Series/1

GA34-0152-0

o~ File No. S1-01

IBM Series/1
Principles of Operation



O

O 0O O

SHORS

GA34-0152-0
File No. S1-01

IBM Series/1
Principles of Operation

Series/1

ittt 5 i



First Edition (April 1981)
Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publica-

tions should be made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for
readers’ comments is provided at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Information Development, Department 27T,
P.O. Box 1328, Boca Raton, Florida 33432, IBM may use and distribute any of the informa-
tion you supply in any way it believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

@

> OO O O O O

—

(

(

O

D

—
\

O O

OO O

O O

O <)



O C

)

OO0 O0OO0OO00O0O0O00COCHOOO0OO0O0OOOUCOo

This publication describes the common functional
characteristics of IBM Series/1 processors and
their optional features.

The reader should understand data processing
terminology and be familiar with binary and
hexadecimal numbering systems.

This publication is intended primarily as a
reference manual for experienced programmers
who require machine code information to plan,
correct, and modify programs written in the
assembler language. It is also intended for the
person who requires machine status information
and interrupt-handling procedures.

This manual is to be used in conjunction with
Series/ 1 processor and I/O description manuals.

Chapter 1. Introduction is an introduction to the
Series/1. It contains a general description of the
processors and features.

Chapter 2. Processor Unit Description contains a
description of processor hardware, including
registers and indicators.

Main storage data formats and addressing are
presented in this chapter.

The “Program Execution” section covers:
« Basic instruction formats

o Effective-address generation

« Processor state control

+ Initial program load (IPL)

« Jumping and branching

e Level switching and interrupts

« Stack operations

Chapter 3. Interrupts and Level Switching
describes the priority interrupt levels and the
interrupt processing for I/O devices and class
interrupts. Related topics are:

« Program-controlled level switching
« * Interrupt masking facilities

« Recovery from error conditions

Preface

Chapter 4. Input/Output Operations describes the
1/0 commands and control words that are used to
operate the I/O devices. Condition codes and
status information relative to the 1/O operation
are also explained. Specific command and
status-word bit structures are contained in the I/0
device description manuals.

Chapter 5. Storage Address Relocation Translator
describes the relocation translator, including
relocation addressing and address space
management. The storage address relocation
translator is not available on some processors.

Chapter 6. Clock/Comparator explains the
functions of the clock/comparator. The
clock/comparator is not available on some
Processors.

Chapter 7. Floating-Point Feature describes the
optional floating-point feature. The floating-point
feature is not available for some processors.

Chapter 8. Instructions describes the basic
instruction set, including indicator settings and
possible exception conditions. Individual
instruction word formats that contain bit
combinations for the operation codes and function
fields are included. The instructions are arranged
in alphabetical sequence based on assembler
mnemonics.

Appendixes:

o Instruction formats

e Assembler syntax

« Number systems and conversion tables
o Character codes

¢ Carry and overflow indicators

« Reference information

Note: Refer to individual processor publications
for a discussion of the optional programmer
console.

Related Publications

Additional publications are listed in the /BM
Series/1 Graphic Bibliography, GA34-0055.

Preface iii



DO 00000 C o000 00u0LOOU

iv. GA34-0152



OCO00000CO0

e O

-

O

)
J

OO0 000000

Chapter 1. Introduction  1-1

Processor Characteristics  1-1

Processor Description  1-1

Input/Output Units, I/O Features, and Processor
Options  1-3

Chapter 2. Processor Unit Description  2-1
Main Storage  2-1
Addressing Main Storage  2-1
Arithmetic and Logic Unit (ALU) 2-2
Numbering Representation  2-3
Registers  2-5 *
System Registers 2-6
Level Registers  2-8
Indicator Bits  2-9
Even, Negative, and Zero Result Indicators  2-10
Even, Carry, and Overflow Indicators—Condition Code
for Input/Output Operations 2-10
Carry and Overflow Indicators—Add and Subtract
Operations  2-10
Carry and Overflow Indicators—Shift
Operations  2-11
Indicators—Compare Operations  2-11
Indicators—Multiple Word Operands  2-14
Testing Indicators with Conditional Branch and Jump
Instructions  2-15
Supervisor State Bit  2-15
In-Process Bit  2-16
Trace Bit 2-16
Summary Mask Bit 2-16
Program Execution 2-16
Instruction Formats 2-16
Effective-Address Generation 2-21
Processor State Control  2-30
Initial Program Load (IPL) 2-33
Sequential Instruction Execution 2-34
Jumping and Branching 2-34
Level Switching and Interrupts  2-35
Stack Operations  2-35

Chapter 3. Interrupts and Level Switching  3-1
Interrupt Scheme  3-2
Level Status Block (LSB) 3-3
Automatic Interrupt Branching 3-3
1/0 Interrupts  3-5
Prepare I/0 Device for Interrupt  3-5
Present and Accept I/0 Interrupt  3-6
Class Interrupts  3-9
Priority of Class Interrupts  3-10
Present and Accept Class Interrupt  3-11
Recovery Procedures for Class Interrupts  3-17
Machine Check  3-17
Program Check 3-18
Power/Thermal Warning  3-18
Supervisor Call  3-18
Soft-Exception Trap  3-19
Trace 3-19

Contents

Clock 3-19
Console 3-19
Processor Status Word  3-20
Interrupt Masking Facilities 3-24
Summary Mask  3-24
Interrupt Level Mask Register  3-25
Device Mask (I-Bit)  3-25
Program-Controlled Level Switching  3-26
Selected Level Lower Than Current Leval and
In-Process Bit On  3-27
Selected Level Equal to Current Level and
In-Process Bit On  3-27
Selected Level Higher Than Current Level and
In-Process Bit On  3-27
Selected Level Lower Than Current Level and
In-Process Bit Off 3-28
Selected Level Equal to Current Level and
In-Process Bit Off 3-28
Selected Level Higher Than Current Level and
In-Process Bit Off 3-28

Chapter 4. Input/Output Operations  4-1
Operate 1/0 Instruction  4-2
Immediate Device Control Block (IDCB) 4-3
Device Control Block (DCB) 4-5
1/0 Commands 4-7
DPC Operation 4-13
Cycle-Steal  4-15
Start Command 4-16
Start Cycle Steal Status Command 4-20
Cycle-Steal Device Options  4-22
Burst Mode  4-22
Chaining  4-22
Extended DCB  4-23
Program-Controlled Interrupt (PCI) 4-23
Suppress Exception  4-23
1/0 Condition Code and Status Information  4-26
1/0 Instruction Condition Codes  4-26
Interrupt Condition Codes  4-28
1/0 Status Information  4-29

Chapter 5. Storage Address Relocation Translator  5-1
Translator Description  5-1
Storage Mapping  5-2
Relocation Addressing 5-2
Storage Protection 5-4
1/0 Storage Access Using the Relocation Translator  5-4
Status of Translator After Power Transitions
and Resets 5-4
Error-Recovery Considerations  5-5
Invalid Storage Address 5-5
Protect Check 5-5
Address Space Management  5-6
Active Address Key 5-6
Equate Operand Spaces (EOS) 5-6 .
Address Space  5-7
Address Key Values After Interrupts  5-9

Contents



Chapter 6. Clock/Comparator  6-1
Clock/Comparator Features  6-1
Clock 6-1
Comparator  6-2

Chapter 7. Floating-Point Feature 7-1

Data Format 7-1

Number Representation  7-2
Floating-Point Numbers = 7-2
Binary Integers in Main Storage 7-3

Normalization 7-3

Programming Considerations 7-3

Floating-Point Feature Not Installed 7-3

Floating-Point Registers  7-4
Arithmetic Indicators 7-4
Floating-Point Exceptions 7-4
Floating-Point Instructions  7-5
Instruction Formats  7-6
Exception Conditions  7-7
Program-Check Conditions  7-7
Soft-Exception Trap Conditions 7-7
) Additional Error Information 7-8
Single Precision 7-8
Addition 7-8
Subtraction  7-8
Multiplication  7-9
Division 7-9
Double Precision  7-9
Addition 7-9
Subtraction  7-10
Multiplication  7-10
Division 7-10
Chapter 8. Instructions 8-1
Add Address (AA)  8-2
Register Immediate Long Format  8-2
Storage Immediate Format ~ 8-2
Add Byte (AB) 8-4
Add Byte Immediate (ABI) 8-5
Add Carry Register (ACY) 8-5
Add Doubleword (AD) 8-6
Register/Storage Format  8-6
Storage/Storage Format  8-7
Add Word (AW) 8-8
Register/Register Format  8-8
Register/Storage Format  8-8
Storage/Register Long Format  8-9
Storage/Storage Format  8-10
Add Word With Carry (AWCY) 8-11
Add Word Immediate (AW)  8-11
Storage Immediate Format 8-12
Branch Unconditional (B) 8-13
Branch and Link (BAL) 8-14
Branch and Link Short (BALS) 8-15
Branch on Condition (BC) 8-16
Branch on Condition Code (BCC) 8-18
Branch on Not Condition (BNC) 8-19

Branch on Not Condition Code (BNCC)  8-21

Branch on Not Overflow (BNOV) 8-22

Branch on Overflow (BOV) 8-23

Branch Indexed Short (BXS) 8-24

Compare Address (CA) 8-25
Register/Immediate Long Format  8-25
Storage Immediate Format  8-25

Compare Byte (CB) 8-27
Register/Storage Format  8-27

vi  GA34-0152

Storage/Storage Format  8-27

Compare Byte Immediate (CBI) 8-28

Compare Doubleword (CD)  8-29
Register/Storage Format  8-29
Storage/Storage Format  8-30

Compare Byte Field Equal and Decrement (CFED)  8-31

Compare Byte Field Equal and Increment (CFEN)  8-31

Compare Byte Field Not Equal and Decrement

(CFNED) 8-32
Compare Byte Field Not Equal and Increment
(CFNEN) 8-32

Complement Register (CMR) 8-33

Copy Address Key Register (CPAKR) 8-33
System Register/Storage Format  8-33
System Register/Register Format  8-34

Copy Current Level (CPCL) 8-35

Copy Clock (CPCLK) 8-35

Copy Comparator (CPCMP) 8-36

Copy Console Data Buffer (CPCON) 8-36

Copy Floating Level Block (CPFLB) 8-37

Copy Interrupt Mask Register (CPIMR)  8-38

Copy In-Process Flags (CPIPF) 8-38

Copy Level Block (CPLB)  8-39

Copy Level Status Register (CPLSR)  8-40

Copy Processor Status and Reset (CPPSR)  8-40

Copy Storage Key (CPSK) 8-41

Copy Segmentation Register (CPSR)  8-42

Compare Word (CW)  8-43
Register/Register Format  8-43
Register/Storage Format  8-43
Storage/Storage Format  8-44

Compare Word Immediate (CWI)  8-45
Register Inmediate Long Format  8-45
Storage Immediate Format  8-46

Divide Byte (DB) 8-48

Divide Doubleword (DD) 8-48

Diagnose (DIAG) 8-49

Disable (DIS) 8-49

Divide Word (DW)  8-50

Enable (EN) 8-51

Floating Add (FA) 8-52
Storage/Register Format ~ 8-52
Register/Register Format  8-53

Floating Add Double (FAD) 8-54
Storage/Register Format  8-54
Register/Register Format  8-55

Floating Compare (FC) 8-56

Floating Compare Double (FCD) 8-56

Floating Divide (FD) 8-57
Storage/Register Format  8-57
Register/Register Format  8-58

Floating Divide Double (FDD) 8-59
Storage/Register Format  8-59
Register/Register Format  8-60

Fill Byte Field and Decrement (FFD) 8-61

Fill Byte Field and Increment (FFN)  8-61

Floating Multiply (FM)  8-62
Storage/Register Format  8-62
Register/Register Format  8-63

Floating Multiply Double (FMD)  8-64
Storage/Register Format  8-64
Register/Register Format  8-65

Floating Move (FMV)  8-66
Storage/Register Format  8-66
Register/Storage Format  8-67

(

)

ONONG

/



=

Register/Register Format  8-67

Floating Move and Convert (FMVC)  8-68
Storage/Register Format  8-68
Register/Storage Format  8-69

Floating Move and Convert Double (FMVCD) 8-70
Storage/Register Format  8-70
Register/Storage Format  8-71

Floating Move Double (FMVD) 8-72
Storage/Register Format  8-72
Register/Storage Format  8-72
Register/Register Format  8-73

Floating Subtract (FS) 8-74
Storage/Register Format  8-74
Register/Register Format  8-75

Floating Subtract Double (FSD) 8-76
Storage/Register Format  8-76
Register/Register Format  8-77

Operate 1/0 (I0) 8-78

Interchange Operand Keys (IOPK) 8-79

Interchange Registers (IR) 8-79

Jump Unconditional (J)  8-80

Jump and Link (JAL) 8-80

Jump on Condition JC) 8-81

Jump on Count JCT) 8-83

Jump on Not Condition (JNC) 8-84

Level Exit (LEX) 8-86

Load Multiple and Branch (LMB)  8-87

Multiply Byte (MB)  8-88

Multiply Doubleword (MD)  8-89

Move Address (MVA) 8-90
Storage Address to Register Format  8-90
Storage Immediate Format 8-91

Move Byte (MVB)  8-92
Register/Storage Format ~ 8-92
Storage/Storage Format  8-93

Move Byte Immediate (MVBI) 8-94

Move Byte and Zero (MVBZ) 8-94

Move Doubleword (MVD) 8-95
Register/Storage Format  8-95
Storage/Storage Format  8-96

Move Doubleword and Zero (MVDZ) 8-96

Move Byte Field and Decrement (MVFD)  8-97

Move Byte Field and Increment (MVFN)  8-97

Move Word (MVW)  8-98
Register/Register Format  8-98
Register/Storage Format  8-98

. Register/Storage Long Format  8-99

Storage/Register Long Format  8-100
Storage/Storage Format  8-100

Move Word Immediate (MVWI)  8-101
Storage/Register Format  8-101
Storage Immediate Format  8-102

Move Word Short (MVWS)  8-103
Register/Storage Format  8-103
Storage/Register Format  8-104

Move Word and Zero (MVWZ) 8-105

Multiply Word (MVW)  8-106

No Operation (NOP)  8-107

AND Word Immediate (NWI) 8-107

OR Byte (OB) 8-108
Register/Storage Format  8-108
Storage/Storage Format  8-109

OR Doubleword (OD) 8-110
Register/Storage Format  8-110
Storage/Storage Format  8-111

OR Word (OW) 8-112
Register/Register Format  8-112
Register/Storage Format  8-112
Storage/Register Long Format  8-113
Storage/Storage Format  8-114

OR Word Immediate (OWI) 8-115
Register Immediate Long Format  8-115
Storage Immediate Format  8-115

Pop Byte (PB) 8-117

Pop Doubleword (PD) 8-117

Push Byte (PSB) 8-118

Push Doubleword (PSD) 8-118

Push Word (PSW)  8-119

Pop Word (PW) 8-119

Reset Bits Byte (RBTB) 8-120
Register/Storage Format  8-120
Storage/Storage Format  8-120

Reset Bits Doubleword (RBTD)  8-122
Register/Storage Format  8-122
Storage/Storage Format  8-123

Reset Bits Word (RBTW)  8-124
Register/Register Format  8-124
Register/Storage Format  8-124 -
Storage/Register Long Format  8-125
Storage/Storage Format  8-126

Reset Bits Word Immediate (RBTWI) 8-126
Register Immediate Long Format  8-126
Storage Immediate Format ~ 8-127

Subtract Address (SA) 8-128
Register Immediate Long Format  8-128
Storage Immediate Format  8-129

Subtract Byte (SB) 8-130

Set Bits Byte (SBTB) 8-131
Register/Storage Format  8-131
Storage/Storage Format  8-132

Set Bits Doubleword (SBTD)  8-133
Register/Storage Format  8-133
Storage/Storage Format  8-133

Set Bits Word (SBTW)  8-135
Register/Register Format  8-135
Register/Storage Format  8-135
Storage/Register Long Format  8-136
Storage/Storage Format  8-137

Set Bits Word Immediate (SBTWI)  8-137
Register Immediate Long Format 8-137
Storage Immediate Format 8-138

Subtract Carry Indicator (SCY) 8-139

Subtract Doubleword (SD)  8-140
Register/Storage Format  8-140
Storage/Storage Format  8-141

Set Address Key Register (SEAKR)  8-142
System Register/Storage Format  8-142
System Register/Register Format  8-143

Set Clock (SECLK) 8-143

Set Comparator (SECMP)  8-144

Set Console Data Lights (SECON) 8-144

Set Floating Level Block (SEFLB)  8-145

Set Interrupt Mask Register (SEIMR)  8-146

Set Indicators (SEIND) 8-146

Set Level Block (SELB)  8-147

Set Storage Key (SESK)  8-149

Set Segmentation Register (SESR)  8-150

Scan Byte Field Equal and Decrement (SFED)  8-151

Scan.Byte Field Equal and Increment (SFEN)  8-151

Scan Byte Field Not Equal and Decrement

Contents

vii



(SFNED) 8-152
Scan Byte Field Not Equal and Increment
(SFNEN) 8-152

Shift Left Circular (SLC) 8-153
Immediate Count Format 8-153
Count in Register Format 8-154

Shift Left Circular Double (SLCD)  8-155
Immediate Count Format 8-155
Count in Register Format  8-156

Shift Left Logical (SLL) 8-157
Immediate Count Format 8-157
Count in Register Format  8-157

Shift Left Logical Double (SLLD) 8-158
Immediate Count Format  8-158
Count in Register Format  8-158

Shift Left and Test (SLT) 8-159

Shift Left and Test Double (SLTD) 8-160

Shift Right Arithmetic (SRA) 8-161
Immediate Count Format 8-161
Count in Register Format 8-161

Shift Right Arithmetic Double (SRAD) 8-162
Immediate Count Format 8-162
Count in Register Format  8-162

Shift Right Logical (SRL) 8-163
Immediate Count Format 8-163
Count in Register Format  8-163

Shift Right Logical Double (SRLD) 8-164
Immediate Count Format 8-164
Count in Register Format  8-164

Store Multiple (STM)  8-165

Stop (STOP)  8-165

Supervisor Call (SVC) 8-166

Subtract Word (SW)  8-167
Register/Register Format  8-167
Register/Storage Format  8-167
Storage/Register Long Format  8-168
Storage/Storage Format  8-169

Subtract Word With Carry (SWCY) 8-170

Subtract Word Immediate (SWI) 8-171
Register Immediate Long Format  8-171
Storage Immediate Format  8-172

Test Bit (TBT) 8-173

Test Bit and Reset (TBTR) 8-173

Test Bit and Set (TBTS) 8-174

Test Bit and Invert (TBTV) 8-174

viii  GA34-0152

Test Word Immediate (TWI) 8-175
Register Inmediate Long Format  8-175
Storage Immediate Format 8-175

Invert Register (VR) 8-176

Exclusive OR Byte (XB) 8-177

Exclusive OR Doubleword (XD) 8-178

Exclusive OR Word (XW) 8-179
Register/Register Format  8-179
Register/Storage Format  8-180
Storage/Register Long Format  8-181

Exclusive OR Word Immediate (XWI) 8-182

Appendix A. Instruction Formats  A-1

Appendix B. Assembler Syntax B-1
Coding Notes B-1
Legend for Machine-Instruction Operands  B-1

Appendix C. Number Systems and Conversion Tables
Binary and Hexadecimal Number Systems C-1
Binary Number Systems  C-1
Hexadecimal Number Systems C-2
Hexadecimal—Decimal Conversion Tables C-4

Appendix D. Character Codes D-1

Appendix E. Carry and Overflow Indicators E-1
Carry Indicator Setting E-1

Add Operation Examples  E-1

Subtract Operation Examples E-3
Overflow Indicator Setting E-S

Examples E-5
Unsigned Numbers E-8
Signed Numbers E-10

Appendix F. Reference Information F-1
Address Key Register (AKR)  F-1
Condition Codes F-2

I/0 Instruction Condition Codes  F-2

Interrupt Condition Codes  F-2
General Registers F-3
Interrupt Status Byte (ISB) F-3

DPC Devices F-3

Cycle-Steal Devices F-3
Level Status Register (LSR) F-4
Processor Status Word (PSW) F-4

Index X-1

N
N //l

—

)

)

(
\

/
N

®

O O

(

O O

)

7
N

O O O O O

e
\

o O O



{ )
N _

@

\
)
J

O O O C C

O O 0O O

Processor Characteristics

Processor Description

Chapter 1. Introduction

The IBM Series/1 processor is a compact, general-purpose computer that
has the following characteristics:

o Four priority interrupt levels—independent registers and status
indicators for each level. Automatic and program-controlled level
switching.

« Instruction set that includes: stacking and linking facilities, multiply
and divide, variable-field-length byte operations, and a variety of
arithmetic and branching instructions.

« Supervisor and problem states.

» Designed for mounting in standard 483 mm (19-inch) rack; some
models do not require rack-mounting.

« Basic console standard in processor unit; programmer console optional.
¢ An address translator (not installed on all processors).
e A clock/comparator (not installed on all processors).

e Channel capability:
— Asynchronous, multidropped channel.
— 256 input/output (I/0) devices can be addressed.
— Direct program control and cycle-steal operations.

The processor unit contains power and space for additional features. The
IBM 4959 Input/Output Expansion Unit and the IBM 4965 Diskette
Drive and 1/0 Expansion Unit are available for additional features.

Figure 1-1 shows a block diagram of an IBM Series/1 processor and an
IBM 4959 Input/Output Expansion Unit.

Four priority interrupt levels are implemented in the processor. Each level
has an independent set of machine registers. Level switching can occur by
program control or automatically upon acceptance of an I/0 interrupt
request. The interrupt mechanism provides 256 unique entry points for
I/0 devices.

The processor instruction set contains a variety of instruction types. These
include: shift, register to register, register immediate, register to (or from)
storage, bit manipulation, multiple register to storage, variable byte field,
and storage to storage. Supervisor and problem states are implemented,
with appropriate privileged instructions for the supervisor.

Introduction  1-1



1-2

IBM Series/1 Processor

Processor

Translator*®

Storage

Channel

Floating-point™
{optional)

Channel
repower

Console 1/0
attachment
IBM 4959 1/0 Expansion Unit
1/0 device - - £ .
1/0 device 1/0 attachment 1/0 attachment
1/0 device

*Not available on some processors

GA34-0152

Figure 1-1.  Block diagram of an IBM Series/1 processor and an IBM 4959 Input/Output

Expansion Unit

N

N\

N
N’
AN

7N
N’

O O

9

)

L

O O

4
I\



—_

SN
C )
s
~—

(
\

O O

)
7

~—

O C

O O

)

O O O O

O O

The basic console is intended for dedicated systems that are used in a
basically unattended environment. Only minimal controls are provided. A
programmer console, which can be added as a feature, provides a variety
of indicators and controls for operator-oriented systems.

I/0O devices are attached to the processor through the processor 1/0
channel. The channel directs the flow of information between the I/0O
devices, the processor, and main storage. This channel accommodates a
maximum of 256 directly addressable devices.

The channel supports:

o Direct-program control operations. Each Operate 1/0 instruction
transfers a byte or word of data between main storage and the device.
The operation may or may not terminate in an interrupt.

o Cycle-steal operations. Each Operate 1/0 instruction initiates multiple
data transfers between main storage and the device (65,535 bytes
maximum). Cycle-steal operations are overlapped with processing
operations and always terminate in an interrupt.

o Interrupt servicing. Interrupt requests from the devices, along with
cycle-steal requests, are presented and polled concurrently with data
transfers.

Input/Output Units, I/O Features, and Processor Options

A variety of I/O units and features, plus several processor options, are
available for use with the Series/1 processor. For a list and description of
system units and features, refer to the IBM Series/1 System Selection
Guide, GA34-0143, and the IBM Series/1 System Summary, GA34-0035.
Detailed information about I/O units and features can be found in
separate publications. The order numbers for these publications are
contained in the IBM Series/1 Graphic Bibliography, GA34-0055.

Introduction  1-3



O O O O O O OO0 OCO0000O0LLLLLO

~— — — ~— —’

;-

O

-~

GA34-0152

1-4



O

O

)

OCOO0OO0OO0O0O0O0O0OOC HOOOODOOO

Main Storage

Addressing Main Storage

Chapter 2. Processor Unit Description

Main storage holds data and instructions for applications to be processed
on the system. The data and instructions are stored in units of information
called bytes. Each byte consists of eight binary data bits plus a parity bit.
QOdd parity by byte is maintained throughout storage; even parity causes a
machine-check error. Formats shown in this manual exclude the parity bits
because they are not a part of the data flow manipulated by the
instructions.

The bits within a byte are numbered consecutively, left to right, O through
7. When a format consists of multiple bytes, the numbering scheme is
continued (for example, the bits in the second byte would be numbered 8
through 15). Leftmost bits are sometimes referred to as high-order or
most-significant bits; rightmost bits are referred to as as low-order or
least-significant bits.

Bytes can be handled separately or grouped together. A word is a group of
two consecutive bytes, beginning on an even-address boundary, and is the
basic building block of instructions. A doubleword is a group of four
consecutive bytes, beginning on an even address boundary.

Each byte location in main storage is directly addressable. Byte locations
in storage are numbered consecutively, starting with location 0; each
number is considered to be the address of the corresponding byte. Storage
addresses are 16-bit unsigned binary numbers. This permits a direct
addressing range of 65,536 bytes.

When the storage address relocation translator is enabled, the logical
address translates into a physical address that allows addressing beyond
65,536 bytes. Refer to individual processor publications for information
regarding maximum fitted storage size.

Processor Unit Description  2-1



Instruction and Operand Address Boundaries

As previously stated, all storage addressing is defined by byte location.
Instructions can refer to bits, bytes, byte strings, words, or doublewords as
data operands. All word and doubleword operand addresses must be on
even-byte boundaries. All word and doubleword operand addresses point
to the most-significant (leftmost) byte in the operand. Bit addresses are
specified by a byte address and a bit displacement.

Byte

00000001

0 7

Word

000000O0O0C0000O0O0T11O

0 7 8 15

Doubleword

00000000O0|0DO0OO0D0O0D0O0ODO0D0O|I0OODO0O00O0DO0O00O]J]OOO0O0DO0T1TO0O

0 7 8 1516 2324 37

To provide maximum addressing range, some instructions refer to a byte,
word, or doubleword displacement that is added to the contents of a
register. In these cases, the operand is a word and the register must
contain an even-byte address for valid results.

« All instructions must be on an even-byte boundary.

« The effective address for all branch type instructions must be on an
even-byte boundary to be valid.

If the rules of even-byte addressing are violated, a program-check
interrupt occurs with specification check set in the processor status word
(PSW). The instruction is suppressed unless otherwise noted in the
individual instruction description in Chapter 8.

Arithmetic and Logic Unit (ALU)

2-2

GA34-0152

The arithmetic and logic unit (ALU) contains the hardware circuits that
perform addition, subtraction, and logical operations; such as, AND, OR,
and Exclusive OR. The ALU performs address arithmetic as well as the
operations required to process the instruction operands. Operands may be
regarded. as signed or unsigned by the programmer. However, the ALU
does not distinguish between them. Refer to ‘“Numbering Representation™
in this chapter for a detailed discussion of signed or unsigned operands.
For many instructions, indicators are set to reflect the result of the ALU
operation. Refer to “Indicator Bits” in this chapter for a detailed
discussion of indicator settings.

O O

)

OO O O 000

o~
~

O O O O«

O O

)

=
N

O O O



O O O O

O O C

/2D
L/

O O

Q )

OO0 00000

OO O

Numbering Representation

Operands may be signed or unsigned depending on how they are used by
the programmer. An unsigned number is a binary integer in which all bits
contribute to the magnitude. A storage address is an example of an
unsigned number. A signed number is one where the high-order bit is used
to indicate the sign, and the remaining bits define the magnitude. Signed
positive numbers are represented in true binary notation with the sign bit
(high-order bit) set to 0. Signed negative numbers are represented in two’s
complement notation with the sign bit (high-order bit) set to 1. The two’s
complement of a number is obtained by inverting each bit of the number
and adding a 1 to the low-order bit position. Two’s complement notation
does not include a negative 0. The maximum positive number consists of
an all-1’s integer field with a sign bit of 0; the maximum negative number
(the negative number with the greatest absolute value) consists of an
all-0’s integer field with a 1-bit for the sign.

The following examples show:

e An unsigned 16-bit number

+ A signed 16-bit positive number

e A signed 16-bit negative number
Example of an unsigned 16-bit number:

11111111111 11111 Binary number

0 15  Bit position
Decimal value 65535 (The largest unsigned number
Hexadecimal value FFFF representable in 16 bits.)

Example of a signed 16-bit positive number:

o111T111111111111 Binary number

0 15  Bit position

|-— Sign (+)

Decimal value +32767 (The largest positive signed
Hexadecimal value 7FFF number representable in 16 bits.)

Processor Unit Description  2-3



When the number is positive, all bits to the left of the most-significant bit
of the number, including the sign bit, are 0’s.

0000000000000001 Binary number

0 15  Bit position
|—Sign (+)

Decimal value +1

Hexadecimal value 0001

Example of a signed 16-bit negative number:

100000000O0OO0O0DO0COCOO Binary number

0 15  Bit position
I——Sign (=)

Decimal value —32768 (The largest negative signed
Hexadecimal value 8000 number representable in 16 bits.)

Note: This form of representation yields a negative range of one more
than the positive range.

When the number is negative, all bits to the left of the most-significant bit
of the number, including the sign bit, are set to 1’s.

1111111111111 110 Binary number

0 15 Bit position
I—- Sign (—)

Decimal value -2

Hexadecimal value FFFE

O O

AN

)

—~
\\*

-/

/
\

J

O O

c O

O OO

O O O

OO O O



O ONONONG

OO O O

\
;7

/

C

! A\

@

OO 000 COO0OO0

Registers

When a signed-number operand must be extended with high-order bits, the
extension is achieved by prefixing a field with each bit set equal to the
high-order bit of the operand.

Example of an 8-bit field extended to a 16-bit field:

111111101 Binary number

0 7 Bit position
|— Sign {—)

Decimal value -3
Hexadecimal value FD

1T1T11111111111101 Binary number
0 15  Bit position

|—Sign (—)

Decimal value -3
Hexadecimal value FFFD

When performing the add and subtract operations, the processor does not
regard the number as either signed or unsigned, but performs the
designated operation on the values presented. Whether a given add or
subtract operation is to be regarded as a signed operation or an unsigned
operation is determined by the programmer’s view of the values being
presented as operands. The carry indicator and the overflow indicator of
the level status register (LSR) are changed on various operations to reflect
the result of that operation. This allows the programmer to make result
tests for the number representation involved. The carry and overflow
indicator settings are explained in ‘“‘Indicator Bits’’ in this chapter.

There are two general types of registers: system and level registers. The
system registers are one-of-a-kind registers that retain information
common to all priority-interrupt levels. The level registers, which are
duplicated for each priority-interrupt level, retain information that must be
saved when a level is preempted.

Information that pertains only to the current process is kept in registers
common to all levels. The registers in each category are listed in this
section.

Processor Unit Description  2-5



System Registers

Registers supplied on a system basis:

+ Processor status word (PSW) register

«  Mask register (interrupt level)

« Clock register(not installed on all processors)

o Comparator register(not installed on all processors)

« Segmentation registers (not installed on all processors)
Registers supplied on a system basis, using the programmer console:
« Console data buffer register

« Current-instruction address register (CIAR)

« Storage address register (SAR)

« Console address key register

« Console stop-on-address register

Registers supplied on a level basis:

« Address key register (AKR)

« General registers (eight per level)

o Instruction address register (IAR)

e Level status register (LSR)

» Floating-point registers (optional; not available for some processors)

Note: For a specific level, the contents of the IAR, AKR, LSR, and the
general registers are known as a level status block (LSB). The LSB is a

22-byte entity used by hardware and software for task control and task
switching.

Processor Status Word (PSW) Register

Mask Register

2-6

GA34-0152

The processor status word (PSW) is a 16-bit register used to record error
or exception conditions that may prevent further processing, and to hold
certain flags that aid in error recovery. Error or exception conditions
recorded in the PSW result in a class interrupt. Each bit in the PSW is
described in detail in Chapter 3. The PSW can be accessed by using the
Copy Processor Status and Reset (CPPSR) instruction. Refer to Chapter 8
for a detailed description of this instruction.

The mask register is used for control of interrupts. Bit O controls level 0,
bit 1 controls level 1, and so on.

A 1-bit enables interrupts on a level; a 0-bit disables interrupts. For
example, if bit 3 is set to a 1, interrupts are enabled on level 3.

O O

I
\

©

O

O

OO O 0O 0O O



O CHONONONOROEONONE

N\

OO 000 000O0Cc

Clock Register

Comparator Register

Segmentation Registers

Console Data Buffer Register

The clock register is a 32-bit register that is incremented at 1-millisecond
intervals. Refer to Chapter 6 for further information concerning the clock
register.

The comparator register is a 32-bit register that is used in conjunction
with the clock register to generate the clock class interrupt. Refer to
Chapter 6 for further information concerning the comparator register.

A segmentation register is a register that changes a logical address to a
physical address. Refer to Chapter 5 for further information concerning
the segmentation registers.

The console data buffer is a 16-bit register associated with the
programmer console. The contents of the console data buffer can be
loaded into a specified general register by using the Copy Console Data
Buffer (CPCON) instruction. Refer to Chapter 8 for a detailed description
of this instruction. Refer to individual processor publication for further
information concerning the programmer console.

Current-Instruction Address Register (CIAR)

Storage Address Register (SAR)

Console Address Key Register

The current-instruction address register (CIAR) is not addressable by
software. It may be displayed from the programmer console. When the
processor enters the stop state, the CIAR contains the address of the last
instruction that was executed. Refer to ““Stop State” under ‘‘Processor
State Control” in this chapter for methods of entering stop state.

The storage address register (SAR) is not addressable by software. It is
used for certain programmer console operations. SAR is a 16-bit register
that contains the main-storage address for the last attempted processor
storage cycle. Refer to individual processor publications for information
concerning the programmer console.

The console address key register is not addressable by software. When the
programmer console is installed, this register is used for certain console
operations. Refer to individual processor publications for information
concerning the programmer console.

Console Stop-On-Address Register

The console stop-on-address register is not addressable by software. When
the programmer console is installed, this register is used for certain console
operations. Refer to individual processor publications for information
concerning the programmer console.

Processor Unit Description  2-7



Level Registers

Address Key Register (AKR)

General Registers

The address key register (AKR) is a 16-bit register that contains three
address keys and an address-key control bit. Separate three-bit fields
contain an address key for instruction address space, operand-1 address
space, and operand-2 address space.

Subsequently referred to simply as registers, the general registers are
16-bit registers available to the program for general purposes. Eight
registers are provided for each level. The R- and RB fields in the
instructions control the selection of these registers.

Instruction Address Register (IAR)

Level Status Register (LSR)

Floating-Point Registers

2-8

GA34-0152

The instruction address register (IAR) is a 16-bit register that holds the
main storage address used to fetch an instruction. After an instruction has
been fetched, the IAR is updated to point to the next instruction to be
fetched.

Note: These registers are sometimes referred to as IARO, IAR1, IAR2,
and IAR3. The numbers represent the priority level IAR.

The level status register (LSR) is a 16-bit register that holds:

« Indicator bits, which are set as a result of arithmetic, logical, or I/O
operations

« A supervisor state bit
« An in-process bit

« A trace bit

e A summary mask bit

These bits are discussed further in the. following paragraphs. Seven other
bits in the LSR are not used and are always set to 0’s.

A floating-point register is a 64-bit register. The floating-point feature
includes four 64-bit floating-point registers for each of the four priority
interrupts levels in the processor. Refer to Chapter 7 for a detailed
discussion of the floating-point feature.

O O O

O O O O

O O O

\

O

OO OO O 00

®

4



Indicator Bits

O
O
O
O
O
O
O
O
O
O

The indicators are located in bits 0—-4 of the level status register (LSR).
Figure 2-1 shows the indicators and how they are set for arithmetic
operations. The indicator bits are changed or not changed depending on
the instruction being executed. Some instructions do not affect the
indicators, other instructions change all of the indicators, and still other
instructions change only specific indicators. Refer to the individual
instruction descriptions in Chapter 8 for the indicators that are changed by
each instruction.

Level status register (LSR)

E|C|O|N|Z

01234

|—- Zero — Set to 1 if result is all O's; otherwise,
set to 0.

Negative — Setto 1 if bit 0 of resultis 1;
otherwise, set to 0.

L—— Overflow — Set to 1 if result of arithmetic
operation (with the operands regarded as
signed numbers) cannot be represented as
a signed number in the operand size speci-
fied; otherwise, set to 0.

Carry — Set to 1 if the result of add or sub-
tract operations (with the operands regarded
as unsigned numbers) cannot be represented
as an unsigned number in the operand size
specified; otherwise, set to 0.

Even — Set to 1 if the low-order bit of the
result is 0; otherwise, set to 0.

