The Art of H

OS/2 Warp =~
Programming

Kathleen Panov Larry Salomon, Jr. Arthur Panov

SALOMON
PANOV

¢/SO

My Y],

-
e
@)
Q
o
S
=
=
Z
Q

IeA\
Jo

i d

INCLUDES
DISK

&

WILEY




The Art of OS/2 Warp Programming



The Art of OS/2 Warp
Programming

Kathleen Panov
Larry Salomon, Jr.
Arthur Panov

WILEY

John Wiley & Sons, Inc.
New York ¢ Chichester ® Brisbane ® Toronto ® Singapore



TRADEMARKS

0S/2, IBM, Presentation Manager, CUA, BookMaster, C Set/2, SCRIPT, THESEUS2, SPM/2, Common User Access
are trademarks of IBM Corporation.

80286, 80386 are trademarks of Intel Corporation.

Macintosh, System/7 are trademarks of Apple Corporation.

Microsoft, Windows are trademarks of Microsoft Corporation.

SmartPics is a trademark of Lotus Development Corporation.

The clip-art images in this book were created using SmartPics from Lotus.

Publisher: Katherine Showalter

Editor: Theresa Hudson

Managing Editor: Maureen B. Drexel

Text Design & Composition: Kathleen Panov

This text is printed on acid-free paper.
Copyright © 1995 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered.
It is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the services of a competent professional person should be
sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or 108 of the 1976 United
States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further
information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Panov, Kathleen.
The art of OS/2 Warp programming / Kathleen Panov, Arthur Panov,
Larry Salomon, Jr.
p. cm.
Includes index.
ISBN 0-471-08633-9
1. C (Computer program language) 2. 0S/2 (Computer file)
1. Panov, Arthur. II. Salomon, Larry. Iil. Title.
QA76.73.C15P36 1993
005.4'469--dc20
93-25632
CIP

Printed in the United States of America
10987654321



This book is dedicated to Alexandra and Lisa.






Contents

FHGUIES ...ttt ettt et a e et e st et st e sabesba e e st e s ate s be e benaseesnesseesnes XV
PIEIACE ..ottt et e s xvii
ACKNOWIEAZIMENLS ...c..eonereniiireeieeiieeit ettt ets et et e e te e s s te et e st e aeasesaesasessessesassasssesssasnssssssessesssasssesnsesnses Xix
Chapter 1: TOOIS. ....cuiiiiiiiiiiiieiitii ettt ettt ettt e e sttt e aesbeenesene et enneesasesantonseonnn 1
Dialog BOX EdItOr.....ccuiiiiiiiiiieiieicic ettt sttt ettt ve b s sae 1
ReESOUICE COMPILET ..ottt st a et se e v saesbess e s e s essnesneens 1
NMAKE ... ottt st st b sttt b e e esa e et s e se b nns 1
IPEC ..ottt ettt st sttt ettt et b et 1
LIDIATIES ..covvevvenienieeie ettt ettt ettt ac et estesbe et essesaeesse e seessesansssassasnesseesssenssesstansasneenmaessseensn 2
Header (0r INCLUDE) FIIES......cc.cociieiiienieritieiieeitieeteesveestessesessesesessssassssassssassssssesssssessessssssssns 2
The Compiler Switches Used in This BOOK ......cccccouvuivueininiiiniiciicceniiiciciinicceeeesnenscnenenes 2
Chapter 2: Memory Management...........coueeeruerierieierteienieteniesiestessceseetsstestesessessessessessesutesseessetsnsessesneesesneen 5
COMMILNG MEINOTY .....vevieeieieerierteriesseesieeteeestestessteesesseesseessesssessesssessesssesseessssssssessasssasssesssaessneenne 6
Suballocating MEMOTY ........covvuirviiimiiiiiiiiiienie ettt e s s s nneesaans 8
R T T Y (5 1112 o N 10
DosAllocMem Or MALIOCT ..........c..cueivcuriiiiiiiiiiiiciciccticist ettt 12
Chapter 3: MUIItASKING. .....ccueeviirireeierienreeiesteeterieesteetteetesteestesseesseesseestesanessessesssesseesseesseessmesssesseessneenseenses 15
The SCREAUIET ...ttt ettt et n e sb e st st sa e b e b e saesan s 16
The Subtleties of Creating @ THIEad ........coceeeeeuieierienieeeeeee ettt 18
Threads and the C RUNUIME. .......c..covereiierieieeieieeeeeetceee ittt esree e sste st ne s se e ssesanens 18
A Thread EXamPIe .........ooviriiriiiiiiiiciciiiicrciccccttetct ettt 19
The Thread OULPUL........eeeeieiiiieieeteteteteee ettt sttt s saee ettt aesae st ese e e st esteseessesasssenns 21
EXECUting @ PrOZTAIM......ccoviiiiiieiieieeereeetetee sttt eeee st st st e st este st e s esseesaeesaeeemneeanenn 21
L o) (OO PPN 23
Chapter 4: File /O and Extended AtIDULES ..........coccerrerreuireineniiicicccicicerisncne s s 29
Extended ALTIDULES .......cccooueieeieieieieieetee ettt sttt 29
EAs—Fragile: Handle With Care ..........cocceeceveeeiiniienieniieiciiinieccnieiescsitciteste s siesissnssssecsanes 31
The LIBPATH.C EXamPIE........oooiimiiiiiiiiiiiiiiciiccitciicicictat ittt ss s sas s eaae s 31
Getting the FIle SiZe........ccooueiiiiiiiieieeceeteetee ettt sttt sae e s 35
OPENING @ FIlE....ueiiiiiiiceeee ettt sas bt sae st a e sa e s b b n 36
ReAdING @ FIlE ..ottt 36
MOTE ON DOSOPEN.........c.ooueeiiiiiiiieictcieiiestctce sttt ettt ssssssss s s s sss st sasnssssesassansnes 36
An Extended Attribute Example: CHKEA.C........cocooceiiniiiriiiiiiiciciinnienececsvcienesseeecsneans 40
Chapter 5: Interprocess COMMUINICALION ......c..ccueeveeeiereerminrieiencrereiriietenteteesessessesesseessesstostsnessessssssosssess 55
An OS/2 Named Pipe Client-Server EXample .........ccccoceeviniiiiiiiniiiiiiniienicecececniennesneenenns 55
DOS-0S/2 Client-Server CONNECHON .......ccveirueruiruerrecrerieientiteteisteressessissssssesssseesesssesssssssssesaes 64
An OS/2 QUEUE Client-Server EXample..........occvvivieivinniniinicininicnieeneeeeesicieeeseeseenees 68
An OS/2 Semaphore vs. Flag Variable EXample ...........cocccucvvirininiininieinicninecnecninececnecneenne 79

vii



viii—The Art of OS/2 Warp Programming

ChaPLEr 6: DLLS .....c.coviveuiieieiieieiirtetssetsteeestssete e s sssesesessssesessstesesessesesessasesesesessasesessnsesessnsesessesessasessrens 85
DLL OVETVIEW .....ooviuiiiiiiiririeiienreeesesetsteseestsseseseeseesesesestosesestssesesesessssesesensasssasessesssassassssesensesens 85
TRUNKING ..ottt ettt ettt a et et e bt asa s esassasaesassnssansensesens 86
DLL PETrfOIMANCE......c.ueruietereieiieienienienicnieniestetesieeseeeeteste st e saastessssessessessassestsssessassansessessessessenssenee 86
Simple DLL EXaMPIE (32-32).....coueveueieiririereiniienenieeieeteretnteiesestsiesesesestssesesnssssssessessssssessssesessssens 87
Creating the .EXE and the DLL ..........ccccceeeririinienieerieieiinieieietesssseeesessesestssessssssessessessesessessessenes 89
16-32, 32-16 TTANSILIONS ...coeeuvveeeecrieteneteniteteaenteresesteseseetese et etesesesessesesesestssessssesesssseseneesenensesannns 91
Call a 32-Bit DLL from a 16-Bit PrOram ..........coceccevcrueirenieenenieienieieineentseseesaesesseaessesessessesenes 91
POINtEr DECIATAtIONS .......coveiruirieerieeerieirieestetetestet ettt et ere st e s ssesse e se e seseste e sassesassansessesassensensesans 95
Calling a 16-Bit DLL from a 32-Bit Program ............ccccecerteruerierenreriesenseseesiesiessensesessesssessessesssenne 95
Loading/Unloading Of DLLS ......c.ccceceetvieieueirienieieieeeeeicstesteaesetesestssessesestesestsssssessessessssessessenesses 98
Optimizing Performance in DLLS .........cccccceuririirinienieeeiecrentesteeresseseeete et sssse e sessessenaeseans 103

Chapter 7: EXCeption HANAIINE .......c.ccueveeieeieieririeenieieieietisteteeetesteteeseeeeese s ssessssesasseseessesessensnsensessssennenee 105
How to Register an Exception Handler ...........ccccooeriiiiiiiiniinieccecccceteee et esve e 105
What an Exception Handler Looks LIKe ........cccoueeieiriiiiiiieieineieieeeceee et ceeseeeneeseeneeeaes 106
SIZNAL EXCEPUONS .....vcuinieiiiiirieneieirreieieiiststeseests e sten e ss st bt s bbb et sbs s sbe e s b e bssansane 107
Dos and Don’ts for Exception Handlers............coeueeerenieierenineinieinieeneeeeieeseieceseeseeeessesens 107
DosExitList and Exception Handlers ............cocvvveveeienienienieniinennninreciesienieiestessessesseesesssessesseenes 107
A Guard Page EXAIMPIE .........cooueueeeiririeiciiieienierctnne et etnteesesteseseseensssesassesesestesesessesessosenens 107
SUIMMATY c..cviiiiiiiieice ettt ettt ettt b e s s st b sb e b e bt e b e s e b e sseestsebesseneeneen 112

Chapter 8: Interfacing With OS/2 DEVICES ......ccceerueuerreiruerirrinreeteerieteersestesestesessesetssessestesesseseesessessessensens 113
Serial Interface Example Using DoSDevIOCH ...........cuouvueeueereeereinirenieenieessesesessessssesessessensens 114
Serial Interface Example USING I7D.......c.coeerueirerenieeeeetrenree et sesseiesetssessese e saessesesassenes 118

Chapter 9: Introduction t0 WINAOWS ..........c.eoeriereueuerinirueinieeeieteiereetereesteeestseesesesestesesessssesessesesessesesssseneas 123
INEPOAUCHION ....couiiiiiiiiiiiiiciiect ettt st s b bt e bt e s n e et s saesneesbasssaenasens 123
WHhat IS @ WINAOW?....c.emiieiieiiieiciei ettt ettt et et b ettt st s et sae st st s st sbesbetenessasaen 123
The INCLUDE FALES ......ocueeiiiireeeieirienirieeeienieeeeteste e seeesessessesessssessssessssessesessessesessensesseneenessons 128
The Window Procedure Defilition ..........coceevruerieieuenieieenieeinieieeeieesteeeteessesee et ssessessesessens 128
HEIPET MACTOS ...ttt sttt ettt ettt se st sesas e sbentesessesessentssansens 129
Presentation Manager Program InitialiZation ............cccceeuevieienierencnienienienieeeieieseesieee e e ssesseenaes 130
Creating @ NEW ClaSS ....cccveveeriinririeinieeiesieetenteneesseesreessessteeaesssessessesssessssssanssesssesssessassssesssasssens 131
Creating @ WINAOW ......coccocceiiiiriiineneeenieettsesse et eteseessessesses e sseesessessessessessensassassesstentessesseessansen 131
Message, Message, Who’s Got the MESSage?........coouevveeirirceeininninenrercnenienieecenesesseeseesseeenaes 134
Terminating @ PrOZIAIN.......c.ccccvevuirieecieriererieneereesseestessaesteeeessessessesssessasssesssesssenssssseessesssesnsans 135
The Window Procedure RevViSited.........coeeeruirerieeeieieicieieeieeeeiee ettt 135
Parents and OWINETS .........cocouiiiiiirinieieicreecetce ettt et e ae e st sessesseesesaesaesaessesasenses 137
WINAOW SEYLIN ..ottt ettt ettt et b st re e se st s e e s s e e et seseenes 137
Another Window Example: WINDOW ......cc.coirimiiirinincenieiecnreeneecereeereessessenessessessensesessenses 139
The Presentation Manager Coordinate SPACE ........c.ceccevevvererreieiereineeenreenreteeneeaeeressessesnenessenees 147
More on Window Painting .........cccoveueeeueierinreieirieeieieeieeetetesestsaese et e s st ssessssesesessenenses 147
Painting by NUINDETS .........coveoveueiiiieieiecieetietetetete ettt ettt se st e ssesaesne e sensennen 148
Enumerating WInNAOWS .......c.coueeeurrreeeeuecnieieieneenieicereniestesestesessesteeseesesesessssassesseseesessessessesessenses 149
WIEWINAOWINFO ...ttt ettt st nes 150
The DrawString fUNCHON .........ccccvvviverierieeeerieisteseesseesseseesraesssesseseessesseessesssesssessassssassseessessaasss 151
Presentation SPACES.......c.coueverueriereriruenteieteiteieseeessente ettt et et seae b s ae e e e e s s s e saesaeannes 152
WINAOW WOTAS ..ottt sttt sttt ettt s st e et sssenesaees 153
CONLTOl WINAOWS .....oceveiiiieiieieicteceieresteteiestet et res et sese s s ae s e sesessessesaesasssesennes 163
Presentation Parameters ........c.covueeccviniiriiiinieiininiinciiiiincicsiisicisesscsesesissesssesasosessssesssssasssssesens 163

Chapter 10: Window Management............coeevuiiiriiinieneiiensiniiinessiismensesisesisresieseioiiessetosissssissssssesrens 167

Visible, Invisible, Enabled, and Disabled WINAOWS .........cccovviieeiiiieniieencreeenireeeecrnreeeseenneeeenneens 167



Contents — ix

WINAOW SIZINE ...ovvirtieiieiieieenieieestetrret et e et sesesse st e te e sesseessessesssaesasstssesassseseasessansessans 168
Device INdependence, AIMOSE ..........coceeveeeererieertentererteeriesestesestesetesetesassessessessassesseseesessesesasses 173
Subclassing the Frame WINAOW..........cceeciiuieiiiiintrenieinieinteieeeieesestessesesssessesessessesaesassesessesens 173
In Case of Error, Use the Class Default ............cccoceeveerieinieinreinreieerieieeeee e 174
Tracking the FIame .........ccceevieviieieniiiciienieetetetee et estce et seestestesase s s s sae s s e sessnansnanseannes 174
Saving WindOW SENES ........cceruerueeereinierieiieieteeetetetetetestesetesesttestesessestestestesaesassessesassessesenens 175
WiINReSIOTEWINAOWPOS ............cooeueeeieieieieieeeeeeieeeeteeeieeaessestesteste e eseestestesstessaesaessenaesanassssensons 177
XY, ZAOTALT ..ottt et a s st sttt s s s bt e e bt e et e be et et et e benneenaens 178
SAVINZ SLALE .....cniiniiirieeicreeeetet ettt et e et e e et s s b et eat et et e aesae e e e e e s s e bessensessasnsensen 179
Chapter 11: Window Messages and QUEUES ......c..cueueeuerueeruereruertniestereniesesteseeeserseteseesteseeseesessesessessensesenns 181
MESSAZE OTAETING .....coveuveneenrenieieieteeteetest ettt et et et et e s s e s se e aese st et et essesbaesbesasessasssesssasassansensens 181
FOCUS MESSAZES ......eovivinrniniiieicicnicttrete ettt ettt as st st s st s e e sse e eseens 182
Size and Paint MESSAZES .......ccceeeerreereniienirnieriierrieneeseestesseseessessesssessesssassasesssesssessssossessassssesssens 182
The Last Messages @ Window RECEIVES ......cuoerueruiceiirniineiecenrceteee st 183
SENAING MESSAZES .....cveveveneeriiricrientiieieenre ettt eees st ettt e st e s se e sesse e esseneseneeaseneneeneen 183
Broadcasting MESSAES .........ceerverierseenrerrienieseerseestesesstesesssessesssessesssessassssessssessssessesseasssessasssses 184
Peeking into the Message QUEUE .........cocvueuveuiruenierinieirieieieteete et saessesse st e saesesse st e s saenes 185
Finding More Message Queue Information ............c.coueerueeevecemeinencnincncncnencicnictsienececacas 185
MESSAZE PIIOTILIES ... ..eeveeueeeeereetieeeeeieieieaetesestessessessessestesaessessssassessessssssassasssensesnsessensansessessaans 185
Messages and Synchronization of EVENLS .........cccovirviiveiniiiniininininiincncnceenrenesssessesescssens 187
USEr-Defined MESSAZES ......c.cccerveeeeeeiieritenrertesessesessessessessessessesessessessasssessesssessesssessessassessassssnss 187
Chapter 12: RESOUICES.....c.ceeeveuerriienreiinierensetraressstsseteneesestesessestssestssesessessesesesssstsssssessessessentesessestesessessensons 189
More About Resources, I Would KNOW.........coovvvueeieiiiiiiieeiiiicireeeeisiieneeeeeeeeeeessesssssssessssssssssns 189
RESOUICE FIIES......ocuiuiiiiciiiiiiiiiccicccctt ettt srsas et esassssssstsse e sas s sasnes 190
Using the Resource COMPILET ...........cccoueurueerieeeeeenerecstniereeesiesesesesetsseesseseseesessesessesenesseseseeseses 191
POINters and ICOMS .......ocuivieeieierieeeierenteetereeeee e e es et enatsseessssssesseeseee st essessssesssesnsasneennasssessneenses 191
BIIMNAPS . ..ottt et et s a e sae et 193
SHINE TADIES .....coveeiiiiieicieetceteteete ettt sttt et a e s sne bbb e saeaen 197
ACCEIETALOTS .....eouviiririiiieeecterce ettt ettt e e st et st e sst e nessssessaeseneeesseestennnessesneenne 197
DiIAlOZ BOXES ..ottt ettt ettt st e s s st st s s st nsaeas 199
MENUS ..ottt bttt sa st sr st s bt st s b eas s st s b e b et s st s b e s st s sb e s ss e bt e st sr st e b e ebesune 200
HEIP TADBIES.....couieieiieieeeeeete ettt ettt ettt e et e e st e st e ae et e saessae st asaes s st e seesseenneemeeensesaseasan 200
Application-defined Data.........c.ccecervieiruererereieeeeencteece ettt sae e ae s 201
Chapter 13: DIalog BOXES ...c..coueueierieieieieteneeietcsceteetesc et et ete e eses s e et et bessessesseesstessessessesnsenteuensens 203
The Dialog BoX TEMPIALE.........cccoriiimreneiriiieeictnictecnscte et sesscsssassssssssesassssnes 211
The Client Window ProCedure............cceoveeueeeeinininininiencniicctecetenenitetesseesecssesacsacssenenneas 211
Creating a Modal DIialog BOX .......ccceeerierreniereneneneeeereresiessessessesteseessessassessesseessessessessesseeseessens 212
Creating a Modeless DIalog BOX ......ccccoureeueeurercrereniiinineeeeeneenesesesaeseesesscssessessessesessesessessessenes 213
The Dialog ProCeUIE DIGPTOC ..........couceereriiieriiiiiieicsteeetstsecssssstsssesesssssesssessesssssessesssssses 213
WM_COMMAND and Dialogs.........cccvueuererurmerinuiririninnineeienseisisisinresisssssssssessssessssesesssssssssenesses 215
SUIMIMNATY ....ovviierieriieienieereeenenteste e estestestesestessessessessessessessessessessesssseesesssessasssessesssessessessansassssssens 215
Chapter 14: MENUS .....ccoveurueeeeerieieierereieestenenessesesesteseseseesesenessesestssssesssessassassssescssesenessestssessssessssssssessesssssses 217
Menus: The Keyboard and the MOUSE ..........cceeuevuiriieuinieneenienienciincisinnieteeceeeseesnessestessesseessenses 218
MnemoSYNe’s MNEIMOMICS ......c.cecvereerueererrererseneesceserseescessenaeseeseesesssssessessesseessesnsessessesseeseessessessens 219
MEDU SEYLES ....cverreerireiieieeiteeestese e sresreses e ssae e et st et eressassessassestessessessesssensesssessesaseseensessessessens 219
MenU HEM SEYIES ...oveiricieectcitec ettt s s s b bbb ene 219
The ReSOUICE File .........coiuiriiiiceeiiieieeeecctnstectes et sasess s sessas s eassens 226
Menu Item AIIDULES ........ccueuiiiiiiiiiciccietrectrrct ettt ssessces s csas b s s s s aeaean 227
Creating the Menu Bitmap........ccccceevirieeuininniniiiiiniciiicininecesnesississs e cssesssesnssssssessessessnes 227

The Client Window Procedure CUENIWRAPTOC ..........uuoeeeeeereeerenvreeeereeeeesrsssresesssssessssssessssssses 228



x—The Art of OS/2 Warp Programming

The User Function displayMenuInfo................couveevnereereniesicinieenenisseessssessnsesssssessssssssessssssnnes 230
POD-UP MENUS ..coviiiiiiiiiiitetceretreetre sttt ettt se et s se e s e sas e sbests e st e et sas e e sasasnasassas 230
Creating 2 POP-UDP MENU ....c..oeiirieieerinreiinteteieetreeieetstsreseessesesssteseseseesesesessssassssssesssesssssessssses 235
I Think ICan, I ThInK ICON c....ecvvirvireiirieieiirteieieeirteiecietste et stsseses et ssse s sssse s sessesese s saeses 235
POPPING UP @ MENU ...ttt ettt ettt 236
The Workhorse Function WinPOPpUPMEni.............ccccoueeueuereeserieserieniiniseniesesesssssssssssssssesssssssssnes 236
Chapter 15: LISt BOXES ....coveveereiereierinieieiinieetnteiesessesessenessestesessesessestssensosessensesessensesessesssessssessesessesassassenes 239
LISE BOX SEYLES c.cuevenerieirieeeiiietrcteiee ettt et et ste s be st s s b et s et e st st et ebeba e sbasasse e sanesassaseases 239
EXtended SEIECHION.......cotiuieieieieieiertete ettt ettt re st e ettt et et esa e b s e sa s e e aann 240
Initializing the Client WindOW .........ccocueriiriniiniiiiiiiiiinectiiererenenstetst sttt s e saeas 248
Initializing the LiSt BOX......cceceruiririnireitienerreceretnerteereetseetee et sae e seee e e e sesassessesae e eses 249
The WM_COMMAND Message Dialog Processing .........c..ccoeeueeuerueruercrenenneescneeeneseseseneens 249
Processing the UM_LISTBOXSEL MESSAZE ......ccecerueruererernerieneeniereereenseseesesseesessesseseessesseseens 250
The Client Window Painting ROULINE ..........ccceceeieirenerieriniiereeiesrensesessessesesseesessessessessessessessans 250
OWner-Drawing CONLIOLS ......c..couiviririniiiiiiiiiinnccncct sttt sacsseere s ssaessessesadne 251
DIZPIOC ...ccvitiiiiirieinitctctt ettt st s s e 258
The WM_MEASUREITEM MESSAZE ......ccoveinvriruiirreiereriestssintesessenssssssesssssssessssesssssssssssssesseses 259
The WM_DRAWITEM MESSAZE ......coververieririenreniinienieniesiesiesserieestessessessessessessossossessessessessessessens 259
An Introduction to OWner-drawn States..........ccceveeeeerureuerenenirenieneestesteseereseesresseseeeeseeseeseessens 259
Drawing the List BOX LabeIs......c.cccoeiirerierririnienieninenienienteseseseesteseseessessensessassassessessssessessessens 261
Drawing the BItIaps.........ccoceverueriierininenteninieeneesesetsresteseseesesseseesessestesessesessessesessesessssesessessessenes 261
SUMIMATY ..oviiiiiiiiiteiietriie ettt ettt sb et esae st s et s b e e ses e e e se s sbssnanis 262
Chapter 16: BUIOMNS........c..coevieriirierieserieererestissiseestetetssessesateseesessssssssessssssensessassassensessessessessassensessentonsasses 263
BULION SEYIES ...ttt sttt sttt e e e e s e e s 264
EXaMPIE POZIAIN........cceouiitiieieiriinieieienteieetetetesteeete et ettt sae st et saentseeses e sae e sbestssensesenessensensens 265
The BUTTON.RC ReSOUICE File.....cc.eoviiiiniirinieireecnieinienteenierteesiese e ses s esee et et sesaesesseneanes 271
DUGPTOC.....ocoveteirereeritrctscesstesessestessessesse s st ssasses e ssesbassessessassessassee st ensastensansensassantansansarsensesaensansens 271
Dialog Units—Can We Talk? ........cccocereeiininienerciinirieterenencsestseseseeessesessesse e sesessesessesseseeses 271
BULLON ACHIONS ....eevvuerenirieieinieieite e esetesessetstesessestesestesessesessestesessesesnsssesaesesesessenersesessessssessenes 272
SUIIMATY ....cviiiieieieiestireesrentestesiessesessessteeesessessessassessessessasssssssssessessessensessasssessssessessessessessensesse 273
Chapter 17: Entry FIEldS........cocuiiviinerriieiieeeeieetcetestetesitesieetesneesteseesseesssssesnsesasessassstensassessensessassssesseens 275
Entry FIeld BaSICS ...cvevruereeirieieninieeniesteeeeesietesete et e sesesstsee et saestssesas st sasasesessesssssmeassnesnensons 275
SEIECHON BASICS ....veueueeeeueeenieereeiriece ettt st se st sa e bt s b s e e n et s 277
The Entry Field and the Clipboard...........ccccovvuvriivciviiiiiiiiiinccrcncncne e 278
ADNA Other THINES......cocerivrerietenteniesteriesressiesesiesessessestessessessesssssesssessesssssesssssessossonsessersessssaesesssens 278
ENTRY1—Entry Field SampIES.......c..cccvvvriiniiinininiiniiiiinicincnciiiniesisesetsiesesiessssesessessossons 278
Chapter 18: Multiline Edit CONMIOIS ........ccecvervirrerririrrirenirensenrenteneressesessesssessessossessessassessessossessesessessesns 281
TerMINOLOZY, BAC.....ccveireetrerreieinieerentreeretsietssestesesteessessssessessessesessssesesessessenessenesesnesesneesesens 281
MLEL ..ottt ettt sseste s essesbest st se st e se st ssests st se st esese st eatse s se s et e s et st aaes et sensententen 282
How to Upset a User Rather QUICKLY ........cccoeiruiviiiniiciriiiiiiciitiecienesecscecreessenesane 288
INO REfTESHINENL ......ccevinrereiiiieieieeteeneeetesete ettt ettt st st sassesas e assassans 289
CLIPDOAId SUPPOTL......c.ccruruenireriiriiriericintrttreeresesisaeiesestsesiesisessestosssssissssesssssnescsssssscssaosssssnessssenens 294
Navigation WithOUt @ SEXLANL .....c.ccceererirreererririerieeieeiereeseereeeeseeeessessessessessesssessesessessessessessessessesn 294
LiNE DY LINE ...ttt ettt se ettt ses s et e s et st s et et et esesassensssensosensonsaseas 294
Searching for What Was That AZain?...........ccccecvuevivevniiiininiencnniinccnnniensesesessisssnesessssssens 300
As If That Weren’t ENOUGH .......c.ocvemiieciriieiicictctitctsitst sttt sesnssessessss et sassaens 301
Chapter 19: Other WindoW CIaSSes.........ccceververrerreeriereeesrerseeseeressieseesesssessessessessassessesssessessessessosessessessasasens 303
COMBO BOXES.....cerveneeuiieireieiesenteitentesteeteeeteessestsee st sessesesesssnesssssstseseesesssesssntsesesssstssssnens 303
FLAINES ..ottt ettt sttt s n st e b et et s bbb e e st s b e beneab ot et saentssbasess 306



Contents — xi

SEALICS. ..ottt ettt ettt ettt et b sttt s ettt e st et e s b e s ae st sen e st et et ebe st e st et et e st e re s s eben s et et ersensaneanes 308
THHEDALS ...ttt sttt ettt st sttt st besaes et tsbesanbesenaeen 310
Chapter 20: Drag and DIOP.......coeoiririeiirieririericertrsie ettt sttt b st et et ases et sesaesesessssennanesasens 311
TENNIS, ANYONE? .....ciiiiiitierierieiiieteste e stetesre e estetaeteeseesesessesseeseasessessasseessensesssessensessastenseeseassens 311
Initialization Code for Drag and Drop SOUICE .........ccovevereeiiiiniiniciciecienenieteiencee e 313
Things Never Told to the Programmer That Should Have Been .........ccccoovviieecennienceieeeeee 314
Direct Manipulation Is @ Real DIag .......ccceceeeiuiririiniiieieeeeeee et 315
And Now a Word from Our SPONSOT ..........ccoiiiminiiiniiiiiiiicieeccreeece e 316
Data TTANSTET ....c.iiiiiieicteecee ettt ea et et b ettt be st sa e seesneea 317
A Concrete EXAMPIE .......ooviviiiiiiiiiiiicic ettt sttt st s 318
1Y o) (o O] 1113 1 0 o (= Y ST 330
DIGDYAGEFILES ...ttt ettt ettt e e ne e 344
From the TOP NOW.....ccuiviiiiiiiiiiiitci sttt et satone 344
PiCKUP ANA DIOP ...ttt ettt sttt sttt et ettt et eane 345
Functions Used for Lazy DIag .........ccoieieriiriiiiiniinieitiiteereenrcit ettt ere et ene s eene s 346
Lazy Drag Sample........coceeuieiiiiiiniiiiiireteteeetetetest ettt ene st et sa et e 348
Chapter 21: VALUE St ......c.ooeeieiiieieeiceiietet ettt ettt sttt et sae st s st e et e e st et e aesbeseteaaeseenbenbe e antenbens 365
ValUe St SLYIES ...t 365
The VALUE.RC ReS0UICE File .......couiiiniiiiiiiiiniieiiiieieieeeniecctesceieee sttt 374
Initializing the Value Sel.........cccociviciiiinininiiiiiiniininec st 375
Value Set Selection NOtIfICAtION. ........cocieieiririnereniiiteit ettt 376
VALUE Paint PrOCESSING ....coucoveiruiieiiiieireeiiicnieerneee ettt saeee s st s s 376
The User-defined Message UM_UPDATE ..........cccccoooiiiiiiiniiiiiiccce s 377
Chapter 22: NOEDOOK .......c.cveverieriiieieiiieeneectstrte ettt ettt sttt sttt et se st nesienesnnis 379
INOEDOOK PAZES ...ttt st a st sssbess e sasasenions 384
FLPPING PAZES ..ottt ettt st b sb e s 393
Creating @ NOEDOOK .......eciirriiierir it ceteriertestee et esttet et e te e tesaaestes et ssaesateemeesasesasessesnsessmeesseen 393
INTEAUZENOIEDOOK ...ttt sttt see sttt be ettt se bt e st seneebeebesaeneens 394
Chapter 23: COMLAINETS. ....ccuecveriierireteieiieteeterese et e et et eat oot este s e et saeeneeuesseeaesaesasesse st eneeseanssseeesessesanen 397
CONLANET SEYIES ...c.veniiiiiiiiiiietcti ettt ettt st a s 397
LIPS OF 4587 .ttt sttt bttt ettt sttt ae e s e a e e 398
Half Full or Half EIPLY? ...c.ooeimiiiiniiiiereeiienetneiee ettt et ene st b sas s s sse s e 399
Tcon, NAME, ANd TEXE VIEWS....ooviiiiiirreieriiiiiieeeeeeierereeeeieessstneseeseessissesssseesssssssrssreesssssmssresresssessens 400
TIEE VIEW .nuveiieieiiieeiieenite et ettt st e et testeesat e s st e sbt e s st s s b e assstessseesassesbeeenbeesbaesasatesmbeesabessseeennsaessnne 409
DELAILS VIEW ..ottt sttt st st e sb et sbe st ss e s b e b sae b e nesne s 409
SPlItbars .....coveuerereeeerereseeereeeeens ettt et ———etteraar——————eesetaira bt atea et b b————araesesenrrrastteserernes 411
Of Emphasis and POP-UPS .......c.cecvrerrercrierreecrieniicnicieencietcieseectee sttt s 423
DITECt EQItING. .. cvevereieieriiiiieieierieeticcie ettt bttt ettt essssa e bs bt sn s assae st assne s 438
Of Sorting and FIltering ..........couevueriiiiiriininiiiiicecintcrec st es st s oo s ae s 439
Where Does Direct Manipulation Fit In7........coccoieiiieiininiiiniinsciecteteicsreeeseee s 456
SUIMATY ...ttt ettt ettt ettt sae s b e saesaesaesas st e st saesassaesassasneone 456
Chapter 24: SPin BULIONS ......c.covevvuerierieieieieieeretrienteieteitieittetests et s e s esessessesaseeses e seseesestssossessesssses 457
Spin BUtton StYIES......ceeoueruieiiiiieiiiciinictctetetce ettt 457
ACCEIETALOT KEYS....eeeiueiiiiiieienienieeieceeete sttt ettt et st st b st st e b eas et ssebesnessonten 466
WM_CREATE PIOCESSING ......coveuieueienirieiniererienieieeeresreteeesesaeesrsstsasssenesnessessesesssssonssssssonsenssnens 466
WM_CONTROL PrOCESSING ......ccveruirueriineeririerieiiteteienienientseesnersssssssesaessessssssssssssessensssassnsennes 467
WM_COMMAND PrOCESSING. .....coveierireirieririeinieteierreteseiestssessssesaessssesaesassessessessonssssnsesesaessons 468
WIM_PAINT PIOCESSINE .....veeveeueeeeeniesieieieietetssieseeseestestestessessnssessessasstssesssessensessesssssessssssessesses 469
Chapter 25: SHACTS .....cccvuevereeeieieiriereenietnte ettt tss et et sttt s se s aeanans 471

