
--------- - ------- - ---- - - ----------_.- Series/1

GA34-0152-0

File No. Sl -01

IBM Series/1

Principles of Operation

' (

C') --------- ----- ---- - ---- - - ----------_.-

o GA34-0152-0

o
o
o
()

C)

r l

L
o
o
o
o
o
:)

:)

File No. S1-01

IBM Series/1

Principles of Operation

Series/1

First Edition (April 1981)

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publica
tions should be made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for
readers' comments is provided at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Information Development, Department 27T,
P.O. Box 1328, Boca Raton, Florida 33432. IBM may use and distribute any of the informa
tion you supply in any way it believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

c

o

C:

C

c
C

o

c
C

C~
. ./

r
V

C:I

o
o
o
C)
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

,

o
o

This publication describes the common functional
characteristics of IBM Series/1 processors and
their optional features.

Th~ reader should understand data processing
terminology and be familiar with binary and
hexadecimal numbering systems.

This publication is intended primarily as a
reference manual for experienced programmers
who require machine code information to plan,
correct, and modify programs written in the
assembler language. It is also intended for the
person who requires machine status information
and interrupt-handling procedures.

This manual is to be used in conjunction with
Series/1 processor and I/O description manuals.

Chapter 1. Introduction is an introduction to the
Series/I. It contains a general description of the
processors and features.

Chapter 2. Processor Unit Description contains a
description of processor hardware, including
registers and indicators.

Main storage data formats and addressing are
presented in this chapter.

The "Program Execution" section covers:

• Basic instruction formats

• Effective-address generation

• Processor state control

• Initial program load (IPL)

Jumping and branching

• Level switching and interrupts

• Stack operations

Chapter 3. Interrupts and Level Switching
describes the priority interrupt levels and the
interrupt processing for I/O devices and class
interrupts. Related topics are:

Program-controlled level switching

Interrupt masking facilities

Recovery from error conditions

Preface

Chapter 4. Input/Output Operations describes the
I/O commands and control words that are used to
operate the I/O devices. Condition codes and
status information relative to the I/O operation
are also explained. Specific command and
status-word bit structures are contained in the I/O
device description manuals.

Chapter 5. Storage Address Relocation Translator
describes the relocation translator, including
relocation addressing and address space
management. The storage address relocation
translator is not available on some processors.

Chapter 6. Clock/Comparator explains the
functions of the clock/comparator. The
clock/ comparator is not available on some
processors.

Chapter 7. Floating-Point Feature describes the
optional floating-point feature.' The floating-point
feature is not available for some processors.

Chapter 8. Instructions describes the basic
instruction set, including indicator settings and
possible exception conditions. Individual
instruction word formats that contain bit
combinations for the operation codes and function
fields are included. The instructions are arranged
in alphabetical sequence based on assembler
mnemonics.

Appendixes:

• Instruction formats

• Assembler syntax

• Number systems and conversion tables

• Character codes

• Carry and overflow indicators

• Reference information

Note: Refer to individua1 processor publications
for a discussion of the optional programmer
console.

Related Publications

Additional publications are listed in the IBM
Series/1 Graphic Bibliography, GA34-0055.

Preface iii

iv GA34-0152

C,

c\
C~'

c:
CI

c
C
c\
C
['
i

C

0 1

o
C'

c'
e l

c~

C
C:

CI

o
o
o
o
o
o
o

o

o
o
o
o
(j

o
o
o
()

o
o

Chapter 1. Introduction 1-1
Processor Characteristics 1-1
Processor Description 1-1
Input/Output Units, I/O Features, and Processor

Options 1-3

Chapter 2. Processor Unit Description 2-1
Main Storage 2-1

Addressing Main Storage 2-1
Arithmetic and Logic Unit (ALU) 2-2
Numbering Representation 2-3
Registers 2-5

System Registers 2-6
Level Registers 2-8

Indicator Bits 2-9
Even, Negative, and Zero Result Indicators 2-10
Even, Carry, and Overflow Indicators-Condition Code

for Input/Output Operations 2-10
Carry and Overflow Indicators-Add and Subtract

Operations 2-10
Carry and Overflow hldicators-Shift

Operations 2-11
Indicators-Compare Operations 2-11
Indicators-Multiple Word Operands 2-14
Testing Indicators with Conditional Branch and Jump

Instructions 2-15
Supervisor State Bit 2-15
In-Process Bit 2-16
Trace Bit 2-16
Summary Mask Bit 2-16
Program Execution 2-16

Instruction Formats 2-16
Effective-Address Generation 2-21
Processor State Control 2-30
Initial Program Load (IPL) 2-33
Sequential Instruction Execution 2-34
Jumping and Branching 2-34
Level Switching and Interrupts 2-35
Stack Operations 2-35

Chapter 3. Interrupts and Level Switching 3-1
Interrupt Scheme 3-2

Level Status Block (LSB) 3-3
Automatic Interrupt Branching 3-3
I/O Interrupts 3-5

Prepare I/O Device for Interrupt 3-5
Present and Accept I/O Interrupt 3-6

Class Interrupts 3-9
Priority of Class Interrupts 3-10
Present and Accept Class Interrupt 3-11

Recovery Procedures for Class Interrupts 3-17
Machine Check 3-17
Program Check 3-18
Power/Thermal Warning 3-18
Supervisor Call 3-18
Soft-Exception Trap 3-19
Trace 3-19

Contents

Clock 3-19
Console 3-19

Processor Status Word 3-20
Interrupt Masking Facilities 3-24

Summary Mask 3-24
Interrupt Level Mask Register 3-25
Device Mask (I-Bit) 3-25

Program-Controlled Level Switching 3-26
Selected Level Lower Than Current Leval and

In-Process Bit On 3-27
Selected Level Equal to Current Level and

In-Process Bit On 3-27
Selected Level Higher Than Current Level and

In-Process Bit On 3-27
Selected Level Lower Than Current Level and

In-Process Bit Off 3-28
Selected Level Equal to Current Level and

In-Process Bit Off 3-28
Selected Level Higher Than Current Level and

In-Process Bit Off 3-28

Chapter 4. Input/Output Operations 4-1
Operate I/O Instruction 4-2

Immediate Device Control Block (IDCB) 4-3
Device Control Block (DCB) 4-5
I/O Commands 4-7

DPC Operation 4-13
Cycle-Steal 4-15

Start Command 4-16
Start Cycle Steal Status Command 4-20

Cycle-Steal Device Options 4-22
Burst Mode 4-22
Chaining 4-22
Extended DCB 4-23
Program-Controlled Interrupt (PCI) 4-23
Suppress Exception 4-23

I/O Condition Code and Status Information 4-26
I/O Instruction Condition Codes 4-26
Interrupt Condition Codes 4-28
I/O Status Information 4-29

Chapter S. Storage Address Relocation Translator 5-1
Translator Description 5-1

Storage Mapping 5-2
Relocation Addressing 5-2
Storage Protection 5-4
I/O Storage Access Using the Relocation Translator 5-4
Status of Translator After Power Transitions

and Resets 5-4
Error-Recovery Considerations 5-5

Invalid Storage Address 5-5
Protect Check 5-5

Address Space Management 5-6
Active Address Key 5-6
Equate Operand Spaces (EOS) 5-6
Address Space 5-7
Address Key Values After Interrupts 5-9

Contents v

Chapter 6. Clock/Comparator 6-1
Clock/Comparator Features 6-1

Clock 6-1
Comparator 6-2

Chapter 7. Floating-Point Feature 7-1
Data Format 7-1
Number Representation 7-2

Floating-Point Numbers 7-2
Binary Integers in Main Storage 7-3

Normalization 7-3
Programming Considerations 7-3

Floating-Point Feature Not Installed 7-3
Floating-Point Registers 7-4
Arithmetic Indicators 7-4
Floating-Point Exceptions 7-4

Floating-Point Instructions 7-5
Instruction Formats 7-6

Exception Conditions 7-7
Program-Check Conditions 7-7
Soft-Exception Trap Conditions 7-7
Additional Error Information 7-8

Single Precision 7-8
Addition 7-8
Subtraction 7-8
Multiplication 7-9
Division 7-9

Double Precision 7-9
Addition 7-9
Subtraction 7-10
Multiplication 7-tO
Division 7 -10

Chapter 8. Instructions 8-1
Add Address (AA) 8-2

Register Immediate Long Format 8-2
Storage Immediate Format 8-2

Add Byte (AB) 8-4
Add Byte Immediate (ABI) 8-5
Add Carry Register (ACY) 8-5
Add Doubleword (AD) 8-6

Register/Storage Format 8-6
Storage/Storage Format 8-7

Add Word (A W) 8-8
Register /Register Format 8-8
Register /Storage Format 8-8
Storage/Register Long Format 8-9
Storage/Storage Format 8-10

Add Word With Carry (AWCY) 8-11
Add Word Immediate (A W) 8-11

Storage Immediate Format 8-12
Branch Unconditional (B) 8-13
Branch and Link (BAL) 8-14
Branch and Link Short (BALS) 8-15
Branch on Condition (BC) 8-16
Branch on Condition Code (BCC) 8-18
Branch on Not Condition (BNC) 8-19
Branch on Not Condition Code (BNCC) 8-21
Branch on Not Overflow (BNOV) 8-22
Branch on Overflow (BOV) 8-23
Branch Indexed Short (BXS) 8-24
Compare Address (CA) 8-25

Register /Immediate Long Format 8-25
Storage Immediate Format 8-25

Compare Byte (CB) 8-27
Register/Storage Format 8-27

vi GA34-0152

Storage/Storage Format 8-27
Compare Byte Immediate (CBI) 8-28
Compare Doubleword (CD) 8-29

Register/Storage Format 8-29
Storage/Storage Format 8-30

Compare Byte Field Equal and Decrement (CFED)
Compare Byte Field Equal and Increment (CFEN)
Compare Byte Field Not Equal and Decrement

(CFNED) 8-32
Compare Byte Field Not Equal and Increment

(CFNEN) 8-32
Complement Register (CMR) 8-33
Copy Address Key Register (CPAKR) 8-33

System Register/Storage Format 8-33
System Register/Register Format 8-34

Copy Current Level (CPCL) 8-35
Copy Clock (CPCLK) 8-35
Copy Comparator (CPCMP) 8-36
Copy Console Data Buffer (CPCON) 8-36
Copy Floating Level Block (CPPLB) 8-37
Copy Interrupt Mask Register (CPIMR) 8-38
Copy In-Process Flags (CPIPF) 8-38
Copy Level Block (CPLB) 8-39
Copy Level Status Register (CPLSR) 8-40
Copy Processor Status and Reset (CPPSR) 8-40
Copy Storage Key (CPSK) 8-41
Copy Segmentation Register (CPSR) 8-42
Compare Word (CW) 8-43

Register /Register Format 8-43
Register /Storage Format 8-43
Storage/Storage Format 8-44

Compare Word Immediate (CWI) 8-45
Register Immediate Long Format 8-45
Storage Immediate Format 8-46

Divide Byte (DB) 8-48
Divide Doubleword (DD) 8-48
Diagnose (DIAG) 8-49
Disable (DIS) 8-49
Divide Word (DW) 8-50
Enable (EN) 8-51
Floating Add (FA) 8-52

Storage/Register Format 8-52
Register /Register Format 8-53

Floating Add Double (FAD) 8-54
Storage/Register Format 8-54
Register/Register Format 8-55

Floating Compare (FC) 8-56
Floating Compare Double (FCD) 8-56
Floating Divide (FD) 8-57

Storage/Register Format 8-57
Register/Register Format 8-58

Floating Divide Double (FDD) 8-59
Storage/Register Format 8-59
Register /Register Format 8-60

Fill Byte Field and Decrement (FFD) 8-61
Fill Byte Field and Increment (FFN) 8-61
Floating Multiply (FM) 8-62

Storage/Register Format 8-62
Register/Register Format 8-63

Floating Multiply Double (FMD) 8-64
Storage/Register Format 8-64
Register/Register Format 8-65

Floating Move (FMV) 8-66
Storage/Register Format 8-66
Register/Storage Format 8-67

C·'''':
/ .. --'

c=:'

CI

8-31 ~
\"-/

8-31

(~
~,'

C~

l~

C
(\
,'--"'.

(;,
./

('

~--~ /

C

C:'
CI

C~'

C~

C·,

0

C
",--......

l/'

0

C)
o
(j

o
o
o
II

o
o

L
~'I

. I

)

o
o
C)

o
C)

o
o
o
o

Register/Register Format 8-67
Floating Move and Convert (FMVC) 8-68

Storage/Register Format 8-68
Register/Storage Format 8-69

Floating Move and Convert Double (FMVCD) 8-70
Storage/Register Format 8-70
Register/Storage Format 8-71

Floating Move Double (FMVD) 8-72
Storage/Register Format 8-72
Register/Storage Format 8-72
Register/Register Format 8-73

Floating Subtract (FS) 8-74
Storage/Register Format 8-74
Register/Register Format 8-75

Floating Subtract Double (FSD) 8-76
Storage/Register Format 8-76
Register/Register Format 8-77

Operate I/O (10) 8-78
Interchange Operand Keys (IOPK) 8-79
Interchange Registers (lR) 8-79
Jump Unconditional (J) 8-80
Jump and Link (JAL) 8-80
Jump on Condition (JC) 8-81
Jump on Count (JCT) 8-83
Jump on Not Condition (JNC) 8-84
Level Exit (LEX) 8-86
Load Multiple and Branch (LMB) 8-87
Multiply Byte (MB) 8-88
Multiply Doubleword (MD) 8-89
Move Address (MV A) 8-90

Storage Address to Register Format 8-90
Storage Immediate Format 8-91

Move Byte (MVB) 8-92
Register /Storage Format 8-92
Storage/Storage Format 8-93

Move Byte Immediate (MVBI) 8-94
Move Byte and Zero (MVBZ) 8-94
Move Doubleword (MVD) 8-95

Register/Storage Format 8-95
Storage/Storage Format 8-96

Move Doubleword and Zero (MVDZ) 8-96
Move Byte Field and Decrement (MVFD) 8-97
Move Byte Field and Increment (MVFN) 8-97
Move Word (MVW) 8-98

Register/Register Format 8-98
Register/Storage Format 8-98
Register /Storage Long Format 8-99
Storage/Register Long Format 8-100
Storage/Storage Format 8-100

Move Word Immediate (MVWI) 8-101
Storage/Register Format 8-101
Storage Immediate Format 8-102

Move Word Short (MVWS) 8-103
Register/Storage Format 8-103
Storage/Register Format 8-104

Move Word and Zero (MVWZ) 8-105
Multiply Word (MVW) 8-106
No Operation (NOP) 8-107
AND Word Immediate (NWI) 8-107
OR Byte (OB) 8-108

Register /Storage Format 8-108
Storage/Storage Format 8-109

OR Doubleword (OD) 8-110
Register/Storage Format 8-110
Storage/Storage Format 8-111

OR Word (OW) 8-112
Register/Register Format 8-112
Register/Storage Format 8-112
Storage/Register Long Format 8-113
Storage/Storage Format 8-114

OR Word Immediate (OWl) 8-115
Register Immediate Long Format 8-115
Storage Immediate Format 8-115

Pop Byte (PB) 8-117
Pop Doubleword (PD) 8-117
Push Byte (PSB) 8-118
Push Doubleword (PSD) 8-118
Push Word (PSW) 8-119
Pop Word (PW) 8-119
Reset Bits Byte (RBTB) 8-120

Register/Storage Format 8-120
Storage/Storage Format 8-120

Reset Bits Doubleword (RBTD) 8-122
Register/Storage Format 8-122
Storage/Storage Format 8-123

Reset Bits Word (RBTW) 8-124
Register/Register Format 8-124
Register/Storage Format 8-124
Storage/Register Long Format 8-125
Storage/Storage Format 8-126

Reset Bits Word Immediate (RBTWI) 8-126
Register Immediate Long Format 8-126
Storage Immediate Format 8-127

Subtract Address (SA) 8-128
Register Immediate Long Format 8-128
Storage Immediate Format 8-129

Subtract Byte (SB) 8-130
Set Bits Byte (SBTB) 8-131

Register/Storage Format 8-131
Storage/Storage Format 8-132

Set Bits Doubleword (SBTD) 8-133
Register/Storage Format 8-133
Storage/Storage Format 8-133

Set Bits Word (SBTW) 8-135
Register/Register Format 8-135
Register/Storage Format 8-135
Storage/Register Long Format 8-136
Storage/Storage Format 8-137

Set Bits Word Immediate (SBTWI) 8-137
Register Immediate Long Format 8-137
Storage Immediate Format 8-138

Subtract Carry Indicator (SCY) 8-139
Subtract Doubleword (SD) 8-140

Register/Storage Format 8-140
Storage/Storage Format 8-141

Set Address Key Register (SEAKR) 8-142
System Register/Storage Format 8-142
System Register/Register Format 8-143

Set Clock (SECLK) 8-143
Set Comparator (SECMP) 8-144
Set Console Data Lights (SECON) 8-144
Set Floating Level Block (SEFLB) 8-145
Set Interrupt Mask Register (SEIMR) 8-146
Set Indicators (SEIND) 8-146
Set Level Block (SELB) 8-147
Set Storage Key (SESK) 8-149
Set Segmentation Register (SESR) 8-150
Scan Byte Field Equal and Decrement (SFED) 8-151
Scan. Byte Field Equal and Increment (SFEN) 8-151
Scan Byte Field Not Equal and Decrement

Contents vii

(SFNED) 8-152
Scan Byte Field Not Equal and Increment

(SFNEN) 8-152
Shift Left Circular (SLC) 8-153

Immediate Count Format 8-153
Count in Register Format 8-154

Shift Left Circular Double (SLCD) 8-155
Immediate Count Format 8-155
Count in Register Format 8-156

Shift Left Logical (SLL) 8-157
Immediate Count Format 8-157
Count in Register Format 8-157

Shift Left Logical Double (SLLD) 8-158
Immediate Count Format 8-158
Count in Register Format 8-158

Shift Left and Test (SLT) 8-159
Shift Left and Test Double (SLTD) 8-160
Shift Right Arithmetic (SRA) 8-161

Immediate Count Format 8-161
Count in Register Format 8-161

Shift Right Arithmetic Double (SRAD) 8-162
Immediate Count Format 8-162
Count in Register Format 8-162

Shift Right Logical (SRL) 8-163
Immediate Count Format 8-163
Count in Register Format 8-163

Shift Right Logical Double (SRLD) 8-164
Immediate Count Format 8-164
Count in Register Format 8-164

Store Multiple (STM) 8-165
Stop (STOP) 8-165
Supervisor Call (SVC) 8-166
Subtract Word (SW) 8-167

Register/Register Format 8-167
Register/Storage Format 8-167
Storage/Register Long Format 8-168
Storage/Storage Format 8-169

Subtract Word With Carry (SWCY) 8-170
Subtract Word Immediate (SWI) 8-171

Register Immediate Long Format 8-171
Storage Immediate Format 8-172

Test Bit (TBT) 8-173
Test Bit and Reset (TBTR) 8-173
Test Bit and Set (TBTS) 8-174
Test Bit and Invert (TBTV) 8-174

viii GA34-0152

Test Word Immediate (TWI) 8-175
Register Immediate Long Format 8-175
Storage Immediate Format 8-175

Invert Register (VR) 8-176
Exclusive OR Byte (XB) 8-177
Exclusive OR Doubleword (XD) 8-178
Exclusive OR Word (XW) 8-179

Register/Register Format 8-179
Register/Storage Format 8-180
Storage/Register Long Format 8-181

Exclusive OR Word Immediate (XWI) 8-182

Appendix A. Instruction Formats A-I

Appendix B. Assembler Syntax B-1
Coding Notes B-1

Legend for Machine-Instruction Operands B-1

Appendix C. Number Systems and Conversion Tables
Binary and Hexadecimal Number Systems C-l

Binary Number Systems C-l
Hexadecimal Number Systems C-2

Hexadecimal-Decimal Conversion Tables C-4

Appendix D. Character Codes D-l

Appendix E. Carry and Overflow Indicators E-l
Carry Indicator Setting E-l

Add Operation Examples E-l
Subtract Operation Examples E-3

Overflow Indicator Setting E-5
Examples E-5

Unsigned Numbers E-8
Signed Numbers E-I0

Appendix F. Reference Information F-l
Address Key Register (AKR) F-l
Condition Codes F-2

I/O Instruction Condition Codes F-2
Interrupt Condition Codes F-2

General Registers F-3
Interrupt Status Byte (ISB) F-3

DPC Devices F-3
Cycle-Steal Devices F-3

Level Status Register (LSR) F-4
Processor Status Word (PSW) F-4

Index X-I

(-"~
-----)

C
~,

\
'-/

('
'-_/

('\
',,-----,

,-....."
""-,

C-l C~

(\
'----...-'

(\
'-.....---'

(;
'-. .. _/

('
I

I

I\.

C
r~

\,-,)

C'

C
C~'

(..
\.. I

-.-/'

C~~';

C,

C,:

C'I

C)
o

Processor Characteristics

C)
(j

o Processor Description

()

o
()

o

Chapter 1. Introduction

The IBM Series/l processor is a compact, general-purpose computer that
has the following characteristics:

• Four priority interrupt levels-independent registers and status
indicators for each level. Automatic and program-controlled level
switching.

Instruction set that includes: stacking and linking facilities, multiply
and divide, variable-field-length byte operations, and a variety of
arithmetic and branching instructions.

Supervisor and problem states.

• Designed for mounting in standard 483 mm (19-inch) rack; some
models do not require rack-mounting.

• Basic console standard in processor unit; programmer console optional.

• An address translator (not installed on all processors).

• A clock/comparator (not installed on all processors).

• Channel capability:
Asynchronous, multidropped channel.

- 256 input/output (I/O) devices can be addressed.
- Direct program control and cycle-steal operations.

The processor unit contains power and space for additional features. The
IBM 4959 Input/Output Expansion Unit and the IBM 4965 Diskette
,Drive and I/O Expansion Unit are available for additional features.

Figure 1-1 shows a block diagram of an IBM Series/l processor and an
IBM 4959 Input/Output Expansion Unit.

Four priority interrupt levels are implemented in the processor. Each level
has an independent set of machine registers. Level switching can occur by
program control or automatically upon acceptance of an I/O interrupt
request. The interrupt mechanism provides 256 unique entry points for
I/O devices.

The processor instruction set contains a variety of instruction types. These
include: shift, register to register, register immediate, register to (or from)
storage, bit manipulation, mUltiple register to storage, variable byte field,
and storage to storage. Supervisor and problem states are implemented,
with appropriate privileged instructions for the supervisor.

Introduction 1-1

1-2

IBM Series/1 Processor

Translator*

Processor Storage
Channel

Channel

Floating-point*

'--or----.J. _ ~~i£.n~ L ___ I

Console
attachment

I/O device

I/O device I/O attachment I/O attachment

I/O device

*Not available on some processors

GA34-0152

Figure 1-1. Block diagram of an IBM Series/l processor and an IBM 4959 Input/Output
Expansion Unit

c

r·...., (,
,_ '

/'~

('--..i

c·

o

o

o
o
o
o
o
(J
o
(J
o

The basic console is intended for dedicated systems that are used in a
basically unattended environment. Only minimal controls are provided. A
programmer console, which can be added as a feature, provides a variety
of indicators and controls for operator-oriented systems.

I/O devices are attached to the processor through the processor I/O
channel. The channel directs the flow of information between the I/O
devices, the processor, and main storage. This channel accommodates a
maximum of 256 directly addressable devices.

The channel supports:

• Direct-program control operations. Each Operate I/O instruction
transfers a byte or word of data between main storage and the device.
The operation mayor may not terminate in an interrupt.

• Cycle-steal operations. Each Operate I/O instruction initiates mUltiple
data transfers between main storage and the device (65,535 bytes
maximum). Cycle-steal operations are overlapped with processing
operations and always terminate in an interrupt.

• Interrupt servicing. Interrupt requests from the devices, along with
cycle-steal requests, are presented and polled concurrently with data
transfers.

Input/Output Units, I/O Features, and Processor Options

A variety of I/O units and features, plus several processor options, are
available for use with the Series/1 processor. For a list and description of
system units and features, refer to the IBM Series/l System Selection
Guide, GA34-0143, and the IBM Series/l System Summary, GA34-0035.
Detailed information about I/O units and features can be found in
separate publications. The order numbers for these publications are
contained in the IBM Series/l Graphic Bibliography, GA34-0055.

Introduction 1-3

-, (.
'-...../

(-'.
i

I

I

l.

,..-, L\

1-4 GA34-0152 CJ

C)

o

o
o
o
o
C)

o
o

o
o
o
o
o
o
o
o
o
o
o

Main Storage

Addressing Main Storage

Chapter 2. Processor Unit Description

Main storage holds data and instructions for applications to be processed
on the system. The data and instructions are stored in units of information
called bytes. Each byte consists of eight binary data bits plus a parity bit.
Odd parity by byte is maintained throughout storage; even parity causes a
machine-check error. Formats shown in this manual exclude the parity bits
because they are not a part of the data flow manipulated by the
instructions.

The bits within a byte are numbered consecutively, left to right, 0 through
7. When a format consists of multiple bytes, the numbering scheme is
continued (for example, the bits in the second byte would be numbered 8
through 15). Leftmost bits are sometimes referred to as high-order or
most-significant bits; rightmost bits are referred to as as low-order or
least-significant bits.

Bytes can be handled separately or grouped together. A word is a group of
two consecutive bytes, beginning on an even-address boundary, and is the
basic building block of instructions. A doubleword is a group of four
consecutive bytes, beginning on an even address boundary.

Each byte location in main storage is directly addressable. Byte locations
in storage are numbered consecutively, starting with location 0; each
number is considered to be the address of the corresponding byte. Storage
addresses are 16-bit unsigned binary numbers. This permits a direct
addressing range of 65,536 bytes.

When the storage address relocation translator is enabled, the logical
address translates into a physical address that allows addressing beyond
65,536 bytes. Refer to individual processor publications for information
regarding maximum fitted storage size.

Processor Unit Description 2-1

Instruction and Operand Address Boundaries

Byte

As previously stated, all storage addressing is defined by byte location.
Instructions can refer to bits, bytes, byte strings, words, or doublewords as
data operands. All word and doubleword operand addresses must be on
even-byte boundaries. All word and doubleword operand addresses point
to the most-significant (leftmost) byte in the operand. Bit addresses are
specified by a byte address and a bit displacement.

10 0 0 0 0 0 0 11
o 7

Word

10 0 0 0 0 0 0 010 0 0 0 0 0 1 01
o 7 8 15

Doubleword

10 0 0 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 1 0 01
o 7 8 1516 2324

To provide maximum addressing range, some instructions refer to a byte,
word, or doubleword displacement that is added to the contents of a
register. In these cases, the operand is a word and the register must
contain an even-byte address for valid'results.

All instructions must be on an even-byte boundary.

The effective address for all branch type instructions must be on an
even-byte boundary to be valid.

If the rules of even-byte addressing are violated, a program-check
interrupt occurs with specification check set in the processor status word
(PSW). The instruction is suppressed unless otherwise noted in the
individual instruction description in Chapter 8.

31

Arithmetic and Logic Unit (ALU)

2-2 GA34-0152

The arithmetic and logic unit (ALU) contains the hardware circuits that
perform addition, subtraction, and logical operations; such as, AND, OR,
and Exclusive OR. The ALU performs address arithmetic as well as the
operations required to process the instruction operands. Operands may be
regarded, as signed or unsigned by the programmer. However, the ALU
does not distinguish between them. Refer to "Numbering Representation"
in this chapter for a detailed discussion of signed or unsigned operands.
For many instructions, indicators are set to reflect the result of the ALU
operation. Refer to "Indicator Bits" in this chapter for a detailed
discussion of indicator settings.

o
c'

Ci

c
c
C~

c
o

c
o
c

c

o

o
() Numbering Representation

o

o
o
C)

o

c
()

o
o
o
C)
o

()

o
o

Operands may be signed or unsigned depending on how they are used by
the programmer. An unsigned number is a binary integer in which all bits
contribute to the magnitude. A storage address is an example of an
unsigned number. A signed number is one where the high-order bit is used
to indicate the sign, and the remaining bits define the magnitude. Signed
positive numpers are represented in true binary notation with the sign bit
(high-order bit) set to O. Signed negative numbers are represented in two's
complement notation with the sign bit (high-order bit) set to 1. The two's
complement of a number is obtained by inverting each bit of the number
and adding a 1 to the low-order bit position. Two's complement notation
does not include a negative O. The maximum positive number consists of
an all-l 's integer field with a sign bit of 0; the maximum negative number
(the negative number with the greatest absolute value) consists of an
all-O's integer field with a I-bit for the sign.

The following examples show:

• An unsigned 16-bit number

• A signed 16-bit positive number

• A signed 16-bit negative number

Example of an unsigned 16-bit number:

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Binary number
o

Decimal value
Hexadecimal value

65535
FFFF

15 Bit position

(The largest unsigned number
representable in 16 bits.)

Example of a signed 16-bit positive number:

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Binary number

o

L Sign (+)

Decimal value
Hexadecimal value

+32767
7FFF

15 Bit position

(The largest positive signed
number representable in 16 bits.)

Processor Unit Description 2-3

2-4 GA34-0152

When the number is positive, all bits to the left of the most-significant bit
of the number, including the sign bit, are O's.

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Binary number

o

L Sign (+1

Decimal value
Hexadecimal value

+1
0001

15 Bit position

Example of a signed 16-bit negative number:

11 0 0 0 0 0 0 0 0 0 0 0 0 0001 Binary number
Bit position o

L Sign (-I

Decimal value
Hexadecimal value

-32768
8000

15

(The largest negative signed
number representable in 16 bits.)

Note: This form of representation yields a negative range of one more
than the positive range.

When the number is negative, all bits to the left of the most-significant bit
of the number, including the sign bit, are set to 1 'so

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 Binary number

o

L Sign (-I

Decimal value
Hexadecimal value

-2
FFFE

15 Bit position

c

c'

I

\--

o

c·
C\

.,./

0

0

0

0
C)
()

0
C)

0
,c...."

L)

[J
C)

0

0

0

0

0
~,

\J

0

0

0

Registers

When a signed-number operand must be extended with high-order bits, the
extension is achieved by prefixing a field with each bit set equal to the
high-order bit of the operand.

Example of an 8-bit field extended to a 16-bit field:

11 1 1 1 1 1 1 0 11
o 7

L Sign (-)

Decimal val ue
Hexadecimal value

11 1 1 1 1 1 1 1 1 1 1 1 1 1 0 11
o 15

L Sign (_)

Decimal value -3
Hexadecimal value FFFD

Binary number
Bit position

-3
FD

Binary number
Bit position

When performing the add and subtract operations, the processor does not
regard the number as either signed or unsigned, but performs the
designated operation on the values presented. Whether a given add or
subtract operation is to be regarded as a signed operation or an unsigned
operation is determined by the programmer's view of the values being
presented as operands. The carry indicator and the overflow indicator of
the level status register (LSR) are changed on various operations to reflect
the result of that operation. This allows the programmer to make result
tests for the number representation involved. The carry and overflow
indicator settings are explained in "Indicator Bits" in this chapter.

There are two general types of registers: system and level registers. The
system registers are one-of-a-kind registers that retain information
common to all priority-interrupt levels. The level registers, which are
duplicated for each priority-interrupt level, retain information that must be
saved when a level is preempted.

Information that pertains only to the current process is kept in registers
common to all levels. The registers in each category are listed in this
section.

Processor Unit Description 2-5

System Registers

Registers supplied on a system basis:

Processor status word (PSW) register

Mask register (interrupt level)

Clock register(not installed on all processors)

Comparator register(not installed on all processors)

Segmentation registers (not installed on all processors)

Registers supplied on a system basis, using the programmer console:

Console data buffer register

• Current-instruction address register (CIAR)

• Storage address register (SAR)

• Console address key register

• Console stop-on-address register

Registers supplied on a level basis:

• Address key register (AKR)

• General registers (eight per level)

• Instruction address register (IAR)

• Level status register (LSR)

• Floating-point registers (optional; not available for some processors)

Note: For a specific level, the contents of the IAR, AKR, LSR, and the
general registers are known as a level status block (LSB). The LSB is a
22-byte entity used by hardware and software for task control and task
switching.

Processor Status Word (PSW) Register

Mask Register

2-6 GA34-0152

The processor status word (PSW) is a I6-bit register used to record error
or exception conditions that may prevent further processing, and to hold
certain flags that aid in error recovery. Error or exception conditions
recorded in the PSW result in a class interrupt. Each bit in the PSW is
described in detail in Chapter 3. The PSW can be accessed by using the
Copy Processor Status and Reset (CPPSR) instruction. Refer to Chapter 8
for a detailed description of this instruction.

The mask register is used for control of interrupts. Bit 0 controls level 0,
bit 1 controls level 1, and so on.

A I-bit enables interrupts on a level; a O-bit disables interrupts. For
example, if bit 3 is set to aI, interrupts are enabled on level 3.

c
c=:
c

. /,"""

I
'''-..--'

c

C~

C:

(\)
~

r---.
U

o
o
o
o
o
o
o
o

o
o
o
o
o
()

o
o
o
o

Clock Register

Comparator Register

Segmentation Registers

Console Data Buffer Register

The clock register is a 32-bit register that is incremented at I-millisecond
intervals. Refer to Chapter 6 for further information concerning the clock
register.

The comparator register is a 32-bit register that is used in conjunction
with the clock register to generate the clock class interrupt. Refer to
Chapter 6 for further information concerning the comparator register.

A segmentation register is a register that changes a logical address to a
physical address. Refer to Chapter 5 for further information concerning
the segmentation registers.

The console data buffer is a I6-bit register associated with the
programmer console. The contents of the console data buffer can be
loaded into a specified general register by using the Copy Console Data
Buffer (CPCON) instruction. Refer to Chapter 8 for a detailed description
of this instruction. Refer to individual processor publication for further
information concerning the programmer console.

Current-Instruction Address Register (CIAR)

Storage Address Register (SAR)

Console Address Key Register

The current-instruction address register (CIAR) is not addressable by
software. It may be displayed from the programmer console. When the
processor enters the stop state, the CIAR contains the address of the last
instruction that was executed. Refer to "Stop State" under "Processor
State Control" in this chapter for methods of entering stop state.

The storage address register (SAR) is not ,addressable by software. It is
used for certain programmer console operations. SAR is a I6-bit register
that contains the main-storage address for the last attempted processor
storage cycle. Refer to individual processor publications for information
concerning the programmer console.

The console address key register is not addressable by software. When the
programmer console is installed, this register is used for certain console
operations. Refer to individual processor publications for information
concerning the programmer console.

Console Stop-On-Address Register

The console stop-on-address register is not addressable by software. When
the programmer console is installed, this register is used for certain 'console
operations. Refer to individual processor publications for information
concerning the programmer console.

Processor Unit Description 2-7

Level Registers

Address Key Register (AKR)

General Registers

The address key register (AKR) is a 16-bit register that contains three
address keys and an address-key control bit. Separate three-bit fields
contain an address key for instruction address space, operand-l address
space, and operand-2 address space.

Subsequently referred to simply as registers, the general registers are
16-bit registers available to the program for general purposes. Eight
registers are provided for each level. The R- and RB fields in the
instructions control the selection of these registers.

Instruction Address Register (JAR)

Level Status Register (LSR)

Floating-Point Registers

2-8 GA34-0152

The instruction address register (IAR) is a 16-bit register that holds the
main storage address used to fetch an instruction. After an instruction has
been fetched, the IAR is updated to point to the next instruction to be
fetched.

Note: These registers are sometimes referred to as IARO, IAR1, IAR2,
and IAR3. The numbers represent the priority level IAR.

The level status register (LSR) is a 16-bit register that holds:

• Indicator bits, which are set as a result of arithmetic, logical, or I/O
operations

• A supervisor state bit

• An in-process bit

• A trace bit

• A summary mask bit

These bits are discussed further in the following paragraphs. Seven other
bits in the LSR are not used and are always set to O's.

A floating-point register is a 64-bit register. The floating-point feature
includes four 64-bit floating-point registers for each of the four priority
interrupts levels in the processor. Refer to Chapter 7 for a detailed
discussion of the floating-point feature.

c

c

[

c~

C'
"

o

0

0
0
0
0
C)
0
0
0
0

[J
C)

0
0
0

0

0
r,
V

0

0

0

Indicator Bits

The indicators are located in bits 0-4 of the level status register (LSR).
Figure 2-1 shows the indicators and how they are set for arithmetic
operations. The indicator bits are .changed or not changed depending on
the instruction being executed. Some instructions do not affect the
indicators, other instructions change all of the indicators, and still other
instructions change only specific indicators. Refer to the individual
instruction descriptions in Chapter 8 for the indicators that are changed by
each instruction.

Level status register (LSR)

o 123 4

~ Zero - Set to 1 if result is all O's; otherwise,
set to o.
Negative - Set to 1 if bit 0 of result is 1;
otherwise, set to O.

'----- Overflow - Set to 1 if result of arithmetic
operation (with the operands regarded as
signed numbers) cannot be represented as
a signed number in the operand size speci
fied; otherwise, set to O.

'----- Carry - Set to 1 if the result of add or sub
tract operations (with the operands regarded
as unsigned numbers) cannot be represented
as an unsigned number in the operand size
specified; otherwise, set to O.

'------ Even - Set to 1 if the low-order bit of the
result is 0; otherwise, set to O.

Figure 2-1. How indicators are set for signed and unsigned (logical) operations

The indicators are changed in a specialized manner for certain operations.
These operations are described briefly. Additional information is provided
in subsequent paragraphs for those operations where more detail is
required.

Add, subtract, or logical operations. The even, negative, and zero
indicators are result indicators. For add and subtract operations, the
carry and overflow indicators are changed to provide information for
both signed and unsigned number representations.

• Multiply and divide operations. Signed number operands are always
assumed for these operations. The carry indicator is used to provide a
divide by 0 indication for the divide instruction. The overflow
indicator defines an unrepresentable product for multiply operations.
Refer to the individual instruction descriptions in Chapter 8.

Priority interrupts and input/output operations. The even, carry, and
overflow indicators are used to form a three-bit condition code that is
set as a binary value.

Processor Unit Description 2-9

• Compare operations. The indicators are set in the same manner as in a
subtract operation.

• Shift operations. The carry and overflow indicators have a special
meaning for shift left logical operations.

• Complement operations. The overflow indicator is set if an attempt is
made to complement the maximum negative number. This number is
not representable.

Set Indicators (SEIND) and Set Level Block (SELB) instructions. All
indicators are changed by the data associated with these instructions.

Even, Negative, and Zero Result Indicators

The even, negative, and zero indicators are called the result indicators. A
positive result is indicated when the zero and negative indicators are both
off (set to D's). These indicators are set to reflect the result of the last
arithmetic or logical operation performed. A logical operation in this sense
includes data movement instructions. Refer to the individual instruction
descriptions in Chapter 8 for the indicators changed for specific
instructions.

Even, Carry, and Overflow Indicators-Condition Code for Input/Output Operations

The even, carry, and overflow indicators contain the I/O condition code
following the execution of an Operate I/O instruction and following an
I/O interrupt.

These indicators are used to form a three-bit binary number that results in
a condition code value. For additional information about condition codes,
refer to Branch on Condition Code (BCC) and Branch on Not Condition
Code (BNCC) instructions in Chapter 8 and "I/O Condition Codes and
Status Information" in Chapter 4.

Carry and Overflow Indicators-Add and Subtract Operations

Corry Indicator Setting

Overflow Indicator Setting

2-10 GA34-0152

A common set of add and subtract integer operations performs both
signed and unsigned arithmetic. Whether a given add or subtract operation
is to be regarded as a signed operation or an unsigned operation is
determined by the programmer's view of the values being presented as
operands. The carry and overflow indicators are set to reflect the results
for both cases.

The carry indicator is used to signal.overflow of the result when operands
are presented as unsigned numbers.

The overflow indicator is used to signal overflow of the result when the
operands are presented as signed numbers.

Note: Appendix E explains the meaning of these indicators for signed and
unsigned numbers. The appendix also provides examples for setting the
carry and overflow indicators.

c
o

c'
c
o

o

c
o

C~

o

o
o
o
o

o
o
o
C)

()

\...---

o
o
o
o
o

o
CJ

o

Carry and Overflow Indicators-Shift Operations

Indicators-Compare Operations

The carry and overflow indicators are changed for shift left logical
operations and shift left and test operations. These operations affect the
indicators as follows:

• The carry indicator is set to reflect the value of the last bit shifted out
of the target register (register where bits are being shifted).

• The overflow indicator is set to 1 if bit 0 of the target register was
changed during the shift; otherwise, it is set to O.

A compare operation sets the indicators in the same manner as a subtract
operation. The even, negative, and zero indicators reflect the result. The
carry and overflow indicators are set as described previously.

Compare instructions provide a test between two operands (without
altering either operand) so that conditional branch and jump instructions
may be used to control the programming logic flow. The conditions
specified in branch and jump instructions are named such that, when the
condition of the "subtracted from" operand relative to the other operand
is true, the jump or branch occurs; otherwise, the next sequential
instruction is executed. This is illustrated in the following example.

Example of compare operation:

Instruction Assembler
name mnemonic Operands

Compare word CW Reg 3, Reg 4

Op code Function
o 1 1 1 0 o 0 1 0
0 4 5 7 1011 15

~"'-v-'

Reg 3 Reg 4

In this example, the contents of register 3 are subtracted from register 4:

Decimal

Unsigned Signed

Reg 4 contents 0000 0000 0000 0010 2

Reg 3 contents 1111111111\111011 65531

+2

-5

Subtract result -65529 +7

Machine operation:

0000 0000 0000 0010 Minuend

Subtrahend

Constant

0000 0000 0000 0100 one's complement

for two's complement

Result 0000 0000 0000 0111

Processor Unit Description 2-11

2-12 GA34-0152

Indicator settings:

E CON Z

a a a a

I I Result is not D.

Result is positive.

'--______ Result fits operand size as a
signed number.

'--________ A negative result for an un
signed number.

L..-__________ Result is not even (low-order
bit = 1).

If the programmer wants to compare unsigned numbers, such as storage
addresses, the logical conditional tests should be used (refer to Figure
2-2). In this example, assuming unsigned number representation, register 4
is logically less than register 3 and unequal to register 3. Therefore, the
following branch instructions cause a transfer to symbolic location A
(assuming register values shown in the example):

CW Reg 3,Reg 4
BLLT A

or
CW Reg 3,Reg 4
BNE A

The complementary tests (BLGT and BE) do not cause a transfer in this
case.

If the programmer wants to compare signed numbers, the arithmetic
conditional tests should be used (refer to Figure 2-2). In the previous
compare word example, assuming signed number representation, register 4
is greater than register 3 and unequal to register 3. The following branch
instructions would cause a transfer to symbolic location A.

or

CW
BGT

CW
BNE

Reg 3,Reg 4
A

Reg 3,Reg 4
A

The complementary tests (BL T and BE) do not cause a transfer.

Note: Jump instructions are also available for the logical and arithmetic
conditional tests.

It must be emphasized again that the processor does not regard the
numbers as either signed or unsigned. The compare word instruction
results in a subtract operation being performed on the values presented.
The programmer must then choose the correct conditional test (logical or
arithmetic) for the number representation involved.

C:

o
C,;

o

c
c

c

c

c

c
o

o
o
o Indicators

tested

Condition tested by Assembler 0 1 2 3 4
conditional branch or extended
jump instruction mnemonics E C o N Z o
Zero or equal BE, BZ, JE, JZ 1

() Not zero or unequal BNE, BNZ, JNE, JNZ 0

Positive and not zero BP, JP 0 0

Not positive BNP, JNP 1
1

()
Negative BN, IN 1

Not negative BNN, JNN 0 C)
Even BEV, JEV 1

o Not even BNEV, JNEV 0

Arithmetically less than BLT,JLT 0 1
1 0

Arithmetically less than BLE, JLE 0 1 o
or equal 1 0

1

Arithmetically greater than BGE, JGE 1 1
()

or equal 0 0

Arithmetically greater than BGT, JGT 1 1 0
0 0 0

Logically less than or equal BLLE,JLLE 1
"--.) 1

Logically less than (carry) BLLT, JLLT 1

Logically greater than BLGT, JLGT 0 0 o
Logically greater than or BLGE, JLGE 0

o equal (no carry)

Legend: LSR bit Indicator

o 0 E - Even
1 C - Carry
2 0- Overflow
3 N - Negative
4 Z - Zero o

o Figure 2-2. Indicators tested by conditional branch and jump instructions

o

o
o Processor Unit Description 2-13

o

Indicators-Multiple Word Operands

2-14 GA34-0152

A programmer may desire to work with numbers that cannot be
represented in one word or in a doubleword. It may take three or more
words to represent the number.

The following register-to-register instructions allow the programmer to add
or subtract these multi-word operands and then have the indicators reflect
the multi-word result:

• Add Carry Register (ACY)

• Add Word With Carry (A WCY)

• Subtract Carry Register (SCY)

Subtract Word With Carry (SWCY)

The following two examples show how the add instructions are used. A
subtract operation is similar. Refer to Chapter 8 for details of the
individual instructions.

Example 1. (Equal-length operands)

Reg 1 Reg 2 Reg 3

Reg 4 Reg 5 Reg 6

Program steps:

A W Reg 6,Reg 3
AWCY Reg 5,Reg 2
A WCY Reg 4,Reg 1

Explanation:

Operand 1/
Result

Operand 2

Step 1: The contents of register 6 are added to the contents of
register 3.

Step 2: The contents of register 5 are added to the contents of
register 2 plus any carry from the previous operation.

Step 3: The contents of register 4 are added to the contents of
register 1 plus any carry from the previous operation.

Example 2. (Unequal-length operands)

Reg 1 Reg 2 Reg 3

Reg 5 Reg 6

Operand 1/
Result

Operand 2

Note: In this example, operand 2 must be an unsigned number or must be
positive.

c'
c

c'
C

c

(",
I

c
c .,-,"

C:

o

C)

o
o
()

C)
o
C)

[J
o
o
o
o
o
o

o
o
o

Program steps:

A W Reg 6,Reg 3
A WCY Reg 5,Reg 2
ACY Reg 1

Explanation:

Step 1: The contents of register 6 are added to the contents of register 3.

Step 2: The contents of register 5 are added to the contents of register 2,
plus any carry from the previous operation.

Step 3: Any carry from the previous operation is added to the contents
of register 1.

Note: In both examples, the final indicator settings reflect the status of the
three-word result. .

Even

Carry

Set to 1 if the result low-order bit of register 3 is O.

Set to 1 if the result cannot be represented as an unsigned
three-word number.

Overflow Set to 1 if the result cannot be represented as a signed
three-word number.

Negative Set to 1 if the result high-order bit of register 1 is 1.

Zero Set to 1 if all three result registers contain D's.

Testing Indicators with Conditional Branch and Jump Instructions

Supervisor State Bit

The indicators are tested according to a selected condition when a
conditional branch or a conditional jump instruction is executed, as shown
in Figure 2-2.

The conditional instructions are:

Branch on Condition (BC)

Branch on Not Condition (BNC)

• Jump on Condition (JC)

Jump on Not Condition (JNC)

The assembler also provides extended mnemonics for the conditions shown
in Figure 2-2. Refer to the individual instructions in Chapter 8.

Level status register (LSR) bit 8, when set to 1, indicates that the
processor is in the supervisor state, which allows privileged instructions to
be executed. This bit is set by any of the following:

• Class interrupt
Machine-check condition
Program-check condition
Power / thermal warning
Supervisor Call (SYC) instruction
Soft-exception" trap condition
Trace
Console interrupt
Clock/ comparator

Processor Unit Description 2-15

In-Process Bit

Trace Bit

Summary Mask Bit

Program Execution

Instruction Formats

2-16 GA34-0152

I/O interrupt

Initial program load (IPL)

System reset

Power-on reset

When LSR bit 8 is set to 0, the processor is in problem state. For a
selected priority level, the supervisor can alter the supervisor state bit by
using a Set Level Block (SELB) instruction. For additional information,
refer to "Processor State Control" in this chapter.

Class interrupts and I/O interrupts are described in Chapter 3. IPL is
discussed under "Initial Program Load (IPL)" in this chapter.

Level status register (LSR) bit 9, when set to 1, indicates that a priority
level is currently active or was preempted by a higher priority level before
completing its task. Bit 9 is set to 0 by a Level Exit (LEX) instruction. Bit
9 can also be turned on or off by a Set Level Block (SELB) instruction.
The in-process bit also affects level switching under program control.
Refer to Chapter 3, "Interrupts and Level Switching," for further
information.

Level status register (LSR) bit 10, when set to 1, causes a trace class
interrupt at the beginning of each instruction. The bit can be turned on or
off with the Set Level Block (SELB) instruction. The trace bit aids in
debugging programs. Refer to "Class Interrupts" in Chapter 3 for further
information.

Level status register (LSR) bit 11, when set to 0 (disabled), inhibits all
priority interrupts on all levels. It also inhibits power/thermal, clock, and
console class interrupts. When· this bit is set to 1 (enabled), normal
interrupt processing is allowed. Refer to "Summary Mask" in Chapter 3
for details relating to control of the summary mask.

The processor instruction formats are designed for efficient use of bit
combinations to specify the operation to be performed (operation code)
and the operands that participate. Some formats also include an immediate
data field or word, an address displacement or address word, and a
function field that further modifies the operation code. Various
combinations of these fields are used by the individual instructions. Some
typical instruction formats are presented here. All formats are shown in
Appendix A, "Instruction Formats."

C'
.1

C"
./

c

c

(",
1

c·
c
c
c
()

o
Ci

C'I

0

0

0
One- Word Instructions

0
C)
0

0

0

0
C)
('-"')

I
I

I

I'-..J

0

0

0

0

0

0

0

0

0

0

The basic instruction length is one word (16 bits). The operation code
field (bits 0-4) is the only common field for all formats. This field, unless
modified by a function field, specifies the operation to be performed. For
a format without a function field, bits 5-15 specify the location of
operands or data associated with an operand.

Example:

Instruction Assembler
name mnemonic

Add Byte Immediate ABI

I Immediate field

045 7 8

Bits 0-4 Operation code (specifies ABI
instruction).

Bits 5-7 General register (0-7). This
register contains data for the
second operand.

Bits 8-15 Immediate data for the first
operand.

Syntax

byte, reg

15

In some cases, the operation code is the same for a group of instructions.
The format for this group includes a function field. The bit combinations
in the function field then determine the specific operation to be
performed.

Example:

Instruction
name

Add Word

Assembler
mnemonic

AW

Syntax

reg,reg

I Function I
.0 1 0 0 0

04578 1011 15

Bits 0-4 Operation code for a group of
instructions.

Bits 5-7 General register (0-7). This
register contains data for the
first operand.

Bits 8-10 General register (0-7). This
register contains data for the
second operand.

Bits 11-15 Function field. Modifies the
operation code to specify the
Add Word instruction.

Note: For other instruction groups, the
function field may vary as to location within
the format and also to the number of bits used.

Processor Unit Description 2-17

Two-Word Instructions

Variable-Length Instructions

2-18 GA34-0152

Bits 0-4 of the first word of this format are identical to the one-word
instruction description. The second word (bits 16-31) contains either
immediate data, an address, or a displacement. This word is used to
provide data for an operand, or provide a main storage address or
displacement for effective address generation. Refer to "Effective-Address
Generation" in this chapter for further information.

Example:

Instruction Assembler
name mnemonic Syntax

Branch and Link BAL longaddr,reg

lop code
o 1 1 0

1 I R1 IR2 I X I ~u~ct~on 1 I
0 4 5 7 8 101112

I Address or displacement

16

Bits 0-4
Bits 5-7

Bits 8-10

Bit 11

Operation code.
General register (0-7) for the
second operand.
General register (0-7) for the
first operand.
Indirect address bit.

Bits 12-15 Function field.

15

31

Bits 16-31 A main storage address used for
the first operand.

Note: Refer to "Branch and Link (BAL)" in
Chapter 8 for further information.

Some instructions use a selectable encoded technique for generating
effective addresses. This method is referred to as an address argument
technique in subsequent sections. These instruction formats contain a base
register (RB) field and an address mode (AM) field. If both operands are
using this technique, the format contains an RB and associated AM field
for each. These fields are in the first instruction word. The AM field
consists of two bits, and is referred to in binary notation (AM=OO, 01, 10,
or 11). If AM is equal to 10 or 11, an additional word is appended to the
normal instruction word. For a format that contains two AM fields, two
additional words may be appended. Refer to "Effective-Address
Generation" in this chapter for a description of the appended words and
how they are used.

c
c
c

c
c

c

c
o

c

C)
o
o
o
o
o
o
o
C)
o

o
C)
o
o
o
o
o

o
o
C)

For instructions with a single storage address argument, the RB field
consists of two bits. An RB field of two bits, with its associated AM field
of two bits, is referred to as a four-bit address argument or addr4 in
assembler syntax.

Example:

Instruction Assembler
name mnemonic

Compare byte CB

Syntax

addr4,reg

045 789 101112 15

I Appended word, AM= 10 or 11

16

Bits 0-4
Bits 5-7

Bits 8-9
Bits 10-11
Bits 12-15
Bits 16-31

Operation code.
General register (0-7) for the
second operand.
Base register (0-3).
Address mode.
Function field.
Appended word for the first
operand.

31

Note: The register specified by the R B field is a
general register that is used as a base register for
effective address generation.

Some instruction formats have two storage address arguments. In this case,
the first operand has a three-bit RB field, giving a five-bit address
argument (addr5 in assembler syntax), and the second operand has a
four-bit address argument.

Processor Unit Description 2-19

Names 0/ Instruction Formats

2-20 GA34-0152

Example:

Instruction
name

Add Word

Assembler
mnemonic

AW

Syntax

addr5,addr4

045 789 101112131415

I Appended word for operand 1

16 31

I Appended word for operand 2

32

Bits 0-4
Bits 5-7
Bits 8-9
Bits 10-11
Bits 12-13
Bits 14-15
Bits 16-31
Bits 32-47

Notes:

47

Operation code.
Base register (0-7) for the first operand.
Base register (0-3) for the second operand.
Address mode for the first operand.
Address mode for the second operand.
Function field.
Appended word for the first operand.
Appended word for the second operand.

1. If there is no appended word for the first operand
(AM 1 =00 or 01), the second operand word is appended
to the instruction word in bits 16-31.

2. Registers specified by the R B fields are general registers.

Names have been established for several categories of instructions. Each
category has the same basic instruction format; therefore, the name is
related to the format. In most cases, the name indicates the location of the
operands or the type of instruction.

Register/register instructions-General registers are used by both
operands.

• Storage/ storage instructions-Both operands reside in main storage.

• Register / storage instructions-One operand uses a general register;
the other operand resides in main storage.

• Register immediate instructions-One operand uses a general register;
the other operand uses an immediate data field. The immediate data
field is the low-order byte of a one-word format or the second word
of a two-word (long) format.

c

c
c
c

c
C)
('
I

c
c

c
c

o

c

o
o
o

()

o
o

o

o
o
o
o
o
o
o
o
o
o
o

Effective-Address Generation

Shift instructions with immediate count-This is a shift instruction
with the count field contained within the instruction word.

• Storage immediate instructions-One operand is in main storage. The
other operand uses an immediate data field. T.he immediate data field
is the second word of a two-word format.

• Parametric instructions-For this instruction format, a parameter field
(bits 8-15) is contained within the instruction word.

For purposes of storage efficiency, certain instructions formulate storage
operand addresses in a specialized manner. These instructions have
self-contained fields that are used when generating effective addresses.
Standard methods for deriving effective addresses are included in this
section. Other methods, such as bit displacements, are explained in the
individual instruction descriptions in Chapter 8.

Programming Note: For the following instructions, the' effective address
points to a control block rather than to an operand:

Copy Level Block (CPLB)

Load Multiple and Branch (LMB)

Pop Byte (PB)

Pop Doubleword (PD)

Push Byte (PSB)

Push Doubleword (PSD)

Push Word (PSW)

Pop Word (PW)

Set Level Status Block (SELB)

Store Multiple (STM)

Base Register Word Displacement Short

Instruction format

lop code

o 4 8 9 11 15 --..-~
Base register ____ 1

00 Register 0
01 Register 1
10 Register 2
11 Register 3

Word displacement ---------'
Range 0 to 31 (decimal)

Processor Unit Description 2-21

Base Register Word Displacement

2-22 GA34-0152

The five-bit unsigned integer (WD) is doubled in magnitude to form a
byte displacement, and is then added to the contents of the specified base
register to form the effective address. The contents of the base register
must be even.

Example:

o 4 8 9 11 15

Hex Dec
Contents of

register 1 (RB) 0000 0000 0110 0000 0060 0096

Word displacement
(WD) doubled + 0 1000 __ 8 __ 8

Effective address 0000 0000 0110 1000 0068 0104

Instruction format

o 4 5 7 8 15
'-,,-' -----...---_ ... '

Base register --.J
000 Register 0
001 Register 1
010 Register 2
011 Register 3
100 Register 4
101 Register 5
110 Register 6
111 Register 7

Word displacement ----........
Range +127 to -128 (decimal)

The eight-bit signed integer (WD) is doubled in magnitude to form a byte
displacement and is then added to the contents of the specified base
register to form the effective address. The contents of the base register
must be even.

The word displacement can be either positive or negative; bit 8 of the
instruction word is the sign bit for the displacement value. If this
high-order bit of the displacement field is a 0, the displacement is positive
with a maximum value of + 127 (decimal). If the high-order bit of the
displacement field is aI, the displacement is negative with a maximum
value of -128. The negative number is represented in two's complement
form.

C

c

0 ,
.---

c
c

c'
CI

Cl
CI

r"--',

~---./)

0

0

0

0
r---.
"-.)

0
c)
C'

Four-Bit Address Argument

C)
(-\1

U
C)

0
,,--,

U

0
()
\....../

0

0

0

0

0

Example:

lop code

IR1Bl IWD
_ 01110100

o 4 5 7 8 15

Note: This example uses a negative word displacement
(-17 hex) shown in two's complement.

Contents of
register 6 (RB)

Word displacement
(WD) doubled

(sign bit is propa
gated left)

Effective address

Instruction format

Hex Dec

00000000 1000 0110 0086 0134

+1111111111010010 -2E-46

0000 0000 0101 1000 0058 0088

o 4 8 9 1011 15

Base register ___ -....1--
00 Register 0

(AM=OO or 01)

00 No register
(AM=10 or 11)

01 Register 1

10 Register 2

11 Register 3

Address mode -------'

The address mode (AM) has the following significance:

AM=OO. The contents of the selected base register form the effective
address.

AM=Ol. The contents of the selected base register form the effective
address. After use, the base register contents are incremented by the
number of bytes in the operand. For some instructions, the effective
address points to a control block rather than to an operand. When the
effective address points to a control block, the base register contents are
incremented by 2.

Processor Unit Description 2-23

2-24 GA34-0152

Example:

lap code

o 4 8 9 1011 15

Hex Dec

Effective address
(contents of register 1) 0000 0000 1000 0000 0080 0128

Contents of register 1
after instruction execution

Byte operand 00000000 10000001 0081 0129
Word operand 00000000 10000010 0082 0130
Doubleword
operand 0000 0000 1000 0100 0084 0132

Notes:

1. For register-to-storage instructions, if the specified register is the same
for both operands, the register is incremented prior to using it as an
operand.

2. Certain instructions (storage-to-storage) have two address arguments.
Operand 1 has a three-bit RB field with its associated AM field.
Operand 2 has a two-bit RB field with its associated AM field. If both
RB fields specify the same register and both AM fields are equal to
01, the base register contents are incremented prior to fetching
operand 2 and again after fetching operand 2. Assuming the same
conditions, but with the operand 2 AM field not equal to 01, the base
register contents are incremented prior to calculating the effective
address for operand 2.

3. If the effective address points to a control block rather than to an
operand; the base register contents are incremented by 2.

AM=lO. An additional word is appended to the instruction. The word has
the following format:

I Address or displacement

16 31

If RB is 0, the appended word contains the effective address.

If RB is not 0, the contents of the selected base register and the contents
of the appended word (displacement) are added to form the effective
address.

c

('
I

L

C)
./

c

c"

c';
C'I

o

c)

[]
Cl

o
o
()

o

Example:

Opcode Address

a 0 a a a a a 1 a 0 a a a a a a
o 4

Hex Dec

Contents of register 3 0000 1000 0000 0000 0800 2048
Contents of appended word +0000 0001 0000 0000 0100 0256

Effective address 0000 1001 0000 0000 0900 2304

AM=ll. An additional word is appended to the instruction.

If RB is 0, the appended word has the format:

I Indirect address

16 31

31

This address points to a main storage location, on an even-byte boundary,
that contains the effective address.

Example:

Op code Indirect address

a a 0 0 0 a a a a 1 0 1 0 a a a
o 4 8 9 1516

Contents of appended word

Effective address equals
contents of storage

Hex Dec

0000 0000 0101 0000 0050 0080

at address 0080 (decimal) 0000 0100 0000 0000 0400 1024

If RB is not 0, the appended word has the format:

I Displacement 1 IDiSPlacement 2

16 2324 31

The two displacements are unsigned eight-bit integers. Displacement 2 is
added to the contents of the selected base register to generate a main
storage address. The contents of this storage location are added to
displacement 1 and result in the effective address.

31

Processor Unit Description 2-25

2-26 GA34-0152

Example:

Opcode

o 4

Contents of register 2
Displacement 2

Storage address

Contents of storage at
address 1399 (decimal)
Displacement 1

Effective address

Displacement 1 Displacement 2

00100 1 0 1 0 1 0 0 0 0
101112 1516 2324

Hex Dec

00000101 0011 0101 0535 1333
+ 0100 0010 ~ ~

0000010101110111 05771399

000001000001 0000 0410 1040
+ 00100101. 25 37

0000 0100 0011 0101 0435 1077

Note: This example is invalid for other than a byte operand.

Programming Note: This addressing mode (AM= 11, RB is not 0) is

o
31

useful for the directorized data concept. For the addr4 or addr5 assembler
syntax, the programmer codes the form displacement 1 (register,
displacement 2)*. For addr4, the specified register is 1-3. For addr5, the
specified register is 1-7. The asterisk denotes indirect addressing.

Register Directory

Address of Address of
directory data set A

I Address of
Displacement 2

data set B
I Address of

data set C

A

B

c

I
Displacement 1

I

Data sets

Data

~
(I

'---"'"

-----., (,

\..... .. /

c

c'

o

o
o

o

o

o

o
o
o

Five-Bit Address Argument

Base Register Storage Address

Instruction format

lap code I RB lAM I
0 4 5 7 1011 15 -..-
Base register---.J

000 Register 0
(AM=OO or 01)

000 No register
(AM=10 or 11)

001 Register 1
010 Register 2
all Register 3
100 Register 4
101 Register 5
110 Register 6
111 Register 7

Address mode

Operation of this mode is identical to the four-bit argument, but provides
additional base registers.

Instruction format

iOPCOde RB I Addressldisplacement

o 4 8 101112 1516 31
..... _-"" ,

Base register Address field

000
001
010
all
100
101
110
111

No register
Register 1
Register 2
Register 3
Register 4
Register 5

{
a = direct address
1 = indirect address

Register 6
Register 7

If RB is 0, the address field contains the effective address.

If RB is not 0, the contents of the selected base register and the contents
of the address field are added together to form the effective address.

Note: Bit 11 specifies whether the effective addressing is direct or indirect
addressing.

Processor Unit Description 2-27

Example of indirect addressing:

Opcode

o 4

Contents of register 4
Address field

Storage address

Effective address
Contents of storage at
address 1296 (decimal)

Address

o 0 000 1 000 0 0 1 000 0
101112 1516

Hex Dec

00000001 00000000 0100 0256
+000001000001 0000 0410 1040

00000101 0001 0000 0510 1296

0000011001000000 0640 1600

31

Instruction Length Variations lor Address Arguments

AM=OO or 01

AM=10 or 11

2-28 GA34-0152

One-word instructions that contain a single AM field become two words in
length if AM is equal to 10 or 11. The AM appended word follows the
instruction word.

Example:

AM=OO or 01
I Instruction word

No appended word

o 15

AM=10 or'11
I,nstruction word I AM appended word

o 1516 31

Two-word instructions that contain a single AM field become three words
in length if AM is equal to 10 or 11. The AM word is appended to the
first instruction word. The data or immediate field then becomes the third
word of the instruction.

Example:

I,nstruction word I Immediate field

o 1516 31

Instruction word AM appended word Immediate field

o 1516 3132 47

c

,------
r '
I

.~

('--')

c'

c~

o
()

o
o
o
()

o
o
o
o

c
o
o
C)
o
o
o
o
o
o
o

AM1=00 or 01
AM2=00 or 01

AM1=10 or 11
AM2=00 or 01

AM1=00 or 01
AM2=10 or 11

AM1=10 or 11
AM2=10 or 11

One-word instructions that contain two AM fields (AMI and AM2) may
be one, two, or three words in length depending on the values of AM I
and AM2. The AM I word is appended first; then the AM2 word is
appended ..

Example:

I Instruction word
No appended word

o 15

I Instruction word I AMT appended word

o 1516 31

I Instruction word I AM2 appended word

o 1516 31

Instruction word AM1 appended word AM2 appended word

o 1516 3132 47

Processor Unit Description 2-29

Processor State Control

Stop State

2-30 GA34-0152

If the processor is powered on, it is always in one of the following
mutually exclusive states:

Stop

• .Wait

Load

• Run-when in run state, programs can be executed in either:
Supervisor state or

- Problem state

The stop state is entered by any of the following methods:

Pressing the Stop key on the programmer console.

Execution of the Stop instruction when the Mode switch on the basic
console is in the Diagnostic position and the optional programmer
console is installed.

An address match occurs (Stop On Address indicator on programmer
console is lit).

An instruction completes execution (Instruct Step indicator on
programmer console is lit).

An error occurs (Stop On Error indicator on programmer console is
lit).

