
--- ------ ----- ---- - ---- - - ----------_.-

j 

. , 

1 

GC34-0084-0 

S1-29 

IBM Series/1 

PL/I 
Introduction 

Program Numbers 5719-PL 1 
5719-PL3 

PROGRAM 
PRODUCT 

D ~:c,g 

II 
11111111111111111111111111111111111111111111111 

Cl []) 

1* tTr ([011'-. 
;m~ 

111111111111111111111111111111111111111111111111 

~ 
Cl [] Cl 

leW '----

1111111111111111111 m 
Cl ll])1 

~(I 
111111111111111111111111111111111111111111111111 

~ 
-... 

Series/1 

10 -.... 

V 
rm 



--- ------ - ---- ---- - ---- - - -----------'-

.. 

( 

c 

G C34-0084-0 

S1-29 

IBM Series/1 

PL/I 

Introduction 

Program Numbers 5719-PL 1 
5719-PL3 

PROGRAM 
PRODUCT 

Series/1 



This publication is for planning purposes only. The information herein is subject to change before 
the products described become available. 

First Edition (February 1977) 

This manual applies to the IBM Series/l PL/I Compiler and Resident Library (Program 
Number 5719-PLl), and the IBM Series/l PL/I Transient Library (Program Number 5719-PL3). 

Significant changes or additions to the contents of this publication will be reported in subsequent 
revisions or Technical Newsletters. Requests for copies of IBM publications should be made to your 
IBM representative or the IBM branch office serving your locality. 

A form for readers' comments is provided at the back of this publication. If the form has been 
removed, send your comments to IBM Corporation, Systems Publications, Department 27T, 
P. O. Box 1328, Boca Raton, Florida 33432. Comments become the property of IBM. 

© Copyright International Business Machines Corporation 1977 

ii GC34-0084 

o 

'. 



C: 

c 

Preface v 
Prerequisite Publications v 
Related Publications v 

Introduction 
Language Extensions 
Extensive I/O Capability 
Data Types and Organizations 2 
Data Manipulation Features 2 
Productivity Features 3 
Additional Features 3 
Summary 3 

The Language Extensions Implemented by Series/1 PL/I 5 
Multitasking 5 

Synchronous and Asynchronous Operations 5 
Creation of Tasks and Programs 6 
Coordination and Synchronization of Tasks 7 
Termination of Tasks and Programs 8 
Attributes 8 
Built-In Functions 9 
Pseudo-Variables 9 
Statements 9 

Sensor I/O 10 
General Description 10 
Accessing Sensor I/O Records 11 
Analog Inp ut 12 
Analog Ou tput 12 
Digital Inp ut 13 
Digital Output 13 

Productivity Features of Series/1 PL/I 15 
Debugging Features 15 

Compile-Time Debugging Features 15 
Execution-Time Debugging Features 15 

Usability Features 16 
Compiler Options 16 
Multiple Compilations 16 

System Requirements 17 

Appendix A. Summary of Keywords 19 

Appendix B. Comparison of Series/1 PL/I Subset to ANS PL/I 27 
Comparison of Built-In Functions and Pseudo-Variables 27 
Comparison of Attributes 29 
Comparison of Statements and Options 31 
Comparison of ON Conditions 32 
Comparison of Format Items 33 
Comparison of Macro Facility 33 
Comparison of ENVI RONMENT Options 33 

Index 35 

Contents 

Contents iii 



, , 

iv GC34-0084 



c 

Prerequisite Publications 

Related Publications 

( 

c 

Preface 

This publication gives general information about the Series/l PL/I Compiler. 
The information provided is to be used as a planning aid only and is intended 

to introduce installation managers, systems analysts, and programmers to t~e facilities 
available with this compiler. The reader is assumed to know American National 
Standard (ANS) Programming Language PL/I (ANSI X3.53-1976). 

"The Language Extensions Implemented by Series/ I PL/I" discusses those features 
which are not included in ANS PL/I, such as language extensions and sensor I/O. 

"Productivity Features of Series/ I PL/I" discusses debugging and usability 
features. 

"System Requirements" briefly describes both the machine and system 
requirements. 

Appendix A is an alphabetical list of the PL/I and implementation-defmed 
keywords. 

Appendix B is a comparison, by function, of Series/1 PL/I and ANS PL/!. 

• IBM Series/1 System Summary, GA34-0035, which contains an overview of the 
entire Series/ I hardware and software offering. 

For information regarding the current availability of all related Series/l publications, 
consult your IBM representative. 

• IBM Series/1 Realtime Programming System: Introduction and Planning Guide, 
GC34-0102 

• IBM Series/1 Program Preparation Subsystem: Introduction, GC34-0121 
• IBM Series/1 PL/I: Language Reference Manual. 

Preface v 



(,. " 
; 

vi GC34-0084 



C·~· 
..r' 

c 

Language Extensions 

Introduction 

The Series/1 PL/I is a subset of ANS PL/I plus extensions. It requires two 
additional program products for its operation: IBM Series/1 Realtime 
Programming System (Program Number 5719-PCl) and IBM Series/1 Program 
Preparation Subsystem (Program Number 5719-ASl). 

The Realtime Programming System is a multiprogramming, multitasking, 
event-driven, disk-based control system. It manages all physical 
resources-processor, storage, and devices. Its supervisor and data management 
services are the interface between your application programs and the Series/1 
hardware. It supplies the environment for both realtime and batch programs. 

The Program Preparation Subsystem is a set of programs that offers: 

• A powerful program preparation tool for creating realtime and batch 
applications. 

• A general purpose batch processing facility. 

It consists of a Job Stream Processor, Text Editor, Macro Assembler, and 
Application Builder (which produces executable load modules from object 
modules produced by the language translators). 

Series/1 PL/I consists of two products: (1) a compiler with a resident library 
(Program Number 5719-PL1) and (2) a transient library (Program Number 
5719-PL3). The resident library is made part of your task set at execution of the 
Application Builder. The transient library is installed into the shared task set on 
the execution system to support your application object program. 

The Series/1 PL/I language is extensive in function, aimed at allowing you to 
quickly develop efficient application programs that can easily be extended or 
changed. Highlights of the PL/I offering include: 

• Language extensions 
• Extensive Input/ Output (I/O) capability 
• Multiple data types and organizations 
• Easy data manipulation features 
• Productivity features 
• Additional features. 

Language extensions allow starting of asynchronous tasks and programs, and 
synchronization of their execution. Powerful event handling and resource control 
statements allow you to easily code applications that involve response to realtime 
events and resolution of resource contention. The ability to handle sensor I/O is 
also provided. 

Extensive I/O Capability 
Series/1 PL/I supports both stream and record I/O. Stream I/O statements read 
and write data with a minimum of programming effort, because automatic 
formatting and conversion are provided. The following specific options are 
available: 

• List-directed I/O. This facility allows you to input or output data with 
automatic formatting and conversion. 

Introduction 



• Edit-directed I/O. A full range of format items, including picture qualifications 
and control, allows you to generate complex reports with a minimum of 

programming effort. ( " 

Record I/O statements allow you to have more control over your I/O. The '- ; 
following options are available: 

• Consecutive synchronous I/O. This facility is available through the use of the 
READ, WRITE, and REWRITE statements. You can improve your 
execution-time performance by using the EVENT options for asynchronous 
I/O. 

• Direct I/O. This facility is available through the use of the READ, WRITE, 
DELETE, and REWRITE statements with the KEY option. Asynchronous 
direct I/O is also permitted. 

• Sensor I/O. The facility for handling both sequential and random sampling of 
analog and digital I/O is available through the use of the READ and 
REWRITE statements. 

• Transient files. This form of file organization allows you to communicate data 
between Realtime Programming System queues using PL/I READ and 
WRITE statements. The PL/I program can detect and handle the empty queue 
situation by coding an ON-unit for the PENDING ON-condition. 

