

IBM/4.3-SMM:4-8 The IBM 3812 Pageprinter

4. PRINTING DITROFF FILES

Ditroff includes modifications to the troff, eqn, pic, and makedev binaries in Documenter's
Workbench. These binaries have been included in the IBM/4.3 package. A separate
Documentor's Workbench license must be obtained form AT&T to order the source.

These programs have been modified to use the 3812 fonts (-T3812); otherwise, the documenta
tion for troff, pic, and eqn has not changed. The output file generated by trofJ has not been
redefined. Only the format of the width tables has been changed. The width tables in
Documenter's Workbench contain widths for only one character size, size 12. The width of a
character in other sizes is calculated by scaling the base width: if the A in size 12 is 32 pels,
the A in size 6 is 16 pels, and the A in size 24 is 64 pels. The 3812 fonts are designed indivi
dually for each size, so the width tables have been augmented to contain the width of every
character in every size.

A new command plrojJ(1) processes troff source for printing on the 3812. See the ptro.f!l...l)
manual page for the various options. The fi]e /etc/printcap must contain an entry for the 3812
as described in Section 2.2.3, "Verifying Printcap Entries." See Appendix A of this article for a
list of fonts that are available for use with tro.ff, and Appendix B for a list of trojJ character
names.

Because of the changes to the width tables, use /usr/ibm/troff, /usr/ihm/pic, and /u.r;r/ibm/eqn
with -T3812. You can expect errors if you use /usr/hin/trojJ or /usr/hin/eqn with -T3812.

4.1. Setting Up Ditroff for Use with a Remote 3812 Print Server

The ditroff feature is set up so that each workstation can act as a print server. 'Ibe follow
ing changes will allow users to run ditroff on their local RT PC and send files to be printed
on the RT PC with the 3812 attached. Both the local and the print server IBM/4.3 system
must be running IBM/4.3.

Modify your /etc/printcap to indicate the name of a workstation with a 3812 attached. See
Section 2.2.3, "Verifying Printcap Entries."

The font raster fIles in /usr/lih//ont/dev3812//onts need only be kept on the RT PC with the
printer attached because they arc used only at the time of printing. To remove them, type

rm lusr /lib/font/dev3812/fonts/*

If the font raster files are changed (as they are when the fonts arc rebuilt), the width tables
(lusr/lib//ont/dev3812/*.out) must be rebuilt and redistributed to remote workstations. It is
essential that the remote width tables match the width tables on the 3812 print server.

The command install.ditrofJ provides an easy way to redistribute the ditrofT binaries and
width tables, if necessary. To update ditrofT on wsl, ws2, and w.d, your account must have
write access to directories /usr/ihm and /usr/lih//ont/dev3812 on the remote workstations.
Enter the following commands on the print server workstation:

cd lusr/ibm
install.ditroff ws 1 ws2 ws3

This will copy the following files to the remote workstation(s):

/usr /ibm/ptroff
/usr /ibm/troff
/usr/ibm/eqn
/usr/ibm/pic
/usr/lib/font/dev3812/*.out
/usr /man/man l/pic.l
/usr /man/man l/ptroff.l

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-9

5. FONTS

The 3812 uses either the fonts provided on the 3812 diskette or fonts that are downloaded
from the host. There are two sets of loadable fonts: a set of uniformly-spaced fonts is pro
vided with IBM/4.3, and several typographical fonts can be ordered from IBM as separate pro
ducts. This chapter describes both groups of fonts.

The Ditroff feature can be used with either the uniformly-spaced fonts or the typographical
fonts. The uniformly-spaced fonts can be used to create documents which are near letter qual
ity. These fonts have been installed for immediate use with the Ditroff binaries. To produce
letter quality documents, it is necessary to order and install the typographical fonts.

5.1. Typographic Fonts

5.1.1. Ordering Typographic Fonts

The available typographic fonts include:

Sonoran Serif,4 Program Number 5669-161, Feature 5124
Sonoran Sans Serif,5 Program Number 5669-162, Feature 5125
Pi & Special,6 Program Number 5669-163, Feature 5126

These fonts are shipped on diskettes. Samples of each font are shown in the IBM 3800
Printing Subsystem Model III Font Catalog, SII35-0053, and in Appendix A of this arti
cle.

5.1.2. Installing Typographic Fonts

(1) Login as root.

(2) Load the fonts from diskette.

There are three subdirectories in /usr/src/usr.lib//ont/dev3812/typographic that con
tain makefiles and tables for building fonts. Use do.rread(I) to load the fonts from
diskette to the IBM RT PC into the appropriate subdirectory.

(3) To load the Sonoran Serif font (Program Number 5669-161, Feature 5124), fol
low these steps:

cd /usr /src/usr .lib/font/dev3812/typographic/serif

Insert the first diskette of the Sonoran Serif font into the diskette reader, then type
the following:

dosread

Repeat this step for all 12 diskettes in the Sonoran Serif font.

To load the Sonoran Sans Serif font (Program Number 5669-162, Feature 5125),
follow these steps:

cd /usr/src/usr .lib/font/dev38I 2/typographic/sans

4 Functional equivalent of Monotype Times New Roman, a trademark of The Monotype Corporation, Limited.
Contains data derived under license from The Monotype Corporation, Limited.

5 Functional equivalent of Monotype Ariel, a trademark of The Monotype Corporation, Limited. Contains data
derived under license from The Monotype Corporation, Limited.

6 Contains data derived under license from The Monotype Corporation, Limited.

December 1987

IBM/4.3-SMM:4-IO The IBM 3812 Pageprinter

Insert the first diskette of the Sonoran Sans Serif font into the diskette reader, then
type the following:

dosread

Repeat this step for all 12 diskettes in the Sonoran Sans Serif font.

To load the Pi & Special font (Program Number 5669-163, Feature 5126), follow
these steps:

cd /usr /src/usr .Iib/font/dev3812/typographic/pispecial

Insert the first diskette of the Pi & Special font into the diskette reader, then type
the following:

dosread

Repeat this step for both of the diskettes in the Pi & Special font.

Loading all the fonts from diskette takes approximately twenty-five minutes.

(4) Edit the Makefile in /usr/src/usr.lih/fonl/dev3812/1ypographic to added the sub
directories .rans, serif and pispecial to the SU BDl RS, so that they will get made
automatically.

Change the line

SUBDIRS = Afont

to

SUBDIRS = Afont sans serif pispecial

The Makefile in /usr/src/usr.lib/font/dev3812/typographic is now set up to descend
into the typographical subdirectories and performs the makes on them.

(5) Convert the fonts into 3812 format.

Make automatically converts the fonts into the 3R] 2 format (cvI3812(8), and
builds the width tables (width3812(8». Type the foHowing:

cd /usr /src/usr .Iib/font/dev3812/typographic
make all

This step takes approximately thirty minutes.

(6) Install the fonts for use with the 38] 2.

Make with the install option does the following:

• Copies the width tables to /usr/lih/fonl/dev3812.

• Copies the font raster pattern to /usr/lib/fonl/dev38I 2/fonts.

To install, type the following:

cd /usr /src/usr .Iib/font/dev3812/typographic
make install

At this point the typographic fonts have been installed in
/usr/lib/font/dev3812/typograpltic, and arc available for use with pprint(I) for print
ing on the 3812.

(7) The typographical fonts are now ready for use with pprint.

To install the typographic fonts for use with DitrofT, do the following:

cd /usr /src/usr .Iib/font/dev38 1 2
make installwidths

December 1987

The IBM 3812 Pageprinter IBM/4.3-Sl\1M:4-11

(8) Once you have determined that the fonts have been properly installed, you will
probably want to clean up the font directories to free up some space.

To clean the font directories, type the following:

cd Iusr Isrc/usr .lib/font/dev3812
make clean

December 1987

IBM/4.3-SMM:4-12 The IBM 3812 Pageprinter

5.2. Uniformly-spaced Fonts

These fonts have been installed in /usr/lih/font/dev3812 and /U!;r/lih/font/dev3812/fonts and
are available for use with both ptroJJtI) and pprint(l). They are shown in the IBM 3812
Pageprinter Introduction and Planning Guide, G544-3265, and the IBM 3800 Printing Sub
system Model III Font Catalog, SH35-0053. Their fonnat is described infont3812(5).

As shipped, IBM/4.3 includes substitutes for the typographical fonts. These substitute
fonts were built from the unifonnly-spaced fonts. This allows the user to set up an IBM
3812 Pageprinter and immediately print trojJ documents. Output created when using these
substitute font is near letter quality. To obtain true letter-quality output, the user must
order the typographical fonts.

The IBM/4.3 package is set up to use these fonts with the Ditroff binaries.

IO-pitch 12-pitch Other fixed-pitch Proportionally-spaced
APL Courier + 13-pitch l...ctter Gothic Barak
Courier + Gothic Bold 15-pitch Gothic Text Boldface •
Courier Italic Gothic Italic IS-pitch Serif Text Boldface Italic •
Gothic Bold Gothic Text 15-pitch Shalom Document •
Gothic Text Letter Gothic + 20-pitch Shalom Essay +
Katakana l...ctter Gothic Bold + 20-pitch APL Essay Bold +
Orator Prestige Elite + 20-pitch APL Essay Italic +
Orator Bold Prestige Elite Bold + 20-pitch Gothic Text Essay light +
Prestige Pica + Prestige Elite Italic + 27-pitch Gothic Text Gothic Tri-pitch
Roman Text Script 15-pitch Fonnat
Serif Italic Serif Bold
Serif Text Serif Italic
Shalom Shalom
Math Symbol Math Symbol
OCR-A ++ Format
OCR-B ++
Fonnat

+ These fonts contain international character sets of 221 printable characters.
++ The 3812 prints the OCR-A and OCR-B fonts with the same high quality as other

type styles. IBM does not warrant and has not tested that these characters are read
able by all OCR reading devices. Users of these fonts should test read compatibility
before relying on the 3812 for OCR applications.

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-13

6. USING COilE PAGE TABLES

A code page table identifies the set of characters to be used from one or more fonts. A font
contains the graphic pel pattern for each character along with its IBM character name. An
entry in a code page table associates an IBM character name with a troff character name. The
entry's position in the table gives the character's ASCII code.

Lowercase "a", for example, has the IBM character name LAOIOOOO regardless of font or
point size, and would be represented by a code page table entry containing "a LAO 10000".
The ASCII code is 97, so the entry is the 97th unique table entry.

Similarly, the pound symbol (£), if it is in the table at all, is represented by an entry containing
"£ SC020000". Since it has no ASCII code, the entry may appear in any unused position.

A code page table may contain up to 256 unique entries, plus synonym entries. Appendix A
of this article gives a list of the fonts and their corresponding code page tables; Appendix B
lists the information appearing in the code page tables.

Two examples are given here. The first example shows how to modify an existing code page
table for use with ditroff. The second shows how to make a new code page table.

Example I

If you want to change the troff name assigned to a character, or if you want to change
the graphic associated with a troff name, you must modify the code page table accord
ingly. For example, to change the trofT names of left double quote \(LQ and right dou
ble quote \(RQ to \(L" and \(R" respectively, you would change the troff names in code
page table stdcp. Then you would need to rebuild the width tables for an fonts that use
that code page table and copy the resulting width tables to /usr/ lib/font/ dev38 12. Copy
the resulting code page index files to /usr/lib/font/dev3812/fonts.

In this example, R, I, B, BI, H, HI, lIB, lIY, D, and SP use the sldcp code page table
and need to be rebuilt. You would rebuild the width tables by typing the following:

cd /usr /src/usr .lib/font/dev3812/typographic/serif
make serif
cp RIB BI /usr/lib/font/dev3812
cp *.stdcp /usr/lib/font/dev3812/fonts

cd /usr /src/usr .lib/font/dev3812/typographic/sans
make sans
cp H HI HB HY /usr/lib/font/dev38 I 2
cp *.stdcp /usr/lib/font/dev3812/fonts

cd /usr /src/usr .lib/font/dev3812/typographic/pi
make special
cp D SP /usr/lib/font/dev3812
cp *.stdcp /usr/lib/font/dev3812/fonts

Next, build the binary fonn of the widths. This step depends on having the ditrofT
feature installed. Go to /usr/lib/font/dev3812 and build the binary form of the trofT width
tables:

cd /usr /lib/font/dev38 I 2
makedev DESC

Now the new character name is ready to be used by troff.

December 1987

IBM/4.3-SMM:4-14 The IBM 3812 Pageprinter

Example 2

The APL font is built using the fcp code page table, but there arc IBM character names
in the APL font that are not referenced by Jcp. To determine all the IBM character
names in a font use the -N option on cvt3812(8). The following command generates all
the IBM names for characters in the APL font:

cvt20to12 -N cOsOaelO > /tmp/names

The IBM character names are documented in the IBM 3800 Printing Sub.ry.rlem Model
III Font Catalog, SH35-0053. Each clement of /tmp/nameJ has the following format:

raster for x xx SLllOOOO

SLIIOOO is the IBM character name. The "xx" in the list of character names is replaced
with a troff character name. For example, the following will assign the name \(CS to the
APL character Circle Star:

raster for x CS SLIIOOOO

Copy fcp to aplcp and add the new entries from / Imp/ names to aplcp into unused posi
tions. Once the characters have been assigned a name, use widlh3812(8) to build the
width table and the code page index files:

width3812 -s 5 100 -c aplcp -n AP API..

This will build the AP width tables for sizes 5 and 10, using the code page table aplcp.
The width table (AP) must be copied to /uJr/lib/font/dev3812 to be used by IrofJ. The
code page index files (APL.IO.ap/cp and APl,,5.aplcp) must be copied to
/usr/lib/font/dev38 I 2/fon Is. This file can now be used with pprinl(I). The folJowing
command will print a file using the APL font.

pprint -fAPL.IO.aplcp filename

To use the font in a troff document, use makedev to generate the binary form of the trofT
width table:

cd /usr/lib/font/dev3812
makedev AP

Now use the troff commands for changing fonts (.ft AI» to print characters from the
font.

December 1987

The IBM 3812 Pageprintcr IBM/4.3-SMM:4-15

APPENDIX A. FONTS AVAILABLE ON THE 3812

This appendix shows examples of the fonts available on the 3812. The typographic fonts are
available for license from IBM; the uniformly-spaced fonts are provided with IBM/4.3.

Typographic Fonts

The following fonts are in the Sonoran type face, except for the Display and Petite fonts.
Unless otherwise indicated, all fonts are available in point sizes 6,7,8,9, 10, 11, 12, 14, 16, 18,
20, 24, 30, and 36. Samples of these fonts are found later in this section.

Sonoran Serif Typeface

ptroff pprint Point Code Page
Name Name Size Table Notes Pont Name
R s All stdcp (I) Serif Roman
I s.l All stdcp (1) Serif Italic
B s.B All stdcp (I) Serif Bold
BI s.BI All stdcp (I) Serif Bold Italic
S - 6-12 picp (2) Serif PI (symbols)
SB - 6-12 piep (2) Serif PI Bold (symbols)
L - All stdcp Serif Roman Latin Characters
LI - All stdcp Serif Italic Latin Characters
LB - All stdcp Serif Bold Latin Characters
LY - All stdcp Serif Bold Italic Latin Characters
A - 6-12 addcp (2) Serif Additional Characters

Sonoran Sans Scrif Typeface

ptroff pprint Point Code Page
Name Name Size Table Notes Font Name
H ss All stdcp (I) Sans Serif Roman
HI ss.l All stdcp (I) Sans Serif Italic
HB ss.B All stdcp (I) Sans Serif Bold
HY ss.BI All stdcp (I) Sans Serif Bold Italic
HS - 6-12 picp (2) Sans Serif PI (symbols)
HZ - 6-12 plCp (2) Sans Serif PI Bold (symbols)
K - All stdcp Sans Serif Roman Latin Characters
KI - All stdcp Sans Serif Italic Latin Characters
KB - All stdcp Sans Serif Bold Latin Characters
KY - All stdcp Sans Serif Bold Italic I Altin Characters

Notes:

(1) When using pprint, these fonts lack the - and " characters.

(2) Font sizes 7, 9, and 11 are duplicates of 6, 8, and 10 respectively.

December 1987

IBM/4.3-SMM:4-16 The IBM 3812 Pagcprinter

Special Fonts

ptroff pprint Point Codc Pagc- Pont
Name Name Size Table . Notcs Name
D d 20, 36 stdcp (I) Display
SP pe 4 stdcp (2) Petite

Notes:

(I) When using pprint, the Display font lacks the following characters:

+ < = >@[]"-{}-

(2) When using pprint, the petite font lack thc - and" charactcrs.

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-17

Uniformly-Spaced Fonts

The following fonts are provided for use with pprint(I) and ptro.fft...l) and are built with the [cp,
symcp or acp code page table. Not all fonts contain a complete sct of ASCII characters. Sam
ples of these fonts are found in the IBM 3800 Printing Sub.rystem Model III Font Catalog,
SI-I35-0053.

ptroff pprint Point Code Page
Name Name Size Table Notes Font Name
AP APL 5, 10 fcp APL Characters
BR BARAK.B 10 fcp Barak Bold
Bb BOOK.B 10 fcp Book Bold (proportionally spaced)
Bi BOOK.BI 10 fcp Book Bold Italic (proportionally spaced)
CW COURIER 9, 10 fcp Courier 10
Ci COURIER.I 10 fcp Courier 10 Italic
Cw Courier 4, 10 acp (I) Courier
Cb Courier.B 10 acp (1) Courier Bold
Cc Courier.C 10 acp (1) Courier Condensed
Cd Courier.CB 10 acp (1) Courier Condensed Bold
Ce Courier.E 10 acp (1) Courier Expanded
Cf Courier.EB 10 acp (1) Courier Expanded Bold
Du DOCUMENT 10 fcp Document (proportionally spaced)
E ESSAY 10 fcp Essay (proportionally spaced)
EB ESSAY.B 10 fcp Essay Bold (proportionally spaced)
EI ESSAY.I 10 fcp Essay Italic (proportionally spaced)
EL ESSAY.L 10 fcp Essay Light (proportionally spaced)
F FORMAT 8,9, 10 fcp Formatting characters
G GOTHIC 4, 5, 8, 9, 10 fcp Gothic
GB GOTHIC.B 9, 10 fep Gothic Bold
GI GOTHIC.! 9 fcp Gothic Italic
GP GOTHICP 9 fcp Gothic Tri-pitch (proportionately spaced)
KT KATAKANA 10 fcp Katakana
Lr LETTER 9 fcp Letter Gothic
Lb LETTER.B 9 fcp Letter Gothic Bold
RA OCRA 10 fcp OCR-A
RB OCRB 10 fcp OCR-B
0 ORATOR 10 fcp Orator
OB ORATOR.B 10 fcp Orator Bold
PP PRESTIGE 9, 10 fcp Prestige
PB PRESTIGE.B 9 fcp Prestige Bold
PI PRESTIGE.! 9 fcp Prestige Italic
RM ROMAN 10 fcp Roman Text
SC SCRIPT 9 fcp Script
Sf SERIF 8,9, 10 fcp Serif
Sb SERIF.B 9 fcp Serif Bold
Si SERIF.I 9, 10 fcp Serif Italic
SH SHALOM 8,9, 10 fcp Ilebrew 10-pitch
TX TEXT 10 fcp Serif Text
SY SYMBOLS 9, 10 symcp Math Symbols

Notes:

December 1987

IBM/4.3-SMM:4-18 The IBM 3812 Pageprinter

(1) These fonts are IBM 5152 Printer Emulation fonts.

December 1987

The IBM 3812 Pagcprintcr IBM/4.3-SMM:4-19

Examples of Typographic Fonts

The Sonoran fonts shown here are printed in IO-point sizes, with a vertical spacing of 12
points and with non-alphanumeric characters separated by 1/4-em space. These examples are
representative selections of the available characters in each font; not every available character is
shown. See Appendix B for the code page tables for each font.

Serif Fonts

Serif Roman (R)

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"* + - ,,/:; = ?[JI
• - -- Y4 Y2 % fiflffffiffi
o t ' ¢ I" \ _' / < > {}
#@ + *§ -. t»«

Serif Italic (I)

abcdeJghijklmnopqrstuvwxyz
ABCDEFGJ-IIJKLMNOPQRSTUVWXYZ
1234567890
1$%&()"* + - .,/:;=?[11
• - - - Y4 Y2 %fififfffiffl
o t ' ¢ '" \ _ (/ < > {}
#@+*§-.t»«

Serif PI - symbols (S)

aPY()E~l1 91KAJ!
V~07tpcr'tu<PX'Vco
r.1E>ASTIrY<I>'I'!l
,J- ~ :5: == "" ~ =1= -+ +
ilx +± un c:::>oo
a®©"- - = SOC0E
~OD

Serif Additional Characters (A)

rtlJ l J I [J rl r;V~:2

Serif Bold (8)

abcdcfghijklmnopqrstuvwxyz
A8CDEFGHI.JKl.MNOPQRSTUVWXYZ
1234567890
!S%&()"* + - .,/:; = ?III
• - - - Y4 % 3,4 Ii fl ffffi m
°t't"'_' 1 < > {}
#@+*§-.t»«

Serif Bold Italic (81)

abcdefghijk1mnopqrstuvwxyz
A BCDEFGHIJKl..~INOPQRSTUJ'WXYZ
1134567890
!J%&()"*+ -.,/:;=?{II
• - - - y.. % 3/·flflffffiffl
°t't"'_'I< >{}
#@ + *§ -. 1"«

Serif PI Bold - symbols (S8)

aP'Yat~'10IKA.J1
v;onp<ftu(J)X'I'w
rA0AEHl;Y<Il'l'!!
.J-~ ~=--~=I=-++
t!x +± un c::::>oo
o®©"--=J OC 0E
~O 0

December 1987

IBM/4.3-SMM:4-20

Sans Serif Fonts

Sans Serif Roman (H)

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"" + - .,/:; = ?[]I
• - - - Y4 % % fi fI ff ffi ffl
°f'¢"'_' / < > {}
@ + " § -, t » «

Sans Serif Italic (HI)

abcdefghijklmnopqrstuvwxyz
AB CDEFGHIJKLMNOPQRS TUVWXYZ
1234567890
!$%&()""+ -.,I:;=?[JI
• - - - Y4 % % fi fI ff ffi ffl
°t'¢"',_' 1< > {}
#@ + *§ -, t»cc

Sans Serif PI - symbols (HS)

a~v6E~~8IKA~v~orrpaT

u<l>XlV w
r~01\=nIY<P4Jn
~-~~=....,~#=-++-

t!x+±u nc=>oo
o®©I\~-=Joc(iJE

~OD

The IBM 3812 Pageprinter

Sans Serif Bold (HB)

abcdefghiJklmnopqrstuvwxyz
ABCDEFGHIJKlMNOPQRSTUVWXYZ
1234567890
!$%&()"*+ -.,I:;=?[JI
• - __ '/. % :Y. flflffffiffl
0t'¢ ,,,,_ f 1< > {}
#@ + *§,*).44

Sans Serif Bold Italic (HY)

abcdefghljklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+ -.,I:;=?IJI
• - -- '/. '12 :Y. ffflffffiffl
°f'¢ ""_' 1< > {}
#@+*§....,t»«

Sans Serif PI Bold - symbols (HZ)

aPv6E~~9IKA~v~onpa

TU"'X'I'W
r~01\=nl:yCJ)\lJn

.J-~S=-==i=-++-
t!x -:- ± un c:::>oo
c}®@"-- =J oc ge
tZ' 0 0

December 1987

The 111M 3812 Pageprinter IBM/4.3-SMM:4-21

Special F on ts

Two special fonts are available. Both are built with code page table sldcp.

The Display font is printed in 20 points, with a vertical spacing of 30 points and with
non-alphanumeric characters separated by 1/4-em space. This font is available only in
point sizes 20 and 36.

abcbefgbijklmnopqr5tub\.t1xp~

~ThlQtilQEjf~~Jj11kJL;tM~<!&~<la1R~~mYw*~z

1234567890
'$0/ C()"¥_H" / .. , • /0 (%: ., .,.

The Petite font is printed in 4 points, with a vertical spacing of 6 points and with non
alphanumeric characters separated by 1/4-em space. This font is available only in a 4-
point size.

abcdefghijklmnopqrstuvwxyz
ABCOEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%I!.()···+-·,f:;:?lJI

Latin Characters

The Latin and special characters shown below are available in both the Sonoran Serif and
Sans Serif font families in roman, italic, bold, and bold italic. They are built with code page
table sldcp.

Serif Roman Latin Character (L)

aAaAaAaAAaAre£c~eEeEeEe
EeEiliiiIiiilijlbnNfiNiiN
600060o050re(Ee0B U UiI Ou 00
Ou Vii Uyy±<=>+)(~~T-a¥Rs§~
o/OOj (), - 'l,,, ~

Sans Serif Roman Latin Character (K)

aAaAaAaAAaA~~cCeEeEeEe
E e E f r i 1 iii T i i ij I· L: Ii N ~ ~ n N
6606o6o6o6re~00BuOuOQOO
OOOuOyy±<=>+x~~~a¥P5§ff

o/ooj (l'-'i" IEIJ

December 1987

IBM/4.3-SMM:4-22 The IBM 3812 Pageprinter

API~ENDIX B. CODE PAGE TABl,ES

This appendix lists the characters in each code page, with their IroJ!, IBM, and descriptive
names. Refer to files in /usr/src/usr.lib//ont/dev3812//onls/+cp for precise code page contents.