Linear STHAET SLYIES.....ceoiiiririeiriireeirieieesteeteenteret sttt ettt st et ssts bbb anssbene b e sbssresnons 472



xii—The Art of OS/2 Warp Programming

Creating @ LINEar SHAET .........cccociiiiiiieriiiciicc ettt 473
A Linear Slider EXample PrOZIam .........coccceveeieireniecnienieeeeicnieiereiesteeesesseeesessestesessesessessssessens 474
Initalizing the STHACT ......cccoeeiiiiieeeee ettt sttt n 479
Using an OWnerdrawn SHAET .........coueeeuevereniiiieniineniccieicetcteteeeeetevesteteseseestesesee e e ssesaesensens 480
CIICULAT SHAETS ....cvevenireieeriinieirietre ettt sttt et ese st e st e se s s s et e e se e e ssasessassenense 481
Circular SHACT SEYIES ....c.cuevueireeirieirieirireeee ettt ettt et r et s sbe s e s be s et benes 481
Creating @ CirCUlar SHACT........c.ooveeirieieeiieeeietceeee ettt ettt sttt sb e sbe e sens 483
A Circular Slider Example Program...........cccoceucveeueuerenueuererinenieenieteieeninieieseseseseesesesessesessssssesesis 483
Initializing the SHACT .......c.coviiriiiieie ettt sttt ettt 488
Circular SHAET COLOTS ......coueriieiiieieietetete ettt ettt ettt ettt ettt et ess s seeeeeeenean 488
SUIMIMATY ..ottt ettt ee e st e b st e b e e sse et e s st e s saesseesseesassnasuaesaaensesnes 489
Chapter 26: Font and File DIalogs.........cccvueivuerirerieiiiiniiieneteieesessetsretrestesesee e sseseesessessesessessesssseneenes 491
The FIle DIALOE ...cveevieniriiieieicieietetet ettt ettt et st st st sbe s s s b e s b e s se st e b e bassassarsasasnenseenenn 492
Special Considerations for Multiple File Selections ...........cocceerverenuerierueniereeeeeeieieeeee e 493
The FILEDLG Example Program ...........cc.ccviiiniiiiniiiiiiiininiiiciininicnceseiesisssssssesosesessssnons 494
The WINAOW WOTd.....ccoumiiiiiiiiiciiiieectectrte ettt ettt et se s et se st s e e soee 499
Putting It All TOZEthEr: FINAFIle ..........co.couoveeeeeeieeieiieieieieieeteeste ettt sts et sneaseesanes 499
Initializing the FILEDLG SHIUCIULE ........ccceveertriemenirieieriereaeieseeeseesesesessesesessesesessesessssesensseserassssens 499
The FONt DIAlOZ ......coveiieirieirerieretecriete ettt sa ettt st sa e e s s s 500
An Example Program: FONTDLG .......cccooirveniiirieieeneeieieteteeetetetete et 504
Customizing the FOnt DIalog........cccceeueuerieireniennenieinieieeteerieeeeeeieeeiee et aesteseeseseeassesenaeas 514
Querying the Current FONL ........co.oouiiiiiiieiiereieeee ettt s s r e sa s e 515
Initializing the Font Dialog Structure with the Current FOnt..........cccoeuvveivieiiicicinininicncnnenenenenes 515
Bringing Up the FONt DIalog........cceueruiirerieerienieinienieieresteeeteieeeieteessesesesesessessessssessesassassesens 516
Chapter 27: Subclassing WINAOWS .......c.coeevruereeuerieiecrieirenieteceieeieee ettt sesse st e ses e se e s se s e s seses 519
SUPEICIASSING ..evvieieniiieieieieieiieie ettt te ettt et st se et s st sat e sb e e s sessessassessaesnestas 529
Chapter 28: Presentation Manager Printing..........c.cccoevueereniereniinieenieinieiesetsiestesesieseesessessesessessssssseseesenes 531
A PIINLEI’S OVEIVIEW ....cvuiniiiiiiiiiiicicinieiciititctnneeseeeseste st esestsnssesesesnesesessessssssssssssssssesssassesens 531
WHhere’s MY TRINE? ...ttt ettt et et ese e s sttt st et sae e saen 536
I Want That with Mustard, Hold the Mayo, No Onions, Extra Ketchup.........ccccccevrenirncenucnnnen. 541
WHRETE WETE WET ...ttt ettt sttt st 541
Chapter 29: HElp MANAEET ......c.cccveeeerierieieeeiesteesiensteetesstesesessessseesessessessesssessesssessesssesssesssessssssssssassensnn 559
ApPlication COMPONENLS........ccerueruerierieriesierenertetesteseesessetesteseesteseetestesessessessessessessseseessessenees 559
The APPIICALION SOUICE.......ceetruiruieiriirteitestenteneeeeteeestest et este e euessessessessesseeseestesessessersassassaesesnens 559
MESSAZES ..c.uveeuveeurereeriiieeseesterserteseeesrearassaasssesseasseassenssarseatesstensessesssasssessaesseesseesseessessarssesssesssens 561
The HElp TabIes......ccoueriieieceiecece ettt ettt sttt s s s s s s enes 562
Sample HELPTABLE ..ottt ese st ses e s seses s sene s sons 562
MESSAZE BOXES.....coueiieieieieieiieieee ettt ettt ettt ettt et st e a s s e 563
FIShING, ANYONE? ...ttt ettt ettt se st se st e te e se st eessessetsssnsesessnsasensenes 564
The HEIP PANCIS .......ocoomenieeieeeeeteetctcteteceie ettt se et s et esesaesassasnesens 565
Sample HElp Panel..........coocoiriiiiiiiiicinieceeteeeteeenccreirictsieste et ss et sessesessesestesesesessessenensene 567
Putting It Al TOZELNET ......covviniiiirieiiieieceiitcictet ettt ettt sbe b e b e sesne e saen 567
RESIICHONS. ..ottt ettt bttt s b b est b e st ssasnestssens 572
Using HELPTABLES for Message Box Help .....cceceeverueeniecnuercnneieieieenicieceeeeereeesessesae e neen 572
Chapter 30: Multithreading in Presentation Manager AppliCations............cecceveeruereriereereeenserenenuresescesenes 579
INETOQUCHION ...ttt ettt et s b et b e bbb esesesnonesnon 579
TYPES Of TRICAAS.......coviverieiiiicietciiicer ettt ettt e sa et st sns e e sesene 580
Designing the ATCRILECIUTE. .......ccceueoviiererteirreeteeeenteteeetestetestsreseesestesessesessesenessessestesessessesenessens 580
Data COMMUNICALIONS .....c.eeviriiririiiiniiniiriiiieisieieiritetse ettt bt e st esbs st st sssessesenessesaos 581

Entry and EXit POINLS .......c.coceeeueuerieirieieinieieiencieie e scetete et ete s seseesesseses e sessssessenessasseneenes 581



Contents — xiii

What Have WE SO Far? .......cvomiiiiiciiiieeetecie ettt esse st sa st 584
USET FEEADACK ...ttt sttt 591
User Feedback EXAMPIE ........c.ccoviruriieniniiiiieiieiciniececcctsienctee e ecenssesesssaesnesesesseeesnescssencs 592
SYNCAIOMICIEY ....cvieriiiieiiiiiriirteeteee ettt ettt ettt et ettt sb st s sa et s sssbe s sneuens 600
Synchronous Threading EXample ..........ccccoviiviiriiiiiininnniininicitciecneenteeecitecresneee e ssessnens 602
ODJECt WINAOWS ...ttt et eete st st e st e s e e saeesseee e s tesse st e ssesssessessstensessaeessaessasssesnsesssenn 607
Building @ Blind WINAOW ....c.ccoueiiiiiriiieiiriininieieteeentceicsceeeie st see et ettt ssesnens 608
Design COonSIAETAtIONS ......c.ccciuiruiruirierieririereieeiietetetessessesaseessestsssestestestessssssssessesssssessssssessosns 615
Appendix A—WiIndOW MESSAZES ......cccccvrirmieririiriiriieriniiniieiieteeesiessessiesisseesssestesssstesstsseesssssessssssssesssessosns 617
Dialog BOX MESSAEZES ....ceveeureiiriinreniientecteenteteeteeseeeseesaesseesseessestssstenssssessssessesssesssessesssessssssanes 650
BUtON MESSAZES .....couvemiiuiiniiiiiniiiiiiicet ettt st s sasa s er s a e sa e saa e aeen 651
LiSt BOX MESSAZES ... .eeeurenierierieeiieienit et sttt eae e e st e be sttt enesae s b st et essnesaessaesnneans 654
INOLEDOOK MESSAZES .....oveuvenreneiienieieieeiesieteteite e stesst st et st se e et sse et aessessesssesnessessesnsssessessesasens 659
Value SEt MESSAZES ......ecveneeeenieieieieee ittt te e e e st te st st sae s sesenesabestesse e snssnesessssnnens 666
SHACT MESSAZES ....veeurreereeiiieieenitenteenteeeteesseesesteesateesseessnessseesssessseessesssesossesssssesssessnsesssssessssees 670
Circular SHAET MESSAZES ....ccevururruiruerenrieieenieeertetesieeseesessesnessessesseseesetessessesneensessessessssssessesns 673
File Dialog MESSAZES .....cveuveueeirmieineeeeterienseeseesteeessessessessesseesesseesesseseessestessesstensessessessssnsessessnons 676
FOnt Dialog MESSAZES....c..creruiruenieiiieieireieneteieiestee et etssesssesee s besaesrss s snessssessssassnsensesn 677
MENU MESSAZES.....cueenvemvernereriieieieeetstestestestessses st ss st st s et st ssessesaesbess s sassssessessssssssnssesnesnnees 678
EDtIYTield MESSAZES.......coveeeueiririirieeieeeteieteenseteterestssts et et ses e et ssessassssessesaesassessssssnsonsones 686
SPIN BULON MESSAZES......coveueveriierinieieieiieieteienseieienestestesetees e eseesessesesassecstssessessennssessonsessssesses 689
Help Manager MESSAZES ......cceoueueeuirmirnerrinienieniieiieieiesiesiessesaestssessessessessessessientessonsesssssesnsessossasns 692
Drag and DIrop MESSAZES ........cccecurmemeriruirieieiniinteteieesesiiiiesesessssestssessssssssssssssssssessssssnssnsssensenes 702
CONLAINET MESSAZES ....cevemeenreenrerierieniireeneenseeeeseesseesseesstessesssesesseessesssessessssesseessesssuessssssssssesses 707
Appendix B—REfEIENCES......c.coueuimimiiiciciiiiic e 727

TIACXK ettt e e v e e e e ee e e e e e eeer bbb e ea bt e e e sa e e rnte s breaesteaaeassseaanssaasentnaeaannnns 729






Figures

Figure 4.1 File attribute Dit flags. .......cccocvuririeireirirecrieetesteiceet ettt ettt sttt ettt saenee 38
Figure 4.2 File 0pen action flags. ........co.coueiuiriioiriiiiete ettt et sttt eb et et ee et e s e bt st ettt seeeeeens 39
Figure 4.3 Open mMode flags. ......c.cocoveririeririrerineenieieieneiete ettt ettt sttt st sttt 40
Figure 4.4 Map of EAOP2 memoOry BUFLET ..........ccovuiiiriiiiiiiieirciie ettt 49
Figure 5.1 Diagram Of @ QUEUE. ......c.cccrueririirieireiriccrccteret ettt ettt et ettt e sa e e e s 70
Figure 5.2 Shared MEemMOTY MAP. .....c..cererieueeririeeieieietisinisteteseneesesestetese st seuestsseestssesestesesesseuesessesesesensesens 74
Figure 6. 1 SyStem MEMOLY IMAP. ....cccecveurererierrieteieteiestetetesteesessessesressteressesensessessessnessessesseoseeneessessessseses 86
FIgUIE 9.1 A WINAOW. c..viiiiiiieirieetrt ettt et be st sttt et e sttt b ettt 124
Figure 9.2 Drawing of a WindOw’S COMPONENLS. .......c.ceveuereeeuercrieieierenseietrietreesentsiesetesesessesesessesenseseseesenne 125
Figure 9.3 Breakdown of a message-parameter variable. ...........cccoceuecerieiereieninueinreeeenierenenieeeeneenieeenens 129
Figure 9.4 Frame creation flags. ........coceceeeririreeniennienecciee ettt sttt sttt se e 132
Figure 9.5 Window-style flags. .......ccccoevererirereeirierinieiecereeeettee sttt s 138
Figure 9.6 COOrAINate SPACE........c.cveveevetruirieuietentetertrientestntestesesetesessutesenseeatesessentesessenseneesessensesessessessenne 147
Figure 11.1 WinSendMsg in a Multi-threaded Application.........c.cocceueeeerueerinererenreneneneneneeecsesennenne 184
Figure 11.2 WinGetMsg message Processing OTAET...........cccouervuremereinrerceernneeecerencecnnenencescsnesseenesaenaes 186
Figure 14.1 A pull-dOWn IMENU. ....c.cc.ooieiruirieieiiirieteeieitetet ettt ne e sne e s sae e 217
Figure 14.2 A POP-UP IMEMU. ..c.eevrierrieruierierienreeneriteseesesseeseessesssessesssesssessensesseesseessessssesssensesnseensesssessseens 218
Figure 15.1 A List DOX CONMIOL. ....ueriiieiiriiieiieicirteietetee ettt ettt 239
Figure 15.2 Flowchart of owner-drawn SElECHION. .......cc.eeieierrieriiereeiieieeteie ettt see et eeaeaeeneens 260
Figure 16.1 PUSH DULIONS. ......cevuirieuiiiieiiriiieeetce ettt ettt see e sne e e ne e sae e 263
Figure 16.2 Radio DULLONS. .....coueirmiriieiiicniiciteneite ettt et sb e s ae e s 264
FIgUIE 16.3 ChECK DOXES. ...c.veueeveieiiiiieiiieirietee ettt ettt et e sae et s et et n e ae 264
Figure 17.1 BN fIeld. ....vooveiieieiiee ettt s e 275
Figure 21.1 Example of the value set CONIOL. ........c.cccerueirieeeiinienenreieenenesere et 365
Figure 22.1 Drawing of @ NOtebOOK. .........cccurmiiiiniiiiiiiiiiicicc s 379
Figure 22.2 BKS_BACKPAGESBR | BKS_MAJORTABBOTTOM. .....ccccceeurmrtreriiicirisitiieeeneienens 380
Figure 22.3 BKS_PAGESBR | BKS_MAJORTABRIGHT.........cocececeviimiiiiiiiicicicciccces 380
Figure 22.4 BKS_BACKPAGESBL | BKS_MAJORTABBOTTOM. .....c.ccccoueuereenreriinueineereesrereienenenens 381
Figure 22.5 BKS_BACKPAGESBL | BKS_MAJORTABLEFT........cccecerimerinecnereeereneeeeeseeeeenes 381
Figure 22.6 BKS_BACKPAGESTR | BKS_MAJORTABTOP..........ccccecevimmiriiriciiiricinrciccisicinns 382
Figure 22.7 BKS_BACKPAGESTR | BKS_MAJORTABRIGHT. ........c.cccceuvurrerimmmiinuiriniiiciicciniciniens 382
Figure 22.8 BKS_BACKPAGESTL | BKS_MAJORTABTORP.........ccccerumrmrirereeerenentnenieneeeeenes 383
Figure 22.9 BKS_BACKPAGESTL | BKS_MAJORTABLEFT.........cccecectrmrrererriireeiiiricsiisciinieinens 383
Figure 24.1 One master spin button with two slave spin buttons...........cccceeveeeeerereerccererenrercreenennenne 458
Figure 25.1 SHAET CONMIOL. «.....ooviuiiiiieieieieeetetceeeteet ettt ettt st b et e sae e e sae e neneemnenn 471

XV



xvi—The Art of OS/2 Warp Programming

Figure 25.2 Circular SHAET. .......ccveveieieierrieeriesiriesesieseetestestes e stesiessestestssssssssessessessessessessssnsonsessensesssones 481
Figure 25.3 Circular slider With CSS_360 StYIe. ........cecerueerrerurrerierrerieererenteesteesseseeesresseseesessesesessessenes 482
Figure 25.4 Circular slider with CSS_CIRCULARVALUE Style........cccccceveimmieerrerireneniininenecnnesnenes 483
Figure 26.1 A file dialog DOX. .....coveverreririenieeieieieniesinteieieniestnsestesesseseseseesessssesessessesassessessesessessensssessenseses 491
Figure 27.1 Diagram of normal Window ProCeaure. ...........c.ceeveerereererrermnmenenrereneseeseesenseseeessessesessesseseesene 519
Figure 27.2 Subclassed window procedure calling chain. ..........coccecveirinineinininineiniincninenenene 520

Figure 28.1 A view Of the Print SUDSYSIEIMN. .......ccveevrerierrreeriereerreereereenseneesseesressesseeessesseessuesesesessssssnesnens 532



Preface

Notes From the Edge

0OS/2 has come a long way since you last read the preface to this book. OS/2 2.1 made it to the public and
it won accolades from the industry. OS/2 2.11 and OS/2 for Windows were subsequently released and
were likewise praised by the industry pundits. Ironically, OS/2 was still the subject of criticism from the
omnipresent cynics who sought to deride and belittle the operating system. However, when OS/2 Warp
was released in the summer of 1994 and then won - for the third consecutive year - the “Product of the
Year” award from Infoworld as well as many other awards, no one could deny it: the product that was
“doomed to die” was here to stay after all.

It’s been a long two years since The Art of OS/2 2.1 C Programming was released, but we’ve finally made
it. The st edition, you said, was good. You liked the approach we took, analyzing the individual window
classes instead of taking a task-oriented view of PM programming. You liked the “Gotchas” that indicated
many of the things to watch out for when doing OS/2 development. However, there were also things you
didn’t like.

So, as OS/2 underwent its many mutations, so have we.

What We Have Done

With this edition, you’ll find all of the things that you said needed improving upon in the 1st edition.
We’ve added 10 new chapters (50% more) to account for not only the essential areas we missed last time,
but also the areas that “would have been nice to have.” We’ve added more detail in the chapters that
already existed as well as added more samples to them. We’ve added new sections to the existing chapters
to allow the OS/2 developer to stay current with the new features of Warp. '

What We Expect of You

As with the last edition, we make some assumptions about your abilities. We assume that you have a good
working knowledge of the C language. We do not assume that you have any prior development experience
with a multitasking operating system, nor with a graphical user interface environment.

What You Will Need

You will need the following software to compile the samples presented in the book:
0S/2 Warp

The Warp Programmer’s Toolkit, or a compatible substitute
IBM C-Set++ (any version)

Xvii



xviii—The Art of OS/2 Warp Programming
You may substitute any compiler for IBM C-Set++, but you should have a good knowledge of the compiler
so that you can migrate the makefiles from IBM C-Set++. See Chapter 1 for a table of the more commonly
used compiler switches and their meanings.

Contacting the Authors

The authors look forward to your comments on this book, whether compliments, suggestions, or criticisms.
Arthur and Kathleen Panov can be contacted by sending email to 71033,1721 (Compuserve) or
71033.1721 @compuserve.com (Internet). Larry Salomon Jr. can be contacted by sending email to
os2man@panix.com  (Internet). All  three authors follow the Internet newsgroup
comp.os.os2.programmer.misc and Arthur and Kathleen also follow the OS/2 forums on Compuserve.

Finally

We have worked hard to make sure that this book remains the book recommended by most people for
doing OS/2 development. While we were not able to implement everything that you asked for in this
edition of the book, we certainly tried. Enjoy.



Acknowledgments

There are many people the authors would like to thank. Special thanks go to James Summers, Phil Doragh,
Sam Detweiler, David Reich (author of Designing OS/2 Applications ), Tom Ingram, Bret and Brian
Curran, Alan Warren, Jerry Cuomo, John Ponzo, Peter Haggar, Tanja Lindstrom, Marc Fiammante, and
Mark Benge.

Lastly, we would like to thank Terri Hudson, Katherine Schowalter, and Maureen Drexel at John Wiley
and Sons for making this book possible.

Xix






The Art of OS/2 Warp Programming






Chapter 1

Tools

All the examples in this book were compiled using the IBM C Set/2++ compiler and the IBM 0S/2
Toolkit. There are other OS/2 compilers available including Watcom, Zortech, and the Borland C++
compiler. The include files and libraries necessary to access the system calls—memory management,
multitasking, Presentation Manager, and so on—are found in the Developer's Toolkit. Although you can
write a fully functional OS/2 program using only an OS/2 C compiler, you probably want to get the toolkit
for any serious development work. Without it, you will need to delve into the minds of the OS/2
developers to find function prototypes, structure definitions, and the like. Suffice it to say, however, that
doing so without the toolkit is an order of magnitude more difficult.

Dialog Box Editor

The dialog box editor, DLGEDIT, is a very nice program to facilitate the creation of dialog boxes. The
interface consists of a screen painter that lets you visually design the dialog boxes for your own
applications. The editor will create a resource file (.RC), dialog file (.DLG), and a header file (.H). The
dialog box editor is shipped with the Developer's Toolkit for OS/2 Warp.

Resource Compiler

The resource compiler, RC, is a compiler that takes your application-defined resources—dialogs, menus,
messages—and compiles them to a .RES file. This file can then be bound to your executable so that when,
the resources are needed, they are pulled into your program. The resource compiler is shipped with the
Developer's Toolkit for OS/2 Warp and with the operating system.

NMAKE

NMAKE is a newer version of the MAKE utility provided with most compilers. It is a program that sorts
through all the tasks that need to be done to build an OS/2 executable and dispatches those tasks that
should be done when a specific module has been changed. There are many different ways to build
makefiles (MAK). The IBM Workframe/2 environment will automate this process for you. However, the
examples in this book contain .MAK files that were built by hand.

IPFC

The program IPFC is the Information Presentation Facility Compiler. This will take a text-based file and
create a .HLP or .INF file that can be used either with the help facility in Presentation Manager or using
VIEW.EXE, which is shipped with OS/2 Warp. This program has been greatly expanded to give the
programmer and the technical writer a lot of power over the online information displays.



2 — The Art of OS/2 Warp Programming
Libraries

The OS/2 Warp Developers Toolkit comes with two libraries, 0S2286.LIB and OS2386.LIB. 082386
contains the system call resolutions for all 32-bit entry points. OS2286 contains the 16-bit ones. You will
need to explicitly link one of these in with your OS/2 Warp applications.

Header (or INCLUDE) Files

The Developer's Toolkit for OS/2 contains many different header files, but only one, OS2.H, should be
included in your program. However, you must use the #define INCL_xxx statements in order to include
the function definitions, structures, data types, and the like necessary for your program. INCL_WIN will
include all the necessary information for the Win... functions; INCL_DOS includes all the information for
the Dos... functions; and INCL_GPI includes all the information for the Gpi... functions. These INCL_
statements can be broken down even further.

It is a very good idea for you to go snooping through the header files. They contain a lot of information,
and also, in many cases the online and hard-copy documentation is just flat-out wrong. The header files
are the final authority. One caveat here: The header files are not always complete. They will be adequate
for development purposes 99 percent of the time; the other one percent of the time you will tear your hair
out trying to find your mistake. Table 1.1 is a road map to the various header files.

Table1.1 Header Files

OS2DEF.H Includes the most common constants, data types, and structures.

PM* H Includes the necessary information for the Presentation Manager functions.
BSE*.H Includes the necessary information for the base (Dos...) functions.
SOM*.H Includes the System Object Model functions and information.

WP*H Includes all the information for the Workplace Object functions.

REXX* H Includes the REXX information and functions.

The Compiler Switches Used in This Book

All examples in this book include their own .MAK files. The compiler and linker switches for the IBM C
Set/2++ compiler you may see are defined in Table 1.2 and Table 1.3. Check your compiler
documentation for a full discussion of the compiler switches and the equivalents if you are not using the
IBM C Set/2++ compiler.



Tools — 3

Cor C+ Compile only, no linking No
Gd- Static linking Yes
Ge+ Build an .EXE file Yes
Gm- Single-threaded Yes
Gm+ Multithreaded No
Kb+ Basic diagnostic messages No
(check for function prototypes)

Ms- Use system linkage No
O- No optimization Yes
Re Subsystem development enabled Yes
S2 SAA Level 2 No
Sa ANSIC No
Spn Structure packing along n byte boundaries 4 byte boundaries
Ss+ Allow use of // comments No
w3 Warning level Yes

Table 1.3 Linker Switches

/MAP Generate MAP file
/A:n Align along n byte boundaries
/PM:VIO Window-compatible application







Chapter 2

Memory Management

In OS/2 1.3, the memory management scheme was designed to support the Intel segmented architecture.
The 80286 could provide access to memory in segments that were limited in size to 64K. At times more
than 64K was necessary. In those cases, the developer would have to create elaborate memory
management schemes. This changed in OS/2 2.0. The amount of memory that developers can access is
only limited by three items:

e The physical amount of RAM in the system
e The amount of disk space available on the drive pointed to by the SWAPPATH variable in config.sys
e  The absolute limit of 512 MB

By dropping support for the 80286 and supporting only processors capable of supporting a 32-bit engine,
0OS/2 could have the flat, paged memory architecture of other non Intel-based chips. Both the Motorola
680x0 chips (base of the Apple Macintosh and other machines) and the RISC-base chips (base for IBM's
RS-6000) use the flat, paged architecture. You can probably see where this is leading. Designing a
memory model that is portable is the first step in designing a portable operating system. A 32-bit
operating system will allow addresses of up to OXFFFFFFFF, or 4GB. This also gives programmers the
opportunity to allocate memory objects that are as large as the system memory allows.

0OS/2 1.x used the 16-bit addressing scheme of the 80286. A location in memory was represented as a
16:16 pointer, in selector-offset fashion. The upper portion of the selector maps into a descriptor table. The
entry in the descriptor table maps the absolute location of the memory address.

Thirty-two-bit OS/2 has only three segments that combine to make 4GB total. This means that memory
addresses are represented as a 0:32 pointer. All memory resides in these three segments. A normal
program will run in the segment that starts at address 0 and covers 480Mb. Protected dynamic link
libraries (DLLs) see the same 480Mb region plus 32Mb above it. This 512Mb addressability limitation is
due to compatibility with 16-bit OS/2 programs. The kernel functions see the full 4GB region. This is
where the big performance boost comes in. Because all memory is in these three segments, when the
operating system has to switch memory objects, the segment registers do not always have to be loaded. A
flat memory management scheme has one more advantage: All pointers are near pointers, since all memory
can be addressed using a 0:32 pointer. This means no more “FAR” jumps for the operating system. This
also means memory models —small, medium, large, and huge—are now obsolete.

The basis of the 32-bit OS/2 memory management functions is DosAllocMem. This function allocates
memory in 4,096-byte chunks called pages; however, a developer can allocate several contiguous pages in
one call. While this means that you can allocate any amount of memory up to the process limit, it also

5



6 — The Art of OS/2 Warp Programming

means that you can waste a considerable amount of memory if you're not careful. Consider the following
code fragment:

for (i=0; 1 < 1000; i++)
DosAllocMem ( &pli],

PAG_READ | PAG_WRITE | PAG_COMMIT );

The first parameter is a PPVOID, the second parameter is the number of bytes allocated, and the last
parameter is the memory flags. We'll see this again soon.

What you see in the code fragment is 1,000 1-byte blocks being allocated. What you don't see is the 1,000
4,095-byte blocks that are not being used because DosAllocMem allocates memory as an integral number
of pages.

Committing Memory

0S/2 2.0 also introduced the concept of committing memory. A call to DosAllocMem

\ will reserve an address range for the memory; however, physical memory is actually

6\ assigned to the range only if the PAG_COMMIT flag is specified. (A side note here: In

32-bit OS/2, a page is only assigned to an address really when the page is touched.) If

you try to access uncommitted memory, otherwise known as sparse memory objects,

TRAP-BOOM! If you choose to allocate memory without committing it, you have two

ways of having it committed later—DosSetMem or DosSubSetMem. Also, in 32-bit

0OS/2, memory is guaranteed to be initialized to 0. This prevents the application from having to initialize
the memory, thereby touching all the memory, thereby committing all the memory.

The following is a very simple program to allocate memory and to show a little about what happens to bad
programs. Remember that we are seasoned professionals. Do not attempt this at home. Well, you may
want to attempt it at home, but if you attempt this at work consistently, it may get you fired.

BADMEM.C

#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

INT main(VOID)

{

PBYTE pbBuffer;
APIRET arReturn;
USHORT usIndex;

arReturn = DosAllocMem( (PPVOID) &pbBuffer,
3000,
PAG_READ | PAG_WRITE | PAG_COMMIT) ;

if (arReturn == 0)
{

for (usIndex = 0; usIndex < 4097; usIndex++)
{

printf("\nNow Writing to %p ( index = %4 ) *,
&pbBuffer[usIndex],
usIndex) ;




Memory Management — 7

pbBuffer[usIndex] = 1;
} /* endfor */
} /* endif */
return 0;
}
BADMEM.MAK
BADMEM. EXE: BADMEM. OBJ
LINK386 @<<
BADMEM
BADMEM
BADMEM
052386
BADMEM
<<
BADMEM.OBJ : BADMEM. C
ICC -C+ -Kb+ -Ss+ BADMEM.C
BADMEM.DEF

NAME BADMEM WINDOWCOMPAT

DESCRIPTION 'Memory example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

Now, you may look at this code and say, “But, you're allocating only 3,000 bytes, and you're writing to
4,098.” Okay, this is bad code; however, it illustrates that no matter how much you specify as bytes
allocated, the operating system will return it to you in 4,096-byte pages, and you could use them all and
never see a protection violation. You'd just end up stomping all over some data that you may need.
However, notice that when you try to write to byte 4097, TRAP! This too can happen to you, so be very
careful about writing to unallocated, uncommitted memory.

