

124 IHM/4.3 System Administration Guide

uucp was designed as this kind of "store and . forward" network largely because it was first
intended to service file transfer over low-speed, non-dedicated telephone lines, where there is usu
ally no pennanent communications link between any two systems on the network. It made sense
for each system to save up requests for the other system and then to try to establish a communi
cations channel at some specified time. If no connection could be made, the requests simply
would be saved until one could be established. Recently, uucp has been given the ability to carry
out its activities over a local area network using the Internet protocols (TCP/IP).

There are two principal services provided by the uucp networking software, file transfer from one
machine to another and remote command execution. File transfer is accomplished with the
uucp command. Por example, if a user nat wants to copy a file named 'ch. l' in the current
working directory on the local host to the home directory on remote host named 'grunnion',
that. user might run the following command:

% uucp -C ch.l grunnion!-nat/ch.l

The sequence of steps involved in servicing this· request is depicted in the following diagram:

telephone
0000

connection

una

Figure 10-2: Remote Copy With uucp

a

r- -.., , ,
�:�~�~�
�,�~�
, ,destination
L ___ J

grunn10n

When the command listed above is executed, uucp will place several files into a spool directory.
One of the files, a data fUe, is simply the file to be transferred. It is copied into the spool direc
tory since the -C command line option was specified. (The default action is not to spool a copy,
but to use the specified source file. In this case a copy was deliberately spooled so that future
changes to the original source me will not appear in the remote copy.) The other me placed into
the spool directory is a work (or control) file containing instructions governing the fUe transfer.
The work and data files remain spooled in this manner until a uucico daemon fmds them
there, at which time the daemon will interpret the work file and initiate a telephone connection to
the appropriate remote system. When uucico succeeds in logging in to the remote system, the
shell launched is in fact another invocation of the uucico daemon. The second daemon is said
to be in slave mode, receiving instructions and data from the original uuc i co daemon on
tuna, which is in master mode. If everything goes okay, the file will be transferred from the
local host to the remote, placed into a temporary spooling directory on the remote host, and
finally moved into the user's home directory on the remote host. The me transfer requested by
the original uucp eommand is now complete.

Remote command execution is accomplished with the uux command. A user on the local sys
tem, tuna, can request that a command be executed on a remote machine by invoking the uux
command, for instance as follows:

% cat ch.l I uux - grunnion!lpr

This requests that the ftle ch. 1 in the current directory be piped through uux, which will send
its standard input over to grunnion to be piped through the command Ipr. The sequence

September 1988 Chapter 10

IBM/4.3 System Administration Guide 125

of operations set in motion by this pipeline is quite similar to that involved in servicing a uucp
request and is depicted in the following diagram:

~ uux~i ~
L ___ J 111111111

telephone
o

~D--~
1 1

:D' 1 1
L ___ J

~command~

1

V
0000 0000

connection

una grunn10n

Figure 10-3: Remote Command Execution With uux

As before, several files are spooled to a uucp directory, where they are interpreted by the
uucico daemon. One of the mes is the work file, in this case the file ch. 1. The other file
spooled by uux is an execute file, which contains information about the origin of the request and
about the processing the remote system needs to do in order to satisfy the request. The local
uucico daemon begins a conversation with the uucico daemon on the remote system, at
which time the execute and work files are transferred to the remote system. The execute file is
interpreted by the uuxqt program on the remote system, which launches the command
requested by the remote user. In this case, the work file is spooled to the line printer system.

Many other services can be built on top of these two basic services. A prime example of a
software package that often rides piggyback on uucp is the USENET network. The USENET
network software, netnews, oversees the storage of news articles on the local file systems and
manages all user interaction with those articles (such as reading them, replying to them, etc.).
The netnews programs also decide whether an article received by a machine (or originating on
that machine) should be transmitted to some neighboring machine. The actual transmission of
news articles from one machine to another, however, is handled entirely by the uucp networking
software.

2. Overview of the Uucp System

The programs and files that make up the uucp system are found in three principle directories, as
depicted in the following diagram. The programs in /usr/bin constitute an ordinary user's
primary interface to the uucp system. It is by running one of these programs (usually uucp or
uux) that a user sets in motion the elaborate chain of events that make up uucp network activity
(for example, a ftIe transfer from one machine to another or the remote execution of a command).
With two exceptions, all of these programs are owned by the uucp administrator's account,
uucp, and run setuid uucp and setgid daemon. These commands need to be
installed setuid and setgid in order to be able to read the various configuration files in
/usr/lib/uucp and to create files in the uucp spool directories. The uucp programs main
tain data security by preventing normal users from reading or writing anything in its spool and
administrative directories. The only way that a normal user can insert a file into one of the spool

. directories, and hence queue a me for transmission to a remote system, is by running a user-level
command which will do that for him. The two programs that are not owned by the uucp
account are uuencode· and uudecode, which are two utilities that provide a means to
encode and decode 8-bit binary data files for transmission across 7-bit data lines. These programs
do not need to read or write anything located in the restricted uucp directories, so it is safest to
have them owned by root.

Chapter 10 September 1988

126 IUM/4.3 System Administration Guide

r--------..,
I uucp
I uudecode

uuencode
uulog
uuname
uupoll
uuq

I uusend
, uusnap
I uux L ________ J

User-level Commands

Spool Directories

Figure 10-4: Location of uucp Files and Commands

2.1. Using Uucp Over A Local Area Network

r-----------..,
L-devices I

L-dialcodes
L.aliases
L.cmds
L.sys
SQFILE
USERFILE
uucico
uuclean
uuxqt I ___________ J

Administrative Files

As indicated in the introduction above, it is possible to route uucp traffic over a local area net
work. If your machine is connected to such a network, it is generally preferable to use it rather
than direct serial lines or modems to send and receive uucp network traffic, largely because file
and data transfers will occur more quickly and more reliably than using traditional serial connec
tions. In addition, TCPjIP network communication can handle full 8-bit data and file transfers,
thereby obviating the need to filter binary files through the utilities uuencode and
uudecode. Finally, since two systems located on the same local area network are ipso facto
connected by a permanent communications link, there is usually no need to wait until such a link
can be established, as commonly happens when modems must be used to link systems. Note
however that uucp still operates as a "store and forward" network, even when communicating
with other systems over a local area network.

To use the uucp programs over a TCP/IP link, you must add an entry to the network services
data base ftle, jete/services. The appropriate entry looks like this:

uucp 540/tcp uucpd # uucp on TCP/IP

This indicates that the uucpd daemon will be listening on port number 540 using the TCP pro
tocol.

3. Uucp System Maintenance

The uucp system requires periodic maintenance to make sure that sites are being polled correctly,
to remove old spool ftles, to rotate log files, and to clean up garbage left in uucp directories.

September 1988 Chapter 10

IBM/4.3 System Administration Guide 127

These and other actions are typically performed with the assistance of the c ron daemon by
including some entries into the configuration file, /usr/1ib/crontab. Generally, cron is
configured to execute one of several scripts which call the appropriate utilities to perform the
desired actions. As a result, once you have suitably modified the c ron tab file and installed the
scripts on your system, uucp maintenance will proceed fairly automatically. The crontab file
is discussed in detail in Chapter 16.

The specific actions and their frequencies requircd for uucp systcm maintenance may vary among
installations, but the following are some common tasks:

• Poll remote systems, until an answer is received, on an hourly basis. To do this, you use a
program called uupo11, which resides in /usr/bin. Uupo11 docs this by placing a
request for a null job in the queue for the remote system, then invoking uucico. For
more information, see uupo 11(8).

• Clean up garbage files in the spool (jusrjspoo1juucppublic) on a daily basis.
This is done using uuclean, which resides in jusrj1ibjuucp. This program is typ
ically started by the daemon each day to remove files that arc more than three days old from
the spool directories. (These arc usuatly files relating to jobs that could not be completed.)
You can, however, specify a time period other than three days, as well as a directory, one or
more file prefixes, the level of debugging output you want produced, and that mail be sent
to the owner upon a file's deletion.

• Remove old log files (found in usrjspoo1juucp with names beginning with LOG) on
a daily or weekly basis, depending on the number of files generated and available space.

Chapter 10 September 1988

128 IIJM/4.3 System Administration Guide

This page intentionally left blank.

September 1988 Chapter 10

CHAPTER 11

Implementing Local Area Networks

1. Introduction

For uses such as sending, receiving, and forwarding electronic mail, or for distributing news arti
cles in the USENET network, the uucp family of programs serves splendidly. It provides error
free transmission of data across phone lines and local area network cables between cooperating
systems, and it allows the system administrator to determine exactly when, if ever, such transmis
sion shall take place. For many important uses, however, the batch type of networking provided
by the uucp system is inadequate. For example, uucp has no capability to manage interactive
login sessions from a local machine to a remote host. While it is possible to use other IBM/4.3
system utilities (such as cu or tip) to login to remote systems over normal phone lines or
directly-connected serial lines, it is generally quicker and more reliable to use a local area network
to accomplish this. The IBM/4.3 system supports local area network access using both Ethernet
and Token-Ring hardware.

Typically a local area network consists of numerous machines linked to a single hardware device,
as depicted in the following illustration.

~ ~
~

1111111" 111111111
111111111 111111111

m::aJ

~
C

111111111

~
111111111

m::aJ
c

Gateway
111111111
111111111

Figure 11-1: Local Area Network Hardware Configuration

Because there is an abundance of information on local area networks, this chapter does not dis
cuss them in detail. For infonnation, you should see the following articles:

• Section 5 of "Installing and Operating Academic Operating System 4.3" in Volume II of the
IBM/4.3 documentation

• Section 15 of "4.3BSD Network Implementation Notes" in the UNIX System Manager's
Manual

• Section 11 of "Name Server Operations Guide" in the UNIX System Manager's Manual

IBM/4.3 System Administration Guide 129

130 IBl\1/4.3 System Administration Guide

• Section 8 of "Timed Installation and Operation Guide" in the UNIX System Manager's
Manual

September 1988 Chapter 11

CHAPTER 12

Managing USENET

1. Introduction

USENET is an electronic network that links UNIX-based systems (including IBM/4.3 systems)
around the world. It is used for exchanging information, posting questions, distributing public
domain programs, and a variety of other activities; it functions as a sort of electronic bulletin
board containing a large number of news groups. Unlike some bulletin board systems you may
be familiar with, however, USENET does not operate on a single host machine and there is no
central administrative authority that collects and distributes news messages. Rather, USENET
messages are transmitted from the machine they originate on to neighboring machines, and from
there onto more and more distant machines until messages have been distributed to all interested
machines located in the messages' distribution area. Most machines subscribe only to those news
groups that are of interest to the users of the machine, largely because subscribing to all news
groups can consume large amounts of disk storage space. Some machines, though, transmit all
active news groups, whether or not they are of interest to the users of that machine; such sites are
known as "backbone" machines.

111111111
111111111

Backbone Sites r--,

~ B ~
IIHIIIII 1111111"
111111111 111111111

- - - - - - - - -local area fWlwork -

D

serial
line

r--------,

I

~G
111111111
111111111

L ________ J

Network Leaf

Figure 12-1: A Typical Segment of the USENET Network

IBM/4.3 System Administration Guide 131

132 IBM/4.3 System Administration Guide

In this diagram, machines A and B are backbone sites; they exchange all news articles that come
to them from other backbone sites and from machines they serve. I Machine C is not a backbone
site, but it still subscribes to all active news !,'fOUpS because it is a news source, or "feed", for
machines D, E, and F. This kind of tJSENET host is generally called a "secondary" site. Since
machines D, E, P, and G do not serve as a feed for any other machines, they are sometimes
referred to as USENET "leaves".

As you may have guessed from the figure above, lJSENET is a logical network, in the sense that
it rides piggyback on existing networking software such as uucp and the Internet protocols to
move articles from site to site. Accordingly, tJSENET messages may be transmitted over phone
lines, through direct serial lines, through Ethernet cables, across Token-Ring connections; or
through whatever physical hardware is used to connect one machine to its news feed. The actual
underlying hardware and software protocols used in the transmission of articles are invisible to the
USENET users, since their interactions with USENET messages are always accomplished by a
news reading and posting program (of which there are several).

From an administrative point of view, lJSENET installation and maintenance is reasonably
straightforward, once you have a working network connection with a site that agrees to act as a
news feed. (Por information on instalIing lJSENE'r, sec "lJSENET Version B Installation" in
the UNIX System Manager's Manual.) USENET is designed so that most administrative functions
can be performed automatically, either by receipt and processing of certain control messages sent
across the network itself, or by periodic invocation of various commands by the c ron daemon.
The primary tasks involved in acting as the USENET administrator for your site include making
sure that news articles and log files do not consume too much disk space and keeping configura
tion files up to date. The USENET administrator will also be called upon to add or remove news
groups and to monitor log files used by the news software. Finally, you will also have to ensure
that your local user community makes intelligent and polite usc of the faeilities provided by the
USE NET network.

2. Overview of USENET Operation

USENET articles are posted, passed from site to site, and ultimately read by using a set of pro
grams collectively called the netnews programs. These programs are in the public domain and
may be obtained from most USENET sites. If they arc not already installed on your system, you
will probably obtain the source code from your news feed; see the lJSENET installation article
referenced above for more information.

To illustrate the overall operation of tJSENET, let us follow the path of a news article from its
original posting to its reading on some other system. First and foremost, a news article is posted
by some user at some USENET site. There are several ways to post an article, either by using a
news-posting program (sueh as postnews or the newer Pnews) Of by sending the article by
electronic mail to an account on a remote system that receives news articles. If the article is
posted using the mail program, it will automatically pass through the recnews program. In
either case, the article will then be handed over to the i news program, which determines how
the article should be sent from the local machine to it.s USENET neighbors.

There are two primary methods for getting news articles from one machine to another. If the ori
ginating machine is connected to a network that allows remote command execution, then the arti
cle can simply be sent as the standard input to the rnews program running on the receiving
machine. For example, if the two machines arc connected hy the uucp network, then inews

IThere are other requirements as well that a machine must fulfill in order to be considered a backbone site. A
backbone site must exchange every non-local newsgroup that it receives with at least two other backbone sites (or with
the main feed for a particular geographic area), have the disk capacity to handle the volume of net traffic, and run a re
cent version of the ne tnews software. In addition, a backbone site must agree to be advertised as a backbone site.

September 1988 Chapter 12

IBM/4.3 Systcm Administration Guidc 133

will run a command like the following:

uux - -r -z remote!rnews

On the other hand, news articles can be sent through an inter-machine mail link. In this case, the
mail will be sent to an account named rnews on the remote system, which will probably call
the program uurec to process the incoming mail, strip ofT mail headers, and pass the news arti
cle to rnews. The different paths for originating and transmitting news articles are illustrated in
the following figure.

User Commands
r--------,
I I

~ Pnews ~-.-j---- inews ~<O uux 0· .. ··········• ~~' ° mail O+OrecnewsO>O----1 lliendnew~...

I
I

m 0+ ~~<O .. uurec .. O~.·.·.·.·.·
L ________ J

Spooling Directory

Figure 12-2: Overview of News Posting and Reading

An article passed to rnews is checked against a history file listing the articles already received on
the local system. If the article has not yet been seen, it will be forwarded to USENET neighbors
that the remote system feeds. The rnews progratn will also place the news article into an
appropriate spot in the ft1.e system hierarchy, where they are accessed by a news-reading program
such as rn or readnews. Typically the news articles are placed into subdirectories of the
jusrjspooljnews directory, as indicated in the following figure:

Chapter 12 September 1988

134 IBM/4.3System Administration Guide

Figure 12-3: Part of the News Directory I lierarchy

3. Maintaining the News System

Maintaining the new system is largely a job of ensuring that files no longer needed in the system
are discarded. Specifically this applies to history and log files, which will grow with use and can
become a problem if not discarded when appropriate, and news groups that are no longer active.
As administrator for the news system, you should do the following:

• Use the expi re program (which is discussed later in this chapter) to delete lines from the
history file relating to articles that have been deleted. The history file contains information
on the articles you've received from other sites; lJSENET checks it when attempting to
deliver a new article. If the article has already been received at your site, USENET will not
duplicate it. You may want to manually check the history file every few months to make
sure that expi re is removing the appropriate lines. Be sure, however, that you don't
completely discard the history file, in case a site attempts to send you an article you recently
received.

• Use the trimlib script to keep the log file from becoming too large. You can install
trimlib in /usr/lib/news and add an entry to your crontab file (which is dis
cussed in Chapter 16) to automatically invoke this script once a week.

• Make sure to remove inactive newgroups. To do this, run the shell script rmqroup
(which resides in /usr/lib/news) with the name of the newsgroup you want to
remove as the argument.

4. Creating a New Ncwsgroup

Occasionally, someone at your site may suggest that a new newsgroup be created in order to serve
a need that is currently not served. Since there is no central lJSENET administrative authority, it
is possible for the USE NET administrator at any site to create a newsgroup and then inform the
net of the existence of the new group. Other sites are then free to subscribe to the new group or

September 1988 Chapter 12

IBM/4.3 System Administration Guide 135

not to subscribe, as they wish. It may also be necessary to create newsgroups intended for local
distribution only. The steps required to establish a new newsgroup in each of these two cases are
listed below.

4.1. Creating USENET Ncwsgroups

Generally, it is not "a good idea to add new groups to the existing USENET groups without first
determining that such a newsgroup is really needed. It is possible that the discussion you wish to
carry on fits nicely into an existing newsgroup, or that it would at least be tolerated by an existing
newsgroup. Even if there is no current forum for your topic, it is also possible that there is insuf
ficient interest in that topic to warrant the creation of a new group. It is preferable to avoid a
proliferation of newsgroups and you are likely to receive some unfavorable reactions if you create
a new USENET group without first following these steps:

(I) First and foremost, determine if a new newsgroup is reatly needed. Scrutinize lists of exist
ing groups to see if one of them will accommodate the topics you wish to discuss. If the
traffic in a particular related newsgroup is not too heavy, chances are that the added discus
sion will be welcomed there and there will he no need to create a new group. Por example,
the group cornp. lang. po stscript is devoted to discussing the PostScript page
description language, but it is also used to trade actual PostScript programs, thereby obviat
ing the need for a separate comp. lang. postscript. sources group.

(2) Select an appropriate name for the new group, and decide if you want it to be a moderated
newsgroup or not. The name should be as short and pithy as possible, consistent with the
requirement that it should try to exhibit its relation to existing groups.

(3) Post an article to the group news. groups describing your proposed new group.
Request that comments, both pro and con, he mailed to you rather than posted directly to
the network. Also cross-post your article to related newsgroups, but be sure to set the
'Followup-to' field so that posted responses go only to the news. groups group.

(4) Wait a few weeks and then review the comments that you receive by mail and on the net
work. Pay special attention to any objections that are expressed. At this stage it may be
necessary to refine or modify the name and direction of the new group. If you do so, start
the whole process over again, notifying the news. group subscribers of the modifica
tions.

(5) Collect and categorize the responses you have received by electronic mail. There is no
magic number of votes needed to justify the creation of a new group, but currently it is
recommended that the positive responses must outnumber the negative responses by a mar
gin of at least 100. If you cannot find at least that many people in the projected distribution
area who would actively read and contribute articles, then the group is probably not needed.
If you do get a significant re8ponse, however, then you 8hould summarize your totals and
post an article to news. group containing the summary. Also, this article should include
the names and addresses of those expression an opinion.

(6) Send mail to backbone@rutgers. edu summarizing your results and asking that the
new group be created. You can of course issue the appropriate control message yourself,
but many sites will ignore it unless you arc a recognized backbone site. If the new group is
to be moderated, include all the relevant information about who is going to do the modera
tion.

If you follow these steps precisely and manage to dicit the appropriate amount of user response,
then the new group probably will be created by the administrators at Rutgers.

4.2. Creating Local Newsgroups

Local newsgroups may be distinguished from those having a larger distribution by the fact that
names of local newsgroups contain no prefix (and hence no periods). If a group is to be

Chapter 12 September t 988

136 IIlM/4.3 System Administration Guide

maintained entirely locally, so that messages are never forwarded to any neighboring machines,
then the steps outlined in the previous section may be skipped and the USENET administrator
may simply create the group. For example, to create the local newsgroup called 'general',
give the command:

inews ~C general

The appropriate spooling directory witI be created the first time an article is posted to the new
group.

5. Expiring Old Articles

By default, a news article expires two weeks after it. has been received on the host system, whether
anybody has bothered to read the article or not. You can configure the c ron daemon to
remove expired articles automatically by inserting the following line into the configuration me,
/usr/lib/crontab.

15 23 * * * root /usr/lib/news/expire

At 11:15 p.m. of each day, the program /usr/lib/news/expire wiII scan the news direc
tories, searching for files that have reached their two-week limit. If any such files arc found, hey
will be removed from the system.

If your system is short on disk space, you can decide to expire articles sooner than the two week
default, one one of several ways. First, you can change the constant DFLTEXP in the net
news software source code and then recompile the code. As distributed, DFLTEXP has a value
of 1,209,600 seconds (or two weeks), which you may alter to suit local preferences.

A slightly simpler way to modify the two week default for expiring articles is to provide an argu
ment to the expi re command that you put into your c rontab file. The - e option, fol
lowed by a number, will cause articles older than that number of days to be expired. For exam
ple, the c rontab entry:

15 23 * * * root /usr/lib/news/expire -e 7

will expire articles after 7 days. In theory, this should reduce the amount of disk space consumed
by USENET articles by approximately one-half.

6. Control Messages

Much of the day-to-day administration of the network news is handled automatically by the news
system itself. For example, suppose that a user appeals to the network to help solve some prob
lem, but then manages to solve it locally. In this case, there is very little use in having the mes
sage read by the entire news-reading community in the distribution area of the message, or in hav
ing the message further distributed. Instead, the original poster can request that all systems that
have already received the message cancel it, so that it is not read or replied to by future news
readers. To do this, the user may send out what is called a "control message".

A control message is simply a news message whose header contains a line beginning with the key
word 'Control'. The remaining portion of the control line is the message to be acted upon. For
example, here is the relevant line from a typical control message:

Control: cancel <1987Sep16.144435.26473@nat.ucbvax.berkeley.edu>

Control messages are intended primarily for communication among USENET systems and not
for human users or administrators of such systems. When the netnews system (typically rnews)
receives and recognizes a control message, it will act upon it immediately, unless instructed
differently. It is possible to have the news software queue the control messages for manual pro
cessing by the local USENET administrator, but this is not generally recommended since it invari
ably leads to delays in processing control messages.

September 1988 Chapter 12

IBM/4.3 System Administration Guide 137

The important part of a control message is just the news header itself, which contain the control
line. The body of the message (i.e., the part that follows the header) is usually ignored, although
it can be used to explain the reasons for the control message. Only the checkgroups control
message contains a message body that is important to the receiving system.

For compatibility with earlier news systems, messages having a newsgroup 'all. all. ctl' are
also interpreted as control messages. In addition, if such a message header docs not contain a line
beginning with the keyword "Control", the Subject line is used instead. Also, if the first four
characters on a "Subject" line are "cmsg", the remainder of that line is interpreted as a control
message.