When the processor stops, the Check indicator is lit and the
appropriate PSW bits are set to 1 'so
Subsequently depressing any console key turns off the Check
indicator'but does not affect the PSW.
The next time the Start key is pressed (assuming no system reset) a
class interrupt occurs (based on the PSW bit of the highest .
priority).

Pressing the Reset key on the programmer console.

Power-on reset occurs when the Mode switch is not in Auto IPL.

While the processor is in the stop state, the Stop light on the programmer
console is on, the functions provided on the console can be activated, and
no interrupt requests can be accepted by the processor.

Certain error or exception conditions cannot occur during stop state.
These are specification check, privilege violate, invalid function, and stack
exception. These conditions are explained under "Class Interrupts" in
Chapter 3.

If an I/O check condition occurs during stop state, PSW bits 11 and 12
are set to 1 's and the condition is preserved by hardware. The Check
indicator is turned on. Pressing the Start key (assuming no system reset)
allows a machine-check class interrupt to occur.

If a power/thermal warning condition occurs during stop state, PSW bit
15 is set to 1 and remains set for the duration of the condition. The Check
indicator is not turned on. Subsequently depressing the Start key allows a
power/thermal-warning class interrupt to occur, assuming that the
condition is still active, the summary mask is enabled, and no system reset
has occurred.

Ci

c
c

C,
.../

o
C,

c'~

()

o
o
()

o
()

()

C)
C)

o
o
o
o
o
o
o

o

Wait State

Load State

The processor exits the stop state by:

• Pressing the Load key on the basic console.

• Pressing the Start key on the programmer console. When the Start key
is pressed, the processor returns to the state that was exited before
entering stop state. If the run state is entered, one instruction is
executed before interrupts are accepted by the processor. If the stop
state is entered because of a reset (power-on reset or pressing the
Reset key), pressing the Start key causes program execution to begin
on level 0 with the instruction in location 0 of main storage. If the
stop state is entered because of an error and the Stop On Error switch
is set to on, a system reset or class interrupt can clear the error
condition.

Notes:

1. Any manual entry into stop state is by the programmer console.

2. The Stop instruction performs no operation if the programmer console
is not installed.

The processor enters wait state when a Level Exit (LEX) instruction or a
Set Level Block (SELB) instruction, which sets the current in-process bit
off, is executed and no level is pending. While the processor is in the wait
state, the Wait light on the basic console is on, and interrupts can be
accepted under control of the system mask register and the summary
mask, as defined by the LSR of the last active level.

The processor exits the wait state by:

• Pressing the Load key on the basic console.

• Pressing the Stop key on the programmer console.

• Pressing the Reset key on the programmer console.

• The processor accepting an I/O interrupt (the level must be enabled
by the summary mask and the mask register).

• A class interrupt occuring.

The processor enters the load state when initial program load (IPL)
begins. IPL occurs:

• When the Load key on the basic console is pressed.

• After a power-on reset, if the Mode switch is in the Auto IPL
position.

• When an IPL signal is received from a host system.

While the processor is in load state, the Load light on the basic console is
on. The processor exits the load state by:

• Successful completion of the IPL ..

• Pressing the Stop key on the programmer console.

• Pressing the Reset key on the programmer console.

Refer to "Initial Program Load (IPL)" in this chapter for further
information.

Processor Unit Description 2-31

Run State

The processor enters the run state when it is not in the stop, wait, or load
state. Run state is entered:

• From load state, upon successful completion of IPL

• From wait state, when an interrupt is accepted

• From stop state, when the Start key is pressed and the processor was
in the run state prior to entering the stop state

The processor exits run state when entering stop, wait, or load state.

Supervisor State and Problem State

2-32 GA34-0152

While in run state, instructions can be executed in either supervisor state
or problem state. This is determined by level status register (LSR) bit 8:

• If LSR bit 8 is aI, the processor is in supervisor state.

• If LSR bit 8 is a 0, the processor is in problem state.

Supervisor and problem states are discussed in the following paragraphs.

Supervisor State. The processor enters supervisor state when:

• A Supervisor Call (SYC) instruction is executed

• A class interrupt occurs

• An I/O interrupt is accepted

After a successful initial program load (IPL)

• A reset occurs

Refer to Chapter 3, "Interrupts and Level Switching," for a detailed
discussion of class interrupts and I/O interrupts.

When the processor is in supervisor state, the full instruction set may be
executed. The following privileged instructions may be executed in
supervisor state only:

Copy Address Key Register (CP AKR)
Copy Console Data Buffer (CPCON)
Copy Current Level (CPCL)
Copy Interrupt Mask Register (CPIMR)
Copy In-Process Flags (CPIPF)
Copy Instruction Space Key (CPISK)
Copy Floating Level Block (CPFLB)
Copy Level Block (CPLB)
Copy Operand 1 Key (CPOOK)
Copy Operand 2 Key (CPOTK)
Copy Processor Status and Reset (CPPSR)
Copy Segmentation Register (CPSR)
Copy Storage Key (CPSK)
Diagnose (DIAG)
Disable (DIS)
Enable (EN)
Interchange Operand Keys (IOPK)
Level Exit (LEX)
Operate I/O (10)
Set Address Key Register (SEAKR)
Set Clock (SECLK)

o
()

o

c'

o

c

0

0

0

0
(j

0
C)
0

0

0

['
.........,)

C)

0

0

0

0

0
~

V

0

0

0

Initial Program Load (IPL)

Set Comparator (SECMP)
Set Console Data Lights (SECON)
Set Floating Level Block (SEFLB)
Set Instruction Space Key (SEISK)
Set Interrupt Mask Register (SEIMR)
Set Level Block (SELB)
Set Operand 1 Key (SEOOK)
Set Operand 2 Key (SEOTK)
Set Segmentation Register (SESR)
Set Storage Key (SESK)

Note: Refer to individual processor publications for further information
concerning privileged instructions.

Problem State. The processor enters the problem state when the
supervisor state bit (LSR bit 8) is set to O. This is accomplished with a Set
Level Status Block (SELB) instruction, which can change the contents of
the registers for a selected priority interrupt level.

While the processor is in problem state, privileged instructions cannot be
executed. If a privileged instruction execution is attempted, the instruction
is suppressed and a program-check class interrupt occurs, with privilege
violate (bit 2) set in the PSW.

An initial program load function is provided to read an IPL record (set of
instructions) from an external storage media, and automatically execute a
start-up program. An IPL record is read into storage from a local I/O
device or host system. The I/O attachments for the desired IPL sources
are prewired at installation time. Two local sources, primary and alternate,
can be wired and either one can be selected by using the IPL Source
switch on the console.

IPL can be started by three methods:

Manually, by pressing the Load key on the console.

Automatically, after a power-on condition.

• Automatically, when a signal is received from a host system. The host
system can be connected through a communications adapter.

The automatic power-on IPL is selected by the Mode switch on the
console. When the Mode switch is in the Auto IPL position, IPL occurs
whenever power turns on (either initially or after a power failure). Auto
IPL is useful for unattended systems. A manual IPL can be initiated at any
time by pressing the Load key on the console (even when in run state).
The Mode switch has no effect on the manual IPL. For auto IPL and
manual IPL, the local IPL source (primary or alternate) is selected. IPL
from a host system can occur at any time and is initiated by the host
system. The IPL record is transferred through the host system device (for
example, the communications adapter). When an auto IPL occurs, bit 13
of the PSW is set to 1 to indicate the condition to the software. When a
manual or host-system IPL occurs, this bit is set to O.

The length of the IPL record depends on the media used by the IPL
source.

Processor Unit Description 2-33

Sequential Instruction Execution

Jumping and Branching

2-34 GA34-0152

Upon successful completion of an IPL, the processor enters supervisor
state and begins execution on priority level O. The summary mask is
enabled and all priority interrupt levels in the mask register are enabled.
The level 0 AKR is set to all O's. The first instruction to be executed is at
main storage location O. The IPL source has a pending interrupt request
on level O. The system program must:

1. Perform housekeeping; for example, load vector table addresses in the
reserved area of storage. Refer to "Automatic Interrupt Branching" in
Chapter 3 for further information.

2. Issue a Level Exit (LEX) instruction. This allows the processor to
accept the interrupt from the IPL source. When the interrupt is
accepted, a forced branch is taken using the device-address vector
table. The vector table entry is determined by the device address of
the IPL source and results in a branch to the proper program routine
for handling the interrupt. The device address of the IPL source is set
into bits 8-15 of register 7 on level O. Condition code 3, device end, is
reported by the IPL source. For additional information, refer to "I/O
Interrupts" in Chapter 3.

A system reset always occurs prior to an IPL. However, if any errors
occur during the IPL, the results are unpredictable.

Normally, the operation of the processor is controlled by instructions
taken in sequence. An instruction is fetched from the main storage
location specified in the instruction address register (JAR). The instruction
address in the IAR is then increased by the number of bytes in the
instruction just fetched. The IAR now contains the address of the next
sequential instruction. After the current instruction is executed, the same
steps are repeated using the updated address in the IAR.

A change from sequential operation can be caused by branching, jumping,
interrupts, level switching, or manual intervention.

The normal sequential execution of instructions is changed when reference
is made to a subroutine, when a two-way choice is encountered, or when a
segment of coding, such as a loop, is to be repeated. All of these tasks can
be accomplished with branching and jumping instructions. Provision is also
made for subroutine linkage, permitting not only the introduction of a new
instruction address, but also the preservation of the return address and
associated information.

The conditional branch and jump instructions are used to test the
indicators in the LSR. These indicators are set as the result of I/O
operations and most arithmetic or logical operations. Single or multiple
indicators are tested, as determined by the value in a three-bit field within
the instruction. Refer to "Indicator Bits" and "Testing Indicators with
Conditional Branch and Jump Instructions" in this chapter for further
information.

o
c
o
c'

c'

c
c'

o

o

o

C~)

o
o
C)

o
o
o
o

o

[':
,)

o
o
o
o
o
o

o
o
o

Jumping

Branching

Level Switching and Interrupts

Stack Operations

Jump instructions are used to specify a new instruction address relative to
the address in the IAR. The new address must be within -256 to +254 of
the byte following the jump instruction.

Note: The jump instruction contains a word displacement that is converted
to a byte displacement when the instruction is executed. However, when
the assembler is used, the programmer specifies a byte value, which is then
converted to a word displacement by the assembler.

Branch instructions are used to specify a new full-width 16-bit address. A
16-bit value, range 0 to 65,535, is contained in the second word of the
instruction or in a register. The value in the second word can be used as
the effective branch address or added to the contents of a base register to
form an effective address. Refer to "Base Register Storage Address" in
this chapter for further information.

The processor can execute programs on four different interrupt priority
levels. These levels, listed in priority sequence, are numbered 0, 1, 2, and
3, with level 0 having highest priority. The processor switches from one
level to another in two ways:

• Automatically, ~hen an interrupt request is accepted from an I/O
device on a higher priority level than the current level.

• Under program control, by using the Set Level Block (SELB)
instruction or the LEX instruction.

Both types of level switching are discussed in detail in Chapter 3.

The processing unit provides two types of stacking facilities. The two types
of stacking facilities are:

• Data stacking. This facility provides an efficient and simple way to
handle last-in first-out queues of data items and/or parameters in main
storage. The data items or parameters are called stack elements. For a
given queue (or stack), each element is one, two, or four bytes wide.
Instructions for each element size (byte, word, or doubleword) are
provided to push an element into a stack (register-to-storage) or pop
an element from a stack (storage-to-register).

• Linkage stacking. This facility provides an easy method for linking
subroutines to a calling program. A word stack is used for saving and
restoring the status of general registers and for allocating dynamic
work areas. The Store Multiple (STM) instruction stores the contents
of the registers into the stack and reserves a designated number of
bytes in the stack as a work area. The Load Multiple and Branch
(LMB) instruction reloads the registers, releases the stack elements,
and causes a branch by register 7 back to the calling program.

Note: The Store Multiple instruction pushes a block of information
into a stack. This block is referred to as a register block. The Load
Multiple and Branch instruction pops a register block from a stack.

Processor Unit Description 2-35

Data Stacking Description

2-36 GA34-0152

Any contiguous area of main storage can be defined as a stack, and each
stack is defined by a stack control block. Figure 2-3 shows a data stack
and its associated stack control block. Stack control blocks must be
aligned on a word boundary.

The words in the stack control block are used as follows:

High-Limit Address (HU). This word contains the address of the first
byte beyond the area being used for the stack. All data in the stack has a
lower address than the contents of the HLA. Note that the HLA points to
the first byte beyond the bottom of an empty stack.

Low-Limit Address (LU). This word designates the lowest storage
location that can be used for a stack element. Note that the LLA points to
the top of a stack.

Top-Element Address (TEA). This word points to the stack element that is
currently on top of the stack. For empty stacks, the TEA points to the
same location as the high limit address (HLA).

Notes:

1. For word, doubleword, and register block operations, the HLA, LLA,
and TEA must all contain even addresses to ensure data alignment on
a word boundary. .

2. The HLA and LLA define a contiguous range of addresses. These
addresses must not cross the 64K-byte boundary that causes storage to
wrap.

Push Operation. When a new element is pushed into a stack, the address
value in the TEA is decremented by the length of the element (one, two,
or four bytes) and compared against the LLA. If the TEA is less than the
LLA, a stack overflow exists. A soft-exception trap interrupt occurs with
stack exception set in the PSW. The TEA is unchanged. If the stack does
not overflow, the TEA is updated and the new element is moved to the
top location defined by the TEA.

The following diagram shows how elements are pushed into a stack. Note
that each push operation always places an element at a lower address in
the stack than the preceding element.

LLA

I
TEA~I
and HLA I

Empty

stack
TEA
Push

C)
C'

c

o

c

c

C'I

C,I

_/

o
o
o
o
o
o
o
o
()

o

o
o
o
o
o
o
o
o
o
o

Main storage

Address 0000 I I----------II
~ ~

Stack control block

Top-element address (TEA) Word a

High-limit address (H LA) Word 1

r---- Low-limit address (LLA) Word 2

Stack

1------ f- Ful~~~ TEA.: Stack element

Empty Stack element

stack TEA
0 \ 15

\ he TEAl r nem t T 0 a P't'
stack points to the
same place as the H LA

Stack element shown is one
word; element can be one,
two, or four bytes wide

Figure 2-3. Relationship of stack control block to data stack

Refer to Chapter 8 for descriptions of the following instructions:

Push Byte (PSB)

Push Word (PSW)

• Push Doubleword (PSD)

Note: For a Push Doubleword operation, the TEA points to the high-order
word of the doubleword operand.

Processor Unit Description 2-37

Pop Operation. When an element is popped from a stack, the TEA is
compared against the HLA. If it is equal to or greater than the HLA, an
underflow condition exists. A soft exception trap interrupt occurs with
stack exception set in the PSW. If the stack does not underflow, the stack
element defined by the TEA is moved to the specified register and the
TEA is incremented by the length of the element.

The following diagram shows how elements are popped from a stack:

LLA

TEA":'.""
; ~'.~~>.~.}

HLA~

:'A"
''''~~
,., " "'" , ---
",C)

Pop

Pop

Pop

I
TEA-..j

I

Refer to Chapter 8 for descriptions of the following instructions:

Pop Byte (PB)

• Pop Word (PW)

Pop Doubleword (PD)

Empty

stack

Note: It is possible to pop data from beyond a stack boundary if the TEA
is less than the HLA, and the operand size is greater than HLA minus
TEA.

Data Stacking Example-Allocating Fixed Storage Areas

2-38 GA34-0152'

Many programs require temporary main storage work areas. It is very
useful to be able to dynamically assign such work area storage to a
program only when that storage is needed. Conversely, when work-area
storage is no longer needed by a program, it is desirable to free that
resource so that it may be used by other programs. Use of the stacking
mechanism can assist in the programming of the dynamic storage
management function.

The following is an example of how storage areas could be allocated using
the stacking mechanism.

o

c

c

c

\
.\-/.l

c

c

o
C"

o

C)

()

o

o
o
o
o
c)
o

()

o
o
C)
()

o

o
o
o

A stack is initialized with addresses that point to fixed areas of storage.
Each element in the stack represents the starting address of a block of
storage consisting of 512 bytes (for example, addresses 0230 through
03FF). As storage is needed, the starting address for a block or storage is
popped from the stack. When the block of storage is no longer needed, the
starting address is pushed back into the stack. The stack control block,
stack, and storage areas appear initially as follows:

Stack control block

TEA 0800 •
HLA 0808

LLA 0800

Full stack

TEA = LLA = 0800 -.. 0230

0430

0630

0830

HLA=0808~

Storage areas

0230
Available
storage

0430
Available
storage

0630
Available
storage

0830
Available
storage

Notice that each stack element is one word long, that addresses of storage
areas are the stack elements, and that the TEA points to the lowest
location of the last element because the initialized stack is full. Contrast
this with an empty stack, in which the TEA points to the same location as
the HLA.

Processor Unit Description 2-39

2-40 GA34-0152

Now assume that program A requires a block of storage. Program A (or a
storage management function at the request of program A) issues a Pop
Word instruction against the stack control block. The TEA is updated as
follows:

Stack control block

TEA 0802

0808

LLA 0800

Stack

LLA = 0800

TEA = 0802

0630

0830

HLA= 0808-+-

Storage areas

0230

0430
Available
storage

0630
Available
storage

0830
Available
storage

The word element popped is placed in the register specified by the Pop
Word instruction executed by program A. This is the address of the
512-byte storage area beginning at address 0230.

c~

c

c'
c
c

0,
\.-_/

c
c

o

C)

o
o
o
o
(J

o
C)

o
o
o
o
o
o
o
o
o
o
o

At this time, assume that program B (operating on a different hardware
level than program A) also requires a storage area. Program B also
executes a Pop Word instruction against the stack. The next element is
moved to the register specified and points to the next available storage
area; the TEA is updated:

Stack control block

TEA OB04

HLA OB08

LLA OBOO

Stack

LLA=OBOO -~

TEA=OB04 -~ 0630

0830

HLA=OB08 ~

Storage areas

0230

0430

0630

storage

0830 Available
storage

TEA after
second Pop

Processor Unit Description 2-41

2-42 GA34-0152.

Before any further requests occur, program A terminates its need for a
work area. Program A then issues a Push Word instruction against the
stack and returns the address of the area it was using so that other
programs may use it:

Stack control block
TEA after

TEA 0802 program A
Push operation

HLA 0808

LLA 0800

Stack

LLA=0800 -~

TEA= 0802-~ 0230

0630

0830

HLA=0808~

Storage areas

0230 Available

0430

0630.
Available
storage

0830
Available
storage

A similar operation is performed by Program B when it releases its storage
to the stack, popping address 0400 into location OBOO. While the
addresses are obviously shuffled in the stack (from the values initially
established), this presents no problem because each program requires only
an area of storage-the area location is not important.

c

c'
c
c
c

c
c
c
c
c'
C~

c

C'l

C)
o
o
o
o
C)

o
C)
o
C)

o
o
o
o
o
o

o
o
o

Linkage Stacking Description

As previously described, a word-stack mechanism may be used for
subroutine linkage. This mechanism saves and restores registers and
allocates dynamic work areas.

The letters in the following description correspond to the letters of Figure
2-4.

The Store Multiple (STM) instruction specifies:

o Stack control block address

o Limit register (RL) number

G Number (N) of words to allocate for work areas

When the STM instruction is executed, the allocate value (N), plus the
number of registers saved, and one control word is the requested block
size in words. The block size (converted to bytes) is used to decrement the
TEA before an overflow check is made. If no overflow occurs, the
operation proceeds. The link register (register 7) and register 0 through
the specified limit register (RL) are saved sequentially in the stack. If
register 7 is specified as the limit register, only register 7 is stored in the
stack. The dynamic work space is allocated and a pointer to the work area
is returned in register RL. If no work area is specified, the returned
pointer contains the location of register 7 in the stack. The values of RL
and N are also saved as an entry in the stack. The TEA is updated to
point to the new top of stack location.

When a Load Multiple and Branch (LMB) instruction is executed, the
values of RL and N are retrieved from the stack and an underflow check
is made. The value of RL controls the reloading of the registers; the values
of RL and N are used to restore the stack pointer (TEA) to its former
status. The contents of register 7 are then loaded into the instruction
address register, and program control is returned to the calling routine.

Processor Unit Description 2-43

2-44 GA34-0152

e Stack control block

TEA

HLA

LLA

Stack

New TEA
15

New RL
Dynamic }

'-----_~work______l N .----- area

Reg 7 contents

Reg 0 contents

•
•
•
•

RL contents

OldTEA~

and HLA

Figure 2-4. Word stack for subroutine linkage

C)
c

c'

c
o
r' I

I

I

L
o
o

o
c'

c'

C)

C)
o
o

C)

o

o
o
()

rJ
o
o
C)

o
o
o
o
o
o
o

Linkage Stacking Exampie-Reenterabie Subroutine

A subroutine may be used by programs that operate on different interrupt
levels. Rather than providing copies of the subroutine (one copy for each
program that needs it) the subroutine can be made reenterable. Here, only
one copy of the subroutine is provided; the single copy is used by all
requesting programs. Two items must be considered in the reenterable
subroutine code:

Saving the register contents of each calling program. The subroutine is
then free to use the same registers, restoring their contents to the
calling-pro gram's values just prior to returning to the calling program.

• Preserving the applicable variable data (generated by the subroutine)
that is related to each call of the subroutine. That is, data associated
with one call must not be disturbed when subroutine execution is
restarted due to another call from a higher priority program.

The stacking mechanism, by means of the STM and LMB instructions,
handles the two items just mentioned. For example, operation could
proceed as follows:

1. Program A calls the subroutine by means of a branch and link
instruction (return address is in register 7).

BAL SUBRT,7

2. The subroutine, in this example, uses register 3 and register 4 during
its execution. The subroutine receives (from program A) a parameter
list address in register 0 and the address of the stack control block in
register 1. Also, the subroutine requires 20 bytes of work space. Thus,
the subroutine executes, upon entry, the following store multiple
instruction:

SUBRT STM 4,(1),20

Processor Unit Description 2-45

2-46 GA34-0152

After execution of the STM, the stack contains the following:

Stack

LLA

TEA
15 *

Reg 4

t-___ 20_by_t_es __ ~} N=l a

Reg 7

Reg 0

Reg 1

Reg 2

Reg 3

Reg 4

HLA~

*The last word contains a value that specifies the last register
stored (Reg 4 in this example) and the size of the dynamic
work area (in words).

Register 4 (the last register stored in the stack) is loaded
automatically, during the STM operation, with the address of the work
area to be used by the subroutine to hold its work data.

3. When subroutine processing for this call is completed, the subroutine
executes a single Load Multiple instruction to reload the registers and
return (by register 7) to the calling program:

LMB (1)

If a second call to the subroutine occurs prior to execution of the
LMB, action similar to that just stated occurs again; however, another
stack area is used. Then, when subroutine execution is complete for
the second call and all higher priority interrupt level processing is
complete, a return is made to the interrupted subroutine for
completion of processing for the first call.

Thus, multiple calls to a single subroutine are processed without
interfering with the integrity of data associated with any other call to
the subroutine.

c
c:
C1

./

(~

c

o
o

c
c
C"

C
.. ,"
.)

o
o
o
C)
o
o
o
o

[]
o
o
o
o
o
o

o
o
o

Chapter 3. Interrupts and Level Switching

Efficient operation of the processor depends on prompt responses to
input/ output (I/O) service requests. This is accomplished by an interrupt
scheme that stops the current processor operation, branches to a device
service routine, handles device service, and then returns to continue the
interrupted operation. One processor can control many I/O devices;
therefore, an interrupt priority is established.

Certain error or exception conditions (such as machine check) also cause
interrupts. These are called class interrupts and are processed in a manner
similar to I/O interrupts. Both I/O and class interrupts are explained in
the following paragraphs.

I/O interrupt priority is established by four priority levels of processing.
These levels, listed in priority sequence, are numbered 0, 1, 2, and 3, with
level 0 having the highest priority. Interrupt levels are assigned to I/O
devices by program control. This provides flexibility for reassigning device
priority as the application changes.

Each of the four priority levels has its own set of registers. These consist
of an address key register (AKR), a level status register (LSR), eight
general registers 0-7, and an instruction address register OAR).
Information pertaining to a level is automatically retained in these
hardware registers when an interrupt occurs.

Processor priority level switching, under program control, can be
accomplished by using the Set Level Block (SELB) or Level Exit (LEX)
instructions. Details of this method are discussed under
"Program-Controlled Level Switching" in this chapter.

Fixed locations in main storage are reserved for branch addresses or
pointers that are referenced during interrupt processing. I/O and class
interrupts cause automatic branching to a service routine. Refer to
individual processor publications for storage allocation information.

Interrupt masking facilities, to enable or disable interrupts, provide
additional program control over the four priority levels. System and level
masking are controlled by the summary mask and the interrupt level mask
register. Device masking is controlled by a Prepare command in
conjunction with an Operate I/O instruction. Manipulation of the mask
bits can enable or disable interrupts on all levels, a specific level, or for a
specific device. Masking is described under "Interrupt Masking Facilities"
in this chapter.

Interrupts and Level Switching 3-1

Interrupt Scheme

3-2 GA34-0152

Each I/O device is assigned to an interrupt level, depending on the
application. When an interrupt on a given level is accepted, that level
remains active until a Level Exit (LEX) instruction is executed, a Set
Level Block (SELB) instruction causes a level switch, or a higher priority
interrupt is accepted. In the first two cases, the active level at the time is
cleared. In the last case, the processor switches to the higher level,
completes execution (including a LEX or SELB instruction), and then
automatically returns to the interrupted-from level. This automatic return
can be delayed by other higher priority interrupts.

If an interrupt request is pending on the currently active level, it is not
accepted until the level is cleared by a LEX or SELB instruction. If no
other level of interrupt is pending when a program exits the current level,
the processor enters the wait state. In the wait state, no processing is
performed, but the processor can accept interrupts that are expected to
occur (see Figure 3-1).

Class interrupts take precedence over I/O interrupts and do not change
priority levels. Class interrupts are processed on the current active level. If
the processor is in the wait state when a class interrupt occurs, priority
level 0 is used to process the interrupt.

Requests for interrupts

Level 0
--------________ ~r1 ____________ ~ ________________ __

Level 1
__________ ~r1 ____________________________________ __

Level 2
________ r-1~ __ __

Level 3
r-l~ _____________________ I*

Priority level processing

Priority
level 0

Priority
level 1

Priority
level 2

Priority
level 3

LEX

LEX

r-T"""T""I"1r-1- - - - - - - - - - - - - -1-T-'I~LE=X~
)-L-.&...,I...j~----- - --- - ----

r-r-r-r"'T"'l-r"'r-I- - - - - - - - - - - - - - - - - - l-w-'l"""'r.~~""""""""""I"'r.~~

t-'-............................ ~- - - - - - - - - - - - - - - - - - '-'-'-"==...:L...L-'-~&....L::=~

Wait state

~This interrupt request cannot be honored until the first
shown LEX, on priority level 3, has been executed.

Figure 3-1. Interrupt priority scheme

(~;

c

c
c

c
c'
o

o

o
o
o
o

o

[]
o
o
o
o
o
o

o
o
o

Level Status Block (LSB)

There are two types of LSBs: the hardware LSB and the main storage
LSB, both of which are used for task control and switching.

The hardware LSB (one for each level of priority interrupt) consists of 22
bytes of data located in the local storage registers. Although the data bytes
are not physically contiguous, they are mapped in a logically contiguous
manner, in the following order: IAR, AKR, LSR, and general registers
0-7.

Instruction address register OAR)
Address key register (AKR)
Level status register (LSR)
General register a
General register 1
General register 2
General register 3
General register 4
General register 5
General register 6
General register 7

o 15

Level status block

The main storage LSB, which is made up of the mapped-hardware LSB at
class interrupt time, is utilized for handling class interrupts and SELB
instructions.

The main storage LSB, when produced by a class interrupt, contains the
current-priority-Ievel hardware LSB at the time of the class interrupt; this
hardware LSB data is placed into the correct storage location.

A main storage LSB that is used by a SELB instruction contains data
produced prior to the execution of the SELB instruction. When the SELB
instruction is executed, the data in the main storage LSB replaces the
chosen priority-level hardware LSB's data.

Refer to "Class Interrupts" and ",Program-Controlled Level Switching" in
this chapter for additional information.

Automatic Interrupt Branching

Automatic interrupt branching to a servicing routine, which provides a
unique address in a reserved storage area of main storage, is accomplished
by using: an I/O device address, a fixed-class interrupt vector (address),
and a fixed-restart vector.

When an interrupt occurs, it is processed by an interrupt algorithm to
locate the proper address in this reserved storage area. When that address
is located, a branch operation to service the interrupt is begun.

The reserved storage area is located in the first 64K-byte block beginning
at address 0000. One word (two bytes) is reserved for each interrupting
source. The system interrupts utilize addresses 0000 through 002F (hex),
and the device addresses begin at address 0030 (hex). The maximum
number of devices that can be attached is 256; therefore, the last address

Interrupts and Level Switching 3-3

Main storage
address (hex)
022E

.-;;:- ::::::
0032
0030
002E
002C
002A
0028
0026
0024
0022
0020
001E
001C
001A
0018
0016
0014
0012
0010
OOOE
OOOC
OOOA
0008
0006
0004
0002
0000

of this reserved area is 022F (hex) and the last addressable interrupt
vector is 022E (hex).

Note: The first word of a device data block must be on an even-byte
address.

The reserved storage locations and their assignments are shown in Figure
3-2. Refer to Chapter 5, "Storage Address Relocation Translator," for
additional information.

Contents of word
Device FF DDB pointer

Device 01 DDB pointer
Device 00 DDB pointer
Reserved
Reserved
Reserved
Reserved
Clock SIA
Clock LSB pointer

Soft-exception trap SIA
Soft-exception trap LSB pointer
Console SIA
Console interrupt LSB pointer
Trace SIA
Trace LSB pointer
Power/thermal SIA
Power/thermal LSB pointer
SVC SIA
SVC LSB pointer
Program-check SIA
Program-check LSB pointer
Machine-check SIA
Machine-check LSB pointer
Reserved
Reserved
Restart instruction word 2
Restart instruction word 1

I:'i:»;::~,: ...•... :::::

, ~:g;12~§f;S
I::(:i,:::;:,':·,?····

I,
1<,
1<
[..
1<.</,

~#~~:~1::, li'···< :: ... : :..
i ••.....•. :.::. • ••. :.\ •• :':<::
,}.;;...:· ...• f.,·:.f,:/i·: .••• ·; "':;"'i>.:· .•..•.. ,<\
.,:.,,:.: .. :·: •. :~>.i:>·f::;:':;}··
:······:·i:::;·.:;·,
• ~':i) .:.' ':<i:.~:

d ""C,,;;~+'
k;;;f:S~
: ..•...•...•.............. : .. :: .. ,.
'::::< .: ...•..
'::

·C:····
;.:"

·:····':';::'!~;t:.~\'"."
.. : ' .. :. ···i.;i:·· \·:·:::/·········

: •. ,::: ..• :.: : •.... :.:

Addresses used for I/O interrupts. The device
data block (DDB) pointer is the address of the
first word of a device data block. This word is
used to obtain the start instruction address for
the service routine. Refer to "I/O Interrupts"
in this chapter for additional information.

Address used for class interrupts. The level
status block (LSB) pointer is the first address
of an area where a level status block will be
stored. The start instruction address (SIA)
points to the first instruction of a service
routine.

Restart instruction. Following IPL, a forced
branch is made to address 0000.

Note: Device addresses range from 00 through FF hex;
the interrupt vector for device 00 hex is main storage
address 0030 (hex).

Figure 3-2. Reserved storage locations

3-4 GA34-0152

c

1

I

1

l~ __ ,

c~

c'

C,I

o
o

(J
,r--..

U

o
o

o
o
o

110 Interrupts

An I/O interrupt is caused by the termination of an I/O operation or by
an external event at the I/O device.

Prepare 1/0 Device for Interrupt

I/O device interrupt parameters are established by program control. The
Operate I/O (10) instruction initiates the device operation and, in
conjunction with the Prepare command, sets the device mask (I-bit) and
assigns the priority level to use for interrupts. Refer to "Prepare" under
"I/O Commands" in Chapter 4 for additional information on the Prepare
command.

Refer to Chapter 8, "Instructions," and Chapter 4, "Input/Output
Operations," for details of the Operate I/O instruction.

Execution of the Prepare command transfers a word to the addressed
device that controls its interrupt parameters. This word has the format:

a's I Level 1'1
o 1011 1415

Bits Contents

0-10 Set to a's

11-14 Level. A four-bit encoded field that assigns an
interrupt-priority level to the device (see Note).

15

Example: 0000 - level 0, 0001 - level 1,
0010 - level 2, 0011 - level 3.

Device mask or I-bit. This bit sets the interrupt
mask in the device. When set to 1. the device can
interrupt. When set to 0, the device cannot re-
quest an interrupt.

Note: Refer to individual device publications for
interrupt priority levels.

An interrupting device is always able to accept and execute a Prepare
command, even if it is presently busy or has an interrupt request pending
from a previous command. This allows the software to change the device
mask and interrupt level at any time. Any pending interrupt request is then
serviced on the new interrupt level.

Interrupts and Level Switching 3-5

Present and Accept I/O Interrupt

3-6 GA34-0152

The I/O device presents an interrupt request on its assigned priority level.
The interrupt request is applied to the interrupt algorithm for acceptance
determination.

For an I/O interrupt to be serviced, the following conditions must exist:

• The summary mask must be set to 1 (enabled).

• The mask. bit (interrupt level mask register) for the interrupting level
must be set to 1 (enabled).

• The interrupt request must be the highest priority of the outstanding
requests and higher than the current level of the processor.

The processor must not be in the stop state.

A class interrupt must not be pending.

Supervisor state is entered upon acceptance of all priority interrupts.

Following acceptance of an I/O interrupt, the device sends the device
address and a condition code to the processor. The condition code is
placed in the even, carry, and overflow indicators for the interrupted-to
level. The device address and the interrupt information byte (lIB) form an
interrupt identification (ID) word. The interrupt ID word is placed in
register 7 of the interrupted-to level.

Interrupt ID word

I Device address

o 7 8 15

Bits 0-7 Interrupt information byte (liB). For inter
rupt condition codes 2 and 6, the II B has a
special format and is called an interrupt status
byte (lSB). For interrupt condition codes
reported by a device, the liB contains:

CCO. The II B is set to O.
CC1 or CC5. The II B contains a DCB identifier.
CC3 or CC7. Bit 0 may be set to 1 if suppress
exception is in effect, and an exception has
been suppressed. Other bits are device-dependent.
CC4. All bits are device-dependent.

Bits 8-15 Device address. This byte contains ·the address
of the interrupting device.

Refer to Chapter 4 for condition codes and interrupt information byte
(lIB) details.

(.-.......
I

C~I

C:I

o
o

o

o

o

o

o
(~

o

For an example of I/O interrupt with automatic branching, refer to the
following text and Figure 3-3.

The processor hardware switches from the registers and status of the
interrupted-from level to the registers and status of the interrupted-to level
O. The interrupt ID word is placed in register 7 of the interrupted-to level
O. The device address is used by hardware to cause a forced branch to
the reserved-storage location designated for this interrupting device G.
Refer to "Automatic Interrupt Branching" in this chapter for additional
information.

The location branched to in the reserved storage area contains the device
data block (DDB) address pointer (location of this DDB in main storage);
this address pointer is placed in register 1 of· the interrupted-to level Q.
Hardware forces a branch to the address of t.he DDB G. The first word of
the DDB contains the address pointer to the start instruction address
(SIA). The SIA pointer is loaded into the interrupted-to level IAR G, and
execution on the new priority-interrupt level begins e.
When the LEX instruction is executed on this operating level and no other
higher priority interrupts are pending) the execution of instructions at the
interrupted-from level starts automatically CD.

Interrupts and Level Switching 3-7

c' ------r------r------r------
Device 01 I I I
interrupts I New level 2 I I Interrupted
on level 2 I registers I Main storage I level 3

o
------------r-----T-~~---

t 0 1
0900

1

c

-"-L DDB pointer

~00321 0232 I
I ~ ·
I

Reg ,ro-
8

I
I DDB G
I 0232~ 0500 I (SIA)

I.J.. ::l.
-r -r

e
I I/O routine

...... : 05001 1
'-----' I

105EO LEX

I
I
I
I

IAR3 .

I
I
I

Figure 3-3. Example of I/O interrupt with automatic branching

3-8 GA34-0152

0

0

0
C)

0
C)

C)

0

0

0

c
0

0

0

0

0
0

0

0
0

0

Class Interrupts

A class interrupt alerts the system to an error or exception condition.
Class interrupts utilize a level status block (LSB) scheme to present the
identity of the error or exception to the software. Recovery can then occur
in a manner that allows normal processing to continue with a minimum of
disruption. Class interrupts are processed on the current active level in a
priority-order-by-exception condition.

System error or exception conditions can cause eight types of class
interrupts:

• Machine check, caused by a hardware error

• Program check, caused by a software error

• Power /thermal warning, caused by a power or temperature irregularity

• Supervisor call, caused by execution of a Supervisor Call (SVC)
instruction

• Soft-exception trap, caused by a software error

• Trace, caused by instruction execution (trace enabled in the current
LSR)

• Clock, caused by a program-controlled time interval

• Console, caused by pressing the Console Interrupt key when the
programmer console is installed

Machine check, program check, soft-exception trap, and power/thermal
warning are defined by bits in the processor status word (PSW). Software
can refer to the processor status word for a specific condition and any
related status information. Refer to "Processor Status Word (PSW)" in
this chapter for additional information.

Class interrupts take precedence over I/O interrupts and do not cause a
change in priority level. The interrupt is serviced on the level that is active
when the condition occurs. If the processor is in the wait state, the
interrupt is serviced on priority level O. Independent routines are used to
handle each type of class interrupt regardless of priority level.

All class interrupts cause the processor to enter supervisor state. Refer to
"Present and Accept Class Interrupt" in this chapter for details of the
hardware processing.

Programming Notes:

1. Three class interrupts (clock, power/thermal warning, and console) are
disabled when the summary mask is disabled.

2. If the programmer console is installed and check restart mode is
selected, machine-check, power/thermal-warning, and program-check
interrupts do not occur. If stop-on-error mode is selected, a stop
occurs before a machine-check, power/thermal-warning, or
program-check interrupt is serviced.

Refer to individual processor publications for additional information
regarding class interrupts.

Interrupts and Level Switching 3-9

Priority of Class Interrupts

3-10 GA34-0152

Although class interrupts are serviced on the current priority level, they
are serviced according to an error or exception condition priority.

The following table lists the error or exception conditions in priority
sequence, with 0 being the highest priority. Two conditions of the same
priority, such as protect check and specification check, may be reported to
the PSW simultaneously. Refer to "Processor Status Word (PSW)" in this
chapter for PSW-bit meanings. The table also shows the associated types
of class interrupt exception conditions.

Type of class
Priority Error or exception condition interrupt

0 CPU control check Machine check
I/O check

1 Invalid function (Note 1)

2 Privilege violate

3 Invalid function

4 Protect check
Program check

Specification check

5 Invalid storage address
Specification check

6 Storage parity Machine check

7 Power warning Power / thermal
Thermal warning warning

8 Supervisor call Supervisor call

9 Invalid function (Note 2)

10 Floating-point exception
Soft-exception
trap

11 Stack exception

12 Trace Trace

13 Clock Clock

14 Console Console

Notes:

1. Caused by an illegal operation or function combination.

2. A floating-point instruction is attempted and floating-point is not
installed.

c)
CI

c

C

c

o

CI

o
c

()

o
o
o
()

o
o

o

[
o
o
o

o
C)

o
o
o

Present and Accept Class Interrupt

When a class interrupt occurs, it is serviced on the currently active level
or, if the processor is in the wait state, priority level 0 is forced active.
The interrupt causes the following to occur:

• Register contents are saved.

• Supervisor state is entered (LSR bit 8 is set to O.
Trace is reset (LSR bit 10 is set to 0).

Summary mask is disabled (LSR bit 11 is set to 0).

The address key register is set to a predetermined value, depending on
the type of class interrupt.

• An automatic branch is taken to the reserved area of main storage.

Each type of class interrupt has an associated LSB pointer and SIA in the
reserved area of main storage (refer to Figure 3-2). Reference is made to
the reserved area to:

• Store current level IAR, AKR, general registers, and LSR into a level
status block (LSB) in main storage.

• Branch automatically to a service routine by using the start instruction
address (SIA).

Priority level 0 is forced active when a class interrupt occurs in the wait
state. The level 0 hardware LSB is stored into main storage. The
in-process bit (LSR bit 9) is set to 0 in the stored LSB.

The operand 1 key (OPIK) address key value is set in anticipation of the
address spaces required by the interrupt service routine.

Contents of the main storage level status block are as follows:

Main storage

address
(LSB)

pointer

+14 (hex)

I nstruction address register (I AR)

Address key register (AKR)

Level status register (LS R)

General register 0
General register 1

General register 2
General register 3

General register 4
General register 5

General register 6

General register 7

o 15

Interrupts and Level Switching 3-11

Machine Check

3-12 GA34-0152

The instruction address (contents of JAR) stored in the LSB depends on
the type of class interrupt, as shown in the following chart:

Contents of IAR (stored
Type of class interrupt in LSD)

Program check Address of the
Soft-exception trap instruction that caused

the interrupt

Supervisor call Address of the next
Trace instruction
Clock
Console
Power / thermal warning

Machine check (with Address of the
sequence indicator off) instruction that caused

the interrupt

Machine check (with Address of the
sequence indicator on) instruction that was

being executed at the
time of the error

A machine-check class interrupt is caused by a hardware malfunction and
is considered a system-wide incident. There are three machine-check class
interrupts.

• Storage parity check (PSW bit 8)

• CPU control check (PSW bit 10)

• I/O check (PSW bit 11)

A level status block is stored, starting at the location in main storage
designated by the machine check LSB pointer. The contents of the storage
address register (SAR) are loaded into register 7. The last active processor
address key is placed into the operand 1 key (OPIK) address key of the
AKR; then, operand 2 key (OP2K), equate operand spaces (EOS) bit, and
instruction space key (ISK) are set to O's. The machine check SIA is
loaded into the JAR, and it becomes the address of the next instruction to
be fetched.

Note: When the error condition occurs:

1. The IAR contains the true address of the first word of the instruction;
it is not incremented if the error occurs in the second or third word of
a long instruction.

2. For a storage parity check, the last active processor address key
defines the address space corresponding to the storage address loaded
into register 7. For a CPU control check or an I/O check, this address
key and register 7 provide no useful information.

c

C:

c
c
c
c'
~
r

I

L ..

C~

c\
C~

c

o

0

0

0

0

0
0

0

0

0

0

1'1
--)

0

0
C)

0

0

0

0

0
(J

0

Program Check

A program-check class interrupt is caused by a software error. If a
program-check class interrupt occurs, PSW bit 0, 1, 2, 3, or 4 is set to 1.
There are five program-check class interrupts.

• Specification check (PSW bit O)-A specification check occurs when
the storage address violates the boundary requirements. The
instruction is suppressed unless otherwise noted in the individual
instruction description in Chapter 8.

• Invalid storage address (PSW bit J)-An invalid storage address
occurs when one or more words of the instruction or the effective
address are outside the installed storage size of the system. The
instruction is suppressed unless otherwise noted in the individual
instruction description in Chapter 8.

Privilege violate (PSW bit 2)-Privilege violate occurs when a
privileged instruction is encountered while the processor is in the
problem state. The instruction is suppressed.

• Protect check (PSW bit 3)-Protect check occurs when the processor
is in the problem state and an instruction or data is accessed from a
storage area not assigned to the current operation, or an attempt is
made to change an operand in a storage area assigned as read-only.
The instruction is suppressed unless otherwise noted in the individual
instruction description in Chapter 8.

• Invalid function (PSW bit 4)-lnvalid function occurs when an illegal
operation code or function combination is encountered during
instruction execution. The instruction is suppressed unless otherwise
noted in the individual instruction description in Chapter 8.

A level status block is stored, starting at the location in main storage
designated by the program check LSB pointer. The contents of the storage
address register (SAR) are loaded into register 7. The last active processor
address key is placed into the OP1K address key of the AKR; then,
OP2K, EOS bit, and ISK are set to O's. The program check SIA is loaded
into the IAR, and it becomes the address of the next instruction to be
fetched.

Notes:

1. A program-check class interrupt condition on one priority level does
not affect software on other levels.

2. For a specification check, an invalid storage address, and a protect
check, the last active processor address key defines the address space
corresponding to the storage address loaded into register 7. For
privilege violate and invalid function, this address key and register 7
provide no useful information.

Interrupts and Level Switching 3-13

Power /Therma/ Warning

Supervisor Call

3-14 GA34-0152

A power/thermal-warning class interrupt occurs when PSW bit 15 is set to
1. A power/thermal-warning class interrupt is initiated by:

• A power-warning signal that is generated when the power line
decreases to about 85 % of its rated value.

• A thermal-warning signal that is generated when the temperature limits
inside the enclosure are exceeded.

In both cases, the instruction address that is stored in the LSB points to
the next instruction to be executed.

A level status block is stored, starting at the location in main storage
designated by the power/thermal LSB pointer. The EOS bit and all
address keys in the AKR are Set to O's. The power/thermal SIA is loaded
into the IAR, and it becomes the address of the next instruction to be
fetched.

A power/thermal-warning class interrupt can occur when the system in the
run or wait state, assuming that the summary mask is enabled and the
programmer console is not in check restart mode. A
power /thermal-warning interrupt is accepted by the processor only if both
conditions are met.

. If the optional battery backup unit is installed and a power warning
occurs, PSW bit 15 remains on as long as power is supplied by the battery.
If a thermal warning occurs, the processor powers down regardless of the
battery backup unit. The minimum time before the processor powers down
is 20 milliseconds. The IBM 4999 Battery Backup Unit is explained in a
separate publication, IBM Series/l 4999 Battery Backup Unit Description,
GA34-0032. Power/thermal-warning class interrupts are not accepted by
the processor until the first instruction is executed following a power-on
reset, an IPL, or exit from stop state.

Note: If the processor is in the wait state when the power/thermal
condition occurs:

1. The interrupt is serviced on priority level O. The level 0 LSB is stored
into main storage. Additional power/thermal interrupts, along with
priority interrupts, are disabled at this time because the summary mask
is set to 0 by the class interrupt.

2. The instruction address stored in the LSB is unpredictable.

A supervisor-call class interrupt is initiated by executing an SVC
instruction. The SVC instruction is described in Chapter 8.

A level status block is stored, starting at the main storage location
designated by the supervisor call LSB pointer. The OP2K address key is
placed into the OPIK address key in the AKR; then, OP2K, EOS bit, and
ISK are set to O's. The supervisor call SIA is loaded into the IAR, and it
becomes the address of the next instruction to be fetched.

c
c

c
c
("!

c
o

o
o
o
o
o
o

o
o
o

o
o
()

o
o
()

[j
o
o
o
o
o
o

o
o
o

Soft-Exception Trap

Trace

A soft-exception-trap class interrupt is caused by a software error. A
soft-exception-trap class interrupt occurs when bit 4, 5, or 6 of the PSW is
set to 1. There are three soft-exception-trap class interrupts.

Invalid function (PSW bit 4)-Invalid function occurs when a
floating-point instruction attempts execution and floating-point is not
installed. The register-to-register instructions are suppressed; the
storage-to-register instructions are terminated.

Floating-point exception (PSW bit 5)-When floating-point is
installed, a floating-point exception occurs when an arithmetic error
condition is detected. The instruction completes execution.

• Stack exception (PSW bit 6)-A stack exception occurs when an
instruction attempts to pop an operand from an empty stack or push
an operand into a full stack. The instruction is suppressed.

These exception conditions may be handled by software; therefore, they
do not constitute an error condition.

A level status block is stored, starting at the location in main storage
designated by the soft-exception-trap LSB pointer. The contents of the
storage address register (SAR) are loaded into register 7. The OP2K
address key is placed into the OPIK address key in the AKR; then,
OP2K, EOS bit, and ISK are set to O's. The soft-exception-trap SIA is
loaded into the IAR, and it becomes the address of the next instruction to
be fetched.

The trace class interrupt provides instruction tracking for software
debugging. Instruction tracing can occur on any priority level, and is
enabled by the trace bit (LSR bit 10). The tracing occurs when bit 10 of
the current LSR is set to 1. When trace is enabled, a trace class interrupt
occurs at the' beginning of each instruction.

A level status block is stored, starting at the location in main storage
designated by the trace LSB pointer. The ISK address key is placed into
the OPIK address key in the AKR; then, OP2K, EOS bit, and ISK are set
to O's. The trace SIA is loaded into the IAR, and it becomes the address
of the next instruction to be fetched.

Note: After the LSB is stored, and before the next instruction is fetched,
supervisor state (LSR bit 8) is set to 1 (on), trace (LSR bit 10) is set to 0
(off), and the summary mask (LSR bit 11) is set to 0 (disabled).

Programming Note: When trace is enabled, a trace class interrupt occurs
prior to executing each instruction. Hardware processing of the interrupt
provides an automatic branch to the programmer's trace routine. To
prevent retracing the same instruction, the program exits the trace routine
by using the Set Level Block (SELB) instruction with the specified inhibit
trace (IT) bit set to 1. The inhibit trace bit prevents a trace interrupt from
occurring for the duration of one instruction. Refer to "Set Level Block
(SELB)" in Chapter 8 for additional information. A double trace of an
instruction can also occur when the instruction is interrupted and must be
reexecuted. For example, a class interrupt occurs during execution of a
variable-field-length instruction. Under this condition, exit from the class

Interrupts and Level Switching 3-15

Clock

3-16 GA34-0152

interrupt routine should be by a SELB instruction with the inhibit trace bit
set to 1.

The occurrence of any class interrupt or priority interrupt causes the trace
bit (LSR bit 10) to be set to O. This action permits tracing only problem
state code. If it is desired to trace supervisor code, the programmer must
make provisions within the service routine to enable the trace bit.

The following three conditions inhibit a trace class interrupt:

1. A SELB instruction sets the trace bit to 1 and the in-process bit to 1
in the LSR of a selected level lower than the current level; then, when
the selected level becomes active, the first instruction executed is not
preceded by a trace interrupt.

2. The programmer console is in diagnostic mode and a Stop instruction
is encountered while tracing; then, when the Start key is pressed, a
trace interrupt does not occur prior to executing the first instruction.

3. When a level is exited by either a LEX or a SELB instruction and
processing is to continue on a pending level, one instruction is
executed on the pending level prior to sampling for a trace class
interrupt.

If the clock value is greater than or equal to the value in the comparator
and the ability to interrupt has been enabled (by a Set Comparator
instruction), a clock class interrupt occurs.

A clock class interrupt is recognized by the processor only when the
processor is in run or wait state and when the summary mask is enabled.

If a clock class interrupt condition occurs when the summary mask is
disabled, the interrupt is held pending until the summary mask is enabled.

The ability to interrupt is disabled by power-on reset or system reset. To
restore the ability to interrupt, a Set Comparator instruction must be
executed.

When a clock class interrupt occurs:

• Further clock interrupts are blocked. The processor stores the current
LSB at the storage location defined by the storage address in main
storage.

• The processor enters supervisor state.

• The in-process bit is set to 1.

• The trace bit is set to O.

• The summary mask bit is set to O.

• The AKR is set to O.

• The PSW is unchanged.

• The processor resumes execution at the storage location defined by the
storage address, which contains the clock start instruction address
(SIA).

If the processor is in wait state when a clock interrupt condition occurs, it
forces level 0 active. The values stored in the LSB are the residual values
in the appropriate registers for level O. The in-process bit (LSR bit 9) is
set to 0 in the stored LSB.

~
I ,I
,~

C

C

C'

CI

o

C\I

o
o
()

C)
o
o
o
o
o

r
-·'·'

I

~

o
()

o
o
o
o
o
o
o
o

Console

A console class interrupt function is provided when the programmer
console is installed. To recognize the interrupt, the processor must have
the summary mask enabled and be in the run state or wait state.

A level status block is stored, starting at the main storage location
designated by the console interrupt LSB pointer. The EOS bit and all
address keys are set to O's. The console SIA is loaded into the IAR, and it
becomes the address of the next instruction to be fetched.

Notes:

1. If the processor is in the wait state when a console class interrupt
occurs, the interrupt is serviced on priority level O.

2. If the summary mask is disabled, the console class interrupt is ignored
because it is not buffered.

Recovery Procedures for Class Interrupts

Machine Check

Recovery procedures, initiated by software, depend on the application
involved, the type of error or interrupt, and the number of recommended
retries.

The class interrupt provides an automatic branch to a service routine. This
routine can interrogate the PSW for specific information, and can then
initiate the required action. If an error occurs during a priority interrupt
sequence, the priority level switch is completed before the class interrupt is
processed. This facilitates automatic register retention. A reset is generated
by machine"':check class interrupts caused by an I/O check or a CPU
control check. A reset is not generated by program-check or
power /thermal-warning class interrupts.

Storage Parity Check. A storage parity check initiates a machine-check
class interrupt. The error may occur when accessing a storage location that
has not' been validated since power on. Any retry procedure should include
refreshing data in the failing location. Two unsuccessful retries are
considered a permanent failure, and the storage location should not be
used.

CPU Control Check. A CPU control check, which occurs if hardware
detects a malfunction of the processor controls, is a machine-wide error
that initiates a machine-check class interrupt. A reset is generated to the
channel, the I/O attachment features, and all attached I/O devices. The
processor, sensor-based output points, and timer values are not reset. The
generated reset should clear the error condition, but validity of any
previous execution is not guaranteed. A retry is not recommended, and an
IPL should be initiated.

Interrupts and Level Switching 3-17

Program Check

Power /Thermal Warning

Supervisor Call

3-18 GA34-0152

I/O Check. An I/O-check condition occurs when a hardware error
prevents further communication with I/O devices. A machine-check class
interrupt is initiated and a reset is generated to the I/O attachment
features, the channel, and all I/O devices. Error recovery from an I/O
check depends on the sequence indicator setting (PSW bit 12).

If the sequence indicator is set to 0, the error occurred during an Operate
I/O instruction. The address of the failing instruction (IAR contents) is
available in the stored LSB. Retry should be attempted twice. After two
unsuccessful retries, use of the device should be discontinued.

If the sequence indicator is set to 1, the error occurred during an interrupt
or cycle-steal operation. The instruction address (IAR contents) stored in
the LSB is not related to the error. The sequence of events leading to the
I/O check is lost, along with all pending interrupt requests within the
devices. Retry is not recommended.

A program check is caused by a software error and initiates a
program-check class interrupt. Error retry depends on the application. All
necessary parameters are made available for locating and, if required,
correcting the invalid condition. The priority level and operands are not
changed during a program check class interrupt. The stored LSB reflects
conditions at the time the interrupt occurred and contains:

• The address of the failing instruction (IAR contents).

Status information (AKR and LSR contents).

The contents of all general registers.

The contents of the storage address register (SAR) are loaded into register
7, but have meaning only for specification check, invalid storage address,
and protect check. The programmer must reference the PSW to determine
the type of program check.

When a power/thermal-warning class interrupt occurs, the minimum time
before the processor powers down is 20 milliseconds. If the optional
battery backup unit is installed and a power warning occurs, PSW bit 15
remains set to 1 as long as power is supplied by the battery. If a thermal
warning occurs, the processor powers down regardless of the battery
backup unit.

The supervisor-call class interrupt is used to place the processor in
supervisor state to allow execution of privileged instructions. This interrupt
is not an error; therefore, there is no recovery procedure.

c
C

c
C

o

c
c
C:

c:

c

o
CI

o
o
o
o
o
c)
C)

o
o
o
o
o
o
o

o
o
o

Soft-Exception Trap

Trace

Clock

Console

A soft-exception-trap interrupt is the result of an exception condition that
software may choose to handle dynamically. All necessary parameters are
available to locate and correct the condition. The address of the
instruction OAR contents) causing the exception is retained in the level
status block in main storage. The processor is not reset. The programmer
must reference the PSW to determine the soft-exception type.

The trace class interrupt is a programming tool used to trace errors. This is
a normal operation and there is no recovery procedure.

The clock class interrupt is a programming tool used for specific functions.
It is a normal operation and there is no recovery procedure. After the
interrupt, the processor resumes execution at the storage location defined
by the clock SIA.

The console class interrupt is a programming tool used for programmed
applications and problem determination. When a console class interrupt is
recognized by the processor, the console interrupt SIA is loaded into the
IAR, and it becomes the address of the next instruction to be fetched.

Interrupts and Level Switching 3-19

Processor Status Word (PSW)

3-20 GA34-0152

The processor status word (PSW) is used to record error or exception
conditions, in the system, that may prevent further processing. It also
contains certain status flags related to error recovery. Error or exception
conditions recorded in the PSW cause one of four class interrupts to
occur: machine check, program check, soft-exception trap, or
power/thermal warning. Refer to "Class Interrupts" in this chapter for
additional information.

The Copy Processor Status and Reset (CPPSR) instruction can be used to
examine the PSW. This instruction stores the contents of the PSW at a
specified location in main storage.

The PSW is contained in a 16-bit register and has the following bit
representation:

Error or
exception

Bit condition

0 Specification check
1 Invalid storage address
2 Privilege violate
3 Protect check
4 Invalid function

5 Floating-point
6 Stack exception
7 Not used
8 Storage parity check
9 Not used
10 CPU control check
11 I/O check
12 Sequence indicator
13 Auto-IPL
14 Translator enabled
15 Power / thermal warning

Notes:

Class
interrupt

Program check
Program check
Program check
Program check
Program check or
soft-exception trap
Soft-exception trap
Soft exception trap

Machine check

Machine check
Machine check
None
None
None
Power / thermal

Remarks

Note 1

Always 0

Always 0

Status flag
Status flag
Note 1
Note 2

1. Refer to individual processor publications for further information.

2. The power/thermal-warning class interrupt is controlled by the
summary mask.

o .. r'

c~

c
c
c
o
r

Li
/

Ci

c

c)

o

C)
o
o
o
o
o
o
o
o
o

o
o
o
o
c)
o
o
o
o
o
o

Bit O-Specification Check. This bit is set to 1 if the storage address
violates the boundary requirements of the specified data type.

Bit I-Invalid Storage Address. This bit is set to 1 when an attempt is
made to access a storage address outside the storage size of the system.
This can occur on an instruction fetch, an operand fetch, or an operand
store.

Bit 2-Privilege Violate. This bit is set to 1 when a privileged instruction
is attempted in the problem state. Supervisor state bit (LSR bit 8) is set to
o (off).

Bit 3-Protect Check. In the problem state, an attempt is made to alter
storage using a segmentation register with the read-only bit (bit 14) set to
1 and the address translator enabled.

A program-check class interrupt occurs with protect check (bit 3) set to 1
in the PSW.

Bit 4-Invalid Function. This bit is set to 1 by one of the following
conditions:

1. Attempted execution of an invalid operation code or function
combination. These are:

Op code

00101

00111
01000
01011
01100
01110
01111
11011
10110
11101

Function field bits

All (when register 7 is specified in the R 1 or R2 field
of the instruction)
All
0001,0010,0011,0101,0110,0111
0101,0111
111
11000,11010,11011,11100,11110,11111
1X11X, 01XXX, 1X011, 10001
All
All
1100,1101,1110,1111

Note: The preceding invalid conditions cause a program-check class
interrupt to occur.

2. The processor attempts to execute an instruction associated with a
feature that is not installed. These are:

Op code Function field bits

00100 All
01011 0011, 1011 (when in supervisor state)

Note: The preceding conditions cause a soft-exception-trap class
interrupt to occur.

Interrupts and Level Switching 3-21

3-22 GA34-0152

Bit 5-Floating-Point. This bit is set to 1 when an arithmetic error
condition is detected.

Bit 06-Stack Exception. This bit is set to 1 when an attempt has been
made to .poP an operand from an empty main storage stack or to push an
operand into a full main storage stack. A stack exception also occurs when
the stack cannot contain the number of words to be stored by a Store
Multiple (STM) instruction.

Bit 7-Not Used. This bit is always O.

Bit 8-Storage Parity. This bit is set to 1 when a parity error has been
detected on data being read out of storage by the processor. This error can
occur when accessing a storage location that has not been validated since
power on.

Bit 9-Not Used. This bit is always O.

Bit 10-CPU Control Check. This bit is set to 1 to indicate a malfunction
of the CPU controls. This is a machine-wide error. (Refer to the Note
under "Bit 11-1/0 Check.")

Bit II-I/O Check. This bit is set to 1 when a hardware error that may
prevent further communication with any I/O device occurs on the I/O
channel.

PSW bit 12 (sequence indicator) is used in conjunction with PSW bit 11
(I/O check) to further define the last I/O sequence before an I/O check
condition.

Note: The machine-check class interrupt initiated by a CPU control check
or an I/O check causes a reset. The I/O channel and all devices in the
system are reset as if a Halt I/O (channel-directed command) had been
executed. The processor, sensor-based output points, and timer values are
not reset.

Bit 12- Sequence Indicator. This bit reflects the last I/O operation or
sequence to occur.

PSW bit 12 (sequence indicator) is set to 0 if the error occurred during an
Operate I/O instruction and is set to 1 if the error occurred during a
cycle-steal operation or an interrupt-accept sequence. The sequence
indicator bit is not an error in itself, but it reflects the last operation or
sequence at any time. An I/O check cannot be caused by a software error.

Refer to "Bit 11-1/0 Check" previously explained.

C)

o

c
c

o
r
I
Li

o
o
c
c

o

o

o
o
o
()

o
o
o
C)

o
o
o
o
()

o
o

o
C)

o

Bit I3-Auto IPL. This bit is set to 0 by:

A power-on reset when auto-IPL mode is not selected.

• Pressing the Load key.

An IPL initiated by a host system.

Refer to "Initial Program Load (IPL)" in Chapter 2 for additional
information.

This bit is set to 1 when an automatic IPL occurs.

Bit I4-Translator Enabled. This bit is set to 0 when:

A Disable (DIS) instruction is executed with bit 14 of the instruction
word set to 1.

An Enable (EN) instruction is executed with bit 12 of the instruction
word set to 1.

• A processor reset (power-on reset, check restart, IPL, or programmer
console system Reset key) occurs.

This bit is set to 1 when:

An Enable (EN) instruction is executed with bit 12 of the instruction
word set to 0 and bit 14 set to 1.

Bit I5-Power Warning and Thermal Warning. This bit is set to 1 when a
power failure is imminent, or when a thermal condition causes the power
to go off. Refer to "Power/Thermal Warning" under "Present and Accept
Class Interrupts" in this chapter for additional information. The
power /thermal-warning class interrupt is controlled by the summary mask.

Interrupts and Level Switching 3-23

Interrupt Masking Facilities

Summary Mask

3-24 GA34-0152

Three levels of priority interrupt masking are provided to the programmer
for the control of interrupt processing:

Summary mask (LSR bit 11)

Interrupt level mask register

Device mask (I-bit)

Each masking facility has specific control, as explained in the following
paragraphs.

The summary mask provides a masking facility for priority interrupts and
certain class interrupts. The state of the summary mask (enabled or
disabled) is controlled by bit 11 in the level status register (LSR) of the
active priority level. When bit 11 is set to 0, the summary mask is disabled
and prevents all priority interrupts regardless of priority level, and
prevents. power/thermal, clock, and console class interrupts. All other class
interrupts are not masked. When bit 11 is set to 1, the mask is enabled
and the interrupts are allowed.

The summary mask is disabled (set to 0) by:

• Execution of a Supervisor Call (SVC) instruction.

• Execution of a Disable (DIS) instruction, with bit 15 of the instruction
set to 1.

• Occurrence of a class interrupt.

• Execution of a Set Level Block (SELB) instruction with bit 11 of the
LSR set to O.

The summary mask bit is enabled (set to 1) by:

• Execution of an Enable (EN) instruction, with bit 15 of the
instruction set to 1.

Execution of a Set Level Block (SELB) instruction with bit 11 of the
LSR set to 1.

• Acceptance of a priority interrupt on the interrupted-to level.

System reset, power-on reset, or IPL.

Note: If the processor is in the wait state, the summary mask is enabled or
disabled as defined by bit 11 in the LSR of the last active priority level.

o
o
c
C1

j

c

o

[
o
o
c
c

C" --'

o
o
C)

o
o
o
o
o
C)

o
o
C)
()

o

o
o
o
o
C)

Interrupt Level Mask Register

Device Mask (I-Bit)

The interrupt level mask register is a four-bit register used to control
interrupts on specific priority levels. Each level is controlled by a separate
bit of the mask register, as shown here:

Interrupt level mask register

Bit position o 1 2 3

I I I 1.1
Priority level o 1 2 3

With a bit position set to 1, the corresponding priority level is enabled and
permits interrupts. With a bit position set· to 0, the corresponding priority
level is disabled. The Set Interrupt Mask Register (SEIMR) instruction is
used to control bit settings in the interrupt level mask register. The Copy
Interrupt Mask Register (CPIMR) instruction may be used to interrogate
the register.

Note: All levels are enabled (set to 1) by a power-on reset, IPL, or
programmer console system Reset key.

Each interrupting device contains a one-bit mask called the device mask or
interrupt bit (I-bit). Interrupts by the device are permitted when its device
mask is enabled (set to O. With the device mask bit disabled (set to 0),
that device cannot cause an interrupt. The device mask is controlled by a
Prepare command in conjunction with an Operate I/O instruction. Refer
to Chapter 8, "Instructions," and Chapter 4, "Input/Output Operations,"
for additional information.

Interrupts and Level Switching 3-25

Program-Controlled Level Switching

3-26 GA34-0152

Level switching under program control may be accomplished by using the
Set Level Block (SELB) instruction. This instruction is described in detail
in Chapter 8, "Instructions." In general, this instruction:

Specifies the location of a level status block (LSB) at an effective
address in main storage.