Data Types and Organizations 
Series/l PL/I supports arithmetic data, string data, and program control data. 
Arithmetic data can be represented in either binary or decimal radix and can be 
either fixed or floating point. Fixed point word and doubleword precisions are 
supported. Decimal fixed point data can have up to 15 digit positions, with up to 
15 fractional positions. String data can be either bit or character, with fixed or 
varying length attributes. Program control data can be label, event, activation, 
lock, or pointer. Entry and file parameters are also supported. 

PL/I data may be organized into arrays of up to 15 dimensions or in 
structures (hierarchical collections of data, not necessarily of the same type). A 
structure can also be dimensioned. 

This wide variety of data types and organizations allows you to operate on 
data in the manner that most naturally matches your conception of the problem. 

Data Manipulation Features 

2 GC34-0084 

Series/l PL/I provides both ease of expression and programmer productivity, 
since it supports all major PL/I operators, data types, and statements. Of 
particular interest are 

• Powerful string operations, including substrings, concatenation, and general 
boolean operations. 

• Full set of language built-in functions, including mathematical functions, string 
functions, and array functions. 

• Structure assignment. 
• Automatic data conversions in expressions. 
• Generalized subscripting. 
• Full support for internal and external procedures. 
• Control structures including IF-THEN, IF-THEN-ELSE, DO, and 

DO-WHILE. 

" , 



Productivity Features 

Additional Features 

Summary 

c 

c 

Included in this category are such features as 

• Extensive compile-time diagnostic messages 
• Compile-time listing aids 
• Execution-time diagnostic messages 
• User programming and control of error conditions via the PL/I ON-handling 

language. 

Included in this category are those aspects of Series/l PL/I that make it 
uniquely suitable as a general application development tool. Of particular interest 
are 

• Storage efficiency gained by the generation of reentrant code and support for 
automatic storage allocation. 

• Program modularity and interface checking provided by the PL/I block 
structure and scope rules and the ENTRY attribute. 

• The ability to build and manipulate chained data lists, rings, and plexes using 
the PL/I list processing support; that is, the pointer data type and based 
storage. 

Series/l PL/I is aimed at decreasing application development time in areas such 
as realtime, scientific or problem solving, as well as traditional data processing. 
These features also make it useful when implementing advanced applications such 
as transaction processing and data base handling. 

Introduction 3 



f \. 

4 GC34-0084 



c 

( 

c 

Multitasking 

The Language Extensions Implemented by Series/1 PL/I 

The approach taken for the language extensions in Series/1 PL/I is to extend the 
PL/I language to allow easy development of realtime applications, while 
simultaneously retaining the basic structure and philosophy of the PL/I language. 
To achieve this goal, extensions are provided in the following areas: 

• Ability to schedule, execute, and control external procedures as independent 
parallel tasks. 

• Ability to schedule and execute programs (task sets). 
• Support for synchronization and control of program data and flow by using 

EVENT variables, LOCK variables, and deadlock avoidance. 
• Extension of event concepts to recognize Time-of-Day events, events triggered 

by external causes (i.e., process interrupts), repetitive events, and resetting 
events. 

• Extension of PL/I record I/O to handle digital and analog I/O. 

The last extension is termed sensor I/O, while the remaining four are referred 
to as multitasking. Refer to Appendix B for a comparison of Series/1 PL/I to 
ANS PL/I. 

The use of a computing system to execute a number of operations concurrently is 
broadly termed multiprogramming. You can make use of the multiprogramming 
capability of the system by using the multitasking facilities discussed in the 
following sections. 

A PL/I program is a set of one or more procedures, each of which consists of 
one or more blocks of PL/I statements. The execution of these procedures 
constitutes one or more tasks, each of which can be identified by a different 
activation name. A task is dynamic; it exists only while the procedure is being 
executed. A task is not a set of instructions, but an execution of a set of 
instructions. The instructions themselves, as written by you, may in fact be 
executed several times in different tasks. 

It is necessary for at least one task to exist when a PL/I program is executed. 
Thus, when a PL/I program is first entered, its execution is part of a task. This 
particular task is called the major task; it is created by the operating 
environment. 

Synchronolls and Asynchronolls Operations 
Unless the program specifies the creation of tasks, the execution of the 
statements of the program will proceed serially in time, according to the sequence 
designed by the order of the statements and the control statements. Such an 
operation is said to be synchronous. In addition to full facilities for conventional 
synchronous processing, means are provided for performing operations 
asynchronously. 

Some reasons for considering the use of asynchronous operations are 

• You may wish to make use of computer facilities which can operate 
simultaneously. 

• A program may be written in which I/O units initiate or complete 
transmission at unpredictable times, such as disk operations, terminals. 

• The asynchronous nature of realtime, event-driven applications. 

The Language Extensions Implemented by Series/l PL/I 5 



The following diagram distinguishes between synchronous and asynchronous 
operations. (The circles represent statements.) 

- - - 0 - - 0 - - - 0 - - - - - - - - - - - - - - - - 0 - - - - - - - - (synchronous) 

time--~ 

ro---o-------- --

j
O-------o----o-------- ... 

0-0-0 ---------0-------0-----0----------

(asynchronous) 

time--~ 

In an asynchronous operation, once a new line has been started, the statements 
on that line are executed in sequence and independently of the statements on any 
other line. 

Creation of Tasks and Programs 

6 GC34-0084 

Tasks or programs are created by execution of a RUN statement. The scheduled 
task or program will then be executed asynchronously with the scheduling task or 
program. The RUN statement itself is not part of the newly-created task or 
program. 

Scheduled tasks must be external procedures. All tasks must have OPTIONS 
(TASK) on their PROCEDURE statement. 

The options of the RUN statement have the following meaning: 

• ACTIVATION Specifies a name for the activation variable 
created by the execution of the RUN statement. 
Specifying the name in this way is necessary if 
you wish to issue a STOP or UNSCHEDULE 
for the scheduled task or program in any other 
task. 

• EVENT 

• PRIORITY 

• AT 

• AFTER 

• EVERY 

• SOURCE 

• ENVIRONMENT 

Indicates that you wish to issue aWAIT 
statement which will wait on the completion of 
the task created by the RUN statement. 
Indicates the priority of the task created by the 
RUN statement. When two or more tasks are 
able to continue, but external constraints prevent 
simultaneous execution of them all, then those 
with priorities of a higher numeric value will 
proceed first. 
Indicates the time of day the task or program 
should start. 
Gives a time interval after which the task or 
program should start. 
Gives a time interval such that after the program 
is started, it should be repeatedly started at the 
specified interval. 
Indicates that the task or program is to start as 
the result of a process interrupt. This process 
interrupt is specified in an ENVIRONMENT 
option. 
Is used to define implementation characteristics 
of the event. 

f' ,-, 



c 

ex 

c 

Coordination and Synchronization of Tasks 

Synchronizing Two Asynchronous Operations 

In order that the result of an asynchronous operation may be made available to 
other tasks, aWAIT statement can be used to synchronize two or more 
asynchronous operations. 

The following diagram illustrates this 

ABC D E F G 
0--0--0--0---------0----------0---0-- ... 

time _-_ ~ ~ _____ 0 __ 0 _ ........ J __ 0 ______ 0 __________ _ 

L M 
WAIT 

N 0 p 

Assume that before statement N can be executed, both Land E must have 
been executed. M, therefore, issues aWAIT statement which will suspend 
operation on that line until E has been completed. After N, the statements 0, P, 
... are executed synchronously, as are the statements F, G, ... 

Dynamic Descendance of Tasks and Programs 

Sharing of Data Between Tasks 

Sharing Data Between Programs 

If, within the execution of a task, a block B is activated and control for that task 
stays at points internal to B until B is terminated, no other blocks can be 
activated within that task while B is active. 