There are currently eight different control messages, each specified by a keyword command like
cane e 1 above. The keywords, the necessary arguments, and their actions arc:

Chapter 12 September 1988

138 IBM/4.3 Systent Administration Guide

Message Arguments I>l'scription
cancel me,lisage-id If the message with the specified identification number

message-id is present of the local system, then it is can
celled. If that article is not present, then the control
message witl not be sent on to neighboring sites. Only
the author of a message or the local USE NET adminis
trator may issue such a control message.

ihave message-id The sending host has the specified messagemessage-id
and is prepared to forward it to the host receiving the
control message, if requested. NonnaIly, all articles in
the appropriate newsgroups are send to a host, which
then consults a history file to" see if it has already been
received; if so, the newly-received article is thrown away.
The ihave control messages allows a site to detennine
whether an article should in fact be send to another site
or not.

sendme message-id The host issuing this control message wants the specified
message mes.rage-id sent to it. This message is typically
used to reply to an ihave control message.

newgroup name The specified new group nameis added to the active file
and mail will be sent to the local USENET administra
tor indicating that this was done. A further argument
'mode r a ted' may be present, indicating that the new
group will be moderated.

rmgroup name The specified group name is removed from the local
system's active file. If the MANUALLY compile flag was
not specified at software installation time, then the arti
cles belonging to this group, the group directory, and the
appropriate line in the active file will be removed.

sendsys The sys file, containing a list of the local system's
neighbors and newsgroups sent to them, is to be sent by
return mail to the originator of the control message.
This message is used to keep lJSENET maps up-to-date
and to determine which sites are receiving network news.

versi on The name and version number of the news software is to
be mailed hack to the originator of this control message.

checkgroups The message containing this control line is a list of all
active newsgroups, together with a short description of
each group. The body of the message is piped through
the program checkgroups, which will update the lo
cal newsgroups file, add any missing newsgroups, and
mail a message to the lJSENET administrator concern
ing old groups which should be removed.

Table 12-1: lJSENET Control Messages

Any unrecognized message keywords wiJI cause an error message to be mailed to the local
USENET administrator, so part of your job as system administrator will be to inspect this mail
and act accordingly. As time passes, additional keywords may be defined, in which case the
source code (in particular, the file control. c) will need to be modified to recognize new key
words and to perfonn the appropriate actions when they arc received in control messages.

September 1988 Chapter 12

IBM/4.3 System Administration Guide 139

There are three ways to send control messages:

• To post network-wide control messages, use net. msg . ctl.

• To send a restricted broadcast of a control message, use btl. msg . ctl.

• To send a control message to a particular system, use to. systemname. ctl.

7. Batch Processing of Articles

If your news feed communicates with you via the uucp network and you subscribe to a reason
ably large number of newsgroups, then you will probably want USE NET articles to be sent to
you in a hatched and compressed fonn. In this form, many articles are combined into a single file
which is then compressed in order to reduce the size of the transmission. When such a transmis
sion arrives at your site, it is uncompressed and then unbatched, and the individual articles are
placed into the proper locations in the news directories.

Outgoing Articles

sendbatch -c

o ~ batc~ -* ~ compress ~ o
DODD
0000
DODD

Feed .. I

j
r---------1tE:D<- - -~.-..... -.... -..... -.... -..... -.... -..... ---'

rnews 0 0 0 0 ~
o ~uncompresD~~ unbatch ~ 0 0 0 0 D

0000 '"'''"' """"'
Leaf

Figure 12-4: Hatching and Compressing News Transmissions

The alternative to batching is to have uucp execute one command for each separate news article,
thereby increasing the amount of work required to get the news articles to your site. Similarly,
compressing the batched articles can reduce the total file size hy as much as 500/0, effectively halv
ing the transmission time and expense.

8. User Education

USENET survives solely by the good graces of those who provide the hardware and administer
the network software at each site. Participation in the USE NET network is completely voluntary,
and at any time, any site on the network is free to discontinue transmitting USENET articles, if
the costs should become too great for that site to bear or if it proves to be a nuisance to continue
USENET services. It is important therefore that your local users community be made aware of
certain rules of etiquette governing USENET usc. For example, a site that floods the net with
numerous sizable, vitriolic, and largely useless postings, or with obviously self-serving

Chapter 12 September 1988

140 IBM/4.3 System Administration Guide

advertisements, is abusing the courtesy of other USENETsitcs and may risk losing its news feed.
In order to help avert such a situation, the system administrator must educate the local user com
munity to whatever degree possible. On-line (JSENET documentation should be made available
and users should be cncouraged to read them. In addition to the on-line documentation, users
should be directed to the following two articles reprinted in the {her' s Manual Supplementary
Documents, "How' To Read the Network News" (USD-9) and "How To Use USENET
Effectively" (USD-IO).

9. Tips on Managing (]SENET

• If you find that USENET articles have consumed more disk space than you would like, you
can manually expire articles in certain specified newsgroups by invoking the expi re com
mand with the -n argument, which will cause the immediate expiration of all newsgroups
listed. For example, the command:

/usr/lib/news/expire -n rec.*

will expire all articles in the recreation newsgroups.

• If the transmission and processing of news articles puts a significant load on your machine,
then arrange to have these tasks done at night.

• Never expire articles while unbatching of incoming mail is occurring.

• It is highly recommended that you subscribe to the newsgroup news. admin. This
group is devoted to a discussion of netnews administration.

September 1988 Chapter 12

CHAPTER 13

Accounting

1. Introduction

In many computing environments, it is essential to keep an accurate record of who is logging into
the system and what they are doing while connected to it. Typically, such information is used to
determine account charges and billing infonnation for the users of a system. This information can
also be used in a variety of other ways, however. For example, in the event of a system break-in
by an unauthorized user, a complete record of logins may provide some clues as to the identity of
the culprit and the method used to gain access to the system. It may also be useful to know
which commands are being used most often on a particular system so that they can be given
priority in the software maintenance schedule. Also, by maintaining a record of who is using a
systeln, the system administrator can help balance the distribution of the limited resources avail
able among the entire user community. By monitoring login times, the system administrator can
determine the optimal time to perform large system maintenance tasks such as file system back
ups.

The IBM/4.3 system can be set up to provide two types of accounting information: user connect
time accounting and system resource accounting. This chapter describes, for each of these two
different accounting systems, how it works, how to start it, how to stop it, and how to summarize
accounting records.

2. User Login Accounting

The simplest type of accounting provided by the II3M/4.3 system is called user login accounting
or user connect time accounting. User login accounting provides the system administrator with
information about which users are logging in to the system, when they are logging in, and how
long they remain logged in. It maintains records on who is currently using the system and on
who has used the system in the recent past.

The system uses two main files to store user login accounting information: jetcjutrnp and
jusrjadrnjwtmp. Neither one of these files is in a human-readable form, so you will never
alter or view their contents directly. Rather, various system daemons and utilities are used to
update and summarize the information contained in these files, as described in the following sec
tions.

2.1. Starting Up Login Accounting

Each time a user logs into the system, the log in program attempts to write an entry into the
me jusrjadmjwtmp. An entry is also added to this file, if it exists, by the ini t command
each time a user logs out, thereby maintaining a complete record of how long the user was logged
in to the system. If the me jusr /adm/wtmp does not exist, however, then no user connect
time accounting is done. In that case, the system administrator will have no way of knowing who
has logged into the system in the recent past or how long they remained connected to the system.
If the fue does exist, however, then user connect time accounting will be done automatically.
This means that there is no special command that must be run in order to turn on connect time
accounting if the me ju s r j admjwtmp already exists. If you want to enable connect time
accounting but that me does not exist, simply create it O-length, as follows:

IBM/4.3 System Administration Guide 141

142 IBM/4.3 Systcm Administration Guide

touch /usr/adm/wtmp

The file /usr/adm/wtmp is a binary data file. In addition to user logins and logouts, it also
maintains data on system reboots and date changes, and if left undisturbed, it will grow without
limit. Consequently, any needed information should be extracted from it periodically and the me
should be truncated. to 0 bytes. You may perform this truncation by executing the command:

cp /dev/null /usr/adm/wtmp

After collecting any desired user accounting information (as described below) and before re
initializing the accounting me in this manner, you may wish to copy it onto a backup medium
such as streaming tape or floppy diskette. (Consult the chapter on performing backups for infor
mation on doing this.) You may also wish to rotate the file /usr/adm/wtmp, as described in
complete detail in Chapter 16.

2.2. Listing User I.,ogin Scssions

A record of who has logged on the IBM/4.3 system in the recent past may be obtained with the
last command. The last command will look into the file /usr/adm/wtmp and extract
information about a user and a teletype, or about a group of users and teletypes. For example,
the last command with no arguments will print a record of all logins and logouts, in reverse
order. The beginning of a typical output might look like this:

% last
smith
smith
smith
judy
reboot
smith
judy
jr
judy
judy
judy
judy
smith
jr
judy

ttypO
ttypO
ttypO
ttyaed

ttypO
ttyaed
ttyaed
ttyaed
ttyap16
ttyap16
ttyaed
ttypO
ttypO
ttyaed

ibmpa
ibmpa
ibmpa

ibmpa

ibmpa
bullhead

Fri Mar
Fri Mar
Fri Mar
Thu Mar
Thu Mar
Mon Mar
Mon Mar
Mon Mar
Mon Mar
Mon Mar
Mon Mar
Mon Mar
Mon Mar
Mon Mar
Sun Mar

26 13:46
26 12:22 -
26 12:20 -
25 09:59 -
25 09:54

still
13:34
12:21
17:07

22 15:37 - 15:42
22 12:17 - 15:00
22 12:10 - 12:16
22 10:09 - 12:10
22 10:08 - crash
22 10:07 - 10:08
22 10:05 - 10:09
22 10:00 - 12:40
22 09:27 - 09:27
21 15:24 - 17:40

lO~6r~f2 ~l' n
00:01
07:08

!00:05} 02:43
00:06
02:00

(2+23:45)
00:00
00:04
02:39
00:00
02:15

The first column lists the user name givcn at login time; the second column lists the name of the
teletype port through which the login occurred. If the login session occurred across a network,
then the third column will contain the name of the remote host from which the connection was
made; otherwise the third column is blank. Finally, the remaining columns list the login and
logout times, along with an indication of the total elapsed time for that login session.

The last command can be instructed to give login data ahout a particular user, or a particular
teletype port, instead of the default complete listing. For instance, to obtain information about all
login sessions by the user judy, a user would type:

% last judy

and to obtain login information about all logins that occurred through the system console, a user
would type:

% last console

These two types of options may be combined, so that the command:

% last judy console

will list all logins by judy on the system console. There is a special string recognized by the
last command, 'reboot', which requests that only reboots of the system be listed. So the

September 1988 Chapter 13

IBM/4.3 System Administration Guide 143

command:

% last reboot

will list, in reverse order, all system reboots recorded in the file /usr/adm/wtmp.

2.3. Summarizing Connect Times

Although the last program provides a complete listing of all recent user logins, it does not pro
vide any totals from among the data listed. To obtain a listing of total connect times, you may
invoke the program /etc/ac. This program produces a printout of total connect times for
each user who has logged in during the life of the current accounting file, /usr/adm/wtmp.
For example, if invoked with no arguments, a total of all connect times by all users is printed:

/etc/ac
total 429.75

If, on the other hand, you wish to see how much connect time a particular user has consumed,
you may invoke the command with the -p option. For instance:

/etc/ac -p
gordon 312.05
jr 52.26
monroe 64.60
susan 0.16
ping 0.21
yokela 0.05
kevin 0.57
carl 0.07
mar 0.01
root 0.00
total 429.97

A further option, -d, requests that only a daily total be printed; this restricts the listing to con
nect time within each midnight-to-midnight period:

/etc/ac -p -d
gordon 7.69

Nov 1 total 7.69
gordon 8.15
jr 6.52

Nov 2 total 14.67
gordon 8.17
j r 20.63
monroe 5.25

Nov 3 total 34.05
gordon 12.67
monroe 5.01
susan 0.01

[lines omitted]

gordon 7.35
Nov 27 total 7.35

gordon 2.67
monroe 2.35

Nov 28 total 5.02

Chapter 13 September 1988

144 IUM/4.3 Systcm Administration Guide

As you can see, this kind of connect time summary is likely to be quite lengthy on a system with
even a moderate amount of use.

2.4. Listing Current System Uscrs

At any time, you may obtain a list of current users of the system by executing the who com
mand. You will obtain some output similar to this:

who
gordon
monroe

ttyaed
ttypO

Mar 28 10:51
Mar 28 11:03 (ihmpa)

The who command obtains this information by consulting the me /etc/utmp, which is a
binary data file that contains information about all users currently logged in. As indicated by the
printout, /etc/utmp contains four pieces of information about each current user: the user's
login name (in the form of the user identification number), the teletype through which the user is
logged in, the time that the us"er logged in, and the user's remote host, if that user is logged in
across a network (indicated above in parentheses).

Unlike the file /usr/adm/wtmp, the file /etc/utmp will not grow without boundaries,
since each time a user logs out (or hangs up the telephone, if logged in through a modem), the
corresponding entry in /etc/utmp is removed by the ini t process. Therefore, there is no
need to monitor the size of /etc/utmp or to back it up onto a secondary storage medium. It
is, however, advisable to truncate this file at boot time, in order to guard against a possibly inac
curate file left over by a system crash. You may wish to include the following line in your local
system start-up me, /etc/rc . local:

cp /dev/null /etc/utmp

If this line is placed there, the system will automatically trim the list of current system users at
boot time.

3. System Accounting

System process accounting involves keeping track of exactly who is doing what on the system.
The kernel implements process accounting by maintaining internal statistics about each process as
it runs and then appending a record summarizing those statistics to a system accounting me. If
process accounting is enabled, the following items will be monitored and reported:

• Name of each command or process run on the system.

• User time expired during the running of the process.

• System time expired during the running of the process.

• Total elapsed time for the process.

• Time of day at which process was initiated.

• Uid of person running process.

• Gid of person running process.

• Average amount of memory consumed by process.

• Number of disk I/O blocks used by process.

• Controlling terminal line.

In addition, the accounting record contains a flag indicating whether the process was killed by a
signal, whether it was run by the super-user, whether it dumped core, and several other useful
pieces of information about the process.

The accounting ftIe maintained by the process accounting system, usually /usr/adrn/acct,
therefore provides a nearly-complete picture of who is doing what on the system, how long it

September 1988 Chapter 13

IBM/4.3 Systcm Administration Guidc 145

takes, when they did it, and whether the command exited normally or not. Since it is designed to
maintain such information about every process in the system, the system accounting file will inev
itably grow quite large. It is the job of the system administrator to monitor the accounting file
periodically, extract and summarize the necessary information, and then truncate the file to a rea
sonable size. The following sections provide detailed instructions on starting, stopping, and main
taining the process accounting system.

3.1. Starting Up Process Accounting

Like the user connect time accounting system discussed above, the process accounting system is
entirely optional and does not have to be running in order for the IBM/4.3 system to provide ser
vices to local and network users. Unlike the login accounting system, however, which starts up
automatically if the file /usr/adm/wtmp exists, the system administrator must explicitly tell
the operating system to begin collecting process accounting information. This is done by invok
ing the command /etc/accton with some file name provided as an argument. Essentially,
/etc/accton just passes the file name to the system call acct () which notifies the kernel
to begin placing accounting records into the named file. Once accounting is enabled, the kernel
will append a record to the accounting file as each process terminates. The record lists, among
other iteIns, the name of the process, the time at which the process was launched, the user and
group identification numbers of the user who initiated the process, the average memory usage,
and accounting user and system time.

On the IBM/4.3 system, process accounting records are usually kept in the file
/usr/adm/acct. If your system is running in multi-user mode and you want to turn on
process accounting, you can simply type the following command to the shell:

/etc/accton /usr/adm/acct

Usually, however, the following lines are placed into the system start-up script, /ete/re, in
order to initiate system accounting automatically when the system enters multi-user mode:

/etc/accton /usr/adm/aect
echo -n ' accounting' > /dev/console

You should make sure that these lines do not precede the commands that mount the file system
holding the accounting rtIe. Otherwise, the kenlcl will not be able to locate the accounting file
and the accton command will fail.

3.2. Stopping Process Accounting

You may at times wish to turn off the process accounting system, so that records are no longer
appended to the accounting file at the completion of each process. You will need to turn off sys
tem accounting, for example, if you want to unmount the file system containing the accounting
rtIe. If you do not stop the accounting before you attempt to unmount the file system, you will
get the message:

/dev/hdOg: Device busy

To turn off process accounting, you must invoke the accton command with no arguments, as
follows:

/etc/accton

Once this command is executed, the kernel will cease· appending accounting records to the system
accounting me.

Chapter 13 September 1988

146 IBM/4.3 System Administration Guide

3.3. Listing User Commands

One utility that reads and interprets the system accounting file is the lasteomm program. This
program gives information on commands that have alrcady terminated and for which records have
been entcred into the accounting ftle. A typical segmcnt of lasteomm output might look like
this:

lasteomm
sh S root 0.12 sees Wed Apr 13 13:45
atrun root 0.08 sees Wed Apr 13 13:45
sh S root 0.09 sees Wed Apr 13 13:30
atrun root 0.08 sees Wed Apr 13 13:30
df smith ttyOO 0.25 sees Wed Apr 13 13:26
who smith ttyOO 0.06 sees Wed Apr 13 13:26
mail X smith ttyOO 0.45 sees Wed Apr 13 13:25
rlogin smith ttyOO 2.42 sees Wed Apr 13 07:58
rlogin F smith ttyOO 8.81 sees Wed Apr 13 07:58
sendmail F root 0.05 sees Wed Apr 13 13:20

The first column lists the command name. The second c01umn may contain a flag indicating
whether it was run by the superuscr (in the cxample, IS'), whethcr it ran following a fork but
not an exec (in the example, 'F'), or whether is was terminated by a signal (in the example,
'X'). The remaining columns are fairly self-explanatory; there are the uscr name, controlling ter
minal, elapsed time, and time of day when launched.

As with the last command, you can supply certain arguments to the lastcomm command
to restrict the records output to a subset of the complete list. For example, the command:

lastcomm smith

wi11list the records for the user smi tho Similarly, the command:

lasteomm console

will list records for all processes launched from the system console. This can be useful, for exam
ple, if you know that some unauthorized user was able to gain access to the console.
lastcomm will give you a complete list of the commands run by that user and perhaps allow
you to isolate any damage that may have been done.

3.4. Maintaining Process Accounting ' iles

As indicated above, the main process accounting file /usr/adm/acet will grow quite large as
processes are launched then terminate. It is useful to reduce the amount of disk space occupied
by accounting records by summarizing the records in /usr/adm/acet and then truncating
that fIle. The summaries are kept in two other files, /usr/adm/savaeet and
/usr/adm/usracct, which contain, respectively, a summary of the raw accounting data
and a per-user summary of all accounting data. These summaries, especially the per-user sum
maries in /usr/adm/usracct, can be used to determine account charges.

The IBM/4.3 system provides the general administrative command, jete/sa, to report on,
maintain, and clean up the system accounting files. One of the most common uses of the sa
command is to merge the raw accounting records contained in /usr/adm/aeet with those
records already summarized in /usr/adm/savacct. When invoked with the -5 option,
s a will summarize the records in the raw file and in the summary file and then create a new sum
mary ftle containing all the previous accounting information. Note that sa will also output the
new merged statistics, so if you merely want to merge the two fi1es, you should redirect the output
of s a, as indicated:

jete/sa -s > /dev/null

Scptembcr 1988 Chapter 13

IBM/4.3 System Administration Guide 147

After this command has completed, the raw accounting fiie wilt contain just a single entry (that
corresponding to the sa command itself).

4. Accounting Tips

• There is no system utility that indicates whether or not process accounting is enabled. (Part
of the reason for this is that process accounting is handled directly by the kernel and not by
some ancillary daemon or process.) You can determine this easily, however, by running the
lastcomm command and comparing the date of the most recent command logged with
the current system date. For example:

date ; lastcomm I head -1
Wed Apr 13 13:02:40 PDT 1988
date root console 0.05 secs Wed Apr 13 13:02

The output indicates clearly that process accounting is currently enabled.

• You should note that the accounting system summarizing program provided with the
IBM/4.3 system, jete/sa, docs not differentiate logins or system resource consumption
by group. There is no way, short of writing your own shell scripts or programs, to obtain
usage totals for a particular group. This reflects the decision to associate accounting pro
grams with the user identification number (uid) and not the group identification number
(gid). It is also probably the basis for the use of the word 'account' to describe the collec
tion of directories, flIes, and other objects that altogether allow a user to log in to the sys
tem.

• Remember that the kernel writes process accounting records into the accounting file (usually
/usr/adm/aeet) when the process terminate/i. One consequence of this scheme is that
no accounting records are kept for processes which never terminate, or for processes which
are running when the system crashes. It may therefore be possible for very clever users to
circumvent the process accounting system by arranging to crash the system at some
appropriate time.

• In the IBM/4.3 system, the accounting file is typically /usr/acim/aeet. As you have
seen, it is possible to save process accounting records in some other location, but this prac
tice is not recommended since several utilities (for example, lastcomm) expect records to
be kept in /usr/adm/aect.

Chapter 13 September 1988

148 IBM/4.3 System 'Adnlinistratlon Guide

This page intentionally left blank.

September 1988 Chapter 13

CHAPTER 14

Administering Quotas

1. Introduction

Disk space for fIle storage is one of the most easily endangered resources of any computer system.
Without some method of limiting individual space consumption, a fIle system can quickly be
fIlled by indiscriminate accumulation of user files or by runaway processes that create large output
fIles. The IBM/4.3 system includes a subsystem designed to allow the system administrator to set
up quotas limiting the consumption of disk space by an individual user. When the quota system
is operating, the administrator can place limits on the total amount of disk space that a user's fIles
may occupy, on the total number of files that a user may own, or both. Moreover, the adminis
trator can apply these two kinds of quotas on a per-user basis, allocating some users more space
than others, or assigning identical quotas to all users.

For each of the two types of quotas available (total disk space and number of files), the adminis
trator must set both a "soft" and a "hard" limit. The hard limit is the absolute maximum
amount of disk space or number of i-nodes that a user can own. The quota system will not allow
these numbers to be exceeded under any circumstances, so once they are reached, any attempts to
consume more disk space or create new mes will fail. The first time the hard limit is reached, a
message will be sent to the user's terminal screen. The user must reduce space consumption (or
the total number of fIles) in order to bring the usage under the hard quota, since no further
resources will be allocated to the user. Only one such message will be printed.

The soft limit is the total number of blocks (measured in 1 K) or i-nodes that the user is not
expected to exceed. The soft limit acts as a cautionary boundary that space consumption is
approaching the hard limit. If the user exceeds this number, a warning will be issued. If the user
logs out without reducing below the soft limit the amount of disk space occupied or the total
number of files (whichever limit was surpassed), the user will be warned once again at the next
login session and the total number of remaining warnings is reduced by one. In all, three warn
ings are given before the user is considered to have exceeded the hard limit. No more resources
will be allocated to that user; in particular, that user will be unable to log in until the disk usage is
reduced below the quota.

You should note that the disk space quota subsystem is entirely optional. In the default system
configuration, the quota system is not installed and users will be able to create as many files as
they like, of whatever size they like, wherever in the file system they have write permission, until
the available disk storage is depleted. In order for the size and/or number of user files to be
governed by the quota subsystem, the system administrator must install the subsystem into the
kernel and configure user quotas. This chapter describes the installation, configuration, and
operation of the disk quota system.