• Specifies a selected priority level associated with the main storage
LSB.

• Loads the main storage LSB into the hardware LSB for the selected
level.

The hardware LSB consists of the following hardware registers for the
selected level:

• Instruction address register

• Address key register

• Level status register

Eight general registers (0-7)

System p~ogrammers should be familiar with the execution of the SELB
instruction, in order to prevent adverse effects within the programming
system.

• The current execution level

• The selected level specified in the SELB instruction

• The state of the in-process bit (LSR bit 9) contained in the main
storage LSB

Note: Interrupt masking, provided by the summary mask and the interrupt
level mask register, does not apply to program-controlled level switching.

The main storage LSB and the location of the in-process bit are shown in
the following diagram:

Main storage
address
(LSB)
pointer

EA+14 (hex)

I nstruction address register (I AR)
Address key register (AKR)
Level status register (LSR)
General register 0
General register 1
General register 2
General register 3
General register 4
General register 5
General register 6
General register 7

o
*In-process bit (bit 9)

0= off
1 = on

l * I

15

o
o
c~

c

c
(1-/

o

c

C'

C~I

o
o
o
o
(j

o
o
o
o

C
"\· I
I

o
o
o
o
C)

o

o
o
o

Execution of the SELB instruction may result in level switching or a
change in the pending status of a level as described in the following
paragraphs.

Selected Level Lower Than Current Level and In-Process Bit On

Selected level

These conditions cause the selected level to become pending. The main
storage LSB is loaded into the hardware LSB for the selected level.
Execution of a LEX instruction on the current level causes the selected
level to become active, provided that no higher priority interrupts are
being requested.

Load
LSB

LEX

". If --1-............................ ________ --.---.--... ',_IL _______ ~~n~ ~ __________ .L-...'--'--'--L--I"---IL...-L-..JL.-,.....jL...-I--I.......,

Selected Level Equal to Current Level and In-Process Bit On

These conditions cause the selected level to become the current level. The
main storage LSB is loaded into the hardware LSB for the selected level.
The effect is a task-switch on the current level, with no level change.

Current and
selected level

Selected Level Higher Than Current Level and In-Process Bit On

~
T

I I

These conditions cause the selected level to become the current level. The
main storage LSB is loaded into the hardware LSB for the selected level.
This is a level switch to the higher (selected) level and causes the lower
level to be pending.

Selected level

Current level

Load
LSB

Interrupts and Level Switching 3-27

Selected Level Lower Than Current Level and In-Process Bit orr
These conditions cause the pending selected level to be reset. The main
storage LSB is loaded into the hardware LSB for the selected level.

Current level

Load
LSB

Selected Level Equal to Current Level and In-Process Bit orr
These conditions cause an exit from the selected (current) level. This exit
is identical to executing a LEX instruction except that the main storage
LSB is loaded into the hardware LSB for the selected level. Refer to
"Level Exit (LEX)" in Chapter 8 for additional information.

. ~

T
Current and I I I I I I I I I I Is E(L)1 Exit current level
selected level _

Selected Level Higher Than Current Level and In-Process Bit Off

3-28 GA34-0152

The main storage LSB is loaded into the hardware LSB for the higher
(selected) level.

Current level

Load
LSB

C"

C

o

C)

C

c'
o

fro "

~)

C)
o
o
o
o
C)
o

[J
C)
o
o
o
o
o

o
C)

c)

Chapter 4. Input/Output Operations

Input/ output (I/O) operations involve the use of devices to enter data
into the system, to receive data from the system, or both. These devices
are attached to the processor and main storage by the I/O channel, with
the channel directing the flow of information. The I/O channel can
accommodate a maximum of 256 addressable devices. The general data
flow is shown in Figure 4-1.

Main
storage

It
J ~

Processor
Channel I/O device I/O device
controls 01 FF

/\ 1\ 1\
~ ~ , ~

Jr--
I/O channel

Figure 4-1. General data flow

The channel supports three basic types of operations:

Direct Program Control (DPC) Operations-An immediate data
transfer is made between main storage and the device for each
Operate I/O instruction. The data may consist of one byte or one
word. The operation mayor may not terminate with an interrupt.

Cycle-Steal Operations-An Operate I/O instruction can initiate
cycle-steal data transfers of up to 65,535 bytes between main storage
and the device. Cycle-steal operations are interleaved with processing
operations. Word or byte transfers, device control block (DCB)
chaining, burst mode, and program-controlled interrupts (PCIs) can be
supported. All cycle-steal operations terminate with an interrupt.

Interrupt Servicing-Four priority interrupt levels are available to
provide device transfers. The device interrupt level is assigned by the
program. In addition, the device interrupt capability is controlled by
the mask register, which is set by the Set Interrupt Mask Register
(SEIMR) instruction. Interrupt requests, along with cycle-steal
requests, are presented and polled concurrently with DPC and
cycle-steal data transfers.

Input/ Output Operations 4-1

The channel provides comprehensive error checking, including time-outs,
sequence checking, and parity checking. Error, exception, and status
reporting are facilitated by recording condition codes in the processor
during execution of Operate I/O instructions, and recording condition
codes and an interrupt information byte (lIB) in the processor during
interrupt acceptance. Additional status words may be used by the device,
as necessary, to describe its status (refer to "I/O Condition Codes and
Status Information" in this chapter).

Operate 1/0 Ins,trnction

o

IDCB

The Operate I/O instruction, which initiates all I/O operations from the
processor, is a privileged instruction and is independent of specific I/O
parameters. The generated effective address points to an immediate device
control block (lOCB) in main storage. The IOCB consists of two words
that contain an I/O command, a device address, and an immediate data
field. For OPC operations, the immediate data field is used as a device
data word. For cycle-steal operations, the immediate data field points to a
OCB that provides additional information needed for the operation. For
more details about the Operate I/O instruction, refer to Chapter 8.

Note: OPC operations are performed by all devices, but some devices do
not operate in cycle-steal mode.

Address

4 5 1516 31 7 8 10 11
~ ,

~~--------------~y~------------~
Effective address

Command field Device address field Immediate data field

yyyy~------------~------------~----------------------------~

4-2 GA34-0152

o 7 8 1516 31
" ~~------------~y------------~ I

I
I

Cycle-steal operations I r------------------------------ I

t
DCB

1 1

*Indirect address bit

C~:

\._/

0

0
C~~I

CI
~,

~j

~

C __ ..)

~

l)

C;

(': ,,-

(:'::1

r.-."

'_'/

r ·
U

c)

1
I

I
I r

--"\
--)

o

('
'---")

".---..,
l)
"-...-/

o
()

o

)

Immediate Device Control Block (lDCB)

The storage location specified by the Operate I/O instruction's effective
address contains the first word of the lOeB. The lOeB contains an I/O
command that describes the type of I/O operation. This command is used
by the channel for execution of the operation. The lOeB must always be
on an even-byte address boundary, and has the following format:

loeB (immediate device control block)

Command field Device address field

o 7 8 15

I Immediate data field

16 31

Command Field (Bits 0-7).

Bit 0 Channel-directed. If this bit is set to 1, the I/O command is
directed to the channel rather than to a specific device. The
Halt I/O command is the only valid channel-directed command.
Any other command with bit 0 set to 1 causes a command
reject exception condition.

Bit 1 Read/write. If this bit is set to 1 (write), the data contained in
the immediate data field is transferred to the addressed I/O
device. If this bit is set to 0 (read), the immediate data field
contains the data received from the I/O device at the
conclusion of the I/O instruction.

Bits 2-3 Function. This field specifies the general type of I/O operation
to be performed (see Figure 4-2).

Bits 4-7 Modifier. This field further defines the functions.

Device Address Field (Bits 8-15). This field contains the I/O device
address. A unique I/O device address is assigned to each I/O device. The
address range is 00 through FF (hex).

Immediate Data Field (Bits 16-31). For ope operations, the immediate
data field contains a data word; for cycle-steal operations, this field points
to a device control block.

Input/Output Operations 4-3

4-4 GA34-0152

Figure 4-2 shows the relationship between the IDCB and the Operate I/O
instruction, with a chart for the various I/O commands. The Start and the
Start Cycle Steal Status commands are used to initiate cycle-steal
operations. The remaining commands are used for DPC operations only.

Address

4 5 7 8 1011 12 15 16 31
'--....-' .. ,

Effective address

I OCB (immediate device control block)
'yy Command field Device address field Immediate data field

o 123 4 7 8 1516 31

,
Chan RIW Function Modifier** Hex Specific command Type of operation

0 0 00 Read XXXX OX Read OPC
0 0 01 Read XXXX 1X Read OPC
0 0 lOR ead status 0000 20 Read 10 OPC
0 0 10 Read status XXXX 2X Read Status OPC
0 0 11 3X Unused*** Unused
0 00 Write XXXX 4X Write OPC
0 01 Write XXXX 5X Write OPC
0 10 Control 0000 60 Prepare OPC
0 10 Control XXX X 6X Control OPC
0 10 Control 1111 6F Device Reset OPC
0 11 Start XXXX 7X Start Cycle-steal
0 11 Start 1111 7F Start Cycle Steal Status Cycle-steal

11 Channel 0000 FO Halt I/O Channel

* Indirect address bit.
**Modifier XXXX is device-dependent. Other modifiers are system-defined.

***To avoid future code obsolescence, this command format must not be used.

Figure 4-2. IDCB and I/O commands

~
(I
\----" ,

(

I
1

".---..."

'----"'"

~,j

c

o

o Device Control Block (DCB)

o
o
o

o

o

o
()

(j

This section describes the standard device control block that is used for a
cycle-steal operation. The actual cycle-steal operation is explained under
"Cycle-Steal" in this chapter. The DeB is an eight-word control block,
residing in main storage, that contains the specific parameters for a
cycle-steal operation. The device fetches the DeB using the cycle-steal
mechanism.

All devices use the standard DeB format (see Figure 4-3). Some devices
may also use additional formats, which are explained in the individual
device publications.

Word
o

2

3

4

5

6

7

DCB (device control block)

Control word ~

Device parameter word 1

Device parameter word 2

Device parameter word 3

Device parameter word 4

Device parameter word 5

Count word

Data address word

0 15

Control word format (DCB word 0)

I Addr keYI-¥0difie0 ield - - T-f.-
o 1 2 3 4 5 7 8 14 15

l1k~ Burst mode* I
Suppress exception (SE)*
Extended DCB (XD)*
Input flag

-----Program-controlled interrupt (PC I) *
"'------- Chaining flag*

*Device-option bits

Figure 4-3. Device control block

Input/Output Operations 4-5

Control Word

Device Parameter Words 1-2

Device Parameter Word 3

4-6 GA34-0152

The DeB words have the following meanings:

Bit 0*

Bit 1 *

Bit 2

Bit 3*

Bit 4*

Chaining flag. If this bit is set to 1, a DeB chaining operation
is indicated.

Program-controlled interrupt (PCI). If this bit is set to 1, the
device presents a pel at the completion of the DeB fetch.

Input flag. This bit indicates to the device the direction of data
transfer.
o = output (main storage to device)
1 = input (device to main storage)
For bidirectional data transfers under a DeB operation, this bit
must be set to 1. For control operations involving no data
transfer, this bit must be set to o.
Extended DCB. This bit, when set to 1, specifies that the DeB
is a non-standard type.

Suppress exception. If this bit is set to 1, the device is allowed
to suppress the reporting of certain exception conditions. The
device can then take alternative action, depending on the
condition.

Bits 5-7 Cycle-steal address key. These bits are presented by the device,
during data transfers, to ascertain storage access authorization.

Bit 8-15 Modifier. These are device- dependent bits, with the following
exceptions: (1) when extended DeB = 1, bits 8-11 further
identify the DeB type, and (2) when a device uses burst mode,
it is specified in bit 15. Otherwise, these bits may be used for
functions that are unique to a particular device.

*These bits are used with device options that are available on a
device-feature basis. All bits not used by the device must be set to O's. If
the bits are set improperly, the devices may report a DeB specification
check. Refer to the individual device publications for additional
information.

Device parameter words 1-2 are device-dependent control words and are
used as required. Refer to the individual device publications for definitions
of these words.

The high-order byte (bits 0-7) of device parameter word 3 is used as a
DeB identifier when pel is specified. The device places the identifier in
the interrupt information byte when the pel is processed. The high-order
byte (bits 0-7) is device-dependent when pel is not specified. The
low-order byte (bits 8-15) is always device-dependent.

,,.---.....
(,

'-----"

l I

"-.--

c

Cl

o
o
o
o
o
o
o

o
C)

o
o
o
o
o
o
o
o

Device Parameter Word 4

Device Parameter Word 5

Count Word 6

Data Address Word 7

Device parameter word 4 specifies a 16-bit main storage address called the
status address, if suppress exception is used by a device. The status
address points to a residual status block that is stored by the device
following completion of the DCB operation.

When suppress exception is not used by a device, a residual status block is
not stored. In this case, parameter word 4 is device-dependent.

Device parameter word 5 specifies a 16-bit main storage address of the
next DCB in the chain, when the DCB chaining bit (bit 0) of the control
word) is set to 1. When chaining is not indicated, parameter word 5 is
device-dependent.

The count word contains a 16-bit unsigned integer that represents the
number of data bytes to be transferred for the current DCB. The count
word specifies bytes with a range of 0 through 65,535. The count word
must contain an even number for word-only devices.

The data address word contains the starting main storage address for data
transfers.

Programming Considerations When Using the DCB

110 Commands

1. Only those words required for the cycle-stealing operation are used by
the device and they may be used in any order. Contents of the words
must be specified correctly; if not, the device records a DCB
specification check in the interrupt status byte (ISB) and terminates
the cycle-steal operation with an exception interrupt.

2. The DCB address (in the IDCB), the chain address, and the status
address must be on an even-byte address boundary. If the DCB
address is odd, the device records a command reject condition code
and terminates the operation. An odd chain address or an odd status
address results in a DCB specification check.

Note: Condition codes and status recording are explained in detail under
"I/O Condition Codes and Status Information" in this chapter.

This section describes each I/O command and shows the related IDCB.
The command field (bits 0-7) of the IDCB contains the hex value of the
command. An X in this field means that the value is device-dependent.

Input/Output Operations 4-7

Read

Read ID

4-8 GA34-0152

IDCB (immediate device control block)

Command field Device address field

000 X X X X X X X X X X X X X
o 7 8 15

... r' ... r'

OX,1X OO-FF

I Immediate data field
Data word

16 31

The Read command transfers a word or a byte from the addressed device
to the data word of the IDCB. If a single byte is transferred, it is placed in
bits 24-31 of the data word, with bits 16-23 set to D's. Correct parity is
always maintained and checked for both bytes on the I/O channel. The
individual devices may use either the OX- or IX-type of Read command.

IDCB (immediate device control block)
Command field Device address field
0010000 0 X X X X X X X X
o 7 8 15
~ ___ "" .. ---"" ~""'---."JIIl---'"

20 OO-FF

I/mmediate data field
Data word

16 31

The Read ID command transfers a device identification (ID) word from
the device to the data word of the IDCB. The device ID word contains
physical information about the device and may be used to determine the
devices that are attached to the system. This ID word is not related to the
interrupt ID word associated with interrupt processing. The device ID
word format is:

IClass 10 I Assigned code IcslDI
o 345 131415

Bits 0-3
Bit 4
Bits 5-13
Bit 14

Bit 15

Assigned class code
Reserved; always 0
Assigned code
0- not a cycle-steal device
1 - cycle-steal device
0- IBM device
1 - OEM device

c
c
c
C)

c
o
o
Co,

c

c'
o

o
Read Status

o
o

o
o
o Write

o
~~1

I I

I I

V

o
o
o

o
o

o
o
o

I DCB (immediate device control block)

Command field Device address field
0-0 lOX XX-X X X X X X_X X X
o 7 8 15
...... ,., ",

w y

2X OO-FF

!/mmediate data field
Data word

16 31

The Read Status command transfers a device status word from the device
to the data word of the IDCB. Contents of the device status word are
device-dependent.

I DCB (immediate device control block)

Command field Device address field

o lOX X X X X X X X X X X X X
o 7 8 15 " #', ,

or

OO-FF

I Immediate data field
Data word

16 31

The Write command transfers a word or a byte from the data word of the
IDCB to the addressed device. An individual device may use either the
word format or the byte format. If a single byte is to be transferred, it
must be placed in bits 24-31 of the data word and bits 16-23 must be set
to O's. A byte-oriented device may ignore bits 16-23 (including the parity
bit) on the I/O channel, but these bits should be set to O's to avoid future
code obsolescence.

Note: Both bytes of the IDCB data word are fetched by the channel and
placed on the I/O data bus (with good parity) even if both bytes are not
required by the device.

Input/Output Operations 4-9

Prepare

Control

4-10 GA34-0152

IDCB (immediate device control block)

Command field Device address field

o 1 1 0 0 000 X X X X X X X X
o 7 8 15 , ~, ~

60 OO-FF

I/mmediate data field
O's Level

16 2627 3031

The Prepare command transfers a device interrupt control word to the
addressed device that controls the device interrupt parameters. The device
interrupt control word is transferred from the immediate data field of the
IDCB in the format shown. A priority interrupt level is assigned to the
device by the level field. The I-bit (device mask) controls the device
interrupt capability. If the I-bit is set to 1,' the device is allowed to
interrupt. If the I-bit is set to 0, the device cannot interrupt. Refer to
"Prepare I/O Device for Interrupt" in Chapter 3.

IDCB (immediate device control block)

Command field Device address field

o 1 1 0 X X X X X X X X X XX X
~~0 ______ ~ ____ ~Z~~8 ______ ~ _____ 1~g

6X OO-FF

I Immediate data field
Data word

16 31

The Control command initiates a control action in the addressed device. A
word or byte transfer from the data word of the IDCB to the addressed
device mayor may not occur, depending on device requirements. If a
single byte is to be transferred, it must be placed in bits 24-31 of the data
word and bits 16-23 must be set to O's.

Note,' Both bytes of the IDCB data word are fetched by the channel and
placed on the I/O data bus (with good parity) even if they are not
required by the device.

o

o
o

c'
c

c~

o

o
o
o
c
0'

o
o

o
o
o Device Reset

o
o
o
o
o
o

Start

o

[,
o
o
o
o
o
o
(\

U

o
o
o

I DeB (immediate device control block)

Command field Device address field

o 1 101 1 1 1 X X X X X X X X
~~0 ____ ~~ ____ 7~,~~8 ______ Vy ______ 1~~

6F OO-FF

/Immediate data field
O's

16 31

The Device Reset command resets the addressed device. A pending
interrupt from this device (or a busy condition) is cleared. The device
mask (I-bit) is not changed. The assigned priority level for the device is
not changed. The residual address (device status) and output sensor points
are not reset. The IDCB data word is not checked for parity.

I DeB (immediate device control block)

Command field Device address field

o 11 XXXXXXXXXXXX
..... ,O ____ -;"y ______ 7 ~8 ____ Vy ___ 1_"~

70-7E OO-FF

I Immediate data field
DeB address

16 31

The Start command initiates a cycle-steal operation for the addressed
device. The second word of the IDCB contains a 16-bit logical storage
address of a DCB and is transferred to the device. Refer to "Start
Command" in this chapter for additional information.

Input/Output Operations 4-11

Start Cycle Steal Status

Halt I/O

4-12 GA34-0152

IDCB (immediate device control block)

Command field Device address field
01111 1 1 1 X X X X X X X X

.1J ~ § 15, ..
7F OO-FF

!/mmediate data field
DCB address

16 31

The Start Cycle Steal Status command initiates a cycle-steal operation for
the addressed device. Status information is collected from the addressed
device. The second word of the IDCB contains a 16-bit logical storage
address of a DCB and is transferred to the device. Refer to "Start Cycle
Steal Status Command Operation" in this chapter for additional
information.

IDCB (immediate device control block)

Command field Device address field
1 1 1 100 0 0
P 7" 8 15

FO

I Immediate data field

16 31

Halt I/O is a channel-directed command that causes a halt of all I/O
activity on the I/O channel and resets all devices. Data is not associated
with this command. All device interrupts pending are cleared. Device
priority-interrupt-Ievel assignments and device masks (I-bits) are not
changed. The residual address (device status) and output sensor points are
not reset.

Note: The channel always accepts and executes the Halt I/O command,
and it is the only valid channel-directed command.

C

CI

o

o

C

c:
c'

o
o

0

0

0
()

0

0

0
0

0
0

c
0
0

0

0

0
0
(---..,
,-J

0

0

0

DPe Operation

A DPC operation is an immediate transfer of data or control information
to or from an I/O device under the control of an Operate I/O instruction.
The Operate I/O instruction must be executed for each data transfer.
Refer to Figure 4-4 for an explanation of the following steps:

1. The Operate I/O instruction's effective address points to an IDCB in
main storage O.

2. The I/O channel uses the IDCB to select the addressed device and to
determine the operation to be performed O.

3. The I/O channel transfers data to the device from main storage, or
transfers data from the device to main storage G.

4. The device transfers an I/O instruction condition code to the current
level status register (LSR) in the processor G).

Notes:

1. The DPC operation may end with a priority interrupt. Refer to "I/O
Interrupts" in Chapter 3 for additional information.

2. There are two types of condition codes: the first is an I/O instruction
condition code, and it is presented immediately after completion of an
Operate I/O instruction; the second is an interrupt condition code,
and it is presented upon acceptance of a priority interrupt. The
condition code significance is different for the two cases. Refer to
"I/O Condition Codes and Status Information" in this chapter for
additional information.

Input/Output Operations 4-13

Address

.... ~

Effective address

" Hex Command IOCB immediate field

OX,lX Read Data (word or byte)
20 Read ID Device I D word
2X Read Status Device status word
4X,5X Write Data (word or byte)
60 Prepare Interrupt parameters
6X Control Data (word or byte)

IDCB

Device address field

o 7 8 31 1516

e~----~i--------

I .1
e

LSR (see Note)

IElcH ;0
.... oJ

T I/O instruction CC E)
.. Note: LSR bit 0, even indicator bit position;

bit 1, carry indicator bit position;
bit 2, overflow indicator bit position.

* Indirect address bit

.. Data bus J..

\.)

" v ... Address/control bus ...
r)
" "

Channel
controls

Condition code

Channel lines

Figure 4-4. Direct program control I/O operation

4-14 GA34-0152

C)
!'-J\
'r-I

I/O
attachment

~

C)
o

c
c

o

I/O
device

o
o
c
c

o
o
o

c)
0

0

0
0

0

0

0

0
0

0
C)
0
C)

0

0
0
~ u

0
0

0

Cycle-Steal
Cycle-stealing allows data transfer/to or from an I/O device while the
processor is processing instructions. This interleaved operation allows
multiple data transfers to be started by one Operate I/O instruction. The
processor executes the Operate I/O instruction, then continues processing
instructions while the I/O device steals main storage data cycles when
needed. The channel resolves contention among multiple devices
requesting cycle-steal transfers. The operation always ends with a priority
interrupt from the device.

The cycle-steal operation capabilities depend on the device options that
are provided by a device feature basis.

Burst mode

• DCB chaining

• Extended DCB

Program-controlled interrupt (PCI)

Suppress exception

Storage addresses and data transfers by byte or word

Refer to "Cycle-Steal Device Options" in this chapter for additional
information about each option.

All cycle-steal operations terminate with a priority interrupt, provided that
the device has been prepared with a successful Prepare command, with the
device mask (I-bit) set to 1. If the device mask is (I-bit) is set to 0, the
interrupt presentation is blocked and the device remains busy ,until the
condition is cleared by a reset, or the proper Prepare command is
executed.

All cycle-steal operations are started by an Operate I/O instruction that
points to an IDCB. The immediate data field of the IDCB contains the
address of a DCB. The DCB is fetched by the device using a cycle-steal
address key of O. Refer to "Device Control Block (DCB)" in this chapter
for a additional information about the DCB.

There are two types of cycle-steal commands:

Start

Start Cycle Steal Status

Input/Output Operations 4-15

Start Command

4-16 GA34-0152

The IDCB for the Start command, pointed to by an Operate I/O
instruction, has the followi.ng format:

IDCB (immediate device control block)
Command field Device address field
o 1 1 1 X X X X X X X X X X X X
P 7,,~8 15, .. , ..".

70-7E OO-FF

I Immediate data field
DeB address

16 31

The Start command initiates a cycle-steal operation for the addressed
device. The second word of the lOeB contains a 16-bit logical storage
address of a DCB and is transferred to the device. The device uses this
storage address for fetching the DCB.

C'

c

C'
C'

/

c
o

'-.-/

C'
C
C,

C'

C'

C·
CI

0

C'~

C'

o

o
o
o
o
o
o
o
o

c
c)
o
o
o
o
o
o
o
o
o

A cycle-steal operation is described in the following chart. Use Figure 4-5
in conjunction with this chart. Condition codes used in the chart are
explained under "I/O Condition Codes and Status Information" in this
chapter.

Note: An I/O device must be properly prepared (using a Prepare
command) before it is allowed to interrupt.

Cycle-steal major
steps Remarks

Start cycle-steal 1. Execute I/O instruction.

2. IDCB contains a Start command and points
to a DCB. The DCB address is sent to the
device·O

3. Device presents condition code 7 (bits 0-2
in the LSR).O

Device fetches DCB 1. Device uses cycle-steal mechanism to fetch
DCB .•

2. Cycle-steal address key of 0 is used.

Data transfer 1. Data is transferred to or from the device in
word or byte format .•

2. Transfers continue until count in DCB is
exhausted.

3. DCB specifies cycle-steal address key for
data area.

Termination (no error 1. Device presents interrupt request.
condition) 2. Channel polls I/O attachment feature and

accepts request.

3. Device sends interrupt ID word and
interrupt condition code 3 (device end).

Termination 1. Device presents interrupt request.
(exception condition) 2. Channel polls I/O attachment feature and

accepts request.

3. Device sends interrupt ID word and
interrupt condition code 2 (exception).

Input/Output Operations 4-17

Other events that might occur during the cycle-steal operation are:

Chaining 1. Device completes the current DCB operation
but does not present an interrupt request.

2. Device fetches next DCB in the chain.G

Program-controlled 1. Device fetches DCB (PCI bit= O.
interrupt 2. Device initiates an interrupt and sends an

interrupt ID word and interrupt condition code
1 (PCI).

Suppress exception 1. Device completes current operation.

2. Device stores status at the main storage
location defined by DCB parameter word 4,
using a cycle-steal address key of O.

4-18 GA34-0152

Ci

o

c

r~'

I ,,---,.,

c
o
c·
c

C1

"

o

C)
()

o Operate I/O instruction

() ~ '-------------~~------------~'
Effective address

o IDCB
Command field Device address field DCB address o o 0 000 1 0 1 0 0 0 0 0 0 0 0 0230
o 7 8 15 16 31

o '"

o
o
o

LSR

I I {O 0
0 2 3 15 Device ..

o G

o DCB • 00 l

Control word
05

o
o

f; :l;

OA 0600 ~- .., Data area
E) 0800

I Count • DE 0800 I ,~ ~~

05

05

o I
I

o
o

I
I Chained DCB L ___ -~0600

... ~ ,.1...

o *Indirect address bit

Figure 4-5. Example of cycle-steal control information

o Input/ Output Operations 4-19

o

Start Cycle-Steal Status Command

4-20 GA34-0152

The Start Cycle-Steal Status command initiates a cycle-steal operation for
the addressed device. Status information is collected from the addressed
device if the previous operation terminated due to an error or exception
condition. The second word of the IDCB contains a 16-bit logical address
of a DCB and is transferred to the device. The IDCB format is:

I DeB (immediate device control block)

Command field Device address field

o 1 1 1 1 1 1 1 X X X X X X X X
~~O ______ ~y ____ ~~~~8 ____ ~y ______ '~~

7F OO-FF

Immediate data field

DeB address

16 31

The Start Cycle-Steal Status command DCB format is:

DeB (device control block)
Word

o Control word
001 o o I Addr keylO o 0 0 0 0 0 0

Not used (O's)

2 Not used (O's)

3 Not used (O's)

4 Not used (O's)

5 Not used (O's)

6 Byte count

7 Data address

o 15

c'

o

c'
c
o

c

c
c

o
CI

o
o
o
C)
C)
u
o
o
o
o

c
o
o
o
o
o
o

o
o
o

Programming Note: For the start cycle-steal status operation, the DCB
has the following parameters:

• Bits designated as D's are not checked by hardware (see Figure 4-6).

• The count is specified in bytes.

• The maximum count is device-dependent.

• The validity of a count value less than the maximum value is
device-dependent.

• If the maximum count is exceeded, or a count value is specified that
indicates the partial storing of a word-length parameter, the device
records a DCB specification check in the interrupt status byte and
terminates the operation.

• An odd data address also results in a DCB specification check.

Cycle steal status data is transferred to main storage starting at the data
address specified in the DCB. This data consists of residual parameters
and device-dependent status information, and has the following format:

Word 0

Word 1

Word 2

•
• •
•

Residual address

Device cycle-steal status word 1

Device-dependent status word

0 15
.100-

Residual Address. This word contains the main storage address of the last
cycle-steal transfer attempted with a Start command. The address may be
a data address, a DCB address, or a residual-status-block address. For
word transfers, the residual address points to the higher address
(low-order) byte of the word. If an error occurs during a start cycle-steal
status operation, the residual address (as contained within the device) is
not altered. Device Reset, Halt I/O, machine check, and system reset have
no effect on the residual address in the device. This residual address is
cleared by a power-on reset. Following a power-on reset, the residual
address is:

• 0000 (hex) for a byte-oriented device.

• 0001 (hex) for a word-oriented device.

Device Cycle-Steal Status Word 1. This word contains the residual byte
count of the previous cycle-steal operation initiated by a Start command.
The byte count is initialized by the count field of a DCB during a Start
command. The residual byte count is updated as each byte of data is
successfully transferred by a cycle-steal operation. The residual byte count
is not updated by cycle-steal transfers into the residual status block and is
not altered if an error occurs during a start cycle-steal status operation.
The residual byte count is reset by a power-on reset, system reset, device
reset, Halt I/O, or machine-check condition.

Input/Output Operations 4-21

Cycle-Steal Device Options

Burst Mode

Chaining

4-22 GA34-0152

Note: The contents of device cycle-steal-status word 1 are
device-dependent. Some devices do not implement suppress exception or
store a residual byte count as part of its cycle-steal status.

Device-Dependent Status Words. The number of words and their content
are specified by the individual device. Three conditions can cause bits to
be set in the device-dependent status words (refer to individual device
publications) :

• Execution of an I/O command that causes an e~ception interrupt.

• Asynchronous conditions in the device that indicate an error, an
exception, or a state condition.

• Conditions as defined by the individual device.

The bits are reset as follows:

Exception interrupt bits are reset by the acceptance of the next I/O
command (except Start Cycle Steal Status). These exception interrupt
bits are also reset by a power-on reset, system reset, or execution of a
Halt I/O command.

Asynchronous condition bits are reset as defined by the individual
device.

• Individual device condition bits are reset as defined by the individual
device.

Bits in the DCB control word are used to activate cycle-steal device
options. Refer to the individual device publications for device options.

Burst mode is specified by bit 15 of the DCB control word. If bit 15 is set
to 1, the transfer of data takes place in burst mode. This mode dedicates
the I/O channel to the device until the last data transfer is completed
(DCB count is 0). Cycle-steal interleaving by other devices is prevented.
Burst mode also prevents all priority interrupt requests from being
accepted by the processor.

Chaining allows the programmer to sequence an I/O device through a set
of operations by using a chain of DCBs. Bit 0 of the DCB control word
(when set to 1) indicates a chaining operation. Each chained DCB, fetched
by the device, is interpreted as a new operation (or function) to be
performed.

When the current DCB indicates a chaining operation, device parameter
word 5 of the DCB must contain a main storage address that points to the
next DCB in the chain. The device completes the current operation but
does not present an interrupt request (excluding PCI) to the processor.
Instead, the device fetches the next DCB in the chain and executes its
operation.

Note: The chaining operation does not affect PCIs. These interrupts, when
specified in the DCB, still occur at the completion of the DCB fetch
operations.

c'
o
c. ~, ./

C~:
-..-/

c

c
o

L
c
o
c

o

o

C)
o
o
o
o
o
o
o
o
o

[1
o
o
o
o
o
o
o
o
o
o

Extended DCB

This option allows a device to use additional DCB types. Each DCB type
is designed to support a specific operation, such as data chaining, and is
assigned a unique name in order to distinguish it from a standard DCB. Bit
settings in the control word of the DCB determine the type. The extended
DCBs, if used by a device, are explained in the individual device
publication.

Program-Controlled Interrupt (PCI)

Suppress Exception

Bit 1 of the DCB control word (when set to 1) instructs the device to
present a PCI to the processor at the completion of the DCB fetch and
prior to data transfer.

When the PCI is serviced, a DCB identifier byte is returned to the
processor in the interrupt information byte. Refer to "Device Parameter
Word 3" under "Device Control Block (DCB)" in this chapter.

Chaining and data transfers associated with the DCB may commence even
if the PCI is pending.

If the PCI is pending when the device encounters the next
interrupt-causing condition, the PCI condition is discarded by the device
and replaced with the new interrupt condition.

A device using suppress exception is allowed to suppress the reporting of
certain exception conditions that would normally cause an exception
interrupt. The device is then allowed to take alternative action, depending
on the condition. The suppressed exception conditions are reported to the
programmer as status information upon completion of the operation. Refer
to "Suppression of Exceptions" in this section for details about various
actions that a device might take.

The suppress exception option also provides automatic logging of status
information (including suppressed exceptions) in main storage. When the
suppress exception bit of a DCB is set to 1, the device always stores a
residual status block in main storage after successful completion of the
data transfer. Device parameter word 4 of the DCB must be used to
specify the residual status block starting address in main storage. A
residual status block is stored even when there are no exception conditions
to be suppressed.

Input/Output Operations 4-23

Residual Status Block

4-24 GA34-0152

The residual status block is stored in main storage at the location pointed
to by the status address (DCB word 4). The device uses an address key
that corresponds to the DCB address space, for this operation. The size of
a residual status block is fixed for each device with a limit of eight words.
For a standard DCB, the format is:

Word
~----------------------------------o Residual count

1 EOC RT Reserved r
J-0 1 2

Status flags

7 8 1415 Maxi
..J-

..,.... .mum
, I of 8

: : words

t!>evice-dependent st!!US -=--=--=--= =-= = ~ _1_
o 15

Word 0 Contains the residual byte count associated with
the DCB.

Word 1 EOC is the end-of-chain bit, and is set to 1 for all
conditions that would terminate a chaining opera
tion. RT is the retry bit, and is set to 1 when the
device has attempted a retry operation. NE is the
no exception bit, and is set to 1 when the operation
is completed and no exceptions are reported. The
status flags are device-dependent flags that indicate
suppressed-exception conditions.

Any additional words are device-dependent as to number and content.
Refer to the individual device publication for the additional status
information and for the bit significance of the status flags.

Note: The words in a residual status block for a non-standard DCB may
have different meanings. Refer to the individual device publications.

c

c
o

o

c

c
c~

o

o

Suppression of Exceptions

\...J'

An exception condition can be suppressed by a device only when it occurs
during a data transfer operation. It cannot be suppressed if it occurs
during:

• DCB fetch

• Storing of a residual status block

• Cycle-steal status operation

A second requirement of a suppressible exception is that the device be
capable of continuing operation in a normal and predictable manner after
occurrence of the exception. If these conditions are not met, the exception
condition causes an exception interrupt. The number of action types used
by a device and the suppressible exceptions for each type are a device
specification. When a suppressible exception is encountered, the device
initiates one of four possible types of actions, depending on the device and
the exception condition. Refer to the individual device publications for
additional information. The four action types are:

1. Suppress exception and continue. The exception condition occurs but
data transfer is allowed to proceed. At the completion of the data
transfer (defined by the DCB), a residual status block is stored. The
device may then continue with the next DCB, if chaining is specified.

2. Suppress exception and retry. Upon detecting the exception condition,
the device restarts the data transfer defined by the DCB. The number
of retries to be attempted is a device specification. A residual status
block is stored after a successful retry or after all retries have failed.

3. Suppress exception and terminate data transfer. Upon detecting the
exception condition, the device terminates the data transfer for this
DCB. The device stores a residual status block and continues with the
next DCB, if chaining is specified.

4. Suppress exception and terminate chain. Upon detecting this exception
condition, the device terminates the data transfer for this DCB, and
ignores any commands specifying further chaining.

The device stores a residual status block and then presents a·
permissive device-end interrupt. Refer to "Interrupt Condition Codes"
in this chapter for additional information.

Priority of Suppress-Exception Actions. Multiple exceptions that are
suppressible can occur during an operation. They are noted in the residual
status block by setting multiple status flags. The type of action taken by a
device depends on the exception/action combination with the highest
priority. The priority sequence is type 4, type 3, type 2, and type 1, with
type 4 having the highest priority.

Input/Output Operations 4-25

110 Condition Codes and Status InC ormation

I/O Instruction Condition Codes

4-26 GA34-0152

Each time an Operate I/O instruction is issued, -the device, controller, or
channel immediately reports to the processor one of eight condition codes
pertaining to the execution of the I/O command. These codes are called
I/O instruction condition codes. Three bits are used to encode a
condition-code value (range 0 through 7). The bits are recorded in the
even, carry, and overflow positions of the LSR and may be interrogated
by specific instructions such as Branch on Condition Code and Branch on
Not Condition Code. Refer to Chapter 8 for details of these instructions.

For interrupting devices, condition codes are also reported during a
p"riority interrupt. These codes are called interrupt condition codes, and
pertain to operations that continue beyond execution of the Operate I/O
instruction (such as cycle-stealing of data). The interrupt condition codes
are recorded in the current LSR and interrogated in the same manner as
the I/O instruction codes. Along with the interrupt condition code, the
device also transfers an interrupt ID word to the processor. Bits 0-7 of the
interrupt ID word contain status information related to the interrupt
processing and are called the interrupt information byte. Refer to
"Interrupt ID Word" under "I/O Status Information" in this chapter for
additional information.

I/O instruction condition codes are reported during execution of an
Operate I/O instruction.

Condition
c~de (CC) LSR position Reported
value Even Carry Overflow by Meaning

0 0 0 0 Channel Device not
attached

1 0 0 1 Device Busy
2 0 1 0 Device Busy after

reset
3 0 1 1 Chan/dev Command reject
4 1 0 0 Device Intervention

required
5 1 0 1 Chan/dev Interface data

check
6 1 1 0 Controller Controller

busy
7 1 1 1 Chan/dev Satisfactory

C\
,I

---'

o

o

c
c
c

c
c
c

I
I

'-.)

o
o
o

o
o
o

CCO Device not attached. Reported by the channel when the addressed
device is not attached to the system.

CC 1 Busy. Reported by the device when it is unable to execute a
command because it is in the busy state. The device enters the
busy state upon acceptance of a command that requires an
interrupt for termination. The device exits the busy state when the
processor accepts the interrupt. Certain devices also enter the busy
state when an external event causes an interrupt. When this
condition code is reported, a subsequent priority interrupt from the
addressed device always occurs.

CC2 Busy after reset. Reported by the device when it is unable to
execute a command because of a reset, and the device has not had
sufficient time to return to the quiescent state. An interrupt does
not occur to indicate termination of this condition.

CC3 Command reject. Reported by the device or the channel when:

A command (in the IDCB) that is outside the device command
set is issued.

The device is in an improper state to execute the command.

The IDCB contains an incorrect parameter (for example, an
odd-byte DCB address or an incorrect function/modifier
combination).

When a cycle-steal device reports command reject, it does not
fetch the DCB.

CC4 Intervention required. Reported by the device when it is unable to
execute a command due to a condition that requires manual
intervention.

CCS Interface data check. Reported by the device or the channel
(whichever is receiving the data) when a parity error is detected
on the I/O data bus during a data transfer.

CC6 Controller busy. This condition is reported by a device controller,
and not the addressed device, when the controller is busy.
Controller busy is reported only by controllers that have two or
more devices attached (where each device has a unique address).

CC7 Satisfactory. Reported by the device or the channel when it
accepts the command.

Input/Output Operations 4-27

Interrupt Condition Codes

4-28 GA34-0152

Interrupt condition codes are reported by the device or controller during
priority interrupt acceptance:

Condition
code (CC) LSR position Reported
value

0

2
3
4
5

6

7

Even

0

0

0
0
1
1

1

1

Carry

0

0

1
1
0
0

1

1

Overflow

0

1

0
1
0
1

0

1

by

Controller

Device

Device
Device
Device
Device

Device

Device

Meaning

Controller
end
Program-
controlled
interrupt
(PCI)
Exception
Device end
Attention
Attention and
PCI
Attention and
exception
Attention and
device end

CCO Controller end. May be reported by a controller when controller
busy (I/O instruction condition code) has been previously
reported one or more times. Controller end signifies that the
controller is now free to accept I/O commands for devices under
its control. The device address reported with controller end is
always the lowest address (numerical value) of the group of
devices serviced by the controller. The interrupt information byte
in the interrupt ID word is set to O.

CC 1 Program-controlled interrupt. Reported when the interrupt
indicates that a DCB with the PCl bit set to 1 has been
transferred by cycle-steal to the device and no error or exception
condition has occurred. The device places the DCB identifier into
the interrupt information byte.

CC2 Exception. Reported when an error or exception condition is
associated with the interrupt. The condition is described in the
interrupt status byte or in device-dependent status words.

CC3 Device end. Reported when no error, exception, or attention
condition has occurred during the I/O operation, and the interrupt
is not the result of a PCl (for example, an operation terminats
normally).

Note: If the device come~ to a normal end while using suppress
exception (suppress exception bit set to 1) and an exception was
suppressed since the last Start command, then bit 0 of the
interrupt status byte is set to 1. This condition is called permissive
device end, and it indicates that errors or exceptions have been
suppressed. Related status information is contained in the residual
status block.

c

I

1

\.~ /

r---)

'--.. /

1..--...·
'I

I/O Status Inr ormation

CC4 Attention. Reported when the interrupt is caused by an external
event rather than caused by the execution of an Operate I/O
instruction. Additional status information is not provided unless
the event requires further definition (for example, code bits for a
keyboard function).

CCS Attention and PCI. Reported when attention and PCI are both
present. In this case, the interrupt information byte contains the
DCB identifier.

CC6 Attention and exception. Reported when attention and exception
are both present.

CC7 Attention and device end. Reported when attention and device end
are both present. For this condition code, device end can also
mean permissive device end. Refer to interrupt condition code 3.

The interrupt condition codes are mutually exclusive with each other, and
they have no priority sequence.

Status information is transferred from the device to the processor as a
result of:

A read status operation (refer to "Read Status" under "I/O
Commands" in this chapter).

• A start cycle-steal status operation (refer to "Start Cycle Steal Status
Command" in this chapter).

• Storing a residual status block (refer to "Cycle-Steal Device Options"
in this chapter).

,------/ A priority interrupt.

o

o
C)

The interrupt status information is detailed in "Interrupt ID Word" and
"Interrupt Status Byte (ISB)" in this section.

Input/Output Operations 4-29

Interrupt ID Word

4-30 GA34-0152

Acceptance of an I/O interrupt causes the device to present an interrupt
ID word to the processor. Presentation of the interrupt ID word is
explained in "I/O Interrupts" in Chapter 3. The interrupt ID word has the
following format:

Interrupt 10 word I Device addres:J

o 7 8 15

Bits 0-7 Interrupt information byte (liB). For interrupt
condition codes 2 and 6, the II B has a special
format and is called an interrupt status byte
(lSB). Refer to "Interrupt Status Byte" in this
section. For other interrupt condition codes
reported by a device, the II B contains:

1. CCO. The II B is set to O.
2. CC1 or CC5. The II B contains a DCB

identifier.
3. CC3 or CC7. Bit 0 may be set to 1 if sup

press exception is in effect. Other bits are
device-dependent.

4. CC4. All bits are device-dependent.

Bits 8-15 Device address. This byte contains the address
of the interrupting device.

(~"

~
(I
~'

c'

(~)
''--'/

• I C
.. '\

Interrupt Status Byte (lSB)

r"---",

'-..-)

r-

U

o
o

o

o

The ISB is a special format of the interrupt information byte that contains
detailed information about the nature of the interrupt. The ISB is reported
only for error or exception conditions (interrupt condition code 2 or 6).
The ISB bits are normally set as a result of:

Status errors that occur during a DPe operation and that cannot be
indicated by a condition code.

Status errors that occur during a cycle-steal operation.

The ISB is never reported as 0 unless the condition code presentation of 2
or 6 ~s singular in meaning for devices that do not cycle-steal. After the
processor has accepted the interrupt request, the device resets the ISB.

Bits 0-7 of the two special formats have the following meanings:

ISB (Devices That Do Not Cycle-Steal).

Bit 0 Device-dependent status available. This bit, when set to 1,
signifies that additional status information is available from the
device. The information content and method of reading is
described in the individual device publication.

Bit 1 Delayed command reject. This bit is set to 1 if the device
cannot execute the command (specified in the IDeB) due to an
incorrect parameter in the IDeB, or it cannot execute the
command due to its present state. For example, the IDeB
specifies an incorrect function/modifier combination, or the
device is temporarily not ready. The operation in progress is
terminated. Delayed command reject is set in the ISB only if
the device cannot report I/O instruction condition codes for the
condition.

Bits 2-7 Device-dependent. These bits, if used, are described in the
individual device publication.

Input/Output Operations 4-31

4-32 GA34-0152

ISB (Cycle-Stealing Device).

Bit 0 Device-dependent status available. This bit, when set to 1,
signifies that additional status information is available from the
device, or the device is in an improper state to execute a
function specified by a DCB.

Bit 1

Bit 2

Bit 3

Bit 4

The operation is terminated. The content and method of reading
the additional status information is described in the individual
device publication.

Note: When bit 0 of the ISB is set to 1 and bits 2-7 are set to
O's, the contents of the residual-address word (cycle-steal
status) are defined by the device.

Delayed command reject. This bit is set to 1 if the device
cannot execute the command due to one of the following
conditions:

The IDCB contains an incorrect parameter (for example, an
odd-byte DCB address or an incorrect function/modifier
combination).

• The present state of the device, such as· a not-ready
condition, prevents execution of an I/O command specified
in the IDCB.

Delayed command reject is set in the ISB only if the device
cannot report I/O instruction condition codes for the condition.
The operation is terminated. The DCB is not fetched.

Incorrect-length record. This bit is set to 1 when the device
encounters a mismatch between byte count and actual record
length after beginning execution of the DCB. For example, the
byte count is reduced to 0 (with chaining flag off) and no
end-of-record is encountered. Incorrect-length record is not
reported when the suppress exception bit in the control word is
set to 1. Reporting of incorrect-length record is a
device-dependent feature and may be implemented regardless of
the suppress-exception feature. The operation is terminated.

DeB specification check. This bit is set to 1 when the device
cannot execute a command due to an incorrect parameter
specification in the DCB (for example, an odd-byte DCB
chaining or status address, an odd-byte count for a word-only
device, an odd-byte data address for a word-only device, an
invalid command or invalid bit settings in the control word, or
an incorrect count). The operation is terminated.

Storage data check. This error condition applies to cycle-steal
output operations only. If the bit is set to 1, it indicates that the
main storage location accessed during the current output cycle
contained bad parity. Parity in main storage is not corrected.
The device terminates the operation. The bad parity data is not
transferred to the I/O data bus. A machine-check condition
does not occur.

c

c,:
o
c)

o
C)

o
o

o
o
o

Bit 5

Bit 6

Bit 7

Invalid storage address. This bit, when set to 1, indicates one
of the following conditions:

• During a cycle-steal operation, the device presented a main
storage address that is outside the storage size of the
system.

• A cycle-stealing device attempted to access storage through
a segmentation register and the valid bit in the
segmentation register is set to O. The relocation translator
must be enabled before this condition can occur.

Invalid storage address can occur on a data transfer or on a
DCB fetch operation. In either case, the cycle-steal operation is
terminated.

Protect check. When set to 1, this bit indicates that the 1/0
device attempted to access a main storage location and
presented an incorrect address key. Refer to individual device
pUblications for additional information.

Interface data check. This bit, when set to 1, indicates that a
parity error has been detected on the 110 data bus during a
cycle-steal data transfer. This condition may be detected by the
channel or the 110 device. In either case, the operation is
terminated.

Input/Output Operations 4-33

4-34 GA34-0152

c'
o
o
C)

C,

C'
C
C;
r
I

L
o
o
o
o

C
~---\

,I

. ./

c
o
o

]

Translator Description

Chapter 5. Storage Address Relocation Translator

The relocation translator and segmentation registers permit addressing of
main storage locations beyond 64K bytes and provide a read-only type of
storage protection. The first 64K bytes can be addressed directly when the
translator is disabled; therefore, the translator must be enabled when main
storage is larger than 64K bytes.

The translator provides stacks of segmentation registers. The stacks are
numbered consecutively from 0 to X to correspond to the possible values
of the address keys. Each stack consists of 32 registers (0-31):

Segmentation registers
Stack 0 Stack X

Segmentation register
o

Segmentation register
1

• • • • • • •
Segmentation register

30

Segmentation register
31

Segmentation register
o

Segmentation register
1

• • • • • • •
Segmentation register

30

Segmentation register
31

The stacks of segmentation registers are under supervisory program
control. Four privileged instructions are used with the relocation translator
and segmentation registers.

Set Segmentation Register (SESR). This instruction loads one
segmentation register.

Copy Segmentation Register (CPSR). This instruction allows the
supervisor to inspect the contents of a segmentation register.

Enable (EN). This instruction enables the relocation translator. Until
the translator is enabled, 16-bit addressing is in effect for the
low-order 64K bytes of storage. Any storage above 64K bytes is not
accessible to the program until the translator is enabled.

Disable (DIS). This instruction disables the relocation translator.

Refer to Chapter 8 for detailed information of the preceding instructions.
Refer to individual processor publications for further information
concerning segmentation registers.

Storage Address Relocation Translator 5-1

Storage Mapping

Relocation Addressing

5-2 GA34-0152

Mapping of main storage is achieved through the segmentation registers.
Each segmentation register controls 2K-byte segments of storage. The
SESR instruction is used to load each segmentation register with a unique
physical segment address. This segment address is the physical address of a
2K-byte segment of stqrage.

Note, however, that more than one segmentation register can be loaded
with the same segment address. For example, stack 0, register 15
(associated with the supervisor address key of 0), can be loaded with the
same number as stack 1, register 6. This arrangement allows the supervisor
to address control blocks within a problem program even though the
address key for the supervisor is different than the key for the problem
program. Once loaded, each stack of segmentation registers contains a
complete map of 64K bytes scattered in 2K-byte physical segments.

The relocation translator generates a physical address that allows any byte
in storage to be addressed. Figure 5-1 shows an example of address
translation. The letters in the following steps correspond to the letters on
the figure:

o The active address key from the address key register selects a
segmentation register stack. The address key pertains to the
instruction being executed on the current priority level.

o The five high-order bits (0-4) of the 16-bit address (generated for
the instruction being executed) select a segmentation register within
the stack selected in step O. These bits define the logical segment.

G The physical address is generated. The 13 high-order bits (0-12) are
from the segmentation register; these bits specify the physical address
of a 2K-byte segment of storage.

Bit 13 (Valid Bit). When set to 1, this bit specifies that the contents of
the segmentation register are valid; the segmentation register can be used
to perform the translation. When bit 13 is a 0, the segmentation register
cannot be used for translation (no access). If translation is attempted, a
program-check interrupt occurs with invalid storage address set in the
processor status word (PSW).

Bit 14 (Read-Only Bit). When set to 1, this bit specifies that the block is
read-only. When in the problem state, if an attempt is made to write into
storage using a segmentation register with the read-only bit set to 1, a
program-check interrupt occurs with protect check set in the PSW. Storage
is not changed. Bit 14 is ignored by a cycle-steal access, or when in
supervisor state.

G) The 11 low-order bits (13-23) of the physical address are the 11
low-order bits (5-15) of the 16-bit logical address (generated for the
instruction being executed); these bits specify the byte address within
the 2K-byte segment.

(:'

o
o

C:

c

o
o

[
c'

o
c
o

o
o

()

o
o
C)
o

o
o
o
o

c
o

o
o
o

The active
address key
for this
example is
the ISK
(instruction
space key)

Address key reg

Segmentation registers

Stack 0

Segmentation reg
o

Segmentation reg
1

Select stac

Stack 1

Segmentation reg
o

Segmentation reg
1

16-bit logical address

I~s~ 1 I 10 0 0 0 110 0
13 15 0 4 5
~ ~ ...

k7 e Select reg 1 e

~ Stack 7

......
--" I VRO

xxO

'-----~----~~~
See Note

o .0 0 o 0 001 0

..

Note:

V = valid
(bit 13)

15 ,

Segmentation reg
31 ,--s_eg_m_e_n_;_;t_i_on_re_g---.l0 000000000 1....) ____

R = read-only
(bit 14)

0= always 0
15 0 15

Physical address.
o 0 0 0 0 0 0 0 0 1 0

....

J CD Select byte

Main storage

Select 2K-byte block
I I

Figure 5-1. Address translation example

Storage Address Relocation Translator 5-3

Storage Protection

The storage protection mechanism is enabled and disabled by the Enable
(EN) and Disable (DIS) instruction described in Chapter 8. When storage
protection is enabled, it protects against:

• Reading and writing to defined blocks of storage

• Writing in an undesired location within a defined block

Each processor handles storage protection in its own way, and is not
effective when the relocation translator is active. Because each stack of
segmentation registers has access to storage only within its assigned region,
protection is provided against writing into storage or fetching instructions
from another region. The translator also provides no-access and read-only
protection within the regions controlled by each stack of segmentation
registers. This allows storage protection of shared segments of storage. Bits
13 and 14 of the segmentation registers are used for this purpose.

Refer to individual processor publications for further information
concerning storage protection.

110 Storage Access Using the Relocation Translator

All storage access requests from I/O devices are translated by the
hardware that handles storage requests from the processor. The device
control block (DCB) must reside in the supervisor's address space;
therefore, all I/O devices must use address key 0 to gain access to the
DCB and to store the residual status block. The address key of the process
requiring a cycle-steal operation resides in the DCB. The I/O device
presents this address key along with a 16-bit logical address to the
translator. This allows the I/O device to directly address the storage space
for a particular process. The address key allows I/O storage protection to
be established between address spaces, assuming that the supervisor
ensures the integrity of the DCBs.

Status of Translator After Power Transitions and Resets

5-4 GA34-0152

The translator is enabled only by the Enable (EN) instruction. The
translator is disabled by the following:

• Disable (DIS) instruction

• Power-on reset

• Check Restart key on programmer console

• Initial program load (IPL)

• System Reset key on programmer console

All translator controls are reset when the translator is disabled.

Notes:

1. A machine-check interrupt does not disable the translator.

2. The segmentation registers are not reset when the translator is
disabled.

CI

c
C

c'

C'

o

C'

0 ,'
."

Erro,r-Recovery Considerations

Invalid Storage Address

The invalid storage address bit (bit 1 of the PSW) is set to 1 by anyone
of the following:

Storage access was attempted using an address greater than the
physical storage size.

Storage access was attempted with bit 13 (valid bit) of the
segmentation register set to O. This signifies that the contents of the
segmentation register are invalid.

• Storage access was attempted with an invalid address key.

The specific nature of the invalid storage address can be resolved as
follows:

• Store the segmentation register following the program-check interrupt.
(\ V Test the segmentation register for the presence of bit 13.

CJ

C)

I~ ,,--,I

Protect Check

• If bit 13 is a 1, the supervisor's concept of the actual storage installed
on the machine is incorrect.

A program-check class interrupt is initiated when the protect-check bit (bit
3 of the PSW) is set to 1. In the problem state, the protect-check bit is set
to 1 when the selected segmentation register has bit 14 (read-only) set to
1 and the instruction being executed is a write operation.

To resolve the cause of the protect-check error, the supervisor must
determine if the translator is enabled.

Storage Address Relocation Translator 5-5

Address Space Management

Active Address Key

Equate Operand Spaces (EOS)

5-6 GA34-0152

The coding of the address key to be made active depends on the type of
operation being performed.

Each level of priority interrupt has an associated address key register
(AKR), each of which contains three address keys and an
equate-operand-spaces (EOS) bit.

Address key register (AKR)

o 1 4 5 789 111213 15

~
EOS OP1 K OP2K ISK

EOS Equate operand spaces. This bit, when set to 1, causes all
data operands to use the OP2K address key. Refer to "Equate
Operand Spaces (EOS)" under II Address Space Management"
in this chapter.

OP1 K Operand 1 key. These bits contain the binary-coded operand 1
address key.

OP2K Operand 2 key. These bits contain the binary-coded operand 2
address key.

ISK Instruction space key. These bits contain the binary-coded
instruction address key.

Cycle-steal devices have a cycle-steal address key specified in their device
control block.

When a programmer console is attached, the console address key may be
used.

Anyone of the five address keys mentioned (ISK, OPIK, OP2K, console
address key, or the cycle-steal address key) may be used during a storage
access as the active address key.

The equate operand spaces bit (bit 0) in the address key register controls
the modification of the active address key.

When the EOS bit is set to 1 (enabled), all processor data fetches use a
single address space defined by the OP2K address key. The OPIK is
ignored, but not changed, and all normal OPIK operations use OP2K as
an active key. When the EOS bit is equal to 0 (disabled), the OPIK
address key functions in a normal manner.

C:

c
C)

c

c
o
()

c
C:

c'

C,
.. "",' ,

Address Space

u
o
o
o
o
o
o

o
o

Equate operand spaces (EOS) may be enabled by an Enable (EN)
instruction, a Set Level Block (SELB) instruction, or a Set Address Key
Register (SESKR) instruction. EOS may be disabled by a Disable (DIS)
instruction, a. Set Level Block (SELB) instruction, or a Set Address Key
Register (SESKR) instruction. The EOS is also disabled by a priority
interrupt or a class interrupt. These instructions are described in Chapter
8.

An address key defines a specific address space, where:

The address space is a range of logically contiguous storage.

The address space is accessible by the effective address without
intervention by a resource management function (the address space is
not greater than 64K bytes).

All instruction fetches and effective address generation for the branch and
jump instructions, use the address space defined by the instruction space
key (ISK). For storage-to-storage instructions, the operand 1 fetches use
the address space defined by the OPIK, assuming that the EOS bit is set
to 0, and the operand 2 fetches use the address space defined by the
OP2K. All other storage data accesses use the address space defined by
the OP2K.

When the relocation translator is enabled, the address keys are used to
help select a 2K-byte block of storage.

Examples:

ISK=OPIK=OP2K. For instruction processing, all storage accesses occur
within the same address space.

ISK,cOPIK, OPIK=OP2K. Instruction fetches occur in the ISK address
space. Data access occurs in the OP2K address space.

ISK=OPIK, OPIK,cOP2K. Refer to Figure 5-2 for this example.

I/O operations that access main storage also use an address key.
Cycle-steal operations (read or write) use the cycle-steal address key
specified within the device control block. An address key of 0 is used
when the device fetches the device control block. Direct program control
(DPC) operations that write data to storage use the OP2K address key.
The cycle-steal and DPC operations are explained in Chapter 4.

Other defined usage of the address key register are as follows:

All indirect access for branching uses the ISK.

Effective-address generation occurs in the address space of the
particular data operand. The appended words in the instruction are
accessed by the ISK.

Storage access from the console is defined by the console address key
register. Stop on address is based on the Stop On Address key when
the translator is enabled.

System reset and IPL set all address keys and the EOS bit to O's.

Storage Address Relocation Translator 5-7

5-8 GA34-0152

Storage-to-storage

OP1K OP2K
address address
space space ..

Branch

Register- Storage-to-
to-storage register

Storage - immediate

ISK General
address registers
space

Register - immediate
and system
registers

Register-to-
register

Assembler syntax for address spaces

18K OP1K OP2K Example instructions

addr5 addr4 AW addr5,addr4

Bits 13-15
of AKR

Bits 13-15
ofAKR

(reg)

* I ndirect addressing.

Notes:

(reg) MVFD (reg), (reg)

MVBI byte,reg

B longaddr*

1. OP1 K is used for the source operand in storage-to-storage
operations.

2. OP2K is used for storage data access in all other operations
(excluding branch/jump).

3. ISK (bits 13-15 of the AKR) is used for instruction fetch
and branch/jump operations.

Figure 5-2. Data movement in address spaces when ISK=OPIK, OPIK¢OP2K

C:I

C

C'
./

CI

c

c'
C,

.... ~I

c
c
c

c

o

o

Address Key Values After Interrupts

When priority or class interrupts occur, certain values are set in the
address keys of the affected AKR. These values anticipate the address
spaces that the programmer might need for interrupt processing. The
following chart shows the resulting AKR for each type of interrupt.

Resulting AKR values
Interrupt E08 OPIK OP2K 18K

Priority 0 0 0 0
Supervisor call 0 Note 1 0 0
Machine check 0 Note 2 0 0
Program check 0 Note 2 0 0
Soft-exception trap 0 Note 1 0 0
Trace 0 Note 3 0 0
Console 0 0 0 0
Power / thermal warning 0 0 0 0

Notes:

1. OPIK is set to the preceding key contained in OP2K.

2. OPIK is set to the last active processor address key.

3. OPIK is set to the preceding key contained in the ISK.

All interrupt service routines reside in address space 0; therefore, the ISK
and OP2K are set to O's when an interrupt occurs. Necessary information
for processing a specific interrupt may reside in an address space other
than O. The address key related to the particular interrupt is placed in
OPIK. The OPIK is set in anticipation of a storage-to-storage move of
information from the interrupting address space to address space O.

Note: Class interrupts cause a hardware-controlled storing of a level status
block. This operation uses address key O.

Storage Address Relocation Translator 5-9

5-10 GA34-0152

CI

C'

C
C,I

C
C:

C
C:

C

C

C

C'

C'

C
e,'
c
C

c'

o
o
o
o
o
o
o

l
I
I

,-.J

Clock/ Comparator Features

Clock

Chapter 6. Clock/Comparator

A clock/comparator is incorporated into the basic instruction set of the
processor. The clock is a single 32-bit register, which is incremented at
1-millisecond intervals. This allows time to be represented up to 49 days,
17 hours, 2 minutes, and 47.295 seconds before the register wraps. The
comparator is a 32-bit register, which can be set to a predetermined value
by the Set Comparator instruction. The clock value and the comparator
value are compared to determine when a class interrupt should occur. If
the clock value is greater than or equal to the comparator value, a clock
class interrupt is generated. (Refer to Chapter 3 for a detailed discussion
of clock class interrupt.) The clock/comparator combination can be used
for a predetermined time control operation. Four instructions are provided
to set or copy the clock and comparator:

• Set Clock (SECLK)

• Set Comparator (SECMP)

• Copy Clock (CPCLK)

• Copy Comparator (CPCMP)

The setting of the clock and comparator is allowed only when the
processor is in supervisor state; the copying of the clock and comparator is
allowed in problem state. Detailed descriptions of the instructions are
contained in Chapter 8.

The features of the clock are:

• 32-bit register (counter)

1-millisecond resolution

• Set/ Copy Clock instructions

• . No timer external sync or 60-Hz sync

Note: 60-Hz synchronization is provided on some 60-Hz processors.
Refer to individual processor publications for further information.

• No alter/display from console

• No interrupt on clock overflow

• Set to 0 by power-on reset

Continuously running (no ability to start/stop)

Clock/Comparator 6-1

Comparator

6-2 GA34-0152

The features of the comparator are:-

32-bit register

Set/ Copy Comparator instructions

No alter/display from console

Set to 0 by power-on reset

Clock class interrupt is disabled by power-on reset or system reset

Clock class interrupt enabled by a Set Comparator instruction

A clock class interrupt is held pending when the summary mask (bit
11 of the level status register (LSR» is disabled.

Note: System reset does not affect the clock's operation or the
comparator's value. Switching back and forth between power-good and
battery backup or multiple IPL sequences does not affect the clock's
operation.

o
o
o
c

c
o
c
c
c

o

0

0
C)
0

0

0

0

0

0

0
~\

I
I

~

0

:J

:J
:J

:J

:J

:J

:J

:J

:J

Data Format

Chapter 7. Floating-Point Feature

The floating-point feature includes the resources to execute all
floating-point instructions and four 64-bit floating-point registers for each
of the four priority interrupt levels in the processor. The floating-point
instruction set performs calculations on operands with a wide range of
magnitude. Results of these calculations are scaled to preserve precision.
The floating-point registers are provided to avoid unnecessary storing and
loading operations for results and operands.

A floating-point number consists of a signed exponent and a signed
fraction. The quantity expressed by this number is the product of the
fraction and the number 16 raised to the power of the exponent. The
exponent is expressed in excess 64 binary notation; the fraction is
expressed as a hexadecimal number having a radix point to the left of the
high-order hexadecimal digit.

Two fixed-length formats (short and long) may be used for floating-point
data:

Short Floating-Point Number-used for single precision I s I Characteristic I Fraction ~ 0
o 1 7 8 31

Long Floating-Point Number-used for double precision I s I Characteristic I Fraction ~ D
o 1 7 8 63

Both formats may be used in main storage and in the floating-point
registers. The first bit in either format is the sign bit (S). The subsequent
seven bit positions are occupied by the characteristic. The fraction field
may have either six or 14 hexadecimal digits.

The entire set of floating-point instructions is available for both short and
long operands. When single precision (short format) is specified, all
operands and results are 32-bit floating-point words. With two exceptions,
the rightmost 32-bits of the floating-point registers do not participate in
single precision operations and are not changed by the operations. The two
exceptions are:

The product in multiply operations (it is a 64-bit floating-point word
and occupies a full register)

• A storage to register move (the low-order 32-bits are set to O's.

When double precision (long format) is specified, all operands and results
are 64-bit floating-point words.

Floating-Point Feature 7-1

Number Representation

Floating-Point Numbers

Conversion Example

7-2 GA34-0152

Although final results in short precision have six fraction digits,
intermediate results in add and subtract operations may extend to seven
fraction digits. The low-order digit of a seven-digit fraction is called the
guard digit and serves to increase the precision of the final result.
Intermediate results in long precision may extend to 15 fraction digits,
with the 15th digit being the guard digit.