Figure 2-1. How indicators are set for signed and unsigned (logical) operations

The indicators are changed in a specialized manner for certain operations.
These operations are described briefly. Additional information is provided
in subsequent paragraphs for those operations where more detail is
required.

e Add, subtract, or logical operations. The even, negative, and zero
indicators are result indicators. For add and subtract operations, the
carry and overflow indicators are changed to provide information for
both signed and unsigned number representations.

e Multiply and divide operations. Signed number operands are always
assumed for these operations. The carry indicator is used to provide a
divide by 0 indication for the divide instruction. The overflow
indicator defines an unrepresentable product for multiply operations.
Refer to the individual instruction descriptions in Chapter 8.

e Priority interrupts and input/output operations. The even, carry, and
overflow indicators are used to form a three-bit condition code that is
set as a binary value.

Processor Unit Description  2-9



e Compare operations. The indicators are set in the same manner as in a
subtract operation.

e Shift operations. The carry and overflow indicators have a special
meaning for shift left logical operations.

e Complement operations. The overflow indicator is set if an attempt is
made to complement the maximum negative number. This number is
not representable.

e Set Indicators (SEIND) and Set Level Block (SELB) instructions. All
indicators are changed by the data associated with these instructions.

Even, Negative, and Zero Result Indicators

The even, negative, and zero indicators are called the result indicators. A
positive result is indicated when the zero and negative indicators are both
off (set to 0’s). These indicators are set to reflect the result of the last
arithmetic or logical operation performed. A logical operation in this sense
includes data movement instructions. Refer to the individual instruction
descriptions in Chapter 8 for the indicators changed for specific
instructions.

Even, Carry, and Overflow Indicators—Condition Code for Input/Output Operations

The even, carry, and overflow indicators contain the I/O condition code

following the execution of an Operate I/O instruction and following an
1/0 interrupt.

These indicators are used to form a three-bit binary number that results in
a condition code value. For additional information about condition codes,
refer to Branch on Condition Code (BCC) and Branch on Not Condition
Code (BNCC) instructions in Chapter 8 and “I/O Condition Codes and
Status Information” in Chapter 4.

Carry and Overflow Indicators—Add and Subtract Operations

Carry Indicator Setting

Overflow Indicator Setting

2-10

GA34-0152

A common set of add and subtract integer operations performs both
signed and unsigned arithmetic. Whether a given add or subtract operation
is to be regarded as a signed operation or an unsigned operation is
determined by the programmer’s view of the values being presented as

operands. The carry and overflow indicators are set to reflect the results
for both cases.

The carry indicator is used to signal overflow of the result when operands
are presented as unsigned numbers.

The overflow indicator is used to signal overflow of the result when the
operands are presented as signed numbers.

Note: Appendix E explains the meaning of these indicators for signed and
unsigned numbers. The appendix also provides examples for setting the
carry and overflow indicators.

OO0 00

T OO0 00000000

O O C

OO O O



@

o O C O

O

o O O O

-
N

O

J

C OO0 0000CO0

Carry and Overflow Indicators—Shift Operations

Indicators—Compare Operations

The carry and overflow indicators are changed for shift left logical
operations and shift left and test operations. These operations affect the
indicators as follows:

« The carry indicator is set to reflect the value of the last bit shifted out
of the target register (register where bits are being shifted).

« The overflow indicator is set to 1 if bit O of the target register was
changed during the shift; otherwise, it is set to 0.

A compare operation sets the indicators in the same manner as a subtract
operation. The even, negative, and zero indicators reflect the result. The
carry and overflow indicators are set as described previously.

Compare instructions provide a test between two operands (without
altering either operand) so that conditional branch and jump instructions
may be used to control the programming logic flow. The conditions
specified in branch and jump instructions are named such that, when the
condition of the ‘“‘subtracted from” operand relative to the other operand
is true, the jump or branch occurs; otherwise, the next sequential
instruction is executed. This is illustrated in the following example.

Example of compare operation:

Instruction Assembler

name mnemonic Operands
Compare word CW Reg 3, Reg 4
Op code R1 R2 Function

01110/011[100/0010:1

0 4 5 7 8 1011 15

Reg3 Reg4

In this example, the contents of register 3 are subtracted from register 4:

Decimal

Unsigned  Signed
Reg 4 contents 0000 0000 0000 0010 2 +2
Reg 3 contents 1111 1111 11\11 1011 65531 -5
Subtract result —65529 +7

Machine operation:

Minuend 0000 0000 0000 0010
Subtrahend 0000 0000 0000 0100
Constant 1
0000 0000 0000 0111

one’s complement

for two’s complement

Result

Processor Unit Description 2-11



2-12

GA34-0152

Indicator settings:

E c o N Z
0 1 0 0 0

|———-Fiesult is not 0.

Result is positive.

Result fits operand size as a
signed number.

A negative result for an un-
signed number.

Result is not even (low-order
bit = 1).

If the programmer wants to compare unsigned numbers, such as storage
addresses, the logical conditional tests should be used (refer to Figure
2-2). In this example, assuming unsigned number representation, register 4
is logically less than register 3 and unequal to register 3. Therefore, the
following branch instructions cause a transfer to symbolic location A
(assuming register values shown in the example):

Cw Reg 3,Reg 4

BLLT A

or
CW  Reg3,Reg 4
BNE A

The complementary tests (BLGT and BE) do not cause a transfer in this
case.

If the programmer wants to compare signed numbers, the arithmetic
conditional tests should be used (refer to Figure 2-2). In the previous
compare word example, assuming signed number representation, register 4
is greater than register 3 and unequal to register 3. The following branch
instructions would cause a transfer to symbolic location A.

CW Reg 3,Reg 4

BGT A

or
Cw Reg 3,Reg 4
BNE A

The complementary tests (BLT and BE) do not cause a transfer.

Note: Jump instructions are also available for the logical and arithmetic
conditional tests.

It must be emphasized again that the processor does not regard the
numbers as either signed or unsigned. The compare word instruction
results in a subtract operation being performed on the values presented.
The programmer must then choose the correct conditional test (logical or
arithmetic) for the number representation involved.

Y
)

O O O

O OO 0O O

\\A —

)

[

O O O

D

O O O

(
N



C

> O O O O O O

/N
..

O O O

Indicators
tested
Condition tested by Assembler 011|234
conditional branch or extended
jump instruction mnemonics E|C|O|N|Z
Zero or equal BE, BZ, JE, JZ 1
Not zero or unequal BNE, BNZ, JNE, JNZ 0
Positive and not zero BP, JP 0|0
Not positive BNP, JNP 1
1
Negative BN, JN
Not negative BNN, JNN 0
Even BEV, JEV
Not even BNEV, JNEV 0
Arithmetically less than BLT, JLT 01
110
Arithmetically less than BLE, JLE 01
or equal 110
1
Arithmetically greater than BGE, JGE 111
or equal oo
Arithmetically greater than BGT, JGT 11110
0]0]0
Logically less than or equal BLLE, JLLE 1
1
Logically less than (carry) BLLT, JLLT
Logically greater than BLGT, JLGT 0
Logically greater than or BLGE, JLGE 0
equal (no carry)

Legend: LSR bit Indicator

0 E — Even
1 C — Carry
2 O — Overflow
3 N — Negative
4 Z — Zero

Figure 2-2. Indicators tested by conditional branch and jump instructions

Processor Unit Description

2-13



Indicators—Multiple Word Operands

A programmer may desire to work with numbers that cannot be
represented in one word or in a doubleword. It may take three or more
words to represent the number.

The following register-to-register instructions allow the programmer to add

or subtract these multi-word operands and then have the indicators reflect
the multi-word result:

« Add Carry Register (ACY)

¢« Add Word With Carry (AWCY)

o Subtract Carry Register (SCY)

» Subtract Word With Carry (SWCY)

The following two examples show how the add instructions are used. A
subtract operation is similar. Refer to Chapter 8 for details of the
individual instructions.

Example 1. (Equal-length operands)

Operand 1/
Reg 1 Reg 2 Reg 3 " Result
Reg 4 Reg 5 Reg 6 Operand 2
Program steps:
AW Reg 6,Reg 3
AWCY Reg 5,Reg 2
AWCY Reg 4,Reg 1
Explanation:
Step 1: The contents of register 6 are added to the contents of
register 3. ‘
Step 2: The contents of register 5 are added to the contents of
register 2 plus any carry from the previous operation.
Step 3: The contents of register 4 are added to the contents of

register 1 plus any carry from the previous operation.
Example 2. (Unequal-length operands)

Operand 1/
R R
Reg 1 eg 2 eg 3 Result
Reg b Reg 6 Operand 2

Note: In this example, operand 2 must be an unsigned number or must be
positive.

O O

4
\

O

N
/

OO 0O C

O O

q
.

D

—

(‘4

O O O O

O O O O

O O



O

)

000 0000 C 5

O O O

Program steps:

AW Reg 6,Reg 3
AWCY Reg 5,Reg 2
ACY Reg 1

Explanation:
Step 1: The contents of register 6 are added to the contents of register 3.

Step 2: The contents of register 5 are added to the contents of register 2,
plus any carry from the previous operation.

Step 3: Any carry from the previous operation is added to the contents
of register 1.

Note: In both examples, the final indicator settings reflect the status of the
three-word result.

Even Set to 1 if the result low-order bit of register 3 is 0.

Carry Set to 1 if the result cannot be represented as an unsigned
three-word number.

Overflow Set to 1 if the result cannot be represented as a signed
three-word number.

Negative Set to 1 if the result high-order bit of register 1 is 1.
Zero Set to 1 if all three result registers contain 0’s.

Testing Indicators with Conditional Branch and Jump Instructions

Supervisor State Bit

The indicators are tested according to a selected condition when a
conditional branch or a conditional jump instruction is executed, as shown
in Figure 2-2.

The conditional instructions are:

o Branch on Condition (BC)

« Branch on Not Condition (BNC)
¢ Jump on Condition (JC)

o Jump on Not Condition (JNC)

The assembler also provides extended mnemonics for the conditions shown
in Figure 2-2. Refer to the individual instructions in Chapter 8.

Level status register (LSR) bit 8, when set to 1, indicates that the
processor is in the supervisor state, which allows privileged instructions to
be executed. This bit is set by any of the following:

e Class interrupt
— Machine-check condition
— Program-check condition
— Power/thermal warning
— Supervisor Call (SVC) instruction
— Soft-exception trap condition
— Trace
— Console interrupt
— Clock/comparator

Processor Unit Description  2-15



In-Process Bit

Trace Bit

Summary Mask Bit

Program Execution

Instruction Formats

2-16  GA34-0152

+ I/O interrupt

» Initial program load (IPL)
o System reset

« Power-on reset

When LSR bit 8 is set to 0, the processor is in problem state. For a
selected priority level, the supervisor can alter the supervisor state bit by
using a Set Level Block (SELB) instruction. For additional information,
refer to “Processor State Control” in this chapter.

Class interrupts and I/0O interrupts are described in Chapter 3. IPL is
discussed under “Initial Program Load (IPL)” in this chapter.

Level status register (LSR) bit 9, when set to 1, indicates that a priority
level is currently active or was preempted by a higher priority level before
completing its task. Bit 9 is set to 0 by a Level Exit (LEX) instruction. Bit
9 can also be turned on or off by a Set Level Block (SELB) instruction.
The in-process bit also affects level switching under program control.
Refer to Chapter 3, “Interrupts and Level Switching,” for further
information.

Level status register (LSR) bit 10, when set to 1, causes a trace class
interrupt at the beginning of each instruction. The bit can be turned on or
off with the Set Level Block (SELB) instruction. The trace bit aids in

debugging programs. Refer to “Class Interrupts” in Chapter 3 for further
information.

Level status register (LSR) bit 11, when set to 0 (disabled), inhibits all
priority interrupts on all levels. It also inhibits power/thermal, clock, and
console class interrupts. When this bit is set to 1 (enabled), normal
interrupt processing is allowed. Refer to ‘“Summary Mask” in Chapter 3
for details relating to control of the summary mask.

The processor instruction formats are designed for efficient use of bit
combinations to specify the operation to be performed (operation code)
and the operands that participate. Some formats also include an immediate
data field or word, an address displacement or address word, and a
function field that further modifies the operation code. Various
combinations of these fields are used by the individual instructions. Some
typical instruction formats are presented here. All formats are shown in
Appendix A, “Instruction Formats.”

O

OIS

O O

)

—

) O

)

D,

—
\\

€

cC )

o O

OO 00

O

<
N

N

O



OO0 0000000

Y
N

~

C

OO0 0000000 O0

One-Word Instructions

The basic instruction length is one word (16 bits). The operation code
field (bits 0—4) is the only common field for all formats. This field, unless
modified by a function field, specifies the operation to be performed. For
a format without a function field, bits 5-15 specify the location of
operands or data associated with an operand.

Example:

Instruction Assembler

name mnemonic Syntax
Add Byte Immediate ABI byte,reg
Op code R Immediate field
00000

0 4 5 7 8 15

Bits 0—4 Operation code (specifies ABI
instruction).

Bits 5—7  General register (0—7). This
register contains data for the
second operand.

Bits 8—15 Immediate data for the first
operand.

In some cases, the operation code is the same for a group of instructions.
The format for this group includes a function field. The bit combinations
in the function field then determine the specific operation to be
performed.

Example:

Instruction Assembler

name mnemonic Syntax
Add Word . AW reg,reg
Op code R1 R2 Function
01110 01000

0 4 5 7 8 1011 15
Bits 0—4 Operation code for a group of

instructions.

Bits 6—7 General register (0—7). This
register contains data for the
first operand.

Bits 8—10 General register (0—7). This
register contains data for the
second operand.

Bits 11—15  Function field. Modifies the
operation code to specify the
Add Word instruction.

Note: For other instruction groups, the
function field may vary as to location within
the format and also to the number of bits used.

Processor Unit Description 2-17



Two-Word Instructions

Variable-Length Instructions

2-18  GA34-0152

Bits 0-4 of the first word of this format are identical to the one-word
instruction description. The second word (bits 16-31) contains either
immediate data, an address, or a displacement. This word is used to
provide data for an operand, or provide a main storage address or
displacement for effective address generation. Refer to “Effective-Address
Generation” in this chapter for further information.

Example:

Instruction Assembler

name mnemonic Syntax
Branch and Link BAL longaddr,reg
Op code R1 R2 Function
01101 X[0 011

0 4 5 7 8 101112 15

Address or displacement

16 31
Bits 0—4 Operation code.
Bits 5—7 General register (0—7) for the

second operand.

Bits 8—10 General register (0—7) for the
first operand.

Bit 11 Indirect address bit.

Bits 12—15  Function field.

Bits 16—31 A main storage address used for
the first operand.

Note: Refer to “’Branch and Link (BAL)” in
Chapter 8 for further information,

Some instructions use a selectable encoded technique for generating
effective addresses. This method is referred to as an address argument
technique in subsequent sections. These instruction formats contain a base
register (RB) field and an address mode (AM) field. If both operands are
using this technique, the format contains an RB and associated AM field
for each. These fields are in the first instruction word. The AM field
consists of two bits, and is referred to in binary notation (AM=00, 01, 10,
or 11). If AM is equal to 10 or 11, an additional word is appended to the
normal instruction word. For a format that contains two AM fields, two
additional words may be appended. Refer to “Effective-Address

Generation” in this chapter for a description of the appended words and
how they are used.

OO O 0O O

OO C H>O OO0 0

O O O O

O O O



For instructions with a single storage address argument, the RB field
consists of two bits. An RB field of two bits, with its associated AM field
of two bits, is referred to as a four-bit address argument or addr4 in
assembler syntax.

Example:

Instruction Assembler

name mnemonic Syntax
Compare byte CB addrd,reg
Op code R RB |AM | Function
11000 0100
0 4 5 7 8 9 101112 15

.| Appended word, AM=10or 11

16

Bits 0—4
Bits 5—7

Bits 8—9

Bits 10—11
Bits 12—15
Bits 16—31

31
Operation code.
General register (0—7) for the
second operand,
Base register (0—3).
Address mode.
Function field.
Appended word for the first
operand.

Note: The register specified by the RB field is a
general register that is used as a base register for
effective address generation.

Some instruction formats have two storage address arguments. In this case,
the first operand has a three-bit RB field, giving a five-bit address

argument (addr5 in assembler syntax), and the second operand has a
four-bit address argument.

Processor Unit Description

2-19



Names of Instruction Formats

2-20

GA34-0152

Example:

Instruction Assembler

name mnemonic Syntax
Add Word AW addrb,addré4
Op code RB1 RB2\AM1|AM2 |Func
10101 00

0 4 5 7 8 9 101112131415

Appended word for operand 1

16 31

Appended word for operand 2

32 47
Bits 0—4 Operation code.
Bits 5—7 Base register (0—7) for the first operand.
Bits 8—9 Base register (0—3) for the second operand.

Bits 10—-11 Address mode for the first operand.

Bits 12—13  Address mode for the second operand.
Bits 14—15  Function field.

Bits 16—31 Appended word for the first operand.
Bits 32—47  Appended word for the second operand.

Notes:

1.

If there is no appended word for the first operand
(AM1=00 or 01), the second operand word is appended
to the instruction word in bits 16—31.

. Registers specified by the RB fields are general registers.

Names have been established for several categories of instructions. Each
category has the same basic instruction format; therefore, the name is
related to the format. In most cases, the name indicates the location of the
operands or the type of instruction.

Register/register instructions—General registers are used by both
operands.

Storage/storage instructions—Both operands reside in main storage.

Register/storage instructions—One operand uses a general register;
the other operand resides in main storage.

Register immediate instructions—One operand uses a general register;
the other operand uses an immediate data field. The immediate data
field is the low-order byte of a one-word format or the second word
of a two-word (long) format.

O O O O

OO0 00

O O

O O C )

J

N

O O

O O O O

-



O
O
O
O
O
O
O
O
O
O

« Shift instructions with immediate count—This is a shift instruction
with the count field contained within the instruction word.

o Storage immediate instructions—One operand is in main storage. The
other operand uses an immediate data field. The immediate data field
is the second word of a two-word format.

e Parametric instructions—For this instruction format, a parameter field
(bits 8—15) is contained within the instruction word.

Effective-Address Generation

For purposes of storage efficiency, certain instructions formulate storage
operand addresses in a specialized manner. These instructions have
self-contained fields that are used when generating effective addresses.
Standard methods for deriving effective addresses are included in this
section. Other methods, such as bit displacements, are explained in the
individual instruction descriptions in Chapter 8.

Programming Note: For the following instructions, the effective address
points to a control block rather than to an operand:

« Copy Level Block (CPLB)

o Load Multiple and Branch (LMB)
« Pop Byte (PB)

« Pop Doubleword (PD)

« Push Byte (PSB)

o Push Doubleword (PSD)

« Push Word (PSW)

« Pop Word (PW)

« Set Level Status Block (SELB)

« Store Multiple (STM)

Base Register Word Displacement Short

Instruction format
Op code RB wpD

0 4 8 9 11 15
ng— N—  cm——

Base register ———-I

00 Register 0
01  Register 1
10  Register 2
11 Register 3

Word displacement
Range 0 to 31 (decimal)

Processor Unit Description  2-21



Base Register Word Displacement

2-22

GA34-0152

The five-bit unsigned integer (WD) is doubled in magnitude to form a
byte displacement, and is then added to the contents of the specified base
register to form the effective address. The contents of the base register
must be even.

Example:
Op code RB wD
01 00100
0 4 8 9 17 15
Hex Dec

Contents of

register 1 (RB) 0000 0000 0110 0000 0060 0096
Word displacement

(WD) doubled + 0 1000 8 8
Effective address 0000 0000 0110 1000 0068 0104
Instruction format
Op code RB |WD
0o 4 5 7 8 15

N’ - ‘

Base register —l

000 Register 0
001 Register 1
010 Register 2
011 Register 3
100 Register 4
101 Register 5
110 Register 6
111 Register 7

Word displacement
Range +127 to —128 (decimal)

The eight-bit signed integer (WD) is doubled in magnitude to form a byte
displacement and is then added to the contents of the specified base
register to form the effective address. The contents of the base register
must be even.

The word displacement can be either positive or negative; bit 8 of the
instruction word is the sign bit for the displacement value. If this
high-order bit of the displacement field is a 0, the displacement is positive
with a maximum value of +127 (decimal). If the high-order bit of the
displacement field is a 1, the displacement is negative with a maximum
value of —128. The negative number is represented in two’s complement
form.

®

o O

7
\

OO )

SO0 000000



Example:

Op code RB wD
1 0{1 1101001
7 8 15

1
0 4 5

Note: This example uses a negative word displacement
(—17 hex) shown in two’s complement.

Hex Dec
Contents of
register 6 (RB) 0000 0000 1000 0110 0086 0134

Word displacement
(WD) doubled
(sign bit is propa-
gated left) +1111 1111 1101 0010 — 2E — 46

Effective address 0000 0000 0101 1000 0058 0088

Four-Bit Address Argument

Instruction format
Op code RB | AM

0 4 8 9 1011 15

Base register ———————d

00 Register 0
{AM=00 or 01)

00 No register
(AM=10o0r 11)

01 Register 1
10  Register 2
11 Register 3

Address mode ———J

The address mode (AM) has the following significance:

AM=00. The contents of the selected base register form the effective
address.

AM=01. The contents of the selected base register form the effective
address. After use, the base register contents are incremented by the
number of bytes in the operand. For some instructions, the effective
address points to a control block rather than to an operand. When the
effective address points to a control block, the base register contents are
incremented by 2.

Processor Unit Description  2-23



2-24

GA34-0152

Example:
Op code RB | AM
0 1)]0 1
o 4 8 9 1011 15

Hex Dec
Effective address
{contents of register 1) 0000 0000 1000 0000 0080 0128

Contents of register 1
after instruction execution

Byte operand 0000 0000 1000 0001 0081 0129
Word operand 0000 0000 1000 0010 0082 0130
Doubleword
operand 0000 0000 10000100 0084 0132
Notes:

1. For register-to-storage instructions, if the specified register is the same
for both operands, the register is incremented prior to using it as an
operand.

2. Certain instructions (storage-to-storage) have two address arguments.
Operand 1 has a three-bit RB field with its associated AM field.
Operand 2 has a two-bit RB field with its associated AM field. If both
RB fields specify the same register and both AM fields are equal to
01, the base register contents are incremented prior to fetching
operand 2 and again after fetching operand 2. Assuming the same
conditions, but with the operand 2 AM field not equal to 01, the base
register contents are incremented prior to calculating the effective
address for operand 2.

3. If the effective address points to a control block rather than to an
operand; the base register contents are incremented by 2.

AM=10. An additional word is appended to the instruction. The word has
the following format: ~

Address or displacement

16 31

If RB is 0, the appended word contains the effective address.

If RB is not 0, the contents of the selected base register and the contents
of the appended word (displacement) are added to form the effective
address.

o

s

OO O«

®

~
S

(

O O O O

(

C

O O O



ONe

O

O

/\‘\

(

O 000000

Example:
Op code RB | AM Address
1 1(1 0 0 000OD0O0DO0O0O0D10O0O0O0D0O0D0ODO0O0ODO0O
0 4 8 9 101112 1516 31
Hex Dec

Contents of register 3 0000 1000 0000 0000 0800 2048

Contents of appended word +0000 0001 0000 0000 0100 0256

Effective address 0000 1001 0000 0000 0900 2304

AM=11. An additional word is appended to the instruction.
If RB is 0, the appended word has the format:

Indirect address

16 31

This address points to a main storage location, on an even-byte boundary,
that contains the effective address.

Example:
Op code RB | AM Indirect address
0011 000000000101 00O00O
o 4 8 9 101112 1516 31
Hex Dec

Contents of appended word 0000 0000 0101 0000 0050 0080

Effective address equals

contents of storage
at address 0080 (decimal) 0000 0100 0000 0000 0400 1024

If RB is not 0, the appended word has the format:

Displacement 1 Displacement 2

16 2324 31

The two displacements are unsigned eight-bit integers. Displacement 2 is
added to the contents of the selected base register to generate a main
storage address. The contents of this storage location are added to
displacement 1 and result in the effective address.

Processor Unit Description  2-25



2-26

GA34-0152

Example:
Op code RB | AM Displacement 1 Displacement 2
1 0[1 1 0010010101 000010
0 4 8 9 101112 1516 2324 ‘ 31
Hex Dec
Contents of register 2 00000101 0011 0101 0535 1333
Displacement 2 + 01000010 42 66

Storage address

Contents of storage at
address 1399 (decimal)
Displacement 1

Effective address

0000 0101 0111 0111 0577 1399

0000 0100 0001 0000 0410 1040
+ 00100101 .25 37

0000 0100 0011 0101 0435 1077

Note: This example is invalid for other than a byte operand.

Programming Note: This addressing mode (AM=11, RB is not 0) is
useful for the directorized data concept. For the addr4 or addr5 assembler
syntax, the programmer codes the form displacement 1 (register,
displacement 2)*. For addr4, the specified register is 1-3. For addr5, the
specified register is 1-7. The asterisk denotes indirect addressing.

Register
Address of

Directory
Address of

directory

Displac:ement 2

} data set A

Address of
| data set B

Y Address of

data set C

‘ r c
|
Displacement 1
i

—LP Data

Data sets

A

O

O

)

O O O

O OO



C )

DECHONONCGEONOIN

O O O

Five-Bit Address Argument

Base Register Storage Address

Instruction format

Op code RB AM
0 4 5 7 1011 15
e e o’ .

Base register ——l

000 Register 0
{AM=00 or 01)

000 No register
(AM=10or 11)

001 Register 1

010 Register 2

011 Register 3

100 Register 4

101 Register 5

110 Register 6

111 Register 7

Address mode

Operation of this mode is identical to the four-bit argument, but provides
additional base registers.

Instruction format

Op code RB Address/displacement
X
0 4 8 101112 1516 31
N — -

Base register —_—-I Address field

000
001
010
011
100
101
110
111

No register
Register 1
Register 2
Register 3 |_J O = direct address
Register 4 1 = indirect address
Register 5

Register 6

Register 7

If RB is 0, the address field contains the effective address.

If RB is not 0, the contents of the selected base register and the contents
of the address field are added together to form the effective address.

Note: Bit 11 specifies whether the effective addressing is direct or indirect
addressing.

Processor Unit Description  2-27



Example of indirect addressing:

Op code RB Address
1.0 01 000001000001 0000O
0 4 8 101112 1516 31
Hex Dec
Contents of register 4 0000 0001 0000 0000 0100 0256
Address field +0000 0100 0001 0000 0410 1040
Storage address 0000 0101 0001 0000 0510 1296
Effective address
Contents of storage at
address 1296 (decimal) 0000 0110 0100 0000 0640 1600

Instruction Length Variations for Address Arguments

AM=00 or 01

AM=10 or 11

2-28  GA34-0152

One-word instructions that contain a single AM field become two words in
length if AM is equal to 10 or 11. The AM appended word follows the
instruction word.

Example:

Instruction word
AM=00 or 01 No appended word

0 15

Instruction word AM appended word
AM=10o0r11

0 1516 31

Two-word instructions that contain a single AM field become three words
in length if AM is equal to 10 or 11. The AM word is appended to the
first instruction word. The data or immediate field then becomes the third
word of the instruction.

Example:
Instruction word Immediate field
0 1516 31
Instruction word AM appended word Immediate field
0 1516 3132 47

o

—

()

) O)

—

(

—

()

) O

~—

()

—

)

)

—

)

7

—

@

P

@)

)

)

)

—.

(
\

O O

-~

O



OO 000000 O0OO0

AM1=00 or 01
AM2=00 or 01

AM1=10o0r 11
AM2=00 or 01

AM1=00 or 01
AM2=10or 11

AM1=10o0r 11
AM2=10o0r 11

One-word instructions that contain two AM fields (AM1 and AM2) may

be one, two, or three words in length depending on the values of AM1

and AM2. The AM1 word is appended first; then the AM2 word is

appended..
Example:
Instruction word
No appended word
0 15
Instruction word AM1 appended word
0 1516 31
Instruction word AM2 appended word
0 1516 31
Instruction word AM1 appended word AM2 appended word
0 1516 3132 47
Processor Unit Description  2-29



Processor State Control

Stop State

2-30

GA34-0152

If the processor is powered on, it is always in one of the following
mutually exclusive states:

+ Stop
o Wait
« Load

+ Run—when in run state, programs can be executed in either:
— Supervisor state or
— Problem state

The stop state is entered by any of the following methods:
« Pressing the Stop key on the programmer console.

+ Execution of the Stop instruction when the Mode switch on the basic
console is in the Diagnostic position and the optional programmer
console is installed.

+ An address match occurs (Stop On Address indicator on programmer
console is lit).

« An instruction completes execution (Instruct Step indicator on
programmer console is lit).

« An error occurs (Stop On Error indicator on programmer console is
lit).

— When the processor stops, the Check indicator is lit and the
appropriate PSW bits are set to 1’s.

— Subsequently depressing any console key turns off the Check
indicator but does not affect the PSW.

— The next time the Start key is pressed (assuming no system reset) a
class interrupt occurs (based on the PSW bit of the highest
priority).

« Pressing the Reset key on the programmer console.
« Power-on reset occurs when the Mode switch is not in Auto IPL.

While the processor is in the stop state, the Stop light on the programmer
console is on, the functions provided on the console can be activated, and
no interrupt requests can be accepted by the processor.

Certain error or exception conditions cannot occur during stop state.
These are specification check, privilege violate, invalid function, and stack
exception. These conditions are explained under ““Class Interrupts” in
Chapter 3.

If an I/0O check condition occurs during stop state, PSW bits 11 and 12
are set to 1’s and the condition is preserved by hardware. The Check
indicator is turned on. Pressing the Start key (assuming no system reset)
allows a machine-check class interrupt to occur.

If a power/thermal warning condition occurs during stop state, PSW bit

15 is set to 1 and remains set for the duration of the condition. The Check
indicator is not turned on. Subsequently depressing the Start key allows a
power/thermal-warning class interrupt to occur, assuming that the
condition is still active, the summary mask is enabled, and no system reset
has occurred.

OO

;
N

O

(

)

OO O C

O O

{
o

O 0O 0O 0



.
-

OO0 O0O0O00CCOoOO0OO0

Wait State

Load State

The processor exits the stop state by:
e Pressing the Load key on the basic console.

o Pressing the Start key on the programmer console. When the Start key
is pressed, the processor returns to the state that was exited before
entering stop state. If the run state is entered, one instruction is
executed before interrupts are accepted by the processor. If the stop
state is entered because of a reset (power-on reset or pressing the
Reset key), pressing the Start key causes program execution to begin
on level 0 with the instruction in location 0 of main storage. If the
stop state is entered because of an error and the Stop On Error switch
is set to on, a system reset or class interrupt can clear the error
condition.

Notes:

1. Any manual entry into stop state is by the programmer console.

2. The Stop instruction performs no operation if the programmer console
is not installed.

The processor enters wait state when a Level Exit (LEX) instruction or a
Set Level Block (SELB) instruction, which sets the current in-process bit
off, is executed and no level is pending. While the processor is in the wait
state, the Wait light on the basic console is on, and interrupts can be
accepted under control of the system mask register and the summary
mask, as defined by the LSR of the last active level.

The processor exits the wait state by:

« Pressing the Load key on the basic console.

o Pressing the Stop key on the programmer console.
o Pressing the Reset key on the programmer console.

« The processor accepting an I/O interrupt (the level must be enabled
by the summary mask and the mask register).

e A class interrupt occuring.

The processor enters the load state when initial program load (IPL)
begins. IPL occurs:

e« When the Load key on the basic console is pressed.

e After a power-on reset, if the Mode switch is in the Auto IPL
position.

e« When an IPL signal is received from a host system.

While the processor is in load state, the Load light on the basic console is
on. The processor exits the load state by:

e Successful completion of the IPL. -
« DPressing the Stop key on the programmer console.
¢ Pressing the Reset key on the programmer console.

Refer to “Initial Program Load (IPL)” in this chapter for further
information.

Processor Unit Description  2-31



Run State

The processor enters the run state when it is not in the stop, wait, or load
state. Run state is entered:

« From load state, upon successful completion of IPL
» From wait state, when an interrupt is accepted

« From stop state, when the Start key is pressed and the processor was
in the run state prior to entering the stop state

The processor exits run state when entering stop, wait, or load state.

Supervisor State and Problem State

2-32

GA34-0152

While in run state, instructions can be executed in either supervisor state
or problem state. This is determined by level status register (LSR) bit 8:

« If LSR bit 8 is a 1, the processor is in supervisor state.
o If LSR bit 8 is a 0, the processor is in problem state.

Supervisor and problem states are discussed in the following paragraphs.

Supervisor State. The processor enters supervisor state when:
e A Supervisor Call (SVC) instruction is executed

» A class interrupt occurs

+ An I/0 interrupt is accepted

« After a successful initial program load (IPL)

» A reset occurs

Refer to Chapter 3, “Interrupts and Level Switching,” for a detailed
discussion of class interrupts and I/O interrupts.

When the processor is in supervisor state, the full instruction set may be

executed. The following privileged instructions may be executed in

supervisor state only:

Copy Address Key Register (CPAKR)
Copy Console Data Buffer (CPCON)
Copy Current Level (CPCL)

Copy Interrupt Mask Register (CPIMR)
Copy In-Process Flags (CPIPF)

Copy Instruction Space Key (CPISK)
Copy Floating Level Block (CPFLB)
Copy Level Block (CPLB)

Copy Operand 1 Key (CPOOK)
Copy Operand 2 Key (CPOTK)

Copy Processor Status and Reset (CPPSR)
Copy Segmentation Register (CPSR)
Copy Storage Key (CPSK)

Diagnose (DIAG)

Disable (DIS)

Enable (EN)

Interchange Operand Keys (IOPK)
Level Exit (LEX)

Operate 1/0 (I0)

Set Address Key Register (SEAKR)
Set Clock (SECLK)

-~
;
~

)

O 0O 0O O 0

/

O

o O

N

s
\

OO0 0000

O O



S

O CHONCHONONONONONON

Initial Program Load (IPL)

Set Comparator (SECMP)

Set Console Data Lights (SECON)
Set Floating Level Block (SEFLB)
Set Instruction Space Key (SEISK)
Set Interrupt Mask Register (SEIMR)
Set Level Block (SELB)

Set Operand 1 Key (SEOOK)

Set Operand 2 Key (SEOTK)

Set Segmentation Register (SESR)
Set Storage Key (SESK)

Note: Refer to individual processor publications for further information
concerning privileged instructions.

Problem State. The processor enters the problem state when the
supervisor state bit (LSR bit 8) is set to 0. This is accomplished with a Set
Level Status Block (SELB) instruction, which can change the contents of
the registers for a selected priority interrupt level.

While the processor is in problem state, privileged instructions cannot be
executed. If a privileged instruction execution is attempted, the instruction
is suppressed and a program-check class interrupt occurs, with privilege
violate (bit 2) set in the PSW.

An initial program load function is provided to read an IPL record (set of
instructions) from an external storage media, and automatically execute a
start-up program. An IPL record is read into storage from a local I/O
device or host system. The I/O attachments for the desired IPL sources
are prewired at installation time. Two local sources, primary and alternate,
can be wired and either one can be selected by using the IPL Source
switch on the console.

IPL can be started by three methods:
o Manually, by pressing the Load key on the console.
« Automatically, after a power-on condition.

« Automatically, when a signal is received from a host system. The host
system can be connected through a communications adapter.

The automatic power-on IPL is selected by the Mode switch on the
console. When the Mode switch is in the Auto IPL position, IPL occurs
whenever power turns on (either initially or after a power failure). Auto
IPL is useful for unattended systems. A manual IPL can be initiated at any
time by pressing the Load key on the console (even when in run state).
The Mode switch has no effect on the manual IPL. For auto IPL and
manual IPL, the local IPL source (primary or alternate) is selected. IPL
from a host system can occur at any time and is initiated by the host
system. The IPL record is transferred through the host system device (for

" example, the communications adapter). When an auto IPL occurs, bit 13

of the PSW is set to 1 to indicate the condition to the software. When a
manual or host-system IPL occurs, this bit is set to 0.

The length of the IPL record depends on the media used by the IPL
source. :

Processor Unit Description 2-33



Upon successful completion of an IPL, the processor enters supervisor
state and begins execution on priority level 0. The summary mask is
enabled and all priority interrupt levels in the mask register are enabled.
The level 0 AKR is set to all 0’s. The first instruction to be executed is at
main storage location 0. The IPL source has a pending interrupt request
on level 0. The system program must:

1. Perform housekeeping; for example, load vector table addresses in the
reserved area of storage. Refer to ‘“Automatic Interrupt Branching” in
Chapter 3 for further information.

2. Issue a Level Exit (LEX) instruction. This allows the processor to
accept the interrupt from the IPL source. When the interrupt is
accepted, a forced branch is taken using the device-address vector
table. The vector table entry is determined by the device address of
the IPL source and results in a branch to the proper program routine
for handling the interrupt. The device address of the IPL source is set
into bits 8—15 of register 7 on level 0. Condition code 3, device end, is
reported by the IPL source. For additional information, refer to “I/O
Interrupts” in Chapter 3.

A system reset always occurs prior to an IPL. However, if any errors
occur during the IPL, the results are unpredictable.

Sequential Instruction Execution

Normally, the operation of the processor is controlled by instructions
taken in sequence. An instruction is fetched from the main storage
location specified in the instruction address register (IAR). The instruction
address in the IAR is then increased by the number of bytes in the
instruction just fetched. The IAR now contains the address of the next
sequential instruction. After the current instruction is executed, the same
steps are repeated using the updated address in the IAR.