2. Installation

The quota system is quite simple to use and monitor once it has been installed on your IBM/4.3
system. Installation itself is not difficult, but it does involve reconfiguring the operating system
and selecting quotas for individual users, as described in the following sections.

IBM/4.3 System Administration Guide 149

150 IBM/4.3 Systcm Administration Guide

2.1. Reconfiguring thc Operating System

Before the system administrator can set quotas on system users, several steps are necessary to
install and configure the quota system. Pirst and foremost, the operating system (or "kernel")
must be reconfigured to include routines used by the disk quota subsystem. This task was used as
an example in Chapter 3 to illustrate how to reconfigure the operating system, and you should
refer to that discussion for a complete step-by-step walk-through of the process. The remainder
of this section provides a summary of the steps necessary to install the disk quota subsystem into
the kernel. Before doing any kernel reconfiguration, however, you should make sure that this has
not already been done for you. Run the command:

quota

If the quota subsystem has already been installed, you will see the following message:

Disc quotas for root (uid 0): none.

(The alternate spelling 'di sc" for 'di sk' in this and other messages from quota-related com
mands reflects the fact that the disk quota subsystem was developed by researchers in Australia.)
If, on the other hand, the quota system has not been instal1cd, you will see the following message:

There are no quotas on this system

You should proceed with the rest of this section only if you see the latter message.

To begin, you must include the following line in the system configuration file (probably a copy of
/sys/conf/GENERIC, which we shall call 'GEN_QUO'):

options QUOTA

This line instructs the system configuration process to include sections of code relevant to the
operation of the disk quota system. If this line is not put into the configuration file, then the
necessary code will not be included and you will be unable to establish disk quotas on your sys
tem.

When you have finished inserting this line into the system configuration file, you will need to
create a target directory to hold several files that will soon be created. Then run the config
program:

mkdir .. /GEN_QUO
config GEN_QUO

If everything goes smoothly, the config program will create several files in the target directory.
You can complete the system regeneration process by issuing the following commands:

cd .. /GEN QUO
make depend
make vmunix

Finally, you will need to install the newly-created system image into the root directory and reboot
the system. For example,

cp /vmunix /vmunix.old
cp vmunix /vmunix
sync
sync
reboot

If you encounter any difficulties. in this phase of the quota installation procedure, or if you are
unfamiliar with the process of generating a new kernel, please refer to Chapter 3 and to the docu
ment "Building IBM/4.3 Systems with Config", in Volume 2 of the Technical Computing Sys
tems documentation.

September 1988 Chapter 14

IBM/4.3 System Administration Guide 151

2.2. Setting Up Disk Quotas

The next step involved in installing the disk quota system is deciding which of the available file
systems need to have their space regulated by user quotas. Generally, it is sufficient to place
disk-space quotas only on those file systems that store users' home directories. If other file sys
tems are in part dedicated to holding user files, then they too are good candidates for inclusion
under the quota system. Possibly the /u s r file system qualifies under this category, depending
on your local usage patterns. For various reasons, however, it is recommended that spooling
directories and temporary directories (such as /tmp) not be placed under the quota system.

Once you have determined which file systems shall be governed by quotas, the file
/etc/fstab must be modified to indicate this information. Each file system listed in
/etc/fstab that is to have quota-checking enabled must be indicated by a file type entry of
the form 'rq'. For example, suppose that you wish to establish quotas on the /usr ftle system.
The original entry for this ftle system in /etc/fstab looks like this:

/dev/hdOg:/usr:rw:l:2

To enable quotas on this file system, modify the entry so it looks like this:

/dev/hdOg:/usr:rq:l:2

Next, create a null file called quotas in the root directory of each file system on which a space
limitation is to occur. For example:

cd /usr
touch quotas

The ftle quotas is used to maintain a record of disk quota limits and usage for the fiie system
in whose root directory it is located.

Finally, the system administrator must decide how much disk space each user shall be allocated
for each ftle system and then inform the system of these decisions. These space decisions will no
doubt need to be based on local parameters such as the number of persons using the system, how
important and space-intensive their projects are, how much free disk space is available, and other
factors too numerous to mention here. Once these decisions have been made, they are imple
mented by invoking the edquota utility.

To illustrate the use of the edquota command, suppose that the user whose login name is
guest is to be limited to 100 kilobytes of disk space and 100 files. Invoke the cmnmand:

edquota guest

The edquota command creates a temporary file and calls up an editor on that file. The editor
will be either vi or whatever editor is the value of the EDITOR environment variable. When
you finish and write your changes, edquota wilt update the quota file quotas in the root
directory of the specified ftle system. (You cannot edit the file quotas directly since it is stored
in a binary format.)

For example, since no quotas have yet been placed on the user gue s t, the editor file will look
like this:

fs /usr blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

Note that the quotas are specified in unit called "blocks". The edquota command interprets a
"block" as 1024 bytes, regardless of the fact that the IBM/4.3 file system uses blocks that are at
least 4096 bytes long (and may be much targer). The use of the word 'block' here is therefore
unfortunate and is likely to cause confusion if you are not careful. When using edquota and
the related utilities, always remember that what is called a block is just a kilobyte. The same
warning applies to the du command.

Chapter 14 September 1988

152 IBM/4.3 System Administration Guide

Now change the four zeros to the appropriate value; for this example, you should place a hard
limit of 100 kilobytes and 100 i-nodes (or files) and a soft limit of 10 percent less than the hard
limit. Change the line so that it looks like this:

fs /usr blocks (soft = 90, hard = 100) inodes (soft = 90, hard = 100)

Then write the file and quit; you are finished establishing some sample disk quotas.

2.3. Checking Quot~., for Consistency

After establishing some quotas on a file system but before actually starting up the quota-checking
system, the system administrator should run the quotacheck utility in order to make sure
that the quotas listed in the file quotas make sense for the file system it resides in. For exam
ple, having established a quota in the /usr file system for the user guest, you might give the
command:

quotacheck /u~r

The quotacheck command examin«s a file system, builds a table of current disk usage, and
compares this table against the quotas listed in the file quotas in the root directory of the
specified file system. You may want to think of quotacheck as the quota system analogue of
f sck. The quotacheck utility ensures, for instance, that the number of blocks actually
owned by some user corresponds with the numher listed as owned in the quotas file. If there
is any inconsistency between the two figures, the quotas file is updated to reflect the actual
usage. If, however, quotacheck finds no inconsistencies, then it exits silently (unless invoked
with the -v option, which causes it to indicate the calculated quotas for each user on a particular
file system).

Normally, quotacheck is run at boot time by placing the line:

/etc/quotacheck -a

into the file /etc/rc. local. The -a option requests that aU me systems specified In
/etc/fstab as having quotas in force be checked.

2.4. Starting Up the Quota System

The system administrator informs the operating system that quota-checking is to be turned on by
invoking the quotaon command. The quota system can be made operational for a particular
file system by providing the name of the file system as an argument. For example, the command:

/etc/quotaon /usr

will enable quota-checking for the /usr file system. If no file systems are named as arguments
but the -a option is present, then quotaon will read the file /etc/fstab and enable disk
quotas on all file systems that have type rq, as explained above. In eithcr casc, the option -v
may be specified in order to produce a "verbose" command output in which a message is printed
for each file system where quotas are successfully turned on.

Typically, the line:

/etc/quotaon -a

is inserted into the system start-up file /etc/rc. local so that quotas are turned on
automatically at boot time. This command should be run alter the quotacheck utility.

3. Operating the Quota System

Operating the quota system includes the following tasks, discussed in this section: listing quotas,
tuming off quota checking, summarizing disk quotas, and compacting data.

September 1988 Chapter 14

IBM/4.3 System Administration Guide 153

3.1. Listing Quotas

A user may check the quotas that have been set by the system administrator by running the
quota command. For example, if the user guest logs in and runs the command, that person
may see something like this:

% quota

Disc quotas for guest (uid 98):
Filesys current quota limit #Warns

/usr 25 90 100
files

15
quota

90
limit #Warns

100

For each of the two types of disk space limited by the quota system (total disk space and total
number of fIles), four numbers are reported: the current usage, the soft quota, the hard quota, and
the number of remaining login warnings. In the columns headings, the soft quota is labeled
'quota' and the hard quota is labeled' I imi t'. As you can sec, the user gue st has only 15
files which consume about 25 kilobytes of space, well below the soft limit set by the system
administrator. As a result, no warnings have been issued yet.

The super-user may check on other users' disk quotas by supplying an optional argument to the
command. For example, if the super-user runs the following command:

quota guest

then the disk usage and established limits on the user gue s t will be printed. The output will be
identical to that given above.

3.2. Turning Off Quota Checking

If the quota-checking facilities should need to be turned off for some reason, the quotaoff
utility may be run. For example, to disable the quota checking system that is in force on the
/usr me system, give the command:

quotaoff /usr

The specified me system must be listed in the file /etc/fstab and must be mounted at the
time the quota-checking is turned off. Upon successful completion of this command, the quota
system will be disabled. Users will be able to exceed any quotas (either hard or soft) that would
previously have applied to them.

Note that running umoun t on an idle file system will automatically cause the quotas on that file
system to be turned off. Remounting the file system, however, will not cause the quota system to
be reactivated.

3.3. Summarizing Disk Quotas

As noted above, the quota usage for any particular user may be listed by running the quota
command. A more complete summary of the space usage and quota limits for a particular file
system may be obtained with the repquota command. For example, a summary of disk usage
and quotas in force on the /u s r file system might look like this:

:It requota /usr

User
root
daemon
notes
uucp
guest
nobody

used
35632

141
1110

745
25
56

Block
soft

o
o
o
o

90
o

limits
hard

o
o
o
o

100
o

warn
o
o
o
o
3
o

used
1
1
1
1

15
1

File limits
soft hard

a 0
o 0
o 0
o 0

90 100
o 0

warn
o
o
o
o
3
a

The column headings listed should be self-explanatory. The second column indicates whether
either one or both of the block limit and the file limit have been exceeded. For example, if the

Chapter 14 September 1988

154 IBM/4.3 Systcm Administration Guide

user gue st has 95 kilobytes of file storage, then the appropriate tine might look like this:

guest +- 95 90 100 3 45 90 100 3

The + - indicates that the block limit has been exceeded, but not the limit on the number of files.
Similarly, if both soft limits have been exceeded, the line from repquota might look like this:

guest ++ 95 90 100 3 95 90 100 3

The + + indicates that both soft limits have been exceeded. Notice that the user has not logged in
since the quotas were exceeded, as indicated by the fact that there are still three warnings remain
ing. When the user guest next logs in, the following warning wiU be printed:

Warning: too much disc space on lusr, 2 warnings left.

If the user ignores this warning and attempts to create additional files without first removing
some, the kernel will issue the following message as soon as the hard limit is reached:

DISC .LIMIT REACHED (/usr) - WRITE FAILED

The only recourse for this user is to remove some files until the amount of disk space consumed
is once again below the soft limit. If this warning appears when the user is in the middle of edit
ing a document and does not want to lose extensive changes made to it, it is possible to write the
file onto a file system where no quotas arc in force. For example, from within the vi editor,
guest could type:

:w Itmp/ch.02

to write a copy of the file being edited (called 'ch. 02') into the temporary file space. It must be
moved from there by the time the system is next rebooted, however, or the file may be lost for
ever.

4. Compacting Data

Users with chronic disk space problems (as indicated by continually approaching or exceeding
their quotas) may be able to free valuable disk space by taking advantage of various data compac
tion utilities available on the IBM/4.3 system .. These utilities allow the user to replace a file by a
compacted or compressed version of that file. When the original file is a plain ASCII file (such as
source code or straight text), the compacted file will typically be about half as large as the original.
So, by carefully compacting files that are not used very often (but which could not be con
veniently moved to a secondary storage medium such as magnetic tape), a user can maintain
many more files and directories than the disk space quota would otherwise allow.

The recommended way to compact files is by using the compress command. For example, to
reduce the amount of disk space occupied by the file report. feb, the user would issue the
command:

compress report. feb

This command will create a new file called report. feb. Z in the current working directory
and remove the original. (The suffix' . Z' indicates simply that this is a compacted version of a
me.) The compressed me may later be uncompacted and restored to its original state with the
uncompress command. For instance, to recover the file report. feb, just type the com
mand:

uncompress report.feb.Z

Users should know that a compressed file cannot he edited using the nannal IBM/4.3 system edi
tors, nor can it be given as input to commands in the same way that the original' file could. There
is, however, a utility called zcat which operates exactly like the cat command, except that it
outputs an uncompressed version of the file (without actually recreating the original me). By

Septembcr 1988 Chapter 14

IBM/4.3 System Administration Guide 155

running zcat as the first command in a pipeline, you can send the original version of the me as
input to other commands, even though only a compacted version of the me is available on disk.
For instance, if the file repo rt . feb contains t ro f f input text, then the command:

zcat report.feb.Z I troff -me I Ipr

will produce a printed copy of the report. Refer to compress(l) for complete details on these
utilities. See also the manual entries for pack(l) and compact(l) for related data compaction
utilities.

Chapter 14 September 1988

156 IIJM/4.3 System Administration Guide

This page intentionally left blank.

September 1988 Chapter 14

CHAPTER 15

Handling System Messages

1. Introduction

It is an unfortunate fact of life that errors .and other problems occasionally occur during the
operation of any computer system. A problem may be a fairly minor one (such as the inability to
deliver a piece of electronic mail because the addressee is unknown to the system), or it may be
an extremely serious one (such as the inability to create a file because a file system is out of
space). Yet no matter what the reason, when such exceptional conditions arise it is essential that
a notification of the condition be sent to the system administrator or to other users who may be
affected by it. This allows corrective or preventive action to be taken, and will help you keep the
computer and its peripheral devices running smoothly. In addition, by collecting and logging
diagnostic messages that arise from problem conditions in the system, you will be able to main
tain an on-line record of error messages which you can monitor and summarize as needed.

The IBM/4.3 system includes a very powerful and flexible set of tools for monitoring the diagnos
tic messages that result from problems in the operating system, in peripheral devices, in daemons
controlling certain machine resources, or in the execution of user-invoked commands. These
tools can be configured to automatically route diagnostic messages to an appropriate place,
whether to a log file, to the console screen, to the terminals of some or all currently logged-in
users, or even to another machine on your local area network. This chapter describes the confi
guration and operation of these IBM/4.3 system message logging facilities. You should note that
an earlier diagnostic message reporting and logging system, /etc/cimesg, has been rendered
obsolete by the commands and daemons described here.

2. The System Message Log Daemon

All system messages are monitored by the daemon /etc/syslogd, which is usually launched
when the operating system enters multi-user mode. This daemon reads from the device
/dev flog (to read messages generated by local commands), from the Internet domain socket
specified in /etc/services (to read messages generated by network activity), and from the
special device /dev /klog (to read messages generated by the kernel). When a message arrives
from one of these three sources, sys logd responds by taking an action indicated by an entry in
the configuration file /etc/syslog. conf. Most commonly, the message will either be
logged in a me or displayed on the system console screen (or both). Other possible actions
include displaying the message on other terminal screens or sending the message to a remote com
puter on a network. The logical position of the syslogd is depicted in the following figure:

IBM/4.3. System Administration Guide 157

158 IRM/4.3 System Administration Guide

Read from
r---,

/dev/log Internet
domain socket /dev/klog

-------0
/etc/syslog.conf

system console error file remote host line printer
I

---~
Write to

Figure 15-1: Where syslogd Reads From and Writes To

The syslogd daemon performs a sync operation each time the system accesses it, so that
logged information is immediately written out to the disk. Each mes.rage managed by the system
message logging facility is just one line. It may begin with a priority code enclosed in angle
brackets, indicating the level of severity of the reported condition.

3. The Format of /etc/syslog.conf

The disposition of all system diagnostic messages received by the syslogd daemon is con
trolled by the entries in the file /etc/syslog. conf. This section describes these entries,
the actions that result from them, and the use of comments and blank lines. It also provides a
sample syslog. conf file.

3.1. Selectors and Actions

Each entry in syslog. conf occupies a single line, which is taken to consist of a selector and
an action (which are separated from one another by one or more tab characters). Thus the gen
eral format of a line in /etc/syslog. conf looks like this:

selector action

Format 15-1: /etc/syslog. conf

September 1988 Chapter 15

IBM/4.3 Systcm Administration Guide 159

A sample entry from /etc/syslog . conf might look like this:

kern. err /dev/console

This line indicates that whenever an error message is received from the kernel, that message is
written onto the system console terminal, /dev /console.
A selector actually fncorporates two pieces of information, a facility and a level. The facility indi
cator is an abbreviation of where the message came from, and the level indicator specifies the
severity of the message. As illustrated, the facility indicator is separated from the level indicator
by a period.

The currently available facility values are listed in the following table:

Facility Description
ke rn The facility associated with messages generated by the kernel

(such as a panic or double panic). Such messages can
not be generated by any user-level process.

user The facility associated with messages generated by ordinary user
processes. This is the default facility specifier and is used if no
facility is specified.

mai 1 The facility associated with messages generated by the electronic
mail system.

daemon The facility associated with messages generated by system-level
daemon processes, such as ftpd, routed, and syslogd it
self.

auth The facility associated with messages generated by the permis
sions authorization system, including commands such as lo
gin, su, and getty.

lpr The facility associated with messages generated by the line printer
spooling system, such as lpr, lpc, lpd and similar com
mands.

localO A facility reserved for local usc. In all, there are eight local facili
ties (localO through loca17) that may be interpreted ac
cording to local needs.

mark A special-purpose facility designed to allow the system message
logging daemon to periodically "mark" a log file or console
screen. If enabled, a mark facility sends a message every 20
minutes. The interval may be altered by providing an argument
to the sys logd at the time it is launched. Por example, the
command line:

/etc/syslogd -mlO

will change the mark interval to 10 minutes.

Tablc 15-1: Error Message Facility Indicators

The available values for the priority level are listed in the fol1owing table:

Chapter 15 September 1988

160

Lcvcl
emerg

alert

crit

err

warning
notice

info
debug

none

IBM/4.3 SystcmAdministration Guide

Description
The priority of an emergency or panic condition. Usually, a
message with this priority is broadcast to all users and logged to
the system error file. Such a condition may very likely result in a
system crash.
The priority of a serious condition that should be corrected im
mediately, if possible.
The priority of a critical condition, such as hard input/output er
rors on a disk drive. .
The priority of errors that. do not fit into any of the first three
priorities.
The priority of warning messages.
The priority of conditions that are not error conditions but
which should probably be handled specially by the system ad
ministrator.
The priority of informational messages.
The priority of debugging messages. These messages are normal
ly of use only while debugging a program.
No priority. This priority indicator is provided in order to turn
off facilities that would otherwise be selected by the asterisk wild
card character. For example, the selector:

*.noticeimail.none

will select all facilities at priority notice, except for any mes
sages originating in the mail system.

Table 15-2: Error Message Level Indicators

Note that these levels are listed in decreasing priority. For example, the level err is of greater
priority than the level info. Each available facility may have any of these priority levels associ
ated with it, except for the mark facility, which always signals a message of priority info.

3.2. Actions

When a message of a certain level is received from a certain facility, the syslogd daemon takes
whatever action is listed on the appropriate line of the configuration file,
/etc/syslog. conf. For example, consider the following line in the configuration file:

lpd.debug /usr/adm/lpd-errs

This instructs syslogd to write whatever messages it receives from the line printer system that
are of severity debug (or greater) into the log file, /usr/adm/lpd-errs. As you prob
ably surmise, if an action is simply a file name, then the corresponding message is written onto
the end of that ftl.e. Nothing prevents the file from being a terminal device such as the system
console. So the following type of configuration line is quite possible:

kern.emerg /dev/console

This instructs syslogd to write whatcver mcssages it receives from the kernel that are of sever
ity emerg on the system console.

In addition to writing the received message onto the end of a file, syslogd can be configured
to send the message to one of three other places. i\ full list of message destinations is given in the
following table:

September 1988 Chapter 15

IBM/4~3 System Administration Guide

Specification
file

@host

user

*

Description
The message is appended to the file specified by the name file.
The fIle must be specified using an absolute path name (i.e., a
name that begins with a leading slash, II').

The message is forwarded across a local area network to the re
mote system whose name is ho.rt. The disposition of the message
on the remote system depends of course on the configuration of
syslogd on that host.

The message is written on the terminal screen of the named user,
if that user is currently logged in. Multiple users may be speci
fied by listing their names separated by commas.

The message is written on the terminal screens of all users who
are currently logged into the system.

Table 15-3: Destinations for System Messages

3.3. Comments and Blank Lines

161

As you have no doubt already guessed by looking at the sample /etc/syslog. conf listed
above, any line in this file that begins with the pound sign '#' is interpreted as a comment and is
ignored. Similarly, all blank lines are ignored.

3.4. Sample Syslogd Entries

It is difficult to give any detailed advice concerning the disposition of diagnostic messages arising
from the operation of an IBM/4.3 system, since your interest in and reactions to certain messages
will be highly site-specific. Nonetheless, it will be useful to look at a sample
/etc/syslog. conf:

a sample /etc/syslog.conf

*.err
kern. debug
auth.notice

/dev/console
/dev/console
/dev/console

kern. debug
daemon,auth.notice
*.err

/usr/adm/messages
/usr/adm/messages
/usr/adm/messages

mail.crit

lpr.debug

mail.debug

*.alert
kern. err
daemon. err

*.alert

Chapter 15

/usr/adm/messages

/usr/adm/lpd-errs

/usr/spool/mqueue/syslog

operator
operator

operator

root

September 1988

162 IIJM/4.3 System Administration Guide

*.emerg *
auth.crit @gator

The very first line indicates that all messages of severity err or greater are to be written on the
systetn console terminal, regardless of their origin. The second and third lines also cause some
other messages of lesser severity to be written there, but only when they arise from the kernel at
level debug or greater or from the authorization system at level notice or greater. This
disposition of messages from the authorization system can help you to help track failed login
attempts and failed su attempts.

Since it is also useful to save messages of great severity and messages indicating possible security
violations (such as failed su attempts), the next four Jines send those messages also to the
system-wide message file, which is usually lusr/adm/messages. Notice that the sys
logd daemon can manage multiple message log files, as indicated by the next two entries which
send aU printer-related message's to the file /usr/adm/lpd-errs and all mail-related mes
sages to the file /usr/spool/mqueue/syslog.
All the remaining lines in this sample configuration file, except the last one, illustrate how to send
messages to a particular user or group of users. For example, all messages of severity alert (or
greater), as well as aU kernel and daemon messages of severity err (or greater) are sent to the
ope r a to r account, if anyone is currently logged in using that name. The ope r a to r
account is intended to be used primarily for file system backups and restores, and it is important
that that person should receive notification of any abnormal activity that may affect those back
ups or restores.

The fmal line listed above shows how to route error messages over a network to a remote
machine. Any authorization-related messages of severity cri t or greater will be sent to the
syslogd on the rernote host named 'gator'. This allows a central authority to supervise
possible security violations on an entire network of workstations and servers. Similar syslogd
configuration lines may be useful, for example, if your site maintains a central print server and
you prefer all printing system messages to be sent to that server.