The fraction of a floating-point number is expressed in hexadecimal digits.
The radix point of the fraction is assumed to be immediately to the left of
the high-order fraction digit. To provide the proper magnitude for the
floating-point number, the fraction is considered to be multiplied by a
power of 16. The characteristic portion, bits 1-7 of both floating-point
formats, indicates this power. The bits within the characteristic field can
represent numbers from 0 through 127. To accommodate large and small
magnitudes, the characteristic is formed by adding 64 to the actual
exponent. The range of the exponent is thus -64 through +63. This
technique produces a characteristic in excess 64 notation.

Both positive and negative quantities have a true fraction, the difference in
sign being indicated by the sign bit. The number is positive or negative
accordingly as the sign bit is 0 or 1.

A floating-point number with zero characteristic, zero fraction, and plus
sign is called a true zero. A true zero may arise as the result of an
arithmetic operation because of the particular magnitude of the operands.
A result is forced to be true zero when an exponent underflow occurs or
when a result fraction is O.

Convert the decimal number 149.25 to a short-precision floating-point
operand.

1. The number is converted to a decimal integer and a decimal fraction.

149.25= 149 plus 0.25

2. The decimal integer is converted to its hexadecimal representation.

14910=95 16

3. The decimal fraction is converted to its hexadecimal representation.

0.25 10=0.416

4. Combine the integral and fractional parts and express as a fraction
times a power of 16 (exponent).

95.416=(0.954 x 102)16

5. The characteristic is developed from the exponent and converted to
binary.

base + exponent = characteristic
64+2=66 (1000010)

6. The fraction is converted to binary and grouped hexadecimally.

0.95416=.1001 0101 0100

o
o
o
c

c
0 ,

,/

(~

!

o
o
o
c'
c

c
c
c
c

()

C)

o
o
o
C)

o
o
o
o

\,.JJ

:=)

Binary Integers in Main Storage

Normalization

Programming Considerations

7. The characteristic and the fraction are stored in short precision format.
The sign position contains the sign of the fraction.

S

o
Characteristic Fraction

1000010 1001 0101 0100 0000 0000 0000

Signed binary integers occupy storage in one of two fixed-length formats:

One-word format (16 bits)

Doubleword format (32 bits)

Both formats may be used in main storage and are automatically converted
to single- or double-precision floating-point numbers during floating move
and convert operations that move data from storage to a floating-point
register. Negative signed binary integers are in main storage in two's
complement form. They are converted to contain a true fraction. An
integer may be moved from main storage to a floating-point register,
without conversion, by using the floating-move instruction. In this case,
the integer is assumed to be a floating-point number.

Floating move and convert operations that move data from a
floating-point register to storage accomplish the reverse process; the
floating-point number in the register is automatically converted to an
integer. This integer result is then placed in main storage. The floating
move and floating move and convert operations are fully explained in
Chapter 8, "Instructions."

A quantity can be represented with the greatest precision by a
floating-point number of given fraction length when that number is
normalized. A normalized floating-point number has a nonzero high-order
hexadecimal fraction digit. If one or more high-order fraction digit is 0,
the number is said to be unnormalized. The process of normalization
consists of shifting the fraction left until the high-order hexadecimal digit
is nonzero and reducing the characteristic by the number of hexadecimal
digits shifted.

Normalization takes place after the multiply operations, and after the add
or subtract operations if an actual subtraction has taken place. For
example, +A+(-B), +A-(+B), or -A-(-B). Normalization does not
take place following a true addition or division; therefore, unnormalized
operands can produce an unnormalized result. Floating-point numbers in
main storage are assumed to be normalized.

Floating-Point Feature Not Installed

An attempt to execute a floating-point instruction when the feature is not
installed results in a soft-exception-trap interrupt with invalid function set
in the PSW. There are two exceptions to this rule:

When attempting to execute a floating-point privileged instruction
while in problem state, a program-check interrupt occurs with privilege
violate set in the PSW.

Floating-Point Feature 7-3

Floating-Point Registers

Arithmetic Indicators

Floating-Point Exceptions

Floating-Point Overflow

7-4 GA34-0152

If the effective address is odd when attempting to execute a
floating-point instruction, a program-check interrupt occurs with
specification check set in the PSW.

Four floating-point registers are provided for each of the four priority
interrupt levels associated with the processor. Floating-point register
selection is determined by the R-field of the instruction. The R-field in the
instruction format consists of two bits and may be labeled R, Rl, and R2,
as required by the individual instruction.

R-field value Floating-point register selected

00 Register 0
01 Register 1
10 Register 2
11 Register 3

Note: The floating-point registers are not affected by a reset and must be
initialized by the programmer.

The processor indicators (carry, overflow, zero, negative, and even) are set
or reset at the end of each floating-point instruction. Details of indicator
settings are contained in the individual instruction description in Chapter
8.

Floating-point underflow, overflow, and divide check are considered
exception conditions. When these conditions are recognized, a
soft-exception-trap class interrupt occurs with floating-point exception (bit
5) set in the PSW. Note that the soft-exception-trap interrupt does not
occur during floating-point compare operations. The overflow, carry, and
even indicators are set as follows:

The overflow indicator is set to 1 by an overflow, underflow, or divide
check.

The carry indicator is set to 1 by a divide check.

• The even indicator is set to 1 by an underflow.

Add Operations. An exponent overflow occurs when a carry from the
high-order position of the intermediate-sum fraction causes the
characteristic of the sum to exceed 127. The operation is completed by
forcing the characteristic to 127 and the result fraction bits to all 1 'so

Subtract and Compare Operations. An exponent overflow occurs when a
. borrow from the high-order position of the intermediate-sum fraction
causes the characteristic of the sum to exceed 127. The operation is
completed by forcing the characteristic to 127 and the result fraction bits
to all 1 'so

C

C

C

CI

C

o
c
C

c

C'

Q

Q

Q

Q

~)

I

V

Q

Floating-Point Underflow

Divide Check

Floating-Point Instructions

Divide Operations. An exponent overflow occurs when the final-quotient
characteristic exceeds 127. The operation is completed by forcing the
characteristic to 127 and the result fraction bits to all 1 'so

Multiply Operations. An exponent overflow occurs when the characteristic
of the normalized product exceeds 127 and the fraction is not O. The
operation is completed by forcing the characterisitc to 127 and the result
fraction bits to all 1 'so

Add Operations. An exponent underflow occurs when the characteristic of
the normalized sum is less than 0 and the fraction is not O. The result sign,
characteristic, and fraction are forced to O's.

Subtract and Compare Operations. An exponent underflow occurs when
the characteristic of the normalized sum is less than 0 and the fraction is
not O. The result sign, characteristic, and fraction are forced to O's.

Divide Operations. An exponent underflow occurs when the characteristic
of the normalized quotient is less than 0 and the fraction is not O. The
result sign, characteristic, and fraction are forced to O's.

Multiply Operations. An exponent underflow occurs when the
characteristic of the normalized product is less than 0 and the fraction is
not O. The result sign, characteristic, and fraction are forced to O's.

Divide Operations. A divide check occurs when division by 0 is attempted.
The dividend is not changed.

The floating-point instruction set provides a variety of instructions that
deal with single- or double-precision floating-point data. The main
categories are:

Arithmetic instructions (add, subtract, multiply, divide, and compare)

Data movement instructions (with or without conversion of binary
integers)

Two privileged instructions are also provided for interrogation of the
floating-point registers. They are Copy Floating Level Block (CPFLB) and
Set Floating Level Block (SEFLB).

All floating-point instructions use the floating-point registers. One group
of instructions (storage/floating-point register) specifies a register for one
operand, and an effective main storage address for the other operand.
Another group (floating-point register to floating-point register) specifies
registers for both operands.

Floating-Point Feature 7-5

Instruction Formats

Storage/Floating-Point Register

Arithmetic and data movement instructions use the following two formats:

I Op code I 0 I R I RB I AM I Func n
o 456 789 101112 1415

,------------~---l
I Address/Displacement I r:---------] ----------.
L "'pisplac~~t....:!._ _ Displac~~~2_.J
16 2324 31

The op-code field specifies the floating-point operation.

The R-field specifies a floating-point register.

The function field designates the function to be performed (add,
subtract, multiply, divide, move, or move and convert).

The RB and AM fields designate the effective address argument. Refer
to "Effective-Address Generation" in Chapter 2 for additional
information.

The P-field designates precision of floating-point data. A 0 denotes
single precision; a 1 denotes double precision.

The second word (bits 16-31) is the address mode appended word for
an AM field equal to 10 or 11.

Floating-Point Register/Floating-Point Register

7-6 GA34-0152

IOPcode

o 456 789 101112 1415

The op-code field specifies the floating-point operation.

The Rl and R2 fields specify floating-point registers.

• Bits 10-11 designate the function modifier. These bits are not used
and must be set to O's to avoid future code obsolescence.

The function field designates the function to be performed (add,
subtract, multiply, divide, move, or compare).

Note: To avoid future code obsolescence, function field bit
combinations equal to 110 and 111 must not be used.

• The P-field designates the precision of floating-point data. A 0
denotes single precision; a 1 denotes double precision.

Another instruction format is used for the two privileged instruction
(CPFLB and SEFLB). The three-bit R-field associated with this format
specifies a processor general register (0-7). Refer to the individual
instructions in Chapter 8 for the complete format.

C~/

c:
o
o
c

o

L
o

c
o
c

C)
()

o
(~)

Exception Conditions

o Program-Check Conditions

o Specification Check

o Invalid Storage Address

o
c)

Privilege Violate

Protect Check

Soft-Exception Trap Conditions

Invalid Function

Floating-Point Exception

Note: The instruction formats are also shown in Appendix A of this
manual.

Exception conditions that might occur during instruction execution are
shown with each instruction description.

A program-check class interrupt occurs with specification check (bit 0) set
in the PSW.

A program-check class interrupt occurs with invalid storage address (bit 1)
set in the PSW.

Note: If the instruction uses an AM field equal to 01, the instruction is
terminated if the RB register is incremented. Refer to "Additional Error
Information" in this chapter for details.

A program-check class interrupt occurs with privileged violate (bit 2) set
in the PSW.

A program-check class interrupt occurs with protect check (bit 3) set in
the PSW.

Note: If the instruction uses an AM field equal to 01, the instruction is
terminated if the RB register is incremented. Refer to "Additional Error
Information" in this chapter for details.

A soft-exception-trap class interrupt occurs with invalid function (bit 4)
set in the PSW. For storage-to-storage instructions, the main storage
address loaded into register 7 is the calculated effective address of data
operand 2. For register-to-register instructions, the address of the
attempted instruction is loaded into register 7.

A soft-exception-trap class interrupt occurs with floating-point exception
(bit 5) set in the PSW.

Note: The resulting class interrupt causes the contents of the storage
address register (SAR) to be loaded into general register 7. SAR contains
either the calculated effective address of data operand 2, or the address of
the attempted instruction for register-to-register operations.

Floating-Point Feature 7 -7

Additional Error Information

Single Precision

Addition

Subtraction

7-8 GA34-0152

The storage to register instructions use an AM field and an RB field for
effective address generation. During normal operation, if no errors occur,
the RB register is incremented by the number of bytes in the storage
operand if the AM field is equal to 01. If an invalid storage address , a
protect check, or a specification check occurs when the AM field is equal
to 01, the RB register is incremented by 2 for CPFLB and SEFLB, or
incremented by 1 for all other storage to register instructions.

Addition of two floating-point numbers is based on characteristic
comparison and fraction addition. The characteristics of the two operands
are compared, and the fraction accompanying the smaller characteristic is
shifted right, with its characteristic increased by 1 for each hexadecimal
digit shifted, until the two characteristics are equal.

When an operand is shifted right during alignment, the leftmost
hexadecimal digit of the field shifted out is retained as a guard digit. The
operand that is not shifted is considered to be extended with a low-order
o. Both operands are considered to be extended with low-order O's when
no alignment shift occurs. The 28-bit fractions are then added
algebraically to form an intermediate sum.

The intermediate-sum fraction consists of seven hexadecimal digits and a
possible carry. If a carry is present, the sum is shifted right one digit
position, to make room for the carry, and the characteristic is increased by
1.

If the operand signs are unlike (resulting in a subtraction) and the fraction
is not 0, normalization takes place. The intermediate sum is shifted left as
necessary to form a normalized number. Vacated low-order digit positions
are filled with O's, and the characteristic is reduced by the number of
hexadecimal digits shifted. The intermediate-sum fraction is subsequently
truncated to the proper result fraction length of six hexadecimal digits.

Subtraction of two floating-point numbers is based on characteristic
comparison and fraction subtraction. The characteristics of the two
operands compared, and the fraction accompanying the smaller
characteristic is shifted right, with its characteristic increased by 1 for each
hexadecimal digit shifted, until the two characteristics are equal.

When an operand is shifted right during alignment, the leftmost
hexadecimal digit of the field shifted out is retained as a guard digit. The
operand that is not shifted is considered to be extended with low-order O's
when no alignment shift occurs. The 28-bit fractions are then subtracted
algebraically to form an intermediate sum.

The intermediate-sum fraction consists of seven hexadecimal digits and a
possible borrow. If a borrow is present, the sum is shifted right one digit
position, and the characteristic is increased by 1.

If a true subtraction is performed and the fraction is not 0, normalization
takes place. The intermediate sum is shifted left as necessary to form a
normalized number. Vacated low-order digit positions are filled with O's

o
c

n
,.-/1

o
('

I

o

c

c
c
c~

(j

o Multiplication

o

Division

Double Precision

Addition

and the characteristic is reduced by the number of hexadecimal digits
shifted. The intermediate-sum fraction is subsequently truncated to the
proper result-fraction length of six hexadecimal digits.

Multiplication of two floating-point numbers is based on exponent addition
and fraction multiplication. The operands are assumed to be normalized.
The sum of the characteristics of the operands less 64 is used as the
characteristic of the intermedite product. When the result is normalized
without requiring any post-normalization, the intermediate-product fraction
is the result fraction, and the intermediate-product characteristic becomes
the final-product characteristic. When the intermediate-product fraction
has one leading O-digit, it is shifted left one digit position and the
intermediate-product characteristic is reduced by 1.

The multiplier and multiplicand have six-digit fractions. The product
fraction has 14 digits. The two low-order fraction digits are always D's,
unless overflow occurs.

Division of two floating-point numbers is based on characteristic
subtraction and fraction division. The operands are assumed to be
normalized. The difference between the dividend and divisor
characteristics plus 64 is used as the characteristic of the intermediate
quotient.

The sign of the quotient is determined by the rules of algebra unless the
quotient is made a true zero; in this case, the sign is made plus.

All dividend and divisor fraction digits participate in forming the fraction
of the quotient. The quotient fraction will be a 24-bit normalized result if
the dividend and the divisor are normalized.

Addition of two floating-point numbers is based on characteristic
comparison and fraction addition. The characteristics of the two operands
are compared and the fraction accompanying the smaller characteristic is
shifted right, with its characteristic increased by 1 for each hexadecimal
digit shifted, until the two characteristics are equal. The fractions are then
added algebraically to form an intermediate sum.

When an operand is shifted right during alignment, the last hexadecimal
digit shifted out of the 64-bit register is preserved as a guard digit, with 15
digits participating in the arithmetic.

The long intermediate-sum fraction consists of 15 hexadecimal digits and a
possible carry. If a carry is present, the sum is shifted right by one
position, and the characteristic is increased by 1.

If the operand signs are unlike (resulting in a subtraction) and the fraction
is not 0, normalization takes place. The intermediate sum, including the
guard digit, is shifted left as necessary to form a normalized number.
Vacated low-order digit positions are filled with D's, and the characteristic
is reduced by the number of hexadecimal digits shifted.

Floating-Point Feature 7-9

Subtraction

Multiplication

Division

7-10 GA34-0152

Subtraction of two floating-point numbers is based on characteristic
comparison and fraction subtraction. The characteristics of the two
operands are compared and the fraction accompanying the smaller
characteristic is shifted right, with its characteristic increased by 1 for each
hexadecimal digit shifted, until the two characteristics are equal.

When an operand is shifted right during alignment, the last hexadecimal
digit shifted out fo the 64-bit register is preserved as a guard digit, with 15
digits participating in the arithmetic. The fractions are then subtracted
algebraically to form an intermediate sum.

The long intermediate-sum fraction consists of 15 hexadecimal digits and a
possible borrow. If a borrow is present, the sum is shifted right one digit
position, and the characteristic is increased by 1.

If a true subtraction is performed and the fraction is not 0, normalization
takes place. The intermediate sum, including the guard digit, is shifted left
as necessary to form a normalized number. Vacated low-order digit
positions are filled with O's, and the characteristic is reduced by the
number of hexadecimal digits shifted.

Multiplication of two floating-point numbers is based on exponent addition
and fraction multiplication. The operands are assumed to be normalized.
The sum of the characteristics of the operands less 64 is used as the
characteristic of the intermediate product. When the result is normalized
without requiring any post-normalization, the intermediate-product fraction
is the result fraction, and the intermediate-product characteristic becomes
the final-product characteristic. When the intermediate-product fraction
has one leading O-digit, it is shifted left one digit position and the
intermediate-product characteristic is reduced by 1. The multiplier and
multiplicand fractions have 14 digits and the result-product fraction is
truncated to 14 digits.

The division of two floating-point numbers is based on characteristic
subtraction and fraction division. The operands are assumed to be
normalized. The difference between the dividend and divisor
characteristics plus 64 is used as the characteristic of the intermediate
quotient.

All divident and divisor fraction digits participate in forming the fraction
of the quotient. The quotient fraction will be a 56-bit normalized result if
the dividend and divisor are normalized.

The sign of the quotient is determined by the rules of algebra unless the
quotient is made a true zero; in this case, the sign is made plus.

",-------.
()
'--"

c

()
'----'"

o

o

.,--,)

Chapter 8. Instructions

This chapter contains instruction descriptions. The instructions are listed in
alphabetical sequence based on assembler mnemonics.

Each instruction description contains:

• Assembler syntax

• Instruction format

• Explanation

• Indicator settings

• Exception conditions (which occur within each instruction).

In the instruction illustration, the field names R 1 and R2 do not
correspond to general register names or operand placement within
assembler syntax. Refer to "Program Execution" in Chapter 2 for an
explanation of the relationship between assembler syntax and
machine-language instruction formats. For a detailed discussion of
assembler syntax and operand usage, refer to the publication that describes
the assembler program installed on each individual system. A listing of
these publications can be found in the IBM Series/l Graphic Bibliography,
GA34-0055.

Under program-check conditions, "instruction is suppressed" means that
the error condition was detected prior to the modification of any software
accessible register or storage locations; "instruction is terminated" means
that the error condition was detected after the modification of certain
software accessible registers or storage locations.

For additional information, refer to:

• "Effective-Address Generation" in Chapter 2 for a detailed
explanation of the standard methods of deriving effective addresses.

• "Indicator Bits" in Chapter 2 for a detailed explanation of indicator
settings.

• "Class Interrupts" in Chapter 3 for a detailed description of exception
conditions.

• Appendix A for instruction formats grouped by operation codes.

• Appendix B for definitions of the assembler syntax.

Instructions 8-1

AA

Add Address (AA)

Register Immediate Long Format

AA raddr,reg[,reg]

04578

I Immediate field

16

I
Function I

.0 a a a 1
1011 15

31

The immediate field (an address value) is added to
the contents of the register specified by the R 1
field. The result is placed in the register specified
by the R2 field. The contents of the register
specified by the R 1 field are not changed if the
R1 and R2 fields do not specify the same register.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _215 or
greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-2 GA34-0152

Storage Immediate Format

AA raddr ,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

I ~p;o~e 0 010 0 olRB lAM l~u~ct:nll
o 4 5 789 101112 15

I Immediate field

16

Format with appended word for

effective addressing (AM = 10 or 11)

Op code

a 1 a a a
045 789 101112

Address/Displacement

Displacement 1 Displacement 2

16 2324

I Immediate field

32

31

15

31

47

The immediate field (an address value) is added to
the contents of the location specified by the
effective address. The result replaces the contents
of the storage location specified by the effective
address. The immediate operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

!~'-" (\

~

,..--., (,

'--../

c

r--, (,

'--

('I
'--...-.

I

o

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _215 or
greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

AA

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-3

AB

Add Byte (AB)

AB reg,addr4
addr4,reg

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

An add operation is performed between the
least-significant byte of the register specified by
the R-field and the location specified by the
effective address in main storage. The source
operand and high-order byte of the register are
not changed.

Bit 12 of the instruction specifies the destination
of the result.

8-4 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the byte, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one byte; that is, if the sum is less than _27 or
greater than +27_1.

If an overflow occurs, the result contains the
correct low-order eight bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Che~k. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c)

C~,'

c
c
c
c

c

o

o
o
C)

o
C)

C)

o
o
o

C)

o
o
o
(j

o
o
o
o
o

Add Byte Immediate (ABI)

ABI byte,reg

II mmediate field

o 4 5 7 8 15

The immediate field is expanded to 16 bits by sign
propagation to the eight high-order bits. The field
is then added to the contents of the register
specified by the R-field. The result is placed in the
register specified by the R-field.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _2 15 or
greater than +215_l.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data accessed from a storage area not
assigned to the current operation.

Add Carry Register (ACY)

ACY reg

lOP code
a 1 1 1

ABI-ACY

I Function

.0 1 1 a a
o 4 5 7 8 1011 15

The value of the carry indicator is added to the
contents of the register specified by the R2 field,
and the result is placed in the register specified by
the R2 field.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Programming Note: This instruction can be used
when adding multiple word operands. See
"Indicators-Multiple Word Operands" in Chapter
2.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _215 or
greater than +215_l.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even. The even indicator is not changed.

Negative. The negative indicator is changed to
reflect the result.

Zero. If on at entry, the zero indicator is changed
to reflect the result. If off at entry, it remains off.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-5

AD

Add Doubleword ,(AD)

Register /Storage Format

AD reg,addr4
addr4,reg

lop code
1 1 0 1

o 4 5 789 10111213 15

1 = result to storage I
0= result to reg;ster}--J

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

An add operation is performed between the
register pair specified by the R-field and R+ 1
field and the double word in main storage specified
by the effective address. The source operand is
not changed.

If the R-field value is 7, register 7 and register 0
are used.

Bit 12 of the instruction specifies the destination
of the result.

8-6 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the doubleword, the carry indicator
is set to 1. If no carry is detected, the carry
indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
the doubleword; that is, if the sum is less than
_231 or greater than +231-1.

If an overflow occurs, the result contains the
correct low-order 32 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

o

o
o
o
o

o
()

o
o
o
C'II

C)

o
o
o

o
o
o
o
()

o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

Storage/Storage Format

AD ad drS ,addr4

045 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage.
Doubleword operand 1 is added to doubleword
operand 2. The result replaces operand 2. Operand
1 is not changed.

AD

Indicators

Carry. If a carry is detected out of the high-order
bit position of the doubleword, the carry indicator
is set to 1. If no carry is detected, the carry
indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
the doubleword; that is, if the sum is less than
_231 or greater than +231_1.

If an overflow occurs, the result contains the
correct low-order 32 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated. .

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-7

AW

Add Word (AW)

Register /Register Format

AW reg,reg

04578
I Function I
.0 1 0 0 0

1011 15

The contents of the register specified by the Rl
field are added to the contents of the register
specified by the R2 field. The result is placed in
the register specified by the R2 field. The contents
of the register specified by the Rl field are not
changed if the R 1 and R2 fields do not specify the
same register.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than -215 or
greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-8 GA34-0152

Register /Storage Format

AW reg,addr4
addr4,reg

IOPcode
1 1 0 0
o 4 5 789 10111213

1 = result to storage I
o = result to register}----J

Address/Displacement
Displacement 1 Displacement 2

16 2324

15

31

An add operation is performed between the
register specified by the R-field and the location
specified by the effective address in main storage.
The source operand is not changed.

Bit 12 of the instruction specifies the destination
of the result.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than -215 or
greater than +215 _1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

c)
o
c~

C,"

c
o

c
o
o
c

o
o
o
o
o

C~)

o
o
C\

j

o
o
C)
C)
o
o

o
o
C)

C)
o
o

I~

U

o
o
o

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Storage/Register Long Format

AW longaddr,reg

I Address

16 31

The contents of the main storage location
specified by the effective address are added to the
contents of the register specified by the Rl field.
The result is placed in the register specified by the
Rl field.

AW

The effective main storage address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0 (direct address). The result from
step 1 is the effective address.

Bit 11 =1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _2 15 or
greater than +2 15 _l.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-9

AW

Storage/Storage Format

A W addr5,addr4

045 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/D isplacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. Word
operand 1 is added to word operand 2. The result
replaces operand 2. Operand 1 is not changed.

8-10 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, The carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _215 or
greater than +2 15 _1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

c~:

L

c\
c
c

C\
-'

c

C)
o
o
o

o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

Add Word With Carry (A W CY)

A WCY reg,reg

I
Function

.0 1 0 0 1
o 4 5 7 8 1011 15

This iristruction adds the contents of the register
specified by the R 1 field, the contents of the
register specified by the R2 field, and the value of
the carry indicator at entry.

The contents of the register specified by the R 1
field are not changed if the R 1 and R2 fields do
not specify the same register. The final result
replaces the contents of the register specified by
the R2 field.

Programming Note: This instruction can be used
when adding multiple word operands. Refer to
"Indicators-Multiple Word Operands" in Chapter
2.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared and
then set to 1 if the sum cannot be represen~ed in
one word; that is, if the sum is less than _215 or
greater than +215_l.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even. The even indicator is not changed.

Negative. The negative indicator is changed to
reflect the result.

Zero. If on at entry, the zero indicator is changed
to reflect the result. If off at entry, it remains off.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

AWCY-AWI

Add Word Immediate (A WI)

Register Immediate Long Format

AWl word,reg[,reg]

04578

I Immediate field

16

I
Function I

.0 0 0 0 1
1011 15

31

The immediate field is added to the contents of
the register specified by the R 1 field. The result is
placed in the register specified by the R2 field.
The contents of the register specified by the R1
field are not changed if the R 1 and R2 fields do
not specify the same register.

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared and
then set to 1 if the sum cannot be represen~ed in
one word; that is, if the sum is less than -215 or
greater than +215 _l.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are 'outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-11

AWl

Storage Immediate Format

AWl word,addr4

Format without appended word for

effective addressing (AM = 00 or 01)

I ~p ;o~e 0 0 I 0 0 olRB lAM l~u~t:nll
o 4 5 789 101112 15

I Immediate field

16

Format with appended word for

effective addressing (AM = 10 or 11)

31

I ~p ;o~e 0 010 0 0 I RB lAM l~u~t~nll
o 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

I Immediate field

32 47

The immediate field is added to the contents of
the location specified by the effective address. The
result replaces the contents of the storage location
specified by the effective address. The immediate
operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

8-12 GA34-0152

Indicators

Carry. If a carry is detected out of the high-order
bit position of the word, the carry indicator is set
to 1. If no carry is detected, the carry indicator is
reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the sum cannot be represented in
one word; that is, if the sum is less than _215 or
greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the sum; the carry
indicator contains the high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction;

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

C':
... /

c
C,I

c

c
c

C:

o

CI

o
o
o
o
o

o
o
o

C)
o
o
o
o
o
o
o
o
o

Branch Unconditional (B)

B longaddr

Extended Assembler Mnemonic

BX vcon Branch External

Opcode

o 1 1 0
o 101112

0= direct address } J
1 = indirect address

16 31

An effective branch address is generated and
loaded into the instruction address register. This
becomes the next instruction to be fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result f·rom step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future .code obsolescence.

B

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-13

BAL

Branch and Link (BAL)

BAL longaddr,reg

Extended Assembler Mnemonic

BALX vcon,reg Branch and Link External

16 31

The updated contents of the instruction address
register (the address of the next sequential
instruction) are stored into the register specified
by the R 1 field. An effective branch address is
then generated and loaded into the instruction
address register. This becomes the next instruction
to be fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 = O. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Programming Note: If the R 1 and R2 fields
specify the same register, the initial contents are
used in effective address computation and
subsequently overwritten by the return data.

8-14 GA34-0152

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. No branch is
taken, but the contents of the register specified by
the R 1 field are changed. The instruction is
terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. No branch is taken, but the contents of
the register specified by the R 1 field register are
changed. The instruction is terminated.

o
C,I

.,../'

o

c

o

c
c

0 ' ...,'

o
o
o

o
()

o
o
o
o
o

o
o
o
o
o
o
o

o
o
o

Branch and Link Short (BALS)

BALS (reg,jdisp)*
(reg)*
addr*

045

I Word displacement

7 8 15

The updated contents of the instruction address
register (the location of the next sequential
instruction) are stored in register 7.

Bit 8 (the leftmost bit of the word displacement
field) is propagated left by seven bit positions and
a 0 is appended at the low-order end; this results
in a 16-bit word. (Word displacement is converted
to a byte displacement.) This value is added to the
contents of the register specified by the R-field to
form an effective address. The contents of the
storage location specified by the effective address
are stored into the instruction address register, and
become the address of the next instruction to be
fetched.

Programming Note: If the implied register
(register 7) is used as a base register, the initial
contents of register 7 are used in effective-address
computation and subsequently overwritten by the
return data.

BALS

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. Branching
does not occur, but the updated instruction
address is stored into register 7. The instruction is
terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operations.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. Branching does not occur, but the
updated instruction address is stored into register
7. The instruction is terminated.

Instructions 8-15

BC

Branch on Condition (BC)
Condition field

Mnemonic Operand syntax Instruction name bits (see 0)
BC cond,longaddr Branch on Condition Any value listed below

Condition field
Extended mnemonic Operand syntax Instruction name bits (see 0)
BE longaddr Branch on Equal 000
BOFF longaddr Branch if Off 000
BZ longaddr Branch on Zero 000
BP longaddr. Branch on Positive 001
BMIX longaddr Branch if Mixed 001
BN longaddr Branch if Negative 010
BON longaddr Branch if On 010
BEV longaddr Branch on Even 011
BLT longaddr Branch on Arithmetically 100

Less Than
BLE longaddr Branch on Arithmetically 101

Less Than or Equal
BLLE longaddr Branch on Logically 110

Less Than or Equal
Bey longaddr Branch on Carry 111
BLLT longaddr Branch on Logically Less Than 111

Extended mnemonics
Indicators
tested

Extended mnemonics
Indicators
tested

Cond Cond
field 0 1 2 3 4

bits
Branch

E C o N Z
field 0 1 2 3 4

bits
Branch

E C o N Z

BE, BOFF, BZ XXXX1
000

BNE, BNOFF, BNZ X X X X 0

BlT X X 0 1 X

100
XX1 0 X

BMIX, BP X X X 0 0
001

BGE X X 1 1 X
X X 0 0 X

BNMIX, BNP XXXX1
X X X 1 X BlE X X 0 1 X

X X 1 0 X
BN, BON XXX1 X

010
BNN, BNON X X X 0 X

101
XXXX1

BGT X X 1 1 0
BEV 1 X X X X X X 0 0 0

011
BNEV 0 X X X X BllE X 1 X X X

XXXX1
110

BlGT X 0 X X 0

111
BCY,BllT X 1 X X X.

BlGE,BNCY X 0 X X X

8-16 GA34-0152

o

o

o
o

C·'

c
o
('

l ,..
.. ~'

c

o
c

o
o
o
o

()

o
()

C)
o
o

o
o
o
o
C)
o

o
o
o

Op code
o 1 1 0

o

16

101112

o ~ di rect address . - I
1 = indirect address}-J

31

This instruction tests the condition of the various
indicators (LSR bits 0-4). If the condition tested
is met, the effective branch address is loaded into
the instruction address register and becomes the
next address to be fetched.

If the condition tested is not met, the next
sequential instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 =1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

BC

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-17

BCC

Branch on Condition Code (BCC)

BCC cond,longaddr

Extended mnemonic

BNER longaddr Branch on Not Error (CC
field = 111)

I Address

16 31

The value of the CC field is compared to the
even, carry, and overflow indicators. These
indicators hold the I/O condition code following
an I/O instruction or an I/O interrupt.

CC bit Indicator

5
6
7

Even
Carry
Overflow

If the conditions match, an effective branch
address is generated and loaded into the
instruction address reg~ster. This becomes the next
instruction to be fetched.

If the conditions do not match, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 = O. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

8-18 GA34-0152

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

I/O Condition Codes

The I/O condition codes are summarized in the
following tables. Refer to Chapter 4 for a detailed
description of each condition-code value. Some
devices do not report all condition codes, refer to
the specific I/O device descriptions.

Condition Codes Reported After I/O Instruction.

Condi- Indicators
tion Over-
code Even Carry flow Meaning

0 0 0 0 Device not attached
1 0 0 1 Busy
2 0 1 0 Busy after reset
3 0 1 1 Command reject
4 1 0 0 Intervention required
5 1 0 1 Interface data check
6 1 1 0 Controller busy
7 1 1 1 Satisfactory

Condition Codes Reported During an I/O Interrupt.

Condi- Indicators
tion Over-
code Even Carry flow Meaning

0 0 0 0 Controller end
1 0 0 1 PCI (program-

controlled interrupt)
2 0 1 0 Exception
3 0 1 1 Device end
4 1 0 0 Attention
5 1 0 1 Attention and PCI
6 1 1 0 Attention and

exception
7 1 1 Attention and device

end

c
c
c'
c

c

c
c~

C~

c
c
c
c
c

C·i

o

BNC

Branch on Not Condition (BNC)
Condition field

Mnemonic Operand syntax Instruction name bits (see 0)
BNC cond,longaddr Branch on Not Condition Any value listed below

Condition field
Extended mnemonic Operand syntax Instruction name bits (see 0)
BNE longaddr Branch on Not Equal 000
BNZ longaddr Branch on Not Zero 000
BNOFF longaddr Branch if Not Off 000
BNP longaddr Branch on Not 001

Positive
BNMIX longaddr Branch on Not Mixed 001
BNN longaddr Branch on Not 010

Negative
BNON longaddr Branch if Not On 010
BNEV longaddr Branch on Not Even all
BGE longaddr Branch on Arithmetically 100

Greater Than or Equal
BGT longaddr Branch on Arithmetically 101

Greater Than
BLGT longaddr Branch on Logically 110

Greater Than
BLGE longaddr Branch on Logically 111

Greater Than or Equal
BNCY longaddr Branch on No carry 111

I

\J
Extended mnemonics

Indicators
tested

Extended mnemonics
Indicators
tested

Cond
field 0 1 234

Branch o Cond
field 0 1 2 3 4

Branch
bits E C o N Z bits E CON Z

BE,BOFF,BZ XXXX1
000

BNE, BNOFF, BNZ X X X X 0

BMIX, BP X X X 0 0
001

BNMIX, BNP XXXX1

o
C)

BLT X X 0 1 X
X X 1 0 X

100
BGE X X 1 1 X

X X 0 0 X

X X X 1 X BLE X X 0 1 X

BN, BON XXX1 X
010

BNN, BNON X X X 0 X
o XX1 0 X

XXXX1
101

BGT XX1 1 0
BEV 1 X X X X

011
BNEV 0 X X X X

o X X 0 0 0

BLLE X 1 X X X
XXXX1

110
BLGT X 0 X X 0

BCY,BLLT X 1 X X X
111

BLGE, BNCY X 0 X X X

o
o Instructions 8-19

()

BNC

lOp code
a 1 1 a
o 4 507 8 101112 15

o ~ direct address I
1 ~ indirect address }-J

iAddress

16 31

This instruction tests the condition of the various
indicators (LSR bits 0-4). If the condition tested
is met, the effective branch address is loaded into
the instruction address register and becomes the
next address to be fetched.

If the condition tested is not met, the next
sequential instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 = O. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

8-20 GA34-0152

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

c
0 ,1

--'

c

c

o

c

c

c

o

(---,
'-..)

o
o
c;
o
o
o

o

[]
o
o
o
o
o
o

o
o
o

Branch on Not Condition Code (BNCC)

BNCC cond,longaddr

Extended mnemonic

BER longaddr Branch on Error (CC
field=#; 111)

I Address

16 31

The value of the CC field is compared to the
even, carry, and overflow indicators. These
indicators hold the I/O condition code following
an I/O instruction or an I/O interrupt.

CC bit Indicator

5
6
7

Even
Carry
Overflow

If the conditions do not match, an effective
branch address is generated and loaded into the
instruction address register. This becomes the next
instruction to be fetched.

If the conditions match, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

BNCC

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address ~re outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

I/O Condition Codes

The I/O condition codes are summarized in the
following tables. Refer to Chapter 4 for a detailed
description of each condition-code value. Some
devices do.not report all condition codes; refer to
the specific I/O device descriptions.

Condition Codes Reported After I/O Instruction.

Condi- Indicators
tion Over-
code Even Carry flow Meaning

0 0 0 0 Device not attached
1 0 0 1 Busy
2 0 1 0 Busy after reset
3 0 1 1 Command reject
4 1 0 0 Intervention required
5 1 0 1 Interface data check
6 1 1 0 Controller busy
7 1 1 1 Satisfactory

Condition Codes Reported During an I/O Interrupt.

Condi- Indicators
tion Over-
code Even Carry flow Meaning

0 0 0 0 Controller end
1 0 0 1 PCI (program-

controlled interrupt)
2 0 1 0 Exception
3 0 1 1 Device end
4 1 0 0 Attention
5 1 0 1 Attention and PCI
6 1 1 0 Attention and

exception
7 1 1 Attention and device

end

Instructions 8-21

BNOV

Branch on Not Overflow (BNOV)

BNOV longaddr

lOP code
o 1 1 0
o 4 5 7 8 101112 15

0= direct address I
1 = indirect address}---J

I Address

16 31

The overflow indicator is tested. If the indicator is
off, the effective branch address is loaded into the
instruction address register and becomes the next
address to be fetched.

If the overflow indicator is on, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

8-22 GA34-0152

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

C 1

.-'

o

c'
c

f"',
i

c

c

C)

()

o
o
()

C~)

o
o
o
c)

o
o
o
o
o
o
o

o
c)
o

Branch on Overflow (BOV)

BOV longaddr

lOp code
all a
o 4 5 7 8 101112 15

0= direct address· I
1 = indirect address }--J

I Address

16 31

The overflow indicator is tested. If the indicator is
on, the effective branch address is loaded into the
instruction address register and becomes the next
address to be fetched.

If the overflow indicator is off, the next sequential
instruction is fetched.

The effective branch address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the register
specified by the R2 field are not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0. The result from step 1 is a direct
address and is loaded into the instruction
address register.

Bit 11 = 1. The result from step 1 is an
indirect address. The contents of the main
storage location specified by the result are
loaded into the instruction address register.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

BOV

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-23

BXS

Branch Indexed Short (BXS)

BXS (reg1-"jdisp)
(regl - 7)

addr

I Word displacement

045 7 8 15
~

0-7

Bit 8 (the leftmost bit of the word displacement
field) is propagated left seven bit positions and a 0
is appended at the low-order end; this results in a
16-bit word. (Word displacement is converted to a
byte displacement.) This value is added to the
contents of the register specified by the R-field.
The result is stored into the instruction address
register, and becomes the address of the next
instruction to be fetched.

8-24 GA34-0152

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

o
('""\

~/

0

0
C)

CI
0 \,-,,'

CI

C~)

CI

(:)

C')

o
(j

o
c')

o
C)

o

o

Compare Address (CA)

Register Immediate Long Format

CA raddr ,reg

I I Function I
o 0 0.0 0 1 1 0

o 4 5 7 8 1011 15

I Immediate field

16 31

The immediate field (an address value) is
subtracted from the contents of the register
specified by the R1 field. The contents of the
register specified by the R 1 field are not changed.

Bits 8-10 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215 _1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Storage Immediate Format

CA raddr ,addr4

Format without appended word for effective

addressing (AM = 00 or 01)

I ~p;o~e 0 0 I 0 0 0 I RB lAM l~u~ct~onll
o 4 5 7 8 9 101112 15

I Immediate field

16

Format with appended word for effective

addressing (AM = 10 or 11)

31

I~p :o~e 0 0 10 0 0 I RB I AM l~u7t~onll
o 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

I/mmediate field

32 47

CA

The immediate word (an address value) is
subtracted from the contents of the location
specified by the effective address. Neither operand
is changed.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Instructions 8-25

CA

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +2 15 _1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

8-26 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the systems.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

c

r-', , '

o

c'

(J

o

o

o
o

o
o

()

o
()

Compare Byte (CB)

Register /Storage Format

CB addr4,reg

045 789 101112 15

A ddress/Displacem en t
Displacement 1 Displacement 2

16 2324 31

The contents of the location specified by the
effective address in main storage are subtracted
from the least-significant byte of the register
specified by the R-field. Neither operand is
changed.

Bit 12 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than - 27 or greater than +27 -1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation: The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

CB

Storage/Storage Format

CB addrS,addr4

o 4 5 7 8 9 101112131415

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

Address/Displacement

Displacement 1 Displacement 2
32 3940 47

The address arguments generate the effective
addresses of the two operands in main storage.
Byte operand 1 is subtracted from byte operand 2.
Neither operand is changed.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than - 27 or greater than +27_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructioas 8-27

CBI

Compare Byte Immediate (CBI)

CBI byte,reg

I,mmediate field

045 7 8 15

The immediate field is extended to 16 bits by sign
propagation to the eight high-order bit positions.
The result is subtracted from the contents of the
register specified by the R-field. Neither operand
is changed.

Note: If a byte of data from storage is to be
compared with a CBI instruction, an MVB
(storage to register) instruction must be performed
first.

8-28 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problel1l state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

~,

(,
',---",'

C

,~,

/ I

''---''

c'

C:

o
o
o

o
()

o
o
o
o

C)

o
o
o
()

(j

o
o
o
o

Compare" Doubleword (CD)

Register/Storage Format

CD addr4,reg

045 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The contents of the doubleword in main storage
specified by the effective address are subtracted
from the contents of the register pair specified by
the R-field and R+ 1 field. Neither operand is
changed.

If the R-field value is 7, registers 7 and 0 are
used.

Bit 12 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the doubleword, the
carry indicator is set to 1. If no borrow is
detected, the carry indicator is reset.

CD

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in the doubleword; that is, if the
difference is less than _231 or greater than
+231 -1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

InWllid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-29

CD

Storage/Storage Format

CD addr5,addr4

045 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 23.24 31

Address/Displacement
Displacement 1 . Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage.
Doubleword operand 1 is subtracted from
double word operand 2. Neither operand is
changed.

8-30 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the operand, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one doubleword; that is, if the
difference is less than _231 or greater than
+231-1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o

o
o

c
C)
,r--.
r '
I

\--_./

o

c

o

o

l)

o
o
o
o
()

o
o
o
o

o
o
()

o
o
o
o
o
o
C)

o

Compare Byte Field Equal and Decrement
(CFED)

Compare Byte Field Equal and Increment
(CFEN)

CFED
CFEN

(reg),(reg)
(reg),(reg)

I~p;o~e 0 1 IRI IR2 10 I' 1° I~u~cl
o 4 5 7 8 101112131415

o for CFED or CFEN~
o for CFED; decrement }

contents of R 1 and R 2
1 for CFEN; increment
contents of R 1 and R 2

This instruction compares two fields in main
storage on a byte-for-byte basis. Register 7
contains the number of bytes to be compared.
This number is decremented after each byte is
compared.

The register specified by the R 1 field contains the
address of operand 1. The register specified by the
R2 field contains the address of operand 2.
Operand 1 is subtracted from operand 2, but
neither operand is changed. After each byte is
compared, the addresses in the registers specified
by the R 1 and R2 fields are incremented or
decremented (determined by bit 13 of the
instruction). The operation terminates when
either:

1. An equal co~dition is detected, or

2. The number of bytes specified in register 7
has been compared.

When an equal condition occurs~ the addresses in
the registers point to the next operands to be
compared, but the count in register 7 is not
updated.

Bit 11 of the instruction is not used and must be
set to ° to avoid future code obsolescence.

See "Scan Byte Field Equal and Decrement
(SFED)" and "Scan Byte Field Equal and
Increment (SFEN)" for other versions of this
machine instruction.

CFED-CFEN

Notes:

1. If the specified count in register 7 is 0, the
instruction performs no operation (no-op).

2. Variable-field-length instructions can be
interrupted. When this occurs and the
interrupted level resumes operation, the
processor treats the incomplete instruction as a
new instruction, with the remaining byte count
specified in register 7.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than _27 or greater than +27_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Function. Register 7 is specified in the R 1
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Instructions 8-31

CFNED-CFNEN

Compare Byte Field Not Equal and Decrement
(CFNED)

Compare Byte Field Not Equal and Increment
(CFNEN)

CFNED
CFNEN

(reg),(reg)
(reg),(reg)

I~p~o~e 0 l1R1 IR2 10 I' IDI~u~cl
o 4 5 7 8 101112131415

o for CFNED or CFNENJ

o for CFNED; decrement}
contents of R 1 and R2

1 for CFNEN; increment
contents of R 1 and R 2 .

This instruction compares two fields in main
storage on a byte-for-byte basis. Register 7
contains the number of bytes to be compared.
This number is decremented after each byte is
compared. The register specified by the Rl field
contains the address of operand 1. The register
specified by the R2 field contains the address of
operand 2. Operand 1 is subtracted from operand
2, but neither operand is changed. After each byte
is compared, the addresses in the register specified
by the R 1 and R2 fields are incremented or
decremented (determined by bit 13 of the
instruction). The operation terminates when
either:

1. An unequal condition is detected, or

2. The number of bytes specified in register 7
has been compared.

When an unequal condition occurs, the addresses
in the registers point to the next operands to be
compared, but the count in register 7 is not
updated.

Bit 11 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

8-32 GA34-0152

See "Scan Byte Field Not Equal and Decrement
(SFNED)" and "Scan Byte Field Not Equal and
Increment (SFNEN)" for other versions of this
machine instruction.

Notes:

1. If the specified count in register 7 is 0, the
instruction performs no operation (no-op).

2. Variable-field-length instructions can be
interrupted. When this occurs and the
interrupted level resumes operation, the
processor treats the incomplete instruction as a
new instruction, with the remaining byte count
specified in register 7.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than _27 or greater than +27_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Function. Register 7 is specified in the Rl
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

C
~

',I
./

o
o

o
o

o

o

o
o

(--~\

o

o
o
o
C)

o
o
o
o
o

[I
o
C)

o

o
o
o
o

Complement Register (CMR)

CMR reg[,reg]

045 7 8
I Function I
.0 0 1 1 Q

1011 15

The contents of the register specified by the R1
field are converted to the two's complement. The
result is placed in the register specified by the R2
field. The contents of the register specified by the
R 1 field are not changed if the R 1 and R2 fields
do not specify the same register.

Indicators

Carry. The carry indicator is reset, and then set to
1 if the number to be complemented is O.

Overflow. The overflow indicator is reset, and
then set to 1 if the number to be complemented is
the maximum negative number representable.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

CMR-CPAKR

Copy Address Key Register (CP AKR)

System Register/Storage Format

Mnemonic Syntax Instruction name K-field

CPAKR addr4 Copy Address Key 011
Register

Extended
mnemonic Syntax Instruction name K-field

CPISK addr4 Copy Instruction 000
Space Key

CPOOK addr4 Copy Operand 1 Key 010
CPOTK addr4 Copy Operand 2 Key 001

o 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The contents of the address key register (AKR)
field, specified by the K-field, are stored into the
word location specified by the effective address.
The contents of the AKR are not changed.

The K-field can specify a field within the AKR or
the entire AKR.

Address key register
K-field field name Bits

000 Instruction space key 13-15
001 Operand 2 key 9-11
010 Operand 1 key 5-7
011 Address key register 0-15
100 See Note
101 See Note
110 See Note
111 See Note

Note: To avoid future program obsolescence,
these K-field values should not be used.

If the K-field specifies a specific field within the
AKR, the specified field is stored in bits 13-15 of
the word location in main storage. Bits 0-12 of
the word in main storage are set to D's. If the
K-field specifies the entire AKR, the AKR is
stored in the word location in main storage.

Instructions 8-33

CPAKR

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-34 GA34-0152

System Register/Register Format

Mnemonic Syntax Instruction name K-field

CPAKR reg Copy Address Key 011
Register

Extended
mnemonic Syntax Instruction name K-field

CPISK reg Copy Instruction 000
Space Key

CPOOK reg Copy Operand 1 Key 010
CPOTK reg Copy Operand 2 Key 001

IOPcode
o 1 1 1 11K IR I Function

1 1 0 1 01
0 4 5 7 8 1011 15

The contents of the address key register (AKR)
field, specified by the K-field, are loaded into the
register specified by the R-field. The contents of
the AKRare not changed.

The K-field can specify a field within the AKR or
the entire AKR.

Address key register
K-field field name Bits

000 Instruction space key 13-15
001 Operand 2 key 9-11
010 Operand 1 key 5-7
011 Address key register 0-15
100 See Note
101 See Note
110 See Note
111 See Note

Note:, To avoid future program obsolescence these
K-field values should not be used.

If the K-field specifies a specific field within the
AKR, the specified field is loaded into bits 13-15
of the register specified in the R-field. Bits 0-12
of the register are set to D's. If the K-field
specifies the entire AKR, the AKR is loaded into
the register.

Indicators

The indicators are not changed.

Program-Check Condiiions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

C)

o

c

(~

c
0 ,

-""

c
c

c
o
c
c

[
1
J

o
o
o
o
c)
o
o
o
o

Copy Current Level (CPCL)

CPCL reg

IOPcode
o 1 1 1

o 4 5 7 8
I Function I
.1 1 0 0 1

1011 15

The register specified by the R2 field is loaded as
follows:

• Bits 0-11 are set to O's.

Bits 12-15 are set to the current level. For
example, if the current level is 3, bits 14 and
15 are set to 11.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

CPCL-CPCLK

Copy Clock (CPCLK)

CPCLK reg

lOP code
o 1 1 1 110 0

0lR2 1 Function
1 1 1 0 01

0 4 5 7 8 1011 15

The double word value contained in the clock
register is set into the registers specified by the R2
field and R2+ 1 field. The clock value is not
changed.

If the R2 field value is 7, registers 7 and 0 are
used.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Instructions 8-35

CPCMP-CPCON

Copy Comparator (CPCMP)

CPCMP reg

IOPcode
o 1 1 1
o 4 5 7 8

I Function I
.1 1 1 0 1

1011 15

The doubleword value contained in the
comparator register is set into the registers
specified by the R2 field and R2+ 1 field. The
comparator value is not changed.

If the R2 field value is 7, registers 7 and 0 are
used.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

8-36 GA34-0152

Copy Console Data Buffer (CPCON)

CPCON reg

IOPcode
011 1
o 4 5 7 8

I Function I
.1 1 000

1011 15

The contents of the console data buffer are loaded
into the register specified by the R2 field. The
contents of the buffer are not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the results.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

c~

c

c

c

c

o
c
o

c

o

o

o
o
o
o
o
o

o
o
o

Copy Floating Level Block (CPFLB)

CPFLB reg,addr4

045 789 101112 15

The contents of the floating-point registers
(floating level block) for the level specified by the
R-field are stored into main storage locations
beginning at the specified effective address. All
registers remain unchanged. After execution of
this instruction, the floating level block appears in
main storage as follows:

EA

EA + 24 (hex)

Contents of floating-point register 0

Contents of floating-point register 1

Contents of floating-point register 2

Contents of floating-point register 3

o

The general register specified by the R-field has
the format:

10 0 0 0 0 0 0 0 0 0 0 0 0 0 I Leve"
o 131415

63

CPFLB

Bits 0-7, 12, and 13 are not used and must be set
to O's to avoid future code obsolescence. Bits
8-11 must be set to O's in order to select the
floating-point feature. Bits 14 and 15 hold the
binary-encoded level of the floating-point level
block associated with this operation. For example,
00 for level 0, 0 1 for level 1, 1 0 for level 2, and-
11 for level 3.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. In the supervisor state, an
attempt has been made to execute the instruction
when the floating-point feature has not been
selected or is not installed. The instruction is
terminated.

Instructions 8-37

CPIMR-CPIPF

Copy Interrupt Mask Register (CPIMR)

CPIMR addr4

Op code
o 1 0 1

o 4 5 7 8 9 101112

Address/Displacement
Displacement 1 Displacement 2

16 2324

15

31

The contents of the interrupt mask register are
stored at the word location in main storage
specified by the effective address. The interrupt
mask register is not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

The mask is represented in a bit-significant
manner, with bit 0 representing level 0, and so on.
(See "Interrupt Masking Facilities" in Chapter 3.)
Bits 4-15 are set to O's.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-38 GA34-0152

Copy In-Process Flags (CPIPF)

CPIPF addr4

I ~p ~o~e 1 1 10 0 0 IRS lAM I~u~ct~n 11
o 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

This instruction permits the supervisor on the
current level to inspect the in-process flags of the
other levels. The in-process bit, bit 9 of the level
status register, is on when a level is active or
pending (previously interrupted by a higher level).

The in-process flags for each level are stored at
the word location in main storage specified by the
effective address. The in-process flags are not
changed.

The flags are stored in a bit-significant manner,
with bit 0 representing level 0, and so on. Bits
4-15 are set to O's.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o
o
o
o
C,',

()

o

c
c

o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

Copy Level Block (CPLB)

CPLB reg,addr4

045 789 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324

This instruction stores a level status block (LSB)
into 11 words of main storage beginning with the
location specified by the effective address. The
contents of the LSB and the register specified by
the R-field are not changed.

The register specified by the R-field contains the
level of the LSB to be stored. This level is placed
in bits 14 and 15 of the register. Bits 0-13 are
unused and must be set to O's.

Using this one instruction, the supervisor can copy
the information contained in the hardware
registers assigned to a program operating on any
level. Most instructions are restricted to the
registers associated with the current level. After
executing a CPLB instruction, the supervisor can:

i. Use the information just stored (for example,
the contents of the general registers or the
protect key in the LSR).

2. Assign the level to another task by executing a
Set Level Block (SELB) instruction that points
to a different level status block.

In the second case, the supervisor can restart the
preempted program at a later time by executing
another SELB instruction that points to the
previously stored level status block.

Programming Note: If the AM field equals 01, the
contents of the register specified by the RB field
are incremented by 2.

CPLB

Indicators

The indicators are not changed.

Program-Check Conditil!ns

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Level Status Block Format

EA IAR
AKR
LSR
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6

EA+20 Register 7
(+14 hex)

EA=effective address

Fortnat of Register Specified by the R-field in
CPLB Instruction

10 0 0 0 0 0 0 0 0 0 0 0 0
o

Level 0

Level 1

Level 2
Level 3

131415

o 0
o 1
1 0
1 1

Instructions 8-39

CPLSR-CPPSR

Copy Level Status Register (CPLSR)

CPLSR reg

Op code Function

o 1 1 1 0 o 1 1 1 0
o 4 5 7 8 1011 15

The level status register is loaded into the register
specified by the R2 field. The level status register
is not changed.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-40 GA34-0152

Copy Processor Status and Reset (CPPSR)

CPPSR addr4

Op code

o 1 0 1 1
045 7 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

The contents of the processor status word (PSW)
are stored at the word location in main storage
specified by the effective address.

This instruction resets bits 0-12 of the PSW. Bits
13-15 are not changed. Refer to "Processor Status
Word (PSW)" in Chapter 3 for PSW bit settings.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o
o
o
CI

c
c

~
!

c

c

c

c

o
o
o

o
o
o
o

Copy Storage Key (CPSK)

CPSK reg,addr4

045 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

This instruction stores the contents of a storage
key register at the byte location in main storage
specified by the effective address.

The register specified by the R-field contains the
main storage block number for the storage key
register to be stored. (A storage key register is
associated with every 2048 bytes of storage.) The
block number is in bits 0-4 of the register.

Bits 5-15 are not used and must be set to O's to
avoid future code obsolescence.

The format of the register specified by the R-field
is:

I Block I I
_ p 0 0 0 0 0 0 0 0 0 q
~5 15

Values
0-31

The format of the byte at the storage location is:

10 o 0
o I Key IRI

0 3 4 6 7

1 = read only -.J

CPSK

Bits 4-7, the storage key and read-only bit, are
the data from the storage key register for the
selected main storage block. Bits 0-3 must be set
to O's to avoid future code obsolescence.

The contents of the storage key register are not
changed.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-41

CPSR

Copy Segmentation Register (CPSR)

CPSR reg,addr4

o 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

This instruction stores the contents of a
segmentation register into the doubleword location
in main storage specified by the effective address.

The general register specified by the R-field
contains the logical address of segmentation
register (0-31, decimal) in bits 0-4, and an
address key value 000-111 in bits 5-7. Bits 8-15
of the register must be set to O's.

The format of the general register specified by the
R-field is:

-I Logical seg 1 Addr key I 0 0 0 0 0 0 0 0 I
o 4 5 7 8 15
~

Values
0-31

The logical address of the register selects a
. specific segmentation register (0-31) in a
segmentation stack 0-7.

The address-key field of the register selects a
stack 0-7 of the segmentation registers.

The first word of the specified doubleword that is
copied from the selected segmentation register has
the following format:

I Segment address

o 121314 15

1 =valid~-=ill
1 = read-OnIY~
(must be 0)

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 31

8-42 GA34-0152

The segment address (bits 0-12) contains the
high-order bits of the physical address, which is
used by the translator to select a 2K-byte block of
main storage. Refer to Chapter 5, "Storage
Address Relocation Translator" for a description
of the translator.

Bit 13, if aI, signifies that the contents of the
segmentation register is valid, and translation can
be performed. If an attempt is made to use a
segmentation register in which bit 13 is a 0, a
program check interrupt occurs, with invalid
storage address set in the PSW.

Bit 14, if aI, signifies that the block is read-only.
If an attempt is made to write into the block when
bit 14 of the associated segmentation register is a
1 and while in problem state, a program check
interrupt occurs, with protect check set in the
PSW. When the supervisor state is on a cycle-steal
access, bit 14 is ignored. The contents of main
storage are not changed.

The second word (bits 16-31) of the specified
doubleword must be set to O's to avoid future
code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Function. In the supervisor state, an
attempt has been made to execute this instruction
when the translator is not enabled.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c
c
C.l

c·

(~
.~'

C'

c
C

C

c·
C

c'

o
o

o

o
o
o
()

o
o
o

o
C)

u

Compare Word (CW)

Register /Register Format

CW reg,reg

04578
I Function I
.0 0 1 0 1

1011 15

The contents of the register specified by the R 1
field are subtracted from the contents of the
register specified by the R2 field. The contents of
both registers are not changed.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than -215 or greater than +215_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

cw

Register /Storage Format

CW addr4,reg

o 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The contents of the word in main storage specified
by the effective address are subtracted from the
contents of the register specified by the R-field.
Neither operand is changed.

Bit 12 of the instruction is reserved and must be
set to 0 to avoid future code obsolescence.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than -215 or greater than +215 _1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-43

cw

Storage/Storage Format

CW addr5,addr4

I~p~o~e 0 llR81 IR82IAM1IAM21~u~1
o 4 5 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. Word
operand 1 is subtracted from word operand 2. ..
Neither operand is changed.

8-44 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

C:

c

o
~

(,

c
c
c
c'
c
c
C· •. /

C~'

o
o
o
o
o
o
o
o
o
o

Compare Word Immediate (CWI)

Register Immediate Long Format

CWI word,reg

o 4 5

I Immediate field

16

I I Function I
000.00110

7 8 1011 15

31

The immediate field is subtracted from the
contents of the register specified by the R 1 field.
The contents of the register specified by the R 1
field are not changed.

Bits 8-10 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

CWI

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-45

CWI

Storage Immediate Format

CWI word,addr4

Format without appended word for effective
addressing (AM = 00 or 01)

Opcode
o 1 0 0 0 0

o 4 5

I Immediate field

16

Format with appended word for effective

addressing (AM = 10 or 11)

Opcode

o 1 0 0
o 4 5 7 8 9 101112

Address/Displacement
Displacement 1 Displacement 2

16 2324

I/mmediate field

32

31

15

41.

The immediate word is subtracted from the
contents of the location specified by the effective
address. Neither operand is changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

8-46 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than -215 or greater than +2 15 _1.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

C,

o
o

c

c

c
c

o

(r-\

I
I
I

o

o
o
o
o

o
o
C)

Divide Byte (DB)

DB addr4,reg

o 4 5 789 101112 15

Address/Displacemen t

Displacement 1 Displacement 2
16 2324 31

A divide operation is performed between the word
dividend contained in the register specified by the
R-field and the byte divisor at the location
specified by the effective address. The one-word
quotient replaces the contents of the specified
register while the one-word remainder is placed in
the register specified by the R + 1 field.

If the R-field specifies register 7, the remainder is
placed in register O.

R I Dividend

o 15

• •
EA

I Divisor

o 7

R • I Quotient

o 15

R+1

I Remainder

o 15

DB

Indicators

Carry. The carry indicator is cleared, and then set
to 1 (together with the overflow indicator) if the
overflow was caused by an attempt to divide by O.

Overflow. The overflow indicator is cleared, and
then set to 1 if division by 0 is attempted, or if
the quotient cannot be represented in one word. If
overflow occurs, the remaining indicators and the
contents of the specified register are undefined.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated .

Instructions 8-47

DD

Divide Doubleword (D D)

DD addr4,reg

Opcode

1 1 1 0 1

o 4 5 7 15

Address/Displacement

Displacement 1 Displacement 2

16 2324 31

A divide operation is performed between the
doubleword dividend contained in the registers,
specified by the R-field and R+ 1 field, and the
word divisor at the location specified by the
effective address. The doubleword quotient
replaces the contents of the specified registers
(least-significant word is in the R+ 1 field). The
one-word remainder is placed in the register
specified by the R + 2 field.

If the R-field value is 6, registers 6, 7, and 0 are
used.

I
I

R I R + 1 I DiVidend)))D
0 31

• •
EA I Divisor 7D
0 .5

I
I

R I R + 1 I Quotient!1 II
0 31

R+2

I~R_e_m_a_l_n_d_er ____ ~(1;~~ _______ ~
o 15

8-48 GA34-0152

Programming Note: If the AM field equals 01, the
contents of the register specified by the RB field
are incremented by 2.

Indicators

Carry. The carry indicator is cleared, and then set
to 1 (together with the overflow indicator) if the
overflow was caused by an attempt to divide by o.

Overflow. The overflow indicator is cleared, and
then set to 1 if division by 0 is attempted, or if
the quotient cannot be represented in a
doubleword. If overflow occurs, the remaining
indicators and the contents of the specified
registers are undefined.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated .

C:I

c'

o

I

L
C)

c
c
C)
o
CI

o
o
()

o
o
o

o
c)
o
o
o
C)

C)
C)

o
o
o

Diagnose (DIAG)

DIAG ubyte

04578 15

Additional words when accessing local storage

10 0 0 0 0 0 0 0 1 0 1 0 1 Stack address .1

16 23242526 31

I Immediate data field

32 47

The Diagnose instruction is used for controlling or
testing various hardware functions in a
machine-dependent manner.

Refer to individual processor publications for
information concerning this instruction.

DIAG-DIS

Disable (DIS)

DIS ubyte

04578 15

The parameter field I-bits are disabled. The bits in
the parameter field have the following
significance:

Bit Significance

8 Not used
9 Not used
10 Not used
11 Not used
12 Storage protect
13 Equate operand spaces

(AKR bit 0 set to 0)
14 Translator (PSW bit 14 set to 0)
15 Summary mask (LSR bit 11 set to 0)

Note: Bits not used must be set to O's to avoid
future code obsolescence.

If a Disable instruction immediately follows an
Enable summary mask instruction, the interrupt
disable function may occur prior to the time that
an interrupt can be accepted. Thus, at least one
other instruction (for example , no-op) must be
executed between the Enable summary mask and
Disable instructions to ensure the occurrence of
the interrupt.

If parameter bit 14 is set to 1 and the relocation
translator is enabled (bit 14 of the PSW is on),
then the translator is disabled and bit 14 of the
PSW is turned off.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Instructions 8-49

DW

Divide Word (OW)

DW addr4,reg

o 4 5 789 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

A divide operation is performed between the word
dividend contained in the register specified by the
R-field and the word divisor 'at the location
specified by the effective address. The one-word
quotient replaces the contents of the specified
register. The one-word remainder is placed in the
register specified by the R+ 1 field.

If the R-field value is 7, registers 7 and 0 are
used.

R

I Dividend

0 15

• ...
EA

I Divisor

0 15

R • I Quotient

0 15

R+l I Remainder

o 15

8-50 GA34-0152

Indicators

Carry. The carry indicator is cleared, and then set
to 1 (together with the overflow indicator) if the
overflow was caused by an attempt to divide by O.

Overflow. The overflow indicator is cleared, and
then set to 1 if division by 0 is attempted, if the
quotient cannot be represented in one word. If
overflow occurs, the remaining indicators and the
contents of the specified registers are undefined.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c
c
(,--......"
\ '

"--""

C:

c
c

c

o

c
c
("

--'

c
c'
c'

o
o
o

o
o
o

Enable (EN)

EN ubyte

I ~p lco~e 0 0 I ~u~c 0 I Parameter

04578 15

The parameters field I-bits are enabled. The bits
in the parameter field have the following
significance:

Bit Significance

8 Not used
9 Not used
10 Not used
11 Not used
12 Storage protect
13 Equate operand spaces

(AKR bit 0 set to 1)
14 Translator (PSW bit 14 set to 1)
15 Summary mask (LSR bit 11 set to 1)

Note: Bits not used must be set to O's to avoid
future code obsolescence.

If bit 12 is set to 1, the relocation translator (if
enabled) is disabled and bit 14 is not checked.