A change from sequential operation can be caused by branching, jumping,
interrupts, level switching, or manual intervention.

Jumping and Branching

The normal sequential execution of instructions is changed when reference
is made to a subroutine, when a two-way choice is encountered, or when a
segment of coding, such as a loop, is to be repeated. All of these tasks can
be accomplished with branching and jumping instructions. Provision is also
made for subroutine linkage, permitting not only the introduction of a new
instruction address, but also the preservation of the return address and
associated information.

The conditional branch and jump instructions are used to test the
indicators in the LSR. These indicators are set as the result of I/O

. operations and most arithmetic or logical operations. Single or multiple
indicators are tested, as determined by the value in a three-bit field within
the instruction. Refer to “Indicator Bits” and ‘“Testing Indicators with
Conditional Branch and Jump Instructions” in this chapter for further
information. :

2-34 GA34-0152

OO 0O 00 0

)

)

D 0O O

\

O O 0000

O O O

O



OO0 000000

)
/

~————

OO0 00000000 CHO

Jumping

Branching

Level Switching and Interrupts

Stack Operations

Jump instructions are used to specify a new instruction address relative to
the address in the IAR. The new address must be within —256 to +254 of
the byte following the jump instruction.

Note: The jump instruction contains a word displacement that is converted
to a byte displacement when the instruction is executed. However, when
the assembler is used, the programmer specifies a byte value, which is then
converted to a word displacement by the assembler.

Branch instructions are used to specify a new full-width 16-bit address. A
16-bit value, range 0 to 65,535, is contained in the second word of the
instruction or in a register. The value in the second word can be used as
the effective branch address or added to the contents of a base register to
form an effective address. Refer to ‘“‘Base Register Storage Address” in
this chapter for further information.

The processor can execute programs on four different interrupt priority
levels. These levels, listed in priority sequence, are numbered 0, 1, 2, and
3, with level 0 having highest priority. The processor switches from one
level to another in two ways:

« Automatically, when an interrupt request is accepted from an 1/0
device on a higher priority level than the current level.

« Under program control, by using the Set Level Block (SELB)
instruction or the LEX instruction.

Both types of level switching are discussed in detail in Chapter 3.

The processing unit provides two types of stacking facilities. The two types
of stacking facilities are:

e Data stacking. This facility provides an efficient and simple way to
handle last-in first-out queues of data items and/or parameters in main
storage. The data items or parameters are called stack elements. For a
given queue (or stack), each element is one, two, or four bytes wide.
Instructions for each element size (byte, word, or doubleword) are
provided to push an element into a stack (register-to-storage) or pop
an element from a stack (storage-to-register).

e  Linkage stacking. This facility provides an easy method for linking
subroutines to a calling program. A word stack is used for saving and
restoring the status of general registers and for allocating dynamic
work areas. The Store Multiple (STM) instruction stores the contents
of the registers into the stack and reserves a designated number of
bytes in the stack as a work area. The Load Multiple and Branch
(LMB) instruction reloads the registers, releases the stack elements,
and causes a branch by register 7 back to the calling program.

Note: The Store Multiple instruction pushes a block of information
into a stack. This block is referred to as a register block. The Load
Multiple and Branch instruction pops a register block from a stack.

Processor Unit Description  2-35



Data Stacking Description

2-36 GA34-0152

Any contiguous area of main storage can be defined as a stack, and each
stack is defined by a stack control block. Figure 2-3 shows a data stack
and its associated stack control block. Stack control blocks must be
aligned on a word boundary.

The words in the stack control block are used as follows:

High-Limit Address (HLA). This word contains the address of the first
byte beyond the area being used for the stack. All data in the stack has a
lower address than the contents of the HLLA. Note that the HLLA points to
the first byte beyond the bottom of an empty stack.

Low-Limit Address (LLA). This word designates the lowest storage

location that can be used for a stack element. Note that the LLA points to
the top of a stack.

Top-Element Address (TEA). This word points to the stack element that is
currently on top of the stack. For empty stacks, the TEA points to the
same location as the high limit address (HLA).

Notes:

1. For word, doubleword, and register block operations, the HLA, LLA,
and TEA must all contain even addresses to ensure data alignment on
a word boundary.

2. The HLA and LLA define a contiguous range of addresses. These

addresses must not cross the 64K-byte boundary that causes storage to
wrap.

Push Operation. When a new element is pushed into a stack, the address
value in the TEA is decremented by the length of the element (one, two,
or four bytes) and compared against the LLA. If the TEA is less than the
LLA, a stack overflow exists. A soft-exception trap interrupt occurs with
stack exception set in the PSW. The TEA is unchanged. If the stack does
not overflow, the TEA is updated and the new element is moved to the
top location defined by the TEA.

The following diagram shows how elements are pushed into a stack. Note
that each push operation always places an element at a lower address in
the stack than the preceding element.

LLA —>
E
rea s
Push
|
TEA —>| |
and HLA | '

O O 0O 0O 0

¢

)

@

N

)

C

O O O

O O O

O O O O



OO0 000000

O O

.

OO0OO0OO0O0000O0OO0O C -

Main storage

Address 0000

).
{4

Stack control block

n.
«

Top-element address (TEA) Word 0

High-limit address (HLA) Word 1
Low-limit address (LLA) Word 2
Stack

Full stack I'EA_; Stack element

et s — — fe — —— — — —

Stack element

Empty

stack TEA
2 >0

\The TEA for an empty

stack points to the
same place as the HLA

\15

Stack element shown is one

word; element can be one,

two, or four bytes wide

Figure 2-3. Relationship of stack control block to data stack

Refer to Chapter 8 for descriptions of the following instructions:

« Push Byte (PSB)
« Push Word (PSW)
« Push Doubleword (PSD)

Note: For a Push Doubleword operation, the TEA points to the high-order

word of the doubleword operand.

Processor Unit Description

2-37



Pop Operation. When an element is popped from a stack, the TEA is
compared against the HLA. If it is equal to or greater than the HILLA, an
underflow condition exists. A soft exception trap interrupt occurs with
stack exception set in the PSW. If the stack does not underflow, the stack
element defined by the TEA is moved to the specified register and the
TEA is incremented by the length of the element.

The following diagram shows how elements are popped from a stack:

LLA =

Empty
stack

Pop-

|
HLA = TEA—--»II ]

Refer to Chapter 8 for descriptions of the following instructions:
« Pop Byte (PB)

« Pop Word (PW)

« Pop Doubleword (PD)

Note: 1t is possible to pop data from beyond a stack boundary if the TEA
is less than the HLA, and the operand size is greater than HLA minus
TEA.

Data Stacking Example—Allocating Fixed Storage Areas

2-38

GA34-0152°

Many programs require temporary main storage work areas. It is very
useful to be able to dynamically assign such work area storage to a
program only when that storage is needed. Conversely, when work-area
storage is no longer needed by a program, it is desirable to free that
resource so that it may be used by other programs. Use of the stacking
mechanism can assist in the programming of the dynamic storage
management function.

The following is an example of how storage areas could be allocated using
the stacking mechanism.

O O O

O O

s

C )0 O 0O 0

(

OO0 0000

O O O



A stack is initialized with addresses that point to fixed areas of storage.

Each element in the stack represents the starting address of a block of
storage consisting of 512 bytes (for example, addresses 0230 through
03FF). As storage is needed, the starting address for a block or storage is
popped from the stack. When the block of storage is no longer needed, the

starting address is pushed back into the stack. The stack control block,

stack, and storage areas appear initially as follows:

Stack control block

TEA = 0B0O

HLA = 0B08

LLA = 0BOO

Full stack

TEA = LLA = 0B00 = 0230
0430

0630

0830

HLA = 0B0§—>

Storage areas

0230 =31
Available
storage
0430 Available
storage
—
0630 Available
storage
0830 Available
storage

Notice that each stack element is one word long, that addresses of storage
areas are the stack elements, and that the TEA points to the lowest
location of the last element because the initialized stack is full. Contrast

this with an empty stack, in which the TEA points to the same location as

the HLA.

Processor Unit Description

2-39



2-40

GA34-0152

Now assume that program A requires a block of storage. Program A (or a
storage management function at the request of program A) issues a Pop

Word instruction against the stack control block. The TEA is updated as
follows:

Stack control block

TEA —=p{ 0B02
HLA=—— 0BO8
LLA — 0B0O
Stack
LLA = 0BOO—>
TEA = 0B02 ] 0430
0630
0830
HLA = 0B08—>

Storage areas

0230 —»-

Assigned to
program A

B —————

0430 Available
storage

0630 Available
storage

0830 Available
storage

The word element popped is placed in the register specified by the Pop
Word instruction executed by program A. This is the address of the
512-byte storage area beginning at address 0230.

O O O O

OO

O O

(

D,

r
.

)

OO 000000

O

9



o

C

G ONONONONG

N
N

)

OO00000000O0OC

At this time, assume that program B (operating on a different hardware
level than program A) also requires a storage area. Program B also

executes a Pop Word instruction against the stack. The next element is
moved to the register specified and points to the next available storage
area; the TEA is updated:

Stack control block

l— TEA after
second Pop

TEA ——>{ 0B04
HLA — 0808
LLA —> 0800
Stack
LLA=0B00 — =
TEA = 0804 ——>] 0630
0830

HLA = 0B08 ~——>-

Storage areas

0230 —»{-

Assigned to -

0430 —{ © 37

program B

o

0630 — Available
storage

0830 — Available
storage

Processor Unit Description

2-41



2-42

GA34-0152 .

Before any further requests occur, program A terminates its need for a
work area. Program A then issues a Push Word instruction against the
stack and returns the address of the area it was using so that other
programs may use it:

Stack control block

TEA after
TEA =3 0B02 €= program A
Push operation
HLA — 0B08
LLA = 0B0OO
Stack

LLA = 0B00 —.

TEA = 0B02 = 0230

0630

0830

HLA = 0B08 ———>

Storage areas

0230 —> Available

storage

SR AT

: Assigned to

0430 ~—"

: program B
0630. Available
storage
0830 : Available
storage

A similar operation is performed by Program B when it releases its storage
to the stack, popping address 0400 into location 0B00. While the
addresses are obviously shuffled in the stack (from the values initially
established), this presents no problem because each program requires only
an area of storage—the area location is not important.

N MY
N AN

OO0 0O 0 0 00

D

I
L

OO0 00000 )

O 0O O 0



)
. _/

OCO0O0O0OO0O00000OO0

Linkage Stacking Description

As previously described, a word-stack mechanism may be used for
subroutine linkage. This mechanism saves and restores registers and
allocates dynamic work areas.

The letters in the following description correspond to the letters of Figure
2-4.

The Store Multiple (STM) instruction specifies:

© Stack control block address

© Limit register (RL) number

© Number (N) of words to allocate for work areas

When the STM instruction is executed, the allocate value (N), plus the
number of registers saved, and one control word is the requested block
size in words. The block size (converted to bytes) is used to decrement the
TEA before an overflow check is made. If no overflow occurs, the
operation proceeds. The link register (register 7) and register 0 through
the specified limit register (RL) are saved sequentially in the stack. If
register 7 is specified as the limit register, only register 7 is stored in the
stack. The dynamic work space is allocated and a pointer to the work area
is returned in register RL. If no work area is specified, the returned
pointer contains the location of register 7 in the stack. The values of RL
and N are also saved as an entry in the stack. The TEA is updated to
point to the new top of stack location.

When a Load Multiple and Branch (LMB) instruction is executed, the
values of RL and N are retrieved from the stack and an underflow check
is made. The value of RL controls the reloading of the registers; the values
of RL and N are used to restore the stack pointer (TEA) to its former
status. The contents of register 7 are then loaded into the instruction
address register, and program control is returned to the calling routine.

Processor Unit Description  2-43



2-44

GA34-0152

o Stack control block

TEA

HLA

LLA

Stack

New TEA m——in-]

15

New RL ="

Dynamic
work
area

Reg 7 contents

Reg 0 contents

RL contents

Old TEA ——p-
and HLA

Figure 2-4. Word stack for subroutine linkage

O O O 0 O O

ONe

O O C )OO

AN

O O O O

O

C



O

O 000000 CO0OO0OCcC

Linkage Stacking Example—Reenterable Subroutine

A subroutine may be used by programs that operate on different interrupt

levels. Rather than providing copies of the subroutine (one copy for each

program that needs it) the subroutine can be made reenterable. Here, only

one copy of the subroutine is provided; the single copy is used by all

requesting programs. Two items must be considered in the reenterable

subroutine code:

« Saving the register contents of each calling program. The subroutine is
then free to use the same registers, restoring their contents to the
calling-program’s values just prior to returning to the calling program.

« Preserving the applicable variable data (generated by the subroutine)
that is related to each call of the subroutine. That is, data associated
with one call must not be disturbed when subroutine execution is
restarted due to another call from a higher priority program.

The stacking mechanism, by means of the STM and LMB instructions,
handles the two items just mentioned. For example, operation could
proceed as follows:

1. Program A calls the subroutine by means of a branch and link
instruction (return address is in register 7).

BAL SUBRT,7

2. The subroutine, in this example, uses register 3 and register 4 during
its execution. The subroutine receives (from program A) a parameter
list address in register 0 and the address of the stack control block in
register 1. Also, the subroutine requires 20 bytes of work space. Thus,
the subroutine executes, upon entry, the following store muitiple
instruction:

SUBRT STM 4,(1),20

Processor Unit Description  2-45



2-46

GA34-0152

After execution of the STM, the stack contains the following:

Stack
LLA -
TEA —
Reg 4 =
20 bytes N=10
Reg 7
Reg O
Reg 1
Reg 2
Reg 3
Reg 4
HLA—>

*The last word contains a value that specifies the last register
stored (Reg 4 in this example) and the size of the dynamic
work area (in words).

Register 4 (the last register stored in the stack) is loaded
automatically, during the STM operation, with the address of the work
area to be used by the subroutine to hold its work data.

3. When subroutine processing for this call is completed, the subroutine

executes a single Load Multiple instruction to reload the registers and
return (by register 7) to the calling program:

LMB (1)

If a second call to the subroutine occurs prior to execution of the
LMB, action similar to that just stated occurs again; however, another
stack area is used. Then, when subroutine execution is complete for
the second call and all higher priority interrupt level processing is
complete, a return is made to the interrupted subroutine for
completion of processing for the first call.

Thus, multiple calls to a single subroutine are processed without
interfering with the integrity of data associated with any other call to
the subroutine.

O O O

(
\_

g

{

)

A

(

O O O

D

—
\\‘

O O O

OO0 00000



OO0OO0O0OO0O0COO0O0O0CHOCOOOCOOOOO

Chapter 3. Interrupts and Level Switching

Efficient operation of the processor depends on prompt responses to
input/output (I/0) service requests. This is accomplished by an interrupt
scheme that stops the current processor operation, branches to a device
service routine, handles device service, and then returns to continue the
interrupted operation. One processor can control many I/0 devices;
therefore, an interrupt priority is established.

Certain error or exception conditions (such as machine check) also cause
interrupts. These are called class interrupts and are processed in a manner
similar to I/O interrupts. Both I/0O and class interrupts are explained in
the following paragraphs.

I/O interrupt priority is established by four priority levels of processing.
These levels, listed in priority sequence, are numbered 0, 1, 2, and 3, with
level 0 having the highest priority. Interrupt levels are assigned to I/0
devices by program control. This provides flexibility for reassigning device
priority as the application changes.

Each of the four priority levels has its own set of registers. These consist
of an address key register (AKR), a level status register (LSR), eight
general registers 0-7, and an instruction address register (IAR).
Information pertaining to a level is automatically retained in these
hardware registers when an interrupt occurs.

Processor priority level switching, under program control, can be
accomplished by using the Set Level Block (SELB) or Level Exit (LEX)
instructions. Details of this method are discussed under
“Program-Controlled Level Switching” in this chapter.

Fixed locations in main storage are reserved for branch addresses or
pointers that are referenced during interrupt processing. I/O and class
interrupts cause automatic branching to a service routine. Refer to
individual processor publications for storage allocation information.

Interrupt masking facilities, to enable or disable interrupts, provide
additional program control over the four priority levels. System and level
masking are controlled by the summary mask and the interrupt level mask
register. Device masking is controlled by a Prepare command in
conjunction with an Operate I/O instruction. Manipulation of the mask
bits can enable or disable interrupts on all levels, a specific level, or for a
specific device. Masking is described under “Interrupt Masking Facilities”
in this chapter.

Interrupts and Level Switching  3-1



Interrupt Scheme

3-2

GA34-0152

Requests

Level O
Level 1
Leve! 2
Level 3

Each I/0O device is assigned to an interrupt level, depending on the
application. When an interrupt on a given level is accepted, that level
remains active until a Level Exit (LEX) instruction is executed, a Set
Level Block (SELB) instruction causes a level switch, or a higher priority
interrupt is accepted. In the first two cases, the active level at the time is
cleared. In the last case, the processor switches to the higher level,
completes execution (including a LEX or SELB instruction), and then
automatically returns to the interrupted-from level. This automatic return
can be delayed by other higher priority interrupts.

If an interrupt request is pending on the currently active level, it is not
accepted until the level is cleared by a LEX or SELB instruction. If no
other level of interrupt is pending when a program exits the current level,
the processor enters the wait state. In the wait state, no processing is
performed, but the processor can accept interrupts that are expected to
occur (see Figure 3-1).

Class interrupts take precedence over I/0 interrupts and do not change
priority levels. Class interrupts are processed on the current active level. If
the processor is in the wait state when a class interrupt occurs, priority
level O is used to process the interrupt.

for interrupts

1

I

M

1 I+ 1

Priority level processing

Priority
level O
Priority
level 1
Priority
level 2
Priority
level 3

HITILEX

—————

A
e - (TLILEXI ] JTTTILEX]
” Wait state Wait state

*This interrupt request cannot be honored until the first
shown LEX, on priority level 3, has been executed.

Figure 3-1. Interrupt priority scheme

O O O O

) O O O

(

)
v

D

O DC

O O O

O O 0O 0



)

\

3
]

OHONONONOEON

O O

( )
N

OHONONONONONONONONE

Level Status Block (LSB)

There are two types of LSBs: the hardware LSB and the main storage
LSB, both of which are used for task control and switching,.

The hardware LSB (one for each level of priority interrupt) consists of 22
bytes of data located in the local storage registers. Although the data bytes
are not physically contiguous, they are mapped in a logically contiguous
manner, in the following order: IAR, AKR, LSR, and general registers
0-7.

Instruction address register (IAR)
Address key register (AKR)

Level status register (LSR)
General register 0

General register 1

General register 2

General register 3

General register 4

General register 5

General register 6

General register 7

0 15

Level status block

The main storage LSB, which is made up of the mapped-hardware LSB at
class interrupt time, is utilized for handling class interrupts and SELB
instructions.

The main storage LSB, when produced by a class interrupt, contains the
current-priority-level hardware LSB at the time of the class interrupt; this
hardware LSB data is placed into the correct storage location.

A main storage LSB that is used by a SELB instruction contains data
produced prior to the execution of the SELB instruction. When the SELB
instruction is executed, the data in the main storage LSB replaces the
chosen priority-level hardware LSB’s data.

Refer to “Class Interrupts” and ‘“Program-Controlled Level Switching” in
this chapter for additional information.

Automatic Interrupt Branching

Automatic interrupt branching to a servicing routine, which provides a
unique address in a reserved storage area of main storage, is accomplished
by using: an I/0 device address, a fixed-class interrupt vector (address),
and a fixed-restart vector.

When an interrupt occurs, it is processed by an interrupt algorithm to
locate the proper address in this reserved storage area. When that address
is located, a branch operation to service the interrupt is begun.

The reserved storage area is located in the first 64K-byte block beginning
at address 0000. One word (two bytes) is reserved for each interrupting
source. The system interrupts utilize addresses 0000 through 002F (hex),
and the device addresses begin at address 0030 (hex). The maximum
number of devices that can be attached is 256; therefore, the last address

Interrupts and Level Switching 3-3



of this reserved area is 022F (hex) and the last addressable interrupt

vector is 022E (hex).

Note: The first word of a device data block must be on an even-byte

address.

The reserved storage locations and their assignments are shown in Figure
3-2. Refer to Chapter 5, “Storage Address Relocation Translator,” for

additional information.

Main storage

address (hex) Contents of word

022E Device FF DDB pointer
0032 Device 01 DDB pointer
0030 Device 00 DDB pointer
002E Reserved

002C Reserved

002A Reserved

0028 Reserved

0026 Clock SIA

0024 Clock LSB pointer

0022 Soft-exception trap SIA
0020 Soft-exception trap LSB pointer
001E Console SIA

001C Console interrupt LSB pointer
001A Trace SIA

0018 Trace LSB pointer

0016 Power/thermal SIA

0014 Power/thermal LSB pointer
0012 SVC SIA

0010 SVC LSB pointer

000E Program-check SIA

000C Program-check LSB pointer
000A Machine-check SIA

0008 Machine-check LSB pointer
0006 Reserved

0004 Reserved

0002 Restart instruction word 2
0000 Restart instruction word 1

Note: Device addresses range from 00 through FF hex;
the interrupt vector for device 00 hex is main storage
address 0030 (hex).

Figure 3-2. Reserved storage locations

3-4 GA34-0152

Addresses used for 1/0 interrupts. The device
data block (DDB) pointer is the address of the

i first word of a device data block. This word is

used to obtain the start instruction address for
the service routine. Refer to “’I/O Interrupts”
in this chapter for additional information.

Address used for class interrupts. The level
status block (LSB) pointer is the first address

~of an area where a level status block will be

stored. The start instruction address (SIA)
points to the first instruction of a service
routine.

Restart instruction. Following IPL, a forced
branch is made to address 0000.

)

O O

)

®

O O

\
)

I/A



-~

@,

O
Q I/0 Interrupts

An I/0O interrupt is caused by the termination of an I/O operation or by
an external event at the 1/0 device.

O

Prepare 1/0 Device for Interrupt
I/0O device interrupt parameters are established by program control. The
Operate I/0 (10) instruction initiates the device operation and, in
conjunction with the Prepare command, sets the device mask (I-bit) and
assigns the priority level to use for interrupts. Refer to “Prepare” under
“I/O Commands” in Chapter 4 for additional information on the Prepare
command.
Refer to Chapter 8, “Instructions,” and Chapter 4, “Input/OQutput
Operations,” for details of the Operate 1/0 instruction.

Execution of the Prepare command transfers a word to the addressed
device that controls its interrupt parameters. This word has the format:

ONONONO

Level 1

o
o

0 1011 1415

O

Bits Contents

0-10 Setto0’s

11-14 Level. A four-bit encoded field that assigns an
interrupt-priority level to the device (see Note).

Example: 0000 — level 0, 0001 — level 1,
0010 — level 2, 0011 — level 3.

15 Device mask or I-bit. This bit sets the interrupt
mask in the device. When set to 1, the device can
interrupt. When set to 0, the device cannot re-
quest an interrupt.

( v
N~ _

™\
W

Note: Refer to individual device publications for
interrupt priority levels,

An interrupting device is always able to accept and execute a Prepare
command, even if it is presently busy or has an interrupt request pending
from a previous command. This allows the software to change the device
mask and interrupt level at any time. Any pending interrupt request is then
serviced on the new interrupt level.

OHONON®

O

)

Interrupts and Level Switching 3-5

O O C

O



Present and Accept I/0O Interrupt

The I/O device presents an interrupt request on its assigned priority level.
The interrupt request is applied to the interrupt algorithm for acceptance
determination.

For an I/0 interrupt to be serviced, the following conditions must exist:
e The summary mask must be set to 1 (enabled).

« The mask bit (interrupt level mask register) for the interrupting level
must be set to 1 (enabled).

« The interrupt request must be the highest priority of the outstanding
requests and higher than the current level of the processor.

+ The processor must not be in the stop state.
« A class interrupt must not be pending.
Supervisor state is entered upon acceptance of all priority interrupts.

Following acceptance of an I/O interrupt, the device sends the device
address and a condition code to the processor. The condition code is
placed in the even, carry, and overflow indicators for the interrupted-to
level. The device address and the interrupt information byte (IIB) form an
interrupt identification (ID) word. The interrupt ID word is placed in
register 7 of the interrupted-to level.

Interrupt ID word
/1B Device address

0 7 8 15

Bits 0—7  [Interrupt information byte (//B). For inter-
rupt condition codes 2 and 6, the |IB has a
special format and is called an interrupt status
byte (ISB). For interrupt condition codes
reported by a device, the 1I1B contains:

CCO. The lIBissetto 0.

CC1 or CCb. The IIB contains a DCB identifier.
CC3or CC7. Bit 0 may be set to 1 if suppress
exception is in effect, and an exception has

been suppressed. Other bits are device-dependent.
CC4. All bits are device-dependent.

Bits 8—15 Device address. This byte contains the address
of the interrupting device.

Refer to Chapter 4 for condition codes and interrupt information byte
(IIB) details.

R

~

OO O O O

O O O O

M
v



C_

\
)

~—

)

—’

ONCHONCONONONONG

For an example of I/O interrupt with automatic branching, refer to the
following text and Figure 3-3.

The processor hardware switches from the registers and status of the
interrupted-from level to the registers and status of the interrupted-to level
©O. The interrupt ID word is placed in register 7 of the interrupted-to level
©. The device address is used by hardware to cause a forced branch to
the reserved-storage location designated for this interrupting device @.
Refer to ‘“‘Automatic Interrupt Branching” in this chapter for additional
information.

The location branched to in the reserved storage area contains the device
data block (DDB) address pointer (location of this DDB in main storage);
this address pointer is placed in register 1 of the interrupted-to level €.
Hardware forces a branch to the address of the DDB @. The first word of
the DDB contains the address pointer to the start instruction address
(SIA). The SIA pointer is loaded into the interrupted-to level IAR @), and
execution on the new priority-interrupt level begins @.

When the LEX instruction is executed on this operating level and no other
higher priority interrupts are pending, the execution of instructions at the
interrupted-from level starts automatically @).

Interrupts and Level Switching  3-7



3-8

GA34-0152

Figure 3-3.

Example of I/O interrupt with automatic branching

Pevice 01 r | r -:-
interrupts ' New level 2 I I Interrupted
on level 2 | registers | Main storage | level 3
"——-'"'T' ______ ll_ _____ T7 TRz
|
h i | Q- 0900
Interrupt 1D | | I
[ 1IB [Device] | | l
XX 101 | | |
i | |
I : o | |
Reg 7 | |
| [OEDeiee) I
| XX 101 | |
N,
| | !
| | |
| I DDB pointer |
' —0032- 0232 |
|
| 1'@ ] |
' Reg 1 l—’: oos @ |
| 0232 I 02324 0500 I (SIA) :
| —
| | S L |
T T I
I o l |
| I (G |
| IAR 2Y | 1/0 routine :
| 0500 [------ 0500 - I I
| | = ~ |
| |osEO| LEX '
| l |
I : ‘ |
l | : IAR3 :
: | | > 0900
I I |
| I

OO O O

—

D)

(

-

O O

) O O

)

—,

(

O O O



O O 0O 0

O

O O O O

—~

000000000 C

Class Interrupts

A class interrupt alerts the system to an error or exception condition.
Class interrupts utilize a level status block (LSB) scheme to present the
identity of the error or exception to the software. Recovery can then occur
in a manner that allows normal processing to continue with a minimum of
disruption. Class interrupts are processed on the current active level in a
priority-order-by-exception condition.

System error or exception conditions can cause eight types of class
interrupts:

e Machine check, caused by a hardware error
« Program check, caused by a software error
» Power/thermal warning, caused by a power or temperature irregularity

« Supervisor call, caused by execution of a Supervisor Call (SVC)
instruction

« Soft-exception trap, caused by a software error

« Trace, caused by instruction execution (trace enabled in the current
LSR)

« Clock, caused by a program-controlled time interval

« Console, caused by pressing the Console Interrupt key when the
programmer console is installed

Machine check, program check, soft-exception trap, and power/thermal
warning are defined by bits in the processor status word (PSW). Software
can refer to the processor status word for a specific condition and any
related status information. Refer to “Processor Status Word (PSW)” in
this chapter for additional information.

Class interrupts take precedence over I/0 interrupts and do not cause a
change in priority level. The interrupt is serviced on the level that is active
when the condition occurs. If the processor is in the wait state, the
interrupt is serviced on priority level 0. Independent routines are used to
handle each type of class interrupt regardless of priority level.

All class interrupts cause the processor to enter supervisor state. Refer to
“Present and Accept Class Interrupt” in this chapter for details of the
hardware processing.

Programming Notes:

1. Three class interrupts (clock, power/thermal warning, and console) are
disabled when the summary mask is disabled.

2. If the programmer console is installed and check restart mode is
selected, machine-check, power/thermal-warning, and program-check
interrupts do not occur. If stop-on-error mode is selected, a stop
occurs before a machine-check, power/thermal-warning, or
program-check interrupt is serviced.

Refer to individual processor publications for additional information
regarding class interrupts.

Interrupts and Level Switching 3-9



Priority of Class Interrupts

3-10  GA34-0152

Although class interrupts are serviced on the current priority level, they
are serviced according to an error or exception condition priority.

The following table lists the error or exception conditions in priority
sequence, with 0 being the highest priority. Two conditions of the same
priority, such as protect check and specification check, may be reported to
the PSW simultaneously. Refer to “Processor Status Word (PSW)”’ in this
chapter for PSW-bit meanings. The table also shows the associated types

of class interrupt exception conditions.

Type of class
Priority | Error or exception condition interrupt
0 CPU control check Machine check
I/0 check
1 Invalid function (Note 1)
2 Privilege violate
3 Invalid function
Program check
4 Protect check
| Specification check
5 Invalid storage address
Specification check
6 Storage parity Machine check
7 Power warning Power/thermal
Thermal warning warning
8 Supervisor call Supervisor call
9 Invalid function (Note 2)
10 Floating-point exception Soft-exception
trap
11 Stack exception
12 Trace Trace
13 Clock Clock
14 Console Console
Notes:
1. Caused by an illegal operation or function combination.

2. A floating-point instruction is attempted and floating-point is not

installed.

OO0 0O 00 00 0

\

o)



O ORORCGES

O O

M\
/

A
J

O O O C

Present and Accept Class Interrupt

When a class interrupt occurs, it is serviced on the currently active level
or, if the processor is in the wait state, priority level O is forced active.
The interrupt causes the following to occur:

« Register contents are saved.

« Supervisor state is entered (LSR bit 8 is set to 1).
« Trace is reset (LSR bit 10 is set to 0).

e Summary mask is disabled (LSR bit 11 is set to 0).

o The address key register is set to a predetermined value, depending on
the type of class interrupt.

» An automatic branch is taken to the reserved area of main storage.

Each type of class interrupt has an associated LSB pointer and SIA in the
reserved area of main storage (refer to Figure 3-2). Reference is made to
the reserved area to:

o Store current level IAR, AKR, general registers, and LSR into a level
status block (LSB) in main storage.

« Branch automatically to a service routine by using the start instruction
address (SIA).

Priority level 0 is forced active when a class interrupt occurs in the wait

state. The level 0 hardware LSB is stored into main storage. The

in-process bit (LSR bit 9) is set to 0 in the stored LSB.

The operand 1 key (OP1K) address key value is set in anticipation of the
address spaces required by the interrupt service routine.

Contents of the main storage level status block are as follows:

Main storage
address
{LSB)

pointer

Instruction address register (IAR)
Address key register (AKR)

Level status register (LSR)
General register 0

General register 1

General register 2

General register 3

General register 4

General register 5

General register 6 -

+14 (hex) |General register 7

0 15

Interrupts and Level Switching 3-11



Machine Check

3-12

GA34-0152

The instruction address (contents of IAR) stored in the LSB depends on
the type of class interrupt, as shown in the following chart:

Type of class interrupt

Contents of IAR (stored
in LSB)

Program check
Soft-exception trap

Address of the
instruction that caused
the interrupt

Supervisor call

Trace

Clock

Console
Power/thermal warning

Address of the next
instruction

Machine check (with
sequence indicator off)

Address of the
instruction that caused
the interrupt

Machine check (with
sequence indicator on)

Address of the
instruction that was

being executed at the
time of the error

A machine-check class interrupt is caused by a hardware malfunction and
is considered a system-wide incident. There are three machine-check class
interrupts.

» Storage parity check (PSW bit 8)
e CPU control check (PSW bit 10)
e« I/0 check (PSW bit 11)

A level status block is stored, starting at the location in main storage
designated by the machine check LSB pointer. The contents of the storage
address register (SAR) are loaded into register 7. The last active processor
address key is placed into the operand 1 key (OP1K) address key of the
AKR; then, operand 2 key (OP2K), equate operand spaces (EOS) bit, and
instruction space key (ISK) are set to 0’s. The machine check SIA is
loaded into the IAR, and it becomes the address of the next instruction to
be fetched.

Note: When the error condition occurs:

1. The IAR contains the true address of the first word of the instruction;
it is not incremented if the error occurs in the second or third word of
a long instruction.

2. For a storage parity check, the last active processor address key
defines the address space corresponding to the storage address loaded
into register 7. For a CPU control check or an I/O check, this address
key and register 7 provide no useful information.

O O O O O

{
N

C OO O 0O 0

@



OO0 00000

O O O

O C D

)

—

OO0 00000 O0

Program Check

A program-check class interrupt is caused by a software error. If a
program-check class interrupt occurs, PSW bit 0, 1, 2, 3, or 4 is set to 1.
There are five program-check class interrupts.

e Specification check (PSW bit 0)—A specification check occurs when
the storage address violates the boundary requirements. The
instruction is suppressed unless otherwise noted in the individual
instruction description in Chapter 8.

o Invalid storage address (PSW bit 1)—An invalid storage address
occurs when one or more words of the instruction or the effective
address are outside the installed storage size of the system. The
instruction is suppressed unless otherwise noted in the individual
instruction description in Chapter 8.

e Privilege violate (PSW bit 2)—Privilege violate occurs when a
privileged instruction is encountered while the processor is in the
problem state. The instruction is suppressed.

e Protect check (PSW bit 3)—Protect check occurs when the processor
is in the problem state and an instruction or data is accessed from a
storage area not assigned to the current operation, or an attempt is
made to change an operand in a storage area assigned as read-only.
The instruction is suppressed unless otherwise noted in the individual
instruction description in Chapter 8.

e Invalid function (PSW bit 4)—Invalid function occurs when an illegal
operation code or function combination is encountered during
instruction execution. The instruction is suppressed unless otherwise
noted in the individual instruction description in Chapter 8.

A level status block is stored, starting at the location in main storage
designated by the program check LSB pointer. The contents of the storage
address register (SAR) are loaded into register 7. The last active processor
address key is placed into the OP1K address key of the AKR; then,
OP2K, EOS bit, and ISK are set to 0’s. The program check SIA is loaded
into the IAR, and it becomes the address of the next instruction to be
fetched.

Notes:
1. A program-check class interrupt condition on one priority level does
not affect software on other levels.

2. For a specification check, an invalid storage address, and a protect
check, the last active processor address key defines the address space
corresponding to the storage address loaded into register 7. For
privilege violate and invalid function, this address key and register 7
provide no useful information.

Interrupts and Level Switching 3-13



Power/Thermal Warning

Supervisor Call

3-14

GA34-0152

A power/thermal-warning class interrupt occurs when PSW bit 15 is set to
1. A power/thermal-warning class interrupt is initiated by:

» A power-warning signal that is generated when the power line
decreases to about 85% of its rated value.

« A thermal-warning signal that is generated when the temperature limits
inside the enclosure are exceeded.

In both cases, the instruction address that is stored in the LSB points to
the next instruction to be executed.

A level status block is stored, starting at the location in main storage
designated by the power/thermal LSB pointer. The EOS bit and all
address keys in the AKR are set to 0’s. The power/thermal SIA is loaded
into the IAR, and it becomes the address of the next instruction to be
fetched.

A power/thermal-warning class interrupt can occur when the system in the
run or wait state, assuming that the summary mask is enabled and the
programmer console is not in check restart mode. A
power/thermal-warning interrupt is accepted by the processor only if both
conditions are met.

- If the optional battery backup unit is installed and a power warning

occurs, PSW bit 15 remains on as long as power is supplied by the battery.
If a thermal warning occurs, the processor powers down regardless of the
battery backup unit. The minimum time before the processor powers down
is 20 milliseconds. The IBM 4999 Battery Backup Unit is explained in a
separate publication, IBM Series/1 4999 Battery Backup Unit Description,
GA34-0032. Power/thermal-warning class interrupts are not accepted by
the processor until the first instruction is executed following a power-on
reset, an IPL, or exit from stop state.

Note: If the processor is in the wait state when the power/thermal
condition occurs:

1. The interrupt is serviced on priority level 0. The level 0 LSB is stored
into main storage. Additional power/thermal interrupts, along with
priority interrupts, are disabled at this time because the summary mask
is set to O by the class interrupt.

2. The instruction address stored in the LSB is unpredictable.

A supervisor-call class interrupt is initiated by executing an SVC
instruction. The SVC instruction is described in Chapter 8.