4. Starting Up Syslogd

The daemon syslogd is normally started up at system boot time. You can launch it automat
ically whenever you enter multi-user operation by including the following line in the me
/etc/rc or the file /etc/rc. local:

letc/syslogd

As a rule, the message logging daemon should be ~tarted up after the file systems are checked and
mounted, but before any other daemons arc started up. Consequently, the line given above is
usually placed into the file /etc/rc . local, which is run before editor files are preserved and
other local and network daemons are started up.

It is possible to modify the default behavior of the message logging system by supplying a com
mand line argument when syslogd is first launched. For example, you may specify that
sys logd configure itself according to instructions located in some file other than
/etc/syslog. conf by invoking it with the -f argument.

A special debugging flag, -d, can be provided to tum on syslogd debugging. This is most
useful for checking the syntax of a revised configuration file. As the following command output
illustrates, the first thing syslogd -d docs is to parse the configuration file:

letc/syslogd -d
off & running
init
cfline(*.err

September 1988

/dev/console)

Chapter 15

IBM/4.3 Systcm Administration Guidc

cfline(kern.debug
cflin~(auth.notice
[lines omitted]
cfline(auth.crit

/dev/console)
/dev/console)

@gator)

163

If there are errors in the configuration file, they will be listed in the diagnostic output. For exam
ple, suppose that you forget to specify a severity level on some line, so that the first several lines
in /etc/syslog. conf look like this:

*.err /dev/console
kern /dev/console

Then, when you run syslogd with debugging turned on, you will see diagnostics like these:

/etc/syslogd -d
off & running ... o

init
/dev/console)
/dev/console)

cfline(*.err
cfline(kern
syslogd: unknown priority name "": no such file or directory

(In fact you will see this message repeated several times, owing to the fact that the first line was
successfully parsed and acted upon.) Such messages are an indication that you need to edit the
configuration me and correct the mistake.

5. Stopping Syslogd

Once started, the system message daemon sys logd wilJ continue in operation unless stopped
manually by the system administrator (or, in rare circumstances, by abnormal system activity).
To halt system message logging manually, you should send a terminate signal to the daemon
using the kill command. Recall that the process id number of syslogd is automatically
saved in the file /etc/syslog. pid each time the error daemon is launched (usually from
within /etc/rc). You can therefore be assured of killing the appropriate process by executing
the command line:

kill 'cat /etc/syslog.pid'

Sometimes, the file /etc/syslog 0 pid cannot be created when syslogd is launched; in
such cases, you will need to find the process id numher of the syslogd daemon by using the
ps command:

ps -ax I grep syslogd

You should get two lines of output; for example:

45? S
1977 pO S

0:02 /etc/syslogd
0:00 grep syslogd

Select the process id number of the daemon itself and execute the ki 11 command using it as an
argument. In this case, the pid is 45, so you would type:

kill 45

6. Sending Messages from the Command Line

The command logger allows the system administrator to enter messages into the system log
files manually from the command line. For example, you may run the command:

logger System time and date reset

Chapter 15 September 1988

164 IIJM/4.3 System Administration Guide

to record that the system time and date were just reset. 'fhe message specified on the command
line will be entered into the appropriate log file exactly as if it had originated as a message from a
program.

If no me is specified, the default system message file (/usr/adm/messages) will be used.
You can send the message to another file by providing the - f command line argument. For
example, the command:

logger -f /usr/spool/adm/syslog Games turned off.

wi1l append the message to the file specified.

The logger command also assumes a default facility and level for the message provided,
namely 'user. notice'. If you want to send the message to a different selector, you may
specify it on the command line. For example, the command:

logger -p mail. info Truncated /usr/spool/mail/smith

will perform whatever action syslogd is configured to perform for informational messages
from the mail system. See the manual page logger(l) for a complete summary of the avail
able options for the logger'command.

7. Checking Messages

The system administrator should monitor the error log files regularly in order to determine
whether the system is operating as expected, and if not, what corrective action to take. To see the
end of a log file, execute the command:

tail -r /usr/adm/messages

The - r flag will cause the output to be sorted in reverse order, so that the first line seen is actu
ally the last line that was appended to the file. You should check the configuration file
/etc/syslog. conf to see what other log files are in use by the system message logging
daemon.

8. Message Handling Tips

• If you plan to make major revIsions to the message daemon configuration fIle,
/etc/syslog. conf, or if you are inexperienced with syslogd and its configura
tion me, then you should invoke syslogd with the debugging flag (-d) in order to
ensure that the configuration file is correctly set up. To be extra safe, you should first make
a copy of the original, edit the copy, and then run syslogd with the debugging flag on
the revised copy:

cp /etc/syslog.conf /tmp/syslog.conf
vi /tmp/syslog.conf

[make changes to the new copy)
/etc/syslogd -d -f/tmp/syslog.conf

Note that no space is allowed after the - f flag and before the file name. If syslogd suc
cessfully parses the new file, then you can overwrite the original copy with the revised one
and then start up syslogd:

mv /tmp/syslog.conf /etc/syslog.conf
/etc/syslogd

Since there should be at most one instance of syslogd running on your system at one
time, you should perfonn these tests while no s ys logd is running.

• You can edit the error message daemon configuration file, /etc/syslog. conf, even
while the system is operating in multi-user mode and the message daemon syslogd is

September 1988 Chapter 15

IBM/4.3 System Administration Guide 165

running. To force syslogd to reread its configuration file, send it a hangup signal, as fol
lows:

kill -HUP 'cat /etc/syslog.pid'

Thus, you can change the disposition of system messages "on the fly", without needing to
reboot the system or bring it down to single-user state.

Chapter 15 September 1988

166 IBM/4.3 System Administration Guide

This page intentionally left blank.

September 1988 Chapter 15

CHAPTER 16

Executing Periodic Conlmands

1. Introduction

One of a system administrator's major concerns is to reduce as much as possible the number of
actions that must be performed manually to keep the system running smoothly. To help achieve
this goal, IBM/4.3 provides a simple and flexible way to run a command or shell script automati
cally at specified times. The cron daemon and its configuration file crontab are the tools
you will use to establish periodic command execut.ion. One of the main uses of these tools is to
perform a variety of system administration tasks that need to be accomplished at regular intervals
and that require minimal operator assistance. For example, c ron can be used to help maintain
an uncluttered file system by removing files that have not been accessed within a certain amount
of time; this is especially useful for finding and removing temporary files, outdated log files, and
the like. The c ron daemon is also useful for st.arting various communications processes such as
uucp. This chapter explains how to set up the c ron system to handle such tasks automatically
and efficiently. For information on establishing uucp connections using c ron, see the section on
administration in "Installation and Operation of tJtJcp" in the UNIX System Manager's Manual
(Section 9).

2. How eron Operates

Cron is a clock daemon that is usually started up at multi-user initialization time by placing the
following line in the file /etc/rc:

/etc/cron

If this line is not present in your /etc/rc file or in /etc/rc. local, the cron daemon
can be launched by typing that line to the shell. The basic operation of c ron is to read the file
/usr/lib/crontab (and, if it exists, the file /usr/lib/crontab. local) once
every minute, on the minute, to see if there are commands contained there that arc scheduled to
be run. If there are such commands, cron will run them. The logical position of cron is
illustrated in the following diagram:

IBM/4.3 System Administration Guide 167

168 IUM/4.3 System Administration Guide

C9
------0
/usr/lib/crontab

any command

Figure 16-1: The Position of c ron

If the specified command does not itself redirects its output, c ron will place any output resulting
from the execution of the command into the file /usr/adm/cronlog. cron will also res
can the crontab ftle(s) each time they are altered. In addition, unless terminated manually by
the system administrator or by abnormal system activity, cron never exits. There should there
fore be at most one instance of the c ron daemon running on a system at any given tim.e.

3. The Format of Crontab

The format of the files /usr/lib/crontab and /usr/lib/crontab .local is
straightforward. The crontab files consist of Jines, each of which has seven fields (which are
separated from one another by any number of spaces and/or tabs). The format is as follows:

minute hour day-of month month day-of week user command

2 3 4 5 6 7

When Who What

Format 16-1: /usr/lib/crontab

As indicated, the seven fields may be thought of as grouped into three parts, a time specification
(indicating when the specified action is to occur), a user specification (indicating who is to run the
specified action), and a command specification (indicating what action is to occur). The appropri
ate values for each of these parts are discussed in the following three subsections.

3.1. TIme Specification

The flfst five fields jointly indicate the time when the command specified in the last field will be
run. Each of these five fields may be filled with a number from the appropriate legal range for the

September 1988 Chapter 16

IBM/4.3 System Administration Guide 169

field, a dash-separated range of values, a comma-separated list of values, or an asterisk (+) indicat
ing that all legal values are selected. The legal ranges arc as foJlows:

minute
hour
day-of month
month
day-ofweek

00 to 59
00 to 23
00 to 31
01 to 12
o I to 07 (where 0 I denotes Monday)

Table 16-1: Legal crontab Time Specifications

If the specified value is a dash-separated range, then cron will run the appropriate command for
each value in the range. So, for example, a line whose day-ofweek field was

1-5

would be selected for each working day, i.e. Monday through Friday. If the specified value is a
comma-separated list, then c ron will run the command for each value in the list. A line whose
day-of week field was

1,3,5

would be run every Monday, Wednesday, and Friday, at the time selected by the first two fields.
You should notice, however, that this will happen only if the day-ofmonth field is also selected in
the crontab entry (perhaps because it contains an asterisk). The cron daemon will run a
command listed in the c rontab file just in case all five time fields are satisfied.

3.2. User Specification

The fonnat of c ron tab has recently been altered to include an indication of who the command
is to be run by. More precisely, this field contains the login name of the user whose user identifi
cation number is to be adopted as the effective uid of the specified process. For many commands
the user field will contain the name 'root', since root privileges are needed to read or write
certain files or to run certain commands. But some of the commands that are typically run by
cron do not need root's absolute privileges and it is dangerous to run them under the root
uid. For such commands, the system administrator can specify a login name with lesser
privileges.

For example, processes that are run periodically for the uucp system are usually run with the
uucp account listed as the user. This allows them to access (and possibly remove) files and
directories in uucp spool directories. Also, some commands that need minimal access privileges
have the account nobody in the user field. The nobody account was added to the system
precisely to provide a less dangerous uid for crontab entries that do not require greater
privileges.

3.3. Command Specification

The fmal field in a crontab entry is the specification of what action is to be taken at the time
specified in the frrst five fields. The command field of a crontab entry may contain any valid
command line. In particular, it may contain input/output redirection characters, pipes, and multi
ple commands separated by semicolons.

3.4. Sample Crontab Entries

The following is a sample crontab entry:

Chapter 16 September t 988

170 IBM/4.3 System Administration Guide

00 * * * * root date > /dev/console

This specifies that the date command is to be nm every hour of every day of every week in the
month, at the beginning of each hour (Le., minute 00). The output here is redirected to the sys
tem console, so if there is no other activity on the console, a list of times will accumulate on the
console screen.

The sixth field in a crontab entry specifics the user whose uid and permissions the command
specified in the seventh field should inherit. In this example, the date command will be run
with the uid and permissions of the superuser. (This allows the command to actually write on the
systetn console, which may not be possible for other users.)

Here is another typical crontab entry:

00,15,30,45 * * * * root /usr/lib/atrun

When cron reads a crontab file containing this line, it will execute the atrun command
every 15 minutes. This command will be run every hour of every day of every month, since the
second, third, fourth, and fifth time fields each contain an asterisk. The a trun command is
invoked in order to process user:..specified commands or scripts that were submitted with the at
command. Remember that even though a user may submit a command to be run at some later
time with the at command, that command will not actually be run unless the a trun command
is executed periodically. This task is typically assigned to c ron. Notice also that the granularity
of the at command is dependent upon the corresponding crontab entry. Por instance, a
command submitted to run at exactly 12:20 a.m. would not be run until 12:30 a.m., since the
crontab entry listed above has a granularity of 15 'minutes. To achieve finer control over
times speci.fied with the at command, you could usc a c ron tab entry like this:

00,05,10,15,20,25,30,35,40,45,50,55 * * * * root /usr/lib/atrun

This entry will execute the atrun command every five minutes, so that a command submitted
to run at 12:20 a.m. will now be executed at exactly 12:20 a.m. (or as close to it as possible, since
it takes cron a few seconds to launch the command). The system administrator must balance
the greater precision offered to users of at with the increased system load incurred by running
atrun more often. On most systems, a granularity of 15 minutes is perfectly acceptable.

Finally, the following crontab entry will send a holiday greeting to the terminal screen of each
user who is logged in at the appropriate time:

00 00 01 01 * root echo "Happy New Year" I /bin/wall

Here, c ron has been instructed to write to each logged-in user at midnight (12:00 a.m.) on Janu
ary 1st of each year. Notice that the fifth field, the day-ofweek field, contains an asterisk, so that
the command will be executed no matter which day of the week New Years Day faUs on.

It is possible to send a multi-line message to all users by inserting a percent sign, C%', at the
appropriate spot in the me.ssage. For example, you might expand the previous greeting, as fol
lows:

00 00 01 01 * root echo "Happy New Year%To All" I /bin/wall

The percent sign will be translated by c ron into a newline character before the string is given as
input to wall, so that the wall command reccives a two-line message as input. Vou can
embed as many percent signs as you like in order to create a message of the desired number of
lines. Currently it is not possible to have the percent sign appear in the resulting message.

Although you can specify multi-line input to a command using the percent character, it is not
possible to embed multi-line commands into the command field of the crontab me. If a
multi-line command is desired, or if multiple commands must be run to accomplish some admin
istrative task, the relevant lines should be put into a shell script and c ron should be instructed
to execute that shell script. This situation is illustrated below.

September 1988 Chapter 16

IBM/4.3 System Administration Guide 171

3.5. Comments

In the configuration files read by cron (i.e., /usr/lib/crontab and
/usr/lib/crontab. local), any line that begins with a pound sign (#) is treated as a
comment and is ignored by cron when it reads that file. You may also isolate a group of
related crontab ,entries by surrounding them and any applicable comment lines with vertical
white space. Blank lines can be used for this purpose.

4. Cleaning /tmp and /usr/tmp

It is fairly typical for the system directories that hold temporary files, /tmp and /usr/tmp, to
be cleared of most files and subdirectories at system multi-user initialization time. (Check the
start-up file /etc/rc to see whether this happens on your own system.) Since, however, your
IBM/4.3 system may continue running for days, weeks, or even months at a time, it is good prac
tice to clear out these directories periodically. This is partly because these directories can easily
becotne filled with scratch files or buffer files from processes that die unexpectedly or that are
killed by the user. Another reason is that users sometimes copy files into the temporary direc
tories and then forget to remove them when finished. Keeping these directories from accumulat
ing too mueh junk is a perfect task for c ron.
One way to manage the temporary file space with cron is to insert into crontab an entry like
this one:

00 02 * * * root find /tmp -atime +3 -exec rm -f {} \;

At 2:00 a.m. on each day in the month, c ron will search the directory /tmp for files that have
not been accessed in the last three days. If it finds any such files, it will remove them.

While this command removes all stale files below the /tmp directory, it does nothing to any sub
directories (except empty them of all files). We would also like cron to remove these empty
directories, if there are any. To accomplish this, we could add another entry to crontab:

10 02 * * * root find /tmp ! -name . I -name lost+found -type d \
-mtime +1 -exec rmdir {} \;

This command will look for all directories under /tmp that have not been accessed in a day and
that are not named either'. ' or 'lost+ found'; then, if it finds any, it will remove them.
(Note that we instructed cron to run this command ten minutes after running the previous
command. This was so that we could be sure that the previous command was completed before
the second began.)

A much better solution to the general problem of managing temporary file space is to collect all
of these related procedures into a shell script and to have c ron execute that script, instead of
putting each such command into crontab. For example, the command field of these two pre
vious crontab entries, as well as related commands to be run on a daily basis (such as similar
commands for the directory /usr/tmp), might be put into a shell script called daily. If
such a script is stored in the directory /usr/adm, then the following single crontab entry
will suffice:

00 02 * * * root /bin/sh /usr/adm/daily 2>&1 I mail root

In this example, any output and error messages resulting from the running of the script will be
mailed to the superuser. This strategy of collecting similar commands into shell scripts minimizes
the number of entries in crontab and makes it much easier to read and maintain.

5. Removing Other Old Files

There are two tools available to you to help in maintaining files that can become cumbersome.
Both can be invoked by c ron:
• The uuc lean program purges files it knows are no longer needed from the uucp spool

directory and is typically run by c ron on a daily basis. See Section 5 in Chapter 17 for

Chapter 16 September 1988

172 IUI\1/4.3 System Administration Guide

more infonnation.

• The trimlib script helps in keeping lJSENET log files to a reasonable size and is typi
cally run by c ron on a weekly basis:

6. Turning off Games during Prime Time

Computer games are no doubt sometimes a relaxing pastime, but most installations frown upon
games-playing during the prime working hours. You can put the abilities of c ron to good use
by having it run the following simple script sometime in the morning:

#! /bin/sh
turn_off
chmod go-x /usr/games/*
logger Garnes turned off

And games may be turned back on with the following script:

#! /bin/sh
turn_on
chmod go+x /usr/games/*
logger Garnes turned on

To activate this scripts at the appropriate time, you can put the following three lines into the file
/usr/lib/crontab. local:

turn games off/on at appropriate times
00 08 * * 1-5 root /usr/games/turn_off
00 18 * * 1-5 root /usr/games/turn_on

Then the games will be turned off at 8 a.m. each weekday morning and back on again at 6 p.m.

7. Calendar

The calendar(l) program is a reminder service for IBM/4.3 system users. It works by con
sulting the file calendar in the current directory and printing lines that contain today's date or
tomorrow's date. By including the command calendar - in a crontab file entry, you can
specify that cal endar check each user's calendar file, then notify users of the results through
mai l(I). See calendar(I) for more infonnation.

8. Accounting

You can include entries in your crontab file that request accounting infonnation concerning
connect time and process resource. IBM/4.3 stores information related to connect time account
ing in /usr/adm/wtmp; you can use the ac(8) program to summarize this information.
IBM/4.3 stores information regarding proccss time accounting in /usr/adm/acct, once this
HIe is enabled by accton(8). You can use the sa(8) program to analyze and summarize this
information.

You might want to implement procedures based on information provided by these commands for
accounting tasks such as charging for computing time. A convenient and efficient way to do this
is to place these commands in your crontab file, so that they arc executed every day at the
time you specify.

9. Creating User-Specific Crontab Entries

Unlike the versions of c ron supplied with newer releases of System V (2.0 or later), the IBM/4.3
c ron does not provide ordinary users with the ability to create and edit their own personal
crontab files (thus allowing them to perform periodic actions automatically in the same way
that the system administrator can). Nonetheless, it is simple to include entries in the system-wide

September 1988 Chapter 16

IBM/4.3 System Administration Guide 173

crontab or crontab. local to provide this service. For example, if the user nat needs
to execute a certain set of commands periodically, you can place an entry like the following into
one of the cron configuration files, probably crontab. local:

00 03 * * * nat /bin/csh -f -c ~nat/cron.rc

In this case, cron·will execute whatever commands exist in the file cron. rc in nat's home
directory. No doubt the time and periodicity listed in the crontab entry must be chosen in
consultation with the user. In the example listed, the script will be run each day at 3:00 a.m. It is
then up to the user nat to maintain the script of C shell commands in the me cron. rc.

Before actually inserting sueh lines into the cron configuration files, however, you should deter
mine whether in fact the user needs to use c ron. (After all, imagine trying to maintain c ron
tab entries for the dozens or even hundreds of different users in your computing environment!)
It is quite possible that the users's needs can he accomplished more simply, without using cron
directly. For example, suppose that a user needs to maintain a list of the files that exist in the
home directory at a specified time each day. You could provide this service by inserting the fol
lowing command into the crontab. local file:

00 03 * * * nat ls -1 ~nat > ~nat/LIST

Alternatively, you could insert the previous line that runs the script cron. rc in nat's home
directory, leaving it up to that user to insert the proper commands into it. But instead of using
cron, the user can use the at command, in the following clever way. First, the user must
create an at script that contains the desired commands, as well as a command that rein vokes at
at the same time the following day. Here is an example of what this user might put into the at
script:

at.rc
imitate cron actions with an at script
ls -1 ~ > LIST
sleep 60
at 0300 at.rc

To start the whole process, the user should give this command:

% at 0300 at.rc

Then, at 3:00 in the morning, the home directory will he listed, the script will steep for a minute
(just to be safe), and then at will be reinvoked for the following morning with the same script.
In this way, a recursive application of at can provide exactly the functionality that cron would
provide, at much less cost to the system administrator. If ordinary users request that you create
crontab entries for them, you should recommend that they try to accomplish the same effects
in this somewhat simpler way.

Chapter 16 September 1988

174 IBM/4.3 System Administration Guide

This page intentionally left blank.

September 1988 Chapter 16

CHAPTER 17

Controlling Log Files

1. Introduction

There are a number of files located at various spots in the IBM/4.3 file system that are used to
tnaintain a record of system activities such as user logins, command executions, news transmis
sions, system errors, failed root login attempts, and similar events of concern to the system
administrator. Collectively these files are called "log files" because they contain an ongoing log of
system activities. Log files can be extremely useful in helping track down system problems or
maintain a secure system, but they may grow without bound unless they are periodically trun
cated. One good example of this is the file /u s r / adm/wtmp, which collects user connect
time information. As long as users continue to log in and out of your system, this me will grow
larger and larger. The processes that append records to /usr/adm/wtmp (ini t and
login) do not check to see if the size of the file has exceeded some limit. Accordingly, it is the
duty of the system administrator to collect the infonnation needed from these files, summarize it,
and then truncate the files so that they can continue to grow and perform their logging functions.
This chapter explains some of the techniques commonly used to administer the many log mes in
the IBM/4.3 system.

Some log files are inspected, summarized, and truncated by special system utilities dedicated to
that task, so that all the system administrator needs to do is make sure that those utilities get run
at the appropri~te intervals. On the other hand, most of the log files have no special utility pro
grams associated with them. Accordingly, the main pat1 of this chapter is devoted to developing
and explaining several useful shell scripts that will help you maintain system log fUes. In either
case, whether you use special utilities or the scripts presented here, the scheduling of the log file
processing is usually handled by the elock daemon, cron, as illustrated below.

Exactly what you do with the information that is stored in the system's log files is highly site
dependent. If your system is well-administered and you experience few if any abnormal
occurrences, then you may never need to inspect those files and you can pretty much forget about
them once you have instituted a suitable log file rotation scheme. More probably, however, you
will want to collect, summarize, and use the information in the log files in some important way.
In an environment where users must pay for computing services, for instance, you might use the
connect-time information stored in /usr/adm/wtmp to determine part of the account charges
for the user community. Or if you have experienced a system break-in, the process accounting
log files may help you determine when and how the break-in occurred.

2. Log File Rotation: Version I

The simplest way to make certain that log files do not get too large is just to truncate them
periodically. This may be accomplished using the cron daemon, by inserting a line into the file
/usr/lib/crontab. For example, to truncate the log file containing a record of user
logins, you might put in the following line:

30 02 * * * root cp /dev/null /usr/adm/wtmp

At 2:30 a.m. of each morning, the file will he truncated to 0 bytes by copying /dev /null onto
it. Since it is run each day, this command ensures that /u s r / adm/wtmp never gets too large.