STANDARD CODE PAGE (stdcp)

Troff IBM
Char Char

Char Name Name Description

a a LAOIOOOO a small
A A LA020000 A capital
a \(a' LAIIOOOO a acute small
A \(A' LA 120000 A acute capital
a \(a' LA130000 a grave small
A \(A' LA 140000 A grave capital
a \(a" LA 150000 a circumflex small
A \(A" LA 160000 A circumflex capital
a \(a: LA 170000 a diaeresis/umlaut small
A \(A: LA 180000 A diaeresis/umlaut capital
a \(a- LA 190000 a tilde small
A \(A- LA200000 A tilde capital
a \(a. LA270000 a overcircle small
A \(A. LA280000 A overcirc1e capital
re \(ae LA510000 ae diphthong small
IE \(AE LA520000 AE diphthong capital
h h LBOIOOOO b small
B B LB020000 B capital
c c LCOIOOOO c small
C C LC020000 C capital

.~ \(c, LC410000 c cedilla small

~ \(C, LC420000 C cedilla capital
d d LDOIOOOO d small
D D LD020000 D capital
e e LEO 10000 e small
E E LE020000 E capital
e \(e' LEI 10000 e acute small
E \(E' LE I 20000 E acute capital
e \(e' LE130000 e grave small
E \(E' LE140000 E grave capital
e \(e" LEl50000 e circumflex small
12 \(E" LEl60000 E circumflex capital
e \(e: LEI 70000 e diaeresis/umlaut small
E \(E: LEl80000 E diaeresis/umlaut capital
e \(e- LE210000 C caron small
E \(E- LE220000 E caron capital
f f LFOIOOOO f small
F F LF020000 F capital
ff \(ff LFSIOOOO ff ligature
fi \(fi LFS30000 fi ligature
fl \(ft LF550000 flligature
ill \(Fi LF570000 ill ligature
ill \(Ft LF590000 ill ligature

December 1987

The IBM 3812 Pageprintcr IBl\f/4.3-SMM:4-23

g g LGOIOOOO g small
G G LG020000 G capital
h h LHOIOOOO h small
II H LH020000 H capital
1 1 LIOIOOOO i small
1 1 LI020000 1 capital
i \(i' LIIIOOOO i acute small
i \(1' LI120000 I acute capital
i \(i' LI130000 i grave small
i \(1' LI140000 1 grave capital
i \(i" LI150000 i circumflex small
I \(1" LI160000 I circumflex capital
1. \(i: LI170000 i diaeresis/umlaut small
i \(1: LI 1 80000 I diaeresis/umlaut capital
i \(i- LI190000 i tilde small
I \(1- LI200000 I tilde capital
ij \(ij LI510000 ij ligature small

J j UOIOOOO j small
J J U020000 J capital
k k LKOIOOOO k small
K K LK020000 K capital
I 1 LLOIOOOO 1 small
L L LL020000 L capital
l \(1. LL630000 1 middle dot small 1 __

\(L. LL640000 L middle dot capital
m m LMOIOOOO m small
M M LM020000 M capital
n n LNOIOOOO n small
N N LN020000 N capital
n \(n' LNIIOOOO n acute small
N \(N' LN120000 N acute capital
ii \(n- LN190000 n tilde small
N \(N- LN200000 N tilde capital
n \(n- LN210000 n caron small
N \(N- LN220000 N caron capital
0 0 LOOIOOOO o small
0 0 L0020000 o capital
6 \(0' LOIIOOOO o acute small
6 \(0' L0120000 o acute capital

<> \(0' L0130000 o grave small
6 \(0' L0140000 o grave capital
6 \(0" LOl50000 o circumflex small
6 \(0" L0160000 o circumflex capital
0 \(0: L0170000 o diaeresis/umlaut small
6 \(0: L0180000 o diaeresis/umlaut capital
0 \(0- L0190000 o tilde small
0 \(0- L0200000 o tilde capital
re \(oe L0510000 oe diphthong small
CE \(OE L0520000 OE diphthong capital
0 \(0/ L0610000 o slash small
0 \(0/ L0620000 o slash capital
0 \(es L0620000 Empty set
p p LPOIOOOO p small

December 1987

IBM/4.3-SMM:4-24 The IBM 3812 Pageprinter

P p LP020000 P capital
q q LOOI0000 q small

0 0 L0020000 o capital
r r LROI0000 r small
R R LR020000 R capital
s s LSOI0000 s small
S S LS020000 S capital
B \(ss LS610000 s sharp small
t t LTOIOOOO t small
T T LT020000 T capital
u u LVOI0000 u small
V V LV020000 V capital
U \(u' LVI 10000 u acute small
0 \(V' LV 120000 V acute capital
U \(u' LV130000 u grave small
iJ \(V' LV 140000 V grave capital
U \(u" LV I 50000 u circumflex small
(; \(1I" LV 1 60000 1I circumflex capital
ii \(u: LV 170000 u diaeresis/umlaut small
0 \(1I: LlI 1 80000 V diaeresis/umlaut capital
ii \(u- LU190000 u tilde small
0 \(U- LU200000 U tilde capital
U \(u. L1I270000 u overcircle small
(; \(U. LU280000 U overcircle capital
v v LVOIOOOO v small
V V LV020000 V capital
w w LWOIOOOO w small
W W LW020000 W capital
x x LXOI0000 x small
X X LX020000 X capital
y y LYOI0000 y small
Y Y LY020000 Y capital
y \(y: LY170000 y diaeresis/umlaut small
y \(Y: LY180000 Y diaeresis/umlaut capital
z z LZOIOOOO z small
Z Z LZ020000 Z capital
1 1 NDOIOOOO Numeric decimal one

\(IS NDOII000 Numeric decimal one superscript
2 2 ND020000 Numeric decimal two
2 \(2S ND021000 Numeric decimal two superscript
3 3 ND030000 Numeric decimal thrce
3 \(3S ND031000 Numeric decimal thrce superscript
4 4 ND040000 Numeric decimal four
4 \(4S ND041000 Numeric decimal four superscript
5 5 ND050000 Numeric decimal five
5 \(5S ND051000 Numeric decimal five superscript
6 6 ND060000 Numeric decimal six
6 \(6S ND061000 Numeric decimal six superscript
7 7 ND070000 Numeric· decimal seven
7 \(7S ND071000 Numeric decimal seven superscript
8 8 ND080000 Numeric decimal eight
8 \(8S ND081000 Numeric decimal eight superscript
9 9 ND090000 Numeric decimal nine

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-25

9 \(9S ND091000 Numeric decimal nine superscript
0 0 NDI00000 Numeric decimal zero
0 \(OS NDI0I000 Numeric deeimal zero superscript
'12 \(12 NFOIOOOO Numeric fraction one-half
'14 \(14 NF040000 Numeric fraction one-quarter
% \(34 NF050000 Numeric fraction three-quarters
'18 \(18 NF180000 Numeric fraction one-eighth
% \(38 NF190000 Numeric fraction three-eighths
% \(58 NF200000 Numeric fraction five-eighths
7/8 \(78 NF210000 Numeric fraction seven-eighths

\- SAOOOOOO Current font minus
\(em SAOOOOOO Em-dash
\(mi SAOOOOOO Minus

+ + SAOI0000 Plus
+ \(pl SAOIOOOO Plus
± \(+- SA020000 Plus-or-minus
± \(S- SA021000 Plus-or-minus superscript
< < SA030000 Less-than
< \(S < SA031000 Less-than superscript

SA040000 Equals
\(eq SA040000 Equals
\(S= SA041000 Equals superscript

> > SA050000 Greater-than
> \(S> SA051000 Greater-than superscript

\(di SA060000 Divide
\(S/ SA061000 Divide superscript

x \(mu SA070000 Multiply
x \(Sx SA071000 Multiply superscript
s \(< = SA520000 Less-than-or-equal
~ \(Sl SA521000 Less-than -or-equal superscript
~ \(> = SA530000 Greater-than-or-equal
~ \(Sg SA531000 Greater-than-or-equal superscript

* \(!= SA540000 Not-equal
\(S! SA541000 Not-equal superscript
a \(Ic SCOIOOOO International currency
£ \(Lb SC020000 Pound
$ $ SC030000 Dollar
¢ \(ct SC040000 Cent
¥ \(Y- SC050000 Yen
As \(Ps SC060000 Peseta

f \(fg SC070000 Florin or guilder
SMOIOOOO Number
0/0 0/0 SM020000 Percent
& & SM030000 Ampersand

'" '" SM040000 Asterisk

'" \("'''' SM040000 Math star
@ @ SM050000 At
[[SM060000 Left bracket
\ \ SM070000 Reverse slash
]] SM080000 Right bracket
{ { SMII0000 Left brace

I I SM130000 Vertical bar, logical OR

I \(br SM130000 Vertical bar, logical OR

December 1987

IBM/4.3-SMM:4-26 The IBM 3812 Pageprinter

I \(or SM130000 Vertical bar, logical 0 R
} } SM140000 Right brace
J.l \(+m SM170000 Mu
0 \(de SM190000 Degree symbol
§ \(SS SM240000 Section symbol (lJSA), paragraph symbol (Europe)
§ \(sc SM240000 Section symbol (lJSA), paragraph symbol (Europe)
~ \(PS SM250000 Paragraph symbol (USA)
t \(dg SM340000 Dagger

t \(dd SM350000 Double dagger
• \(Ss SM470000 Solid square, histogram
tI \(Lz SM490000 Lozenge
%0 \(PM SM560000 Per mill symbol
• \(bu SM570000 Bullet

\(BV SM650000 Broken vertical line
\(no SM660000 Logical NOT, end of line
\(NO SM660000 Logical NOT, end of line
\(ru SM900000 Rule
\(SP SPOIOOOO Interword space
! SP020000 Exclamation point

i \(I! SP030000 Exclamation point, inverted
" \(QM SP040000 Quotation marks

\(aa SP050000 Acute
\(fm SP050000 Foot mark

((SP060000 Left parenthesis
(\(So SP061000 Left parenthesis superscript
)) SP070000 Right parenthesis
) \(Sc SP071000 Right parenthesis superscript

, SP080000 Comma
\(Sm SP081000 Comma superscript

SP090000 Continuous underscore
\(ul SP090000 Underline

SPIOOOOO Hyphen
\(hy SPIOOOOO Hyphen
\(Sh SPIOIOOO Hyphen superscript
\(Sp SP111000 Period, full stop superscript

I I SP120000 Slash
/ \(sl SP120000 Slash

SP130000 Colon
SP140000 Semicolon

? ? SP150000 Question mark
;, \(I? SP160000 Question mark, inverted
« \(< < SP 1 70000 Left angle quotes
« \(lh SP170000 Left angle quotes
» \(> > SP 1 80000 Right angle quotes
» \(rh SP I 80000 Right angle quotes

SP190000 Left single quote
\(LQ SP210000 Left double quotes

SP220000 Right double quotes
" \(RQ SP220000 Right double quotes

"
\(L: SP230000 Left lower double quotes (German)
\(RS SP300000 Required space

IBJ \(UN SV320000 Replacement symbol (for undefined code points)

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-27

PI CODE PAGE (picp)

TroW IBM
Char Char

Char Name Name Description

a \(+a GAOIOOOO Alpha small
A \(+A GA020000 Alpha capital
~ \(+b GBOIOOOO Beta small
B \(+B GB020000 Beta capital
0 \(+d GDOIOOOO Delta small
.1 \(+0 GD020000 Delta capital
E \(+e GEOIOOOO Epsilon small
E \(+E GE020000 Epsilon capital
11 \(+y GE310000 Eta small
H \(+y GE320000 Eta capital
<P \(+f GFOIOOOO Phi small
<I> \(+F GF020000 Phi capital
y \(+g GGOIOOOO Gamma small
r \(+G GG020000 Gamma capital
X \(+x GHOIOOOO Chi small
X \(+X GH020000 Chi capital

\(+i GIOIOOOO Iota small
I \(+1 GI020000 Iota capital
K \(+k GKOIOOOO Kappa small
K \(+K GK020000 Kappa capital
A \(+1 GLOIOOOO Lambda small
A \(+L GL020000 Lambda capital
J1 \(+m GMOIOOOO Mu small
M \(+M GM020000 Mu capital
v \(+n GNOIOOOO Nu small
N \(+N GN020000 Nu capital
0 \(+0 GOOIOOOO Omicron small
0 \(+0 GOO20000 Omicron capital
co \(+w G0310000 Omega small
11 \(+W G0320000 Omega capital
7t \(+p GPOIOOOO Pi small
n \(+P GP020000 Pi capital

'V \(+q GP610000 Psi small
\¥ \(+Q GP620000 Psi capital
p \(+r GROIOOOO Rho small
P \(+R GR020000 Rho capital
cr \(+s GSOIOOOO Sigma small
L \(+S GS020000 Sigma capital
't \(+t GTOIOOOO Tau small
T \(+T GT020000 Tau capital
e \(+h GT610000 Theta small
e \(+H GT620000 Theta small
u \(+u GUOIOOOO Upsilon small
y \(+U GU020000 Upsilon capital
~ \(+c GXOIOOOO Xi small
..... \(+C GX020000 Xi capital

~ \(+z GZOIOOOO Zeta small

December 1987

IBM/4.3-SMM:4-28 The IBM 3812 Pageprintcr

Z \(*Z GZ020000 Zeta capital
a \(as LAOII000 a small supcrscript

'! \(Vl LA430000 a ogonek small

1\ \(V2 LA440000 A ogonek capital
b \(bS LBOIIOOO b small superscript

\(cS LCOII000 c small supcrscript
d \(dS LDOII000 d small supcrscript
d \(Dl LD610000 d stroke small
D \(D2 LD620000 D strokc capital and Eth Icelandic capital
0 \(03 LD630000 eth Icelandic small

\(eS LEOII000 e small supcrscript

~ \(El LE430000 e ogonck small

~ \(E2 LE440000 E ogonek capital
\(fS LFOII000 f small superscript

g \(gS LGOII000 g small superscript
h \(hS LHOII000 h small superscript

\(is LIO 11 000 i small supcrscript
\(11 LI610000 i dotlcss small
\(jS LJOII000 j small supcrscript

k \(kS LKOII000 k small supcrscript
\(IS LLOII000 1 small superscript

1 \(Ll LL61 0000 I stroke small
L \(12 LL620000 L stroke capital
m \(mS LMOII000 m small supcrscript
n \(nS LNOII000 n small supcrscript
0 \(oS LOOII000 o small superscript
p \(pS LPOII000 p small superscript
q \(qS LQOI1000 q small superscript

\(rS LROI1000 r small superscript
\(sS LSOII000 s small superscript
\(tS LTOllOOO t small supcrscript

}J \(Tl LT630000 Thorn Icelandic small
I> \(T2 LT640000 Thorn Icelandic capital
u \(uS LVOI1000 u small supcrscript
v \(vS LVOllOOO v small superscript
w \(wS LWOllOOO w small supcrscript
x \(xS LXOI1000 x small superscript
y \(yS LYOllOOO y small supcrscript
y \(Yl LYllOOOO y acute small
y \(Y2 LY120000 Y acute capital
z \(zS LZOI1000 z small supcrscript

1 NDOI0000 Numeric decimal one
\(IS ND011000 Numeric decimal one superscript

2 2 ND020000 Numeric decimal two
2 \(2S ND021000 Numeric decimal two superscript
3 3 ND030000 Numeric decimal three
3 \(3S ND031000 Numeric decimal thrce superscript
4 4 ND040000 Numeric decimal four
4 \(4S ND041000 Numeric dccimal four superscript
5 5 ND050000 Numeric decimal five
5 \(5S ND051000 Numeric decimal five supcrscript
6 6 ND060000 Numeric decimal six
6 \(6S ND061000 Numeric decimal six superscript

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-29

7 7 ND070000 Numeric decimal seven
7 \(7S ND071000 Numeric decimal seven superscript
8 8 ND080000 Numeric decimal eight
8 \(8S ND081000 Numeric decimal eight superscript
9 9 ND090000 Numeric decimal nine
9 \(9S ND091000 Numeric decimal nine superscript
0 0 NDI00000 Numeric decimal zero
0 \(0/ NDI00008 Numeric decimal zero slash
0 \{es NDI00008 Empty Set
0 \{OS NDIOIOOO Numeric decimal zero superscript

SAOOOOOO Minus
+ + SAOIOOOO Plus
± \{ +- SA020000 Plus-or-minus

= SA040000 Equals
\{di SA060000 Divide

x \{mu SA070000 Multiply
\(ap SA 160000 Cycle symbol, equivalent to

"
\(PI SA340000 Parallel symbol

L \ (An SA350000 Angle symbol
E \(Nm SA360000 Is not an element of

\(Tf SA370000 Therefore symbol
n \(ca SA380000 Intersection, logical product
U \{cu SA390000 Union, logical sum
c \{sb SA400000 Included in, a subset of
:::> \{sp SA410000 Includes, a superset of
~ \{- = SA430000 Congruent to
00 \{if SA450000 Infinity symbol
oc \{pt SA470000 Proportional to
- \{= = SA480000 Identity symbol
a \(pd SA490000 Partial differential symbol

J \{is SA510000 Integral symbol
~ \{ < = SA520000 Less-than-or-equal
~ \{> = SA530000 Greater-than-or-equal
=I=- \(!= SA540000 Not-equal
Ef) \(Cs SA550000 Closed sum
0 \{Di SA660000 Diamond
E \(mo SA670000 "Is an element of'
!"'oJ \(Ae SA700000 Nearly equals '"
.1 \{Pd SA780000 Perpendicular to

\{Md SA790000 Dot mUltiply, middle dot
\{aa SDll0000 Acute
\{ga SDl30000 Grave

" " SD150000 Circumflex
\{UM SD170000 Diaeresis or umlaut

SDI90000 Tilde
\(CE SD410000 Cedilla
\(DU SMI00000 Double underscore

;;:

\(rn SM I 50000 Overline
f. \(Lt SM160000 Litre symbol
2 \{ML SM200000 Ordinal indicator - masculine
g \(FE SM210000 Ordinal indicator - feminine

~ \(sr SM230000 Tape mark, radical

~ \(Ma SM280000 Mal~ symbol

December 1987

IBM/4.3-SMM:4-30 The IBM 3812 Pageprinter

~ \(Fe SM290000 Female symbol
+- \(<- SM300000 Left arrow
-+ \(- > SM310000 Right arrow
i \(ua SM320000 Up arrow
! \(da SM330000 Down arrow
0 \(sq SM450000 Open square
• \(Ss SM470000 Solid square, histogram
JJ \(Lz SM490000 Lozenge

\(MI SM500000 Minutes symbol
" \(SE SM510000 Seconds symbol
© \(co SM520000 Copyright symbol
® \(rg SM530000 Registered trademark symbol
TM \(TM SM540000 Trademark symbol
Et \(Rx SM550000 Prescription symbol
~ \(AI SM590000 Arrow indicator
A \(ST SM600000 Solid triangle • \(SD SM610000 Solid diamond
I I SM650000 Broken vertical line

\(BV SM650000 Broken vertical1ine
\(no SM660000 Logical NOT, end of line

b \(bl SM670000 Substitute blank
6 \(OT SM730000 Open triangle, mode change
0 \(ci SM750000 Open circle
~ \(In SM950000 Increase
'\. \(De SM990000 Decrease
J1 \(110 SOOOOOOO Hook
y \(FO SOO10000 Fork

" \(CII S0020000 Chair
\(SP SPOI0000 Interword space
\(So SP061000 Left parenthesis superscript
\(Sc SP071000 Right parenthesis superscript
\(Sm SP081000 Comma superscript
\(Sp SPIII000 Period, full stop superscript

1\ \(PO SS390000 Pointer (for text insertion)

L \(SU SS400000 Summation symbol
\(RA SS430000 Ratio symbol

f \(Fs SS440000 Function symbol

? \(Rn SS460000 "Real number" symbol
Bl \(Ri SS470000 Riemann integral
!t' \(La SS480000 LaPlace symbol

\(TD SS540000 "Because" symbol

* \(CS SS580000 Closed star upright
~ \(PT SS610000 "Plaintiff" symbol , \(BS SS630000 Bottle symbol
c/o \(CO SS640000 "Care of' symbol
alc \(AO SS650000 "Account of' symbol
~ \(TO SS670000 Telephone symbol (open)

\(en SS680000 En-dash
~ \(bs SS700000 Telephone symbol, closed
~ \(TC SS700000 Telephone symbol, closed
IBl \(UN SV320000 Replacement symbol (for undefined code points)
< < SA030000 Less-than
> > SA050000 Greater-than

December 1987

The IBM 3812 Pageprinter

:a
£

\
{
}
•

\(Ie SCOIOOOO
\(Lb SC020000
\ SM070000
{ SMIIOOOO
} SMl40000
\(bu SM570000

SPIOOOOO

International currency
Pound
Reverse slash
Left brace
Right brace
Bullet
Hyphen

IBM/4.3-SMM:4-3I

December 1987

IBM/4.3-SMM:4-32 l1te IBM 3812 Pageprinter

SYMBOLS CODE PAGE (symcp)

Troff IBM
Char Char

Char Name Name Description

a \(+a GAOIOOOO Alpha small
~ \(+b GBOIOOOO Beta small
15 \(+d GDOIOOOO Delta small
11 \(+D GD020000 Delta capital
£ \(+e GEOIOOOO Epsilon small
Tl \(+y GE310000 Eta small
tI \(+f GFOIOOOO Phi small
t \(+P GP020000 Phi capital
I \(+g GGOIOOOO Gamma small
r \(+G GG020000 Gamma capital
X \(+x GHO 1 0000 Chi small
t \(+i GIOIOOOO Iota small
Ie:: \(+k GKOIOOOO Kappa small
A \(+1 GLOIOOOO Lambda small
A \(+L GL020000 Lambda capital
11 \(+m GMOIOOOO Mu small
v \(+n GNOIOOOO Nu small
V \(+0 GOOIOOOO Omicron small
w \(+w G0310000 Omega small
Q \(+W G0320000 Omega capital
'IT \(+p GPOIOOOO Pi small
n \(+P GP020000 Pi capital
tP \(+q GP6 1 0000 Psi small
'f \(+Q GP620000 Psi capital
p \(+r GROIOOOO Rho small
C1 \(+s GSOIOOOO Sigma small
t \(+S GS020000 Sigma capital
'[\(+t GTO 1 0000 Tau small
T \(+T GT020000 Tau capital
a \(+h GT610000 Theta small
e \(+H GT620000 Theta small
0 \(+u GUOI0000 Upsilon small
~ \(+c GXOIOOOO Xi small ... \(+C GX020000 Xi capital
i; \(+z GZOIOOOO Zeta small
1 \(IS NDOIIOOO Numeric decimal one superscript
2 \(2S ND021000 Numeric decimal two superscript
3 \(3S ND031000 Numeric decimal three superscript
4 \(4S ND041000 Numeric decimal four superscript
5 \(5S ND051000 Numeric decimal five superscript
6 \(6S ND061000 Numeric decimal six superscript
7 \(7S ND071000 Numeric decimal seven superscript
8 \(8S ND081000 Numeric decimal eight superscript
9 \(9S ND091000 Numeric decimal nine superscript
~ \(0/ NDIOOO08 Numeric decimal zero slash
~ \(es NDIOOO08 Empty Set
0 \(OS NDIOIOOO Numeric decimal zero superscript

December 1987

The IBM 3812 Pageprintcr IBM/4.3-SMM:4-33

< < SA030000 Less-than
> > SA050000 Greater-than
+ \(di SA060000 Divide
x \(mu SA070000 Multiply

\(PI SA340000 Parallel symbol
00 \(if SA450000 Infmity symbol
oc \(pt SA470000 Proportional to
- \(= = SA480000 Identity symbol
a \(pd SA490000 Partial differential symbol
J \(is SA510000 Integral symbol
S \(< = SA520000 Less-than -or-equal
~ \(> = SA530000 Greater-than-or-equal
~ \(!= SA540000 Not-equal
:t(\(Ie SCOIOOOO International currency
f \(Lb SC020000 Pound
\ \ SM070000 Reverse slash
{ { SMIIOOOO Left brace
} } SMl40000 Right brace
t \(Lt SMl60000 Litre symbol
+- \(<- SM300000 Left arrow
-+ \(- > SM310000 Right arrow
t \(ua SM320000 Up arrow , \(da SM330000 Down arrow
0 \(sq SM450000 Open square
@ \(co SM520000 Copyright symbol
® \(rg SM530000 Registered trademark symbol
1M \(TM SM540000 Trademark symbol
~ \(Rx SM550000 Prescription symbol
• \(bu SM570000 Bullet
IS \(bl SM670000 Substitute blank
0 \(ci SM750000 Open circle

\(SP SPOIOOOO Interword space
SPIOOOOO Hyphen

~ \(UN SV320000 Replacement symbol (for undefined code points)

" \(sd GT630000 Script d
(< SA181000 Less-than superscript

> SAI91000 Greater-than superscript
!::! \(- = SA440000 Approximates
.; \(sr SA800000 Square root
IT \(PR SA810000 "Product of' symbol

SA820000 Tilde
V \(gr SL030000 Gradient

= SM640000 Equals

December 1987

IBM/4.3-SMM:4-34 The IBM 3812 Pageprinter

ADDITIONAL CODE PAGE (addcp)

Troff IBM
Char Char

Char Name Name Description

f \(It ACISOOOI left top of big curly bracket
f \(It ACISOOOI left top of big curly bracket
I \(lk ACISOOO2 left center of big curly bracket

I \(lk ACISOOO2 left center of big curly bracket
l \(Ib ACISOOO3 left bottom of big curly bracket
l \(lb ACISOOO3 left bottom of big curly bracket
I \(bv ACISOOO4 bold vertical
1 \(rt ACISOOO5 right top of big curly bracket
J \(rk ACISOOO6 right center of big curly bracket
J \(rb ACISOOO7 right bottom of big curly bracket
~ \(ib ACISOOO8 improper subset
;2 \(ip ACISOOO9 improper superset
V \(gr ACISOOIO gradient
t \(If ACISOOll left floor (left bottom of big square bracket)
r \(lc ACISOO12 left ceiling (top left)
J \(rf ACISOOl3 right floor (right bottom)

1 \(rc ACISOOl4 right ceiling (right top)

S' \(ts ACISOOl5 terminal sigma

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-35

FIXED CODE PAGE (rep)

Troff IBM
Char Char

Char Name Name Description

a a LAOIOOOO a small
A A LA020000 A capital
a \(a' LAIIOOOO a acute small
A \(A' LA 120000 A acute capital
a \(a' LA 1 30000 a grave small
A \(A' LA 140000 A grave capital
a \(al\ LAI50000 a circumflex small
A \(AI\ LA 160000 A circumflex capital
a \(a: LA 1 70000 a diaeresis/umlaut small
A \(A: LA180000 A diaeresis/umlaut capital
a \(a- LA 190000 a tilde small
A \(A- LA200000 A tilde capital

0

\(a. LA270000 a overcircle small a
A \(A. LA280000 A overcircle capital
ce \(ae LAS 10000 ae diphthong small
IE \(AE LA520000 AE diphthong capital
b b LBOIOOOO b small
B B LB020000 B capital
C c LCOIOOOO c small
C C LC020000 C capital
c; \(c, LC410000 c cedilla small
c; \(C, LC420000 C cedilla capital
d d LDOIOOOO d small
D D LD020000 D capital
E> \(D2 LD620000 D stroke capital and Eth Icelandic capital
0 \(D3 LD630000 eth Icelandic small
e e LEO 10000 e small
E E LE020000 E capital
e \(e' LEI 10000 e acute small
E \(E' LE 1 20000 E acute capital
e \(e' LEl30000 e grave small
E \(E' LEl40000 E grave capital
e \(el\ LEI 50000 e circumflex small
E \(EI\ LE 1 60000 E circumflex capital
e \(e: LE I 70000 e diaeresis/umlaut small
it \(E: LEl80000 E diaeresis/umlaut capital
e \(e- LE210000 C caron small
f f LFOIOOOO f small
F F LF020000 F capital

9 g LGOIOOOO g small
G G LG020000 G capital
h h LHOIOOOO h small
H H LH020000 H capital
i 1 LIOIOOOO i small
I I LI020000 I capital
i \(i' LIIIOOOO i acute small
f \(1' LIl20000 I acute capital