It is possible, however, for control of that task to pass outside B and cause 
activation of other blocks while B is still active for single tasking applications. It 
is also possible for a new task or program to be initiated during the activation of 
B by a RUN statement. All additional blocks activated in the orginal task and 
program are dynamic descendants of B, but all blocks in the new task or program 
are not dynamic descendants of B and of the blocks of which B is a descendant. 
None of the rules associated with dynamic descendance apply across task or 
program boundaries, for example, ON-units established prior to the scheduling of 
a task or program are not inherited by the scheduled task or program. 

A program can share data between tasks only by declaring the data to be 
shared with either the EXTERNAL attribute, or by using BASED variables with 
a pointer which has external scope. In order to ensure predictable results when 
accessing such shared data, you should use the PL/I synchronization language, 
i.e., LOCKs, to force temporary serialization of data access. Naturally, such 
serialization is not necessary unless contention can exist. 

The following rules should be considered when sharing data across task 
boundaries: 

• Any generation of any variable of any storage class can be referred to in any 
task by means of an appropriate BASED variable reference. It is your 
responsibility to ensure the required variable is in an allocated state at the time 
of reference. 
Static variables may be referred to in any task in which they are known. 

• Automatic variables can be referred to by any block dynamically descendant 
from the block which allocates them; however, not across task bc.undaries. 

There is no data sharing defined, in the PL/I language, between programs. 
However, STATIC EXTERNAL data can be placed in the shared task set area 

The Language Extensions Implemented by Series/l PL/I 7 



Sharing Files Between Tasks 

during application build. This can give the effect of data shared between 
programs. 

Files that are known between tasks can be opened by any task. Subsequent 
opens are ignored. Any task that knows a file can close it. When a task is exited, 
all internal files opened by that task are closed. Any task that knows a file can 
read from or write to that file. More than one file may be associated with the 
same data set. 

TermilUltion 0/ Tasks and Programs 

Attrib"tes 

8 GC34-0084 

A task may be terminated in one of the following ways: 

• Control for the task reaches a RETURN or END statement for the procedure 
invoked with a TASK option. 

• Control for any task reaches a STOP statement. 
• Another task issues a STOP statement naming the activation variable of the 

program or task to be terminated. 

Notice that a task cannot be terminated by a GOTO statement which transfers 
control out of the task. The execution of such a GOTO statement is an error. 

A program can be terminated by issuing a STOP statement from within the 
program. A program can terminate another program by issuing a STOP naming 
the activation variable associated with the other program. 

When a task is terminated, the following actions take place: 

• All 110 events, which were initiated in that task and which are not yet 
complete, are set complete. Their results are not defined. 

• All locks held by the task are unlocked. 
• All internal files, which were opened during that task and are not yet closed, 

are closed. 
• All active blocks in the task are terminated. 
• If the task is terminated by any statement other than a RETURN or an END 

statement in this task, the status value of the event variable associated with 
the task is set, as is the completion value of the event. 

Variables which were being assigned at the time of task termination, or data 
sets associated with OUTPUT or UPDATE files which were being created or 
updated at the time of task termination, may not have defined values after 
termination. It is your responsibility to ensure that assignment to variables or 
transmission to files is properly completed before the task performing these 
operations terminates. 

The following is a list of the attributes associated with multitasking and their 
functions: 

• EVENT 

• LOCK 

• ENVIRONMENT 

Specifies that the associated identifier being 
declared is used as an event name. Event names 
are used to investigate the current state of tasks 
or of asynchronous 110 operations. They can 
also be used as program switches to control 
synchronization of parts of a program. 
Specifies that the associated identifier being 
declared is used as a lock name. Lock names are 
used as logical gates for task synchronization 
purposes (primarily to data). 
Is allowed to be specified with the EVENT 
attribute. It is used to describe implementation 

('\ 
" 1 

, , 

(: 



c 

Built-In Functions 

c~ 

Pseudo- Variables 

Statements 

c 

• AT 

• AFTER 

• SOURCE 

• ACTIVATION 

defined characteristics of the event. These 
characteristics become associated with the event 
when it becomes connected. This can then cause 
the completion and status of the event to be set 
in an implementation way. For example, 
process-interrupt association can be specified in 
the ENVIRONMENT option. 
Specifies a time of day. When the event is 
connected, it should be posted at that time of 
day. 
Specifies a time interval after which an event 
should be posted. The interval starts when the 
event is connected. 
Indicates that the event will be posted by a 
process interrupt described in the 
ENVIRONMENT option of the event 
declaration. 
Describes a variable that may be used as task or 
program identifier to test priority, 
UNSCHEDULE, or STOP the task or program. 

The multitasking built-in functions are used during multitasking and during 
asynchronous I/O operations. They allow you to investigate the current state of 
execution of a task or asynchronous I/O operation. 

The function names and definitions are 

• COMPLETION 

• STATUS 

• PRIORITY 

• DAYNO 

Returns the completion value of a given event 
expression. The event can be associated with 
completion of a task; completion of DISPLAY, 
AT, AFTER, SOURCE; completion of an I/O 
operation; or it can be user-defined. It can be 
connected or not connected. 
Returns the status value of a given event 
expression. The event expression represents the 
event whose status value is to be returned. It 
can be connected or not connected. 
Returns the priority of a task relative to the 
current task. 
Returns the number of the current day of the 
year. 

In general, pseudo-variables are certain built-in function names that can appear 
wherever other variables can appear in order to receive values. In short, they are 
built-in function names used as receiving fields. 

STATUS is a pseudo-variable that resets the status value of an 
event-expression. 

The following is a list of the statements associated with multitasking and their 
functions: 

• RUN 
• STOP 
• UNSCHEDULE 

Invokes a task or program. 
Causes termination of a program or task. 
Eliminates the scheduling of a task or program 
that has already been scheduled with an AT, 

The Language Extensions Implemented by Series/l PL/I 9 



Sensor I/O 

General Description 

10 GC34-0084 

• TRANSFER TO 

• WAIT 

• LOCK 

• UNLOCK 

• CONNECT 

• DISCONNECT 

• POST 

• CLEAR 

AFTER, EVERY, or SOURCE that has not yet 
been satisfied. 
Stops the current program and "simultaneously" 
starts the specified program. 
Retains control within the activated block until 
certain specified events have completed. 
Seizes a lock or tests whether a lock is held by 
another task. The purpose of the statement is to 
seize a logical gate which allows synchronization 
for access to data, control flow, etc. 
Removes the specified lock from its locked state. 
The purpose is to free a logical gate which is 
used for synchronization of access to data or 
control flow. 
Causes the connection of the event to the 
posting options described in the AT, AFTER, or 
SOURCE and ENVIRONMENT attributes of 
the event declaration. 
Makes an event not connected. This is used, 
primarily, to cause the disconnection of the 
event from the AT, AFTER, or SOURCE 
attributes, or the EVENT option of I/O, 
DISPLAY, or RUN. 
Sets the completion value to '1 'B and, 
optionally, the status value of disconnected 
event variables. This is done in one 
uninterruptable sequence. 
Clears the completion and status values of event 
variables. 

The general approach taken for sensor I/O on the Series/1 is to use existing 
PL/I record I/O statements to access analog and digital data. Slight restrictions 
in the functions supported by record I/O are necessary to accommodate the 
implementation model of sensor I/O. 

Prior to execution of a task, sensor I/O points are defined in a table which is 
external to the PL/I program. All of the physical sensor I/O points need not be 
defined in the table; sensor I/O may be physically accessed sequentially, in 
which case only the first point needs to be defined. However, if the points are to 
be accessed directly, that is randomly, each point must be defined. Each point so 
defined is accessed using an external reference to its address in the table. 

One or more sensor I/O points may be accessed as one record. Sensor I/O 
records, which are described in the ENVIRONMENT attribute of a file 
declaration, may be either type S (sequential sampling) or type R (random 
sampling). All of the records in a sensor I/O file declaration must be the same 
type, and there must be a type S or R description for each sensor I/O record to 
be accessed. 