The flags used as the page attributes in the preceding example were PAG_READ | PAG_WRITE |
PAG_COMMIT. Table 2.1 lists the possible page attributes.

Table 2.1 Page Attributes

PAG_READ Read access is the only access allowed. A write to the memory location will
generate a trap.
PAG_WRITE Read, write, and execute access is allowed.

PAG_EXECUTE Execute and read access to the memory is allowed. This flag will also provide
compatibility for future versions of the operating system.

PAG_GUARD Sets a guard page after the allocated memory object. If any attempt is made to
write to that guard page, a guard page fault exception is raised, and the application
is given a chance to allocate more memory as needed. (See Chapter 6—
Exception Handling)



8 — The Art of OS/2 Warp Programming
OBJ_TILE All memory objects are put into the tiled, or compatibility, region in OS/2 2.x.
All objects are aligned on 64K boundaries. Provides upward compatibility when
applications will be allowed by future versions of the operating system to access
regions above the 512 MB “16-bit compatibility” barrier.

Often the example programs and manuals will reference the default page attribute, fALLOC; this is a
#define for OBJ_TILE | PAG_COMMIT | PAG_EXECUTE | PAG_READ | PAG_WRITE.

Suballocating Memory

DosSubSetMem and DosSubAllocMem provide a more efficient way for developers to access chunks of
memory smaller than 4,096 bytes. An application can use DosAllocMem to allocate some number of bytes,
called a memory object. DosSubSetMem is used to initialize or grow a heap within the memory object.
This function has three parameters, PVOID offset, ULONG flags, and ULONG size. The flags parameter is
used to provide more details about the heap. The following options are available for this parameter:

e DOSSUB_INIT - You must specify this option when first suballocating a memory object. If this bit
is not set, the operating system will try to find shared memory from another process. If no shared
memory is found, the return code ERROR_INVALID_PARAMETER (87) will result.

e DOSSUB_GROW - This option will grow the memory pool to the size specified by the last
parameter. Note that this flag will increase just the amount of memory in the memory pool that will be
suballocated. It will not increase the size of the memory pool itself.

e DOSSUB_SPARSE_OBJ - This option allows the operating system to commit and decommit pages
as they are needed. Note that all pages in the memory object must be uncommitted.

e DOSSUB_SERIALIZE - Serializes the suballocation of shared memory by multiple processes. If
you have two processes sharing memory and suballocating it, use this to make your life easier.

DosSubSetMem has access to all memory in the memory object. The application then calls
DosSubAllocMem to allocate a smaller chunk of the heap. DosSubAllocMem can allocate all but 64 bytes
of the heap. The 64 bytes is called a memory pool header. The operating system uses it to manage the
suballocated portion. DosSubAllocMem has three parameters, PVOID Offset, PPVOID SmaliBlock, and
ULONG Size. The amount actually allocated is a multiple of 8 bytes, rounded up if not a multiple of 8.

The following program shows you how to handle suballocation of memory:

SUBMEM.C

#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

INT main(VOID)

{

PBYTE pbHeap;
PBYTE pbPtrl;
PBYTE pbPtr2;
PBYTE pbPtr3;
PBYTE pbPtrd;

APIRET arReturn;




Memory Management — 9

arReturn = DosAllocMem( (PPVOID) &pbHeap,
4096,
PAG_READ | PAG_WRITE) ;

printf ("\nDosAllocMem ( ) returns %4",
arReturn) ;

arReturn = DosSubSetMem( (PVOID)pbHeap,

DOSSUB_SPARSE_OBJ | DOSSUB_INIT,

4096) ;

printf ("\nDosSubSetMem ( ) returns %d4d",
arReturn) ;

arReturn = DosSubAllocMem(pbHeap,
(PPVOID) &pbPtrl,
20);

printf ("\nDosSubAlloc ( ) returns %1d "
"pbPtrl size requested = 20",
arReturn) ;

arReturn = DosSubAllocMem(pbHeap,
(PVOID) &pbPtr2,
15);

printf ("\nDosSubAlloc ( ) returns %1d "
"pbPtr2 size requested = 15",
arReturn) ;

arReturn = DosSubAllocMem (pbHeap,

(PVOID) &pbPtr3,
45);
printf ("\nDosSubAlloc ( ) returns %1ld "
"pbPtr3 size requested = 45",

arReturn) ;

arReturn = DosSubAllocMem(pbHeap,
(PVOID) &pbPtr4,
8);

printf ("\nDosSubAlloc ( ) returns %14 "
"pbPtr4 size requested = 8",
arReturn) ;

printf ("\n\nHeader size = %d4",
pbPtrl-pbHeap) ;

printf("\nSize of pbPtrl ptr = %d4d",
pbPtr2-pbPtrl) ;

printf("\nSize of pbPtr2 ptr = %d4d",
pbPtr3-pbPtr2) ;

printf("\nSize of pbPtr3 ptr = %d4d",
pbPtr4-pbPtr3) ;

printf ("\nSize of pbPtr4 undeterminable");

DosSubFreeMem (pbHeap,
pbPtril,
20);

DosSubFreeMem (pbHeap,
pbPtr2,
15);

DosSubFreeMem (pbHeap,
pbPtr3,
45);

DosSubFreeMem (pbHeap,
pbPtr4,
8);




10 — The Art of OS/2 Warp Programming

arReturn = DosFreeMem(pbHeap) ;

printf ("\nDosFreeMem ( ) returns %d4",
arReturn) ;

return 0;

SUBMEM.MAK

SUBMEM. EXE: SUBMEM. OBJ
LINK386 @<<

SUBMEM

SUBMEM

SUBMEM

0S2386

SUBMEM

<<

SUBMEM.OBJ: SUBMEM. C
ICC -C+ -Kb+ -Ss+ SUBMEM.C

SUBMEM.DEF

NAME SUBMEM WINDOWCOMPAT

DESCRIPTION 'Memory suballocation example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

You'll notice when you run this program that all your pointer sizes are rounded up in increments of 8 and
that DosSubAllocMem starts allocating at the 65th byte of the memory object.

Shared Memory

Shared memory is the fastest method of interprocess communication. There are two types of shared
memory, named and unnamed. Shared memory is created by a call to DosAllocSharedMem. If creating
shared memory, the second parameter to DosAllocSharedMem is the name for the memory, in the form of
\SHAREMEM\MemName. If using unnamed memory, a NULL is specified. There is one other difference
between shared and unnamed memory—the process that allocates an unnamed memory object must declare
it as giveable by using DosGiveSharedMem, and the process accessing the memory object must call
DosGetSharedMem. Shared memory can be committed and decommitted just like private memory. Also,
when suballocating memory from a shared memory pool, both DosSubSetMem must use the same size
parameter in both processes, or an error will result.

,? Gotcha!
\

) All the processes involved with the shared memory (both the getting and giving) must
free the shared memory before it is available for reuse. If only one process frees the
a, memory, you may begin to notice an increase in your program's memory consumption
4 over time. The system maintains a usage count of shared memory that enables it to

keep track of all the processes that have access to the shared memory. The IBM
products THESEUS2 and SPM/2 are the only tools available to detect memory leakage. They are two
excellent tools to monitor the system performance.

Q
v




Memory Management — 11
The following programs are examples of allocating a named shared memory object. Notice that the
memory is being allocated in a downward fashion; private memory is allocated upward from the bottom of
the available space.

BATMAN.C

#define INCL_DOSMEMMGR
#include <o0s2.h>
#include <stdio.h>
#include "dynduo.h"

INT main(VOID)

{
PBYTE pchShare;
APIRET arReturn;

arReturn = DosGetNamedSharedMem( (PPVOID)&pchShare,
SHAREMEM_NAME,
PAG_READ|PAG_WRITE) ;

if (arReturn == 0)
{
printf ("\nString read is: \"%s\"\n",
pchShare) ;
} /* endif */
DosFreeMem (pchShare) ;
return 0;

BATMAN.DEF

NAME BATMAN WINDOWCOMPAT

DESCRIPTION 'Shared memory example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

ROBIN.C

#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include <string.h>
#include <conio.h>
#include "dynduo.h"

INT main(VOID)

{
PCHAR pchShare;
APIRET arReturn;

arReturn = DosAllocSharedMem( (PVOID)&pchShare,
SHAREMEM_NAME,
1024,
PAG_READ|PAG_WRITE]PAG_COMMIT);

if (arReturn == 0)
{
strcpy (pchShare,
"Holy Toledo, Batman");
getchar () ;
DosFreeMem (pchShare) ;




12 — The Art of OS/2 Warp Programming

getchar();

DosFreeMem (pchShare) ;
} /* endif */
return 0;

}

ROBIN.DEF
NAME ROBIN WINDOWCOMPAT

DESCRIPTION 'Shared memory example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

DYNDUO.H
I#define SHAREMEM_NAME “\\SHAREMEM\ \BATMAN "
DYNDUO.MAK
ALL: BATMAN.EXE \
ROBIN.EXE
BATMAN.EXE: BATMAN.OBJ
LINK386 @<<
BATMAN
BATMAN
BATMAN
082386
BATMAN
<<
BATMAN.OBJ: BATMAN.C \
DYNDUO.H
ICC -C+ -Kb+ -Ss+ BATMAN.C
ROBIN.EXE: ROBIN.OBJ
LINK386 @<<
ROBIN
ROBIN
ROBIN
082386
ROBIN
<<
ROBIN.OBJ: ROBIN.C \
DYNDUO.H
ICC -C+ -Kb+ -Ss+ ROBIN.C

DosAllocMem or malloc?

DosAllocMem, DosSubSetMem, and DosSubAllocMem might seem like a bit of overkill if you would like
to have only 20 bytes for a string every now and then. And they are. These functions are most useful for
large programs that allocate large quantities of memory at one time, allocate shared memory, or have
special memory needs. For most smaller applications, malloc from an ANSI C compiler will be just fine.
Also, you probably will find that malloc is much more portable to other versions of OS/2 running on top of
the Power PC. The C Set++ version of malloc is the only compiler version of malloc that will be compared
to DosAllocMem and company. In most cases malloc will provide memory to the program just as fast as
DosAllocMem. The C Set++ compiler uses a special algorithm, designed to provide the expected amount of
memory in the fastest time. The following program uses malloc to allocate memory and then displays the




Memory Management — 13

displays the amount of memory allocated plus the location of the pointer in memory. You probably will

start to notice a pattern emerging, and

SPEED.C

there is one.

#define INCL_DOSMEMMGR
#define INCL_DOSMISC
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

INT main(VOID)

{
PBYTE apbBuf [1500]
USHORT usIndex;

i

for (usIndex = 0; usIndex < 1500; usIndex++)

{

apbBuf [usIndex] = malloc (usIndex);

if (usIndex > 0)
{

printf ("\napbBuf [%d] =

usIndex,
apbBuf [usIndex],

$p delta = %1ld"

(PBYTE) apbBuf [usIndex] - (PBYTE) apbBuf [usIndex-1]) ;

} /* endif */
if (((usIndex%25) == 0) && (usIndex != 0))
{
printf ("\nPress ENTER to continue...");
fflush(stdout) ;
getchar () ;
} /* endif */
} /* endfor */
for (usIndex = 0; usIndex < 1500; usIndex++)
{
free (apbBuf [usIndex]) ;
} /* endfor */
return 0;
}
SPEED.MAK
SPEED.EXE: SPEED.OBJ
LINK386 @<<
SPEED
SPEED
SPEED
052386
SPEED
<<
SPEED.OBJ: SPEED.C
ICC -C+ -Kb+ -Ss+ SPEED.C
SPEED.DEF

NAME SPEED WINDOWCOMPAT

DESCRIPTION 'malloc() example

Copyright (c) 1992-1995 by Kathleen Panov.

All rights reserved.'

STACKSIZE 16384




14 — The Art of OS/2 Warp Programming

By looking at the program’s otput, you’ll notice that memory allocation starts by using 32 for values
between 1 and 16. It uses 64 for values between 17 and 32, 128, 256, and finally 512. You may notice a
few “bumps” in the algorithm. They occur when the C runtime is using some of the memory for its own

purposes.



Chapter 3

Multitasking

The session and task management facilities in OS/2 give the programmer an exceptional opportunity to
fully exploit the multitasking features in the operating system. Threads or processes can provide
applications with a tremendous performance boost. OS/2 provides a special brand of multitasking,
preemptive multitasking, which is different from the multitasking found in either Windows or the
Macintosh System 7. Preemptive multitasking is controlled by the operating system. Each process is
interrupted when its time to run is over, and the process will never realize it has been interrupted the next
time it is running. In other words, OS/2 lets your computer walk and chew gum at the same time. With
either the Mac or Windows, your computer takes a step, chews the gum, takes a step, chews the gum, and
SO on.

The task management of OS/2 is divided into three separate entities:

e  Threads
e  Processes
o  Sessions

A thread is the only unit to get its own time slice of the CPU. All threads belonging to a process are
contained within that process, and each thread has its own stack and registers. There is a systemwide limit
of 4,096 threads; however, CONFIG.SYS contains a THREADS parameter that is usually set at a
significantly smaller number—256 is the default. The base operating system uses approximately 40
threads, so most applications are limited to 216 threads unless the THREADS parameter is changed.
Typically, a thread should have one distinct function; for example, file /O, asynch communications, or
heavy number crunching. Each thread has a thread identifier—a TID. Each thread also has a priority. The
higher the priority, the more CPU time slices are given to the thread. A thread is much quicker to create
than a process or session and has less system overhead. All threads within a process run in the same virtual
address space; therefore, global resources, such as file handles, and global variables are accessible from all
threads in the process. Threads are created using DosCreateThread, with the first thread created
automatically by the operating system. When a thread is created it is assigned the same priority class as the
thread that created it.

A process is a collection of threads and resources that are owned by those threads. Each process occupies a
unique address space in memory that cannot be accessed by other processes in the system. Two processes
can access the same area in memory only by using shared memory. A process also contains file handles,
semaphores, and other resources. All processes contain at least one thread, the main thread. A process also
contains a unique identifier—a PID. A process contains its own set of memory pages that can be swapped
in and out as the kernel switches from one process to the other. A process can create other processes;

15



16 — The Art of OS/2 Warp Programming

however, these must be of the same session type. For instance, a full-screen process can only create other
full-screen processes. The five types of processes are OS/2 Full Screen, OS/2 windowed, DOS Full Screen,
DOS windowed, and Presentation Manager.

A session is similar to a process except a session also contains ownership of the mouse, keyboard, and
video. A session can contain either one process or multiple processes. The task list (accessed by Ctrl-Esc)
contains a list of all running sessions. When a process or session creates a new session using
DosStartSession, the keyboard, screen, and mouse are responsive only to the session in the foreground.
The session chosen as the background can gain control of the three resources only by switching to the
foreground.

The Scheduler

The OS/2 Scheduler runs on a round-robin type of disbursement of CPU time. The

Scheduler deals only with threads, not processes or sessions. Threads have four different

priority levels: time-critical, server class or fixed high, regular, and idle time. The first

threads to run are the time-critical threads. All time-critical threads will run until there are

no more time-critical threads waiting to be run. After all time-critical threads are finished,

the server-class threads are run. After server-class, the regular class of threads are run.
After the regular class of threads are run, idle-time threads are run. Within each class of priorities are 32
sublevels. A thread that is not running is called a “blocked” thread.

The OS/2 Scheduler does a lot of monkeying around with thread priorities. Threads are given “boosts” by
the scheduler to make OS/2's multitasking smarter. Three types of artificial priority boosts are given to
threads :

e  Foreground boost
e 1/O boost
e  Starvation boost

The foreground boost is given to the user interface thread of the process that is in the foreground. This is
usually the main thread. The foreground process is the process with which the user is currently
interacting. This makes the system respond quickly when the user clicks a mouse button or types in
characters at a keyboard. This boost is a full boost in priority. Also, a Presentation Manager thread has a
boost applied to it while it is processing a message.

We'll take this opportunity to get up on our soapbox. Do not throw away all the work the operating system
does to provide the end user with a crisp response time. Any operation that takes any amount of time
should be in its own thread. A well-written, multithreaded program running on a 20 MHz 386SX will be
blazingly fast to an end user used to a single-threaded program running on a 486 DX2. Well, maybe that's
a little bit of an exaggeration, but you get the idea. Any time you see an hourglass on the screen for more
than a second or two, and the user cannot size a window or select a menu item, that program should be put
through a serious design review. Okay, off the soapbox, and on to our regularly scheduled programming.

An I/O boost is given after an /O operation is completed. An I/O boost does not change a thread's priority
but will bump it up to level 31 (the highest level) within its own priority class.



Multitasking — 17

A starvation boost is given to a thread in the regular class that has not been able to run. The MAXWAIT
parameter in CONFIG.SYS is used to define how long, in seconds, a thread must not run before it is given
a starvation boost. The default value is 3 seconds.

The time slices for threads that are given a starvation boost or an I/O boost are different from a normal time
slice. Because of the tinkering the scheduler does with their priorities, they do not get to run as long as a
nonadjusted thread would run. The length of time for the “short” and normal time slices is controlled by
the TIMESLICE parameter in CONFIG.SYS. The first value represents the “short” time slice length; the
default amount of time is set to 32 ms. The second value represents the normal time slice length; the
default amount of time is set to 65536 ms.

A programmer can refine the way the threads in a program are run in four ways:

DosSetPriority
DosSuspendThread/DosResumeThread
DosEnterCritSec | DosExitCritSec
DosSleep

APIRET APIENTRY DosSetPriority(ULONG scope, ULONG ulClass,
LONG delta, ULONG PorTid)

DosSetPriority has four parameters. The first indicates to what extent the priority is to be changed. The
priority can be changed at the process or thread level. The ulClass parameter indicates at what class to set
the priority. The delta parameter indicates at what level within the class to set the priority. The last
parameter is the process ID of the process to be affected. A value of 0 indicates the current process. Note
that a process can change just the priority of a child process. DosSetPriority can be called anytime in a
thread's lifetime. It is used to adjust the class and/or the priority level within that class. DosSetPriority
should be used to adjust threads whose tasks need special timing considerations. For instance, a thread
handling communications would probably want to run at a server class. A thread that backs up files in the
background should be set at idle-time priority, so that it would run when no other tasks were running. You
can change the priority of threads in another process, but only if they were not changed explicitly from the
regular class.

APIRET DosResumeThread( TID tid )
APIRET DosSuspendThread( TID tid )

The only parameter to each of these functions is the thread ID of the thread. DosResumeThread and
DosSuspendThread are used to change a thread's locked state. DosSuspendThread will cause a thread to be
set to a blocked state. DosResumeThread is used to cause a suspended thread to be put back in the list of
ready-to-run threads.

DosEnterCritSec is used to suspend all other threads in a process. This function should be used when it is
vitally important that the running thread not be interrupted until it is good and ready. DosExitCritSec will
cause all the suspended threads to be put back in a ready-to-run state. A program can nest critical sections
within critical sections. A counter is incremented by DosEnterCritSec calls and decremented by
DosExitCritSec calls. Only when this counter is O will the critical section exit. You probably should avoid
nesting critical sections unless you absolutely need this functionality. One final note on critical sections: If
a thread exits while in a critical section, the critical section automatically ends.



18 — The Art of OS/2 Warp Programming
Gotcha!

DosEnterCritSec can be a very dangerous function. If for any reason the single thread
running is put in a blocked state and needs some other thread to cause it to be
unblocked, your program will go out to lunch and will not return. For example,
DosWait...Sem are major no-nos in a critical section, because the required
DosPost...Sem calls probably will exist in a thread that will be put in a suspended state.
Also, be very careful calling a function that resides in a .DLL when inside a critical section. The function
may use semaphores to manage resources, and it may be put in a suspended state while waiting for those
resources to be freed.

DosSleep is the most practical function of the group. Using this function you can put a thread in a
suspended state until a specified amount of time has passed. DosSleep has only one argument, the amount
of time to “sleep.” This value is specified in milliseconds. A thread cannot suspend other threads using
DosSleep, only itself. When DosSleep is called with an argument of 0, the thread gives up the rest of its
time slice. This does not change the thread's priorities or affect its position in the list of ready-to-run
threads.

The Subtleties of Creating a Thread

DosCreateThread is used to create a thread. The following code illustrates this:

DosCreateThread( &tidThread, /* thread TID */
pfnThreadFunction, /* pointer to fn */
ulThreadParameter, /* parameter passed */
ulThreadState, /* 0 to run, 1 to suspend */
ulStackSize ); /* 4096 at a minimum */

The first parameter contains the address of the threads TID, or Thread ID. The next parameter is a pointer
to the function that the operating system will call when the thread is running. When using
DosCreateThread, a typical function prototype of a thread function looks something like this:

VOID APIENTRY fnThread( ULONG ulThreadArgs );

Notice the APIENTRY keyword. This is used to indicate that this is a function that will be called by the
operating system. The ulThreadParameter is 4 bytes of data, in the form of a ULONG, that are passed as
an argument to the thread function. If you need to pass more than one value, you need to create a structure
that contains all the values you want to pass. The first bytes of the structure should contain the size of the
structure that is being passed. Also, if you use a structure, make sure you pass the address of the structure
as the data. The ulThreadState parameter indicates whether the thread is started in a running state (with a
value of 0) or in a suspended state (with a value of 1). If the thread is started suspended, somebody needs
to call DosResumeThread to get the thread going. The last parameter is the stack size. The thread's stack is
located in memory when the thread is blocked and is loaded into registers when the thread becomes ready
torun. In OS/2 2.0, the programmer no longer needs to mess with allocating and freeing the memory for
the stack. However, the programmer does need to know the maximum amount of memory that the stack
will.use. This is the value passed as the last parameter. This memory is not committed until it is absolutely
necessary. The thread stack uses guard pages to commit a new page as necessary. Also, you may notice
that a thread stack grows downward rather than upward as normal memory grows.

Threads and the C Runtime

The C runtime library can cause problems when used within a thread other than the main thread. Because
the C runtime uses many internal variables, multiple threads using the C runtime can cause problems unless



Multitasking — 19
the runtime library is notified of the other threads. C-Set/++ has provided a separate function,
_beginthread, to fix this situation. This function should be used to create threads in which you want to use
the C library. The parameters for _beginthread are very similar to the parameters for DosCreateThread.

_beginthread( pfnThreadFunction,

/* void pointer to thread function */
pNull,

/* This is a NOP parameter, used for migration */
ulStackSize,

/* stack size */
pArgList );

/* void pointer to argument list */

The prototype for a thread function changes a little here. The typical thread function prototype looks
something like this:

void fnThread( void *pArgList );

7 Gotcha!
) When using the C Set/++ compiler, make sure you specify the multithreaded option,

Gm+. Also, either let the compiler link in the proper library for you, or make sure you
specify DDE4M*.LIB.

A Thread Example

The following example creates threads with different priorities. Each thread writes its priority to the
screen. In this example, we avoided using _beginthread and printf but instead used DosCreateThread and
DosWrite. This gives us the opportunity to start the threads in a suspended state.

THREAD.C

#define INCL_DOS

#include <os2.h>

#include <stdio.h>

#include <stdlib.h>

#define THREAD_SUSPEND 1L

#define STDOUT (HFILE) 1

VOID APIENTRY MyThread(ULONG ulThreadArgs);

INT main (VOID)
{

APIRET arReturn;

TID tidThreadID[5];

USHORT usIndex;

ULONG ulThreadPriorities[] =

{
PRTYC_FOREGROUNDSERVER, PRTYC_TIMECRITICAL, PRTYC_REGULAR,
PRTYC_NOCHANGE, PRTYC_IDLETIME

}

i

for (usIndex = 0; usIndex < 5; usIndex++)
{
arReturn = DosCreateThread (&tidThreadID[usIndex],
MyThread,
ulThreadPriorities[usIndex],
THREAD_SUSPEND,
4096) ;




20 — The Art of OS/2 Warp Programming

arReturn = DosSetPriority (PRTYS_THREAD,
ulThreadPriorities[usIndex],
(LONG) 0,
tidThreadID[usIndex]) ;

if (arReturn)
{
printf("\narReturn = %4",

arReturn) ;
} /* endif */
DosResumeThread (tidThreadID[usIndex]) ;
} /* endfor */
DosSleep(2000) ;

return 0;

}

VOID APIENTRY MyThread(ULONG ulThreadArgs)
{

USHORT usIndex;
CHAR cChar;
ULONG ulBytesWritten;

for (usIndex = 0; usIndex < 200; usIndex++)
{
cChar = (CHAR)ulThreadArgs+'0';

DosWrite (STDOUT,
(PVOID) &cChar,
1,
&ulBytesWritten) ;
} /* endfor */
return ;

THREAD.MAK

THREAD.EXE: THREAD.OBJ
LINK386 @<<

THREAD

THREAD

THREAD

052386

THREAD

<<

THREAD.OBJ: THREAD.C
ICC -C+ -Gm+ -Kb+ -Ss+ THREAD.C

THREAD.DEF

NAME THREAD WINDOWCOMPAT

DESCRIPTION 'Multithread example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

The first part of the program is the actual creation of the threads. We'll create five almost identical threads.
Each thread is started in suspended state by specifying 1 (THREAD_SUSPEND) as ulThreadFlags. The




Multitasking — 21
thread function, MyThread, is assigned to pfnThreadFunction. Since the thread function itself is fairly
small, the minimum stack size of 4,096 is specified.

The one difference between the five threads is their priority. Each thread priority is passed to MyThread in
the ulThreadArgs variable. An array, ulThreadPriorities[], holds all the possible thread priority classes.

DosSetPriority is used actually to change the priority of the threads from regular priority to the respective
priority in the ulThreadPriorities[] array. The first parameter, PRTYS_THREAD, specifies that only one
thread, not all the threads in the process, will have its priority affected. The second parameter is the
priority class to use. The third parameter is the delta of the priority level. Within each class are 32 levels
that can be used to refine a thread's priority even further. Threads at level 31 of a class will execute before
threads at level O of the same class. This parameter specifies the change to make to the current level, not
the absolute level value itself. Values are from —31 to +31. A value of 0 indicates no change, and this is
what we use in this example. The last parameter, tidThreadID[], is the thread ID of the thread whose
priority is to be changed.

Once the thread is created and its priority has been changed, DosResumeThread is called to wake the thread
up and have it begin running.

These steps are repeated for all five threads in a FOR loop. DosSleep is used to delay the main thread from
ending for 2 seconds. This gives all the threads a chance to complete.

The Thread Output

Each thread will print out its priority 200 times. Although this example is an elementary program, it will
give you some insight into how threads are scheduled. The screen output you see should show
the “3” thread (PRTYC_TIMECRITICAL) running first, followed by the “4” thread
(PRTYC_FOREGROUNDSERVER). The “2” thread (PRTYC_REGULAR) and the “0” thread
(PRTYC_NOCHANGE) actually are running at the same priority and should appear somewhat
intermingled. A O in the priority class means no change from the existing class. The “1” thread
(PRTYC_IDLETIME) should always run after the other priority threads.

Executing a Program

The function DosExecPgm is used to execute a child process from within a parent process. A child process
is a very special kind of process. Normally all resources are private to each process; however, because of
the parent/child relationship, a child can inherit some of the resources owned by the parent. Most handles
can be inherited; however, memory cannot, unless it is shared memory. This protects one process (even if
it is a child process) from destroying another process.

The following examples uses DosExecPgm to create a new command process session. The command
process executes a “dir *.*”.

PROG.C

#define INCL_DOSPROCESS
#include <o0s2.h>

#include <stdio.h>
#define BUFFER_SIZE 200
INT main(VOID)

{




22 — The Art of OS/2 Warp Programming

APIRET arReturn;
CHAR achFail [BUFFER_SIZE];
RESULTCODES rcResult;

arReturn = DosExecPgm(achFail,
BUFFER_SIZE,
EXEC_ASYNC,
"CMD.EXE\O /C dir *.* \0",
(PSZ)NULL,
&rcResult,
"CMD.EXE") ;

if (arReturn)
{
printf ("\narReturn = %d4",

arReturn) ;
} /* endif */
printf ("\nrcResult = %14",
rcResult.codeResult) ;
return 0;
}
PROG.MAK
PROG.EXE: PROG.OBJ
LINK386 @<<
PROG
PROG
PROG
052386
PROG
<<
PROG.OBJ: PROG.C
ICC -C+ -Kb+ -Ss+ PROG.C
PROG.DEF

NAME PROG WINDOWCOMPAT

DESCRIPTION 'DosExecPgm example

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

The first parameter of DosExecPgm is a buffer that is used to store information if the application being
started fails. The size of the buffer is the next parameter.

The third parameter indicates how you want to the child process to run. A child process can run
simultaneously with the parent process (EXEC_ASYNC), or the parent can wait to run until the child has
finished (EXEC_SYNC). There are other options, but these are the two most commonly used.




Multitasking — 23

f

Gotcha!

The parameter string conforms to regular C parameter conventions, where argv[0] is
the name of the executing program. After the program name, you must insert one null
a. character. Following the null is the regular string of program arguments. These
a arguments must be terminated by two null characters. This is accomplished easily by

manually inserting one null at the end of the argument string and letting the normal C
string null termination insert the other.

Q
v

4

The argument string for this example is:

"CMD.EXE\Q /C dir *.*\0";

CMD.EXE will execute a new command processor session. The "™0" is the first null character. The
argument string "/C dir *.* \0" indicates the session will be closed when it finishes executing the dir *.*
command. The "\0" at the end is the first of the last two nulls. The second null is inserted automatically at
the end of the string.

The fifth parameter is the environment string to pass to the new program. This is formatted:

variable = text \0 variable = text \0\0

Each environment variable you want to set must be ended with a null character. The end of the string must
be terminated with two null characters. A null value in the environment string variable indicates that the
child process will inherit its parent's environment.

The next parameter is a RESULTCODES structure. This structure contains two values, a termination code
and a result code. The operating system provides a termination code to indicate whether the program
ended normally or whether some error, for example, a trap, ended the program abruptly. The result code is
what is returned by the program itself, either through DosExitProcess or through return.

The last parameter is the actual name of the program to be executed. A fully qualified pathname is
necessary only if the executable file is not found in the current directory or in any of the directories
specified in the path.

There are several ways to tell whether a child process has terminated, but the easiest by far is DosCwait.
This function either will wait indefinitely until a child process has ended, or will return immediately with
an error, ERROR_CHILD_NOT_COMPLETE.

Sessions

A session is a process with its own input/output devices (i.e., Presentation Manager/non-Presentation
Manager output, keyboard, and mouse). There are several different types of sessions:

e 0S/2 window

o 0S/2 full screen

e DOS window

e DOS full screen

e  Presentation Manager (PM)



24 — The Art of OS/2 Warp Programming
All are started the same way, using DosStartSession.

N

, Gotcha!
/
y

There is a little bit of a trick to determine whether to use DosExecPgm or
DosStartSession. The difference lies in whether the newly created process is going to
perform any input or output. Table 3.1 outlines the guidelines. If you need to
determine the type of an application (or .DLL), DosQueryAppType can be used.