December 1987

IBM/4.3-SMM:4-36 The IBM 3812 Pageprinter

i \(i' LII30000 i grave sman
I \(1' LIl40000 I grave capital
i \(il\ LI I 50000 i circumflex small
! \(11\ LI160000 1 circumflex capital
1. \(i: LI170000 i diaeresis/umlaut small
I \(1: LII80000 I diaeresis/umlaut capital
ij \(ij LI510000 ij ligature small
j j UOIOOOO j small
J J U020000 J capital
k k LKOIOOOO k small
K K LK020000 K capital
1 I LLOIOOOO 1 small
L L LL020000 L capital
} \(1. LL630000 I middle dot small
U \(L. LL640000 L middle dot capital
m m LMOIOOOO m small
M M LM020000 M capital
n n LNOIOOOO n small
n \(nS LNOllOOO n small superscript
N N LN020000 N capital
Ii \(n- LN190000 n tilde small
N \(N- LN200000 N tilde capital
ii \(n- LN210000 n caron small
0 0 LOOIOOOO o small
0 0 L0020000 o capital
6 \(0' LOIIOOOO o acute small
6 \(0' L0120000 o acute capital-
0 \(0' LOl30000 o grave small
0 \(0' LOl40000 o grave capital
{) \(01\ LO 1 50000 o circumflex small
0 \(01\ L0160000 o circumflex capital
(5 \(0: L0170000 o diaeresis/umlaut small
() \(0: L0180000 o diaeresis/umlaut capital
0 \(0- LOl90000 o tilde small
0 \(0- L0200000 o tilde capital
Q \(0. L0450000 o small underdot
ce \(oe L0510000 oe diphthong small
ex \(OE L0520000 OE diphthong capital
¢ \(0/ L0610000 o slash small
¢ \(0/ L0620000 o slash capital
¢ \(es L0620000 Empty set
p p LPOIOOOO p small
p p LP020000 P capital
q q LQOIOOOO q small
Q Q LQ020000 Q capital
r r LROIOOOO r small
R R LR020000 R capital
S s LSOIOOOO s small
S S LS020000 S capital
B \(ss LS610000 s sharp small
t t LTOIOOOO t small
T T LT020000 T capital
p \(TI LT630000 1bom Icelandic small

December 1987

The IBM 3812 Pageprinter IBM/4.3-SMM:4-37

1> \(T2 LT640000 Thorn Icelandic capital
u u LUOIOOOO u small
U U LU020000 U capital
11 \(u' LUllOOOO u acute small
U \(U' LU120000 U acute capital
U \(u' LU130000 u grave small
U \(U' LU140000 U grave capital
U \(u" LUI 50000 u circumflex small
0- \(U" LU160000 U circumflex capital
ti \(u: LU170000 u diaeresis/umlaut small
U \(U: LU 1 80000 U diaeresis/umlaut capital
U \(u. LU270000 u overcircle small
LJ \(U. LU280000 U overcircle capital
V v LVOlOOOO v small
V V LV020000 V capital
W w LWOlOOOO w small
W W LW020000 W capital
x x LXOIOOOO x small
X X LX020000 X capital
y y LYOIOOOO Y small
y Y LY020000 Y capital
y \(Yl LYllOOOO y acute small
y \(Y2 LY120000 Y acute capital
y \(y: LY170000 y diaeresis/umlaut small
y \(Y: LYl80000 Y diaeresis/umlaut capital
z z LZOIOOOO z small
Z Z LZ020000 Z capital
1 1 NDOIOOOO Numeric decimal one
1 \(IS NDOllOOO Numeric decimal one superscript
2 2 ND020000 Numeric decimal two
2 \(2S ND02l000 Numeric decimal two superscript
3 3 ND030000 Numeric decimal three
3 \(3S ND031000 Numeric decimal three superscript
4 4 ND040000 Numeric decimal four
4 \(4S ND041000 Numeric decimal four superscript
5 5 ND050000 Numeric decimal five
5 \(5S ND05l000 Numeric decimal five superscript
6 6 ND060000 Numeric decimal six
6 \(6S ND06l000 Numeric decimal six superscript
7 7 ND070000 Numeric decimal seven
7 \(7S ND071000 Numeric decimal seven superscript
8 8 ND080000 Numeric decimal eight
8 \(8S ND081000 Numeric decimal eight superscript
9 9 ND090000 Numeric decimal nine
9 \(9S ND09l000 Numeric decimal nine superscript
0 0 NDlOOOOO Numeric decimal zero
0 \(OS NDlOlOOO Numeric decimal zero superscript

~ \(12 NFOlOOOO Numeric fraction one-half

~ \(14 NF040000 Numeric fraction one-quarter

% \(34 NF050000 Numeric fraction three-quarters
+ + SAOlOOOO Plus
± \(+- SA020000 Plus-or-minus
< < SA030000 Less-than

December 1987

IBM/4.3-SMM:4-38 The IBM 3812 Pageprinter

= SA040000 Equals
= \(S= SA041000 Equals superscript
> > SA050000 Greater-than
T \(di SA060000 Divide
X \(mu SA070000 Multiply
n \(ca SA380000 Intersection, logical product
00 \(if SA450000 Infinity symbol
- \(= = SA480000 Identity symbol
~ \(< = SA520000 Less-than-or-equal
~ \(> = SA530000 Greater-than-or-equal
~ \(!= SA540000 Not-equal
~ \(Ae SA700000 Nearly equals

\(Md SA790000 Dot multiply , middle dot
~ \(Ie SCO 1 0000 International currency
£ \(Lb SC020000 Pound
$ $ SC030000 Dollar
¢ \(ct SC040000 Cent
¥ \(Y- SC050000 Yen
Pts \(Ps SC060000 Peseta
f \(fg SC070000 Florin or guilder
Cr \(Cx SC090oo0 Cruzeiro

\(aa SDllOOOO Acute
I S0130000 Grave
\(ga SO 130000 Grave
,.. SD150000 Circumflex
\(UM SO 170000 Diaeresis or umlaut

SO 190000 Tilde
\(CE S0410000 Cedilla

r \(UI SFOI0000 Upper left joint

[\(UZ SFOIOO02 Upper left joint, thick
\(LI SF020000 Lower left joint

L \(LZ SF020002 Lower left joint, thick

1 \(Ur SF030000 Upper right joint

] \(UY SF030002 Upper right joint, thick
\(Lr SF040000 Lower right joint

J \(LY SF040002 Lower right joint, thick

+
\(Mb SF050000 Middle joint
\(MZ SF050002 Middle joint, thick

T \(Tm SF060000 Top middle joint

I \(TZ SF060002 Top middle joint, thick
\(Bm SF070000 Bottom middle joint

.J. \(BX SF070002 Bottom middle joint, thick

I
\(Lm SF080000 Left middle joint
\(LX SF080002 Left middle joint, thick
\(Rm SF090000 Right middle joint
\(RX SF090002 Right middle joint, thick
\(Hb SF 100000 Horizontal bar
\(HX SF 100002 Horizontal bar, thick

I \(Vb SFII0000 Vertical bar
\(VX SFII0002 Vertical bar, thick

SMOIOOOO Number

% 0/0 SM020000 Percent
& & SM030000 Ampersand

December 1987

The IBM 3812 Pageprinter IBI\1/4.3-SMM:4-39

* '" SM040000 Asterisk

* \('" '" SM040000 Math star
@ @ SM050000 At
[[SM060000 Left bracket

\ \ SM070000 Reverse slash
]] SM080000 Right bracket

\(DU SMIOOOOO Double underscore
{ SMllOOOO Left brace

I \(br SMl30000 Vertical bar, logical OR I
I \(or SMl30000 Vertical bar, logical OR I
I I SMl30000 Vertical bar, logical OR I

1 } SM140000 Right brace
\(m SM I 50000 Overline

J..l \(MU SM170000 Mu
0 \(de SMl90000 Degree symbol
Q \(ML SM200000 Ordinal indicator - masculine
9 \(FE SM210000 Ordinal indicator - feminine
§ \(SS SM240000 Section symbol (USA), paragraph symbol (Europe)
§ \(sc SM240000 Section symbol (USA), paragraph symbol (Europe)

~ \(PS SM250000 Paragraph symbol (USA)
+- \(<- SM300000 Left arrow
-+ \(- > SM310000 Right arrow

t \(ua SM320000 Up arrow

! \(da SM330000 Down arrow
t \(dg SM340000 Dagger

t \(dd SM350000 Double dagger
• \(Ss SM470000 Solid square, histogram
):(\(Lz SM490000 Lozenge
© \(co SM520000 Copyright symbol
® \(rg SM530000 Registered trademark symbol
• \(bu SM570000 Bullet

\(BV SM650000 Broken vertical line
\(no SM660000 Logical NOT, end of line
\(SP SPOIOOOO Interword space

SP020000 Exclamation point
\(I! SP030000 Exclamation point, inverted

" " SP040000 Quotation marks

" \(LQ SP040000 Left Quotation mark

" \(QM SP040000 Quotation marks

" \(RQ SP040000 Quotation mark
\(fm SP050000 Foot mark

((SP060000 Left parenthesis
(\(So SP061000 Left parenthesis superscript
)) SP070000 Right parenthesis
) \(Sc SP071000 Right parenthesis superscript

SP080000 Comma
SP090000 Continuous underscore

\(ul SP090000 Underline
SPIOOOOO Hyphen

\- SPIOOOOO Current font minus
\(em SPIOOOOO em-dash
\(en SPIOOOOO en-dash
\(hy SPIOOOOO Hyphen

December 1987

IBM/4.3-SMM:4-40 The IBM 3812 Pageprinter

\(mi SPI00000 Minus
\(ru SPIOOOOO Rule

/ / SPl20000 Slash
/ \(sl SP I 20000 Slash

SPl30000 Colon
; , SPl40000 Semicolon
? ? SP 1 50000 Question mark
l \(I? SPl60000 Question mark, inverted
« \(< < SP170000 Left angle quotes
« \(lh SPI70000 Left angle quotes
» \(> > SPl80000 Right angle quotes
» \(rh SP I 80000 Right angle quotes

\(RS SP300000 Required space
IJjJ \(UN SV320000 Replacement symbol (for undefined code points)

December 1987

The IBM 3812 Pageprinter IBl\f/4.3-SMM:4-4I

ALTERNATE FIXED CODE PAGE (acp)

Troff IBM
Char Char

Char Name Name Description

a \(+a GAOIOOOO Alpha small
6 \("'d GOOIOOOO Delta small
£ \(+e GEOIOOOO Epsilon small

~ \("'f GFOIOOOO Phi small
t \("'F GF020000 Phi capital
r \("'G GG020000 Gamma capital

IJ \("'m GMOIOOOO Mu small
Q \("'W G0320000 Omega capital
1T \("'p GPOIOOOO Pi small
'[\("'t GTOIOOOO Tau small
a \("'II GT620000 Theta small
a a LAO 10000 a small
A A LA020000 A capital
it \(a' LAIIOOOO a acute small
a \(a' LA 1 30000 a grave small
a \(al\ LA150000 a circumflex small
a \(a: LA170000 a diaeresis/umlaut small
A \(A: LA180000 diaeresis/umlaut capital

0

\(a. LA270000 a overcircle small a
A \(A. LA280000 overcircle capital
re \(ae LAS 10000 ae diphthong small
JE \(AE LA520000 diphthong capital
b b LBOIOOOO b small
B B LB020000 B capital
C c LCOIOOOO c small
C C LC020000 C capital

~ \(c, LC410000 c cedilla small
r; \(C, LC420000 cedilla capital
d d LOOIOOOO d small
D D L0020000 D capital
e e LEO 10000 e small
E E LE020000 E capital
E \("'E LE020000 Epsilon capital
e \(e' LEI 10000 e acute small
E \(E' LEl20000 acute capital
e \(e' LE130000 e grave small
e \(el\ LEI 50000 e circumflex small
e \(e: LE170000 e diaeresis/umlaut small
f f LFOIOOOO f small
F F LF020000 F capital
g g LGOIOOOO g small
G G LG020000 G capital
h h LHOIOOOO h small
H H LH020000 II capital
H \("'Y LH020000 Eta capital
i 1 LIOIOOOO i small
I I LI020000 I capital

December 1987

IBM/4.3-SMM:4-42 The IBM 3812 Pageprinter

I \(+1 LI020000 Iota capital
i \(i' LIIIOOOO i acute small
i \(i' LI130000 i grave sman
i \(i" LI150000 i circumflex sman
:.: \(i: LI170000 i diaeresis/umlaut small
j j lJOIOOOO j small
J J lJ020000 J capital
k k LKO 1 0000 k small
K K LK020000 K capital
K \(+K LK020000 Kappa capital
1 I LLOIOOOO I small
L L LL020000 L capital
m m LMOIOOOO In small
M M LM020000 M capital
M \(+M LM020000 Mu capital
n n LNOIOOOO n small
n \(nS LNOIIOOO n small superscript
N N LN020000 N capital
N \(+N LN020000 Nu capital
n \(n~ LNl90000 n tilde small
N \(N~ LN200000 tilde capital
0 0 LOOIOOOO o small
0 0 L0020000 o capital
0 \(+0 L0020000 Omicron capital
6 \(0' LOIIOOOO o acute small
0 \(0' LOl30000 o grave small
0 \(0" L0150000 o circumflex small
0 \(0: LOl70000 o diaeresis/umlaut small
() \(0: L0180000 diaeresis/umlaut capital
p p LPO 1 0000 p small
p P LP020000 P capital
q q LQOIOOOO q small
Q Q LQ020000 Q capital
r r LROIOOOO r small
R R LR020000 R capital
p \(+R LR020000 Rho capital
S s LSOIOOOO s small
S S LS020000 S capital
B \(ss LS610000 s sharp small
t t LTOIOOOO t small
T T LT020000 T capital
T \(+T LT020000 Tau capital
U u LUOI0000 u small
U U LU020000 U capital
y \(+U LU020000 Upsilon capital
U \(u' LUllOOOO u acute small
it \(u' LU130000 u grave small
U \(u" LU150000 u circumflex small
i.i \(u: LUl70000 u diaeresis/umlaut small
U \(U: LU180000 U diaeresis/umlaut capital
V v LVOIOOOO v small
V V LV020000 V capital
W w LWOIOOOO w small

December 1987

The IIlM 3812 Pageprintcr IBM/4.3-Sl\tM:4-43

W W LW020000 W capital
x x LXOIOOOO x small
X X LX020000 X capital
X \("'X LX020000 Chi capital
y y LYOI0000 y small
y Y LY020000 Y capital
y \(y: LY170000 y diaeresis/umlaut small
Z z LZOI0000 z small
Z Z LZ020000 Z capital
Z \("'Z LZ020000 Zeta capital
1 1 NDOI0000 Numeric decimal one
2 2 ND020000 Numeric decimal two
2 \(2S ND021000 Numeric decimal two superscript
3 3 ND030000 Numeric decimal thrce
4 4 ND040000 Numeric decimal four
5 5 ND050000 Numeric decimal five
6 6 ND060000 Numeric decimal six
7 7 ND070000 Numeric decimal seven
8 8 ND080000 Numeric decimal eight
9 9 ND090000 Numeric decimal nine
0 0 NDIOOOOO Numeric decimal zero
1j2 \(12 NFOI0000 Numeric fraction one-half
1j4 \(14 NF040000 Numeric fraction one-quarter
+ + SAOIOOOO Plus
± \(+- SA020000 Plus-or-minus
< < SA030000 Less-than

= SA040000 Equals
> > SA050000 Greater-than

\(di SA060000 Divide
n \(ca SA380000 Intersection, logical product
00 \(if SA450000 InfInity symbol
- \(= = SA480000 Identity symbol
~ \(< = SA520000 Less-than -or-equal
~ \(> = SA530000 Greater-than -or-equal
~ \(Ae SA700000 Nearly equals

\(Md SA790000 Dot multiply, middle dot
£ \(Lb SC020000 Pound
$ $ SC030000 Dollar
¢ \(ct SC040000 Cent
¥ \(y- SC050000 Yen
Pt \(Ps SC060000 Peseta

f \(fg SC070000 Florin or guilder
,

SD130000 Grave
\(ga SD130000 Grave

" SDI50000 Circumflex
SD190000 tilde

[\(Ul SFOIOOOO Upper left joint
\(LI SF020000 Lower left joint

] \(Ur SF030000 Upper right joint
\(Lr SF040000 Lower right joint

+ \(Mb SF050000 Middle joint

I \(Tm SF060000 Top middle joint
\(Bm SF070000 Bottom middle joint

December 1987

IBM/4.3-SMM:4-44 The IBM 3812 Pageprinter

t \(Lm SF080000 Left middle joint
\(Rm SF090000 Right middle joint
\(lIb SF 100000 Horizontal bar

I \(Vb SFllOOOO Vertical bar
SMO I 0000 Number

% 0/0 SM020000 Percent
&. & SM030000 Ampersand

* '" SM040000 Asterisk

* \("'''' SM040000 Math star
@ @ SM050000 At
[[SM060000 Left bracket

\ \ SM070000 Reverse slash
]] SM080000 Right bracket
{ { SMIIOOOO Left brace
I I SM130000 Vertical bar, logical 0 R I
I \(br SM130000 Vertical bar, logical 0 R I
I \(or SM130000 Vertical bar, logical 0 R I
} } SM140000 Right brace
0 \(de SM190000 Degree symbol
Q \(ML SM200000 Ordinal indicator - masculine
g \(FE SM210000 Ordinal indicator - feminine
§ \(SS SM240000 Section symbol (USA), paragraph symbol (Europe)
§ \(sc SM240000 Section symbol (USA), paragraph symbol (Europe)

• \(Ss SM470000 Solid square, histogram
..., \(no SM660000 Logical NOT, end of line

\(SP SPOIOOOO Interword space
SP020000 Exclamation point

\(I! SP030000 Exclamation point, inverted

" " SP040000 Quotation marks
" \(QM SP040000 Quotation marks
" \(RQ SP040000 Right Quotation marks
" \(LQ SP040000 Left Quotation marks

\(fm SP050000 Foot mark
\(aa SP050000 Acute

((SP060000 Left parenthesis
)) SP070000 Right parenthesis

SP080000 Comma
SP090000 Continuous underscore

\(ul SP090000 Underline
SPIOOOOO Hyphen

\- SPIOOOOO Hyphen
\(hy SPIOOOOO Hyphen
\(mi SPIOOOOO Minus
\(em SPIOOOOO Em-Dash
\(en SPIOOOOO En-Dash

/ / SP 1 20000 Slash
SP130000 Colon

; SP 1 40000 Semicolon
? ? SPl50000 Question mark
l \(I? SP160000 Question mark, invertcd
» \(> > SP170000 Left angle quotes
« \(lh SP I 70000 Left angle quotes
» \(> > SP I 80000 Right angle quotcs

December 1987

The IBM 3812 Pageprinter

» \(rh
\(RS
\(*s
\(*S

REFERENCES

SP 1 80000
SP300000
GSOIOOOO
GS020000

Right angle quotes
Required space
Sigma sman
Sigma capital

You may want to obtain copies of the fol1owing documentation:

• IBM 3812 Page printer Introduction and Planning Guide, 0544-3265

• IBM 3812 Pageprinter Guide to Operations, 8544-3267

• IBM 3812 Page printer Programming Reference, S544-3268

• IBM 3800 Printing Subsystem Model III Font Catalog, 81135-0053

IBM/4.3-SMM:4-45

December 1987

IBM/4.3-SMM:4-46 lbe IBM 3812 PagqMinter

This page intentionally left blank.

December 1987

IB1\1/4.3 Console Emulators IBM/4.3-SMM:5-1

IBMj4.3 Console Emulators

ABSTRACT

This paper explains the need for, and design of, console emulators in IBM/4.3.
ft contains the following sections:

1. Overview describes the need for console emulators.

2. Emulator Package Functions describes the functions provided.

3. Output Emulator Interface describes the interface between the emulator and the display
dependent routines.

4. Input Emulator Interface describes the interface between the devices and the input emulator.

5. Window Manager Device-dependent Routincs describes the low-level routines available for
controlling a graphics cursor.

6. System Interface to the Emulator lists all the routines necessary for a device driver to inter
face with an emulator.

7. Console Driver's Relationship to IBM/4.3 shows t.he levels of flow between the console
driver and the standard IBM/4.3 system.

8. User Interface to the Emulator describes the systems calls to the console driver and the
mouse.

9. Files Included with the Emulator defmes the files contains in the emulator package.

December 1987

IBM/4.3-SMM:5-2 IBM/4.3 Console Emulators

I. OVERVIEW

This emulator package was developed under IBM/4.3 to support the complex data streams
characteristic of advanced workstations. Traditional line disciplines and console driver inter
faces are not powerful enough to manage elaborate bit-mapped displays. Sophisticated key
boards, mouse devices, and multiple consoles add complexity to console management.

Emulators written using the IBM/4.3 emulator package can handle normal line-discipline I/O
functions as though they were normal tty hardware drivers. The emulator package also sup
ports window-manager device-dependent routines, al10wing an emulator to act as an interface
to a window-manager/graphics system and to control screen output.

J.J. Bit-Map Terminal Requirements

Bit-map terminals are bit-addressable; they deal not with characters, but with individual
bits. To represent a single character on the screen, a bit-map terminal turns bits at
different locations on or off. In scrolling, all bits on a bit-map screen move up a line at a
time, while bits on the bottom line turn off. Some bit-map terminals handle some or all of
this in hardware. However, to act as a normal gla.u tty console, each terminal must also
be able to perform standard I/O operations. Supporting multiple display types requires
code to emulate a glass tty on each display without reproducing the same code for each.

An emulator package solves the inability of bit-map displays to deal directly with charac
ters. It provides a standard interface needed by the low-level, device-dependent drivers and
called by the higher-level line disciplines. The device-dependent drivers contain functional
procedures that determine where a character appears on the screen, while the device
independent line disciplines determine what the character looks like. When requested to
display information on the screen, an emulator package works between the two to ensure
that the correct character appears at the correct location.

1.2. Output Emulators

Emulator code intercepts characters and analyzes them according to the type of tty emu
lated, then calls the appropriate routines to operate on the display. Using this design, any
emulator works on any display on the workstation without knowing anything about the
display. This type of emulator is an output emulator.

1.3. Input Emulators

The same design approach applies to input emulation. Any keyboard or mouse on the
system must be able to pass data to the user in a given format. An input emulator accepts
and deciphers data appropriately.

2. EMULATOR PACKAGE FUNCTIONS

The emulator package performs the following functions:

• Initializes each display present on the workstation.

• Provides a default emulator, defined for any particular hardware. An application
does not have to choose an emulator at start-up.

• Allows multiple displays to run on the system simultaneously. Each display can be
associated with a different process. This allows a separate login to run on each
display.

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5-3

The emulator package also allows the user to:

• Decide which display should be the default on system boot.

• Reinitialize any hardware or emulator.

• Select from a set of existing emulators for a display.

• Switch between the displays currently open on the workstation. When you switch
screens, the focus of the keyboard and mouse moves to that display. This allows
you to run a different window system on each display and press a hot-key to switch
between them.

• Pind and change the hot-key.

• Lock out the user or the system from a display. User lockout is useful for window
managers that want to keep other applications from taking over the screen. Kernel
or system lockout is useful when you don't want the kernel to attempt to use a
non-existent display; for example, when an adapter has no display attached to it.

3. OUTPUT EMULATOR INTERFACE

An emulator needs general infonnation about the display it uses, such as the number and
width of lines that fit on the screen in the current font.

The following device-dependent procedures support any basic output emulator:

(1) Detennine whether the display is present.

(2) Initialize the display.

(3) Position the cursor anywhere on the display.

(4) Display a character at the cursor position by putting up a bitmap from an internal data
font.

(5) Blank a given section of the display (by character).

(6) Move a group of lines on the display.

(7) Print screen contents on the standard printer.

(8) For the IBM 6152 Academic System, change the screen mode.

The following structure from < machineconslscreen_ confh > describes the interface between
the emulator and the display-dependent routines. From the top down to flags is the standard
glass tty infonnation; other entries are described later. This structure is initialized in
I sysl machineconsl screen_ confc.

struct screen_ sw {
char
int
int
int
int
int
int
int
char
short
short
short
short

"'name;
("'probe)O;
("'init)O;
("'syutc)O;
("'pos_cur)O;
("'blank)O;
("'move)O;
("'printscreen)O ;
"'rwaddr;
lines;
width;
vbits;
hbits;

I'" Name of display "'I
I'" Probe for screen "'I
1* Initialize screen'" I
I '" Put character on screen "'I
I'" Position cursor on screen "'I
I '" Blank a section of screen "'I
I '" Move some lines on screen "'1
I '" Routine to print screen "'1
I'" Read & writable addr on screen "'I
I'" Number of lines on screen "'I
I'" Width of screen in characters ·1
I'" Vertical number of screen bits ·1
I· Horizontal number of screen bits ·1

December 1987

IBM/4.3-SMM:5-4 IBM/4.3 Console Emulators

int flags;
int def _ oute;
int (*posJoc)O;
int (*loadJoc)O;
int (*showJoc)O;
int (*hideJoc)();
int (*apa_init)O;
int (*color_table)O;
int (color_entries;
int (+put_status)O;
char +addr;

};

1+ Some flags about the screen +1
1+ Default output emulator +1
I + Position locator on screen +1
I + Load locator description +1
1+ Show locator on Screen+1
I + Hide locator on Screen +1
1+ All points addressable screen init +1
1+ Change color table +1
1+ Number entries in color table +1
1+ Put status (smart devs only) +1
I + Screen base address +1

The synopsis below from screen _ confh shows the interface to the above structure. The emu
lator need only use the following routines and attributes:

1+ Character Attributes +1
#define NORMAL_VIDEO OxOO
#define BLINK OxOI
#define REVERSE_VIDEO Ox02
#define lJNDERLINE_ VIDEO Ox04
#define HI_INTENSITY Ox08
#define LITERAL_VIDEO Oxff

/+ Color Table Values +1
#define FOREGROUND_COLOR OxOI
#define BACKGROUND_COLOR OxOO
#define SCREEN_RED Ox04

/+ Color Table Flags +1
#define COLOR_SET
#define COLOR_fG_INC
#define COLOR_fG_DEC
#define COLOR_BG_INC
#define COLOR_BG_DEC
#define REVERSE_COLOR
#define CHANGE_DISPLAY_MODE
#define ENABLE_BLINK
#define ENABLE_BG_INTENSITY
#define ENABLE_FG _INTENSITY

OxOO
OxOI
Ox02
Ox03
Ox04
OxSO
Ox60
Ox70
Ox80
Ox90

1+ set the color table entry to color +1
1+ increment the fg color table entry +,
1* decrement the fg color table entry +1
/+ increment the bg color table entry +/
/+ decrement the bg color table entry +1
/+ reverse the fg and bg color entries +,
/+ change display mode +,
/* enable possibility of blink +,
I + enable possibility of fg high intensity +,
/+ enable possibility of bg high intensity +,

/+ Monochrome displays are only interested in the high bit of a color +/
#define SCREEN_HIGH_BIT Ox80000000

/ + Tell the emulator the printf is from the kernel +,
#define SCREEN_KERNEL Ox2

/+ Defines for calling console screen-dependent switched routines */

#define screenyutc(c, screen_attr, fg, bg) (+screen_sw[WS).syutc) (c, screen_aUr, fg, bg)

/+ Put the status out (smart devices only, i.e. aed) +/
#define screenyut_status(pos,str) (+screen_sw[WS).put_status)(pos,str)

December 1987

IBM/4.3 Console Emulators IDM/4.3-SMM:5-5

I + color table select +1
#define screen_color_table(entry,red,green,bluc,fiags) (+screcn_sw(WS).color_tablc)(entry,red,green,blue,fiags)

I+Move cursor to x,y position +1
#defme pos_cursor(x, y) (+screen_sw[WSJ.pos_cur) (x, y)

1+ blank with screen_attribute from start coordinates to end coordinates +1
#define screen_blank(s_a, sy, sx, ey, ex, fg, bg) (+screcn_sw[WSJ.blank) (s_a, sy, sx, ey, ex, fg, bg)

I + Macro for blanking a line +1
#define blankJine(s_a, line, fg, bg)

screen_blank(s_a, line, 0, line, SCREEN_ WIDTH-I, fg, bg)

I + move line I . . . line2 to dest +1
#define screen_move(ll, 12, dest) (+screen_sw[WSJ.move) (11, 12, dest)

1+ Position screen locator on screen at x,y position with msbox restriction +/
#define posJocator(x, y, msbox) (+screen_sw[WS).posJoc) (x, y, msbox)

1+ Load a new screen locator description with msbox restriction + /
#define 10adJocator(c, msbox) (+screen_sw[WS).1oadJoc) (c, msbox)

1+ Show screen locator with msbox restriction +1
#define show locator(msbox) (+screen sw[WSJ.show loc) (msbox) - --

I + Hide screen locator +1
#defme hldeJocator(bounds) (+screen_sw[WS).hide_loc) (bounds)

1+ AP A Screen init +1
#defme apa_initializeO (+screen_sw[WS).apaJnit) 0

I + Real hardware addresses for the displays +1
#define screen_addr(n) screen_sw[n).addr

#define Ip _pos_ cursor(col,line,dev) «(line)+screen_sw[(dev)).width) + (col))

4. INPUT EMULATOR INTERFACE

The low-level interface to the input emulator is not defined as strictly as the one for the output
emulator. Basically, a set of hardware routines in keyboard.e, klr.e, speaker.e, and mouse.e can
be called by an input emulator to control the keyboard, speaker, and mouse. The input emu
lator receives a data interrupt from the keyboard or mouse. The emulator deciphers the data
and tracks. the state of the device; then passes its processed data to the user through a line dis
cipline or some other emulator-specific method, such as shared memory.