Sensor II 0 records are accessed by their relative position in the 
ENVIRONMENT attribute. If SEQUENTIAL is specified, the first 
READ/WRITE accesses the first record; the second READ/WRITE accesses 
the second record; etc. If KEYED SEQUENTIAL or DIRECT is specified, the 
KEY option is used to access any record specified in the ENVIRONMENT 
attribute. 

# .. 

, , 



c 

c 

The type S record may be used to access sensor I/O points which are 
physically consecutive. Access begins at the point specified by you and continues 
for the specified number of points. This method of accessing sensor I/O points is 
called sequential sampling. 

The type R record may be used to access sensor II 0 points which may not be 
physically consecutive. Access begins at the point specified by you and continues 
to the next point specified by you. This method of accessing sensor I/O points is 
called random sampling. 

Sensor output points can be files declared as UPDATE or INPUT files-not 
OUTPUT. This restriction is required because the WRITE statement required for 
an OUTPUT file indicates the addition of a record, yet the number of records in 
a sensor I/O file is fixed before execution. Declaring the file UPDATE also 
allows reading an output point to determine the last value written to that point. 
If it is desirable to only read from the output points, the file can be declared 
INPUT. 

The DELETE statement cannot be used, because the number of sensor I/O 
records is fixed before execution. REWRITE must be used to output a record to 
sensor output files, because such files can be declared only as UPDATE files. 

Accessing Sensor I/O Records 

Input Files 

Update Files 

PL/I access to records in an ANALOG or DIGITAL INPUT file can be 
SEQUENTIAL, KEYED SEQUENTIAL, or DIRECT. 

• If SEQUENTIAL is declared, the first READ statement accesses the first 
record specified in tp.e ENVIRONMENT attribute, the second READ 
statement accesses the second record, etc. 

• If KEYED SEQUENTIAL is declared, the KEY option may be used on a 
READ statement to access a particular record. If the KEY option is not used, 
the records are accessed sequentially. 

• If DIRECT is declared, the KEY option must be used on all READ 
statements associated with the file. 

• The KEYTO option may be used on READ statements associated with 
KEYED SEQUENTIAL files. When the KEYTO option is used, the relative 
record number of the record is assigned to the KEYTO character string 
variable. 

PL/I access to records in an ANALOG or DIGITAL UPDATE file can be 
SEQUENTIAL, KEYED SEQUENTIAL, or DIRECT. 

• If SEQUENTIAL is declared, access to the records proceeds as described 
above for SEQUENTIAL input files. The REWRITE statement is used to 
output the record because sensor output files must be declared UPDATE. 

• If KEYED SEQUENTIAL is declared, access to records proceeds as described 
above for KEYED SEQUENTIAL input files. 

• If DIRECT is declared, access to the records proceeds as described above for 
DIRECT input files. The KEY option must also be used. 

If KEYED SEQUENTIAL or DIRECT is specified, the KEY option is used to 
access any record specified in the ENVIRONMENT attribute. Therefore, the 
KEY option expression must evaluate to a relative record number; for example, 
3 for the third record. 

The following chart lists the allowable transmission statements and options for 
sensor I/O files. An X under a file attribute and accessing method indicates that 
the statement and option is allowable. 

The Language Extensions Implemented by Series/l PL/I 11 



INPUT 

DIRECT SEQL. 

X 

X 

X 

X 

X 

X 

Analog Input 

Analog Output 

12 GC34-0084 

UPDATE Transmission 

SEQL. KYD DIRECT SEQL. SEQL. KYD Statements and options 

X 

X 

X 

X 

X 

X 

X 

X 

X X READ INTO 

X READ INTO KEYTO 

X X READ INTO KEY 

X X READ IGNORE 

X X READ INTO EVENT 

X X READ INTO KEYTO EVENT 

X X READ INTO KEY EVENT 

X X READ IGNORE EVENT 

X X REWRITE FROM 

X X REWRITE FROM KEY 

X X REWRITE FROM KEY EVENT 

When an Analog Input (AI) record is accessed, the Analog to Digital Converter 
(ADC) returns a coded representation of the point value, having the attributes 
BIT(16). Truncation and/or loss of precision may occur if the target variable 
does not have the correct attributes. 

When an AI point is defined external to PL/I, a range code is specified which 
indicates the amplifier gain to be used; this is the code used when the point is 
read, unless it is overridden by the GAIN option. 

Without the GAIN option, the AI points are read as follows: 

• Type S record Each point in the record is read with the defined 
range code of the point indicated by you in the 
"address" operand of the record declaration. 

• Type R record Each point in the record is read with the defined 
range code for that point. 

With the GAIN option and with either type S or R records, each point in the 
record is read with the range code specified by you; or, if you did not specify 
one, each point is read with the highest valid range code possible for that point. 

Automatic zero correction can be performed when reading AI points by 
specifying ZEROCOR with the sensor I/O record in the ENVIRONMENT 
attribute. 

The coded value to be written to an Analog Output (AO) point should have the 
attributes BIT(10) because these are the attributes of the value presented to the 
AO hardware. No implicit conversion to BIT(10) is performed. Similarly, since 
AO points can be read from as well as written to, the coded value read from an 
AO point will have the attributes BIT(10). 

As previously explained, AO files may be declared UPDATE or INPUT. This 
allows reading of an AO point to determine the last value written to that point. 
The REWRITE statement must be used to output the value to an AO point. 
WRITE and DELETE are not allowed. 

Records in an AO file may be accessed sequentially or directly. If an AO file 
is declared SEQUENTIAL, a REWRITE statement causes output values to be 
written to the analog points indicated by the current record. If the file is declared 
DIRECT or KEYED SEQUENTIAL, a REWRITE statement causes output 
values to be written to the analog points indicated by the record specified by the 
KEY option expression. 



Digital Input 

c 

Digital Output 

c 

When a Digital Input (01) record is accessed, a logical 01 group bit string is 
returned to you. A logical 01 group consists of from 1 to 16 contiguous bits in a 
physical 01 group, or spanning two groups. (Since the physical 01 group is never 
accessed as such, the following references to "01 group" imply "logical DI 
group".) 

The area to which the DI group bit string is assigned should be connected 
storage. 

When a Digital Output (DO) record is accessed, a bit string value is written to a 
logical DO group. A logical DO group consists of from 1 to 16 contiguous bits in 
a physical DO group, or spanning two groups. (Since the physical DO group is 
never accessed as such, the following references to "DO group" imply "logical 
DO group".) 

As previously explained, DO files may be declared UPDATE or INPUT. This 
allows reading of a DO group to determine the last value written to that group. 
The REWRITE statement must be used to output the value to a DO group. 
WRITE and DELETE are not allowed. 

Records for a DO file may be accessed sequentially or directly. If the file is 
declared SEQUENTIAL, a REWRITE statement causes a bit string value to be 
written to the DO group indicated by the current record. If it is declared 
DIRECT or KEYED SEQUENTIAL, a REWRITE statement causes a bit string 
value to be written to the DO group indicated by the record specified by the 
KEY option expression. 

The Language Extensions Implemented by Series/1 PL/I 13 



(~ , ; 

t \ 

\. , 

14 GC34-0084 



c 

c 

c 

Debugging Features 

Productivity Features of Series/1 PL/I 

Series/1 PL/I provides an extensive range of debugging features to decrease the 
time and effort required for program writing and checkout. These features are 
provided at compile-time and at program execution time. 

Compile-Time Debugging Features 

Diagnostics 

Listing Aids 

Comprehensive diagnostic messages are provided by the Compiler. They provide 
an explicit description of the error. 

Each error message indicates the statement number of the erroneous statement, 
the source item within the statement involved (if applicable), an explanation of 
the error, and any assumptions made or actions taken by the Compiler. Messages 
are graded into 5 severity levels. Optionally, only error messages above a 
specified severity level are printed. 