If bit 14 is set to 1 and bit 12 is set to 0, the
relocation translator is enabled and the storage
protect is disabled.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

EN

Instructions 8-51

FA

Floating Add (FA)

Storage/Register Format

FA addr4,freg

I ~p ;o~e 0 0 I 0 I R I RB I AM I ~u~c 0 I ~ I
o 456 789 101112 1415

The 32-bit main storage operand specified by the
effective address is algebraically added to the
32-bit operand in the floating-point register
specified by the R-field. The result is placed back
into the floating-point register specified by the
R-field. The main storage operand is not changed.
The low-order 32 bits of the specified \
floating-point register are not changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-52 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed size of the system. The instruction is
terminated.

Protect Che.ck. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected. The instruction completes
execution.

c

o

o

c'

o
c)
()

o

o

o
o

o
C)
()

Register /Register Format

FA freg,freg

lOP code
001 0
o 4 5 6 789 101112 1415

The two 32-bit operands contained in the
floating-point registers specified by the R 1 and R2
fields are added algebraically. The result is placed
back into the floating-point register specified by
the R2 field. The register specified by the R 1 field
is unchanged when not equal to the register
specified by the R2 field. The low-order 32 bits of
the register specified by the R2 field are not
changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

FA

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned, to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The'
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected. The instruction completes
execution.

Instructions 8-53

FAD

Floating Add Double (FAD)

Storage/Register Format

FAD addr4,freg

lop code
001 0
o 4 5 6 789 101112 1415

The 64-bit main storage operand specified by the
effective address is algebraically added to the
64-bit operand in the floating-point register
specified by the R-field. The result is placed back

\

into the floating-point register specified by the
R-field. The main storage operand is not changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-54 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected. The instruction completes
execution.

,~
, I

1'--...--,

c
(J
(~.
I

c

c

C"

o

o

c)

[

o
o
o

o
()

o

Register /Register Format

FAD freg,freg

Op code R1 R2
10 0

Func P
001 0 o 1 I 000 1
o 456 789 101112 1415

The two 64-bit operands contained in the
floating-point registers specified by the R 1 and R2
fields are added algrebraically. The result is placed
back into the floating-point register specified by
the R2 field. The register specified by the R 1 field
is not unchanged when not equal to the register
specified by the R2 field.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

FAD

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative. and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Execution An arithmetic error has
been detected. The instruction completes
execution.

Instructions 8-55

FC-FCD

Floating Compare (FC)

FC freg,freg

I~p~o~e 0 0111 R1 I R21 0 OI~U~Cll~ I
o 4 5 678 9 101112 1415

The 32-bit operand contained in the floating-point
register specified by the R 1 field is algebraically
subtracted from the 32-bit operand contained in
the floating-point register specified by the R2
field. The contents of both floating-point registers
are not changed. .

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the even indicator
is reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

8-56 GA34-0152

Floating Compare Double (FCD)

FCD freg,freg

I~p~o~e 0 oLIR1 IR210 ol~u~c 11~1
o 456 789 101112 1415

The 64-bit operand contained in the floating-point
register specified by the R 1 field is algebraically
subtracted from the 64-bit operand contained in
the floating-point register specified by the R2
field. The contents of both floating-point registers
are not changed.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

c

I
\, ... --1

C'

c'

C'I

o
o
o
o
o
o
o
o

Floating Divide (FD)

Storage/Register Format

FD addr4,freg

I ~p :~e 0 0 I 0 I R I RB I AM I ~u~c 1 I ~ I
o 456 789 101112 1415

The 32-bit dividend contained in the floating-point
register specified by the R-field is divided by the
32-bit divisor at the main storage location
specified by the effective address. The 32-bit
quotient is placed back in the floating-point
register specified by the R-field. The low-order 32
bits of the specified floating-point register are not
changed. No remainder is perserved. The main
storage operand is not changed.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise the indicator
is reset.

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition
occurs; in this case, the indicators are left reset to
O.

FD

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions 8-57

FD

. Register/Register Format

FD freg,freg

I ~p ;o~e 0 0 11 1 R
1

1 R2 1 0 0 1 ~u~c 1 1 ~ 1
o 4 5 6 789 101112 1415

The 32-bit dividend contained in the floating-point
register specified by the R2 field is divided by the
32-bit divisor contained in the floating-point
register specified by the Rl field. The 32-bit
quotient is placed back in the floating-point
register specified by the R2 field. No remainder is
preserved. The low-order 32 bits of the register
specified by the R2 field are not changed. The
register specified by the R 1 field is not changed
when not equal to R2.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise, the indicator
is reset.

Negative and Zero. These indicators are changed .
to reflect the result unless a divide check condition
occurs; in this case, the indicators are left reset to
o.

8-58 GA34-0152

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

C,"

c

o

o
o
c
c
o
o
o

o
n
u
()

o
o
o
o

o
o
o

Floating Divide Double (FDD)

Storage/Register Format

FDD addr4,freg

lop code
001 0

o 4 5 6 7 8 9 101112 1415

r;;-:; -------------------, I Address/Displacement
L-Displacement 1 Ioisplacement 2 --j
16 2324 31

The 64-bit dividend contained in the floating-point
register specified by the R-field is divided by the
64-bit divisor at the main storage location
specified by the effective address. The 64-bit
quotient is placed back in the floating-point
register specified by the R-field. No remainder is
preserved. The main storage operand is not
changed.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise, the indicator
is reset.

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition
occurs; in this case, they are left reset to O.

FDD

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions 8-59

FDD

Register/Register Format

FDD freg,freg

lop code
001 0
o 456 789 101112 1415

The 64-bit dividend contained in the floating-point
register specified by the R2 field is divided by the
64-bit divisor contained in the floating-point
register specified by the R 1 field. The 64-bit
quotient is placed back in the floating-point
register specified by the R2 field. No remainder is
preserved. The register specified by the R 1 field is
not changed when not equal to the R2 field.

Indicators

Overflow. If a divide check, overflow, or
underflow condition occurs, the overflow indicator
is set to 1; otherwise, the indicator is reset.

Even. If 'an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. If a divide check condition occurs, the
carry indicator is set to 1; otherwise, the indicator
is reset.

Negative and Zero. These indicators are changed
to reflect the result unless a divide check condition
occurs; in this case, the indicators are left reset to
o.

8-60 GA34-0152

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

o

C:,l

c

L,
o
o
o
o
c
CI

o

c

o
o
o
o
o
o
(~)

o
C)
o

C)

o
o

o

o
o
o

Fill Byte Field and Decrement (FFD)

Fill Byte Field and Increment (FFN)
FFD reg,(reg) .
FFN reg,(reg)

1011121314 15

1 for FFD or FFN--------II

045 7 8

o for FFD; decrement contents}
of R2
for FFN; increment contents
of R2

This instruction fills each byte of a field in main
storage with the same bit configuration. Register 7
contains the number of bytes to be filled (field
length). If a field length of 0 is specified, the
instruction is a no-op. The register specified by
the R 1 field contains, in bits 8-15, the byte used
to fill the field. The register specified by the R2
field contains the starting address of the field in
main storage.

After each byte in the field is filled:

1. The address register specified by the R2 field
is either incremented or decremented, as
determined by bit 13 of the instruction. This
permits the field to be filled in either
direction.

2. The length count in register 7 is decremented.

FFD-FFN

The operation ends when the specified field length
has been filled (contents of register 7 equal 0). At
this time, the address specified by the R2 field has
been updated and points to the byte adjacent to
the end of the field.

Bits 11 and 15 of the instruction are not used and
must be set to O's to avoid future code
obsolescence.

See "Move Byte Field and Decrement (MVFD)"
and "Move Byte Field and Increment (MVFN)"
for other versions of this machine instruction.

Note: Variable-field-length instructions can be
interrupted. When this occurs and the interrupted
level resumes operation, the processor treats the
incomplete instruction as a new instruction, with
the remaining byte count specified in register 7.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result of the last byte
moved.

Program-Check Conditions

Invalid Function. Register 7 is specified in the R 1
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Instructions 8-61

FM

Floating Multiply (FM)

Storage/Register Format

PM addr4,freg

lop code
001 0

o 4 5 6 7 8 9 101112 1415

The 32-bit main storage operand specified by the
effective address and the 32-bit operand contained
in the floating-point register specified by the
R-field are multiplied. The normalized result is
placed back into the floating-point register
specified by the R-field. The main storage operand
is not changed.

The sign of the product is determined by the rules
of algebra unless all digits of the product fraction
are O's; in this case, the sign is made plus and the
result characteristic is forced to o.
When either or both operand fractions are O's, the
result is made a true zero.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-62 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

()

~

l "1

,/

~

I

c

c
c
C,I

C.:

c

o

o
o
o
o
o
o

[1
o
o
o
o
o
o
o
o
o
o

Register /Register Format

FM freg,freg

I~p~o~e 0 011 IRI I R21 0 01 ~u~c 01 ~ 1
o 456 789 101112 1415

The two 32-bit operands contained in the
floating-point registers specified by the Rl and R2
fields are multiplied and the normalized result is
placed back into the floating-point register
specified by the R2 field. The register specified by
the Rl field is not changed when not equal to the
register specified by the R2 field.

The sign of the product is determined by the rules
of algebra unless all digits of the product fraction
are D's; in this case, the sign is made plus and the
result characteristic is forced to O.

When either or both operand fractions are D's, the
result is made a true zero.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FM

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions 8-63

FMD

Floating Multiply Double (FMD)

Storage/Register Format

FMD addr4,freg

I~p;o~e 0 0101 R IRB lAM I~u~c ol~ I
o 456 789 101112 1415

The 64-bit main storage operand specified by the
effective address and the 64-bit operand contained
in the floating-point register specified by the
R-field are multiplied. The normalized result is
placed back into the floating-point register
specified by the R-field. The main storage operand
is not changed.

The sign of the product is determined by the rules
of algebra unless all digits of the intermediate-sum
fraction are D's; in this case, the sign is made plus
and the result characteristic is forced to o.
When either or both operand fractions are D's, the
result is made a true zero.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset ..

E.'en. If an. underflow condition occurs, the even
indicator is reset; otherwise, the indicator is reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-64 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

o

o
o

o

o

L

o

c
C:

c\
c'

o
o
o
o
o
o
o
o

[J

o
o
o
o
o

o
o
C)

Register/Register Format

FMD freg,freg

lop code
001 0
o 4 5 6 7 89101112 1415

The two 64-bit operands contained in the
floating-point registers specified by the R 1 and R2
fields are mUltiplied. The normalized result is
placed back into the floating-point register
specified by the R2 field. The register specified by
the R 1 field is unchanged when not equal to the
register specified by the R2 field.

The sign of the product is determined by the rules
of algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

When either or both operand fractions are O's, the
result is made a true zero.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMD

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions 8-65

FMV

Floating Move (FMV)

Storage/Register Format

FMV addr4,freg

lOP code
001 0
o 4 5 6 789 101112 1415

The 32-bit floating-point operand in the main
storage location specified by the effective address
is loaded into the floatin-point register specified
by the R-field and the current interrupt level. The
main storage operand is not changed. The
low-order 32 bits of the 64-bit register are set to
D's.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-66 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

o
o
o

c

C

c
c

CI

o
o
o
o
o
o
o
C)

Register /Storage Format

FMV freg,addr4

lOP code
a a 1 a
o 45678 9 101112 1415

The 32-bit floating-point operand contained in the
high-order 32 bits of the floating-point register
specified by the R-field is stored in the main
storage location specified by the effective address.
The register specified by the R-field is not
changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

FMV

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Register /Register Format

FMV freg,freg

lOP code
a a 1 a
o 456789101112 1415

The 32-bit operand contained in the floating-point
register specified by the R 1 field is moved to the
floating-point register specified by the R2 field.
The low-order 32 bits of the register specified by
the R2 field are set to O's. The floating-point
register specified by the R 1 field is unchanged
when not equal to the register specified by the R2
field.

Bits 10, 11, and 13 must be set to O's to avoid
future code obsolescence.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Instructions 8-67

FMVC

Floating Move and Convert (FMVC)

Storage/Register Format

FMVC addr4,freg

lop code
001 0
o 45678 9 101112 1415

~----------------l
I Address/Displacement -I
~--------[-------L_Displa~~nt ~ __ Eispl~e!!!ent ~ --1
16 2324 31

The 16-bit signed binary integer in the main
storage location specified by the effective address
is converted to a 32-bit floating-point number
with low-order D's inserted and then loaded into
the floating-point register specified by the R-field
and the current interrupt level. The low-order 32
bits of the register are set to D's. The 64-bit
register is normalized with D's inserted at the
low-order positions during normalization. The
main storage operand is not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-68 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

C,:

C

C:

c~

o

c
c
C:
C,

C

C
c;
c

o
o
o
o
o
o
o
o
()

o

o
o
o
o
o
o
o
o
o
o
o

Register /Storage Format

FMVC freg,addr4

lOP code
001 0
o 456 789 101112 1415

The 32-bit floating-point operand contained in the
high-order 32 bits of the floating-point register
specified by the R-field is converted to a signed
16-bit binary integer and stored at the main
storage location specified by the effective address.
Any fraction remaining after conversion is
truncated. The register specified by the R-field is
not changed. If the characteristic of the
floating-point number is negative, the integer
stored is O.

Indicators

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215 _1;
otherwise the indicator is reset.

Even and Carry. These indicators are reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMVC

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Instructions 8-69

FMVCD

Floating Move and Convert Double (FMVCD)

Storage/Register Format

FMVCD addr4,freg

lOP code
001 0
o 4 5 6 789 101112 1415

r:;j'----------------,
~dress/DisplaE!.rr:!..nt _______ ~
L Displacement 1 I Displacement 2 .J
16------ 2324------31

The 32-bit signed binary integer in the main
storage location specified by the effective address
is converted to a 64-bit floating-point number
with low-order O's inserted and then loaded into
the floating-point register specified by the R-field
and the current interrupt level. The 64-bit register
is normalized with O's inserted at the low-order
positions during normalization. The main storage
operand is not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-70 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

o
o

o
c

c

C" -~

c
C

c
C'

c
C)

C:

c

()

o
o
o
o
o
o
()

o
o

o
o

o
o
o
o
o
o
o
o

Register/Storage Format

FMVCD freg,addr4

lop code
001 0
o 4 5 678 9 101112 1415

The 64-bit floating-point operand contained in the
floating-point register specified by the R-field is
converted to a 32-bit signed binary integer and
stored at the main storage location specified by
the effective address. Any fraction remaining after
conversion is truncated. The register specified by
the R-field is not changed. If the characteristic of
the floating-point number is negative, the integer
stored is O.

Indicators

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in the doubleword; that is, if the
difference is less than _231 or greater than
+231 _1; otherwise, the indicator is reset.

Even and Carry. These indicators are reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMVCD

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Instructions 8-71

FMVD

Floating Move Double (FMVD)

Storage/Register Format

FMVD addr4,freg

lop code
001 0
o 456 789 101112 1415

The 64-bit floating-point operand in the main
storage location specified by the effective address
is loaded into the floating-point register specified
by the R-field and the current interrupt level. The
main storage operand is not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

8-72 GA34-0152

Register/Storage Format

FMVD freg,addr4

o 456 7 8 9 101112 1415

The 64-bit floating-point operand contained in the
register specified by the R-field is stored in the
main storage location specified by the effective
address. The register specified by the R-field is
not changed.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction is fetched or data is accessed from a
storage area not assigned to the current operation.
The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

c
o

o
o
c
,~
j I
'-.

c

c

c
c

C'
/

o

o
o
o
C)
o
o
o

o

c)
C)
o
o
C)
o
o
o
o
C)

Register/Register Format

FMVD freg,freg

lop code
001 0
o 4 5 6 7 89101112 1415

The 64-bit operand contained in the floating-point
register specified by the R 1 field is moved to the
floating-point register specified by the R2 field.
The floating-point register specified by the Rl
field is not changed.

Bits 10, 11, and 13 must be set to O's to avoid
future code obsolescence.

Indicators

Overflow, Even, and Carry. These indicators are
reset.

Negative and Zero. These indicators are changed
to reflect the result.

FMVD

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Instructions 8-73

FS

Floating Subtract (FS)

Storage/Register Format

FS addr4,freg

I~p ;o~e 0 0101 R 1 RBIAM I~u~c 11 ~ I.
o 4 5 6 789 101112 1415

The 32-bitmain storage operand specified by the
effective address is algebraically subtracted from
the 32-bit operand contained in the floating-point
register specified by the R-field. The result is
placed back into the floating-point register
specified by the R-field. The low-order 32 bits of
the specified floating-point register are not
changed. The main storage operand is not
changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-74 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

c'
o

c
c'

c
c

c
o

c
C~

C" ,"'/

c'

c
c

()

o
C)

o
o
o
o
o
o
o

o
C)
o
o
o
o
C)

o
o
o
o

Register /Register Format

FS freg,freg

I~p ;o~e 0 0111 R1 I R2 10 0 I~u~c 11 ~ I
o 4 5 6 789 101112 1415

The 32-bit operand contained in the floating-point
register specified by the R 1 field is algebraically
subtracted from the 32-bit operand contained in
the floating-point register specified by the R2
field. The result is placed back into the
floating-point register specified by the R2 field.
The low-order 32 bits of the register specified by
the R2 field are not changed. The register
specified by the R 1 field remains unchanged when
not equal to the register specified by the R2 field.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FS

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Instructions 8-75

FSD

Floating Subtract Double (FSD)

Storage/Register Format

FSD addr4,freg

rpCOde
001 0
o 45678 9 101112 1415

The 64-bit main storage operand specified by the
effective address is algebraically subtracted from
the 64-bit operand contained in the floating-point
register specified by the R-field. The result is
placed back into the floating-point register
specified by the R-field. The main storage operand
is not changed.

The sign of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to O.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

8-76 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Floating-Point Exception. An arithmetic error has
been detected.

c-=)

c
o

c
o

·0

o
C:

C" . ./

o
C:

C~I

o
C)
o

o

o
o

o
o

o

o

o
o
o
C)

Register/Register Format

FSD freg,freg

I~p;~e 0 OlllRI IR210 ol~u~c 11~1
o 4 5 6 789 101112 1415

The 64-bit operand contained in the floating-point
register specified by the R 1 field is algebraically
subtracted from the 64-bit operand contained in
the floating-point register specified by the R2
field. The result is placed back into the
floating-point register specified by the R2 field.
The register specified by the R 1 field remains
unchanged when not equal to the register specified
by the R2 field.

The sig~ of the sum is determined by the rules of
algebra unless all digits of the intermediate-sum
fraction are O's; in this case, the sign is made plus
and the result characteristic is forced to o.

Indicators

Overflow. If an overflow or underflow condition
occurs, the overflow indicator is set to 1;
otherwise, the indicator is reset.

Even. If an underflow condition occurs, the even
indicator is set to 1; otherwise, the indicator is
reset.

Carry. The carry indicator is reset.

Negative and Zero. These indicators are changed
to reflect the result.

FSD

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is suppressed.

Floating-Point Exception. An arithmetic error has
been detected.

Instructions 8-77

10

Operate I/O (10)

10 longaddr

Opcode

o 1 1 0
o

I Address

16

15

31

Refer to Chapter 4 for a detailed description of
the operation of this instruction.

An effective main storage address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 = 0 (direct address). The result from
step 1 is the effective address.

Bit 11 = 1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

The effective address specifies the location of a
two-word control block, called the immediate
device control block (IDCB). The IDCB contains
the command, device address, and a one-word
immediate data field.

8-78 GA34-0152

loeB (immediate device control block)

Command field Device address field

o 7 8 15

I Immediate data field

16 31

The immediate data field serves two purposes:

1. For direct program control (DPC) operations,
it holds the data transferred to or from the
I/O device.

2. For cycle-steal operations, it holds the address
of the device control block (DCB).

Indicators

Even, Carry, and Overflow. These indicators are
changed to reflect the condition code. See
"Branch on Condition Code (BCC)" or "Branch
on Not Condition Code (BNCC)" instructions for
indicator settings.

Negative and Zero. These indicators are not
changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

c

----\ (;
'-......--'

c
c
(\
I

i

l./

C"

C;
,.-'

C~

c)

o
o

u

o
o

o
C)

o
o
o
o
o
()

o

Interchange Operand Keys (IOPK)

IOPK

l
Op code I Func I I

.0110011000000000
o 4 5 7 8 15

The contents of the operand 1 key (OP 1 K) are
interchanged with the contents of the operand 2
key (OP2K) in the current address key register.

Bits 8-15 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Interchange Registers (IR)

IR reg,reg

IOPK-IR

I Function I
.0 0 1 1 1

04578 1011 15

The contents of the registers specified by the R 1
and R2 fields are interchanged.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-79

J-JAL

Jump Unconditional (J)

J jdisp
jaddr

I Word displacement

045 7 8 15
~

o

Bit 8 (the leftmost bit of the word displacement
field) is propagated left seven bit positions and a 0
is appended at the low-order end; this results in a
16-bit word. (Word displacement is converted to a
byte displacement.) This value is added to the
instruction address register. The new value in the
IAR becomes the address of the next instruction
to be fetched.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

8-80 GA34-0152

Jump and Link (JAL)

JAL jdisp,reg
jaddr,reg

I Word displacement

045 7 8 15

The updated value of the instruction address
register (the location of the next sequential
instruction) is stored into the register specified by
the R-field. Bit 8 (the leftmost bit of the word
displacement field) is propagated left by seven bit
positions and a 0 is appended at the low-order
end; this results in a 16-bit word. (Word
displacement is converted to a byte displacement.)
This value is added to the updated contents of the
instruction address register, and the result is stored
in the instruction address register. This becomes
the address of the next instruction to be fetched.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. Branching
does not occur, but the storing of the updated
instruction address into the register specified by
the R-field still occurs.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

o

c)
c'
c;

,--......

(-)

c) JC

0 Jump on Condition (JC)
Condition

Operand field bits

C) Mnemonic syntax Instruction name (see 0)
JC cond,jdisp J~mp on Any value

cond,jaddr Condition listed below

Extended mnemonics
Indicators
tested

Cond
field 0 1 2 3 4

bits Jump E C o N Z

C} Condition
Extended Operand field bits

JE, JOFF, JZ XXXX1
000

JNE, JNOFF, JNZ X X X X 0
mnemonic syntax Instruction name (see 0)

0 JE jdisp Jump on Equal 000
jaddr

C) JOFF jdisp Jump if Off 000
jaddr

JZ jdisp Jump on Zero 000

JMIX, JP X X X 0 0
001

JNMIX, JNP XXXX1
X X X 1 X

IN, JON X X X 1 X
010

JNN, JNON X X X 0 X

0
jaddr

JMIX jdisp Jump if Mixed 001
jaddr

JEV 1 X X X X
011

JNEV 0 X X X X

C) JP jdisp Jump on Positive 001
jaddr

JON jdisp Jump if On 010

C) jaddr
IN jdisp Jump on Negative 010

jaddr

~
JEV jdisp Jump on Even 011

jaddr
JLT jdisp Jump on 100

JLT X X 0 1 X
XX1 0 X

100
JGE X X 1 1 X

X X 0 0 X

JLE X X 0 1 X
XX1 0 X
X X X X 1

101
JGT XX1 1 0

Arithmetically X X 0 0 0
I jaddr Less Than '-)

JLE jdisp Jump on 101
JLLE X 1 X X X

XXXX1

0
Arithmetically

jaddr Less Than or Equal
JLLE jdisp Jump on Logically 110

0
jaddr Less Than or Equal

JCY jdisp Jump on Carry 111
jaddr

110
JLGT X 0 X X 0

JCY, JLLT X 1 X X X
111

JLGE, JNCY X 0 X X X

,.-....., JLLT jdisp Jump on Logically 1:11

U jaddr Less Than

0
C)

C)

0

0

0 Instructions 8-81

0

JC

Op code Word displacement

o 00 1 0
o 4 8 15

This instruction tests the condition of the various
indicators set by a previously executed instruction
(for example, an arithmetic, compare, test bit, or
test word type of instruction).

If the condition tested is met, bit 8 (the leftmost
bit of the word displacement field) is propagated
left by seven bit positions and a 0 is appended at
the low-order end; this results in a 16-bit word.
(Word displacement is converted to a byte
displacement.) This value is added to the updated
value of the instruction address register, and

8-82 GA34-0152

becomes the address of the next instruction to be
fetched. If the condition tested is not met, the
next sequential instruction is fetched.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

c

c

c~

~.
I

c

c
C,I

l)

o
o
o
o
o
o
C)

o
o

o
o
o
o
o
o
o
o
o
o
o

Jump on Count (JCT)

JeT jdisp,reg
jaddr,reg

I Word displacement

o 4 5 7 8 15

This instruction tests the contents of the register
specified by the R-field.

If the register contents are not 0, the contents are
decremented by 1. If the register contents are still
not 0, the word displacement is converted to a
byte displacement and added to the contents of
the updated instruction address register (JAR).
This value indicates the location of the next
instruction to be fetched.

If the register contents are 0 when initially tested,
no decrementing occurs. In this case, or when the
register contents are 0 after decrementing, the
next sequential instruction is fetched.

Note: When the register contents are not 0, the
word displacement is converted to a byte
displacement as follows: Bit 8 (the leftmost bit the
word displacement field) is propagated left by
seven bit positions, and a 0 is appended at the
low-order end. This results in a 16-bit word that
has been doubled in magnitude.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. Branching
does not occur, but the contents of the register
specified by the R-field are still decremented by 1.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

JeT

No

Yes

Yes

No jump

JeT

Subtract 1 from
reg contents

Add the byte
displacement to
the IAR

Jump

Instructions 8-83

JNC

Jump on Not Condition (JNC)
Condition

Operand field bits Cond
Mnemonic syntax Instruction name (see 0) field
JNC cond,jdisp Jump on Not Any bits

cond,jaddr Condition value
listed 000

below

Condition 001
Extended Operand field bits
mnemonic syntax Instruction name (seeO)

JNE jdisp Jump on Not Equal 000
jaddr 010

JNOFF jdisp Jump if Not Off 000
jaddr 011

JNZ jdisp Jump on Not Zero 000
jaddr

JNMIX jdisp Jump on Not 001
Mixed 100

jaddr
JNP jdisp Jump on Not 001

Positive
jaddr

JNON jdisp Jump if Not On 010
jaddr

101

JNN jdisp Jump on Not 010
Negative

jaddr
JNEV jdisp Jump on Not Even 011 110

jaddr
JGE jdisp Jump on 100

jaddr Arithmetically 111

Greater Than
or Equal

JGT jdisp Jump on 101
jaddr Arithmetically

Greater Than
JLGT jdisp Jump on Logically 110

jaddr Greater Than
JLGE jdisp Jump on Logically 111

jaddr Greater Than
or Equal

JNCY jdisp Jump on No Carry 111
jaddr

8-84 GA34-0152

Extended mnemonics

Jump

JE, JOFF, JZ

JNE, JNOFF, JNZ

JMIX, JP

JNMIX, JNP

IN, JON·

JNN, JNON

JEV

JNEV

JLT

JGE

JLE

JGT

JLLE

JLGT

JCY, JLLT

JLGE, JNCY

Indicators
tested

0 1 2 3 4

E CON Z

XXXX1

X X X X a
X X X a a
X X X X 1
X X X 1 X

X X X 1 X

X X X a X

1 XXXX

a X X X X

X X a 1 X
X X 1 a X

X X 1 1 X
X X a a X

X X a 1 X
XX1 a X
XXXX1

X X 1 1 a
X X a a a
X 1 X X X
XXXX1

X a X X a
X 1 X X X

X a X X X

o

o

('I
\ /

(~
'-....... /

o
r
I

I

"-.j

o
C:

o

o

o
o
o
o
o
o
o
C)

o
o

c
o
C)

o
o
o
o
o
o
o.
o

Op code Word displacement
o 0 0 1 1
o 4 8 15

This instruction tests the condition of the various
indicators set by a previously executed instruction
(for example, an arithmetic, compare, test bit, or
test word type of instruction.)

If the condition tested is met, bit 8 (the leftmost
bit of the word displacement field) is propagated
left by seven bit positions and a 0 is appended at
the low-order end; resulting in a 16-bit word.
(Word displacement is converted to a byte
displacement.) This value is added to the updated
value of the instruction address register, and
becomes the address of the next instruction to be
fetched.

If the condition tested is not met, the next
sequential instruction is fetched.

Indicators

The indicators are not changed.

Program-Check Conditions

JNC

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-85

LEX

Level Exit (LEX)
LEX [ubyte]

o 4 5 7 8 15

When this instruction is executed, the processor
exits the current level. The in-process bit (LSR bit
9) for the current level is set to O. Next, the
instruction tests for pending levels or outstanding
priority interrupt requests, and the condition of
the summary mask (LSR bit 11) for the level to
be exited.

If pending levels or outstanding requests exist and
the summary mask is enabled, a branch is
executed to the address contained in the IAR of
the highest pending or requesting level. This level
then becomes the current level and processing
resumes.

If pending levels or outstanding requests exist and
the summary mask is disabled, the priority
interrupts are not allowed. The highest pending
level becomes the current level and processing
resumes.

8-86 GA34-0152

If no levels are pending, the processor goes to the
wait state.

If no levels are pending and no interrupt requests
are outstanding, the processor goes to the wait
state.

The parameter field can be optionally coded with
a one-byte unsigned absolute value or expression.
If not coded, the parameter field defaults to O.
The processor ignores the value, but is used as an
identifier.

For additional information about level switching,
refer to "Program-Controlled Level Switching" in
Chapter 3.

Programming Note: When a level is exited by a
LEX instruction and processing is to continue on a
pending level, one instruction is executed on the
pending level prior to sampling for a trace class
interrupt.

Indicators

The indicators are not changed.

Program-Check Conditions

P,.ivilege Violate. In the problem state, a
privileged instruction is encountered.

o

o
o

Ci

c
c

o

c
c'

c

o
c
c

o
o
o
o
o
o
o
o
o
o

[
o
o
o
o
o
o

o
o
o

Load Multiple and Branch (LMB)

LMB addr4

I ~p lco~e 0 0 10 0 0 I RB lAM I~u~cti:n 01
o 4 5 7 8 9 101112 15

Address/Displacement

Displacement 1 Displacement 2

16 2324 31

Refer to "Stack Operations" in Chapter 2 for a
detailed description of the operation of this
instruction. The LMB instruction is used in
conjunction with the Store Multiple (STM)
instruction described later in this chapter.

The contents of the registers for the current level
are loaded from the stack defined by the stack
control block pointed to by the effective address.
The registers to be loaded are defined by the stack
entry previously stored by a STM instruction. The
next instruction is fetched from the storage
address contained in register 7.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

Programming Note: If the AM field equals 01, the
contents of the register specified by the RB field
are incremented by 2.

LMB

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. Indirect address, stack
control block, stack element, or register 7 results
in an even-byte boundary violation.

Soft-Exception Trap Conditions

Stack Exception. The stack is empty.

Instructions 8-87

MB

Multiply Byte (MB)

MB addr4,reg

045 789 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

A mUltiply operation is performed between the
word multiplier contained in the register specified
by the R-field and the byte mUltiplicand at the
location specified by the effective address. The
word product replaces the contents of the register.

R I Multiplier

o

X

EA I Multiplicand

o

R I Product

o

8-88 GA34-0152

15

7

•
15

Indicatol'S

Carry. The carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the result cannot be represented in
16 bits. If overflow occurs, the contents of the
specified register are the least-significant bits of
the resulting product.

Even, Negative, and Zero. The indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o
C;

o

C)

C

o

(j

c
C:

CI

C;

o

o
o
o
o
o
o
(j

o
o
o

c
o
o
o
o
o
o
o
o
o

Multiply Doubleword (MD)

MD addr4,reg

045 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A multiply operation is performed between the
doubleword multiplier contained in the registers
specified by the R-field and the R+ 1 field and the
word multiplicand at the location specified by the
effective address. The doubleword product
replaces the contents of the registers with the
least-significant word in the R+ 1 field.

If the R-field value is 7, registers 7 and 0 are
used.

Programming Note: If AM=Ol, the register
specified by the RB field is incremented by 2.

MD

Indicators

Carry. The carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the result cannot be represented in
32 bits. If overflow occurs, the contents of the
specified registers are the least-significant bits of
the resulting product.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-89

MVA

Move Address (MV A)

Storage/Register Format

MVA addr4,reg

Op code

o 1 000
o 4 7 8 9 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

The effective address is loaded into the register
specified by the R-field.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand loaded into the
register specified by the R-field.

8-90 GA34-0152

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

o
()
_/

o
o
c

c

r"-"",

(~:

c

c

c

o
o
o
o
C)

o
o
o
C)

C)

[]
o
o

o
o
o
o
o
o
o

Storage Immediate Format

MV A raddr ,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

I ~p lco~e 0 0 I 0 0 0 I RB lAM I~un;ti;n 01

o 4 5 7 8 9 101112 15

I Immediate field

16

Format with appended word for

effective addressing (AM = 10 or 11)

31

I ~p lco~e 0 0 I 0 0 0 I RB lAM I~un;ti;n 01

o 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

I Immediate field

32 47

The operand in the immediate field replaces the
contents of the location specified by the effective
address. The immediate operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

MVA

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address and
indirect address results in an even-byte boundary
violation.

Instructions 8-91

. MVB

Move Byte (MVB)

Register/Storage Format

MVB reg,addr4
addr4,reg

lop code IR
1 1 0 0 0
045 7 8 9 10111213 15

1 = result to storage } ~
o = result to register

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A byte is moved between the least-significant byte
of the register specified by the R-field and the
location specified by the effective address in main
storage.

Bit 12 of the instruction specifies the direction of
the move:

Bit 12=0. The byte is moved from storage to
register. The high-order bit of the byte (sign) is
propagated to the eight high-order bits of the
register. This permits the Compare Byte
Immediate (CBI) instruction to be used for byte
compare operations. The operand in storage is not
changed.

Bit 12 = 1. The byte is moved from register to
storage. The contents of the register specified by
the R-field are not changed.

8-92 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand moved.

Program~Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

C'I
./

c'
c
c
c

("
I

o

c

c

o
o
o
o
C)
o
o
o
o

[]
o
C)

C)
o
o
o
r--,
U

o
o
o

Storage/Storage Format

MVB addr5,addr4

I~p~o~e a al RB1 IRB2IAM1IAM21~u~cl
o 4 5 7 8 9 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A byte
is moved from operand 1 to operand 2. Operand 1
is not changed.

MVB

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the byte moved.

Progl'tlm-Check Conditions

Invalid Stol'tlge Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-93

MVBI-MVBZ

Move Byte Immediate (MVBI)

MVBI byte,reg

I Immediate field

o 4 5 7 8 15

The register specified by the R-field is loaded with
the immediate operand.

The immediate field of the instruction forms the
operand to be loaded. The immediate field is
expanded to a 16-bit operand by propagating the
sign bit value through the high-order bit positions.
This operand is loaded into the register specified
by the R-field.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand loaded into the
register.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-94 GA34-0152

Move Byte and Zero (MVBZ)

MVBZ addr4,reg

045 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The byte specified by the effective address is
loaded into the least-significant byte of the
register specified by the R-field. The high-order
bit of the byte (sign) is propagated to the eight
high-order bits within the register. The byte
specified by the effective address is then set to
O's.

Bit 12 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand loaded into the
register.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c~:

o
c
c
c'
c'
c
c

c

c
c
c

c'
c'

c'

o
C)

o
o
o
o
o
o
o
o

[
o
o
o
o
o
o

o
o
o

Move Doubleword (MVD)

Register/Storage Format

MVD addr4,reg
reg,addr4

lop code
1 1 0 1
o 4 5 789 10111213 15

1 = result to storage I
0= result to register}---J

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A doubleword is moved between the contents of
the register pair specified by the R-field and the
R+ 1 field and the doubleword location specified
by the effective address in main storage. The
source operand is not changed.

If the R-field value is 7, registers 7 and 0 are
used.

Bit 12 of the instruction specifies the direction of
the move.

MVD

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand moved.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-95

MVD-MVDZ

Storage/Storage Format

MVD addr5,addr4

I~p~o~e 1 0 I RBT I RB2IAMTIAM21~u~cl
o 4 5 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A
doubleword is moved from operand 1 to operand
2. Operand 1 is not changed.

Note: In case of overlapping operands, operand 1
is fetched in its entirety before operand 2 is
stored.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the doubleword moved.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-96 GA34-0152

Move Doubleword and Zero (MVDZ)

MVDZ addr4,reg

045 7 8 9 101112 15

Address/Displacement

Displacement 1 Displacement 2

16 2324 31

The doubleword specified by the effective address
is loaded into the register pair. specified by the
R-field and the R + 1 field. The doubleword
specified by the effective address is then set to O.

If the R-field value is 7, registers 7 and 0 are
used.

Bit 12 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand loaded.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o

o
o

Cl

c'
c

r~
I

C:
~/

c
c
c

c

c

o
o
o
o
C)

o
o
()

C)

o
C)
()

o
o
o
o

o
o
C)

Move Byte Field and Decrement (MVFD)

Move Byte Field and Increment (MVFN)

MVFD (reg) ,(reg)
MVFN (reg),(reg)

I~p ~o~e 0 11 RI I R2 10 I' IDI~u~cl
o 4 5 7 8 101112131415

o for MVFD or MVFN-----.-J

o for MVFD; decrement contents
of R1 and R2
for MVFN; increment contents
of R1 and R2

This instruction moves a specified number of bytes
(one byte at a time) from one storage location to
another. Register 7 contains the number of bytes
to be moved (field length). If a field length of 0 is
specified, the instruction is a no-op. The register
specified by the Rl field contains the address of
operand 1; the register specified by the R2 field
contains the address of operand 2. Operand 1 is
moved to operand 2.

Note: In case of overlapping operands, operand 1
is fetched in its entirety before operand 2 is
stored.

After each byte is moved:

1. The addresses in the R 1 and R2 fields are
either incremented or decremented,
determined by bit 13 of the instruction. This
allows the field to be moved in either
direction.

2. The length count in register 7 is decremented.

MVFD-MVFN

The operation ends when the specified field length
has been filled (contents of register 7 equals 0).
At this time, the addresses in the R 1 and R2 fields
have been updated and point to the next operands.

Bits 11 and 15 of the instructions are not used
and must be set to O's to avoid future code
obsolescence.

See "Fill Byte Field and Decrement (FFD)" and
"Fill Byte Field and Increment (FFN)" for other
versions of this machine instruction.

Note: Variable-field-length instructions can be
interrupted. When this occurs and the interrupted
level resumes operation, the processor treats the
incomplete instruction as a new instruction, with
the remaining count specified in register 7.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result of the last byte
moved.

Program-Check Conditions

Invalid Function. Register 7 is specified in the R 1
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Instructions 8-97

MVW

Move Word (MVW)

Register/Register Format

MVW reg,reg

04578
I Function I
.0 0 1 0 0

1011 15

The contents of the register specified by the R1
field replace the contents of the register specified
by the R2 field. The contents of the register
specified by the R 1 field are not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-98 GA34-0152

Register/Storage Format

MVW reg,addr4
addr4,reg

o 4 5 789 10111213 15

1 = result to storage } ~
0= result to register

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A word is moved between the contents of the
register specified by the R-field and the location
specified by the effective address in main storage.
The source operand is not changed.

Bit 12 of the instruction specifies the direction of
the move.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand moved.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

c
c

c'
o
r
L
c

c
c

c
c·

c

u
o
o
o
o
o
C)
o
o
C)

o
o
o
o
o
o
o
o
o
o
o

Register /Storage Long Format

MVW reg,longaddr

I Address

16 31

The contents of the register specified by the R 1
field are stored into the main storage location
specified by an effective address. This effective
address is generated as follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0 (direct address). The result from
step 1 is the effective address.

Bit 11 =1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

MVW

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result stored from the
register specified by the R 1 field.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-99

MVW

Storage/Register Long Format

MVW longaddr ,re g

I Address

16 31

The register specified by the Rl field is loaded
with the contents of the main storage location
specified by an effective address. This effective
address is generated as follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0 (direct address). The result from
step 1 is the effective address.

Bit 11 = 1 {indirect address}. The result from
step 1 is the address of the main storage
location that contains the effective address.

Indicators

Carry and Overflow. These indicators are not
changed:

Even, Negative, and Zero. These indicators are
changed to reflect the result loaded into the
register specified by the R 1 field.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-100 GA34-0152

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Storage/Storage Format

MVW addr5,addr4

lOP code I RBI
1 0 0 0 1

I R B21 AM IIAM21~un~1
045 7 8 9 1011121314 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A
word is moved from operand 1 to operand 2.
Operand 1 is not changed.

Indicators

Carry and Overflow~ These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the word moved.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c)

c

c

c

1

L,

c
c
c
c
c

c)
o
o
o
o
o
o
o
C)
C)

o
o
o
o
o
o
o
o
o
o
o

Move Word Immediate (MVWI)

Storage/Register Format

MVWI word,reg

045 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The effective address value is loaded into the
register specified by the R-field. This value is
equal to the value of word as specified by the
programmer.

Indicators

Carry and Over/low. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand loaded into the
register specified by the R-field.

MVWI

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-101

MVWI

Storage Immediate Format

MVWI word,addr4

Format without appended word for

effective addressing (AM = 00 or 01)

Op code

o 1 000

o 4 5 7 8 9 101112

I Immediate field

16

Format with appended word for

effective addressing (AM = 10 or 11)

Op code

o 1 000

o 4 5 7 8 9 101112

Address/Displacement

Displacement 1 Displacement 2
16 2324

I Immediate field

32

15

3.1

15

31

47

The operand in the immediate field replaces the
contents of the location specified by the effective
address. The immediate operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

8-102 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. I,n the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o
o

C)

c
c\
c

c
o
c'

c

o
C)
o
o
o
o
o
o
()

o
o
o
o
o
o
o
o
o
o
o

Move Word Short (MVWS)

Register / Storage Format

MVWS reg,shortaddr

IOPcode
1 0 1 0

o 4 5 7 8 9 1011 15

0= direct address }J
1 = indirect address

The contents of the register specified by the Rl
field are stored into the main storage location
specified by the effective address. The contents of
the register are not changed.

The effective address is generated as follows:

1. The five-bit unsigned integer (word
displacement) is doubled in magnitude
(converted to a byte displacement).

2. The result from step 1 is added to the
contents of the base register (RB) to form a
main storage address.

3. Instruction bit 10 is tested for direct or
indirect addressing:

Bit 10=0 (direct address). The result from
step 2 is the effective address.

Bit 10= 1 (indirect address). The result from
step 2 is the address of the main storage
location that contains the effective address.

MVWS

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand stored into main
storage.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-103

MVWS

Storage/Register Format

MVWS shortaddr ,reg

I ~plco~e 0 0 I R1 I RB I X IWd displace I
o 4 5 7 8 9 1011 15

0= direct address }J
1 = indirect address

The contents of the main storage location
specified by the effective address are loaded into
the register specified by the R 1 field. The contents
of the main storage location are not changed.

The effective address is generated as follows:

1. The five-bit unsigned integer (word
displacement) is doubled in magnitude
(converted to a byte displacement).

2. The result from step 1 is added to the
contents of the base register (RB) to form a
main storage address.

3. Instruction bit 10 is tested for direct or
indirect addressing:

Bit 10=0 (direct address). The result from
step 2 is the effective address.

Bit 10=1 (indirect address). The result from
step 2 is the address of the main storage
location that contains the effective address.

8-104 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the operand loaded into the
register specified by the Rl field.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

o \,._j

0 ,
_./

c

()

C)
c
c
c

c

()

o
c)
o
o
()

o

[j
o

o
o
o
o
o
o
o
o

Move Word and Zero (MVWZ)
MVWZ addr4,reg

Opcode

1 1 0 0
o 4

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

The word specified by the effective address is
loaded into the register specified by the R-field.
The word specified by the effective address is then
set to O.

Bit 12 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

MVWZ

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned. as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-105

MW

Multiply Word (MW)

MW addr4,reg

045 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324

A multiply operation is performed between the
word multiplier contained in the register specified
by the R-field and the word multiplicand at the
location specified by the effective address. The
word product replaces the contents of the register.

R

I Multiplier

o

X

EA

I L. M_U_lt_iP_I_'·c_an_d __ (0
o 15

R • I Product

o

8-106 GA34-0152

15

15

Indicators

Carry. The carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the result cannot be represented in
16 bits. If overflow occurs, the contents of the
specified register are the least-significant bits of
the result.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

o
(~
I

I

I

I

t ,_ .. /

c

c
C

C'

CI

l)

C)

o
o

o

[J
o
o
o
o

o

No Operation (NOP)

NOP

I

OPcode I I I
.0 1 0 1 0 0 000 0 0 0 0 0 0 ~

o 4 5 7 8 15

When bits 5-15 are all O's, the instruction
performs no operation (no-op).

Indicators

The indicators are not changed.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

NOP-NWI

AND Word Immediate (NWI)

NWI word,reg[,reg]

04578

I Immediate field

16

I Function I
.0 0 0 0 0

1011 15

31

The immediate field is ANDed bit-by-bit with the
contents of the register specified by the R 1 field.
The result is placed in the register specified by the
R2 field. The contents of the register specified by
the R 1 field are not changed unless the R 1 and R2
field specify the same register.

Indicators

Carry and Overflow. These indicators are not
changed .

. Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-107

OB

OR Byte (OB)

Register/Storage Format

OB reg,addr4
addr4,reg

045 789 10111213 15

1 = result to storage }~
0= result to register

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A logical OR operation is performed between the
least-significant byte of the register specified by
the R-field and the location specified by the
effective address in main storage. The source
operand is not changed. When going from storage
to register, bits 0-7 of the register are not
changed.

Bit 12 of the instruction specifies the destination
of the result.

8-108 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

~,

(I ... _

o
;'""""

("

,--~)

(~
'\...../

r---,
I
'"-----"

~.I
\,-,/

l)

o

o
o

o
o
o

o

o
o
o

Storage/Storage Format

DB addr5,addr4

I~p::e a al RB1 IRB2IAM1IAM21~un~1
o 4 5 789 101112131415

Displacement 2

2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A
one-byte logical OR operation is performed
between operand 1 and operand 2. The result
replaces operand 2. Operand 1 is not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

OB

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-109

on
OR Doubleword (OD)

Register/Storage Format

OD addr4,reg
reg,addr4

lop code
1 1 0 1
o 4 5 789 101112131415

1 = result to storage . I
0= result to register}--J

Address/Displacement

Displacement 1 Displacement 2

16 2324 31

A logical OR operation is performed between the
contents of the register pair specified by the
R-field and the R+ 1 field and the doubleword in
main storage specified by the effective address.
The source operand is not changed.

If the R-field equals 7, register 7 and register 0
are used.

Bit 12 of the instruction specifies the destination
of the result.

8-110 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

~,
I

l, /
'-..... /

()

o
o
o
o
o
o
o
o
o

Ii u
o
o
o
o
C)

C)
.r-'\

U

o
o
o

Storage/Storage Format

OD addrS,addr4

I;~o~e 1 OIRBI IRB2IAMIIAM21~n:1
o 4 5 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A
double word 10gicaJ OR operation is performed
between operand 1 and operand 2. The result
replaces operand 2. Operand 1 is not changed.

Note: In case of overlapping operands, operand 1
is fetched in its entirety before operand 2 is
stored.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

OD

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-111

ow

OR Word (OW)

Register/Register Format

OW reg,reg

045 7 8
IFunction I
_0 0 0 0 1

1011 15

The contents of the register specified by the R1
field are ORed bit-by-bit with the contents of the
register specified by the R2 field. The result is
placed in the register specified by the R2 field.
The contents of the register specified by the R 1
field are not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-112 GA34-0152

Register/Storage Format

OW reg,addr4
addr4,reg

IOPcode
1 1 0 0
o 4 5 789 10111213

1 = result to storage \ I
o = result to register ~

Address/Displacement

Displacement 1 Displacement 2

16 2324

15

31

A logical OR operation is performed between the
contents of the register specified by the R-field
and the location specified by the effective address
in main storage. The source operand is not
changed.

Bit 12 of the instruction specifies the destination
of the result.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation_

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

()/

o
('\

o
o
o
o

o
o

()

()

o
o
C)
o
o
()

o
o

o
C)

o
o
o
o
o
o
o
o
o

Storage/Register Long Format

OW longaddr,reg

I Address

16 31

A logical OR operation is performed between the
contents of the main storage location specified by
an effective address and the contents of the
register specified by the Rl field. The result is
placed in the register specified by the Rl field.

The effective main storage address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0 (direct address). The result from
step 1 is the effective address.

Bit 11 = 1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

Indicators

Carry and Overflow. These indicators are not
changed.

ow

Even, Negative, and Zero. These indicators are
changed to reflect the result loaded into the
register specified by the R 1 field.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-113

ow

Storage/Storage Format

OW addr5,addr4

045 7 8 9 101112131415

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

Address/Displacement

Displacement 1 Displacement 2
32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A one
word logical OR operation is performed between
operand 1 and operand 2. The result replaces
operand 2. Operand 1 is not changed.

8-114 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
. violation. The instruction is terminated.

CI

c

C,I

C:
-,,'

C
C~\

/'

c

()

o ./

c
c

o
o
c

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o

o
o
o

OR Word Immediate (OWl)

Register Immediate Long Format

OWl word,reg[,reg]

045 7 8

I Immediate field

16

I Function I
.0 0 0 1 1

1011 15

31

The immediate field is ORed bit-by-bit with the
contents of the register specified by the R 1 field.
The result is placed in the register specified by the
R2 field. The contents of the register specified by
the R 1 field are not changed unless the R 1 and R2
field specify the same register.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fecthed or data is accessed from a storage area
not assigned to the current operation.

Storage Immediate Format

OWl word,addr4

Format without appended word for
effective addressing (AM == 00 or 01)

I~plco~e 0 010 0 olRS lAM I~u~ct:nol
o 4 5 789 101112 15

I Immediate field

16

Format with appended word for

effective addressing (AM == 10 or 11)

31

I~plco~e 0 010 0 olRS lAM I~u~ct:nol
o 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

I Immediate field

32 47

OWl

A logical OR operation is performed between the
immediate field and the contents of the main
storage location specified by the effective address.
The result replaces the contents of the storage
location. The immediate operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Instructions 8-115

OWl

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

8-116 GA34-0152

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

CI

c

C,'

o

C:

c
c

o
o
o

c~

o

c
o
o

o
o
o
o
o
o
o
o
o
o

o

o
o
o
o
o
o
o
o

Pop Byte (PB)

PB addr4,reg

045 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The top element of a byte stack is popped from
the stack and loaded into the least-significant byte
of the register specified by the R-field. The stack
is defined by the stack control block pointed to by
the effective address.

Programming Note: If AM equals 01, the register
specified by the RB field is incremented by 2.

Refer to "Stack Operations" in Chapter 2 for
additional information about the operation of this
instruction and the associated stack control block.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The indirect address or the
stack control block results in an even-byte
boundary violation.

Soft-Exception Trap Conditions

Stack Exception. The stack is empty.

PB-PD

Pop Doubleword (PD)

PD addr4,reg

045 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The top element of a doubleword stack is popped
from the stack and loaded into the register pair
specified by the R-field and the R+ 1 field. The
stack is defined by the stack control block pointed
to by the effective address.

If the R-field value is 7, registers 7 and 0 are
used.

Programming Note: If AM equals 01, the register
specified by the RB field is incremented by 2.

Refer to "Stack Operations" in Chapter 2 for
additional information about the operation of this
instruction and the associated stack control block.

I"dicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Stack Exception. The stack is empty.

Instructions 8-117

PSB-PSD

Push Byte (PSB)

PSB reg,addr4

o 4 5 789 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

The least-significant byte of the register specified
by the R-field is pushed into the stack. The stack
is defined by the stack control block pointed to by
the effective address.

Programming Note: If AM equals 01, the register
specified by the RB field is incremented by 2.

Refer to "Stack Operations" in Chapter 2 for
additional information about the operation of this
instruction and the associated stack control block.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The indirect address or stack
control block results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Stack Exception. The stack is full.

8-118 GA34-0152

Push Doubleword (PSD)

PSD reg,addr4

045 789 101112 15

Address/Displacement

Displacement 1 lacement 2
16 2324 31

The doubleword operand contained in the register
pair specified by the R-field and the R+ 1 field is
pushed into the stack. The stack is defined by the
stack control block pointed to by the effective
address.

If the R-field value is 7, registers 7 and 0 are
used.

Programming Note: If AM equals 01, the register
specified by the RB field is incremented by 2.

Refer to "Stack Operations" in Chapter 2 for
additional information about the operation of this
instruction and the associated stack control block.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Stack Exception. The stack is full.

C,

c
c

c
C:

c
C'

i

r
I

l-/

c
c
c
c
c
CI

c

o
o
o
o
o
o
o
o
o
C)

[
o
o
o
o
o

o
o
o
o

Push Word (PSW)

PSW reg,addr4

045 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2323 31

The word operand contained in the register
specified by the R-field is pushed into the stack.
The stack is defined by the stack control block
pointed to by the effective address.

Programming Note: If AM equals 01, the register
specified by the RB field is incremented by 2.

Refer to "Stack Operations" in Chapter 2 for
additional information about the operation of this
instruction and the associated stack control block.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Stack Exception. The stack is full.

PSW-PW

Pop Word (PW)

PW addr4,reg

045 7 8 9 1011 12 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The top element of a word stack is popped from
the stack and loaded into the register specified by
the R-field. The stack is defined by the stack
control block pointed to by the effective address.

Programming Note: If AM equals 01, the register
specified by the RB field is incremented by 2.

Refer to "Stack Operations" in Chapter 2 for
additional information about the operation of this
instruction and the associated stack control block.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Stack Exception. The stack is empty.

Instructions 8-119

RBTB

Reset Bits Byte (RBTB)

Register /Storage Format

RBTB addr4,reg
reg,addr4

lop code
1 100
o

4 5 7 8 9 }10 r 1213

o = storage to register
1 = register to storage

15

Address/Displacement
Displacement 1 Displacement 2

16 2324

This instruction operates either:

1. Storage to register (instruction bit 12 equals
0), or

2. Register to storage (instruction bit 12 equals
1).

Storage to Register. The specified bits are reset in
the least-significant byte of the register specified
by the R-field. The bit positions containing O's
correspond to the bit positions containing 1-bits in
the main storage byte location specified by the
effective address. The remaining bits in the
low-order byte of the register are not changed.
Bits 0-7 of the register and the storage operand
are not changed.

Register to Storage. The specified bits are reset in
the main storage byte location specified by the
effective address. The bits positions containing O's
correspond to the bit positions containing I-bits in
the least-significant byte of the register specified

. by the R-field. The remaining bits in the storage
location are not changed. The register operand i~
not changed.

8-120' GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only_

The instruction is terminated.

Specification Check. 'The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

o

c~

c

c
c'
c
C'

C:

c

o
o
o
o
o
o
C)

o
o

c
o
C)

o
o
o
o
o
o
o
o

Storage/Storage Format

RBTB addr5,addr4

045 7 8 9 1011121314 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. The bit
positions containing 1-bits in byte operand 1
determine the bit positions set to O's in byte
operand 2. The remaining bits in operand 2 are
not changed. The result replaces operand 2.
Operand 1 is not changed.

RBTB

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-121

RBTD

Reset Bits Doubleword (RBTD)

Register /Storage Format

RBTD addr4,reg
reg,addr4

,0 4 5 789 10111213 15

a = storage to register}~
1 = register to storage

Address/Displacement
Displacement 1 Displacement 2

16 2324

This instruction operates either:

1. Storage to register (instruction bit 12 equals
0), or

2. Register to storage (instruction bit 12 equals
o.

Storage to Register. The specified bits are reset in
the register pair specified by the R-field and the
R+ 1 field. The bit positions containing D's
correspond to the bit positions containing I-bits in
the doubleword main storage location specified by
the effective address. The remaining bits in the
register pair are not changed. The storage operand
is not changed.

Register to Storage. The specified bits are reset in
the doubleword main storage location specified by
the effective address. The bit positions containing
D's correspond to the bit positions containing
I-bits in the register pair specified by the R-field
and the R + 1 field. The remaining bits in the
storage operand are not changed. The register
operand is not changed.

If the R-field value is 7, registers 7 and 0 are
used.

8-122 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

C:

C

c
c
r
I

I
L,

C

c'
c
c
c
c

c'

o
o
o
o
o
o
o
o
o

o
o
C)
o
o
o
o

o
o
o

Storage/Storage Format

RBTD addr5,arldr4

045 7 8 9 1011121314 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. The bit
positions containing I-bits in doubleword operand
1 determine the bit positions set to O's in
doubleword operand 2. The remaining bits in
operand 2 are not changed. The result replaces
operand 2. Operand 1 is not changed.

Note: In case of overlapping operands, operand 1
is fetched in its entirety before operand 2 is
stored.

RBTD

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-123

RBTW

Reset Bits Word (RBTW)

Register/Register Format

RBTW reg,reg

I Function I
.0 0 0 0 0

045 7 8 1011 15

The bit positions containing I-bits in the register
specified by the R 1 field determine the bit
positions set to O's in the register specified by the
R2 field. The remaining bits in the register
specified by the R2 field are not changed. The
contents of the register specified by the R 1 field
are not changed unless the R 1 and R2 field
specify the same register.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Register/Storage Format

RBTW addr4,reg
reg,addr4

I~p~o~e 0 11 R I RB lAM Ix I~un~ 01
o 4 5 789 10111213 15

0= storage to register I
1 = register to storage }-----J

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

8-124 GA34-0152,

This instruction operates either:

1. Storage to register (instruction bit 12 equals
0), or

2. Register to storage (instruction bit 12 equals
1).

Storage to Register. The specified bits are reset in
the register specified by the R-field. The bit
positions containing O's correspond to the bit
positions containing I-bits in the main storage
word location specified by the effective address.
The remaining bits in the register are not changed.
The storage operand is_not changed.

Register to Storage. The specified bits are reset in
the main storage word location specified by the
effective address. The bit positions containing O's
correspond to the bit positions containing I-bits in
the register specified by the R-field. The
remaining bits in the storage operand are not
changed. The register operand is not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

o

(~

c

o .../'

c
o

c
c·

C~:

c'
c·

o
o
o
o
o
o
o
o
C)

o

o
o
o
o
()

o
o
o
o
o
o

Storage/Register Long Format

RBTW longaddr ,reg

I Address

16 31

The bit positions containing I-bits in the main
storage word location specified by the effective
address determine the bit positions set to O's in
the register specified by the Rl field. The
remaining bits in the register specified by the Rl
field are not changed. The storage operand is not
changed.

The effective address is generated as follows:

1. The address field is added to the contents of
the register specified by the R2 field to form a
main storage address. If the R2 field equals 0,
no register contributes to the address
generation. The contents of the R2 field are
not changed.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11=0 (direct address). The result from
step 1 is the effective address.

Bit 11 = 1 (indirect address). The result from
step 1 is the address of the main storage .
location that contains the effective address.

RBTW

Indicators

Carry and Overflow. These indicators are not
changed.

Even~ Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective. address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

Instructions 8-125

RBTW-RBTWI

Storage/Storage Format

RBTW addr5,addr4

lOP code I RBI
1 0 0 0 1
045 7 8 9 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. The bit
positions containing I-bits in word operand I
determine the bit positions set to O's in word
operand 2. The remaining bits in operand 2 are
not changed. The result replaces operand 2.
Operand I is not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-126 GA34-0152

Reset Bits Word Immediate (RBTWI)

Register Immediate Long Format

RBTWI word,reg[,reg]

04578

I Immediate field

16

I
Function I

.0 0 1 0 0
1011 15

31

The bit positions containing I-bits in the
immediate field are set to O's in the contents of
the register specified by the Rl field. The result is
placed in the register specified by the R2 field.

The contents of the register specified by the R I
field are not changed unless the R I and R2 field
specify the same register.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operatiQn.

c

c
c
c
c
c

c
c
c
(~

c
c

c
c'
c

o
()

o
C)
o

o
o
o

o
o
o
o
o
o
o
o
o
C)

Storage Immediate Format

RBTWI word,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

Op code

o 1 000

o 101112

I Immediate field

16

Format with appended word for

effective addressing (AM = 10 or 11)

Opcode

o 1 000

o 4

Address/Displacement

Displacement 1 Displacement 2

16 2324

I Immediate field

32

15

31

31

47

RBTWI

The bit positions containing 1-bits in the
immediate field determine the bit positions set to
O's in the main storage location specified by the
effective address. The immediate operand and
source operand are not changed.

Bits 5-7 of the instruction are not used and must
, be set to O's to avoid future code obsolescence.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only ..

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-127

SA

Subtract Address (SA)

Register Immediate Long Format

SA raddr,reg[,reg]

045 7 8

!lmmediate field

16

I
Function I

.0 0 0 1 ~
1011 15

31

The immediate field (an address value) is
subtracted from the contents of the register
specified by the Rl field. The result is placed in
the register specified by the R2 field. The contents
of the register specified by the Rl field are not
changed unless the R 1 and R2 field specify the
same register.

8-128 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the difference; the
carry indicator contains the complement of the
high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

c
C~

o
c
c'
c'
c
o

c
o

c

c

()

o
o

()

o
(j

C)

o
o

o
o
o
C)

o
o
o

o
o
o

Storage Immediate Format

SA raddr ,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

I ~p lco~e 0 0 10 0 0 I RB lAM I~u~cti:n 0 I
o 4 5 789 101112 15

I Immediate field

16

Format with appended word for
effective addressing (AM = 10 or 11)

31

I~p;o~e 0 010 0 olRB lAM I~u~ct~onol
o 4 5 789 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

I Immediate field

32 47

The immediate field (an address value) is
subtracted from the contents of the main storage
location specified by the effective address. The
result replaces the contents of the storage location
specified by the effective address. The immediate
operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

SA

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the difference; the
carry indicator contains the complement of the
high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-129

SB

Subtract Byte (SB)

SB reg,addr4
addr4,reg

lop code
1 1 0 0

o 4 5 789 10111213

1 = result to storage I
0= result to reg;ster}----J

Address/Displacement
Displacement 1 Displacement 2

15

16 2324 31

A subtract operation is performed between the
least-significant byte of the register specified by
the R-field and the location specified by the
effective address in main storage. The source
operand and high-order byte of the register are
not changed.

Bit 12 of the instruction specifies the destination
of the result.

8-130 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than _27 or greater than +27_1.

If an overflow occurs, the result contains the
correct low-order eight bits of the difference; the
carry indicator contains the complement of the
high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c
o

c

c

o
(~

I

C,:
. ..--

0 ,
_./

c'

C" ,I

o
o
o
o
C)

o
o
o

[1
o
o
o
o
o
o
o
o
o
C)

Set Bits Byte (SBTB)

Register/Storage Format

SBTB reg,addr4
addr4,reg

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A logical OR operation is performed between the
least-significant byte of the register specified by
the R-field and the location specified by the
effective address in main storage. The source
operand is not changed. When going from storage
to register, bits 0-7 of the register are not
changed.

Bit 12 of the instruction specifies the destination
of the result.

8BTB

Indicators

Carry and Overflow. These indicators are not
changed ..

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions· 8-131

SBTB

Storage/Storage Format

SBTB addr5,addr4

I ~p ;o~e 0 0 I RBI I RB2IAMIIAM21~unlcl
o 4 5 789 101112131415

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A one
byte logical OR operation is performed between
operand 1 and operand 2. The result replaces
operand 2.

8-132 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect. the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c)

('
I

c.) -,'

c

c
(~,

C)

o
L
~

)

()

o
o

C)
o

c)
r---"

U

o
o
o

Set Bits Doubleword (SBTD)

Register /Storage Format

SBTD addr4,reg
reg,addr4

lop code
1 1 0 1

o 4 5 789 10111213

1 = result to storage' I
o = result to register r

Address/Displacement
Displacement 1 Displacement 2

16 2324

15

31

A logical OR operation is performed between the
contents of the register pair specified by the
R-field and the R+ 1 field and the doubleword in
main storage specified by the effective address.
The source operand is not changed.

If the R-field value is 7, registers 7 and 0 are
used.

Bit 12 of the instruction specifies the destination
of the result.

SBTD

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-133

SBTD

Storage/Storage Format

SBTD addr5,addr4

045 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 .2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A
doubleword logical OR operation is performed
between operand 1 and operand 2. The result
replaces operand 2. Operand 1 is not changed.

8-134 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

C>

r"""" (I

,-....... /

(~
'--_ ..

(--------\
\.......-'!

('
!

C·! .. -"

CI

C',i
"-. ,I

()

o

o

o

o
o
o
o

o
o

o

Set Bits Word (SBTW)

Register /Register Format

SBTW reg,reg

04578
I Function I
.0 0 0 0 1

1011 15

The contents of the register specified by the R1
field are ORed bit-by-bit with the contents of the
register specified by the R2 field. The result is
placed in the register specified by the R2 field.
The contents of the register specified by the R 1
field are not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Register/Storage Format

SBTW reg,addr4
addr4,reg

IOPCOde
1 1 0 0
o 4 5 789 10111213

1 = result to storage) I
0= result to register ~

Address/Displacement
Displacement 1 Displacement 2

16 2324

SBTW

15

31

A logical OR operation is performed between the
contents of the register specified by the R-field
and the location specified by the effective address
in main storage. The source operand is not
changed.

Bit 12 of the instruction specifies the destination
of the result.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-13 5

SBTW

Storage/Register Long Format

SBTW longaddr,reg

lop code
o 1 1 0

o 4 5 7 8 101112 15

0= direct address } J
1 = indirect address

I Address

16 31

A logical OR operation is performed between the
contents of the main storage location specified by
an effective address and the contents of the
re gister specified by the R 1 field. The result is
placed in the register specified by the Rl field.

The effective main storage address is generated as
follows:

1. The address field is added to the contents of
the register specified by the R2 field. If the
R2 field equals 0, no register contributes to
the address generation.

2. Instruction bit 11 is tested for direct or
indirect addressing:

Bit 11 =0 (direct address). The result from
step 1 is the effective address.

Bit 11=1 (indirect address). The result from
step 1 is the address of the main storage
location that contains the effective address.

