
AIR TRAINING COMMAND

STUDENT TEXT

JOVIAL SELF INSTRUCTIONAL MANUAL

~R 0123
Oi!R 0123-1
~R 0123-3

May 1966

C582-PROG-ST

RESPONSIBLE AGENCY OF ATC

Keesler Technical Training Center
. Keesler AFB, Mississippi

DESIGNED FOR ATC COURSE USE ONLY

ABOUT STUDENT STUDY GUIDES AND STUDENT WORKBOOKS

Student study guides and student workbooks are designed by the Air Training Command as
student training publications for use in training situations peculiar to courses of this command.
Each is prepared for a particular Unit of Instruction as reflected in the course syllabus.

The STUDENT STUDY GUIDE contains the specific information required in the Unit of
Instruction or it will refer to other publications which the student is required to read. It

contains the necessary information which is not suitable for student stucly in other available

sources. The material included or refe"ed to is normally studied either outside the classroom
or during supervised stuc/y periods in the classroom. Also included are thought- provoking
questions which permit self-evaluation by the student and which will stimulate classroom
discussion.

The STUDENT WORKBOOK contains the specialized job procedures, important information
about the job, questions to be answered, problems to be solved and/or work to be accomplished

by the student during the dassroom/laboratory, airplane/missile/equipment activity. It serves
as a job sheet, operations sheet, mission card, check list or exercise to be perfonnedduring
dassroom or laboratory periods. Also included are questions which will aid the student in

summarizing the main points of the Unit of Instruction.

The STlI)EMT STUDY GUIDE AM) WORKBOOK is a training publication which contains
both student study guide and student workbook material under one cover.

Since this publication is DESIGNED FOR ATC COURSE USE ONLY and must not conflict
with the information and/or procedures currently contained in Technical Orders or other official
directives, it is updated frequently to keep abreast of changes in qualitative training require
ments. Students who are authorized to retain this publication after graduation are cautioned
not to use this material in preference to Technical Orael's or othel' authoritative cJocuments.

INTRODUCTION

This document has been written to be used as a self-instructional JOVIAL training manual.
The format used in a self-instructional manual is quite different from that of a reference
manual for experienced programmers. Hence, this is not to be considered as a reference
manual for experienced programmers.

The manual presupposes no computer programming experience on the part of the student.
If a student has had previous programming experience, this should enable him to cover the
material more rapidly. This is one of the advantages of a self-instructional manual.

Another advantage is that students can begin to learn at once when their assignment to the
programming vocation has been made. They do not need to wait until a sufficient number
of people have been assigned to justify a formal class.

Thus the two main advantages of a self-instructional manual are:

1) Sensitivity to individual differences due to varying backgrounds and abilities.

2) Independance from a formal class.

i

computer Systems Department
KTTC, Mississippi

Chapter

1

2

.3

4

5

6

7

ii

JOVIAL SELF INSTRUCTIONAL MANUAL

CONTENTS

Title

Introduction to JOVIAL

Items, The Assignment Statement, and the Four
Basic Arithmetic Operations

JOVIAL Format on Coding Paper and Representation
of Hollerith Information on Punched Cards

The IF Statement, the GOTO Statement, Statement
Labels and Compound Statements

Tables, Subscripted Items, and Flow Diagrams

The FOR Statement

Status Items, Hollerith Items, The Exchange Statement
and the Test Statement

CHAPTER 1

INTRODUCTION TO JOVIAL

JOVIAL is a language with which one can write programs to solve problems on a computer.
A program is a sequence of instructions to a computer. A program contains the logic which
is designed to solve a particular problem.

Each type of computer is electrically designed to be sensitive to a specific set of comput~r
instructions. These are usually coded in the memory of the computer in what is called the
binary language. This is a language consisting of combinations of O's and l's. The binary
language is called a low level language.

Usually each type of computer has a set of symbolic instructions corresponding to the set
of binary instructions. These are coded using alphabetic abbreviations and are called
symbolic machine-instructions. This symbolic machine language is called an intermediate
level language.

A disadvantage of symbolic machine language is that it is different for each make of com
puter. Furthermore, a programmer using symbolic machine language has to pay close
attention to details peculiar to his machine. This detracts from his efforts to form the
logic connected with the solution of the problem he is programming.

To overcome the aforementioned disadvantages of intermediate level languages, high level
languages have been develop~d. ---

A high level programming language is one which more closely approaches the language of
English and mathematics. It permits the programmer to be less concerned about the in
dividual peculiarities of the specific computer involved and enables him to concentrate
more conveniently on the logic involved in the solution of a problem.

JOVIAL is a high level language. Other higher level languages are ALGOL, MAD, FORTRAN,
COBOL, NELIAC, etc. JOVIAL was developed by the System Development Corporation to
be used for programming large scale command and control systems. Work on the language
began in 1959. Since that time, many modifications and improvements have been made to
the language.

The name JOVIAL is an acronym which is derived from Jules Own Version of the Inter
national Algebraic Language. Jules Schwartz of the System Development Corporation was
th~ scientist in charge of the initial language development. Several colleagues of his supplied
the name one time when he was away on a business trip and the name stuck. JOVIAL it is.

A computer program written in symbolic machine language must be translated to binary
since the computer operates using instructions coded in binary. A computer program,
called an assembler, is used to perform the translation from the intermediate level language
to the lower level language.

Similarly a computer program written in a higher level language must be translated to the
binary language of the specific machine involved. The computer program which performs
this translation is called a compiler.

1

JOVIAL compilers are in existence for several makes of computers, two of the most well
known being the IBM 7090 computer, and the AN/FSQ-31 V or DPC (Data Processing
Central).

Symbolic Machine
Language for a
specific computer

I I Lower Level
• ASSEMBLER 1------• ., Language (Binary)

- _ for a specific
computer

COMPILER

I
/1 7090 Assembler -} Binary for IBM 7090 " L.. ____________ _

/ Higher Level " I - - - - - - - - - - - --

Language for any ____ .~ < ----~ _ ~~~ ~~s:~b~~r __ -+ Binary for DPC
computer in general ""

" I
" I Philco 2000 -. Binary for Philco 2000

1 Assembler L _________ _

The above diagram is representative of the functions of assemblers and compilers.
Usually a compiler contains only one assembler. For example, a JOVIAL compiler
which translates JOVIAL program statements to IBM 7090 binary instructions, would
contain in it only a FAP assembler (the 7090 assembler).

It is probably apparent that functions in addition to assembly are performed by a com
piler. This is because the compiler has to translate the higher level language into the
symbolic machine language of the assembler involved. Also each statement or instruc
tion in a higher level language is often translated into many symbolic machine instruc
tions.

The above diagram also illustrates that a program written in a higher level language can
be operated on different computers by having the translation to binary performed USing
the appropriate compiler. This is a distinct advantage over writing at the intermediate
language level, where the program can be operated only on the computer for which it was
written. --

EXERCISES

1.1 a. What are the names of the three levels of programming languages?

2

To which level does the JOVIAL programming language belong?

What is the general name of a program used to translate programs written
in an intermediate level language to one of a lower level language?

What is the general name of a program used to translate programs written
in an higher level language to one of a lower level language?

Can a program written in a higher level language be operated on more than
one make of computer? ---
If yes, how? --

ANSWERS TO PRECEDING EXERCISES

The three levels of programming language are:

low level language

intermediate level language

high level language

JOVIAL is a high level programming language.

Assembler

Compiler

Yes, by having the program translated by the appropriate compiler.

3

CHAPTER 2

ITEMS, THE ASSIGNMENT STATEMENT,
AND THE 4 BASIC AillTHMETIC OPERATIONS

Programs in JOVIAL perform essentially two functions. They manipulate data and they
make decisions based upon the value of the data.

To manipulate the data conveniently, the data is contained in variables called items. This
is quite analogous to mathematics where we might have the equation A = B + 6.

In the above mathematical equation there are two variables - one called A and the other
called B. Any particular value can be given to B and the resulting equation determines
the value of A.

In JOVIAL the variables are called items. Instead of using single letters for the name of
a variable or item as was done in the mathematical equation, the item names in JOVIAL
consist of two or more alphanumeric (letters and numbers) symbols with the first charac
ter always a letter.

Thus a JOVIAL statement similar to the mathematical equation shown previously might
appear as follows:

ALPHA = BETA + 6 $

The two items here are called ALPHA and BETA. If BETA is given any particular value
it determines the value of ALPHA.

The dollar sign ($) is used in JOVIAL as a punctuation character and it indicates the end
of a JOVIAL statement. A period (•) is reserved for other uses in the JOVIAL language
and thus the dollar sign was decided upon to indicate the termination of a statement.

To use an item in a JOVIAL program it must have been previously defined. This is fre
quently done at the beginning of the program. We shall discuss shortly what is meant by
defining an item.

An alternate method of defining items in JOVIAL is to use what is called a "compool." A
compool is essentially a list of item definitions to which the compiler has access when it
translates the JOVIAL statements into binary.

There are many different kinds of items in JOVIAL and we will discuss each kind in due
course. For the present, however, let us discuss what is called an integer type of item.

An integer type 'item is one which can hold whole numbers only - not mixed numbers or
fractions.

Below is an example of an item definition for an integer type item:

ITEM ALPHA A 3 U $

4

To define an integer type of item the programmer would write the code word ITEM on
his program coding paper. This would be followed by the name that the programmer
wished to give the item: for example, ALPHA. Next he would write an "A" to indicate
that he was defining an arithmetic integer type item.

Next he would specify the number of binary positions he wanted to have allocated for the
item. At this point in our study, a knowledge of the binary number system would be help
ful. Let us only mention enough about the binary number system, however, to enable us
to continue.

In a decimal number each digit position is ten times the value of the poSition to the right
of it. For example, in a 3-digit decimal whole number, the rightmost pOSition is the units
(or l's) position. The 2nd position from the right is the tens pOSition. The 3rd poSition from
the right is the hundreds pOSition.

Thus a whole number in the decimal number system of 432 is really a shorthand represen
tation of,

4 x 100 + 3 x 10 + 2 x lor,

400 + 30 + 2

A similar situation exists in the binary number system with the difference being that only
two symbols are available, 0 and 1, and each symbol poSition is twice the value of the one
to the right of it. For example, in a 3 bit* whole number, the rightmost pOSition is the units
(or I's) pOSition. The 2nd position from the right is the two's position. The 3rd position
from the right is the four's position.

Thus a whole number in the binary number system of 101 is really a shorthand represen
tation of,

1 x 4 + 0 x 2 + 1 x 1 or

or equivalent to the number 5 in the decimal number system.

Therefore if we wished to represent the number of week days in a week USing the decimal
number system, we would say that there are 5. If we desired to represent the same number
of days using the binary number system, we would say that there are 101.

If there is confusion concerning which number system is being employed when a number is
written, a subscript may be attached. Thus 1012 is clearly a binary number (base 2, which

means two symbols: namely, 0 and 1) and not a decimal number (base 10, which means ten
symbols: namely, 0, 1, 2, 3, 4, 5, ~, 7, 8, 9) of one hundred and one.

* The term bit is a contraction of the expression "binary digit."

5

Returning to the portion of the item definition which specifies the number of bits, we
might use 3 as the number of bits we want to allocate to our item. This would mean that
item ALPHA would occupy a space of 3 binary positions. Thus ALPHA would be capable
of holding numbers in binary from 000 through 111, or in other words the follOwing binary
numbers:

000 No four, no two, no one to give a decimal 0
001 No four, no two, a one to give a decimal 1
010 No four, a two, no one to give a decimal 2
011 No four, a two, a one to give a decimal 3
100 A four, no two, no one to give a decimal 4
101 A four, no two, a one to give a decimal 5
110 A four, a two, no one to give a decimal 6
111 A four, a two, a one to give a decimal 7

The last thing specified in the item definition of an integer type item is whether or not
the contents of the item is to contain an algebraic sign. If the item would ever contain
negative values, the programmer would specify S for "signed." If the item will always
contain positive values and never negative values, the programmer would specify U for
, 'unsigned. II

The programmer then indicates the end of the JOVIAL statement by a dollar sign.

