creating a data set for MVS 6
creating a file forVM 6
definitionof 3
display, controlling during execution of 20
dropping from main storage 9
how a command list can helpyou 3
listing a command list in main storage 9
loading into main storage 7
message driven 136
naming 6
nested 13
NetView command list language
See NetView command list language
network commands, using 14
Network Control Program, activating 5
restarting 12
restrictions 17

index 245

command list (continued)

REXX

See Restructured Extended Executor language
routing messages from 142
scope checking 7
startup, examples 4
stopping 12
suspending 12
system commands, using 14
updating 5
uses for 3
ways to run

See running a command list
whocanuse 7

command list information

NetView command list language control
variables 83
REXX functions 53

commands

AFTER 12
ALLOCATE 29
ASSIGN 143
AT 12
AUTOMSG 10
AUTOTASK M1
BGNSESS 15
CLEAR 93
CMD 16,39
CMDMDL 7
DEFAULTS 39
DELAY 12
DROPCL 9
EVERY 12
EXECIO 28
FREE 29
full-screen 16
GENALERT 11
GO 12,116 '
hardware monitor, using in a command list 14
LOADCL 8
long running
major 15
minor 15
MAPCL ¢
message automation
DOM 141
WTO 138
WTOR 140
MSGROUTE 142
multi-line messages, used with
GETMLINE 154
GETMSIZE 152
GETMTYPE 153
NetView, using with REXX WAIT instruction 39
network 14
operator
AFTER 12
AT 12
DELAY 12

246 Netview Customization: Writing Command Lists

commands (continued)
operator (continued)
EVERY 12
running a command list as the result of 12
OVERRIDE 39
PARSEL2R 144
RESET 12, 116
RESTORE TIMER 11
RETURN 14
SDOMAIN command 158
service point command service
LINKDATA 166
LINKPD 167
LINKTEST 166
RUNCMD 168
session monitor, using in a command list 14
STACK 12,116
status monitor, using in a command list 14
system 14
TE 30
TS 30
UNIQUE 16
UNSTACK 12,116
VIEW 16
VTAM 14
comments
NetView command list language 89
REXX 23
common global variables
NetView command list language 126
REXX 48
comparison of NetView command list language to
REXX 185
COMPNAME
NetView command list language control
variable 83
REXX function 53
compression toois, VM REXX, using 27
CONCAT built-in function 100
constants, in assignment statements 90
continuation statements 73
CONTINUE, &WAIT operand 119
CONTROL control statement 92

contro! statements, NetView command list language

comparison to REXX instructions 185
definition of 92
summary of 179
&BEGWRITE 95
&CGLOBAL 126
&CONTROL 92
&EXIT 109
&GOTO 109
&IF 107
&PAUSE 97
&TGLOBAL 124
&WAIT 111
&WRITE 94

control variables, NetView command list language DESC (continued)

comparison to REXX functions 188 REXX function 55
definition of 81 DISPLAY
summary of 181 MSGROUTE operand 143
&APPLID 82 TRAP operand 35
&AREAID 85 ’ &WAIT operand 118
&COMPNAME 83 . displaying panels 16
&DATE 81 display, controlling 20
&DESC 85 DOM command 141
&HCOPY 83 domain information, REXX functions 56
&HDRMTYPE 86 double-byte character set characters
&JOBNAME 86 coding conventions, NetView command list
&JOBNUM 86 language 74
&LINETYPE 86 continuation characters 74
&LU 83 in user variables 88
&MCSFLAG 86 labels with 75
&MSGCNT 84 PPT, using in a command list running under 17
&MSGID 84 &CONCAT, using with 100
&MSGORIGIN 84 &SUBSTR, using with 104
&MSGSTR 85 ' DROP instruction 137
&MSGTYP 86 DROPCL command 9
&NCCFCNT 82 dropping a command list from main storage 9
&OPID 83 DSICNVRT conversion utility 164
&OPSYSTEM 82 DSIPUSH macro 15
&PARMCNT 83
&PARMSTR 83
&REPLYID 86 E
&RETCODE 83 editing facilities, for updating a command list 5
&ROUTCDE 87 ENDWAIT, &WAIT operand 115, 118
&SESSID 85 environment, addressed by REXX, changing 28
&SMSGID 87 errors, handling
&SYSCONID 87 NetView command list language 115
&SYSID 87 REXX 31
&TASK 82 ERROR, &WAIT operand 114
&TIME 81 ERR, &CONTROL operand 93
&VIEWAID 87 EVENT() function, REXX 38
&VIEWCURCOL 87 event, representing as an alert 11
&VIEWCURROW 87 event=-label pairs, &IF control statement 112
&VTAM 82 EVERY command, used to schedule a command
&WAIT, used with 116 list 12
&WTOREPLY 87 EXECIO command, using in a REXX command list 28