Table 3.1 Starting Session Guidelines

PM PM — DosExecPgm or DosStartSession
Non-PM PM —_ DosStartSession
PM Non-PM  yes DosStartSession
PM Non-PM no DosExecPgm or DosStartSession

The following example program starts a seamless Windows session using DosStartSession.

STARTWIN.C

#define INCL_DOS

#define INCL_WINPROGRAMLIST
#include <os2.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

INT main(VOID)

{

STARTDATA sd;
PID procID;
ULONG sessID;
APIRET rc;
/* initialize everything to 0 */
procID = 0;

sessID = 0;
memset (&sd,
0,
sizeof (STARTDATA) ) ;
/* for Warp or 0S/2 for Windows, start real Windows */
sd.PgmName = "C:\\WIN\\WIN.COM";
/* insert path to some Windows program here */
sd.PgmInputs = "C:\\WIN\\WEP\\GOLF.EXE";
sd.SessionType = PROG_31_STDSEAMLESSCOMMON;
sd.Length = sizeof (STARTDATA) ;
/* in this case start as independent */

sd.Related = SSF_RELATED_INDEPENDENT;
sd.FgBg = SSF_FGBG_FORE;




Multitasking — 25

sd.TraceOpt = SSF_TRACEOPT_NONE;
sd.TermQ = 0;

sd.Environment = NULL;
sd.PgmControl = SSF_CONTROL_VISIBLE|SSF_CONTROL_SETPOS;
sd.InitXPos = 50;
sd.InitYPos = 50;
sd.InitXSize = 400;
sd.InitY¥Size = 600;
sd.Reserved = 0;
sd.ObjectBuffer = NULL;
sd.ObjectBufflLen = 0;

0
0
4

rc = DosStartSession(&sd,
&sess1D,
&procID);
printf ("\nReturn code rc from DosStartSession = %4",
re);
fflush(stdout) ;
return (0);

STARTWIN.MAK

STARTWIN.EXE: STARTWIN.OBJ
LINK386 @<<

STARTWIN

STARTWIN

STARTWIN

082386

STARTWIN

<<

STARTWIN.OBJ: STARTWIN.C
ICC -C+ -Kb+ -Ss+ STARTWIN.C

STARTWIN.DEF

NAME STARTWIN WINDOWCOMPAT

DESCRIPTION 'Simple example to start a seamless Windows session
Copyright (c) 1992-1995 by Kathleen Panov

All rights reserved.'

STACKSIZE 16384

The DosStartSession function itself is actually very small. Most of the preparatory work is done by setting
up the STARTDATA structure. The structure looks like this:




26 — The Art of OS/2 Warp Programming

typedef struct _STARTDATA /* stdata */
{
USHORT Length;
USHORT Related;
USHORT FgBg;
USHORT TraceOpt;
PSZ PgmTitle;
PSZ PgmName ;
PBYTE PgmInputs;
PBYTE TermQ;
PBYTE Environment;
USHORT InheritOpt;
USHORT SessionType;
PSZ IconFile;
ULONG PgmHandle;
USHORT PgmControl;
USHORT InitXPos;
USHORT InitYPos;
USHORT InitXSize;
USHORT InitYSize;
USHORT Reserved;
PSz ObjectBuffer;
ULONG ObjectBufflen;
} STARTDATA;

typedef STARTDATA *PSTARTDATA;

Length is the length of the structure in bytes.

Related specifies whether the new session will be a child session (field is TRUE) or an independent session
(field is FALSE ).

FgBg defines whether the session is to be started in the foreground (field is FALSE) or in the background
(field is TRUE ).

TraceOpt specifies whether there is to be any debugging (tracing) of the new session. TRUE indicates
debug on; FALSE indicates debug off.

PgmTitle is the name that the program is to be called. This is not the name of the executable, only the title
for any windows or task list. If a NULL is used, the executable name is used for the title.

PgmName is the fully qualified pathname of the program to load.
Pgminputs is a pointer to a string of program arguments (see page 23 for argument formatting.)

TermQ is a pointer to a string that specifies the name of a system queue that will be notified when the
session terminates.

Environment is a pointer to a string of environment variables (see page 23 for environment variable
formatting.)

InheritOpt indicates whether the new session will inherit open file handles and an environment from the
calling process. TRUE in this field will cause the session to inherit the parent's environment; FALSE will

cause the session to inherit the shell's environment.

SessionType specifies the type of session to start. Possible values are listed in Table 3.2.



Multitasking — 27

Table 3.2 Description of Session Types — S — : .

Value . Deseripon.
SSF_TYPE_DEFAULT Uses the program's type as the session type
SSF_TYPE_FULLSCREEN 0872 full screen
SSF_TYPE_WINDOWABLEVIO  0OS/2 window

SSF_TYPE_PM Presentation Manager program
SSF_TYPE_VDM DOS full screen

SSF_TYPE_WINDOWEDVDM DOS window

In addition, Table 3.3 lists the values that are also valid for Windows programs.

Tablg Ii_d ind ws Session Tyg_‘es _ _

Windows 3.1 program that will execute in its own windowed
session.
PROG_31_STDSEAMLESSCOMMON Windows 3.1 program that will execute in a common
windowed session.
PROG_31_ENHSEAMLESSVDM Windows 3.1 program that will execute in enhanced
compatibility mode in its own windowed session.
PROG_31_ENHSEAMLESSCOMMON Windows 3.1 program that will execute in enhanced
compatibility mode in a common windowed session.

"PROG._31_STDSEAMLESSVDM

PROG_31_ENH Windows 3.1 program that will execute in enhanced
compatibility mode in a full screen session.

PROG_31_STD Windows 3.1 program that will execute in a full screen
session.

IconFile is a pointer to a fully qualified pathname of an .ICO file to associate with the new session.

PgmName is a program handle that is returned from either WinAddProgram or WinQueryProgramHandle.
A 0 can be used if these functions are not used.

PgmControl specifies the initial attributes for either the OS/2 window or DOS window sessions. The
following values can be used:

SSF_CONTROL_VISIBLE
SSF_CONTROL_INVISIBLE
SSF_CONTROL_MAXIMIZE
SSF_CONTROL_MINIMIZE
SSF_CONTROL_NOAUTOCLOSE
SSF_CONTROL_SETPOS

Except for SSF_CONTROL_NOAUTOCLOSE and SSF_CONTROL_SETPOS, the values are pretty self-
explanatory. SSF_CONTROL_NOAUTOCLOSE is used only for the OS/2 windowed sessions and will
keep the sessions open after the program has completed. The SSF_CONTROL_SETPOS value indicates
that the operating system will use the InitXPos, InitYPos, InitXSize, and InitYSize for the size and
placement of the windowed sessions.



28 — The Art of OS/2 Warp Programming

The second parameter to DosStartSession is the address of a ULONG that will contain the session ID after
the function has completed. The last parameter is the address of a PID (process ID) that will contain the
new process's PID after the session has started.



Chapter 4

File I/0 and Extended Attributes

File /O is one of the most important aspects of any operating system. OS/2 makes the file system
programming very easy to understand and master, yet it still provides the programmer with many flexible
and powerful features. OS/2 has introduced to DOS developers the new concept of Installable File
Systems, which allows various file systems to be installed like device drivers. OS/2 introduces the new
High Performance File System (HPFS), which allows greater throughput and security features for servers,
workstations, and local area network (LAN) administrators. The File Allocation Table (FAT) compatibility
is preserved, so DOS users can manipulate their files without any constraints.

Extended Attributes

The following examples demonstrate some straightforward file manipulation, yet provide the user with
some useful concepts. It is also necessary to introduce the concept of Extended Attributes (EAs), which is
the lesser-known OS/2 file system feature. One of the examples shows a way to gain access to the various
types of EAs. EAs appeared in OS/2 1.2 and have remained there through the 16- to 32-bit migration; they
are nothing more than additional data that is associated with the file. The user does not see this extra data.
It is there only for the use of the application and operating system. The designers had to be creative in
order to implement EA support under FAT due to the fact that DOS, which is the grandfather of FAT,
never had support for EAs. The HPFS does not require the same creativity in implementation, thus the
FAT implementation is the one that deserves a short explanation. The FAT directory entries take up 32
bytes (20 hex) and are represented by Table 4.1.

Table 4.1 FAT Directory Entries

Filename: 00-07
Extension: 08-0A
Attribute: 0B
Reserved: 0C-15
Time: 16-17
Date: 18-19
FAT cluster : 1A-1B
Size: 1C-1F

Most DOS files will have the reserved bits OC to 15 set to zero. This is the area that is utilized to attach the
Extended Attributes to the files in OS/2. The EA allocation clusters use the 14h and 15h bytes, and thus
may appear illegal to some DOS applications. In order to avoid DOS compatibility problems, another file
entry is maintained called EA DATA. SF; this file “pretends” to own all of the loose EA clusters on the
hard disk, thus eliminating “lost clusters” messages from chkdsk.exe and similar messages from other disk

29



30 — The Art of OS/2 Warp Programming

managing utilities. Two references to all EA clusters exist: one that is maintained with the 14h- and 15h-
byte directory entries, and one that is “assigned” to the EA DATA. SF. This implementation creates a
source of confusion for users who are not familiar with EAs. For example, when using EA unaware backup
utilities or when copying files from an OS/2 partition under DOS, most users do not know what to do with
the EA DATA. SF file. Users must realize that the EA clusters referenced by that file belong to several
different applications. In order to maintain the EAs properly, it is best to use the 0S/2 EAUTIL program to
separate EAs from their owners, then copy them as separate files and later reunite them for a happy ending.
Generally the EAs take up a substantial amount of disk space; if space is at a premium, EAS not associated
with a critical attribute can usually be deleted. In such cases, the presence of the EA is not critical to the
application's correct execution and thus it can be removed. Users must take care in determining which EAs
can be removed, as some applications will not work correctly afterward.

A more thorough discussion of EA APIs and a detailed discussion of the API structures for the FAT and
HPFS can be found in the OS/2 Programming Guide and various other IBM technical publications. The
short description offered here is merely for the benefit of the programming examples and to help the
programmer understand the API syntax used to attain the EA information. Extended attributes will appear
foreign to DOS users and programmers, and their usefulness generally is questioned almost immediately.
Only upon closer inspection does it become evident that EAs are quite important and really constitute a
must-have feature, especially in high-end operating systems such as OS/2. Basically the Extended
Attributes are nothing more than a storage area of information no more than 64K in size that are available
for applications to use as they please. OS/2 defines several standard types of EAs that are available for
general use. Also, the programmer can define application-specific extended attributes. The only restriction
is that the total EA size cannot exceed 64K. Standard EAs are called SEAs, and by convention start with a
period [.]. They include:

.ASSOCTABLE
.CODEPAGE
.COMMENTS
HISTORY
ICON
.KEYPHRASES
.LONGNAME
.SUBJECT
.TYPE
.VERSION

It is a good idea to not use the preceding [.] character in your own applications. The operating system
reserves the right to use [.] as the first character of the EA name types. Nothing prevents users from
implementing the same convention, but if OS/2 designers decide to add another standard type that happens
to use your EA name, some unpredictable behavior may result. The type of data that is stored within an
SEA is representative of the SEA name. For example, the .ICON SEA will contain the icon data, while the
.TYPE SEA will contain the file object's type. This type can represent an executable, data, metafile, C
code, bitmap, icon, resource file, object code, DOS binary, and so on. As you might have guessed, the
.TYPE SEA is one of the more frequently used attributes of a file object. Note that extended attributes are
associated not only with files but also with subdirectories. In fact, the subdirectory containing the
Workplace Shell desktop information contains subdirectories that have many, many EAs.



File I/O and Extended Attributes — 31

EAs—Fragile: Handle with Care

A programmer must take certain steps while using EAs. First, if the file objects are being moved or copied
to a system that does not support EAs (such as a DOS-FAT combination), the programmer must take care
not to lose the EAs that may be associated with the particular file object. Consider the case of uploading a
file with EAs to a UNIX machine and then downloading the same file back. Doing so may result in EAs
being lost or misplaced because most UNIX machines do not support EAs. Another good example is
trying to copy a file that has a long name from an HPFS partition to a FAT partition. Since FAT supports
the 8.3 naming convention only, the file name may be truncated, but that is not a problem since the correct
HPFS name may be stored in the . LONGNAME EA. An application that manipulates files must be EA-
and HPFS-aware in order to perform proper file management in an OS/2 environment.

The LIBPATH.C Example

The first example we discuss attempts to find out the value of the LIBPATH environment variable. In
OS/2 Warp, an extended LIBPATH variable was created. This special variable can be set or queried from
the command line or from an API, DosSetExtLIBPATH and DosQueryExtLIBPATH. This variable can be
changed dynamically and either prepended or appended to the system LIBPATH variable. The system
LIBPATH itself cannot be returned from the regular environment SET command or a DosQuery... APL
Occasionally the system LIBPATH variable is a handy thing to know. So, a not-so-clean solution is to find
the value of the boot drive, find the CONFIG.SYS file, and attempt to extract the LIBPATH string from
that file. This will work only when there have been no previous changes to the CONFIG.SYS file since the
system has been booted and specifically no direct manipulations of the system LIBPATH value. Although
this example is a crude kluge, the method actually can be useful on a number of occasions.

LIBPATH.C

#define INCL_DOSFILEMGR
#define INCL_DOSMISC
#include <o0s2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#define CONFIG_FILE "?:\\CONFIG.SYS"
#define LIBPATH "LIBPATH"
#define CR 13

#define LF 10

INT main(VOID)
{

APIRET arReturn;
ULONG ulDrive;
PCHAR pchFile;
HFILE hfFile;
ULONG ulAction;
ULONG ulBytesRead;
PCHAR pchBuffer;
PCHAR pchLibpath;
USHORT usIndex;
FILESTATUS3 fsStatus;

pchBuffer = NULL;

/****‘k***********************************************k********/

/* find the boot drive */

/************‘k******‘kk********'k****‘k*************************/

arReturn = DosQuerySysInfo (QSV_BOOT_DRIVE,
QSV_BOOT_DRIVE,




32 — The Art of OS/2 Warp Programming

&ulDrive,
sizeof (ulDrive));

pchFile = CONFIG_FILE;
pchFile[0] = ulDrive+'A'-1;

/****************'k*******************************************/

/* get the size of the CONFIG.SYS */

JRAEK KKk hkhkkkhkhhhhhhkkkkkkkkhkkkkkkhkhhkhhhhkkkkkkkhhhkhh ko * /

arReturn = DosQueryPathInfo(pchFile,
FIL_STANDARD,
&fsStatus,
sizeof (fsStatus));

JRE KKk Rk Ak k ok ok ok ok kk KKKk k Kk kKKK KKK KKK I KA K I KA AR I I Ik kAR I I Kk Ak Kk ko kk /

/* allocate buffer size + 1 for NULL */

/********t******'k********************************************/

pchBuffer = malloc(fsStatus.cbFile+l);

arReturn = DosOpen(pchFile,

&hfFile,

&ulAction,

0,

FILE_NORMAL,

FILE_OPEN,

OPEN_FLAGS_FAIL_ON_ERROR |
OPEN_FLAGS_SEQUENTIAL|
OPEN_SHARE_DENYNONE|OPEN_ACCESS_READONLY

NULL) ;

arReturn = DosRead (hfFile,
pchBuffer,
fsStatus.cbFile,
&ulBytesRead) ;

arReturn = DosClose(hfFile);

pchBuffer[fsStatus.cbFile] = 0;

JRAEFK I Ik hhkhkhkhkhhhhkhhhhkkkhhkkkkhkhhkhkhhkhkhhkhkhhhkhkkhhhkhkhkk /

/* seach buffer for LIBPATH variable */

/************************************************************/

pchLibpath = strstr(pchBuffer,
LIBPATH) ;

if (pchLibpath == NULL)
{

/*********************************************************/

/* will only execute this section of code if LIBPATH is */
/* NOT all caps */

/*********************************************************/

for (usIndex = 0; usIndex < strlen(pchBuffer); usIndex++)
{
if (toupper (pchBuffer[usIndex]) == 'L')
if (toupper (pchBuffer[usIndex+l]) == 'I' && toupper

(pchBuffer[usIndex+2]) == 'B' && toupper (pchBuffer
[usIndex+3]) == 'P' && toupper (pchBuffer [usIndex+4
1) == 'A' && toupper (pchBuffer[usIndex+5]) == 'T'
&& toupper (pchBuffer [usIndex+6]) == 'H')

pchLibpath = pchBuffer+usIndex;
break;




File I/O and Extended Attributes — 33

}

VAAAE RS AL E SRS SRR ESEEEEEEERE RSttt RR st st

/* read to the line feed */
/****‘k*******************************************************/

for (usIndex = 0; usIndex < CCHMAXPATHCOMP; usIndex++)
{

if (pchLibpath[usIndex] == CR)
{
if (pchLibpath[usIndex+1] == LF)
break;
} /* endif */

} /* endfor */
pchLibpath[usIndex] = 0;

[ Rk ok kKKK AR KR KRRk k Kk k Kk h ok ok ok k Kk ok hk Kk h kK Kk hhk kK kKRR KK IRk kkkkkhk ok /

/* print out the LIBPATH */

KK KKK K KKK KKK KKK I I I I I I I I H I KK KKK KKK AKX KK AN AKXk k* k[

printf (“\n%s\n",
pchLibpath) ;

free(pchBuffer) ;

return arReturn;

LIBPATH.MAK

LIBPATH.EXE: LIBPATH.OBJ
LINK386 @<<

LIBPATH

LIBPATH

LIBPATH

052386

LIBPATH

<<

LIBPATH.OBJ: LIBPATH.C
ICC -C+ -Kb+ -Ss+ LIBPATH.C

LIBPATH.DEF

NAME LIBPATH WINDOWCOMPAT NEWFILES

DESCRIPTION 'LIBPATH Example
Copyright (c) 1993-1995 by Arthur Panov
All rights reserved.'

PROTMODE

The first step is to find the system boot drive. In order to do this, use DosQuerySysInfo and specify the
arguments corresponding to the boot drive information. DosQuerySysinfo takes three input parameters and
one output parameter, and returns the values of the system's static variables:

APIRET = DosQuerySysInfo ( ULONG ulStartIndex,
ULONG ulLastIndex,
PVOID pDataBuf,
ULONG ulDataBufLen) ;




34 — The Art of OS/2 Warp Programming

This call can return a single value or a range of values, depending on the ulStartIndex, ulLastIndex. As is
evident by the example, in order to obtain a single value, the ulStartIndex and ulLastIndex are set to the

same input value:

arReturn = DosQuerySysInfo (

QSV_BOOT_DRIVE,
QSV_BOOT_DRIVE,

&ulDrive,

sizeof ( ulDrive )) ;

The QSV_BOOT_DRIVE constant is defined by the BSEDOS.H header file, which is part of the set of
standard header files provided by the Programmer's Toolkit. Table 4.1 defines the additional values. The
third parameter is the data buffer that DosQuerySysInfo uses to place the returned values into. The last
parameter is the size of the data buffer.

QSV_MAX_PATH_LENGTH
QSV_MAX_TEXT_SESSIONS
QSV_MAX_PM_SESSIONS

QSV_MAX_VDM_SESSIONS

QSV_BOOT_DRIVE
QSV_DYN_PRI_VARIATION
QSV_MAX_WAIT
QSV_MIN_SLICE
QSV_MAX_SLICE
QSV_PAGE_SIZE
QSV_VERSION_MAJOR
QSV_VERSION_MINOR
QSV_VERSION_REVISION
QSV_MS_COUNT

QSV_TIME_LOW
QSV_TIME_HIGH
QSV_TOTPHYSMEM
QSV_TOTRESMEM
QSV_TOTAVAILMEM

QSV_MAXPRMEM
QSV_MAXSHMEM

QSV_TIMER_INTERVAL
QSV_MAX_COMP_LENGTH

Table 4.2 System Constants

[ IR Be WV W -

O

10

12
13
14

15
16
17
18
19

20

21

22
23

Maximum path name length in bytes
Maximum number of text sessions
Maximum number of PM sessions
Maximum number of virtual DOS machine (VDM)
sessions

Boot drive value (0=A:, 1=B:, etc.)

Dynamic/Absolute priority (O=absolute)

Maximum wait time in seconds

Minimum time slice allowed in milliseconds

Maximum time slice allowed in milliseconds

Default page size (4K)

Major version number

Minor version number

Revision version letter

The value of a free-running 32-bit counter in milliseconds
(value=0 at boot time)

Lower 32 bits of time since 01-01-1980 in seconds
Upper 32 bits of time since 01-01-1980 in seconds

Total number of pages of physical memory (4K each)
Total number of system-resident memory

Total number of pages available for allocation to the
system at the instance of the call

Total number of pages available for allocation to the
process at the instance of the call

Total number of shareable pages available to the caller in
the shared area

Timer interval in 1/10 millisecond

Maximum length of a component's pathname in bytes




File I/O and Extended Attributes — 35

Gotcha!

An application that is intended to be used in the HPFS/FAT environment should make
the DosQuerySysinfo call and determine the maximum value of the legal file name
length: QSV_MAX_COMP_LENGTH. For HPFS, this value is much greater than
FAT (255). The application should issue this call in its initialization section and
remember the pertinent values for future DosFindFirst, DosFindNext buffer size
allocation values.

Once the boot drive is located, the string containing the full path to CONFIG.SYS is created.

Getting the File Size

arReturn = DosQueryPathInfo ( pchFile,
FIL_STANDARD,
&fsStatus,
sizeof ( fsStatus )) ;

pchBuffer = malloc ( fsStatus.cbFileAlloc +1 ) ;

DosQueryPathlnfo is used to determine the size of CONFIG.SYS. The function is designed to get file
information for a file or subdirectory. The first parameter, pchFile, is the fully qualified path for the file.
The second parameter is the level of information required. All we need for this example is standard file
information, FIL_STANDARD. The information level determines the third parameter. If
FIL_STANDARD is specified, a pointer to a FILESTATUS3 structure is used. The structure
looks like this:

typedef struct _FILESTATUS3

{ FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
ULONG attrFile;

} FILESTATUSS3;

The FILESTATUS3 structure contains two fields of interest: chFile and cbFileAlloc. The cbFile element
contains the actual size of the file, start to finish, in bytes. The cbFileAlloc, on the other hand, contains the
file system allocation unit (AU) size, whose value can be a multiple of 512, 2K, 4K, 8K, 16K, 32K, and so
on, depending on the type of magnetic media used. HPFS and diskettes use 512-byte AUs, while the FAT
AU size depends on the volume size. cbFileAlloc is of minimal value in applications, and the cbFile value
should be used to allocate the required storage. Thus, cbFile size value is used in the next call to allocate
the memory buffer needed to read the whole CONFIG.SYS at once, plus an extra byte for a NULL
character.

This memory allocation does not have to be performed. It is possible to read one character at a time and
parse the output using a 1-byte storage area. The method used in CHKEA was used for ease of
implementation as well as performance reasons. Reading the whole file is much quicker. Since the
CONFIG.SYS is generally smaller than 4K in size, it should easily fit into a single page of memory, which
is the smallest allocation allowed in 32-bit OS/2. The parsing can be achieved more rapidly as well.
Memory operations are much quicker than storage disk I/O.



36 — The Art of OS/2 Warp Programming
Opening a File

Having found the file size, the next step is to attempt to open the CONFIG.SYS file. The DosOpen API
call is a good example of the flexibility and power of the OS/2 file system interface. Several flags are
available to the programmer, and almost any combination of them can be defined in order to provide for
maximum systemwide cooperation. In this case, the file is opened in read-only mode and with full sharing
enabled. This means that if another application decided to open and read CONFIG.SYS at the same time, it
would be able to do so. Allowing other applications full sharing rights also presents a problem of the file
data being changed while we are attempting to read it. Although this is a remote possibility, the risk is still
there; using the OPEN_SHARE_DENYWRITE flag instead of OPEN_SHARE_DENYNONE easily
prevents it. The OPEN_FLAGS_SEQUENTIAL flag is used to define how we will be reading the file.
Last, we examine the file in read-only mode by specifying the flag OPEN_ACCESS_READONLY.
DosOpen is a fairly involved API. We'll go into some more details in just a moment.

arReturn = DosOpen ( pchFile,
&hfFile,
&ulAction,
Or
FILE_NORMAL,
FILE_OPEN,
OPEN_FLAGS_FAIL_ON_ERROR |
OPEN_FLAGS_SEQUENTIAL |
OPEN_SHARE_DENYNONE |
OPEN_ACCESS_READONLY,

NULL ) ;
Reading a File
arReturn = DosRead ( hfFile,
pchBuffer,
fsStatus.cbFile,
&ulBytesRead ) ;

DosRead is the function to read not only files but any devices. The first parameter, Afile, is the file handle
returned from DosOpen. The buffer, pchBuffer, is the second parameter. The third parameter is the
number of bytes to read. In our case, the entire file size is used. The last parameter is a pointer to a
ULONG. The number of bytes actually placed into the buffer is returned in a variable, ulBytesRead.

Note: In DOS and OS/2, it is possible to get a good return code (arReturn=0) and not have the
DosRead/DosWrite API complete as expected. It is a good idea to check for the return code first, then
check for the BytesRead value and compare it with the expected number.

Once in memory, the last character of the CONFIG.SYS file is set to NULL. This is done so that string
operations can be performed more easily. The last step is parsing the file in order to find the LIBPATH
information. Once the LIBPATH, is found it is displayed with a straightforward printf. The cleanup is
accomplished by freeing the memory and using DosClose to close the file.

arReturn = DosClose ( hfFile ) ;
printf ( "\n%s\n", pchLibpath ) ;
free ( pchBuffer ) ;

More on DosOpen

Before we continue with the EA example, it might be beneficial to cover the DosOpen API in greater
detail.



File I/O and Extended Attributes — 37

APIRET DosOpen ( PSZ pszFileName,
PHFILE ppFileHandle,
PULONG pActionTaken,
ULONG ulFileSize,
ULONG ulFileAttribute,
ULONG ulOpenFlag,
ULONG ulOpenMode,
PEAOP2 PPEABuUf) ;

The first three arguments are clearly identified.

e pszFileName  Input address of a string containing the file name
e ppFileHandle Output address of a returned file handle
e pActionTaken  Output address of a specified action variable

The action variable on output will have the following useful values:

FILE_EXISTED 1

File éxvi"sted prior to call
FILE_CREATED 2 File was created as the result of the call
FILE_TRUNCATED 3 Existing file was changed by the call

The next three input arguments can create the most confusion.
e ulFileAttribute Double word containing the files attributes
e  ulOpenFlag Double word containing the desired open conditions
e ulOpenMode  Double word containing the mode/sharing conditions

They create confusion because the same DosOpen call can be used to open files, disk volumes, pipes, and
other devices. For example, if a user wanted to open a named pipe, some of the sharing flags and the
ulFileSize value are ignored by the operating system because the pipe's buffer sizes are specified by the
DosCreateNPipe API. Also, the ulFileSize may not make sense if the user is opening a disk volume for
direct access. Sometimes device drivers allow DosOpen calls with a device name specified in place of the
pszFileName. 1t is still a null-terminated string, but in the case of a device driver the string contains the
device name, such as “DEVICES”. Specifying ulFileSize or other ulFileAttribute flags makes no sense, and
thus some of the input parameters are ignored. All three input flag parameters are bit-encoded, meaning
each bit that is set represents a new or unique flag condition. Most of the bits can be set in combination.
All of the flags are 32 bits wide, but not all of the 32 bits are used at this time. Some are reserved for
future use and must be set to zero. For example, the ulFileAttribute bit values are shown in Figure 4.1.



38 — The Art of OS/2 Warp Programming

[31]30]29]28]27 26 [25 24 ]23 22 [21 T20[ 1] 18] 17] 16]

I IJ | | I | | | ! | Li! I I RESERVED, Must be set to ZERO

[5]1a[1312[1110[9 [ 8] 7] 6]5[4]3] 2] 1]0]

L_ FILE_READONLY
FILE HIDDEN
FILESYSTEM

RESERVED, Must be set to ZERO

FILE DIRECTORY
FILE ARCHIVED

RESERVED, Must be set to ZERO

Figure 4.1 File attribute bit flags.
Table 4.4 describes the file attribute bit flags.

Table 4.4 File Attribute Bit Flag Descriptions

FILE_READONLY  File can be read but not written to

FILE_NORMAL File can be read and written to
FILE_HIDDEN File is a hidden file
FILE_SYSTEM File is a system file

FILE_DIRECTORY File is a subdirectory
FILE_ARCHIVED File has archive bit set

To allow the file read-only access and to declare the file to be of the system type, the following
combination is used.

ulFileAttribute = FILE_READONLY | FILE_SYSTEM;

The ulOpenFlag describes the actions that the DosOpen will perform based on the bit encoding specified
by the programmer. These actions deal with conditions of file existence, replacement, and creation. A user
may want to allow the DosOpen API to falil, if the file already exists. If so, specify:

ulOpenFlag = OPEN_ACTION_FAIL_IF_EXISTS;

If the user wants the DosOpen call to open the file if it exists, and fail if it does not exist, the following
should be specified :

ulOpenFlag = OPEN_ACTION_FAIL_IF_NEW |
OPEN_ACTION_OPEN_IF_EXISTS;

Figure 4.2 depicts additional file open action flags.



File I/O and Extended Attributes — 39

[31]30]29 [28 27 [26 [25 [24 [23]22]21 T20] 18] 18] 17] 6]

| | | l | | 1 | | | i l i l I I RESERVED, Must be set to ZERO

[1s[raf13[12[11]10[ 9 [8 7] 6 5[4 3] 2[1]0]

\i OPENACTION_FAILIFZEXISTS 0000

OPEN_ACTION_OPEN.IFEXISTS 0001
OPEN.ACTION_REPLACE IF_EXISTS 0010
OPENACTION_FATLIFNEW 0000
OPEN_ACTION._ CREATE_IF_NEW 0001

RESERVED, Must be set to ZERO

Figure 4.2 File open action flags.

Table 4.5 describes the file open action flags that are available.

Table 4.5 File Open Action kFla 5

OPEN_ACT'ION_FAIL;IF__NEW DosO‘z;en will fail if file does not exist; file is opéned if it

does exist
OPEN_ACTION_CREATE_IF_NEW File is created if it does not exist
OPEN_ACTION_FAIL_IF_EXISTS DosOpen will fail if the file already exists; file is created
OPEN_ACTION_OPEN_IF_EXISTS File is opened if it already exists

OPEN_ACTION_REPLACE_IF_EXISTS File is replaced if it already exists

The ulOpenMode describes the mode that the open call will set for the file object. This flag will tell the
system how to behave when other users request access to the file that is currently in use by someone else.
It is here that the system write-through buffering is specified and the error reporting is decided. For
example, the user may want to allow the system to use its cache to transfer the data between the application
and the file object, but the actual write must complete prior to the return of the call. Also, the user may
want to have all of the errors reported directly to his or her application and not through the system critical-
error handler. On top of that, a programmer may want to open this file in read-only mode and not allow
anyone else write access to the file while in use. Wow! Well, for a combination of conditions like that, use
the following flags:

ulOpenMode =  OPEN_FLAGS_WRITE_THROUGH
| OPEN_FLAGS_FAIL_ON_ERROR
| OPEN_SHARE_DENY_WRITE
| OPEN_ACCESS_READONLY ;

Thus, a number of conditions can be specified, and file management becomes a tedious and time-
consuming task for the programmer and the operating system. Figure 4.3 depicts the available open mode
flag.