Few procedures are needed to control a keyboard for setting the auto keyclick rate, bell tone,
and key characteristics (repeat rate, make/break, etc.). Because few workstations support mul
tiple keyboards simultaneously, there is no need to set up a switch table for these hardware
routines. Workstation mouse devices also have few control operations (set sampling or resolu
tion rate); input emulators do not yet deal with these operations directly, but instead pass ioetl
system calls to the appropriate driver.

December 1987

IBM/4.3-SMM:5-6 IBM/4.3 Console Emulators

5. WINDOW MANAGI~R DEVICE-DEPENDENT ROlJfINES

Listed below are the device-dependent routines available with the screen _sw low-level routines.
These are normally used in an input emulator to control the graphics cursor. These are only
used by x I 0 and are only available if pseudo-device xtenemul is defined. Not all display dev
ices have graphics cursor support.

pos_locO
Position the locator at a given coordinate on the display.

10adJocO
Load a locator bitmap for the display. This is the locator until the next load Joc.

showJocO
Make the locator visible and keep showing when positioned. Usually used after a
hide loco

hideJocO
Make the locator invisible, but do not affect the tracking.

apajnitO
Initialize the display for graphic operations needed by the locator. Useful for displays
with hardware cursors/locators.

6. SYSTEM INTERFACE TO THE EMUI .. ATOR

A new emulator should be easy to add to a system and must be able to coexist with other
emulators. An emulator has many functions and system entry points similar to those of a tty
hardware device driver. The main difference is that emulators funnel through a single console
driver and call a common set of hardware routines, while device drivers deal directly with the
hardware.

The emulator switch table below lists all routines necessary for a device driver to interface with
an emulator. To add an emulator to the system, add the following routines in the switch table
structure shown below. This structure (modeled after line disciplines) is declared in
.rcreen_ con/h, and the table is initialized in screen_con/c.

/+
+ Emulator line control switch.
*/

struct emulsw
{

int (+e_open)O;
int (+e _close)O;
int (+e_read)O;
int (*e _ write)O;
int (*ejoctl)O;
int (*e_rint)();
int (+eyutc)O;
int (*e _ select)();
int (*eyutstatus)(); /* to put up status information +/
int (*e_color_table)();

};

Each emulator, depending on its needs, has the following entry points in the kernel:

December 1987

181\1/4.3 Console Emulators I8M/4.3-SMM:5-7

e_open()
Open the emulator to do any necessary initialization. Perform initial operations such as
clearing the screen, initializing the cursor, and positioning the cursor on the screen.

e_close()
Close the emulator; do any cleanup necessary.

e_read()
Read data from the emulator (used only by input emulators). For most emulators, this
routine forwards the read request to the user-defined line discipline. The read routines in
line disciplines currently perform the operations necessary for this routine. This consists
of taking the already-received characters off a dist queue and passing them to the user
program's read buffer.

e_writeO
Write data to the emulator (used only by output emulators). This procedure takes a
character stream passed from the user-level program. Most emulators call the line discip
line specified by the user to do any character preprocessing. Again, the line discipline
routines already perform the necessary duties for this routine. This routine and the
e_readO routines are in the emulator package for completeness and to allow flexibility.
Some specialized emulators do use these routines for other than calling the associated
line-discipline routines (see buf_ emul(4)).

ejoctlO
I/O control to emulator for changing or setting characteristics of the emulator or per
forming operations that do not fit into the normal interface to the emulator. This rou
tine should return a (- I) if the command is not recognized.

e_rintO
Receive interrupt to emulator (used only by input emulators). The emulator receives an
interrupt from a driver's interrupt routine and processes the data depending on the type
of interrupt received. This procedure passes the processed input data to the user-assigned
line-discipline input routine. Some specialized window-manager emulators do not for
ward these data to a line discipline, but do their own queuing and interacting with a win
dow manager.

eyutcO
Put a character on the display (used only by output emulators). This emulator routine
receives a character from a user's write or kernel printf. The emulator deciphers the data
and interprets character strings before passing the appropriate characters to the hardware
putc routine. This procedure makes use of the screen switch table (screen_sw) in calling
the device-dependent routines to perform the emulation on any display.

e_selectO
Select call to emulator (used only by input emulators). This routine is used to perfonn
the nonnal select duty of informing the user process when new data are ready.

e yutstatusO
Put status call to emulator (used only by output emulators). The emulator takes the
passed string and places it at an offset on the status line.

e _color _ tableO
Changes the screen's color table (used only by output emulators).

December 1987

IBM/4.3-SMM:5-8 IBM/4.3 Console Emulators

7. CONSOI.lE DRIVER'S REI.lATIONSHIP TO IBM/4.3

The following diagram shows how the parts of the system described relate to the standard
parts of a IBM/4.3 system:

Console System Dia2ram
User A):plication

System Call Interface Event Queue in Shared User Level
Memory

Line Discipline Package Emulator Packa~e Kernel tevel
Standard Device Drivers Low Level Display

Dependent Routines
Displays/Keyboard/Speaker System or Serial Mouse Hardware

The above is a conceptual view of the system. It docs not show all parts and interfaces, but
indicates the levels of flow. The console driver routes nonnal driver requests to the correct
display and input/output emulator, depending on the minor device specified.

The following shows how the minor device number maps to an emulator and display:

Output Emulator Fla2 Bus Display#
bits 7 - 4 bit 3 bits 2 - 0
o or 1 o or 1 0-7

The following is a list of currently-used displays supported by IBM/4.3:

Console Displays
Display # Symbolic Name Description

0 CONS GEN Generic console (current display)

1 CONS AED ACIS experimental display (stream ordered)

2 CONS APA16 IBM 6155 Extended Monochrome Graphics Display (bitmap)

3 CONS APA8C IBM 6154 Advanced Color Graphics Display (bitmap)

4 CONS APA8 IBM 6153 Advanced Monochrome Graphics Display (bitmap)

5 CONS EGA IBM 5154 Enhanced Color Graphics Display (character)

6 CONS MONO IBM 5 151 Monochrome Display (character)

7 CONS MPEL IBM 5081 Display Adapter (stream ordered)

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5-9

Console Displavs (continued)
0 CONS VGA IBM Planar Video Graphic Array Adapter (character)

1 CONS IBM8514 IBM 8514/A adapter (stream ordered) +

+ There is no glass tty support for the 8514/ A. It uses the vga emulator mode.

If the bus bit is set, opening the device grants access to the I/O bus. Without this bit, it is
necessary to open /dev/bus to gain access to I/O space. This bit is provided for compatibility;
new applications should open /dev/bus if they need bus access.

The emulator field in the minor device number tells the ·console driver that the default
glass_tty input/output emulators will be used (0), or indicates that a non-standard output emu
lator will be used (nonzero). If a non-standard output emulator is used, the system restores
the display to the standard state (default emulators) when the device is closed.

The following is a list of emulators currently available:

Emulators Available
Emulator # Symbolic Name Description

0 E KBDINPUT Intelligent keyboard mapping input emulator (standard)

1 E STDOUTPUT Standard output emulator

2 E IBMOUTPUT IBM 310 I output emulator

3 E ANSIOUTPUT ANSI output emulator (not implemented)

4 E XINPUT X event queuing input emulator

5 E BUFOUTPUT Buffering output emulator

6 E AED Raw ABD microcode interface emulator

December 1987

IBM/4.3-SMM:5-10 IBM/4.3 Console Emulators

The default emulators for each display are:

Default InDut/OutDut Emulators for each Disolav
Display Input Emulator Output Emulator
AEO E KBDINPUT E STOOUTPUT

APA16 E KBDINPUT E IBMOUTPUT

APA8C E KBDINPUT E IBMOUTPUT

APA8 E KBDINPUT E IBMOUTPUT

MONO E KBOINPUT E IDMOUTPUT

MPEL E KBDINPUT E IBMOUTPUT

VGA E KBOINPUT E IDMOUTPUT

7.1. Input From Keyboard Scenario

(1) User types character on keyboard.

(2) Receive interrupt in keyboard driver, keyboard.c, interrupt routine kbdint(). This
routine extracts key code from the hardware.

(3) Call emulator receive-interrupt routine from the switch table indexed by the current
input focus after setting the emulator structure flag, indicating that this was a key
board interrupt.

(4) Emulator checks whether this was a keyboard interrupt. If so, it either translates
code into a character and calls normal line-discipline routine for this console with
the translated character, or performs some emulator-specific function such as storing
the raw key code in a shared-memory area (X-like) and setting a semaphore, also in
shared memory, to inform the user process that a new event has arrived.

(5) If a line-discipline input routine is called, it performs its previously-described nor
mal input (editing/mapping) and passes the result to the user through the read sys
tem call interface.

(6) If a shared-memory queue interface is used, the user process notes the queue update
through the semaphore and proceeds to read the data from the shared memory
without performing a read or any other system call.

(7) In either of the above two cases, a select would be satisfied if the user had previ
ously done a select call.

7.2. Output To Display Scenario

This scenario applies only to glass-tty operations. The window-manager system goes
directly to the display hardware through its own graphics routines. If a user tries to write
through the system to the display while a window manager is controlling the display, a spe
cial buffer emulator is called instead of a glass-tty emulator, as in the scenario below.

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5-11

(1) The user perfonns a write system call with a buffer of data for the display. These
data consist of ASCII data or display order streams.

(2) The console write routine then calls the write routine of the output emulator
selected by the minor device number.

(3) For most emulators, the output-emulator write routine then forwards these data to
the line-discipline write routine specified by the user. Certain emulators, such as the
buffer emulator, intercept these data and capture them for printing later.

(4) The line discipline interprets the data and calls the console start routine to print the
ASCII characters.

(5) The console driver's start routine loops through dequeuing each character and cal
ling the output emulator put-character routine, e yute, for each character.

(6) The output emulator put-character routine then deciphers the data and calls the
appropriate device-dependent routine to display the character or perfonn the display
command.

8. USER INTERFACE TO THE EMULATORS

The user interface to the emulators consists of system calls to the console driver (see eons(4)
and mouse(4)).

8.1. Interface to Keyboard Input and Display Output

8.1.1. Standard Interface

In the simplest case, a user program still perfonns the same operations as in the past,
allowing previously-written programs to work without change. The following lists the
nonnal scenario and what the emulator package does:

Standard Console Interface Device
Permissions owner I major I minor I device
crw-rw-rw- root I 0 I 0 I /dev /console

(1) An application such as login opens /dev/eonwle. Since /dev/eonsole is the spe
cial CONS _ GEN minor device, in "open" the output is mapped to the current
console-focused display. The display at which a program is started is the display
associated with the process. lbe system starts the default input and output
emulators for that display. Input is received only if the input focus is set to
CONS GEN.

(2) The application reads or writes to the file descriptor returned from the open sys
tem call. The system maps writes to the CONS _ GEN minor device to the
display with the current input focus. This causes the appropriate display
indexed input/output emulators to be used. Input is focused to CONS _ GEN if
no console tty devices and no console graphic devices are open, except when
using the default input emulator (E_KBDINPUT). If the input focus is not on
CONS_GEN, the input focus follows the output focus.

(3) The application exits or closes the /dev/eonsole file descriptor. The system
closes the input/output emulators and the stream for the display with the current
input focus.

Mapping /dev/console to the current display is important for most applications that do
not need to know on which display they are running. This mapping is also important

December 1987

IBM/4.3-SMM:5-12 IBM/4.3 Console Emulators

at system boot time where the single-user shell does not know on which display it is
starting and is simply mapped to what the system chooses as the starting input focus.
But some applications (for example, login, window manager) need to know on which
display they should start. Therefore, the following devices are provided to support the
displays available on IBM/4.3:

Standard TI'Y -like Display Devices

Permissions Owner Major Minor Device
crw-rw-rw- root 0, 1 jdevjttyaed
crw-rw-rw- root 0, 2 /dev jttyap 16
crw-rw-rw- root 0, 3 LdevjttyaQ8c
crw-rw-rw- root 0, 4 /dev /ttyapa8
crw-rw-rw- root 0, 5 /dev jttyega
crw-rw-rw- root ° 6 /dev /ttymono
crw-rw-rw- root 0, 7 /dev /ttympel
crw-rw-rw- root 0, 1 /devjttyvga
crw-rw-rw- root 0, 2 jdevjtty8514 +

+ /dev/tty8514 is currently a null device.

To start an application on a particular display, reassign its standard input and outputs
to any of these devices or have the application specifically open one of them. The sys
tem routes output from the application to the appropriate display and its default emula
tors. Input to the application from the keyboard only occurs when the console focus is
assigned to that display. To switch between open displays, press the specified hot-key
for your system or use an application which performs an ioctl system call to set the
input focus.

The different displays on the system are specified in the /elc/ttys file that tells the system
to start logins on each of the displays. A user can hot-key to the desired display and,
after logging in, run any application needed. Any application started on that display
stays associated with it, because it was started while the console focus was on that
display. Because this is an application-transparent mapping to that display taking place
in the kernel, a user can log on simultaneously to as many displays as needed.

8.1.2. Nonstandard Interface

For applications that call for a specific non-default emulator, the following devices are
provided:

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5-13

Nonstandard Display Devices

Pennissions Owner Major Minor Device
crw-rw-rw- root 0, 65 jdevjaed
crw-rw-rw- root 0 66 /dev/apaI6
crw-rw-rw- root Ot 67 jdevjapa8c
crw-rw-rw- root 0 68 /dev/apa8
crw-rw-rw- root OL 69 /dev/ega
crw-rw-rw- root 0, 70 /dev/mono
crw-rw-rw- root 0, 61 /devjmpel
crw-rw-rw- root 0, 65 /dev/vga
crw-rw-rw- root 0, 66 /dev/ibm8514

The emulator flag is nonzero for each of these devices. This indicates to the system
that a nonstandard input and/or output emulator is going to be used on this display and
that, on close, the system should return the display to its default emulators. The system
opens the standard input emulator and a special buffering output emulator, because
most applications that open the nonstandard device take over the screen and want out
put from other sources (such as kernel printfs) to be buffered and displayed when the
display is closed. See bufemul(4) for more information. If bus access is required on
open, add 8 to each minor device number.

The following is a list of commands available through the ioet! system call to the con
sole emulator package:

December 1987

IBM/4.3-SMM:5-14 IBM/4.3 Console Emulators

loctl Commands to Emulator Packa2e

Command Read Write Description

CON SEI/ECT SCREEN Yes - -

CON GET SCREEN Yes - -

EIGETD Yes

EOGETD Yes

EISETD Yes

EOSETD Yes

CON INIT SCREEN No - -

CON GET FOCUS CODE Yes - - -

CON SET FOCUS CODE Yes - - -

SCRIOCGETF Yes

SCRIOCSETC Yes

Yes

No

No

No

Yes

Yes

Yes

No

Yes

Yes

Yes

Output focus is set to display number (arg > 0)
or to next display in list (arg < 0). Previous
display number is returned.
Just returns the current output focus display
number.
Get the number of the current input emulator
for this display.

Get the number of the current output emulator
for this display.

Set the input emulator and return the previous
for this display.

Set the output emulator and return the previous
for this display.

Initialize the specified display (arg > = 0) or this
display (arg < 0).

Get the current keyboard code for setting the
console focus (xemul only).
Set the current keyboard code for setting the
console focus (xemul only), and return the previ
ous code.
Get screen control flags for the given display
number.

Set screen control flags for the given display
number.

All of the above commands take integer arguments except the last two.
SCRIOCGETF and SCRIOCSETC use the following structure:

struct screen control {
int device; /t. which screen/display to control +,
int switches; /t Flags for this screen t,

};

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5-15

Fla2s for Each Displav
Flag Description

CONSDEV PRESENT Display is present on this system.

CONSDEV KERNEL Display is available to the kernel.

CONSDEV USER Display is available to the user.

CONSDEV INIT Display has been initialized for output.

CONSDEV TTY Tty display has been opened directly by minor device number.

CONSDEV GRA Graphics display has been opened directly by minor device number.

All of the above ioctl system calls are device-independent controls for dealing with the
emulators.

Each emulator has its own set of ioctls for its own emulation purposes. These other
ioctls are used in window-manager emulators for operations such as passing/positioning
the mouse locator for/on the display. See the man page for any particular emulator for
more information.

8.2. Mouse Input Interface

The interface to the system mouse is similar to that of the keyboard. If the generic mouse
device /dev/mouse, minor device 0, is opened, the mouse input is attached to the display
which has the current input focus. Opening any other mouse device attaches the mouse
input stream to the process only when the input focus is on the associated display.

The following mouse devices are provided:

Mouse Input Devices

Permissions Owner Major Minor Device
crw-rw-rw- root 15, 0 /dev/mouse
crw-rw-rw- root 15, 1 /dev/msaed
crw-rw-rw- root 15, 2 /dev/msapaI6
crw-rw-rw- root 15, 3 jdevJmsapa8c
crw-rw-rw- root 15, 4 /dev jmsapa8
crw-rw-rw- root 15, 5 /dev/msega
crw-rw-rw- root 15, 6 /dev/msmono
crw-rw-rw- root 15, 7 /dev/msmpel
crw-rw-rw- root 15, I /dev/msvga
crw-rw-rw- root 15L 2 /dev/ibm85

The system mouse driver is essentially the same as those in other 4.3BSD-based systems.
This driver hooks into the emulator package by selecting a special line discipline. The line
discipline filters the mouse data and then passes a generic data packet to the user through
normal read system calls or calls the user-specified emulator with the data packet. This line
discipline is explained in the tb(4) manual page.

December 1987

IBM/4.3-SMM:5-16 IBM/4.3 Console Emulators

For compatibility, the default line discipline may be set using the upper four bits of the
minor device number. To get the device interface specified in mouse(4), use the discipline
MSLINEDISC from < machineio/mouseio.h >. Any new software that uses the mouse
should set its desired discipline explicitly.

9. FIl,ES INCLUDED WITH THE EMULATOR

The following tables briefly explain the files contained in the emulator package. The tables
specify fIles according to function. Each table states where the mes are located and describes
what each file contains. Tables with a column marked User distinguish between purely kernel
fIles and user/kernel-shared include fIles. These user include files are needed to access emulator
functions.

Emulator Control Files

/sys/machinecons
File User Description

cons.c no Console driver routes requests to appropriate emulator and its
input/output device or to the emulator controller. Console
driver is also responsible for console message forwardin~.

consdefs.h no This file contains hardware interface infonnation about system
input devices. Emulators as well as device dependent routines
use this to interface with each other and the hardware.

consio.h yes Defines which displays and screen controls/flags are available.
The ioctl commands and structure for screen control are in this
fIle. This fIle is indirectly included by screen conf.h.

consvars.h no Emulator control variables are declared here.
bus.c no I/O bus control driver, which allows access to the I/O bus on a

per-process basis. Window managers that need to get directly at
the display from user space should open /dev /bus.

screen conf.c no Where all the displays and emulators are configured for the sys-
tem. This file also contains the emulator control routines dis-
cussed in "Emulator Package Functions" I above.

screen conf. h yes Where all the structures, defines, and macros for the emulator
package live. This contains all the macros for an emulator to in-
terface with the device-dependent routines as well as the ioctl in-
formation for the user to interface with the emulator package.

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5- 17

Emulators

/sys/machinccons
File User Description

aed.c AED raw microcode graphic emulator
aeddefs.h

no

buf emul.c no Buffering emulator, which saves messages sent to display, then
flushes them when the output emulator is changed

ibIn emul.c IBM3101 output emulator; takes a considerable subset of
ibmemul.h

no
IBM3101 commands defined in tcap

kbd emul.c A keyboard emulator which allows mapping of key codes to a
kbd emul.h no character stream
kbde codes.h

std emul.c Standard output emulator routines, which send raw characters to
std emul.h no the display on output. This output emulator is used for displays

that perfonn their own emulations.

x emul.c no X window system input emulator, which queues up keyboard
and mouse events into a memory area shared between kernel and
user. This emulator also has a variety of ioctls for controlling
the locator on a display, as well as performing other X-related
functions (e.g. tracking the cursor, etc.).

xio.h yes X -dependent structures and defmes for kernel and usr process

qevent.h yes Event Queue structures and defines used by the X emulator

December 1987

IBM/4.3-SMM:5-18 IBM/4.3 Console F.mulators

New /Chan2ed Line Discipline files

/sys/sys and /sys/h
File User Description

tty_conf.c no Line discipline configure file

tty.h yes Line discipline structures and defines
tty _tb.c no Nonna! tablet line discipline changed to support system/serial

type mouse devices also; also changed for forwarding data pack-
ets to input emulator if specified

tbdefs.h no Tablet/mouse generic data packet structures and defines
tbioctl.h yes Ioctl commands and structures
pc bios.h yes PC BIOS interrupt structures and defines

pc afi.h yes PC Advance Function Interface structure and dermes

pc afidata.h yes PC Advance Function Interface structures and dermes

Low Level Output Display Dependent Files

/sys/machinecons
File Description

aedtty.h Macros and defines for interfacing with the glass tty microcode
for the AED display

aed _tty _ mcode.h Glass tty microcode for download to the AED display

aedloc.c AED locator low-level device-dependent routines
aedtty.c AED glass tty low-level device-dependent routines
apa1610c.c APA16 locator low-level device-dependent routines
apa1 6tty.c APA16 glass tty low-level device-dependent routines
apal6tty.h AP A 16 device-dependent structures and derme
apa 16tty _ font.h AP A 16 font for glass tty emulation

apa8cloc.c AP A8 color locator low-level device-dependent routines
apa8ctty.c APA8 color glass tty low-level device-dependent routines
apa8ctty.h AP A8 color device-dependent structures and define
apa810c.c AP A8 locator low-level device-dependent routines
apa8tty.c AP A8 glass tty low-level device-dependent routines
apa8tty.h AP A8 device-dependent structures and define

apa8tty _font.h APA8 and APA8 color font for glass tty emulation

apa_fontblt.c Generic routines for font manipulation on AP A displays

December 1987

IBM/4.3 Console Emulators IBM/4.3-SMM:5-19

Low Level Output Display Dependent Files

/sys/machinecons
File Description

apa _ structs.h Generic structures and defines for font manipulation on APA
displays

egatty.c EGA wass tty low level device dependent routines
egatty.h EGA device-dependent structures and defines
egaJnit.h Initialization sequences for the EGA

ega_font.h Fonts for the EGA

apaaed.h Structures and dermes for dealing with the AED as an AP A
display

lptty.c AP A print screen support and print
monotty.c Monochrome glass tty low-level device-deJ?Cndent routines
monocons.h Monochrome device-dependent structures
monotty.h Monochrome device-dependent defines
mpeltty.c Megapel glasstty driver
mpeltty.h Megapel structures and dermes
mpeltty _font.n Megapel font

mpelUy _ mcode.c Megapel microcode (standalone only; standca)

ibm8514.c IBM 8514/A glass tty low-level device-dependent routines
(ca atr)

ibm8514.h Structure and defines for IBM8514/A (ca atr)
vga.c IBM Planar Video Graphics Array glass tty low-level device-

dependent routines (ca atr)
vgadefs.h Structure and defines for Planar Video Graphics Array (ca atr)
display _ debug.h A TR displays debugging information

Low Level Kexboard Device De~ndent Routines

/sys/machinecons
File Description

keyboard.c S~stem keyboard hardware routines
keyboard.h System keyboard hardware structures and defines
kls.c Keyboard/mouse/speaker common routines

kls.h KeyboardLmouse/speaker low level defines

December 1987

IBM/4.3-SMM:5-20 IBM/4.3 Console Emulators

System Mouse Device Driver

/sys/machineio
File User Description

mouse.c no Driver for system mouse
mouseio.h yes System mouse structures and dermes; also includes ioctl

controls/dermes for user processes
mousereg.h no System mouse driver declarations
speaker.c no Speaker driver
speakerio .h yes Speaker structures and dermes
speakervar .h no Internal speaker data structures

December 1987

Remote Virtual Disk Systcm IBl\1/4.3-SMM:6-1

The Remote Virtual Disk System

This article is an updated version of several articles written by J. II. Saltzer, J. Van Sciver, L. W.
Allen, P. Prindeville, and Michael Greenwald at MIT between 1983 and 1986. The original arti
cles, based on MIT's Project Athena, have been rewritten and include additions and changes for
the IBM RT PC, IBM 6152 Academic System, and IBM/4.3.