CONTWAIT, &WAIT operand 119 executing a command list

converting a NetView command list language command See running a command list

listto REXX 209 EXIT control statement 109
creating a command list 5 expressions
NetView command list language 90

D REXX 23

data set, defining for MVS 6 F

DATE control variable 81

DBCS file, defining for VM 6
See double-byte character set characters FLUSHQ instruction 42

dealiocating a data set from NetView 29 FOR, TRAP operand 37

DEFAULTS command 39 FREE, NetView command 29

DELAY command, used to schedule a command fuli-screen commands, using 16

list 12 function packages, REXX, writing 28

DESC functions

NetView command list language control built-in
variable 85 NetView command list language 99

index 247

functions (continued)

built-in (continued)
REXX 24

REXX
APPLID() 51
AREAID() 55
comparison to NetView command list language
control variables 188
COMPNAME() 53
DESC() 655
EVENT() 38
HCOPY() 52
HDRMTYPE() 55
JOBNAME() 55
JOBNUM() 55
LINESIZE(), using 27
LINETYPE() 55
LU() 52
MCSFLAG() 55
MSGCNT() 53
MSGID() 53
MSGORIGN() 53
MSGREAD, setby 40
MSGSTR() 54
MSGTYP() 56
MSGVAR() 54
NVCNT() 56
NVID() 56
NVSTAT() 56
OPID() 52
OPSYSTEM() 51
PARMCNT() 53
REPLYID() &6

global variables (continued)
task (continued)
REXX 45
GLOBALY instruction 44
GO command 12, 116
GOTO control statement 109

H

hardware monitor commands, using in a command
list 14
HCOPY
NetView command list language control
variable 83
REXX function 52
HCYLOG, MSGROUTE operand 143
HDRMTYPE
NetView command list language control
variable 86
REXX function 55
HOLD, MSGROUTE operand 143

IC, NCCFIC operand 10
IF control statement 107
initialization, running a command listat 10
instructions, REXX
ADDRESS 28
CALL 27
comparison to NetView command list language
control statements 185
definition of 23

restrictions 27 ll::LRl.(!)SPHQ1 312
ROUTCDE() 56 GLOBALV 44
SESSID() 54 MSGREAD 40
SMSGID() 56 PARSE 26
STORAGE(), using - 27 restrictions 26
summary of 173 SAY 26
SYSCONID() 56 SIGNAL 31
?:2:(0(()) 5526 summary of 172
VTAM() 52 TRACE END 30
WTOREPLY() 56 Ig‘:ge izAm 30
WAIT 36
G WAIT CONTINUE 38
GENALERT command 11
GETC, GLOBALV operand 49 J
GETMLINE d 154
GETMSIZE EZ::::d 152 JOEJN:/ME dlist trol
GETMTYPE command 153 e fe“')"l °°";g‘a" st language coniro
GETT, GLOBALV operand 46 R‘é;')‘(af e fon 55
global variables unction
common JOBNUM .
NetView command list language 126 N:tavr;:\gl:on;rsnand list language control
REXX 48 .
task REXX function 55

NetView command list language 124

248 NetView Customization: Writing Command Lists

K

Kaniji characters
See double-byte character set characters

L

labels
NetView command list language 75
REXX 23
LENGTH built-in function 100
LINESIZE function, REXX, using 27
LINETYPE
NetView command list language control
variable 86
REXX function 55
LINKDATA command 166
LINKPD command 167
LINKTEST command 166
listing a command list in storage 9
LOADCL command 8
loading a command list into storage 7
logon, operator, automatically running a command list
at 11
long running commands
major 15
minor 15
queuing 16
Ly
NetView command list language control
variable 83
REXX function 52