Thus in summary we have the following as the definition of item ALPHA:

A code word telling the compiler
that we are defining an item

The specifiC name of the item (2

ITEM ALPHA

~ /~

or more alphanumeric characters, ____ --I
the first of which must be a letter)

A code letter telling the compiler
that we are defining an intege r
type item (arithmetic)

The numbe r of bit positions that
we want allocated for our item

A U or S indicating that the item

3
1\

U
11\

is to be unsigned or signed which- ________________ ----J

everthe case may be

A $ indicating the end of the
JOVIAL statement

EXERCISES

2.1 a. Convert the following binary numbers to numbers in the decimal number
system:

6

011
1011
1100
10101
1101

Given the item definition ITEM BETA A 4 U $

(1) What is the name of the item?

(2) What type of item is it?

(3) How many bits are being allocated for the item?

(4) What is the largest binary number that the item can contain?

(5) What decimal number does the answer to (4) above represent?

(6) What is the purpose of the dollar sign in the item definition?

How many bits should be allocated for an unsigned integer type item which
can contain binary numbers up to the equivalent of the decimal number 49?

Define an unsigned integer type item and call it GAMMA. Make it large
enough to hold binary numbers equivalent to the decimal number 127.

ANSWERS TO PRECEDING EXERCISES

011 = 2 + 1 or 3
1011 = 8 + 2 + 1 or 11
1100 = 8 + 4 or 12
10101 = 16 + 4 + 1 or 21
1101 = 8 + 4 + 1 or 13

(1) BETA

(2) An A type or integer type

(3) 4 bits

(4) 1111

(5) 1111 = 8 + 4 + 2 + 1 or 15

(6) It signifies the end of the JOVIAL statement

Since 49 = 32 + 16 + 1, the binary equivalent is 110001.

It is readily seen that this binary number requires 6 binary pOSitions to rep
resent it, hence the item should have 6 bits allocated for it.

ITEM GAMMA A 7 U $

7

We have seen how an item is defined in JOVIAL. The item is merely the empty vehicle.
We need now to place some data into the item.

Let us define a signed integer type item called RHO. It is to be capable of containing
positive and negative numbers the absolute value of which can be as large as 7.

The absolute value or absolute magnitude of a number is simply the number without the
sign. Thus the absolute value of -4 is 4, the absolute value of +6 is 6, the absolute value
of -7 is 7.

Since RHO will need to be capable of handling three binary positions for the maximum
magnitude (710 = 1112) and will require one bit position for the sign, it should be defined

as being 4 bits long.

ITEM RHO A 4 S $

Next, suppose we wish to place a value of 5 into RHO. This can be done with the following
statement. It is called an assignment statement or set statement.

RHO = 5$

The It = " should be interpreted as Itset equal to." Thus the statement reads,

RHO set equal to 5.

Notice that in the assignment statement there is a left term (in this case RHO) and a
right term (in this case 5).

The assignment statement says ttcompute the value of the right term and place that value
into the left term."

The right term may be almost anything. For example, it can be a constant - as it was in
the assignment statement above. Or it can be an item, or an arithmetic expreSSion, or a
few other things we will study later.

The left term must be an item. Later on we will modify this slightly to include a piece of
an item or any variable but for now let us say that it must be an item. At any rate it must
be a variable because if something is to be set into it, it must be a variable. It cannot be
a constant.

In the JOVIAL statement RHO = 5 $ it is possible that item RHO already contained a
value when the assignment statement was performed. This previous value in item RHO
would now be destroyed and RHO would contain 5.

If we wished to set RHO to -3, we would write the following JOVIAL statement:

RHO = -3 $

8

EXERCISES

Given the following three item definitions:

ITEM NUMB A 5 S $
ITEM COST A 5 S $
ITEM TEMP A 5 S $

(l) Write a JOVIAL statement that will set item NUMB to the value 9.

(2) Write a JOVIAL statement that will set item COST to the value 4.

(3) Write a JOVIAL statement that will set item NUMB to the contents of
item COST (assume that you do not know what value is in either item).

(4) Write a JOVIAL statement that will set item COST to the contents of
item NUMB (assume that you do not know what value is in either item).

(5) What is the contents of items NUMB and COST after the follOwing JOVIAL
program has operated?

NUMB =
COST =
NUMB =

2 $
7 $
COST $

(6) What is the contents of items NUMB and COST after the following JOVIAL
program has operated?

NUMB = 5 $
COST = 11 $
TEMP = NUMB $
NUMB = COST $
COST = TEMP $

(7) Define two signed integer type items called ROSE and LILY. Make each
capable of handling absolute values as large as 59. Then write a JOVIAL
program that will exchange the contents of the two items. (You will also
need to define an item to use for temporary storage).

(8) What is the absolute value of -37? What is the absolute value of +63?

(~) Write a JOVIAL statement to set item NUMB to -8.

(lO) Write a JOVIAL statement to set item COST to the negative of the largest
absolute value that it can contain.

9

ANSWERS TO PRECEDING EXERCISES

2.2 a. (1) NUMB = 9 $

(2) COST = 4 $

(3) NUMB = COST $

(4) COST = NUMB $

(5) NUMB contains the value 7

(6)

(7)

(8)

(9)

COST contains the value 7

Note that the statement NUMB = COST $ destroyed the previous con
tents of item NUMB (which was 2) and replaced it with the value con
tained in item COST (which was 7). Notice also that the contents of item
COST is still intact.

NUMB contains the value 11

COST contains the value 5

ITEM ROSE A 7 S $

ITEM LILY A 7 S $

ITEM TEMP A 7 S $

TEMP = ROSE $) (TEMP = LILY $

ROSE = LILY $) OR (LILY = ROSE $

LILY = TEMP $) (ROSE = TEMP$

37, 63

NUMB = -8 $

(10) COST was defined as 5 bits. Since it is a signed item 1 bit is required for
the sign. This leaves 4 bits for the magnitude of the number. Four binary
positions can hold 11112 or 8 + 4 + 2 + 1 = 15. Therefore the JOVIAL

statement would be:

COST = - 15$

The arithmetic operations in JOVIAL consist of addition, subtraction, multiplication, and
division.
If it is desired to set an item ALPHA to 5 more than the contents of item BETA, the state
ment used would be:

10

ALPHA = BETA + 5 $

or

ALPHA = 5 + BETA $

As was stated earlier, the right term of an assignment statement is computed and the re
sult is placed into the left term.

If it is desired to set an item ALPHA to 7 less than the contents of item BET A, the state
ment used would be:

ALPHA = BETA - 7 $

If we wished to set an item PI to three times the contents of item GAMMA, the statement
used would be:

PI=3 * GAMMA $

or

PI = GAMMA * 3 $

Tbus the symbol for multiplication that is used in JOVIAL is the asterisk (*). N:> implied
multiplication is permitted. Thus it is incorrect to write:

PI = 3 GAMMA $

If we wished to set an item ROSE to half of the contents of item BLUE, the statement used
would be:

ROSE = BLUE 1 2 $

If BLUE is an odd number, the resulting computation of the right term will yield a number
with a fraction. For example, suppose that BLUE contains the value 19. Then BLUE/2 will
result in the value 9-112. However, in our discussion thus far, we have defined only integer
type items. So assuming that ROSE has been defined as an integer type item, the only thing
that would get into ROSE would be 9.

In summary then, the symbols for addition, subtraction, multiplication, and division are
respectively +, -, *, and I.

EXERCISES

2.3 a. Assuming that two integer type items ALPHA and BETA have been previously
defined.,

(1) What is the contents of item BETA after the following program has op
erated?

11

ALPHA = 3 $
BETA =4 $
ALPHA = BETA + 5 $
BETA = 3 * ALPHA $

Write a program which will set item ALPHA to 5, and then set item BETA
to 7 more than ALPHA.

Write a JOVIAL statement that will set item ALPHA to 5 times the con
tents of BETA.

Write a JOVIAL statement that will set item BETA to one-fifth of the con
tents of ALPHA.

at is wrong with each of the following JOVIAL statements?

ALPHA + 2 = BETA + 1 $

BETA = 2 * ALPHA

EPSILON = RHO + 9 $

2ABC = ALPHA - 1999 $

ROSE =3 LILY $

ANSWERS TO PRECEDING EXERCISES

BETA contains 27

ALPHA = 5 $

BETA = ALPHA + 7 $

ALPHA = 5 $

BETA = 7 + ALPHA $

ALPHA = 5 $

BETA = 12 $

ALPHA = 5 * BETA $

ALPHA = BETA * 5 $

(4) BETA = ALPHA/5 $

b. (1) The left term of an assignment statement must be as item (variable) and
not a constant or arithmetic expression.

(2) The dollar sign ($) signifying the end of the JOVIAL statement is missing.

(3) The statement contains no error with the J-3 compiler.

(4) An item name must start with a letter and the item name 2ABC starts
with a number.

(5) Implied multiplication is illegal. There must be an asterisk (*) between
the 3 and the item l}.a1l1e LILY.

Sometimes it is desirable to increase the value in an item by a constant. The following
statement will achieve this and is quite frequently used in JOVIAL programming.

ALPHA = ALPHA + 1 $

The right term is computed and the result is placed into the item specified by the left term.
Thus the contents of ALPHA has been increased by 1.

The right term of an assignment statement may be a quite complex arithmetic expression.
It may also contain parentheses if needed. Below are some various examples of assignment
statements:

a. ALPHA = 2 * (BETA + 6)/ GAMMA $

b. ROSE = ULY * (BLUE/TUNIA + 9) + 15 $

c. ANSWER = BPLACE * BPLACE - 7 * APLACE * CPLACE $

The order of computing the result of an arithmetic expression is the same as it is in math
ematics.

First the sub-result contained within a parenthesis is computed. Multiplications and divi
sions are performed first starting at the left and proceeding to the right. Then additions
and subtractions are done.

In example a. above, if BETA contained the value 2 and GAMMA contained the value 4, the
quantity in parenthesis would become 8. Then multiplying and dividing from left to right
would give first 16 and then 4. Therefore, the contents of ALPHA would become 4.

In example b., if ULY contained 3, BLUE contained 4, and TUNIA contained 2, the quantity
in parenthesis would become 11. Then multiplying by- ULY and adding 15 would result in
33 + 15 or 48. Thus ROSE would be set to 48.

In example c., if APLACE, BPLACE and CPLACE contain respectively 3, 4, and 5, item
ANSWER would be set to 4 * 4 -7 * 3 * 5 or 16 - 105 or - 89.

13

EXERCISES

Considering the items PRICE, COST, andOHEAD to be previously defined,
what is the contents of PRICE after the following program has operated?

COST = 27 $
OHEAD = COST/9 $
PRICE = COST + 2 * OHEAD + 3 $

Considering the items to be previously defined, write a program statement
that will set RESULT to 6 more than twice NUMBA.

Considering the items to be previously defined, write a program statement
that will set RESULT to three times the sum of NUMBA and NUMBB.

Considering the items to be previously defined, write a program statement
that will set AREA to 17 less than 5 times the product of LENGTH and WIDTH.

ANSWERS TO PRECEDING EXERCISES

PRICE contains 36.

RESULT = 2 * NUMBA + 6 $

RESULT = 6 + 2 * NUMBA $

RESULT = 3 * (NUMBA + NUMB B) $

Obvious variations of the above are also correct.

AREA = 5 * LENGTH * WIDTH - 17 $

CHAPTER 3

JOVIAL FORMAT ON CODING PAPER AND
REPRESENTATION OF HOLLERITH INFORMATION ON PUNCHED CARDS

A program written on JOVIAL coding paper is shown below. The coding sheet is simply an
array of little squares. There are 80 columns and about 25 lines. The 80 columns on the
paper correspond to the 80 columns on an IBM punch card.

JOVIAL CODING PAPER
Programme r' s Name

1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 78 79 80
S T A R T

, ,
J 0 E'

,
--

I T E M A L P H A A 3 U $
I T E M B E T A A 4 U $

lA L P H A = 6 $
B E T A = A L P H A + 9 $

Is T 0- P $
T E R M $

Coding may begin in any column on the sheet after and including column 17. Coding may
stop in any column. Columns 1 through 16 are used to number cards and also frequently
contain the program identity or name.