This article describes the Remote Virtual Disk (RVD) system for use with IBM/4.3 on the IBM
R T PC and the IBM 6152 Academic System. It contains the following chapters:

1. Ovcrview contains background information on RVD.

2. RVD Structure describes the structure of the RVD system.

3. Installing RVD describes RVD installation.

4. RVD Protocol Specification describes the RVD communications protocol (optional read
ing).

5. RVD Control Protocol Specification describes the R VD remote server maintenance protocol
(optional reading).

July 1987

IBM/4.3-SMM:6-2 Remote Virtual Disk System

1. OVERVIEW

The Remote Virtual ~isk (RVD) system is a network service that provides a client computer
with the appearance of removable-media disk drives and an unlimited number of removable
disk packs. The removable disk packs are actually stored in private regions of large disks on
an RVD server. When a remote disk pack is "spun up", it appears to most software to be
just another disk drive. Although read and write requests arc actually accomplished by send
ing messages across the network to the server, on a local area network the performance of a
remote disk pack is only slightly less than that of a local fixed disk.

R VD is a very simple system. Its only addition to the usual list of functions of a hardware
disk is remote access. Its design makes little use of operating system features, so it is fairly
independent of the operating system. An R VD client may be implemented for any operating
systeln that allows installation of device drivers, and an RVD server may be implemented
under any operating system that permits access to either disk partitions or large files. A server
that runs under one operating system may be used by a client that runs under another.

1.1. Remote Virtual Disk Paeks

A remote virtual disk pack is a portion of a real disk, located on an RVD server. RVO
packs are named and allocated by an administrator for the particular R VD server. The
name (a character string) and the size (measured in sectors of 512 bytes) are negotiated
between the administrator and the prospective user. Once allocated, the space is reserved
on the physical disk for the lifetime of the R VD pack.

When a client computer uses ("spins up") an RVD pack, the client specifics one of two
modes of access: read-only access or read/write exclusive access. These modes follow the
usual rules for read/write compatibility: there may be several simultaneous readers, or
exactly one exclusive-mode user of anyone virtual disk.

Access to an R VO pack may be protected by passwords, with a separate one for each of
the modes of access. Thus one might· protect an R VO pack used as a group library by
requiring one password (or no password at all) for read access, and a different password for
exclusive access. A private R VO pack might use the same password for both modes. It is
also possible, by arrangement with the server's administrator, to specify (by internet
address) a preferred client that may spin up a password-protected RVO pack without pro
viding the password.

When a new RVO pack is allocated, the first thing one normally docs is create an initial
ized, empty file system on that pack.

1.2. Supporting Tools

Normally one treats a remote disk pack just like any removable storage medium; all stan
dard commands and tools are applicable. In addition, there arc a few specialized tools that
are useful in managing the remote disk system.

Client management: The RVO client code is packaged as a driver. 'Ibere arc com
mands that display information and state of the client part of the RVD system.

Server management: The RVD server is designed to be operated from a distance via a
network connection. Client commands are available to invoke any remote manage
ment operation of the server.

Remote pack management: A high-speed copy command provides a high
performance way of duplicating the contents of one remote pack onto a second one.

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-3

1.3. Hazards

RVD is an example of a distributed system, in which failures of the server and of the data
communication network can occur independently of failures in the client. This failure
independence can lead to some situations that might not have been anticipated, or that are
so rare when using a local disk that they are not handled welt, in the writing of the software
of the client operating system or applications.

The most common failure is that a packet is lost in the data communication network. The
RVD client-server protocol includes a sophisticated request-retry procedure that will
immediately and automatically recover from occasional lost packets. It will also automati
cally recover from short network outages (up to a minute or so,) although some applica
tion programs may have timers that get impatient with the delays involved in waiting for a
network to recover.

Generally, longer network outages, or crash and restart of the server, are reported as errors
back to the invoking file system; whether or not the user is able to recover depends on the
application's response to these errors.

If the client crashes and requires rebooting or is powered down while it has R VO packs
spun up, it loses its local record of spunup packs, but the server still has a record. There is
a general cleanup function, named rvdflush(8), that sends a request to a server to spin down
all R VO packs associated with this client. It is general good practice to spin down all
packs at the end of a client session, and to run rvdflush at the beginning of every client ses
sion, in case the previous session ended with a crash.

Most operating systems have a file system integrity-checking program. It is usually neces
sary to use such a program to review, and if necessary, to repair, the contents of an RVO
pack following a crash, just as with a local disk. It is also good practice to run such a pro
gram just before using any newly spunup pack, especially if that pack may be used by
other clients.

As a general rule, all software works correctly with R VO unless it is written to be depen
dent on hardware parameters of specific physical disks. However, most operating systems
have some programs that know too much; those programs must be avoided.

104. Network Protocols

The Remote Virtual Disk system uses two network protocols, named R VO and
R VDCTL. The client driver and the server communicate with the R VO protocol, to per
form spinup, disk read/write, and spindown. The R VD protocol is a transport protocol,
using the Internet Protocol (IP) as its base. It is described in detail in Chapter 3 of this
article.

The Remote Virtual Disk Control (RVDCTL) protocol supplies a Remote Virtual Disk
server with both operating instructions and infonnation about its configuration. An RVD
server process comes into existence with no knowledge of the physical configuration of the
system in which it is embedded or the logical configuration of the (possibly already exist
ing) virtual disk packs it is to manage. By supplying this infonnation via a network con
nection instead of from files on the server host, it becomes possible to administer all
aspects of server operation remotely. RVDCTL is an appJication protocol, using the User
Datagram Protocol (UDP) as its base. It is described in detail in Chapter 5 of this docu
ment.

July 1987

IBM/4.3-SMM:6-4 Remote Virtual Disk System

2. RVD STRUCTURE

This section describes the general structure of the R VI) server. lbe RVI) server is organized
as a user program that requires little of the underlying operating system apart from access to a
disk device. It is started by invoking (as root, or in letelre.local) the command r'vdsrv(8), nor
mally run in the background. The server has no configuration description files. Instead, it
opens a network listening port (the RVDCTL port) and expects that someone will send its
configuration and all operating instructions to it on that port.

2.1. Authorization

The installer of RVD should create a file named /etelrvdlrvdauthor, owned by root and
readable only by root. It contains an unencrypted ASCII authori7.ation password that the
server demands on most uses of the R VDCTL connection. If the contents of rvdauthor are
changed, the change takes effect the next time the control request "require_authori7.ation"
is sent to the server, or the next time the server is started.

2.2. File Placement

The server program is installed in Iw;rlibmln,dsrv. 'I11ere is a set of server-management
commands in /usr/ ibm.

For convenience, the directory lete/rvd contains the R VD initialu.ation data file, the text of
any user message, and R VD operation logs. These files are described in the next two sec
tions.

2.3. Initialization

As mentioned, the RVD server, once started, takes its configuration initialization, as well as
operating instructions and also instructions to change its configuration, as a series of opera
tion requests sent to it over a UDP socket. Since all operation requests for the RVD
server are ASCII text strings, R VD server initialization is conventionally accomplished by
maintaining somewhere on the server an ASCII text file containing the sequence of initiali
zation instructions. A program named rvd.rend(R) can be used to send the contents of that
file over the control connection.

If a user message is posted at the server, it is a good idea to keep a copy of its text in a
standard place so that it can be reposted if the server needs to be reinitialized.

It is convenient to divide the initialization instructions into two files, one of which,
rvddb(5) , initializes only the configuration, whilc the other (ndenable) contains instructions
to start the server operating. A typical invocation of R VI) at boot time then appears as
the following sequence in the file /ete/n'd/ndstart:

/etc/rvd/rvdsrv -I 11 & # start server with logging
/etc/rvd/rvdsend /etc/rvd/rvddb # set up server configuration
/etc/rvd/rvdsend /etc/rvd/rvdenable # tell server to start work

where the file /ete/rvd/rvdenable contains:

operation = allow _spinups
mode = 5
operation = require_authorization

One reason for dividing the initialization instructions into two files is that there is a
configuration-management program, vddb(R) , that provides a convenient user interface for
creating and changing a file that contains the disk-pack configuration. A second is that

July 1987

Remote Virtual Disk System IBl\f/4.3-SMM:6-5

while the system is in single-user mode, the fi]e rvdenable may temporarily be replaced with
an alternate file that starts the server in a different way, perhaps by forbidding any but
operations use.

2.4. Logging

The RVD server uses the syslogd(8) facility. All RVD server logging is to the syslog
identifier LOCAL 7. The RVD server uses the conventional .ryslog levels as follows:

ALERT
ERROR
INFO

DEBUG

(0)
(1)
(2)
(8)

(4)
(16)

serious server problems from which recovery is unlikely
recoverable server errors such as bad disk blocks
spinups, spindowns, and name exchanges
errors made by clients: bad passwords,
attempt to read packs that aren't spun up, etc.
all read and write requests
complete packet level trace of R VD operation

The numbers in the above list are logging classes. Items in class zero are always logged;
RVO has a log control system that alIows one to tum each of the other classes of logging
on or off independently. The command invocation line for the server includes a parameter
(the sum of the class numbers) to tum on the initial logging classes. The command
rvdchlog(8) sends a control protocol request to change the classes of events that are logged.

The syslog configuration file {/etc/.ryslog.confJ can direct all logging output from LOCAL7
to an appropriate file, for example, /etc/rvd/rvdlog. In addition, if there is a system log that
is reviewed daily, RVD logging output of levels ALERT and ERROR might appropriately
be directed there, too.

Logging aU read/write requests or every packet produces a noticeable performance degrada
tion of the server, so it is not recommended for normal operation. Logging spinups and
client errors provides information about usage of the R VD service and also often records
entries that suggest particular clients are misconfigured or are having some problem. If
spinups and spindowns are logged, a busy server can fill 100 Kbytes of log in a day. Thus
it is a good idea that a crontab (see cron(8» entry invoke a nightly script to move the RVD
log aside and start a new one.

2.5. Remote Management

The R VO server is designed to allow all management to be done remotely. The program
that manages the initialization data, named vddb, can be run either locally on the server, or
elsewhere in the network. Remote management of several servers can be accomplished by
setting up a directory on the management host that contains a copy of the rvddb initializa
tion file for each server to be managed, named with the network name of the server. When
vddb is invoked with the name of the server, all configuration changes that the system
administrator requests are made to the ccntral rvddb initialization file for that server and
they are also performed, via the control connection, on the server itself. If the server is set
up to reboot and reinitialize itself automatically from a local copy of the rvddb initialization
file, the system administrator should, when vddb has completed, copy the newly modified
initialization file to the server.

2.6. Remote Partition Management

lbe command savervd(8) copies virtual disk packs to tape, and zaprvd (see savervd(8» does
the reverse. If the server does not have a tape drive attached, it is possible to do this
operation remotely, by using RVD twice. 'lbe basic trick is to set up links in /dev so that
there are two names for every disk partition managed by the RVD server. The server uses
one of these names (e.g. vdsrv /) for virtual pack assignment; it uses the other name (e.g.

July 1987

IBM/4.3-SMM:6-6 Remote Virtual I>isk System

rdvdJrv I) for a single virtual pack that overlays the entire partition. That over1aying virtual
pack can then be spun up on a remote system that has a tape drive available. Once spun
up, the raw RVD device that represents the spunup virtual pack can be treated just like a
local disk partition on the remote system, and another copy of the R VD server can be
operated on that system. A symbolic link to that raw R VD device, but with the same
name as the link used for virtual pack assignment on the original system (e.g. vdsrv/)
allows a copy of the rvddb from the first server to be reused at the remote site. This trick
allows Javervd and zaprvd to think they are operating on the original server.

July 1987

Remote Virtual Disk System 18J\f/4.3-SMM:6-7

3. INSTALLING RVD

This section describes how to install RVD on an IBM RT PC or an IBM 6152 Academic
System running IBM/4.3. The first part gives a description of installation; the second part is a
step-by-step description of installation.

3.1. Description of RVD Installation

As the RVD system follows a client-server model, there are two kinds of installation pro
cedures. Two scripts in /etc/rvd facilitate these procedures: rvd.mkserver for the server
machine, and rvd.mkclient for the client machine. These scripts are user-friendly front ends
for R VO installation procedures.

3.1.1. Installing an RVD Server Machine

Installing an R VD server machine involves the following tasks:

• Creating the required virtual disks

• Configuring the fIle systems that the RVD disk packs will hold

• Starting the R VO server program

3.1.1.1. Creating Virtual Disks

Creating the disks requires assigning local physical disk drives to hold the required
file systems, and configuring a data base file rvddb for the RVD software (see
rvddb(5) and vddb(8)). The rvd.mkJerver script will prompt the uSer for existing
devices, and will create links (named vdJrvO through vd.rrv9) to these devices. These
links serve as R VO's interface to the physical disks. During the creation of the
rvddb data base, the vddb program prompts the user for information associated with
the partitioning of the chosen disk drives and the allotment of these partitions to
R VO disk packs. The program uses the information supplied by the user to create
the rvddb file, which is in turn used by the R VD server program.

3.1.1.2. Configuring the File Systems

The administrator for the R VO server system will determine what file systems the
RVD packs will hold. The decision is not particularly sensitive, except in the case
where one mounts the /usr fIle system via RVD. Because the /usr file system is par
ticularly large, it is desirable to mount it via R VD on client machines. Ilowever, the
/uJr file system contains files and directories which must be local to the client
machine. (Generally, any file or directory which must be writable must be local.)
When "usr" is specified as a pack name, the rvd.mk.rerver script creates and makes
symbolic links to a new file system, /.rite, which is set up to contain the necessary
local files and directories. Some of these files and directories, such as /urr/ spool, are
put in /site by default; others are put in the urr RVD pack by default. The user is
prompted to determine the disposition of files and directories in /usr which are not
recognized by rvd.mkserver.

Because there will most likely be occasional changes made to the usr pack, it will be
necessary to keep a backup usr pack on the server machine. Making changes to an
R VO pack requires that that pack be spun up in the exclusive read/write mode, an
operation which cannot be performed on a pack spun up by any other RVD user.
In general, when configuring an R VD server machine, one should keep in mind the
need for space for a backup copy of any R VD pack that will require changes while
in service.

July 1987

IBM/4.3-SMM:6-8 Remote Virtual Disk System

3.1.1.3. Starting the RVD Server Program

Finally, rvd.mkserver prompts the user to set the R VD command authorization
password, if it has not already been set in the file /etc/rvd/rvdautltor, and the RVO
server program rvdsrv is started. Full RVD services are available at the completion
of the rvd.mkserver script.

3.1.2. Installing an RVD Client Machine

Installing an RVO client machine involves the following tasks:

• Creating the rvdtab data base (see rvdtab(5» and, perhaps, modifying
/etc/fstab

• Rebooting the client machine to reconfigure and remount its file systems if
the /urr fIle system is being mounted by R VD.

• Setting up the rvdurr fIle tree if the rvdusr pack is to be used

3.1.2.1. Creating the rvdtab Data Base

The first thing the rvd.mkclient script does is check for the existence of the rvdtab file
(nominally at /etc/rvd/rvdtab). If the rvdtab file already exists, rvd.mkclient echoes its
contents to the user. Then rvd.mkclient prompts the user for the information
required to build or extend the rvdtab file. When the file is completed, its contents
are echoed to the user for inspection.

After dealing with the rvdtab file, rvd.mkclient creates the directories used as mount
points for selected R VD packs, e.g. rvdurr and src. If the urr pack is going to be
used, the /site directory is created and /etc/fstab is modified so that the local /urr fIle
system will be mounted at / site upon reboot. The w;r pack spun up from a server
comes with symbolic links to /site for all files and directories required to be kept in
local (non-R VO) storage. These links are set up automatically when the R VO usr
pack is created using rvd.mkserver.

3. J .2.2. Rebooting the Client Machine

Rvd.mkclient gives its user a 30-second waming before calling for a system shutdown
in one minute. After shutdown, the system automatically reboots, coming back up
with the appropriate RVO client configuration. At this time any packs designated as
"default" in the creation of rvdtab are spun up (barring network and server prob
lems). If the usr pack is being used, it is spun up at this juncture; any network or
server problems preventing the spinup of the usr pack will cause the reboot process
to hang. (This is one good reason to have the usr pack available on more than one
server machine.)

3. J .2.3. Setting up the rvdusr File Tree

Mter the client machine is rebooted, the user needs to spin up any packs currently
needed but not specified as default packs in the creation of rvdtah. If the rvdusr
pack is being spun up to have parts of the /urr file system accessed via RVD, the
user will want to execute the rvdusr.config script. This script goes through all files
and directories at the level directly below the root of the /rvdurr file system (that is,
the rvdusr pack) one at a time, and tells the user exactly how much local disk space
can be saved by accessing that file or directory via RVD. This part of the process
takes about 30 minutes. The user is then prompted for the choice between R VO
and local storage, and the appropriate action is taken. If the choice is local storage,
nothing is done (i.e. the file/directory stays on the local /urr file system disk). If the
choice is to put the file/directory on RVD, it is removed from the local disk and

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-9

replaced by a symbolic link to the corresponding file or directory in Irvdusr. The
space previously occupied by that file or directory on the local disk is then free for
other uses.

3.1.3. Notes on Installing RVD

When a client machine is mounting its IUfr file system via RVD, it is prudent to have
the lusr pack available on more than one server machine. A client machine cannot
afford to be without a lusr file system, since the executable code for many fundamental
IBM/4.3 utilities resides in the /usr directory. Thus the loss of access to the server for
the usr pack, for any reason, is a serious handicap and should be avoided through hav
ing multiple servers available with this pack. Rvd.mkclient reminds the user of this
when creating the rvdtab file.

The /usr/src file system is also a good candidate for installation as an RVD pack. It
must be mounted separately from the usr pack, as it is a distinct file system. Note that
this file system has the classic characteristics of a good R VD pack candidate: it requires
a large amount of disk space, will not be written to by the average user, and will be
written to or changed (by anyone) only infrequently. Such file systems can be accessed
in read-only mode by many users simultaneously, and rarely require any attention on
the part of the system administrator.

Care should be taken if new workstations are to be installed at your site via network
connections (see "RVO Installation Steps" below). The source machine for such
installations should in general NOT be an R VO server; if it is, the target machine will
end up being an identical server machine. (However, this might be useful for servers
featuring the usr pack.) Also, target machines should be installed over the network
before their configuration as R VO clients. This maintains full flexibility in that
configuration process.

3.2. RVD Installation Steps

This section describes the steps involved in insta1ling an RVD server machine and an RVO
client machine, and the scripts (letc/rvd/rvd.mkserver and letc/rvd/rvd.mkclient) used to do
this.

3.2.1. Installing an RVD Server Machine

Installing an R VD server machine is done by using the rvd.mkserver script, which
resides in /etc/rvd. This script provides an easy and thorough procedure for the installa
tion. This document describes the prompts provided by rvd.mkserver and the appropri
ate user responses.

3.2.1.1. Starting the rvd.mkserver Script

Before using rvd.mkserver, you must first su to root, because of the major changes
being made. Failure to do so wi11 result in the foHowing error message:

you must su to root to run thiJ JCripl

3.2.2. Creating Virtual Disks

Upon successful invocation, rvd.mkserver responds with the following:

creating virtual diJk drives:
we will create linkJ to existing devices, which
Jhould be drivers for exiJting local disk drives.

here is a liJt of currently mounted physical devices:

July 1987

IBM/4.3-SMM:6-10 Remote Virtual Disk System

What follows is the output of the command mount which shows the available mounted
physical disk drives. These drives are candidates for use in creation of the R VD virtual
disk drives. Note that there may also be unmounted disk drives which could also be
used.

There are 10 links, named vdsrvO through vdsrv9, that rvd.mkserver makes available.
Rvd.mkserver automatically keeps track of the next available link and presents the fol
lowing prompt, where X is between 0 and 9:

next available link is vdsrvX - make link? (Yin)

A response of y or yes (referred to as an Uaffinnative"response in this chapter) will con
tinue the process of creating the link; all other responses will cause rvd.mkserver to
move on to creating the rvddb data base file (see below).

An affirmative response to the above prompt generates this prompt:

which device to link to? (< list of devices> CR)

where < list of devices> is a list of (mounted) candidate devices.

Type your response in the following format:

/dev /disk _ driveX

or

disk driveX

or < CR >, where disk _ driveX is an existing block special or character .rpecial file. A
carriage return « CR >) will go on to the next available device; an incorrect response
will generate the error message:

device must be a disk driveX, (your reply) is not

Rvd.mkserver wil1100p until it receives a satisfactory reply. Once that reply is received,
it responds as follows, where X is again between 0 and 9:

linking /dev/vdsrvX to (your reply)

3.2.2.1. Creating the rvddb Data Ba..~ File

Next rvd.mkserver will respond:

creating rvd data base letc/rvdlrvddb ...

If there is already a file letclrvdlrvddb in existence, rvd.mkserver responds with:

/etc/rvd/rvddb already exists - it looks like this:

whereupon the contents of that file are echoed to the terminal. (Note that the fIle
may be empty!)

The rvddb file is a data base of RVD virtual disk partitions (see rvddb(5».
Rvd.mkserver gives the user an opportunity to create or modify rvddb with the fol
lowing prompt:

do you wish to modify /etc/rvdlrvddb? (y/n)

There is a standard RVD utility program vddb (see vddb(8}) used for creating and
modifying rvddb which rvd.mkserver calls upon an affirmative responsc, with this
message:

calling vddb (see vddb(8)).

As vddb is a fairly obscure program to the new user, rvd.mkserver offers the user a
glimpse of what a typical session with vddb might look like, with the prompt:

would you like to see an example first? (y/n)

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-11

An affinnative response generates the following:

a typical session might go like this:

Ready
> add physical
Physical disk file name: /dev/vdsrvO
Size in 512-byte blocks: 88536 (note: see diskpart(8) for more info on this)
Are you sure (y or n)? y

Ready
> add virtual
Virtual disk name: src
De.fcription: /usr/src file system
Read-only password:
Exclusive password: src yassword
Shared password:
Disk size in 512-byte blocks: 88536
Allowable modes: 5
Owning host « CR > for none):
Physical disk name « CR> for any): /dev/vdsrvO
Are you sure (y or n)? y

Ready
> quit

hit return key to begin vddb session:

Pressing < Enter> causes rvd.mkserver to invoke vddb. Invoking vddb requires the
RVD command authorization password, which rvd.mkserver will prompt you for.
Note that this password will be the null string (equivalent to a carriage return) if it
has not been previously set, thus the prompt for a password may be ignored. If it
has been set it will be found in /etc/rvd/rvdauthor, where it is readable by root.

3.2.2.2. Configuration of a nsr RVD Pack

After fmisbing the session with vddb, rvd.mkserver will search the /etc/rvd/rvddb data
base file to see if a pack named usr is being created. If it finds mention of such a
pack in /etc/rvd/rvddb, a complex series of actions is initiated. If your installation
does not include a usr pack, you may skip this section.

Rvd.mkserver signals that it has found that a usr pack is being created with this mes
sage:

lusr will be an rvd disk pack, must make arrangement.f...

The usr RVD pack is used to hold the /urr file system. The /usr file system is com
plex, and contains several directories which generalty must he local (i.e., non-RVD)
because they require write pennission. Thus rvd.mkserver proceeds to create a direc
tory Isite in the root (or /) file system to hold these local directories. First
rvd.mkserver checks to see if there is enough free space on the root file system for
the directories which it knows that /site must hold. If rvd.mkserver finds that there is
not enough space it will display the following:

there is not enough space on I for I.rite
we need X kilobytes for Isite
there are only Y kilobytes available on I
exiting

July 1987

IBM/4.3-SMM:6-12 Remote Virtual I>isk System

If this happens, rvd.mkserver exits and the system administrator must reconfigure the
local disks to provide the necessary space if he or she wishes to have the urr R VD
pack.)

If rvd.mkserver finds that there is sufficient space for /site, it will respond with the
following:

creation of /site will require X kilobytes in / file system
there are Y kilobytes free in / file .ry.rtem
do you wish to proceed with creating /site? (y/n)

An affirmative response generates:

proceeding ...

Any other response causes rvd.mk.5erver to exit with:

exiting

The above choice is given because the figures given by rvd.mkserl'er may indicate
that the creation of /site will leave an unacceptably small amount of free space on
the root me system. Thus the system administrator may wish to reconfigure the
local disks to allow more space on the rool file system.

If the user has chosen to proceed with the creation of /.rite, rvd.mk.rerver displays the
following:

creating Isite on I file system 10 slore local lurr file.r

At this juncture rvd.mk.rerver creates and/or set the correct access modes on /site,
then proceeds to move those directories it knows in advance must be local from /urr
to /site with this message:

moving (adm guest msgs preserve spool tmp) from /urr to /site:

Before actually moving a directory, rvd.mk.rerver will check to see if that directory
has already been linked to Isite. If it is, this message will appear:

lusr/ (directory) is already linked 10 /.rite/ (directory)

where (directory) is the directory in question. Also, rvd.mk.rerver will check to see if .
a directory of that name already exits in /.rite. If it finds one, this appears:

/site/ (directory) already exist.r - be.rt check it. we will proceed.

and no action is taken. If neither of the above errors occurs the move and link are
made and the directory name is echoed. When finished with all directories,
rvd.mkserver outputs:

... done.

Next rvd.mkserver moves and links /usr/lib/crontab to /.rite with the message:

moving and linking /u.rr/lib/crontab to /.rite/lib/cronlab

If /usr/lib/crontab is already linked to /.rile, this message will appear:

/usr/lib/crontab already linked 10 /sile/lib/crontab

Rvd.mkserver has a list of directories it expects to find in all /urr file systems, and
automatically disposes as R VD or local. It also checks for directories not in that list
and prompts the user to determine their disposal. That process begins with this

INote that there may be even more space required for {site than is indicated by rvd.mkserver at this step. The esti
mate given is based only on the space required by the directories that rvd.mkserver knows a priori must be local. There
may be other directories peculiar to your site that must also be local, and thus accommodated on {site.

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-13

message:

looking at other files & directories in /usr to make local or remote
default is local (not on rvd pack)

One by one rvd.mkserver gets the size of each directory, reviews the space left on the
root file system, and responds with:

looking at I usrl (directory) ...
there are X kilobytes left on /site
lurr/ (directory) requires Y kiiobyteJ
put lusr/ (directory) on urr rvd pack? (default iJ move to Isite) (y/n)

An affirmative response means that the directory will stay on the /urr file system
rather than being moved to /site. Such directories will then be available to RVO
clients on the usr R VO pack. Each client that uses the usr pack will save the "Y"
kilobytes of locai disk space required by that directory, but that client will generally
not be able to write to that directory. Thus write permiJsion and space savingJ are
the two factors that should be weighed in deciding this response. An affirmative
response generates the reply:

lusr/ (directory) will be on urr rvd pack

A non-affirmative response means that the directory should be local. Thus
rvd.mkserver attempts to move the directory to /site and make a link from /usr to
/site. If the directory is already a link to /site rvd.mkJerver displays:

/usrl (directory) already linked to /site/ (directory)

If a directory of the same name already exists on Isite, this appears:

I sitel (directory) already exists - best check it. we will proceed.

and rvd.mkserver proceeds without taking any action.