The Compiler provides listings and maps which will assist in writing and checkout 
of your PL/I programs. These include: 

• Source listing with Compiler generated statement numbers. 
• Attribute and cross-reference listing for variables used in the PL/I program. 
• Object code listing (in Assembler language type format). 
• Lists of offsets of object code statements and variables. 
• Storage and control block requirements. 
• External Symbol Dictionary. 

Execution-Time Debugging Features 

Diagnostics 

Comprehensive diagnostic messages are provided at execution time. Each 
message indicates the name of the procedure block in which the error occurred, 
the offset of the instruction in error, and an explanation of the error. The offset, 
together with the statement offset list generated by the Compiler allows you to 
determine the PL/I source statement associated with the error. 

Implementation of PL/I Error Handling Features 

Series/l PL/I supports PL/I error handling features that enable you to detect 
errors at execution time. Significant of these features are 

• ON-conditions, which enable you to specify what action is to be taken if a 
particular error condition occurs. 
The ON-conditions supported are specified in Appendix B. 

• The SNAP option on the ON statement which gives you a calling trace of the 
path to the statement in error. 

• The condition built-in functions which enable you to determine more 
information about the source of the error, and which can sometimes also be 
used to correct the error. 

The condition built-in functions supported are specified in Appendix B. 

Productivity Features of Series/l PL/I 15 



Usability Features 

Compiler Options 

Multiple Compilations 

16 GC34-0084 

To aid programmer productivity there are Compiler features to enable you to 
control the operation of the Compiler to best suit your environment and mode of (,- ! 
development. ' 

You can specify Compiler options which control the operation of the Compiler. 
These options enable you to: 

Control the format of the source program that the Compiler can accept (e.g., 
48- or 60-character set, the position of the source on the input records). 
Control the format of the printed output. 
Control which of the Compiler listings and maps will be printed. 
Suppress the printing of error messages below a specified priority. 
Specify that, depending on the severity of errors found, compilation will be 
restricted to syntax checking. 

The options used for the compilation of a program are specified in several 
ways. The Compiler assumes a set of default options. These can be modified by 
parameters on the procedure or control language statement which invokes the 
Compiler, or by options specified on a special control statement (*PROCESS 
statement). 

The Series/l PL/I Compiler allows compilations of more than one PL/I source 
program during one invocation on the Compiler. The separate PL/I programs are 
separated by *PROCESS statements; these can be used to specify different 
options for each compilation. This feature reduces the job stream processing 
overhead. 



c 

c 

System Requirements 

The minimum system requirements for compilation are 

• Series/1 Processor with 64KB 
• Series/1 PL/I Compiler and Resident Library 
• 28KB partition in primary storage for the PL/I Compiler 
• Series/1 Realtime Programming System 
• Series/1 Program Preparation Subsystem 

The minimum system requirements for application build are 

• Series/1 Processor with at least 48KB 
• Series/1 PL/I Compiler and Resident Library 
• 16KB partition in primary storage for the application builder 
• Series/1 Realtime Programming System 
• Series/1 Program Preparation Subsystem 

The minimum execution requirements in a realtime partition are 

• Series/1 Processor with at least 48KB 
• Series/1 PL/I Transient Library 
• Primary storage partition sufficient for the PL/I program and its library support 
• Series/1 Realtime Programming System 

The minimum execution requirements in a batch partition are 

• Series/1 Processor with at least 48KB 
• Series/1 PL/I Transient Library 
• Primary storage partition sufficient for the PL/I program and its library support 
• Series/1 Realtime Programming System 
• Series/1 Program Preparation Subsystem 

Note. Refer to the Related Publications in the Preface to determine the minimum 
system requirements for the Series/1 Realtime Programming System and the 
Program Preparation Subsystem. 

System Requirements 17 



( ~ , , 

(:: 
18 GC34-0084 



Appendix A. Summary of Keywords 

C 
The following is a complete list of the PL/I and implementation-defined 
keywords implemented by the Series/l PL/I compiler. 

Keyword Abbreviation Use of Keyword 

A format item 

ABS built-in function 

ACOS built-in function 

ACTIVATION ACTN attribute, option of RUN, 
STOP, and UNSCHEDULE 
statements 

ADDR built-in function 

AFTER attribute, option of RUN 
statement 

ALIGNED attribute 

ALL option of UNLOCK statement 

ANALOG option of ENVIRONMENT 
attribute 

ASCII option of ENVIRONMENT 
attribute 

ASIN built-in function 

AT attribute, option of RUN 

C4 
statement 

ATAN built-in function 

ATAND built-in function 

AUTOMATIC AUTO attribute 

B format item 

BASED attribute 

BEGIN statement 

BINARY BIN attribute, built-in function 

BIT attribute, built-in function 

BLKSIZE option of ENVIRONMENT 
attribute 

BOOL built-in function 

BUFFERS option of ENVIRONMENT 
attribute 

BUILTIN attribute 

BY clause of DO statement 

CALL statement 

CHAR built-in function 

CHARACTER CHAR attribute 

CLEAR statement 

CLOSE statement 

COLUMN COL format item 

COMPLETION CPLN built-in function 

C CONDITION COND attribute, condition 

CONNECT statement 

Appendix A. Summary of Keywords 19 



Keyword Abbreviation Use of Keyword 

CONNECTED CONN attribute 

CONSECUTIVE option of ENVIRONMENT ( "\ 
attribute '- ; 

CONVERSION CONV condition 

COpy built-in function 

COS built-in function 

COSD built-in function 

COUNT built-in function 

CTLASA option of ENVIRONMENT 
attribute 

DATE built-in function 

DAYNO built-in function 

DECIMAL DEC attribute, built-in function 

DECLARE DCL statement 

DELAY statement 

DELETE statement 

DEVNBR option of ENVIRONMENT 
attribute 

DIGITAL option of ENVIRONMENT 
attribute 

DIM built-in function 

DIRECT file description attribute 

DISCONNECT statement 

DISK option of ENVIRONMENT 
attribute f '" 

DISPLAY statement \ , 
DO statement, option of GET and 

PUT statements 

E format item 

EDIT option of GET and PUT 
statements 

ELSE clause of IF and LOCK 
statements 

ELSIZ option of ENVIRONMENT 
attribute 

END statement 

ENDFILE condition 

ENDPAGE condition 

ENTRY attribute 

ENVIRONMENT ENV attribute, option of RUN and 
TRANSFER TO statements 

ERROR condition 

EVENT attribute, option of READ, 
WRITE, REWRITE, 
DISPLAY, DELETE, and 
RUN statements 

EVERY built-in function, option of 
RUN statement 

EXP built-in function 

(: EXTERNAL EXT attribute 

20 GC34-0084 



Keyword Abbreviation Use of Keyword 

F format item, option of 

C ENVIRONMENT attribute 

FB option of ENVIRONMENT 
attribute 

FBS option of ENVIRONMENT 
attribute 

FILE attribute, option of I/O 
statement 

FINISH condition 

FIXED attribute, built-in function 

FIXEDOVERFLOW FOFL condition 

FLOAT attribute, built-in function 

FORMAT attribute, statement 

FROM option of WRITE and 
REWRITE statements 

GAIN option of ENVIRONMENT 
attribute 

GET statement 

GO TO GOTO statement 

HBOUND built-in function 

HIGH built-in function 

IF statement 

IGNORE option of READ statement 

INCLUDE macro statement 

(~ 
INITIAL INIT attribute 

INPUT file description attribute, option 
of OPEN statement 

INTERNAL INT attribute 

INTO option of READ statement 

KEY option of READ, DELETE, 
and REWRITE statements, 
condition 

KEYED attribute 

KEYFROM option of WRITE statement 

KEYTO option of READ statement 

LABEL attribute 

LBOUND built-in function 

LENGTH built-in function 

LINE format item, option of PUT 
statement 

LINENO built-in function 

LINESIZE option of OPEN statement 

LIST option of GET and PUT 
statements 

LOCK attribute, statement 

LOG built-in function 

LOG2 built-in function 

LOGI0 built-in function 

C LOW built-in function 

MAIN option of PROCEDURE 
statement 

Appendix A. Summary of Keywords 21 



Keyword Abbreviation Use of Keyword 

NOCONVERSION NOCONV condition prefix (disables 
CONVERSION) 