40 — The Art of OS/2 Warp Programming

[31]30[29 [28 [27]26 25 124 [23 22 [21 T20] 19] 18] 17[ 16]
Ll RESERVED, Must be set to ZERO

sTiaf3[12[11 0] 9 [8] 7] 6]5] ¢]3] 2] 1]0]

OPEN_ACCESS_READONLY 000
OPENACCESS_WRITEONLY 001
OPEN.ACCESS READWRITE. 010

RESERVED, Must be set to ZERO

N_SHARE_DENYREADWRITE 001
OPEN_SHARE_DENYWRITE 010
OPEN_SHARE_DENYREAD [N
OPEN_SHARE _DENYNONE 100

OPEN_FLAGS NOINHERIT

OPENCFLACS NOLOCALTY 000]
| |OPEN_FLAGS_SFQUENTIAL 001
] |OPEN_FLAGS_RANDOM 010
OPEN FLAGS RANDOMSEQUENTIAL 011
RESERVED, Must be set to ZERO

OPEN_FLAGS_NO_CACHE

OPEN_FLAGS.FAIL ON_ERROR

OPEN_FLAGS_WRITE_THROUGH

OPEN_FLAGS_DASD

Figure 4.3 Open mode flags.

Table 4.6 describes the open mode flags avilable.

CCESS_READWR File is given read/write access

OPEN_ACCESS_WRITEONLY File is given only write access
OPEN_ACCESS_READONLY File is given only read access
OPEN_SHARE_DENYNONE Other processes can have read and write access to file
OPEN_SHARE_DENYREAD Other processes cannot be given read access
OPEN_SHARE_DENYWRITE Other processes cannot be given write access
OPEN_SHARE_DENYREADWRITE Other processes cannot be given read or write access
OPEN_FLAGS_NOINHERIT File handle is not inherited to spawned processes
OPEN_FLAG_RANDOMSEQUENTIAL File is opened for both random and sequential access
OPEN_FLAG_RANDOM File is opened for mainly random access
OPEN_FLAG_SEQUENTIAL File is opened for mainly sequential access
OPEN_FLAG_NO_LOCALITY File locality is not known
OPEN_FLAGS_NO_CACHE No file data is placed in cache
OPEN_FLAGS_FAIL_ON_ERROR Media I/O errors are reported by return code rather than

through the system error handler
OPEN_FLAGS_WRITE_THROUGH File writes may go through cache but will be completed before
the write call returns
OPEN_FLAGS_DASD File is a drive to be opened for direct access

An Extended Attribute Example: CHKEA.C

The next example, CHKEA.C, shows a way to find out if the file object has Extended Attributes associated
with it. If so, then the query is made as to the size of all of the Extended Attributes that are attached. Last,
the names of the types of the Extended Attributes are displayed, and the extended attribute data is dumped.




File I/O and Extended Attributes — 41

CHKEA.C

#define INCL_DOSERRORS
#define INCL_DOSFILEMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXEATYPE 3

CHAR *pszKeyEAName[] =

{
" .LONGNAME" ,
" . ICONPOS",
" . TYPE"

Yo

typedef struct _EAINFO

{
USHORT usEAType;
USHORT usEALength;
BYTE bEAData[l];

} EAINFO, *PEAINFO;
INT DumpEA(CHAR *pszFile, PFEA2 pszAttributeName) ;

INT main(USHORT usNumArgs, PCHAR apchArgs([])

{
CHAR achPath[CCHMAXPATHCOMP] ;
PCHAR pchPath;
ULONG ulCount;
HDIR hdFile;
APIRET arReturn;
FILEFINDBUF4 ffbFile;
CHAR achFile [CCHMAXPATHCOMP] ;
PBYTE pbBuffer;
PFEA2 pdAttribute;
if (usNumArgs != 2)

{

puts(“"Syntax: CHKEA [filenamel");

puts(" «),.

puts ("where \'filename\' is the name of a ");
puts("file/directory and can contain wildcards.");
return 1;

} /* endif

*/

/************************************************************/

/* get full path name

*/

/************************************************************/

DosQueryPathInfo (apchArgs[1l],
FIL_QUERYFULLNAME,
achPath,
CCHMAXPATHCOMP) ;

pchPath = strrchr (achPath,
NN

if (pchPath != NULL)

{

pchPath++;
*pchPath = 0;




42 — The Art of OS/2 Warp Programming

} /* endif */
ulCount = 1;
hdFile = HDIR_SYSTEM;

arReturn = DosFindFirst (apchArgs[1l],
&hdFile,
FILE_DIRECTORY,
&ffbFile,
sizeof (FILEFINDBUF4),
&ulCount,
FIL_QUERYEASIZE) ;

while (arReturn == 0)
{

/**‘k******************************************************/

/* print out full path name */

/***********************‘k*********************************/

sprintf (achFile,
"gs%s ,
achPath,
ffbFile.achName) ;

printf("\nFile name: %s\n",
achFile);

printf ("\nTotal bytes allocated for EAs: %1d bytes.",
ffbFile.cbList);

/*********************************************************/

/* allocate memory for ea buffer */
/*********************************************************/

pbBuffer = malloc(ffbFile.cbList);
ulCount = -1;

arReturn = DosEnumAttribute (ENUMEA_REFTYPE_PATH,
achFile,

11
pbBuffer,
ffbFile.cbList,
&ulCount,
ENUMEA_LEVEL_NO_VALUE) ;

printf("\nThis object contains %1d EAs.",
ulCount) ;

pdAttribute = (PFEA2)pbBuffer;

while (ulCount != 0)
{

printf ("\nFound EA with name \"%s\"",
pdAttribute->szName) ;

DumpEA (achFile,
pdAttribute) ;

ulCount--;
pdAttribute = (PFEA2) (((PBYTE)pdAttribute)+
pdAttribute->oNextEntryOffset);

} /* endwhile */
free (pbBuffer) ;

ulCount = 1;
arReturn = DosFindNext (hdFile,




File I/O and Extended Attributes — 43

&ffbFile,
sizeof (ffbFile),
&ulCount) ;
} /* endwhile */
if ((arReturn != 0) && (arReturn != ERROR_NO_MORE_FILES))
{
printf ("\nError %1d encountered\n",
arReturn) ;
} /* endif */
return arReturn;
}
int DumpEA(CHAR *pszFile,PFEA2 pdAttribute)
{
APIRET rc;
USHORT i;
ULONG ulGBufLen,ulFBufLen,ulEBuflen;
PFEA2 pFEA2;
EAOP2 eaopGet;
PGEA2LIST pGEA2List;
ULONG ulSize;
ULONG ulDataStart;
PEAINFO ptrEAData,ptrEADataHolder;

for (i = 0; i1 < MAXEATYPE; i++)
{

R Kk kK KKK KKK KK KKK KKK KKK KKK KA KKK KKK KKK KKK KK KRK KA KK/

/* does EA name match one of the EA's we're interested in*/
/****k****************************************************/

if (!strcmp(pdAttribute->szName,
pszKeyEAName [i]))

{
/*************************************‘k****************/
/* build input/output data buffer first build */
/* fpFEA2List structure */

JREFII KKK KKK KK h I KKK KKK KKK KKK I KKK KK I AR X KKk Kk k Kk kK k [

ulFBufLen = sizeof (FEA2LIST)+pdAttribute->cbName+1+/*
actual name */
pdAttribute->cbvValue; /* actual value */
pFEA2 = (PFEA2)calloc(l,
ulFBuflen) ;
if (!pFEA2)
return FALSE;

/******************************************************/

/* only one pFEA2 attribute in this list */

/******************************************************/

eaopGet.fpFEA2List = (FEA2LIST *)pFEA2;
eaopGet . fpFEA2List->cbList = ulFBuflen;

/*********************t********************************/

/* next build fpGEA2List structure */

JRIKK K I KKK KK KKK KKK KKK I I I I KA I AKX R A KA KKk ko khkkkkkkx /

ulGBufLen = sizeof (GEA2LIST)+pdAttribute->cbName+1;

PGEA2List = (GEA2LIST *)calloc(l,
ulGBufLen) ;
if (!pGEA2List)
{
free (pFEA2) ;




44 — The Art of OS/2 Warp Programming

return FALSE;
}

/******'k***********************************************/

/* initialize fpGEA2List */

/******************************************************/

PGEA2List->cbList = ulGBuflen;

PGEA2List->1ist[0] .oNextEntryOffset = 0;

PGEA2List->1ist[0].cbName = pdAttribute->cbName;

strcepy (PGEA2List->1ist [0] . szName,
pdAttribute->szName) ;

eaopGet. fpGEA2List = (GEA2LIST *)pGEA2List;

/*'k***********************‘k****************************/

/* get EA's */

/******************************************************/

ulEBufLen = ulFBufLen+ulGBufLen;

rc = DosQueryPathInfo(pszFile,
FIL_QUERYEASFROMLIST,
(PVOID) &eaopGet,
ulEBufLen) ;

if (l!lrc)
{
printf ("\nEA Data for EA %s ",
pdAttribute->szName) ;

ulSize = sizeof (FEA2LIST);

/********‘k******************************************/

/* get the first list */

VAR S A EEEEAEEEEEEEEEELEREEEREEEEREERESEREEEEEEEEERR ]

PFEA2 = (PFEA2)eaopGet.fpFEA2List->1list;

/***************************************************/

/* offset to start of EAdata */

/***************************************************/

ulDataStart = ulSize+pFEA2->cbName;
ptrEAData = (PEAINFO) ( (PBYTE)eaopGet.fpFEA2List+
ulDataStart) ;

/****************************************'k**********/

/* allocate memory with space for null */
/***************************************************/

ptrEADataHolder = calloc(1l,
sizeof (EAINFO) +
ptrEAData->usEALength+1) ;
printf ("Type = Ox%x ",
ptrEAData->usEAType) ;
printf ("Length = 0x%x",
ptrEAData->usEALength) ;

/***************************************************/

/* move Data into placeholder memory */
/******************************'k********************/

memcpy (ptrEADataHolder,
ptrEAData->bEAData,
ptrEAData->usEALength) ;

printf("\nData = %s",
ptrEADataHolder) ;

free(ptrEADataHolder) ;




File I/O and Extended Attributes — 45

free (pFEA2) ;
free (pGEA2List) ;

if (rc)
{
printf ("\nDosQueryPathInfo failed, rc = %4",
rc);
return FALSE;

} /* if EA is one of the
key types */

} /* loop through all EA
key types */

return TRUE;

CHKEA.MAK

CHKEA.EXE: CHKEA.OBJ
LINK386 @<<

CHKEA

CHKEA

CHKEA

082386

CHKEA

<<

CHKEA.OBJ: CHKEA.C
ICC -C+ -Kb+ -Ss+ CHKEA.C

CHKEA.DEF

NAME CHKEA WINDOWCOMPAT NEWFILES

DESCRIPTION 'Extended Attribute Example
Copyright (c) 1993-1995 by Arthur Panov
All rights reserved.'

PROTMODE

CHKEA .EXE expects a command-line input argument that is the name of the file of interest. Wildcard
characters are accepted. First, a determination is made if the file object can be located on the hard disk; if
successful, the full name of the object is constructed.

DosQueryPathInfo ( apchArgs(l1],
FIL_QUERYFULLNAME,
achPath,
CCHMAXPATHCOMP ) ;

pchPath = strrchr ( achPath, '\\' ) ;

if ( pchPath != NULL ) {

pchPath++ ;
*pchPath = 0 ;

} /* endif */

ulCount = 1 ;
hdFile = HDIR_SYSTEM ;




46 — The Art of OS/2 Warp Programming
arReturn = DosFindFirst ( apchArgs(l],

&hdFile,
FILE_DIRECTORY,
&ffbFile,
sizeof ( FILEFINDBUF4 ),
&ulCount,
FIL_QUERYEASIZE ) ;

The DosFindFirst API is the most useful function call available to a programmer when attempting to locate
file objects.

APIRET APIENTRY DosFindFirst(PSZ pszFileSpec,
PHDIR phdir,
ULONG flAttribute,
PVOID pfindbuf,
ULONG cbBuf,
PULONG pcFileNames,
ULONG ulInfolLevel);

The definition for this API can be found in the BSEDOS.H header file, which is part of the OS/2
Developer's Toolkit. Table 4.7 presents the arguments of interest.

HDIR_SYSTEM Use STDOUT for handle

phdir

phdir HDIR_CREATE Handle is created

flAttribute  bit encoded Type of object to search for
pfindbuf depends on ullnfoLevel Result of the request

ullnfoLevel FIL_STANDARD Standard file information is returned
ullnfoLevel FIL_QUERYEASIZE File EA size is returned

ullnfoLevel FIL_QUERYEASFROMLIST  Actual EA data is returned

Table 4.8 lists the acceptable values for the flA#tribute argument.

Table 4.8 Acceptable Values for flAttribute

MUST_HAVE_ARCHIVED Files returned must have the archive bit set
MUST_HAVE_DIRECTORY Files returned must have the directory bit set

MUST_HAVE_SYSTEM Files returned must have the system bit set

MUST_HAVE_HIDDEN Files returned must have the hidden bit set
MUST_HAVE_READONLY Files returned must have the read-only bit set

FILE_ARCHIVED Files with archive bit set are not returned unless this value is specified
FILE_DIRECTORY Files with directory bit set are not returned unless this value is specified
FILE_SYSTEM Files with system bit set are not returned unless this value is specified
FILE_HIDDEN Files with hidden bit set are not returned unless this value is specified
FILE_READONLY Files with read-only bit set are not returned unless this value is specified

phdir is an input/output parameter. On input it specifies the type of file handle required by the application.
HDIR_SYSTEM tells the operating system to assign a handle that will always be available to the process.
This is a handle for standard output. HDIR_CREATE will cause the system to allocate a handle and return
it to the application in phdir. Since pszFileSpec can accept wildcard characters, the handle returned can be
used in conjunction with the DosFindNext to find the next file object that matches the pszFileSpec.



File I/O and Extended Attributes — 47
flAttribute is an input bit-encoded flag that tells DosFindFirst what types of file objects to look for. These
bits represent conditions that may be true or must be true. For example, a programmer may want to locate
a directory with a particular name that may be hidden; although there are files that can correspond to the
pszFileSpec specified, only the directories are of interest. The following bit combination could be used.

flAttribute = MUST_HAVE_DIRECTORY | FILE_HIDDEN;

The pfindbuf is a pointer to the buffer that must be allocated prior to making the DosFindFirst call, and it
must be passed to the API as a pointer. On output the buffer will contain the information specified by the
next parameter ullnfoLevel, which can have three valid values associated with it (FIL_STANDARD,
FIL_QUERYEASIZE, FIL_QUEARYEASFROMLIST).

The first value requests DosFindFirst to return FIL_STANDARD information about the file.
FIL_STANDARD information contains the data associated with the FILEFINDBUF3 structure.

FIL_QUERYEASIZE information is requested by specifying FIL_QUERYEASIZE for the
ullnfoLevel, and it returns the data associated with the FILEFINDBUF4 structure. Finally,
FIL_QUERYEASFROMLIST information is obtained by specifying the value
FIL_QUERYEASFROMLIST for the ullnfoLevel. It returns an EAOP2 data structure.

The FIL_QUERYEASFROMLIST request is slightly different from the previous two levels. On input
pfindbuf must contain the EAOP2 data structure with the correct names of the EAs to be queried. Since EA
data structures are variable in length, the fpGEA2List must contain a pointer to the GEA2 list, which in turn
must have the correct value specified for the oNextEntryOffset and szName. The szName specifies the EA
to be returned, and the oNextEntryOffset contains the number of bytes from the beginning of the first entry
to the end of the next entry. On output the EAOP2 contains a pointer to the fpFEA2List. The fpFEA2List
points to the list of FEA2 structures that have the actual EA information. All of the input records must be
aligned on a two-word boundary, and the last in the list of GEA?2 structures oNextEntryOffset value must be
set to zero. The following are the various data buffers that are returned depending on the level of
information requested.

e FIL_STANDARD Output generally contains the basic file information without EAs.

typedef struct _FILEFINDBUF3
{
ULONG oNextEntryOffset;
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdatelastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
ULONG attrFile;
UCHAR cchName;
CHAR achName [ CCHMAXPATHCOMP] ;
} FILEFINDBUF3;

e FIL_QUERYEASIZE Output contains the same information as FIL_STANDARD plus EA
size.



48 — The Art of OS/2 Warp Programming

typedef struct _FILEFINDBUF4
{
ULONG oNextEntryOffset;
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
ULONG attrFile;
ULONG cbList;
UCHAR cchName;
CHAR achName [ CCHMAXPATHCOMP] ;
} FILEFINDBUF4;

The cbList field contains the size of the entire EA set for this file object, in bytes.

e FIL_QUERYEASFROMLIST Input contains the GEA2 information. Output contains the
FEA?2 information.

typedef struct _GEA2LIST
{
ULONG cbList;
GEA2 list[1];
}  GEA2LIST;

typedef GEA2LIST * PGEA2LIST;

typedef struct _GEA2
{
ULONG oNextEntryOffset;
BYTE cbName ;
CHAR szName[1l];
} GEA2;

typedef struct _FEA2LIST
{
ULONG cbList;
FEA2 list[1];
} FEA2LIST;
typedef FEA2LIST * PFEA2LIST;

typedef struct _FEA2

{

ULONG oNextEntryOffset;
BYTE fEA;

BYTE cbName ;

USHORT cbValue;

CHAR szName[1];

} FEA2;

typedef struct _EAOP2
{
PGEA2LIST fpGEA2List;
PFEA2LIST fpFEA2List;
ULONG oError;
} EAOP2;

Figure 4.4 illustrates the EAOP?2 structure in memory.



File I/O and Extended Attributes — 49

" | chlist
(4 bytes)
==
cbNextEntryOffset
foGEA2List list (4 bytes)
" cbName (1byte)
szName (chName bytes)
» —»>
chList
EAOP2 4 bytes)
F———»
cbNextEntryOffset
{4 bytes)
foFEA2LIt | [ """ T T T T
. fEA (1 byte)
list = @ —— e ————
cbName (1 byte)
| cbValue (2 bytes)
|~ szName (cbName bytes)
| EAData (cbValue)
> —> L

Figure 4.4 Map of EAOP2 memory buffer

DosFindFirst also accomplishes one other thing. It provides us with the size of the EAs associated with the
file. A buffer of this size, pbBuffer, is allocated.

DosEnumAttribute is used to identify the names and sizes of the EAs associated with a particular file
object.

APIRET APIENTRY DosEnumAttribute( ULONG ulRefType,
PVOID pvFile,
ULONG ulEntry,
PVOID pvBuf,
ULONG cbBuf,
PULONG pulCount,
ULONG ulInfolLevel);

The ulRefType tells the DosEnumAttribute about the next input parameter. When the value is 0, the pvFile
argument contains a file handle; when the value is 1, the pvFile argument contains a pointer to a null-
terminated string representing the name of the file object.

If the pvFile contains a handle, then this handle must be obtained by an earlier call to a DosOpen
or similar API.

ulEntry describes the ordinal of the file object's EA entry. This value must be non-zero and positive. The
value of 1 is indicative of the first EA entry in the list, 2 of the second one, and so on.

pvBuf is the pointer to the output buffer. Only FIL_STANDARD information can be returned; thus the
ullnfoLevel is always 1 (ENUMEA_LEVEL_NO_VALUE).
cbBuf is the length of the buffer referenced by the pvBuf.



50 — The Art of OS/2 Warp Programming
cbBuf is the length of the buffer referenced by the pvBuf.

pulCount is an input/output type argument. On input, the value contains the number of EAs for which the
information is requested. If the value of -1L is specified, all of the EAs are queried, and the information is
returned in the pvBuf, provided the buffer is of adequate size. On output this argument contains the actual
number of EAs for which the information was returned. If the buffer is big enough, all of the requested
EAs for the file will be returned. On output the buffer contains the list of those FEA2 structures that are
aligned on a two-word boundary. The last structure in the list will have the oNextEntryOffset value of zero.

typedef struct _FEA2

(
ULONG oNextEntryOffset;

BYTE fEA;

BYTE cbName;
USHORT cbValue;
CHAR szName[1l];
} FEA2;

arReturn = DosEnumAttribute ( ENUMEA_REFTYPE_PATH,
achFile,
1,
pbBuffer,
ffbFile.cbList,
&ulCount,
ENUMEA_LEVEL_NO_VALUE ) ;

printf ( "\nThis object contains %1d EAs.\n", ulCount ) ;

In this example, DosEnumAttribute uses a “1” as the EA ordinal, indicating the function is to start
enumerating at the first EA. Since pbBuffer is big enough to hold all the EA, it should all be placed in the
buffer after just one function call to DosEnumAttribute.

pdAttribute = (PFEA2)pbBuffer;

while (ulCount != 0)
{

printf ("\nFound EA with name \"%s\"",
pdAttribute->szName) ;

DumpEA (achFile,
pdAttribute) ;

ulCount--;
pdAttribute = (PFEA2) (( (PBYTE)pdAttribute)+
pdAttribute->oNextEntryOffset);

} /* endwhile */

Once the EAs are enumerated, a while loop is used to loop through and list each EA. The user function
DumpEA is covered in more detail later. The next EA is found by adding the oNextEntryOffset to the
pbBuffer pointer. Notice the casting involved here. Remember, additions should be made in PBYTE-

increments, not in PFEA2-increments.

arReturn = DosFindNext ( hdFile,
&ffbFile,
sizeof ( ffbFile ),
&ulCount ) ;



File I/O and Extended Attributes — 51

Once all the EAs are listed for one file object, DosFindNext is used to find the next file object that matches
the wildcard criteria.

In order to obtain the values of the EAs, Level FIL_QUERYEASFROMLIST information should be
specified and DosQueryFilelnfo or DosQueryPathlnfo should be used. Also, it is important to remember
that while one process is reading the EA information, another one can be changing it. To prevent this from
becoming a problem, the application must open a file with the sharing flag set to the deny-write state. This
will prevent another user from changing the information in the EAs while in use. Note that the
DosEnumAttribute may return a different EA for the same specified ordinal number, because ordinals are
assigned only to the existing EAs. An application can delete an EA, then turn around and write another
one in its place. The ordinal numbers are not preserved, and thus are not unique. The following formula
(from the OS/2 2.1 Control Program Programming Reference manual) shows the information needed to
calculate the required buffer size.

The buffer size is calculated as follows:

4 bytes (for oNextEntryOffset)

1 byte (for fEA)

1 byte (for cbName)

2 bytes (for chValue)

Value of cbName (for the name of EA)
1 byte (for NULL in chbName)

Value of cbValue(for the value of EA)

+ + + + + +

=3 Gotcha!
2 { Each EA list entry must start on a double-word boundary.

The DumpEA function checks the FEA2 structure to see if the EA matches the types,
a. 5 .LONGNAME, .ICONPOS, or .TYPE. These types were selected as examples, simply
because each is an ASCII string.

ulFBufLen = sizeof (FEA2LIST)+pdAttribute->cbName+l+ /* actual name */
pdAttribute->cbvValue; /* actual value */

PFEA2 = (PFEA2)calloc(l, ulFBufLen);

if (!pFEA2)

return FALSE;

/************‘k**********t******************************/

/* only one pFEA2 attribute in this list */

JrREI KKk kkkkkkkkhkkhkkhkhkhkhkhkhkhhkhhkkhkkkhhkhhhhkkhkh kX khkkkkkkxx /

eaopGet . fpFEA2List = (FEA2LIST *)pFEA2;
eaopGet . fpFEA2List->cbList = ulFBuflen;

The first step is building the fpFEA2List structure for input. The size of the buffer is calculated by adding
the structure size, plus the size of the EA name, cbName, plus the size of the EA data, chValue, plus one
byte for a \O’ appended to the name. The fpFEA2List structure in the eaopGet structure is set equal to the
memory that has been allocated. The only other initialization involved is setting cbList equal to the size of
the output buffer.



52 — The Art of OS/2 Warp Programming
ulGBufLen = sizeof (GEA2LIST)+pdAttribute->cbName+1l;
PGEA2List = (GEA2LIST *)calloc(1,
ulGBufLen) ;

if (!pGEA2List)
{
free (pFEA2) ;
return FALSE;
}

PGEA2List->cbList = ulGBuflen;

PGEA2List->1ist[0] .oNextEntryOffset = 0;

PGEA2List->1ist[0].cbName = pdAttribute->cbName;

strcpy (pGEA2List->1ist[0] . szName,
pdAttribute->szName) ;

eaopGet.fpGEA2List = (GEA2LIST *)pGEA2List;

The fpGEA2List structure is used to tell the DosQuery functions which EAs the programmer is interested
in. The buffer size is calculated like the fpFEA2List buffer. The offset to the next list entry is set to O,
because this example is looking for only one EA at a time. The cbList variable is the buffer size. The
cbName variable is the EA name string size. The actual name is copied into the szName buffer. The last
assignment is setting fpGEA2List in the eaopGet structure equal to the pGEA2List structure that has just
been created.

DosQueryPathlnfo is used to retrieve the actual EA data. The prototype for the function is:

APIRET DosQueryPathInfo( PSZ pszPathName, ULONG ulInfoLevel,
PVOID pInfoBuf, ULONG cbInfoBuf)

The first parameter is the filename to use to query the information. The second parameter is the level of
information to retrieve. The value FIL_QUERYEASFROMLIST will retrieve the EA information. The
third parameter is a pointer to the EAOP2 structure. The last parameter is the size of the EAOP2. This
value is equal to the size of the fpFEA2List structure plus the size of the fpGEA2List structure.

rc = DosQueryPathInfo(pszFile,
FIL_QUERYEASFROMLIST,
(PVOID) &eaopGet,
ulEBufLen) ;

ulSize = sizeof (FEA2LIST);

pFEA2 = (PFEA2)eaopGet.fpFEA2List->1list;

ulDataStart = ulSize+pFEA2->cbName;
ptrEAData = (PEAINFO) ( (PBYTE)eaopGet.fpFEA2List+
ulDataStart) ;

ptrEADataHolder = calloc(1,
sizeof (EAINFO) +
ptrEAData->usEALength+1) ;
printf ("\nType = %x",
ptrEAData->usEAType) ;
printf ("\nLength = %x",
ptrEAData->usEALength) ;
memcpy (ptrEADataHolder,
ptrEAData->bEAData,
ptrEAData->usEALength) ;
printf("\nData = %s",
ptrEADataHolder) ;

The last step in the DumpEA function is actually to print out the EA data. The data is returned in the
SfPFEA2List structure that was set up on input. First, the offset into the fpFEA2List where the EA data is



File I/O and Extended Attributes — 53
located is found by adding the size of the FEA2 structure plus the size of the attribute name. If this sounds
confusing, take a look at Figure 4.4 on page 49 to help illustrate this. The EA data is formatted in the
following manner. The first USHORT contains the type of EA data. The second USHORT contains size
of the EA data. All the bytes that follow contain the actual data located in that EA. This data is copied into
a memory buffer that contains enough space for a ‘\O’ character at the end. The EA data does not contain
the ‘\O’ character at the end of the data, because not all EA data is in the form of an ASCII null-terminated
string.







Chapter 5

Interprocess Communication

OS/2 provides several different methods of interprocess communication that are all fairly easy to
implement. In OS/2 1.x there were five distinct ways available for a process to communicate with another
process. These communications methods used flags, semaphores, pipes, queues, and shared memory to
send and receive messages and signals. Four of the most common methods were retained in OS/2 2.0; the
one that was dropped was the DosFlagProcess API. The functionality provided by DosFlagProcess is now
provided by DosRaiseException and related APIs.

The easiest interprocess communication (IPC) method to implement is unnamed and named pipes. An
unnamed pipe is a circular memory buffer that can be used to communicate between related processes.
The parent process must set the inheritance flags to true in order for the child process to inherit the handles
and allow the parent and the child processes to communicate. Communication is bidirectional, and the
pipe remains open until both the read handle and the write handle are closed. Named pipes are also an easy
way to provide remote communication. A process on the requester workstation can communicate with a
process running on the server workstation as well as with a process running locally. However, the client-
server remote connectivity can be achieved only with the help of some type of local area network server.

An OS/2 Named Pipe Client-Server Example

SERVER.C is, as the name suggests, the server of the Named Pipe IPC mechanism. The program allows
remote and local communications and performs simple character redirection. The characters are
highlighted in different colors to distinguish server and client modes of operation. As the user types in
characters at the client, they immediately echo on the server. There is no implied limitation that the server
can receive only, and the client can send only. The particular implementation is specific to this example.

The SERVER.EXE application can be started by simply typing Server followed by a carriage return from
the command line. This will start the server component of the program pair. The Server must be started
first, since it is the Server that creates the named pipe and allows the Client to connect to it. After the
server starts successfully, the Client can be started by typing Client [ServerName] followed by a carriage
return from the command line. Note that the {ServerName] is an optional parameter and is used only if a
remote pipe connection is being attempted. If the Server and the Client are running in the same
workstation, and the workstation is capable of running the IBM OS/2 LAN Server software, the Client-
Server communication can be achieved with both local and remote connections. However, if the IBM
OS/2 LAN Server is not active, or the user is not logged on to the IBM OS/2 LAN Server domain,
attempting a remote connection will produce an error stating that the pipe name was not found. This is
correct, and usually points to an inactive server or an unauthorized user. The best way to look at this
example is to open two OS/2 window sessions and to allow one session to run the SERVER.EXE and the
other to run the CLIENT.EXE. This way it will be easier to see the Client-Server communication.