Otherwise, if all goes well, this appears:

moving and linking lusrl (directory) to / site/ (directory)

3.2.2.3. Setting the RVD Command Password

The RVO system requires a command authorization pa.uword to accompany all net
work commands for remote maintenance of the R VD server. If this password is not
already set (in the file letc/rvd/rvdauthor) rvd.mkserver prompts the user to set that
password:

setting rvd command authorization parsword
enter new password:

After the user has entered the password, rvd.mkserver responds:

installing new password in /etc/rvd/rvdauthor ... done.

3.2.2.4. Setting RVD Operation Modes

Another requirement for RVD operation is a file letc/rvd/rvdenable which contains
information on the operational modes of the RVD server. If it doesn't already exist,
rvd.mkserver creates that file and displays the following:

creating /etclrvdlrvdenable file ... done.

Note that this step requires no input from the user.

3.2.2.5. Starting the RVD Server Daemon

Finally, rvd.mk.rerver starts the R VD server daemon after displaying this message:

July 1987 .

IBM/4.3-SMM:6-14 Remote Virtual Disk System

starting rvd server program

and prompting for the command authorization password (which again will be null if
not previously set in /etc/rvd/rvdauthor). If the RVD server daemon was already
running at this point rvd.mkserver displays:

rvd server program is already running - no further actions will be taken

3.2.2.6. Setting the RVD System Message

An RVD server has an RVD system message option. This message is used to com
municate with R VO clients about new packs, changes to existing packs, etc.
Rvd.mkserver calls rvd.retm(8) to allow the user to set this RVO system message.
Rvdsetm(8) prompts for the message, which you type in and tenninate with a
< CTRL-O >. Then rvdsetm(8) will prompt for the RVO command authorization

password, which may again be the null string.

The installation of the R VO server is now complete. Rvd.mkserver exits with a
status of 0, and all RVO services are now available on this server machine.

3.2.3. Installing an RVD Client Machine

Installing an RVD client machine is done using the rvd.mkclient script, which resides in
/etc/rvd. This script provides an easy and thorough procedure for the installation. This
section describes the· prompts provided by rvd.mkclient and the appropriate user
responses.

3.2.3.1. Starting the rvd.mkclient Script

Before starting you must su to root, because of the major changes being made.
Failure to do so will result in the following error message:

you must su to root to run this script

Upon successful invocation, rvd.mkclient will first check to see if the R VO devices
exist in /dev. If not, rvd.mkclient will create them with a call to MAKEDEV after
presenting this message:

making rvd devices ...

If rvd.mkclient makes the R VO devices, it will next show the user what devices it
created:

here is a list of currently available rvd device.t:

crw-rw-rw- I root 17, o Aug 7 11:21 /dev/rvdOa
crw-rw-rw- I root 17, 1 Aug 711:21 /dev/rvdla
crw-rw-rw- 1 root 17, 2 Aug 7 11:21 /dev/rvd2a -

crw-rw-rw- 1 root 17, 3 Aug 7 11:21 /dev/rvd.1a
crw-rw-rw- 1 root 17, 4 Aug 7 11:21 /dev/rvd4a
crw-rw-rw- 1 root 17, 5 Aug 7 11:21 /dev/rvd5a
crw-rw-rw- 1 root 17, 6 Aug 7 11:21 /dev/rvd6a
crw-rw-rw- 1 root 17, 7 Aug 7 11:21 /dev/rvd7a
crw-rw-rw- I root 17, 8 Aug 7 11:21 /dev/rvd8a
crw-rw-rw- 1 root 17, 9 Aug 7 11:21 /dev/rvd9a
brw-rw-rw- 1 root 6, o Aug 7 11:21 /dev/vdOa
brw-rw-rw- 1 root 6, 1 Aug 7 11:21 /dev/vdla
brw-rw-rw- 1 root 6, 2 Aug 7 11:21 /dev/vd2a
brw-rw-rw- I root 6, 3 Aug 7 11:21 /dev/vd3a
brw-rw-rw- I root 6, 4 Aug 7 11:21 /dev/vd4a
brw-rw-rw- I root 6, 5 Aug 7 11:21 /dev/vd5a

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-15

brw-rw-rw- I root
brw-rw-rw- I root
brw-rw-rw- I root
brw-rw-rw- I root

6, 6 Aug 7 11:21 /dev/vd6a
6, 7 Aug 7 11:21 /dev/vd7a
6, 8 Aug 7 11:21 /dev/vd8a
6, 9 Aug 7 11:21 /dev/vd9a

Note that this process requires no input from the user.

3.2.3.2. Creating rvdtab

The next step rvd.mkclient takes is to give the user a chance to create or modify the
/etc/rvd/rvdtab file (see rvdtab(5)). Rvdtab stores infonnation concerning the RVD
packs that this client uses; rvd.mkclient will allow the user to easily build or extend
this file. Rvd.mkclient announces this phase of the installation procedure with this
message:

creating/modifying /etc/rvd/rvdtab ...

First rvd.mkclient checks for the existence of /etc/rvd/rvdtab. If the file is found,
rvd.mkclient gives this message:

/etc/rvd/rvdtab already exists - it lookr like this:

After this the contents of /etc/rvd/rvdtab are echoed to the user. (Note that the file
may be empty!)

Then rvd.mkclient gives the user the chance to add new R VD packs to the rvdtab
file with this prompt:

enter a new pack into database? (y/n)

An affinnative response to this query causes rvd.mkclient to prompt the user for all
the fields required for an rvdtab entry. This process will be repeated until
rvd.mkclient receives a non-affmnative response from the user. If rvd.mkclient
receives such a non-affinnative response when there was previously no rvdtab file
and no packs have been added to rvdtab, this message appears:

you must create an rvdtab file to have an rvd client machine
exiting

and the script exits.

3.2.3.2.1. Pack Name

First rvd.mkclient prompts for the R VD pack name. This name must be the
same as the pack name on the server machine, typically something such as usr or
src. (Note that the pack name is not necessarily the same as the pack's path
name; for example, the pack named usr is mounted as /usr.) Rvd.mkclient asks
for the pack name:

what will the pack's name be?

Type the pack name after this prompt.

3.2.3.2.2. RVD Pack Mounting Status

Next rvd.mkclient asks the user what the mounting status of this pack is to be.
The pack may be specified as an essential pack which must be mounted for client
operation (as with the usr pack), in which case there will be several attempts to
spin it up at boot time; as a "default" pack for which one attempt to spin up
should be made at boot time; or as a pack which is not to be mounted automati
cally at boot time. Rvd.mkclient asks for this infonnation with this message:

is this pack to be mounted by default (d) or is it
absolutely-must-be-mounted (a)? (default is no mount)
enter a, d, or < Enter> :

July 1987

IBM/4.3-SMM:6-16 Remote Virtual Disk System

If rvd.mkclient does not recognize the user·s response, it goes back t,o the begin
ning of the add-new-pack loop with this error message:

flag (response) is not known; starting over

where (response) is the user·s input.

If the name of this pack is urr, rvd.mkclient does not prompt the user for input,
but rather responds with:

usr pack is being made a must-be-mounted pack

This done because the usr pack is assumed to contain the /u.tr file system,
without which the functionality of a UNIX opcrating system machine is severely
compromised.

3.2.3.2.3. RVD Pack Spinup Modes

Now rvd.mkclient needs to know what spin up mode(s) to allow for this pack.
There are three options: read-only, exclusive read/write, or both. Rvd.mkclient
prompts the user with:

what spinup mode, read-only (r), exclusive read/write (x),
or both (rx), do you want? (default Lr read-only)

If rvd.mkclient gets either a null string or an unrecognized response it responds
with:

using default (read-only) mode

and will make this pack a read-only pack in rvdtab.

3.2.3.2.4. Server Machine for RVn Pack

Next rvd.mkclient needs to know upon which server this pack resides. Since hav
ing the usr pack spun up is essential to the normal operation of an R VD client
which uses that pack, rvd.mkclient reminds its user of the importance of having
the usr pack available on more than one server for reliability'S sake with this
message (given only if the pack name is urr):

NOTE: we sugge.rt that usr pack be available on more than one .rerver

(Note that only ONE server machine may be specified per entry in rvdtab.)

Rvd.mkclient then prompts with:

on what server(s) doe.r thi.r pack reside?

If the response received is null (i.e .• < Enter» rvd.mkclient gives this message:

this is not an optional field ...

and prompts for the server machine again.

3.2.3.2.5. RVD Drive Number

There are ten drives available for R VD packs. A particular drive number must be
specified:

what drive number (0-9)? (no default)

If a null or unrecognized response is received. rvd.mkclient responds with:

sorry, mu.rt have drive number

and prompts for the drive number again.

3.2.3.2.6. Mount Point

Next comes the issue of where this pack will be mounted. This is an optional
field, with defaults for some pack names:

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-17

where do you want to mount thi.r file .ry.rtem? (default i.t; /ut;r for
u.rr pack, /rvdu.rr for rvdu.rr, and /urr/.rrc for .rrc)

Here you should enter the pathname of the directory where this R VD pack is to
be mounted when spun up.

3.2.3.2.7. RVD Pack Password

There may be passwords required for access to an R VD pack. If these passwords
exist and are known, they may be entered at this prompt:

enter the pa.r.rword for thi.r pack, if any:

Null responses to the above prompt are typical.

3.2.3.2.8. Comments in rvdtab

There may be (single line) comments associated with each pack in the rvdtab file.
This comment is optional, and can be typed in response to this prompt:

any comment to a.r.rociate with thi.r pack in tlte data base entry?

3.2.3.2.9. Finishing the Loop

At this point rvd.mkclient will ask again if the user wishes to enter another pack
in rvdtab. The user may enter as many or as few packs as desired. \Vhen a non
atnnnative response to the offer to enter a new pack causes rvd.mkclient to exit
that loop and the user has altered rvdtab by adding one or more packs, this mes
sage appears:

/etc/rvd/rvdtab now looks like tlti.r:

and the contents of the rvdtab me are echoed to the user.

3.2.3.3. Creating Mount Points

It is the user's responsibility to provide the mount directories for an RVD pack (see
mkdir(8)). In the case of the u.rr pack, rvd.mkclient assumes that this mount point
already exists. In the case that R VD packs rvdut;r and/or src have been added to
rvdtab, and no other mount point was specified by the user when prompted,
rvd.mkclient will respond:

making /rvdu.rr a.r remote mount point

or

making /u.rr/src a.r remote mount point

or both. Rvd.mkclient creates the directories mentioned, if these messages appear.

3.2.3.4. Rebooting the Client Machine for usr Pack

If the usr RVD pack is being used, the file systems on the client machine must be
reshuffied to move the /u.rr file system to /Jite, thus clearing the way for the u.rr pack
to be mounted as the /usr file system. Rvd.mkclient will do this automatically, after
giving the user this warning:

starting major cltange.r in 30 Jeconds; interrnpt now
if you don't want your /usr mounted via rvd

At this juncture, rvd.mkclient will edit /etc/ft;tab to have the /u.rr file system
remounted as /site, if not interrupted by the user with < CTRL-C >. Then
rvd.mkclient gives a second warning:

You have 30 seconds to cancel an automatic system reboot

If not interrupted in this time, rvd.mkclienl will call for a system shutdown in one
minute:

July 1987

IBM/4.3-SMM:6- J 8 Remote Virtual Disk System

shutting down in I minute ...

When the machine has been successfully rebooted it will have the urr R VD pack in
place and spun up. Note that the lu.rr file system has been moved to Isite at this
point and may have redundant files (to be found on the usr RVD pack) which may
be culled to save disk space.

3.2.4. Configuring an rvdusr Pack on a Client Machine

The rvdusr RVD pack is used when a client does not want to rely upon a server
machine for its entire lusr file system, but would like to access selected directories in
lu.rr via R VO in order to save space on local disks. When a client machine decides to
use the rvdusr pack, the system administrator needs to decide which files and directories
in lusr to delete from local storage and link the rvdu.rr pack (which is mounted as
Irvdusr by default). The rvdusr.config script found in letclrvd is designed to facilitate this
process.

3.2.4.1.1. Invoking rvdusr .config

The user of rvdusr may need to have special permissions in order to remove the
necessary directories from lusr. Check the ownership and permissions in lusr
before running this script, or simply .ru to root before using the script.

3.2.4.1.2. Running rvdusr.config

Rvdusr checks to see what directories are available in Irvdurr and, one by one,
offers you the choice of removing the corresponding directory from the local lusr
file system and replacing it with a link to rvdurr. After this is done, all accesses to
that directory are made via RVD and the space taken up by that directory on the
local lusr file system is freed for other uses. Note that R VI) access to files and
directories generally read-only; this should be taken into account when deciding
about whether to keep a directory locally or access it via R VD.

For each directory in Irvdusr rvdusr.config will first display this message:

looking at lusrl (directory) ...

where (directory) is the next directory, alphabetically. At this point rvdurr.config
gets the amount of space that that directory occupies on the local disk, and
comes back with this:

you can save X blocks by pUlling (directory) on rvd
put (directory) on rvd? (keep local i.r default) (Yin)

An affrrmative response causes rvdusr.config to remove (directory) from the lusr
file system and to replace it with a symbolic link to Irvdurr with this message:

linking lusrl (directory) to IrvduJrl (directory} ...

and after a brief pause during which the changes are made:

done

If the response is not affirmative, rvdurr.config uses the default action, which is to
leave things as they are:

keeping lusrl (directory) on local di.rk drive

After all directories in Irvdusr are covered, rvdurr.config exits with a status of O.

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-19

3.2.4.1.3. Recovering RVD Directories to l,ocal Storage

Should the user(s) of the RVD client machine ever wish to return any directory
of /rvdusr to local storage in /u.rr, the symbolic link to /rvdurr can be removed
and the directory copied from /rvdurr back to /usr.

July 1987

IBM/4.3-SMM:6-20

4. RVD PROTOCOL SPECIFICATION

This section is optional reading.

4.1. Introduction

4.1.1. Motivation

Remote Virtual Disk System

The Remote Virtual Disk (RVD) Protocol provides the ability to dynamically attach
arbitrary disks of different sizes to arbitrary computers. It is especially useful when the
computers are physically remote or when user intervention is impractical (e.g. when
local disks are non-removable, removable packs are expensive, or a wide variety of disk
sizes is desired). The RVD Protocol allows either exclusive or shared use of remote
devices. The latter mode is useful as a low overhead means of sharing read-only data
among physically remote machines.

4.1.2. Scope

The Remote Virtual Disk Protocol simply allows network access to additional disk
drives. The protocol does not provide any services beyond those provided by existing
disk drives. Specifically, the RVD Protocol:

• does not implement sharing, or any form of object storage or naming mechanism,
other than that found on any disk drive.

• does not guarantee reliable writes to the disk.

• does not attempt to resolve architectural byte ordering differences among
machines.

This design of this protocol has been concerned primarily with simplicity of implemen
tation, ease of use, and performance.

4.1.3. Use

The RVD protocol is layered on top of the DoD IP protocol and an IP protocol
number of 66 decimal (102 octal) has been assigned. 'Ibis protocol corresponds to level
three of the ISO networking standard.

The R VD protocol allows a client machine to communicate with a remote server
machine's disk drives as if they were local drives. On the client side, the protocol is
used by the I/O subsystem software, typically a device driver, to communicate with the
remote drive. All client software would then use the client device driver to treat the
remote drive as if it were just another local device. On the server side, either an appli
cation process or the addition of operating system support could be used to make the
connection between protocol requests and local disk requests. 'Ibe level at which the
server is implemented is not part of this specification.

4.2. Specification

The RVD Protocol is used in a client/server scenario. The client makes requests and the
server responds. The protocol defines four request/response pairs and an error response.
The pairs are (request/response):

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-21

SPIN-UP/SPIN-ACK:
The client requests use of one of the server's drives, and the server acknowledges the
client's spin-up request.

SPIN-DOWN/SPIN-OOWN-ACK:
The client disconnects from one of the server's drives, and the server acknowledges
the disconnection.

READ/BLOCK:
The client requests one or more blocks from a spun-up device, and the server
responds with the requested data blocks.

WRITE/WRITE-ACK:
The client writes blocks to a spun-up device, and the server acknowledges one or
more write requests.

ERROR:
The server reports a protocol error while processing a client request; e.g., an error
response would be used if the client had omitted a required field in an R VO packet.
This response is not used for operation errors; e.g., if a failure occurs when writing to
a physical disk then this failure is reported in the status word of the WRITE-ACK
response.

The request/response dialog is conducted by exchanging packets between the client and
server. All RVO packets consist of a standard header followed by data or parameters
specific to the packet type. Descriptions of the R VI) packet header and of each packet type
follow.

July 1987

IBM/4.3-SMM:6-22

4.2.1. RVD Packet Format

Generalized Fonnat of R VD Packet

Remote Virtual Disk System

< Byte 0> I < Byte I > I < Byte 2> I <Byte 3>
Packet Type I Padding

Drive
Nonce
Index

Checksum
Reserved

Specific Parameters

• , Packet Type

This byte specifies one of nine R VD packet types:

• Padding

SPIN-UP
SPIN-ACK
SPIN-DOWN
SPIN-DOWN-ACK
READ
BLOCK
WRITE
WRITE-ACK
ERROR

I RVD Version

These two bytes are unused by most of the packet types. SPIN-UP and ERROR
do allocate the first byte of this field for their own purposes.

• R VD Version

The client and server set this field to the version number of the RVD Protocol
being used. If either party discovers a mismatch between version numbers then an
error occurs. If the server makes the discovery it returns a protocol ERROR
packet to the client. This packet will describe the mismatch error.

• Drive
An index that represents the drive number on the client machine. It is used by
the client to specify a virtual disk drive on the server. This index is an integer
between zero and (2++32)-1 and is encoded as a 32 bit binary integer. Drive
numbers are unique on a given client but there is no correlation between drive
numbers on different clients. The server uniquely identifies a virtual disk by the
client-drive pair. The server returns the given drive number in its response to the
client.

• Nonce
A 32-bit unique identifier. The nonce is an unsigned integer between zero and
(2++32)-1, encoded as a 32-bit binary integer. Since the nonce is a fixed range
number it will be unique only over a fixed period of time. It is assumed to be
unique for an interval of time that is several times the lifetime of a single packet.
The nonce is used to identify a request/response dialog between the client and
server. As such, the client inserts a nonce value into its request packet and the

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-23

server will insert the same nonce into the appropriate response packet.

• Index

The index is a hint to the server on how to find connection specific information.
(A connection is a virtual drive/client drive pairing.) lbe index has no predefined
meaning and the server may use it as any manner of hint desired. The only client
request which does not specify an index is SPIN-UP. lbe responding SPIN
ACK packet will contain, among other things, the server Index, representing the
connection that was created by the SPIN-UP request. It is up to the client to
return this index with every packet that goes out to this virtual drive.

If the user ever submits an incorrect Index the server will still find the connection
information. It will then send an ERROR packet specifying the correct index.
The server would still process the request normally.

• Checksum

A 32-bit checksum of the packet. The check!ium is the only assurance of reliable
data transfer. It is assumed that if the checksum is correct then the data is the
same as on the disk.

The checksum is computed by adding together all the 32-bit words in the packet.
The checksum field is considered to be zero for this computation. If the packet
does not end on a 32 bit boundary, then the check!ium computation assumes that
the packet is padded out by zeros. The low order 32 bits are then used as the
checksum. (The 32 bit sum is taken modulo 2++32.) Checksum is computed in
Vax byte ordering.

• Specific Parameters

See the descriptions of the packet types for additional parameters.

July 1987

IBM/4.3-SMM:6-24

4.2.2. Packet Format: SPIN-UP

Format of SPIN-UP Packet

< Byte 0> <Byte 1> < Byte 2>
Packet Type Mode Padding

Drive
Nonce
Index

Checksum
Reserved

Pack Name
Capability

Padding

Remote Virtual Disk System

< Byte 3>
RVD Version

Blocking Factor

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.2.1. Held Definitions for Packet Type: SPIN-UP

• Mode
This byte describes the access mode of the virtual drive. Once a virtual drive is
spun-up in a particular mode any other client who wants to use that same
drive (even from another machine) must open it in the same mode. The mode
is one of three values:

READ-ONLY gives the client read-only access to the drive. Any other
client can read the drive as long as they have also spun it up in READ
ONLY mode.

SHARED allows read/write access to the drive by more than one user.

EXCLUSIVE gives the client read and write access to the disk, but locks
the disk so that no other client can access the disk while it is spun up.

• Index
this is the only packet type that docs not specify an index. The server will
return an appropriate index in the SPIN-ACK response packet. l11is value
must then be included in all future client request packets.

• Pack Name

An ASCII string representing the name of the virtual disk pack that a client
wishes to associate with the specified local disk drive. The pack name field is a
fixed length string of 32 characters. Each of these characters is represented as
an 8-bit byte. The string is nun terminated unless the name length is greater
than or equal to 32 characters. In that case, the string is truncated to the 32-
byte pack name field size.

• Capability

This field is, like the pack name, a maximum 32-character, null terminated,
ASCII string. There are separate capabilities for each drive in each of the
spin-up modes. If the mode were, for example, READ-ONLY, then the client
would fill in the capability field with the READ-ONLY capability string for

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-25

this drive.

• Blocking Factor

This is the read blocking factor, the maximum number of blocks the client can
read at one time in a single packet. More cxactly, it is thc maximum number
of 512 byte data blocks that the client will acccpt in a BLOCK packct type. If
the blocking factor is greatcr than thc maximum number of blocks thc scrver
can send it will be modified in the SPIN-ACK response packet.

4.2.2.2. Operation

Spinning up a disk establishes a conncction bctwecn the server's virtual drive and the
client's local drive. For examplc, if thc client MYMACIIINE wishes to spin up the
remote virtual disk "Foo" as his local drivc 3, thcn he sends a SPIN-UP packet to
the server. He fills in Packet Typc with SPIN-UP and Mode with a valid mode. He
fills in Drive with the integer 3. He also supplies thc capability for that mode and
places the string "Foo" in the Pack Namc field.

Upon receipt of the SPIN-UP packct, the scrver would attcmpt to fulfill the request.
If everything is correct (the drive cxists, the capability is correct and so on), the
server associates virtual disk "Foo" with drive 3 from client MYMACIIINE. From
now on, any reference from client MYMACIIINE to drive 3 will refer to virtual disk
"Foo." The servcr responds with a SPIN-ACK packet back to the client.

If the server detects an error, it witl rcply with an ERROR packct. This ERROR
packct can be caused by many different classcs of errors. First, "real" disk errors; for
example, the physical disk containing "1'00" is trashed, or any error that might
occur when accessing a physical disk. This is diffcrcnt than the typical case of a
computer connected to a physical disk. When accessing a local drive, the error
would not be detected until an operation was performcd on the drive.

Another type of error is invalid argument values such as a non-existent virtual drive,
a bad password, or a bad checksum. Thcre can also be inconsistency errors: a disk is
already spun up as drive 3, or another clicnt has disk "Poo" spun-up in a conflicting
mode. All of these errors will be rcportcd via the ERROR reply.

July 1987

IBM/4.3-SMM:6-26 Remote Virtual Disk System

4.2.3. Packet Format: SPIN-ACK

Format of SPIN-ACK Packet

< Byte 0> I < Byte I > I < Byte 2> I <Byte 3>
Packet Type I Paddin~ I RVD Version

Drive
Nonce
Index

Checksum
Reserved

Number of Blocks on Drive

Burst I Queue Length
Padding I Blocking Factor

(See the section on RVD Packet Ponnat for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.3.1. Field Definitions for Packet Type: SPIN-ACK

• Index
The client must save the server's index for use in all future transmissions.

• Number of Blocks

The server returns the size of the drive in 512 byte blocks. The client should
not send any read or write requests for blocks outside of the drive boundaries.
If the client does attempt an out of bounds request the server will inform him
using the status word in the BLOCK or WRITE-ACK reply packet. The
ERROR packet is primarily used for protocol errors.

• Burst
This is a 2-byte integer that represents the maximum number of packets the
server will handle in a single transmission. 'Ibis value and the blocking factor
value are then used by the client when partitioning read and write requests.

• Queue Length

This is the maximum number of outstanding requests the server will handle for
a virtual drive at anyone time. This value is different than burst size. The
client can send multiple transmissions of burst size packets until the number of
packets equals queue length. The client has then saturated the server for this
drive and must wait for the server's response.

• Blocking Factor

This is the read blocking factor, the maximum number of blocks the client can
read at one time in a single packet. lbe value of this field is not necessarily
the same value transmitted by the client in the SPIN _ UP packet. If the
transmitted blocking factor is greater than the maximum number of blocks the
server can send, it will be modified in the SPIN-ACK response packet.

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-27

4.2.3.2. Operation

The server sends a SPIN-ACK packet in response to a valid SPIN-UP packet. This
indicates to the client that the connection request for the server's virtual drive to the
client's local drive was successful.

In addition to returning the size of the drive and other connection details, the server
provides an index value. Although it is recommended that the client usc this index
value in all future requests, the server can operate with incorrect Index values. If the
server receives a bad index, it will send an ERROR packet of BAD-INDEX type to
the user, but the operation will still occur correctly. The most likely cause of a bad
index would be the client crashing then attempting to reuse the connection. In all
probability the index would be lost, but the BAD-INDEX packet would correct
that.

An example helps in explaining the difference between burst size, queue length, and
blocking factor. Suppose the client must read forty blocksand that the SPIN-ACK
response has reported a blocking factor of two, a burst size of five, and a queue
length of ten. The blocking factor limits each read request to two blocks. Thus the
client must transmit two sets of five read request packets for the first twenty blocks,
wait for the server to respond with the data, then transmit the next two sets of five
requests.

July 1987

IBM/4.3-SMM:6-28

4.2.4. Packet Format: SPIN-DOWN

Fonnat of SPIN-DOWN Packet

< Byte 0> I < Byte 1 > T < Byte 2 >
Packet Type I Padding

Drive
Nonce
Index

Checksum
Reserved

Capability

Remote Virtual Disk System

I < Byte 3>

I RVD Version

(See the section on R VD Packet Ponnat for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.4.1. Field Definitions for Packet Typc: SPIN-DO\VN

• Index

Should be the index returned by the server for this drive in the SPIN-ACK
packet.

4.2.4.2. Operation

If a user wishes to spin down the virtual disk in his local drive 3, then he simply
sends a SPIN-DOWN packet to the server. lIe fills in Packet Type with SPIN
DOWN, and he fills in drive with the 32 bit integer 3. Upon receipt of the SPIN
DOWN packet, the server would attempt to tenninate the connection between the
client, local drive 3, and the virtual drive. If this worked correctly, the server sends a
SPIN-DOWN-ACK back to the client. If the drive was not spun up, or there were
some other error, then the server replies with an ERROR packet. It is not polite for
a user to consider his disk spun down until he receives the SPIN-DO\VN-ACK
from the server.