8-136 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation.

c'
('
' -/.

C'I
.~

U

C~)

u
C)

o
o
o
o
o
o
o
o

c
o
o
o
o
o
o

o
o
o

Storage/Storage Format

SBTW ad drS ,addr4

I~p~o~e 0 11 RBt I RB2IAMtIAM21:un~1
o 4 5 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement
Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage. A
one-word logical OR operation is performed
between operand 1 and operand 2. The result
replaces operand 2. Operand 1 is not changed.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

SBTW-SBTWI

Set Bits Word Immediate (SBTWI)

Register Immediate Long Format

SBTWI word,reg[,reg]

04578

I Immediate field

16

I
Function I

.0 0 0 1 1
1011 15

31

The immediate field is ORed bit-by-bit with the
contents of the register specified by the R 1 field.
The result is placed in the register specified by the
R2 field. The contents of the register specified by
the R 1 field are not changed unless the R 1 and R2
field specify the same register.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-13 7

SBTWI

Storage Immediate Format

SBTWI word,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

I~p;~e 0 010 0 0lR8 lAM I~u~ct~nol
o 4 5 7 8 9 101112 15

I Immediate field

16

Format with appended word for

effective addressing (AM = 10 or 11)

Op code

o 1 000

o 4 5 7 8 9 101112

Address/Displacement

Displacement 1 Displacement 2
16 2324

I Immediate field

32

31

31

47

A logical OR operation is performed between the
immediate field and the contents of the main
storage location specified by the effective address.
The result replaces the contents of the storage
location. The immediate operand is not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

8-138 GA34-0152

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
area not assigned to the current operation.

Attempts to change an ope·rand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c
c'

(~'
I

I

o
C)
('
\ /

c\;
C)
C:

o
o
C)
o
o
o
o
o

C)

o
C)

o
o
o
o
o

o
o
o

Subtract Carry Indicator (SCY)

SCY reg

lOP code
o 1 1 1
o 4 5 7 8

I Function I
.0 0 0 1 0

1011 15

The value of the carry indicator on entry is
subtracted from the contents of the register
specified by the R2 field. The result is placed in
the register specified by the R2 field.

Bits 5-7 of the instruction are not used and must
be set to D's to avoid future code obsolescence.

Programming Note. This instruction can be used
when subtracting multiple word operands. See
"Indicators-Multiple Word Operands" in Chapter
2.

SCy

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the word, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one word; that is, if the difference
is less than _215 or greater than +215_1.

If an overflow occurs, the result contains the
correct low-order 16 bits of the difference; the
carry indicator contains the complement of the
high-order (sign) bit.

Even. The even indicator is not changed.

Negative. The negative indicator is changed to
reflect the result.

Zero. If on at entry, the zero indicator is changed
to reflect the result. If off at entry, it remains off.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Instructions 8-139

SD

Subtract Doubleword (SD)

Register/Storage Format

SD reg,addr4
addr4,reg

IOPCOde
1 1 0 1
o 4 5 789 10111213 15

1 = result to storage I
o = result to register}----J

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

A subtract operation is performed between the
register pair specified by the R -field and the R + 1
field and the double word in main storage specified
by the effective address. The source operand is
not changed.

If the R-field value is 7, registers 7 and 0 are
used.

Bit 12 of the instruction specifies the destination
of the result.

8-140 GA34-0152

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the doubleword, the
carry indicator is set to 1. If no borrow is
detected, the carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in the doubleword; that is, if the
difference is less than _231 or greater than
+231_1.

If an overflow occurs, the result contains the
correct low-order 32 bits of the difference; the
carry indicator contains the complement of the
high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

Is fetched or data is accessed from a storage
area not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

CI

o

o

c
c

o
r
I

L ..

(~

()

o
o ,/

o
C,

/

C)

0.

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o

o
o
C)

Storage/Storage Format

SO addrS ,addr4

045 789 101112131415

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

Address/Displacement

Displacement 1 Displacement 2

32 3940 47

The address arguments generate the effective
addresses of two operands in main storage.
Ooubleword operand 1 is subtracted from
doubleworrl operand 2. The result replaces
operand 2. Operand 1 is not changed.

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the doubleword, the
carry indicator is set to 1. If no borrow is
detected, the carry indicator is reset.

SD

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in the doubleword; that is, if the
difference is less than _231 or greater than
+231-1.

If an overflow occurs, the result contains the
correct low-order 32 bits of the difference; the
carry indicator contains the complement of the
high-order (sign) bit.

Even, Negative, and Zero. These indicators are
changed to reflect the result.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, the
instruction:

• Is fetched or data is accessed from a storage
ar~a not assigned to the current operation.

• Attempts to change an operand in a storage
area assigned as read-only.

The instruction is terminated.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-141

SEAKR

Set Address Key Register (SEAK~)

System Register/Storage Format

Mnemonic Syntax Instruction name K-field

SEAKR addr4 Set Address Key 011
Register

Extended
mnemonic Syntax Instruction name K-field

SEISK addr4 Set Instruction 000
Space Key

SEOOK addr4 Set Operand 1 Key 010
SEOTK addr4 Set Operand 2 Key 001

lOP code
o 1 0 1 11K IRS lAM I ~u~ct~on 0 I
0 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The address key register (AKR) field, specified by
the K-field, is loaded from the word location in
main storage specified by the effective address.
The contents of the word in main storage are not
changed.

The K-field can specify either a field within the
AKR or the entire AKR.

K-field Address key register field name Bits

000 Instruction space key 13-15
001 Operand 2 key 9-11
010 Operand 1 key 5-7
011 Address key register 0-15
100 See Note
101 See Note
110 See Note
111 See Note

Note: To avoid future program obsolescence,
these K-field values should not be used.

8-142 GA34-0152

If the K-field specifies it specific field within the
AKR, bits 13-15 from the word location in main
storage are loaded into the AKR field. If the
K-field specifies the entire AKR, bits 0-15 from
the word location in main storage are loaded into
the AKR.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

c
c
c

c

c
o

c
c
c
c

c

C)
o
o
o
o
o
o
o

o

o
o
o
o
o
o

o
o
o

System Register/Register Format

Mnemonic Syntax Instruction name K-field

SEAKR reg Set Address Key 011
Register

Extended
mnemonic Syntax Instruction name K-field

SEISK reg Set Instruction 000
Space Key

SEOOK reg Set Operand 1 Key 010
SEOTK reg Set Operand 2 Key 001

lOP code
o 1 1 1 1 IK IR I Function

1 0 0 1 01
0 4 5 7 8 1011 15

The address key register (AKR) field, specified by
the K-field, is loaded from the register specified
by the R-field. The contents of the register are not
changed.

The K-field can specify either a field within the
AKR or the entire AKR.

K-field Address key register field name Bits

000 . Instruction space key 13-15
001 Operand 2 key 9-11
010 Operand 1 key 5-7
011 Address key register 0-15
100 See Note
101 See Note
110 See Note
111 See Note

Note: To avoid future program obsolescence,
these K-field values should not be used.

If the K-field specifies a specific field within the
AKR, bits 13-15 from the register specified by
the R-field are loaded into the AKR field. If the
K-field specifies the entire AKR, bits 0-15 from
the specified register are loaded into the AKR.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

SEAKR-SECLK

Set Clock (SECLK)

SECLK reg

lop code
o 1 1 1 1 10 0

0lR2 1 Function
1 0 1 0 01

0 4 5 7 8 1011 15

The registers specified by the R2 field and the
R2+ 1 field contain a doubleword value that
represents time in milliseconds. This value is set
into the clock register. The register specified by
the R2 field and the R2+ 1 field are not changed.

If the R2 field value is 7, registers 7 and 0 are
used.

Bits 5-7 of the instruction are not used, and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Instructions 8-143

SECMP-SECON

Set Comparator (SECMP)

SECMP reg

IOPcode
o 1 1 1 I Function I

.1 0 1 0 1
o 4 5 7 8 1011 15

The registers specified by the R2 field and the
R2+ 1 field contain a doubleword value that
represents time in milliseconds. This value is set
into the comparator register. The register specified
by the R2 field and the R2+ 1 field are not
changed.

If the R2 field value is 7, registers 7 and 0 are
used .

. Bits 5-7 of the instruction are not used, and must
be set to O's to avoid future code obsolescence.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

8-144 GA34-0152

Set Console Data Lights (SECON)

SECON reg

Op code

o 1 1 1
o 4 5 7 8

Function

1 000 0
1011 15

The contents of the register specified by the R2
field are stored in the console data lights. The
contents of the register are unchanged.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future conde obsolescence.

If the programmer console is not installed, the
instruction performs no operation.

Indicators

The indicators are not changed.

Program-Check Conditions

Privilege Violate. In the problem state, a
privileged instruction is encountered.

c

c
o

c
o

c
c

c
C:

.'-'/

c

o
()

o
o

C)

C)

o

o
o

c)
()

o

o
o
o
o

Set Floating Level Block (SEFLB)

SEFLB reg,addr4

o 4 5 789 101112 15

A floating level block in main storage is loaded
into the floating-point registers for the level
specified by the register specified by the R-field.
The generated effective address specifies the
beginning address of the floating level block. The
contents of main storage and the register specified
by the R-field are not changed. The floating level
block appears in main storage as follows:

EA

EA + 24 (hex)

Loaded into floating-point register 0

Loaded into floating-point register 1

Loaded into floating-point register 2

Loaded into floating-point register 3

o 63

The general register specified by the R-field has
the following format:

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I Levell

o 131415

SEFLB

Bits 0-7, 12, and 13 must be set to O's to avoid
future code obsolescence. Bits 8-11 must be set to
O's to select the floating-point feature. Bits 14 and
15 hold the binary-encoded level of the floating
level block associated with this operation. For
example, 00 for level 0, 01 for level 1, 10 for level
2, and 11 for level 3.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Soft-Exception Trap Conditions

Invalid Function. An attempt has been made to
execute a floating-point instruction when the
floating-point feature is not installed. The
instruction is terminated.

Instructions 8-145

SEIMR-SEIND

Set Interrupt Mask Register (SEIMR)

SEIMR addr4

Op code
o 1 011
o 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

The contents of the word location in main storage
specified by the effective address are loaded into
the interrupt mask register. The contents of main
storage are not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

The mask is represented in a bit-significant
manner, with bit 0 representing level 0, and so on.
(See "Interrupt Masking Facilities" in Chapter 3.)
Bit 4-15 are set to O's.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

8-146 GA34-0152

Set Indicators (SEIND)

SEIND reg

lOP code
o 1 1 1
o 4 5 7 8

I Function I
.0 1 1 1 1

1011 15

Bits 0-7 of the register specified by the R2 field
are loaded into bits 0-7 of the current level status

'register (indicators). Bits 8-15 of the register
specified by the R2 field are ignored. Bits 8-15 of
the level status register are not changed.

Bits 5-7 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

The following table shows the indicator bits of the
level status register (LSR):

LSR bit Indicator
o Even
1 Carry
2 Overflow
3 Negative
4 Zero

Indicators

The indicators are changed as specified by the
register designated by the R2 field.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

o
CI

c

c'

C'I

c
c
c'
c

c

o
o
o
C)

o

o
o

[
o
o
o
o
o
o
o
o

o

Set Level Block (SELB)

SELB reg,addr4

045 789 101112 15

Address/Displacement

Displacement 1 Displacement 2
16 2324 31

This instruction loads a level status block (LSB),
from 11 words of main storage, into the hardware
LSB for a selected level. The beginning location
for the main storage LSB is specified by the
effective address. The contents of the storage
locations are not changed.

The format of the register specified by the R-field
is:

o 0 0 0 0 00 0 0 0 0
o 1 131415

Inhibit Trace (IT) Bit

When bit 0 (IT) of the register specified by the
R-field and bit 10 (trace bit) of the selected level
status register (LSR) are set to 1, the SELB and
the instruction pointed to by the IAR within the
main storage LSB are executed before trace
interrupts are allowed.

If bit 0 is set to 0 and bit 10 in the LSR of the
main storage LSB is set to 1, the SELB instruction
is executed and trace interrupts are allowed.

The main storage LSB contains data produced
prior to the execution of the SELB instruction.
When the instruction is executed, the data in the
main storage LSB replaces the chosen
priority-level hardware LSB data.

Bits 1-13 of the register are not used and must be
set to O's to avoid future code obsolescence.

SELB

Bits 14-15 of the register specified by the R-field
specify the selected level.

Bits 14 15

Level 0 0 0
Level 1 0 1
Level 2 1 0
Level 3 1 1

Refer to "Program-Controlled Level Switching" in
Chapter 3 for further information.

Programming Notes:

1. When trace is enabled, double tracing can be
prevented by exiting the trace routine with a
SELB instruction that has the IT bit set to 1.

2. Trace interrupts are inhibited on a level exit
when the SELB sets the current level
in-process bit to 0 and the trace bit to 1.

3. The current level AKR and LSR registers are
not changed except when bits 14 and 15 of
the specified R-field register select the same
level.

4. If the AM field equals 01, the contents of the
register specified by the RB. field are
incremented by 2.

Execution of the SELB instruction can cause the
processor to change levels. Also, the processor
may exit supervisor state. For additional
information about the processor action when
executing this instruction, refer to
"Program-Controlled Level Switching" in Chapter
3.

Indicators

The indicators are not changed if the specified
level is other than the current level.

Instructions 8-147

SELB

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. The instruction loads an LSB that
causes the processor to enter the problem state.
The instruction defined by the LSB is accessed
from a storage area not assigned to the current

8-148 GA34-0152

operation. The instruction pointed to by the
hardware LSB is suppressed. The SELB
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c~

c

c

c
o

C)

c
c

c'

c'

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o

o
o
o

Set Storage Key (SESK)

SESK reg,addr4

o 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

This instruction loads a storage key register with
the contents of the byte location in main storage
specified by the effective address.

The register specified by the R-field contains the
main storage block number for the storage key
register to be loaded. (A storage key register is
associated with every 2048 bytes of storage.) The
block number is binary encoded in bits 0-4 of the
register.

Bits 5-15 of the instruction are not used and must
be set to O's to avoid future code obsolescence.

The format of the register specified by the R-field
is:

I Block
10 0 0 0 0 000 0001

o 4 5 , ___ v-__ .J

Values
0-31

15

The format of the byte at the storage location is:

1 0 0 0 0 1 Key I R I
o 3 4 6 7

Values 0-7 T I
1 = read only

SESK

Bits 0-3 are not used and must be set to O's to
avoid future code obsolescence. Bits 4-7 are the
storage key and read-only bit for the selected
storage block.

The contents of the storage location are not
changed.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

Instructions 8-149

SESR

Set Segmentation Register (SESR)

SESR reg,addr4

o 4 5 789 101112 15

Address/Displacement
Displacement 1 Displacement 2

16 2324 31

This instruction loads a segmentation register with
the contents of the doubleword location in main
storage specified by the effective address.

The general register specified by the R-field must
contain the logical address of a segmentation
register (0-31, decimal) in bits 0-4, and an
address key value of 000 to 111 in bits 5-7. Bits
8-15 of the register must be set to O's. The format
of the general register specified by.the R-field is:

Logical
address bits o 0 0 0 0 0 0 0
o 4 5 7 8 15
~

Register
0-31

The logical address of the register selects a
specific segmentation register (0-31) in a
segmentation register stack 0-7.

The address-key field of the register selects a
stack 0-7 of the segmentation registers.

The first word of the specified doubleword that is
loaded into the selected segmentation register has
the following format:

o
1 =6va~d 121(Tj
1 = read-only
(must be 0)

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01
16 31

8-150 GA34-0152

The segment address (bits 7-12) contains the six
high-order bits of the physical address, which is
used by the translator to select a 2K-byte block of
main storage.

Bit 13, if aI, signifies that the contents of the
segmentation register are valid, and translation can
be performed. If an attempt is made to use a
segmentation register with bit 13 set to 0, a
program-check interrupt occurs with invalid
storage address set in the PSW.

Bit 14, if aI, signifies that the block is read-only.
If an attempt is made to write into the block when
bit 14 of the associated segmentation register is a
1 and while in problem state, a program-check
interrupt occurs, with protect check set in the
PSW. When in supervisor state or on a cycle-steal
access, bit 14 is ignored. The contents of main
storage can be changed.

The second word (bits 16-31) of the specified
doubleword must be set to 0 to avoid future code
obsolescence.

Chapter 5 describes the relocation translator and
relocation addressing. Refer to "Storage Mapping"
in Chapter 5 for an example of loading
segmentation registers.

Indicators

The indicators are not changed.

Program-Check Conditions

Invalid Function. In the supervisor state, an
attempt has been made to execute this instruction
when the translator is not enabled.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Privilege Violate. In the problem state, a
privileged instruction is encountered.

Specification Check. The effective address or
indirect address results in an even-byte boundary
violation. The instruction is terminated.

c

c
c'

c
c
c
I
I
I

I
I
\,,--,/

c
c
c
c
c
c
c
c
('

'-...- .

o
o
o
o
o
o
o
o
o
o

o
C)

o
o
o
o

o
o
o

Scan Byte Field Equal and Decrement (SFED)

Scan Byte Field Equal and Increment (SFEN)

SFED reg,(reg)
SFEN reg,(reg)

I~p ~o~e 0 1 I Rl IR2 10 I' ID I~u~cl
o 4 5 7 8 1011121314 15

1 for SFED or SFEN I

contents of R 2
1 for SF EN : increment

contents of R 2

This instruction compares a field in main storage
against a single byte contained in a register.
Register 7 contains the number of bytes to be
compared. This number is decremented after each
byte is compared.

The register specified by the Rl field contains, in
bits 8-15, the single byte of operand 1. The
register specified by the R2 field contains the
starting address of operand 2. Operand 1 is
subtracted from operand 2, but neither operand is
changed.

After each byte is compared, the address in the
R2 field is incremented or decremented (as
determined by bit 13 of the instruction). The
operation terminates when either:

1. An equal condition is detected, or

2. The number of bytes specified in register 7
has been compared.

When an equal condition occurs, the address in
the register specified by the R2 field points to the
next operand to be compared, but the count in
register 7 is not updated.

Bit 11 of the instruction is not used and must be
set to ° to avoid future code obsolescence.

See "Compare Byte Field Equal and Decrement
(CFED)" and "Compare Byte Field Equal and
Increment (CFEN)" for other versions of this
machine instruction.

SFED-SFEN

Notes:

1. Variable-field-length instructions can be
interrupted. When this occurs and the
interrupted level resumes operation, the
processor treats the incomplete instruction as a
new instruction, with the remaining byte count
specified in register 7.

2. If the specified count in register 7 is 0, the
instruction performs no operation (no-op).

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than _27 or greater than +27_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result of the subtract
operation.

Program-Check Conditions

Invalid Function. Register 7 is specified in the Rl
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

Instructions 8-15 1

SFNED-SFNEN

Scan Byte Field Not Equal and Decrement
(SFNED) .

Scan Byte Field Not Equal and Increment
(SFNEN)

SF NED
SFNEN

reg,(reg)
reg,(reg)

I~p ~o~e 0 1 IR1 I R2 10 I' ID l~u~1
o 4 5 7 8 101112131415

1 for SFNED or SFNEN ~
o for SFNED; decrement}

contents of R2 ___
1 for SFNEN; increment

contents of R 2

This instruction compares a field in main storage .
against a single byte contained in a register.
Register 7 contains the number of bytes to be
compared. This number is decremented after each
byte is compared.

The register specified by the Rl field contains, in
bits 8-15, the single byte of operand 1. The
register specified by the R2 field contains the
starting address of operand 2. Operand 1 is
subtracted from operand 2, but neither operand is
changed.

After each byte is compared, the address in the
R2 field is incremented or decremented (as
determined by bit 13 of the instruction). The
operation terminates when either:

1. An unequal condition is detected, or

2. The number of bytes specified in register 7
has been compared.

When an unequal condition occurs, the address in
the register specified by the R2 field points to the
next operand to be compared, but the count in
register 7 is not updated.

Bit 11 of the instruction is not used and must be
set to 0 to avoid future code obsolescence.

See "Compare Byte Field Not Equal and
Decrement (CFNED)" and "Compare Byte Field
Not Equal and Increment (CFNEN)" for other
versions of this machine instruction.

8-152 GA34-0152

Notes:

1. Variable-field-length instructions can be
interrupted. When this occurs and the
interrupted level resumes operation, the
processor treats the incomplete instruction as a
new instruction, with the remaining byte count
specified in register 7.

2. If the specified count in register 7 is 0, the
instruction performs no operation (no-op).

Indicators

Carry. If a borrow is detected out of the
high-order bit position of the byte, the carry
indicator is set to 1. If no borrow is detected, the
carry indicator is reset.

Overflow. The overflow indicator is cleared, and
then set to 1 if the difference cannot be
represented in one byte; that is, if the difference is
less than _27 or greater than +27_1.

Even, Negative, and Zero. These indicators are
changed to reflect the result of the subtract
operation.

Program-Check Conditions

Invalid Function. Register 7 is specified in the Rl
or R2 field of the instruction. The instruction is
terminated.

Invalid Storage Address. One or more words of the
instruction or the effective address are outside the
installed storage size of the system. The
instruction is terminated.

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation. The
instruction is terminated.

c·
c
c

C:·

c

c
C:
,r----,

r

c
c
c
c~

c
c
c
c
c

o
o
o
c)
o
o
o
o
o
o

[]
o
o
o
o
o
o
o
o
o
o

Shift Left Circular (SLC)

Immediate Count Format

SLC cnt 16,reg

I Count

o 4 5 7 8 1213 15

The bits in the register specified by the R-field are
shifted left by the number of bit positions
specified in the count field. The bits shifted out of
the high-order bit (bit 0) reenter at the low-order
bit (bit 15). If the shift count is 0, no shifting
occurs.

Although the register to be shifted contains only
16 bits, shift count values of 0-31 may be
specified. Shift counts greater than 16 lengthen
the execution time and provide an effective shift
of modulo 16.

Indicators

Carry and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the final contents of the
register.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

Example:

Instruction

Op code

o 0 1 1 0
o 4

Count
00100

Register 3 Count = 4

Register 3 before shift

SLC

15

o 1 0 0 0 0 0 1 001 000 1 1
o 15 -...-- --...--~ --....--

4 2 3

Register 3 after shift

000 1 001 000 1 101 0 0
o 15 ------ ----- --...--~ 1 2 3 4

Instructions 8-153

SLC

Count in Register Format

SLC reg,reg

I Op code 0 I Rl
. 0 1 1.1. .
045 7 8

I Function I
. 1 000 0

1011 15

Note: In the assembler syntax, operand 1 is the
register that contains the shift count. Operand 2 is
the register that is shifted.

The bits in the register specified by the R 1 field
are shifted left by the number of bits specified by
the shift count. This count is obtained from bits
8-15 of the register specified by the R2 field.

The contents of the register specified by the R2
field are not changed unless the R 1 and R2 fields
specify the same register. In this case, the register
contents are shifted as specified.

Although the register to be shifted contains only
16 bits, shift count values of 0-255 may be
specified. Shift counts greater than 16 lengthen
the execution time and provide an effective shift
of modulo 16.

Indicators

Ca"y and Overflow. These indicators are not
changed.

Even, Negative, and Zero. These indicators are
changed to reflect the final contents of the register
specified by the R 1 field.

Program-Check Conditions

Protect Check. In the problem state, an instruction
is fetched or data is accessed from a storage area
not assigned to the current operation.

8-154 GA34-0152

Example:

Instruction

Op code Function
o 1 1 1 0 1 0 0 0 0
o 4 7 1011 15

~'-v-'

Register Register
3 4

Register 4 contains shift count

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 01
o

Register 3 before shift

15
-..--
Count = 8

o 1 0 0 0 0 0 1 001 000 1 1
o ~
~~~-..---

4 2 3 

Register 3 after shift 

0010001101000001 
o ~ 
~ --..-- --..--~ 

2 3 4 

o 

c 
c 
c 
c 
o 

c 
o 

c 
c 
c 
c' 
c 



() 

o 
o 
o 
C) 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 

o 
C) 
c) 

Shift Left Circular Double (SLCD) 

Immediate Count Format 

SLeD 

lOp code 
o 0 1 1 

o 

cnt31,reg 

4 5 7 8 1213 15 

The bits in the register pair specified by the 
R-field and the R+ 1 field are shifted left by the 
number of bit positions specified in the count 
field. 

Within the register pair, the register specified by 
the R-field contains the high-order word (bits 
0-15); the register specified by the R+ 1 field 
contains the low-order word (bits 16-31). The 
bits shifted out of the high-order bit (bit 0) 
reenter at the low-order bit (bit 31). If the shift 
count is 0, no shifting occurs. 

If the R-field value is 7, registers 7 and 0 are used 
for the register pair. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the two 
registers. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Example: 

I nstructio n 

Op code 
o 0 1 1 
o 

Count 
1 1 0 1 
7 8 

'-...-.'~ 

Register Count = 20 
3 

Register pair before shift 

Register 3 Register 4 

Hexadecimal 

Register pair after shift 

Register 3 Register 4 

Hexadecimal 

SLeD 

Instructions 8-155 



SLeD 

Count in Register Format 

SLeD reg,reg 

045 7 8 
I Function I 
.1 0 1 0 0 

1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register pair specified by the R 1 
field and the R 1 + 1 field are shifted left by the 
number of bits specified by the shift count. This 
count is obtained from bits 8-15 of the register 
specified by the R2 field. 

Within the register pair, the register specified by 
the R 1 field contains the high-order word (bits 
0-15); the register specified by the R 1 + 1 field 
contains the low-order word (bits 16-31). The 
bits shifted out of the high-order bit (bit 0) 
reenter at the low-order bit (bit 31). If the shift 
count is 0, no shifting occurs. 

If the Rl field value is 7, registers 7 and 0 are 
used for the register pair. 

The contents of the register specified by the R2 
field are not changed unless the Rl (or Rl + 1) 
and R2 fields specify the same register. In this 
case, the register contents are shifted as specified. 

Although the registers to be shifted represent 32 
bits, shift count values of 0-255 may be specified. 
Shift-count values greater than 32 lengthen the 
execution time and provide an effective shift of 
modulo 32. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the two 
registers. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

8-156 GA34-0152 

Example: 

Instruction 
Op code Function 

o 1 1 1 0 1 

0 4 7 
~~ 

Register Register 
7 4 

Register 4 contains shift count 

10 o 0 0 0 0 0 o 0 o 0 1 o 1 
0 

... 
Count = 20 

Register pair before shift 
Register 7 Register 0 

Hexadecimal 

Register pair after shift 
Register 7 Register 0 

Hexadecimal 

0 0 
15 

0 01 
15 , 

CJ 

o 

C) 

e,' 
C~ 

o 
f' 
I 
I 

I 

~-./i 

o 
c 

c 

c 
c 



C) 

o 
o 
C) 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
() 

o 

o 
o 
o 

Shift Left Logical (SLL) 

Immediate Count Format 

SLL cnt16,reg 

I Count 

045 7 B 1213 15 

The bits in the register specified by the R-field are 
shifted left by the number of bit positions 
specified in the count field. The vacated low-order 
bit positions of the register are set to O's. If the 
shift count is 0, no shifting occurs. 

Although the register to be shifted contains only 
16 bits, shift count values of 0-31 may be 
specified. Shift counts greater than 17 lengthen 
the execution time and provide an effective shift 
of 17. 

Indicators 

Carry. The carry indicator is set to reflect the last 
bit shifted out of bit O. If the count is 0, the carry 
indicator is reset. 

Overflow. The overflow indicator is reset, and 
then set to a 1 if the most-significant bit in the 
register (bit 0) has changed during the operation. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the 
register. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

SLL 

Count in Register Format 

SLL reg,reg 

IOPcode 
o 1 1 1 al

R1 IR2 runction 
1 000 1 I 

0 4 5 7 B. 1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register specified by the R 1 field 
are shifted left by the number of bits specified by 
the shift count. This count is obtained from bits 
8-15 of the register specified by the R2 field. The 
vacated low-order bits of the register specified by 
the Rl field are set to O's. If the shift count is 0, 
no shifting occurs. 

The contents of the register specified by the R2 
field are not changed unless the R 1 and R2 -fields 
specify the same register. In this case, the register 
contents are shifted as specified. 

Although the register shifted contains only 16 bits, 
shift count values of 0-255 may be specified. Shift 
counts greater than 17 lengthen the execution time 
and provide an effective shift of 17. 

Indicators 

Carry. The carry indicator is set to reflect the last 
bit shifted out of bit o. If the count is 0, the carry 
indicator is reset. 

Overflow. The overflow indicator is reset, and 
then set to a 1 if the most-significant bit in the 
register (bit 0) has changed during the operation. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the register 
specified by the R 1 field. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Instructions 8-157 



SLLD 

Shift Left Logical Double (SLLD) 

Immediate Count Format 

SLLD cnt31 ,reg 

I Count 

o 4 5 7 8 1213 15 

The bits in the register pair specified by the 
R-field and the R+ 1 field are shifted left by the 
number of bit positions specified in the count 
field. The vacated low-order bits of the register 
pair are set to O's. 

Within the register pair, the register specified by 
the R-field contains the high-order word (bits 
0-15); the register specified by the R+ 1 field 
contains the low-order word (bits 16-31). If the 
shift count is 0, no shifting occurs. 

If the R-field value is 7, registers 7 and 0 are used 
for the register pair. 

Indicators 

Carry. The carry indicator is set to reflect the last 
bit shifted out of bit O. 

Overflow. The overflow indicator is cleared, and 
then set to a 1 if the most-significant bit in the 
register pair (bit 0) has changed during the 
operation. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the two 
registers. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Count in Register Format 

SLLD reg,reg 

04578 

8-158 GA34-0152 

I Function I 
.1 0 1 0 1 

1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register pair specified by the Rl 
field and the Rl + 1 field are shifted left by the 
number of bit positions specified by the shift 
count. This count is obtained from bits 8-15 of 
the register specified by the R2 field. The vacated 
low-order bit positions of the register pair are set 
to O's. 

Within the register pair, the register specified by 
the R 1 field contains the high-order word (bits 
0-15); the register specified by the R 1 + 1 field 
contains the low-order word (bits 16-31). If the 
shift count is 0, no shifting occurs. 

If the Rl field value is 7, registers 7 and 0 are 
used for the register pair. 

The contents of the register specified by the R2 
field are note changed unless the R 1 (or R 1 + 1) 
and R2 fields specify the same register. In this 
case, the register contents are shifted as specified. 

Although the registers to be shifted represent 32 
bits, shift count values of 0-255 may be specified. 
Shift counts greater than 33 lengthen the 
execution time and provide an effective shift of 
33. 

Indicators 

Carry. The carry indicator is set to reflect the last 
bit shifted out of bit O. 

Overflow. The overflow indicator is reset, and 
then set to a 1 if the most-significant bit in the 
register pair (bit 0) has changed during the 
operation. 

Even, Negative" and Zero. These indicators are 
changed to reflect the final contents of the two 
registers. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

c 

C~\ 

I " / '"-, 

c 

c 
c' 

c' 
c' 

c' 



o 
o 

o 
C) 
o 
o 
o 
o 
o 

[] 
o 
o 
o 
o 
o 
o 

o 

C) 

Shift Left and Test (SLT) 

SLT reg,reg 

IOPcode 
011 1 

olRt IR2 runction 
1 1 0 0 11 

0 4 5 7 8 1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register specified by the R 1 field 
are shifted left. The vacated low-order bit 
positions of the register are set to O's. 

Shifting continues until either one of the following 
occurs: 

1. The number of bits specified by the shift 
count have been shifted. This count is 
obtained from bits 8-15 of the register 
specified by the R2 field. If the shift count is 
0, no shifting occurs. 

2. A I-bit is shifted from the high-order bit (bit 
0) to the carry indicator. In this case, the 
remaining shift count is loaded into bits 8-15 
of the register specified by the R2 field. 

Bits 0-7 of the register specified by the R2 field 
are not changed; these bits must be set to O's to 
avoid future code obsolescence. 

If the Rl and R2 fields specify the same register, 
the bits in the register are shifted as specified and, 
when shifting is complete, the remaining shift 
count replaces the shifted result. 

Although the register to be shifted contains only 
16 bits, shift count values of 0-255 may be 
specified. 

SLT 

Indicators 

Carry. The carry indicator is set to reflect the last 
bit shifted out of bit 0 of the register specified by 
the R 1 field. If the count is 0, the carry indicator 
is reset. 

Overflow. The overflow indicator is reset, and 
then set to a 1 if the most-significant bit (bit 0) in 
the register specified by the R 1 field has changed 
during the operation. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of bits 8-15 
of the register specified by the R2 field. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Instructions 8-159 



SLTD 

Shift Left and Test Double (SLTD) 

SL TD reg,reg 

04578 
I Function I 
.1 1 1 0 1 

1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register pair specified by the R 1 
field and the R 1 + 1 field are shifted left. The 
vacated low-order bit positions of the register pair 
are set to O's. 

Shifting continues until either one of the following 
occurs: 

1. The number of bits specified by the shift 
count have been shifted. This count is 
obtained from bits 8-15 of the register 
specified by the R2 field. If the shift count is 
O. no shifting occurs. 

2. A I-bit is shifted from the high-order bit to 
the carry indicator. In this case, the remaining 
shift count is loaded into bits 8-15 of the 
register specified by the R2 field. 

Bits 0-7 of the register specified by the R2 field 
are not changed; these bits must be set to O's to 
avoid future code obsolescence. 

Within the register pair, the register specified by 
the R 1 field contains the high-order word (bits 
0-15); the register specified by the Rl + 1 field 
contains the low-order word (bits 16-31). 

8-160 GA34-0152 

If the R 1 field value is 7, registers 7 and 0 are 
used for the register pair. 

If the R 1 (or R 1 + 1) and R2 fields specify the 
same register, the bits in the register are shifted as 
specified and, when shifting is complete, the 
remaining shift count replaces the shifted result. 

Although the registers to be shifted contain only 
32 bits, shift count values of 0-255 may be 
specified. 

Indicatol'S 

Carry. The carry indicator is set to reflect the last 
bit shifted out of bit 0 of the register specified by 
the Rl field. If the count is 0, the carry indicator 
is reset. 

Overflow. The overflow indicator is reset, and 
then set to a 1 if the most-significant bit (bit 0) in 
the register specified by the R 1 field has changed 
during the operation. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of bits 8-15 
of the register specified by the R2 field. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

c 

c 

r 
I 

o 

c' 
C\ 

;' 

( "I 
,,/ 

c 

c 



o 
c) 

o 

o 

o 
o 
o 

. Shift Right Arithmetic (SRA) 

Immediate Count Format 

SRA cnt16,reg 

I Count 

o 4 5 7 8 1213 15 

The bits in the register specified by the R-field are 
shifted right by the number of bit positions 
specified in the count field. The value of the sign 
(the high-order bit) is entered into the vacated 
high-order bit positions of the register specified by 
the R-field. If the shift count is 0, no shifting 
occurs. 

Although the register to be shifted contains only 
16 bits, shift count values of 0-31 may be 
specified. Shift counts greater than 16 lengthen 
the execution time and provide an effective shift 
of 16. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the 
register. 

Program-Check Condition 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

SRA 

Count in Register Format 

SRA reg,reg 

lop code 
o 1 1 1 

OIRT IR2 I Function 
100 1 11 

0 4 5 7 8 1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register specified by the R1 field 
are shifted right by the number of bit positions 
specified by the shift count. This count is obtained 
from bits 8-15 of the register specified by the R2 
field. The value of the sign (the high-order bit) is 
entered into the vacated high-order bit positions 
of the register specified by the R1 field. If the 
shift count is 0, no shifting occurs. 

The contents of the register specified by the R2 
field are not changed unless the R 1 and R2 fields 
specify the same register. In this case, the register 
contents are shifted as specified. 

Although the register to be shifted is 16 bits, shift 
count values of 0-255 may be specified. Shift 
counts greater than 16 lengthen the execution time 
and provide an effective shift of 16. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the register 
specified by the R1 field. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Instructions 8-161 



SRAD 

Shift Right Arithmetic Double (SRAD) 

Immediate Count Format 

SRAD cnt31,reg 

I Count 

o 4 5 7 8 1213 15 

The bits in the register pair specified by the 
R-field and the R+ 1 field are shifted right by the 
number of bit positions specified in the count 
field. The value of the sign (the high-order bit) is 
entered into the vacated high-order bit positions 
of the register pair. 

Within the register pair, the register specified by 
the R-field contains the high-order word (bits 
0-15); the register specified by the R + 1 field 
contains the low-order word (bits 16-31). If the 
shift count is 0, no shifting occurs. 

If the R-field value is 7, registers 7 and 0 are used 
for the register pair. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the register 
pair. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

8-162 GA34-0152 

Count in Register Format 

SRAD reg,reg 

lop code 
011 1 al

R1 IR2 I Function 
1 0 1 1 1 I 

0 4 5 7 8 1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register pair specified by the R 1 
field and the R 1 + 1 field are shifted right by the 
number of bit positions specified by the shift 
count. This count is obtained from bits 8-15 of 
the register specified by the R2 field. The value of 
the sign (the high-order bit) is entered into the 
vacated high-order bit positions of the register 
pair. 

Within the register pair, the register specified by 
the R 1 field contains the high-order word (bits 
0-15); the register specified by the R 1 + 1 field 
contains the low-order word (bits 16-31). If the 
shift count is 0, no shifting occurs. 

If the R-field value is 7, registers 7 and 0 are used 
for the register pair. 

The contents of the register specified by the R2 
field are not changed unless the R 1 (or R 1 + 1) 
and R2 fields specify the same register. In this 
case, the register contents are shifted as specified. 

Although the registers to be shifted represent 32 
bits, shift count values of 0-255 may be specified. 
Shift counts greater than 32 lengthen the 
execution time and provide an effective shift of 
32. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the register 
pair. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

r-", 
( I 
"'-...-1 

c 
c 

c 
c' 



u 

o 

o 
o 

o 
o 

o 
o 
o 

o 

Shift Right Logical (SRL) 

Immediate Count Format 

SRL cnt16,reg 

I Count 

045 7 8 1213 15 

The bits in the register specified by the R-field are 
shifted right by the number of bit positions 
specified in the count field. The vacated 
high-order bit positions of the register are set to 
O's. If the shift count is 0, no shifting occurs. 

Although the register to be shifted contains only 
16 bits, shift count values of 0-31 may be 
specified. Shift counts greater than 16 lengthen 
the execution time and provide an effective shift 
of 16. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect .the final contents of the 
register. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

SRL 

Count in Register Format 

SRL reg,reg 

lOP code 
o 1 1 1 

olRt IR2 I Function 
100 1 01 

0 4 5 7 8 1011 15 

Note,' In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register specified by the R 1 field 
are shifted right by the number of bit positions 
specified by the shift count. This count is obtained 
from bits 8-15 of the register specified by the R2 
field. The vacated high-order bit positions of the 
register specified by the R1 field are set to O's. If 
the shift count is 0, no shifting occurs. 

The contents of the register specified by the R2 
field are not changed unless the R 1 and R2 fields 
specify the same register. In this case, the register 
contents are shifted as specified. 

Although the register to be shifted contains only 
16 bits, shift count values of 0-255 may be 
specified. Shift counts greater than 16 lengthen 
the execution time and provide an effective shift 
of 16. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the register 
specified by the R 1 field. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fecthed or data is accessed from a storage area 
not assigned to the current operation. 

Instructions 8-163 



SRLD 

Shift Right Logical Double (SRLD) 

Immediate Count Format 

SRLD cnt31,reg 

I Count 

o 4 5 7 8 1213 15 

The bits in the register pair specified by the 
R-field and the R+ 1 field are shifted right by the 
number of bit positions specified in the count 
field. The vacated high-order bits of the register 
pair are set to O's. 

Within the register pair, the register specified by 
the R-field contains the high-order word (bits 
0-15); the register specified by the R + 1 field 
contains the low-order word (bit 16-31). If the 
shift count is 0, no shifting occurs. If the R-field 
value is 7, registers 7 and 0 are used for the 
register pair. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the registpr 
pair. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

8-164 GA34-0152 

Count in Register Format 

SRLD reg,reg 

lop code 
o 1 1 1 

0lR1 IR2 I Function 
1 0 1 1 01 

0 4 5 7 8 1011 15 

Note: In the assembler syntax, operand 1 is the 
register that contains the shift count. Operand 2 is 
the register that is shifted. 

The bits in the register pair specified by the R 1 
field and the Rl + 1 field are shifted right by the 
number of bit positions specified by the shift 
count. This count is obtained from bits 8-15 of 
the register specified by the R2 field. The vacated 
high-order bits of the register pair are set to O's. 

Within the register pair, the register specified by 
the R 1 field contains the high-order word (bits 
0-15); the register specified by the R 1 + 1 field 
contains the low-order word (bits 16-31). If the 
shift count is 0, no shifting occurs. If the R 1 field 
value is 7, registers 7 and 0 are used for the 
register pair. 

The contents of the register specified by the R2 
field are not changed unless the R 1 (or R 1 + 1 ) 
and R2 fields specify the same register. In this 
case, the register contents are shifted as specified. 

Although the registers to be shifted represent 32 
bits, shift count values of 0-255 may be specified. 
Shift counts greater than 32 lengthen the 
execution time and provide an effective shift of 
32. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the final contents of the register 
pair. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

o 

o 

r---. 
( ) 
'----"" 



o 
o 
o 
C) 

o 
o 
o 
C) 

o· 

o 

o 
o 

o 

C) 

o 

Store Multiple (STM) 

STM reg,addr4[,abcnt] 

Format without appended word for effective 
addressing (AM = 00 or 01 ) 

Opcode 

o 1 000 

o 4 

16 1819 

Format with appended word for effective 
addressing (AM = 10 or 11) 

Op code 

o 1 000 

o 4 5 7 8 9 101112 

Address/Displacement 

Displacement 1 Displacement 2 

16 2324 

IRL IN 
32 3435 

31 

15 

31 

47 

The STM instruction stores the contents of a 
specified number of registers for the current level 
into a stack. This stack is defined by the stack 
control block pointed to by the effective address. 

The RL field specifies the last register to be 
stored. Register 7 is stored first; then register 0 
through the register specified by the RL field. For 
example, if the RL field specifies register 2, STM 
stores registers 7, 0, 1, and 2. If the RL field 
specifies register 7, only register 7 is stored. 

The N-field specifies the number of words to be 
allocated in the stack as a dynamic work area. A 
value of 0 is valid. 

STM 

The new top element address of the stack 
(incremented by 2) is loaded into the last register 
stored; that is, the register specified by the RL 
field. This address points to the low storage end of 
the dynamic work area (or the last register stored 
if N=O). 

Bits 5-7 of the instruction are not used and must 
be set to O's to avoid future code obsolescence. 

Programming Note: If the AM field equals 01, the 
contents of the register specified by the RB field 
are incremented by 2. 

Refer to "Stack Operations" in Chapter 2 for 
additional information about the operation of this 
instruction. The STM instruction is used in 
conjunction with the Load Multiple and Branch 
(LMB) instruction described previously in this 
chapter. 

Indicators 

The indicators are not changed. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

• Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The indirect address, stack 
control block, or stack element results in an 
even-byte boundary violation. The instruction is 
terminated. 

Soft-Exception Trap Conditions 

Stack Exception. The stack is full or cannot 
contain the number of words to be stored. 

Instructions 8-165 



STOP-SVC 

Stop (STOP) 

STOP [ubyte] 

04578 15 

This instruction is executed only when the 
programmer console is installed and the Mode 
switch is in the Diagnostic position. Otherwise, 
this instruction performs no operation (no-op). 
The processor enters the stop state following 
execution of this instruction. 

The parameter field can be optionally coded with 
a one-byte unsigned absolute value or expression. 
If not coded, the parameter field defaults to O. 
The processor ignores the value, but is used as an 
identifier. 

Indicators 

The indicators are not changed. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

8-166 GA34-0152 

Supervisor Call (SVC) 

SVC ubyte 

04578 15 

The instruction address register (JAR) is 
incremented by 2; the current level status block 
(LSB) is stored, using an address key of 0, starting 
at the main storage location specified by the 
contents of the SVC LSB pointer that resides in 
main storage location 0010 (hexadecimal). The 
instruction also causes the following events: 

• The summary mask (LSR bit 11) is disabled. 

• Supervisor state (LSR bit 8) is set to 1. 

• Trace (LSR bit 10) is set to O. 

• Equate operand spaces (AKR bit 0) is set to 
O. 

• Operand 2 key contents are loaded into the 
operand 1 key. 

• The operand 2 key and the instruction space 
key are then set to O's. 

The parameter field (bits 8-15) is under control of 
the programming system. This field is loaded into 
the low-order byte of register 1. The high-order 
byte of register 1 is set to O. 

Subsequently, the contents of main storage 
location 0012 hexadecimal (SVC start instruction 
address) are loaded into the instruction address 
register, and become the address of the next 
instruction to be fetched. 

Execution of this instruction causes a class 
interrupt. See "Class Interrupts" in Chapter 3 for 
additional information. 

Indicators 

The indicators are not changed. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Specification Check. The LSB pointer or SIA 
location in the reserved main storage location 
specifies an odd storage address. The instruction is 
terminated. 

o 
c 

C) 

C,' 

C" 
I' 

C\ 
/ 

--" 

C~' 



t' -)' 

'-. 

o 
o 
o 
(j 

o 

o 
o 
o 

() 

o 

o 
o 
o 

Subtract Word (SW) 

Register /Register Format 

SW reg,reg 

o 4 5 7 8 
I Function I 
.0 1 0 1 0 

1011 15 

The contents of the register specified by the R 1 
field are subtracted from the contents of the 
register specified by the R2 field. The result is 
placed in the register specified by the R2 field. 
The contents of the register specified by the Rl 
field are not changed unless the R 1 and R2 fields 
specify the same register. 

Indicators 

Carry. If a borrow is detected out of the 
high-order bit position of the register, the carry 
indicator is set to 1. If no borrow is detected, the 
carry indicator is reset. 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 
represented in one word; that is, if the difference 
is less than _2 15 or greater than +215_1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference; the 
carry indicator contains the complement of the 
high-order (sign) bit. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Register/Storage Format 

SW reg,addr4 
addr4,reg 

lop code 
1 1 0 0 
o 4 5 789 10111213 

1 = result to storage I 
0= result to register}----J 

Address/Displacement 

Displacement 1 Displacement 2 

16 2324 

sw 

15 

31 

A subtract operation is performed between the 
register specified by the R-field and the location 
specified by the effective address in main storage. 
The source operand is not changed. 

Bit 12 of the instruction specifies the destination 
of the result. 

Indicators 

Carry. If a borrow is detected out of the 
high-order bit position of the word, the carry 
indicator is set to 1. If no borrow is detected, the 
carry indicator is reset. 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 
represented in one word; that is, if the difference 
is less than _215 or greater than +215_1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference; the 
carry indicator contains the complement of the 
high-order (sign) bit. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Instructions 8-167 



sw 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

• Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

Storage/Register Long Format 

SW longaddr,reg 

IOPCode 
o 1 1 0 
o 4 5 7 8 101112 15 

o = di rect address }J 
1 = indirect address 

16 31 

8-168 GA34-0152 

The contents of the main storage word location 
specified by an effective address are subtracted 
from the contents of the register specified by the 
R 1 field. The result is placed in the register 
specified by the R 1 field. 

The effective main storage address is generated as 
follows: 

1. The address field is added to the contents of 
the register specified by the R2 field. If the 
R2 field equals 0, no register contributes to 
the address generation. 

2. Instruction bit 11 is tested for direct or 
indirect addressing: 

Bit 11 =0 (direct address). The result from 
step 1 is the effective address. 

Bit 11 = 1 (indirect address). The result from 
step 1 is the address of the main storage 
location that contains the effective address. 

Indicators 

Carry. If a borrow is detected out of the 
high-order bit position of the word, the carry 
indicator is set to 1. If no borrow is detected, the 
carry indicator is reset. 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 
represented in one word; that is, if the difference 
is less than _2 15 or greater than +215 _1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference; the 
carry indicator contains the complement of the 
high-order (sign) bit. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. 

C) 
o 
C: 

../ 

C 

(~ 

I , 

'I , 

'---/ 

Ci 

o 
o 
o 
(-; 

o 



o 
o 
o 
o 
o 
C) 

() 

o 
o 
o 

c 
o 
o 
o 
o 
o 
o 
( ....... 

) 

o 
o 
o 

Storage/Storage Format 

SW addrS ,addr4 

I~p ;o~e 0 1 I RBt I RB21AMtlAM21 ~u~cl 
o 4 5 789 101112131415 

Address/Displacement 
Displacement 1 Displacement 2 

16 2324 31 

Address/Displacement 
Displacement 1 Displacement 2 

32 3940 47 

The address arguments generate the effective 
addresses of two operands in main storage. Word 
operand 1 is subtracted from word operand 2. The 
result replaces operand 2. Operand 1 is not 
changed. 

sw 

Indicators 

Carry. If a borrow is detected out of the 
high-order bit position of the word, the carry 
indicator is set to 1. If no borrow is detected, the 
carry indicator is reset. 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 
represented in one word; that is, if the difference 
is less than _215 or greater than +215_1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference; the 
carry indicator contains the complement of the 
high-order (sign) bit. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

• Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

Instructions 8-169 



SWCy 

Subtract Word With Carry (SWCY) 

SWCY reg,reg 

045 7 8 
I Function l 
. 010111 

1017 15 

If the carry indicator is on at entry (denoting a 
borrow), a positive 1 is subtracted from the 
contents of the register specified by the R2 field. 
The contents of the Rl field are then subtracted 
from the intermediate result. If the carry indicator 
is off at entry, the contents of the Rl field are 
subtracted from the contents of the register 
specified by the R2 field. The contents of the 
register specified by the Rl field are not changed 
unless the R 1 and R2 fields specify the same 
register. The final result replaces the contents of 
the register specified by the R2 field. 

Programming Note: This instruction can be used 
when subtracting multiple word operands. See 
"Indicators-Multiple Word Operands" in Chapter 
2. 

8-170 GA34-0152 

Indicators 

Carry. If a borrow is detected out of the 
high-order position of the word, the carry 
indicator is set to 1. If no borrow is detected, the 
carry indicator is reset . 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 
represented in one word; that is, if the difference 
is less than _215 or greater than +2 15 _1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference; the 
carry indicator contains the complement of the 
high-order (sign) bit. 

Even. The even indicator is not changed. 

Negative. The negative indicator is changed to 
reflect the result. 

Zero. If on at entry, the zero indicator is changed 
to reflect the result. If off at entry, it remains off. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

o 

c,) 
o 

c' 
c 

[ 
o 

c 
c 
c 

c 



c) 
C) 
o 
o 
o 

rl u 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Subtract Word Immediate (SWI) 

Register Immediate Long Format 

SWI word,reg[,reg] 

o 4 5 7 8 

I Immediate field 

16 

I 
Function I 

.0 0 0 1 0 
1011 15 

31 

The immediate field is subtracted from the 
contents of the register specified by the R1 field. 
The result is placed in the register specified by the 
R2 field. The contents of the register specified by 
the R 1 field are not changed unless the R 1 and R2 
fields specify the same register. 

SWI 

Indicators 

Carry. If a borrow is detected out of the 
high-order bit position of the word, the carry 
indicator is set to 1. If no borrow is detected, the 
carry indicator is reset. 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 

. represented in one word; that is, if the difference 
is less than _215 or greater than +215_1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference' the 
carry indicator contains the complement of the 
high-order (sign) bit. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Instructions 8-171 



SWI 

Storage Immediate Format 

SWI word,addr4 

Format without appended word for 
effective addressing (AM = 00 or 01) 

I ~plco~e 0 0 I 0 0 0 I RB IAMI~u~ct~ono I 
o 4 5 789 101112 15 

I Immediate field 

16 

Format with appended word for 

effective addressing (AM = 10 or 11) 

31 

I ~p;o~e 0 0 10 0 0 I RB lAM I~u~cti:n 01 

o 4 5 789 101112 15 

Address/Displacement 

Displacement 1 Displacement 2 

16 2324 31 

I Immediate field I 
32 47 

The immediate field is subtracted from the 
contents of the main storage location specified by 
the effective address. The result replaces the 
contents of the storage location specified by the 
effective address. The immediate operand is not 
changed. 

Bits 5-7 of the instruction are not used and must 
be set to O's to avoid future code obsolescence. 

8-172 GA34-0152 

Indicotors 

Carry. If a borrow is detected out of the 
high-order bit position of the word, the carry 
indicator is set to 1. If no .borrow is detected, the 
carry indicator is reset. 

Overflow. The overflow indicator is cleared, and 
then set to 1 if the difference cannot be 
represented in one word; that is, if the difference 
is less than _21s or greater than +2Is-1. 

If an overflow occurs, the result contains the 
correct low-order 16 bits of the difference; the 
carry indicator coritains the complement of the 
high-order (sign) bit. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

• Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

o 
o 

c 

c 
c 
C) 

I' 
L., 

o 
o 

c 



o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 

o 
o 
o 
o 
o 
o 

Test Bit (TBT) 

TBT (reg,bitdisp) 

Opcode 
o 1 001 

045 7 15 

The bit displacement is added to the byte address 
contained in the register specified by the R-field 
to form an effective bit address. The bit 
displacement field is an unsigned six-bit binary 
integer. 

The bit at the effective bit address is tested. If the 
bit is 0, the zero indicator is set to 1. If the bit is 
1, the negative indicator is set to 1. 

Indicators 

Zero and Negative. These indicators are reset to 
D's, and then set to reflect the result of the 
preceding test. 

Even, Carry, and Overflow. These indicators are 
not changed. 

Program-Check Conditions 

Invalid Storage Address., One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, an instruction 
is fecthed or data is accessed from a storage area 
not assigned to the current operation. 

TBT-TBTR 

Test Bit and Reset (TBTR) 

TBTR (reg,bitdisp) 

Opcode 

o 1 001 
o 4 5 15 

The bit displacement is added to the byte address 
contained in the register specified by the R-field 
to form an effective bit address. The bit 
displacement field is an unsigned six-bit binary 
integer. 

The bit at the effective bit address is tested. If the 
bit is 0, the zero indicator is set to 1. If the bit is 
1, the negative indicator is set to 1. Following this 
test, the addressed bit is unconditionally set to O. 

Indicators 

Zero and Negative. These indicators are reset to 
D's, and the~ set to reflect the result of the 
preceding test. 

Even, Carry, and Overflow. These indicators are 
not changed. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 
The instruction is suppressed. 

Attempts to change an operand in a storage 
area assigned as read-only: The instruction is 
terminated. 

Instructions 8-173 



TBTS-TBTV 

Test Bit and Set (TBTS) 

TBTS (reg, bitdisp) 

Op code Bit displacement 

o 1 0 0 1 
045 7 8 9 10 15 

The bit displacement is added to the byte address 
contained in the register specified by the R-field 
to form an effective bit address. The bit 
displacement field is an unsigned six-bit binary 
integer. 

The bit at the effective bit address is tested. If the 
bit is 0, the zero indicator is set to 1. If the bit is 
1, the negative indicator is set to 1. Following this 
test, the addressed bit is unconditionally set to 1. 

Indicators 

Zero and Negative. These indicators are reset to 
O's, and then set to reflect the result of the 
preceding test. 

Even, Carry, and Overflow. These indicators are 
not changed. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 
The instruction is suppressed. 

• Attempts to change an operand in a storage 
area assigned as read-only. The instruction is 
terminated. 

8-174 GA34-0152 

Test Bit and Invert (TBTV) 

TBTV (reg,bitdisp) 

Op code 
o 1 0 0 1 
o 4 5 7 15 

The bit displacement is added to the byte address 
contained in the register specified by the R-field 
to form an effective bit address. The bit 
displacement field is an unsigned six-bit binary 
integer. 

The bit at the effective bit address is tested. If the 
bit is 0, the zero indicator is set to 1. If the bit is 
1, the negative indicator is set to 1. Following this 
test, the addressed bit is unconditionally inverted. 

Indicators 

Zero and Negative. These indicators are reset to 
O's, and then set to reflect the result of the 
preceding test. 

Even, Carry, and Overflow. These indicators are 
not changed. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, the 
instruction: 

Is fetched or data is accessed from a storage 
area not assigned to the current operation. 
The instruction is suppressed. 

• Attempts to change an operand in a storage 
area assigned as read-only. The instruction is 
terminated. 

C: 
-~ 

c 
C: 

o 

C' 

c' 
c 

(' 
I 
I 

I 

~j 

c' 
o 
c 
c 
c 
c 
C 

c 

c 



o 
o 
o 
o 
o 
c) 
o 
o 
o 

(j 

o 
o 
o 
o 
C) 

o 
o 
o 
o 

Test Word Immediate (TWI) 

Register Immediate Long Format 

TWI word,reg 

Opcode 

o 1 1 1 1 

o 4 5 

I Mask 

16 

7 8 

Function 

o 0 1 1 

31 

The contents of the register specified by the R1 
field are tested against the mask contained in the 
immediate word of the instruction. The contents 
of the register specified by the R1 field are not 
changed. 

Mask field bits set to 1 select the bits to be tested 
in the register. 

Example: 

Mask 
Register 
Selected bits 

0000 
0000 

0000 
0000 

0111 
0011 

011 

1100 
0101 
01 

Result: Zero and negative indicators remain O's, 
(selected bits combination of 1 's and O's remain 
O's). 

The selected bits are tested. If all the mask bits or 
selected bits are O's, the zero indicator is set to 1. 
If the selected bits are 1 's, the negative indicator 
is set to 1. If the selected bits are a combination 
of 1 's and O's, both indicators remain O's. 

Bits 8-10 of the instruction are not used and must 
be set to O's to avoid future code obsolescence. 

Indicators 

Zero and Negative. These indicators are reset to 
O's, and then set to reflect the result of the mask 
test. 

TWI 

Even, Carry, and Overflow. These indicators are 
not changed. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Storage Immediate Format 

TWI word,addr4 

Format without appended word for effective 
addressing (AM = 00 or 01) 

Op code 

o 1 000 

045 789 

16 

Format with appended word for effective 
addressing (AM = 10 or 11 ) 

Op code 

o 1 000 

o 4 5 7 8 9 101112 

Address/Displacement 

Displacement 1 Displacement 2 

16 2324 

32 

15 

31 

31 

47 

Instructions 8-175 



TWI-VR 

The contents of the storage location specified by 
the effective address are tested against the mask 
field of the instruction. Neither operand is 
changed. 

Mask field bits set to 1 select the bits to be tested 
in the effective address storage location. 

Example: 

Mask 0000 0000 0000 1110 
Storage contents 0000 0000 0101 1110 
Selected bits 111 

Result: Negative indicator set to 1 (selected bits 
all 1 's). 

The selected bits are tested. If all the mask bits or 
selected bits are O's, the zero indicator is set to 1. 
If the selected bits are 1 's, the negative indicator 
is set to 1. If the selected bits are a combination 
of 1 's and O's, both indicators remain O's. 

Bits 5-7 of the instruction are not used and must 
be set to O's to avoid future code obsolescence. 

Indicators 

Zero and Negative. These indicators are reset to 
O's, and then set to reflect the result of the mask 
test. 

Even, Carry, and Overflow. These indicators are 
not changed. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. The 
instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

8-176 GA34-0152 

Invert Register (VR) 

VR reg[,reg] 

04578 
I Function I 
.0 1 1 0 1 

1011 15 

The contents of the register specified by the R 1 
field are 1 's complemented. The result is placed in 
the register specified by the R2 field. The contents 
of the register specified by the R1 field are not 
changed. 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

o 

,,-..., 
~/I 

c' 
c 

(' 

. 

'----" 

c· 
c 
c 

c 
c 
c· 
c 
c 
c 



o 
o 
o 
o 
o 
o 

o 
CJ 

o 

o 
o 
o 
o 
o 
C) 
o 
o 
o 
o 
o 

Exclusive OR Byte (XB) 

XB reg,addr4 
addr4,reg 

lop code 
1 1 0 0 
o 4 5 789 10111213 

1 = result to storage }~ 
0= result to register 

Address/Displacement 
Displacement 1 Displacement 2 

15 

16 2324 31 

A logical Exclusive OR operation is performed 
between the least-significant byte of the register 
specified by the R-field and the main storage 
location specified by the effective address. The 
source operand is not changed. When going from 
storage to register, bits 0-7 of the register are not 
changed. 

Bit 12 of the instruction specifies the destination 
of the result. 

Example of Exclusive OR Byte: 

Register contents 0000 1010 1100 0011 
Storage operand 0110 0101 
Result 1010 0110 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

XB 

Even, Negative, and Zero. These indicators are 
changed to reflect the result of the Exclusive OR 
operation. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

• Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

Inst"ructions 8-177 



XD 

Exclusive OR Doubleword (XD) 

XD reg,addr4 
addr4,reg 

IOPCOde 
1 1 0 1 
o 4 5 789 10111213 

1 = result to storage I 
o = result to register}-----J 

Address/Displacement 

Displacement 1 Displacement 2 
16 2324 

15 

31 

A logical Exclusive OR operation is performed 
between the contents of the register pair specified 
by the R -field and the R + 1 field and the 
doubleword in main storage specified by the 
effective address. The source operand is not 
changed. 

If the R-field value is 7, registers 7 and a are used 
as the register pair. 

Bit 12 of the instruction specifies the destination 
of the result. 
Example of Exclusive OR Doubleword: 

Register pair 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

• Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

• Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

contents 
Storage 
operand 
Result 

0000 0000 1010 1100 0000 0000 1110 1111 

0000 0000 1101 0011 0000 0000 1101 0000 
0000 0000 0111 1111 0000 0000 00 11 1111 

8-178 GA34-0152 

c 

o 
c 
c 

c 
c 
o 

o 
c 

c 
c 
c 
c 
c 
c 



C) 

o 
o 
o 
o 
o 
o 
o 

o 

o 
o 
o 
o 
o 
o 
o 
o 
C) 
o 

Exclusive OR Word (XW) 

Register /Register Format 

XW reg,reg 

I 
Function 

.0 0 0 1 1 
o 4 5 7 8 1011 15 

The contents of the register specified by the R1 
field are Exclusive ORed bit-by-bit with the 
contents of the register specified by the R2 field. 
The result is placed in the register. specified by the 
R2 field. The contents of the register specified by 
the R 1 field are not changed unless the R 1 and R2 
fields specify the same register. 

Example of Exclusive OR Word: 

Register contents (Rl) 1111 0000 1010 0000 
Register contents (R2) 0011 1111 0111 1111 
Result 1100 1111 11011111 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

xw 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Instructions 8-179 



xw 

Register/Storage Format 

XW reg,addr4 
addr4,reg 

I Op code 
1 1 0 0 
o 45 7891011121315 

1 = result to storage}~ 
o = result to register 

Address/Displacement 
Displacement 1 Displacement 2 

16 2324 31 

A logical Exclusive OR operation is performed 
between the contents of the register specified by 
the R-field and the main storage location specified 
by the effective address. The source operand is 
not changed. 

Bit 12 of the instruction specifies the destination 
of the result. 

Example of Exclusive OR Word: 

Register contents (R) 1111 0000 1010 0000 
Storage operand 00 11 1111 0111 1111 
Result 1100 111111011111 

8-180 GA34-0152 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. The 
instruction is terminated. 

Protect Check. In the problem state, the 
instruction: 

Is fetched or data is accessed from a storage 
area not assigned to the current operation. 

Attempts to change an operand in a storage 
area assigned as read-only. 

The instruction is terminated. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. The instruction is terminated. 

c 

o 

c' 

i 

I 
~---....-', 

c 
C: 

c 
c 
c 
c 
c 
c' 



(J 

o 
C) 
o 
o 
C) 
C) 
o 
o 
o 

C) 
c) 
o 
o 
o 
o 
o 
o 
o 
o 

Storage/Register Long Format 

XW longaddr,reg 

I Address 

16 31 

A logical Exclusive OR operation is performed 
between the contents of the register specified by 
the R 1 field and the contents of the main storage 
word location specified by the effective address. 
The result is placed in the register specified by the 
R1 field. 

The effective main storage address is generated as 
follows: 

1. The address field is added to the contents of 
the register specified by the R2 field. If the 
R2 field equals 0, no register contributes to 
the address generation. 

2. Instruction bit 11 is tested for direct or 
indirect addressing: 

Bit 11 =0 (direct address). The result from 
step 1 is the effective address. 

Bit 11 =1 (indirect address). The result from 
step 1 is the address of the main storage 
location that contains the effective address. 

Example of Exclusive OR Word: 

Register contents (R 1) 1111 0000 1010 0000 
Storage operand 0011 1111 0111 1111 
Result 1100 1111 1101 1111 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

xw 

Even, Negative, and Zero. These indicators are 
changed to reflect the result loaded into the 
register specified by the R 1 field. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

Specification Check. The effective address or 
indirect address results in an even-byte boundary 
violation. 

Instructions 8-181 



XWI 

Exclusive OR Word Immediate (XWI) 

XWI word,reg[,reg] 

04578 

I Immediate field 

16 

I Function I 
.0 0 1 0 1 

1011 15 

31 

The immediate field is Exclusive ORed bit-by-bit 
with the contents of the register specified by the 
R1 field. The result is placed in the register 
specified by the R2 field. The contents of the 
register specified by the R 1 field are not changed 
unless the R 1 and R2 fields specify the same 
register. 

Example of Exclusive OR Word: 

Register contents (R 1) 1111 0000 10 10 0000 
Immediate operand 0011 1111 0111 1111 
Result 1100 1111 1101 1111 

8-182 GA34-0152 

Indicators 

Carry and Overflow. These indicators are not 
changed. 

Even, Negative, and Zero. These indicators are 
changed to reflect the result. 

Program-Check Conditions 

Invalid Storage Address. One or more words of the 
instruction or the effective address are outside the 
installed storage size of the system. 

Protect Check. In the problem state, an instruction 
is fetched or data is accessed from a storage area 
not assigned to the current operation. 

c 
c 

c 
c 
c 

c 
c· 

I 

~/ 

c 
c:; 

c 
c· 
c' 
c 
c' 

c 



o 
o 
o 
o 
o 
C) 
o 
o 
() 

C) 

o 
o 
o 
o 
o 
o 
o 

o 
o 
C) 

Appendix A. Instruction Formats 

The following instruction formats are shown in ascending sequence based 
on operation code. Bits 0-4 of the first instruction word comprise the 
operation code field. Bit combinations and their hexadecimal 
representations are shown for each operation code. 

Some instructions contain a function field that modifies the operation code 
to form individual instructions within a group. Each chart shows the 
function field bit combinations in hexadecimal and in ascending sequence. 
The assembler mnemonic, assembler syntax, and instruction name are 
listed for the individual instructions. The asterisk (*) shown with the 
assembler syntax indicates indirect addressing. 

Refer to "Effective-Address Generation" in Chapter 2 for a description of 
the Address Mode (AM) appended words. 

Oxxx 

lOP code 
o 0 0 0 olR I Immediate field 

0 4 5 7 8 15 .. , ... ~., , .. .. 
0 0-7 X X 

byte, reg Add Byte Immediate 

Oxxx 

lOP code 
o 0 0 0 llR I Immediate field 

0 4 5 7 8 15 , .. .. .. 
0 8-F X X 

MVBI byte,reg Move Byte Immediate 

Instruction Formats A-I 



lXXX-2XXX 

A-2 GA34-0152 

1xxx 
Opcode 

000 1 0 
0 4 , 

11 I 0-71 X I X I 

1xxx 
Op code 

000 1 

Word displacement 

5 7 8 15 
" .. 

0-7 X X 

JC 

JC 

cond,jdisp 

cond,jaddr 

Extended mnemonics: 

Jump on Condition 

Jump on Condition 

JCY,JE,JEV,JLE,JLLE,JLLT,JLT,JMIX 
IN, JOFF, JON, JP, JZ 

Word displacement 

o 4 5 7 8 15 --.,...-- --"V". --" .. ' 
8-F X . X 

11la-Flxlxl JNC 

JNC 

cond,jdisp 

cond,jaddr 

Extended mnemonics: 

Jump on Not Condition 

Jump on Not Condition 

JGE, JGT, JLGE, JLGT, JNCY, JNE, JNEV, 
JNMIX, JNN, JNOFF, JNON, JNP, JNZ 

c' 

o 
! 

c 
c 

c' 
c 
c 
c 
c~ 

c 
r,\ 
\.../ 



() 

o 
2XXX 

o 
I~p~o~e 0 ololR IRB lAM IFunc r I )0 
o 4 5 6 7 8 9 101112 141516 31 
~~~--.--~ o 

2 0-3 X O-F AM appended word

0 FA addr4,freg Floating Add

o 1 FAD addr4,freg Floating Add Double

2 FS addr4,freg Floating Subtract

o 3 FSD addr4,freg Floating Subtract Double

4 FM addr4,freg Floating Multiply

5 FMD addr4,freg Floating Multiply Double

o 6 FD addr4,freg Floating Divide

7 FDD addr4,freg Floating Divide Double

8 FMVC addr4,freg Floating Move and Convert

9 FMVCD addr4,freg Floating Move and Convert Double

(j A FMV addr4,freg Floating Move

B FMVD addr4,freg Floating Move Double

Ii
C FMVC freg,addr4 Floating Move and Convert

D FMVCD freg,addr4 Floating Move and Convert Double

E FMV freg,addr4 Floating Move

u F FMVD freg,addr4 Floating Move Double

o
o
o
o
C)
o

o
o

Instruction Formats A-3

o

2XXX

I ~p ~o~e 0 0 I, 1 R
1

1 R2 1 0 0 1 Func r I
o 4 5 6 7 8 9 101112 1415
~~ --..-- '-....-'

2 4-7 X O-F

X 0 FA freg,freg

FAD freg,freg

2 FS freg,freg

3 FSD freg,freg

4 FM freg,freg

5 FMD freg,freg

6 FD freg,freg

7 FDD freg,freg

8 FMV freg,freg

9 FMVD freg,freg

A FC freg,freg

B FCD freg,freg

C (invalid)

D (invalid)

E (invalid)

F (invalid)

A-4 GA34-0152

Floating Add

Floating Add Double

Floating Subtract

Floating Subtract Double

Floating Multiply

Floating Multiply Double

Floating Divide

Floating Divide Double

Floating Move

Floating Move Double

Floating Compare

Floating Compare Double

Executes FMV

Executes FMVD

I nd icators are reset

Indicators are reset

(~.