A level status block is stored, starting at the main storage location
designated by the supervisor call LSB pointer. The OP2K address key is
placed into the OP1K address key in the AKR; then, OP2K, EOS bit, and
ISK are set to 0’s. The supervisor call SIA is loaded into the IAR, and it
becomes the address of the next instruction to be fetched.

O O O

O O

OO O

) O O

Vo

C

{
\

ONONORONONO



> O O O OO0 0 C D

C

O O O

Soft-Exception Trap

Trace

A soft-exception-trap class interrupt is caused by a software error. A
soft-exception-trap class interrupt occurs when bit 4, 5, or 6 of the PSW is
set to 1. There are three soft-exception-trap class interrupts.

o Invalid function (PSW bit 4)—Invalid function occurs when a
floating-point instruction attempts execution and floating-point is not
installed. The register-to-register instructions are suppressed; the
storage-to-register instructions are terminated.

o Floating-point exception (PSW bit 5)—When floating-point is
installed, a floating-point exception occurs when an arithmetic error
condition is detected. The instruction completes execution.

e Stack exception (PSW bit 6)—A stack exception occurs when an
instruction attempts to pop an operand from an empty stack or push
an operand into a full stack. The instruction is suppressed.

These exception conditions may be handled by software; therefore, they
do not constitute an error condition.

A level status block is stored, starting at the location in main storage
designated by the soft-exception-trap LSB pointer. The contents of the
storage address register (SAR) are loaded into register 7. The OP2K
address key is placed into the OP1K address key in the AKR; then,
OP2K, EOS bit, and ISK are set to 0’s. The soft-exception-trap SIA is
loaded into the IAR, and it becomes the address of the next instruction to
be fetched.

The trace class interrupt provides instruction tracking for software
debugging. Instruction tracing can occur on any priority level, and is
enabled by the trace bit (LSR bit 10). The tracing occurs when bit 10 of
the current LSR is set to 1. When trace is enabled, a trace class interrupt
occurs at the beginning of each instruction.

A level status block is stored, starting at the location in main storage
designated by the trace LSB pointer. The ISK address key is placed into
the OP1K address key in the AKR; then, OP2K, EOS bit, and ISK are set
to 0’s. The trace SIA is loaded into the IAR, and it becomes the address
of the next instruction to be fetched.

Note: After the LSB is stored, and before the next instruction is fetched,
supervisor state (LSR bit 8) is set to 1 (on), trace (LSR bit 10) is set to 0
(off), and the summary mask (LSR bit 11) is set to 0 (disabled).

Programming Note: When trace is enabled, a trace class interrupt occurs
prior to executing each instruction. Hardware processing of the interrupt
provides an automatic branch to the programmer’s trace routine. To
prevent retracing the same instruction, the program exits the trace routine
by using the Set Level Block (SELB) instruction with the specified inhibit
trace (IT) bit set to 1. The inhibit trace bit prevents a trace interrupt from
occurring for the duration of one instruction. Refer to “Set Level Block
(SELB)” in Chapter 8 for additional information. A double trace of an
instruction can also occur when the instruction is interrupted and must be
reexecuted. For example, a class interrupt occurs during execution of a
variable-field-length instruction. Under this condition, exit from the class

Interrupts and Level Switching 3-15



Clock

3-16

GA34-0152

interrupt routine should be by a SELB instruction with the inhibit trace bit
set to 1.

The occurrence of any class interrupt or priority interrupt causes the trace
bit (LSR bit 10) to be set to 0. This action permits tracing only problem
state code. If it is desired to trace supervisor code, the programmer must
make provisions within the service routine to enable the trace bit.

The following three conditions inhibit a trace class interrupt:

1. A SELB instruction sets the trace bit to 1 and the in-process bit to 1
in the LSR of a selected level lower than the current level; then, when
the selected level becomes active, the first instruction executed is not
preceded by a trace interrupt.

2. The programmer console is in diagnostic mode and a Stop instruction
is encountered while tracing; then, when the Start key is pressed, a
trace interrupt does not occur prior to executing the first instruction.

3. When a level is exited by either a LEX or a SELB instruction and
processing is to continue on a pending level, one instruction is

executed on the pending level prior to sampling for a trace class
interrupt.

If the clock value is greater than or equal to the value in the comparator
and the ability to interrupt has been enabled (by a Set Comparator
instruction), a clock class interrupt occurs.

A clock class interrupt is recognized by the processor only when the
processor is in run or wait state and when the summary mask is enabled.

If a clock class interrupt condition occurs when the summary mask is
disabled, the interrupt is held pending until the summary mask is enabled.

The ability to interrupt is disabled by power-on reset or system reset. To

restore the ability to interrupt, a Set Comparator instruction must be
executed.

When a clock class interrupt occurs:

« Further clock interrupts are blocked. The processor stores the current
LSB at the storage location defined by the storage address in main
storage.

« The processor enters supervisor state.
o The in-process bit is set to 1.

« The trace bit is set to 0.

e The summary mask bit is set to 0.

. The AKR is set to 0.

« The PSW is unchanged.

» The processor resumes execution at the storage location defined by the
 storage address, which contains the clock start instruction address
(SIA). ‘

If the processor is in wait state when a clock interrupt condition occurs, it
forces level 0 active. The values stored in the LSB are the residual values
in the appropriate registers for level 0. The in-process bit (LSR bit 9) is
set to 0 in the stored LSB.

O O

O

)

%

)

—~
\_

O O O

@

O

)

—

OO 00000000



O

O O 0O O O C

Console

A console class interrupt function is provided when the programmer
console is installed. To recognize the interrupt, the processor must have
the summary mask enabled and be in the run state or wait state.

A level status block is stored, starting at the main storage location
designated by the console interrupt LSB pointer. The EOS bit and all
address keys are set to 0’s. The console SIA is loaded into the IAR, and it
becomes the address of the next instruction to be fetched.

Notes:
1. If the processor is in the wait state when a console class interrupt
occurs, the interrupt is serviced on priority level 0.

2. [If the summary mask is disabled, the console class interrupt is ignored
because it is not buffered.

Recovery Procedures for Class Interrupts

Machine Check

Recovery procedures, initiated by software, depend on the application
involved, the type of error or interrupt, and the number of recommended

retries.

The class interrupt provides an automatic branch to a service routine. This
routine can interrogate the PSW for specific information, and can then
initiate the required action. If an error occurs during a priority interrupt
sequence, the priority level switch is completed before the class interrupt is
processed. This facilitates automatic register retention. A reset is generated
by machine-check class interrupts caused by an I/O check or a CPU
control check. A reset is not generated by program-check or
power/thermal-warning class interrupts.

Storage Parity Check. A storage parity check initiates a machine-check
class interrupt. The error may occur when accessing a storage location that
has not been validated since power on. Any retry procedure should include
refreshing data in the failing location. Two unsuccessful retries are
considered a permanent failure, and the storage location should not be
used.

CPU Control Check. A CPU control check, which occurs if hardware
detects a malfunction of the processor controls, is a machine-wide error
that initiates a machine-check class interrupt. A reset is generated to the
channel, the 1/O attachment features, and all attached 1I/0 devices. The
processor, sensor-based output points, and timer values are not reset. The
generated reset should clear the error condition, but validity of any
previous execution is not guaranteed. A retry is not recommended, and an
IPL should be initiated.

Interrupts and Level Switching  3-17



Program Check

Power/Thermal Warning

Supervisor Call

3-18

GA34-0152

1/0 Check. An 1/0-check condition occurs when a hardware error
prevents further communication with 1/0 devices. A machine-check class
interrupt is initiated and a reset is generated to the I/O attachment
features, the channel, and all I/O devices. Error recovery from an 1/0
check depends on the sequence indicator setting (PSW bit 12).

If the sequence indicator is set to 0, the error occurred during an Operate
I/0 instruction. The address of the failing instruction (IAR contents) is
available in the stored LSB. Retry should be attempted twice. After two
unsuccessful retries, use of the device should be discontinued.

If the sequence indicator is set to 1, the error occurred during an interrupt
or cycle-steal operation. The instruction address (IAR contents) stored in
the LSB is not related to the error. The sequence of events leading to the
I/0 check is lost, along with all pending interrupt requests within the
devices. Retry is not recommended.

A program check is caused by a software error and initiates a
program-check class interrupt. Error retry depends on the application. All
necessary parameters are made available for locating and, if required,
correcting the invalid condition. The priority level and operands are not
changed during a program check class interrupt. The stored LSB reflects
conditions at the time the interrupt occurred and contains:

« The address of the failing instruction (IAR contents).
o Status information (AKR and LSR contents).
» The contents of all general registers.

The contents of the storage address register (SAR) are loaded into register
7, but have meaning only for specification check, invalid storage address,
and protect check. The programmer must reference the PSW to determine
the type of program check.

When a power/thermal-warning class interrupt occurs, the minimum time
before the processor powers down is 20 milliseconds. If the optional

* battery backup unit is installed and a power warning occurs, PSW bit 15

remains set to 1 as long as power is supplied by the battery. If a thermal
warning occurs, the processor powers down regardless of the battery
backup unit.

The supervisor-call class interrupt is used to place the processor in
supervisor state to allow execution of privileged instructions. This interrupt
is not an error; therefore, there is no recovery procedure.

O O 0O O

) O O O O 0O 0O

.

OO O

OO0 00O 00



N

.20 0000 0C0O0O0 U0

O

N

O O O C

Soft-Exception Trap

Trace

Clock

Console

A soft-exception-trap interrupt is the result of an exception condition that
software may choose to handle dynamically. All necessary parameters are
available to locate and correct the condition. The address of the
instruction (IAR contents) causing the exception is retained in the level
status block in main storage. The processor is not reset. The programmer
must reference the PSW to determine the soft-exception type.

The trace class interrupt is a programming tool used to trace errors. This is
a normal operation and there is no recovery procedure.

The clock class interrupt is a programming tool used for specific functions.
It is a normal operation and there is no recovery procedure. After the
interrupt, the processor resumes execution at the storage location defined
by the clock SIA.

The console class interrupt is a programming tool used for programmed
applications and problem determination. When a console class interrupt is
recognized by the processor, the console interrupt SIA is loaded into the
IAR, and it becomes the address of the next instruction to be fetched.

Interrupts and Level Switching  3-19



Processor Status Word (PSW)

3-20

GA34-0152

The processor status word (PSW) is used to record error or exception
conditions, in the system, that may prevent further processing. It also
contains certain status flags related to error recovery. Error or exception
conditions recorded in the PSW cause one of four class interrupts to
occur: machine check, program check, soft-exception trap, or
power/thermal warning. Refer to “Class Interrupts” in this chapter for
additional information.

The Copy Processor Status and Reset (CPPSR) instruction can be used to
examine the PSW. This instruction stores the contents of the PSW at a
specified location in main storage.

The PSW is contained in a 16-bit register and has the following bit
representation:

Error or

exception Class
Bit condition interrupt Remarks
0 Specification check Program check
1 Invalid storage address =~ Program check
2 Privilege violate Program check
3 Protect check Program check
4 Invalid function Program check or

soft-exception trap

5 Floating-point Soft-exception trap Note 1
6 Stack exception Soft exception trap
7 Not used Always 0
8 Storage parity check Machine check
9  Not used Always 0
10 CPU control check . Machine check
11  1/0 check Machine check
12 Sequence indicator None Status flag
13 Auto-IPL None Status flag
14 Translator enabled None Note 1
15 Power/thermal warning Power/thermal Note 2
Notes:

1. Refer to individual processor publications for further information.

2. The power/thermal-warning class interrupt is controlled by the
summary mask. '

O O

O O O

O

ON®

c ) 0O O

O O

O O O

O 0O 0O O O



(_\
-

SN ONONOCHONONONONS

OO0 O0O0O0OO0O0O0O0O0Co

Bit 0—Specification Check. This bit is set to 1 if the storage address
violates the boundary requirements of the specified data type.

Bit 1—Invalid Storage Address. This bit is set to 1 when an attempt is
made to access a storage address outside the storage size of the system.
This can occur on an instruction fetch, an operand fetch, or an operand
store.

Bit 2—Privilege Violate. This bit is set to 1 when a privileged instruction
is attempted in the problem state. Supervisor state bit (LSR bit 8) is set to
0 (off).

Bit 3—Protect Check. In the problem state, an attempt is made to alter
storage using a segmentation register with the read-only bit (bit 14) set to
1 and the address translator enabled.

A program-check class interrupt occurs with protect check (bit 3) set to 1
in the PSW.

Bit 4—1Invalid Function. This bit is set to 1 by one of the following
conditions:

1. Attempted execution of an invalid operation code or function
combination. These are:

Op code Function field bits

00101 All (when register 7 is specified in the R1 or R2 field
of the instruction)

00111 All

01000 0001, 0010, 0011, 0101, 0110, 0111

01011 0101, 0111

01100 111

01110 11000, 11010, 11011, 11100, 11110, 11111

01111 1X11X, 01XXX, 1X011, 10001

11011 All

10110 All

11101 1100, 1101, 1110, 1111

Note: The preceding invalid conditions cause a program-check class
interrupt to occur.

2. The processor attempts to execute an instruction associated with a
feature that is not installed. These are:

Op code Function field bits

00100 All
01011 0011, 1011 (when in supervisor state)

Note: The preceding conditions cause a soft-exception-trap class
interrupt to occur.

Interrupts and Level Switching  3-21



3-22

GA34-0152

Bit 5—Floating-Point. This bit is set to 1 when an arithmetic error
condition is detected.

Bit 06—Stack Exception. This bit is set to 1 when an attempt has been
made to pop an operand from an empty main storage stack or to push an
operand into a full main storage stack. A stack exception also occurs when
the stack cannot contain the number of words to be stored by a Store
Multiple (STM) instruction. '

Bit 7—Not Used. This bit is always 0.

Bit 8—Storage Parity. This bit is set to 1 when a parity error has been
detected on data being read out of storage by the processor. This error can
occur when accessing a storage location that has not been validated since
power on.

Bit 9—Not Used. This bit is always 0.

Bit 10—CPU Control Check. This bit is set to 1 to indicate a malfunction
of the CPU controls. This is a machine-wide error. (Refer to the Note
under “Bit 11—I/O Check.”)

Bit 11—I/0 Check. This bit is set to 1 when a hardware error that may
prevent further communication with any I/O device occurs on the I/0
channel.

PSW bit 12 (sequence indicator) is used in conjunction with PSW bit 11
(I/0 check) to further define the last I/O sequence before an I/0O check
condition. ,

Note: The machine-check class interrupt initiated by a CPU control check
or an 1/O check causes a reset. The I/O channel and all devices in the
system are reset as if a Halt I/O (channel-directed command) had been
executed. The processor, sensor-based output points, and timer values are
not reset.

Bit 12— Sequence Indicator. This bit reflects the last I/O operation or
sequence to occur.

PSW bit 12 (sequence indicator) is set to O if the error occurred during an
Operate I/0 instruction and is set to 1 if the error occurred during a
cycle-steal operation or an interrupt-accept sequence. The sequence
indicator bit is not an error in itself, but it reflects the last operation or
sequence at any time. An I/O check cannot be caused by a software error.

Refer to “Bit 11—I/O Check” previously explained.

O O

) O O O O O

C

OO 00000 O0

O

{

O



O ONONONO

C O O O

()
AN

COO0OOCO0O0O0O0O0O0

Bit 13—Auto IPL. This bit is set to 0 by:
« A power-on reset when auto-IPL mode is not selected.

« Pressing the Load key.

« An IPL initiated by a host system.

Refer to “Initial Program Load (IPL)” in Chapter 2 for additional
information.

This bit is set to 1 when an automatic IPL occurs.

Bit 14—Translator Enabled. This bit is set to 0 when:

« A Disable (DIS) instruction is executed with bit 14 of the instruction
word set to 1.

« An Enable (EN) instruction is executed with bit 12 of the instruction
word set to 1.

« A processor reset (power-on reset, check restart, IPL, or programmer
console system Reset key) occurs.

This bit is set to 1 when:

« An Enable (EN) instruction is executed with bit 12 of the instruction
word set to 0 and bit 14 set to 1.

Bit 15—Power Warning and Thermal Warning. This bit is set to 1 when a
power failure is imminent, or when a thermal condition causes the power
to go off. Refer to “Power/Thermal Warning”’ under “Present and Accept
Class Interrupts” in this chapter for additional information. The
power/thermal-warning class interrupt is controlled by the summary mask.

Interrupts and Level Switching 3-23



* Interrupt Masking Facilities

Summary Mask

3-24

GA34-0152

Three levels of priority interrupt masking are provided to the programmer
for the control of interrupt processing:

o Summary mask (LSR bit 11)
o Interrupt level mask register
« Device mask (I-bit)

Each masking facility has specific control, as explained in the following
paragraphs.

The summary mask provides a masking facility for priority interrupts and
certain class interrupts. The state of the summary mask (enabled or
disabled) is controlled by bit 11 in the level status register (LSR) of the
active priority level. When bit 11 is set to 0, the summary mask is disabled
and prevents all priority interrupts regardless of priority level, and
prevents power/thermal, clock, and console class interrupts. All other class
interrupts are not masked. When bit 11 is set to 1, the mask is enabled
and the interrupts are allowed.

The summary mask is disabled (set to 0) by:
« Execution of a Supervisor Call (SVC) instruction.

« Execution of a Disable (DIS) instruction, with bit 15 of the instruction
set to 1.

e Occurrence of a class interrupt.

« Execution of a Set Level Block (SELB) instruction with bit 11 of the
LSR set to 0.

The summary mask bit is enabled (set to 1) by:

« Execution of an Enable (EN) instruction, with bit 15 of the
instruction set to 1.

o Execution of a Set Level Block (SELB) instruction with bit 11 of the
LSR set to 1.

» Acceptance of a priority interrupt on the interrupted-to level.
e System reset, power-on reset, or IPL.

Note: If the processor is in the wait state, the summary mask is enabled or
disabled as defined by bit 11 in the LSR of the last active priority level.

O

O O 0O O 0O

o O O

,
.

)

OO O 00000«

O O



s

Interrupt Level Mask Register

Device Mask (I-Bit)

The interrupt level mask register is a four-bit register used to control
interrupts on specific priority levels. Each level is controlled by a separate
bit of the mask register, as shown here:

Interrupt level mask register

Bit position 0123
Priority level 0123

With a bit position set to 1, the corresponding priority level is enabled and
permits interrupts. With a bit position set-to 0, the corresponding priority
level is disabled. The Set Interrupt Mask Register (SEIMR) instruction is
used to control bit settings in the interrupt level mask register. The Copy
Interrupt Mask Register (CPIMR) instruction may be used to interrogate
the register.

Note: All levels are enabled (set to 1) by a power-on reset, IPL, or
programmer console system Reset key.

Each interrupting device contains a one-bit mask called the device mask or
interrupt bit (I-bit). Interrupts by the device are permitted when its device
mask is enabled (set to 1). With the device mask bit disabled (set to 0),
that device cannot cause an interrupt. The device mask is controlled by a
Prepare command in conjunction with an Operate I/O instruction. Refer
to Chapter 8, “Instructions,” and Chapter 4, “Input/Output Operations,”
for additional information.

Interrupts and Level Switching  3-25



Program-Controlled Level Switching

Level switching under program control may be accomplished by using the
Set Level Block (SELB) instruction. This instruction is described in detail
in Chapter 8, “Instructions.” In general, this instruction:

» Specifies the location of a level status block (LSB) at an effective
address in main storage.

« Specifies a selected priority level associated with the main storage
LSB.

+ Loads the main storage LSB into the hardware LSB for the selected
level.

The hardware LSB consists of the following hardware registers for the
selected level:

« Instruction address register
e Address key register

« Level status register

« Eight general registers (0-7)

System p'rogrammers should be familiar with the execution of the SELB
instruction, in order to prevent adverse effects within the programming
system.

« The current execution level
o The selected level specified in the SELB instruction

« The state of the in-process bit (LSR bit 9) contained in the main
storage LSB

Note: Interrupt masking, provided by the summary mask and the interrupt
level mask register, does not apply to program-controlled level switching.

The main storage LSB and the location of the in-process bit are shown in
the following diagram:

Main storage
address
(LSB)
pointer Instruction address register (IAR)
Address key register (AKR)
Level status register (LSR) [*]
General register 0
General register 1
General register 2
General register 3
General register 4
General register 5
General register 6
EA+14 (hex) | General register 7
' 0 15

*In-process bit (bit 9)
0 = off
1=o0n

N
\_J

)

(,__A

OO OO0 00000



> OO0 0000

O O O C

Execution of the SELB instruction may result in level switching or a
change in the pending status of a level as described in the following

paragraphs.

Selected Level Lower Than Current Level and In-Process Bit On
These conditions cause the selected level to become pending. The main
storage LSB is loaded into the hardware LSB for the selected level.
Execution of a LEX instruction on the current level causes the selected
level to become active, provided that no higher priority interrupts are
being requested.

Currentlevel[SELﬂllJllllll]LLEX

O e e e e et e e - —— e e - — o ———
Selected level (\ ] Pending HEEEREERRERE

Selected Level Equal to Current Level and In-Process Bit On
These conditions cause the selected level to become the current level. The
main storage LSB is loaded into the hardware LSB for the selected level.
The effect is a task-switch on the current level, with no level change.

L.oad
LSB
Current and LI\
selectedlevell I l I I ' l l ] lS(‘-E’}L Bl l l l l I I lJ

Selected Level Higher Than Current Level and In-Process Bit On

These conditions cause the selected level to become the current level. The
main storage LSB is loaded into the hardware LSB for the selected level.
This is a level switch to the higher (selected) level and causes the lower

level to be pending.

Selected level @ EEEEEEEREREEEE
Load
LSB

Current level I L l r [ ] | Ll | ]S E L Bl::::}_;;_x_c!_ig_g—_—:::_j

Interrupts and Level Switching  3-27



Selected Level Lower Than Current Level and In-Process Bit Off

These conditions cause the pending selected level to be reset. The main
storage LSB is loaded into the hardware LSB for the selected level.

Currentlevel | | [ [ [ [ [ [ [ [T [secve[ [T TTITITTTIT]

Selected level ’L-. T _Pe;dﬁg ————— ﬂ ) Not pending

Selected Level Equal to Current Level and In-Process Bit Off

These conditions cause an exit from the selected (current) level. This exit
is identical to executing a LEX instruction except that the main storage
LSB is loaded into the hardware LSB for the selected level. Refer to
“Level Exit (LEX)” in Chapter 8 for additional information.

Load
LSB
Current and P )
selected level CITTITIrItrtls ﬁ\l:,ﬁil Exit current level

Selected Level Higher Than Current Level and In-Process Bit Off

The main storage LSB is loaded into the hardware LSB for the higher
(selected) level.

Selected level [ — _ — ~ Notpending _ _ _(_ ) _ _ _ Notpending _ _ _ _ ]
Load
LSB

Currentlevet [ [ | [ [ [ [ [ [ [ ] [secef [TTTTTT]]1]

3-28 GA34-0152

O

/

(
\

O O O

(
N

)

)

/‘\
\

D O

/
\

)

K,¥
\\

O O 0O O 0O

O O

O O O



Chapter 4. Input/Output Operations

Input/output (I/O) operations involve the use of devices to enter data
into the system, to receive data from the system, or both. These devices
are attached to the processor and main storage by the 1/O channel, with
the channel directing the flow of information. The I/O channel can
accommodate a maximum of 256 addressable devices. The general data
flow is shown in Figure 4-1.

Main
storage
Processor | _hannel 1/0 device 1/O device
controls 01 FF
))
1/0 channel

Figure 4-1.  General data flow

The channel supports three basic types of operations:

e Direct Program Control (DPC) Operations—An immediate data
transfer is made between main storage and the device for each
Operate 1/0 instruction. The data may consist of one byte or one
word. The operation may or may not terminate with an interrupt.

o Cycle-Steal Operations—An Operate I/0 instruction can initiate
cycle-steal data transfers of up to 65,535 bytes between main storage
and the device. Cycle-steal operations are interleaved with processing
operations. Word or byte transfers, device control block (DCB)
chaining, burst mode, and program-controlled interrupts (PCIs) can be
supported. All cycle-steal operations terminate with an interrupt.

o Interrupt Servicing—Four priority interrupt levels are available to
provide device transfers. The device interrupt level is assigned by the
program. In addition, the device interrupt capability is controlled by
the mask register, which is set by the Set Interrupt Mask Register
(SEIMR) instruction. Interrupt requests, along with cycle-steal
requests, are presented and polled concurrently with DPC and
cycle-steal data transfers.

Input/Output Operations  4-1



Operate I/0O Instruction

4-2

The channel provides comprehensive error checking, including time-outs,
sequence checking, and parity checking. Error, exception, and status
reporting are facilitated by recording condition codes in the processor
during execution of Operate 1/0 instructions, and recording condition
codes and an interrupt information byte (IIB) in the processor during
interrupt acceptance. Additional status words may be used by the device,
as necessary, to describe its status (refer to “I/O Condition Codes and
Status Information” in this chapter).

The Operate 1/0 instruction, which initiates all I/O operations from the
processor, is a privileged instruction and is independent of specific I/0
parameters. The generated effective address points to an immediate device
control block (IDCB) in main storage. The IDCB consists of two words
that contain an I/O command, a device address, and an immediate data
field. For DPC operations, the immediate data field is used as a device
data word. For cycle-steal operations, the immediate data field points to a
DCB that provides additional information needed for the operation. For
more details about the Operate I/0 instruction, refer to Chapter 8.

Note: DPC operations are performed by all devices, but some devices do
not operate in cycle-steal mode.

Operate 1/O instruction

Op code R1 R2 » | Modifier Address
0110 1(00 0] 1100
0 4 5 7 8 10 11 12 1516 31
N — ~ -~ _,
Effective address J
IDCB
Command field Device address field  |Immediate data field
YYYY
o 7 8 1516 3‘1
|
I
Cycle-steal operations |
;—- ______________________________ 1
DCB

GA34-0152

|
\}

{(
RA

*Indirect address bit

-

N

7N
{ \

P
{
AN

O O

O O O O O



™

(v

(N
AN

)

~—

,,\
_J

(

)

r—

> O O

C

C O

P

@,

Immediate Device Control Block (IDCB)

The storage location specified by the Operate 1/O instruction’s effective
address contains the first word of the IDCB. The IDCB contains an I/O
command that describes the type of 1/O operation. This command is used
by the channel for execution of the operation. The IDCB must always be
on an even-byte address boundary, and has the following format:

IDCB (immediate device control block)
Command field Device address field

0 7 8 15

Immediate data field

16 31

Command Field (Bits 0-7).

Bit 0 Channel-directed. 1f this bit is set to 1, the I/O command is
directed to the channel rather than to a specific device. The
Halt I/O command is the only valid channel-directed command.
Any other command with bit O set to 1 causes a command
reject exception condition.

Bit 1 Read/write. If this bit is set to 1 (write), the data contained in
the immediate data field is transferred to the addressed I/0O
device. If this bit is set to 0 (read), the immediate data field
contains the data received from the I/O device at the
conclusion of the I/0 instruction.

Bits 2-3  Function. This field specifies the general type of 1/0O operation
to be performed (see Figure 4-2).

Bits 4—7 Modifier. This field further defines the functions.

Device Address Field (Bits 8—15). This field contains the I/0O device
address. A unique I/0O device address is assigned to each I/O device. The
address range is 00 through FF (hex).

Immediate Data Field (Bits 16-31). For DPC operations, the immediate
data field contains a data word; for cycle-steal operations, this field points
to a device control block.

Input/Output Operations  4-3



4-4

GA34-0152

Figure 4-2 shows the relationship between the IDCB and the Operate 1/0
instruction, with a chart for the various I/O commands. The Start and the
Start Cycle Steal Status commands are used to initiate cycle-steal
operations. The remaining commands are used for DPC operations only.

Operate 1/0 instruction

Op code R1 R2 *| Modifier |Address

01101/]000 1100

0 45 7 8 1011 12 15 16 ﬁ
Effective address

IDCB (immediate device control block)

Command field Device address field |Immediate data field

01234 8 1516 31

Chan R/W Function Modifierr* Hex Specific command Type of operation

0 0 00 Read XXXX 0X Read DPC

0 0 01 Read XXXX 1X Read DPC

0 0 10 Read status 0000 20 ReadID DPC

0 0 10 Read status  XXXX 2X Read Status DPC

0 0 11 3X  Unused*** Unused

0 1 00 Write XXXX 4X  Write DPC

o} 1 01 Write XXXX 5X  Write DPC

0 1 10 Control 0000 60 Prepare DPC

0 1 10 Control XXXX 6X Control DPC

0 1 10 Control 1111 6F Device Reset DPC

0 1 11 Start XXXX 7X Start Cycle-steal

0 1 11 Start 1111 7F  Start Cycle Steal Status Cycle-steal

1 1 11 Channel! 0000 FO Haltl/O Channel

*Indirect address bit.

**Modifier XXXX is device-dependent. Other modifiers are system-defined.
***To avoid future code obsolescence, this command format must not be used.

Figure 4-2.

IDCB and I/0 commands

f,
(

O

O O

)

O C

) O

O

> O

\



()«

D)

O O

O

Y
J

O O G

O O

Device Control Block (DCB)

This section describes the standard device control block that is used for a
cycle-steal operation. The actual cycle-steal operation is explained under
“Cycle-Steal” in this chapter. The DCB is an eight-word control block,
residing in main storage, that contains the specific parameters for a
cycle-steal operation. The device fetches the DCB using the cycle-steal
mechanism.

All devices use the standard DCB format (see Figure 4-3). Some devices
may also use additional formats, which are explained in the individual
device publications.

DCB (device control block)

Word
0 | Control word =

7 | Device parameter word 1

2 | Device parameter word 2

3 | Device parameter word 3

4 | Device parameter word 4

5 | Device parameter word 5

6 | Count word

7 | Data address word

0 15

Control word format (DCB word 0)
Addr key| Modifier field
B

012345 7 8 1415

| Burst mode* ———I
Suppress exception (SE)*

Extended DCB (XD)*

Input flag

Program-controlled interrupt (PCI)*
Chaining flag*

*Device-option bits

Figure 4-3. Device control block

Input/Output Operations

4-5



Control Word

Device Parameter Words 1~2

Device Parameter Word 3

4-6

GA34-0152

The DCB words have the following meanings:

Bit 0* Chaining flag. If this bit is set to 1, a DCB chaining operation
is indicated.

Bit 1* Program-controlled interrupt (PCI). If this bit is set to 1, the
device presents a PCI at the completion of the DCB fetch.

Bit 2 Input flag. This bit indicates to the device the direction of data
transfer.
0 = output (main storage to device)
1 = input (device to main storage)
For bidirectional data transfers under a DCB operation, this bit
must be set to 1. For control operations involving no data
transfer, this bit must be set to 0.

Bit 3* Extended DCB. This bit, when set to 1, specifies that the DCB
is a non-standard type.

Bit 4* Suppress exception. If this bit is set to 1, the device is allowed
to suppress the reporting of certain exception conditions. The
device can then take alternative action, depending on the
condition.

Bits 5-7 Cycle-steal address key. These bits are presented by the device,
during data transfers, to ascertain storage access authorization.

Bit 8-15 Modifier. These are device- dependent bits, with the following
exceptions: (1) when extended DCB=1, bits 8-11 further
identify the DCB type, and (2) when a device uses burst mode,
it is specified in bit 15. Otherwise, these bits may be used for
functions that are unique to a particular device.

*These bits are used with device options that are available on a
device-feature basis. All bits not used by the device must be set to 0’s. If
the bits are set improperly, the devices may report a DCB specification
check. Refer to the individual device publications for additional
information.

Device parameter words 1-2 are device-dependent control words and are
used as required. Refer to the individual device publications for definitions
of these words.

The high-order byte (bits 0-7) of device parameter word 3 is used as a
DCB identifier when PCI is specified. The device places the identifier in
the interrupt information byte when the PCI is processed. The high-order
byte (bits 0-7) is device-dependent when PCI is not specified. The
low-order byte (bits 8-15) is always device-dependent.

&

DI

)

—

C

\
]
/

—

.

—

) O

—_

> )

@

)

)

~

.

O O O

O O O

)



O O

i

C >0 000000 O0

O OO0 O 0O 0O

O

O

Device Parameter Word 4

Device Parameter Word 5

Count Word 6

Data Address Word 7

Device parameter word 4 specifies a 16-bit main storage address called the
status address, if suppress exception is used by a device. The status
address points to a residual status block that is stored by the device
following completion of the DCB operation.

When suppress exception is not used by a device, a residual status block is
not stored. In this case, parameter word 4 is device-dependent.

Device parameter word 5 specifies a 16-bit main storage address of the
next DCB in the chain, when the DCB chaining bit (bit 0) of the control
word) is set to 1. When chaining is not indicated, parameter word 5 is
device-dependent.

The count word contains a 16-bit unsigned integer that represents the
number of data bytes to be transferred for the current DCB. The count
word specifies bytes with a range of 0 through 65,535. The count word
must contain an even number for word-only devices.

The data address word contains the starting main storage address for data
transfers.

Programming Considerations When Using the DCB

1/0 Commands

1. Only those words required for the cycle-stealing operation are used by
the device and they may be used in any order. Contents of the words
must be specified correctly; if not, the device records a DCB
specification check in the interrupt status byte (ISB) and terminates
the cycle-steal operation with an exception interrupt.

2. The DCB address (in the IDCB), the chain address, and the status
address must be on an even-byte address boundary. If the DCB
address is odd, the device records a command reject condition code
and terminates the operation. An odd chain address or an odd status
address results in a DCB specification check.

Note: Condition codes and status recording are explained in detail under
“I/0O Condition Codes and Status Information” in this chapter.

This section describes each I/0O command and shows the related IDCB.
The command field (bits 0-7) of the IDCB contains the hex value of the
command. An X in this field means that the value is device-dependent.

Input/Output Operations  4-7



Read

Read ID

4-8

GA34-0152

IDCB (immediate device control block)

Command field Device address field

000 XXXXXIXXXXXXXX

o 7 8 15
0X, 1X 00—FF

Immediate data field
Data word
76 3171

The Read command transfers a word or a byte from the addressed device
to the data word of the IDCB. If a single byte is transferred, it is placed in
bits 24-31 of the data word, with bits 16—23 set to 0’s. Correct parity is
always maintained and checked for both bytes on the I/O channel. The
individual devices may use either the 0X- or 1X-type of Read command.

IDCB (immediate device control block)
Command field Device address field
0010000 0{XXXXXXXX
0 7 8 15

~ —y
v

20 00—FF

Immediate data field
Data word
16 31

The Read ID command transfers a device identification (ID) word from
the device to the data word of the IDCB. The device ID word contains
physical information about the device and may be used to determine the
devices that are attached to the system. This ID word is not related to the
interrupt ID word associated with interrupt processing. The device ID
word format is:

[Class |0] Assigned code [cs|D|
o 34 5 131415
Bits 0—-3 Assigned class code
Bit 4 Reserved; always 0
Bits 513 Assigned code
Bit 14 0 — not a cycle-steal device

1 — cycle-steal device

Bit 15 0 — IBM device

1 — OEM device

00000

OHONON®

O

)

(‘_ﬁ

OO 00000

O O

~



O

P

/
\

O 0 O O

o O O O

TN
R _/

O O O O

O OO0 0 0O

Read Status

Write

IDCB (immediate device control block)

Command field Device address field

001 0 XX XXIXXXXXXXX

0 7 8 15
2X 00—FF

Immediate data field
Data word

16 31

The Read Status command transfers a device status word from the device
to the data word of the IDCB. Contents of the device status word are
device-dependent.

IDCB (immediate device control block)

Command field Device address field
01T 0 X XXXXIXXXXXXXX
9_ 78 15
4x 00—FF
656X

Immediate data field
Data word
16 31

The Write command transfers a word or a byte from the data word of the
IDCB to the addressed device. An individual device may use either the
word format or the byte format. If a single byte is to be transferred, it
must be placed in bits 24-31 of the data word and bits 16—-23 must be set
to 0’s. A byte-oriented device may ignore bits 16—23 (including the parity
bit) on the I/O channel, but these bits should be set to 0’s to avoid future
code obsolescence.

Note: Both bytes of the IDCB data word are fetched by the channel and
placed on the I/0O data bus (with good parity) even if both bytes are not
required by the device.

Input/Output Operations  4-9



Prepare

Control

4-10

GA34-0152

IDCB (immediate device control block)

Command field Device address field
01 100000jXXXXXXXX
9 78 15
60 00—FF
Immediate data field
0's | Level ]I
16 2627 3031

The Prepare command transfers a device interrupt control word to the
addressed device that controls the device interrupt parameters. The device
interrupt control word is transferred from the immediate data field of the
IDCB in the format shown. A priority interrupt level is assigned to the
device by the level field. The I-bit (device mask) controls the device
interrupt capability. If the I-bit is set to 1, the device is allowed to
interrupt. If the I-bit is set to 0, the device cannot interrupt. Refer to
“Prepare I/0 Device for Interrupt” in Chapter 3.

IDCB (immediate device control block)

Command field Device address field

0110 XXXXXXXXXXXX

0 78 15
6‘; 00—FF

Immediate data field
Data word
16 31

The Control command initiates a control action in the addressed device. A
word or byte transfer from the data word of the IDCB to the addressed
device may or may not occur, depending on device requirements. If a
single byte is to be transferred, it must be placed in bits 24-31 of the data
word and bits 16-23 must be set to 0’s.