.July 1987

Remote Virtual Disk System

4.2.5. Packet Format: SPIN-DOWN-ACK

Fonnat of SPIN-DOWN-ACK Packet

< Byte 0> I < Byte 1 > I < Byte 2> I

IBM/4.3-SMM:6-29

< Byte 3 >
Packet Type I Paddin~ I RVD Version

Drive
Nonce
Index

Checksum
Reserved

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.5.1. Field Definitions Packet Type: SPIN-I>O\VN-ACK

4.2.5.2. Operation

This is the success acknowledgment to a client's spin-down request. Drive, nonce,
and index have the same values as those specified by the client.

July 1987

IBM/4.3-SMM:6-30

4.2.6. Packet Format: READ

Format of READ Packet

< Byte 0> T < Byte 1 > T < Byte 2> I
Packet Type I Paddinlt I

Drive
Nonce
Index

Checksum

Reserved
Starting Block Number

Block Count

Remote Virtual Disk System

< Byte 3>

RVD Version

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.6.1. Field Definitions Packet Type: REAl>

• Starting Block

The number of the first block that the client wishes to read. This is an abso
lute offset from the beginning of the virtual drive. This number is a 32 bit
integer with a range of zero to (2++32)-1.

• Block Count

The number of blocks that the client wishes to read.

4.2.6.2. Operation

To read data from a local drive, the client sends a READ packet with the appropri
ate values. (This drive must have been associated with a virtual disk through a pre
vious spin-up request.) The Drive field is filled with the drive number; the nonce,
index, and checksum fields are initialized appropriately; and the desired block offset
and number of blocks are written into the packet. Upon receiving the packet, the
server looks up the connection between the client's local drive and the server's vir
tual drive.

If the connection exists, the server then tries to send the requested data to the client.
If the read request is within the bounds of the disk and the physical read is success
ful, the server responds with a H LOCK packet. A H LOCK packet contains a block
of data, a block number, and a 32 bit status word.

If the server detects an error, it still sends a HI J)CK packet, although it has a non
zero status word. Errors can be the result of physical errors on the disk or any of the
assorted things that can go wrong on a disk. If the data in the packet is valid, then
the invalid-data field in the status word must be zero. The count field in the status
word is set to the number of times the server attempted to read the block before it
was successful. (I.e., if the first try succeeded, the count is zero, if the second try suc
ceeded, count is one, and so on.) If the count exceeds the size of the field, then
count is set to the maximum in the field. If the Start Block was invalid, then the bad
block address field in the status word will be set. If a multiple block read extends
beyond the drive boundaries, then only the in-bounds disk blocks will be returned

July 1987

Remotc Virtual Disk Systcm IBM/4.3-SMM:6-31

and the bad-block address field in the status word will be set.

The only time the server sends an ERROR packet in response to a READ is in the
case of a malfonned READ packet. Protocol errors cause ERROR packets and
disk errors cause non-zero status word. Typically ERROR packets wilt he scnt for
invalid checksums, bad index, or a zero in the Block Count field.

READs can timeout. This protocol does not guarantee delivery of packets. It is
assumed that most packets will reach their intended destination, but there are no
guarantees. It is up to clients to handle READ timeouts the same way they would
treat physical disk timeouts.

July 1987

IBM/4.3-SMM:6-32

4.2.7. Packet Format: BIJOCK

Fonnat of BLOCK Packet

Remote Virtual Disk System

< Byte 0> I < Byte I > I < Byte 2 > I < Byte 3>
Packet Type I Padding 1 RVD Version

Drive
Nonce

Index
Checksum
Reserved

Block Number
Drive Status

Data

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.7.1. Field Definitions Packet Typc: Bl.OCK

• Block Number

This identifies this block in the virtual disk.

• Drive Status

Drive Status is a 32-bit status word describing the status of the virtual disk.
Disk errors are reported through this word. Protocol errors are reported with
an ERROR packet.

• Data
This is data read from the virtual disk. There are (512 x blocking_factor) bytes
of data in this field. The check-rwn guarantees reliable data transmission. (The
protocol cannot guarantee the accuracy of the disk to protocol data transmis
sion.)

4.2.7.2. Operation

The BLOCK packet is the response to the READ request. It includes the data
requested and enough information to allow the client to determine which request
this is in response to. (Note that there can be many outstanding READ requests,
even in the case where a drive's access is restricted to a single outstanding request.
A client can always have requests out to more than one drive.)

In case of an error, the server fills in the appropriate hits in the status. The client
must check the data-valid field in the status as the data may be valid even in the case
of a non-zero status.

July 1987

Remote Virtual Disk System

4.2.8. Packet Format: WRITE

Fonnat of WRITE Packet

< Byte 0> I
Packet Type I

< Byte 1 > I < Byte 2 > I
Padding I

Drive
Nonce
Index

Checksum
Reserved

Block Number
Total Blocks in Reguest

Index of this Block in Reguest
Data

IBl\1/4.3-SMM:6-33

< Byte 3 >

RVD Version

(See the section on RVD Packet Fonnat for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.8.1. Field Definitions for Packet Type: \VRITE

• Block Number

This is the starting block number for the write. It is an integer that represents
the absolute block offset from the beginning of the virtual drive for this data
block.

• Total Blocks

This is the total number of blocks in a sequence of write requests.

• Block Index

This is the block number of this request.

• Data
This is the data that is to be written to the virtual drive starting at the specified
block number. The data bytes are ordered in the packet exactly the way they
are ordered on disk. The bits in a byte are ordered in accordance with the IP
specification. The size of the data field is detcnnined by subtracting the size of
the header fields from the total size of the packet. The packet size is given by
the IP protocol.

4.2.8.2. Operation

The WRITE packet type has been designed to be sent as a burst of packets. If a
client wishes to write data to the virtual disk, it creates a sequence of packets, each
with the same Total Blocks value but incrementing the Block Number and Block
Index. The data is then copied to the data fields of these sequential packets in
1024/512 byte chunks.

Upon receipt of this burst of WRITE packets the server orders the packets, copies
the data to a single contiguous buffer, and does the write as one operation. The
server sends a WRITEACK if the write was a success, but only for the first packet
in the burst.

July 1987

IBM/4.3-SMM:6-34 Remote Virtual Disk System

The WRITEACK includes a 32-bit status word. In the case of a disk error, a \VRI
TEACK with a non-zero status word will·.be returned. Generally these will be the
same type of errors as on a READ request. Additionally, if you try to write to a
READ-ONLY disk, then the no-write-pennission field is set in the status word.
Protocol errors will cause ERROR packets to be scnt.

Writes can timeout. Again, clients arc expected to deal with a \VRITE timeout in
the same way in which they would deal with a disk timeout.

.July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-35

4.2.9. Packet Format: WRITEACK

Format of WRITEACK Packet

< Byte 0> I < Byte 1 > I < Byte 2> I < Byte 3>

Packet Type I Padding I RVD Version
Drive

Nonce
Index

Checksum
Reserved

Block Number
Drive Status

Number of Blocks for this ACK

(See the section on R VD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.9.1. Field Definitions for Packet Type: WRITEACK

• Block Number

The number of the block that the server is acknowledging having written.

• Status

The 32-bit Status word that represents the state of the disk and reports errors
in the write procedure.

• Number of Blocks

The number of blocks that have been successfully written.

4.2.9.2. Operation

WRITEACK is the response to the \VRITE request. It signals the completion of
the WRITE request. The WRITEACK is not scnt until after the burst of write
requests has been written to the physical disk. Only one WR ITEACK is sent per
burst.

Disk errors are reported through the status word.

July 1987

IBM/4.3-SMM:6-36

4.2.10. Packet Format: ERROR

Format of ERROR Packet

< Byte 0> I < Byte 1 > I < Byte 2> I
Packet Type I Error Type I Padding I

Drive
Nonce
Index

Checksum
Reserved

Rcmotc Virtual Disk System

< Byte 3 >
RVD Version

Up to RVDDSIZE (512) Bytes of
Error Dependent Data

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check
sum.)

4.2.10.1. Ficld Definitions for Packct Type: ERROR

• Error Type

A byte representing the type of error that the ERROR packet is reporting.

4.2.10.2. Operation

ERROR packets are sent out when the server wants to tell the user that some error
has occurred. They are usually sent when the error was in the protocol, or some
other high level thing wrong with the virtual disk system. Errors that are roughly
equivalent to those that a physical disk would give are typically returned in the 32
bit status word that is part of BLOCK and \VRITEACK.

July 1987

Remote Virtual Disk System

4.2.11. RVD Protocol Constants

RVDVERSION

1+
+ IP protocol number
+1

4

RVDPROTO 66

I + Packet types +1
RVDSPIN
RVDSDOWN
RVDREAD
RVDWRITE
RVDSPACK
RVDERROR
RVDACK
RVDBLOCK
RVDWACK

1+
+ Status word masks
+1

RVDSTVAL
RVDSTCNT
RVDSTADR
RVDSTWRL

1+
+ Opening modes
+1

RVDMRO
RVDMSHR
RVDMEXC

1+
+ Error types
+1

RVDENOER
RVDEND
RVDEBPWD
RVDEOMD
RVDECKSM
RVDEIDX
RVDEPACK
RVDESPN
RVDEBMD
RVDEPKT
RVDENAH

1
2
3
4
17
18
19
20
21

0001
0036
0040
0100

0001
0002
0004

0000
0001
0002
0003
0004
0005
0006
0007
0010
0011
0012

IBM/4.3-SMM:6-37

I + Current protocol version +1

1+ SPIN-UP packet +1
1+ SPIN-DOWN packet +1
1+ READ packet +1
1+ WR ITE packet +1
1+ Ack for SPIN-UP +1
1+ ERROR packet +1
1+ Ack for SPIN-DO\VN ·1
1+ Block of data +1
1+ Ack for WRITE +1

I + If 0 then valid data +1
I + Count of tries on foreign end - I +1
I + Bad block address + I
1+ Write attempted on read-only disk +/

1+ Read-only mode +1
/ + Shared mode + /
/+ Exclusive mode + /

1+ No erro r + /
1+ Non-existent drive • /
/+ Bad password for mode + /
1+ Already open in a different mode +1
/+ Invalid Checksum + /

/ + Index correction + /
1+ Non-existent disk-pack + /
/+ Drive already spun up +/
1+ Bad mode +1
1+ Unknown packet type +/
1+ Non Active Host +1

July 1987

IBM/4.3-SMl\1:6-38

RVDEXMD
RVDEZBL
RVDETBL
RVDEPNM
RVDETCG
RVDETGH
RVDESNA
RVDEIDA

RVDERQU
RVDETIM
RVDEBVER

0013
0014
0015
0016
0017
0020
0021
0022

0023
0064
0065

Remote Virtual Disk System

1+ Pack was spun up in EXCLUSIVE mode +/
1+ Zero blocks requested +/
/+ Too many blocks requested +/
1+ Pack not physically mounted + /
1+ Too many connections for this server +1
I + Too many connections for this host + /
I + Server not currently active + /
1+ Identical pack already spun up in this

drive, in the requested mode + /
I + Requested mode unavailable. + /

1+ Timeout +1
1+ Invalid version +1

July 1987

Remote Virtual Disk System

5. RVD CONTROL PROTOCOL SPECIFICATION

This section is optional reading.

5.1. Overview

IBM/4.3-SMM:6-39

The Remote Virtual Disk Control (RVDCTL) protocol supplies a Remote Virtual Disk
server with both operating instructions and information about its configuration. An RVD
server process comes into existence with no knowledge of the physical configuration of the
system in which it is embedded or the logical configuration of the virtual disk packs it is to
manage. These virtual disk packs may already exist. Supplying this information via a net
work connection instead of from mes on the server host makes it possible to administer all
aspects of server operation remotely.

This description assumes that the reader is already familiar with the basic concepts and ter
minology of the Remote Virtual Disk system, as described in Chapter I of this article.

Operations and operands marked with an asterisk to the left have not yet been imple
mented.

There are four scenarios in which the R VDCTL protocol is used:

(1) Initialization

The first step after creating an RVD server process is to send it, using the RVDCTL
protocol, a description of the physical and virtual disk configuration it is to manage.
Because RVDCTL is a network protocol, the penn anent data base that contains this
state description may be managed on a machine different from that of the server.

(2) Permanent changes

When permanent changes to the physical and virtual disk pack configuration are
desired, a management program both updates the permanent data base and sends to
the server the same updates, again using the R VOCTL protocol.

(3) Temporary changes, for maintenance.

A client that can supply an operations password can invoke certain maintenance
functions of the RVDCTL protocol, such as changing the logging level, shutting
down the server, posting a message, or forcing off certain clients. For operations pur
poses, it is possible to invoke any of the update functions normally associated with
permanent changes. Although a running R VO server would operate on the updated
basis, if that server process were killed and recreated, such temporary changes would
be forgotten, because the new server would receive its initialization from the per
manent data base.

(4) Client use

RVD clients use the RVDCTL protocol for certain client-server interactions, such as
flushing out old spinups, and inquiring about current operations.

There are several programs that invoke the RVDCTL protocol. COITCsponding to the
second scenario, above, is a data base management program (vddb(R» , which operates as
follows:

• The person in charge of maintaining the data base runs the data base management
program, which prompts for and validates input.

• The data base management program updates the disk files containing the permanent
data base.

• The data base management program opens a control connection to the currently
running server and sends the server the updated information.

July 1987

IBM/4.3-SMM:6-40 Remote Virtual Disk System

• The server modifies its state tables according to the rcquests.

• The server acknowledges the modification.

For simplicity, the data base management program stores its permanent data base in the
form of a sequence of already-formatted protocol messages, so the initialization scenario is
accomplished simply by sending a copy of the permanent data base to the server on the
RVDCTL network connection. The rvd.rend(R) program does this job.

The programs that perform the third and fourth scenarios are commands that can be run
on any client (perhaps on behalf of another client) to invoke one or more specific
R VDCTL functions at the server directly, without involving the database program.

Because most control operations for the R VD server require transferring only small
amounts of data, and one wants to be able to implement servers on machines that do not
provide a full TCP, the control protocol is UDP-based. It is a simple, lock-step, idempo
tent, message-response protocol. For all the control functions of interest, the control data
fit into a single packet, which further simplifies the protocol. Idempotent means that if a
client receives no response to a request (and is therefore unsure of whether or not the
server acted on it), it is always safe to resend the same request, hccause by design successive
repetitions of all R VDCTL operations have no ill effects.

The RVDCTL protocol carries very little traffic in comparison with the RVD protocol, so
ease of construction and debugging therefore has a higher priority than performance. So
that the control connection can handle operations of varying parameter requirements (to
avoid the need to design a new packet format every time a new control function is added),
and so that a single source implementation can apply to machines of different byte order,
all data is transmitted as ASCII strings. For simplicity in parsing, arguments arc transmit
ted in the format "keyword = value." This approach also makes R VDCTL packets sclf
explanatory when encountered during monitoring or auditing.

5.2. Syntax of the RVDCTL Protocol

<message> := =
<opcode>

<operands>
<operand>
<keyword> := =
< value>

< opcode > < operands>
operation = < value> I
success = < value> I
failure = < value> error = < value>
< operand> I < operands> < operand>
< keyword> = < value>
< string>
< string>

< string> is a string of network ASCII characters, terminated by a separator character.
The separator characters are space, tab, newline, carriage return, and formfeed. One or
more separators must appear between operands. Separators may be included in strings by
quoting them. The quote character is the hackslash (\). A hackslash may be included in an
string by doubling it (\). Also, to include an equals sign (=) in a string, it must be quoted.

The particular keywords used depends on the operation being invoked. lbe keywords
"operation," "password," "nonce," "success," "failure," and f'error" arc universal.

(l) The "operation" keyword must be the first keyword in each request packet. Its
value is the name of the requested operation.

(2) The "password" keyword supplies a password operand if the operation requires
one. There are three kinds of passwords. The operations password authorizes
shutdown,

July 1987

Rcmote Virtual Disk Systcm 181\1/4.3-SI\II\I:6-41

logging, and physical configuration management. The administrative password
authorizes allocation and deallocation of virtual disks. Individual pack passwords
authorize usage of those packs.

(3) The "nonce" keyword appears in every request, with a value chosen by the reques
ter to be different from any other request for which a late response might stitI arrive.
Every response contains a copy of the nonce of the request to which it responds.

(4) The "success" keyword must be the first keyword in a response to a successful
request. Its value is the name of the operation performed.

(5) The "failure" keyword must be the first keyword in a response to an unsuccessful
request. Its value is the name of the operation that failed. It may be accompanied
by an "error =" operand describing the error which occurred. The value of the
"error" keyword is a human-readable string describing the error which occurred.

Except for "operation," "success,"and "failure,"each be the first keyword in a message, the
order of operands in a message is unimportant.

Where a number is called for, it is represented in the operand value string as an ASCII
decimal integer. Where an Internet Protocol (IP) Address is caned for, it is represented in
the operand value string as .q "A.B.C.D" in network standard ASCII decimal form.
Where a mode is called for, it is represented in the operand value string as an ASCII
decimal number coded in the following way, in any sum desired:

1 = read-only spinups allowed
2 = shared spinups allowed (not currently implemented)
4 = exclusive spin ups allowed
o = no spinups allowed

Port: The RVDCTL protocol operates on UDP port 531.

5.3. Operations

(1) Add a physical device partition to the set of partitions managed by the R VO server.

operation = add yhysical

Required operands:

password

filename

blocks

The operations password for the R VO server.

Path name of the device to be managed as a physical
partition.

The number of 5 12-byte sectors ttl this physical
partition.

The device need not be a real physical disk; any device (e.g., a file) that behaves like a
raw disk partition will work equally welt.

+ If the server finds it is unable to open the physical device it marks the physical device
as "disused" and returns an error. (See di.fUseyhysical.)

Note that add yhysical is nonnally invoked as part of updating the pcnnanent data
base that describes the server configuration. If add yhysical is invoked without a data

July 1987

IDM/4.3-SMM:6-42 Remote Virtual Disk System

base update, the next time the server is shut down the change made by the
add yhysical operation will be forgotten.

(2) Delete a physical device partition from the set of partitions managed by the R VD
server.

operation = delete yhysical

Required operands:

password The operations password for the RVD server.

filename Path name of the device to be managed as a physical
partition.

If there are any virtual disk packs allocated on this physical device, delete yhysical
returns an error response, and does not delete the device.

Note that the delete yhysical operation is normally invoked as part of updating the
permanent data base that describes the server configuration. If delete yhysical is
invoked without a data base update, the next time the server is shut down the change
made by the delete yhysical operation will be forgotten.

(3) Stop using a physical disk partition.

operation = disuse yhysical

Required operands:

password The operations password for this R VD server.

physical The pathname of the device partition to be disused.

The disuse yhysical operation allows an operator to take a partition out of use, for
example because the disk is getting hard errors. (The server may, on its own, place a
partition that is getting errors in disused mode.) Add_~'irtual and delete_virtualopera
tions may be executed on a disused partition. Attempts to spinup packs that are
located on a disused partition receive the error response "pack temporarily unavail
able." The server continues to maintain records of existing connections and to allow
spindowns, but attempts to read or write a previously spunup pack receive an error
packet containing the error code "pack temporarily unavailable."

(4) Try to use a physical disk partition.

operation = use yhysical

Required operands:

password The operations password for this RVD server.

physical The path name of the device partition to be used.

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-43

If a physical partition is currently disused, this operation puts the partition back into
service. If the physical partition docs not exist or is already in usc, use yhysical
returns an error.

(5) Allocate a virtual disk pack.

operation = add_virtual

Required operands:

password

physical

name

packid

owner

rocap

excap

shcap

modes

offset

blocks

Optional operands:

ownhost

The administrative password for this RVD server.

The pathname of the device partition this virtual
disk pack is to be on.

The name of this virtual disk pack (n.b., upper
and lower case are distinguished.)

The unique id of this pack on this server.

The name of this virtual disk pack's owner.

The read-only mode password (may be null).

The exclusive mode password (may be null).

The shared mode password (may be null).

The allowable modes this virtual disk pack may be
spun up in.

The offset, in blocks, of this virtual disk pack from
the start of the physical partition.

The number of 512-byte blocks in this virtual disk.

Internet address of the ownmg host of this
virtual disk pack. If none is supplied, the disk
is assumed to not have an owning host.

Add_virtual is nonnally invoked as part of updating the pcnnanent data base that
describes the server configuration. If add virtual is invoked without a data base
update, the next time the server is shut dow; the addition made by add_virtualopera
tion will be forgotten.

(6) Deallocate a virtual disk pack

operation = delete_virtual

Required operands:

password Administrative password.

July 1987

IBM/4.3-SMM:6-44

Optional operands:

packid

name

Remote Virtual I>isk System

The unique identifier of the virtual disk pack to be
deallocated.
The name of the virtual disk pack to· be deallocated.

One of the operands {packid, name} must he present. If both are present, they must
refer to the same pack.

Delete _virtual is normally invoked as part of updating the permanent data base that
describes the server configuration. If delete_virtual is invoked without a data base
update, the next time the server is shut down the deletion made by delete virtual
operation will be forgotten. -

(7) Modify the definition of a virtual disk pack.

operation = modify_virtual

Required operands:

password

name

Administrative password.

The name of the virtual disk pack whose description
is to be modified.

Optional operands (any operand present supersedes the value previously supplied by
add _virtual or modify _virtual of the corresponding parameter for this virtual disk
pack):

packid

owner

rocap

excap

shcap

modes

blocks

ownhost

The unique identifier of this pack. If provided,
this operand is used to identify the pack to be
modified, and the name operand is taken to be a
new pack name.

The name of this virtual disk pack's owner.

The read-only mode password.

The exclusive mode password.

The shared mode password.

The allowable modes this virtual disk pack may be
spun up in, as an ASCII decimal number.

The numher of 512-byte blocks in this virtual disk.
Must be less than or equal to the current number of
blocks on this disk. In general, changing a disk's
Slze IS a bad idea, especially if it IS currently
in use.

Internet address of the owning host of this disk.

July 1987

Remote Virtual Disk System IBl\f/4.3-SMM:6-4S

Modify _virtual is normally invoked as part of updating the permanent data ba~e that
describes the server configuration. If modify _virtual is invoked without a data base
update, the next time the server is shut down the changes made by the modify virtual
operation will be forgotten. -

(8) Exchange the names of two virtual disk packs.

operation = exchange_names

Required operands:

name I

packidl

password I

name2

packid2

password2

Desired name for the first virtual disk pack

Unique identifier of first pack

The exclusive mode password of the first virtual
disk pack

Desired name for the second virtual disk pack

Unique identifier of second pack

The exclusive mode password of the second virtual
disk pack

The operands namel and name2 must be the names presently associated with the two
packs. Success for this operation means that those two names are now associated
with the packs in the order requested, whether or not they were before the operation.

This operation is used as part of an update procedure, in which two copies of a
library virtual disk pack are maintained. One copy is normally spun up by clients in
read-only mode; the other is the "maintenance" copy, to which the owner makes
changes. Once a consistent set of changes are ready for release, the owner exchanges
the names of the packs. Other users can then spin the pack down and back up again
by name to get the new copy. If the server shuts down and restarts, clients that have
temporarily cached the packid can respin up the old pack by pac kid , to complete
their session without being forced prematurely to switch to the new library.

Exchange_names is normally invoked as part of updating the permanent data base
that describes the server configuration. If exchange_names is invoked without a data
base update, the next time the server is shut down exchange _names will be forgotten.

(9) Force a virtual disk pack to be spun down.

operation = spindown _virtual

Required operands:

name

password

The name of the virtual disk pack to be forced
down.

The exclusive mode password of the virtual disk
pack to be forced down.

July 1987

IBM/4.3-SMM:6-46 Remote Virtual Disk System

This operation is normally used by the owner of a virtual disk pack that was spun up
on a machine that crashed. It forces the specified virtual disk pack to be spun down
from all the machines that have it spun up.

(10) Porce all virtual disk packs of a given client at this server to be spun down.

operation = spindown _host

Required operands:

name

Optional operands:

password

The Internet address of the client whose disk packs
are to be forced down.

If the spindown _host request was not sent from the
client whose disks are to be spun down, the operations
password must be supplied.

This operation has two uses:

a) It should appear in a InM/4.3 client's /etc/rc file, or a DOS client's autoexec.bat
me, so that when a host recovers from a crash, all its previously spunup virtual
disk packs are spun down. This spindown insures that the server state agrees
with the client state.

b) An operator can use this operation to force down the virtual disks of a client
which has crashed and that may be down for some time.

(11) Display all spin ups involving a virtual disk pack, or a client.

operation = display_virtual

Required operands (exactly one of the following must be present):

name

host

Optional operand:

start = < value>

The name of a virtual disk pack. If present, display_virtual
returns a list of all the spinups of this disk
pack. These are the spinups that would be forced
down if a .rpindown_l'irtual operation nammg
this pack were performed.

The If> address of a client. If present, di.rplay _virtual
returns a list of all the spinups of this client.
These arc the spinups that would be forced down if
a .rpindmvn _'100ft operation naming this client
were performed.

An ASCII decimal integer gtvmg the offset of the
first spinup description wanted. This operand IS

normally supplied if a previous invocation of
display_virtual contained the response "more = true."

July 1987

Rcmote Virtual Disk Systcm IBM/4.3-SMM:6-47

password If the display_virtual operation requests information
about a client different from the one making the
request, the operations password must be supplied.

This operation returns a success packet containing an ASCII text string describing the
spinups (host/drive number pairs) of this virtual disk. The response packet contains:

success = display_virtual
number = < value 1 >
connections = < value2 >
more = true

< value I >

(optional response)

The number of currently active spinups for this virtual disk pack or client.

<value2>
A canonicalized string, with one line pcr spinup, containing as many spinup descrip
tions as will fit in one VD P packet. Each line is a collection of space-separated
tokens, as follows:

pack = library host = 18.72.0.5 drive = 9 mode=4

Since the string is canonicalized, all spaces and CRLP sequences are quoted.

If there were more spinup descriptions than would fit in a single packet, the response
operand "more = true" will appear.

(1) Log statistics of external interactions.

operation = log_ external_statistics

Required operand:

password The operations password

Dump into the log file all statistics kept by the RVD server concerning interactions
with clients--number of packets exchanged, disk operations, etc.)

(2) Log all statistics

operation = log_ all_statistics

Required operand:

password The operations password

Dump into the log file all statistics kept by the rvd server.

(3) Shut down server

operation = shutdown

July 1987

IBM/4.3-SMM:6-48 Remote Virtual Disk System

Required operands:

password The operations password

Log all statistics, then perfonn a clean shutdown of the server.

(4) Change log level

operation = 10gJevel

Required operands:

password The operations password

level New log level as a hex number (N.n., not decimal.)

Change which events are logged; see specification of the R VD protocol for definition
of log levels.

(5) Truncate log

operation = log_truncate

Required operands:

password The operations password

Truncate the log file to keep it from growing too large. (In the nSD 4.3 UNIX
implementation of RVD, logging is done with the UNIX logging system (syslogd), so
this operation has no effect.]

(6) Allow spin ups

operation = allow _ spin ups

Required operands:

password

mode

Optional operands:

physical

name

The operations password, for a physical device,
or the exclusive mode pack password, for a single
virtual pack.

The mode of allowed spinups.