major long running commands 15
MAPCL command 9
MCSFLAG
NetView command list language control
variable 86
REXX function 55
message
automating responses to 135
continuing to wait for in a command list
NetView command list language 118
REXX 38
multi-line, working with 36, 114, 151
MVS operator console, sendingto 137
processing information
NetView command list language control
variables 84
REXX functions 53
queue, flushing 42
routing from a command list 142
sending to operators 93
=-label pairs, coding 115
message automation
command lists
defining 136

message automation (continued)
command lists (continued)
running as the resultof 11
commands
DOM 141
GETMLINE 154
GETMSIZE 152
GETMTYPE 153
WTO 138
WTOR 140
converting from MVS/OCCF 164
definition of 135
implementing 161
migration 164
Release 3, how it differs 135
starting 10
MESSAGES
FLUSHQ operand 42
TRAP operand 35
WAIT operand 37
minor long running commands 15
MINUTES, WAIT operand 37
MOD, CMDMDL operand 7
MORE, TRAP operand 35
MSGCNT
NetView command list language control
statement 84, 116
REXX function 40, 53
MSGID
NetView command list ilanguage control
statement 84, 116
REXX function 41,53
MSGORIGIN, NetView command list language control
variable 84, 116
MSGORIGN, REXX function 41, 63
MSGREAD
functions set by 40
REXX instruction 40
MSGROUTE command 142
MSGSTR
NetView command list language control
statement 85, 117
REXX function 41, 54
MSGTYP
NetView command list language control
statement 86
REXX function 41, 56
MSGVAR function 41, 54
multi-line messages, working with 36, 114, 151
MVS
command 14
creating a data setfor 6
operator console, sending messages to 137

NCCFCNT control variable 82

Index 249

NCCFIC statement 10
NCCFID
built-in function 101
statement 74
NCCFSTAT built-in function 102
nested command lists
definition of 13
levels of nesting 13
NetView command list language, using &WAIT
in 118
REXX
from Assembler, C, or PL/l command
processors 29
using TRAP in 36
using WAIT in 40
testing 13
NETLOG, MSGROUTE operand 143
~ NetView command list language
coding conventions 72
comments 89
comparison to REXX 185
control statements
See control statements, NetView command list
language
control variables

See control variables, NetView command list lan-

guage
converting to REXX 209
features of 71
functions, built-in 91
labels 75
null statements 89
variables 76
NetView commands
using with WAIT 39
using with &PAUSE 98
using with &WAIT 116
network commands, using 14
Network Control Program, activating by command
list 5
NOINPUT, &PAUSE operand 97
NOSUB, &BEGWRITE operand 95
NO, TRAP operand 36
null statements 89
NVCNT function 56
NVID function 56
NVSTAT function 56

o)

ONLY, TRAP operand 35

operands
ALL, &CONTROL control statement 93
AND, TRAP instruction 35
BEEP, MSGROUTE command 143
CMD, &CONTROL control statement 93
CONTINUE, &WAIT control statement 119
CONTWAIT, &WAIT control statement 119

250 NetView Customization: Writing Command Lists

operands (continued)

DISPLAY

MSGROUTE command 143

TRAP instruction 35

&WAIT control statement 118
ENDWAIT, &WAIT control statement 115, 118
ERROR, &WAIT control statement 114
ERR, &CONTROL control statement 93
FOR, WAIT instruction 37
GETC, GLOBALY instruction 49
GETT, GLOBALY instruction 46
HCYLOG, MSGROUTE command 143
HOLD, MSGROUTE command 143
IC, NCCFIC command 10
MESSAGES

FLUSHQ instruction 42

TRAP instruction 35

WAIT instruction 37
MINUTES, WAIT instruction 37
MOD, CMDMDL statement 7
MORE, TRAP instruction 35
NETLOG, MSGROUTE command 143
NOINPUT, &PAUSE control statement 97
NOSUB, &BEGWRITE control statement 95
NO, TRAP instruction 36
ONLY, TRAP instruction 35
PUTC, GLOBALYV instruction 48
PUTT, GLOBALYV instruction 45
REPLACE, LOADCL command 8
SECONDS, WAIT instruction 37
STRING, &PAUSE control statement 98
SUB, &BEGWRITE control statement 95
SUPPCHAR, NCCFID statement 74
SUPPRESS