Note: Both bytes of the IDCB data word are fetched by the channel and
placed on the I/0O data bus (with good parity) even if they are not
required by the device.

O O

O O O

D C O O 0O 0O 0

O O O O 0O O<

O

A

O O



v O 00000000

O 0000 CO0O0O0

Device Reset

Start

IDCB (immediate device control block)

Command field Device address field

0110111 1{XXXXXXXX

9 78 5
6F . 00—FF

Immediate data field

0's
16 3171

The Device Reset command resets the addressed device. A pending
interrupt from this device (or a busy condition) is cleared. The device
mask (I-bit) is not changed. The assigned priority level for the device is
not changed. The residual address (device status) and output sensor points
are not reset. The IDCB data word is not checked for parity.

IDCB (immediate device control block)

Command field Device address field

01T 1T 1T XXXXXXXXXXXX

9 78 15
70—7E 00—FF

Immediate data field
DCB address

16 31

The Start command initiates a cycle-steal operation for the addressed
device. The second word of the IDCB contains a 16-bit logical storage
address of a DCB and is transferred to the device. Refer to “Start
Command” in this chapter for additional information.

Input/Output Operations  4-11



Start Cycle Steal Status

Halt 1/0

4-12

GA34-0152

IDCB (immediate device control block)

Command field Device address field

011111 1T1IXXXXXXXX

) 78 15
7F . 00—FF

Immediate data field
DCB address
16 31

The Start Cycle Steal Status command initiates a cycle-steal operation for
the addressed device. Status information is collected from the addressed
device. The second word of the IDCB contains a 16-bit logical storage
address of a DCB and is transferred to the device. Refer to “Start Cycle
Steal Status Command Operation” in this chapter for additional
information.

IDCB (immediate device control block)

Command field Device address field
11110000
g 7 8 15
FO

Immediate data field

16 31

Halt I/O is a channel-directed command that causes a halt of all I/0
activity on the I/0O channel and resets all devices. Data is not associated
with this command. All device interrupts pending are cleared. Device
priority-interrupt-level assignments and device masks (I-bits) are not
changed. The residual address (device status) and output sensor points are
not reset. :

Note: The channel always accepts and executes the Halt I/O comniand,
and it is the only valid channel-directed command.

O O O O

@

(

D

O

O O

,)

N\

OO O 0 O

O O O O

{
\



}

-/

O OO0 O0OO0O000 O«

DPC Operation

A DPC operation is an immediate transfer of data or control information
to or from an I/0 device under the control of an Operate 1/0 instruction.
The Operate 1/0 instruction must be executed for each data transfer.
Refer to Figure 4-4 for an explanation of the following steps:

1. The Operate I/0 instruction’s effective address points to an IDCB in
main storage @.

2. The I/O channel uses the IDCB to select the addressed device and to
determine the operation to be performed ©.

3. The I/0 channel transfers data to the device from main storage, or
transfers data from the device to main storage @.

4, The device transfers an 1/0 instruction condition code to the current
level status register (LSR) in the processor .

Notes:

1. The DPC operation may end with a priority interrupt. Refer to “I/O
Interrupts” in Chapter 3 for additional information.

2. There are two types of condition codes: the first is an I/O instruction

condition code, and it is presented immediately after completion of an
Operate I/0 instruction; the second is an interrupt condition code,
and it is presented upon acceptance of a priority interrupt. The
condition code significance is different for the two cases. Refer to
“I/O Condition Codes and Status Information” in this chapter for
additional information.

Input/Output Operations  4-13



Operate 1/0 instruction
Op code R1 R2

*

Modifier |Address

O O

O

O O O O

®

-

O

\

01101000 1100
e ~ “ _—
o I Effective address J
Hex Command IDCB immediate field
0X, 1X Read Data (word or byte)
20 Read ID Device ID word
2X Read Status Device status word
4X,5X Write Data (word or byte)
60 Prepare Interrupt parameters
6X Control Data (word or byte)
6F Device Reset 0
| IDCB ,
YYYY Command field Device address field | Immediate data field
(4] 7 8 1516 317
i (C) I
K‘ Data bus N <:>
e : Address/control bus |
K ) -

LSR (see Note) Channel 1/0 1/0
controls attachment device
E|C|O //
a— a—
; 1/0 instruction CC Condition code -

)

o

(

Note: LSR bit 0, even indicator bit position;
bit 1, carry indicator bit position;
bit 2, overflow indicator bit position.

Channel lines

*Indirect address bit

Figure 4-4.  Direct program control 1/O operation

4-14 GA34-0152

O O O

OO O O

O O O



......

@

OO0 00000

Cycle-Steal

Cycle-stealing allows data transfer;to or from an I/O device while the
processor is processing instructions. This interleaved operation allows
multiple data transfers to be started by one Operate 1/0 instruction. The
processor executes the Operate 1/0 instruction, then continues processing
instructions while the I/0O device steals main storage data cycles when
needed. The channel resolves contention among multiple devices
requesting cycle-steal transfers. The operation always ends with a priority
interrupt from the device.

The cycle-steal operation capabilities depend on the device options that
are provided by a device feature basis.

« Burst mode

« DCB chaining

« . Extended DCB

« Program-controlled interrupt (PCI)

« Suppress exception

« Storage addresses and data transfers by byte or word

Refer to “Cycle-Steal Device Options™ in this chapter for additional
information about each option.

All cycle-steal operations terminate with a priority interrupt, provided that
the device has been prepared with a successful Prepare command, with the
device mask (I-bit) set to 1. If the device mask is (I-bit) is set to O, the
interrupt presentation is blocked and the device remains busy until the
condition is cleared by a reset, or the proper Prepare command is
executed.

All cycle-steal operations are started by an Operate 1/O instruction that
points to an IDCB. The immediate data field of the IDCB contains the
address of a DCB. The DCB is fetched by the device using a cycle-steal
address key of 0. Refer to “Device Control Block (DCB)” in this chapter
for a additional information about the DCB.

There are two types of cycle-steal commands:
« Start
« Start Cycle Steal Status

Input/Output Operations  4-15



Start Command

The IDCB for the Start command, pointed to by an Operate 1/0
instruction, has the following format:

IDCB (immediate device control block)

Command field Device address field

011 1T XXXXXXXXXXXX

g 7,8 15
' 70-7E 00—FF

Immediate data field
DCB address
16 317

O O O O

DO O O

e
\\

The Start command initiates a cycle-steal operation for the addressed
device. The second word of the IDCB contains a 16-bit logical storage
address of a DCB and is transferred to the device. The device uses this

4-16

GA34-0152

storage address for fetching the DCB.

) O O

o

O O

O O O O

OO O O



O

C OO0 0 O0C

\
/

O

O
O
O
O
O
@,
O
O
O
O

A cycle-steal operation is described in the following chart. Use Figure 4-5
in conjunction with this chart. Condition codes used in the chart are
explained under “I/O Condition Codes and Status Information” in this
chapter.

Note: An 1/0 device must be properly prepared (using a Prepare
command) before it is allowed to interrupt.

Cycle-steal major
steps Remarks

Start cycle-steal 1. Execute I/O instruction.

2. IDCB contains a Start command and points
to a DCB. The DCB address is sent to the
device.Q)

3. Device presents condition code 7 (bits 0-2
in the LSR).©

Device fetches DCB 1. Device uses cycle-steal mechanism to fetch
' DCB.©@

2. Cycle-steal address key of O is used.

Data transfer 1. Data is transferred to or from the device in
word or byte format.Q)

2. Transfers continue until count in DCB is
exhausted.

3. DCB specifies cycle-steal address key for
data area.

Termination (no error | 1. Device presents interrupt request.

condition) 2. Channel polls I/0O attachment feature and
accepts request.

3. Device sends interrupt ID word and
interrupt condition code 3 (device end).

Termination 1. Device presents interrupt request.

(exception condition) | 5 Chanpel polls I/O attachment feature and
accepts request. :

3. Device sends interrupt ID word and
interrupt condition code 2 (exception).

Input/OQutput Operations  4-17



4-18

GA34-0152

Other events that might occur during the cycle-steal operation are:

Chaining

Device completes the current DCB operation
but does not present an interrupt request.

Device fetches next DCB in the chain.@

Program-controlled
interrupt

Device fetches DCB (PCI bit=1).

Device initiates an interrupt and sends an
interrupt ID word and interrupt condition code
1 (PCI).

Suppress exception

Device completes current operation.

Device stores status at the main storage
location defined by DCB parameter word 4,
using a cycle-steal address key of O.

OO 0 0 0 0 0

ON®:

C O

O OO0 0 0 O

DO O O



OO0 OO0O0O0O00O0O0

Operate 1/0 instruction

Op code R1

01101]000 1100

R2 * Address

N | —

Effective address

IDCB
Command field Device address field |DCB address
0230 00000101000000O0O
o 7 8 15 16 31
LSR
0 2 3 15 1 Device
“—
"0 DCB e
050 Control word o
- ¥+
Data area
050A 0600 A 0800 B Q .
Count I hl
050E | 0800 J -~ ] G
L Chained DCB
— — — — (0600

*Indirect address bit

3}
\(
)
1

Figure 4-5. Example of cycle-steal control information

Input/Output Operations  4-19



O O

Start Cycle-Steal Status Command

The Start Cycle-Steal Status command initiates a cycle-steal operation for
the addressed device. Status information is collected from the addressed
device if the previous operation terminated due to an error or exception
condition. The second word of the IDCB contains a 16-bit logical address
of a DCB and is transferred to the device. The IDCB format is:

O O

IDCB (immediate device control block)

Command field Device address field
01 1T1T1T1T71T ITIXXXXXXXX
A 7 8 15

7F 00-FF

Immediate data field
DCB address
16 31

The Start Cycle-Steal Status command DCB format is:

DCB (device control block)
Control word
0 0 1 0 O|Addrkey|0 0.0 0 0 0 0 O

7 | Not used (0's)

Word

2 | Not used (0's)

3 | Not used (0's)

4 | Not used (0's)

5 | Not used (0’s)

6 | Byte count

7 | Data address

0 15

) O O O O O O

C

O O

O O O 0O 0

O O O



OO0OO0OO0OO000O0O0O0OC >XO000000CCOOCO

Programming Note: For the start cycle-steal status operation, the DCB
has the following parameters:

« Bits designated as 0’s are not checked by hardware (see Figure 4-6).

« The count is specified in bytes.

e The maximum count is device-dependent,

o The validity of a count value less than the maximum value is
device-dependent.

« If the maximum count is exceeded, or a count value is specified that
indicates the partial storing of a word-length parameter, the device
records a DCB specification check in the interrupt status byte and
terminates the operation.

« An odd data address also results in a DCB specification check.

Cycle steal status data is transferred to main storage starting at the data
address specified in the DCB. This data consists of residual parameters
and device-dependent status information, and has the following format:

Word 0 Residual address

Word 1 Device cycle-steal status word 1

Word 2 Device-dependent status word
. 0 15

Residual Address. This word contains the main storage address of the last
cycle-steal transfer attempted with a Start command. The address may be
a data address, a DCB address, or a residual-status-block address. For
word transfers, the residual address points to the higher address
(low-order) byte of the word. If an error occurs during a start cycle-steal
status operation, the residual address (as contained within the device) is
not altered. Device Reset, Halt I/0, machine check, and system reset have
no effect on the residual address in the device. This residual address is
cleared by a power-on reset. Following a power-on reset, the residual
address is:

o 0000 (hex) for a byte-oriented device.
« 0001 (hex) for a word-oriented device.

Device Cycle-Steal Status Word 1. This word contains the residual byte
count of the previous cycle-steal operation initiated by a Start command.
The byte count is initialized by the count field of a DCB during a Start
command. The residual byte count is updated as each byte of data is
successfully transferred by a cycle-steal operation. The residual byte count
is not updated by cycle-steal transfers into the residual status block and is
not altered if an error occurs during a start cycle-steal status operation.
The residual byte count is reset by a power-on reset, system reset, device
reset, Halt 1/0, or machine-check condition.

Input/Output Operations  4-21



. Cycle-Steal Device Options

Burst Mode

Chaining

4-22

GA34-0152

Note: The contents of device cycle-steal-status word 1 are
device-dependent. Some devices do not implement suppress exception or
store a residual byte count as part of its cycle-steal status.

Device-Dependent Status Words. The number of words and their content
are specified by the individual device. Three conditions can cause bits to
be set in the device-dependent status words (refer to individual device
publications):

« Execution of an I/O command that causes an exception interrupt.

« Asynchronous conditions in the device that indicate an error, an
exception, or a state condition.

« Conditions as defined by the individual device.
The bits are reset as follows:

» Exception interrupt bits are reset by the acceptance of the next I/0
command (except Start Cycle Steal Status). These exception interrupt

bits are also reset by a power-on reset, system reset, or execution of a
Halt I/O command.

« Asynchronous condition bits are reset as defined by the individual
device.

« Individual device condition bits are reset as defined by the individual
device.

Bits in the DCB control word are used to activate cycle-steal device
options. Refer to the individual device publications for device options.

Burst mode is specified by bit 15 of the DCB control word. If bit 15 is set
to 1, the transfer of data takes place in burst mode. This mode dedicates
the I/O channel to the device until the last data transfer is completed
(DCB count is 0). Cycle-steal interleaving by other devices is prevented.
Burst mode also prevents all priority interrupt requests from being
accepted by the processor.

Chaining allows the programmer to sequence an I/O device through a set
of operations by using a chain of DCBs. Bit 0 of the DCB control word
(when set to 1) indicates a chaining operation. Each chained DCB, fetched
by the device, is interpreted as a new operation (or function) to be
performed.

When the current DCB indicates a chaining operation, device parameter
word 5 of the DCB must contain a main storage address that points to the
next DCB in the chain. The device completes the current operation but
does not present an interrupt request (excluding PCI) to the processor.
Instead, the device fetches the next DCB in the chain and executes its
operation.

Note: The chaining operation does not affect PCls. These interrupts, when
specified in the DCB, still occur at the completion of the DCB fetch
operations.

O O O 0 0O O

O O

OO C >0 O

O O O 0O 0

O

O O



OO0 CO0O0COOCO

\
/

OO0O0OO0000CO0OO0O0

Extended DCB

This option allows a device to use additional DCB types. Each DCB type
is designed to support a specific operation, such as data chaining, and is
assigned a unique name in order to distinguish it from a standard DCB. Bit
settings in the control word of the DCB determine the type. The extended
DCBs, if used by a device, are explained in the individual device
publication.

Program-Controlled Interrupt (PCI)

Suppress Exception

Bit 1 of the DCB control word (when set to 1) instructs the device to
present a PCI to the processor at the completion of the DCB fetch and

prior to data transfer.

When the PCI is serviced, a DCB identifier byte is returned to the
processor in the interrupt information byte. Refer to “Device Parameter
Word 3”’ under “Device Control Block (DCB)”’ in this chapter.

Chaining and data transfers associated with the DCB may commence even
if the PCI is pending.

If the PCI is pending when the device encounters the next
interrupt-causing condition, the PCI condition is discarded by the device
and replaced with the new interrupt condition.

A device using suppress exception is allowed to suppress the reporting of
certain exception conditions that would normally cause an exception
interrupt. The device is then allowed to take alternative action, depending
on the condition. The suppressed exception conditions are reported to the
programmer as status information upon completion of the operation. Refer
to “‘Suppression of Exceptions” in this section for details about various

actions that a device might take.

The suppress exception option also provides automatic logging of status
information (including suppressed exceptions) in main storage. When the
suppress exception bit of a DCB is set to 1, the device always stores a
residual status block in main storage after successful completion of the
data transfer. Device parameter word 4 of the DCB must be used to
specify the residual status block starting address in main storage. A
residual status block is stored even when there are no exception conditions

to be suppressed.

Input/Output Operations  4-23



Residual Status Block

The residual status block is stored in main storage at the location pointed
to by the status address (DCB word 4). The device uses an address key

that corresponds to the DCB address space, for this operation. The size of
a residual status block is fixed for each device with a limit of eight words.

For a standard DCB, the format is:

0 | Residual count
7 [EOC|RT|Reserved  |Status flags ~INE

J‘.0 17 2 7 8 14 Iﬁ‘~ Maxi-

ol - mum
: | of8

| : words
s i B
0 15

Word 0 Contains the residual byte count associated with
the DCB.

Word 1 EQC is the end-of-chain bit, and is set to 1 for all
conditions that would terminate a chaining opera-
tion. RT is the retry bit, and is set to 1 when the
device has attempted a retry operation. NE is the
no exception bit, and is set to 1 when the operation
is completed and no exceptions are reported. The
status flags are device-dependent flags that indicate
suppressed-exception conditions.

Any additional words are device-dependent as to number and content.
Refer to the individual device publication for the additional status
information and for the bit significance of the status flags.

Note: The words in a residual status block for a non-standard DCB may
have different meanings. Refer to the individual device publications.

4-24 GA34-0152

O O O O

O O

DO O O 0O O

O

)

—
N

ONORONONON®

O

{
S



O

N N
)

\
)
/

C

N
R

@

O

O

N
)

)

o O 0O O

Suppression of Exceptions

An exception condition can be suppressed by a device only when it occurs
during a data transfer operation. It cannot be suppressed if it occurs

during:

« DCB fetch

e Storing of a residual status block
¢ Cycle-steal status operation

A second requirement of a suppressible exception is that the device be
capable of continuing operation in a normal and predictable manner after
occurrence of the exception. If these conditions are not met, the exception
condition causes an exception interrupt. The number of action types used
by a device and the suppressible exceptions for each type are a device
specification. When a suppressible exception is encountered, the device
initiates one of four possible types of actions, depending on the device and
the exception condition. Refer to the individual device publications for
additional information. The four action types are:

1. Suppress exception and continue. The exception condition occurs but
data transfer is allowed to proceed. At the completion of the data
transfer (defined by the DCB), a residual status block is stored. The
device may then continue with the next DCB, if chaining is specified.

2. Suppress exception and retry. Upon detecting the exception condition,
the device restarts the data transfer defined by the DCB. The number
of retries to be attempted is a device specification. A residual status
block is stored after a successful retry or after all retries have failed.

3. Suppress exception and terminate data transfer. Upon detecting the
exception condition, the device terminates the data transfer for this
DCB. The device stores a residual status block and continues with the
next DCB, if chaining is specified.

4. Suppress exception and terminate chain. Upon detecting this exception
condition, the device terminates the data transfer for this DCB, and
ignores any commands specifying further chaining.

The device stores a residual status block and then presents a-
permissive device-end interrupt. Refer to “Interrupt Condition Codes”
in this chapter for additional information.

Priority of Suppress-Exception Actions. Multiple exceptions that are
suppressible can occur during an operation. They are noted in the residual
status block by setting multiple status flags. The type of action taken by a
device depends on the exception/action combination with the highest
priority. The priority sequence is type 4, type 3, type 2, and type 1, with
type 4 having the highest priority.

Input/Output Operations  4-25



I/0 Condition Codes and Status Information

I/0O Instruction Condition Codes

4-26

GA34-0152

Each time an Operate I/0 instruction is issued, the device, controller, or
channel immediately reports to the processor one of eight condition codes
pertaining to the execution of the I/O command. These codes are called
1/0 instruction condition codes. Three bits are used to encode a
condition-code value (range O through 7). The bits are recorded in the
even, carry, and overflow positions of the LSR and may be interrogated
by specific instructions such as Branch on Condition Code and Branch on
Not Condition Code. Refer to Chapter 8 for details of these instructions.

For interrupting devices, condition codes are also reported during a
priority interrupt. These codes are called interrupt condition codes, and
pertain to operations that continue beyond execution of the Operate I/O
instruction (such as cycle-stealing of data). The interrupt condition codes
are recorded in the current LSR and interrogated in the same manner as
the I/0 instruction codes. Along with the interrupt condition code, the
device also transfers an interrupt ID word to the processor. Bits 0-7 of the
interrupt ID word contain status information related to the interrupt
processing and are called the interrupt information byte. Refer to
“Interrupt ID Word” under “I/O Status Information” in this chapter for
additional information.

1/0 instruction condition codes are reported during execution of an
Operate I/0 instruction.

Condition

cade (CC) . LSR position Reported

value Even Carry Overflow by Meaning

0 0 0 0 Channel Device not
attached

1 0 0 1 Device Busy

2 0 1 0 Device Busy after
reset

3 0 1 1 Chan/dev  Command reject

4 1 0 0 Device Intervention
required

5 1 0 1 Chan/dev  Interface data
check

6 1 1 0 Controller Controller
busy

7 1 1 1 Chan/dev  Satisfactory

)

O O O C

/
\

)

O O

OO O C

DO 00000



S

J

O O

~
\
/

~—

O O (

@)

™~
/

O O O O«

O

O

O

CCo

CC1

cC2

CC3

CC4

CCs

CCo

CC7

Device not attached. Reported by the channel when the addressed
device is not attached to the system.

Busy. Reported by the device when it is unable to execute a
command because it is in the busy state. The device enters the
busy state upon acceptance of a command that requires an
interrupt for termination. The device exits the busy state when the
processor accepts the interrupt. Certain devices also enter the busy
state when an external event causes an interrupt. When this
condition code is reported, a subsequent priority interrupt from the
addressed device always occurs.

Busy after reset. Reported by the device when it is unable to
execute a command because of a reset, and the device has not had
sufficient time to return to the quiescent state. An interrupt does
not occur to indicate termination of this condition.

Command reject. Reported by the device or the channel when:

« A command (in the IDCB) that is outside the device command
set is issued.

o The device is in an improper state to execute the command.

« The IDCB contains an incorrect parameter (for example, an
odd-byte DCB address or an incorrect function/modifier
combination).

When a cycle-steal device reports command reject, it does not

fetch the DCB.

Intervention required. Reported by the device when it is unable to
execute a command due to a condition that requires manual
intervention. ’
Interface data check. Reported by the device or the channel
(whichever is receiving the data) when a parity error is detected
on the I/0 data bus during a data transfer.

Controller busy. This condition is reported by a device controller,
and not the addressed device, when the controller is busy.
Controller busy is reported only by controllers that have two or
more devices attached (where each device has a unique address).

Satisfactory. Reported by the device or the channel when it
accepts the command.

Input/Output Operations  4-27



Interrupt Condition Codes

4-28

GA34-0152

Interrupt condition codes are reported by the device or controller during
priority interrupt acceptance:

Condition

code (CC) LSR position Reported

value Even Carry  Overflow by Meaning

0 0 0 0 ~ Controller  Controller

: end

1 0 0 1 Device Program-
controlled
interrupt
(PCI)

2 0 1 0 Device Exception

3 0 1 1 Device Device end

4 1 0 0 Device Attention

5 1 0 1 Device Attention and
PCI

6 1 1 0 Device Attention and
exception

7 1 1 1 Device Attention and
device end

CCO0  Controller end. May be reported by a controller when controller

CC1

CcC2

CC3

busy (I/O instruction condition code) has been previously
reported one or more times. Controller end signifies that the
controller is now free to accept I/O commands for devices under
its control. The device address reported with controller end is
always the lowest address (numerical value) of the group of
devices serviced by the controller. The interrupt information byte
in the interrupt ID word is set to 0.

Program-controlled interrupt. Reported when the interrupt
indicates that a DCB with the PCI bit set to 1 has been
transferred by cycle-steal to the device and no error or exception
condition has occurred. The device places the DCB identifier into
the interrupt information byte.

Exception. Reported when an error or exception condition is
associated with the interrupt. The condition is described in the
interrupt status byte or in device-dependent status words.

Device end. Reported when no error, exception, or attention
condition has occurred during the 1/O operation, and the interrupt
is not the result of a PCI (for example, an operation terminats
normally).

Note: If the device comes to a normal end while using suppress
exception (suppress exception bit set to 1) and an exception was
suppressed since the last Start command, then bit O of the
interrupt status byte is set to 1. This condition is called permissive
device end, and it indicates that errors or exceptions have been
suppressed. Related status information is contained in the residual
status block.

@

O O O O

)

e
\\ —

O O

(



()

O C

\
7

C

@

O

N
J

I/0 Status Information

CC4

CGCs

CC6

CcC7

Attention. Reported when the interrupt is caused by an external
event rather than caused by the execution of an Operate 1/O
instruction. Additional status information is not provided unless
the event requires further definition (for example, code bits for a
keyboard function).

Attention and PCI. Reported when attention and PCI are both
present. In this case, the interrupt information byte contains the
DCB identifier.

Attention and exception. Reported when attention and exception
are both present.

Attention and device end. Reported when attention and device end

are both present. For this condition code, device end can also
mean permissive device end. Refer to interrupt condition code 3.

The interrupt condition codes are mutually exclusive with each other, and
they have no priority sequence.

Status information is transferred from the device to the processor as a

result of: _

» A read status operation (refer to ‘“Read Status” under “I1/0
Commands” in this chapter).

« A start cycle-steal status operation (refer to “Start Cycle Steal Status

Command” in this chapter).

Storing a residual status block (refer to ‘“Cycle-Steal Device Options”
in this chapter).

A priority interrupt.

The interrupt status information is detailed in “Interrupt ID Word” and
“Interrupt Status Byte (ISB)” in this section.

Input/Output Operations  4-29



C
@
~—

Interrupt ID Word ' :

pt r f\’
Acceptance of an I/O interrupt causes the device to present an interrupt N
ID word to the processor. Presentation of the interrupt ID word is
explained in “I/O Interrupts” in Chapter 3. The interrupt ID word has the (ﬁ\,
following format: ~

N
Interrupt D word {v/
1I1B Device address

(,\
] 7 8 15 —
Bits 0—7 [Interrupt information byte (/1B). For interrupt [f\‘

condition codes 2 and 6, the |1B has a special e’

format and is called an interrupt status byte

{ISB). Refer to “Interrupt Status Byte' in this (/\\

section. For other interrupt condition codes NS

reported by a device, the II1B contains:

1. CCO. The lIB isset to 0. O

2. CC1or CC5. The IIB contains a DCB ~
identifier.

3. CC3 or CC7. Bit 0 may be set to 1 if sup- (/\ﬂ
press exception is in effect. Other bits are ~—7
device-dependent.

4. CC4. All bits are device-dependent. i

Bits 8—15 Device address. This byte contains the address

of the interrupting device.

S

v

'
\V

()

O O O

()

4-30  GA34-0152

m
N



@

ONOECHONCHONONONEG

Interrupt Status Byte (ISB)

The ISB is a special format of the interrupt information byte that contains
detailed information about the nature of the interrupt. The ISB is reported
only for error or exception conditions (interrupt condition code 2 or 6).
The ISB bits are normally set as a result of:

« Status errors that occur during a DPC operation and that cannot be
indicated by a condition code.

« Status errors that occur during a cycle-steal operation.

The ISB is never reported as 0 unless the condition code presentation of 2
or 6 is singular in meaning for devices that do not cycle-steal. After the
processor has accepted the interrupt request, the device resets the ISB.

Bits 0-7 of the two special formats have the following meanings:

ISB (Devices That Do Not Cycle-Steal).

Bit 0 Device-dependent status available. This bit, when set to 1,
signifies that additional status information is available from the
device. The information content and method of reading is
described in the individual device publication.

Bit 1 Delayed command reject. This bit is set to 1 if the device
cannot execute the command (specified in the IDCB) due to an
incorrect parameter in the IDCB, or it cannot execute the
command due to its present state. For example, the IDCB
specifies an incorrect function/modifier combination, or the
device is temporarily not ready. The operation in progress is
terminated. Delayed command reject is set in the ISB only if
the device cannot report 1/0 instruction condition codes for the
condition.

Bits 2—7  Device-dependent. These bits, if used, are described in the
individual device publication.

Input/Output Operations  4-31



ISB (Cycle-Stealing Device).

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

4-32 GA34-0152

Device-dependent status available. This bit, when set to 1,
signifies that additional status information is available from the
device, or the device is in an improper state to execute a
function specified by a DCB.

The operation is terminated. The content and method of reading
the additional status information is described in the individual
device publication.

Note: When bit O of the ISB is set to 1 and bits 2—7 are set to
0’s, the contents of the residual-address word (cycle-steal
status) are defined by the device.

Delayed command reject. This bit is set to 1 if the device
cannot execute the command due to one of the following
conditions:

o The IDCB contains an incorrect parameter (for example, an
odd-byte DCB address or an incorrect function/modifier
combination).

« The present state of the device, such as a not-ready
condition, prevents execution of an I/O command specified
in the IDCB.

Delayed command reject is set in the ISB only if the device
cannot report I/0 instruction condition codes for the condition.
The operation is terminated. The DCB is not fetched.

Incorrect-length record. This bit is set to 1 when the device
encounters a mismatch between byte count and actual record
length after beginning execution of the DCB. For example, the
byte count is reduced to 0 (with chaining flag off) and no
end-of-record is encountered. Incorrect-length record is not
reported when the suppress exception bit in the control word is
set to 1. Reporting of incorrect-length record is a
device-dependent feature and may be implemented regardless of
the suppress-exception feature. The operation is terminated.

DCB specification check. This bit is set to 1 when the device
cannot execute a command due to an incorrect parameter
specification in the DCB (for example, an odd-byte DCB
chaining or status address, an odd-byte count for a word-only
device, an odd-byte data address for a word-only device, an
invalid command or invalid bit settings in the control word, or
an incorrect count). The operation is terminated.

Storage data check. This error condition applies to cycle-steal
output operations only. If the bit is set to 1, it indicates that the
main storage location accessed during the current output cycle
contained bad parity. Parity in main storage is not corrected.
The device terminates the operation. The bad parity data is not
transferred to the I/O data bus. A machine-check condition
does not occur.

—

()

)

—

—

()

®

O O

)

N

OO0 000



O OGEONOEONONONONS

N\
/

OO0 000 C

O

-~
/

!
-~

O O O

Bit 5

Bit 6

Bit 7

Invalid storage address. This bit, when set to 1, indicates one
of the following conditions:

~« During a cycle-steal operation, the device presented a main

storage address that is outside the storage size of the
system.

« A cycle-stealing device attempted to access storage through
a segmentation register and the valid bit in the ‘
segmentation register is set to 0. The relocation translator
must be enabled before this condition can occur.

Invalid storage address can occur on a data transfer or on a
DCB fetch operation. In either case, the cycle-steal operation is
terminated.

Protect check. When set to 1, this bit indicates that the I/0
device attempted to access a main storage location and
presented an incorrect address key. Refer to individual device
publications for additional information.

Interface data check. This bit, when set to 1, indicates that a
parity error has been detected on the I/O data bus during a
cycle-steal data transfer. This condition may be detected by the
channel or the I/O device. In either case, the operation is
terminated.

Input/Output Operations  4-33



OO0 0O00O00UU0COU0CULYOCCCOOCL

4-34 GA34-0152



N
)

AR
/

O 00000000 O/ O 0O 0 000000

Translator Description

Chapter 5. Storage Address Relocation Translator

The relocation translator and segmentation registers permit addressing of

main storage locations beyond 64K bytes and provide a read-only type of
storage protection. The first 64K bytes can be addressed directly when the
translator is disabled; therefore, the translator must be enabled when main

storage is larger than 64K bytes.

The translator provides stacks of segmentation registers. The stacks are
numbered consecutively from O to X to correspond to the possible values
of the address keys. Each stack consists of 32 registers (0-31):

Segmentation registers

Stack 0 Stack X
Segmentation register Segmentation register

0 0
Segmentation register Segmentation register

1 1

® [ ]

[ ] *

® [ ]

[ ] [}

[ ] ®

[ ] [ ]

L] o
Segmentation register Segmentation register
' 30 30
Segmentation register Segmentation register

31 31

The stacks of segmentation registers are under supervisory program
control. Four privileged instructions are used with the relocation translator

and segmentation registers.

« Set Segmentation Register (SESR). This instruction loads one
segmentation register.

« Copy Segmentation Register (CPSR). This instruction allows the
supervisor to inspect the contents of a segmentation register.

o Enable (EN). This instruction enables the relocation translator. Until
the translator is enabled, 16-bit addressing is in effect for the
low-order 64K bytes of storage. Any storage above 64K bytes is not
accessible to the program until the translator is enabled.

e Disable (DIS). This instruction disables the relocation translator.

Refer to Chapter 8 for detailed information of the preceding instructions.
Refer to individual processor publications for further information
concerning segmentation registers.

Storage Address Relocation Translator  5-1



Storage Mapping

Relocation Addressing

5-2

GA34-0152

Mapping of main storage is achieved through the segmentation registers.
Each segmentation register controls 2K-byte segments of storage. The
SESR instruction is used to load each segmentation register with a unique
physical segment address. This segment address is the physical address of a
2K-byte segment of storage.

Note, however, that more than one segmentation register can be loaded
with the same segment address. For example, stack 0, register 15
(associated with the supervisor address key of 0), can be loaded with the
same number as stack 1, register 6. This arrangement allows the supervisor
to address control blocks within a problem program even though the
address key for the supervisor is different than the key for the problem
program. Once loaded, each stack of segmentation registers contains a
complete map of 64K bytes scattered in 2K-byte physical segments.

The relocation translator generates a physical address that allows any byte
in storage to be addressed. Figure 5-1 shows an example of address
translation. The letters in the following steps correspond to the letters on
the figure:

@ The active address key from the address key register selects a
segmentation register stack. The address key pertains to the
instruction being executed on the current priority level.

@ The five high-order bits (0—-4) of the 16-bit address (generated for
the instruction being executed) select a segmentation register within
the stack selected in step @. These bits define the logical segment.

© The physical address is generated. The 13 high-order bits (0—-12) are
from the segmentation register; these bits specify the physical address
of a 2K-byte segment of storage.

Bit 13 (Valid Bit). When set to 1, this bit specifies that the contents of
the segmentation register are valid; the segmentation register can be used
to perform the translation. When bit 13 is a 0, the segmentation register
cannot be used for translation (no access). If translation is attempted, a
program-check interrupt occurs with invalid storage address set in the
processor status word (PSW).

Bit 14 (Read-Only Bit). When set to 1, this bit specifies that the block is
read-only. When in the problem state, if an attempt is made to write into
storage using a segmentation register with the read-only bit set to 1, a
program-check interrupt occurs with protect check set in the PSW. Storage
is not changed. Bit 14 is ignored by a cycle-steal access, or when in
supervisor state.

© The 11 low-order bits (13—23) of the physical address are the 11
low-order bits (5—-15) of the 16-bit logical address (generated for the
instruction being executed); these bits specify the byte address within
the 2K-byte segment.

O O

O O O

O O O

O )OO0

-\/\>
AN

O O 000000



The active Address key reg 16-bit logical address
O address key lop1k OP2K| ISK
for this 1 11 000010000000 0010
example is 13 15 0 45 15
C) the ISK —— N————— S ~ ~
(instruction
Select 1
cpace koy) Select stack 7 () | Select reg 1€)

Segmentation registers

(—\’
s
~—

Stack 0 Stack 1 = Stack 7
O Segmentation reg Segmentationreg |, ,|......
0 0
( Segmentation reg Segmentation reg _ VRO
) 1 1 o xx0
E . N —
~ : . 3 See Note Note:
b V =valid
: : : {bit 13)
O : v : R = read-only
Segmentation reg Segmentation reg ey (bit 14)
31 31 ) ) 0 = always 0
0 15 0 15
Y

Physical address
O 0 00OO0OO0OO0BO0OO0OOT1GQ0

7 -

] Q Select byte

O

Main storage

O
‘/)

Select 2K-byte block

]

Figure 5-1.  Address translation example

> O O O O

/
.

Storage Address Relocation Translator  5-3

O 0O O



Storage Protection

The storage protection mechanism is enabled and disabled by the Enable
(EN) and Disable (DIS) instruction described in Chapter 8. When storage
protection is enabled, it protects against:

» Reading and writing to defined blocks of storage
» Writing in an undesired location within a defined block

Each processor handles storage protection in its own way, and is not
effective when the relocation translator is active. Because each stack of
segmentation registers has access to storage only within its assigned region,
protection is provided against writing into storage or fetching instructions
from another region. The translator also provides no-access and read-only
protection within the regions controlled by each stack of segmentation
registers. This allows storage protection of shared segments of storage. Bits
13 and 14 of the segmentation registers are used for this purpose.

Refer to individual processor publications for further information
concerning storage protection.

I/0O Storage Access Using the Relocation Translator

All storage access requests from I/O devices are translated by the
hardware that handles storage requests from the processor. The device
control block (DCB) must reside in the supervisor’s address space;
therefore, all I/O devices must use address key O to gain access to the
DCB and to store the residual status block. The address key of the process
requiring a cycle-steal operation resides in the DCB. The 1/0O device
presents this address key along with a 16-bit logical address to the
translator. This allows the I/O device to directly address the storage space
for a particular process. The address key allows 1/0 storage protection to
be established between address spaces, assuming that the supervisor
ensures the integrity of the DCBs.