IBM/4.3 System Administration Guide 175

176 IIJM/4.3 System Administration Guide

This scheme, however, has several clear disadvantages. I~orcm()st among them is the fact that
potentially useful information is simply thrown away rather than archived, summarized, or other
wise maintained on the system. If you want to use the connect-time infonnation to charge
account fees, you will need to collect the appropriate information before it is removed from the
system.

As you can see, merely truncating a log file in this way is rarely the correct way to manage the
information contained in it. Accordingly, most ~itcs prefer to institute a procedure that combines
rotation with truncation. Under this arrangement, the information in a current log file is first
saved in an intermediate me. There are usually several such intermediate files, only the oldest of
which is actually thrown away. This procedure can be illustrated by the following simple shell
script:

#! /bin/sh
wtmp_swap: rotate connect-time accounting files
echo "Rotating wtmp files"
cd /usr/adm
mv wtmp.2 wtmp.3
mv wtmp.l wtmp.2
mv wtmp.O wtmp.l
mv wtmp wtmp.O
cp /dev/null wtmp
chmod 644 wtmp

As you can see, existing intermediate files are rotat.ed before the current wtmp file is placed into
the first intermediate file; then wtmp is recreated, with a size of zero bytes. The sequence of
actions can be illustrated as follows:

Before D
After

wtmp.3 wtmp.2 wtmp.l wtmp.O wtmp

Figure 17-1: Log File Rotation Sequence

By rotating the log file /u s r / adm/wtmp in this way, the system administrator can ensure. that
a reasonable amount of connect-time information is kept availahle on the system, while removing
the danger that that file will eventually grow too large for the available storage space.

This log file rotation and truncation script is designed to be run periodically by c ron. So you
will want to put a line like the following into your crontab file:

00 02 * * * root /usr/adm/wtmp_swap > /dev/console

Notice that the output from the script is redirected to the system console, so that the system
administrator will know that the script has run.

September 1988 Chapter 17

IBM/4.3 Systcm Administration Guide 177

3. Log Filc Rotation: V crsion 2

The log file rotation and truncation script presented in the previous section provides the basic
functionality needed to maintain system log files at an acceptable size while not throwing away
too much information at anyone time. The approach illustrated by the script wtmp_swap,
however, has several disadvantages that can easily be alleviated. You will notice that that script as
currently written rotates and truncates only a single file, /usr/adm/wtmp. To apply that
method to other log files on the system, you would need to create a similar script for each log file,
probably by copying that script and making suitable changes. If you later wanted to add some
feature to the log file processing routine (for example, backing up the oldest intermediate file onto
a floppy disk or streaming tape instead of just removing it), you would need to fmd, edit, and
modify every copy of the script. Since the various copies may be scattered about in different
directories, that is not a trivial undertaking.

It is a good idea therefore to encapsulate the rotation and truncation sequence into a script that
can be applied to several different log files. It is also good practice to add some diagnostic output
to the script, so the system administrator will know if it terminates prematurely. With these
desires in mind, then, consider the following improved version of wtmp_swap:

#! /bin/sh
log_swap: rotate a log file through intermediary files

ERROR='eval echo >&2' # send error message to stderr
USAGE='Usage: $0 logfile number'
trap '$ERROR "$0: exiting prematurely"; exit l' 1 2 3 15

if [$# != 2]; then
$ERROR $USAGE
exit 1

fi

LOG=$1
NUM=$2

i='expr
while [
do

j='
if

fi
i='expr
done

$NUM - I'
$i -gt 0]

expr $i - I'
[-f $LOG.$j

mv $LOG.$j

$i - I'

if [-f $LOG]; then
cp $LOG $LOG.O

] ; then
$LOG.$i

cp /dev/null $LOG
fi

This script requires two arguments, namely the log file to be rotated and the number of intermedi
ary files to use. If it is not invoked with exactly two arguments, it prints a diagnostic message and
then exits; otherwise it proceeds precisely as did the previous script. To activate log me rotation,
you must once again add some lines to the c ron configuration me. For example:

00 02 * * * root /usr/local/log swap /usr/adm/wtmp 6
01 02 * * * root /usr/local/log:swap /usr/lib/news/log 5

Chapter 17 Septcmber 1988

178

02 02 * * *
10 03 1 * *

root

IBM/4.3 System Administration Guide

/usr/local/log_swap /usr/adm/messages 6
/usr/local/log_swap /usr/spool/uucp/LOGFILE 5

4. Uucp

During normal operation, uucp generates a number of small files, which it places in the directories
beneath /usr/spool/uucp. If left unchecked, these files can cause space problems; uucp
provides the following tools to aid in preventing this:

• The uuclean(8) program purges filesit knows are no longer needed from the uucp spool
directory. It works by looking in the spool directory for files with the specified prefix and
deleting all fIles that are older than the specified number of hours. Typically uuc lean is
run from c ron on a daily basis. It has the following arguments:

/usr/lib/uucp/uuclean [-m) r -nlrours] r -ppre) [-dsuhdirectory) [-Xnum)

The -p options specifies the prefix uuc lean should look for when searching for files;
You can specify up to ten prefixes. The - n option specifies the age of files that should be
deleted, in hours, provided they have the specified prefix. The default age is 72 hours. The
-m specifies that uuclean is to send mail to the owner of the file upon the file's deletion,
and the -d option specifies that uuc lean should work in only the named subdirectory.
The - x option specifies the level of debugging output you want.

• The uulog program scans session log files and helps you to maintain them by printing a
summary log of ollcp and uux transactions. lJucp gathers information from uucp and uux
log files (which reside in /usr/spool/uucp under names beginning with LOG), then
creates a file called LOGFILE in /usr/spool/uucp/LOGFILE that you can exam
ine directly or through uulog, which resides in /usr/bin. When using uulog, you
can specify that it print information about work done for a specific user, or about the sys
tem that requested the work. uulog then prints the time, date, and status for each
request.

USENET also creates mes that must be monitored. There are two groups of files that should be
maintained:

• History files can be cleaned up with the expi re program. This program deletes lines
from the history file that relate to articles that. have been removed.

• The log file can be maintained with the /mi sc/trimlib script, which you can install
in LIB/trimlib. This script is typically invoked weekly by cron.

5. Other Files that May Grow without Bound

Aside from the log files discussed above, it is possible for ot her files in the system to grow without
bound for one reason or another. For example, if a particular user never reads any electronic
mail, then that user's system mailbox will get largcr and larger as new mail keeps arriving. If the
quota subsystem is not installed and running, or if quotas have not been established on the
/usr fIle system, then the mailbox may eventually get very large. Similarly, it is simple to write
a program or shell script that creates an increasingly large output file. It is even possible to cause
a text-processing program like troff to go into an endless loop, thereby creating a fIle that
grows until a user's disk space quota is exceeded or until the remaining space in the file system is
consumed.

These types of large files are not log files, so the techniques presented above will not apply
directly to such large fIles. Instead, it may be useful to run the following script periodically
(perhaps once a week) to search for very large files and notify the system administrator:

#! /bin/sh

September 1988 Chapter 17

IBM/4.3 System Administration' Guide 179

BIG='expr 1000000 / 512'
find / -size $BIG -type f -exec is -1 {}\i 1\

/usr/ucb/mail -s "large files" root

In this script, a me is considered to be too big when it is larger than a million bytes (expressed in
512-byte "blocks"). You may of course want to alter that constant to suit your local practices.
Many applications such as image-processing and large data bases will routinely create and main
tain mes much larger than that.

The following crontab entry will activate the script once a week at 2:30 in the morning:

30 2 * * 0 root /usr/local/find_big

Chapter 17 September 1988

180 1I1M/4.3 System Administration Guide

This page intentionally left blank.

September 1988 Chapter 17

CHAPTER 18

Implementing Security

1. Introduction

Ensuring the integrity of the files and data stored on the IBM/4.3 system (and hence the smooth
operation of the system) is a task that involves much more than regular disk backups and file sys
tem checking. A system administrator must maintain a high level of security in order to prevent
malicious or careless users from damaging or destroying important system programs and files, or
from looking at sensitive user-generated files. This chapter discusses some of the security issues
that should be addressed by each IDM/4.3 system administrator. It pinpoints the main areas in
which such systems may be insecure and suggests preventive action to avoid break-ins or sabo
tage.

Careless or naive users are generally not much of a security threat to a well-administered system,
although in rare circumstances such a user can crash the system by running too many processes at
once, thereby exhausting the system's swap space. Typically, the main threat to a system is gen
erated not by careless users, but by malicious ones (hereafter referred to as the "bad guys") who
generally know quite a bit about the operation of the system and how to circumvent many of its
protection features. It is more difficult, indeed sometimes impossible, to prevent a bad guy from
gaining access to your system, especially if you have publicly-available terminals or dial-in
modems attached to the system. By following the security measures discussed in this chapter,
however, you can protect the system's most obvious weak points and attempt to minimize such
break-ins.

How actively the system administrator must pursue security loopholes and monitor user activity
depends on the value of the data stored on the system and the importance of having a working
system at all times. The level of security that must be maintained, however, is always a trade-off
between the cost of protection (such as additional hardware, inconvenience to users, or time
invested by a system administrator) and the value of the data being protected. The measures dis
cussed in this chapter are designed to ensure a reasonable level of security and should be followed
by all administrators of the IBM/4.3 system; additional security measures may be necessary to
accommodate your local needs.

2. Overview of IBM/4.3 Security Mechanisms

The IBM/4.3 system provides several built-in security mechanisms and it is consequently rela
tively difficult to break into the system if it is properly administered. In previous chapters, you
have become acquainted with a number of the system's features that help ensure the security of
the system and its fues. These are:

• Login name and password prompting. Before being granted access to the system, a person
must supply a valid login name and password. This mechanism is designed to prevent
unauthorized persons from using system resources. The best way to keep bad guys from
damaging important system files or from inspecting the data on your system is to keep them
from gaining access to the system, and the password mechanism tries to do precisely that.

• File access permissions. In order to be able to read and/or modify a file, or move into a
directory, a user must have the proper access permissions. This allows a user to prevent
other users (or other users not in the same group) from looking at, copying, or otherwise

IBM/4.3 System Administration Guide 181

182 18M/4.3 System Administration Guide

manipulating personal files. In addition, the superuser ean help assure the integrity of
important system files by properly setting their protection bits.

• Disk quotas. A system can be severely disabled if it runs out of free file space, as can hap
pen quite easily if users are allowed to create arbitrarily large files or large numbers of files.
If the disk quota subsystem is installed and running, however, users will be unable to exceed
their hard quotas and consume excessive amounts of disk space, even though free space
remains in the me system.

• System accounts with non-superuser privileges. The IBM/4.3 system provides non-superuser
accounts for use in performing several important administrative functions. Por example, the
operator account has read permission on all file systems, so that a user logged into that
account may perform ftle system backups. This allows backups to be performed at non
peak hours by relatively inexperienced personnel without providing them full root
privileges.

• Process accounting. If prbcess accounting is enabled, then the system administrator will be
able to determine who in the system is doing what. This allows the administrator to bal
ance the use of machine resources among competing users and to help troubleshoot in the
case of a lapse in security.

• Setuid programs. The mechanism of setuid programs (where a program can run with
the effective user identification number of the owner of the program) allows normal users to
perform functions that would otherwise require the assistance of a system administrator,
without according those users the privileges glven to system administrators.

There are several additional features of the IBM/4.3 system that contribute to its secure operation
but which have not been discussed previously:

• Data encryption. If a user decides that the normal file access protections are insufficient to
ensure that certain sensitive mes will not be read by anyone else (even by the superuser), the
user can encrypt those files. Encryption changes the file into a form that is unreadable to
anyone who cannot frrst decrypt the file by providing the encryption key. In effect, the data
encryption mechanisms are an extension of the password security mechanisms to individual
files.

• Mail encryption. There is a mail encryption facility that allows users to encrypt messages
sent through the electronic mail system. By using this facility, users can exchange poten
tially sensitive information without fear that a clear text version of it may be intercepted by
other users or by the superuser.

• Superuser password protections. Several system commands are designed to restrict access to
superuser privileges, even by users who for some reason may know the superuser password.
For example, the su command allows only those users who are members of the group
whee 1 to become root. Anyone else will be denied permission to assume the root
uid, even though they may be able to supply the correct root password. As described
below, it is also possible to prevent logins using the root login name over selected termi
nal lines. In a situation where very tight security is required, root logins can be disabled
on all terminals except the system console. As a result, superuser privileges can be denied to
anyone unable to access the console, even though the superuser password has become
compromised.

• Password aging. It is a good idea for users to change their passwords often. Although in
the IBM/4.3 system there is no automatic way to force a user to change the account pass
word periodically, it is relatively simple to implement such a scheme using shell scripts. One
possibility is presented below.

Not surprisingly, many of the principal security loopholes of an IBM/4.3 system arise from
misuse of these mechanisms, either because they were incorrectly implemented or because they

Septembcr 1988 Chaptcr 18

IBM/4.3 System Administration Guide 183

were not implemented at all. The large part of this chapter discusses the correct implementation
and maintenance of these security mechanisms, as well as some consequences that may arise from
incorrect administration.

3. Physical Sccurity

The frrst level of security, and no doubt the most obvious, is to ensure that the physical hardware
not be exposed to damage, unauthorized use, or theft. This may involve placing the equipment in
a secure area that is accessible only by key or magnetic card; it may also involve physically secur
ing the equipment with locks and cables. Every effort must be made to keep unauthorized per
sons away from the equipment. This is particularly important with the system console, since
there is usually a superuser login session on it. Even when there is no superuser login on the con
sole, a bad guy can usually obtain root privileges simply by powering down a machlne and
rebooting it in single-user mode, if the bad guy has physical access to the machine. If your
workstation has a key to disable the keyboard, you should use it whenever you step away from
the machine. .

In addition to maintaining the physical security of the computing equipment, the administrator
must maintain adequate physical security for backup tapes and disks. A bad guy who has access
to current dump tapes can circumvent the password security and file access protections provided
by the IBM/4.3 system simply by reading those tapes onto another system on which he has
superuser privileges. Therefore, the system administrator should lock up all secondary media
(streaming tapes and diskettes, for example) when they are not in usc. It is also highly recom
mended that at least one complete backup copy of aU file systems be stored ofT-site, so that the
data and files can be resurrected on another system in the event that fire, flood, or other natural
disaster destroys the machine and physical surroundings.

Finally, the system administrator should remind users at publicly-available terminals to log out
whenever they leave the terminal unattended for any length of time. As you shall soon see, it is
quite easy for a bad guy to install some short but effective scripts that can be used to undermine a
system's security, if the bad guy can gain access to the system. It is imperative therefore that
users either log out or disable use of the terminal if some errand takes them away from the termi
nal. The lock command is provided with the IBM/4.3 system to allow users to lock the termi
nal in order to be able to step away for a few minutes. Consult the manual page lock(l) for
complete details on this program.

4. Password Security

A password is a user's main line of defense against unwanted persons reading, copying, or even
removing files and directories owned by the user. It is essential that each user account have a
password, and that the password be as secure as possible (generally, at least 6 to 8 characters long,
with a mixture of letters, numbers, and special characters). Remember that the encrypted form of
each user's password can be inspected by anyone on the system, since the file /etc/passwd is
publicly-readable. While it is fairly difficult (though not impossible) to decrypt an encrypted pass
word, it is relatively simple, using the programming tools of the IBM/4.3 system, to encrypt a
string and then see whether the result matches any existing encrypted passwords. Short passwords
can easily be broken by testing all possible combinations of letters and special characters. Even
long passwords can sometimes be uncovered if the user selects a word that exists in a publicly
accessible list such as an on-line dictionary or telephone directory.

Password security is particularly important to the superuser account, and the system administrator
must take special care to guard the superuser password against accidently disclosure. As discussed
in earlier chapters, the system superuser has practically unlimited powers when logged in to the
IDM/4.3 system. A superuser can remove files and directories, change permissions on programs,
and render disks and other peripherals unusable. It is therefore particularly important to keep
unauthorized persons from knowing the root password or from otherwise assuming superuser

Chapter 18 Septcmber 1988

184 rBM/4.3 System Administration Guide

privileges. The superuscr password should never be givcn 'to another uscr just to allow that user
to remove a lock file, or start a daemon, or any other administrative task, no mattcr how simple.

4.1. User Pa..~word Security

Most systeJll brcak-ins bcgin when a bad guy gains access to a system as a normal user, not as the
superuser. It is important, therefore, that users protect their passwords by selecting suitably ran
dom ones and by not revealing their passwords to other users. Unfortunately, it is all too simple
for a user on a system to finesse a password out of unsuspecting users, espccially users at
publicly-available terminals, by writing a script to trap passwords. :p.lmagine that a malicious
user logs in at a public terminal, executes the script, and then leavcs the arca. Whcn another uscr
attempts to log in, the script mails the user name and password to the bad guy, and then ends.
Control returns to the shell, and the unsuspecting user might not notice anything unusual.

There is no rcal defense against this type of trick except to encourage user to change passwords as
often as possible so that the stolen password will soon become outdated. Users should also mon
itor the time of last login (displayed by the system each time thc user logs in) to cnsure that
somcone elsc has not guesscd or stolen their password. If such a security breach occurs, the user
should notify the system administrator and change the account password immediately.

4.2. Pa..~sword Aging

In order to help prevent unauthorized break-ins, it is very useful to have uscrs periodically change
their passwords. The IBM/4.3 systcm docs not incorporate password aging mechanisms found on
some earlier UNIX-based systems, largely because those mechanisms were difficult to use and
maintain. It is, however, relatively easy to institute password aging by having cron periodically
run a script that checks users' current passwords against a saved version of previous passwords.
The following script has been found to work quite well:

#! /bin/sh
agepasswd: Check age of passwords
SYSADM=root
PWFILE=/etc/passwd

cd /etc/passwd.age.data
awk -F: ' {printf "%s %sO, $1, $2}' $PWFILE

while read user password junk
do

if (test "$password" != "XXX" -a "$user" != "who")
then

if (test -f $user)
then

else

fi
else

if (test "$password" != "'cat $user"")
then

echo "$password" > $user
fi

echo "$password" > $user

rm -f $user
fi
if (test -f $user)
then

if (test ""cat $user'" = "")

September 1988 Chapter 18

IBM/4.3 Systcm Administration Guidc

then
echo "

Your password is invalid. Please change it." 1\
/usr/ucb/mail -n $user
echo "

185

USier $user has an invalid password." /usr/ucb/mail -n $SYSADM
fi

fi
done

For each line in the password file, this section of the script checks to see if there is a saved pass
word ili the directory /etc/passwd. age. data. If there is and it differs from the current
password, then the saved password is updated; if there is no saved password, then the current
password is saved. Finally, if the password is null, a note is mailed to the user and to the system
administrator, since such accoupts are most definitely security holes.

userlist='ls'
for user in $userlist
do

userline='grep "\"$user" $PWFILE'
if (test "$userline" = "")
then

rm -f $user
echo "

User $user rm'd from passwd monitor."
fi

/usr/ucb/mail -n $SYSADM

done

This section of the script checks to see whether there are saved passwords for accounts that no
longer exist. If so, the saved password is removed and the system administrator is notified. The
actual password aging mechanism is contained in the remaining section of the script:

userlist='ls'
if (test "$userlist" != "n)
then

almost_old='find $userlist -mtime 50 -print'
if (test "$almost_old" != '''')
then

for user in $almost_old
do

echo "
Your password has not been changed in the last 50 days.
You must change your password at least every 60 days.
Please change it." 1\

/usr/ucb/mail -n $user
done

fi
too_old='find $userlist -mtime +60 -print'
if (test n$too_old" != "")
then

echo "
These users have not changed passwords
in the last 60 days: $too_old" 1\

/usr/ucb/mail -n $SYSADM
for user in $too_old

Chapter 18 September 1988

186 IIJM/4.3 System Administration Guide

do
echo "

Your password has not been changed in the last 60 days.
Please change it." 1\

/usr/ucb/mail -n $user
. done

fi
fi

First, the remaining saved passwords are checked to sec which are older than 50 days. If there are
any such passwords, the user and the system administrator are notified. Then, the script searches
for passwords older than 60 days and notifies the concerned persons if any are found.

To start up password aging, simply install the entire script as /etc/passwd. age, create the
directory /etc/passwd. age. data, and then insert the following line into one of the
cron configuration files, probably /usr/lib/erontab. local:

35 23 * * * root /ete/agepasswd

In the late hours of the night, the e ron daemon will run the aging script.

4.3. Password File Security

The file /ete/passwd maintains all account-related information, and it is essential for logging
in. If it is destroyed or otherwise made unreadable by the system, no one (not even the
superuser) will be allowed to log in to the system. The system administrator should therefore
have a current copy of the password file available on a backup medium. It is also recommended
that a copy of the password file be kept available on-line, so that the copy can be used to restore
an original that has become corrupted.

More importantly, the protection modes of the password file must be set correctly. Generally, the
password file should not be writable by any user on the system except the superuser, though for
various reasons it must be readable by everyone. Thus:

Is -1 /etc/passwd
-rw-r--r-- 1 root 8438 Mar 26 01:56 /ete/passwd

You should also ensure that the directory jete is not writable by anyone other than the
superuser. Recall that anyone with write permission on a directory can rename files within the
directory, or even remove them, regardle.rs of the permi.rsion .rellings on the files.

To protect against security violations on the passwd file (and others), make sure that the directory
permissions on jete are set up correctly. If you arc in doubt, run the following command line:

ehmod 755 jete

This will ensure that the /ete/ directory has the correct access permissions.

5. File Security

It is essential that system files and directories be given the proper pennission, before the system is
made available to normal users. The system administrator is responsible for making sure that all
programs and files installed in publicly-readable directories (such as /bin and /usr/bin)
have the appropriate permissions and ownerships, and you should not assume that the system as
distributed conforms to the requirements of a secure system. For the most part, a program that
will be executable by anyone on the system should be of ownership and group bin and should
have protection mode 755. This establishes global read and execute permissions on the program,
but restricts write access to the owner of the program. There are exceptions to this rule, especially
when a program is designed to be run by a daemon process and not directly by a user. For
example, some groups of commands such as the line printer spooling system and the uucp system

September 1988 Chapter 18

IBM/4.3 System Administration Guide 187

require special ownership and execution modes. Consult the appropriate chapter in this guide for
details on the required configuration.

6. Security for Setuid Programs

A bad guy is rarely content to break into a system just once. If a bad guy succeeds in becoming
root and acquiring superuser privileges, he is likely to leave behind certain "burglar tools" that
will make it easy to become root in the future. Of special concern are files that run setuid
root.
Recall that a program can be configured to run with the file and directory permissions of the
owner of the file (not the person invoking the program) by setting the setuid bit of the file on.
A program that runs setuid root, then, allows the user to acquire superuser permissions as
long as the program is executing. Normally, this is only a problem for programs that allow the
user to give commands interactively or to spawn subshells.