"-/
.~

(I
'-......-')

o

c

C:

o

o

o

n
l~

o

o

o
o
o

2xxx

o 4 5 7 8 101112131415
~---..--- ~--...-- --....--" . "

2 8-E 0,2,4,6 O-F

3xxx

o

2

3

4

5

6

7

8

9

A

B

C

o
E

F

8,A,C ---..--

MVFD

(invalid)

CFNED

CFED

MVFN

(inval id)

CFNEN

CFEN

FFD

(inval id)

SFNED

SFED

FFN

(invalid)

SFNEN

SFEN

(reg), (reg)

(reg),(reg)

(reg),(reg)

(reg),(reg)

(reg),(reg)

(reg),(reg)

reg,(reg)

reg,(reg)

reg,(reg)

reg,(reg)

reg,(reg)

reg,(reg)

o 4 5 7 8 12 13 15
.. --,....--"~ ... --,....-- "

3 0-7 X

X 0,8 SLC
L...--I--"--4

1,9 SLL

2,A SRL

3,B SRA

4,C SLCD

5,0 SLLD

6,E SRLD

7,F SRAD

O-F

cnt16,reg

cnt16,reg

cnt16,reg

cnt16,reg

cnt31,reg

cnt31,reg

cnt31,reg

cnt31,reg

2 XXX-3 XXX

Move Byte Field and Decrement

Compare Byte Field Not Equal and Decrement

Compare Byte Field Equal and Decrement

Move Byte Field and Increment

Compare Byte Field Not Equal and Increment

Compare Byte Field Equal and Increment

Fill Byte Field and Decrement

Scan Byte Field Not Equal and Decrement

Scan Byte Field Equal and Decrement

Fill Byte Field and Increment

Scan Byte Field Not Equal and Increment

Scan Byte Field Equal and Increment

Shift Left Circular

Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

Shift Left Circular Double

Shift Left Logical Double

Shift Right Logical Double

Shift Right Arithmetic Double

Instruction Formats A-S

3XXX-4XXX

A-6 GA34-0152

3xxx

IOPcode
o 0 1 1 1 I
0 4 5 15

3 .
8-F

.
X X

13 1a- F I Xl X I Invalid operation code (program-check condition)

4xxx

lOP code
o 1 0 0
0
4xxx
Op code

o 1 0 0
0
4xxx

lOP code
o 1 0 0
0

4

X

AM appended word ,. ,. ...

olR IRB lAM I Func I)0
4 5 789 101112 1516 31

Immediate field 0 0
4 5 789 101112 1516 31

olR IRB I AM IFunc ~ 0 Immediate field 0
4 5 7 8 9 101112 1516 3132 47

", ..
0-7

0 MVA

0 MVWI

1 (invalid)

2 (invalid)

3 (invalid)

4 MVA

4 MVWI

5 (invalid)

6 (invalid)

7 (invalid)

8 STM

9 AWl

9 AA

A LMB

B TWI

C OWl

C SBTWI

0 RBTWI

E SWI

E SA

F CWI

F CA

, ...

X

., ~

" O-F AM appended word

raddr,addr4

word,addr4

addr4,reg

word,reg

Move Address

Move Word Immediate

Move Address (see Note)

Move Word Immediate (see Note)

reg,addr4 [,abcnt] Store Multiple

word,addr4

raddr,addr4

addr4

word,addr4

word,addr4

word,addr4

word,addr4

word,addr4

raddr,addr4

word,addr4

raddr,addr4

Add Word Immediate

Add Address

Load Multiple and Branch (see Note)

Test Word Immediate

OR Word Immediate

Set Bits Word Immediate

Reset Bits Word Immediate

Subtract Word Immediate

Subtract Address

Compare Word Immediate

Compare Address

Note: Use fo~mat without immediate field.

r--'.
(,

'-'"'

,,--...,

('----"

('-)
,-

o
4XXX-5XXX

C) 4xxx

Op code

0 1 o 0 1

0 4 5 7 8 9 10 15 " .. , .J

,--....., 4 8-F O-F X

U
4 8-F 0-3 X TBT (reg,bitdisp) Test Bit

4-7 TBTS (reg,bitdisp) Test Bit and Set

8-B TBTR (reg,bitdisp) Test Bit and Reset

C-F TBTV (reg,bitdisp) Test Bit and Invert

5xxx

I ~p ~o~e 1 0 I R I Word displacement

o 4 5 7 8 15 -------, ,
5 0-7 X X

15 0 o 0 NOP No Operation

0 X X J jdisp Jump Unconditional

J jaddr Jump Unconditional

1-7 X X BXS (reg l - 7 ,jdisp) Branch Indexed Short

BXS (reg l - 7) Branch Indexed Short

o BXS addr Branch Indexed Short

o

o
Instruction Formats A-7

(~

5XXX

5xxx

lop code 11K I RB lAM I Func)0 o 1 0 1

c
0 4 5 7 8 9 101112 1516 31 ,
5xxx AM appended word

lOP code
o 1 0 1 1 IR I RB lAM I Func ~D
0 4 5 7 8 9 101112 1516 31 .. 1" , .. " ,

5 8-F X O-F AM appended word

0 SEIMR addr4 Set Interrupt Mask Register

1 SESR reg,addr4 Set Segmentation Register

2 SEAKR addr4 Set Address Key Register (Note 1)

3 SEFLB reg,addr4 Set Floating Level Block

4 SESK reg,addr4 Set Storage Key

5 (invalid)

6 SELB reg,addr4 Set Level Status Block

7 (invalid)

8 CPIMR addr4 Copy Interrupt Mask Register

9 CPSR reg,addr4 Copy Segmentation Register

A CPAKR addr4 Copy Address Key Register (Note 2)

B CPFLB reg,addr4 Copy Floating Level Block

C CPSK reg,addr4 Copy Storage Key

D CPIPF addr4 Copy I n-Process Flags

E CPLB reg,addr4 Copy Level Block C:
F CPPSR addr4 Copy Processor Status and Reset

Notes: c'
1. Use format with K-field.

Extended mnemonics: SEISK, SEOTK, SEOOK.

2. Use format with K-field.
Extended mnemonics: CPISK, CPOTK, CPOOK.

C

A-8 GA34-0152

o
C)
o
o
o

()

o
o
o

/:
l J

'-./

()

o
o
o
o
o
o
o
o

6xxx

04578
~ ~' 'L __ -V __ _

2

3

4

5

6

7

6 0-7 X

SVC

LEX

EN

DIS

STOP

DIAG

IOPK

(invalid)

1~

X

ubyte

[ubyte]

ubyte

ubyte

[ubyte]

ubyte

Supervisor Call

Level Exit

Enable

Disable

Stop

Diagnose

6XXX

Interchange Operand Keys

Instruction Formats A-9

6XXX

A-IO GA34-0152

------- R1, condition, or condition code
O=direct address; l=indirect address

6xxx

Opcode 0
o 1 1 0
"'---~~----------'

o 4 5 7 8 101112 1516 31 --..... .. --' .. _-.,....,--,.. , .. --.....--,
6 8-F O-F --------0,2,4,6,8, A, C, E , ~

0 BC cond,longaddr

BNC cond,longaddr

2 B longaddr

3 BAl longaddr,reg

4 BCC cond,longaddr

5 BNCC cond,longaddr

6 BOV longaddr

7 BNOV longaddr

8 MVW longaddr,reg

9 OW longaddr ,reg

9 SBTW longaddr,reg

A RBTW longaddr,reg

B XW longaddr,reg

C 10 longaddr

D MVW reg,longaddr

E AW longaddr,reg

F SW longaddr,reg

Notes:

1. Extended mnemonics: BCY, BE, BEV, BlE, BllE,
BllT,BlT,BMIX,BN,BOFF,BON, BP,BZ.

Branch on Condition (Note 1)

Branch on Not Condition (Note 2)

Branch Unconditional (Note 3)

Branch and Link (Note 4)

Branch on Condition Code (Note 5)

Branch on Not Condition Code (Note 6)

Branch on Overflow

Branch on Not Overflow

Move Word

OR Word

Set Bits Word

Reset Bits Word

Exclusive OR Word

Operate I/O

Move Word

Add Word

Subtract Word

2. Extended mnemonics: BGE, BGT, BlGE, BlGT, BNCY,
BNE, BNEV, BNMIX, BNN, BNOFF, BNON, BNP, BNZ.

3. Extended mnemonic: BX.

4. Extended mnemonic: BAlX.

5. Extended mnemonic: BNER.

6. Extended mnemonic: BER.

C,\

c
c:
c

o
,~

C)
c'

o

o
c----\

.-'i

c

o
o 6XXX

(J r-------- R 1, condition, or condition code

O=direct address; 1=indirect address

Opcode 0
o 1 1 0
'----~--'---I.......---'------J

o 6xxx

o 4 5 7 8 101112 1516 31
.... .,.. r' ,.. ~

T -------

6 8-F
()

O-F

C) 1,3,5,7,9,B,O,F . .,

o 0 BC cond,longaddr* Branch on Condition

BNC cond, I ongaddr * Branch on Not Condition

o 2 B longaddr* Branch Unconditional

3 BAL longaddr* ,reg Branch and Link

4 BCC cond,longaddr* Branch on Condition Code

o 5 BNCC cond,longaddr* Branch on Not Condition Code

6 BOV longaddr* Branch on Overflow

(J 7 BNOV longaddr* • Branch on Not Overflow

8 MVW longaddr*,reg Move Word

9 OW longadd~* ,reg OR Word

9 SBTW longaddr* ,reg Set Bits Word

A RBTW longaddr* ,reg Reset Bits Word

B XW longaddr* ,reg Exclusive OR Word

C 10 longaddr* Operate I/O

o 0 MVW reg,longaddr* Move Word

E AW longaddr* ,reg Add Word

o F SW longaddr* ,reg Subtract Word

o
o
o
C)

()

o
o Instruction Formats A-II

o

7XXX

7xxx

lOP code
o 1 1 1 al

R1 I R2 I Func

0 4 5 7 8 1011 15
~ .. ""' ~~

7 0-7 I O-F

0, 2,4,6, 8, A, C, E ,

0 RBTW reg,reg

OW reg,reg

SBTW reg,reg

2 SCY reg

3 XW reg, reg

4 MVW reg, reg

5 CW reg,reg

6 CMR reg (,reg]

7 IR reg, reg

8 AW reg, reg

9 AWCY reg, reg

A SW reg, reg

B SWCY reg, reg

C ACY reg

D VR reg [,reg]

E CPLSR reg

F SEIND reg

A-12 GA34-0152

Reset Bits Word

OR Word

Set Bits Word

Subtract Carry Indicator

Exclusive OR Word

Move Word

Compare Word

Complement Register

Interchange Registers

Add Word

Add Word With Carry

Subtract Word

Subtract Word With Carry

Add Carry Register

Invert Register

Copy Level Status Register

Set Indicators

C,:

o

o

c
c
c

c
o
c
c
c
c
c
c
c'
c

o
o
o
o
o
o
o
o
o
o

n u
o
()

o
o
o
o
o
o
o
o

7xxx

lop code
o 1 1 1

0 ..
7

7XXX

al
R1 IR2 runc

4 5 7 8 1011 15 ,., , , .. ,
0-7 I O-F

1,3,5,7,9,8,D,F ...
"

0 SLC reg,reg Shift Left Circular

SLL reg,reg Shift Left Logical

2 SRL reg,reg Shift Right Logical

3 SRA reg,reg Shift Right Arithmetic

4 SLCD reg,reg Shift Left Circular Double

5 SLLD reg,reg Shift Left Logical Double

6 SRLD reg,reg Shift Right Logical Double

7 SRAD reg, reg Shift Right Arithmetic Double

8 (invalid)

9 SLT reg, reg Shift Left and Test

A (invalid)

8 (invalid)

C (invalid)

D SLTD reg, reg Shift Left and Test Double

E (invalid)

F (invalid) .

Instruction Formats A-13

7XXX

7xxx

Op code Func Immediate field 0
~0~1~1~1~14-__ ~~ __ ~ ________ ~ __________ -J

o 4 5 7 8 1011 1516 31
.. --..,.--' .. --....--' .. --.., .. -~~

7 8-F O-F

0,2,4,6,8, A, C, E , ,

0 NWI word,reg [,reg] AND Word Immediate

AWl word,reg[,reg] Add Word Immediate

1 AA raddr,reg[,reg] Add Address

2 SWI word,reg[,reg] Subtract Word Immediate

2 SA raddr,reg[,reg] Subtract Address

3 OWl word,reg[,reg] OR Word Immediate

3 SBTWI word,reg [,reg] Set Bits Word Immediate

4 RBTWI word,reg [,reg] Reset Bits Word Immediate

5 XWI word, reg [,reg] Exclusive OR Word Immediate

6 CWI word,reg Compare Word Immediate

6 CA raddr,reg Compare Address

7 TWI word, reg Test Word Immediate

8 (invalid)

9 (invalid)

A (invalid)

B (invalid)

C (invalid)

D (invalid)

E (invalid)

F (invalid)

A-14 GA34-0152

o

c'
c
o

[
c
o
o
c'
c
c
c
o

c

u
0 7XXX-8XXX

C) 7xxx

lOP code
1 10 OlR2 I Function

011 1 0

() 0 4 5 7 8 1011 15

7xxx

0 lOp code
011 1 11K IR I Function

0 , 4 5 7,P 1011 15 , .. ,

0 7 8-F I O-F

1,3,5, 7,9, B, 0, F
.... J

0
0 SECON reg Set Console Data Lights

0 (invalid)

2 SEAKR reg Set Address Key Register (Note 1)

0
3 (invalid)

4 SECLK reg Set Clock

5 SECMP reg Set Comparator

0 6 (invalid)

7 (invalid)

11 8 CPCON reg Copy Console Data Buffer

9 CPCL reg Copy Current Level

L! A CPAKR reg Copy Address Key Register (Note 2)
)

B (invalid)

Co")
C CPCLK reg Copy Clock

0 CPCMP reg Copy Comparator

E (invalid) r",
U F (invalid)

Notes:

0 1. Use format with K-field.
Extended mnemonics: SEISK, SEOTK, SEOOK.

C)
2. Use format with K-field.

Extended mnemonics: CPISK, CPOTK, CPOOK.

8xxx

0 IOPcode IRBI
1 0 000

I RB21 AMIIAM21Func I ~~ ~D
0 4 5 789 10111213141516 3132 47

"- , ~ , ,-.... '" 0 8 0-7 X O-F AM appended words

0
MVB addr5,addr4 Move Byte

OB addr5,addr4 OR Byte

0 SBTB addr5,addr4 Set Bits Byte

RBTB addr5,addr4 Reset Bits Byte

0 CB addr5,addr4 Compare Byte
Instruction Formats A-IS

0

8XXX-9XXX

8xxx
IOPcode
100 0

llRBI I RB21 AM11AM21FUnc I
0 4 5 7 8 9 10111213141516
--..--.-~

",.., ",~ " "
8 8-F X O-F

MVW addr5,addr4

OW addr5,addr4

SBTW addr5,addr4

RBTW addr5,addr4

CW addr5,addr4

9xxx
lOP code
1 0 0 1

OIRBI I RB21 AMI IAM2 I Func I
0 4 5 7 8 9 1011121314 1516 ", r'..., "..., "....,

9 0-7 X O-F

MVO addr5,addr4

00 addr5,addr4

SBTO addr5,addr4

RBTO addr5,addr4

CO addr5,addr4

9xxx
IOPcode

1 0 0 1 1 IR I Word displacement

0 4 5 7 8 15 ., ..
'--"--'-

,
9 8-F X X

19la-Flxlxl JAL jdisp,reg

JAL jaddr,reg

A-16 GA34-0152

~~ ~D
3132 47

~ ...
AM appended words

Move Word

OR Word

Set Bits Word

Reset Bits Word

Compare Word

~~ ~D
3132 47 ,

AM appended words

Move Doubleword

OR Ooubleword

Set Bits Doubleword

Reset Bits Doubleword

Compare Ooubleword

Jump and Link

Jump and Link

c

c
C'

c'

[

c
c'
c
c
c

c)
C)

o
o
o
o
o
o
o
o

o
()

o
o
o
o
o
o
o
o

AXXX-BXXX

O=direct address; 1 =indirect address

Axxx
Opcode

10100

Worddisp

o 4 5 7 8 9 1011 15
~---Vw---~-~--~w---'- '--~.---'

A 0-7 X

0, 1,4, 5, 8, 9, C, 0
-'

i

MVWS reg,shortaddr Move Word Short

O=direct address, 1 =indirect address

Axxx
Opcode

10100

Worddisp

o 4 5 7 8 9 15
~--~-'----...w --'~--.....-- --...--'

A 0-7 X

2,3,6, 7, A, B, E, F ,
I

MVWS reg,shortaddr *

Axxx

lop code I RB 1
1 0 1 0 1

I RB21AMtlAM21Func I
0 4 5 789 10111213141516 - ... ,. ..

w
, ..

w
, ' ...,

A 8-F X O-F

X 0,4
8,C AW addr5,addr4

1,5
9,0 SW addr5,addr4

2,6
A,E AD addr5,addr4

3,7
B,F SO addr5,addr4

Bxxx

I ~P ;o~e 1 0 I Function

o 4 5 15 "-...-'''-...-' ~--v--' --.....---'
B 0-7 X X

Move Word Short

~~ I ~D
3132 47 ,

II

AM appended words

Add Word

Subtract Word

Add Ooubleword

Subtract Ooubleword

1 B I 0-7 1 X I X I Invalid operation code (program-check condition)

Instruction Formats A-17

BXXX-CXXX

A-I8 GA34-0I52

Bxxx

o 4 5 7 8 15 .. , .. --.....--,.. .,

B 8-F

JCT

JCT

x x

jdisp,reg

jaddr,reg

Jump on Count

Jump on Count

O=stprage-to-register; 1 =register-to-storage
Cxxx

Opcode 0
1 1 0 0 0
~-'----"---~----'"-----'

o 4 5 7 8 9 10 111213 1516 31
~--....-- '~.. ,

C 0-7 X 0- F AM appended word

0 MVB

1 OB

1 SBTB

2 RBTB

3 XB

4 CB

5 MVBZ

6 AB

7 SB

8 MVB

9 OB

9 SBTB

A RBTB

B XB

C (invalid)

D (invalid)

E AB

F SB

addr4,reg

addr4,reg

addr4,reg

addr4,reg

addr4,reg

addr4,reg

addr4,reg

addr4,reg

addr4,reg

reg,addr4

reg,addr4

reg,addr4

reg,addr4

reg,addr4

reg,addr4

reg,addr4

Move Byte

OR Byte

Set Bits Byte

Reset Bits Byte

Exclusive OR byte

Compare Byte

Move Byte and Zero

Add Byte

Subtract Byte

Move Byte

OR Byte

Set Bits Byte

Reset Bits Byte

Exclusive OR Byte

Add Byte

Su btract Byte

c'
c
c
c

c'
C'

C) cxxx

o Cxxx
O=storage-to-register; 1 =register-to-storage

Op code

1 1 o 0 1
0 4 5 7 8 9 10 111213 1516 31 o '~ .. "

,

o C 8-F X O-F AM appended word

0 MVW addr4,reg Move Word

1 OW addr4,reg OR Word o
SBTW addr4,reg Set Bits Word

o 2 RBTW addr4,reg Reset Bits Word

3 XW addr4,reg Exclusive OR Word

4 CW addr4,reg Compare Word

5 MVWZ addr4,reg Move Word and Zero
o

6 AW addr4,reg Add Word

7 SW addr4,reg Subtract Word o
8 MVW reg,addr4 Move Word

9 OW reg,addr4 OR Word o
9 SBTW reg,addr4 Set Bits Word

A RBTW reg,addr4 Reset Bits Word

B XW reg,addr4 Exclusive OR Word

C (invalid)

D (invalid)
c

E AW reg,addr4 Add Word

F SW reg,addr4 Subtract Word
C)
o

o
o
o
o
o
o Instruction Formats A-19

o

DXXX

O=storage-to-register; 1 =register-to-storage 0 ,
./

Oxxx

Op code D 1 1 0 1 0 o
0 4 5 7 8 9 10 111213 1516 31 ... l' .., ," ~ .,

~

0 0-7 X O-F AM appended word

0 MVO addr4,reg Move Ooubleword C:
00 addr4.reg OR Ooubleword

1 SBTO addr4,reg Set Bits Ooubleword

2 RBTO addr4,reg Reset Bits Ooubleword

3 XO addr4,reg Exclusive OR Ooubleword

4 CO addr4,reg Compare Ooubleword c
5 MVOZ addr4,reg Move Ooubleword and Zero

6 AD addr4,reg Add Ooubleword

7 SO addr4,reg Subtract Ooubleword

8 MVO reg,addr4 Move Ooubleword

9 00 reg,addr4 OR Ooubleword

9 SBTO reg,addr4 Set Bits Ooubleword

A RBTO reg,addr4 Reset Bits Ooubleword

B XO reg,addr4 Exclusive OR Ooubleword

C (invalid)

0 (invalid)

E AD reg,addr4 Add Ooubleword

F SO reg,addr4 Subtract Ooubleword

lOP code
1 I 1 1 0 1

0 4 5 15
... '~

o
c

0 8-F X X

I 01 8- Fix I X I Invalid operation code (program-check condition)
c
c
c
c

A-20 GA34-0152 c'
c'

o
o
o
o
o
o
o
o
C)
o

c)
C)
o
o
o
o
o
o
o
o

EXXX

O=direct address, 1 =indirect address
Exxx

Opcode

1 1 1 0
o 4 5 7 8 9 1011 15
" 9 ' --.. .. --' ~ .. --.....9-~

E 0-7 __ -,-I ___ X

0, 1,4, 5, 8, 9, C, 0

I Elo-71 I xl MVWS shortaddr ,reg Move Word Short

O=direct address, l=indirect address

Exxx

Op code Word disp

1 1 1 0 0

o 4 5 7 8 9 1011 15
~"--... .. --'~~

E 0-7 I X

2, 3, 6, 7, A, B, E, F

IE10-71 Ixi MVWS shortaddr* ,reg Move Word Short

Instruction Formats A-21

C'I
EXXX-FXXX CI

Exxx C
lOp code

llR
I RB I AM IFunc ~D 0

1 1 1 0

0 4 5 7 8 9 101112 1516 31 , .. , ,.., ~""t .., .,

E 8-F X O-F AM appended word

CI
0 PSB reg,addr4 Push Byte

MB addr4,reg Multiply Byte C
2 DB addr4,reg Divide Byte

3 PB addr4,reg Pop Byte C
4 PSW reg,addr4 Push Word

5 MW addr4,reg Multiply Word C 6 DW addr4,reg Divide Word

7 PW addr4,reg Pop Word

C 8 PSD reg,addr4 Push Doubleword

9 MD addr4,reg Multiply Doubleword

A DD addr4,reg Divide Doubleword
~

"-~)
B PD addr4,reg Pop Doubleword

C (invalid) I' D (invalid)

E (invalid)

~ F (invalid)

Fxxx C'
lOp code aiR I Immediate field
1 1 1 1 C' {J 4 5 7,8 15 ~ _/

"." ,
F 0-7 X X

0
I F 10- 7 I X I X I CBI byte,reg Compare Byte Immediate

0
Fxxx 0

IOPcode
1 I R

I Word displacement

C, 1. 1 1 1
0 4 5 7 8 15, ... , ..

F 8-F X X

C
1 F 18- Fix 1 X 1 BALS (reg,jdisp) * Branch and Link Short

BALS (reg)* Branch and Link Short ("i
'-./

BALS addr* Branch and Link Short

A-22 GA34-0152 0

C'

C)
o
o
o
o
o
o
o
o

Ii
l..J

o
o
o
o
o
o
o
o
o
o

Coding Notes

Appendix B. Assembler Syntax

1. Data flow modifies a field from left to right.

2. Registers used in effective address calculations are always in
parentheses.

3. An address specification followed by an asterisk (*) indicates indirect
addressing. The contents of the storage location at the generated
address form the effective address.

4. The (reg) + format indicates that, after use, the contents of reg are
increased by the number of bytes addressed by the instruction.

5. AM indicates address mode.

6. The parameter field in brackets [] can be optionally coded. If the field
is not coded, it defaults.

Legend for Machine-Instruction Operands
abcnt An absolute value or expression representing the size of a work storage area

to be allocated by the Store Multiple (STM) instruction. The value coded
must be an even number in the range 0-16382.

addr

addr4

An address value. Code an absolute or relocatable expression in the range
0-65535.

An address value coded in one of the following forms:

(regO-3) The effective address is the contents of the register·regO-3•

(AM=OO)

addr

addr*

(reg 1-3, waddr)

displ(regl -3,

disp2)*

The effective address is the contents of the register regO-3•

After the contents are used by an instruction, they are
increased by the number of bytes addressed by the
instruction. (AM=OI)

The effective address is the value of addr, unless the
instruction and addr are within the range of the same
USING statement. If they are, the assembler computes
the effective address as a displacement (-32768 to
+32767 or 0 to 65535) from the base register, which
must be regl -3. (AM=IO)

The effective address is the contents of storage at the
address defined by addr, unless the instruction and addr
are within the domain and range of the same USING
statement. If they are, the assembler computes the
effective address as the contents of storage at the address
defined by a displacement (0-255) from the base register,
which must be reg l -3• (AM=l1)

The effective address is the contents of the register regl -3,

added to the value of waddr. (AM= 10)

The effective address is calculated as follows:
The contents of the register regl -3 are added to the value
of the displacement disp2 to form an address. The
contents of that storage location are added to the value of
disp 1 to form the effective address. (AM= 11)

Assembler Syntax B-1

addr5

bitdisp

byte

cnt16

cnt31

cond

B-2 GA34-0152

disp(reg l -3)*

(reg l -3,disp)*

The effective address is the contents of storage at the
address defined by the contents of reg l -3 , added to the
value of disp. (AM=l1)

The effective address is the contents of storage at the
address defined by the contents of reg l -3• (AM= 11)

The contents of reg l -3 are added to disp, forming an
address. The contents of storage at that address form the
effective address. (AM= 11)

For byte addressing, the effective address can be even or odd. For word or
doubleword addressing, the effective address must be even.

An address value that you code in one of the following forms:

(reg) The effective address is the contents of the register reg.
(AM=OO)

(reg)+

addr

addr*

(regl -7,waddr)

displ(regl -7,

disp2)*

disp(reg l -7)*

(regl -7,disp)*

The effective address is the contents of the register reg.
After the contents are used by an instruction, they are
increased by the number of bytes addressed by the
instruction. (AM=OI)

The effective address is the value of addr unless the
instruction and addr are within the domain and range of
the same USING statement. If they are, the assembler
computes the effective address as a displacement
(-32768 to +32767 or 0 to 65535) from the base
register, which must be reg l -7• (AM= 10)

The effective address is the contents of storage at the
address defined by addr unless the instruction and addr
are within the domain and range of the same USING
statement. If they are, the assembler computes the
effective address as the contents of storage at the address
defined by a displacement (0-255) from the base register,
which must be reg l -7• (AM= 11)

The effective address is the contents of reg l -7, added to
the value of waddr. (AM= 10)

The effective address is calculated as follows:
The contents of the register regl -7 are added to the value
of the displacement disp2 to form an address. The
contents of that storage location are added to the value of
displ to form the effective address. (AM=l1)

The effective address is the contents of storage at the
address defined by the contents of reg l -7 added to the
value of disp. (AM= 11)

The effective address is the contents of storage at the
address defined by the contents of reg 1-7. (AM= 11)

The contents of regl -7 are added to disp, forming an
address. The contents of storage at that address form the
effective address. (AM= 11)

For byte addressing, the effective address can be even or odd. For word or
doubleword addressing, the effective address must be even.

A displacement into a bit field. Code an absolute value or expression in the
range 0-63.

A byte value. Code an absolute value or expression in the range -128 to
+ 127 or 0 to 255.

A single-word (one register) shift count. Code an absolute value or expression
in the range 0-16.

A doubleword (register pair) shift count. Code an absolute value of
expression in the range 0-31.

A condition-code value. Code an absolute value or expression in the range
0-7.

C

C,'

c
c
c
c
c
c

c

c
c
c
c
c

c
c

()

o
o
o
o
o
o
o
C)
o
r'~

I u
o
o
()

o
o
o

o
o
o

disp

freq

jaddr

jdisp

longaddr

raddr

reg

reg l -3

reg l -7

shortaddr

A byte-address displacement. Code an absolute value or expression in the
range 0-255.

A floating-point register. Code either a predefined symbol (FRO-FR3) or a
symbol that is equated to the desired register number (0, 1,2, or 3). Symbols
are equated with EQUR statements, which must precede the instruction using
the register symbol.

The address of an instruction that is within -256 to +254 bytes of the byte
following a jump instruction. Code a relocatable expression.

A displacement from the byte following a jump instruction. Code an absolute
value or expression in the range -256 to +254.

An address value that you code in one of the following forms:

addr The effective address is the value of addr, unless the
instruction and addr are within the domain and range of
the same USING statement. If they are, the assembler
computes the effective address as a displacement
(-32768 to +32767 or 0 to 65535) from the base
register, which must be reg l -7 .

addr*

(regl -7,waddr)

(reg l -7,waddr)*

(reg l -7)

(reg l -7)*

The effective address is the contents of storage at the
address defined by addr, unless the instruction and addr
are within the domain and range of the same USING
statement. If they are, the assembler computes the
effective address as the contents of storage at the address
defined by a displacement (-32768 to +32767 or 0 to
65535) from the base register, which must be reg l -7 .

The effective address is the contents of reg l -7 , added to
the value of waddr.

The contents of the regl -7, plus waddr, form an address.
The contents of storage at that location form the effective
address.

The effective address is the contents of the register reg l -7.

The effective address is the contents of storage at the
address defined by the contents of reg l -7.

An address value. Code a relocatable expression in the range 0-65535.

A general-purpose register. Code either a predefined register symbol (RO-R7)
or a symbol that is equated to the desired register number (0, 1, 2, 3, 4, 5, 6,
or 7). Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

A general-purpose register. Code either a predefined register symbol (RO-R3)
or a symbol that is equated to the desired register number (0, 1, 2, or 3).
Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

A general-purpose register. Code either a predefined register symbol (R l-R3)
or a symbol that ls equated to the desired register number (1, 2, or 3).
Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

A general-purpose register. Code either a predefined register symbol (RI-R7)
or a symbol that is equated to the desired register number (1, 2, 3, 4, 5, 6, or
7). Symbols are equated with EQUR statements, which must precede the
instructions using the register symbol.

An address value that you code in one of the following forms:

(regO-3,wdisp) The effective address is the value of wdisp added to the
contents of regO-3•

(regO-3,wdisp)*

(regO-3)

(regO-3)*

The effective address is the contents of storage at the
address defined by the value of wdisp added to the
contents of regO-3•

The effective address is the contents of (regO-3).

The effective address is the contents of storage at the
address defined by the contents of regO-3.

Assem~ler Syntax B-3

ubyte

vcon

waddr

wdisp

word

B-4 GA34-0152

addr To use this form, the instruction and addr must be in the
domain and range of the same USING statement. The
assembler computes a displacement (0-62) and register
combination that refers to the requested location.

addr* Same as addr, except that the assembler computes the
effective address as the contents of storage at the address
defined by a displacement (0-62) and register
combination.

Note: For addr and addr*, the base register must be regO-3•

An unsigned byte value or mask. Code an absolute value or expression in the
range 0-255.

An ordinary symbol that is defined externally from the current source
program.

A one-word address value. Code an absolute or relocatable expression in the
range -32768 to +32767 or 0 to 65535.

An even-byte address displacement. Code an absolute value or expression in
the range 0-62.

A word value. Code an absolute value or expression in the range -32768 to

+32767 or 0 to 65535.

C:

C 1

.-/'

C

c

~

C
C)

C~

C

C

C

C
(
'---"

C'
C

l)

o
o
C)
o

o
o
o
C)

n u
o
C)

o
o
o
o
o
o
o
o

Appendix C. Number Systems and Conversion Tables

Binary and Hexadecimal Number Systems

Binary Number System

The binary number system, which is used in Series/I, uses a base of 2.
The base 2 number system can be compared with the base 10 (decimal)
number system.

Decimal number

o
1
2
3
4
5
6
7
8
9

Binary number

=0
= 1
= 10
= 11
= 100
= 101
= 110
= 111
= 1000
= 1001

Example of a decimal number:

9 units positio51

30 tens Position=.J

200 hundreds position

1000 thousands position

1239 = decimal number

As shown above, the decimal number system allows counting from 0-9 in
each position; that is, the units, the tens, the hundreds, etc. Beyond 9, a
carry into the next higher position is generated. The binary system allows
counting from 0-1 in each position, with a carry generated when 1 is
incremented. Register displays on the Series/1 console are in binary: a bit
light on is a 1; a bit light off is a O.

Number Systems and Conversion Tables C-l

Hexadecimal Number System

C-2 GA34-0152

Example of a binary number:

-I :il
1 0 0 1 +0001 - decimal 1~

,+~+~+\+ } or :~:: ::::::: ~ ~ul ~~ ~... ~o

1000 = decimal 8 ----------------
1001 = decimal 9

Binary numbers require about three times as many places as decimal
numbers to express the equivalent number. This is not a problem to the
computer; however, when talking and writing, or communicating with the
computer, these binary numbers are bulky. A long string of 1 's and O's
cannot be transmitted effectively from one individual to another; some
shorthand method is necessary.

The hexadecimal number system fills this need. Because of the simple
relationship of hexadecimal to binary, numbers can be converted from one
system to another by inspection. The base or radix of the hexadecimal
system is 16, which requires 16 symbols: 0, 1,2,3,4,5,6,7,8,9, A, B,
C, 0, E, and F. The letters A, B, C, 0, E, and F represent the base-l0
number values of 10, 11, 12, 13, 14, and 15, respectively.

c

c

c
C)

_/

c

c
c

c,:
c

o
o
o
o
C)
C)

c
C)

o
o
o
o.
o

o
o
o

Four adjacent binary positions are equivalent to one hexadecimal position.
The following table compares values of the three number systems:

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

At the value F, all 16 symbols have been used, and a carry to the next
higher position of the hexadecimal number is necessary. For example, for
the value F, a carry results in the value 1016' The following table compares
the values 1610 to 21 10 with binary and hexadecimal equivalents:

Decimal Binary Hexadecimal

16 0001 0000 10
17 0001 0001 11
18 0001 0010 12
19 0001 0011 13
20 0001 0100 14
21 0001 0101 15

-and so on-

The internal circuitry of the computer processes only binary. An operator
can interpret the lights on the computer console as a hexadecimal value
(for example, 0001 1110 0001 0011 as 1E13). The hexadecimal value
1E13 is easier to state than a string of l's and O's.

Number Systems and Conversion Tables C-3

Hexadecimal-Decimal Conversion Tables

The table in this appendix allows direct conversion of decimal and
hexadecimal number in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

For numbers outside the range of the table, add the following values to
the table figures:

Hexadecimal Decimal

1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768

0 ------1 r --- - E r-----9 I I ~I ~I ~I ~

0000: 000.: ••• 0: .ooe
I I I
I I I

_---------------- _________ J I I

• I I Ir---------------------------------j I
r-----------J

3 4 5 6 7 8 9 A B C D E F

0003 0004 0005 0006 0007 0010 0011 0012 0013 0014 0015
OL 0019 0020 0021 0022 0023 0026 0027 0028 0029 0030 0031
02_ 0035 0036 0037 0038 0039 0042 0043 0044 0045 0046 0047
OL 0051 0052 0053 0054 0055 0058 0059 0060 0061 0062 0063
04_ 0064 0065 0066 0067 0068 0069 0070 0071 0074 0075 0076 0077 0078 0079
05_ 0080 0081 0082 0083 0084 0085 0086 0087 0090 0091 0092 0093 0094 0095
06_ 0096 0097 0098 0099 0100 0101 0102 0103 0106 0107 0108 0109 0110 0111
01- 0112 0113 0114 0115 0116 0117 0118 0119 0122 0123 0124 0125 0126 0127
08_ 0128 0129 0130 0131 0132 0133 0134 0135 0138 0139 0140 0141 0142 0143
09_ 0144 0145 0146 0147 0148 0149 0150 _0151 0154 0155 0156 0157 0158 0159
OA- 0160 0161 0162 0163 0164 0165 0166 0167 0170 0171 0172 0173 0174 0175
OB_ 0176 0177 0178 0179 0180 0181 0182 0183 0186 0187 OlB8 0189 0190 0191
OC_ 0192 0193 0194 0195 0196 0197 0198 0199 0202 0203 0204 0205 0206 0207
OD_ 0208 0209 0210 0211 0212 0213 0214 0215 0218 0219 0220 0221 0222 0223
OE_ 0224 022.5 0226 0227 ,0228 0229 0230 0231 0234 0235 0236 0237 0238 0239
OF_ 0240 0241 0242 0243 0244 0245 0246 0247 0250 0251 0252 0253 0254 0255

10_ 0256 0257 0258 0259 0260 0261 0262 0263 0266 0267 0268 0269 0270 0271
lL 0272 0273 0274 0275 0276 0277 0278 0279 0282 0283 0284 02B5 0286 0287
12_ 0288 02B9 0290 0291 0292 0293 0294 0295 0298 0299 0300 0301 0302 0303
13_ 0304 0305 0306 0307 0308 0309 0310 0311 0314 0315 0316 0317 0318 0319
14_ 0320 0321 0322 0323 0324 0325 0326 0327 0330 0331 0332 0333 0334 0335
15_ 0336 0337 0338 0339 0340 0341 0342 0343 0346 0347 0348 0349 0350 0351
16_ 0352 0353 0354 0355 0356 0357 0358 0359 0362 0363 0364 0365 0366 0367
11- 0368 0369 0370 0371 0372 0373 0374 0375 0378 0379 0380 0381 0382 0383
18_ 0387 0388 0389 0391 0394 0395 0396 0397 0398 0399
19_ 0403 0404 0405 0407 0410 0411 0412 0413 0414 0415
lA_ 0419 0420 0421 0423 0426 0427 0428 0429 0430 0431
IB_ 0435 0436 0437 0439 0442 0443 0444 0445 0446 0447

0458 0459 0460 0461 0462 0463
0474 0475 0476 0477 0478 0479
0490 0491 0492 0493 0494 0495
0506 0507 050B 0509 0510 0511

C-4 GA34-0152

~
I I
'-.. ./

c

c'
c
c

c·

r+-o 1 2 3 4 5 6 7 8 9 A B C ° E F

201 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
2L 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
2L 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06'S4 0685 0686 0687
28_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
20_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E_ 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
3L 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
3L 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 09.56 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
30_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B C ° E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
4L 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45_ 1104 1105 1106 1107 1108 1109 1110 llll 1112 1113 1114 Ill5 Ill6 1117 1118 1119
46_ ll20 ll21 1122 1123 1124 1125 ll26 1127 ll28 1129 ll30 ll31 1132 ll33 1134 1135
4L 1136 ll37 .1l38 ll39 1140 ll41 1142 ll43 1144 ll45 ll46 ll47 1148 1149 ll50 1151
48_ 1152 1153 1154 1155 ll56 ll57 1158 ll59 ll60 1161 1162 1163 1164 1165 ll66 1167
49_ 1168 1169 ll70 1171 ll72 ll73 ll74 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 ll86 ll87 1188 1189 1190 1191 1192 1193 1194 1195 ll96 1197 ll98 ll99
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 12ll 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
40_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1~69 1270 1271 1272 1273 1274 1275 1276 1~77 1278 1279

50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 130H 1310 13ll
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 132.5 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 o
5L 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 14ll 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

o
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
50_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 15ll 1512 1513 1514 151.5 1516 1517 1.518 1519

. 5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

o
Number Systems and Conversion Tables C-5

o

,+-0 1 2 3 4 5 6 7

60.! 1536 1537 1538 1539 1540 1541 1542 1543
6L 1552 1553 1554 1555 1556 1557 1558 1559
62_ 1568 1569 1570 1571 1572 1573 1574 1575
63_ 1584 1585 1586 1587 1588 1589 1590 1591
6L 1600 1601 1602 1603 1604 1605 '1606 1607
65_ 1616 1617 1618 1619 1620 1621 1622 1623
66_ 1632 1633 1634 1635 1636 1637 1638 1639
67_ 1648 1649 1650 1651 1652 1653 1654 1655
68_ 1664 1665 1666 1667 1668 1669 1670 1671
69_ 1680 1681 1682 1683 1684 1685 1686 1687
6A- 1696 1697 1698 1699 1700 1701 1702 1703
6B_ 1712 1713 1714 1715 1716 1717 1718 1719
6C_ 1728 1729 1730 1731 1732 1733 1734 1735
6D_ 1744 1745 1746 1747 1748 1749 1750 1751
6E_ 1760 1761 1762 1763 1764 1765 1766 1767
6F_ 1776 1777 1778 1779 1780 1781 1782 1783
70_ 1792 1793 1794 1795 1796 1797 1798 1799
7L 1808 1809 1810 1811 1812 1813 1814 1815
72_ 1824 1825 1826 1827 1828 1829 1830 1831
7L 1840 1841 1842 1843 1844 1845 1846 1847
74_ 1856 1857 1858 1859 1860 1861 1862 1863
75_ 1872 1873 1874 1875 1876 1877 1878 1879
76_ 1888 1889 1890 1891 1892 1893 1894 1895
7L 1904 1905 1906 1907 1908 1909 1910 1911
78_ f

1921 1927 1920 1922 1923 1924 1925 1926
79_ 1936 1937 1938 1939 1940 1941 1942 1943
7A_ 1952 1953 1954 1955 1956 1957 1958 1959
7B_ 1968 1969 1970 ,1971 1972 1973 1974 1975
7C_ 1984 1985 1986 1987 1988 1989 1990 1991
7D_ 2000 2001 2002 2003 2004 2005 2006 2007
7E_ 2016 2017 2018 2019 2020 2021 2022 2023
7F_ 2032 2033 2034 2035 2036 2037 2038 2039

0 1 2 3 4 5 6 7

80_ 2048 2049 2050 2051 2052 2053 2054 2055
8L 2064 2065 2066 2067 2068 2069 2070 2071
82_ 2080 2081 2082 2083 2084 2085 2086 2087
83_ 2096 2097 2098 2099 2100 2101 2102 2103
8L 2112 2113 2114 2115 2116 2117 2118 2119
85_ 2128 2129 2130 2131 2132 2133 2134 2135
86_ 2144 2145 2146 2147 2148 2149 2150 2151
8L 2160 2161 2162 2163 2164 2165 2166 2167
88_ 2176 2177 2178 2179 2180 2181 2182 2183
89_ 2192 2193 2194 2195 2196 2197 2198 2199
8A_ 2208 2209 2210 2211 2212 2213 2214 2215
8B_ 2224 2225 2226 2227 2228 2229 2230 2231
8C_ 2240 2241 2242 2243 2244 2245 2246 2247
8D_ 2256 2257 2258 2259 2260 2261 2262 2263
8E_ 2272 2273 2274 2275 2276 2277 2278 2279
8F_ 2288 2289 2290 2291 2292 2293 2294 2295
90_ 2304 2305 2306 2307 2308 2309 2310 2311
9L 2320 2321 2322 2323 2324 2325 2326 2327
9L 2336 2337 2338 2339 2340 2341 2342 2343
93_ 2352 2353 2354 2355 2356 2357 2358 2359
9L 2368 2369 2370 2371 2372 2373 2374 2375
95_ 2384 2385 2386 2387 2388 2389 2390 2391
96_ 2400 2401 2402 2403 2404 2405 2406 2407
9L 2416 2417 2418 2419 2420 2421 2422 2423
98_ 2432 2433 2434 2435 2436 2437 2438 2439
99_ 2448 2449 2450 2451 2452 2453 2454 2455
9A_ 2464 2465 2466 2467 2468 2469 2470 2471
9B_ 2480 2481 2482 2483 2484 2485 2486 2487
9C_ 2496 2497 2498 2499 2500 2501 2502 2503
9D_ 2512 2513 2514 2515 2516 2517 2518 2519
9E_ 2528 2529 2530 2531 2532 2533 2534 2535
9F_ 2544 2545 2546 2547 2548 2549 2550 2551

C-6 GA34-0152

8 9 A B

1544 1545 1546 1547
1560 1561 1562 1563
1576 1577 1578 1579
1592 1593 1594 1595
1608 1609 1610 1611
1624 1625 1626 1627
1640 1641 1642 1643
1656 1657 1658 1659
1672 1673 1674 1675
1688 1689 1690 1691
1704 1705 1706 1707
1720 1721 1722 1723
1736 1737 1738 1739
1752 1753 1754 1755
1768 1769 1770 1771
1784 1785 1786 1787

1800 1801 1802 1803
1816 1817 1818 1819
1832 1833 1834 1835
1848 1849 1850 1851
1864 1865 1866 1867
1880 1881 1882 1883
1896 1897 1898 1899
1912 1913 1914 1915
1928 1929 1930 1931
1944 1945 1946 1947
1960 1961 1962 1963
1976 1977 1978 1979
1992 1993 1994 1995
2008 2009 2010 2011
2024 2025 2026 2027
2040 2041 2042 2043

8 9 A B

2056 2057 2058 2059
2072 2073 2074 2075
2088 2089 2090 2091
2104 2105 2106 2107
2120 2121 2122 2123
2136 2137 2138 2139
2152 2153 2154 2155
2168 2169 2170 2171
2184 2185 2186 2187
2200 2201 2202 2203
2216 2217 2218 2219
2232 2233 2234 2235
2248 2249 2250 2251
2264 2265 2266 2267
2280 2281 2282 2283
2296 2297 2298 2299

2312 2313 2314 2315
2328 2329 2330 2331
2344 2345 2346 2347
2360 2361 2362 2363
2376 2377 2378 2379
2392 2393 2394 2395
2408 2409 2410 2411
2424 2425 2426 2427
2440 2441 2442 2443
2456 2457 2458 2459
2472 2473 2474 2475
2488 2489 2490 2491
2504 2505 2506 2507
2520 2521 2522 2523
2536 2537 2538 2539
2552 2553 2554 2555

C D,

1548 1549
1564 1565
1580 1581
1596 1597
1612 1613
1628 1629
1644 1645
1660 1661
1676 1677
1692 1693
1708 1709
1724 1725
1740 1741
1756 1757
1772 1773
1788 1789

1804 1805
1820 1821
1836 1837
1852 1853
1868 1869
1884 1885
1900 1901
1916 1917
1932 1933
1948 1949
1964 1965
1980 1981
1996 1997
2012 2013
2028 2029
2044 2045

C D

2060 2061
2076 2077
2092 2093
2108 2109
2124 2125
2140 2141
2156 2157
2172 2173
2188 2189
2204 2205
2220 2221
2236 2237
2252 2253
2268 2269
2284 2285
2300 2301

2316 2317
2332 2333
2348 2349
2364 2365
2380 2381
2396 2397
2412 2413
2428 2429
2444 2445
2460 2461
2476 2477
2492 2493
2508 2509
2524 2525
2540 2541
2556 2557

E

1550
1566
1582
1598
1614
1630
1646
1662
1678
1694
1710
1726
1742
1758
1774
1790

1806
1822
1838
1854
1870
1886
1902
1918
1934
1950
1966
1982
1998
2014
2030
2046

E

2062
2078
2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302

2318
2334
2350
2366
2382
2398
2 .. 14
2430
2446
2462
2478
2494
2510
2526
2542
2558

F

1551
1567
1583
1599
1615
1631
1647
1663
1679
1695
1711
1727
1743
1759
1775
1791

1807
1823
1839
1855
1871
1887
1903
1919
1935
1951
1967
1983
1999
2015
2031
2047

F

2063
2079
2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303

2319
2335
2351
2367
2383
2399
2415
2431
2447
2463
2479
2495
2511
2527
2543
2559

(~,
I)
,,~

c

~I
",---"I

c'~

r-:-0 1 2 3 4 5 6 7 8 9 A B C D E F

AO! 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4_ 2624 262.'5 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
AL 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF_ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
BL 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
BL 2880 2881 2882 2883 2884 288.'5 2886 2887 2888 2889 2890 2891 2892 2B93 2894 2895
B5_ 2896 ·2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 292.'5 2H26 2927
BL 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 29.53 29.'54 295.5 29.56 29.57 29.58 2959
B9_ 2960 2961 2962 2963 2964 296.'5 2966 2967 2968 2969 2970 2971 2972 2973 2974 297.')
BA_ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 298B 2989 2990 2991
BB _ 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 301B 3019 3020 3021 3022 3023
BD_ 3024 302.5 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE_ 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF .. 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 30B·1 308.'5 30B6 3087
CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 310.5 3106 3107 3108 3109 3110 3Ill 3112 3113 3114 3115 3116 3117 3118 3119
C3_ 3120 3121 3122 3123 3124 3125 3126 3127 312B 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 31.50 3151
C5 - 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 316.'5 3166 3167
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 - 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 31m 319B 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 321.'3 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3.224 322.,) 3226 3227 3228 3229 3230 3231
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 324.5 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 32.56 32.57 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 327.5 32i6 3277 327B 3279
CD .. 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 .'3292 .'320.'3 3294 329.5
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 330.5 3306 3'307 3308 3309 3310 3311
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 332.5 3326 3327
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3.'3·10 3.341 3342 3343
DL 3344 3345 3346 3347 3348 3349 3350 3351 3352 33.53 3354 335.5 33.'56 3357 33.')8 335B
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 .33i2. .3373 3374 3375 o
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 33B8 3389 3390 3391
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3·104 340.5 3406 3407
D5_ 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
06_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 343.5 3436 3437 3438 3439
OL 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 34.'52 3453 34.54 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 .346D 34i0 3471
09_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 348.5 3486 3487
DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 349B 3.')00 3501 3502 3503
DB - 3504 3505 3506 3507 3508 3509 3510 3511 3.512 3513 3514 3.'515 3516 3.517 3.518 3.519
DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3.529 3530 3531 3.532 3.533 3534 3.53.5
DO - 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 .3.548 3.549 35.50 3.551
DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3.564 3.56.5 3566 3567
DF .. 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3.580 3.581 3582 3583 o

o
o Number Systems and Conversion Tables C-7

()

r+0 1 2 3 4 5 6 7 8 9 A B C D E F

EO! 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
EL 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
EL 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 . 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FL 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
FL 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 c
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
FL 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 __ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
FL 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 c
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

C-8 GA34-0152

~

:).
Powers of Two Table

~ 2n n 2"n

1 0 1.0
2 1 0.5
4 2 0.25

:) 8 3 0.125

16 4 0.0625
32 5 0.03125
64 6 0.01562 5

:J 128 7 0.00781 25

256 8 0.00390 625
512 9 0.001'35 3125

1,024 10 0.00097 65625

:) 2,048 11 0.00048 82812

4,096 12 0.00024 41406 25
8,192 13 0.00012 20703 125

16,384 14 0.00006 10351 5625

:) 32,768 15 0.00003 05175 78125

65,536 16 0.00001 52587 89062 5
131,072 17 0.00000 76293 94531 25
262,144 18 0.00000 38146 97265 625

:) 524,288 19 0.00000 19073 48632 8125

1,048,576 20 0.00000 09536 74316 40625
2,097,152 21 0.00000 04768 37158 20312 5
4,194,304 22 0.00000 02384 18579 10156 25

:) 8,388,608 23 0.00000 01192 09289 55078 125

16,777,216 24 0.00000 00596 04644 77539 0625
33,554,432 25 0.00000 00298 02322 38769 53125
67,108,864 26 0.00000 00149 01161 19384 76562 5

0 134,217,728 27 0.00000 00074 50580 59692 38281 25

268,435,456 28 0.00000 00037 25290 29846 19140 625
536,870,912 29 0.00000 00018 62645 14923 09570 3125

1,073,741,024 30 0.00000 00009 31322 57461 54785 15625 : 2,147,483,648 31 0.00000 00004 65661 28730 77392 57812

4,294,967,296 32 0.00000 00002 32830 64365 38696 28906 25
8,589,934,592 33 0.00000 00001 16415 32182 69348 14453 125

17,179,869,184 34 0.00000 00000 58207 66091 34674 07226 5625

L) 34,359,738,368 35 0.00000 00000 29103 83045 67337 03613 28125

68,719,476,736 36 0.00000 00000 14551 91522 83668 51806 64062 5
137,438,953,472 37 0.00000 00000 0727 5 95761 41834 25903 32031 25
274,877,906,944 38 0.00000 00000 03637 97880 70917 12951 66015 625

C) 549,755,813,88B 39 0.00000 00000 01818 98940 35458 56475 83007 8125

1,099,511,627,776 40 0.00000 00000 00909 49470 17729 28237 91503 90625
2,199,023,255,552 41 0.00000 00000 00454 74735 08864 64118 95751 95312 5
4,398,046,511,104 42 0.00000 000 00 00227 37367 54432 32059 47875 97656 25

0 8,796,093,022,208 43 0.00000 00000 00113 68683 77216 16029 73937 98828 125

17,592,186,044,416 44 0.00000 00000 00056 84341 88608 08014 86968 99414 0625
35,184,372,088,832 45 0.00000 00000 00028 42170 94304 04007 43484 49707 03125
70,368,744,177,664 46 0.00000 00000 00014 21 08 5 47152 02003 71742 24853 51562 5

0 140,737,488,355,328 47 0.00000 00000 00007 10542 73571i 01001 85871 12426 75781 25

281,474,976,710,656 48 0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
562,949,953,421,312 49 0.00000 00000 00001 77635 69394 00250 46467 78106 68945 3125

1,125,899,906,842,624 50 0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625

() 2,251,799,813,685,248 51 0.00000 00000 00000 44408 92098 50062 61616 94526 67?36 32812

4,503,599,627,370,496 52 0.00000 00000 00000 22204 46049 25031 30808 47263 33618 16406 25
9,007,199,254,740,992 53 0.00000 ooooc 00000 111 02 ?3024 62515 65404 23631 66809 08203 125

18,014,398,509,481,984 54 0.00000 00000 00000 05551 1151? 31257 82702 11 815 83404 54101 5625

0 36,028,797,018,963,968 55 o.noooo 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125

72,057,594,037,927,936 56 0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5
144,115,188,075,855,872 57 0.00000 00000 00000 00693 88939 03'107 22837 76476 97925 56762 69531 25
28~,230.376.151,711,744 58 0.00000 00000 00000 00346 94469 51953 61418 8B238 489~2 78381 34765 625

0 576,460.752,303,423,488 59 0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125

1,152.921.504,606,846,976 60 0.00000 00000 00000 00086 73617 37988 40354 7?059 62240 69595 33691 40625
2,305,843.009,213,693,952 61 0.00000 00000 00000 00043 36808 68~94 20177 36029 81120 34797 66845 70312 5
4.611,686,018.427,387,904 62 0.00000 00000 00000 00021 68404 34497 100R8 68014 90560 17398 83422 85156 25

0 9,223,372.036,854.775,808 63 0.00000 00000 ooono 00010 84202 17248 55044 34007 45280 08699 41711 42578 125

18.446,744,073,709,551,616 64 0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625

--J
.-

0 Number Systems and Conversion Tables C-9

0

C-lO GA34-0152

Powers of1Wo Table

18,446,744,073,709,551,616
36,893,488,147,~19,103,232

73,786,976,294,838,206,464
147,573,952,589,676,412,928

295,147,905,179,352,825,856
590,295,810,358,705,651,712

1,180,591,620,717,411,303,424
2,361,183,241,434,822,606,848

4,722,366,482,869,645,213,696
9,444,732,965,739,290,427,392

18,889,465,931,478,580,854,784
37,778,931,862,957,161,~09,569

75,557,863,725,914,323,419,136
151,115,727,451,828,646,838,272
302,231,~5~,903,657,293,676,544

604,462,909,807,314,587,353,088

1,208,925,819,614,629,174,706,176
2.417,951,639,229,258,349,412,352
4,835,703,278,458,516,698,824,704
9,671,406,556,917,033,397,649,408

19,342,813,113,834,066,795,298,816
38,685,626,227,668,133,590,597,632
77,371,252,455,336,267,181,195,264

154,742,504,910,672,534,362,390,528

309,485,009,821,345,068,724,781,056
618,970,019,642,690,137,449,562,112

1,237,940,039,285,380,274,899,124,224
2,475,880,078,570,760,549,798,248,448

4,951,760,157,141,521,099,596,496,896
9,903,520,314,283,042,199,192,993,792

19,807,040,628,566,084,398,385,987,584
39,614,081,257,132,168,796,771,975,168

79,228,162,514,264,337,593,543,950,336
158,456,325,028,528,675,187,087,QOO,672
316,912,650,057,057,350,374,175,801,344
633,825,300,114,114,700,748,351,602,688

1,267,650,600,228,229,401,496,703,205,376
2,535.301,200.456,458,802,993,406,4~0,752
5,070.602,400.912,917,605,986,812,821,504

10,141.204,801,825,835,211.973,625,643,008

20.282.409,603,651,670,423,947,251,286,016
40.564.819.207.303,340,847,894,502,572,032
81.129.638,414,606.681,695,789.005,144,064

162.259,276.829,213,363,391.578,010,288,128

324.518.553,658,426,726,783,156,020,576.256
649,037.107.316,853,453,566,312.041,152,512

1.298,074,214,633,706,907,132,624,082,305.024
2.596,148.429.267,413,814,265,248.164,610,048

5.192,296.858,534,827,628,530,496.329,220,096
10.384,593,717.069,655.257,060,992.658.440.192
20.769,187,434.139,310,514,121,985,316,880,384
41.538,374,868.278,621,028,243.970,633.760,768

83.076.749.736,557,242.056,487,941,267.521,536
186.153,499,473,114,484,112,975,882,535.043,072
332,306,998,946,228,969,225.951,765,070,086.144
664,613.997,892,457,936.451,903.530,140.172,J88

1,329.227,995,784.915,872,903,807.060,290,344,576
2,658.455.991,569,831.745.807,6i4,120,560.689,152
5,316.911,983,139,663,491,615,228.241,121,378.304

10.633.823.966,279.32~.983,230.456,492,242.756.608

21.267.647.932,558.653,966,460,912.964,485,513.216
42.535.295.865.117.307.932.921.825.928,971.026,432
85,070.591.730.234,615.865.843.651,857.942,052,8~4

170.141,183.460.469,231,731.687,303.715,884,105,728

64
65
66
67

68
69
70
71

72
73
74
75

76
77
79
79

80
81
82
83

84
85
86
87

89
89
90
91

92
93
94
95

96
97
1'18
99

100
101
102
103

104
105
106
107

108
109
110
111

112
113
114
115

116
117
118
119

120
121
122
123

124
125
126
127

c

c

Ci'
-"

c

I'
I

\~

o

o
C" 0''''

c

c

I

I
V

o

C)
o
o
o
o
o
o
o

Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Hex

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
ID
IE
IF
20
21
22
23
24
25
26
27

Binary EBCDIC

00000000 NUL
0001 SOH
0010 STX
0011 ETX
0100 PF
0101 HT
0110 LC
0111 DEL
1000
1001 RLF
1010 SMM
1011 VT
1100 FF
1101 CR
1110 SO
1111 SI

0001 0000 OLE
0001 OC1
0010 OC2
0011 TM
0100 RES
0101 NL
0110 BS
0111 IL
1000 CAN
1001 EM
1010 CC
1011 CUI
1100 IFS
1101 IGS
1110 IRS
1111 IUS

0010 0000 OS
0001 SOS
0010 FS
0011
0100 BYP
0101 LF
0110 ETB
0111 ESC

Appendix D. Character Codes

Eight-bit
data inter- PITC/

ASCII change PITC/EBCD correspondence

NUL NUL
SOH NUL space space
STX 1 1,]
ETX @

EOT 2 2
ENQ space
ACK
BEL 3 3
BS 4 5
HT
LF P (even parity)
VT P (odd parity) 5 7
FF o (even parity)
CR o (odd parity) 6 6
SO 7 8
SI
OLE 8 4
OC1
OC2 H (even parity)
OC3 H (odd parity) 9 0
OC4 ((even parity)
NAK ((odd parity) 0 z
SYN @ (EOA) @ (EOA),9
ETB
CAN
EM
SUB
ESC X
FS uppercase uppercase
GS 8 ~

RS
US © (EOT) © (EOT)
space @ t
! EOT
" o (even parity)
o (odd parity) / x
$ S (even parity)
% S (odd parity) s n
& t u ,

Character Codes D-l

Decimal Hex Binary EBCDIC

40 28 0010 1000
41 29 1001
42 2A 1010 SM
43 2B 1011 CU2
44 2C 1100
45 2D 1101 ENQ
46 2E 1110 ACK
47 2F 1111 BEL
48 30 0011 0000
49 31 0001
50 32 0010 SYN
51 33 0011
52 34 0100 PN
53 35 0101 RS
54 36 0110 UC
55 37 0111 EOT
56 38 1000
57 39 1001
58 3A 1010
59 3B 1011 CU3
60 3C 1100 DC4
61 3D 1101 NAK
62 3E 1110
63 3F 1111 SUB
64 40 0100 0000 space
65 41 0001
66 42 0010
67 43 0011
68 44 0100
69 45 0101
70 46 0110
71 47 0111
72 48 1000
73 49 1001
74 4A 1010 ¢
75 4B 1011
76 4C 1100 <
77 4D 1101 (
78 4E 1110 +
79 4F 1111]
80 50 0101 0000 &
81 51 0001
82 52 0010
83 53 0011
84 54 0100
85 55 0101

D-2 GA34-0152

Eight-bit
data inter-

ASCII change

(
)

*
+ T
,
- 4

/
0 form feed
1 form feed
2
3 L
4
5 ,
6
7
8
9
: \ (even parity)
, \ (odd parity)
< < (even parity)
= < (odd parity)
>
?
@

A EOA
B B (even parity)
C B (odd parity)
D " (even parity)
E " (odd parity)
F
G
H
I
J
K R
L
M 2
N
0
P line feed
Q line feed
R
S J
T
U *

PITC/EBeD

u
v

w

x

y
z

® (SOA), comma

index

® (EOB)

N, -

i

k
I

m
n

0

p

q
r

PTTC/
correspondence

e
d

k

c

I
h

b

index

!

m

v

,

r

i

a

0

s

c

C'
.../'

c
c
c'
c

c
c
c
c
c
c
c:
c

~)

o
o
o

c
o
(

-~ ..
~)

o
o
o
o
o
o
o
o

Decimal

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

Hex Binary EBCDIC

56 0101 0110
57 0111
58 1000
59 1001
SA 1010 !
5B 1011 $
5C 1100 *
5D 1101)
5E 1110 ,
SF 1111' -,
60 01100000 -
61 0001 /
62 0010
63 0011
64 0100
65 0101
66 0110
67 0111
68 1000
69 1001
6A 1010 I

I

6B 1011 ,
6C 1100 %
6D 1101 -
6E 1110 >
6F 1111 ?
70 0111 0000
71 0001
72 0010
73 0011
74 0100
75 0101
76 0110
77 0111
78 1000
79 1001
7A 1010
7B 1011 =If
7C 1100 @

7D 1101
,

7E 1110 =
7F 1111 "
80 1000 0000
81 0001 a
82 0010 b
83 0011 c

Eight-bit
data inter- PTIC/

ASCII change PTIC/EBCD correspondence

V
W $ w
X
Y
Z Z (even parity)
[Z (odd parity) CRLF CRLF
\ : (even parity)
] : (odd parity) backspace backspace
A idle idle
-

ACK
a & j
b a g
c F
d b
e &
f
g c f
h d P
i
j V (even parity)
k V (odd parity) e
I 6 (even pari ty)
m 6 (odd parity) f q
n g comma
0

p h /
q shift out
r N (even parity)
s N (odd parity) i y
t . (even parity)
u . (odd parity)
v ®, period -
w
x
Y
z horiz tab tab
. t t

I lowercase lowercase

t >
'V

DEL delete

SOM space space
A (even parity) = ±, [
A (odd parity)

Character Codes D-3

Decimal Hex Binary EBCDIC ASCII

132 84 1000 0100 d
133 85 0101 e
134 86 0110 f
135 87 0111 g
136 88 1000 h
137 89 1001 i
138 8A 1010
139 8B 1011
140 8C 1100
141 8D 1101
142 8E 1110
143 8F 1111
144 90 1001 0000
145 91 0001 j
146 92 0010 k
147 93 0011 1
148 94 0100 m
149 95 0101 n
150 96 0110 0

151 97 0111 P
152 98 1000 q
153 99 1001 r
154 9A 1010
155 9B 1011
156 9C 1100
157 9D 1101
158 9E 1110
159 9F 1111
160 AO 1010 0000
161 Al 0001 'V

162 A2 0010 s
163 A3 0011 t
164 A4 0100 u
165 AS 0101 v
166 A6 0110 w
167 A7 0111 x
168 A8 1000 Y
169 A9 1001 z
170 AA 1010
171 AB 1011
172 AC 1100
173 AD 1101
174 AE 1110
175 AF 1111
176 BO 1011 0000
177 B1 0001

D-4 GA34-0152

Eight-bit
data inter-
change PTTC/EBCD

! (even parity) <
! (odd parity)

,
X-ON

Q %

1 ,

>

horiz tab *
horiz tab

I (

))
@ (EOA) , "

Y (even parity)
Y (odd parity)
9 (even parity) uppercase
9 (odd parity)

© (EOT)
WRU (even) ¢
WRU (odd)

E ?