TRAP instruction 35

&WAIT control statement 118
SUPP, CNMS8001 EXEC oeprand 210, 211
SYSLOG, MSGROUTE command 144
VARS, &PAUSE control statement 97

operator

command, running a command list as the resuit
of 12
information
NetView command list language control
variables 83
REXX functions 52
input, pausing for in a REXX command list 26
logon, running a command list automatically at 11
sending messages to 93
task, starting 11

OPID

NetView command list language control
variable 83
REXX function 52

OPSYSTEM

NetView command list language control
variable 82
REXX function 51

OST, AUTOTASK, restrictions 18
OVERRIDE command 39

P

panel information, NetView command list language
control variables 87
panels, displaying 16
parameter variables, NetView command list
language 77
nested command lists, using in 79
null 81
passing t0 a command list 78
special characters, using in 80
text strings, using in 80
&WAIT, using with 116
PARMCNT '
NetView command list language control
variable 83
REXX function 53
PARMSTR control variable 83
PARSE instruction 26
PARSEL2R command 144
parsing
template
using character selectors in 150
using patterns in 147
using symbols in 146
variables 144
PAUSE control statement 97
using NetView commands with 98
pausing for operator input in a REXX command list
performance
converted command list, improving 214
using double suppression character
NetView command list language 74
REXX 25

PL/I command processors, nesting a REXX command

listfrom 29
PPT restrictions 17
PROFILE statement 11
PUTC, GLOBALYV operand 48
PUTT, GLOBALV operand 45

Q

queue, message, flushing 42
queuing a long running command 16
quotes, using in REXX command lists 24

R

record size

NetView command list language 72

REXX 24
removing a command list from main storage 9
REPLACE, LOADCL operand 8

REPLYID
NetView command list language control
variable 86
REXX function 56
RESET command 12, 116
RESTORE TIMER command 11
Restructured Extended Executor language
command lists
CALL instruction, using 27
coding conventions 24
coding non-REXX commands in 24
environment addressed by, changing 28
errors, recovering from 31
examples 57
EXECIO command, using in 28
LINESIZE function, using 27

nesting from an Assembler, C, or PL/I command

processor 29
operator input, pausing for 26
record size 24
restrictions 27
SAY instruction, using 26
STORAGE function, using 27
suppressing display of a non-REXX
command 25
tracing 30
comparison to NetView command list language
function packages, writing 28
functions
See functions
instructions
See instructions, REXX
introductionto 23
VM compression tools, using 27
RETCODE control variable 83
return codes
NetView command list language 83
REXX 31
RETURN command, restriction on use of 14
REXX
See Restructured Extended Executor language
ROUTCDE
NetView command list language control
variable 87
REXX function 56
RUNCMD command 168
running a command list
after a time interval 12
after the operator logs on 11
at a specified time 12
by an operator command 12
from a user-written command processor 14
from another command list 13
when NetView is started 10
when NetView receives a message 11

Index

185

251

S

SAY instruction, using 26
scope checking
command lists 7
variables, NetView command list language 127
SDOMAIN command 158
SECONDS, WAIT operand 37
service point command service commands 165
SESSID
NetView command list language control
variable 85
REXX function 54
session
information
NetView command list language control
variables 82
REXX functions 51
monitor commands, using in a command list 14
TAF 4
SIGNAL instruction 31
SMSGID
NetView command list language control
variable 87
REXX function 56
STACK command 12, 116
status monitor commands, using in a command list 14
storage
loading command lists into 8
removing command lists from 9
STORAGE() function, using 27
STRING, &PAUSE operand 98
SUBSTR built-in function 103
using with DBCS characters 104
SUB, &BEGWRITE operand 95
SUPPCHAR, NCCFID operand 74
SUPPRESS
TRAP operand 35
&WAIT operand 118
suppressing
display of non-REXX commands in a REXX command
list 25
messages 161
suppression characters 74
SUPP, CNMS8001 operand 210
SYSCONID
NetView command list language control
variable 87
REXX function 56
SYSID
NetView command list language control
variable 87
REXX function 56
SYSLOG, MSGROUTE operand 144
system commands, using 14

252 NetView Customization: Writing Command Lists

T

TAF
command output 16
sessions 4
TASK
NetView command list language control
variable 82