Suppose that a bad guy succeeds in acquiring root privileges once. The bad guy knows that
you will probably uncover that loophole soon enough, so his first course of action is to create
another way to achieve superuser status. There are some simple ways to do this. Further, any
bad guy inteIligent enough to acquire superuser privileges will most certainly make it difficult to
detect his necessary scripts and files by giving them an innocuous-looking name. You can trip up
such a bad guy by maintaining a list of the setuid programs on your system and by periodi
cally comparing the list to the actual setuid programs on your system. The following simple
script provides a framework that you can modify as necessary:

#! /bin/sh
check_setuid: check setuid root files against a saved list
SYSADM=root
cd /etc
find / -user root -perm -4000 -0 -perm -2000 -print> setuid.tmp
if [-f setuid.log J
then

else

diff setuid.tmp setuid.log I \
/usr/ucb/mail -n -s "setuid root problems" $SYSADM

fi
mv setuid.tmp setuid.log

rm -f setuid.tmp

When installing this script (presumably to be run periodically by cron), make sure that the fIle
/etc/setuid. log is not readable or writable by anyone other than root.
It should be noted that the IBM/4.3 system automatically provides a very important setuid
security mechanism not found in some earlier versions of the UNIX operating system. Previ
ously, system administrators had to make sure that every program configured to run setuid
root was not writable by anyone but root alone. The reason for this was that a file retained
its protection modes even if another file was moved onto it (for example, using cp or mv). A
publicly-writable setuid root program could therefore have had a shell program copied onto
it, resulting in a setuid root interactive shell. In the IBM/4.3 system this is not possible,
since writing to a fIle clears the setuid bit if the person doing the writing is not the superuser.

Such safety mechanisms notwithstanding, it is difficult to overstate the extent to which setuid
and setgid programs can pose a significant security risk on the IBM/4.3 system. You should
make certain that existing setuid and setgid programs are correctly installed. Just as
importantly, you should be extremely careful in admitting new setuid/setgid programs
onto the systems you administer. It is almost always possible to achieve the desired effects
without resorting to the setuid or setgid mechanisms. If you must however install some
such program, try to install it with non-superuser ownership, thereby attempting to minimize the
potential damage if a clever user should succeed in breaking the security of the program.

Chapter 18 September 198~

188 IIJM/4.3 System Administration Guide

7. Security for Device Special Filc..'i

The directory /dev contains a number of special device files that are used by the operating sys
tem to manage communications with terminals (usually having a device file with a name like
/dev /ttyl), networks, and storage media such as floppy and hard disks. There are also spe
cial files correspon4ing to the internal memory of t.he system itself (usually called /dev /mem
and /dev /kmem). It is imperative that these special files have their permissions set correctly in
order to prevent unauthorized access to their contents.

The special files /dev /mem and /dev /kmem should be readable and writable only by the
super-user (or by the operating system itself). They should be owned by root and belong to
the group kmem. For example:

Is -lg /dev/{kmem,mem}
crw-r----- 1 root kmem
crw-r----- 1 root kmem

3,
3,

1 Aug 12 12:10 /dev/kmem
o Aug 12 12:11 /dev/mem

The disks of the system must also be protected by correctly setting the protection mechanisms.
All the special files in the /dev directory that correspond to disks should be owned by root,
should be in the group operator, and should have permissions mode 600. For example, the
device files for hard disk 0 should look something like this:

brw-r----- 1 root operator 1, 0 Jan
brw-r----- 1 root operator 1, 1 Jan
brw-r----- 1 root operator 1, 2 Jan
brw-r----- 1 root operator 1, 3 Jan
brw-r----- 1 root operator 1, 4 Jan
brw-r----- 1 root operator 1, 5 Jan
brw-r----- 1 root operator 1, 6 Jan
brw-r----- 1 root operator 1, 7 Jan

9 22:18 /dev/hdOa
9 22:18 /dev/hdOb
9 22:18 /dev/hdOc
9 22:18 /dev/hdOd
9 22:18 /dev/hdOe
9 22:18 /dev/hdOf
9 22:18 /dev/hdOg
9 22:18 /dev/hdOh

If these device files were readable or writable by other users, the security of files and directories
stored on them would be endangered, since a bad guy could easily write a simple program to
extract or modify the data stored therein.

8. File Encryption

The files and data stored on a computer system arc very often of a relatively sensitive nature, such
as company product plans or employee salaries. The security protection ofTered by the system of
login names and passwords, together with the system of file and directory permissions, may not
be adequate for such projects. Although these protections can ensure that most users will be
denied access to certain files, the superuser can always look into any files that reside on the file
system. In cases where even the superuser must be kept from looking at certain files because of
their highly confidential nature, the user may encrypt, or encode, those files. This process
translates the mes into a form that is meaningless to anyone who cannot decrypt the files.

On the IBM/4.3 system, this encoding and decoding of files and data is accomplished by means of
the crypt command. To use this command to encode a HIe, you must first select a password
or key that crypt uses to transform the input file. As with login passwords, the crypt key
should be at least six alphanumeric characters; if the password is shorter than that, the encryption
is much easier to break.

Suppose that the file salaries is to be encrypted, and t.hat the key you have chosen for the
encryption is 'mykey6'. Then the command:

% crypt mykey6 < salaries> sal.encr

will encrypt the original me sal a r i e s (also called the "clear text") and place the results into
the Hie sal. encr. To decode the encrypted version of the file, use the command:

% crypt mykey6 < sal.encr

September 1988 Chapter 18

IBM/4.3 System Administration Guide 189

The clear text will be send to the standard output, in this case the terminal screen. You may of
course also redirect the standard output; for example:

% crypt rnykey6 < sal.encr > sal. clear

Mter this command is run, the two files salaries and sal. clear will be identical.

You should be aw~e of two potential security loopholes in using the crypt command in this
way. First, you will notice that the encryption key was specified on the command line, so it
might be visible to anyone who happened to run t.he ps command at the right moment. To cir
cumvent this problem, you may omit giving the encryption key on the command line. If you
omit it, however, then crypt will prompt you for it interactively. For example:

% crypt < salaries> sal.encr
Enter key:

As with normal user password checking, crypt will not echo the key on the terminal screen
when you enter it.

The second security loophole possible when using crypt concerns the original clear text mes on
the system. The user must remember to remove these files once they have been encrypted, or else
all the good security work will have been in vain. The best solution to this problem is never to
leave the clear text files on the system. This may be accomplished by creating and editing sensi
tive mes using the encryption option of the text editor vi. '1'0 edit (or create) an encrypted file,
give the command:

% vi -x sal.encr

Here the - x option instructs the editor to read (or create) the encrypted file sal. enc r. You
will be prompted for the encryption key before anything else happens. If you supply the correct
key, then the me will be opened in its clear text form and you may edit it at will. When you save
and quit the me, it will be saved in an encrypted form, using the same key you earlier specified.
The line-oriented editors ed and ex also allow you to edit and save encrypted files.

9. Mail Encryption

If you want to send sensitive files or messages through the electronic mail system, there is a set of
commands that attempt to implement a secure communications channel. In order to use this
facility, the intended recipient of the mail must select a password or encryption key and use it to
register with the encrypted mail system. That user must then supply the key when the mail is
received. You will not, however, be prompted for the key when you send the mail.

To illustrate, suppose that you and another user wish to exchange some private mail. First, that
user must register with the secret mail system by issuing the command enro 11. The sequence
will look like this:

% enroll
Gimme key:
%

As with passwords, the encryption key is not echoed on the terminal screen as it is typed. The
user is now enrolled in the secret mail system and may be sent messages. This is done with the
command xsend, which operates very much like rnai 1. For example:

Chapter 18 September 1988

190 IIJM/4.3 Systcn1 Administration Guide

% xsend monroe
I agree entirely with your assessment of smith. I have
instructed the system manager to remove his account
immediately. If the secur1ty leaks do not stop, then
perhaps we should also notify Curmudgeon.

Mark

The intended recipient will be notified by normal electronic mail that some secret mail has
arrived. To read the secret mail, that user would type:

% xget
Key:

Note that the system has responded by requesting the secret key or password. If the same key is
provided as the one given at enrollment time, the mail will be printed in an unencrypted fonn.

Unlike normal electronic mail, not even the superuser can read mail sent with this secret mail sys
tem, since both the message and the key are stored in a binary, encrypted form (in the directory
/usr/spoo1/secretmai 1).

10. "Trojan Horses"

A "Trojan horse" is a command or a shell script that is masquerading as some familiar command.
A bad guy can use Trojan horses to accomplish all sorts of mischief in the IBM/4.3 system, so
you had better learn how to recognize and deal with them. Several scripts discussed earlier in this
chapter are examples of Trojan horses.

There are two lessons to learn from these examples. The first lesson concerns the writability of
directories used to hold publicly-executable commands. If anyone on the system can insert files
into program directories, then the possibility is always open that bad guys will insert various Tro
jan horses there. So, the first line of defense is to make sure that program directories like
/usr/bin, /bin, and others are not writable by nonnal users. There is also a corollary to
this lesson: if you know (or suspect) that some unauthorized person has succeeded in acquiring
superuser privileges, then you should scrutinize public program directories to make sure no Tro
jan horses were planted there. Especially kcep an eye on the commands in /u s r /new (if it
exists on your system), since it is quite common for commands located there to have the same
name as commands located elsewhere.

A second and more important lesson is this: you should make sure that search paths, especially
for the superuser account, are set up so that public program directories are searched before any
other directories. In particular, the current directory (indicated in the search path as C • ') should
be placed after other important directories in the search path. You may accomplish this by
including a line like the following one in your . c shrc file:

set path = (jete /usr/ueb /bin /usr/bin . /usr/new)

Here the current directory will always be searched only after the four main program directories are
searched.

To appreciate the full value of this last point, suppose that you, the system administrator, have
the following search path:

echo $PATH
.:/ete:/usr/ucb:/bin:/usr/bin:/usr/local:/usr/new

Now imagine that a user complains to you that all the subdirectories under his home directory are
suddenly missing. Most probably, you will move into that home directory and run the command
1 s to see what's there. If you do so, however, you are likely to fall prey to a Trojan horse in the
fonn of a bogus 1 s command in that user's home directory. Imagine that there is an executable

September 1988 Chapter 18

IBM/4.3 System Administration Guide

script there containing the following commands:

#! /bin/csh
cp /bin/sh /tmp/RV33421
chmod ugo+s /tmp/RV33421
/bin/ls ~argv[*]

191

As you can see, you have just helped the bad guy in his quest to assume superuser powers by
making an innocuous-looking copy of an interactive shell program and then making it setuid
root. Only afterwards was the real 1 s run. If you don't notice the file 1 s in the current direc
tory, you would be none the wiser that you have just created a tremendous breach of security
(namely the creation of a publicly-executable setuid root shell)! To repeat, make certain
that the current directory is listed last in your search path, or at least after the main directories
holding executable programs. To be extra safe, remove the' . ' entry and all world-writable direc
tories from the superuser search path.

11. Modem Security

Having a modem attached to your system that is configured to accept logins is always a potential
security hazard. This is largely (though not exclusively) because you have virtually no control
over who may call your system and attempt to log in. The first level of protection against unau
thorized logins over the modem is to try to keep the phone number of the system as private as
possible. If you are not operating a public time-sharing system, do not broadcast or publish
modem numbers. If necessary, you may want to change modem phone numbers periodically.
Remember that obscurity entails a certain amount of security.

The second level of defense against modem break-in is to make sure that every account on the
system has a password. If a dial-in bad guy can find a user name for which there is no password,
he will be able to log on as that user, and he may be able to attain superuser status by one of the ,
means discussed above. You can detect accounts without passwords by running the following
command:

grep '[A:]*::' /etc/passwd

If there is any output from this command, it should be just for accounts running under restricted
shells, like a who account that runs /bin/who as its login shell and then exits. If there are
any other accounts without passwords, you should either deactivate the accounts or add pass
words to them. Note that the password aging script given earlier in this chapter will automatically
perform this check each time it is run. Incidentally, the who account itself may constitute some
what of a security risk, since someone who discovers your modem number will be able to glean
useful information about valid user names on your system, thereby making it slightly easier to
break into the system. If you are highly concerned about modem security, remove the who
account.

You can prevent someone from logging in as root across a dial-up line by suitably modifying
the file /etc/ttys, as described in an earlier chapter. Recall that if the fourth field of a line in
that me contains the annotation 'secure', then the superuser can log in on the corresponding
terminal line. If there is no such annotation for any dial-up lines, then no one will be able to log
in as root on them. Determine whether or not you need to have retnote superuser access to
your machine; if you do not, then remove the argument' secure' frotn all dial-up line entries.

The final defense against modem break -in is to make sure that all users log out when they are
done working over the modem. It is generally not sufficient for a user simply to tum off the
modem, for this may leave a shell on the host machine still talking to the modem. The next per
son to dial up the modem will not have to log in, and will have access to all that user's fues and
directories.

Chapter 18 September 1988

192 IBM/4.3 System Administration Guide

12. I)rinter Security

To ensure adequate security for the line printer spooling system, it is essential that the owner and
group of the various programs that comprise the system be set correctly and that the spooling
areas be given the correct permissions. This prevents users from removing or modifying spooled
output that does not belong to them, or from circumventing the printer accounting mechanisms.
Unless your site has made significant modifications to the line printer system, the following steps
should be taken:

• Make sure that the spooling areas are writable only by the user daemon and the group
daemon.

• Make sure that the user program lpr runs setuid root and setgid daemon.
Also make sure that the programs that manipulate the spooling queues (lpd, lpq, and
lprm), run setuid root and setgid daemon.

• Make sure that the file /etc/hosts. lpd is not writable by normal system users.

• Make sure that the printer data base files /etc/printcap cannot be written by ordi
nary users. Typically this file is owned by root, belongs to group staff, and has per
missions mode 644.

• Make sure that the printer accounting files (as specified in the printcap entry for each
printer) cannot be read or written by ordinary users.

As you have seen, it can be dangerous having setuid root programs doing so much work on
your system. Although the various programs in the line printer spooling system have been care
fully written in an attempt to avoid the most common setuid security problems, you might
think it preferable to remove the setuid root configuration altogether. In a networked
environment where remote spooling is allowed, however, that is simply not possible. But if the
IBM/4.3 system you are administering is not connected to a local area network, then you can
relax the owner and group membership of the programs in the spooling system. Previous ver
sions of the line printer spooling system had lpd running setuid daemon and setgid
spooling, while lpq and lprm ran setgid spooling.

Finally, you must also ensure the physical security of the printer and its output. It does very little
good to make certain that the line printer system is secure from tampering if a passerby can pick
up whatever output happens to be near the printer. And it docs a user little good to set up res
trictive access permissions on ftles and directories if the physical hardcopy can be inspected by
untrusted persons. Exactly how you maintain the security of the printer and its output will
depend heavily on the use of the printer and the volume of output. Determine what measures are
appropriate for your installation and then implement them.

13. Uucp Security

Software packages like uucp that altow file transfer to and from your system and unattended com
mand execution on your system can pose significant security risks if the software is improperly
installed or configured. Unless you actively restrict the uucp system along the lines suggested
below, then any outside user who can log into your system will be able to execute any commands
and copy any files available to the uucp login. Before activating the uucp system for inter
machine communication, you should ensure that file ownerships are set correctly, that uucp
related login accounts are set up securely, and that certain configuration files have the correct
access permissions.

13.1. File Security

Various control files used by the uucp system contain highly sensitive information (such as the
names of systems you communicate with, and login account names and passwords) that should
be kept secret from normal IBM/4.3 system users. In particular, the files L. sys, USERFILE,

September 1988 Chapter 18

IBM/4,3 System Administration Guide 193

and SQF I LE should be owned by the user uuep and should be readable and writable only by
that user.

13.2. Password Security

The uucp system requires an account for the uucp system administrator. Usually the account
name is 'uuep'. As indicated above, this account owns most of the files and programs that
make up the uucp package. It is recommended that you create a separate login account for each
remote system that is to communicate with your local system using the uucp package. For exam
ple, if you maintain uucp links to three systems named 'tic', 'tae', and 'toe', then the fol
lowing lines (or suitable variants) should be added to the password ftle, /ete/passwd:

uutic::6001:1:uucp from tic:/usr/spool/uucppublic:/usr/lib/uucp/uucico
uutac::6001:2:uucp from tac:/usr/spool/uucppublic:/usr/lib/uucp/uucico
uutoe::6001:3:uucp from toe:/usr/spool/uucppublic:/usr/lib/uucp/uucico

You will then need to initialize .passwords for these three accounts and convey that information to
the uucp administrator at each remote site.

13.3. Command Execution Security

The file /usr/lib/uuep/L. emds contains a list of commands that a remote uucp user
may execute on your system via the uux command. \Vhen uux receives a request to launch
uuxqt to process some execute file, it first checks to see that the command specified in the exe
cute file is contained in the file L. emds. By adding commands to this me or removing them
from it, you can expand or contract the functionality that your machine agrees to provide to your
uucp neighbors. A typical L. emds file might look like this:

rmail
ruusend
Ipr
who

This would allow a uucp account to run the commands rmai 1 and ruusend (which for
ward mail to other systems), Ipr (to send files to a local line printer), and who (to see who is
currently on the system). If you are concerned to limit access to your system (and it is not a net
work printer server), then your L. emds file should look like this:

rmail
ruusend

The who command was disallowed since it is likely to provide potentially useful infonnation to a
bad guy attempting to log in to your system under some account other than uucp. You can
disallow a remote system from running any commands Oil your system by creating the file
L. emds zero-length.

13.4. Conversation Sequencing

The uucp system can be configured to keep a log of conversations with each remote system,
including a count of the number of conversations between the local system and the remote sys
tem. By comparing these numbers, the two systems can effectively verify that they have been
talking with each other. If the records do not agree, then one system may be trying to imper
sonate another, in which case the login attempt should be disallowed.

The record of conversations is maintained in the file SQF I LE in the uucp administrative direc
tory, /usr/lib/uuep. This file contains a line for each system that is to have conversation
sequencing checked. Initially, just the name of the remote system is put into this file. Then,
when a successful conversation takes place, each system will update its sequence ftle to reflect the
activity.

Chapter 18 September 1988

194 IBM/4.3 System Administration Guide

By default, the conversation sequencing is disabled, since in practice it is rarely used. In order to
configure the software to perform the sequence checking, you must recompile the software with
the GNXSEQ preprocessor option enabled. Of course, sequencing must be in effect on both sides
of the uucp conversation.

13.5. Summary

Maintaining uucp security is not overly difficult once the system has been securely installed and
configured. As you have just seen, it is possible to institute a call sequencing procedure that pro
vides very good assurance that a remote system really is the system that it claims to be when ini
tiating a uucp conversation. Nonetheless, it is simply undeniable the uucp system provides yet
another avenue for bad guys to gain access to your system. In view of this fact, many sites prefer
to isolate their uucp connection to the outside world from other machines on the local network.
Even if a bad guy succeeds in breaching the normal security mechanisms of the uucp node, he
will be unable to access the resources of the machines on the local area network.

14. Network Security

If your IBM/4.3 system is connected to a local area network, you will need to consider several
issues related to maintaining a secure operating environment across the entire network. The net
working capabilities provided by the IBM/4.3 system increase the computing power and flexibility
available to both individual users and the system administrator; at the same time, they create addi
tional security holes that must be closed by careful system administration.

The first level of network security is to ensure that configuration files on each host are correctly
and securely set up. For example, each network host that permits remote login and remote com
mand execution (using the rlogin and rsh commands from remote hosts) automatically
employs an authentication scheme involving the file /ete/hosts. equi v. If a user on a
retnote machine, say grunni on, requests a network service from another machine, say tuna,
then the server on tuna first checks to see whether the host grunni on is listed in the me
/ete/hosts. equi v. If so, and if the user has an account on tuna, then the service will
be performed as requested. The /ete/hosts. equi V file thus lists hosts that are treated as
"equivalent" to the local host, at least in terms of aIJowing logins, command execution, and other
network services.

There are two main exceptions to the host authentication scheme using
/ete/hosts. equi v. First, if the user's home directory on tuna contains a • rhosts
me listing the user's account on grunni on, then the scrvice will be performed whether or not
grunnion is listed in the /ete/hosts. equi V file on tuna. So users can obtain net
work services even from machines which are not. considered equivalent in the overall network.
Second, if the user requesting a service from a remote host is root, then only the file
/ . rho sts on tuna is consulted to sec if supemser privileges should be accorded to the user
root on grunni on. This al10ws the administrator on tuna to deny superuser access to
anyone but a local root, if a very restricted network is desirable. It also allows the administra
tor to designate the root login on some other machine as equivalent to the root login on
tuna, so that administrative functions can be performed across the network. Obviously, the file
/ . rhosts is an extremely important file that must be protected from writing by normal users.
It is probably also a good idea to prevent other users from reading that file.

The me /ete/hosts. Ipd is used in much the same way as /ete/hosts. equi V, to
restrict or allow access to a local printer by other network hosts. In addition, the r sprinter
capability can be specified in order to disallow remote printing except to users who have accounts
on the print server. For complete details on enforcing network security within the line printer
spooling system, refer to Chapter 9.

There is one further configuration file relevant to the maintenance of network security,
/ete/ftpusers. Recall that the ftp server running on a particular machine allows

September 1988 Chapter 18

IUM/4.3 System Administration Guide 195

anonymous access to files and directories owned by a user named 'ftp'. The ftp server allows
practically anyone to look at and copy files located in such directories. In particular, the ftp
server does not consult the file /ete/hosts. equi V to determine if it should service an
ftp request. Instead, the ftp server consults the file /ete/ftpusers and di.rallows ftp
services to any users whose names appear therein. A typical ftpusers file contains at least
the two names 'uuep' and 'root' You may wish to include additional names in this file if
abuses by particular users warrant removing their ftp capability.

The most important concern in maintaining a secure network is to ensure the security of each
individual workstation on the network. Remember that users may be prompted for login names
and passwords when they attempt to establish a connection with a remote machine and that that
information can be intercepted by any machine on the network. More generally, any file copied
over the network essentially becomes public information if it is not first encrypted, since it is easy
to write programs to monitor network traffic. As a result, if there is even one machine attached
to your local area network th~t maintains user accounts for persons whose commitment to the
security of the entire network is in doubt, or which is not itself immune from intruders, it may be
impossible to achieve an acceptable level of data security in the networked environment. Even
the mechanism of listing "trusted hosts" in the file /ete/hosts. equi V can be circum
vented in a very straightforward manner. A bad guy who gains control over one machine in a
local area network can easily have that machine impersonate any other host on the network.

For better or worse, a network is only as secure as the least secure machine on the network. As
the system administrator concerned with maintaining a secure network, you must therefore first
make each workstation as secure as possible against outside intruders and against inside bad guys.
If a particular machine is consistently lax in security-related areas and you are unable to educate
the user population accordingly, your only recourse may be to remove that machine from the net
work.

15. Miscellaneous Security Tips

• Make sure that the eron configuration file /usr/lib/crontab (and
/usr/lib/erontab. local, if it exists) is owned by root and is not writable by
anyone other than root. As distributed, this file is not writable even by root. To make
changes to the e rontab file, the superuscr must edit it and then save the changes with the
: w! command (assuming the editor is vi). Also, since there is really little difference
between commands placed directly into the erontab file and any scripts that are called by
it, make sure that users cannot alter those scripts (and possibly make one into a Trojan
horse).

• Make sure that you completely understand the format of the various configuration files used
by the system and its utilities before you undertake to modify one of them. You can create
tremendous security loopholes if you improperly modify such files. Where possible, use
system-provided utilities that arc designed to assist you in modifying configuration fUes.
(For example, the utility program vipw performs several consistency checks on the file
/ete/passwd when you try to update it.) Similarly, if local scripts are available for such
mundane tasks as adding new users to the system, use them.