% S
T

U
U (even parity) V
U (odd parity)
5 (even parity) W
5 (odd parity)

X

return Y

PTTC/
correspondence
@

%

&

¢
*

$

)

Z
(

uppercase

© (EOT)
T

X

N
U

E
D

K

C

L

c
c
c)
C'

C"
./

c

I

'---'

c

c
c
c
c
c
C·
c

I
J

~

o
o

Decimal

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Hex

B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
Dl
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

Binary

1011 0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1100 0000
0001
0010
0011
0100
0101
OlIO
0111
1000
1001
1010
1011
1100
1101
1110
1111

1101 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Eight-bit
data inter- PTIC/

EBCDIC ASCII change PTTC/EBCD correspondence

M (even parity) Z H
M (odd parity)
- (even parity)
- (odd parity)

® (SOA), I B

1 index index

= ® (EOB)

{ EOM (even) ®,-
A EOM (odd)
B
C C J M
D
E # K
F L V
G
H
I X-OFF M "

S (even parity) N R
S (odd parity)

J 3 (even parity) 0 I

Y
3 (odd parity)

P A
~

J vertical tab Q 0
K K (even parity) R S
L K (odd parity)
M + (even parity)
N + (odd parity)
0
P ! W
Q
R

[CRLF CRLF

, backspace backspace
idle idle

PAD

Character Codes D-5

Decimal Hex Binary EBCDIC ASCII

224 EO 11100000 \
225 E1 0001
226 E2 0010 S
227 E3 0011 T
228 E4 0100 U
229 E5 0101 V
230 E6 0110 W
231 E7 0111 X
232 E8 1000 Y
233 E9 1001 Z
234 EA 1010
235 EB 1011
236 EC 1100 r1
237 ED 1101
238 EE 1110
239 EF 1111
240 FO 1111 0000 0
241 F1 0001 1
242 F2 0010 2
243 F3 0011 3
244 F4 0100 4
245 F5 0101 5
246 F6 0110 6
247 F7 0111 7
248 F8 1000 8
249 F9 1001 9
250 FA 1010 LVM
251 FB 1011
252 FC 1100
253 FD 1101
254 FE 1110
255 FF 1111

D-6 GA34-0152

Eight-bit
data inter-
change PTTC/EBCD

bell +
G (even parity) A
G (odd parity)
, (even parity) B
,(odd parity)

C
D

W E

7 F
G

shift in (even) H
shift in (odd)

0 I

/
(V, -,

<= (even pari ty) horiz tab
<=(odd parity)
? (even parity) lowercase
? (odd parity)

delete
rub out

delete

PITC/
correspondence

J
G

+

F
P

Q
comma

?

Y

-

tab

lowercase

c
c
c

c

r
L

c

c

Carry Indicator Setting

~)

o
o Add Operation Examples

o
o
o
o
o
o
o
o
o
o

Appendix E. Carry and Overflow Indicators

The carry indicator is used to signal overflow of the result when operands
are presented as unsigned numbers. The machine does not regard the
numbers as either signed or unsigned, but performs the designated
operation (add or subtract) on the values presented. The programmer must
interpret the condition of the result for the numbers involved. The machine
detects the carry condition during the operation in two ways:

1. Add operation-when a carry out of the high-order bit position of the
result operand occurs.

2. Subtract operation-when a borrow beyond the high-order bit position
of the result operand occurs.

A four-bit operand size is used in the following examples. Note that the
unsigned number range for this operand is 0-15. No other unsigned
number values may be represented for this size operand.

Addition (carry indicator is not set)

Desired operation: 6 + 9 = 15

Machine operation: Augend
Addend

Result

High-order bit carry = a

0110
1001

1111

The result fits as an unsigned number. The carry indicator
is not set (c=o).

• Addition (carry indicator is set)

Desired operation: 15 + 1 = 16

Machine operation: Augend
Addend

Result

High-order bit carry = 1

1111
0001

0000

The result does not fit as an unsigned number. The carry
indicator is set (C=l).

Carry and Overflow Indicators E-1

E-2 GA34-0152

• Addition (carry indicator is set)

Desi red operati on: 15 + 15 = 30

Machine operation: Augend
Addend

Result

High-order bit carry = 1

1111
1111

1110

Result does not fit as an unsigned number. The carry indicator
is set (C=1).

Note: The result of adding the two largest numbers can be
contained in the operand size and the carry indicator. The
carry indicator represents the most significant bit.

c:'
c
c

C'

c·
C:

c

c
c·
c
c
c·
c
c

("-\

0

8

8
Subtract Operation Examples

8

0

0

0

0
0
0

II u
0

0

0

0

0

0
C)

0

0

0

The processor performs subtraction by using the complement addition
method. The second operand is complemented (two's complement) and an
add operation is performed. This is actually a three-way add operation
between the minuend, the subtrahend (one's complement), and a constant
of one. To provide the correct carry (borrow) indication for the
subtraction, the carry result of the complement add operation must be
inverted to determine the carry indicator setting. The following examples
use a four-bit operand with an unsigned number range of 0-15.

Subtract (carry indicator is not set)

Desired operation: 15 - 1 ;;; 14

Machine operation: Minuend 1111
Subtrahend 1110 one's complement
Constant for two's complement

Result 1110

High-order bit carry = 1 invert for carry
indicator

The result fits as an unsigned number. The carry indicator is
not set (C;;;O).

Note: The carry indicator setting (C=O) for this subtract operation
was determined by inverting the complement-add carry.

• Subtract (carry indicator is not set)

Desired operation: 15 - 15 = 0

Machine operation: Minuend
Subtrahend
Constant

Result

High-order bit carry = 1

1111
0000 one's complement

1 for two's complement

0000

invert for carry indicator

The result fits as an unsigned number. The carry indicator is not
set (C=O).

Carry and Overflow Indicators E-3

E-4 GA34-0152

• Subtract (carry indicator is set)

The following two examples show the case of a negative result
(subtrahend greater than minuend). This negative result cannot be
represented in the operand width because all operand bits are used to
represent the unsigned number. To flag this condition, the carry
indicator is set.

Example 1.

Desired operation: 0-1 =-1

Machine operation: Minuend 0000
Subtrahend 1110 one's complement
Constant 1 for two's complement

Result 1111

High-order bit carry = 0 invert for carry indicator

The result does not fit as an unsigned number. The carry indicator
is set (C=l).

Example 2.

Desired operation: 0-15 =-15

Machine operation: Minuend 0000
Subtrahend 0000 one's complement
Constant 1 for two's complement

Result 0001

High-order bit carry = 0 invert for carry indicator

The result does not fit as an unsigned number. The carry in
dicator is set (C=l).

Note: When a negative result occurs on a subtract operation,
the values may be useful to the programmer. The carry indicator
and the result form a signed number. The carry indicator is
the sign and the result is the number in two's complement
form (see Figure F-4).

c'

c\
c'

c
C:

c
c

[
c
()

c
c
c'
c

c
c
C"

1'--\

"j

Overflow Indicator Setting

o
o
o
o Examples

o

o
o
o
()

o
o
o
o
C)

The overflow indicator is used to signal overflow of the result when the
operands are presented as signed numbers. The machine does not regard
the numbers as either signed or unsigned, but performs the designated
operation (add or subtract) on the values presented. The programmer must
interpret the condition of the result for the number representation
involved. The machine detects this condition by inspection of any carry
into and out of the high-order bit (sign position) of the result operand
during the operation. The overflow indicator is set (0 = 1) for the two
cases where the carries disagree:

1. A carry into, but no carry out of the sign position.

2. No carry into, but a carry out of the sign position.

The overflow indicator is not set (0 = 0) for the remaining two cases
where the carries agree:

1. A carry into and out of the sign position.

2. No carry into and no carry out of the sign position.

A four-bit operand size is used in the following examples. Note that the
signed number range for a four-bit operand is -8 to +7. No other signed
number values may be represented.

• Addition (overflow indicator is not set)

Desired operation: +5 + (+2) = +7

Machine operation: Augend 0101
Addend 0010

Result

Carry into sign position = 0

Carry out of sign position = 0

0111

carries agree

The result fits as a signed number. The overflow indicator is
not set (0 = 0).

Desired operation: -4 + (-4) =-8

Machine operation: Augend
Addend

Result

Carry into sign position = 1

Carry out of sign position = 1

1100 two's complement
1100 two's complement

1000 two's complement

carries agree

The result fits as a signed number. The overflow indicator is
not set (0 = 0).

Carry and Overflow Indicators E-5

E-6 GA34-0152

• Addition (overflow indicator is set)

Desired operation: +4 + (+4) = +8

Machine operation: Augend 0100
Addend 0100

Result

Carry into sign position = 1

Carry out of sign position = 0

1000

carries disagree

The result does not fit as a signed number. The overflow indicator
is set (0 = 1).

Desired operation: -4 + (-5) =-9

Machine operation: Augend
Addend

Result

Carry into sign position = 0

Carry out of sign position = 1

1100 two's complement
1011 two's complement

0111

carries disagree

The result does not fit as a signed number. The overflow indicator
is set (0 = 1).

c
c'
("

.... /

c
(

c'
c
c
r
Lj
c

c
c
c
c
c
c
c

o
o
o
o
()

o
o
o
o
o

[
o
C)
o

o
C)
o.
o
C)
o

• Subtraction (overflow indicator is not set)

Desired operation: +7 - (+2) = +5

Machine operation: Minuend 0111
Subtrahend 1101 one's complement
Constant for two's complement

Result 0101

Carry into sign position = 1

Carry out of sign position = 1 carries agree

The result fits as a signed number. The overflow indicator is not
set (0 = 0).

Desired operation: +5 - (-1) = +6

Note: A -1 is equal to 1111.

Machine operation: Minuend 0101
Subtrahend 0000 one's complement
Constant

Result

Carry into sign position = a
Carry out of sign position = a

0110

for two's complement

carries agree

The result fits as a signed number. The overflow indicator is not
set (0 = 0).

• Subtraction (overflow indicator is set).

Desired operation: +7 - (-2) = +9

Note: A -2 is equal to 1110.

Machine operation: Minuend
Subtrahend
Constant

Result

Carry into sign position = 1

Carry out of sign position = a

0111
0001 one's complement

for two's complement

1001

carries disagree

The result does not fit as a signed number. The overflow indicator
is set (0=1).

Desired operation: -3 - (+6) =-9

Machine operation: Minuend
Subtrahend
Constant

1101 two's complement
1001 one's complement

1 for two's complement

Result 0111

Carry into sign position = a
Carry out of sign position = 1 carries disagree

The result does not fit as a signed number. The overflow indicator
is set (0 = 1).

Carry and Overflow Indicators E-7

Unsigned Numbers

E-8 GA34-0152

For unsigned addition and subtraction, the carry indicator signals that:

1. On an add instruction, a carry out of the high-order bit position has
occurred (result exceeds result operand size). The carry indicator and
the resulting operand together form a valid result of which the carry
indicator is the most significant bit.

2. On a subtract operation, a borrow beyond the high-order bit position
has occurred. A borrow during a subtract operation is defined as either
of the following:
a. No carry is generated out of the high-order bit position when a

two's complement of the subtrahend and add is performed to
accomplish the subtract operation.

b. The most significant digit of the minuend must be made larger to
generate a difference of 0 or 1 when subtracting the most
significant digit of the subtrahend (for example, 1 subtracted from
0).

When a borrow is signalled on a subtract operation, the result is in two's
complement form.

The overflow indicator provides no useful information about unsigned
operations.

Figure E-1 shows how the carry and overflow indicators are set for an add
operation when using 16-bit operands. Figure E-2 provides the same
information for a subtract operation.

C:

c
c

c
c

c
c

c
0,
\../

c
c
c
c
c

c'

(~)

o
o
C)
o
o
o
C)
C)
o

C)
C)

o
o
o

o
o
o

UNSIGNED NUMBERS

ADD OPERATION-All possible results (16-bit example)

Indicators

Overflow Carry

(Note 1)

Notes:

Result value

Hexadecimal Decimal

0000 0

•
•

7FFF 32767
8000 32768

•
•

FFFE 65534
FFFF 65535
0000 65536

•
•

7FFF 98303
8000 98304

•
•

FFFE 131070

16-bit
representable
range

17-bit range
using carry
bit
(Note 2)

1. The overflow indicator may be set; however, it provides no useful
information.

2. With the carry indicator on, the result and carry form a valid 17-bit
unsigned number of which the carry is the most significant bit.

Figure E-l. All possible results of an add operation regarding the operands as unsigned 16-bit
numbers

Carry and Overflow Indicators E-9

Signed Numbers

E-IO GA34-0152

UNSIGNED NUMBERS

SUBTRACT OPERATION-All possible results (16-bit example)

Indicators Result value

Overflow Carry Hexadecimal Decimal

(Note 1) 0001 -65535

•
•
• 17-bit

7FFF -32769 negative

8000 -32768 range

8001 -32767 (Note 2)

•
•
•

FFFF -1
0000 -0
0001 +1

•
• 16-bit

7FFF +32767 represent-

8000 +32768 able range

•
•
•

FFFF +65535

Notes:

1. The overflow indictor may be set; however, it provides no useful
information.

2. With the carry indicator (borrow) on, the result and carry indicator
form a valid 17-bit negative number, of which the carry is the sign
and the result is the magnitude in normal two's complement form.

Figure E-2. All possible results of a subtract operation regarding the operands as unsigned
16-bit numbers

For signed addition and subtraction, the overflow indicator signals a result
that exceeds the representation capability of the system for the result
operand size. When overflow is indicated, the carry indicator and the
resulting operand together form a valid result with the carry indicator
being the most significant bit. For addition, the carry indicator is the sign
(high-order bit) of this result. For subtraction, the carry indicator is the
complement of the sign (high-order bit) of the result. A negative result
appears in two's complement form. When no overflow is indicated, the
carry indicator provides no information about the result.

Figure E-3 shows how the carry and overflow indicators are set for an add
operation when using 16-bit operands. Figure E-4 provides the same
information for a subtract operation.

C,

c~,

c
c~

C~

C~·
_.-'

(~

c
C

C

c
c
c·
CI

(~)

o
o
C)
C)
o
o
o
C)
C)

o
o
o
o
o
o
o
o
o
()

o

SIGNED NUMBERS

ADD OPERATION-All possible results (16-bit example)

Indicators Result value

Overflow Carry Hexadecimal Decimal

1 1 0000 -65536

I ! l · • (Note 1)

•
1 7FFF -32769 - --f--· 8000 -32768

•
(Note 2) • ____ l ___ F:FE -2 16-bit

FFFF -1 represent-----f---0000 a able range

(Note 2)

____ l ___ 7FFF +32767
1 8000 +32768

I 1
•
• (Note 1)

•
1 FFFE +65534

Notes:

1. When overflow occurs, the carry indicator and the result together form
a valid 17-bit signed number, of which the carry is the sign, and the
result is the magnitude. A negative result is in two's complement form.
When no overflow occurs, no useful information is provided by the
carry indicator.

2. The carry indicator may be on or off depending on the operands.

Figure E-3. All possiMe results of an add operation regarding the operands as signed 16-bit
numbers

Carry and Overflow Indicators E-ll

E-12 GA34-01S2

SIGNED NUMBERS

SUBTRACT OPERATION-All possible results 06-bit example)

Indicators Result value

Overflow Carry Hexadecimal Decimal

1

!
1

I
1

Notes:

0001

•
•
•

7FFF

---l----:~~~
(Note 2) •

•
•

FFFF
0000 ---1----' 0001

(Note 2) •

___ 1 ____ 7F:FF

1 8000

1 •
•
•

1 FFFF

-65535 }

-32769

(Note 1)

-32768
-32767

-1
o

+1

+32767
+32768

+65535

16-bit
represent
able range

} (Note 1)

1. When overflow occurs, the carry indicator and the result form a valid
17-bit signed number, of which the carry is the complement of the
correct sign, and the result is the magnitude. A negative result is in
two's complement form. When no. overflow occurs, no useful infor
mation is provided by the carry indicator .

. 2. The carry indicator may be on or off depending on the operands.

Figure E-4. All possible results of a subtract operation regarding the operands as signed
16-bit numbers

c
c
c

c
C)

c
c'
C· -"

c~

c~

c

c

r-"

~)

C)

o
()

o
o
C)

C)

o
r,
~)

u

o
o
C)

Address Key Register (AKR)

Appendix F. Reference Information

This appendix contains the following reference information:

• Address key register (AKR)

• Condition codes

• General registers

• Interrupt status byte

• Level status register (LSR)

• Processor status word (PSW)

Bits

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Contents

Eq uate operand spaces
(not used, always 0)
(not used, always 0)
(not used, always 0)
(not used, always 0)
Operand-l key (bit 0)
Operand-l key (bit 1)
Operand-l key (bit 2)
(not used, always 0)
Operand-2 key (bit 0)
Operand-2 key (bit 1)
Operand-2 key (bit 2)
(not used, always 0)
Instruction space key (bit 0)
Instruction space key (bit 1)
Instruction space key (bit 2)

Reference Information F-l

Condition Codes

I/O Instruction 'Condition Codes

These codes are reported during execution of an Operate I/O instruction:

Condition LSR position
code (CC) Reported
value Even Carry Overflow by Meaning

0 0 0 0 Channel Device not
attached

1 0 0 1 Device Busy
2 0 1 0 Device Busy after

reset
3 0 1 1 Chan/dev Command

reject
4 1 0 0 Device Intervention

required c
5 1 0 1 Chan/dev Interface

data check
6 1 1 0 Controller Controller

busy
7 1 1 1 Chan/dev Satisfactory

Interrupt Condition Codes

These condition codes are reported by the device or controller during
priority interrupt acceptance:

r~

I
I

Condition LSR position
code (CC) Reported l / _ '

value Even Carry Overflow by Meaning

0 0 0 0 Controller ~ontroller
end

0 0 1 Device Program-
controlled
interrupt
(PCI)

2 0 1 0 Device Exception
3 0 1 1 Device Device end
4 1 0 0 Device Attention
5 1 0 1 Device Attention

and PCI
C:

6 1 1 0 Device Attention
and excep-
tion

C,
7 1 1 1 Device Attention

and device
end

F-2 GA34-0152

l)

o
General Registers

o

Interrupt Status Byte (ISB)

o DPC Devices

o

c: Cycle-Steal Devices

o

c-,

C)
o
o

R- or RB-field value*

000
001
010
all
100
101
110
111

Register selected

Register a
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

*The RB field sometimes contains only the two low-order bits. In this
case, registers 4-7 cannot be specified.

Bits Contents

a
1
2
3
4
5
6
7

Device status available
Delayed command reject
Device-dependent
Device-dependent
Device-dependent
Device-dependent
Device-dependent
Device-dependent

Bits Contents

a
1
2
3
4
5
6
7

Device status available
Delayed command reject
Incorrect-length record
DeB specification check
Storage data check
Invalid storage address
Protect check
Interface data check

Reference Information F-3

Level Status Register (LSR)

Bit

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Processor Status Word (PSW)

Bit

o

F-4 GA34-0152

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Contents

Even indicator
Carry indicator
Overflow indicator
Negative result indicator
Zero result indicator
(not used, always 0)
(not used, always 0)
(not used, always 0)
Supervisor state
In-process
Trace
Summary mask
(not used, always 0)
(not used, always 0)
(not used, always 0)
(not used, always 0)

Contents

Specification check
Invalid storage address
Privilege violate
Protect check
Invalid function
Floating-point
Stack exception
(not used, always 0)
Storage parity check
(not used, always 0)
CPU control check
I/O check
Sequence indicator
Auto IPL
Translator enabled
Power/thermal warning

c
c

i

I
'.., , ... /

C)
C'

--'

r'" (,
"'--....../'

c
c'

o
o

C)

,",
l)

o
c)

o
()

o

active address key 5-6
add address (AA) instruction

register immediate long format 8-2
storage immediate format 8-2

add byte (AB) instruction 8-4
add byte immediate (AB!) instruction 8-5
add carry register (ACY) instruction 8-5
add doubleword (AD) instruction

register / storage format 8-6
storage/storage format 8-7

add word (A W) instruction
register/register format 8-8
register/ storage format 8-8
storage/register long format 8-9
storage/storage format 8-10

add word immediate (A WI) instruction
register immediate long format 8-11
storage immediate format 8-12

add word with carry (A WCY) instruction 8-11
address generation, effective 2-21
address key register (AKR) F-l, 2-7, 5-6
address key register (AKR), example of use 5-6
address mode (AM) 2-23
address space management

active address key 5-6
address key values after interrupts 5-9
address space 5-7
equate operand spaces (EOS) 5-6

address translation 5-3
addressing main storage 2-1
AKR (see address key register)
ALU (see arithmetic and logic unit)
AM (see address mode)
AND word immediate (NWI) instruction 8-107
arithmetic and logic unit (ALU) 2-2
assembler syntax, summary of B-1
attention and device end condition code 4-28
attention and exception condition code 4-28
attention and PCI condition code 4-28
attention condition code 4-28
auto IPL, bit in PSW 3-23
automatic interrupt branching 3-3

base register (RB)
used for effective address generation 2-21

base register storage address 2-27
base register word displacement 2-22
base register word displacement short 2-21
binary and hexadecimal number notations C-l
branch and link (BAL) instruction 8-14
branch and link external (BALX) instruction 8-14
branch and link short (BALS) instruction 8 -15
branch external (BX) instruction 8-13
branch if mixed (BMIX) instruction 8-16
branch if negative (BN) instruction 8-16

Index

branch if not off (BNOFF) instruction 8-19
branch if not on (BNON) instruction 8-19
branch if off (BOFF) instruction 8-16
branch if on (BON) instruction 8-16
branch indexed short (BXS) instruction 8-24
branch/ jump instructions

branch and link (BAL)
branch and link external (BALX) 8-14

branch and link short (BALS) 8-15
branch indexed short (BXS) 8-15
branch on condition (BC)

branch if mixed (BMIX) 8-16
branch if negative (BN) 8-16
branch if off (BOFF) 8-16
branch if on (BON) 8-16
branch on arithmetically less than (BL T) 8-16
branch on arithmetically less than or equal

(BLE) 8-16
branch on carry (BCY) 8-16
branch on equal (BE) 8-16
branch on even (BEV) 8-16
branch on logically less than (BLL T) 8-16
branch on positive (BP) 8-16
branch on zero (BZ) 8-16

branch on condition code (BCC)
branch on not error (BNER) 8-18

branch on not condition (BNC)
branch if not off (BNOFF) 8-19
branch if not on (BNON) 8-19
branch on arithmetically greater than (BGT) 8-19
branch on arithmetically greater than or equal

(BGE) 8-19
branch on logically greater than (BLGT) 8-19
branch on logically greater than or equal

(BLGE) 8-19
branch on no carry (BNCY) 8-19
branch on not equal (BNE) 8-19
branch on not even (BNEV) 8-19
branch on not mixed (BNMIX) 8-19
branch on not negative (BNN) 8-19
branch on not positive (BNP) 8-19
branch on not zero (BNZ) 8-19

branch on not condition code (BNCC)
branch on error (BER) 8-21

branch on not overflow (BNOV) 8-22
branch on overflow (BOV) 8-23
branch unconditional (B)

branch external (BX) 8-13
jump and link (JAL) 8-80
jump on condition (JC)

jump if mixed (JMIX) 8-81
jump if off (JOFF) 8-81
jump if on (JON) 8-81
jump on arithmetically less than (JL T) 8-81

Index X-I

branch/jump instructions (continued)
jump on conditions (Je) (continued)

jump on arithmetically less than or equal
(JLE) 8-81

jump on carry (JCY) 8-81
jump on equal (JE) 8-81
jump on even (JEV) 8-81
jump on logically less than (JLL T) 8-81
jump on logically less than or equal (JLLE) 8-81
jump on negative (IN) 8-81
jump on positive (JP) 8-81
jump on zero (JZ) 8-81

jump on count (JCT) 8-23
jump on not condition (JNC)

jump if not off (JNOFF) 8-84
jump if not on (JNON) 8-84
jump on arithmetically greater than (JGT) 8-84
jump on arithmetically greater than or equal

(JGE) 8-84
jump on logically greater than (JLGT) 8-84
jump on logically greater than or equal

(JLGE) 8-84
jump on no carry (JNCY) 8-84
jump on not equal (JNE) 8-84
jump on not even (JNEV) 8-84
jump on not mixed (JNMIX) 8-84
jump on not negative (JNN) 8-84
jump on not positive (JNP) 8-84
jump on not zero (JNZ) 8-84

jump unconditional (J) 8-80
no operation (NOP) 8-107

branch on arithmetically greater than (BGT)
instruction 8-19

branch on arithmetically greater than or equal (BGE)
instruction 8-19

branch on arithmetically less than (BL T)
instruction 8-16

branch on arithmetically less than or equal (BLE)
instruction 8-16

branch on carry (BCY) instruction 8-16
branch on condition (BC) instruction 8-16
branch on condition code (BCC) instruction 8-18
branch on equal (BE) instruction 8-16·
branch on error (BER) instruction 8-21
branch on even (BEV) instruction 8-16
branch on logically greater than (BLGT) instruction 8-19
branch on logically greater than or equal (BLGE)

instruction 8-19
branch on logically less than (BLLT) instruction 8-16
branch on logically less than or equal (BLLE)

instruction 8-16
branch on no carry (BNCY) instruction 8-19
branch on not condition (BNC) instruction 8-19
branch on not condition code (BNCC) instruction 8-21
branch on not equal (BNE) instruction 8-19
branch on not error (BNER) instruction 8-18
branch on not even (BNEV) instruction 8-19
branch on not mixed (BNMIX) instruction 8-19
branch on not negative (BNN) instruction 8-19
branch on not overflow (BNOV) instruction 8-22
branch on not positive (BNP) instruction 8-19
branch on not zero (BNZ) instruction 8-19
branch on overflow (BOV) instruction 8-23

X-2 GA34-0152

branch on positive (BP) instruction 8-16
branch on zero (BZ) instruction 8-16
branch unconditional (B) instruction 8-13
burst mode 4-22
busy after reset condition code 4-26
busy condition code 4-26

carry and overflow indicators E-l
carry indiCator

how used 2-9
setting E-l,2-9

examples, add operation E-l
examples, subtract operation E-l

chaining 4-22
chaining flag bit in DCB· 4-6
character codes D-l
CIAR (see current instruction address register)
class interrupts

clock 3-16
console 3-17
description of 3-9
machine check 3-12
power/thermal warning 3-14
present and accept 3-11
priority of 3-10
program check 3-13
recovery procedures 3-17
soft-exception trap 3-15
supervisor call 3-14
trace 3-15

clock class interrupt 3-16
clock/ comparator

clock class interrupt 3-16
description of 6-1

clock features 6-1
clock register 2-6
codes, character D-l
command field, IDCB 4-3
command reject condition code 4-26
commands, I/O 4-7
comparator, clock 6-1
comparator features 6-2
comparator register 2-6
compare address (CA) instruction

register immediate long format 8-25
storage immediate format 8-25

compare byte (CB) instruction
register/storage format 8-27
storage/storage format 8-27

compare byte field equal and decrement (CFED)
instruction 8-31

compare byte field equal and increment (CFEN)
instruction 8-31

compare byte field not equal and decrement (CFNED)
instruction 8-32

compare byte field not equal and increment (CFNEN)
instruction 8-32

compare byte immediate (CBI) instruction 8-28
compare doubleword (CD) instruction

register/storage format 8-29
storage/ storage format 8-30

C

r"
(:
"-----'

c
~,

('"

'----"

C,I

o
o
o
o
o
o
o
o
o
o

/1 u
o
o
o
o
o
o
o
o
o
o

compare operation
example 2-11
indicator settings 2-12
test results 2-11

compare word (CW) instruction
register/register format 8-42
register / storage format 8-42
storage/storage format 8-43

compare word immediate (CWI) instruction
register immediate long format 8-44
storage immediate format 8-45

complement register (CMR) instruction 8-33
condition codes, defined

interrupt 4-28
10 instruction 4-26

console address key register 2-7
console class interrupt 3-17
console data buffer 2-7
console stop-on-address register
control command 4-10

2-7

controller busy condition code
controller end condition code

4-26
4-28

conversion tables, numbering systems C-l
copy address key register (CPAKR) instruction

system register/register format 8-34
system register/storage format 8-33

copy clock (CPCLK) instruction 8-35
copy comparator (CPCMP) instruction 8-36
copy console data buffer (CPCON) instruction 8-36
copy current level (CPCL) instruction 8-35
copy floating level block (CP~LB) instruction 8-27
copy in-process flags (CPIPF) instruction 8-38
copy instruction space key (CPISK) instruction

system register/register format 8-34
system register/storage format 8-33

copy interrupt mask register (CPIMR) instruction 8-38
copy level block (CPLB) instruction 8-39
copy level status register (CPLSR) instruction 8-40
copy operand 1 key (CPOOK) instruction

system register/register format 8-34
system register/storage format 8-33

copy operand 2 key (CPOTK) instruction
system register/register format 8-34
system register/storage format 8-33

copy processor status and reset (CPPSR) instruction 8-40
copy segmentation register (CPSR) instruction 8-42
copy storage key (CPSK) instruction 8-41
count

residual byte 4-21
restrictions for the start cycle-steal status

operation 4-21
word in DCB 4-7

CPU control check, bit in PSW 3-22
current-instruction address register (CIAR) 2-7
cycle-steal

description 4-15
device options 4-22
interrupt status byte (ISB) 4-31
start cycle-steal status operation 4-20
start operation 4-16
status words 4-21

cycle-steal, I/O operation 4-15
cycle-steal address key in DCB 4-6

data format, floating-point 7-1
data stacking

description of 2-36
example, allocating fixed storage areas 2-38
high-limit address 2-36
low-limit address 2-36
pop operation 2-38
push operation 2-36
top-element address 2-36

DCB (see device control block)
DCB chaining 4-22
DCB specification check status bit 4-32
delayed command reject status bit 4-31, 4-32
device address field, IDCB 4-3
device control block (DCB)

control word 4-6
count word 4-7
data address word 4-7
device parameter word 3 4-6
device parameter word 4 4-7
device parameter word 5 4-7
device parameter words 1-2 4-6
for start command, summary of 4-16
for start cycle-steal status command, summary of 4-20
specification check status bit 4-32

device cycle-steal status word 1 4-21
device-dependent status available status bit 4-31, 4-32
device-dependent status bit 4-31
device-dependent status words 4-22
device end condition code 4-28
device 10 word 4-8
device mask (I-bit) 3-24, 4-10
device not attached condition code 4-26
device options, cycle-steal

burst mode 4-22
chaining 4-22
program-controlled interrupt 4-23
suppress exception 4-23

device reset command 4-11
diagnose (DIAG) instruction 8-49
direct program control (DPC) operation 4-13
disable (DIS) instruction 8-49
divide byte (DB) instruction 8-47
divide doubleword (DO) instruction 8-48
divide word (OW) instruction 8-50
double precision, floating-point 7-9
ope (direct program control) operation 4-13

effective address 2-21
effective-address generation

base register storage address 2-27
base register word displacement 2-22
base register word displacement short 2-21
five-bit address argument 2-27
four-bit address argument

address mode (AM) 2-23
enable (EN) instruction 8-51
end-of-chain (EO C) bit 4-24
EOC bit (see end of chain bit)
EOS (see equate operand spaces)
equate operand spaces (EOS) 5-6

Index X-3

error conditions
recovery from 3-17
relocation translator, recovery from 5-5
that cause class interrupts 3-9

error-recovery considerations, relocation translator 5-5
even indicator 2-9
exception condition code 4-28
exception conditions, floating-point 7-7
exceptions, suppression of (I/O) 4-25
exclusive OR byte (XB) instruction 8-177
exclusive OR doubleword (XD) instruction 8-178
exclusive OR word (XW) instruction

register/register format 8-179
register/storage format 8-180
storage/register long format 8-181

exclusive OR word immediate (XWI) instruction 8-182
extended DCB 4-23
extended DCB bit in DCB 4-6

fill byte field and decrement (FFD) instruction 8-61
fill byte field and increment (FFN) instruction 8-61
five-bit address argument 2-27
flags, status (residual status block) 4-24
floating add (FA) instruction

register/register format 8-53
storage/register format 8-52

floating add double (FAD) instruction
register/register format 8-55
storage/register format 8-54

floating compare (FC) instruction 8-56
floating compare double (FCD) instruction 8-56
floating divide (FD) instruction

register/register format 8-58 .
storage/register format 8-57

floating divide double (FDD) instruction
register /register format 8-60
storage/register format 8-59

floating move (FMV) instruction
register / register format 8-67
register/storage format 8-66
storage/register format 8-66

floating move and convert (FMVC) instruction
register/storage format 8-69
storage/register format 8-68

floating move and convert double (FMVCD) instruction
register/storage format 8-71 '
storage/ register format 8-70

floating move double (FMVD) instruction
register/register format 8-73
register / storage format 8-72
storage/register format 8-72

floating multiply (FM) instruction
register/register format 8-63
storage/register format 8-62

floating multiply double (FMD) instruction
register/register format 8-65
storage/register format 8-64

floating-point exception, bit in PSW 3-22
floating-point exception, soft-exception trap

condition 3-15

X-4 GA34-0152

floating-point feature
data format 7-1

double precision 7-9
single precision 7-8

exception conditions 7-7
instruction formats 7-5
normalization 7-3
number representation 7-2
programming considerations 7-3

floating-point instructions
copy floating level block (CPFLB) 8-37
description of 7-5
floating add (FA) 8-52
floating add double (FAD) 8-54
floating compare (FC) 8-56
floating compare double (FCD) 8-56
floating divide (FD) 8-57
floating divide double (FDD) 8-59
floating move (FMV) 8-66
floating move and convert (FMVC) 8-68
floating move and convert double (FMVCD)
floating move double (FMVD) 8-72
floating multiply (FM) 8-62
floating multiply double (FMD) 8-64
floating subtract (FS) 8-74
floating subtract double (FSD) 8-76
set floating level block (SEFLB) 8-145

floating-point numbers
conversion example 7-2

floating-point register 2-8
floating subtract (FS) instruction

register/register format 8-75
storage/ register format 8-74

floating subtract double (FSD) instruction
register/register format 8-77
storage/register format 8-76

four-bit address argument 2-23

general registers F-3, 2-7

halt I/O command 4-12
hexadecimal number system C-l
hexadecimal-decimal conversion tables C-4
high-limit address (HLA) 2-36
HLA (see high-limit address)

I-bit, device mask 3-25
I-bit (device mask), field in IDCB 4-10
I/O check, bit in PSW 3-22
I/O commands

control 4-10
device reset 4-11
halt I/O 4-12
prepare 4-10
read 4-8
read ID 4-8
read status 4-9
start 4-11
start cycle-steal status 4-12
write 4-9

C\I

C,',

C:

C)

0
C,'
("
\.... /

8-70 C

C

0
('

L,
C'
C;'

0

0
C)

0

0
C)

0
C\

C)
o
()

o
o
C)
o
()

o
o

I I

l~

o
C)

C)
o
o
o

I/O condition codes and status information
I/O status information

interrupt 10 word 4-30
interrupt status byte (ISB) 4-31

interrupt condition codes 4-28
interrupt information byte (lIB) 3-5, 4-30
10 instruction condition codes 4-26
summary of 4-26

1/ 0 interrupts
prepare I/O device for 3-4
present and accept 3-5

I/O storage access using the relocation translator 5-4
IAR (see instruction address register)
10 word

device 4-8
interrupt 3-7, 4-30

IDCB (immediate device contorl block) 4-3
lIB (see interrupt information byte)
immediate data field, IDCB 4-3
immediate device control block (lDCB) 4-3
in-process bit 2-16

effect on program-controlled level switching 3-26
incorrect-length record status bit 4-32
indicator bits

carry 2-10
even 2-10
overflow 2-10
result

even 2-10
negative 2-10
zero 2-10

indicators
add and subtract operations (carry and

overflow) 2-10
arithmetic 2-9
compare operations 2-11
condition code for I/O operations 2-10
multiple-word operands 2-14
result (even, negative, and zero) 2-10
sequence 3-22
shift operations (carry and overflow) 2-11
testing with branch and jump instructions 2-15

indirect address 2-28
inhibit trace (IT) bit

effect on SELB instruction 8-147
how used, programming note 3-15

initial program load (lPL)
auto IPL 2-33
auto IPL, bit in PSW 3-23
description of 2-33
manuallPL 2-33

input flag bit in DCB 4-6
input/output (see also I/O)

commands (see I/O commands)
condition codes and status information 4-26
interrupt status byte (lSB) 4-31
operate I/O (10) instruction 8-78

input/ output operations
cycle-steal 4-1
direct program control (DPC) 4-1
interrupt servicing 4-1

instruction
formats

names 2-20
one word 2-17
summary of A-I
two word 2-18
variable length 2-18, 2-28

privileged 2-32
termination or suppression 8-1

instruction address register (JAR) 2-8
instruction and operand address boundaries 2-2
instruction execution

jumping and branching 2-34
level switching and interrupts 2-35
sequential 2-34

instruction formats A-I,2-16
instruction formats, floating-point 7-6
instruction space key (lSK) 5-7
interchange operand keys (lOPK) instruction 8-79
interchange registers (IR) instruction 8-79
interface data check condition code 4-26
interface data check status bit 4-33
interrupt

automatic branching 3-3
class 3-9
I/O 3-5
masking facilities

device mask (I-bit·) 3-25
mask register, interrupt level 3-25
summary mask 3-24

priority scheme 3-2
interrupt ID word 4-30
interrupt information byte (lIB) 4-30
interrupt level mask register 3-25
interrupt scheme 3-2
interrupt status byte (lSB)

defined 4-31
for cycle-stealing devices 4-32
for devices that do not cycle-steal 4-31

interrupts and level switching, introduction 3-1
intervention required condition code 4-26
invalid function, bit in PSW 3-21
invalid function, program-check condition 3-13
invalid function, soft-exception trap condition 3-15
invalid storage address, bit in PSW 3-21
invalid storage address, program-check condition 3-13
invalid storage address status bit 4-33
invert register (VR) instruction 8-176
10 (operate I/O) instruction 8-78
IPL (see initial program load)
ISB (see interrupt status byte)
ISK (see instruction space key)
IT (see inhibit trace bit)

jump and link (JAL) instruction 8-80
jump if mixed (JMIX) instruction 8-81
jump if not off (JNOFF) instruction 8-84
jump if not on (JNON) instruction 8-84
jump if off (JOFF) instruction 8-81
jump if on (JON) instruction 8-81
jump on arithmetically greater than (JGT)

instruction 8-84

Index X-5

jump on arithmetically greater than or equal (JGE)
instruction 8-84

jump on arithmetically less than (JL T) instruction 8-81
jump on arithmetically less than or equal (JLE)

instruction 8-81
jump on carry (JCY) instruction 8-81
jump on condition (JC) instruction 8-81
jump on count (JCT) instruction 8-83
jump on equal (JE) instruction 8-81
jump on even (JEV) instruction 8-81
jump on logically greater than (JLGT) instruction 8-84
jump on logically greater than or equal (JLGE)

instruction 8-84
jump on logically less than (JLL T) instruction 8-81
jump on logically less than or equal (JLLE)

instruction 8-81
jump on negative (IN) instruction 8-81
jump on no carry (JNCY) instruction 8-84
jump on not condition (JNC) instruction 8-84
jump on not equal (JNE) instruction 8-84
jump on not even (JNEV) instruction 8-84
jump on not mixed (JNMIX) instruction 8-84
jump on not negative (JNN) instruction 8-84
jump on not positive (JNP) instruction 8-84
jump on not zero (JNZ) instruction 8-84
jump on positive (JP) instruction 8-81
jump on zero (JZ) instruction 8-81
jump unconditional (J) instruction 8-80

legend for machine instruction operands B-1
level exit (LEX) instruction 8-86
level registers 2-7
level status block (LSB) 3-3
level status register (LSR) F-4, 2-8
level switching

priority interrupt 3-5
program controlled 3-26

linkage stacking
description 2-43
example, reenterable subroutine 2-45

LLA (see low-limit address)
load multiple and branch (LMB) instruction 8-87·
load state 2-31
local storage registers 2-5
low-limit address (LLA) 2-33
LSB (see level status block)
LSB pointer 3-4
LSR (see level status register)

machine-check class interrupts
bits set in PSW 3-20
description of 3-12
recovery from 3-17

machine-check conditions 3-12
machine instruction operands, legend for B-1
main storage

address boundaries, instruction and operand 2-2
addressing 2-1
storage protection 5-4

mask register, interrupt level 2-6, 3-25
move address (MV A) instruction

storage immediate format 8-91
storage/register format 8-90

X-6 GA34-0152

move byte (MVB) instruction
register/storage format 8-92
storage/storage format 8-93

move byte and zero (MVBZ) instruction 8-94
m~ve byte field and decrement (MVFD) instruction 8-97
move byte field and increment (MVFN) instruction 8-97
move byte immediate (MVBI) instruction 8-94
move doubleword (MVD) instruction

register/storage format 8-95
storage/storage format 8-96

move doubleword and zero (MVDZ) instruction 8-96
move word (MVW) instruction

register/register format 8-98
register / storage format 8-98
register/storage long format 8-99
storage/register long format 8-100
storage/ storage format 8-100

move word and zero (MVWZ) instruction 8-105
move word immediate (MVWI)

storage immediate format 8-102
storage/register format 8-101

move word short (MVWS) instruction
register/storage format 8-103
storage/register format 8-104

multiple register/storage instructions
load multiple and branch (LMB) 8-87
store mUltiple (STM) 8-165

multiply byte (MB) instruction 8-88
multiply doubleword (MD) instruction 8-89
multiply word (MW) instruction 8-106

NE bit (see no exception bit)
negative indicator 2-9
no exception (NE) bit 4-24
no operation (NOP) instruction 8-107
normalization, floating-point 7-3
number representation

floating-point 7-3
signed numbers E-lO, 2-3
unsigned numbers E-8, 2-3

numbering systems and conversion tables C-l

one-word instructions 2-17
operand 1 key (OPIK) 5-6
operand 2 key (OP2K) 5-6
operate I/O (10) instruction 4-2, 8-78
options, cycle-steal devices 4-22
OP 1 K (see operand 1 key)
OP2K (see operand 2 key)
OR byte (OB) instruction

register/storage format 8-108
storage/ storage format 8-109

OR doubleword (OD) instruction
register/storage format 8-110
storage/storage format 8-111

OR word (OW) instruction
register/register format 8-112
register/storage format 8-112
storage/register long format 8-113
storage/storage format 8-114

OR word immediate (OWl) instruction
register immediate long format 8-115
storage immediate format 8-115

o
o
o
c
c~

c
c

C)
C~

c'
c

c
c~

c

()

o
o
o
o

o
o
o
o

[:
o
o
o
o
C)
o
o
o
o
o

overflow indicator
examples, arithmetic E-5
setting 2-10

parametric instructions
diagnose (DIAG) 8-49
disable (DIS) 8-49
enable (EN) 8-51
interchange operand keys (IOPK) 8-79
level exit (LEX) 8-86
stop (STOP) 8-166
supervisor call (SVC) 8-166

PCI (see program-controlled interrupt)
permissive device end (see device end)
pop byte (PB) instruction 8-117
pop doubleword (PD) instruction 8-117
pop operation 2-38
pop word (PW) instruction 8-119
power/thermal warning, bit in PSW 3-23
power / thermal warning class interrupt

bits set in PSW 3-20
description of 3-14
recovery from 3-18

prepare command 4-10
privilege violate, bit in PSW 3-21
privilege violate, program-check condition 3-13
privileged instructions, list of 2-32
problem state 2-32
processor

characteristics 1-1
description 1-1
features

optional 1-1
standard 1-1

introduction 1-11
processor state control

load 2-31
problem 2-32
stop 2-30
supervisor 2-32
wait 2-31

processor status word (PSW) 2-6, 3-20
processor unit description 2-1
program-check class interrupts

bits set in PSW 3-20
description of 3-13
recovery from 3-18

program-check conditions 3-13
program-check or soft-exception trap conditions 3-13
program-controlled interrupt (PCI) 4-23
program-controlled interrupt condition code 4-28
program-controlled level switching 3-26
program execution, instruction formats 2-16
protect check, bit in PSW 3-21
protect check, program-check condition 3-13
protect check status bit 4-33
PSW (see processor status word)
push byte (PSB) instruction 8-118
push dou bleword (PSD) instruction 8-118
push operation 2-36
push word (PSW) instruction 8-119

RB (see base register)
read command 4-8
read ID command 4-8
read status command 4-9
recovery from error conditions 3-17
reference information

address key register F-l
condition codes F-2
general registers F-3
interrupt status byte F-3
level status register F-4
processor status word F-4

register immediate instructions
add address (AA) 8-2
add byte immediate (ABI) 8-5
add word immediate (AWl) 8-11
AND word immediate (NWI) 8-107
compare address (CA) 8-25
compare byte immediate (CBI) 8-28
compare word immediate (CWI) 8-44
exclusive OR word immediate (XWI) 8-182
move byte immediate (MVBI) 8-94
OR word immediate (OWl) 8-115
reset bits word immediate (RBTWI) 8-126
set bits word immediate (SBTWI) 8-137
subtract address (SA) 8-128
subtract word immediate (SWI) 8-171
test word immediate (TWI) 8-175

register/register instructions
add carry register (ACY) 8-5
add word (A W) 8-8
add word with carry (AWCY) 8-11
compare word (CW) 8-42
complement register (CMR) 8-33
copy level status register (CPLSR) 8-40
exclusive OR word (XW) 8-179
floating add (FA) 8-53
floating add double (FAD) 8-55
floating divide (FD) 8-58
floating divide double (FDO) 8-60
floating move (FMV) 8-67
floating move double (FMVD) 8-73
floating multiply (FM) 8-63
floating multiply double (FMD) 8-65
floating subtract (FS) 8-75
floating subtract double (FSD) 8-77
interchange register (IR) 8-79
invert register (VR) 8-176
move word (MVW) 8-98
OR word (OW) 8-112
reset bits word (RBTW) 8-124
set bits word (SBTW) 8-135
set indicators (SEIND) 8-146
subtract carry indicator (SCY) 8-139
subtract word (SW) 8-167
subtract word with carry (SWCY) 8-170

register/storage instructions
add byte (AB) 8-4
add double word (AD) 8-6
add word (A W) 8-8
compare byte (CB) 8-27
compare double word (CD) 8-29
compare word (CW) 8-42
copy floating level block (CPFLB) 8-37

Index X-7

register / storage instructions (continued)
divide byte (OB) 8-47
divide doubleword (00) 8-48
divide word (OW) 8-50
exclusive OR byte (XB) 8-177
exclusive OR doubleword (XO) 8-178
exclusive OR word (XW) 8-180
floating add (FA) 8-52
floating add double (FAD) 8-54
floating divide (FO) 8-57.
floating divide double (FOD) 8-59
floating move (FMV) 8-67
floating move and convert (FMVC) 8-68
floating move and convert double (FMVCD) 8-70
floating move double (FMVO) 8-72
floating multiply (FM) 8-62
floating multiply double (FMO) 8-64
floating subtract (FS) 8-72
floating subtract double (FSO) 8-76
move address (MV A) 8-90
move byte (MVB) 8-92
move byte and zero (MVBZ) 8-94
move doubleword (MVD) 8-95
move doubleword and zero (MVDZ) 8-96
move word (MVW) 8-98
move word and zero (MVWZ) 8-105
move word immediate (MVWI) 8-101
multiply byte (MB) 8-88
multiply doubleword (MO) 8-89
mUltiply word (MW) 8-106
OR byte (OB) 8-108
OR double word (00) 8-110
OR word (OW) 8-112
pop byte (PB) 8-117
pop doubleword (PO) 8-117
pop word (PW) 8-119
push byte (PSB) 8-118
push doubleword (PSD) 8-118
push word (PSW) 8-119
reset bits bytes (RBTB) 8-120
reset bits doubleword (RBTD) 8-122
reset bits word (RBTW) 8-124
set bits byte (SBTB) 8-131
set bits double word (SBTD) 8-133
set bits word (SBTW) 8-135
set floating level block (SEFLB) 8-145
subtract byte (SB) 8-130
subtract doubleword (SO) 8-140
subtract word (SW) 8-167

re gister / storage long instructions
add word (A W) 8-9
exclusive OR word (XW) 8-181
move word (MVW) 8-100
operate I/O (10) 8-79
OR word (OW) 8-113
reset bits word (RBTW) 8-125
set bits word (SBTW) 8-136
subtract word (SW) 8-168

register/storage short instruction
move word short (MVWS) 8-103

X-8 GA34-0152

registers
level

address key (AKR) 2-7
floating-point 2-8
general 2-7
instruction address OAR) 2-8
level status (LSR) 2-8

system
clock 2-6
comparator 2-6
console address key 2-7
console data buffer 2-7
console stop-on-address 2-7
current-instruction address 2-7
mask 2-6
processor status word (PSW) 2-6
segmentation 2-7
storage address (SAR) 2-7

relocation addressing 5-2
relocation translator (see storage address relocation

translator
reserved storage locations 3-4
reset bits byte (RBTB) instruction

register/storage format 8-120
storage/storage format 8-121

reset bits doubleword (RBTO) instruction
register/storage fonnat 8-122
storage/storage format 8-123

reset bits word (RBTW) instruction
register/register format 8-124
register/storage format 8-124
storage/register long format 8-125
storage/storage format 8-126

reset bits word immediate (RBTWI) instruction
register immediate long format 8-126
storage immediate format 8-127

residual address 4-21
residual byte count
residual status block
restrictions

4-21
4-24

instruction and operand address boundaries 2-2
programming, OCB 4-7
programming, OCB (start cycle-steal status) 4-21
when in problem state 2-32

result indicators (even, negative, and zero) 2-10
retry (RT) bit 4-24
RT (see retry bit)
run state 2-32

SAR (see storage address register)
satisfactory condition code 4-26
scan byte field equal and decrement (SFED)

instruction 8-151
scan byte field equal and increment (SFEN)

instruction 8-151
scan byte field not equal and decrement (SFNEO)

instruction 8-152
scan byte field not equal and increment (SFNEN)

instruction 8-152
segmentation registers

bit 13 (valid bit) 5-2
bit 14 (read-only bit) 5-2
description of 5-1
how used 5-2

c'

c

Cr

c

c
(~

c

c
c'
c·
c
c
c
c'

o
o
o
o
o
o
o
()

o
o

o
o
o
o
o
o
o
o
o
o

sequence indicator, bit in PSW 3-22
set address key register (SEAKR) instruction

system register/register format 8-143
system register/storage format 8-142

set bits byte (SBTB) instruction
register/storage format 8-131
storage/ storage format 8-132

set bits doubleword (SBTD) instruction
register / storage format 8-133
storage/ storage format 8-134

set bits word (SBTW) instruction
register/register format 8-135
register/storage format 8-135
storage/register long format 8-136
storage/ storage format 8-137

set bits word immediate (SBTWI) instruction
register immediate long format 8-137
storage immediate format 8-138

set clock (SECLK) instruction 8-143
set comparator (SECMP) instruction 8-144
set console data lights (SECON) instruction 8-144
set floating level block (SEFLB) instruction 8-145
set indicators (SEIND) instruction 8-146
set instruction space key (SEISK) instruction

system register/register format 8-143
system register/storage format 8-142

set interrupt mask register (SEIMR) instruction 8-146
set level status block (SELB) instruction 8-147
set operand 1 key (SEOOK) instruction

system register/register format 8-143
system register/storage format 8-142

set operand 2 key (SEOTK) instruction
system register/register format 8-143
system register/storage format 8-142

set segmentation register (SESR) instruction 8-150
set storage key (SESK)instruction 8-149
shift instructions

shift left and test (SL T) 8-159
shift left and test double (SLTD) 8-160
shift left circular (SLC) 8-153
shift left circular double (SLCD) 8-155
shift left logical (SLL) 8-157
shift left logical double (SLLD) 8-158
shift right arithmetic (SRA) 8-161
shift right arithmetic double (SRAD) 8-162
shift right logical (SRL) 8-163
shift right logical double (SRLD) 8-164

shift left and test (SL T) instruction 8-159
shift left and test double (SLTD) instruction 8-160
shift left circular (SLC) instruction

count in register format 8-154
immediate count format 8-153

shift left circular double (SLCD) instruction
count in register format 8-156
immediate count format 8-155

shift left logical (SLL) instruction
count in register format 8-157
immediate count format 8-157

shift left logical double (SLLD) instruction
count in register format 8-158
immediate count format 8-158

shift right arithmetic (SRA) instruction
count in register format 8-161
immediate count format 8-161

shift right arithmetic double (SRAD) instruction
count in register format 8-162
immediate count format 8-162

shift right logical (SRL) instruction
count in register format 8-163
immediate count format 8-163

shift right logical double (SRLD) instruction
count in register format 8-164
immediate count format 8-164

SIA (see start instruction address)
signed numbers

examples E-I0, 2-3
single bit manipulation instructions

test bit (TBT) 8-173
test bit and invert (TBTV) 8-174
test bit and reset (TBTR) 8-173
test bit and set (TBTS) 8-174

single precision, floating-point 7-8
soft-exception trap class interrupts

bits set in PSW 3-20
description of 3-15
recovery from 3-18

soft-exception trap conditions 3-15
specification check 3-13
specification check, bit in PSW 3-21
specification check, program-check condition
stack control block, relationship to data stack
stack exception 3-15
stack exception, bit in PSW 3-22
stack exception, soft-exception trap conditions
stack operations 2-35
stacking

data, description 2-36
.linkage, description 2-43

start command 4-11
start cycle-steal status command 4-12
start cycle-steal status operation

DCB format 4-20
DCB restrictions 4-21
residual parameters (status) 4-21

start instruction address (SIA) 3-4
start operation, cycle-steal 4-16
states, processor

load 2-31
problem .2-32
run 2-32
stop 2-30
supervisor 2-32
wait 2-31

status address, DCB word 4 4-7
status block, residual 4-24
status flags, in PSW 3-20
status flags, in residual status block 4-24
status information, I/O 4-26
status of translator after power transitions and

resets 5-4
status words, cycle-steal 4-21
stop (STOP) instruction 8-166
stop state 2-30
storage address register (SAR) 2-7

3-13
2-36

3-15

Index X-9

storage address relocation translator
addressing, example of 5-3
description 5-1
error-recovery considerations

invalid storage address 5-5
protect check 5-5

I/O storage access when using 5-4
status after power transitions and resets 5-4
storage mapping 5-2

storage data check status bit 4-32
storage immediate instructions

add address (AA) 8-2
add word immediate (AWl) 8-12
compare address (CA) 8-25
compare word immediate (CWI) 8-45
move address (MV A) 8-91
move word immediate (MVWI) 8-102
OR word immediate (OWl) 8-115
reset bits word immediate (RBTWI) 8-127
set bits word immediate (SBTWI) 8-138
subtract address (SA) 8-129
subtract word immediate (SWI) 8-172
test word immediate (TWI) 8-175

storage mapping, relocation translator 5-2
storage parity, bit in PSW 3-22
storage protection 5-4
storage/storage instructions

add doubleword (AD) 8-7
add word (A W) 8-10
compare byte (CB) 8-27
compare byte field equal and decrement (CFED)
compare byte field equal and increment (CFEN)
compare byte field not equal and decrement

(CFNED) 8-32
compare byte field not equal and increment

(CFNEN) 8-32
compare doubleword (CD) 8-30
compare word (CW) 8-43
move byte (MVB) 8-93.
move byte field and decrement (MVFD) 8-97
move byte field and increment (MVFN) 8-97
move doubleword (MVD) 8-96
move word (MVW) 8-100
OR byte (OB) 8-109
OR double word (OD) 8-111
OR word (OW) 8-114
reset bits byte (RBTB) 8-121
reset bits doubleword (RBTD) 8-123
reset bits word (RBTW) 8-126
set bits byte (SBTB) 8-132
set bits double word (SBTD) 8-134
set bits word (SBTW) 8-137
subtract doubleword (SD) 8-141
subtract word (SW) 8-169

store mUltiple (STM) instruction 8-165
subtract address (SA) instruction

register immediate long format 8-128
storage immediate format 8-129

subtract byte (SB) instruction 8-130
subtract carry indicator (SCY) instruction 8-139
subtract doubleword (SD) instruction

register/storage format 8-140
storage/ storage format 8-141

X-I0 GA34-0152

8-31
8-31

C
C,

subtract word (SW) instruction
register/register format 8-167
register/storage format 8-167
storage/register long format 8-168
storage/storage format 8-169

subtract word immediate (SWI) instruction
(j

register immediate long format 8-171
storage immediate format 8-172

subtract word with carry (SWCY) instruction 8-170 CI
summary mask 3-24
summary mask bit 2-16
supervisor call (SVC) instruction 8-166
supervisor call class interrupt 3-14 c'
supervisor state 2-32
supervisor state bit 2-15
suppress exception 4-23 c
suppression of instructions 8-1
syntax, assembler (summary of) B-1
system register/register instructions

copy address key register (CPAKR) C
copy instruction space key (CPISK) 8-34
copy operand 1 key (CPOOK) 8-34
copy operand 2 key (CPOTK) 8-34

copy console data buffer (CPCON) 8-36 c
copy current level (CPCL) 8-35
set address key register (SEAKR)

set instruction space key (SEISK) 8-143 o
set operand 1 key (SEOOK) 8-143
set operand 2 key (SEOTK) 8-143

set console data lights (SECON) 8-144
system register/storage instructions

copy address key register (CPAKR)
copy-instruction space key (CPISK) 8-33
copy operand 1 key (CPOOK) 8-33
copy operand 2 key (CPOTK) 8-33

copy floating level block (CPFLB) 8-37
copy in-process flags (CPIPF) 8-38
copy interrupt mask register (CPIMR) 8-38 c
copy level block (CPLB) 8-39
copy processor status and reset (CPPSR) 8-40
copy segmentation register (CPSR) 8-42
copy storage key (CPSK) 8-41
set address key register (SEAKR)

set instruction space key (SEISK) 8-142
set operand 1 key (SEOOK) 8-142 c
set operand 2 key (SEOTK) 8-142

set floating level block (SEFLB) 8-145
set interrupt mask register (SEIMR) 8-146
set level status block (SELB) 8-147 c
set segmentation register (SESR) 8-150
set storage key (SESK) 8-149

system registers 2-6

TEA (see top-element address)
termination of instructions 8-1 C
test bit (TBT) instruction 8-173
test bit and invert (TBTV) instruction 8-174
test bit and reset (TBTR) instruction 8-173
test bit and set (TBTS) instruction 8-174

C
test word under mask immediate (TWI) instruction

register immediate long format 8-175
storage immediate format 8-175 C

C

c

o
o
o testing indicators with conditional instruction 2-15

top-element address (TEA) 2-36
trace bit 2-16
trace class interrupt 3-15
translator (see storage address relocation translator) o
translator description 5-1
translator enabled, bit in PSW 3-23
two-word instructions 2-18 o

o unsigned numbers
examples E-8, 2-3

o variable-field-length instructions
compare byte field equal and decrement (CFED) 8-31
compare byte field equal and increment (CFEN) 8-31
compare byte field not equal and decrement

(CFNED) 8-32
compare byte field not equal and increment

o
(CFNEN) 8-32

fill byte field and decrement (FFD) 8-61
fill byte field and increment (FFN) 8-61 o
move byte field and decrement (MVFD) 8-97
move byte field and increment (MVFN) 8-97
scan byte field equal and decrement (SFED) 8-151
scan byte field equal and increment (SFEN) 8-151
scan byte field not equal and decrement

(SFNED) 8-152
scan byte field not equal and increment

(SFNEN) 8-152
variable-length instructions

description 2-18
examples for address arguments 2-28 c

C) wait state 2-31
WD (see word displacement)
word displacement (WD) 2-22

o write command 4-9

o zero indicator
bit 13 (valid bit) 5-2
bit 14 (read-only bit) 5-2
description 2-10

o
C)
o
o
o
o Index X-II

o

c'
c
C
C,'I

C:I

CI

C
C\

C·~
.-"

c)

I
'--.. ,~'"

c
0

0

C

(~

C

C

C

X-12 GA34-0152 C

C

l)

C)
0
()

()

0

0

0
()

0

r' l)

0

0

0

0

0

0
0

0
0

0

(")

s
0 ..,
"T1
0
c:
~
0"
:l

CO

c
:l
III

READER'S COMMENT FORM

GA34-0152-0

IBM Series/1 Principles of Operation

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. IBM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ---- ---- - ---- - - ----------_.-
®

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
I nformation Development, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

GA34-0152-0
Printed in U.S.A. .

c
c

0 c
s
})
0' C,' ~

co , "
5·
CD

(~'

C

C
C,'

r'" ',.....,'

C
1'\

l_/

C
r';
'"---'"

C'

C

C

C -'

C·

C

C

C

u
0

~

0

0

0
C)

0

0

0

I;
lj

0
C)

0

0
C)

0
1--"'"
U

0

0

0

0
c ...
~
"TI
0
s:
»
S' ;:,.
\C

r-:;.
CD

READER'S COMMENT FORM

GA34-0152-0

IBM Series!1 Principles of Operation

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. IBM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your IBM representative or the IBM branch office serving
your locality.

Corrections or cI arifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---'- - - ----------,-
®

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
I nformation Development, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

GA34-0152-0
Printed in U.S.A.

c\
C~

0
C

s
~ r", 0
::2 ~/ CD

I ;.
CD

C'
C~

C

C"

C
(;:

,./

[
C
CI

CI

CI

C

C

C~

C'
C'

C~

----u
0
C)

0

0

0

0

0

0

0

/'
l)

0
C)

0

0

0

0

0
C)

0

0

n
c ...
~
"TI
0
c:
»
0'
::I
(Q

c
::I
CD

READER'S COMMENT FORM

GA34-0152-0

IBM Series/1 Principles of Operation

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM ,branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - -----------,-
®

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
I nformation Development, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

GA34-0152-0
Printed in U.S.A.

(")

S
l>
0
::J

IQ

r
5'
III

C:

C

C

C

C

C·
C

C

C'

C
r
I

'I

l./

C

C
C·

C
('
\.........-

C

C

.C~

C

C

--------- -------- - ---- -- ----------_ .-
<I>

. , •

GA34-0152-0
Printed in U .S.A .

GA34-0152-0