( \ 
NOFIXEDOVERFLOW NOFOFL condition prefix (disables 

FIXED OVERFLOW) 
, , 

NOOVERFLOW NOOFL condition prefix (disables 
OVERFLOW) 

NOSIZE condition prefix (disables 
SIZE) 

NOSTRINGRANGE NOSTRG condition prefix (disables 
STRING RANGE) 

NOSTRINGSIZE NOSTRZ condition prefix (disables 
STRINGSIZE) 

NOSUBSCRIPTRANG E NOSUBRG condition prefix (disables 
SUBSCRIPTRANGE) 

NOUNDERFLOW NOUFL condition prefix (disables 
UNDERFLOW) 

NOZERODIVIDE NOZDIV condition prefix (disables 
ZERODIVIDE) 

NULL built-in function 

ON statement 

ONCHAR built-in function, 
pseudo-variable 

ONCODE built-in function 

ONCOUNT built-in function 

ONFILE built-in function 

ONKEY built-in function 

ONLOC built-in function 1/ 

ONSOURCE built-in function, \. ;; 

pseudo-variable 

OPEN statement 

OPTIONS option of PROCEDURE and 
BEGIN statements 

OUTPUT file description attribute, option 
of OPEN statement 

OVERFLOW OFL condition 

P format item 

PAGE format item, option of PUT 
statement, macro statement 

PAGE SIZE option of OPEN statement 

PARTITION option of ENVIRONMENT 
attribute 

PENDING condition 

PIBIT option of ENVIRONMENT 
attribute 

POINTER PTR attribute 

POST statement 

PRECISION PREC built-in function 

PRINT file description attribute 

PRIORITY built-in function, option of 
RUN and TRANSFER TO 
statements (' , 

22 GC34-0084 



Keyword Abbreviation Use of Keyword 

PRIVATE option of ENVIRONMENT 

C 
attribute 

PROCEDURE PROC statement 

PROCESS control statement 

PROGRAM attribute 

PUT statement 

QPRTY option of ENVIRONMENT 
attribute 

R format item, option of 
ENVIRONMENT attribute 

READ statement 

RECORD file description attribute, 
condition 

RECSIZE option of ENVIRONMENT 
attribute 

RECURSIVE option of PROCEDURE 
statement 

REGIONAL option of ENVIRONMENT 
attribute 

REPEATS option of OPTIONS attribute 

REPLY option of D ISPLA Y statement 

RESTART option of ENVIRONMENT 
attribute 

RETURN statement 

RETURNS attribute, option of 

C 
PROCEDURE statement 

REVERT statement 

REWRITE statement 

RUN statement 

S option of ENVIRONMENT 
attribute 

SEQUENTIAL SEQL file description attribute 

SIGN built-in function 

SIGNAL statement 

SIN built-in function 

SIND built-in function 

SIZE condition 

SKIP format item, option of GET 
and PUT statements, macro 
statement 

SNAP option of ON statement 

SOME built-in function 

SOURCE attribute 

SQRT built-in function 

SSTNDX option of ENVIRONMENT 
attribute 

STACK option of ENVIRONMENT 
attribute 

STACKSIZE option of PROCEDURE and 

0 BEGIN statements 

STATIC attribute 

Appendix A. Summary of Keywords 23 



Keyword Abbreviation Use of Keyword 

STATUS built-in function, 
pseudo-variable, option of 

( " POST statement , 
STG option of ENVIRONMENT 

attribute 

STOP statement 

STREAM attribute 

STRING option of GET and PUT 
statements 

STRINGRANGE STRG condition 

STRINGSIZE STRZ condition 

SUBSCRIPTRANGE SUBRG condition 

SUBSTR built-in function, 
pseudo-variable 

SYSIN standard input file 

SYSPRINT standard output file 

SYSTEM statement, option of ON 
statement 

TAN built-in function 

TAND built-in function 

TASK option of PROCEDURE and 
STOP statements 

THEN clause of IF statement 

TIME built-in function 

TO clause of DO statement 
f ~ 

TRANSFER TO statement 

TRANSIENT attribute \. , 
TRANSMIT condition 

UNALIGNED UNAL attribute 

UNDEFINEDFILE UNDF condition 

UNDERFLOW UFL condition 

UNLOCK statement 

UNSCHEDULE statement 

UNSPEC built-in function, 
pseudo-variable 

UPDATE attribute 

V option of 

VARYING VAR string attribute 

VB option of ENVIRONMENT 
attribute 

VBS option of ENVIRONMENT 
attribute 

WAIT statement 

WHILE clause of DO statement 

WRAP option of ENVIRONMENT 
attribute 

WRITE statement 

c:: 
24 GC34-0084 



Keyword Abbreviation Use of Keyword 

X format item 

C ZEROCOR option of ENVIRONMENT 
attribute 

ZERO DIVIDE ZDIV condition ENVIRONMENT 
attribute 

c 

c 
Appendix A. Summary of Keywords 25 



(~ 
,- j 

c 
26 GC34-0084 



Appendix B. Comparison of Series/1 PL/I Subset to ANS PL/I 

c 
Comparison of Built-In Functions and Pseudo-Variables 

Function Series/l ANS PLjI 

ABS YES YES 

ACOS YES YES 

ADD NO YES 

ADDR YES YES 

AFTER NO YES 

ALLOCATION NO YES 

ASIN YES YES 

ATAN YES YES 

ATAND YES YES 

ATANH NO YES 

BEFORE NO YES 

BINARY YES YES 

BIT YES YES 

BOOL YES YES 

CEIL NO YES 

CHAR YES YES c COLLATE NO YES 

COMPLETION YES NO 

COMPLEX NO YES 

CONJG NO YES 

COpy YES 18 YES 

COS YES YES 

COSD YES YES 

COSH NO YES 

COUNT YES NO 

DATE YES YES 

DAYNO YES NO 

DECAT NO YES 

DECIMAL YES 2 YES 

DIM YES YES 

DIVIDE NO YES 

DOT NO YES 

EMPTY NO YES 

ERF NO YES 

ERFC NO YES 

EVERY YES YES 

EXP YES YES 

o FIXED YES YES 

FLOAT YES YES 

FLOOR NO YES 

Appendix B. Comparison of Series/l PL/I Subset to ANS PL/I 27 



Function Series/1 ANSPL/I 

HBOUND YES YES 

HIGH YES YES (" 
IMAG NO YES '-., 
IMAG PV NO YES 

INDEX NO YES 

LBOUND YES YES 

LENGTH YES YES 

LINE NO YES YES 

LOG YES YES 

LOG2 YES YES 

LOG10 YES YES 

LOW YES YES 

MAX NO YES 

MIN NO YES 

MOD NO YES 

MULTIPLY NO YES 

NULL YES YES 

OFFSET NO YES 

ONCHAR YES YES 

ONCHAR PV YES YES 

ONCOUNT YES NO 

ONCODE YES YES 

ONFIELD NO 3 YES 

ONFILE YES YES ( ~ 

ONKEY YES YES 
, if 

ONLOC YES YES 

ONSOURCE YES YES 

ONSOURCE PV YES YES 

PAGE NO NO YES 

PAGENO PV NO YES 

PRECISION YES 1, 2 YES 

POINTER NO YES 

PRIORITY YES NO 

PROD NO YES 

REAL NO YES 

REAL PV NO YES 

REVERSE NO YES 

ROUND NO YES 