Status of Translator After Power Transitions and Resets

5-4

GA34-0152

The translator is enabled only by the Enable (EN) instruction. The
translator is disabled by the following:

« Disable (DIS) instruction

« Power-on reset

e Check Restart key on programmer console

o Initial program load (IPL)

« System Reset key on programmer console

All translator controls are reset when the translator is disabled.
Notes:

1. A machine-check interrupt does not disable the translator.

2. The segmentation registers are not reset when the translator is
disabled.

OO O 0 0O O

O O O O

)

™~

(ﬁ_‘“

O O O O

O O

D

/7
\

O O O



> O O O

N
/

O O O

~
1
/

2 O«

o O 0 0 0

@,

O O O

Error-Recovery Considerations

Invalid Storage Address

Protect Check

The invalid storage address bit (bit 1 of the PSW) is set to 1 by any one

of the following:

« Storage access was attempted using an address greater than the
physical storage size.

« Storage access was attempted with bit 13 (valid bit) of the
segmentation register set to 0. This signifies that the contents of the
segmentation register are invalid.

« Storage access was attempted with an invalid address key.

The specific nature of the invalid storage address can be resolved as
follows:
« Store the segmentation register following the program-check interrupt.

o Test the segmentation register for the présence of bit 13.

« [If bit 13 is a 1, the supervisor’s concept of the actual storage installed
on the machine is incorrect.

A program-check class interrupt is initiated when the protect-check bit (bit
3 of the PSW) is set to 1. In the problem state, the protect-check bit is set
to 1 when the selected segmentation register has bit 14 (read-only) set to
1 and the instruction being executed is a write operation.

To resolve the cause of the protect-check error, the supervisor must
determine if the translator is enabled.

Storage Address Relocation Translator  5-5



Address Space Management

Active Address Key

Equate Operand Spaces (EOS)

5-6

GA34-0152

The coding of the address key to be made active depends on the type of
operation being performed.

Each level of priority interrupt has an associated address key register
(AKR), each of which contains three address keys and an
equate-operand-spaces (EOS) bit.

Address key register (AKR)

X

X X X0} X X X

0
89 171213 15
Nt N— N— —

0s OP1K 0oP2K ISK

000
1

0[X X X
4 5 7

me—Q

EOS Equate operand spaces. This bit, when set to 1, causes all
data operands to use the OP2K address key. Refer to “’Equate
Operand Spaces (EOS)’’ under *’Address Space Management”’
in this chapter.

OP1K  Operand 1 key. These bits contain the binary-coded operand 1
address key.

OP2K  Operand 2 key. These bits contain the binary-coded operand 2
address key.

ISK Instruction space key. These bits contain the binary-coded
instruction address key.

Cycle-steal devices have a cycle-steal address key specified in their device
control block.

When a programmer console is attached, the console address key may be
used.

Any one of the five address keys mentioned (ISK, OP1K, OP2K, console
address key, or the cycle-steal address key) may be used during a storage
access as the active address key.

The equate operand spaces bit (bit 0) in the address key register controls
the modification of the active address key.

When the EOS bit is set to 1 (enabled), all processor data fetches use a
single address space defined by the OP2K address key. The OP1K is
ignored, but not changed, and all normal OP1K operations use OP2K as
an active key. When the EOS bit is equal to 0 (disabled), the OP1K
address key functions in a normal manner.

o O 0O 00

O O

O 0

) O

ONORONGEN

O O O 0O 0

O O



O O

)

(
O

{

N

OB ONONG

)

~

)
-

SN ORVEONONONONONONONG

Address Space

Equate operand spaces (EOS) may be enabled by an Enable (EN)
instruction, a Set Level Block (SELB) instruction, or a Set Address Key
Register (SESKR) instruction. EOS may be disabled by a Disable (DIS)
instruction, a Set Level Block (SELB) instruction, or a Set Address Key
Register (SESKR) instruction. The EOS is also disabled by a priority
interrupt or a class interrupt. These instructions are described in Chapter
8.

An address key defines a specific address space, where:

o The address space is a range of logically contiguous storage.

« The address space is accessible by the effective address without
intervention by a resource management function (the address space is
not greater than 64K bytes).

All instruction fetches and effective address generation for the branch and

jump instructions, use the address space defined by the instruction space

key (ISK). For storage-to-storage instructions, the operand 1 fetches use
the address space defined by the OP1K, assuming that the EOS bit is set
to 0, and the operand 2 fetches use the address space defined by the

OP2K. All other storage data accesses use the address space defined by

the OP2K.

When the relocation translator is enabled, the address keys are used to

help select a 2K-byte block of storage.

Examples:

ISK=0P1K=0P2K. For instruction processing, all storage accesses occur
within the same address space.

ISK#O0P1K, OP1K=0P2K. Instruction fetches occur in the ISK address
space. Data access occurs in the OP2K address space.

ISK=0P1K, OP1K#OP2K. Refer to Figure 5-2 for this example.

1/0 operations that access main storage also use an address key.
Cycle-steal operations (read or write) use the cycle-steal address key
specified within the device control block. An address key of 0 is used
when the device fetches the device control block. Direct program control
(DPC) operations that write data to storage use the OP2K address key.
The cycle-steal and DPC operations are explained in Chapter 4.

Other defined usage of the address key register are as follows:
« All indirect access for branching uses the ISK.

« Effective-address generation occurs in the address space of the
particular data operand. The appended words in the instruction are
accessed by the ISK.

« Storage access from the console is defined by the console address key
register. Stop on address is based on the Stop On Address key when
the translator is enabled.

« System reset and IPL set all address keys and the EOS bit to 0’s.

Storage Address Relocation Translator  5-7



5-8

GA34-0152

Storage-to-storage _
OP1K oP2K
address address
space space
A
Branch
Register- Storage-to-
v to-storage v register
Storage - immediate
ISK General
address registers
space . . . and system
Register - |mmedlate | registers -
Register-to-

Assembler syntax for address spaces

ISK OP1K OP2K
addrb addr4
(reg) (reg)

Bits 13-15

of AKR

Bits 13-15

of AKR

*Indirect addressing.

Notes:

Example instructions

AW addrb,addr4
MVFD (reg),(reg)
MVBI byte,reg

B longaddr ™

1. OP1K is used for the source operand in storage-to-storage

operations.

2. OP2K is used for storage data access in all other operations

(excluding branch/jump).

3. ISK (bits 13-15 of the AKRY) is used for instruction fetch

and branch/jump operations.

register

Figure 5-2. Data movement in address spaces when ISK=0P1K, OP1K#O0P2K

O O

)

7

O O

O O O

O O

C )

O O O O

OO O

a
J

(\

(



OO0 0000000

DO

o0 0000000 0CcC.

Address Key Values After Interrupts

When priority or class interrupts occur, certain values are set in the
address keys of the affected AKR. These values anticipate the address
spaces that the programmer might need for interrupt processing. The
following chart shows the resulting AKR for each type of interrupt.

Resulting AKR values

Interrupt EOS OPIK OP2K ISK
Priority . 0 0 0 0
Supervisor call 0 Note 1 O 0
Machine check 0 Note 2 0 0
Program check 0 Note 2 0 0
Soft-exception trap 0 Note 1 0 0
Trace 0 Note 3 0 0
Console 0 0 0 0
Power/thermal warning O 0 0 0

Notes:

1. OPI1K is set to the preceding key contained in OP2K.
2. OPIK is set to the last active processor address key.

3. OPIK is set to the preceding key contained in the ISK.

All interrupt service routines reside in address space 0; therefore, the ISK
and OP2K are set to 0’s when an interrupt occurs. Necessary information
for processing a specific interrupt may reside in an address space other
than 0. The address key related to the particular interrupt is placed in
OP1K. The OPIK is set in anticipation of a storage-to-storage move of
information from the interrupting address space to address space 0.

Note: Class interrupts cause a hardware-controlled storing of a level status
block. This operation uses address key 0.

Storage Address Relocation Translator  5-9



OO0 0O0OLLUUCOL HVOULUOLOOLLLOOLOLUCU

5-10 GA34-0152



OO0 00000

O

O O

)

4
.

O O

O 0 O

N
)

O 0O 0O O

Clock/Comparator Features

Clock

Chapter 6. Clock/Comparator

A clock/comparator is incorporated into the basic instruction set of the
processor. The clock is a single 32-bit register, which is incremented at
1-millisecond intervals. This allows time to be represented up to 49 days,
17 hours, 2 minutes, and 47.295 seconds before the register wraps. The
comparator is a 32-bit register, which can be set to a predetermined value
by the Set Comparator instruction. The clock value and the comparator
value are compared to determine when a class interrupt should occur. If
the clock value is greater than or equal to the comparator value, a clock
class interrupt is generated. (Refer to Chapter 3 for a detailed discussion
of clock class interrupt.) The clock/comparator combination can be used
for a predetermined time control operation. Four instructions are provided
to set or copy the clock and comparator:

e Set Clock (SECLK)

o Set Comparator (SECMP)

e Copy Clock (CPCLK)

e Copy Comparator (CPCMP)

The setting of the clock and comparator is allowed only when the
processor is in supervisor state; the copying of the clock and comparator is
allowed in problem state. Detailed descriptions of the instructions are
contained in Chapter 8.

The features of the clock are:

e 32-bit register (counter)

e 1-millisecond resolution

« Set/Copy Clock instructions

« ' No timer external sync or 60-Hz sync

Note: 60-Hz synchronization is provided on some 60-Hz processors.
Refer to individual processor publications for further information.

« No alter/display from console
« No interrupt on clock overflow
o Set to 0 by power-on reset

« Continuously running (no ability to start/stop)

Clock/Comparator  6-1



Comparator

6-2

GA34-0152

The features of the comparator are:’

« 32-bit register

+ Set/Copy Comparator instructions

« No alter/display from console

« Set to 0 by power-on reset

« Clock class interrupt is disabled by power-on reset or system reset
« Clock class interrupt enabled by a Set Comparator instruction

« A clock class interrupt is held pending when the summary mask (bit
11 of the level status register (LSR)) is disabled.

Note: System reset does not affect the clock’s operation or the
comparator’s value. Switching back and forth between power-good and
battery backup or multiple IPL sequences does not affect the clock’s
operation.

O O O O

O O O

) O O

o

O O O 0O O !

OO0 000



> 0O O 0O O O O C

O O

)

O 00000000 C

()

Data Format

Chapter 7. Floating-Point Feature

The floating-point feature includes the resources to execute all
floating-point instructions and four 64-bit floating-point registers for each
of the four priority interrupt levels in the processor. The floating-point
instruction set performs calculations on operands with a wide range of
magnitude. Results of these calculations are scaled to preserve precision.
The floating-point registers are provided to avoid unnecessary storing and
loading operations for results and operands.

A floating-point number consists of a signed exponent and a signed
fraction. The quantity expressed by this number is the product of the
fraction and the number 16 raised to the power of the exponent. The
exponent is expressed in excess 64 binary notation; the fraction is
expressed as a hexadecimal number having a radix point to the left of the
high-order hexadecimal digit.

Two fixed-length formats (short and long) may be used for floating-point
data:

Short Floating-Point Number—used for single precision
S | Characteristic Fraction J s

01 7 8 31

Long Floating-Point Number—used for double precision
S | Characteristic Fraction J §

o1 7 8 . 63

Both formats may be used in main storage and in the floating-point
registers. The first bit in either format is the sign bit (S). The subsequent
seven bit positions are occupied by the characteristic. The fraction field
may have either six or 14 hexadecimal digits.
The entire set of floating-point instructions is available for both short and
long operands. When single precision (short format) is specified, all
operands and results are 32-bit floating-point words. With two exceptions,
the rightmost 32-bits of the floating-point registers do not participate in
single precision operations and are not changed by the operations. The two
exceptions are:
e The product in multiply operations (it is a 64-bit floating-point word
and occupies a full register)

« A storage to register move (the low-order 32-bits are set to 0’s.

When double precision (long format) is specified, all operands and results
are 64-bit floating-point words.

Floating-Point Feature = 7-1



Number Representation

Floating-Point Numbers

Conversion Example

7-2

GA34-0152

Although final results in short precision have six fraction digits,
intermediate results in add and subtract operations may extend to seven
fraction digits. The low-order digit of a seven-digit fraction is called the
guard digit and serves to increase the precision of the final result.
Intermediate results in long precision may extend to 15 fraction digits,
with the 15th digit being the guard digit.

The fraction of a floating-point number is expressed in hexadecimal digits.
The radix point of the fraction is assumed to be immediately to the left of
the high-order fraction digit. To provide the proper magnitude for the
floating-point number, the fraction is considered to be multiplied by a
power of 16. The characteristic portion, bits 1-7 of both floating-point
formats, indicates this power. The bits within the characteristic field can
represent numbers from 0 through 127. To accommodate large and small
magnitudes, the characteristic is formed by adding 64 to the actual
exponent. The range of the exponent is thus —64 through +63. This
technique produces a characteristic in excess 64 notation.

Both positive and negative quantities have a true fraction, the difference in
sign being indicated by the sign bit. The number is positive or negative
accordingly as the sign bit is 0 or 1.

A floating-point number with zero characteristic, zero fraction, and plus
sign is called a true zero. A true zero may arise as the result of an
arithmetic operation because of the particular magnitude of the operands.
A result is forced to be true zero when an exponent underflow occurs or
when a result fraction is 0.

Convert the decimal number 149.25 to a short-precision floating-point
operand.

1. The number is converted to a decimal integer and a decimal fraction.
149.25=149 plus 0.25

2. The decimal integer is converted to its hexadecimal representation.
149,,=95,,

3. The decimal fraction is converted to its hexadecimal representation.
0.25,,=0.4,,

4. Combine the integral and fractional parts and express as a fraction
times a power of 16 (exponent).

95.4,,=(0.954 x 102)

5. The characteristic is developed from the exponent and converted to
binary.

base + exponent = characteristic
644-2=66 (1000010)

6. The fraction is converted to binary and grouped hexadecimally.
0.954,,=.1001 0101 0100

O C

Ll

O

O OO 0 00

)

O 000000000 C



O O

© O O

> 0 C O

~.
)
-

> C

|
J

OO0 00 00 00 0O O

@,

Binary Integers in Main Storage

Normalization

Programming Considerations

7. The characteristic and the fraction are stored in short precision format.
The sign position contains the sign of the fraction.

S Characteristic  Fraction
0 1000010 1001 0101 0100 0000 0000 0000

Signed binary integers occupy storage in one of two fixed-length formats:
e« One-word format (16 bits)
e Doubleword format (32 bits)

Both formats may be used in main storage and are automatically converted
to single- or double-precision floating-point numbers during floating move
and convert operations that move data from storage to a floating-point
register. Negative signed binary integers are in main storage in two’s
complement form. They are converted to contain a true fraction. An
integer may be moved from main storage to a floating-point register,
without conversion, by using the floating-move instruction. In this case,
the integer is assumed to be a floating-point number.

Floating move and convert operations that move data from a
floating-point register to storage accomplish the reverse process; the
floating-point number in the register is automatically converted to an
integer. This integer result is then placed in main storage. The floating
move and floating move and convert operations are fully explained in
Chapter 8, “Instructions.”

A quantity can be represented with the greatest precision by a
floating-point number of given fraction length when that number is
normalized. A normalized floating-point number has a nonzero high-order
hexadecimal fraction digit. If one or more high-order fraction digit is O,
the number is said to be unnormalized. The process of normalization
consists of shifting the fraction left until the high-order hexadecimal digit
is nonzero and reducing the characteristic by the number of hexadecimal
digits shifted.

Normalization takes place after the multiply operations, and after the add
or subtract operations if an actual subtraction has taken place. For
example, +A+(—B), +A—(+B), or —A—(-B). Normalization does not
take place following a true addition or division; therefore, unnormalized
operands can produce an unnormalized result. Floating-point numbers in
main storage are assumed to be normalized.

Floating-Point Feature Not Installed

An attempt to execute a floating-point instruction when the feature is not
installed results in a soft-exception-trap interrupt with invalid function set
in the PSW. There are two exceptions to this rule:

« When attempting to execute a floating-point privileged instruction
while in problem state, a program-check interrupt occurs with privilege
violate set in the PSW.

Floating-Point Feature 7-3



Floating-Point Registers

Arithmetic Indicators

Floating-Point Exceptions

Floating-Point Overflow

7-4

GA34-0152

« If the effective address is odd when attempting to execute a

floating-point instruction, a program-check interrupt occurs with
specification check set in the PSW.

Four floating-point registers are provided for each of the four priority
interrupt levels associated with the processor. Floating-point register
selection is determined by the R-field of the instruction. The R-field in the
instruction format consists of two bits and may be labeled R, R1, and R2,
as required by the individual instruction.

R-field value  Floating-point register selected

00 Register 0
01 Register 1
10 Register 2
11 Register 3

Note: The floating-point registers are not affected by a reset and must be
initialized by the programmer.

The processor indicators (carry, overflow, zero, negative, and even) are set
or reset at the end of each floating-point instruction. Details of indicator

settings are contained in the individual instruction description in Chapter
8.

Floating-point underflow, overflow, and divide check are considered
exception conditions. When these conditions are recognized, a
soft-exception-trap class interrupt occurs with floating-point exception (bit
5) set in the PSW. Note that the soft-exception-trap interrupt does not

occur during floating-point compare operations. The overflow, carry, and
even indicators are set as follows:

« The overflow indicator is set to 1 by an overflow, underflow, or divide
check.

« The carry indicator is set to 1 by a divide check.

« The even indicator is set to 1 by an underflow.

Add Operations. An exponent overflow occurs when a carry from the
high-order position of the intermediate-sum fraction causes the
characteristic of the sum to exceed 127. The operation is completed by
forcing the characteristic to 127 and the result fraction bits to all 1’s.

Subtract and Compare Operations. An exponent overflow occurs when a

"borrow from the high-order position of the intermediate-sum fraction

causes the characteristic of the sum to exceed 127. The operation is

completed by forcing the characteristic to 127 and the result fraction bits
to all I’s.

O O O O

O O

)

, h

t

\

O O O 0O O O

O 0O O 0



}
/

L

OO C

)

O O 0O O

\
/

O O O C

Floating-Point Underflow

Divide Check

Floating-Point Instructions

Divide Operations. An exponent overflow occurs when the final-quotient
characteristic exceeds 127. The operation is completed by forcing the
characteristic to 127 and the result fraction bits to all 1’s.

Multiply Operations. An exponent overflow occurs when the characteristic
of the normalized product exceeds 127 and the fraction is not 0. The
operation is completed by forcing the characterisitc to 127 and the result
fraction bits to all 1’s.

Add Operations. An exponent underflow occurs when the characteristic of
the normalized sum is less than O and the fraction is not 0. The result sign,
characteristic, and fraction are forced to 0’s.

Subtract and Compare Operations. An exponent underflow occurs when
the characteristic of the normalized sum is less than O and the fraction is
not 0. The result sign, characteristic, and fraction are forced to 0’s.

Divide Operations. An exponent underflow occurs when the characteristic
of the normalized quotient is less than O and the fraction is not 0. The
result sign, characteristic, and fraction are forced to 0’s.

Multiply Operations. An exponent underflow occurs when the
characteristic of the normalized product is less than 0 and the fraction is
not 0. The result sign, characteristic, and fraction are forced to 0’s.

Divide Operations. A divide check occurs when division by 0 is attempted.
The dividend is not changed.

The floating-point instruction set provides a variety of instructions that
deal with single- or double-precision floating-point data. The main
categories are:

« Arithmetic instructions (add, subtract, multiply, divide, and compare)

« Data movement instructions (with or without conversion of binary
integers)

Two privileged instructions are also provided for interrogation of the

floating-point registers. They are Copy Floating Level Block (CPFLB) and

Set Floating Level Block (SEFLB).

All floating-point instructions use the floating-point registers. One group
of instructions (storage/floating-point register) specifies a register for one
operand, and an effective main storage address for the other operand.
Another group (floating-point register to floating-point register) specifies
registers for both operands.

Floating-Point Feature  7-5



Instruction Formats

Storage/Floating-Point Register

Arithmetic and data movement instructions use the following two formats:

Op code R RB |AM |Func |P
0
0 456789101112 1415

16 2324 31

« The op-code field specifies the floating-point operation.
+ The R-field specifies a floating-point register.

« The function field designates the function to be performed (add,
subtract, multiply, divide, move, or move and convert).

« The RB and AM fields designate the effective address argument. Refer
to “Effective-Address Generation” in Chapter 2 for additional
information. '

« The P-field designates precision of floating-point data. A 0 denotes
single precision; a 1 denotes double precision.

+ The second word (bits 16—31) is the address mode appended word for
an AM field equal to 10 or 11.

Floating-Point Register/Floating-Point Register

7-6

GA34-0152

Op code R1 | R2 Func |P
1 00
0 4567 89 101112 1415

« The op-code field specifies the floating-point operation.
« The R1 and R2 fields specify floating-point registers.

« Bits 10-11 designate the function modifier. These bits are not used
and must be set to 0’s to avoid future code obsolescence.

« The function field designates the function to be performed (add,
subtract, multiply, divide, move, or compare).

Note: To avoid future code obsolescence, function field bit
combinations equal to 110 and 111 must not be used.

« The P-field designates the precision of floating-point data. A 0
denotes single precision; a 1 denotes double precision.

Another instruction format is used for the two privileged instruction
(CPFLB and SEFLB). The three-bit R-field associated with this format
specifies a processor general register (0-7). Refer to the individual

_ instructions in Chapter 8 for the complete format.

—N

o C

L

O O O

O

O O

O O O

O O

D O O O



™

)

g

N
J

~
)
./

QO C

@

N\
)

O 0O O O O O

W)

Note: The instruction formats are also shown in Appendix A of this
manual.

Exception Conditions
Exception conditions that might occur during instruction execution are
shown with each instruction description.

Program-Check Conditions

Specification Check
A program-check class interrupt occurs with specification check (bit 0) set
in the PSW.

Invalid Storage Address
A program-check class interrupt occurs with invalid storage address (bit 1)
set in the PSW.
Note: If the instruction uses an AM field equal to 01, the instruction is
terminated if the RB register is incremented. Refer to “Additional Error
Information” in this chapter for details.

Privilege Violate
A program-check class interrupt occurs with privileged violate (bit 2) set
in the PSW.

Protect Check
A program-check class interrupt occurs with protect check (bit 3) set in
the PSW.
Note: 1f the instruction uses an AM field equal to 01, the instruction is
terminated if the RB register is incremented. Refer to ‘“Additional Error
Information” in this chapter for details.

Soft-Exception Trap Conditions

Invalid Function
A soft-exception-trap class interrupt occurs with invalid function (bit 4)
set in the PSW. For storage-to-storage instructions, the main storage
address loaded into register 7 is the calculated effective address of data
operand 2. For register-to-register instructions, the address of the
attempted instruction is loaded into register 7.

Floating-Point Exception
A soft-exception-trap class interrupt occurs with floating-point exception
(bit 5) set in the PSW.
Note: The resulting class interrupt causes the contents of the storage
address register (SAR) to be loaded into general register 7. SAR contains
either the calculated effective address of data operand 2, or the address of
the attempted instruction for register-to-register operations.

Floating-Point Feature  7-7



Additional Error Information

The storage to register instructions use an AM field and an RB field for C
effective address generation. During normal operation, if no errors occur,

the RB register is incremented by the number of bytes in the storage —~
operand if the AM field is equal to 01. If an invalid storage address , a (\,)
protect check, or a specification check occurs when the AM field is equal

to 01, the RB register is incremented by 2 for CPFLB and SEFLB, or

incremented by 1 for all other storage to register instructions. C‘)

Single Precision

Addition

Addition of two floating-point numbers is based on characteristic
comparison and fraction addition. The characteristics of the two operands
are compared, and the fraction accompanying the smaller characteristic is
shifted right, with its characteristic increased by 1 for each hexadecimal
digit shifted, until the two characteristics are equal.

D O O

/
\

When an operand is shifted right during alignment, the leftmost
hexadecimal digit of the field shifted out is retained as a guard digit. The
operand that is not shifted is considered to be extended with a low-order
0. Both operands are considered to be extended with low-order 0’s when
no alignment shift occurs. The 28-bit fractions are then added
algebraically to form an intermediate sum.

C

The intermediate-sum fraction consists of seven hexadecimal digits and a
possible carry. If a carry is present, the sum is shifted right one digit

position, to make room for the carry, and the characteristic is increased by
1.

If the operand signs are unlike (resulting in a subtraction) and the fraction
is not 0, normalization takes place. The intermediate sum is shifted left as
necessary to form a normalized number. Vacated low-order digit positions
are filled with O’s, and the characteristic is reduced by the number of
hexadecimal digits shifted. The intermediate-sum fraction is subsequently
truncated to the proper result fraction length of six hexadecimal digits.

O C ) O

~
-/

C

Subtraction

Subtraction of two floating-point numbers is based on characteristic
comparison and fraction subtraction. The characteristics of the two
operands compared, and the fraction accompanying the smaller
characteristic is shifted right, with its characteristic increased by 1 for each
hexadecimal digit shifted, until the two characteristics are equal.

O

When an operand is shifted right during alignment, the leftmost
hexadecimal digit of the field shifted out is retained as a guard digit. The
operand that is not shifted is considered to be extended with low-order 0’s
when no alignment shift occurs. The 28-bit fractions are then subtracted
algebraically to form an intermediate sum.

The intermediate-sum fraction consists of seven hexadecimal digits and a
possible borrow. If a borrow is present, the sum is shifted right one digit
position, and the characteristic is increased by 1.

If a true subtraction is performed and the fraction is not 0, normalization
takes place. The intermediate sum is shifted left as necessary to form a
normalized number. Vacated low-order digit positions are filled with 0’s

O O O O O

7-8 GA34-0152

OO



QO
O

SN

)

—

O

h

@

Multiplication

Division

Double Precision

Addition

and the characteristic is reduced by the number of hexadecimal digits
shifted. The intermediate-sum fraction is subsequently truncated to the
proper result-fraction length of six hexadecimal digits.

Multiplication of two floating-point numbers is based on exponent addition
and fraction multiplication. The operands are assumed to be normalized.
The sum of the characteristics of the operands less 64 is used as the
characteristic of the intermedite product. When the result is normalized
without requiring any post-normalization, the intermediate-product fraction
is the result fraction, and the intermediate-product characteristic becomes
the final-product characteristic. When the intermediate-product fraction
has one leading O-digit, it is shifted left one digit position and the
intermediate-product characteristic is reduced by 1.

- The multiplier and multiplicand have six-digit fractions. The product

fraction has 14 digits. The two low-order fraction digits are always O’s,
unless overflow occurs.

Division of two floating-point numbers is based on characteristic
subtraction and fraction division. The operands are assumed to be
normalized. The difference between the dividend and divisor
characteristics plus 64 is used as the characteristic of the intermediate
quotient.

The sign of the quotient is determined by the rules of algebra unless the
quotient is made a true zero; in this case, the sign is made plus.

All dividend and divisor fraction digits participate in forming the fraction
of the quotient. The quotient fraction will be a 24-bit normalized result if
the dividend and the divisor are normalized.

Addition of two floating-point numbers is based on characteristic
comparison and fraction addition. The characteristics of the two operands
are compared and the fraction accompanying the smaller characteristic is
shifted right, with its characteristic increased by 1 for each hexadecimal
digit shifted, until the two characteristics are equal. The fractions are then
added algebraically to form an intermediate sum.

When an operand is shifted right during alignment, the last hexadecimal
digit shifted out of the 64-bit register is preserved as a guard digit, with 15
digits participating in the arithmetic.

The long intermediate-sum fraction consists of 15 hexadecimal digits and a
possible carry. If a carry is present, the sum is shifted right by one
position, and the characteristic is increased by 1.

If the operand signs are unlike (resulting in a subtraction) and the fraction
is not 0, normalization takes place. The intermediate sum, including the
guard digit, is shifted left as necessary to form a normalized number.
Vacated low-order digit positions are filled with 0’s, and the characteristic
is reduced by the number of hexadecimal digits shifted.

Floating-Point Feature 7-9



Subtraction

Multiplication

Division

7-10

GA34-0152

Subtraction of two floating-point numbers is based on characteristic
comparison and fraction subtraction. The characteristics of the two
operands are compared and the fraction accompanying the smaller
characteristic is shifted right, with its characteristic increased by 1 for each
hexadecimal digit shifted, until the two characteristics are equal.

When an operand is shifted right during alignment, the last hexadecimal
digit shifted out fo the 64-bit register is preserved as a guard digit, with 15
digits participating in the arithmetic. The fractions are then subtracted
algebraically to form an intermediate sum.

The long intermediate-sum fraction consists of 15 hexadecimal digits and a
possible borrow. If a borrow is present, the sum is shifted right one digit
position, and the characteristic is increased by 1.

If a true subtraction is performed and the fraction is not 0, normalization
takes place. The intermediate sum, including the guard digit, is shifted left
as necessary to form a normalized number. Vacated low-order digit
positions are filled with Q’s, and the characteristic is reduced by the
number of hexadecimal digits shifted.

Multiplication of two floating-point numbers is based on exponent addition
and fraction multiplication. The operands are assumed to be normalized.
The sum of the characteristics of the operands less 64 is used as the
characteristic of the intermediate product. When the result is normalized
without requiring any post-normalization, the intermediate-product fraction
is the result fraction, and the intermediate-product characteristic becomes
the final-product characteristic. When the intermediate-product fraction
has one leading 0-digit, it is shifted left one digit position and the
intermediate-product characteristic is reduced by 1. The muitiplier and
multiplicand fractions have 14 digits and the result-product fraction is
truncated to 14 digits.

The division of two floating-point numbers is based on characteristic
subtraction and fraction division. The operands are assumed to be
normalized. The difference between the dividend and divisor
characteristics plus 64 is used as the characteristic of the intermediate
quotient.

All divident and divisor fraction digits participate in forming the fraction
of the quotient. The quotient fraction will be a 56-bit normalized result if
the dividend and divisor are normalized.

The sign of the quotient is determined by the rules of algebra unless the
quotient is made a true zero; in this case, the sign is made plus.

@

)

D O

O O) (

)

)

/
{

(

3

—.

/
N

OGN

7

)
\__

(

4

0

{

O

C

O O O O

/
\‘_/



\
A}
@

)

—

)
g

(

)

~

O O

)

C

) O

QO O O OO0 0O OO C

Chapter 8. Instructions

This chapter contains instruction descriptions. The instructions are listed in
alphabetical sequence based on assembler mnemonics.

Each instruction description contains:

o Assembler syntax

e Instruction format

« Explanation

¢ Indicator settings

« Exception conditions (which occur within each instruction).

In the instruction illustration, the field names R1 and R2 do not
correspond to general register names or operand placement within
assembler syntax. Refer to “Program Execution” in Chapter 2 for an
explanation of the relationship between assembler syntax and
machine-language instruction formats. For a detailed discussion of
assembler syntax and operand usage, refer to the publication that describes

the assembler program installed on each individual system. A listing of
these publications can be found in the IBM Series/1 Graphic Bibliography,

GA34-0055.

Under program-check conditions, “instruction is suppressed” means that
the error condition was detected prior to the modification of any software
accessible register or storage locations; “instruction is terminated” means
that the error condition was detected after the modification of certain
software accessible registers or storage locations.

For additional information, refer to:

« “Effective-Address Generation” in Chapter 2 for a detailed
explanation of the standard methods of deriving effective addresses.

o “Indicator Bits” in Chapter 2 for a detailed explanation of indicator
settings. ‘

e “Class Interrupts” in Chapter 3 for a detailed description of exception
conditions.

+ Appendix A for instruction formats grouped by operation codes.

« Appendix B for definitions of the assembler syntax.

Instructions  8-1



AA

Add Address (AA)

Register Immediate Long Format

AA raddr,reg[,reg]

Op code R1 R2 Function
01111 00001
0 4 5 7 8 1011 15
Immediate field

16 317

The immediate field (an address value) is added to
the contents of the register specified by the R1
field. The result is placed in the register specified
by the R2 field. The contents of the register
specified by the R1 field are not changed if the
R1 and R2 fields do not specify the same register.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than ~2!5 or
greater than +215-1,

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

8-2 GA34-0152

Storage Immediate Format
AA raddr,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

Op code RB |AM |Function
01 000{000OC 1001
0 4 5 7 8 9 101112 15

Immediate field

16 317

Format with appended word for
effective addressing (AM = 100or 11)

Op code RB |AM \Function
01 000|000 100 1
o 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 L Displacement 2
16 2324 31

immediate field

32 47

The immediate field (an address value) is added to
the contents of the location specified by the
effective address. The result replaces the contents
of the storage location specified by the effective
address. The immediate operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

)

//-\
A —

O O

ey O

O O

@

)



O O

\
)

/

L O

OO0 OCOOO0OOC H>OOOLLOO

O O O

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2!5 or
greater than +2!5-1.

If an overflow occurs, the result contains the

correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, the

instruction:

« Is fetched or data is accessed from a storage
area not assigned to the current operation,

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions  8-3



AB
Add Byte (AB)
AB reg,addr4

addr4,reg
Op code R RB |AM Func
11000 X110
0 45 78 9 10111213 15

1 = result to storage
0 = result to register

Address/Displacement
Displacement 1 I Displacement 2
16 2324 31

An add operation is performed between the
least-significant byte of the register specified by
the R-field and the location specified by the
effective address in main storage. The source
operand and high-order byte of the register are
not changed.

Bit 12 of the instruction specifies the destination
of the result.

8-4 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the byte, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one byte; that is, if the sum is less than -27 or
greater than +27-1.

If an overflow occurs, the result contains the
correct low-order eight bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

» Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

OO 0O OO0

)

O O O O

)

N

(

O



O

O

O O OO0

:\» 4
-~

OO0CO00000O0OO0

Add Byte Immediate (ABI)

ABI byte,reg

Op code R Immediate field
00000

0 4 5 7 8 15

The immediate field is expanded to 16 bits by sign
propagation to the eight high-order bits. The field
is then added to the contents of the register
specified by the R-field. The result is placed in the
register specified by the R-field.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2'% or
greater than +215—1,

If an overflow occurs, the result contains the

correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data accessed from a storage area not
assigned to the current operation.

ABI—ACY
Add Carry Register (ACY)
ACY reg
Op code R2 Function
01110000 01100
0 4 5 7 8 1011 15

The value of the carry indicator is added to the
contents of the register specified by the R2 field,
and the result is placed in the register specified by
the R2 field.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Programming Note: This instruction can be used
when adding multiple word operands. See
“Indicators—Multiple Word Operands’ in Chapter
2.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2'5 or
greater than +215—1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even. The even indicator is not changed.

Negative. The negative indicator is changed to
reflect the result.

Zero. If on at entry, the zero indicator is changed
to reflect the result. If off at entry, it remains off.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions  8-5



AD

Add Doubleword (AD)

Register/Storage Format

AD reg,addr4

addré4,reg
Op code R RB |AM Func
11010 Xj1 10
o 45 789 10111213 15

1 = result to storage
0 = result to register

Address/Displacement
Displacement 1 L Displacement 2
16 2324 31

An add operation is performed between the
register pair specified by the R-field and R+1
field and the doubleword in main storage specified
by the effective address. The source operand is
not changed.

If the R-field value is 7, register 7 and register O
are used.

Bit 12 of the instruction specifies the destination
of the result.

8-6 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the doubleword, the carry indicator
is set to 1. If no carry is detected, the carry
indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
the doubleword; that is, if the sum is less than
—231 or greater than +23'—1.

If an overflow occurs, the result contains the
correct low-order 32 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

o Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

O O

e

O

O O O

O O O

O O

®



SN OO ONONONONG.

O

OO0OO0O00000O0O0

Storage/Storage Format
AD addr5,addr4

Op code RB1 RB2 | AM1|AM2 |Func

10101 10
0 45 7 8 9 101112131415

Address/Displacement
Displacement 1 |  Displacement 2
16 2324 31

Address/Displacement
Displacement 1 [  Displacement 2
32 3940 47

The address arguments generate the effective
addresses of two operands in main storage.
Doubleword operand 1 is added to doubleword
operand 2. The result replaces operand 2. Operand
1 is not changed.

AD

Indicators

Carry. If a carry is detected out of the high-order
bit position of the doubleword, the carry indicator
is set to 1. If no carry is detected, the carry
indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
the doubleword; that is, if the sum is less than
—23 or greater than +23'—1,

If an overflow occurs, the result contains the

correct low-order 32 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the resuit.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

o Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions  8-7



AW

Add Word (AW)

Register/Register Format

AW reg,reg

Op code R1 R2 Function
01110 01000
1] 4 5 7 8 1011 15

The contents of the register specified by the R1
field are added to the contents of the register
specified by the R2 field. The result is placed in
the register specified by the R2 field. The contents
of the register specified by the R1 field are not
changed if the R1 and R2 fields do not specify the
same register.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —25 or
greater than +215—1,

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

8-8  GA34-0152

Register/Storage Format

AW reg,addr4

addr4,reg
Op code R RB |AM Func
11001 Xj[1.1 0
0 4 5 7 8 9 10111213 15

1 =result to storage
0 = result to register

Address/Displacement
Displacement 1 | Displacement 2
16 2324 317

An add operation is performed between the
register specified by the R-field and the location
specified by the effective address in main storage.
The source operand is not changed.

Bit 12 of the instruction specifies the destination
of the result.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2!5 or
greater than +2'3—1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

O O

.

O O O

O O

O OO0 OO0 HOO

O O O O O



C

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

« Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.
Specification Check. The effective address or
indirect address results in an even-byte boundary

violation. The instruction is terminated.