A JOVIAL statement may continue for as many lines as necessary. The end of anyone
line, however, cannot be the middle of a single entity, such as an item name. The break
between lines must occur at a place where a space normally occurs.

Each line on the coding paper will be punched on a separate IBM card. Therefore, the pro
gram shown above would consist of 7 cards when punched. The cards are punched on type
writer-like machines called keypunches.

The first card in any JOVIAL deck must be a card beginning with the word START followed
by the program name. There can be no JOVIAL statements on the START card. START is
not a JOVIAL statement; therefore, although it may be followed by a dollar sign, no dollar
sign is required.

Any remarks, preferably programmer's name, date, etc., should be added to the START
card since this card is logged out on the printer by the compiler.

The last card in the deck must be TERM followed by a dollar sign.

Both the START card and the TERM card are instructions to the compiler program - the
program that will translate the .JOVIAL program to binary. They are not really part of the
program but are necessary for compiling. The STOP instruction is one of the program
statements and simply causes the computer to stop operating.

15

EXERCISES

a. How many columns are there on a sheet of JOVIAL coding paper? Why?

b. What must be the first card in a JOVIAL program ?

c. What must be the last card in a JOVIAL program ?

d. What two cards in a JOVIAL program are instructions to the compiler?

e. What is the first column on a JOVIAL coding sheet which may be used in
coding a JOVIAL statement?

f. How many IBM cards would be required for punching up the following program

JOVIAL CODING PAPER

1 2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
S T A R T

I T E M N U M B R A 1 ~ S $
N U M B R = N U M B R + 6 j

S T 0 P $
T E R M $

ANSWERS TO PRECEDING EXERCISES

a. The JOVIAL coding sheet has 80 columns to correspond to the 80 columns on
an IBM card.

b. The first card in a JOVIAL program must be a card which contains the word
START.

c. The last card in a JOVIAL program must be a card which contains the word
TERM $ •

d. The two cards in a JOVIAL program which are instructions to the compiler,
are the START card and the TERM $ card.

e. The coding of a JOVIAL program statement can begin in column 17.

f. Five cards would result from keypunching the program illustrated since ea,ch
line is punched on a card.

Usually the JOVIAL coding sheets are given to a trained keypunch operator for card
punching. Therefore, it is imperative that no ambiguity exist among the various symbols.
For this reason, certain conventions have been established to prevent errors and con
fusion. This document will follow the three conventions listed below; namely,

1) On the coding sheet"the !!umber "zero" will be slashed, ~, and the letter 0
will have a bar over it, O.

2) On the coding sheet the number "one" will have a base attached to it, 1, and
the letter "I" will be capped above and below, I.

3) The letter "z" will have a bar in it, a to distinguish it from the number "2".

The above three coding sheet conventions should eliminate major ambiguities if the pro
grammer exercises care and neatness in writing his program on coding paper.

Some further rules associated with the JOVIAL programming language follow:

1) All numbers are written in the decimal number system unless otherwise
indicated by the programmer. The manner in which the programmer in
dicates a non-decimal number (a number in the octal number system) will be
described later.

2) Single terms, such as item names, constants, and operators, which consist
of consecutive strings of letters or numbers, must not have any spaces be
tween the first and last characters, and they cannot be broken into two con
secutive cards.

For example, if ALPHA is the name of an item, it cannot be coded as ALP HA
with a space between the P and the H. Nor can AL be coded in columns 65 and
66 of one card with PHA in columns 1, 2, and 3 of the next card.

3) Where two consecutive entities which consist of consecutive strings of letters
or numbers appear, they must be separated by at least one space. (e.g., ITEM
ALPHA •••••••)

4) The end of a JOVIAL statement is signified by a dollar sign. It need not be
preceded or followed by any number of spaces.

5) It is not necessary (although it might sometimes be desirable for the sake of
readability) to separate special characters (non-alphanumeric) from single
terms and (under some Circumstances) to separate special characters from
one anothe r.

For example, in the following JOVIAL statement, no spaces need appear.

ALPHA = 3 * (BETA-GAMMA)/(EPSLON + RHO) $

6) Wherever one space is required or permitted, any number of spaces may exist.

The JOVIAL statement ALPHA = 6 $ would appear on a punched card as shown below:

17

- .,.~,
, +-~:::"1.'~'4~~:' ~ • ~,... ~ '"" ,,~.. ~ ~ .t"'M • 11" ~~

. - . .. 1 ~
00100000000000 Q
12345.7'9W"n~U"3n3am~nDN~anaa~~~D~~~Daa~~~~~~.uaa~M~~M •• ~.H.~aaM •• u •• mnnnH~m"~N._
11 i

z
22222222222222222t22 ~

33J333333333333331333313331333
~

44 8
5555555555555.5555 5555555555555555555555555555555 5555555555555 g
16-66666666666666666666661666 !
7777777777777777771777777777777177777777777777777777~777777777777117777777777777 ~

~
88888888888888888881881888188888888888888888B88888888BB8888888888888888888888888 !
99199999999999 ~
12345'7 •• ro"n~U"3n3~m~nDN~anaaa~~D~aaDaa~~~~~aauaa.M~~M •• ~.H.~aaM •• ~ •• ~nnnH~N"~N •

.... MII7 ...

Observe that an A has been punched in column 17, an L in column 18, etc. The code which
represents alphanumeric and punctuation - like data on cards is called "12-bit Hollerith
Code."

A card column consists of 12 rows numbered from the top down as:

ROW
12
11
o
1
2
3
4
5
6
7
8
9

IBM CARD

~------~----------------~----------------------~------~------~ Note that the A punched in column 17 required punches in rows 12 and 1; the L required
punches in rows 11 and 3, etc.

The following diagram gives the code for all of the Hollerith Characters:

18

ROW
12

ll-t-t-+++-t-lH-+-o
1
2

3-+~""
4 -+~f-
5-+-+.;-+-
6-+H-H-
7-++-+-t-I-j-..,
8 -++-+ -+-11-
9

From the diagram we see that punches in rows 11 and 8 would be required to represent
the letter Q in a particular column.

EXERCISES

3.2 a. What punches would be required in column 9 if we wished to represent a $
in that column?

b. What Hollerith Character would be represented by punches in rows 0 and 5
of a column?

c. What JOVIAL program statement is contained on the following card:

.. 1 t
0000000000000000001000 •• 0000000000 ~
1214S'7"W"nUu"gUgga~DD~ •• D ••• ~~DM~.U ••• ~Qa~a.~aa.MU~M •• ~ ••• ~aaM •• ~ •• ~nnnu~~n~~._
11 ~

22222222222222221222 ~

333333333333333333133133333333333133
)0

444444444444444444444444411444 8
51555555555555555155 ~

&&&&&&&&&&&&&&&&&&6&&&66666&66666666&&&&6&&666666666&66666666&66&&&11&6666666166

7777777777777777777777717777777777777777777777777777~777777777777777777777777777 ~
)0

88811888888888888888818888888888818118818188818188888888888888818118888888888118 J
99999999999999999999999999999991999999999999999999999999999999999991199999999999 ~
1214S'7"W"n~u"gUg~a~DD~ •• D ••• ~ •• M •• U ••• ~Qa~a.~ ••• MuaM •• UAA.~aaM •• D ••• nnnu~~n~~. _11 .. 7,.

ANSWERS TO PRECEDING EXERCISES

3.2 a. In order to represent a $ in column 9, that column would require punches in
rows 11, 3, and 8.

b. Punches in rows 0 and 5 of a particular column would represent the letter V
in that column.

c. The JOVIAL statement represented on the card is BETA = GAMMA + 9 $

In summarizing this chapter, we may say that we have seen how a JOVIAL program is
written on coding paper and subsequently how that same program is keypunched to be rep
resented on punched cards.

The deck of cards containing the JOVIAL program is then submitted to the compiler. The
compiler, you will recall, is a computer program that will translate the higher level

19

language of JOVIAL into the low level language of O's and l's that the computer can under
stand and operate.

The compUer produces a punched deck containing the low level language. This deck is
called a binary deck.

JOVIAL input deck I COMPILER ~Low level language
(Symbolic Deck) ---t output deck

L--. ____ ---J (Binary Deck)

The binary deck is then submitted for operation. It is then that our program is operated.
The first submission to the computer was merely for translation from the high level
language to low level language.

Thus it essentially takes two submissions to the computer to get a JOVIAL program
performed.

1. The first submission is for compUing.

2. The second submission is for running.

In the next chapter we will discuss JOVIAL decision-making statements. They are also
known as IF statements.

20

CHAPTER 4

THE IF STATEMENT, THE GOTO STATEMENT,
STATEMENT LABELS, AND COMPOUND STATEMENTS

The simple IF statement in JOVIAL is used when it is desirable to have a program make
a decision between two possible courses of action.

For example, if we desire to add 3 to the contents of item ALPHA when ALPHA contains
5, or add 2 to ALPHA when ALPHA contains a value other than 5, we can use the following
JOVIAL statements to do the job.

IF ALPHA EQ 5 $
ALPHA = ALPHA + 1 $
ALPHA = ALPHA + 2 $

The IF statement has the characteristic of being either true or false. In the above example
the item ALPHA either contains 5 or it doesn't.

When the IF statement is true control proceeds with the next step in sequenc"e, which in
this case is ALPHA = ALPHA + 1 $. Then control continues on in the normal fashion
with ALPHA = ALPHA + 2 $ being performed next, etc.

However, when the IF statement is false, control Skips the statement immediately fol
lowing the IF statement and proceeds with the second statement.

Thus we see in the example shown that when ALPHA contains 5, both succeeding state
ments will be performed. which results in adding 3 to the value of ALPHA. Also whenever
ALPHA contains a value other than 5, only the second statement following the IF state
ment wUl be performed, ALPHA = ALPHA + 2 $ which results in only 2 being added to
ALPHA.

EXERCISES

4.1 What does ALPHA contain after each of the following programs has operated?

a. ALPHA = 6 $
IF ALPHA EQ 7 $
ALPHA = ALPHA + 1 $
ALPHA = ALPHA + 3 $
STOP $

b. BETA = 29 $
ALPHA = BETA + 4 $
IF ALPHA EQ 33 $
ALPHA = ALPHA + BETA $
ALPHA = ALPHA + 1 $
STOP $

21

c. BETA = 7 $
GAMMA = 9 $
ALPHA = GAMMA - BETA $
IF ALPHA EQ 2 $
ALPHA = BETA ~
ALPHA = GAMMA $
STOP $

ANSWERS TO PRECEDING EXERCISES

4.1 a. ALPHA contains 9 since the IF statement is false and only the ALPHA =
ALPHA + 3 $ statement is performed.

b. ALPHA contains 63 since the IF statement is true and both of the statements
following it are performed.

c. ALPHA contains 9. The IF statement is true, however, the second statement
following the IF statement replaces the previous contents of ALPHA with the
contents of GAMMA, thus in effect making the statement above it, ALPHA =
BETA $, of no consequence.

The format for the simple IF statement is as follows:

IF I Left Terml relational operator I Right Term I $

The left term and right term may be almost anything. For example, they may be a constant,
a variable, or an arithmetic expression.

Thus we may have

IF ALPHA EQ 2 * BETA -6 $

where the left term is ALPHA and the right term is 2 * BETA -6.

There are six different relational operators. We have seen one of them as EQ for I 'equal" .
The relational operators are:

22

EQ - Equal
NQ - Not Equal
LS - Less Than
LQ - Less Than or Equal
GR - Greater Than
GQ - Greater Than or Equal

EXERCISES

4.2 a. If ALPHA contains 4 and BETA contains 6, is the following IF statement true
or false?

IF ALPHA LS 2* BETA -II! $

b. If GAMMA contains 5 and BETA contains 19 is the following IF statement true
or false?

IF BETA-GAMMA NQ 2 * GAMMA + 3 $

c. What does COUNT contain after the following program has operated?

COUNT = I! $
NUMBR = 3 $
PARAM =4 $
IF NUMBR EQ PARAM $

COUNT = COUNT + 1 $
COUNT = COUNT + 2 $

IF PARAM GR NUMBR $
COUNT = COUNT + 3 $
COUNT = COUNT + 4 $
STOP $

d. Write a program which will examine item ABLE. If ABLE contains a value
less than 9, add 7 to item ABLE, and if it contains 9 or greater, add 5 to item
ABLE.