• Install all setuid and setgid programs so that they cannot be either written or read
by anyone on the system (i.e., establish the permissions so that they are - - s - - X - - X or
--x--s--x). By preventing read access to such programs, you will also prevent a bad
guy from gaining information that may potentially be useful to him in breaking the security
of the program.

• Periodically scrutinize the contents of /ete/re and /ete/re. local to ensure that
the multi-user initialization commands they contain are indeed current for your installation.
A bad guy who succeeds in breaking root may plant commands in them that compromise
system security.

Chapter 18 September 1988

196 IUM/4.3 System Administration Guide

• Remove the guest login account from your system, unless it is absolutely necessary. At
the very least, make sure that it has a password (and that the password is different from
'guest').

• It is a good idea to have a colleague (ideally, an experienced system administrator) attempt
to break into .your system at irregular intervals. Exactly how you arrange this depends on
which aspects of system security you want to test.

16. Conclusion

The task of ensuring the secure operation of the IBM/4.3 system is one that demands your con
tinual attention. Unlike the installation and configuration of a piece of hardware or software,
security is never a one-shot deal. You must constantly be on guard against system intruders and
against system users who want to win at the ultimate computer "game", achieving superuser
status. The price you and your system pay for losing at that game can be a very dear one. In a
reasonably dire case, it may involve doing a full backup of all file systems, a task which may
inconvenience you and your users for several hours at least. If, however, the physical security of
your system was breached and your backup media have been lost or stolen, the price may be even
greater, since you risk losing literally years .of work hecause of a moment's indiscretion.

Even in an environment that is devoid of such "had guys", you must make sure that the user
community fully understands the protection mechanisms that arc built into the IBM/4.3 system.
The size and complexity of the IBM/4.3 system virtually guarantee that mere common sense is
never sufficient to maintain a secure and functional computer system. User education, especially
concerning file access permissions and password security, is therefore a fundamental part of the
system administrator's task. The security of the shared computing environment provided by the
IBM/4.3 system is everybody's concern, not just the system administrator's.

The final word on system security (at least in this guide) is simply that security is worth whatever
additional time and effort it takes to get things right, whether that means. periodically traversing
the file system to ensure that files and programs have the correct permissions, or scrutinizing some
source code to make certain that a new setuid program docs not contain any inadvertent secu
rity loopholes. Every time that you add some new piece of software or hardware to your system,
you should carefully consider the impact that the new item wi11have on your existing security
measures. Above all, if a system administrator's manual accompanies the new product, take the
time to read it thoroughly, looking especially for any discussions of system security.

September 1988 Chapter 18

CHAPTER 19'

Understanding the Andrew File System and the Andrew Toolkit

1. IntrOduction

This chapter describes the Andrew File Systcm and the Andrew Toolkit applications. The
Andrew File System is a distributed file system for a large network of personal workstations; it
operates under IBM/4.3 and runs on the IBM RT PC and the IBM 6152 Academic System, and
is described in the first section of this chapter. The Andrew Toolkit Applications is a set of four
application programs that can be used with or without thc Andrew File System. The second
major section of this chapter describes these programs.

2. The Andrew File System

The diagram below is an overview of the Andrew File System; definitions of the tenns in the
diagram follow it.

File Managers
(servers)

r----------------------------,
Control Server

[] o o

r------, r-- -------- -------- --,
I

! i~ e ~
111111111
111111111

-

Status Manager
(console)

111111111
111111111

111111111
111111111

111111111
111111111

I
I - '-- ---L ______________________ _

Cache Managers
(clients)

IBM/4.3 System Administration Guide 197

198

Managers

IUM/4.3 System Administration Guide

Figure t 9- t: Overview of the Andrew File System Architecture

Managers are programs that are responsible for controlling different aspects of
the Andrew File System.

The File Manager runs on the servers and presents files to the worksta
tions.

The Cache Managers reside on workstations and translate workstation
requests into calls to the File Manager to present the requested files.

The Status Manager provides a status display of all of the file managers.

Servers Servers are machines in which files arc stored. The control server is a central
point where. change is introduced into the Andrew File System. In general,
servers are separately administered and arc separate from workstations.

Console The console is a machine used to run the file manager monitor program. The
console will indicate if a file manager is down and is also useful for determining
how well a file manager is running when it is up. The console can be any client
workstation. The console docs not have to be a dedicated machine; an
operator's workstation is often used as the console. Any machine that is run
ning a copy of vopcon is a console machine. From a console machine you
can monitor the file managers.

Control server The control server administers the other servers centrally; a process runs on the
control server that is used by the other servers to keep files on their local file
systems up to date.

To users of the Andrew File System the main unit of data is the file, which is the unit passed
between the Andrew File Manager and the Andrew Cache Manager. To the administrator, how
ever, the important unit of data is the volume. A volume is a hierarchical group of related files,
for example, the files belonging to one user. The volume is the basic organizing mechanism for
data stored within the file system; they are the units for addressing, storing, and accessing data, for
moving data from server to server, the unit to which quotas are applied, and the unit of data that
is restored if a user loses a file.

Much of the administrator's work deals with maintaining volumes, including the following tasks,
which are discussed in this section:

• Creating and naming volumes for new users

• Moving volumes between servers to handle space or load balancing considerations

• Replicating volumes

• Deleting volumes

• Creating backup volumes

For information on operational tasks,such as adding new users, deleting users, and adding a new
server, see the section "Operation Description" in Part I of The IBM Andrew File System. You
will also find information on monitoring the Andrew File System under the section "How to See
What Is Happening" in the same article.

2.1. Creating Volumes

A volume is typically a group of related files, such as all the files belonging to one user. Before
creating volumes, you will need to decide on the number of volumes you want, and their sizes
and names. Once you've set things up initially, you will create a new volume when you add a
new user. You should keep the following considerations in mind when deciding how to divide
the file system tree into volumes:

September 1988 Chapter 19

IBM/4.3 System Administration Guide 199

• Volumes should be small enough that moving volumes between partitions is a reasonable
approach to balancing server disk utilization and load; for example, you would not want to
make each volume just larger than 50% of t.he available space in a typical partition. Doing
so would waste almost half the available space. Making volumes fairly small relative to par
tition size makes it easier to move volumes around to gain an most efficient use of space.

• The size of the volume must not exceed the capahility of the backup media. The Andrew
File System backup system expects that the entire contents of a volume can be backed up
on a single unit of external storage (e.g., tape). The backup system allows more than one
volume to be backed up to the same tape. Using smaller volumes improves tape utilization.

When deciding on volume names, you should keep the following in tnind:

• Choose tneaningful names, i.e., names that will tell you something about the volume's con
tents and owner. During system administration tasks, you will probably encounter volume
names out of context; using names that give information about the contents of the volume
can help you in these tasks.

• Using prefixes can help in assigning meaningful names. For example, you might choose the
prefix user for all user volumes; names of all user volumes would begin with this prefix,
followed by a period and the user's login ID. Using a scheme like this is also useful during
backup because volumes on tapes can be grouped according to volume name prefix. A
volume name can be more than 32 characters long.

• You'll find it advantageous to develop a naming scheme (such as using prefixes) that is rea
sonably consistent, particularly when your system grows.

• Quota enforcement is done on a volume basis; accounting can be as well.

• Once you decide on a design, you can move volumes, but you cannot use the rename
operation across volume boundaries.

• Manipulating the tree structure on a basis other than a whole volume (you can move the
mount point) or less than a volume (you can move directories or files within a volume) is
difficult. Moving a subtree of a volume to another volume requires moving every byte of
data in the subtree.

Once you've determined which volumes you want to create, their sizes, and names, you use
createvol(8V) to create volumes at the appropriate server. You don't need to worry too
much about where you create a vdlume; you can create volumes on a single partition within the
system, then move volumes to another partition when necessary. When a volume is first created
it uses little of the system's resources; it may also take some time to be visible at workstations.

Createvol has the following format and arguments:

createvol volname server partition

The arguments specify the volume name, the server where the volume wilJ be created, and the
server where the volume will be created, respectively. The partition name shold always start with
the character string /vicep.

Once you've created a volume, you can, if you wish, use the vol-lookup(8V) command
(normally used only for debugging) to make sure the volume was actually created. To use it in
this way, type vol-lookup followed by the name you specified for the volume

2.2. Moving Volumes

If space within a partition is at a premium, or if a file manager becomes overloaded, you may
need to move one or more volumes to free up space. To move a volume from one partition to
another, on the same server or on another server in the system, you use the movevol(8V) com
mand. The volume being moved can be used continuously while it's being moved; users may get
a "volume busy" message from the cache manager, but the wait should be short, from a few

Chapter 19 September 1988

200 IIlM/4.3 Systcm Administration Guide

seconds to a minute or so. The actual move takes much longer; the amount of time required
depends on the size of the volume, how busy the server is, and whether the move has to wait for
any other volume operations involving the same servers.

Movevo 1 has the following format and arguments:

movevo 1 vo/name server partition

For vo/name you should supply the name of the volume you want moved; for server you should
supply the name of the server or partition to which you want the volume moved. Movevo 1
invokes the vol-dump and vol-restore commands; for more information, see the man
pages for them.

2.3. Replicating Volumes

The Andrew File System can replicate volumes for read-only access so that more than one server
can access the same volume. This can be especially useful in large systems where many users
would be inconvenienced if a server crashed, and where the demand for certain files is sufficiently
high to warrant distributing the load over multiple servers. Replicating volumes also helps to
avoid a high number of "cal1backs." A callback is a promise by the file manager to notify the
workstation if a particular file changes; the file manager must keep the promise for every worksta
tion that has recently used a file. Because read-only volumes don't change, callbacks are unneces
sary. Workstations accessing replicated volumes witt not see changes immediately because of the
updating that must take place in the system.

To create a read-only volume, you use vol-dump(8V), vol-restore(8V), and vol
c lone(8V) to clone a volume and propagate the changes to other servers. This is called releas
ing a volume. You will find examples of how it is done in vol-restore(8V). The read-only
volume that results from this process is an exact copy of the original read-write volume. See the
man pages for these programs for more information.

2.4. Deleting Volumes.

When a volume is no longer needed, you use the purgevol(8V) command. you must use the
f s(I V) command to do this. Before removing a particular volume you should be sure that there
is a dump of the most recent copy of the volume in ofT-line storage. Also, once you've deleted a
volume, you will need to remove related backup volumes as welt.

It is also possible to delete a group of volumes from a file system, although you should do so
with great care. For information, see newfs(8).
To use the purgevo 1 command, you simply type purgevo 1 followed by the name of the
volume you want deleted.

3. The Andrcw Toolkit

The Andrew Toolkit is a set of tools you can usc for tasks such as writing and editing documents,
sending and receiving mail, writing programs, and othcrs. On a workstation you can use more
than one applications at a time because each appears in its own window on the screen. The
applications ineluded in the toolkit are:

ez

console
tx
hz

September 1988

An editor that provides full edit.ing and formatting capabilities, and that is
integrated with previewing and printing functions.

A program that monitors the syst.em and displays system functions.

A typescript program that provides user access to the full functions of IBM/4.3.

A help program that provides detailed reference information in a window on the
screen.

Chapter 19

IBM/4.3 System Administration Guide 201

This sections explains two tasks involved in setting up a workstation for the Andrew Toolkit:
configuring the me system, and' setting up the user's home environment. For information on
using the applications, see liThe IBM Andrew Toolkit Applications User's Guide."

3.1. Configuring the File System

How you configure' the me system for the Andrew Toolkit depends on whether you are running
the toolkit applications in a standalone mode or in conjunction with the Andrew Pile System.

3.1.1. For a Standalone System

To configure the file system for a standalone system, you need to install the Andrew Toolkit from
tape as described in' "Installing and Operating I IlM/4.3." The following directories are important
to this process: '

/usr/andrew . Contains the Andrew Toolkit subtree
/usr/andrew/bin 'Contains the Toolkit executable code
/usr/bin/XII Contains required X Window System components (Xibm)
/usr/lib/XII/fonts Contains the X Window System fonts
/usr/lib/font Contains printer-specific fonts

Additionally, the following directories and files arc important for those wishing to use the Andrew
Programmer's Toolkit (see Programmer's Guide To The Andrew Toolkit):

/usr/include/XII
/usr/lib/libXII.a
/usr/lib/libXtI1.a
/usr/lib/liboldX.a

Contains the X Window System include mes
Contains the X Window System Xlib library
Contains the X Window System Toolkit library
Contains the old Xlib library for back-compatibility

3.1.2. For a System Connected to the Andrew File System

For a system that is connected to the Andrew File System, you will need to create symbolic links
to the appropriate Andrew File System directories and files. You do not need to do this if those
directories or files are already local on the system as described above. The following commands
are suggested. (Note that these assume a particular Andrew File System structure and should not
be executed verbatim.)

In -~ /usr/andrew
In -$ /usr/bin/Xll
In -s /usr/lib/Xll/fonts
In -s /usr/lib/font
In -s /usr/incIude/Xl1
In -s /usr/lib/libXll. a
In -s /usr/Iib/IibXtll. a
In -s /usr/Iib/liboldX. a

/vice/usr/andrew
/vice/usr/bin/Xll
/vice/usr/Iib/Xll/fonts
/vice/usr/lib/font
/vice/usr/inciude/Xll
/vice/usr/Iib/IibXll.a
/vice/usr/Iib/IibXtll.a
/vice/usr/Iib/liboldX.a

Again, the actual location of the Andrew File System directories and files (e.g.,
/vice/usr/andrew) may vary from site to site and the preceding commands should be
used only as examples.

3.2. Setting Up a User's Home Environment

To set up a user's home environment, you need to do the following:

(1) Add the following lines to the. login file:

setenv DISPLAY :0

Chapter 19 September 1988

202 IIJM/4.3 System Administration Guide

setenv PRINTER <printername>
setenv CLASSPATH /usr/andrew/dlib/be2
setenv ANDREWDIR /usr/andrew
setenv BE2WM xlI

(2) Make sure the path statement in the . c shrc file includes the following:

/usr/andrew
/usr/andrew/bin
/usr/bin/XII

(3) Make sure that an Andrew preferences file exists in the user's home directory. The ftle
/usr/guest/guest/andrew/preferences. aug may be used as a starting
point and will provide the functions described in uThe IBM Andrew Toolkit Applications
User's Guide." You can copy this file into the user's home directory then either rename it
to preferences (from preferences. aug), or else append it to an existing
preferences file.

(4) In the same manner, make sure an . Xdefaul ts file exists in the home directory; you
can use /usr/guest/guest/andrew/. Xdefaul ts. aug as a starting point.

3.3. Invoking the Andrew Toolkit

Executing the command Andrew invokes the Andrew environment as described in "The IBM
Andrew Toolkit Applications User's Guide."

September 1988 Chapter 19

IBM/4.3 Systcm Administration Guidc 203

Glossary

If you are a new system administrator, or new to the IBM/4.3 system, some of the terminology
employed in this guide may be unfamiliar to you. The following glossary is provided to give
short but helpful characterizations of the terms. For a fuller discussion of any item, you should
refer to the Index to see where it is discussed in more detail in this guide.

System V
Syst.em V is a version of the UNIX operating system.

account
A collection of files, directories, programs, and other objects that together allow a user to log in to
t.he system and execute commands. The primnry repository of account information is the file
/etc/passwd.

accounting
Accounting is the process of keeping track of user login sessions, CPU usage, command usage, disk
usage, etc., so that users may be charged for the resources they utilize or so that the system adminis
trator can intettigently balance the resource utilizat.ion.

Andrew
The Andrew system is a set. of software tools that allow the user to manage work in a distributed,
mUlti-processing, windowing environment. The Andrew system consists of two major parts, the
Andrew Toolkit Applications and the Andrew file System.

Andrew File System
The Andrew File System is a distributed file system for a large network of personal workstations.

Andrew Toolkit Applications

baud

block

boot

byte

The Andrew Toolkit is a set of user applications that operate under the Andrew System. The four
major applications are ez, console, typescript, and help.

The baud rate of a device is a measure of how much data the device can process in a given amount
of time. Technically, the baud rate of a device is the number of signal changes per second that the
device is capable of decoding. Generally this means t.hat a 2400-baud modem can send and receive
2400 biL-; per second. See also modem and terminal.

A block is a division of a file system, at least 4096 hytes in size (under the new "fast file system").
The IBM/4.3 system allows different file syst.ems to have diOcrent si:;~ed blocks.

To boot a system is to cause it to begin operation from a powered-down state.

A byte is a sequence of eight adjacent binary digits that are operated upon as a unit. A byte is usu ..
ally large enough to hold a single character.

console
A console is a terminal dedicated to system ndministration use. When the IBMj4.3 system begins
operation, it writes some messages on the syst.em console and takes input from it. In single-user
mode, the console is the only operative terminal and is automatically given superuser privileges. In
multi-user mode, the console is treated like any other terminal.

September 1988

204 IIJM/4.3 System Administration Guide

core dump

crash

cron

A core dump is a file named 'core' that i~ cr<~ated hy the operating system when a program ter
minates abnormally. You can examine t.he core dump wit.h a debugging utility (such as adb or
sdb) to try to determine what caused the abnormal termination of the program.

A system crashes when it halts operation without having been told to do so. A variety of
conditions,both software and hardware-related, can cause a system to crash.

Cron executes commands at specified dates and times according to instructions in the file
/usr J1ib/crontab.

cylinder group
A cylinder group is a subdivision of a file system (and hence of a disk partition) consisting of one or
more consecutive cylinders on a disk. A cylinder group contains a copy of the superblock, some i
nodes, a bitmap describing the free data blocks in the group, and some data blocks.

daemon
A daemon is a process that is not controlled by a terminal. Once launched, it sile; quietly waiting for
requests. When a request arrives, the daemon services it and then goes to sleep to await further
requests. Ipd and syslogd are two daemons that are usually running on a IBM/4.3 system.

datagram
A datagram is a collection of data that forms all or part of a message sent across a network.

directory
A directory is a special type of file that contains entries (called "links") that are references to other
files. By convention, a directory contains at least two links, ' ... which refers to the directory itself
and' •• '. which refers to the parent directory (if it has one).

Ethernet

file

An Ethernet is a physical network that allows transmission of messages in any of a number of proto
cols. The IBM/4.3 system supports both TCP/IP and Xerox Network/System communication across
an Ethernet. See also TCP/IP.

A file is a sequence of bytes. The operating system imposes no other particular structure on a file.
System-related informat.ion about the file (who owns it, who may change it, how big it is, etc.) is not
stored in the file ile;elf, but in the file's identHicat.ion node. See also i-node.

file descriptor
A file descriptor is an integer assigned by the system to a me when it is opened by certain system
calls.

file name
A file name is a string of characters by which ;t file may he accessed. The name of a file may be up
to 255 characters in length. Generally, it is unwise to usc special characters (such as '*'. '? '. ,[.. '] ')
as parts of a file name.

file system
A file system is a hierarchical structure of directories and files used to manage the storage of data on
a secondary storage medium (typically a hard disk). The top directory of a file system may be
located at some point in another file system, called the "mount point", or it may be the root direc
tory of the entire file system on your machine. See also Andrew File System, directory, and i-node.

finger
Finger is a program that lisle; such information as login name, terminal name, idle time, login time,
and so forth. .

September 1988

IBM/4.3 System Administration Guide 205

gid
A gid is an integer assigned to a particular group Ihat the system uses to store information about the
group. 'Gid' stands for 'group identification number'. See also uid.

group

head

A group is a collection of one or more users. Groups are useful to allow several users to access a
common set of'files and directories. Under the IOM/4.3 system, a user may belong to several groups
at once. The primary repository of group membership information is the file / e tc / group.

Head is a program that lists the first few lines of one or more files.

home directory
A user's home directory is the top-level directory assigned to (and owned by) the user. It is the
working directory that the user will be located in at login time. The user's start-up files and personal
files and directories are located within the home directory.

i-node
An i-node is a part of the file system used to hold information relating to a file, such as the size of
the file, the owner, the permissions, and the data blocks in the file system occupied by the file. '1-
node' is short for 'identification node'.

Internet Protocol Suite
A set of rules (or "protocols") that govern the transmission of data and messages among cooperating
computers in a network. TCP and IP are the best known protocols in this suite, which is therefore
sometimes referred to as "TCP/IP". The IOM/4.3 system provides Tep/IP services through a com
bination of kernel facilities (primarily sockets), daemons (such as rlogind and ftpd), and user
level commands (rlogin, ftp, etc.). See also TCP and JP.

interrupt

IP

An interrupt is a signal sent to a program to cause the program to stop executing. Interrupts are
also sent from I/O devices to the central processor when an error has occurred or when assistance is
needed to complete the input/output request.

IP is a member of the Internet protocol suite that provides message addressing services. IP routes
the datagrams handed to it by other protocols (usual1y Tep) to the desired destination. 'IP' stands
for 'Internet Protocol'. See also TCP.

kernel

link

login

The kernel is the heart of the IBM/4.3 operating system. It controls all processes running in the sys
tem and allocates resources to them as necessary. It manages the storage of all data on the system's
disks. The kernel also takes instructions from a shell and executes them, making certain that the
user issuing the instructions has the appropriate permissions on any programs and files that must be
accessed in order to perform the requested task. The disk image of the kernel is located in the file
/vmunix.

A link, or "hard link", is an entry in a directory that pointe; to an i-node. There may be several links
(possibly in different directories) pointing to the same i-node, and hence the same file. liard links
cannot, however, cross file systems. See also symh()lie link.

Generally, to login is to connect to a computer syst.em. On the IBM/4.3 system, the login sequence
consists of the user providing a user name and a password. The system will respond by printing the
file /etc/motd and by running any commands located in t.he file .profile (if the login shell is
the Bourne shell) or in the two files • login and • cshrc (if the login shell is the C-shell).

login name
The login name, or user name, is one identifier by which the system recognizes a user. It is used in
the output of many commands (such as who) or as an argument to many commands (such as
finger). A login name is uniquely associated with a user identification number by the account

September 1988

206 IUM/4 .. 3 Systcm Administration Guide

entry in the file I etc/passwd.

login shcll

mode

The login shell is the program launched by the system at the completion of the login process. The
login shell is specified by the last field of an entry in the me letc/passwd. The most common
login shells are Ibinl csh and Ibinl sh, although in theory any program can serve as a login
shell. -

A mode is a method of operating. r or example, the vi editor has two modes: text entry (for normal
typing) and command (for issuing commands to the editor).

modem
A modem is a device used to allow two computers (or a computer and a terminal) to communicate
across normal telephone lines. The modem translates electronic signals into audible tones, suitable
for transmission across voice lines. 'Modem' stands for 'modulator-demodulator'. See also baud.

mount
To mount a me system is to make it accessible. Unless a file system is mounted, it cannot be read
from or written to.

multi-tasking
Multi-tasking is running one or more processes (tasks) at the same time.

multi-user mode
Multi-user mode is the state in which numerous persons can log in to the system and execute com
mands. The IBMj4.3 system enters this mode automatically at hoot time. Multi-user mode is not
recommended for adminis.GE network

operating system
The operating system is the software that controls the execution of programs. The IBMj4.3 operat
ing system provides resource allocation, process scheduling, I/O cont.GE password

path name
A path name is a string of characters that refers to a file. A path name may be either absolute
(meaning that it begins with a slash, 'I', and gives the entire path from the root directory to the file)
or relative (meaning that the name starts in some directory other than the root directory). A path
name may be at most 1024 characters in length.

peripheral device
A peripheral device is any piece of computing equipment that is not built-in to your computer but
which is connected to it in some way, lypically t.hrough a cable. Common examples of peripheral
devices are terminals, modems, printers, and tape drives.

permissions

pid

Each file and directory in the IBMj4.3 system has associated wit.h it a sel of permissions that deter
mine who is allowed to do what with the me or directory. By suitably restricting permissions, a user
can prevent other persons from looking at, copying, or removing personal files and directories. Per
mission information about a file or directory is stored in its i-node.