55



56 — The Art of OS/2 Warp Programming

SERVER.C

{

}

{

#define INCL_DOSNMPIPES
#define INCL_DOSPROCESS
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include "common.h"

INT main(void)

USHORT *usHiCh;
USHORT *usLoCh;
ULONG ulHiLoCh;
APIRET arReturn;
ULONG ulBytesDone;

arReturn = DosExitList (EXLST_ADD,
CleanUp) ;

ulHiLoCh = 0;

usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+1;

chToken = SERVER_MODE;

printf (SERVER_COLOR) ;
printf (" Hit Ctrl+C to exit the server at any time \n");
printf (" Starting the program in Server Mode...\n\n");

arReturn = ConnFromClient();
printf("\n The Pipe Creation / Connection API "
" returned rc = %02X\n\n",
arReturn) ;

while (!arReturn && (chToken != DISCON_MODE))
{

arReturn = RecvFromClient (&ulHiLoCh,

&ulBytesDone) ;
if (ulHiLoCh == TOKEN_F3_DISCON || !ulBytesDone)
{
chToken = DISCON_MODE;
break;
/* endif */

}
if (*usLoCh == *usHiCh)
putch (*usHiCh) ;
else
putch('*");

if (*usLoCh == RETURN_CHAR)

{
putch (LINE_FEED_CHAR) ;
} /* endif */
} /* endwhile */
arReturn = DosClose (hpPipe);
printf (NORMAL_COLOR) ;
return arReturn;

APIRET ConnFromClient (VOID)

CHAR achInitBuf [HAND_SHAKE_LEN+1];
ULONG ulOpenMode;

ULONG ulPipeMode;

ULONG uloutBufsSize;

ULONG ulInpBufSize;




Interprocess Communication — 57

ULONG ulTimeOut;
USHORT arReturn;
ULONG ulBytesDone;

memset (achInitBuf,
0,
sizeof (achInitBuf));

ulOpenMode = DEFAULT_MAKE_MODE;
ulPipeMode = DEFAULT_PIPE_MODE;
ulOutBufSize = DEFAULT_OUTB_SIZE;
ulInpBufSize = DEFAULT_INPB_SIZE;
ulTimeOut = DEFAULT_TIME_OUTV;

arReturn = DosCreateNPipe (DEFAULT_PIPE_NAME,

&hpPipe,

ulOpenMode,
ulPipeMode,
ulOutBufsize,
ulInpBufSize,
ulTimeOut) ;

if (!arReturn)

{

printf (" You can start the CLIENT program now.\n");
printf (" Typing in the CLIENT window will make\n");

printf (" the keystrokes echo in this SERVER window\n\n");
arReturn = DosConnectNPipe (hpPipe) ;

if (!arReturn)
{
arReturn = DosRead (hpPipe,

achInitBuf,
(ULONG) HAND_SHAKE_LEN,

&ulBytesDone) ;

if (!strcmp(achInitBuf,

HAND_SHAKE_INP) &&

{

arReturn = DosWrite (hpPipe,

tarReturn)

HAND_SHAKE_OUT,

strlen (HAND_SHAKE_OUT) ,

&ulBytesDone) ;

}
else

{

arReturn = HAND_SHAKE_ERROR;

}
}
}
return arReturn;

}

APIRET RecvFromClient (PULONG pulHiLoCh, PULONG pulBytesDone)

{

return DosRead (hpPipe,
pulHiLoCh,

sizeof (pulHiLoCh),
pulBytesDone) ;

}

VOID APIENTRY CleanUp (ULONG ulTermCode)
{
#define MY_STDOUT 1

ULONG ulBytesDone;

DosClose (hpPipe) ;

/* endif
/* endif
/* endif

*/
*/
*/




58 — The Art of OS/2 Warp Programming

DosWrite (MY_STDOUT,
NORMAL_COLOR,
strlen (NORMAL_COLOR),

&ulBytesDone) ;
DosExitList (EXLST_EXIT,
0);

}

SERVER.H

#define SERVER_MODE 1

#define CLIENT_MODE 2

#define SERVER_COLOR "\ne[0;32;40m"

#define CLIENT_COLOR "\ne[0;31;40m"

#define NORMAL_COLOR "\ne[0;37;40m"

#define REMOTE_PIPE 2

#define DISCON_MODE 3

#define BAD_INPUT_ARGS 99

#define MAX_PIPE_NAME_LEN 80

#define MAX_SERV_NAME_LEN 8

#define DEFAULT_PIPE_NAME “\\PIPE\\MYPIPE"

#define DEFAULT_MAKE_MODE NP_ACCESS_DUPLEX

#define DEFAULT_PIPE_MODE NP_WMESG | NP_RMESG | 0x01

#define DEFAULT_OPEN_FLAG OPEN_ACTION_OPEN_IF_EXISTS

#define DEFAULT_OPEN_MODE OPEN_FLAGS_WRITE_THROUGH | \
OPEN_FLAGS_FAIL_ON_ERROR | \
OPEN_FLAGS_RANDOM | \
OPEN_SHARE_DENYNONE | \
OPEN_ACCESS_READWRITE

#define DEFAULT_OUTB_SIZE 0x1000

#define DEFAULT_INPB_SIZE 0x1000

#define DEFAULT_TIME_OUTV 20000L

#define TOKEN_F2_SWITCH 0x0000003CL

#define TOKEN_F3_DISCON 0x0000003DL

#define RETURN_CHAR 0x0D

#define LINE_FEED_CHAR 0x0A

#define FUNC_KEYS_CHAR 0x00

#define EXTD_KEYS_CHAR 0xEO

#define HAND_SHAKE_LEN 0x08

#define HAND_SHAKE_INP "pIpPEtEsT"

#define HAND_SHAKE_OUT "PiPeTeSt"

#define HAND_SHAKE_ERROR 101

#define PROGRAM_ERROR 999

CHAR achPipeName [MAX_PIPE_NAME_LEN] ;
HPIPE hpPipe ;
CHAR chToken ;

USHORT BadArgs ( USHORT usNumArgs, PCHAR apchArgs [] ) ;
APIRET ConnToClient ( VOID ) ;

APIRET ConnToServer ( VOID ) ;

APIRET SendToClient ( ULONG ulHiLoCh ) ;

APIRET RecvFromServer ( PULONG pulHiLoCh ) ;

SERVER.DEF

NAME SERVER WINDOWCOMPAT

DESCRIPTION 'SERVER example
Copyright (c¢) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

First, a DosExitList call is made in order to allow the SERVER.EXE to clean up properly in an event of a
Ctrl-/Ctrl-Brk condition.




Interprocess Communication — 59

APIRET DosExitList( ULONG ulOrderCode, PFNEXITLIST pfn )

ulOrderCode consists of two lower-order bytes that have meaning and a high-order word that must be 0.
The lower-order byte can have the values listed in Table 5.1.

Table 5.1 Values for Lower-Order Bﬂe of ulOrderCode —

EXLST_ADD Add an address to the termination hst ”M.

EXLST_REMOVE  Remove an address from the termination list
EXLST_EXIT When termination processing completes, transfer to the next address

on the termination list

The high-order byte of the low-order word must be zero if EXLST_REMOVE, or EXLST_EXIT is
specified. If, however, EXLST_ADD is specified, the high-order byte will indicate the invocation order.

The second parameter for DosExitList is an address of the routine to be executed—pfn.

The CleanUp() routine closes the named pipe handle and resets the window text color back to white on
black.

Next, ConnToClient() must issue two calls: DosCreateNPipe() and DosConnectNPipe(). Issuing the
DosConnectNPipe() call is what allows the client to perform a DosOpen() successfully. After the first few
necessary setup APIs are called, a simple handshake operation is performed by reading a known string
from the pipe and writing a known string back.

APIRET DosCreateNPipe (PSZ pszName,
PHPIPE pHpipe,
ULONG openmode,
ULONG pipemode,
ULONG cbInbuf,
ULONG cbOutbuf,
ULONG msec) ;

The DosCreateNPipe() API expects seven arguments. The first parameter, DEFAULT_PIPE_NAME, is an
ASCII string that contains the name of the pipe to be created, pszName. The second is a pointer to the pipe
handle that will be returned when the function returns. The next parameter is the open mode used for the
pipe. The flag used in the example is NP_ACCESS_DUPLEX, which provides inbound and outbound
communication. The fourth parameter is the pipe mode. This parameter is a set of bitfields that define the
pipe mode. The flags used in this example are NP_WMESG | NP_RMESG | 0x01. These flags indicate
the pipe can send and receive messages, and also that only one instance of the pipe can be created. The
pipe can be created in either byte or message mode only. If a byte mode pipe is created, then DosRead()
and DosWrite() must use byte stream mode when reading from or writing to the pipe. If a message mode
pipe is created, then DosRead() and DosWrite() automatically will use the first two bytes of each message,
called the header, to determine the size of the message. Message mode pipes can be read from and written
to using byte or message streams. Byte mode pipes, on the other hand, can be used only in byte stream
mode. If a message stream is used, the operating system will encode the message header without the user
having to calculate the value. Care should be taken when deciding what size buffers should be used during
communications. The transaction buffer should be two bytes greater than the largest expected message.

APIRET DosConnectNPipe (HPIPE hpipe);



60 — The Art of OS/2 Warp Programming

The DosConnectNPipe() only takes one argument, the named pipe handle. At this point, the pipe is ready
for a client connection.

CLIENT.C

#define INCL_DOSNMPIPES

#define INCL_DOSPROCESS

#include <os2.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <conio.h>

#include "common.h"

INT main(USHORT usNumArgs, PCHAR apchArgs|[])

{

USHORT *usHiCh;
USHORT *usLoCh;
ULONG ulHiLoCh;
APIRET arReturn;

arReturn = DosExitList (EXLST_ADD,
CleanUp) ;

achPipeName[0] = 0;

chToken = 0;

ulHiLoCh = 0;

usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+1;

chToken = CLIENT_MODE;

printf (CLIENT_COLOR) ;
printf (" Hit F3 to exit client program. \n\n");
printf (" Starting the program in Client Mode...\n\n");

if (usNumArgs == REMOTE_PIPE)
{
sprintf (achPipeName,
"\\\\%s",
apchArgs(1]);
}

strcat (achPipeName,
DEFAULT_PIPE_NAME) ;

printf (" Connecting to pipe : %$s\n\n",
achPipeName) ;

arReturn = ConnToServer () ;
if (!arReturn)
{
printf(" You can start typing in this CLIENT window\n");
printf(
" and watch for your keystrokes in the SERVER window\n\n")

7

}

while (!arReturn && (chToken != DISCON_MODE))
{

*usHiCh = getch();

if ((*usHiCh == FUNC_KEYS_CHAR) || (*usHiCh ==
EXTD_KEYS_CHAR) )

{

}
else

*usLoCh = getch();




Interprocess Communication — 61

*usLoCh = *usHiCh;
} /* endif
arReturn = SendToServer (ulHiLoCh) ;

if (ulHiLoCh == TOKEN_F3_DISCON)

chToken = DISCON_MODE;

break;
} /* endif
if (*usLoCh == *usHiCh)

putch (*usHiCh) ;
else

putch('*');

if (*usLoCh == RETURN_CHAR)

{
putch (LINE_FEED_CHAR) ;

} /* endif
} /* endwhile
arReturn = DosClose (hpPipe);
printf (NORMAL_COLOR) ;
return arReturn;

}

APIRET ConnToServer (VOID)
{

CHAR achInitBuf [HAND_SHAKE LEN+1];
ULONG ulOpenFlag;

ULONG ulOpenMode;

ULONG ulActionTaken;

INT arReturn;

ULONG ulBytesDone;

memset (achInitBuf,
0,
sizeof (achInitBuf));

ulOpenFlag = DEFAULT_OPEN_FLAG;
ulOpenMode = DEFAULT_OPEN_MODE;

arReturn = DosOpen(achPipeName,

&hpPipe,

&ulActionTaken,

0,

0,
ulOpenFlag,
ulOpenMode,
0);

if (larReturn)
{
arReturn = DosWrite (hpPipe,
HAND_SHAKE_INP,
strlen (HAND_SHAKE_INP),
&ulBytesDone) ;

if (!arReturn)
{
arReturn = DosRead (hpPipe,
achInitBuf,
(ULONG) HAND_SHAKE_LEN,
&ulBytesDone) ;

if (strcmp(achInitBuf,
HAND_SHAKE_OUT) )

{
arReturn = HAND_SHAKE_ERROR;
} /* endif

*/

*/

*/
*/

*/




62 — The Art of OS/2 Warp Programming

} /* endif */
} /* endif */
if (arReturn)
{

printf("\n The Pipe Open / Connection API "

"returned rc = %02x\n",
arReturn) ;

printf("\n Make sure the Server is running.\n\n"):;
} /* endif */
return arReturn;

}

APIRET SendToServer (ULONG ulHiLoCh)
{
ULONG ulBytesDone;

return DosWrite (hpPipe,
&ulHiLoCh,

sizeof (ulHiLoCh),
&ulBytesDone) ;
}

VOID APIENTRY CleanUp (ULONG ulTermCode)
{
#define MY_STDOUT 1

ULONG ulBytesDone;

DosClose (hpPipe) ;

DosWrite (MY_STDOUT,
NORMAL_COLOR,
strlen (NORMAL_COLOR),
&ulBytesDone) ;

DosExitList (EXLST_EXIT,
0);

CLIENT.DEF

NAME CLIENT WINDOWCOMPAT

DESCRIPTION 'CLIENT example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

COMMON.H

#define SERVER_MODE 1

#define CLIENT_MODE 2

#define SERVER_COLOR "\ne[0;32;40m"

#define CLIENT_COLOR "\ne[0;36;40m"

#define NORMAL_COLOR "\ne[0;37;40m"

#define REMOTE_PIPE 2

#define DISCON_MODE 3

#define BAD_INPUT_ARGS - 99

#define MAX PIPE NAME_LEN 80

#define MAX_ SERV_NAME_LEN 8

#define DEFAULT PIPE_NAME "\\PIPE\\MYPIPE"

#define DEFAULT MAKE_MODE NP_ACCESS_DUPLEX

#define DEFAULT_PIPE_MODE NP_WMESG | NP_RMESG | 0x01
#define DEFAULT_OPEN_FLAG OPEN_ACTION_OPEN_IF_EXISTS
#define DEFAULT_OPEN_MODE OPEN_FLAGS_WRITE_THROUGH | \

OPEN_FLAGS_FAIL_ON_ERROR \
OPEN_FLAGS_RANDOM | \




Interprocess Communication — 63

OPEN_SHARE_DENYNONE | \
OPEN_ACCESS_READWRITE

#define DEFAULT_OUTB_SIZE 0x1000

#define DEFAULT_INPB_SIZE 0x1000

#define DEFAULT_TIME_OUTV 20000L

#define TOKEN_F3_DISCON 0x0000003DL

#define RETURN_CHAR 0x0D

#define LINE_FEED_CHAR 0x0A

#define FUNC_KEYS_CHAR 0x00

#define EXTD_KEYS_CHAR 0xEO

#define HAND_SHAKE_LEN 0x08

#define HAND_SHAKE_INP "pIpEtEsT"

#define HAND_SHAKE_OUT "PiPeTeSt"

#define HAND_SHAKE_ERROR 101

#define PROGRAM_ERROR 999

CHAR achPipeName [MAX_PIPE_NAME_LEN] ;
HPIPE hpPipe ;
CHAR chToken ;

USHORT BadArgs ( USHORT usNumArgs, PCHAR apchArgs [] ) ;

APIRET ConnFromClient ( VOID ) ;

APIRET ConnToServer ( VOID ) ;

APIRET SendToServer ( ULONG ulHiLoCh ) ;

APIRET RecvFromClient ( PULONG pulHiLoCh, PULONG pulBytesDone ) ;

VOID APIENTRY CleanUp ( ULONG ulTermCode );/* ExitList routines must be declared with
VOID APIENTRY*/

CLNTSRVR.MAK

ALL: CLIENT.EXE SERVER.EXE

CLIENT.EXE: CLIENT.OBJ
LINK386 @<<

CLIENT

CLIENT

CLIENT

052386

CLIENT

<<

SERVER.EXE: SERVER.OBJ
LINK386 @<<

SERVER

SERVER

SERVER

052386

SERVER

<<

CLIENT.OBJ: CLIENT.C
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ -Q CLIENT.C

SERVER.OBJ: SERVER.C
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ -Q SERVER.C

When the Client is started, the initialization call is made to ConnToServer(). The client application must
perform a DosOpen() first in order to obtain a pipe handle. Once the pipe handle is obtained, the
application can freely read from the pipe and write to the pipe. In this case, the first write/read pair is used
for primitive handshaking communication.

The most interesting set of parameters for the DosOpen() call on the client side is the ulOpenFlag, which
contains the value OPEN_ACTION_OPEN_IF_EXISTS, and the ulOpenMode, which contains the




64 — The Art of OS/2 Warp Programming
OPEN_FLAGS_WRITE_THROUGH | OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM
| OPEN_SHARE_DENYNONE | OPEN_ACCESS_READWRITE value.

Next, the while loop is entered. It can be stopped only if an API error is encountered, or if the user presses
the F3 function key at the Client window. The buffer that is being transmitted from the Client to the Server
represents the character received from the keyboard buffer used by the Client application. A double word is
used to allow proper character translation for the F1-F12 function keys and some other extended keyboard
keys. (The function key keystroke generates two characters; the first is always a 0x00, followed by the
0xYY, where YY is a unique function key identifier.)

The remote pipe connection from the Client to the Server is achieved by starting the CLIENT.EXE with the
following command-line syntax:

CLIENT [MYSERVER]

where MYSERVER is the remote Server machine name. (The NetBIOS machine name for IBM 0OS/2 LAN
Server is found in the IBMLANL.INI file). The pipe names that are created by the Client have the following
format:

local named pipe name : \PIPE\MMYPIPE
remote named pipe name : \\MY SRVR\PIPEWMMYPIPE

The functionality that this example application provides is the same in both remote and local connectivity
modes. As a matter of fact, neither the Client nor the Server differentiates between the remote and local
case; only the pipe name is significant. This is the subtle beauty of the named pipes IPC!

The main reason for choosing pipes as an IPC method is ease of implementation, but it is not the best
choice for all cases. Pipes are useful only when a process has to send a lot of information to or receive
information from another process. Even though it is possible to allow pipe connections with multiple
processes, connect and disconnect algorithms must always be implemented for such situations. The remote
connection advantage of named pipes sometimes outweighs the complexity of connect-disconnect
algorithms. Since it is not possible under OS/2 to communicate remotely with queues or remote shared
memory, pipes sometimes become not only the best but the only IPC choice.

Gotcha!

It is not wunusual for an application to receive a return value of
ERROR_TOO_MANY_HANDLES when attempting to open additional pipes. The
system initially allows 20 file handles per process; once the limit is reached, the above
error will appear. To prevent this from happening, the DosSetMaxFH(ULONG
ulNumberHandles) call must be issued, where ulNumberHandles is the new maximum
number of handles allowed to be open. This call will be successful if system resources
have not been exhausted. It is a good idea to issue this call only when needed, since additional file handles
consume system resources that may be used elsewhere in the system.

'3
v

.,
2

DOS-0S/2 Client-Server Connection

To make the pipe connectivity example complete, a DOS-named pipe client must be discussed. The DOS
based, D_CLIENT.EXE, is only slightly different from its big brother, the OS/2 based CLIENT.EXE.



Interprocess Communication — 65
There are no logical diffrences between the two; the difference lies in the APIs. The
DosOpen()/DosRead()/DosWrite() OS/2 calls are replaced with open()/read()/write() DOS calls.

D_CLIENT.C

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <conio.h>

#include <fcntl.h>

#include "dcommon.h"

int main(unsigned short usNumArgs,char *apchArgs(])

{
unsigned short *usHiCh;
unsigned short *usLoCh;
unsigned long ulHiLoCh;
unsigned short arReturn;

achPipeName[0] = 0;

chToken = 0;

ulHiLoCh = 0;

usLoCh = (unsigned short *)&ulHiLoCh;

usHiCh = usLoCh+1;

chToken = CLIENT_MODE;
/* ANSI.SYS must be loaded for the COLOR string to work */
/* printf (CLIENT_COLOR) ; */

printf("\n\n Hit F3 to exit client program. \n\n");
printf (" Starting the program in Client Mode...\n\n");

if (usNumArgs == REMOTE_PIPE)
{
sprintf (achPipeName,
“\\\\%s",
apchArgs[1]);
}

strcat (achPipeName,
DEFAULT_PIPE_NAME) ;

printf (" Connecting to pipe : %s\n\n",
achPipeName) ;

arReturn = ConnToServer () ;
if (arReturn != EOF)
{
printf (" You can start typing in this CLIENT window\n");
printf(
" and watch for your keystrokes in the SERVER window\n\n")

}

while ((arReturn != EOF) && (chToken != DISCON_MODE))
{

*usHiCh = getch();
if ((*usHiCh == FUNC_KEYS_CHAR) || (*usHiCh ==
EXTD_KEYS_CHAR) )

{
*usLoCh = getch();
}
else
{

*usLoCh = *usHiCh;
} /* endif */




66 — The Art of OS/2 Warp Programming

arReturn = SendToServer (ulHiLoCh) ;

if (ulHiLoCh == TOKEN_F3_DISCON)

{
chToken = DISCON_MODE;
break;
} /* endif
if (*usLoCh == *usHiCh)
putch(*usHiCh) ;
else
putch('*');
if (*usLoCh == RETURN_CHAR)
{
putch (LINE_FEED_CHAR) ;
} /* endif
} /* endwhile

close (hpPipe) ;

/* ANSI.SYS must be loaded for the COLOR string to work
/*  printf (NORMAL_COLOR);

return arReturn;

}

unsigned short ConnToServer (void)

{
char achInitBuf [HAND_SHAKE LEN+1];
unsigned long ulOpenFlag;
unsigned long ulOpenMode;

unsigned long ulActionTaken;
int arReturn = 0;
unsigned long ulBytesDone;

memset (achInitBuf,
0,
sizeof (achInitBuf));

DEFAULT_OPEN_FLAG;
DEFAULT_OPEN_MODE;

ulOpenFlag
ulOpenMode

arReturn = hpPipe = open(achPipeName,
O_RDWR | O_BINARY) ;

if (arReturn != EOF)

{
arReturn = write (hpPipe,
HAND_SHAKE_INP,
strlen (HAND_SHAKE_INP));
if (arReturn != EOF)
{
arReturn = read(hpPipe,
achInitBuf,
HAND_SHAKE_LEN) ;
if (strcmp(achInitBuf,
HAND_SHAKE_OUT) )
{
arReturn = HAND_SHAKE_ERROR;
} /* endif
} /* endif
} /* endif
if (arReturn == EOF)
{

printf("\n The Pipe Open / Connection API "
"returned rc = %02d\n",
arReturn) ;

*/

*/
*/

*/
*/

*/
*/
*/




Interprocess Communication — 67

printf("\n Make sure the Server is running.\n\n");
/* endif */
return arReturn;

}

unsigned short SendToServer (unsigned long ulHiLoCh)
{
unsigned long ulBytesDone;

return (write (hpPipe,
&ulHiLoCh,
sizeof (ulHiLoCh)));

D_CLIENT.MAK

ALL: D_CLIENT.EXE

D_CLIENT.EXE: D_CLIENT.OBJ
LINK /NOD @<<

D_CLIENT

D_CLIENT

D_CLIENT

LLIBCER

<<

D_CLIENT.OBJ: D_CLIENT.C D_CLIENT.MAK

cl -c -AL D_CLIENT.C

D_CLIENT.DEF

NAME D_CLIENT WINDOWCOMPAT

DESCRIPTION 'CLIENT example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

DCOMMON.H

/* this nibble applies if file already exists XXXX */
#define OPEN_ACTION_FAIL_IF_EXISTS 0x0000 /* -=-= ==== —=-- 0000 */
#define OPEN_ACTION_OPEN_IF_EXISTS 0x0001 /* —-==- -=-- ---- 0001 */
#define OPEN_ACTION_REPLACE_IF_EXISTS 0x0002 /* ---- -=-- ——-- 0010 */
/* this nibble applies if file does not exist KXXX */
#define OPEN_ACTION_FAIL_ IF_NEW 0x0000 /* —-=-== —==- 0000 -=--- */
#define OPEN_ACTION_CREATE_IF_NEW 0x0010 /* -=-= =--- 0001 ---- */

/* DosOpen/DosSetFHandState flags */

#define OPEN_ACCESS_READONLY 0x0000 /* ---- -=-= ---- -000 */
#define OPEN_ACCESS_WRITEONLY 0x0001 /* ---- -=—= ---- -001 */
#define OPEN_ACCESS_READWRITE 0x0002 /* --~=- —=-- -——- -010 */
#define OPEN_SHARE_DENYREADWRITE 0x0010 /* ---~ ---- -001 ---- */
#define OPEN_SHARE_DENYWRITE 0x0020 /* ---- ---- -010 --=-- */
#define OPEN_SHARE_DENYREAD 0x0030 /* ---- ---- -011 ---- */
#define OPEN_SHARE_DENYNONE 0x0040 /* ---- ---- -100 ---- */
#define OPEN_FLAGS_NOINHERIT 0x0080 /* ---- ---- 1--- -=-- */
#define OPEN_FLAGS_NO_LOCALITY 0x0000 /* ---- -000 ---- ---- */

#define OPEN_FLAGS_SEQUENTIAL 0x0100 /* ---- -001 ---- ---- */




68 — The Art of OS/2 Warp Programming

#define OPEN_FLAGS_RANDOM 0x0200 /* ---- -010 ---- ---- */
#define OPEN_FLAGS_RANDOMSEQUENTIAL 0x0300 /* ---- -011 ---- ---- */
#define OPEN_FLAGS_NO_CACHE 0x1000 /* ---1 -=-= —=—-- ———- */
#define OPEN_FLAGS_FAIL_ON_ERROR 0x2000 /* -=1- —--= —-o- ——oo %/
#define OPEN_FLAGS_WRITE_THROUGH 0x4000 /* -1-- -=== —==c ——ooo %/
#define OPEN_FLAGS_DASD 0x8000 /* 1--- -—-= —-—-- ———- */
#define SERVER_MODE 1

#define CLIENT_MODE 2

#define SERVER_COLOR "\ne[0;32;40m"

#define CLIENT_COLOR "\ne[0;36;40m"

#define NORMAL_COLOR “\ne[0;37;40m"

#define REMOTE_PIPE 2

#define DISCON_MODE 3

#define BAD_INPUT_ARGS 99

#define MAX_PIPE_NAME_LEN 80

#define MAX_SERV_NAME_LEN 8

#define DEFAULT_PIPE_NAME “\\PIPE\\MYPIPE"

#define DEFAULT_MAKE_MODE NP_ACCESS_DUPLEX

#define DEFAULT_PIPE_MODE NP_WMESG | NP_RMESG | 0x01

#define DEFAULT_OPEN_FLAG OPEN_ACTION_OPEN_IF_EXISTS

#define DEFAULT_OPEN_MODE OPEN_FLAGS_WRITE_THROUGH |

OPEN_FLAGS_FAIL_ON_ERROR |
OPEN_FLAGS_RANDOM |
OPEN_SHARE_DENYNONE |
OPEN_ACCESS_READWRITE

s

#define DEFAULT_OUTB_SIZE 0x1000
#define DEFAULT_INPB_SIZE 0x1000
#define DEFAULT_TIME_OUTV 20000L
#define TOKEN_F3_DISCON 0x0000003DL
#define RETURN_CHAR 0x0D
#define LINE_FEED_CHAR 0x0A
#define FUNC_KEYS_CHAR 0x00
#define EXTD_KEYS_CHAR 0xXEQ
#define HAND_SHAKE_LEN 0x08
#define HAND_SHAKE_INP "pIpPEtEST"
#define HAND_SHAKE_OUT "PiPeTeSt"
#define HAND_SHAKE_ERROR 101

#define PROGRAM_ERROR 999

char achPipeName [MAX_PIPE_NAME_LEN] ;
unsigned short hpPipe ;

char chToken ;

unsigned short ConnToClient ( void ) ;

unsigned short ConnToServer ( void ) ;

unsigned short SendToServer ( unsigned long ulHiLoCh ) ;

unsigned short RecvFromClient ( unsigned long * pulHiLoCh, unsigned long * pulBytesDone );

An OS/2 QUEUE Client-Server Example

The next example pair is QSERVER.C and QCLIENT.C. In this example, the communication process is a
little bit more complex than the one in the named pipe illustration. Here the point is to show how several
different processes can communicate with one central process. The functionality is similar to the named
pipe example, but with one key difference: The queue Server process does not send anything to the queue
Client processes. In fact, only the queue Client process can send information to the queue Server.
However, this does not mean that the queue Server cannot issue a DosWriteQueue() call itself; it is just not
part of this example. It is left to the reader to implement this additional functionality. By using the
QSERVER.C as a prototype template, the WriteToQue function call can enhance the QSERVER.C
example program to issue DosWriteQueue calls. The QSERVER.C-QCLIENT.C example makes use of
both the OS/2 queue APIs and named shared memory segments.




Interprocess Communication — 69

The concept of an OS/2 queue is somewhat simple. It is, in fact, an ordered set of elements. The elements
are 32-bit values that are passed from the Client to the Server of the queue. The Server of the queue is the
process that created the queue by issuing the DosCreateQueue() API call.

APIRET DosCreateQueue( PHQUEUE phqg, ULONG ulPriority, PSZ pszName )

phq is a pointer to the queue handle of the queue that is being created. ulPriority is a set of two flags
OR’ed together. The first flag can have the values listed in Table 5.2.

ik

QUE_FIFO FIFO queue
QUE_LIFO LIFO queue
QUE_PRIORITY Priority queue

The second flag can have the values listed in Table 5.3.

I

QUE_NOCONVERT_ADDRESS Does not convert addresses of 16-bit elements that are placed in the

queue
QUE_CONVERT_ADDRESS Converts addresses of 16-bit elements to 32-bit elements

The last parameter is a pointer to the ASCII name of the queue.

Only the Server of the queue can read from the queue. When the queue is read, one element is removed
from it. The Server and the Client can both issue calls to write, query, and close the queue. However, only
the Server can issue calls to create, read, peek, and purge the queue. The Client must issue a
DosOpenQueue call prior to attempting to write elements to the queue or to query the queue elements.

APIRET DosOpenQueue( PPID ppid, PHQUEUE phq, PSZ pszName )

ppid is a pointer to the process ID of the queue’s server process. phgq is a pointer to the write handle of the
queue. pszName is the ASCII name of the queue to be opened.

The queue elements can be prioritized and processed in particular order. The order depends on the
ulQueueFlags value used when creating the queue. This value cannot be changed once the queue has been
created.

Specifying a priority will cause the DosReadQueue API to read the queue elements in descending priority
order. Priority 15 is the highest, and 0 is the lowest. FIFO order will be used for the elements with equal
priority. The elements of the queue can be used to pass data to the server directly or indirectly. The
indirection comes from using pointers to shared memory. When pointers are used, the shared memory can
be of two types: named shared memory and unnamed shared memory. Related processes generally use
named shared memory, while the rest use unnamed shared memory. In this example, the named shared
memory method is implemented. OS/2 queues do not perform any data copying. They only pass pointers.
They leave the rest of the work for the programmer.



70 — The Art of OS/2 Warp Programming
APIRET DosReadQueue( HQUEUE hQue, PREQUESTDATA pData, PULONG pcbData,
PPVOID ppBuf, ULONG ulElement, BOOL32 bWait,
PBYTE pbPriority, HEV hevSem )

hQue is a handle of the queue to be read from. pData is a pointer to a REQUESTDATA structure that
returns a PID and an event code. pchData is an output parameter that specifices the length of the data to be
removed. ppBuf is an output parameter that is a pointer to the element being removed from the queue.
ulElement is an indicator that can be either 0, meaning remove the first element from the queue, or a value
returned by DosPeekQueue. Table 5.4 lists the values for bWait.

I

DCWW_WAIT‘ The thread will wait for an élement to be added to the queue
DCWW_NOWAIT Return immediately with ERROR_QUE_EMPTY if no data is available

pbPriority is an output parameter that indicates the priority of the element being read. hevSem is a handle
of an event semaphore that will be posted when data is added to the queue, and DCWW_NOWAIT is
specified.

The OS/2 QUEUE Client-Server example is best illustrated by starting several OS/2 window sessions from
the desktop and making all of them visible to the user at the same time. The queue Server process must be
started first. Once the queue is created and the queue Server is started, the queue Clients can use the queue
to pass various information to the queue Server. In this case the information that is passed is the keystrokes
the user enters from each one of the Client processes. Figure 5.1 illustrates this procedure.

ﬁ
e —]\\ma
— 4 N

Queue
\—__/
Elements CLIENTS
*___’/
—-—/
\_—"/\
FIFO QUEUE QUEUE SERVER

Figure 5.1 Diagram of a queue.

Each one of the queue Clients will send keystroke characters to the queue Server via FIFO queue. Once
the characters are received by the queue Server, they will be displayed in color depending on the Client that
sent them. Table 5.5 describes the queue client text colors.



Interprocess Communication — 71

Table 5.5 Queue Chent Text Colors

Number Color
Client 1 Red
Client 2 Green
Client 3 Yellow
Client 4 Blue
Client 5 Magenta

The QSERVER.EXE allows only up to five active QCLIENT.EXE connections at any one time. Once the
maximum number of clients has been reached, entering QCLIENT.EXE followed by a carriage return from
the command line will produce a program error message describing the maximum number of clients.

The complete listing of QSERVER.C follows.