ANSWERS TO PRECEDING EXERCISES

4.2 a. The IF statement is false.

b. The IF statement is true.

c. COUNT contains 9 after the program operates.

d. IF ABLE LS 9 $
ABLE == ABLE + 7 $
ABLE = ABLE + 5 $
STOP $

It is frequently desirable to alter the sequence of operation in a series of JOVIAL state
ments. This can be done by use of the GOTO statement.

For example, suppose that if ALPHA contains 19 then we wish to add 7 to BETA and 9 to
GAMMA. However, if ALPHA contains a value other than 19 then we wish to add 5 to
EPSLON and 8 to RHO. The following program illustrates a solution: '

23

IF ALPHA EQ 19 $
GOTO LABELA $
EPSLON = EPSLON + 5 $
RHO = RHO + 8 $

EXIT. STOP $
LABELA, BETA = BETA + 7 $

GAMMA = GAMMA + 9 $
GOTO EXIT $

If the IF statement is true, control will go to the statement following it. Since this statement
is a GOTO statement, control will then be transferred to the statement with the label
LABELA. Thus 7 will be added to BETA, 9 will be added to GAMMA and control will go to
the statement labeled EXIT.

Any operative instruction within the JOVIAL program may bear a statement label. Non
operative statements such as an item definition or the brackets START and TERM do not
take statement labels.

A label consists of 2 or ~ore alphanumeric characters, the first of which must be a letter.
The statement label must be followed by a period. No spaces may appear between the label
and the period. Spaces may appear between the period and the statement itself, although no
space is required.

A particular set of symbols may not appear as a statement label more than once in a main
program. Statement labels may have the same set of symbols as those used for item names,
although this practice is not recommended.

The GOTO statement may be used anywhere within a program to interrupt the normal
sequence of control. The format consists of the expression, GOTO, the name of the state
ment label to which it is to go, and a dollar sign. GOTO is a single element of the state
ment and may not be written as two words.

Note also that only the statement label itself is written with a period; any reference to a
statement label by a GOTO statement is written without the period.

When reference is made to a statement label by a GOTO statement, the program must
contain a corresponding statement label. In other words, a GOTO statement must have
some place to go.

EXERCISES

4.3 a. What is in COUNT after the following program operates:

24

COUNT = 1J $
BETA = 2 $
ALPHA = BETA + 3 $
IF ALPHA LQ 5 $

GOTOMORE $
BETA = ALPHA $
COUNT = COUNT + 2 $

EXIT. STOP $
MORE. BETA = 2*ALPHA $

COUNT = COO NT + ALPHA $
GOTO EXIT $

b. What is in COUNT after the following program operates?

COUNT = 2 $
BETA = 7 $

IN. IF BETA EQ 3 $
STOP $
BETA = BETA -1 $
COUNT = COUNT '!' COUNT $
GOTO AGAIN $

c. Write a program that will obtain a count in item COUNT of how many of the
items ALPHA, BETA, and GAMMA contain quantities greater than 9.

d. What errors exist in the following program?

ALPHA = ~ $
BETA + 1 = ALPHA + 7 $
IF BETA = 6

GOTO JUNE. $
ALPHA = ALPHA -2 $
GOTOMORE ~

JUN BETA = BETA -7 $
JUN ALPHA = BETA

STOP $

ANSWERS TO PRECEDING EXERCISES

a. COUNT contains 5

b. COUNT contains 216 or 65,536

c. COUNT = ~ $
IF ALPHA GR 9 $

COUNT = COUNT + 1 $
IF BETA GR 9 $

COUNT = COUNT + 1 $
IF GAMMA GR 9 $

COUNT = COUNT + 1 $
STOP $

Note that setting COUNT to zero initially insures that COUNT will not contain
miscellaneous information with which to begin. The clearing of items initially
is referred to as "Initializing."

Note also that regardless of what ALPHA contains, we go on and examine BET A

25

and GAMMA. Also, regardless of what ALPHA and BET A contain, we go on
and examine GAMMA. Thus our COUNT could finally contain 0, 1, 2, or 3 de
pending upon the particular values in ALPHA, BETA, and GAMMA at the time
of operation of the program.

d. (1) The second statement should not have a variable as the left term.

(2) There is no relational operator in the IF statement. It should be EQ and
not "=."

(3) There is no dollar sign ending the IF statement.

(4) The first GOTO statement is incorrect because it has a period after the
label describing where control should go. Furthermore, there is no label
in the program by the name of JUNE.

(5) The second GOTO statement refers to a label called MORE and there
isn't any statement in the program with that label.

(6) There are two statements with the same label (JUN). Also, neither one
has a period after it as required for a statement label.

(7) The second statement which is labelled JUN is missing a dollar sign.

It was stated that the statement immediately following an IF statement is skipped when the
IF statement is false.

Since it is frequently deSirable to do several things when an IF statement is true, it would
be advantageous to be able to treat several JOVIAL statements as one statement. This can
be done by placing the brackets BEGIN and END around the several JOVIAL statements.
The enclosed statements then become a compound statement.

Let us look at the first example in this chapter that we discussed, USing this new concept.
I will restate the problem.

The problem states that 3 is to be added to the contents of ALPHA when ALPHA contains
5, and 2 is to be added to ALPHA when ALPHA contains a value other than 5.

USing the idea of a compound statement, we can write our solution as follows:

IF ALPHA EQ 5 $
BEGIN $

ALPHA = ALPHA + 3 ~
GOTOEXlT$

END $
ALPHA = ALPHA + 2 $

EXIT. STOP $

Note that the brackets BEGIN and END do not take dollar Signs. When the IF statement is
true, control proceeds with ALPHA = ALPHA + 3 $ and then continues with GOTO EXIT $

26

which takes us around the area which treats the false condition.

When the IF statement is false, control skips the first statement, which in this case is a
compound statement, and proceeds with the statement ALPHA = ALPHA + 2 $

A very common error that beginning JOVIAL programmers make, is that they do not pro
gram the bypassing of the false portion connected with an IF statement when that statement
is true. They fall into the false portion from the true portion, thus, often performing both
the true and false sections.

EXERCISES

4.4 a. What values are in ALPHA, BETA, and COUNT after the follOwing program
operates?

COUNT =~ $
ALPHA = 1 $
BETA = 3 $
IF ALPHA + 6 LS BETA + 5 $

BEGIN
COUNT = COUNT + 1 $
ALPHA = BETA + 2 $
BETA = ALPHA + 2 $
GOTO OUT $

END
COUNT = COUNT + 2 $
ALPHA = 2 * BETA + 6 $
BETA = 2 * ALPHA -5 $

OUT. STOP $

b. Write a program which will set ROSE to 5 and MARY to 7 if BETTY contains
12. Otherwise set ROSE to 29 and MARY to BETTY.

ANSWERS TO PRECEDING EXERCISES

4.4 a. ALPHA contains 5
BETA contains 7
COUNT contains 1

b. IF BETTY EQ 12 $
BEGIN

ROSE = 5 $
MARY = 7 $
GOTO OUT $

END
ROSE = 29 $
MARY = BETTY $

OUT. STOP $

27

A compound statement may be labeled just as a simple JOVIAL statement may be labeled.
The label may precede or follow the BEGIN. The label will actually be assigned by the
compiler to the first simple JOVIAL statement within the' compound statement. This in
effect labels the compound statement.

Also, a compound statement may contain a compound statement. Thus, we have BEGIN and
END brackets within BEGIN and END brackets. Another way of stating this is to say that
compound statements may be nested. Thus, we can speak of different levels of compound
statements.

IF TUNIA ~ 9 $
BEGIN $

~ IFROSELS7$
/ ~ BEGIN $

Outer Inner SIGMA = 8 $
Level Level pm = 3 $

"-- GOTO OUT $
~END$

EPSLON = 4 $
GOTO OUT $

END $
OUT.

YELLOW = 4 $
STOP$

The thing to remember is that there must be an END for each BEGIN.

When working with relational operators for comparing quantities, it is well to keep re
lationships as found on a numbe r line in mind.

--'---'-_-I-I_...JIL-----LI_...LI_----'--_....LI_--LI _--1-- Number Line
-5 -4 -3 -2 -1 0 +1 +2 +3 +4

On the number line, the number 0 separates the positive numbers from the negative num
bers. Also, numbers get larger as one moves to the right. Thus, -3 is larger than -4 and
+3 is larger than +2.

This gives us an idea of how we can check for negative values if we so desire. The following
IF statement will differentiate between positive and negative numbers.

IF NOMBR LS ~ $

Assuming the quantity to be examined is in item NOMBR, the IF statement is true for neg
ative numbers and false for positive numbers.

EXERCISES

4.5 a. Given an item called MCAND and one called MLIER, each of which contains a

28

non-negative whole number (either or both can be zero) and assuming that we
cannot use the * or multiplication feature of JOVIAL, write a program which
will obtain the product of MCAND and MLIER and place it into item PRODCT.

Note: Multiplication is a process of repeated additions.

. Test your solution to the above problem using the following table.

EXPECTED
RESULT

MCAND MLIER PRODCT

Trial 1 ~ 2 D
Trial 2 3 0 0
Trial 3 3 2 6
Trial 4 1 4 4

ANSWERS TO PRECEDING EXERCISES

PRODCT =~ $
IF MCAND EQ ~ $

GOTOEXIT$
IF MLIER EQ ~ $

STOP $
PRODCT = PRODCT + MCAND $
MLIER= MLIER -1$
GOTOAGAIN $

ACTUAL
RESULT

PRODCT

The column containing "Actual Result" should contain the same values as the
column called "Expected Result. 11

29

CHAPTER 5

TABLES, SUBSCIDPTED ITEMS, AND FLOW DIAGRAMS

• We have mentioned that the variables manipulated in JOVIAL are contained in entities
called items.

Frequently the data associated with a problem will not consist of a few different items, but
rather, a large set of similar items. We can then arrange the items in what is called a
table.

Suppose for example we wish to write a program which will add a set of ten numbers. We
can design a table containing ten entries of the item. Let us arbitrarily call the table NUM.0
and the item in each entry NUMBR.

We can think: of our table appearing as shown below:

TABLE NUM.0

Item NUMBR 359
Item NUMBR 4.085
Item NUMBR 26
Item NUMBR 732
Item NUMBR 18
Item NUMBR 437
Item NUMBR 2372
Item NUMBR .0
Item NUMBR 11
Item NUMBR 655

entry #.0
entry #1
entry #2
entry #3
entry #4
entry #5
entry #6
entry #7
entry #8
entry #9

First entry
Second entry
Third entry
Fourth entry
Fifth entry
Sixth entry
Seventh entry
Eighth entry
Ninth entry
Tenth entry

Observe that the first entry is deSignated entry #.0, the second is entry #1, etc. This could
present a confusion factor unless the student clearly fixes this idea in his mind.

In the example above, the value of 359 is contained in entry #.0 of item NUMBR, the value
4085 is contained in entry #1 of item NUMBR, etc.

This table NUM.0 and its item NUMBR, can be defined in the compool (the dictionary-like
table to which the compiler has access) or it can be defined at the beginning of our pro
gram. At any rate, it must be defined if we are to write a program which uses it.

Below is the table and item definition as it would be made in a program:

T A BL E N Iu 1M ~ R I L0 $
B EG I N
I T E M N U M B R A 1 6 S $
E N D

30

The code word TABLE is written first. It tips off the compiler that a table definition is to
follow. Then follows the unique name of the table, which in the above example is NUM,0.
Table namee consist of two or more alphanumeric characters, the first of which must be
a letter.

The third field in a table definition contains either an R or a V. There are two types of
tables in JOVIAL - those with a fixed (rigid) number of entries and those with a variable
number of entries.

If we specify R (as in the example above) this means that the table will always contain the
same number of entries.

If we specify V, this means that the number of entries in the table may vary from time to
time as a result of programming the addition or deletion of entries.

For the present, we will discuss only tables consisting of a fixed number of entries (R-tYPE
tables). The V-type table will be taken up in full detail later.

Following the R or V in the table definition is the number of entries that the table is to
have. In an R-type table this is the actual number of entries; whereas, in a V-type it is
the maximum number ever expected.