Storage/Register Long Format

AW longaddr,reg

Op code R1 R2 Function
01101 X[1 110
0 4 5 7 8 101112 15

0 = direct address
1 =indirect address

Address

16 317

The contents of the main storage location
specified by the effective address are added to the
contents of the register specified by the R1 field.
The result is placed in the register specified by the
R1 field.

AW

The effective main storage address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0 (direct address). The result from
step 1 is the effective address.

Bit 11=1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —215 or
greater than +25—1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation.

Instructions  8-9



AW
Storage/Storage Format
AW addr5,addr4
Op code RB1 RB2| AMT1|AM2|Func|
10101 00
0 4 5 7 8 9 101112131415
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 37
Address/Displacement

Displacement 1 |  Displacement 2
32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. Word
operand 1 is added to word operand 2. The result
replaces operand 2. Operand 1 is not changed.

8-10 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, The carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2!5 or
greater than +215—1,

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Profect Check. In the problem state the
instruction:

« Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

O

O O

N
/

O

DO

7
\

Id

O O

O C )

O O

OO O O

O O O



OHORONONG

O

OO0 00000000 C 0000

Add Word With Carry (AWCY)
AWCY reg,reg

Op code R1 R2 Function
01110 _ 01001
0 4 5 7 8 1011 15

This instruction adds the contents of the register
specified by the R1 field, the contents of the
register specified by the R2 field, and the value of
the carry indicator at entry.

The contents of the register specified by the R1
field are not changed if the R1 and R2 fields do
not specify the same register. The final result
replaces the contents of the register $pecified by
the R2 field.

Programming Note: This instruction can be used
when adding multiple word operands. Refer to
“Indicators—Multiple Word Operands” in Chapter
2.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2'° or
greater than +215—1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even. The even indicator is not changed.

Negative. The negative indicator is changed to
reflect the result.

Zero. 1f on at entry, the zero indicator is changed
to reflect the result. If off at entry, it remains off.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

AWCY—AWI

Add Word Immediate (AWI)

Register Immediate Long Format

AWI word,reg[,reg]

Op code R1 R2 Function
01111 00001
0 4 5 7 8 1011 15

Immediate field

16 31

The immediate field is added to the contents of
the register specified by the R1 field. The result is
placed in the register specified by the R2 field.
The contents of the register specified by the R1
field are not changed if the R1 and R2 fields do
not specify the same register.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —2!° or
greater than +215—1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions  8-11



AWI

Storage Immediate Format
AWI word,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

Op code RB |AM |Function
01 000|000 1001
0 4 5 7 8 9 101112 15

Immediate field

16 37

Format with appended word for
effective addressing (AM = 10or 11}

Op code RB |AM |Function
01000j000 1001
o 4 5 7 8 9 101112 15

Address/Displacement
Disptacement 1 |  Displacement 2
16 2324 31

Immediate field

32 ’ 47

The immediate field is added to the contents of
the location specified by the effective address. The
result replaces the contents of the storage location
specified by the effective address. The immediate
operand is not changed.

Bits 5—7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

8-12 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than —215 or
greater than +25—1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside ‘the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction;

o [s fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

OO0 00 0 0 O

c O

O

O

O O O 0O O O

O O



N

O 000000000

Branch Unconditional (B)

B longaddr

Extended Assembler Mnemonic

BX vcon Branch External

Op code R2 Function
01101]000 X0 010
0 45 78 101112 15

0 = direct address }
1 = indirect address

Address

16 31

An effective branch address is generated and
loaded into the instruction address register. This
becomes the next instruction to be fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Bits 5~7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. -

Instructions 8-13



BAL

Branch and Link (BAL)
BAL longaddr,reg
Extended Assembler Mnemonic

BALX vcon,reg Branch and Link External

Op code R1 R2 Function
01101 X|0 011
0 4 5 7 8 101112 15

0 = direct address
1 = indirect address

Address

16 31

The updated contents of the instruction address
register (the address of the next sequential
instruction) are stored into the register specified
by the R1 field. An effective branch address is
then generated and loaded into the instruction
address register. This becomes the next instruction
to be fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Programming Note: If the R1 and R2 fields
specify the same register, the initial contents are
used in effective address computation and
subsequently overwritten by the return data.

8-14  GA34-0152

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. No branch is
taken, but the contents of the register specified by
the R1 field are changed. The instruction is
terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. No branch is taken, but the contents of
the register specified by the R1 field register are
changed. The instruction is terminated.

O O

Y OO O O 0000

/
&\

O O

O O O O O



O

P

Branch and Link Short (BALS)
BALS (reg,jdisp)*

(reg)*

addr*
Op code R Word displacement
11111
0 4 5 7 8 15

The updated contents of the instruction address
register (the location of the next sequential
instruction) are stored in register 7.

Bit 8 (the leftmost bit of the word displacement
field) is propagated left by seven bit positions and
a 0 is appended at the low-order end; this results
in a 16-bit word. (Word displacement is converted
to a byte displacement.) This value is added to the
contents of the register specified by the R-field to
form an effective address. The contents of the
storage location specified by the effective address
are stored into the instruction address register, and
become the address of the next instruction to be
fetched.

Programming Note: If the implied register
(register 7) is used as a base register, the initial
contents of register 7 are used in effective-address
computation and subsequently overwritten by the
return data.

BALS

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. Branching
does not occur, but the updated instruction
address is stored into register 7. The instruction is
terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operations.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. Branching does not occur, but the
updated instruction address is stored into register
7. The instruction is terminated.

Instructions  8-15



BC

Bi'anch on Condition (BC)

Condition field

Mnemonic Operand syntax  Instruction name bits (see @)
BC cond,longaddr Branch on Condition Any value listed below
Condition field
Extended mnemonic Operand syntax  Instruction name bits (see @)
BE longaddr Branch on Equal 000
BOFF longaddr Branch if Off 000
BZ longaddr Branch on Zero 000
BP longaddr . Branch on Positive 001
BMIX longaddr Branch if Mixed 001
BN longaddr Branch if Negative 010
BON longaddr Branch if On 010
BEV longaddr Branch on Even 011
BLT longaddr Branch on Arithmetically 100
Less Than
BLE longaddr Branch on Arithmetically 101
Less Than or Equal
BLLE . longaddr Branch on Logically 110
Less Than or Equal
BCY longaddr Branch on Carry 111
BLLT longaddr Branch on Logically Less Than 111
Extended mnemonics Indicators Extended mnemonics Indicators
tested tested
Cond Cond
field Branch 01234 field Branch 01234
bits ne ECON?Z bits ¢ ECONZ
BE, BOFF, BZ XXX X1 BLT XX01X
1000 XX 10 X
BNE, BNOFF,BNZ |X X X X 0 100
BMIX, BP XXX00 BGE XX 11X
001 XX00X
BNMIX, BNP XXX X1
X X X 1 X BLE XX01X
BN, BON XX X1 X Xxx190Xx
010 ' 101 XXX X1
BNN, BNON XX X0X BGT XX110
011 BEV 1 XX XX XX000
BNEV 0 XX XX BLLE X1 XXX
‘ X X X X1
110
BLGT X0 XXO0
"1 BCY,BLLT X1 XXX
BLGE, BNCY X0 X XX
8-16 GA34-0152

O O

O O O

O O

O O O

D

!
\'\.

O O

O O O

O O

D O O



ONONOHEONOHONOHNONS:

)

O000CCD

)
N

O 0O O OO0

Op code Cond |R2 Function
01101 X0 000
0 45@Q78 101712 15
0 = direct address
1 = indirect address
Address
16 31

This instruction tests the condition of the various
indicators (LSR bits 0—4). If the condition tested
is met, the effective branch address is loaded into
the instruction address register and becomes the
next address to be fetched.

If the condition tested is not met, the next
sequential instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

BC

Indicators
The .indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation.

Instructions 8-17



BCC

Branch on Condition Code (BCC)

BCC cond,longaddr

Extended mnemonic

BNER longaddr Branch on Not Error (CC

field = 111)
Op code cc R2 Function
01101 X001 00
o 4 5 7 8 701112 15

0 = direct address
1 = indirect address

Address

16 31

The value of the CC field is compared to the
even, carry, and overflow indicators. These
indicators hold the I/O condition code following
an I/0 instruction or an I/O interrupt.

CC bit Indicator
5 Even

6 Carry

7 Overflow

If the conditions match, an effective branch
address is generated and loaded into the
instruction address register. This becomes the next
instruction to be fetched.

If the conditions do not match, the next sequential
instruction is fetched.

The effective branch address is generated as
follows: :

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals O,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bijt 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

8-18 GA34-0152

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

I/0 Condition Codes

The I/0 condition codes are summarized in the
following tables. Refer to Chapter 4 for a detailed
description of each condition-code value. Some
devices do not report all condition codes, refer to
the specific I/0O device descriptions.

Condition Codes Reported After 1/0 Instruction.

Condi- Indicators

tion Over-

code Even Carry flow Meaning

0 0 0 0 Device not attached
1 0 0 1 Busy

2 0 1 0 Busy after reset

3 0 1 1 Command reject

4 1 0 0 Intervention required
5 1 0 1 Interface data check
6 1 1 0 Controller busy

7 1 1 1 Satisfactory

Condition Codes Reported During an I/0 Interrupt.

Condi- Indicators
tion Over-
code Even Carry flow Meaning

0 0 0 0
1 0 0 1

Controller end
PCI (program-
controlled interrupt)

2 0 1 0 Exception

3 0 1 1 Device end

4 1 0 0 Attention

5 1 0 1 Attention and PCI

6 1 1 0 Attention and
exception

7 1 1 1 Attention and device
end

O O

o O

@

@)

J

L

)

O O

D

OO

O O O O

OO O 0



OO C

}
7

AY
e

O C

¥

N\
C

J

> O O O C

OCOO0OOO0O00O0CCC

O

BNC
Branch on Not Condition (BNC)
Condition field
Mnemonic Operand syntax  Instruction name bits (see @)
BNC cond,longaddr Branch on Not Condition Any value listed below
Condition field
Extended mnemonic Operand syntax  Instruction name bits (see @)
BNE longaddr Branch on Not Equal 000
BNZ longaddr Branch on Not Zero 000
BNOFF longaddr Branch if Not Off 000
BNP longaddr Branch on Not 001
Positive
BNMIX longaddr Branch on Not Mixed 001
BNN longaddr Branch on Not 010
Negative
BNON longaddr Branch if Not On 010
BNEV longaddr Branch on Not Even 011
BGE longaddr Branch on Arithmetically 100
Greater Than or Equal
BGT longaddr Branch on Arithmetically 101
Greater Than
BLGT longaddr Branch on Logically 110
Greater Than
BLGE longaddr Branch on Logically 111
Greater Than or Equal
BNCY longaddr Branch on No carry 111
Extended mnemonics Indicators Extended mnemonics Indicators
tested tested
Cond 01234 Cond 01234
field Branch field Branch
bits ECON2Z bits ECON2Z
BE, BOFF, BZ XXX X1 BLT XX01X
000 XX 10X
BNE, BNOFF, BNZ XX XXDO0 100
BMIX, BP XX X0 0 BGE XX11 X
001 XX00X
BNMIX, BNP XXX X1
X X X1 X BLE XX01X
XX10X
BN, BON XX X1 X X X X X1
010 101
BNN, BNON X X X0 X 5GT X X110
o11 BEV 1 XX XX XX000
BNEV 0 X XXX BLLE X1 XXX
XXX X1
110
‘ BLGT X0 XXDO0
" BCY, BLLT X1 XXX
BLGE, BNCY X0 XXX
Instructions  8-19



BNC
Op code Cond |R2 Function
01101 X{0 0 0 1
0 45@78 101112 15
0 = direct address
1 = indirect address
Address
16 31

This instruction tests the condition of the various
indicators (LSR bits 0-4). If the condition tested
is met, the effective branch address is loaded into
the instruction address register and becomes the
next address to be fetched.

If the condition tested is not met, the next
sequential instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

8-20 GA34-0152

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

@

O OO OO0 0000

)

OO O 0O O C

O O



N

OO0 0000000 C

O

Branch on Not Condition Code (BNCC)
BNCC cond,longaddr
Extended mnemonic ‘
BER longaddr Branch on Error (CC

field#111)
Op code cc R2 Function
01101 Xj0 101
0 4 5 7 8 101112 15

0 = direct address
1 = indirect address

Address

16 317

The value of the CC field is compared to the
even, carry, and overflow indicators. These
indicators hold the 1/0 condition code following
an 1/0 instruction or an I/0O interrupt.

CC bit Indicator
5 Even

6 Carry

7 Overflow

If the conditions do not match, an effective
branch address is generated and loaded into the
instruction address register. This becomes the next
instruction to be fetched.

If the conditions match, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

BNCC

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

I/0 Condition Codes

The I/0 condition codes are summarized in the
following tables. Refer to Chapter 4 for a detailed
description of each condition-code value. Some
devices do.not report all condition codes; refer to
the specific I/O device descriptions.

Condition Codes Reported After 1/0 Instruction.

Condi- Indicators

tion Over-

code Even Carry flow Meaning

0 0 0 0 Device not attached
1 0 0 1 Busy

2 0 1 0 Busy after reset

3 0 1 1 Command reject

4 1 0 0 Intervention required
5 1 0 1 Interface data check
6 1 1 0 Controller busy

7 1 1 1 Satisfactory

Condition Codes Reported During an I/O Interrupt.
Condi- Indicators

tion Over-
code Even Carry flow Meaning

0 0 0 0
1 0 0 1

Controller end
PCI (program-
controlled interrupt)

2 0 1 0 Exception

3 0 1 1 Device end

4 1 0 0 Attention

5 1 0 1 Attention and PCI

6 1 1 0 Attention and
exception

7 1 1 1 Attention and device
end

Instructions  8-21



BNOV

Branch on Not Overflow (BNOYV)
BNOV  longaddr

Op code R2 Function
01101000 X011 1
0 4 5 7 8 101112 15

0 = direct address
1 = indirect address

Address

16 31

The overflow indicator is tested. If the indicator is
off, the effective branch address is loaded into the
instruction address register and becomes the next
address to be fetched.

If the overflow indicator is on, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added- to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Bits 5—7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

8-22 GA34-0152

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

N\
J

O O O O C

)

O O C

) O O

r“
N

7

S

O

O O O O

.

O

\.



O ONONG

C O

'
L N

OHONONONONONONONONGS!

Branch on Overflow (BOV)
BOV longaddr

Op code R2 Function
01101{000 X00110
0 4 5 7 8 101112 15

0 = direct address
1 = indirect address

Address

16 ' 317

The overflow indicator is tested. If the indicator is
on, the effective branch address is loaded into the
instruction address register and becomes the next

address to be fetched.

If the overflow indicator is off, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11=1. The result from step 1 is an

indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

BOV

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation.

Instructions  8-23



BXS

Branch Indexed Short (BXS)
BXS (reg!-7,jdisp)

(reg!-")
addr
Op code R Word displacement
01010
0 4 5 7 8 15
N, o’
0-7

Bit 8 (the leftmost bit of the word displacement
field) is propagated left seven bit positions and a 0
is appended at the low-order end; this results in a
16-bit word. (Word displacement is converted to a
byte displacement.) This value is added to the
contents of the register specified by the R-field.
The result is stored into the instruction address
register, and becomes the address of the next
instruction to be fetched.

8-24  GA34-0152

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the »

instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

@

N

o

O O

O O O O



G ONONEG

)
/

O C

<~/

O O

./

)

—

\

|
W,

(
\

9

O (

0 O

(

)
_J

Compare Address (CA)

Register Immediate Long Format

CA raddr,reg

Op code R1 Function
01111 000j]00110
0 4 5 7 8 1011 15
Immediate field

16 31

The immediate field (an address value) is
subtracted from the contents of the register
specified by the R1 field. The contents of the
register specified by the R1 field are not changed.

Bits 8—10 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2'5 or greater than +215—1.

Even, Negative, and Zero. These indicators are
changed to reflect the resuit.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

CA

Storage Immediate Format
CA raddr,addr4

Format without appended word for effective
addressing (AM = 00 or 01)

Op code RB |AM | Function
01000j000O0 1111
o 4 5 7 8 9 101112 15

Immediate field

16 31

Format with appended word for effective
addressing (AM = 10 or 11)

Op code RB | AM |Function
01 000/000 1111
0 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 L Displacement 2
16 2324 31

Immediate field

32 47

The immediate word (an address value) is
subtracted from the contents of the location
specified by the effective address. Neither operand
is changed.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Instructions  8-25



CA

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than +25—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

8-26  GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the systems.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

)

r
(
\

9

)

,—
{
.

D

O«

@

O O

DO

(



O O

)

/\
\_

)

—_ A

\

O O O

Compare Byte (CB)

Register/Storage Format

CB addr4,reg
Op code R RB |AM |[Function
11000 0100
0 4 5 7 8 9 101112 15
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31

The contents of the location specified by the
effective address in main storage are subtracted
from the least-significant byte of the register
specified by the R-field. Neither operand is
changed.

Bit 12 of the instruction is not used and must be
set to O to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than —27 or greater than +27—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

CB

Storage/Storage Format
CB addr5,addr4
Op code RB1 RB2 |AM1|AM2|Func
10000 11
0 4 5 7 8 9 101112131415
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31
Address/Displacement

Displacement 1 |  Displacement 2
32 3940 47

The address arguments generate the effective
addresses of the two operands in main storage.
Byte operand 1 is subtracted from byte operand 2.
Neither operand is changed.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than —27 or greater than +27—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary

~ violation. The instruction is terminated.

Instructions  8-27



CBI

Compare Byte Immediate (CBI)

CBI byte,reg

Op code R Immediate field
11110

0 4 5 7 8 15

The immediate field is extended to 16 bits by sign
propagation to the eight high-order bit positions.
The result is subtracted from the contents of the
register specified by the R-field. Neither operand
is changed.

Note: If a byte of data from storage is to be
compared with a CBI instruction, an MVB

(storage to register) instruction must be performed
first. ‘

8-28  GA34-0152

Indicators

Carry. 1If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than +2'5—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

) O O

—

(

DO

{
\

®

O O

O



O O C

)

O 000 0OO0CcC

Compare Doubleword (CD)

Register/Storage Format

Cbh addrd,reg
Op code R RB |AM |Function
11010 0100
0 4 5 78 9 101112 15
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31

The contents of the doubleword in main storage
specified by the effective address are subtracted
from the contents of the register pair specified by
the R-field and R+1 field. Neither operand is
changed.

If the R-field value is 7, registers 7 and O are
used.

Bit 12 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

CDh

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the doubleword, the
carry indicator is set to 1. If no borrow is
detected, the carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in the doubleword; that is, if the
difference is less than —23! or greater than
+231-1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Invalid Storage Address. One or more words of the

instruction or the effective address are outside the
installed storage size of the system. The

instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions  8-29



CDh

Storage/Storage Format
CD addr5,addr4

Op code RB1 RB2|AM1|AM2|Func

10010 11
o 4 5 7 8 9 101112131415
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31
Address/Displacement

Displacement 1 ] Displacement 2
32 3940 : 47

The address arguments generate the effective
addresses of two operands in main storage.
Doubleword operand 1 is subtracted from
doubleword operand 2. Neither operand is
changed.

8-30 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the operand, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one doubleword; that is, if the
difference is less than —23! or greater than
+231-1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

O O

OO 0O 0 0

/
\

®

ONORONONS



/’\
.

OO0 000

> 0O OC O 0O

O O

O O O O

O

O

Compare Byte Field Equal and Decrement
(CFED)

Compare Byte Field Equal and Increment
(CFEN)

CFED (reg),(reg)
CFEN (reg),(reg)

Op code R1 R2 ! |D |Func
00101 0 11
0 4 5 7 8 101112131415

0 for CFED or CFEN

0 for CFED; decrement
contents of R1 and R2
1 for CFEN; increment
contents of R1 and R2

This instruction compares two fields in main
storage on a byte-for-byte basis. Register 7
contains the number of bytes to be compared.
This number is decremented after each byte is
compared.

The register specified by the R1 field contains the
address of operand 1. The register specified by the
R2 field contains the address of operand 2.
Operand 1 is subtracted from operand 2, but
neither operand is changed. After each byte is
compared, the addresses in the registers specified
by the R1 and R2 fields are incremented or
decremented (determined by bit 13 of the
instruction). The operation terminates when
either:

1. An equal condition is detected, or

2. The number of bytes specified in register 7
has been compared.

When an equal condition occurs, the addresses in
the registers point to the next operands to be
compared, but the count in register 7 is not
updated.

Bit 11 of the instruction is not used and must be
set to O to avoid future code obsolescence.

See “Scan Byte Field Equal and Decrement
(SFED)” and “Scan Byte Field Equal and
Increment (SFEN)” for other versions of this
machine instruction.

CFED—CFEN

Notes:

1. If the specified count in register 7 is 0, the
instruction performs no operation (no-op).

2. Variable-field-length instructions can be

interrupted. When this occurs and the
interrupted level resumes operation, the
processor treats the incomplete instruction as a
new instruction, with the remaining byte count
specified in register 7.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than —27 or greater than +27—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Function. Register 7 is specified in the R1

or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Instructions  8-31



CFNED—CFNEN

Compare Byte Field Not Equal and Decrement
(CFNED)

Compare Byte Field Not Equal and Increment
(CFNEN)

CEFNED (reg),(reg)
CFNEN (reg),(reg)

Op code R1 R2 ! |D{Func
00101 0 10
0 4 5 7 8 1011121314 15

0 for CFNED or CFNEN

0 for CFNED; decrement
contents of R1 and R2

1 for CFNEN; increment
contents of R1 and R2 .

This instruction compares two fields in main
storage on a byte-for-byte basis. Register 7
contains the number of bytes to be compared.
This number is decremented after each byte is
compared. The register specified by the R1 field
contains the address of operand 1. The register
specified by the R2 field contains the address of
operand 2. Operand 1 is subtracted from operand
2, but neither operand is changed. After each byte
is compared, the addresses in the register specified
by the R1 and R2 fields are incremented or
decremented (determined by bit 13 of the
instruction). The operation terminates when
either:

1. An unequal condition is detected, or

2. The number of bytes specified in register 7
has been compared.

When an unequal condition occurs, the addresses
in the registers point to the next operands to be
compared, but the count in register 7 is not
updated.

Bit 11 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

8-32  GA34-0152

See “‘Scan Byte Field Not Equal and Decrement
(SFNED)” and “Scan Byte Field Not Equal and
Increment (SFNEN)” for other versions of this
machine instruction.

Notes:

1. If the specified count in register 7 is 0, the
instruction performs no operation (no-op).

2. Variable-field-length instructions can be
interrupted. When this occurs and the
interrupted level resumes operation, the
processor treats the incomplete instruction as a
new instruction, with the remaining byte count
specified in register 7.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than —27 or greater than +27—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Function. Register 7 is specified in the R1
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

C

O O O O

(

O

7N

N\

O C ) O O

O O O O O

O O O O

-



)

\
-

PO 00 000C0OO0C

A\, 7
~— -

C O 0O OO0

—

ONOROEONS

Complement Register (CMR)
CMR reg[,reg]

Op code R1 R2 Function
01110 00110
0 4 5 7 8 1011 15

The contents of the register specified by the R1
field are converted to the two’s complement. The
result is placed in the register specified by the R2
field. The contents of the register specified by the
R1 field are not changed if the R1 and R2 fields
do not specify the same register.

Indicators

Carry. The carry indicator is reset, and then set to
1 if the number to be complemented is 0.

Overflow. The overflow indicator is reset, and
then set to 1 if the number to be complemented is
the maximum negative number representable.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

CMR—CPAKR

Copy Address Key Register (CPAKR)

System Register/Storage Format

Mnemonic Syntax Instruction name K-field

CPAKR addr4 Copy Address Key 011
Register

Extended

mnemonic Syntax Instruction name K-field

CPISK addr4  Copy Instruction 000
Space Key

CPOOK addr4 Copy Operand 1 Key 010
CPOTK addr4 Copy Operand 2 Key 001

Op code K VRB |AM |Function
01011 1010
0 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 I Displacement 2
16 2324 31

The contents of the address key register (AKR)

field, specified by the K-field, are stored into the
word location specified by the effective address.

The contents of the AKR are not changed.

The K-field can specify a field within the AKR or
the entire AKR.

Address key register

K-field field name Bits
000 Instruction space key 13-15
001 Operand 2 key 9-11
010 Operand 1 key 5-7
011 Address key register 0-15
100 See Note

101 See Note

110 See Note

111 See Note

Note: To avoid future program obsolescence,
these K-field values should not be used.

If the K-field specifies a specific field within the
AKR, the specified field is stored in bits 13—15 of
the word location in main storage. Bits 0-12 of
the word in main storage are set to 0’s. If the
K-field specifies the entire AKR, the AKR is
stored in the word location in main storage.

Instructions  8-33



CPAKR

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-34 GA34-0152

System Register/Register Format

Mnemonic Syntax Instruction name K-field
CPAKR reg Copy Address Key 011
Register

Extended
mnemonic Syntax Instruction name K-field
CPISK reg Copy Instruction 000

' Space Key
CPOOK reg . Copy Operand 1 Key 010
CPOTK reg Copy Operand 2 Key 001
Op code K R Function
01111 11010
0 45 7 8 1011 15

The contents of the address key register (AKR)
field, specified by the K-field, are loaded into the
register specified by the R-field. The contents of
the AKR are not changed.

The K-field can specify a field within the AKR or
the entire AKR.

Address key register

K-field field name Bits
000 Instruction space key 13-15
001 Operand 2 key 9-11
010 Operand 1 key 5-7
011 Address key register 0-15
100 See Note

101 See Note

110 See Note

111 See Note

Note: To avoid future program obsolescence these
K-field values should not be used.

If the K-field specifies a specific field within the
AKR, the specified field is loaded into bits 13-15
of the register specified in the R-field. Bits 0—-12
of the register are set to 0’s. If the K-field
specifies the entire AKR, the AKR is loaded into
the register.

Indicators

The indicators are not changed.
Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

OC YO0 O OO O000O0



O O O O

)

O O O O

0 Q

)

S
{

O OGN0

DO

O

Copy Current Level (CPCL)

CPCL reg

Op code R2 Function
01111]000 11001
0 4 5 7 8 1011 15

The register specified by the R2 field is loaded as
follows:
« Bits 0-11 are set to 0’s.

o Bits 12-15 are set to the current level. For
example, if the current level is 3, bits 14 and
15 are set to 11.

Bits 5—7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators
The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

CPCL—CPCLK
Copy Clock (CPCLK)
CPCLK reg
Op code R2 Function
01111000 11100
o 4 5 7 8 1011 15

The doubleword value contained in the clock
register is set into the registers specified by the R2
field and R2+1 field. The clock value is not
changed.

If the R2 field value is 7, registers 7 and 0 are
used.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators
The indicators are not changed.

Instructions  8-35



CPCMP—CPCON

Copy Comparator (CPCMP)
CPCMP reg

Op code » R2 Function
01111 11101
o 4 8 1011 )

O[O
N |O

The doubleword value contained in the
comparator register is set into the registers
specified by the R2 field and R2+1 field. The
comparator value is not changed.

If the R2 field value is 7, registers 7 and 0O are
used.

Bits 5—7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators

The indicators are not changed.

8-36 GA34-0152

Copy Console Data Buffer (CPCON)
CPCON reg

Op code R2 Function
01111/j000 11000
0 4 5 7 8 1011 15

The contents of the console data buffer are loaded
into the register specified by the R2 field. The
contents of the buffer are not changed.

Bits 5~7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the results.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

OO 0O 0

D O O O

{
\

O

)

ﬁ_;;
N

(

OO O 0 00

O O O O



~

OO0 C O 000

N\
J

-
7

)

OO O0OO0OO0O00O0OO0OCD

Copy Floating Level Block (CPFLB)
CPFLB reg,addr4

Op code R RB |AM |Func

01011 1011
0 4 5 7 8 9 101112 15
[ Address/Displacement |
| _Displacement 1 | Displacement 2
16 2324 31

The contents of the floating-point registers
(floating level block) for the level specified by the
R-field are stored into main storage locations
beginning at the specified effective address. All
registers remain unchanged. After execution of
this instruction, the floating level block appears in
main storage as follows:

EA Contents of floating-point register O
Contents of floating-point register 1
Contents of floating-point register 2
Contents of floating-point register 3
0 63

EA + 24 (hex)

The general register specified by the R-field has
the format:

00000000000 O0 0 0|Level|
0 131415

CPFLB

Bits 0-7, 12, and 13 are not used and must be set
to 0’s to avoid future code obsolescence. Bits
8-11 must be set to 0’s in order to select the
floating-point feature. Bits 14 and 15 hold the
binary-encoded level of the floating-point level
block associated with this operation. For example,
00 for level 0, 01 for level 1, 10 for level 2, and
11 for level 3.

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. In the supervisor state, an
attempt has been made to execute the instruction
when the floating-point feature has not been
selected or is not installed. The instruction is
terminated.

Instructions  8-37



CPIMR—CPIPF

Copy Interrupt Mask Register (CPIMR)
CPIMR  addr4

Op code RB |AM |Function
01011000 1000

0 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 |  Displacement 2
16 2324 31

The contents of the interrupt mask register are
stored at the word location in main storage
specified by the effective address. The interrupt
mask register is not changed.

Bits 5~7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

The mask is represented in a bit-significant

manner, with bit O representing level 0, and so on.

(See ““Interrupt Masking Facilities” in Chapter 3.)
Bits 4-15 are set to 0’s.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-38 GA34-0152

Copy In-Process Flags (CPIPF)
CPIPF addr4

Op code RB |AM \Function
01011000 110 1
0 4 5 7 8 9101112 15

Address/Displacement
Displacement 1 |  Displacement 2
16 2324 31

This instruction permits the supervisor on the
current level to inspect the in-process flags of the
other levels. The in-process bit, bit 9 of the level
status register, is on when a level is active or

pending (previously interrupted by a higher level).

The in-process flags for each level are stored at
the word location in main storage specified by the
effective address. The in-process flags are not
changed.

The flags are stored in a bit-significant manner,
with bit O representing level 0, and so on. Bits
4-15 are set to O’s.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

)

O C

O OO0 0 0 0

D O O

O O OO0 C

OO O 0O 0O O



SN ONOEONONONONCNS

O

P

O ONONOEONONONCONONG

Copy Level Block (CPLB)
CPLB reg,addr4

Op code R RB | AM |[Function

01011 1110
0 4 5 7 8 9 101112 15
Address/Displacement

Displacement 1 Displacement 2
16 2324 31

This instruction stores a level status block (LSB)
into 11 words of main storage beginning with the
location specified by the effective address. The
contents of the LLSB and the register specified by
the R-field are not changed.

The register specified by the R-field contains the
level of the LSB to be stored. This level is placed
in bits 14 and 15 of the register. Bits 0—13 are
unused and must be set to 0’s.

Using this one instruction, the supervisor can copy
the information contained in the hardware
registers assigned to a program operating on any
level. Most instructions are restricted to the
registers associated with the current level. After
executing a CPLB instruction, the supervisor can:

1. Use the information just stored (for example,
the contents of the general registers or the
protect key in the LSR).

2. Assign the level to another task by executing a
Set Level Block (SELB) instruction that points
to a different level status block.

In the second case, the supervisor can restart the
preempted program at a later time by executing
another SELB instruction that points to the
previously stored level status block.

Programming Note: If the AM field equals 01, the
contents of the register specified by the RB field
are incremented by 2.

CPLB

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Level Status Block Format

EA IAR
AKR
LSR
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6

EA+20 Register 7

(+14 hex)

EA=effective address

Format of Register Specified by the R-field in
CPLB Instruction

Levei
0000000O0OO0ODOO0OOO

o 131415

Level 0 00

Level 1 01

Level 2 10

Level 3 11

Instructions  8-39



CPLSR—CPPSR

Copy Level Status Register (CPLSR)
CPLSR reg

Op code R2 Function
01110000 01110
0 4 5 7 8 1011 15

The level status register is loaded into the register
specified by the R2 field. The level status register
is not changed.

Bits 5—7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators

The indicators are not changed.
Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

8-40 GA34-0152

Copy Processor Status and Reset (CPPSR)
CPPSR  addr4

Op code RB |AM |Function
01011/]000 1111
0 4 5 7 8 9 101112 15

Address/Displacement

Displacement 1 | Displacement 2
16 2324 37

The contents of the processor status word (PSW)
are stored at the word location in main storage
specified by the effective address.

This instruction resets bits 0—12 of the PSW. Bits
13-15 are not changed. Refer to “Processor Status
Word (PSW)” in Chapter 3 for PSW bit settings.

Bits 5-7 of the instruction are not used and must

~ be set to 0’s to avoid future code obsolescence.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

O O O

O

DO O O 0O 0

OO 0000 C

O O O



\
/

(
_

O O O

AY
/
/

),

Q C

OCOO0OO0OO0OO0OO0O00OLC YOOI

Copy Storage Key (CPSK)
CPSK reg,addr4

Op code R RB |AM |Function

01011 1100
0 4 5 7 8 9 101112 15
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31

This instruction stores the contents of a storage
key register at the byte location in main storage
specified by the effective address.

The register specified by the R-field contains the
main storage block number for the storage key
register to be stored. (A storage key register is
associated with every 2048 bytes of storage.) The
block number is in bits 0—4 of the register.

Bits 5—15 are not used and must be set to 0’s to
avoid future code obsolescence.

The format of the register specified by the R-field
is:

Block
00000000000
0 4 5 15
N, e’
Values
0-31

The format of the byte at the storage location is:

Key R

00O00O
0 3 4 6 7

1 = read only —l

CPSK

Bits 4-7, the storage key and read-only bit, are
the data from the storage key register for the
selected main storage block. Bits 0-3 must be set
to 0’s to avoid future code obsolescence.

The contents of the storage key register are not
changed.

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions  8-41



CPSR

Copy Segmentation Register (CPSR)
CPSR reg,addr4

Op code R RB |AM |Function
01011 1001
o 4 5 7 8 9 101112 15
Address/Displacement

Displacement 1T Displacement 2

16 2324 317

This instruction stores the contents of a
segmentation register into the doubleword location
in main storage specified by the effective address.

The general register specified by the R-field
contains the logical address of segmentation
register (0-31, decimal) in bits 0—4, and an
address key value 000-111 in bits 5-7. Bits 8-15
of the register must be set to 0’s.

The format of the general register specified by the
R-field is:

Logical seg | Addr key
' 00000000

0 4 5 7 8 15
A e

Values
0-31

The logical address of the register selects a
.specific segmentation register (0-31) in a
segmentation stack 0-7.

The address-key field of the register selects a
stack 0—7 of the segmentation registers.

The first word of the specified doubleword that is
copied from the selected segmentation register has
the following format:

Segment address VIR
0
o 121314 15
1 =valid
1 = read-only
(must be 0)

00000000000O0GO0O0COCO
16 31

8-42  GA34-0152

The segment address (bits 0~12) contains the
high-order bits of the physical address, which is
used by the translator to select a 2K-byte block of
main storage. Refer to Chapter 5, “Storage
Address Relocation Translator” for a description
of the translator.

Bit 13, if a 1, signifies that the contents of the
segmentation register is valid, and translation can
be performed. If an attempt is made to use a
segmentation register in which bit 13 isa 0, a
program check interrupt occurs, with invalid
storage address set in the PSW.

Bit 14, if a 1, signifies that the block is read-only.
If an attempt is made to write into the block when
bit 14 of the associated segmentation register is a
1 and while in problem state, a program check
interrupt occurs, with protect check set in the
PSW. When the supervisor state is on a cycle-steal
access, bit 14 is ignored. The contents of main
storage are not changed.

The second word (bits 16-31) of the specified
doubleword must be set to 0’s to avoid future
code obsolescence.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Function. In the supervisor state, an
attempt has been made to execute this instruction
when the translator is not enabled.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

O

O O O

O O O O

)

@)

™
J

/,_A
(\

SO OO OO0 0000

(



Compare Word (CW)

Register/Register Format

Cw reg,reg

Op code R1 R2 Function
01110 00101
o 4 5 7 8 1011 15

The contents of the register specified by the R1
field are subtracted from the contents of the
register specified by the R2 field. The contents of
both registers are not changed.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than 42151,

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

Cw

Register/Storage Format
Cw addr4,reg
Op code R RB | AM | Function
11001 0100
0 4 5 7 8 9 101112 15
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31

The contents of the word in main storage specified
by the effective address are subtracted from the
contents of the register specified by the R-field.
Neither operand is changed.

Bit 12 of the instruction is reserved and must be
set to 0 to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2'5 or greater than +2'3—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions  8-43



CwW
Storage/Storage Format
CwW addr5,addr4
Op code RB1 RB2| AM1|AM2|Func
10001 11
0 4 5 7 8 9 101112131415
Address/Displacement

Displacement 1 |  Displacement 2
16 2324 31
Address/Displacement

Displacement 1 | Displacement 2
32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. Word
operand 1 is subtracted from word operand 2.
Neither operand is changed.