Path name of the device partition to which this
mode setting applies. (If absent, the mode applies
to all partitions managed by this server.)

The name of a virtual disk pack to which this mode
setting applies.

July 1987

Remote Virtual Disk System

Response operand:

oldmode

IBl\f/4.3-SMM:6-49

The spinup mode that was formerly allowed for
this partition or virtual pack.

This operation is used to prevent or allow further spinups of a single virtual pack, or
all the virtual packs on a given device partition of this RVD server; it has no effect on
spinups already in force. When a server first comes up it allows no spin ups
(mode = 0), so an invocation of allow _.fpinup.f is required as part of starting a server.

A separate allowed spinup mode value is maintained for each pack and for each parti
tion; the actual modes permitted for a pack are given by the logical A NO of the
mode value for the pack and the mode value for the partition on which it is located.

The server rejects spinups that would be allowed by the static pack description but
that are prevented by the current setting of allow _spinuPJ with a distinct error code
indicating temporary unavailability.

Usage scenarios: If a server is to be dumped, one might allow only read spinups dur
ing the dump; if a server is to be taken down one might sometime earlier allow no
new spinups. The maintainer of a library disk pack that needs to be updated might
first allow no spinups, then after a period of time adequate for most clients to finish
their sessions, do a spindown _virtual to get rid of any remaining spinups.

(7) Post an operations message.

operation = set_message

Required operands

password

message = < string>

The operations password

The (canonicalized) message < string> replaces any
previous operations message. If < string> is null,
any previous message is cleared. lbe content of
the message is limited to 400 bytes, and is network
ASCII (lines terminated with canonicalized CRLF's).

This operation, together with the next one, allows an operator to post a message
(e.g., "server going down at 5:00 p.m. for preventive maintenance") for clients of an
RVO server.

(8) Get the operations message.

operation = get_message (no required or optional operands)

Response operands:

success = get_message
message = < string> < string> is a canonica1ized string of network ASCII

to be displayed as an operations message. If there
is no current operations message, < string> is nun.
(Note that in either case < string> is terminated
by an operand separator.)

July 1987

IBM/4.3-SMM:6-50 Remote Virtual Disk System

+

This operation would nonnally be invoked by a client as part of bringing up a system
that uses RVD and also whenever spinning up a virtual disk pack.

(9) Change a user password.

operation = change yassword

Required operands

packname

mode

old yassword

new yassword

The name of the virtual disk pack whose password IS

to be changed.

The spinup modes for which a new password is being
supplied. If more than one mode is specified, the
operation wiJI be rejected unless the old passwords
for the several modes are all the same as the
as the old_password operand.

The current password for this pack and mode; a null
string if there is no current passwor&

The new password; a null string if there IS to be np
password.

Note that this function is not intended for direct use by a client, but rather for use by
the database update system; if used by a client without also updating the database,
the password will be restored to its old value the next time the R YO server is res
tarted.

(10) Return a list of active virtual packs

operation = display_active

Optional operands:

filename

start = < value>

Response operand:

number = < value 1 >

activity = < value2 >
more = true

Path name of device partition for which a list of
active virtual packs is wanted. If omitted, a list
of all active virtual packs is returned.

A number giving the offset of the first infonnation
line wanted. This operand is nonnally supplied if
the previous invocation of display_active included
the response operand "more = true."

(optional response)

.July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-51

< value! >
The number of currently active packs on this partition or, if no partition was
specified, on this server.

< value 2 >

'"

A single canonicalized netascii string containing one line of infonnation for each
active virtual pack. A typical line looks like:

partition = /dev /raOg pack = library mode = I connections = 5 idle = 1721

If there were more activity descriptions than would fit in a single packet, the response
operand "more = true" will appear.

Idle time is measured in seconds since most recent access. Note that the idle time is
purely an activity hint, to detennine whether or not a pack that appears to be spun
up is actively in use. It is maintained by the server only to a rough approximation.

(II) Obtain server load statistics

operation = get Joad

Required operands:

password The operations password for the RVD server.

Response:

load = < string> < string> is a canonicalized netascii string containing
load statistics ready for display.

(12) Change authorization for operations and administrative operations.

operation = require_authorization (no required or optional operands)

When an RVD server begins operation, it accepts RVD control protocol requests
only from the same host on which it is operating, and it does not require operations
or administrative passwords. (Starting without passwords allows automating initiali
zation without the need to store those passwords in clear fonn.) The
require_authorization operation causes the server to read operations and administra
tive passwords from a file in the file system of the server's host. After
require_authorization is executed all operations listed above as requiring either an
administrative or operations password do actually require them. \Vhenever
require_authorization is invoked, the RVD server rcinitializes its copy of the opera
tions and administrative passwords from /etc/rvdautllOr.

There are two scenarios of use of require_authorization. The first is at system initiali
zation time:

- start server
- send initializing control sequences, if any
- send require_authorization
- await success of require authorization
- declare initialization su~essful.

July 1987

IBM/4.3-SMM:6-52 Remote Virtual I>isk System

The second scenario is to change the operations or administrative passwords.

- modify file containing operations and maintenance passwords.
- send require_authorization

July 1987

DMA Reference Manual IBM/4.3-SMM:7-1

. DMA Reference Manual

ABSTRACT

This paper describes the set of kernel utility routines provided with IBM/4.3 to
facilitate the use of the RT's eight Direct Memory Access (DMA) channels by
device driver writers. The article contains the following sections:

1. Introduction describes the purpose of the DMA utility routines.

2. The Hardware provides a brief overview of how the D MA hardware works.

3. The Software describes the structures, flags, and callable routines provided.

4. Using DMA in a Device Driver describes the nonnal flow of control between device drivers
and the DMA code.

July 1987

IBM/4.3-SMM:7-2 DMA Reference Manual

I. Introduction

IBM/4.3 includes a set of utility routines designed to facilitate how device drivers use the IBM
RT PC's eight DMA channels. This article describes the interface the writer of a device driver
uses, and the way the DMA hardware works. For a more complete description of the DMA
hardware, see the IBM RT PC Hardware Technical Reference Volume I, Number 75X0232.

2. The Hardware

The DMA hardware on the RT PC is influenced by the DMA implementations on the
PC/ AT, PC/XT, and PC. Transfers are mapped from the PC address that the various
adapters use to an R T memory address (either physical or virtual) by a set of registers called
Translation Control Words (TCWs). The number, location, and fonnat of the TCWs usable
by a given device are dependent upon which of several modes the DMA will operate in.

2.1. System DMA vs. Alternate DMA

DMA transfers can be assisted by hardware on the RT PC System Board, or controlled by
a DMA controller on an adapter card. The former is known as system DMA (as well as
third party DMA, or non-cascade mode). The latter is known as alternate DMA (as well
as first party DMA, or cascade mode). The mode a driver can use is constrained by the
hardware for which the driver was written. Adapters without DMA controllers on the card
must use system DMA. Adapters with DMA controllers must use alternate DMA. The
DMA utility routines will set up system DMA as well as the required TCWs. The device
driver writer must set up alternate DMA.

2.2. 16 bit vs. 8 bit

When using system DMA, DMA channels 0 to 3 are connected to an eight bit DMA con
troller, while channels 5 to 7 are connected to a 16 bit DMA controller. The eight bit con
troller transfers data one byte at a time. Addresses can be aligned on any arbitrary byte
boundary, and counts can be either even or odd. The maximum transfer length is 64K,
due to addressing limitations of the DMA controller.

The 16 bit controller transfers data two bytes at a time. Addresses must be half-word
aligned, and counts must be even. The DMA code will truncate odd addresses and counts.
The maximum transfer length is 128K.

Note that this distinction is only applicable when using system DMA. Alternate DMA
treats all these channels the same.

2.3. Page Mode vs. Region Mode

The TCWs used and the meaning of each TCW are cant roIled by the DMA mode register.
This register can select either page mode or region mode. In page mode, the I/O address
specified by the device doing the DMA (or in the case of system DMA, by the DMA con
troller) is separated into two pieces: a TCW page select (six bits) and a page displacement
(11 bits). The TCW page select is used to address one of 64 TCWs belonging to the DMA
channel which generated the request. The TCW contains a 13 bit physical page address
which is added to the II bit displacement to produce a 24 bit real address. This
corresponds to the 2K virtual page size used by IBM/4.3. (This means one TCW is
needed for each page of virtual memory to which the driver transfers.) The DMA mapping
routines automatically set up these TCWs from valid paged-in virtual buffers. In page
mode, the maximum DMA transfer is 128K. Alternate controllers can generate 24 bit I/O
addresses. For alternate DMA using page mode, the upper seven bits must be 1 'so

July 1987

DMA Reference Manual

r
6 bit TCW

Se ect

8 bit
System

16 bit
System

Alternate

24 bit real address

13 bit physical page

I 13 bit
page

Per Channel

TCW's

(64 total)

0000000

0000000 6 bit
TCW page

1111111 ~·t TC page

IBM/4.3-SMM:7-3

11 bit
displacement

1 1 bit displacement

. ~ 1 bit dlsp acement

10 bit
displacement

. ~ 1 bit dlsp acement

Region mode also separates addresses into two pieces: a TCW region select (nine bits) and
a region displacement (15 bits). lbe TCW region select points to one of 512 TCWs shared
by all the DMA channels. These TCWs contain a nine bit region which is concatenated to
the 15 bit displacement. In addition to the nine bit region, region mode TCW s also con
tain status information specifying if the transfer is to real or virtual memory. If the transfer
is real, the nine bit region select plus 15 bit displacement becomes the 24 bit real address.
If the transfer is virtual, the hex value EO is prepended to the 24 bit address and sent to the
MMU to be translated. Note that region mode DMA can potentially transfer 16 Meg of
data in one transfer. However, the granularity of the translation is 32K contiguous. Since
under normal circumstances, it is unlikely transfers will be to 32K contiguous real memory,
most devices which use region mode would use region mode virtual.

July 1987

IBM/4.3-SMM:7-4 DMA Reference Manual

EO/JOO
Vi Re

Selects
Virtual
or Real

9 bit
TCW select

32 bit virtual or 24 bit real address

9 bit
region

9 bit
region

Common

Region mode

TCW's

(512 total)

9 bit
TCW select

15 bit
displacement

15 bit
displacement

15 bit
displacement

24 bit 1/0 address (alternate dma, region mode)

System DMA devices must use page mode DMA only. Alternate controllers can use
either; however, the OMA utility code only supports page mode OMA.

2.4. Special and Restricted Channels

As mentioned above, channels 0 to 3 are eight bit controller channels, and channels 5 to 7
are 16 bit controller channels. These distinctions apply only when using system DMA.
Channel 8 is a special OMA channel designed for use with the 286 co-processor card.
Since there is no system controller for channel 8, no system DMA can be used by it. Nor
are there any page mode TCWs for channel 8; only region mode DMA can be used.
Channel 4 is a reserved channel not available for use by DMA devices.

2.5. Selecting the Proper DMA Channels and Modes

The adapter hardware determines most of the modes that a DMA device can use. The
channels that a device can use are usually fixed (though some adapters can be programmed
to use some or all of the OMA channels). Whether the adapter can use system OMA or
alternate DMA is also an attribute of the adapter. Writers of device drivers must detennine
what type of DMA the adapter can use.

July 1987

DMA Reference Manual IBM/4.3-SMM:7-5

3. The Software

3.1. Structures Used When Calling DMA Utility Routines

There are several fields reserved in various I/O structures for use by DMA. The fields
listed in this section are those used by a device driver to send information to and receive it
from the DMA code. The format of the list is as follows:

structure: include file: descript ion

for the header, and

field I descriptions I [valid parameters]

for the fields.

struct iocc_ctlr: /sys/machineio/ioccvar.h: per controller structure
to dma_setup()

short ic_dmachannell DMA channel number I DM_CIIAN[O-3,5-8]
int ic_dmaflags I DMA transfer flags I see DMA flags below
struct buf +ic_dmabuf I buffer describing the DMA transfer I

struct dma_callback:/sys/machineio/ioccvar.h: callback structure used by the driver
when calling dma_wait()

caddr _ t d jnfo I value to be passed to the callback routine I
void (+d _wakeup)O I callback routine, called when the channel is no longer exclusive I

struct buf:/sys/h/bufh:general buffer structure
long b Jlags I flags describing the transfer. DMA is only interested in the

B_PHYS flag (which must be set if the buffer points to an address
in user space) and B _REA D (which is set if the transfer is a read). I

caddr_t b_un.b_addr I address of the transfer I
long b _ bcount I size of the transfer in bytes I

3.2. DMA flags passed with ic_dmaflags

The following flags can be passed using ic_dmaflags to tell the DMA code how to set up
the hardware. Defines for these flags can be found in /sys/machineio/dmavar.h.

Flag(s): DMA_DEMAND, DMA_SINGLE, DMA_BLOCK, DMA_CASCADE
Default: DMA_SINGLE (system DMA), DMA_CASCADE (alternate DMA)
Hardware: DMA controller mode register (see IBM RT PC" lIardware Technical Reference
Volume I)
Effect: Controls transfer mode characteristics. DEMAND is for asynchronous input such
as from keyboards and serial lines; SINGLE is for cycle stealing mode; BLOCK is for burst
mode; CASCADE is for alternate DMA (first party) mode.
Restrictions/Side Effects: DMA_CASCADE must be used for alternate DMA, and cannot
be used for system DMA.

July 1987

IBM/4.3-SMM:7-6 DMA Reference Manual

FJag(s): DMA_PAGE, DMA_REGION
Default: DMA PAGE
Hardware: DMA mode register (see IBM RT PC lIardware Technical Reference Volume I;
note that this is NOT the same register as above).
Effect: Controls whether page mode or region mode transfers are used (see "Page Mode vs.
Region Mode" above).
Restrictions/Side Effects: System DMA can usc only page mode. Region mode DMA is
not supported.

Flag(s): DMA_PHYSICAL, DMA_ VIRTUAL
Default: DMA PHYSICAL
Hardware: TCW (see IBM RT PC Hardware Technical Reference Volume /).
Effect: Controls whether the translated address is real or virtual.
Restrictions/Side Effects: DMA_ VIRTUAL is not valid for page mode transfers.

Flag(s): DMA_ CANTINT
Default: off
Hardware: software only
Effect: Tells the DMA code that the device can't interrupt after the DMA has completed.
The DMA code will call the device driver's interrupt routine whenever the DMA gets an
interrupt. It is up to the device driver to determine whether or not the transfer has really
completed. If the transfer has not completed, the device driver should return
INT NOT MINE. - -
Restrictions/Side Effects: The DMA controller only interrupts on completion of system
DMA transfers.

Flag(s): DMA_EXCLUSIVE
Default: off
Hardware: software only
Effect: This flag tells the DMA code that the device driver intends to usc this channel
indefinitely. Once an exclusive device has control of the channel, any further attempts to
queue a request will result in the DMA code requesting the exclusive device driver to
release the channel. If the exclusive device driver refuses, the request will be rejected with a
DMA_EXCLUSIVE_RET. See Using DMA_EXCLUSIVE below for more details.
Restrictions/Side Effects: Only one DMA_EXCLUSIVE request can be queued at one
time. If a DMA_EXCLUSIVE request is not yet running, other requests on that channel
have priority.

Flag(s): DMA_ CANTWAIT
Default: off
Hardware: software only
Effect: This flag tells the DMA code that the device driver can't wait for the channel to
become not busy.
Restrictions/Side Effects: See "dma_setup()" below.

3.3. Driver Callable DMA Routines

There are several routines in the DMA code which are designed to be caIJed by a device
driver when it wishes to use DMA services.

int
dma _ setup(ic)
struct iocc _ ctlr "'ic;

July 1987

DMA Reference Manual IBM/4.3-SMM:7-7

Dma _setup () is called whenever a device first wants to initiate a transfer. It is passed a
pointer to a controller structure which has the channel number (ic _ dmachannel), flags
(ic_dmaflags), and a buffer describing the DMA transfer (ic_dmabuf). lc_dmabuf can be
set to 0 to get the channel only. If the request can be queued, dma_setup() will return
DMA_OK_RET. If the request cannot be queued because there is an exclusive device,
dma_setup will return DMA_EXCLUSIVE_RET. If the channel is busy, and the
DMA_ CANTWAIT flag is on, dma_setup() will return DMA_DUSY _RET.

short
dma_select_chan(channel_array)
short channel_array[);

Dma_select_chan() returns the "least busy" channel out of all the channels in
channel_array[]. Channetarray is an array of valid channels that the calling device driver
can use terminated with the value DMA END CHAN. Dma .~elect chan () first rotors
through the array looking for the fir;t non-busy channcl. If- none are found,
dma_select_chan() rotors through the array again looking for the first channel which does
not have a DMA_EXCLUSIVE request queued on it. If it finds none, dma_.'ieleCl_chan()
rotors through the array looking for the first channel the does not have a
DMA_EXCLUSIVE request running. If no free channel is found, dma_select_chan will
return the channel on the top of the channel_array.

unsigned
dma_map(chan,bp)
short chan;
struct buf +bp;

Dma map() is used to map TCWs for DMA transfers. Dma setup () automatically calls
dma~map() for the buffer pointer passed in ic_dmabuf. Chan is the channel for the
transfer. Dp is a pointer to a buffer structure which describes the transfer. Dma _map ()
returns the ioaddr for the transfer. If there aren't enough contiguous free TC\Vs to support
the transfer, dma_map() returns DMA_INV_IOADDR.

void
dma _free _ map(chan ,io addr ,len)
short chan;
unsigned ioaddr;
int len;

DmaJree_map() frees TCWs allocated by the dma_map() call. Chan is the channel,
ioaddr is the I/O address returned by dma _ map(), and len is the length of the transfer in
bytes.

void
dma _go (channel)
short channel;

DmaJJo() enables the DMA channel for a transfer.

void
dma _ donee channel)
short channel;

July 1987

IBM/4.3-SMM:7-8 DMA Reference Manual

Dma_done() frees the channel for other devices to use. All TCWs arc automatically freed.
If the request was a DMA EXCLUSIVE request, any device drivers on the callback queue
are called. The channel is disabled. The request is dequeued, and the next request on the
channel is started.

void
dma _ wait(chan ,callback)
short chan;
struct dma _ callback "'callback;

Dma _wait () queues the callback structure on the DMA channel chan. \Vhenever the
channel is free (no DMA EXCLUSIVE requests are running), the routine specified in the
callback structure is called~ This allows drivers to wait on DMA channels that are tied up
by exclusive requests that refuse to release the bus. If there are no exclusive requests on
the channel, the routine specified in the callback structure is called immediately.

void
("'dma _get _ minphys(ic»O
struct iocc _ ctlr "'ic;

Dma -.!Jet _ minphys() returns a pointer to the proper minphys routine to be called. The typi
cal usage is in a physioO call when doing raw I/O.

3.4. DMA Callable Routines in the Device Driver

The device driver routines that the DMA code calls are in the device driver's iocc_driver
structure (where the probe, slave, attach, and other routines are defined).

int
xx_ chanrelse (channel)
short chatmel;

Xx _ chanrelre() (the routine pointed to by xxdriver- > idr _ chanrelse) is necessary only for
device drivers which use the DMA_EXCLUSIVE flag. This routine is called from
dma_setup whenever the exclusive device has the channel, and another device queues a
request to use the channel. Xx_chanrelse() must either: I) take steps to release the channel
now, or in the near future, then return 0, or 2) decide it cannot release the channel now
and return non-zero. If zero is returned, the DMA code assumes that the exclusive device
has released the channel (or will do so as soon as the current transfer is completed) and
allows the new DMA request to be queued.

void
xx_ dgo(ic,len ,ioaddr ,bp)
struct iocc _ ctlr *ic;
int len;
unsigned ioaddr;
struct buf *bp;

When the channel become available, the DMA code will call xx_dgo() so that the device
driver can set up the device specific portions of the DMA transfer. Ic is a pointer to the
controller structure passed by dma_setup(). Len is the length of the transfer. If no tew's
have been allocated, len is O. Xx_dgo() is still called to let the driver know that an error

July 1987

DMA Reference Manual IBM/4.3-SMM:7-9

has occurred. Ioaddr is the I/O address for the transfer. If there were not enough TCWs to
map the transfer, this value is set to DMA_INV _IOADDR. Bp is the buffer passed to
dma_start in the ic_dmabuJfield. int
xx _ int(ctlr ,irq)
int cdr;
int irq;

XX_i11t() is called by DMA code only if the DMA_ CANTINT flag is set. Usually the dev
ice will generate a normal interrupt when a DMA transfer is completed. This interrupt will
be routed to xX_int() through the standard interrupt handlers.

4. Using DMA in a Device Driver

The method of calling DMA varies depending on the way the device driver uses the DMA
code. This section describes the normal flow of control between device drivers and the DMA
code for several general situations.

4. t . Standard Device Drivers

A standard device driver is a device driver that calls the DMA code each time it wishes to
start a transfer, and notifies the DMA code when the transfer has been completed. To start
a transfer, the standard device driver loads the ic structure with the channel, flags, and
buffer to transfer. The device driver then calls dma_setup(). passing it a pointer to the ic
structure. Dma_setup() will return "DMA_ OK_RET" if it successfully queues the DMA
request.

When the channel becomes not busy, the DMA code will set up the TCWs and system
controller for the transfer and call the device driver's xx_dgo(). Xx_dgo() is responsible
for setting up everything the device needs to start a transfer. When xx _ dgo() finally needs
to enable the channel, it calls dma..150(), passing the channel number on which it wishes to
transfer. Note that if the channel is not busy when dma _setup () is called, all these calls
happen before setup returns. Xx _ dgo() is not guaranteed to be called at the proper inter
rupt level or in the context of the user process whose transfer it is supposed to service.

When the transfer has completed, the device will generate an interrupt. (If the device
doesn't generate an interrupt, see "Using DMA_ CANTINT" below). Once the device's
interrupt handler determines that the interrupt indicates an end to a DMA transfer, the
interrupt handler does any necessary post-transfer cleanup of the adapter and device driver
data structures, and calls dma_done() with the channel number to indicate that the device
driver is done using the channel.

July 1987

IBM/4.3-SMM:7-10 DMA Reference Manual

Device driver DMA code

call dma_setup(ic) .. ~ request is queued
,/

wait for xx_dgo / I
to be called "-

channel is free, set up
dma system controller

xx_dgo sets up
/ and TCW's

device specific dma '\

"
call dgo(ic,len,ioaddr,hp I

call dma_go(channel) enable the channel.
/

I return and /
wait for interrupt ~

Interrupt

"- xx_intO com~letes
" free TCW's an(' adapter c eanup

/ cal dma done(channel) ,(disable the channel
start next dma request

signal routine L I waitinr on the transfer
tha the transfer has " completed

4.2. Using DMA_EXCLUSIVE

Device drivers which plan to hold a channel for an indefinite period of time must use the
DMA_EXCLUSIVE flag. This flag tells the DMA code that the device driver must be
notified if another driver tries to queue a request on the channel. The exclusive device's
xx_chanrelse() routine will be called when this happens. Xx_chanrelre() must signal the
device driver to release the channel. If the device driver cannot release the channel,
xx_chanrelse() must return non-zero. If the channel can be released, xx_chanrelre() must
return o. Releasing the channel means disabling the exclusive device from starting DMA
and calling dma_ done.

4.3. Using DMA_CANTINT

Some devices don't interrupt when a DMA transfer has been completed. If the device uses
system DMA, the device driver can set the DMA CANTINT flag. When the system
DMA controllers complete a transfer, they will gene~ate an interrupt. Any devices which
have set DMA_ CANTINT will be called. It is up to the individual device driver interrupt
routines to determine if transfers have been completed. If a transfer has not been com
pleted, the device driver interrupt routine must return INT _NOT_MINE (defined in

July 1987

DMA Reference Manual IBM/4.3-SMM:7- t t

/ sys/h/ioccvar.h).

4.4. Using Dma _ waitO

It is possible that dma_setupO will reject a DMA request because an exclusive device
refuses to give up the channel. If this happens, the device driver can set up a callback
structure and call dma_waitO. When the exclusive device finally finishes with the DMA
channel (if ever), dma _wait will call the callback routine specified by the device driver in
the callback structure. The callback routine could then restart the DMA request.

4.5. Devices Which Can Handle Multiple I>MA Transfers

Dma_map() and dmaJree_map() are provided for devices which can maintain multiple
transfers on the same channel. Por the first transfer the device driver calls dma _setup ()
normally. If another transfer request comes to the device driver before the first transfer is
complete, the device driver can call dma_map() to set up the needed TCWs, then hand call
xx _ dgo(). When the first transfer completes, the interrupt routine calls dma Jree _ map ()
instead of dma_done(). Dma_done() is called only after all the outstanding transfers have
been completed.

A device driver which does this must provide some mechanism to allow dma_done() to be
called periodically so other device drivers can use the channel. This can be done by keep
ing a maximum count of consecutive transfers since the last dma _ done () call. When the
number of transfers equals this maximum count, no more transfers are started until all out
standing transfers have been completed and dma _done () has been called. An alternative is
for the driver to set the DMA_EXCLUSIVE flag. The device driver merrily transfers until
all requests have been completed, or until the device driver's xx _ chanrelse() is called.
When the xx _ chanrelse() is called, it sets a flag to tell the device driver not to start any
new requests, then returns O. When all the outstanding DMA requests have been serviced,
dma_done() is called and the channel is freed for use by another device driver. Note:
Dma_done() will always free all the TCWs allocated by a channel with the dma_map()
call.

4.6. I>evices Which Can Use Multiple DMA Chann('ls

Some adapters can software select which DMA channcIs they are going to use. The
dma_select_chan() routine facilitates the best use of channels. Before calling dma_setup() ,
a device driver calls dma select chan () with an array of channels which it can use.
Dma_select_chan() returns the le;st busy channel in the array. In the following example,
the adapter can software select between channels 0, 5, and 7.

#include < .. /machineio/dmavar.h >

/+
+ set up channel array

+/

short dma _select _ chanO

July 1987

IBM/4.3-SMM:7-12 DMA Reference Manual

short xx_chan_array(J = {
DMA_CHANO,
DMA_CHAN5,
DMA_CHAN7,
DMA END CHAN - -
};

,+get channelfor transfer +,
ic- > ic_channel = dma_select_chan(xx_chan_array); ,+ tell adapter which channel to u.se (can also be done in xx_dgo) +,
xx_set_channel(ic- > ic_channel);
/+ start dma +,
dma_setup(ic);

4.7. Consequences of Not Using the DMA Interface

Device drivers which do not use the DMA interface run the risk of being interfered with by
other DMA devices. The kernel also uses infonnation provided by the DMA code when it
wishes to do things which are unsafe to do while DMA is running. If a device driver writer
absolutely needs to grab a DMA channel pennanently, the device can call dma_setup()
with DMA_CANT_WAIT and DMA_EXCLUSIVE. (Of course, if another device has
already grabbed the channel, this device driver is out of luck. Using DMA_EXCLUSIVE
implies that the device doesn't plan on releasing the channel ever!) The device driver's
xx_chanrelse() would then always return non-zero.

July 1987