The 1.0 specified in the example declares that the table NUM,0 is to contain 1.0 entries.

Following the table declaration statement, the items to be defined for each entry are en
closed within a BEGIN-END bracltet. Only those items enclosed within this BEGIN-END
bracket are considered to be in the table defined.

The item definition is made the same as described in Chapter 2. Each entry of a table
must have at least one item. Many tables, however, have several items in each entry.

EXERCISES

5.1 a. In the table NUM.0 of the preceding text (page 30) what is the content of entry
#6 of item NUMBR?

b. In the table NUM.0 of the preceding text, what is the content of the third entry
of item NUMBR?

c. Define a table called T AB.0 which is to consist of 99 entries. The table is to
have a fixed number of entries. Each entry is to contain the item ALPHA. Mak,
ALPHA an integer type item consisting of 16 bits and capable of containing
positive and negative numbers.

31

ANSWERS TO PRECEDING EXERCISES

5.1 a. Entry # 6 of item NUMBR contains 2372.

b. The third entry (entry #2) of item NUMBR contains 26.

c.

T A B L E T A B D R 9 9 $
B E G I N

I T E M A L P H A A 1 6 S $

E N D

Since all of the items NUMBR in the table NUM.6, described previously, are indistinguish
able from one another, we must have some reference number when referring to item NUMBR
in a particular entry.

We will attach the entry number to an item when speaking of the item in a particular entry.
Thus, we might speak of entry #5 of item NUMBRas NUMBR5•

The 5 is referred to as a subscript. However, specifying a subscript a little below the line
of writing as done above does not lend itself to coding on coding paper and punching on
punched card. In these instances everything is on the line.

Therefore, some symbology was developed to indicate a subsCript. If we wish to refer to
entry #5 of item NUMBR, or in other words, NUMBR5, we will write it in JOVIAL as

NUMBR ($ 5 $). Thus, the symbology of ($ $) merely indicated a subscript.

There can be no spaces in NUMBR ($ 5 $) since it refers to a single entity. The item with
a subscript attached is called a subsCripted variable or subscripted item.

If we wished to set entry #5 of item NUMBR to 678 we could do so with the follOwing JOVIAL
assignment statement:

NUMBR ($ 5 $) = 678 $

If we wished to add 9 to the present value in entry #8 of item NUMBR we could write:

NUMBR(8)=NUMBR(8)+9$

If we wished to determine whether or not entry #9 of item NUMBR contained a value larger
than 1000 we could write:

IF NUMBR ($ 9 $) GR 1.6.6.6 $

It is not permissable to leave off the subscript when specifying entry #.6 of an item.

32

· when coding a JOVIAL statement on coding paper to write only 1 symbol in a box.

EXERCISES

The following -questions pe rtain to table NUM.0 described in the preceding text.

a. What value is contained in NUMBR ($ 4 $)?

b. What value is contained in NUMBR ($.0 $)?

c. Write a JOVIAL statement that will set the value 39 into entry *3 of item
NUMBR.

d. Write a JOVIAL statement that will add 789 to the contents of entry *6 of
item NUMBR.

e. Write a JOVIAL statement that will replace the contents of entry #1 of NUMBR
with the contents of entry #7 of NUMBR.

f. Write a JOVIAL statement that will place the sum of the first three entries of
NUMBR into the single item TOTAL. By a Usingle item" I mean one that is
not in a table. Consider TOTAL to be already defined.

g. Write a JOVIAL program that will clear each entry (set it to zero) of NUMBR
if it contains a value larger than 5.0.0.

ANSWERS TO PRECEDING EXERCISES

a. Entry #4 of NUMBR contains 18.

b. NUMBR ($ 0 $) refers to entry *.0, hence, 359.

c. NUMBR ($ 3 $) = 39 $

d. NUMBR ($ 6 $) = NUMBR ($ 6 $) + 789 $

e. NUMBR ($ 1 $) = NUMBR ($ 7 $) $

f. TOTAL = NUMBR ($.0 $) + NUMBR ($ 1 $) + NUMBR ($ $) $

g. IF NUMBR ($.0 $) GR 5.0.0 $
NUMBR ($.0 $) = .0 $

IF NUMBR ($ 1 $) GR 5.0.0 $
NUMBR ($ 1 $) = .0 $

IF NUMBR ($ 2 $) GR 5.0.0 $
NUMBR ($ 2 $) =.0 $

33

IF NUMBR ($ 3$) GR 5"" $
NUMBR ($ 3 $) =" $

IF NUMBR ($4 $) GR 5"" $
NUMBR ($ 4 $) =" $

IF NUMBR ($ 5$) GR 5"" $
NUMBR ($ 5 $) =" $

IF NUMBR ($ 6$) GR 5"" $
NUMBR ($ 6 $) =" $

IF NUMBR ($ 7$) GR 5"" $
NUMBR ($ 7 $) =" $

IF NUMBR ($ 8$) GR 5"" $
NUMBR ($ 8 $) =" $

IF NUMBR ($ 9$) GR 5"" $
NUMBR ($ 9 $) =" $

In problem 5.2g, it may be observed that the solution consisted of twenty JOVIA,L statements
and yet there were essentially only two basic statements involved. Each pair occurred ten
times with only the subscript being different in each pair.

By using an item (variable) as a subscript, we can expand the power of the subscript tre
mendously.

Let us look at a program that will compute the sum of all entries of item NUMBR and place
that sum in single item TOTAL.

TABLE NUM" R 1" $
BEGIN

ITEM NUMBR A 16 S $
END
ITEM TOTAL A 16 S $
ITEM COUNT A 16 S $
TOTAL =" $
COUNT =" $

AGAIN. TOTAL = TOTAL + NUMBR ($ COUNT $) $
COUNT = COUNT + 1 $
IF COUNT LS 1" $
GOTOAGAIN $
STOP $

In the above program the item NUMBR is subscripted by another item (variable) called
COUNT. Notice that COUNT will take on all of the values from" through 9 before the pro
gram stops. Thus, TOTAL will contain the sum.

EXERCISES

5.3 The follOwing problems involve table NU~ described in the preceding text. Con
sider COUNT and TOTAL to be already defined.

a. What does TOTAL contain after the following program stops?

34

COUNT = 1 $
TOTAL = /J $

AGAIN. TOTAL = TOTAL + NUMBR ($ COUNTS $) $
COUNT = COUNT + 2 $
IF COUNT LS l/J $

GOTOAGAIN $
STOP $

b. Using a variable subscript called COUNT, write a program that will clear
each entry (set it to zero) of item NUMBR if it contains a value larger than
500.

c. USing a variable subscript called COUNT write a program that will examine
each entry of item NUMBR and obtain a sum of the positive quantities in single
item POSSUM and a sum of the negative quantities in single item NEGSUM.
Consider POSSUM and NEGSUM to be already defined.

ANSWERS TO PRECEDING EXERCISES

1.3 a. The program obtains a sum in item TOTAL of every other entry of item
NUMBR starting with entry :fl. In other words, the following entries of item
NOMBR are summed; entries #1, 3, 5, 7 and 9. If this is applied to the spe
cific illustration presented earlier, we get 4,085 + 732 + 437 + /J + 655. There
fore, TOTAL would contain 5,909.

b. COUNT = ~ $
AGAIN. IF NUMBR ($ COUNT $) GR 5/JP $

NUMBR ($ COUNT $) = P $
COUNT = COUNT + 1 $
IF COUNT LS'l~ $
GOTOAGAIN $
STOP $

c. POSSUM = P $
NEGSUM =~ $
COUNT=~ $

AGAIN. IF NOMBR ($ COUNT $) GR P $
BEGIN

POSSUM = POSSUM + NUMBR ($ COUNT $) $
GOTOUPCNT $

END
NEGSUM = NEGSUM + NUMBR ($ COUNT $) $

UPCNT. COUNT = COUNT + 1 $
IF COUNT LS IP $
GOTO AGAIN $.
STOP $

~his appears to be a good time to bring up the subject of flow diagramming.

35

When the solution to a programming problem is very simple the programmer is able to
contain the solution logic in his head. However, when the solution logic is more complex,
it is a good idea to make a flow diagram before coding.

Let us flow diagram problem 5.3c in order to get the feel of what is involved in making a
flow diagram.

For convenience I will again state the problem.

PROBLEM: Using a variable subscript called COUNT, write a program that will examine
each entry of item NUMBR and obtain a sum of the positive quantities in single item
POSSUM and a sum of the negative quantities in single item NEGSUM. Consider POSSUM,
NEGSUM, COUNT, and item NUMBR in table NUM.8 to be already defined.

36

Add contt!llts
of 1st (next)
entry of NUMBR
to POSSUM

8
CLEAR
POSSUM
CLEAR

S

Prepare to
cycle thru eac
entry of table

NUMS

Anymore entries
to examine?

NO

------1

Add contents
of 1st (next)
entry of NUMBR
to NEGSUM

I YES I

I I
I __ ~- __ -_.J

Observe that decision boxes are "sausage shaped" and that non-decision statements are
placed in boxes of a rectangular shape. A dash line signifies flow in the reverse direction.

Flow diagramming is somewhat of a personal thing and although there have been many
efforts in the past to standardize flow diagramming symbols and techniques, the efforts
have been largely unsuccessful.

A person will usually continue to flow diagram in the manner in which he first learned to
flow. Then again, there are some programmers who never flow a solution - however, it is
highly recommended that the art (or science) of flow diagramming be used whenever pos
sible.

Before continuing, let me add that the flow can be made equally well going from left to
right rather than from top to bottom. Also if the flow is lengthy you may want to employ
"connectors" rather than forward lines or reverse lines (dash lines). Connectors are
merely little circles that are labeled to tell where the flow goes.

FollOwing is the same flow diagram shown above but with JOVIAL coding attached and a
connector used to indicate the return flow (page 38).

EXERCISES

5.4 a. Given an item called MCAND and one called MLIER, each of which may con-
tain a positive whole number or zero and assuming that we cannot use the
JOVIAL multiplication operator H*", make a flow diagram of a program
which will obtain the product of MCAND and MLIER and place it into item
PRODCT. (Note: See problem 4.5a)

b. Given the following, make a flow diagram which can be used to determine how
much money a man has in his pocket:

(1) He has 4 coins and their amounts are contained in item COIN of 4 entry
table MONEY.

(2) The coins may possibly be duplicated.

(3) The coin possibilities are a penny, a nickel, a dime, a quarter, and a
half-dollar.

Set the total amount of his money into the single item AMOUNT.

37

Clear POSSUM and

-------------~~~-POSSUM = fJ $
NEGSUM = fJ

Prepare to cycle through
each entrY of NUMfJ

Add contents of 1st (next)

=~~~-~!-~~-~~-~~~~-
BEGIN
POSSUM=POSSUM+NUMBR

($COUNT$) $
GOTO UPCNT $
END

AGAIN.

Add contents of 1st (next)
=~~;r_~!_~_~~_~~ __ _
NEGSUM =
NEGSUM + NUMBR($COUNT$) $

Anym0f;iaffifMtes to ~

COUNT = COUNT + 1 $ ~ IF COUNT LS 1fJ $
GOTO AGAIN $

ANSWER TO PRECEDING EXERCISE

YES NO

Is MLIER zero?

NO

____ J

b.

Add 1 to
AMOUNT

Add 5 to
AMOUNT

Prepare to cycle
through each entry
of table MOmEY

Is contents of 1st (next
entry of COIN a dime?

YES NO

Add lrJ to
AMOUNT

s contents of 1st (next}
entry of COIN a quarter?

YES

dd 25 to
AMOtmT

NO

Add 5rJ to
AMOUNT

Are there anymore coins
to examine?

EXERCISES

Write the JOVIAL coding for exercise 5.4b.