8-44 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than +25—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

O O

@

A

O O O O

,
[
v

) OO

—
\
\

O

OO OO0 00 O

)



)

~

O 0O O

\
)

OO0 0 OO0 0 C

N
)

OCO0OO0OO0OO0OO0O00O0OC D

Compare Word Immediate (CWI)

Register Inmediate Long Format
CwlI word,reg

Op code R1 Function
01111 000Ojo0110
0 4 5 7 8 1011 15

Immediate field

16 31

The immediate field is subtracted from the
contents of the register specified by the R1 field.
The contents of the register specified by the R1
field are not changed.

Bits 8—10 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

CWI

Indicators

Carry. 1If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than +215—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation. ‘

Instructions  8-45



CwWI

Storage Immediate Format
Cwl word,addr4

Format without appended word for effective
addressing (AM = 00 or 01}

Op code RB |AM |Function
01000[(000O0 1111
0o 4 5 7 8 9 101112 15

Immediate field

16 31

Format with appended word for effective
addressing (AM = 10 or 11)

Op code RB |AM |Function
01000[{000 1111
0 45 7 8 9 7101112 15

Address/Displacement
Displacement 1 ] Displacement 2
16 2324 31

Immediate field

32 47

The immediate word is subtracted from the
contents of the location specified by the effective
address. Neither operand is changed.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

8-46 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than +2'5—1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the ’

instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Y
\_/

OO

O O O

O O O O

)

O O O O O

O O O O

{

O



SHONONG

(

\
)
—

Divide Byte (DB)
DB addrd,reg

Op code R RB |AM |Function
11101 0010
0 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 J Displacement 2
16 2324 31

A divide operation is performed between the word
dividend contained in the register specified by the
R-field and the byte divisor at the location
specified by the effective address. The one-word
quotient replaces the contents of the specified
register while the one-word remainder is placed in
the register specified by the R+1 field.

If the R-field specifies register 7, the remainder is
placed in register 0.

R
Dividend

15

;olo <

Divisor

—

Quotient

0 15 -

R+1
Remainder

0 15

DB

Indicators

Carry. The carry indicator is cleared, and then set
to 1 (together with the overflow indicator) if the
overflow was caused by an attempt to divide by 0.

Overflow. The overflow indicator is cleared, and
then set to 1 if division by O is attempted, or if
the quotient cannot be represented in one word. If

- overflow occurs, the remaining indicators and the

contents of the specified register are undefined.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions  8-47



DD
Divide Doubleword (DD)
DD addr4,reg
Op code R RB |AM |Function
11101 1010
0 4 5 7 8 9101112 15
Address/Displacement

Displacement 1 l Displacement 2
16 2324 37

A divide operation is performed between the
doubleword dividend contained in the registers,
specified by the R-field and R+1 field, and the

word divisor at the location specified by the
effective address. The doubleword quotient

replaces the contents of the specified registers
(least-significant word is in the R+1 field). The

one-word remainder is placed in the register
specified by the R+2 field.

If the R-field value is 6, registers 6, 7, and 0 are

used.

R R+1

Dividend / / / /

0 37
[ ]

.
EA

Divisor / /
0 l’5
R R+1

Ouotient/ / / /

0 37

R+2

Remainder 7 /

0 ' 15

8-48 GA34-0152

Programming Note: If the AM field equals 01, the
contents of the register specified by the RB field
are incremented by 2.

Indicators

Carry. The carry indicator is cleared, and then set
to 1 (together with the overflow indicator) if the
overflow was caused by an attempt to divide by 0.

Overflow. The overflow indicator is cleared, and
then set to 1 if division by 0 is attempted, or if
the quotient cannot be represented in a
doubleword. If overflow occurs, the remaining
indicators and the contents of the specified
registers are undefined.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

/’\‘
J

\

O O O OO0 OO0

DI

O O O C

O

O O O O

®

Va

~——



Diagnose (DIAG)
DIAG ubyte

Op code Func |Parameter
01100|1 01
0 4 5 7 8 15

Additional words when accessing local storage
Stack address

0000000O0OO0Q|O]|0 .
16 23242526 31

Immediate data field

32 47

The Diagnose instruction is used for controlling or
testing various hardware functions in a
machine-dependent manner.

Refer to individual processor publications for
information concerning this instruction.

DIAG—DIS
Disable (DIS)
DIS ubyte
Op code Func | Parameter
01100j011
0 4 5 78 15

The parameter field 1-bits are disabled. The bits in
the parameter field have the following

significance:

Bit Significance
8 Not used

9 Not used

10 Not used
11 Not used
12 Storage protect
13 Equate operand spaces
(AKR bit O set to 0)
14 Translator (PSW bit 14 set to 0)
15 Summary mask (LSR bit 11 set to 0)

Note: Bits not used must be set to 0’s to avoid
future code obsolescence.

If a Disable instruction immediately follows an
Enable summary mask instruction, the interrupt
disable function may occur prior to the time that
an interrupt can be accepted. Thus, at least one
other instruction (for example , no-op) must be
executed between the Enable summary mask and
Disable instructions to ensure the occurrence of
the interrupt.

If parameter bit 14 is set to 1 and the relocation
translator is enabled (bit 14 of the PSW is on),
then the translator is disabled and bit 14 of the
PSW is turned off.

Indicators
The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Instructions 8-49



DW

Divide Word (DW)

DW addrd,reg

Op code R RB |AM |Function

11101 0110
0 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 | Displacement 2
16 2324 31

A divide operation is performed between the word
dividend contained in the register specified by the
R-field and the word divisor at the location
specified by the effective address. The one-word
quotient replaces the contents of the specified
register. The one-word remainder is placed in the
register specified by the R+1 field.

If the R-field value is 7, registers 7 and O are
used.

R
Dividend

0 15
°

EA
Divisor

0 15

:

0 15

R
Quotient

R+1
Remainder

0 15

8-50 GA34-0152

Indicators

Carry. The carry indicator is cleared, and then set
to 1 (together with the overflow indicator) if the
overflow was caused by an attempt to divide by 0.

Overflow. The overflow indicator is cleared, and
then set to 1 if division by 0 is attempted, if the
quotient cannot be represented in one word. If
overflow occurs, the remaining indicators and the
contents of the specified registers are undefined.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

@

O O

D)

C

OO O O O

D

—
\

O O O O C

)

o0 O



;o

N

O O O O

O

ONONONE

Enable (EN)

EN

ubyte

Op code
01100010

Func |Parameter

0

The parameters field 1-bits are enabled. The bits

4 5 7 8 15

in the parameter field have the following
significance:

Bit
8

9

10
11
12
13

14
15

Significance

Not used

Not used

Not used

Not used

Storage protect

Equate operand spaces

(AKR bit O set to 1)

Translator (PSW bit 14 set to 1)
Summary mask (LSR bit 11 set to 1)

Note: Bits not used must be set to 0’s to avoid
future code obsolescence.

If bit 12 is set to 1, the relocation translator (if
enabled) is disabled and bit 14 is not checked.

If bit 14 is set to 1 and bit 12 is set to 0, the
relocation translator is enabled and the storage
protect is disabled.

Indicators
The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Instructions

EN

8-51



FA

Floating Add (FA)

Storage/Register Format

FA addr4,freg

Op code . R RB | AM |Func |P
00100|0 000]0
0 4 567 8 9 101112 1415

The 32-bit main storage operand specified by the
effective address is algebraically added to the
32-bit operand in the floating-point register
specified by the R-field. The result is placed back
into the floating-point register specified by the

R-field. The main storage operand is not changed.

The low-order 32 bits of the specified '
floating-point register are not changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset. '

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-52 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed size of the system. The instruction is
terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected. The instruction completes
execution.

3
./

ONe

O

O O C

0

\

O O

)

\
/

O C

o) O



O 0O O C

)

O O C

O

N

Register/Register Format

FA freg,freg
Op code RT | R2 Func |P
0010 Of1 0 0j0 0 0j0

0 4567 8 9 101112 1415

The two 32-bit operands contained in the
floating-point registers specified by the R1 and R2
fields are added algebraically. The result is placed
back into the floating-point register specified by
the R2 field. The register specified by the R1 field
is unchanged when not equal to the register
specified by the R2 field. The low-order 32 bits of
the register specified by the R2 field are not
changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are Q’s; in this case, the sign is made plus
and the result characteristic is forced to O.

FA

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The"
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected. The instruction completes
execution.

Instructions  8-53



FAD

Floating Add Double (FAD)

Storage/Register Format
FAD addrd,freg

Op code R RB |AM |Func |P
0010 0|0 000N
0o 4 5678 9 101112 1415
address/Diglacement 1
L_Displacement1 | _Displacement2 |
16 2324 31

The 64-bit main storage operand specified by the
effective address is algebraically added to the
64-bit operand in the floating-point register
specified by the R-field. The result is placed back
into the floating-point register specified by the

R-field. The main storage operand is not changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;

" otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-54  GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected. The instruction completes
execution.

)

—

\
L/

O

)

D C

C

O O

D,

—~
-

(

)

O O O O C

—

()

A
J

O O C

®)



O OO 0O O 0 O C

e

Register/Register Format
FAD freg,freg

Op code R1 |R2 Func |P
00100]1 0 0|0 0 Of1
0 4 567 8 9 101112 1415

The two 64-bit operands contained in the
floating-point registers specified by the R1 and R2
fields are added algrebraically. The result is placed
back into the floating-point register specified by
the R2 field. The register specified by the R1 field
is not unchanged when not equal to the register
specified by the R2 field.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are Q’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

FAD

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Execution An arithmetic error has

been detected. The instruction completes
execution.

Instructions  8-55



FC—FCD

Floating Compare (FC)

FC freg,freg

Op code R1 | R2 Func. |P
00104051 0 011 0 1]0
0 4 567 89 101112 1415

The 32-bit operand contained in the floating-point
register specified by the R1 field is algebraically
subtracted from the 32-bit operand contained in
the floating-point register specified by the R2
field. The contents of both floating-point registers
are not changed.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the even indicator
is reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.
Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is suppressed.

8-56 GA34-0152

Floating Compare Double (FCD)
FCD freg,freg

Op code R1 | R2 Func |P
00 100]1 0 0j]1 0 1}1
0 45678 9 101112 1415

The 64-bit operand contained in the floating-point
register specified by the R1 field is algebraically
subtracted from the 64-bit operand contained in
the floating-point register specified by the R2
field. The contents of both floating-point registers
are not changed.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. 1In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

—

) O O O

g

@

DO O O O O O O

ONe



\

> O O O

O O

O O O

e
\

N
S

C

9

OO 00000 0O

Floating Divide (FD)

Storage/Register Format

FD addr4.freg

Op code R RB |AM |Func |P
00100|0 011]0
0 4567 8 9 101112 1415

_E)isplacement 2

The 32-bit dividend contained in the floating-point
register specified by the R-field is divided by the
32-bit divisor at the main storage location
specified by the effective address. The 32-bit
quotient is placed back in the floating-point
register specified by the R-field. The low-order 32
bits of the specified floating-point register are not
changed. No remainder is perserved. The main
storage operand is not changed.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise the indicator
is reset.

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition
occurs; in this case, the indicators are left reset to
0.

FD

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The

instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions  8-57



FD

'Register/Register Format

FD freg,.freg

Op code R1 | R2 Func |P
00100f1 0 0]0 1 1{0
0 45678 91701112 1415

The 32-bit dividend contained in the floating-point
register specified by the R2 field is divided by the
32-bit divisor contained in the floating-point
register specified by the R1 field. The 32-bit
quotient is placed back in the floating-point
register specified by the R2 field. No remainder is
preserved. The low-order 32 bits of the register
specified by the R2 field are not changed. The
register specified by the R1 field is not changed
when not equal to R2.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise, the indicator
is reset. :

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition

occurs; in this case, the indicators are left reset to
0.

8-58  GA34-0152

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

N



O O O

O

\l
j

;-

O O

0 O 0O O

OO0 00000 C

O O O

Floating Divide Double (FDD)

Storage/Register Format
FDD addr4,freg

Op codg R RB |AM Y Func |P
00100]0 01 1|1
0 4 567 8 9 101112 1415
“Address/Displacement —i
L Displacement 1 | Displacement2
16 2324 31

The 64-bit dividend contained in the floating-point
register specified by the R-field is divided by the
64-bit divisor at the main storage location
specified bythe effective address. The 64-bit
quotient is placed back in the floating-point
register specified by the R-field. No remainder is
preserved. The main storage operand is not
changed.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise, the indicator
is reset.

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition
occurs; in this case, they are left reset to 0.

FDD

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions
Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions  8-59



FDD

Register/Register Format
FDD freg,freg

Op code R1 |R2 Func |P
00100j1 0 0j0 1 1]1
0 4567 8 9 101112 1415

The 64-bit dividend contained in the floating-point
register specified by the R2 field is divided by the
64-bit divisor contained in the floating-point
register specified by the R1 field. The 64-bit
quotient is placed back in the floating-point
register specified by the R2 field. No remainder is
preserved. The register specified by the R1 field is
not changed when not equal to the R2 field.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise, the indicator is reset.

Even. If an underflow condition 6ccurs, the even
indicator is set to 1; otherwise, the indicator is
reset. '

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise, the indicator
is reset.

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition

occurs; in this case, the indicators are left reset to
0.

8-60 GA34-0152

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

O O 0 0O O

O O

OO OO0OOO0OC H»OO

O O O O



00 0000 C

O O O

> OO0 0 0 OO0

C

O O O

Fill Byte Field and Decrement (FFD)

Fill Byte Field and Increment (FFN)

FFD reg,(reg) .
FFN reg,(reg)

Op code R1 R2 ! 1D }Func
00101 0 00
0 4 5 7 8 101112131415

1 for FFD or FFN

0 for FFD; decrement contents
of R2

1 for FFN; increment contents

" of R2

This instruction fills each byte of a field in main
storage with the same bit configuration. Register 7
contains the number of bytes to be filled (field
length). If a field length of O is specified, the
instruction is a no-op. The register specified by
the R1 field contains, in bits 8—15, the byte used
to fill the field. The register specified by the R2
field contains the starting address of the field in
main storage.

After each byte in the field is filled:

1. The address register specified by the R2 field
is either incremented or decremented, as
determined by bit 13 of the instruction. This
permits the field to be filled in either
direction.

2. The length count in register 7 is decremented.

FFD—FFN

The operation ends when the specified field length
has been filled (contents of register 7 equal 0). At
this time, the address specified by the R2 field has
been updated and points to the byte adjacent to
the end of the field.

Bits 11 and 15 of the instruction are not used and
must be set to 0’s to avoid future code
obsolescence. _

See “Move Byte Field and Decrement (MVFD)”
and ‘“Move Byte Field and Increment (MVFN)”
for other versions of this machine instruction.
Note: Variable-field-length instructions can be
interrupted. When this occurs and the interrupted
level resumes operation, the processor treats the
incomplete instruction as a new instruction, with
the remaining byte count specified in register 7.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result of the last byte
moved. "

Program-Check Conditions

Invalid Function. Register 7 is specified in the R1
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

« Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Instructions 8-61



FM

Floating Multiply (FM)

Storage/Register Format

FM addr4,freg

Op code R |RB | AM |Func |P
0010 0]0 0100
0 4 567 8 9 101112 1415
[ Address/Displacement ]
| Displacement 1 [ Displacement2 ]
16 2324 31

The 32-bit main storage operand specified by the
effective address and the 32-bit operand contained
in the floating-point register specified by the
R-field are multiplied. The normalized result is
placed back into the floating-point register
specified by the R-field. The main storage operand
is not changed.

The sign of the product is determined by the rules
of algebra unless all digits of the product fraction
are O’s; in this case, the sign is made plus and the
result characteristic is forced to 0.

When either or both operand fractions are 0’s, the
result is made a true zero.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-62 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

OO OO OO0 00O O

O

)

R
s

i
1

e
\

O

OO0 000000



)

C

OCOO0OO0OO0OO0O0OO0O0OO0OC HYOO0OO0O0OOOOOC

Register/Register Format

FM freg,freg

Op code R1 | R2 Func | P
0010 0f1 0 0J]0 1 0J0
0 4 567 8 9 101112 1415

The two 32-bit operands contained in the
floating-point registers specified by the R1 and R2
fields are multiplied and the normalized result is
placed back into the floating-point register
specified by the R2 field. The register specified by
the R1 field is not changed when not equal to the
register specified by the R2 field.

The sign of the product is determined by the rules
of algebra unless all digits of the product fraction
are 0’s; in this case, the sign is made plus and the
result characteristic is forced to 0.

When either or both operand fractions are 0’s, the
result is made a true zero.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

M

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions  8-63



FMD

Floating Multiply Double (FMD)

Storage/Register Format
FMD addr4,freg

Op code R RB |AM |Func |P
00100]0 01 0|1
(] 4 567 8 9 101112 1415
lj&:’a’ress/Disp/acement . 1
™ Displacoment 1|~ Displaameni )
16 2324 31

The 64-bit main storage operand specified by the
effective address and the 64-bit operand contained
in the floating-point register specified by the
R-field are multiplied. The normalized result is
placed back into the floating-point register
specified by the R-field. The main storage operand
is not changed.

The sign of the product is determined by the rules
of algebra unless all digits of the intermediate-sum
fraction are Q’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

When either or both operand fractions are 0’s, the
result is made a true zero.

Indicators
Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;

otherwise, the indicator is reset. -

Even. If an underflow condition occurs, the even
indicator is reset; otherwise, the indicator is reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-64  GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

O O O O

O O O O

OO C )OO

O O O

O O O O O



O O O O

O O O O

O

i

COO0O00CO0O0Oo0

Register/Register Format
FMD freg,freg

Op code R1 |R2 Func |P
00100]1 0 0j0 1 0]1
0 4 567 8 9 101112 1415

The two 64-bit operands contained in the
floating-point registers specified by the R1 and R2
fields are multiplied. The normalized result is
placed back into the floating-point register
specified by the R2 field. The register specified by
the R1 field is unchanged when not equal to the
register specified by the R2 field.

The sign of the product is determined by the rules
of algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

When either or both operand fractions are 0’s, the
result is made a true zero.

Indicators
Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;

otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMD

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions
Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions  8-65



FMV

Floating Move (FMYV)

Storage/Register Format
FMV addr4,freg

Op code R RB | AM |Func |P
001000 101]0
o 4 567 8 9 101112 1415
[ Address/Displacement _ _ _ " "]
L _Displacement 1__ | _Displacement 2__]
16 2324 31

The 32-bit floating-point operand in the main
storage location specified by the effective address
is loaded into the floatin-point register specified
by the R-field and the current interrupt level. The
main storage operand is not changed. The
low-order 32 bits of the 64-bit register are set to
0’s.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-66 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

@

O O O O



)

~

DN OHONONONONS

2 0O O«

O O O C

Register/Storage Format
FMV freg,addr4

Op code R RB |AM |Func |P
001000 11 1[0
o 4 567 8 9 101112 1415

[;_4¢7c;'ress/Displacement

—— i et s S e . — e it s et et ]

— — iy — — —— —

The 32-bit floating-point operand contained in the
high-order 32 bits of the floating-point register
specified by the R-field is stored in the main
storage location specified by the effective address.
The register specified by the R-field is not
changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the

instruction: ‘

+ Is fetched or data is accessed from a storage
area not assigned to the current operation.

+ Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

FMV

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Register/Register Format
FMV freg,freg

Op code R1 |R2 Func [P
0010 0[1 o o0l10o0[0
0 456789 101112 1415

The 32-bit operand contained in the floating-point
register specified by the R1 field is moved to the
floating-point register specified by the R2 field.
The low-order 32 bits of the register specified by
the R2 field are set to 0’s. The floating-point
register specified by the R1 field is unchanged
when not equal to the register specified by the R2
field.

Bits 10, 11, and 13 must be set to 0’s to avoid
future code obsolescence.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.
Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is suppressed.

Instructions  8-67



FMVC

Floating Move and Convert (FMVC)

Storage/Register Format
FMVC  addr4,freg

Op code R RB |AM |Func |P
0010 0|0 10 0]0
o 4 567 8 9 101112 1415
FAddress/Displacement :I'
L _Displacement 1__ [ _ Displacement2 _|

31

76 2324

The 16-bit signed binary integer in the main
storage location specified by the effective address
is converted to a 32-bit floating-point number
with low-order 0’s inserted and then loaded into
the floating-point register specified by the R-field
and the current interrupt level. The low-order 32
bits of the register are set to 0’s. The 64-bit
register is normalized with O’s inserted at the
low-order positions during normalization. The
main storage operand is not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-68 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

O O OO O

O O O

D O O

‘ A

O O

OO OO0 0000



OO0 00000 C

O O

N

SN ORORONONONONONONS

Register/Storage Format
FMVC freg,addr4

Op code R RB |AM |Func |P
0010 0|0 110]0
0o 4 567 8 9 101112 1415
Cidarass/Displacement ~— N
[ Displacoment 1| Displacomeni 2. ]
16 2324 31

The 32-bit floating-point operand contained in the
high-order 32 bits of the floating-point register
specified by the R-field is converted to a signed
16-bit binary integer and stored at the main
storage location specified by the effective address.
Any fraction remaining after conversion is
truncated.The register specified by the R-field is
not changed. If the characteristic of the
floating-point number is negative, the integer
stored is 0.

Indicators

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than —2!5 or greater than +215—1;
otherwise the indicator is reset.

Even and Carry. These indicators are reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMVC

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

« Is fetched or data is accessed from a storage
area not assigned to the current operation.

« Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Instructions  8-69



FMVCD

Floating Move and Convert Double (FMVCD)

Storage/Register Format
FMVCD addr4,freg

Op code R RB |AM |Func |P
00100]0 10 0|1
0 4 567 8 9 101112 1415

—— — — — — — — — — —— — — —

Ideress/Displac&ment

— — — — — e —— —— —

— — —— — o—— — — — — — — t— e

The 32-bit signed binary integer in the main
storage location specified by the effective address
is converted to a 64-bit floating-point number
with low-order Q’s inserted and then loaded into
the floating-point register specified by the R-field
and the current interrupt level. The 64-bit register
is normalized with 0’s inserted at the low-order
positions during normalization. The main storage
operand is not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-70 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

O O O O

O O O O

O O

C )
\‘ v

O O O O O O

O O O O



O

O O0O0O0000O0

Register/Storage Format
FMVCD freg,addr4

Op code R RB |AM |Func P
00100|0 11 01
o 4567 8 9 101112 1415

16 2324 31

The 64-bit floating-point operand contained in the
floating-point register specified by the R-field is
converted to a 32-bit signed binary integer and
stored at the main storage location specified by
the effective address. Any fraction remaining after
conversion is truncated. The register specified by
the R-field is not changed. If the characteristic of
the floating-point number is negative, the integer
stored is 0.

Indicators

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in the doubleword; that is, if the
difference is less than —23! or greater than
+231—1; otherwise, the indicator is reset.

Even and Carry. These indicators are reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMVCD

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

o Is fetched or data is accessed from a storage
area not assigned to the current operation.

o Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions
Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is terminated.

Instructions  8-71



FMVD

Floating Move Double (FMVD)

Storage/Register Format
FMVD  addr4,freg

Op code R RB |AM |Func |P
00100]|0 10 1]1
0 4 567 8 9 101112 1415
(s i ]
'__Displacement 1 _I?lsplacement 2 1
16 2324 31

The 64-bit floating-point operand in the main
storage location specified by the effective address
is loaded into the floating-point register specified
by the R-field and the current interrupt level. The
main storage operand is not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions
Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is terminated.

8-72 GA34-0152

Register/Storage Format
FMVD freg,addr4

Op code R RB |AM {Func [P
00100|0 11 1)1
o 4 567 8 9 101112 1415

%ﬂs/Displacement——
Displacement 1 -I_ Displacement 2
16 2324 31

The 64-bit floating-point operand contained in the
register specified by the R-field is stored in the
main storage location specified by the effective
address. The register specified by the R-field is
not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction is fetched or data is accessed from a
storage area not assigned to the current operation.
The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

@

O O 0O 0O 0O O

D)

(

OO C )OO

OO O 0000

®



ONCHCGEONONONONEG

.

C_ 2> 00

ONOGRONONONONS

M
W,

Register/Register Format
FMVD  freg,freg

Op code R1 |R2 Func |P
001001 C 01 0 O}1
0 4 567 89 101112 1415

The 64-bit operand contained in the floating-point
register specified by the R1 field is moved to the
floating-point register specified by the R2 field.
The floating-point register specified by the R1
field is not changed.

Bits 10, 11, and 13 must be set to 0’s to avoid
future code obsolescence.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMVD

Program-Check Conditions

Protect Check. 1n the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions
Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is suppressed.

Instructions  8-73



FS

Floating Subtract (FS)

Storage/Register Format

FS addr4,freg

Op code R RB |AM |Func |P

001000 00 10}
o 4 567 8 9101112 1415
(AGarass/bispizemert ]
| _Displacement 1 _|__ Displacement 2 _ |
16 2324 37

The 32-bit main storage operand specified by the
effective address is algebraically subtracted from
the 32-bit operand contained in the floating-point
register specified by the R-field. The result is
placed back into the floating-point register
specified by the R-field. The low-order 32 bits of
the specified floating-point register are not
changed. The main storage operand is not
changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset. '

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-74  GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

" Specification Check. The effective address or

indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

O

—

OO O

O

O OO O0OC >0 O

O O O

O O O



C O C

(O 00000 O0O0

O ORONCNONOEONCHEONS

Register/Register Format

FS freg,freg

Op code R1 | R2 Func | P
0010 01 00{0 010
0 4 5678 9 101112 1415

The 32-bit operand contained in the floating-point
register specified by the R1 field is algebraically
subtracted from the 32-bit operand contained in
the floating-point register specified by the R2
field. The result is placed back into the
floating-point register specified by the R2 field.
The low-order 32 bits of the register specified by
the R2 field are not changed. The register
specified by the R1 field remains unchanged when
not equal to the register specified by the R2 field.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

" Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FS

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions
Invalid Function. An attempt has been made to
execute a floating-point instruction when the

floating-point feature is not installed. The
instruction is suppressed.

Instructions  8-75



FSD

Floating Subtract Double (FSD)

Storage/Register Format
FSD addr4,freg

Op code R RB | AM |Func |P
00100{0 00 1
o 4 567 8 9 101112 1415

2324

The 64-bit main storage operand specified by the
effective address is algebraically subtracted from
the 64-bit operand contained in the floating-point
register specified by the R-field. The result is
placed back into the floating-point register
specified by the R-field. The main storage operand
is not changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-76  GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

O

O O O 0O O

DO O O O

—
N

O O O

O O O O O

O



Register/Register Format
FSD freg,freg

Op code R1 | R2 Func |P
0010 0|1 000 0 1]1
0 4 567 8 9 101112 1415

The 64-bit operand contained in the floating-point
register specified by the R1 field is algebraically
subtracted from the 64-bit operand contained in
the floating-point register specified by the R2
field. The result is placed back into the
floating-point register specified by the R2 field.
The register specified by the R1 field remains
unchanged when not equal to the register specified
by the R2 field.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are 0’s; in this case, the sign is made plus
and the result characteristic is forced to 0.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FSD

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The

instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions  8-77



10

Operate 1/0 (10)

I0 longaddr

Op code R2 Function
01101000 X|1 100
0 45 7 8 101112 15

0 = direct address
1 = indirect address

Address

16 31

Refer to Chapter 4 for a detailed description of
the operation of this instruction.

An effective main storage address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0 (direct address). The result from
step 1 is the effective address.

Bit 11=1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

Bits 5-7 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

The effective address specifies the location of a
two-word control block, called the immediate
device control block (IDCB). The IDCB contains
the command, device address, and a one-word
immediate data field.

8-78 GA34-0152

IDCB (immediate device control block)
Command field Device address field

o 7 8 15

Immaediate data field

16 31

The immediate data field serves two purposes:

1. For direct program control (DPC) operations,
it holds the data transferred to or from the
1/0 device.

2. For cycle-steal operations, it holds the address
of the device control block (DCB).

Indicators

Even, Carry, and Overflow. These indicators are
changed to reflect the condition code. See
“Branch on Condition Code (BCC)’ or “Branch

on Not Condition Code (BNCC)” instructions for
indicator settings.

Negative and Zero. These indicators are not
changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

®

)
)

O C

”
-

)

O

)

TN,
/

(

)

—_
_.

cH) O 0O C

,\
W,

e
N

_J

OO0 000000



O O O

)

’

)

~—

Interchange Operand Keys (IOPK)

I0OPK

Op code Func
01100|11000000000
0 4 5 7 8 15

The contents of the operand 1 key (OP1K) are
interchanged with the contents of the operand 2
key (OP2K) in the current address key register.

Bits 8—15 of the instruction are not used and must
be set to 0’s to avoid future code obsolescence.

Indicators
The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

IOPK—IR
Interchange Registers (IR)
IR reg,reg
Op code R1 R2 Function
01110 00111
0 4 5 7 8 1011 15

The contents of the registers specified by the R1
and R2 fields are interchanged.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions
Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions  8-79



J—JAL

Jump Unconditional (J)
J jdisp
jaddr

Op code R
01010

0 4 5 7 8 15
N —
0

Word displacement

Bit 8 (the leftmost bit of the word displacement
field) is propagated left seven bit positions and a 0
is appended at the low-order end; this results in a
16-bit word. (Word displacement is converted to a
byte displacement.) This value is added to the
instruction address register. The new value in the
IAR becomes the address of the next instruction
to be fetched.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are -outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or

indirect address results in an even-byte boundary
violation.

8-80 GA34-0152

Jump and Link (JAL)

JAL jdisp,reg
jaddr,reg
Op code R Word displacement
10011
0 4 5 7 8 15

The updated value of the instruction address
register (the location of the next sequential
instruction) is stored into the register specified by
the R-field. Bit 8 (the leftmost bit of the word
displacement field) is propagated left by seven bit
positions and a 0 is appended at the low-order
end; this results in a 16-bit word. (Word
displacement is converted to a byte displacement.)
This value is added to the updated contents of the
instruction address register, and the result is stored
in the instruction address register. This becomes
the address of the next instruction to be fetched.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. Branching
does not occur, but the storing of the updated
instruction address into the register specified by
the R-field still occurs.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

TN

L

@

@

@

",
7

) C

—_

DO O O <

/
\

D

’
\

DO

()

O

O C

OO O

O O



O O

~

) QO

(

O O O O

O

DEOHONONONGRE

Jump on Condition (JC)

Operand
Mnemonic syntax
IC cond,jdisp
cond,jaddr
Extended Operand
mnemonic  syntax
JE jdisp
jaddr
JOFF jdisp
jaddr
JZ jdisp
jaddr
JMIX jdisp
jaddr
JP jdisp
jaddr
JON jdisp
jaddr
JN jdisp
jaddr
JEV jdisp
jaddr
JLT jdisp
jaddr
JLE jdisp
jaddr
JLLE jdisp
jaddr
JCY jdisp
jaddr
JLLT jdisp
jaddr

Instruction name

Jump on
Condition

Instruction name

Jump on Equal
Jump if Off

Jump on Zero
Jump if Mixed
Jump on Positive
Jump if On

Jump on Negative
Jump on Even
Jump on
Arithmetically

Less Than

Jump on
Arithmetically

Less Than or Equal
Jump on Logically
Less Than or Equal

Jump on Carry

Jump on Logically
Less Than

Condition
field bits
(see @)

Any value
listed below

Condition
field bits

(see @)
000

000
000
001
001
010
010
011

100

101

110
111

11

JC

Extended mnemonics

Indicators
tested

Cond 01234

field
bits Jump ECON2Z
JE, JOFF, JZ XXX X1
000 JNE, JNOFF, JNZ XX XXO0
JMIX, JP XXX00

001
JNMIX, JNP XX X X1
XX X1X
JN, JON XX X1 X

010
JNN, JNON XX X0 X
JEV 1 XX XX

()|
JNEV 0 X X XX
JLT XX01X
XX10X

100
JGE XX11X
XX00 X
JLE XX01X
XX10X
X XX X1

101
JGT XX110
XX000
JLLE X1 XXX
X X X X1

110
JLGT X0 XXO0
1 JCY, JLLT X1 XXX
JLGE, JNCY X0 XXX

Instructions

8-81



JC

Op code Cond | Word displacement
00010

0 4 507 8 15

This instruction tests the condition of the various
indicators set by a previously executed instruction
(for example, an arithmetic, compare, test bit, or

test word type of instruction).

If the condition tested is met, bit 8 (the leftmost
bit of the word displacement field) is propagated
left by seven bit positions and a 0 is appended at
the low-order end; this results in a 16-bit word.
(Word displacement is converted to a byte
displacement.) This value is added to the updated
value of the instruction address register, and

8-82 GA34-0152

becomes the address of the next instruction to be
fetched. If the condition tested is not met, the
next sequential instruction is fetched.

Indicators

The indicators are not changed.
Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

VR
(\\4 /

ON®

—

()

O O

-
)
J

.

() ()

)

)

) )

)

O O O

OO O

~

AN,



00000000000

OO0 000000 O0

JCT

Jump on Count (JCT)

JCT jdisp,reg
jaddr,reg

Op code R Word displacement
10111
0 4 5 7 8 15

Subtract 1 from
This instruction tests the contents of the register reg contents
specified by the R-field.

If the register contents are not 0, the contents are
decremented by 1. If the register contents are still
not 0, the word displacement is converted to a
byte displacement and added to the contents of <
the updated instruction address register (IAR).
This value indicates the location of the next
instruction to be fetched.

Yes Reg
contents =0

If the register contents are 0 when initially tested,

no decrementing occurs. In this case, or when the Add the byte
register contents are 0 after decrementing, the displacement to
next sequential instruction is fetched. the IAR

Note: When the register contents are not 0, the
word displacement is converted to a byte
displacement as follows: Bit 8 (the leftmost bit the

word displacement field) is propagated left by ( No jump ) Jump

seven bit positions, and a 0 is appended at the

low-order end. This results in a 16-bit word that
has been doubled in magnitude.

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. Branching
does not occur, but the contents of the register
specified by the R-field are still decremented by 1.

Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions  8-83



JNC

‘Jump on Not Condition (JNC)

Operand
Mnemonic syntax
JNC cond,jdisp
cond,jaddr
Extended Operand
mnemonic syntax
INE jdisp
jaddr
JNOFF jdisp
jaddr
IJNZ jdisp
jaddr
JINMIX jdisp
jaddr
JNP jdisp
jaddr
JNON jdisp
jaddr
NN jdisp
jaddr
JNEV jdisp
jaddr
JGE jdisp
jaddr
JGT jdisp
jaddr
JLGT jdisp
jaddr
JLGE jdisp
jaddr
INCY jdisp
jaddr
8-84 GA34-0152

Instruction name

Jump on Not
Condition

Instruction name

Condition
field bits

(see ©))

Any
value
listed
below

Condition
field bits

(see®)

Jump on Not Equal 000

Jump if Not Off
Jump on Not Zero

Jump on Not
Mixed

Jump on Not
Positive

Jump if Not On

Jump on Not
Negative

Jump on Not Even

Jump on
Arithmetically
Greater Than

or Equal

Jump on
Arithmetically
Greater Than
Jump on Logically
Greater Than
Jump on Logically
Greater Than

or Equal

Jump on No Carry

000

000

001

001

010

010

011

100

101

110

111

111

Extended mnemonics Indicators
tested
Cond
field 01234
bits Jump ECONZ
JE, JOFF, JzZ X X X X 1
000
JNE, JNOFF, JNZ X X X X 0
JMIX, JP X X X00
001
INMIX, JNP X X X X1
XX X1 X
JN, JON XX X 1 X
010
JNN, JNON XX X0 X
JEV 1 X XX X
011
JNEV 0 X X X X
JLT XX01X
XX10X
100
JGE XX11X
X X00 X
JLE X X01X
XX10X
XX X X1
101
JGT X X110
XX000
|JLLE X1 XXX
XXX X1
110
JLGT X0 XXO0
1 PROYILLT X 1 X X X
JLGE, JNCY X 0 X X X




ole

OCO0O0OO0CO0O00O0

Opcode ~ |Cond |Word displacement
00011
0 4 507 8 15

This instruction tests the condition of the various

indicators set by a previously executed instruction
(for example, an arithmetic, compare, test bit, or

test word type of instruction.)

If the condition tested is met, bit 8 (the leftmost
bit of the word displacement field) is propagated
left by seven bit positions and a 0 is appended at
the low-order end; resulting in a 16-bit word.
(Word displacement is converted to a byte
displacement.) This value is added to the updated
value of the instruction address register, and
becomes the address of the next instruction to be
fetched.

JNC

If the condition tested is not met, the next
sequential instruction is fetched.

Indicators
The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction

is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions  8-85



LEX

Level Exit (LEX)
LEX [ubyte]

Op code Func | Parameter
01100/001
0 4 5 7 8 15

When this instruction is executed, the processor
exits the current level. The in-process bit (LSR bit
9) for the current level is set to 0. Next, the
instruction tests for pending levels or outstanding
priority interrupt requests, and the condition of
the summary mask (LSR bit 11) for the level to
be exited.

If pending levels or outstanding requests exist and
the summary mask is enabled, a branch is
executed to the address contained in the IAR of
the highest pending or requesting level. This level
then becomes the current level and processing
resumes.

If pending levels or outstanding requests exist and
the summary mask is disabled, the pr