SIGN YES YES 

SIN YES YES 

SIND YES YES 

SINH NO YES 

SOME YES YES 

SQRT YES YES 

STATUS YES NO 

C STATUS PV YES NO 

STRING NO YES 

28 GC34-0084 



Function Series/] ANS PL/I 

STRING PV NO YES 

C SUBSTR YES YES 

SUBSTR PV YES YES 

SUBTRACT NO YES 

SUM NO YES 

TAN YES YES 

TAND YES YES 

TANH NO YES 

TIME YES YES 

TRANSLATE NO YES 

TRUNC NO YES 

UN SPEC YES 20 YES 

UNSPEC PV YES 20 YES 

VALID NO YES 

VERIFY NO YES 

Comparison of Attributes 
Attribute Series/l ANS PL/I 

ACTIVATION YES 21 NO 

AFTER YES NO 

ALIGNED YES YES 

AREA NO YES 

AT YES NO 

C AUTOMATIC YES 4 YES 

BASED YES 5 YES 

BINARY YES 1 YES 

BIT YES 6 YES 

BUILTIN YES YES 

CHARACTER YES 7 YES 

COMPLEX NO YES 

CONDITION YES YES 

CONNECTED YES NO 

CONSTANT NO YES 

CONTROLLED NO YES 

DECIMAL YES 2 YES 

DEFINED 

-simple NO YES 

-iSUB NO YES 

-string overlay (ADDR BIF) YES 

dimension YES 4 YES 

DIMENSION NO YES 

DIRECT YES YES 

ENTRY YES YES 

ENVIRONMENT YES YES 

EVENT YES 21 NO 

EXTERNAL YES YES 

FILE YES YES 

FIXED YES YES 

C 
FLOAT YES 8 YES 

FORMAT YES 19 YES 

GENERIC NO YES 

Appendix B. Comparison of Series/1 PL/I Subset to ANS PL/I 29 



Attribute Series/l ANS PL/I 

INITIAL YES 9 YES 

INPUT YES YES ( \ 
INTERNAL YES YES J 
KEYED YES YES 

LABEL YES YES 

length YES YES 

LIKE NO YES 

LOCAL NO YES 

LOCK YES NO 

MEMBER NO YES 

NONVARYING NO YES 

OFFSET NO YES 

OPTIONS NO YES 

OUTPUT YES YES 

parameter YES 10 YES 

PARAMETER NO YES 

PICTURE NO YES 

POINTER YES YES 

POSITION NO YES 

precision YES 1,2 YES 

PRECISION NO YES 

PRINT YES YES 

PROGRAM YES NO 

REAL NO YES 

RECORD YES YES 

RETURNS YES 12 YES 

SEQUENTIAL YES YES 
f ~ 

size NO YES 

SOURCE YES NO \. " 
STATIC YES YES 

STREAM YES YES 

STRUCTURE NO YES 

TRANSIENT YES NO 

UNALIGNED YES 12 YES 

UPDATE YES YES 

VARIABLE NO YES 

VARYING YES 6,7 YES 

c 
30 GC34-0084 



C 
Comparison of Statements and Options 

Statement Series/ I ANS PLjI 

ALLOCATE NO YES 

Assignment 

-element YES YES 

-array YES YES 

-structure YES 13 YES 

-BY NAME NO YES 

BEGIN YES YES 

OPTIONS YES YES 

STACKSIZE YES YES 

CALL YES 14 YES 

CLEAR YES NO 

CLOSE YES YES 

CONNECT YES NO 

DECLARE YES YES 

DEFAULT NO YES 

DELAY YES NO 

DELETE YES YES 

DISCONNECT YES NO 

DISPLAY YES NO 

DO 

-arithmetic YES YES 

-char ctl var YES YES 

-WHILE YES YES 

-REPEAT NO YES 

C END YES YES 

ENTRY NO YES 

FORMAT YES YES 

FREE NO YES 

GET 

LIST YES YES 

DATA NO 3 YES 

EDIT YES YES 

STRING YES YES 

expressions YES 17 YES 

DO YES YES 

SKIP YES YES 

LINE YES YES 

PAGE YES YES 

COPY NO YES 

GO TO YES YES 

IF YES YES 

LOCATE NO YES 

LOCK YES NO 

null YES YES 

ON (with SNAP) YES YES 

OPEN YES 15 YES 

POST YES NO 

PROCEDURE YES 23 YES 23 

OPTIONS YES YES 

MAIN YES NO 

0 STACKSIZE YES NO " 

TASK YES NO 

Appendix B. Comparison of Series/l PL/I Subset to ANS PL/I 31 



Statement Series/l ANS PL/I 

REPEATS YES NO 
RECURSIVE YES YES (C_~ 

RETURNS YES YES ,~. 

PUT SEE GET 
READ 

INTO YES YES 
SET NO YES 
IGNORE YES YES 
KEY YES YES 
KEYTO YES YES 
EVENT YES NO 

RETURN YES 16 YES 
-aggregate NO YES 
--extents NO YES 
--entry NO YES 
REVERT YES YES 
REWRITE 

FROM YES YES 
KEY YES YES 
EVENT YES NO 
buffer NO YES 

RUN YES NO 
SIGNAL YES YES 
STOP YES YES 
SYSTEM YES YES 
TRANSFER TO YES NO 
UNLOCK YES NO 
UNSCHEDULE YES NO ~ 'It 

WAIT \..; 
-I/O event YES NO 
-time limit YES NO 
-task event YES NO 
-process interrupt YES NO 
WRITE 

FROM YES YES 
KEYFROM YES YES 
EVENT YES NO 

Comparison of ON Conditions 
Condition Series/l ANS PL/I 

AREA NO YES 
CHECK NO 3 YES 
CONDITION YES YES 
CONVERSION YES YES 
END FILE YES YES 
ENDPAGE YES YES 
ERROR YES YES 
FINISH YES YES 
FIXEDOVERFLOW YES YES 
KEY YES YES 
NAME NO 3 YES 
OVERFLOW YES YES C PENDING YES NO 

32 GC34-0084 



c 

c 

0 

Condition 
RECORD 

SIZE 

STORAGE 

STRINGRANGE 

STRINGSIZE 

SUBSCRIPTRANGE 

TRANSMIT 

UNDEFINEDFILE 

UNDERFLOW 

ZERO DIVIDE 

Comparison of Format Items 
Format Item 

A 

B 

C 

COLUMN 

E 

expressions 

F 

LINE 

P 

PAGE 

R 

SKIP 

TAB 

X 

Comparison of Macro Facility 
Statement 

INCLUDE 

PAGE 

PROCESS 

SKIP 

Comparison of ENVIRONMENT Options 

Series/] 
YES 

YES 

NO 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

Series/l 

YES 

YES 

NO 

YES 

YES 

NO 

YES 

YES 

YES 

YES 

YES 

YES 

NO 

YES 

Series/l 

YES 

YES 

YES 

YES 

22 

ANS PL/I 
YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

ANS PL/I 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

ANS PL/I 

YES 

NO 

NO 

NO 

These options are allowed by ANS PL/l, but are implementation defined. 

Option Series/l 

ANALOG YES 24 
ASCII YES 24 
BLKSIZE YES 24 
BUFFERS YES 24 
CONSECUTIVE YES 24 

CTLASA YES 24 
DEVNBR YES 24 

DIGITAL YES 24 
DISK YES 24 
ELSIZ YES 24 
F YES 24 
FB YES 24 
FBS YES 24 

GAIN YES 24 

Appendix B. Comparison of Series/1 PL/I Subset to ANS PL/I 33 



Option Series/l 

PARTITION YES 24 

PIBIT YES 24 (-; PRIVATE YES 24 

PROGRAM YES 24 

QPRTY YES 24 

R YES 24 

RECSIZE YES 24 

REGIONAL YES 24 

RESTART YES 24 

S YES 24 

SSTNDX YES 24 

STACK YES 24 

STG YES 24 

V YES 24 

VB YES 24 

VBS YES 24 

WRAP YES 24 

ZEROCOR YES 24 

Notes: 

1. Binary fixed precision P, where P = 15 or P = 31, scale factor q must be O. 

2. Decimal fixed precision P, where P ::;; 15, scale factor q must be ::;;p. 

3. Data-directed I/O is not supported in this subset because of extensive use of address 

space. This implies that CHECK is not supported. 