41

ANSWER TO PRECEDING EXERCISE

AM au NIT = (/) 1$
CO UN T = :(/) !$

A A • IF CO IN ($ c 0 lJ N T $1 EQ 1 $
BE Sf N

A M a u NT - A M 5 u NT + 1 1$ -
G or 6 c H ~c K !$

E ND
I F C B IN ($ c 6 v N T $) E Q 5 $

BE G I N
A M 0 U N T ::. A M 0 U N T + 5 $
G 0 T 0 C H f C K $

EN D
I F C 0 I N ($ c 0 lJ N T $) E Q 1 ¢ 1$

C3 E IG I N
A M 0 U N T - ~ fJI (5 u N T + 1 ¢ $ -
G- o r (5 c H E C K t

£ N D

I F (0 I N ($ c 0 u N T $) E ~ 2 5 $
(3 £ G I tV

A M (5 u N T ::. A M 0 U N T + 2 :; 1$
G- o T 0 C H E C k 1$

E N D
A M 0 u tV T = A ~ () U N r + 5 ¢ .$

C H E C I<. • C 0 U N T ::. C 0: J N T + 1 $
r F c. 0 U t-J T L S It; $

G 0 T <5 AA $
S T 0 p 1$

I
: I

Let us look at another problem involving a table. We will call the table PER,fJ and have it
contain information about employees in a company. Assume that there are four employees
and the table appears as follows:

EMPNO I NOKIDS

SALARY) entry #~

EMPNO I NOKIDS

iSALARY) entry #1

EMPNO I NOKIDS

SALARY) entry #2

EMPNO r NOKIDS

SALARY } entry #3

EMPNO is an item that contains a number which identifies a particular employee. It is
the "Employee Number. 11

NOKIDS is an item that contains a number stating how many children an employee has.

SALARY' is an item that contains a number corresponding to an employee's salary in
dollars.

Following is the way table PER,fJ and its items might be defined:

TABLE PER,fJ R 4 $
BEGIN

ITEM EMPNO A 8 U $
ITEM NOKIDS A 8 U $
ITEM SALARY A 15 U $

END

Let us assume that this table is being defined for use on the AN/FSQ-1 computer which
has a core memory word size of 32 bits. Arithmetic restrictions of the Q-7 limit the word
length to 15 magnitude bits, or 16 bits including sign for a signed number.

Following is a representation of how PER,fJ might appear in the AN/FSQ-7 core memory:

43

Core
Location
100
101
102
103
104
105
106
107

1011 , ,
!~

!
!

~~
I
I

IS

~ 31415 II 111g' l<:tll" II ~~ t3"~4' ,~,1. ~111'lIq l;I2/1l1'~bAI1' JJ: ~7 oL'Wln tl
! 'm :.~ 0 " " i:) ~ !, D S

~~ LI~ ~ y I
entry ~

I. .. ~ " J I 1/ ~ A • ~ ~ J 11) S
~ ~ ~ I' ~

entry 1

, Ii!! 'IJ ~ p~ '4~ JI 10 Ie , ~ .s
~ff .. ~ ~ 'l entry 2

t. " ~ "1. 4~ J,~ ~)4

~ I ... A " ~ entry 3

Left half-word Right half-word

The 32 bits are numbered from 0 through 31. Bits 0 and 16 are sign bit positions in the
left and right half-words respectively. Each bit position can hold a 1 or a O. In actuality,
each bit position is a tiny donut-shaped piece of iron which can be magnetized in one
direction or the other - thus storing a 1 or O. Each 32 bit slot is referred to as a core
location (or core memory register).

I have numbered these at the left, arbitrarily starting with 100. We can say that table
PER,0 occupies 8 core memory registers. Each entry of PER,0 consists of two core mem
ory registers.

When defining table PER,0, I did not specify a starting location. The compiler will there
fore establish a starting location for the table.

Also, when defining PER,0, I did not specify into which bit positions to place items
EMPNO, NOKIDS, and SALARY. The defining of items for specific bit positions in the
core memory register is called packing. Later on, we will see how it is possible for the
JOVIAL programmer to specify the packing of items as he wishes. For the present, let
us not specify packing and thus the JOVIAL compiler will do the packing of items for us.

Now let us state a very, very important fact. The subscript in JOVIAL pertains to entries
and not registers.

Thus, to give the employee in entry #2 a raise in pay of ten dollars, we would write:

SALARY ($ 2 $) = SALARY ($ 2 $) + 1~ $

EXERCISES

5.6 The following use table PER,0 as described in the text.

a. Write a JOVIAL statement to add one more child to the total number of

44

children for the employee in entry * 3.

Write a JOVIAL program to compute the total number of children for the em
ployees found in table PER.0. Have this sum placed into item TOTAL. Define
TOTAL similar to NOKIDS, however, make it a single item (not in a table).

ANSWERS TO PRECEDING EXERCISES

NOKIDS ($ 3 $) = NOKIDS ($ 3 $) + 1 $

ITEM TOTAL A 15 U $ A 15 U $
ITEM COUNT A 15 U $ A 15 U $
TOTAL =.0$
COUNT =.0$
TOTAL = TOTAL + NOKIDS ($ COUNT $) $
COUNT = COUNT + 1 $
IF COUNT LS 4 $
GOTOAGAIN $
STOP $

EXERCISES

le following use table PER.0 as described in the text.

Write a program to give a 20 dollar raise to the employee whose employee
number matches that of single item RAISE.

Write a program to give a thirty dollar raise to the employee with the most
children. (Note: Assume that'there is an employee who has the most children).

ANSWERS TO PRECEDING EXERCISES

COUNT =.0 $
IF EMPNO ($ COUNT $) EQ RAISE $
BEGIN $

SALARY ($ COUNT $) = SALARY ($ COUNT $) + 2.0 $
GOTO EXIT $

END $
COUNT = COUN T + 1 $
IF COUNT LS 4 $
GOTOAGAIN$
STOP $

The following is only one of many possible solutions:

ITEM ENTRY A 15 U $
ITEM EKIDS A 15 U $
ENTRY =.0 $

45

EKIDS = NOKIDS ($.0 $) $
COUNT = 1 $

AGAIN. IF EKIDS GR NOKIDS ($ COUNT $) $
GOTO CHECK $
EKIDS = NOKIDS ($ COUNT $) $
ENTRY = COUNT$

CHECK. COUNT = COUNT + 1 $
IF COUNT LS 4 $
GOTO AGAIN $
SALARY ($ ENTRY $) = SALARY ($ ENTRY $) + 3.0 $
STOP $

Note: Items EKIDS and ENTRY are just a couple of items that I wish to use for
temporary storage.

EXERCISES

5.8 Make a flow diagram for the solution given to problem 5.7b.

46

ANSWER TO PRECEDING EXERCISE

Set ENTRY to entry number of first
employee.
Set EKIDS to number of children
of first employee in PER0.

Prepare to cycle
from second thru
last entr-y in
table PER0.

Is number of children in EKIDS sreat~r
than number of children of 2nd ~nextJ

em 10 e?

YES

Anymore employees
in table?

YES

Any type of variable or arithmetic expression may be used to designate the entry number
of an item. When t' ~ value used to designate the entry number has a fractional part, the
fractional bits are truncated, leaving only the integer part~

Examples:

ABLE ($ COUNT + 1 $)

BAKER ($ ABLE ($ DOG * 2 $) $)

When the programmer chooses an item or an arithmetic expression to deSignate the entry
number, it is necessary to "manually" increment or decrement this factor and to " man_
ually" test to see if all entries have been processed.

This concludes Chapter 5 which has been concerned with tables, subsCripted items, and
now diagramming. In Chapter 6 we will study a new JOVIAL statement called the FOR
statement. The FOR statement will simplify greatly the processing of information in
tables and the use of subsCripted variables.

48

CHAPTER 6

THE FOR STATEMENT

We have seen in Chapter 5 that the processing of entries in a table can be simplified by
using a variable (item) for a subscript.

We recall that to sum the contents of each entry of item NUMBR in 1.0 entry table NUM.0,
we were able to write:

ITEM TOTAL A 16 S $
ITEM COUNT A 15 U $
TOTAL =.0 $
COUNT =.0 $

AGAIN. TOTAL = TOTAL + NUMBR ($ COUNT$) $
COUNT = COUNT + 1 $
IF COUNT LS 1.0 $
GOT 0 AGAIN $
STOP $

In the program above, the single item COUNT took on all of the values from .0 through 9,
thus obtaining the sum of each entry of item NUMBR in the ten entry table.

It is possible, however, to define a variable subscript in JOVIAL in an easier manner than
by the usual item definition, which we used with COU~.

This easy definition of a variable subcript can be achieved by use of the FOR statement.

Our program would appear as follows:

ITEM TOTAL A 16 S $
TOTAL =.0 $
FOR 1=.0 $
BEGIN $

AGAINI. TOTAL = TOTAL + NUMBR ($ I $) $
1=1+1 $
IF I LS 1.0 $
GOTOAGAIN $
STOP $

END $

The FOR in the FOR statement is a code word that lets the compiler know that we want to
define a variable subsCript. The FOR is a code word just as ITEM was a code word in an
item definition. However, FOR is a dynamic JOVIAL program statement and, thus part of
the program and not part of the definitions.

Following the code word FOR comes a space and then the name that we wish to give the
subscript. In the example, we have given the subscript the name I. Any letter in the

49

alphabet may be used. The subscript name always consists of a single letter.

Then follows an equal sign, "=", and then the initial value which we wish the subscript to
have. Finally, comes the dollar sign.

NO spaces need surround the "=" sign or need to precede the dollar sign.

The statement FOR I = 11 has taken the place of the two statements:

ITEM COUNT $ A 15 U $
COUNT = 11 $

The FOR statement as we have used it defines the variable subscript and gives it an
initial setting.

The FOR statement, however, defines a subscript for only the first statement following
the definition. That is why I made a compound statement out of the several statements
following the FOR statement in the last example.

The BEGIN and END brackets make the several statements into a compound statement and
thus, the subscript I is defined for the entire compound statement.

Within the program area for which the subscript is defined, it can be used as a subscript
attached to an item name as in:

TOTAL = TOTAL * + NUMBR ($ I $) $

In the above statement, the subscript use requires the symbology of ($ $) as was used
previously with item COUNT.

Also within the program area for which the subscript is defined, it can be used i~ the same
manner as item COUNT was, i.e., just by referring to it by name. Thus,

1=1+1$
IF I LS 111 $

In the above two statements, the symbology of ($ $) is not used.

EXERCISES

6.1 a. Given the following FOR statement

50

FOR N = 3 $

(1) What is the code word that tells the compiler that we want to define a
subscript?

(2) What name is being given to the subscript?

(3) What initial value will be placed into the subscript?

For how many statements following the FOR statement is the subscript defined?

How can the subscript definition created by a FOR statement be made valid for
several JOVIAL statements?

Write a JOVIAL statement which will define a subscript called P and which
will set P initially to the value 5.

What is wrong with the following JOVIAL program?

FOR J = 9 $
IF NUMBR ($ J $) GR 39 $

NUMBR ($ J $) = ~ $
J = J -1 $
IF J GQ ~ $

GOTOAGAIN $
STOP $

Write a JOVIAL program using a subscript called V which will keep a count
in item COUNT of all entries of item NUMBR in 1~ entry table NUM~, which
contain values between 79 and 84 inclusive.

ANSWERS TO PRECEDING EXERCISES

(I) The code word is FOR.

(2) The name being given to the subscript is N.

(3) The initial value placed into the subscript is 3.

The FOR statement defines a subscript for only the first.statement following
it. (Actually, to be completely correct - it applies to the first non-FOR state
ment following it. This is the case where we have two or more FOR statements
consecutively where we wish to define two or more subscripts. More on this
in a succeeding chapter).

Note, however, that a FOR statement may be made to apply to several JOVIAL
statements by incorporating the several statements within BEGIN and END
brackets, thus creating one compound statement.

A subscript definition may be made to apply to several JOVIAL statements by
making a compound statement out of the several statements.

FOR P = 5 $

51

e. The subscript J is undefined for all of the statements except the IF statement.
Therefore, references to subscript J in

NUMBR ($ J$) = ~ $
J = J -1 $
IFJGQ~ $

are illegal. This program would not get past the compiler. The compiler would
produce a printout stating that J is undefined in the aforementioned statements.