Each active process in the system is assigned a unique posit.ive integer in the range 0 to 30000 by
which it is identified to the system. The pid is used by certain commands (such as kill) to select
processes. 'Pid' stands for 'process identification number'. See also process.

printcap
Printcap is the name of a data base used to describe line printers. Each entry in the data base is
used to describe one printer.

process
A process is an instance of a running program. Associated with each process is a process identifica
tion number (Pid) which are used in various shell commands (such as kill or stop) to control the

September t 988

IBM/4.3 Systcm Administration Guide 207

operation of the process. See also pid.

quota

root

A quota is a limit placed by the syst.em administrator on a user's ability to consume system
resources. Under the IllM/4.3 system, an administrator may limit the total amount of disk space
owned by a user, the total number of files owned by a user, or hoth.

Root is another name for the superuser.

root directory
The root directory is the top level of a tree-structured directory system.

run level
The system's run level determines what file systems are mounted and how many persons may log in.
Single-user mode allows one user only, who must communicat.e through the system console; multi
user mode allows many use~s to log in, through any terminal attached to the system (or across a net
work).

scarch path
A user's search path is a list of directories in which the user's shell program will look in an effort to
find a command given by the user. To sec your current search path, look at the value of the pa th
variable.

sctgid
A program runs setgid when it allows the person executing it to assume the permissions of the group
of the program, for the duration of the program. 'Setgid' stands for 'set group identification'.

setuid

shcll

A program runs setuid when it allows the person execut.ing it t.o assume the permissions of the owner
of the program, for the duration of the program. 'Setuid' stands for 'set user identification'.

A shell is a command interpreter. It takes commands from a user and translates them into the
appropriate kernel instructions. The shell is responsible for interpreting metacharacters (such as '*'
and '?' in file names), quotation, redirection symbols, etc. The two most common shells are the C
shell (/bin/ csh) and the Bourne shell (/bin/ sh).

shcll script
A shell script is an executahle text file containing shell commands and/or comments. A script is
invoked in precisely the same way as a command, by giving its mime to the shell.

single-user mode
Single-user mode is the st.ate in which only one person is able to access machine resources. Some
daemons are not yet running and file systems other t.han the root file system may not yet be
mounted. When the IBM/4.3 system is in single-user mode, only the console terminal is active as a
port into the system. Single-user mode is recommended for system administrat.ion tasks, since the file
systems are in a relatively unchanging state and may be mOllnted or unmounted as needed. See also
multi-user mode.

socket
A socket is an endpoint for communicat.ion between processes, especially between processes com
municating over a local area network. Each socket has queues for sending and receiving data.
Sockets originated in the BSD releases and are generally ahsent from System V-based machines.

source code
The source code for a program is a file or set of files containing the human-readable instructions that
must be converted by a compiler (usually cc) into an executable program.

speci al proccs..Ci
Processes with pid's of 0,1, and 2 are called special processes, since these pid's are reserved for them
and not reused. Process 0 is the scheduler. Process 1 is the ini t process and is the ancestor of all

Scptember 1988

208

spool

IBM/4.3System· Administration Guide

other processes in the system. Process 2 is the paging daemon.

To spool output is to place it in a special. spooling direct.ory where it will await further processing.
For example. the program lpr places print request') into the directory /usr/spool/lpd where
they are found and processed by the daemon lpd. Generally. 5pooled requests wilt be serviced in
the order received. 'Spool' stands for '5imult.aneou5 peripheral output ofT-line'.

standalone utility shell
The standalone utility shell allows the admini5trator to perform certain tasks without even having the
IBM/4.3 system running.

start-up file
A start-up file is a file that is executed by the sY5tem when a U5er logs in. If the login shell is the
Bourne shell. the system executes the file • profile in the user's home directory. If the login shell
is the C shell. the system executes the two files • c shrc and • login (in that order) in the user's
home directory. In either case. however. if the person logging in is not the owner of a start-up file.
then it will not be executed.

sticky bit
If a program's sticky bit is set. its text portion will remain in the system swap area permanently (or
until the next reboot). For often-executed programs. set.l.ing the sticky bit can improve performance.
If a directory's sticky bit is set. then to remove or rename a file within the directory you must have
write permission on the directory and be t.he owner of the file or the parent directory (or be the
superuser). Often the sticky bit is set on /tmp and /usr/tmp to prevent users from removing files
that do not belong to them.

subdirectory
A subdirectory is any directory that is located within another directory. For example. the directory
/usr / spool is a subdirectory of the directory /usr.

superuser

swap

A superuser is a user who has absolute privileges on the InM/4.3 system. The superuser can run
any command. enter any directory. kill any process. and remove or alter any file in the system. Gen
eral1y you will be logged in as the superuser (root) only while performing system administration
activities. since you will need to be able to traverse all parts of the file system and manipulate many
files within it.

To swap is to move a process from main memory into secondary storage. or vice versa. By swap
ping processes in and out. a computer syst.em is able t.o manage proce5se5 that collectively require
more memory than is available on the 5Y5tern.

symbolic link
A symbolic link is a special kind of file that conlain5 an arbit.rary path name. When the kernel
encounters a symbolic link in a path name when searching for a file. it interpret') the remainder of
the file name relative to the file name contained in the 5ymbotic link. The two files linked in this way
need not be on the same file system. See also link.

system
The word 'system' can be used to designate any of the following items. listed from most specific to
most general: (1) the kernel or operating system. /vmunix. which manages the ent.ire computer and
provides the essential connection between user-specified commands and the hardware they execute
on; (2) the kernel together with the normal t.ools and utilit.ies that alt.ogether comprise the computer
software; (3) the combination of software and computer hardware in a single machine; (4) a collec
tion of machines into a network.

system administrator
The system administrator. or system manager. is responsible for keeping a computer system running
smoothly and efficiently. This includes adding and removing peripheral devices. installing new
software. and any other tasks related to the operation of the system. The system administrator is

September 1988

IBM/4.3 System Administration Guidc 209

tail

TCP

often called a superuser, since that person has the ability to access any file or directory within the
system.

Tail is a program that lists the last few lines of one or more files.

TCI> is a member of the Internet protocol suite that provides ror reliable message transmission across
a patcket-switching network. TCr packages messages into datagrams and tracks their delivery.
'Ter' stands for 'Transmission Control Protocol'. See also II), Ethernet, and datagram.

termcap
Termcap is the name of a data base that describes terminals. Each entry in the data base includes
a description of a terminal's capabilities and operations.

termin~1

uid

A terminal is a peripheral 4evice used to communicate with a comput.er. Typically a terminal con
sists of a keyboard and a video display screen; a more elahorate terminal may have a mouse and/or
a modem attached to it.

A uid is an integer assigned to a particular user that the system uses to store inrormation about the
user. 'Uid' stands for 'user identification number'. See also gid.

unmount
To un mount a file system is to make it inaccessible, so that users cannot read from it nor write to it.

uscr
A user is a person who has an account on a compuler.

UUCP
The UUCP system is a family of programs that allow file transfer from one machine to another and
remote command execution. Historically UUCP has operated over dial-up telephone lines or direct
connect serial lines, although recently it has been expanded to allow communications between
machines on a local area network. 'UUCP' stands for 'UNIX-lo.,UNIX Copy'.

working directory
Your working directory is the directory that you are currently located within. The command pwd
lists the current working directory. You can change from one working directory to another using the
cd command.

X-Windows
The X-Windows package is a TCP/IP-based window system capable of providing a window environ
ment' and graphics capability on bit-mapped terminals. The Andrew Toolkit is built on top of the
X-windows system.

September 1988

210 IIJM/4.3 Systcm Administration Guidc

5~v-L

-l~(" -c~ jAv/vjJP - C

f;U-v

f.~ ~ J~ lit) rjJv

This page intentionatJy left blank.

September 1988

IBM/4.3 System Administration Guide

/etc/printcap 105
/vmunix 23, 24, 25, 32, 33, 205
3812 Pageprinter 8, 30, 108, 110
4.2080 63, 65
4.30S0 1
4.30S0 63, 65
6157 Streaming Tape Drive 8, 95
account 4, 35, 203
account removal 42
account suspension 42
accounting 141, 18~ 203
accounting file 144
accounting, connect-time 141
accounting, printer 120
accounting, process 4,] 82
accounting, system-resource 141
accounts, system 4, 44
accton 145
adapter base address, controller 28
adapter card, serial/parallel 58
adb 21
administration cautions, system 3
administration, system],] 3
administrator, system I, 208
aging, password 182, 184
Andrew 1, 26, 203
Andrew File System 5,20, 23, 69, 88, 203
Andrew Toolkit Applications 203
append-only directory 55
area network, local 124
area, page 31
area, swap 20, 31, 70
at 170, 173
a t granularity 170
atrun 170
autoconfiguration 27
backbone site 131, 135
backup 5,89
backup, full 89
backup, incremental 89
backup, partial 89
bad guy 181,183,184,187,188,190, 191
banner, login 17, 65
batch network 123
batched news 139
baud 63,109,110,203
bit, sticky 4,49, 50, 54,208
bitmap, free 5, 82
block 4,48, 71,82, 151,203
block size 4, 71
block special file 48

Index

hlock, data 72
hook, log 3, 20
hoot 11,22,27,203
hoot program 11
boot prompt I 2, 22
boot time 113
Oourne shell 14, 37, 42, 66
nSD 1,3,207
nSD, 4.3 1
hyte 69, 203
C shell 37, 42, 66
c(lble, serial 57
CAT phototypesetter 112
character special file 48
character, key 94
chgrp 52
chmod 50
chown 51
cluster, i-node 79
code, source 23, 207
command execution, periodic 167
command execution, remote 124
comment 25, 63, 64, 135, 161, 171
communications adapter card, multi-port 58
compaction, file 154
compressed news 139
config 23
configurat.ion file 25
connect-time accounting 141
console 5, 8, II, 13, 17, 60, 63, 162, 203
control cll(lrmcl, input/output 28
control file 105, 117, 124
control rnessflge 136
control, flow t 10
controller 27
controller adapter base address 28
conventions, pict.orial 8
conventions, typographical 7
conversation sequencing 193
conv_ttys 66
core dump 204
crash 19,86,87,89,204
crash dump 20, 21
crash, involuntary 20
crash, syst.em 11, 147
crash, voluntary 19, 20
creation, newsgroup 134
cron 3,5, 136, 167, 186
cron 204
crontab 5, 167
cylinder 70, 79

211

September 1988

212

cylinder group 4, 79, 204
daemon 44, 108, 125
daemon 8,105,124,167,204
data block 72
data block, direct 73
data block, double-in~irect 74
data block, indirect 73, 74
data block, single-indirect 73
data block, triple-indirect 75
data encryption 182
data file 105, 124
datagram 204
dd 102
descriptor, file 204
device 27
device driver 59
device number, major 59
device number, minor 59
device, dump 27
device, master 60
device, peripheral 206
device, slave 60
device, swap 27
df 21, 96
dial-up line 60
direct data block 73
direct login 57
directory 69, 79, 204
directory permissions 47, 49, 181
directory, append-only 55
directory, home 36, 37, 38, 205
directory, root 70, 207
directory, sticky 55
directory, working 209
disk 27, 70
disk fragmentation 86
disk quota 5
diskette, floppy 8, 91, 96
ditpgs 120
ditroff 112,120
dmesg 157
domain, local 105
domain, network 105
double redundancy 92
double-indirect data block 74
driver, device 59
dump 5, 89, 92
dump device 27
dump level 92, 93
dump, core 204
dump, crash 20. 21
encrypted password 37
encryption 188
encryption, data 182
encryption, file 182, 188
encryption. mail 182, 189
error message 5, 118, 157

September 1988

IIJM/4.3 System Administration Guide

error. tape 96
Ethernet 5, 129, 204
execute file 125
expiring news 136
fast file system 4, 71, 79, 86, 203
fastboot 15
fasthalt 15
feed, news 132
file 8, 69, 204
file compaction 154
file descriptor 204
file encryption 182, 188
file fragmentation 4, 79, 86
file name 5, 70, 204
file permissions 4, 35, 47, 49, 181
file space, temporary 91
file system 69, 70, 82, 204
File System, Andrew 5, 20, 23, 69, 88, 203
file system, fast 4, 7 I, 79, 86, 203
file system, mounted 21, 84
file system, quiescent 14
file system, root 31, 76, 102
file system, unmounted 85
file transfer 124
file, accounting 144
file, configuration 25
file, control 105, 117. 124
file. data 105, 124
file, execute 125
file, lock 16, 107, 109
file, password 15. 37
file, special 59
filc, start-up 39, 208
filc, work] 24, 125
fillcr, printer 107, 108, Ill. 117
finger 42
finger 204
floppy diskettc 8, 91, 96
floppy diskcU.c, formaUing 96
flow control 110
formfitting floppy diskettc 96
fragmcnt 4, 80, 82
fragmcntation 70
fragmcntation, disk 86
fragmcntation, file 4, 79, 86
frce bitmap 5, 82
free list 5, 81
fsck IS, 20, 84, 87
ftp 194
full backup 89
full restore 99
gamcs 53, 172
get ty 14, 17, 62
~d 36,39,144,205
granularity, at 170

2,\0
I

group 5,35,36,39.117,147,205
group identification number 36

IBM/4.3 System Administration Guide

group password 39
group permissions 47
group, cylinder 4, 79, 204
guy, bad 181,183,184,187,188,190,191
halt 18
halt 11, 18
hard quota 149
head 205
home directory 36, 37, 38, 205
horse, Trojan 190, 195
hostname 65
hung printer 121
i-node 47, 72, 79, 86,96,99, 205
i-node cluster 79
i-node number 72
i-number 72, 96, 99
IBM RT PC 8, 58, 59, 60
identification number, group 36
identification number, user 36
incremental backup 89
indirect data block 73, 74
ini t 14, 17, 62, 68
input/output control channel 28
installation, software 9
interface program, printer 107, 108, 111, 117
Internet 5, 124
Internet Protocol Suite 205
interrupt 205
interrupt level 28
involuntary crash 20
IOCC 28
IP 205
kernel 8, 12, 23, 25, 205
kernel reconfiguration 23, 57, 82, 149
key character 94
key letter 100
L. cmds 193
leaf site 132
letter, key 100
level, dump 92, 93
level, interrupt 28
level, run II, 207
line printer system 105, 125
line, dial-up 60
link 5, 205
link, symbolic 5,21,23,48,107,119,208
list, free 5, 81
local area network 124
local domain 105
lock file 16, 107, 109
log book 3, 20
logging, message 5
login 62
login 205
login banner 17, 65
login name 36, 181, 205
login shell 36, 37, 66, 206

login, direct 57
login, network 57, 59, 60
log_swap] 77
lpc 107, 114
lpd 105
lpq 107
lpr 105
lptest 61
mail encryption 182, 189
mailbox 40, 178
major device number 59
make 32
MAKEDEV 59, 78
manual pages 7, 10
master 124
master device 60
maximum number of users 25
menu 13
message logging 5
message, control 136
message, error 5, 118, 157
message, system 157
minor device number 59
mkfs 71
mkpasswd 4, 38
mode 206
mode, multi-user 11, 14, 203, 206
mode, single-user 11, 13, 18, 21, 68, 203, 207
modem 4, 8, 57, 60, 206
modem security 191
mount 206
mount point 84, 100, 204
mounted file system 21, 84
mouse 30
multi-port communications adapter card 58
multi-t.asking I, 206
multi-user 1
multi-tlser mode 11, 14, 203, 206
multi-user start-up file 14, 18, 27, 85, 113
multiple copies, printing 122
name, file 5, 70, 204
name, login 36,] 81, 205
name, path 5, 70,99, 206
name, system 25
name, user 35, 36, 205
netnews 125, 132
network 123, 129
network domain 105
network login 57, 59, 60
network security 194
network, batch 123
newfs 5,71
news feed] 32
news, batched 139
news, compressed 139
news, expiring 136
newsgroup creation 134

213

September t 988

214

nobody 4, 44, 169
noclobber 3
nologin 18
number of users, maximum 25
number, i-node 72
of Hanoi, Towers 93.
operating system 206
operator 4, 44, 89, 96, 98, 162, 188
other permissions 47
pac 120, 121
page area 31
Pageprinter, 3812 8, 30, 108, 110
pages, manual 7,10
paging 19, 76, 82
panic 19
panic 19, 20
partial backup 89
partition 70, 75
partition,root 12,27,76
password 35,36,181,193,205
password aging 182, 184
password file 15, 37
password restoration 45
password security 183
password, encrypted 37
password, group 39
path name 5, 70,99, 206
path, search 190, 207
periodic command execution 167
peripheral device 206
permissions 47,206
permissions, directory 47,49, 181
permissions, file 4, 35,47,49, 181
permissions, group 47
permissions, other 47
permissions, user 47
phototypesetter, CAT 112
physical security 183, 192
pictorial conventions 8
pid 107, 206
pipe 88
planar serial port 58
platter 70
point, mount 84, 100, 204
port, serial 8, 57, 58
PostScript 122
print queue 105
print server 193
printcap 108, 206
printer 8
printer access, restricted 117
printer accounting 120
printer filter 107, 108, 111, 117
printer interface program 107, 108, Ill, 117
printer security 192
printer status 107
printer system, line 105, 125

September 1988

IBM/4.3 System Administration Guide

, printer. hung 121
printing multiple copies 122
printing, remote 113
process 206
process accounting 4, 182
process, special 207
program. boot 11
program, se tgid 49, 53
program, setuid 49,52,182,187,195
prompt, boot 12,22
Protocol Suite, Internet 205
pscopy 122
pseudo terminal 29, 58, 59, 60, 63
pseudo-device 26, 27, 30
queue, print 105
quiescent file system 14
quota 25, 52, 178, 182, 207
quota subsystem 23, 31, 149
quota. disk 5
quota. hard 149
quota. son 149
rdump 97
reboot 25, 68
reconfiguration. kernel 23. 57. 82, 149
recovery 89
redundancy. double 92
remote command execution 124
remote printing 113
removal. account 42
restoration, password 45
res tore 5. 89,97
restore 5, 97
restore, full 99
rest.ricted printer access 117
root 3,36.44.89.98,169.188.208
root 207
root directory 70, 207
root file syst.em 31. 76, 102
root partition 12, 27, 76
RT PC, InM 8, 58, 59, 60
run level 11, 207
sautil 13
savecore 20
script, shell 170, 207
search path 190, 207
secondary site 132
security 54, 63, 146, 181
security, modem 191
security, network 194
security, password 183
security, physical 183, 192
security, printer 192
security, setuid 187,192,195
security, tcrminal 53
security, uucp 192
scquencing, conversation 193
serial cable 57

IBM/4.3 System Administration Guide

serial port 8, 57, 58
serial port, planar 58
serial/parallel adapter card 58
server, print .193
setgid 207
setgid program 49., 53
setuid 108
setuid 207
setuid program 49,52,182, .187,195
setuid security 187,192,195
shared text segment 54
shell 207
shell script 170, 207
shell, Bourne 14, 37, 42, 66
shett, C 37, 42, 66
shell, login 36, 37, 66, 206
shutdown 17,19
shutdown 17
shutdown, system 11
single-indirect data block 73
single-user mode 11,13,18,21,68,203,207
site, backbone 131, 135
site, leaf 132
sit.e, secondary 132
size, block 4, 71
slave 124
slave device 60
socket 8,48,60,105,207
soft quota 149
software installation 9
source code 23, 207
special file 59
special file, block 48
special file, character 48
special process 207
spool 91,105,124,125,208
st.andalone utility shell] 1, 12, 83, 208
start-up file 39, 208
start-up file, multi-user 14, 18, 27, 85, 113
start-up, system 11
status, printer 107
sticky bit 4, 49, 50, 54, 208
sticky directory 55
streaming tape 28, 91, 95
Streaming Tape Drive, 6157 8,95
strip 54
subdirectory 208
subsystem, quota 23,31, 149
superblock 71,81,82
superuser 3, 47, 208
suspension, account 42
swap 208
swap area 20, 31, 70
swap device 27
swap on 27
swapping 76,82
symbolic link 5, 21, 23, 48, 107, 119, 208

sync 18,85
syslogd 5, 19, 89, 118,] 57
system I, 208
system accountc; 4, 44
system administration 1, 13
system administration cautions 3
system administrator 1, 208
systcm crash 11, 147
system message 157
system name 25
system shutdown 11
system start-up 11
Systcm V 3, 4, 81, 172, 203, 207
system, file 69, 70, 82, 204
system, operating 206
System, X, Window 7, 201
system -resource accounting 141
t.ail 209
tape 27
tape error 96
tape, streaming 28, 91, 95
tar 101
TCP 126,209
Tep/IP 4, 124
temporary file space 91
tcrmcap 108, 209
tcrminal 4, 8, 57, 209
terminal security 53
terminal, pseudo 29, 58, 59, 60, 63
text segment, shared 54
time zone 23, 25
time, boot 11 3
Token-Ring], 5, 129
Toolkit Applicat.ions, Andrew 203
Towers of Ilanoi 93
transrer, file 1 24
triple-indircct data block 75
troff 112
Trojan horse 190, 195
tty 53
typographical conventions 7
uid 36, 144,] 69, 209
ulimit 5
umount 85
unmount 19, 85, 209
unmounted file systcm 85
update 85
USENET 67, 91, 125,] 29,] 31
user 209
user iden1.Hica1.ion number 36
mer name 35, 36, 205
user permissions 47
ut.ility shell, standalone 11, 12, 83, 208
uucico 124
uucp 40,44, 124, 125, 167
UUCP 209
uucp 4, 68, 123, 129

21S

September 1988

216

uucp security 192
uucpd 126
uudecode 125
uuencode 125
uux 124, 193
uuxqt 125
V, System 3,4,81,172,203,207
vipw 4, 15, 38
vmunix 12
voluntary crash 19, 20
wall 19
who 45,144,191,193
wildcard 3, 28
Window System, X 7,7,26,30,31,201,201
work file] 24, 125
working directory 209
wtmp_swap 176
X Window System 7, 26, 30, 31, 201
X -Windows 209
zone, time 23, 25

September 1988

JUM/4.3 Systcm Administration Guidc

IBM Acadcmic Operating System 4.3
System Administration Guide

READER'S COMMENT FORM

You may use this form to communicate your comments about this publication, its organization,
or subject mattcr, with the understanding that IIlM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatevcr rcvicw and action, if any,
are deemed appropriate.

If you wish, give your name, university or sitc, mailing address, and datc:

Thank you for your coopcration. No postage stamp neccssary if mailed in the U.S.A. (Else
whcre, an IBM office or rcprcsentative will he happy to forward your comments, or you may mail
dircctly to the address in the Edition Notice on the hack of the title pagc.)