4. No adjustable string lengths or array extents. 

5. No REFER option or adjustable extents or lengths. 

6. Maximum length is 255 bits. 

7. Maximum length is 255 characters. 

8. No support for extended precision floating point. 

9. No INITIAL values allowed for AUTOMATIC data. 

10. String length must be a constant, constant extents for array of structures, simple array can 

have asterisks. 

11. Cannot return an array, required for the declaration of external function reference. 

12. Arithmetic items may not be unaligned. 

13. Assignment only; only like attributes. 

14. Simple scalar expressions as arguments. 

15. Only INPUT and OUTPUT options permitted. 

16. Returned string must be constant length. 

17. Simple scalar expression permitted in PUT. 

18. COPY built-in function replaces the IBM REPEAT function. 

19. Remote FORMATS must be in same block. 

20. Scalar only, not array or structure. 

21. Cannot be AUTOMATIC. 

22. No floating point Pictures. 

23. No parameters are allowed on MAIN procedure. 

24. See Language Reference Manual for detailed syntax. 

c 
34 GC34-0084 



c 

o 

accessing sensor I/O records 
input files 11 
update 11 

ACTIVATION 6,9 
additional features 3 

interface checking 3 
list processing 3 
program modularity 3 
storage efficiency 3 

AFTER 6,9 
analog input 12 
analog output 12 
ANS PL/I 27 
Application Builder 1, 17 
arithmetic data 2 
arrays 2 

11 

asynchronous operations 2,5, 7,9 
AT 6,9 
attributes 8, 29 

batch partition 
built-in fUnctions 

CLEAR 10 

17 
2,9,15,27 

comparison of Series/l PL/I subset to ANS PL/I 27 
attributes 29 
built-in functions 27 
ENVIRONMENT options 33 
format items 33 
macro facility 33 
ON conditions 32 
pseudo-variables 27 
statements and options 31 

compilation requirements 17 
compilations, multiple 16 
compiler options 16 
COMPLETION 9 
CONNECT 10 
consecutive synchronous I/O 2 
control structures 2 

data conversions 2 
data manipUlation features 2 

built-in functions 2 
control structures 2 
data conversions 2 
procedures 2 
structure assignment 2 
subscripting 2 

data types and organization 2 
arithmetic 2 
arrays 2 
program control data 2 
string 2 
structures 2 

DAYNO 9 
debugging aids 15 

compile-time 15 
diagnostic messages 15 
listing aids 15 

execution-time 15 
diagnostic messages 15 
error handling features 15 

diagnostic messages 15 
digital input 13 
digital output 13 
direct I/O 2 
DISCONNECT 10 
dynamic descendance of tasks and programs 7 

edit-directed I/O 
ENVIRONMENT 

2 
6,8 

ENVIRONMENT options 33 
error messages 15 
EVENT 6,8 
EVERY 6 
execution requirements 17 

format items 33 
functions, built-in 2,9,15,27 

I/O capability 1 
record I/O 2 

consecutive synchronous I/O 2 
direct I/O 2 
sensor I/O 2 
transient files 2 

stream I/O 
edit-directed I/O 2 
list-directed I/O 

interface checking 3 

keyword summary 19 

language extensions 1, 5 
list-directed I/O 1 
list processing 3 
listing aids 15 
LOCK 8,10 

Index 

Index 35 



macro facility 33 
messages 15 
multiple compilations 16, 5 
multiprogramming 5 
multitasking 5, 9 

ON Conditions 15,32 
options, compiler 16 

partitions 17 
PL/I subset 27 
POST 10 
PRIORITY 6,9 
procedures 2,5 
productivity features 15 
program control data 2 
program modularity 3 
Program Preparation Subsystem 1, 17 
programs 

creation 6 
RUN statement 6 

dynamic descendance 7 
sharing data 7 
termination 8 

pseudo-variables 9,27 

realtime partition 17 
Realtime Programming System 2, 17 
record I/O 2, 5, 10 
RUN 6,9 

sensor I/O 10 
accessing records 11 

input files 11 
u pda te files 11 

analog input 12 
analog output 12 
definition 5 
digital input 13 
digital output 13 
general description 10 
points 10, 11 
random sampling 10, 11 
sequential sampling 10, 11 
type RIO, 11,12 
type S 10,11, 12 

sharing data between programs 7 
sharing data between tasks 7 
sharing files between tasks 8 
SOURCE 6,9 
statements 9, 31 
STATUS 9 
STOP 9 
storage efficiency 3 
storage requirements 17 
stream I/O 1 
string data 2 

36 GC34-0084 

string operations 2 
structure assignment 2 
structures 2 
subscripting 2 
summary of keywords 19 
synchronizing two asychronous operations 7 
synchronous operations 5 
system requirements 17 

tasks 
creation 6 

RUN statement 6 
definition 5 
dynamic descendance 7 
sharing data between 7 
sharing files 8 
synchronizing 7 
termination 8 

TRANSFER TO 10 
transient files 2 

UNLOCK 10 
UNSCHEDULE 9 

WAIT 10 



c 

() 

S 
a 
~ 

"T1 a 
0: 

C 
~ 
6" 
::J 

c.c 

c: 
::J 
CIl 

o 

PL/I: 
Introduction 
GC34-0084-0 

YOUR COMMENTS, PLEASE .. . 

Your comments assist us in improving the usefulness of our publications; they are an 

important part of the input used in preparing updates to the publications. All comments 
and suggestions become the property of IBM. 

Please do not use this form for technical questions about the system or for requests 

for additional publications; this only delays the response. Instead, direct your 

inquiries or requests to your I BM representative or to the I BM branch office serving 
your locality. 

Corrections or clarifications needed: 

Page Comment 

READER'S 
COMMENT 
FORM 

What isyouroccupation? ____________________________________________________________________________________________________________________ ____ 

Number of latest Technical Newsletter (if any) concerning this publication: _______________________________________ _ 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 



GC34-0084-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for IBM systems. 
Your comments on the other side of this form will be carefully reviewed by the 
persons responsible for writing and publishing this material. All comments and 
suggestions become the property of IBM. 

Fold Fold 

Fold 

--- ------ ----- ---- - ---- -- ----------_.-

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

I BM Corporation 
Systems Publications, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N. E. 
P.O. Box 2150, Atlanta, Georgia 30301 
(U.S.A. only) 

First Class 
Permit 40 
Armonk 
New York 

---
Fold 

o 
S 

0; 
s: 
f 
(ii' 

:: 
'"\J 

~ 

:; 
r+ 

a a. 
c 
0 
~, 
0 
:::I 

~ 
:;' 
r+ 
CD a. 
:;' 
c 
en 
~ 
G) 
0 
Co) 
~ 

6 
~ 
~ 
0 

I 

\ JP 

c 



I 

I 

--- ------ ----- ---- - ---- - - ----------_ . -
® 

International Busi ness Machines Corporation 

General Systems Division 
57750 Glenridge Drive N. E. 
P. O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

GC34-0084-0 

CD 
~ 

~ 
[ 
~ 

~ 

C 

~ a 
a. 
c: 
~ o· 
:::0 

~ 
:::0 ... 
(1) 

a. 
:::0 

C 
in 
l> 
G') 
() 
W 
.I:> 
6 
0 
(Xl 
.I:> 
6 

, 
I 
I 

I 
1 

\ 

• 

, 
~ 