The program can be corrected easily by using the brackets BEGIN and END.

f. COUNT = ~ $
FOR V = ~ $

BEGIN $
AGAIN. IF NUMBR ($ V $) GQ 79 $

BEGIN
IF NUMBR ($ V $) LQ 84 $

COUNT = COUNT + 1 $
END
V=V + 1 $
IF V LS 1~ $

GOTOAGAIN $
STOP $

END

There are three forms for the FOR statement. They are:

The Incomplete FOR statement
The Partial FOR statement
The Complete FOR statement

The FOR statement which we have already discussed, was the incomplete FOR statement.
Use of the incomplete FOR statement permits us to automatically establish an initial value
for the subscript.

Use of the partial FOR statement permits us to automatically establish an initial value and
to automatically increment the subscript by an increment factor.

Use of the complete FOR statement permits us to automatically establish an initial value,
automatically increment the subscript, and automatically ~ the subscript.

Examples of each are:

The Incomplete FOR statement

This defines a subscript called I and sets it initially to zero.

52

The Partial FOR statement

This defines a subscript called J, sets it initially to zero, and results in automatically in
crementing I by 1 on each succeeding pass through the loop associated with the subscript I.

The Complete FOR statement

This defines a subscript called N, sets it initially to zero, results in automatically in
crementing N by 1 on each pass, and tests N on each pass of the associated loop to see if
it has reached a value greater than 5. If N has become greater than 5, the looping is not
continue~ .

Let us now sum the contents of each entry of item NUMBR in ten entry table NUM.D, using
the partial FOR statement.

TOTAL =.D $
FOR B =.D, 1 $

BEGIN

END

TOTAL = TOTAL + NUMBR ($ B $) $
IF B GQ 1.D $

STOP $

Here we see that the subscript B is initially set to zero. Then the contents of entry f.D of
item NUMBR is added to Tar AL. Since on the first ten passes, the subscript B will contain
less than 1.D (B will contain.D, 1, 2, 3, 4, 5, 6, 7, 8, and 9 respectively on the first ten
passes) the IF statement will be false and control will go to END.

It is the END that will result in automatically incrementing subscript B by the increment
factor of 1 and transferring control back to BEGIN.

We do not see any "incrementing" and "transferring" associated with the END but we
must realize that the compiler will create these functions for us in the intermediate level
language, which it sets up during compilation (the Changing of our JOVIAL program to
binary).

Thus, the END of a compound statement which is associated with a subscript appears on
JOVIAL coding paper exactly like the END of a compound statement, which is associated
with an IF statement. However, with a partial FOR statement, the compiler will produce
symbolic machine instructions to increment and transfer for the former, but not the latter.

53

It would be well to state that END cannot be labeled even through BEGIN can. Later we
will see how we can go directly to an END which is associated with a subscript from else
where in the program.

EXERCISES

6.2 Given item NUMBR in ten entry table NUM.D as described in the text and also given
item TALLY defined as ITEM TALLY A 15 U, answer the following questions:

a. What information will TALLY contain after the following program has op
erated?

TALLY = ~ $
FOR K 1~, 1 $
BEGIN

IF NUMBR ($ K$) EQ 6 $
TALLY = TALLY + 1 $
IF K GQ 1~ $
STOP $

END

b. Write a program, using a partial FOR statement, that will obtain the sum of
the positive numbers in item NUMBR. Have the sum placed in TALLY. Have
your program set all other entries of item NUMBR to 99.

c. Write a program, using a partial FOR statement, that will square the con
tents of every other entry of item NUMBR. Start with the second entry (entry
#1).

ANSWERS TO PRECEDING EXERCISES

6.2 a. TALLY will contain a count of the number of entries of item NUMBR which

54

contained the value 6.

b. TALLY = ~ $
FOR L =/J, 1 $
BEGIN

IF NUMBR ($ L $) GR ~$
BEGIN

TALLY = TALLY + NUMBR ($ L $) $
GOTO CHECK $

END
NUMBR ($ L $) = 99 $

CHECK. IF L GQ 1~ $
STOP $

END

An alternate solution follows:

TALLY =.0$
FOR P =.0, 1 $
BEGIN

IF NUMBR ($ P $) GR.0 $
TALLY = TALLY + NUMBR ($ P $) $
IF NUMBR ($ P $) LS .0 $
NUMBR ($ P $) = 99 $
IF L GQ 1.0 $
STOP $

END

c. FOR P = 1, 2 $
BEGIN

NUMBR ($ P $) NUMBR ($ P $) * NUMBR ($ P $) $
IF P GQ 1.0 $
STOP $

END

Note that in the above solution P will take on the values 1, 3, 5, 7, and 9 before
the program stops.

We have seen how we can sum the contents of each entry of item NUMBR using first, an
incomplete FOR statement, and second, a partial FOR statement.

Let us now write the program using the complete FOR statement.

TOTAL =.0 $
FOR Z = .0, 1, 9 $
TOTAL = TOTAL + NUMBR ($ Z $) $
STOP $

Here, the first statement follQwing the FOR statement is performed as many times as is
necessary to have the subscript Z start with an initial value of .0, be incremented by 1
each time, until Z has a final value of 9.

Thus, the statement TOTAL = TOTAL + NUMBR ($ Z $) $ will be performed ten times
with the value of Z ranging from.0 through 9.

Since only one statement is involved in the loop of the above example, the statement was
not a compound statement and therefore, no BEGIN and END brackets were required.
Usually however, the loop will consist of several statements and will be a compound
statement.

EXERCISES

6.3 Write a JOVIAL program which will add 5 to every entry of item NUMBR which
contains 29 or greater. Otherwise, set the entry of NUMBR to 7. Use the com
plete FOR statement.

55

ANSWERS TO PRECEDING EXERCISES

6.3 FOR M == 11, 1, 9 $
BEGIN

IF NUMBR ($ M $) GQ 29 $
BEGIN
NUMBR ($ M $) == NUMBR ($ M $) + 5 $
GOTO CHECK $
END

NUMBR ($ M $) == 7 $
CHECK. NUMBR ($ M $) = NUMBR ($ M $) $

END
STOP $

In order to get to the END from the true portion of the IF statement, I put in a dummy
statement so that I could label it CHECK. In the next chapter, we will obtain additional
JOVIAL capability (by use of an operator called TEST) and a dummy statement with a
label will not be necessary to get to the subscript END.

A second solution follows:

FOR M = 11, 1, 9 $
BEGIN

NUMBR ($ M $) = NUMBR ($ M $) + 5 $
IF NUMBR ($ M $) LS 34 $

NUMBR ($ M $) = 7 $
END
STOP $

A third solution follows:

56

FOR M = 111, 9 $
BEGIN

IF NUMBR ($ M $) GQ 29 $
NUMBR ($ M $) = NUMBR ($ M $) + 5 $

IF NUMBR ($ M $) LS 29 $
NUMBR ($ M $) = 7 $

END
STOP $

Let us summarize the different parts of the FOR statement. The general format for the
complete FOR statement is:

FOR L = A, B, C $

L in the above format may be any single alphabetic character from A to Z. Subsequent
references in the program to the subscript will use this letter.

A in the above format functions as the initial value of the subscript.

B in the above format functions as the increment or decrement (the B factor may be
negative). The B value is added to or subtracted from the current value of the subscript
L to determine the next value of L.

C in the above format functions as the test factor in the control of the loop. The value of
C deSignates the final value of L.

Any or all of the factors A, B, and C may contain an item of any type, a subscript which
has an initial value, a constant, or any legal arithmetic expression. The value of the A
and C factors should always be positive.

Examples:

FOR I = ABLE, 1/2, K*5 $

FOR J =~, 1~, 99 $

FOR K = 9, -1, ~ $

FOR R = J, J-l, J+9 $

The Band C factors of a complete FOR statement are checked at the end of each iteration
of the loop, therefore, the value of either of these factors may be changed during the cycle.

At the end of each pass through a loop the value of the B factor is added to the current
value of the subscript to obtain the next value of the subSCript.

The a test is automatically made in the following way to determine if the iterations of the
loop have been completed:

First - If the B factor of the FOR statement is a positive value, a comparison is made to
see if the current value of the subscript is greater than the value of the C factor. If the
B factor of the FOR statement is a negative value, a comparison is made to see if the
current value of the subscript is less than the value of the C factor.

Second - If the comparison of subscript with C factor is greater (for positive B factor) or
less (for negative B factor) control is not returned to the beginning of the loop (the first
statement following FOR statement if that statement is not another FOR statement). in
stead, control proceeds with the statement following the loop.

57

Finally, let us mention in passing, that the subscript need not be referenced in the loop.
The following is a valid program:

FOR K = ~, 1, 5 $

BEGIN

SUM = SUM + 1$

COUNT = COUNT + 2 $

END

In the above program the subscript K is not referenced within the loop. The subscript K
merely results in 6 passes through the loop.

This concludes Chapter 6.

58

CHAPTER 7

STATUS ITEMS, HOLLEIDTH ITEMS, THE EXCHANGE STATEMENT, AND
THE TEST STATEMENT

The only type of item that we have defined and used up to this point has been the integer
or A-type of item. Now let us introduce a new type called the status or S-type.

Use of the status type item enables the programmer to program in a more symbolic
manner than otherwise might be possible.

Suppose, for example, we wished to have an item called COLOR which would contain one
of several possible values. The possible values might be RED, BLUE, GREEN, WHITE,
AND BLACK.

With the capability we have up to this point we could logically code a three-bit integer
type item called COLOR so that the following relationships were understood:

Binary Number Logical Equivalent

flflfl RED

flfl1 BLUE

.01.0 GREEN

..011 WHITE

1,0.0 BLACK

Then if we wanted to set item COLOR to WHITE we could write:

COLOR = 3$

If we wanted to determine if item COLOR contained BLUE we could write:

IF COLOR EQ 1 $

However, if we define item COLOR as a status type item rather than an integer type item
we can set it to WHITE by the JOVIAL statement:

COLOR = V (WHITE) $

We can determine if item COLOR contains the value for BLUE by using the JOVIAL
statement:

IF COLOR EQ V (BLUE) $

The symbology of "V()" must be used when writing a status constant.

59

Thus, the program will be written in a manner approaching the ideal of pure English and
mathematics.

We can define the status item COLOR as we have discussed by using the following item
definition:

First, we write the code word ITEM followed by the name which we wish to give the item.
As with an integer type item, the name consists of two or more alphanumeric symbols
with the first character always a letter.

Then S follows, which indicates that the item will contain a status value, i.e., each value
of this item stands for a unique status.

Finally, every possible status is listed, given in one or more alphanumeric characters,
the first character being a letter. A status item must have at least two statuses.

Each status must be enclosed in parentheses and preceded by the letter V. No two
statuses may be represented by the same arrangement of characters (i.e., if one status
in the item definition is ABC, another in the same item definition cannot be ABC also;
but may be BCA).

Two separate status items, however, may have statuses of identical character represen-
tations. .

The following may be used in the same program:

ITEM ALPHA S V (YES) V (NO) $

ITEM ALARM S V (YES) V (NO) V (MAYBE) $

ITEM SOLD S V (NO) V (YES) $
EXERCISES

7.1 a. Define a status item called DAY which will have the possible statuses of
MON, TUES, WED. THUR, Fro, SAT, and SUN.

111111111111 ! 11111111111111111111111

60

b. Write a JOVIAL statement that will set a status item called COLOR to a
status of RED.

I t I I I

c. What are the contents of items MARY and JANE after the following program
has ope rated?

MARY = V (YES) $

JANE = V (NO) $

IF JANE EQ V (MAYBE) $

BEGIN

MARY = JANE $

JANE = V (NO) $

GOTO EXIT $

END

JANE = MARY $

MARY = V (MAYBE) $

EXIT. STOP $

d. Given the following item and table definitions:

TABLE PERd R 1,tj,tj $

BEGIN

ITEM EMPNO A 8 U $

ITEM SALARY A 15 U $

ITEM SEX S V (MALE) V (FEMALE) $

ITEM MARIED S V (NO) V (YES) $

END

ITEM COUNT A 1.0 U $

Make a flow diagram and write a program which will count in item COUNT how many
employees are unmarried women who have a salary of $550.00 or more.

ANSWERS TO PRECEDING EXERCISES

7.1 a.

61

b.

c. • MARY contains a status of MAYBE·

JANE contains a status of YES

d.