REXX function 52
task global variables
NetView command list language 124
REXX 45
TE command 30
terminal information
NetView command list language control
variables 83
REXX functions 52
TGLOBAL control statement 124
THEN clause, &IF control statement 108
TIME control variable 81
time intervals, running a command listat 12
tokens, message
NetView command list language 113
REXX 35
Trace End command 30
Trace Start command 30
tracing, REXX command lists 30
TRAP
REXX instruction 34
using in a nested REXX command list 36
TS command 30
TSO/E EXECIO command 28
TSO, executing CNMS8001 on 210

U

UNIQUE command 16

UNSTACK command 12, 116

user variables 87

user-written command processor, activating a
command list 14

V'

variables
command list information
NetView command list language 83
REXX 53
control
See control variables, NetView command list lan-
guage
global
See global variables
operator information
NetView command list language 83
REXX .52
panel information, NetView command list
language 87
parameter

variables (continued)
parameter (continued)

See parameter variables, NetView command list

language
parsing 144
session information
NetView command list language 82
REXX 51
substitution order 76
terminal information
NetView command list language 83
REXX 52
user 87
VARS, &PAUSE operand 97
VIEW command 16
VIEWAID control variable 87
VIEWCURCOL control variable 87
VIEWCURROW control variable 87
VM
defining file for 6
executing CNMS8001 on 212
REXX compression tools, using 27
VTAM
NetView command list ianguage control
variable 82
REXX function 52

W
WAIT

NetView command list language control
statement 111

control and parameter variables used with 116

ending 115,119
nested command lists, using in 118
NetView commands, using with 116
REXX instruction 36
nested REXX command lists, using in 40
NetView commands, using with 39
WAIT CONTINUE instruction 38
WRITE control statement 94
WTO command 138
WTOR command 140
WTOREPLY
NetView command list language control
variable 87
REXX function 56

Special Characters
(SUPP, CNMS8001 operand 211
&APPLID control variable 82
&AREAID control variable 85
&BEGWRITE control statement 95
&CGLOBAL control statement 126
&COMPNAME control variable 83
&CONCAT built-in function 100

&CONTROL control statement 92
&DATE control variable 81
&DESC control variable 85

&EXIT control statement 109
&GOTO control statement 109
&HCOPY control variable 83
&HDRMTYPE control variable 86
&IF control statement 107
&JOBNAME control variable 86
&JOBNUM control variable 86
&LENGTH built-in function 100
&LINETYPE control variable 86
&LU control variable 83
&MCSFLAG control variable 86
&MSGCNT controi variable 84
&MSGID controi variable 84
&MSGORIGIN control variable 84
&MSGSTR control variable 85
&MSGTYP control variable 86
&NCCFCNT control variable 82
&NCCFID buiit-in function 101
&NCCFSTAT built-in function 102
&OPID control variable 83
&OPSYSTEM control variable 82
&PARMCNT control variable 83
&PARMSTR control variable 83
&PAUSE control statement 97
&REPLYID control variable 86
&RETCODE control variable 83
&ROUTCDE control variable 87
&SESSID control variable 85
&SMSGID control variable 87
&SUBSTR built-in function 103
&SYSCONID control variable 87
&SYSID control variable 87
&TASK control variable 82
&TGLOBAL control statement 124
&THEN clause, &IF control statement 108
&TIME control variable 81
&VIEWAID control variable 87
&VIEWCURCOL control variable 87
&VIEWCURROW control variable 87
&VTAM control variable 82
&WAIT control statement 111
&WRITE control statement 94
&WTOREPLY control variable 87
&1 - &31 parameter variables 117

Index

253

Reader’'s Comment Form

NetView™
Customization: ‘Writing Command Lists
Release 3

Publication No. SC31-6015-0

This manual is part of a library that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. You may use this form to
communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM Publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for
assistance in using your I1BM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are: clarity, accuracy, completeness, organization,
coding, retrieval, and legibility.

Comments:

What Is your occupation?

if you wish a reply, give your name, company, mailing address, and date:

Thank you for your cooperation. No postage stamp necessary if mailed in the
U.S.A. (Eisewhere, an IBM office representative will be happy to forward your
comments or you may mail directly to the address in the Edition Notice on the back
of the title page.)

SC31-6015-0

Reader’s Comment Form

Fold and tape Please Do Not Staple

...

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E15

P.O. Box 12195

Research Triangle Park, N.C. 27709-9990

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

...

Fold and tape Please Do Not Staple

4||I
olI'

Foid and tape