QSERVER.C

#define INCL_DOSQUEUES
#define INCL_DOSMEMMGR
#define INCL_DOSPROCESS
#define INCL_DOSERRORS
#define INCL_DOSSEMAPHORES
#include <os2.h>

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <conio.h>

#include "gcommon.h"

APIRET InitServerQueEnv(VOID) ;

APIRET ReadFromQue (PULONG pulHiLoCh) ;
APIRET ToScreen(VOID *buffer,ULONG length);

INT main(USHORT usNumArgs, PCHAR apchArgs|(])
{

USHORT *usHiCh;

USHORT *usLoCh;

ULONG ulHiLoCh;

APIRET arReturn = 0;

arReturn = DosExitList (EXLST_ADD,
CleanUp) ;

ulHiLoCh = 0;

usLoCh = (USHORT *)&ulHiLoCh;

usHiCh = usLoCh+1;

printf (SERVER_COLOR) ;
printf (" Server process is creating");
printf(" and initializing the Queue...\n");
arReturn = InitServerQueEnv();
if (!arReturn)
printf("\n Press Ctrl-C, or Ctrl-Break to exit\n\n");

while (!arReturn)
{
arReturn = ReadFromQue (&ulHiLoCh) ;

if (!arReturn)

{

if (*usLoCh == *usHiCh)
putch(*usHiCh) ;




72 — The Art of OS/2 Warp Programming

else
if (ulHiLoCh == TOKEN_F3_DISCON)
{
ToScreen (WHITE_COLOR,
strlen(WHITE_COLOR)) ;
ToScreen("\n\r client exited\n\n\r",
strlen("\n\r client exited\n\n\r"));
}
else
putch('*");
if (*usLoCh == RETURN_CHAR)
putch (LINE_FEED_CHAR) ;
}
else
if (arReturn == ERROR_QUE_EMPTY)

arReturn = (SHORT)NULL;
}

arReturn = DosCloseQueue (hgQueue) ;
printf (WHITE_COLOR) ;
return arReturn;

}

APIRET InitServerQueEnv(VOID)
{
APIRET arReturn;
SHORT sIndex;

arReturn = DosAllocSharedMem( (PVOID)&pmgsClient,
DEFAULT_SEG_NAME,
DEFAULT_PAGE_SIZE,
DEFAULT_SEG_FLAG) ;

if (!arReturn)
{
arReturn = DosCreateQueue (&hgQueue,
DEFAULT_QUE_FLAG,
DEFAULT_QUE_NAME) ;

if (!arReturn)
{
printf ("\n Queue created successfully \n");
for (sIndex = 0; sIndex < MAX_CLIENTS; sIndex++)
{
pmgsClient [sIndex] .szColor[0] = (BYTE)NULL;
pmgsClient [sIndex] .ulPid = (PID)NULL;
} /* endfor */
arReturn = DosCreateEventSem(DEFAULT_SEM_NAME,
&hsmSem,
ULONG_NULL,
TRUE) ;
if (arReturn)
printf ("\n DosCreateEventSem returned ""$%$02d\n",

arReturn) ;
}
else
{
printf("\n DosCreateQueue API returned ""%02d\n",
arReturn) ;
} /* endif */
}
else
{
printf(* \n Could not allocate "
"Shared Memory ( %024 ) \n",
arReturn) ;
} /* endif */

return arReturn;




Interprocess Communication — 73

}

APIRET ReadFromQue (PULONG pulHiLoCh)
{
APIRET arReturn;
REQUESTDATA rdRequest;
ULONG ulSzbata;
BYTE bPriority;

arReturn = DosReadQueue (hgQueue,
&rdRequest,
&ulSzData,
&pvData,
0,
DCWW_NOWAIT,
&bPriority,
hsmSemn) ;

if (!arReturn)

{
pmgsClient [rdRequest.ulData].ulPid = rdRequest.pid;
*pulHiLoCh = ulSzData;

ToScreen (pmgsClient [rdRequest.ulData] .szColor,
strlen(pmgsClient [rdRequest.ulData].szColor));

} /* endif */
return arReturn;

}

APIRET ToScreen(VOID *buffer,ULONG length)
{

#define MY_STDOUT 1
ULONG ulBytesDone;
return (DosWrite(MY_STDOUT,
buffer,
length,
&ulBytesDone)) ;

}

VOID APIENTRY CleanUp (ULONG ulTermCode)
{

DosCloseQueue (hgQueue) ;

ToScreen (WHITE_COLOR,
strlen(WHITE_COLOR)) ;

DosExitList (EXLST_EXIT,
0);

QSERVER.DEF

NAME QSERVER WINDOWCOMPAT

DESCRIPTION 'Queue example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

Now that the intended operation of the OS/2 QUEUE Client-Server has been described, the implementation
itself can be discussed in greater detail.




74 — The Art of OS/2 Warp Programming

During the initialization Server uses the InitServerQueEnyv() first to allocate the named shared memory
segment, next to create the queue, and last to create the queue event semaphore.

The named shared memory segment is used as a common communications area for all of the Clients and
the Server. The shared named memory segment later will contain client-specific information: the Client
process ID and the client text color ANSI escape sequence. The memory map in Figure 5.2 shows the way
the shared named memory segment is used.

COLOR STRING PID

%

e ———— CLENT 0 AREA
oReEy ¢ CUENT 1 AREA
TELON ——— CLENT 2 AREA
BuE ¢ CLENT 3 AREA
WGENT ———— CLENT 4 AREA

UNUSED MEMORY

0xOFFF

SHARED MEMORY MAP (\SHAREMEM\MYQUEUE.SHR)

Figure 5.2 Shared memory map.

A client area is dedicated to each one of the queue Clients and contains the entire MYQUESTRUC
structure.  After the shared memory is allocated, the queue Server creates the queue and initializes the
named shared segment to nulls. The last API that is called by the initialization routine is
DosCreateEventSem. Even though the semaphore that is created will not be used as a semaphore during
this application, its handle is required later for the DosReadQueue. The reason it is required in this case is
because the queue is read in nonblocking mode, and the API requires a semaphore handle in that case.
Choosing to read the queue in nonblocking fashion allows the queue Server main thread to perform other
functions while waiting for the new queue elements.

APIRET DosCreateEventSem( PSZ pszName, PHEV phev,
ULONG flAttr, BOOL32 fState )

pszName is a pointer to the ASCII name of the semaphore, phev is an output parameter that is a pointer to
the semaphore handle. flA#tr is either DC_SEM_SHARED to indicate the semaphore is shared, or 0. All
named semaphores are shared, so if pszName is not null, this argument is unused.

SState can be either TRUE, meaning the semaphore is initially “posted” or FALSE, meaning the semaphore
is initially “set.”

In the initialization of the queue Client environment, the InitClientQueEnv() function call attempts to
obtain the named shared memory handle. Once the handle is returned, the queue Client begins to scan the
client areas, checking for the valid color string. The moment the Client finds an unused color string area, it
assumes it is free and copies its color attribute there. It also saves the unique position identification



Interprocess Communication — 75
assumes it is free and copies its color attribute there. It also saves the unique position identification
number in the global sIndex variable. If the Client determines that five other Clients are already active, it
will display an error message and exit. On the other hand, if the slndex value is acceptable (less than
maximum number of Clients), the Client will issue the DosOpenQueue() API call, thus completing the
initialization by connecting to the queue.

QCLIENT.C

#define INCL_DOSQUEUES
#define INCL_DOSMEMMGR
#define INCL_DOSPROCESS
#define INCL_DOSERRORS
#define INCL_DOSSEMAPHORES
#include <os2.h>

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <conio.h>

#include "gcommon.h"

APIRET InitClientQueEnv(VOID) ;

APIRET WriteToQue (ULONG ulHiLoCh) ;

INT main(USHORT usNumArgs, PCHAR apchArgs(])
{

USHORT *usHiCh;
USHORT *usLoCh;
ULONG ulHiLoCh;
APIRET arReturn;

ulHiLoCh = 0;

usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+1;

chToken = CLIENT_MODE;

strcpy (aachColors (0],
CLIENTO_COLOR) ;
strcpy (aachColors([1],
CLIENT1_COLOR) ;
strcpy (aachColors|[2],
CLIENT2_COLOR) ;
strcpy (aachColors (3],
CLIENT3_COLOR) ;
strcpy (aachColors (4],
CLIENT4_COLOR) ;

printf (WHITE_COLOR) ;

printf (" Client process is initializing");
printf(" and connecting to the Queue...\n");
arReturn = InitClientQueEnv();

if (!arReturn)
printf("\n Press F3 to exit\n\n");

while (!arReturn && (chToken != DISCON_MODE))
{
*usHiCh = getch();
if ((*usHiCh == FUNC_KEYS_CHAR) || (*usHiCh ==
EXTD_KEYS_CHAR))
{
*usLoCh = getch();
}
else
{
*usLoCh = *usHiCh;




76 — The Art of OS/2 Warp Programming

} /* endif */
arReturn = WriteToQue (ulHiLoCh) ;

if (ulHiLoCh == TOKEN_F3_DISCON)

{
chToken = DISCON_MODE;
pmgsClient [usClientIndex].szColoxr[0] = '\0';
pmgsClient [usClientIndex].ulPid = 0;
break;
} /* endif */
if (*usLoCh == *usHiCh)
putch(*usHiCh) ;
else
putch('*");
if (*usLoCh == RETURN_CHAR)
{
putch (LINE_FEED_CHAR) ;
} /* endif */
}
if (arReturn == 0)
{
arReturn = DosCloseQueue (hgQueue) ;
/* endif */

}
printf("\ne[0;37;40m");
return arReturn;

}

APIRET InitClientQueEnv(VOID)
{

APIRET arReturn;
SHORT sIndex;
PID pidOwner;

arReturn = DosGetNamedSharedMem ( (PVOID)&pmgsClient,
DEFAULT_SEG_NAME,
PAG_WRITE | PAG_READ) ;

if (!arReturn)
{
for (sIndex = 0; sIndex <= MAX_CLIENTS; sIndex++)
{
if ((pmgsClient[sIndex].szColor[0] == 0) && (sIndex <
MAX_CLIENTS))
{
strcpy (pmgsClient [sIndex] .szColor,
aachColors[sIndex]);
usClientIndex = sIndex;
break;
} /* endif */
} /* endfor */
if (sIndex > MAX_CLIENTS)
{
arReturn = PROGRAM_ERROR;
printf("\n\n Maximum number of clients is FIVE !\n");
/* endif */
if (!arReturn)
{
arReturn = DosOpenQueue (&pidOwner,
&hgQueue,
DEFAULT_QUE_NAME) ;
if (l!arReturn)
{
printf (" %s",
aachColors[usClientIndex]);
printf("\n Client #%d has connected to the Queue\n",
usClientIndex);
} /* endif */




Interprocess Communication — 77

} /* endif
} /* endif
return arReturn;

}

APIRET WriteToQue (ULONG ulHiLoCh)
{

return DosWriteQueue (hgQueue,

(ULONG) usClientIndex,
ulHiLoCh,

pvData,

ULONG_NULL) ;

*/
*/

QCLIENT.DEF

NAME QCLIENT WINDOWCOMPAT
DESCRIPTION 'Queue example
Copyright (c)
All rights reserved.'
STACKSIZE 16384

1992-1995 by Arthur Panov.

COMMON.H
#define MAX_INPUT_ARGS 2
#define MAX_CLIENTS 5
#define SERVER_MODE 1
#define CLIENT_MODE 2
#define DISCON_MODE 3
#define BAD_INPUT_ARGS 99
#define DEFAULT_QUE_NAME “\\QUEUES\ \MYQUEUE"
#define DEFAULT_SEM_NAME “\\SEM32\\EVENTQUE"
#define DEFAULT_PAGE_SIZE 4096
#define DEFAULT_QUE_FLAG QUE_FIFO | QUE_CONVERT_ADDRESS
#define DEFAULT_SEG_NAME “\\SHAREMEM\ \MYQUEUE. SHR"
#define DEFAULT_SEG_FLAG PAG_WRITE I PAG_COMMIT
#define TOKEN_F2_SWITCH 0x0000003CL
#define TOKEN_F3_DISCON 0x0000003DL
#define RETURN_CHAR 0x0D
#define LINE_FEED_CHAR 0x0A
#define FUNC_KEYS_CHAR 0x00
#define EXTD_KEYS_CHAR 0xEQ
#define CLEAR_HI_WORD 0x0000FFFFL
#define ULONG_NULL oL
#define PROGRAM_ERROR 999
#define MAX_COLOR_LEN 14
char SERVER_COLOR [MAX_COLOR_LEN] = {10,13,27,91,48,59,51,50,59,52,48,109,0};/*

"\ne[0;32;40m"*/
char WHITE_COLOR
"\ne[0;37;40m"*/

char CLIENTO_COLOR
"e[0;31;40m"*/
char CLIENT1_COLOR
"e[0;32;40m"*/
char CLIENT2_COLOR
"e[0;33;40m"*/
char CLIENT3_COLOR
"e[0;34;40m"*/
char CLIENT4_COLOR

"e[0;35;40m" */

[MAX_COLOR_LEN] =

[MAX_COLOR_LEN]
[MAX_COLOR_LEN]
[MAX_COLOR_LEN]
[MAX_ COLOR_LEN]

[MAX_COLOR_LEN]

{10,13,27,91,48,59,51,55,59,52,48,109,0};/*

{27,91,48,59,51,49,59,52,55,109,0};/*
{27,91,48,59,51,50,59,52,55,109,0};/*
{27,91,48,59,51,51,59,52,55,109,0}; /*
{27,91,48,59,51,54,59,52,55,109,0};/*

{27,91,48,59,51,53,59,52,55,109,0};/*




78 — The Art of OS/2 Warp Programming

typedef struct _MYQUEUESTRUC {
BYTE szColor [MAX_COLOR_LEN] ;
PID ulPid ;

} MYQUEUESTRUC, * PMYQUEUESTRUC ;

HQUEUE hqgQueue ;

USHORT usClientIndex = MAX_CLIENTS ;

PVOID pvData ;

HEV hsmSem ;

PMYQUEUESTRUC pmgsClient ;

CHAR chToken = 0 ;

CHAR aachColors [MAX_CLIENTS] [MAX_COLOR_LEN] ;

VOID APIENTRY CleanUp ( ULONG ulTermCode );/* ExitList routines must be declared with
VOID APIENTRY*/

Q_CS.MAK

ALL: QCLIENT.EXE QSERVER.EXE

gserver .EXE: gserver .0OBJ
LINK386 @<<

gserver

gserver

gserver

0S2386

gserver

<<

gserver.0OBJ: gserver.C g_CS.MAK
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ -Q gserver.C

qgclient.EXE: qgclient.OBJ
LINK386 @<<

gclient

qgclient

gclient

052386

gclient

<<

gclient.OBJ: gclient.C g _CS.MAK
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ -Q gclient.C

First, the queue server attempts to read the queue; if any elements are present, they are decoded and
displayed in their corresponding color; otherwise the Server loops to check for the next queue element.
The ERROR_QUE_EMPTY is ignored and reset to 0. It is normal for the Server to receive this particular
error since it is possible for the queue to have no messages from any of the Clients.

Readers may wonder why the queue is read continuously in nonblocking mode when it can be read in
blocking mode, which will assure a returned queue element prior to completing the DosReadQueue call.
The answer is simple. If the DosReadQueue API was implemented with the blocking flag set to true, it
would be difficult for the main thread to do anything other than wait. An additional thread would have to
implemented to handle any other type of work. It is also possible to implement a separate thread that waits
on the queue event semaphore and displays the characters only when the semaphore was posted Because
either method would be more complex, we chose the current implementation for this sample program. The
point here is to show the differences between the OS/2 queues and the OS/2 named pipes.

The Client does nothing more than read a keystroke character and write that character to the queue by
issuing a WriteToQue() function call, which in turn calls the DosWriteQueue() API.




Interprocess Communication — 79

APIRET DosWriteQueue( HQUEUE hQue, ULONG ulRequest,
ULONG cbData, PVOID pbData, ULONG ulPriority )

hQue is a handle of the queue to which data is to be written. ulRequest is a user-defined value passed with
DosPeekQueue. cbData is length of the data that is being written. pbData is a pointer to the data.
ulPriority is a priority of the data being added to the queue. Any value between 0 and 15 is accepted. A
value of 15 indicates the element is added to the top of the queue, and a value of O indicates the element is
the last element in the queue.

This example shows that the OS/2 queues are somewhat cumbersome to implement; however, they are
very useful when several processes have to talk to a single process, even if the processes are unrelated.

Note: The InitClientQueEny function has a potential timing problem. If multiple clients decide to initialize
concurrently, a race condition will ensue. To avoid a potential problem, a Mutex semaphore should be
installed to protect the access to the shared memory. The implementation is left as an exercise for the
reader.

An OS/2 Semaphore vs. Flag Variable Example

There are three different types of semaphores: Event, Mutex, and MuxWait. Event semaphores are used
when a thread or a process needs to notify other threads or processes that some event has occurred. Mutex
semaphores enable multiple threads or processes to coordinate or serialize their access to some shared
resource. MuxWait semaphores, on the other hand, enable threads or processes to wait for multiple events
to occur.

With this brief introduction, here is the last IPC example pair: STHREAD.C and FTHREAD.C. This case
uses the concept of semaphores for task or event synchronization, also known as signaling. If a process is
waiting for a resource to become available, such as a file or a port access right, and the resource is being
used by another process, the current task must wait. In the earlier DOS operating systems the
synchronization was accomplished primitively through the use of flags. The developer would set a flag,
then wait for the flag to be cleared, thus signaling that the resource was free to be used. Since only one
process could execute at a time under DOS, this was an acceptable form of pseudo interprocess
communication. Under OS/2, however, it is not a good idea to use flags to perform the equivalent
semaphore functions. An example of this bad flag synchronization processing is evident in FTHREAD.C,
which employs the following construct:

while (FlagBusy):; /* Wait for flag to clear */

If a task requires this type of processing, a semaphore should be used. The STHREAD.C example
demonstrates the difference in the number of machine cycles that are spent waiting for a semaphore to clear
as opposed to waiting for a flag to clear. The STHREAD.EXE creates several threads and then decides to
wait on a semaphore. The default number of threads is 10, but that number can be changed by providing
an input argument to the STHREAD.EXE program. While this wait is in process, the user is free to type
characters at the keyboard, which will be echoed to the console immediately. In contrast, the
FTHREAD.EXE uses the same logic but employs a flag variable to perform the wait inside the threads,
which dramatically increases CPU usage, and the keystrokes will appear greatly delayed. The
FTHREAD.EXE also can accept an input argument specifying the number of threads to be created to wait
on the same flag variable. Even with as little as 30 threads, the difference between waiting on a flag
variable and waiting on a semaphore is dramatic.



80 — The Art of OS/2 Warp Programming

FTHREAD.C

{

#define INCL_DOSPROCESS

#define INCL_DOSSEMAPHORES

#include <os2.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <conio.h>

#define DEFAULT_THREAD_FLAGS 0
#define DEFAULT_THREAD_STACK 0x4000
#define MY_BEGIN_SEMAPHORE "\\SEM32\\BEGIN"
#define MAX_SEM WAIT - 1L

#define DEFAULT_NUM_THREADS 10
#define MAX_NUM_THREADS 255

USHORT usWaitOnFlag = TRUE;

VOID APIENTRY MyThreadOne (void) ;

INT main (USHORT usNumArgs,PCHAR apchArgs([])

USHORT usNumThreads;
TID tidThread;
INT iCharRead;
USHORT usReturn = 0;

printf ("\n FTHREAD.EXE demonstrates very poor processor");

printf("\n time management by allowing a user to start a ");

printf("\n number of threads (1-255) and have all of them");

printf("\n wait on one global flag, while allowing keystrokes"
)i

printf("\n to be entered at the keyboard.");

printf("\n (see STHREAD.EXE, for speed comparison)");

printf ("\n\n FTHREAD.EXE [X], where X is 1-255\n\n");

printf("\n\n lower case 'x' exits ...\n\n");

if (usNumArgs > 1)

usNumThreads = max(min(atoi(apchArgs(l]),
MAX_NUM_THREADS) ,

1);

}
else
{

usNumThreads = DEFAULT NUM_THREADS;
} /* endif */
while (usNumThreads-- && !usReturn)
{

usReturn = DosCreateThread(&tidThread,
(PFNTHREAD) MyThreadOne,
(ULONG) NULL,
DEFAULT_THREAD_FLAGS,
DEFAULT_THREAD_STACK) ;
if (!usReturn)
printf (" Started Thread #%2d\n",
tidThread-1);
else
printf (" DosCreateThread returned %2d\n\n",
usReturn) ;
/* endfor */
if (!'usReturn)
{
printf("\n Start typing and experience ");
printf("the speed of flags for yourself...");
printf("\n >> lower case 'x' exits << \n\n");




Interprocess Communication — 81

fflush(stdout) ;

iCharRead = getche();

whi

{

}

}
printf

usWait
DosSle
return

}

le (iCharRead != 'x')

iCharRead = getche();

/* endwhile

("\n\n Exiting, please wait...\n\n");

OnFlag = FALSE;
ep (2000L) ;
usReturn;

VOID APIENTRY MyThreadOne ()

{
while

7

(usWaitOnFlag)

*/

R kK kK Kk kKKK KKK KKK I KKK KK KA KKK KA KA KK KA KK A A KKK KKK K AR K/

/* VER

YSLOW..

*/

KK K K K K KKK KKK KKK KKK KRR KKK KKK KKK KKK KKK KKK KKK Kk Kk k Kk h kXXX Kk * /

FTHREAD.DEF

NAME FTHREAD WINDOWCOMPAT

DESCRIPTI

STACKSIZE

ON 'Semaphore example

Copyright (c) 1992-1995 by Arthur Panov.

All rights reserved.'
16384

STHREAD.C

#define
#define
#include
#include
#include
#include
#include
#define
#define
#define
#define
#define
#define

HEV hevKi

INCL_DOSPROCESS
INCL_DOSSEMAPHORES

<o0s2.h>

<stdio.h>

<stdlib.h>

<string.h>

<conio.h>
DEFAULT_THREAD_FLAGS 0
DEFAULT_THREAD_STACK 0x4000
MY_BEGIN_SEMAPHORE "\\SEM32\\BEGIN"
MAX_SEM_WAIT - 1L
DEFAULT_NUM_THREADS 10
MAX_NUM_THREADS 255

1lThread;

VOID APIENTRY MyThreadOne(void) ;

INT main(
{
USHORT
TID
INT
USHORT

USHORT usNumArgs, PCHAR apchArgs(])

usNumThreads;
tidThread;
iCharRead;
usReturn;

printf ("\n STHREAD.EXE demonstrates the superior processor");




82 — The Art of OS/2 Warp Programming

printf ("\n time management by allowing a user to start a ");
printf ("\n number of threads (1-255) and have all of them");
printf("\n wait on one semaphore, while allowing keystrokes");
printf("\n to be entered at the keyboard.");

printf("\n (see FTHREAD.EXE, for speed comparison)");

printf ("\n\n STHREAD.EXE [X], where X is 1-255\n\n");
printf("\n\n lower case 'x' exits ...\n\n");

if (usNumArgs > 1)
{

// Insure that usNumThreads is in the range l<<x<<MAX
e e
usNumThreads = max(min(atoi(apchArgs[1l]),

MAX_NUM_THREADS) ,

1);
}
else
{
usNumThreads = DEFAULT_NUM_THREADS;
} /* endif */
usReturn = DosCreateEventSem(MY_ BEGIN_SEMAPHORE,
&hevKillThread,
NULLHANDLE,
FALSE) ;

while (usNumThreads-- && !usReturn)
{
usReturn = DosCreateThread(&tidThread,
(PFNTHREAD) MyThreadOne,
(ULONG) NULL,
DEFAULT_THREAD_FLAGS,
DEFAULT_THREAD_STACK) ;
if (!usReturn)
printf (" Started Thread #%2d\n",
tidThread-1) ;

else
printf (" DosCreateThread returned %2d\n\n",
usReturn) ;
} /* endfor */
if (!usReturn)

printf("\n Start typing and experience ");
printf("the speed of semaphores for yourself...");
printf("\n >> lower case 'x' exits << \n\n");

fflush(stdout);

iCharRead = getche();

while (iCharRead != 'x')

{

iCharRead = getchel();

} /* endwhile */
}
printf("\n\n Exiting, please wait...\n\n");
usReturn = DosPostEventSem(hevKillThread) ;
DosSleep(2000L) ;
usReturn = DosCloseEventSem(hevKillThread) ;

return usReturn;




Interprocess Communication — 83

VOID APIENTRY MyThreadOne ()
{
DosWaitEventSem(hevKillThread,
MAX_SEM_WAIT) ;

STHREAD.DEF

NAME STHREAD WINDOWCOMPAT

DESCRIPTION 'Semaphore example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

SFTHREAD.MAK

ALL: STHREAD.EXE FTHREAD.EXE

STHREAD.EXE: STHREAD.OBJ
LINK386 @<<

STHREAD

STHREAD

STHREAD

052386

STHREAD

<<

STHREAD.OBJ : STHREAD.C SFTHREAD.MAK
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ STHREAD.C

FTHREAD. EXE: FTHREAD.OBJ
LINK386 @<<

FTHREAD

FTHREAD

FTHREAD

082386

FTHREAD

<<

FTHREAD.OBJ: FTHREAD.C SFTHREAD.MAK
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ FTHREAD.C

Example of usage:

FTHREAD [NUMTHREADS]
or
STHREAD [NUMTHREADS]

The first command-line argument, NUMTHREADS, should be a number in the range of 11 to 255. The
default number of threads created is 10; specifying a number less than 10 is unnecessary. It is not
recommended to go over 100 threads with FTHREAD.EXE. Doing so even on a superfast Pentium PC
will cause the system to respond to keystrokes very slowly. For example, once the CTRL-ESC keys are
pressed, it may take the system several minutes to paint the PM/WPS screen. STHREAD.EXE, on the other
hand, is perfectly capable of handling 255 threads in the wait state and will still provide reasonable
keyboard and display response.







Chapter 6

DLLs

DLL Overview

There have been many articles written about Dynamic Link Libraries, and just as many programming
books have devoted at least a chapter or two to this topic. Several of these sources are listed in the
Reference section of this book. This chapter concentrates on several examples of how DLLs can be used,
what to look for in selecting a particular function for a DLL inclusion, and what to avoid putting in a DLL
at all costs.

As the name Dynamic Link Libraries suggests, these libraries are not linked into the .EXE file during the
.EXE creation, rather they get loaded dynamically into the system memory at runtime. The overwhelming
advantage of DLLs is their ability to save system resources. Once the DLL is loaded, its functions are
available immediately for use to all of the system’s processes. On the other hand, DLLs require complex
object linking and process loading tool implementation. Overall, however, DLLs live up to their claim to
fame—they save system resources and offer much more rapid successive loading of executable modules
that share the common functions than do statically linked .EXEs.

Another subtle advantage of DLLs is the ability of the programmer to control the functionality available to
the user. For example, a programmer writing a terminal emulation application could implement a basic set
of functions and label that the base package. Later, if the user demanded more functionality, the additional
features could be compiled and linked into a series of DLLs that would be available to the user at an
additional cost. This way users could purchase only the functionality required, nothing less, nothing more.
This particular approach yields itself very nicely to a DLL implementation. One of the DLLs, for example,
may contain the Zmodem protocol while another conatins a 3270 terminal emulation filter.

So far, the discussion has centered around generic DLL functionality. Windows 3.x, OS/2, NT, and
Windows 95 have implemented DLL support, but the way DLLs are loaded, unloaded, initialized, and
terminated differs with each operating system. Since this book concerns itself with OS/2, the OS/2
specifics are of the most interest here. One of the peculiar OS/2 implementations is the way DLLs are
loaded into memory. Theoretically OS/2 has a 4 gigabyte memory limit; practically, however, the user
only has 512 MB of real memory available to applications. The limit is artificially imposed by the OS/2
process loading mechanism, which is related to the OS/2 1.x compatibility issues. In particular, the LDT
tiling (this is discussed by Michael Kogan, 1990) limits the 32-bit OS/2 process address space to 512 MB.
The system loader will attempt to use the upper memory area for any shared code, which includes DLLs
that allow shared data, while the DLLs and .EXEs with nonshared data will be loaded in the lower memory
area. Figure 6.1 depicts this process.

85



86 — The Art of OS/2 Warp Programming

512 MB

Shared DLLs and
.EXEs

T
v

Unallocated

A

Nonshared DLLs and
.EXEs

0MB

Figure 6. 1 System memory map.

Thunking

The compatibility issues between the 32-bit and the 16-bit OS/2 modules demand a particular transition
implementation called thunking. DLLs are greatly affected by this thunking mechanism. Both the 16-bit
.EXE to 32-bit DLL transition, and the 32-bit .EXE to 16-bit DLL transition must be considered. The
following examples explain why this is necessary.

In the 16-bit to 32-bit case, the 16-bit .EXE file may have been implented in such a way that converting it
to 32-bit is tedious and unnecessary, resulting in poor performance benefits and other insignificant
improvements. On the other hand, some DLLs that perform 16-bit drawing routines, for example, may
benefit greatly from being converted to 32-bit modules. Also, large data structures that span 64K require
careful manipulation under the 16-bit implementation; in 32-bit mode the implementation is greatly
simplified.

In such cases, a developer may choose to convert the performance-sensitive sections—DLLs—of the
applications to the 32-bit model, while leaving the base core as a 16-bit .EXE. The opposite transition of
32-bit to 16-bit may be required because some support libraries that the application uses are purchased 16-
bit .OBJs or DLLs, and while the vendor may or may not provide the equivalent 32-bit versions of these
tools, the application need not suffer a schedule slip. A 32-bit .EXE access to a 16-bit DLL can be allowed
easily.

DLL Performance

Although DLLs are designed to improve system resource usage, a few performance implications as they
relate to DLL management must be understood. There are really two distinct ways to use the functions that
comprise a DLL. The first and most automatic method is to create an import library, and it to resolve any
references to the functions that are located inside the DLL. The system will automatically load and link the
DLL functions at runtime. One thing to remember, however, is that every time a DLL function call is
made, an associated address fixup must be resolved. These fixups may present somewhat of a performance
impact if the memory that contains the fixup tables happens to be swapped out to disk while the call to a



DLLs — 87

DLL function is made. Before an address fixup can be resolved, the tables have to be brought back; in a
resource-constrained system, this can amount to a considerable performance hit.

In order to avoid a problem with fixups Dynamic link libraries, David Reich’s technique of DLL aliasing
can be used. Outlined in his book Designing OS/2 Applications, he suggests the creation of an alias
function with the same parameters as the DLL function that will be called. Then you just turn around and
call the corresponding DLL function with the same parameters as the aliased one. By doing this, you are
guaranteed to have only one fixup per each function in your DLL. Of course, this technique is helpful only
when a particular DLL function is called numerous times throughout the .EXE. Having only a few
references to a DLL function does not warrant the creation of an alias.

Portability is another good reason for aliasing some of the functions. Imagine if a developer wanted to
migrate an application from one operating system to another. Sometimes using operating system-specific
APIs cannot be avoided, but by aliasing some of these the migration path is much easier. The programmer
is left with porting a single API reference as opposed to numerous references throughout the code.