I Clear COUNT I
+

PREPARE TO CYCLE
THROUGH EACH ENT BY
OF PER.0

--------- --
Is 1st (next) employee a girl?

NO YES

Is 1st (next) employee married?

NO YES

Is 1st (next) employee salary $550?

COUNT = tJ $
FOR A = tJ, 1, 99$
BEGIN

NO YES

'YES ,------

d. (Continued)

IF SEX ($A $) EQ V (FEMALE) $
BEGIN

IF MARIEO ($ A$) EQ V (NO) $
BEGIN

IF SALARY ($A $) GQ 55,0 $
COUNT = COUNT + 1 $

END
END

END
STOP $

An alternate solution follows:

COUNT =,0 $
FOR A = 0, 1, 99 $
BEGIN

IF SEX ($ A $]EQ V (MALE) $
GOTO CHECK $

IF MARIEO (A) EQ V (YES) $
GOTO CHECK $

IF SALARY (A) GQ 55,0 $
COUNT = COUNT + 1 $

CHECK. COUNT = COUNT $
END
STOP $

In the second solution given for exercise 7.1d it was desirable to get to the END that was
associated with the A subscript loop. For this purpose the dummy statement CHECK.
COUNT = COUNT $ was included since END cannot be labeled. Then a GOTO CHECK $
in effect transferred control to END.

This awkwardness can be eliminated by USing the JOVIAL statement called TEST.

The solution would then be written as follows:

COUNT = ,0 $
FOR A = A 1, 99$
BEGIN

IF SEX ($ A$) EQ V (MALE) $
TEST $

IF MARIEO ($ A$) EQ V (YES) $
TEST $

IF SALARY ($A $) GQ 55,0 $
COUNT = COUNT + 1 $

END
STOP $

In the above solution, the statement TEST simply causes control to be transferred to the

63

END which is the end of the subscript loop (where incrementing and testing of the subscript
will take place).

There is an additional feature of the TEST statement that will add to its flexibility, however,
we will save that discussion for a later time.

EXERCISES

7.2 a. What is the content of item SUM after the fOllowing program has operated?

ITEM SUM A 15 U $
SUM = 1,D$
FOR I = ,D, 1, 9 $
BEGIN

IF I LQ 5 $
BEGIN

SUM = SUM-l $
TEST $

END
SUM = SUM + 1 $

END
STOP $

b. Given the following item and table definitions

TABLE PER,0 R 1,D,D $
BEGIN

ITEM EMPNO A 8 U$-+A 8 U$
ITEM SALARY A 15 U $-+A 15 U $
ITEM SEX S V (MALE) V (FEMALE) $
ITEM MARIED S V (NO) V (YES) $

END
ITEM NEWWED A 8 U $+A 8 U $

Write a program using the TEST statement that will give a $10.00 raise
to the employee whose EMPNO matches the contents of single item NEWWED. Also
set the item MARIED of the matched employee to a status of YES.

ANSWERS TO PRECEDING EXERCISES

7.2 a. SUM will contain 8 after the program has operated. This is due to the fact

64

that the subscript I will range from 0 through 9 and six of these values of I
will be less than or equal to 5; namely, ,D, 1, 2, 3, 4, and 5, thus a value of 6
is subtracted from SUM to give 4. Then 4 will be added to SUM since four
values of I will be greater than 5; namely, 6, 7, 8, and 9.

b. FOR J = ,D, 1, 99 $
BEGIN

IF EMPNO ($ J $) NQ NEWWED $
TEST$
SALARY ($ J $) = SALARY ($ J $) + 1,D $

7.2 b. (Continued)

MARIED ($J $) = V (YES) $
STOP $

END

Now let us introduce the Exchange statement. The following is an example of the Exchange
Statement:

The Exchange statement is characterized by the double equal sign "==" and acts like a
two-way assignment statement.

In the above example, the contents of item ALPHA are exchanged with the contents of item
BETA.

Both the left term and right term of an exchange statement must be variables (items, sub
sCripts, etc.). They cannot be constants or arithmetic expressions.

Note that the exchange symbol (==) is coded as two assignment statement symbols with no
space between.

EXERCISES

7.3 a. Write a JOVIAL statement that will exchange the contents of items RHO and
GAMMA.

I

b. What are the contents of items ALPHA and BETA after the following program
operates?

ALPHA = 6 $
BETA = 9 $
IF ALPHA GR BETA -4 $

ALPHA == BETA $
BETA == ALPHA $
STOP $

c. Given the following table .and item defimtions

TABLE NUM.0 R 5 $
BEGIN

ITEM NUMBR A 15 U $
END

65

Write a program using the exchange statement that will sort the contents of table NUM.0
into ascending order; i.e., smallest number in entry *.0 and largest in entry 414.

ANSWERS TO PRECEDING EXERCISES

7.3 a.

or

b. ALPHA will contain 6 and BETA will contain 9 after the program has op
erated. This is because the IF statement will be true and thus both exchange
statements will be performed. incidentally, even though the two exchange
statements are written in reverse order, they both have the same result -
namely, the exchange of the contents of items ALPHA and BETA.

c. AGAIN. FOR I =.0, 1, 3 $
BEGIN

IF NUMBR (1) LQ NUMBR (.$1 + 1$) $
TEST $
NUMBR ($ I $) == NUMBR ($ I + 1 $) $
GOTOAGAIN $

END
STOP $

Note that since I am using item NUMBR subSCripted by I + 1, I want subscript I to run
only as high as 3. This will then result in I + 1 having a value of 4 which is the last entry
in a 5 entry table.

Another type of item which is popular in JOVIAL programming is the hollerith or H-type
item.

Information in a hollerith type item is coded to represent alphanumeric and punctuation
like characters. The follOwing six-bit hollerith code is employed:

Character

66

o
1
2
3

6-Bit Hollerith Code

6-Bit Representation Character

A
B
C
D

6-Bit Representation

6-Bit Hollerith Code (Continued):

Character 6-Bit Representation Character 6-Bit Representation

4 ,0,0,01,0,0 E .o1.oUh
5 ,0,0,01,01 F .01.011.0
6 ,0,0,011,0 G ,01,0111
7 ,0,0,0111 H .011,0,0.0
8 .0,01.0.0,0 I .011,0.01
9 ,0,01,0,01 J 1,0.0,0.01
= (1(11,011 K 1.0.0.01.0
, 111.011 L 1.0.0,011
$ 1,01,011 M 1,0.01.0,0

.011,011 N 1,0,01,01
+ .01,0.0.0,0 0 1,0,011,0

1,0.0.0.0.0 p 1,0,0111
* 1.011.0.0 Q 1,o1r1r1r1
/ 11,0,0,01 R 1,01,0.01

.0,011,0,0 S 11,0,01,0
(1111.6.0 T 11,0,011
) .0111.0.0 u 11,01,0,0

Blank 11.0.0.0.0 V 11,01,01
W 11,011,0
X 11,0111
y 111,d,o,o
z 111,0,01

Therefore, if an item called NAME were to contain: the name ESTHER it would be
necessary for the item to consist of at least 36 bits. We would define the item as a
hollerith or H-type as follows:

After the code word ITEM, comes the unique name to be given to the item - in this case,
NAME. Then follows an H to indicate that we are defining a holle rith type item. Next
follows a digit which specifies the number of hollerith characters involved - in this
example, 6.

The Q-7 computer word is 32 bits in length and can hold up to 5 hollerith characters per
word with 2 bits left over. Hollerith (lateral) items and constants greater than 5
characters will occupy consecutive computer locations and must begin in bit,O of the
first word.

To place the name ESTHER into the hollerith item NAME we could use the following
assignment statement:

NAME = 6H (ESTHER) $

The actual hollerith constant is enclosed in parentheses and preceded by a digit Signifying

67

the number of hollerith characters involved and then the letter "H". NOte that a blank is
a legal hollerith character.

The item called NAME in the preceding example would appear as follows after the given
assignmeJ\i: statement had been performed.

Item NAME

We use the hollerith constant in a similar fashion when testing with an IF statement.

IF AIRCFT EQ 6H (KC-135) $

Note: If the number pteceding the H for a constant is less than the number preceding the
H in the item definition, leading zeros will be inserted.

Item Definition: ITEM ALPHA H 4 $

Assignment Statement: ALPHA = 3H (ABC) $

Result: Item ALPHA

000000 I 010001 010010 I 010011, I

EXERCISES

7.4 a. Define a hollerith type item called MONTH and make it capable of holding 8

68

hollerith characters.

b. Write the assignment statement that will set item MONTH, which you defined
in part a above, to the 8-character constant of DECEMBER.

c. Show the item MONTH in binary as it would appear after the assignment
statement of part b above is performed.

d. Write the assignment statement that will set item MONTH, which you defined
in part a above, to the constant of APRIL.

e. Show the item MONTH in binary as it would appear after part d above.

f. Write an IF statement that will determine if the value in item MONTH is
AUGUST.

ANSWERS TO PRECEDING EXERCISES

a. ITEM MONTH H a $

b. MONTH = aH (DECEMBER) $

d. MONTH = 5H (APRIL) $

e. ! ~~~~~~ I J1~J1J1~J11 ~~~~~~ I ~1~J1J11 Il~J1111 IIJ11~~1 I J111~J11 I IJ1J1J111 I
--v---/ ~ ~ ~ ~ ~ ~ c::::;:::::>

() .~ () APR I L

f. IF MONTH EQ 6H (AUGUST) $

69

,r 6-2756

SAVE A LIFE

If you observe an accident involving electrical shock,
DON'T JUST STAND THERE - DO SOMETWNGf

RESCUI!: OF SHOCK VICTIM
The victim of electrical shock is dependent upon you to give him prompt first aid.

Observe these precautions:
1. Shut off the high voltage.
2. If the high voltage cannot be turned off without delay, free the victim from the

live conductor. REMEMBER:
a. Protect yourself with dry insulating material.
b. Use a dry board, your belt, dry clothing, or other non-conducting material to

free the 'victim. When possible PUSH - DO NOT PULL the victim free of
the high voltage source.

c. DO NOT touch the victim with your bare hands until the high voltage circuit
is broken.

FIRST AID
The two most likely results of electrical shock are: bodily injury from falling, and

cessation of breathing. While doctors and pulmotors are being sent for, DO THESE
TWNGS:

1. Control bleeding by use of pressure or a tourniquet.
2. Begin IMMEDIATELY to use artificial respiration if the victim is not breathing

or is breathing poorly:

a. Turn the victim on his back.

b. Clean the mouth, nose, and throat. (If they appear clean, start artificial
respiration immediately. If foreign matter is present, wipe it away quickly
with a cloth or your fingers).

c. Place the victim's head in the Hsword-swallowing"
position. (Place the head as far back as possible so
that the front of the neck is stretched).

d. Hold the lower .aw up. (Insert your thumb between the
victim's teeth at the midline - pull the lower jaw force
fully outward so that the lower teeth are further forward
than the upper teeth. Hold the jaw in this position as
long as the victim is unconscious).

e. Close the victim's nose. (Compress the nose betweell
your thumb and forefinger).

f. Blow air into the victim's lungs. (Take a deep breath
and cover the victim's open mouth with your open
mouth, making the contact air-tight. Blow until the
chest rises. If the chest does not rise when you blow,
improve the position of the victim's air passagewli!-y,
and blow more forcefully. Blow forcefully into adults,
and gently into children.

g. Let air out of the victim's lungs. (After the chest rises, quickly separate lip
contact with the victim allowing him to exhale).

h. Repeat steps f. and g. at the rate of 12 to 20 times per mirute. Continue
rhythmically without interruption until the victim starts breathing or is
pronounced dead. (A smooth rhythm is deSirable, but split-second timing is
not essential).

DON'T JUST STAND THERE - DO SOMETHING!

	Cover
	About
	Introduction
	Table of Contents
	1 - Introduction to JOVIAL
	2 - Items, the ASSIGNMENT Statment, and the 4 Basic Arithmetic Operations
	3 - JOVIAL Format on Coding paper
	4 - IF, GOTO, Labels and Compound Statements
	5 - Tables, Subscripted Items, and Flow Diagrams
	6 - The FOR Statement
	7 - Status Items, Hollerith Items, the EXCHANGE Statement, the TEST Statement