Simple DLL Example (32-32)

In order to preserve legacy applications' environments, the current version of OS/2 for the Intel platform
allows applications to mix memory models when it comes to 16-bit and 32-bit code. It is perfectly
acceptable to have a 32-bit executable call a 16-bit DLL, which in turn can call another 16-bit or 32-bit
DLL. A 16-bit executable also can call a 32-bit DLL, and so forth. The only problem that may arise in
doing this is memory model compatibilities. Compatibility is just a general description of pointer
conversion. Both the DLL and the .EXE must know that pointer conversion must occur and take careful
precautions to avoid a conversion error. Most bugs with mixed mode 16-bit/32-bit function calling are
found in pointer arithmetic code. The compiler does a great job of helping the programmer convert the
pointers correctly, as the following examples show. For a detailed compiler description of this thunking
conversion technique, see the IBM C Set/2 User’s Guide or IBM C/C++ FirstStep Tools: Programming
Guide.

The most straightforward example of DLL creation and usage employs a 32-bit executable calling a 32-bit
DLL. In this case, there are no memory model mixing considerations, and the programmer can freely pass
values and pointers to any of the DLL functions without regard to conversion problems that are usually
associated with the mixed memory environments.

The main section of the program does little more than call an externally declared function called
MyDLLFunction, which requires two parameters. One parameter is a pointer to a function, and the other is
a character pointer. Once inside the DLL, MyDLLFunction uses the input function pointer and passes the
character pointer to that function. The user never knows how this function is implemented as it is hidden
inside the DLL. At the same time, passing a function pointer to the DLL allows the DLL to call back to the
.EXE if the function pointer happens to point to the function in the calling .EXE module. This, for
example, may allow the DLL to “signal” the .EXE when the DLL is done with a particular task but has not
completed the rest of the work yet. SIMPLE.C provides the first 32-bit to 32-bit .EXE to DLL example.

SIMPLE.C

/* Simple DLL loader */

#include <o0s2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>




88 — The Art of OS/2 Warp Programming

int main(VOID);

extern int MyDLLFunction (PFN, PCHAR) ;
extern int _System MyPrintFunctionInDLL (PCHAR,PCHAR, ...);

#define MY_CHAR_IN_VALUE "Input character string"
#define MY_CHAR_IN_SIZE strlen(MY_CHAR_IN_VALUE)
int main(VOID)

{

int rc = 0;
PCHAR MyCharacterPointer;

MyCharacterPointer = (PCHAR)malloc (MY_CHAR_IN_SIZE);
if (MyCharacterPointer)

strcpy (MyCharacterPointer,
MY_CHAR_IN_VALUE) ;
printf("\n Sending < %s > to DLL\n",

MyCharacterPointer) ;
rc = MyDLLFunction(MyPrintFunctionInDLL,
MyCharacterPointer) ;
printf("\n Returned < %s > from DLL\n",
MyCharacterPointer) ;

return (rc);
}
else

return (-1);

SIMPLE.MAK

ALL: SIMPLE.EXE

SIMPLE.EXE: SIMPLE.OBJ
LINK386 /NOI @<<

SIMPLE

SIMPLE

SIMPLE

0S2386+MYDLL

SIMPLE

<<

SIMPLE.OBJ: SIMPLE.C
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ SIMPLE.C

SIMPLE.DEF

NAME simple WINDOWCOMPAT

DESCRIPTION 'simple 32-32 DLL example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

MYDLL.C

#include <os2.h>

#include <stdio.h>

#include <string.h>

#define MY_CHAR_OUT_VALUE "Output character string"
int MyDLLFunction (PFN, PCHAR) ;




DLLs — 89

int _System MyPrintFunctionInDLL (PCHAR, PCHAR, ...);

int MyDLLFunction(PFN MyFunctionPointer, PCHAR MyCharacterPointer)
{

int rc = 0;

rc = (MyFunctionPointer) ("\n Modifying < %s > in DLL\n",
MyCharacterPointer) ;
return (rc);

}

int _System MyPrintFunctionInDLL(PCHAR First,PCHAR Second, ...)
{
printf (First,
Second) ;
strcpy (Second,
MY_CHAR_OUT_VALUE) ;
return (0);

MYDLL.MAK

ALL: MYDLL.DLL MYDLL.LIB

MYDLL.LIB: MYDLL.DLL
IMPLIB MYDLL.LIB MYDLL.DEF

MYDLL.DLL: MYDLL.OBJ
LINK386 /NOI @<<

MYDLL

MYDLL.DLL

MYDLL

082386

MYDLL

<<

MYDLL.OBJ: MYDLL.C MYDLL.MAK MYDLL.DEF
ICC -C+ -Ge- -Kb+ -Ss+ MYDLL.C

MYDLL.DEF

LIBRARY MYDLL
DESCRIPTION 'simple 32-32 DLL example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'
DATA MULTIPLE NONSHARED
EXPORTS
MyDLLFunction
MyPrintFunctionInDLL
STACKSIZE 16384

Creating the .EXE and the DLL

A couple of things need to be said about how this .EXE and DLL are built. First, the .EXE is compiled the
same way .EXEs always are compiled. There are no special considerations. There are, however, two ways
to link the .OBJs to create an .EXE that uses DLLs.

The first method employs an IMPORTS statement in the .EXE DEEF file and specifies the exact DLL name
and the exported function names. The second one relies on a DLL import library that is linked in just as a




90 — The Art of OS/2 Warp Programming

static library would be. Using the import library is more of an automatic linking process, because you do
not have to keep track of all of the functions called in the .EXE. From a maintenance standpoint, the
import library is the preferred linking choice. The import library is created by running the IMPLIB.EXE,
an OS/2 Toolkit utility, and specifying the DLL DEEF file or the DLL itself as a parameter. The import
library allows the linker to resolve all of the references to the DLL resident functions. Note that the import
library or the DEF file with the IMPORTS keyword and functions defined is required only when the DLL
resident functions are invoked automatically by the .EXE.

0OS/2 provides another method of loading the DLLs at runtime and calling the DLL resident functions
explicitly. In this fashion, neither the imports library nor the IMPORTS keyword and functions’
specification is needed in the DEF file. An example of this loading technique is covered later in this
chapter.

The DLL can be considered just as a special .EXE file, and in the earlier releases of some of the operating
systems DLLs actually had .EXE extensions. The main difference is that a DLL cannot execute without a
parent .EXE. In comparison with the .EXE creation, the DLL files must be compiled with a DLL flag ON
(for C-Set: /Ge-). This may not be a requirement for other compilers. Next the DLL object code must be
LINKed and the DLL created. The most important file for the LINK step (and again, this is for IBM C-
Set/2 C/C++) is the proper use of the module definition file (DEF). The DEF file specifies how the DLL
will be loaded, named, shared, and so forth. LINK386.EXE, a 32-bit linker for OS/2, recognizes the
module definition keywords listed in Table 6.1.

Table 6.1 Module Definition Keywords

BASE Preferred load address

CODE Code segments attributes

DATA Data segments attributes
DESCRIPTION Module description

EXETYPE DLL operating system type
EXPORTS Functions exported by DLL
IMPORTS Functions imported by EXE/DLL
HEAPSIZE Local heap size

LIBRARY DLL name

NAME EXE name

OLD Preserve old ordinal numbers
PHYSICAL DEVICE Device driver name
PROTMODE Protected mode only module
SEGMENTS Segments attributes
STACKSIZE Local stack size

STUB Prepended DOS executable module
VIRTUAL DEVICE Virtual device driver name

The definition module must specify the correct combination of keywords so that the linker can construct
the DLL or .EXE file correctly.

Detailed explanation of the linker recognized keywords can be found in the online OS/2 Toolkit
documentation (OS/2 Tools Reference: TOOLINFO.INF).



DLLs —91

Gotcha!

IMPORTS 1mydll.MyFunctionl statement fails due to a parser. The parser of
IMPORTS does not expect a number as the first character of a DLL even though the
DLL name is a legal OS/2 file name.

16-32, 32-16 Transitions

0OS/2 supports four classes of applications:

Pure 16-bit
Mixed 16-bit
Pure 32-bit
Mixed 32-bit

The pure 16-bit application development was left behind in OS/2 1.x days, and the pure 32-bit application
development with DLLs is covered in the SIMPLE DLL example. This leaves only two interesting cases:

e 16-bit .EXE calling 32-bit DLL
e  32-bit .EXE calling 16-bit DLL

The most interesting item in mixed programming is the transition from one memory model to the other and
back. This transition in OS/2 is achieved with the help of a mapping layer technique called thunking. A
32-16 thunk and a 16-32 thunk are possible. Thunking involves converting 32-bit pointers to 16-bit
pointers, and vice versa. This thunking mechanism is a requirement for all mixed mode applications.
Luckily for the programmer, the compiler generally supports the thunking transitions automatically.

The 16-bit memory model has 64K segmentation size limitations, while the 32-bit memory model does not.
Therefore, if a 16-bit .EXE needed to manipulate a large data area (>64K), rewriting just the manipulation
routines and composing them into a 32-bit DLL would work.

Call a 32-Bit DLL from a 16-Bit Program

The 16-bit to 32-bit example is a simple checksum program that operates on a data area greater than 64K in
size. Both the DLL and the .EXE source code are rather simple. The interesting part is the way the
functions are declared in the 16-bit source and in the 32-bit source. The sizes of the arguments must match
across the transition boundary. In this case, all of the parameters and the return value are of the same size
in the 16-bit and the 32-bit sections of the code.

The 16-bit executable makes a call to the 32-bit DLL requesting the checksum value by passing a file name
to the 32-bit DLL function. The 32-bit DLL is invoked automatically by the system. The DLL function
proceeds to use the 32-bit APIs to determine the file size (DosQueryPathlnfo), allocate the memory
(malloc > 64K), open the file (DosOpen), and read the data (DosRead). The checksum calculation is made
next, and the values are returned to the caller.

HOWBIG.C

#include <stdio.h>
int main(void);

extern unsigned long far pascal HowMany(unsigned int *,char *);




92 — The Art of OS/2 Warp Programming

#define FILE_NAME "BIGFILE"
int main(void)

{
unsigned long ulCount = 0;
unsigned int usCheckSum = 0;

printf("\n Now inside 16-bit %s",
__FILE__);

printf("\n size of usCheckSum (USHORT * ) = %4",
sizeof (int *));
printf("\n size of FILE_NAME (char * ) = %d4",

sizeof(char *));

printf(
“\n About to call the 32-bit DLL function automatically\n")

i

ulCount = HowMany (&usCheckSum,
FILE_NAME) ;

if (ulCount == 0)
printf("\n Could not calculate checksum, sorry!\n\n");
else
printf("\n File: %s, checksum: %04X, Count: %ld\n\n",
FILE_NAME,
usCheckSum,
ulCount) ;
return (0);

HOWBIG.MAK

ALL: HOWBIG.EXE

HOWBIG.EXE: HOWBIG.OBJ
LINK @<<

HOWBIG

HOWBIG.EXE

HOWBIG

COUNT

HOWBIG

<<

HOWBIG.OBJ: HOWBIG.C HOWBIG.MAK HOWBIG.DEF
cl -c -AL HOWBIG.C

HOWBIG.DEF

NAME HOWBIG WINDOWCOMPAT

DESCRIPTION 'simple 16-32 EXE example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

COUNT.C

#define INCL_DOSFILEMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>




DLLs — 93

ULONG _Farl6é _Pascal HowMany (USHORT *_Segl6 usCheckSum,char
*_Seglb);

ULONG _Farl6é _Pascal HowMany (USHORT *_Segl6 usCheckSum, char
*_Segl6 szFileName)
{

#define MY_MAX COUNT 10000

APIRET rc = 0;
FILESTATUS3 fsts3Info;
ULONG ulCount = 0;
UCHAR *pBigBuffer = 0;
HFILE hFileHandle;
ULONG ulAction = 0OL;
ULONG ulBytes = 0L;

printf("\n Now inside 32-bit %s",
__FILE_ );

n

printf("\n size of usCheckSum (USHORT * _Segl6)
sizeof (USHORT *_Segl6));

printf("\n size of szFileName (char * _Segl6 ) = %4",
sizeof (char *_Segl6));

%a",

rc = DosQueryPathInfo(szFileName,
FIL_STANDARD,
&fsts3Info,
sizeof (FILESTATUS3));
if (rc)
return (0);
else
{
pBigBuffer = malloc(fsts3Info.cbFileaAlloc);
if (pBigBuffer)
{

rc = DosOpen((PSZ)szFileName,
&hFileHandle,
&ulAction,
oL,
FILE_READONLY,
OPEN_ACTION_OPEN_IF_EXISTS,
OPEN_FLAGS_SEQUENTIAL|
OPEN_SHARE_DENYREADWRITE|
OPEN_ACCESS_READONLY,
0L) ;
if (rc)
{
printf ("\n\n Could not open <BIGFILE>, rc=%d\n\n",
rc);
return (0);
}
else
{
rc = DosRead(hFileHandle,
pBigBuffer,
fsts3Info.cbFile,
&ulBytes) ;
if (rc || fsts3Info.cbFile != ulBytes)
{
printf("\n\n Could not read the data \
rc=%d, FileSize=%d, BytesRead=%d\n",
rc,
fsts3Info.cbFile,
ulBytes) ;
return (0);
}
else
{




94 — The Art of OS/2 Warp Programming

*usCheckSum = 0;

do

{
*usCheckSum += (USHORT) (*pBigBuffer++);
ulCount++;
fsts3Info.cbFile--;

} while (fsts3Info.cbFile);

}
else
{
printf(
"\n\n Could not allocate enough space to read <BIGFILE>\n")

return (0);
}
free (pBigBuffer);
rc = DosClose (hFileHandle) ;
printf("\n About to leave the 32-bit %s.\n",
__FILE_ );
return (ulCount);

COUNT.MAK

ALL: count.DLL count.LIB

count.LIB: count.DLL
IMPLIB count.LIB count.DEF

count.DLL: count.OBJ
LINK386 /NOI @<<

count

count.DLL

count

052386

count

<<

count.OBJ: count.C count.MAK count.DEF
ICC -C+ -Ge- -Kb+ -Ss+ count.C

COUNT.DEF

LIBRARY COUNT
DESCRIPTION 'simple 16-32 DLL example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'
DATA MULTIPLE NONSHARED
EXPORTS
HOWMANY
STACKSIZE 16384




DLLs — 95

Pointer Declarations

When passing a pointer to a 16-bit function from a 32-bit program, the _Segl6 type qualifier should be
used. For example:

char * _Segl6 ptrForl6Bit ;

declares this pointer to be a segmented pointer that is usable in 16-bit functions. It is also usable in a 32-bit
program.

Calling a 16-Bit DLL from a 32-Bit Program

A similar transition takes place when calling the 16-bit DLL from a 32-bit EXE. The function declarations
utilize the same keywords that were used in the 16-bit to 32-bit example earlier. This particular program
attempts to determine whether the computer’s serial ports utilize the faster buffered I/O National 16550
UARTS (Universal Asynchronous Receiver/Transmitter). In order to do this, the program employs a 16-bit
I/O DLL called 16BITIO.DLL. This DLL contains two functions, my_inp and my_outp. These functions
will directly input or output a single byte from or to the specified I/O port. A 16-bit DLL is used to
demonstrate how quickly the presence of the National 16550 UART can be determined. The algorithm for
determining the presence of the UART is trivial and is described in the National UART Devices Data Book.

Gotcha!

In order to perform direct h/w I/O the code must run at the RING 2 Input/Output
Privilege Level (IOPL). This is why the appropriate CODE statement is found in the
DEF file for the 16BITIO.DLL. Unfortunately, there is no IOPL support for the 32-bit
DLLs; thus 16-bit IOPL DLLs must be used in such cases. This may change in future

'3
v

a, releases, but for now we are limited to using 16-bit code.
&

AUT16550.C

/* Assume */
/* */
/* COM1 -> 0x3F8 */
/* COM2 -> 0x2F8 * )
/* */

/* One attempts to first clear the 16550 FIFO by writing a 0x00 to*/
/* the FIFO Control register at offset 0x02. Then one attempts to*/
/* enable the FIFOs by setting bit0 of the FIFO Control register*/

/* at offset 0x02. Reading the Interrupt Identification register*/

/* at offset 0x02 will tell one if 16550 is present. */
/* */
/* Automatic Loading of DLL functions */
/* */

#include <stdio.h>
#include <stdlib.h>
#include "autl6550.h"
int main(void);

#define BIT_6_7_SET 0x00C0

int main(void)

{
unsigned Byte = 0;

printf("\n\n Attempting to find 16550 UART ...");/* test




96 — The Art of OS/2 Warp Programming

CcoM1 */
my_outp (MY_COM1+MY_FIFO_CTRL,
0x00) ; /* Clear the FIFO reg */
Byte = my_inp(MY_COM1+MY_INT_ID);
Byte &= BIT_6_7_SET;

if (!Byte)
{
my_outp (MY_COM1+MY_FIFO_CTRL,
0x01) ; /* Set the FIFO reg */
if (my_inp(MY_COM1+MY_INT_ID)&BIT_6_7_SET)
printf(
"\n\n 16550 appears to be present for COM1->0x3F8.\n")
else
printf(
"\n\n 16550 appears to be absent for COM1->0x3F8.\n")
}
else
{
printf (
"\n\n Unknown error for COM1->0x3F8. Exiting ... \n\n");
return (-1);
} /* test COM2 loop? :) */
my_outp (MY_COM2+MY_FIFO_CTRL,

0x00) ; /* Clear the FIFO reg */
if (! (Byte = (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)))

my_outp (MY_COM2+MY_FIFO_CTRL,

0x01); /* Set the FIFO reg */
if (my_inp(MY_COM2+MY_INT_ID)&BIT_ 6_7_SET)
printf(

"\n 16550 appears to be present for COM2->0x2F8.\n\n")

’

else
printf(
"\n 16550 appears to be absent for COM2->0x2F8.\n\n")
}
else
{
printf(
"\n\n Unknown error for COM2->0x2F8. Exiting ... \n\n");

return (-1);
}

return (0);

AUT16550.H
/* Header file for the 16-bit LIB/DLL used to perform IOPL i/o calls */
/* A. Panov 1993,1994,1995 */

extern unsigned short _Farlé _Pascal my_inp (unsigned short);
extern unsigned short _Farlé _Pascal my_outp (unsigned short, unsigned short);

#define MY_COM1 0x3F8
#define MY_COM2 0x2F8
#define MY_INT_ENABLE 1
#define MY_INT_ID 2

#define MY_FIFO_CTRL 2




DLLs — 97

#define MY_LINE_CTRL 3
#define MY _MODEM_CTRL 4
#define MY_LINE_STATUS 5
#define MY_MODEM_STATUS 6
#define MY_SCRATCH 7

AUT16550.MAK

ALL: AUT16550.EXE

AUT16550.EXE: AUT16550.0BJ
LINK386 /NOI @<<

AUT16550

AUT16550

AUT16550

0S2386+16bitio

AUT16550

<<

AUT16550.0BJ: AUT16550.C AUT16550.MAK AUT16550.DEF
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ AUT16550.C

AUT16550.DEF

NAME AUT16550 WINDOWCOMPAT

DESCRIPTION 'AUT16550 example
Copyright (c¢) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

16BITIO.C

/* 16-bit I/0 dll */
_acrtused = 0;

#include <conio.h>
int far _cdecl my_inp(unsigned) ;

int far _cdecl my_outp(unsigned,unsigned) ;
unsigned far _cdecl my_inpw(unsigned) ;
unsigned far _cdecl my_outpw(unsigned,unsigned) ;

int far _cdecl my_inp(unsigned usPort)
{

}

return (inp(usPort));

int far _cdecl my_outp(unsigned usPort,unsigned usValue)
{
return (outp (usPort,
usValue));
}

unsigned far _cdecl my_inpw(unsigned usPort)
{

}

return (inpw(usPort));

unsigned far _cdecl my_outpw(unsigned usPort,unsigned usValue)




98 — The Art of OS/2 Warp Programming

{
return (outpw(usPort,
usValue) ) ;

16BITIO.MAK

ALL: 16BITIO.DLL 16BITIO.LIB

16BITIO.LIB: 16BITIO.DLL
IMPLIB 16BITIO.LIB 16BITIO.DEF

16BITIO.DLL: 16BITIO.OBJ
LINK /NOI @<<

16BITIO

16BITIO.DLL

16BITIO

16BITIO

<<

16BITIO.OBJ: 16BITIO.C
cl -c -AL -G2s -Fc 16BITIO.C

16BITIO.DEF

LIBRARY INITINSTANCE

PROTMODE

DESCRIPTION '16bitIO example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

DATA NONSHARED

SEGMENTS _IOSEG CLASS 'IOSEG_CODE' IOPL

EXPORTS
_my_inp 1
_my_outp 2
_my_inpw 1
_my_outpw 2

STACKSIZE 4096

Loading/Unloading of DLLs

As was mentioned earlier, developers have two choices about loading and unloading the DLLs. They may
choose to have the system do the work for them automatically, or they may decide to have complete
control over how DLL functions are loaded, unloaded, and called.

The automatic loading and unloading of DLLs is the most headache-free, low-maintenance option. But it
does have some drawbacks. The application cannot be started without the DLL being present in the
LIBPATH. Nor can the resources used by the DLL be freed up until the application exits. If resource
considerations are of great importance, the manual method of loading and unloading DLLs must be used.
The benefits of manual manipulation of DLL functions are obvious: low memory usage, no initialization of
DLLs at application startup time, resources can be freed when not needed, application can recover if DLL
is missing or corrupted, and so on. The drawback to using the manual option is complexity.




DLLs — 99

The previous example of 32-bit to 16-bit CHK16550.EXE is used here to illustrate the manual loading,
usage, and unloading of a DLL. First a call to the DosLoadModule is made.

APIRET DosLoadModule( PSZ pszName, ULONG cbName,
PSZ pszModuleName, PHMODULE phMod )

pszName is the address of buffer used in case of failure; on output it will contain the name of the object that
caused the failure. chName is the size of the pszName buffer. pszModuleName is the name of the dynamic
link library, and phMod is a pointer that on output contains the handle for the dynamic link module.

Next, the starting address of a function is found using the DosQueryProcAddr.

APIRET DosQueryProcAddr ( HMODULE hmod, ULONG ulOrd,
PSZ pszName, PFN *ppfn )

hmod is the dynamic link module handle. ulOrd is the ordinal number of the function whose address is to
be found. If this value is O, the pszName argument is used to find the desired function. pszName contains
the function name that is being referenced. ppfn is a pointer to a PFN that on output contains the procedure
address.

Once the addresses of my_inp and my_outp are known, the program runs the same way. Last, the
DosFreeModule is called to release the DLL and effectively unload it from CHK16500.EXE's memory
space.

APIRET DosFreeModule( HMODULE hmod )

This function has only one parameter, hmod, which is the handle of the module that is to be freed.

MAN16550.C

/* Assume */
/ * * /
/* COM1 -> Ox3F8 */
/* COM2 -> 0x2F8 */
/* */

/*One attempts to first clear the 16550 FIFO by writing a 0x00 to*/
/*the FIFO Control register at offset 0x02. Then one attempts to*/
/*enable the FIFOs by setting bit0 of the FIFO Control register*/
/*at offset 0x02. Reading the Interrupt Identification register*/
/*at offset 0x02 will tell one if 16550 is present. */

/* */

#define INCL_DOSMODULEMGR
#include <o0s2.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "manl6550.h"

int main(void);

#define BIT_6_7_SET 0x00CO

#define IGNORE_ORDINAL_NUMBER 0
int main(void)

{

unsigned Byte = 0;
HMODULE hmod;
APIRET rc = 0;

UCHAR szDLLName [CCHMAXPATH] ; /* CCHMAXPATH ->




100 — The Art of OS/2 Warp Programming

bsedos.h via toolkit */

UCHAR szBadName [CCHMAXPATH] ; /* Load the
l6bitio.dll */
strcpy (szDLLName,
“.\\lébitio.dll"); /* Look for DLL in the
same directory */

rc = DosLoadModule (szBadName,
CCHMAXPATH-1,

szDLLName,
&hmod) ;
if (rc)
{
printf("\n Could not load %s successfully, bad %s, rc = \n"
szDLLName,
szBadName,
rc);

return (-1);

}

else
printf("\n Loaded %s successfully\n",
szDLLName) ; /* Get the my_inp
function address */

rc = DosQueryProcAddr (hmod,
IGNORE_ORDINAL_NUMBER,
"MY_INP",
(PFN *)&my_inp);

if (rc)
{
printf("\n Could not find address for my_inp, rc = \n",
rc);
DosFreeModule (hmod) ;
return (-1);
}
else
printf("\n Found my_inp() function address\n");/* Get
the my_outp function
address */
rc = DosQueryProcAddr (hmod,
IGNORE_ORDINAL_NUMBER,
"MY_OUTP",
(PFN *)&my_outp) ;

if (xc)
{
printf("\n Could not find address for my_outp, rc = \n",
rc);
DosFreeModule (hmod) ;
return (-1);

}
else

printf("\n Found my_outp() function address\n");
printf ("\n\n Attempting to find 16550 UART ...");/* test

COM1 */
my_outp (MY_COM1+MY_FIFO_CTRL,
0x00) ; /* Clear the FIFO reg */
Byte = my_inp (MY_COM1+MY_INT_ID);
Byte &= BIT_6_7_SET;
if (!Byte)
{

my_outp (MY_COM1+MY_FIFO_CTRL,
0x01) ; /* Set the FIFO reg */
if (my_inp(MY_COM1+MY_INT_ID)&BIT_6_7_SET)
printf(




DLLs — 101

"\n\n 16550 appears to be present for COM1->0x3F8.\n")

7

else
printf(
"\n\n 16550 appears to be absent for COM1->0x3F8.\n")
}
else
{
printf(
"\n\n Unknown error for COM1->0x3F8. Exiting ... \n\n");
DosFreeModule (hmod) ;
return (-1);
} /* test COM2 loop? :) */
my_outp (MY_COM2+MY_FIFO_CTRL,
0x00) ; /* Clear the FIFO reg */
if (! (Byte = (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)))
{
my_outp (MY_COM2+MY_FIFO_CTRL,
0x01) ; /* Set the FIFO reg */
if (my_inp (MY_COM2+MY_INT_ID)&BIT_6_7_SET)
printf (
"\n 16550 appears to be present for COM2->0x2F8.\n\n")
else
printf (
"\n 16550 appears to be absent for COM2->0x2F8.\n\n")
}
else
{
printf(
"\n\n Unknown error for COM2->0x2F8. Exiting ... \n\n");
DosFreeModule (hmod) ;
return (-1);
}
/************************************************************/
/* Free the 16bitio.dll module */

/************************************************************/

rc = DosFreeModule (hmod) ;

if (rc)
{
printf("\n Could not free %s successfully, rc = \n",
szDLLName,
re);
return (-1);
}
else
printf("\n Freed %s successfully\n",
szDLLName) ;
return (0);
}
MAN16550.H
/* Header file for the 16-bit LIB/DLL used to perform IOPL i/o calls */
/* A. Panov 1993,1994,1995 */

unsigned short (* _Farl6é _Pascal my_inp ) (unsigned short);
unsigned short (* _Farl6é _Pascal my_outp) (unsigned short, unsigned short);




102 — The Art of OS/2 Warp Programming

#define MY_COM1 0x3F8
#define MY_COM2 0x2F8
#define MY_INT_ENABLE
#define MY_INT ID
#define MY_FIFO_CTRL
#define MY_LINE_CTRL
#define MY_MODEM_CTRL
#define MY_LINE_STATUS
#define MY_MODEM_STATUS
#define MY_SCRATCH

NSotidWwN NP

MAN16550.MAK

ALL: MAN16550.EXE

MAN16550.EXE: MAN16550.0BJ
LINK386 /NOI @<<

MAN16550

MAN16550

MAN16550

0S2386

MAN16550

<<

MAN16550.0BJ: MAN16550.C MAN16550.MAK MAN16550.DEF MAN16550.H
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ MAN16550.C

MAN16550.DEF

NAME MAN16550 WINDOWCOMPAT

DESCRIPTION 'MAN16550 example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

5 Gotcha!
'\; If using a DosExitList in a DLL, the DLL cannot be freed via DosFreeModule until the
) exit list function has run
a
@,y




DLLs — 103

Optimizing Performance in DLLs

System performance can be improved significantly by efficient use of DLLs. These performance
improvements can be gained from something as simple as combining several smaller DLLs into one larger
one, or by using David Reich's “aliasing” technique in helping the fix-up problems. The following
checklist lists some good DLL candidates.

1. Rarely called functions

2. Functions that add functionality to the base product

3. Functions that remove functionality from the base product
4. Functions that can be shared among applications

5. Functions with frequently changing internal implementation
6. Internationalization enabling functions

7. Help and Message type functions






Chapter 7

Exception Handling

OS/2 provides an opportunity for a program to interrupt system errors and handle them in their own
manner. These system “errors” are known as exceptions and are not really errors, but more abnormal
conditions. Some types of exceptions are guard-page exceptions, divide-by-zero exceptions, illegal
instruction, and access violation (or protection violation). Most everyone has seen the black protection
violation screen, which only lets the user end the program. Wouldn’t it be nice to intercept that exception
and either fix the problem ahead of time or at least provide an error message that was somewhat intelligible
to the user? Exception handlers are the answer.

There are two kinds of exceptions generated by the operating system, asynchronous exceptions and
synchronous exceptions. Asynchronous exceptions are caused by events external to a thread. Synchronous
exceptions are caused by events internal to a thread. Some common synchronous exceptions include
guard-page exceptions, divide-by-zero exceptions, and access violations. All the asynchronous exceptions
generate one of two exception types, XCPT_SIGNAL or XCPT_ASYNC_PROCESS_TERMINATE.
Asynchronous exceptions, except for the XCPT_ASYNC_PROCESS_TERMINATE exception, are also
known as signal exceptions. Signal exceptions are available only to non-Presentation Manager processes.

When a synchronous exception occurs, the operating system sends an exception just to the thread causing
the exception. If the operating system terminates the application, a XCPT_ASYNC_PROCESS_TERMINATE is
sent to all the other threads in the process.

When an asynchronous exception occurs, the operating system sends an exception just to the main thread.

How to Register an Exception Handler

Exception handlers are registered on a per-thread basis using the function
DosSetExceptionHandler ( PEXCEPTIONREGISTRATIONRECORD)

Exception handlers can be “nested” as a chain of exception-handling functions. The operating system will
call the last handler in the chain; after that function has completed, it may call the next-to-last handler, and
so on. An exception handler will do its work and then return a value to the operating system that indicates
whether to continue with the next exception handler registered in the chain or to dismiss the exception.

The EXCEPTIONREGISTRATIONRECORD data structure forms a linked list of exception handlers. The
first element in the structure is a pointer to either the next exception handler or an end-of-list marker, and is
filled in by the operating system. The second is a pointer to the exception-handling function currently
being registered and should be filled in by the developer. When registering an exception handler, this

105



106 — The Art of OS/2 Warp Programming

structure must be local to the procedure that contains DosSetExceptionHandler, as opposed to a global
structure.

= Gotcha!
'\; Before exiting your program, make sure you call the function
) DosUnsetExceptionHandler. If you do not, you will probably see a stack overflow
erTor.

)

What an Exception Handler Looks Like

An exception handler should use the following prototype.

APIRET APIENTRY ExceptHandlerFn( EXCEPTIONREPORTRECORD *, EXCEPTIONREGISTRATIONRECORD *,
CONTEXTRECORD *, PVOID reserved )

The EXCEPTIONREPORTRECORD structure is a data structure

struct _EXCEPTIONREPORTRECORD
{
ULONG ExceptionNum; /* exception number */
ULONG fHandlerFlags;
struct _EXCEPTIONREPORTRECORD *NestedExceptionReportRecord;
PVOID ExceptionAddress;
ULONG cParameters; /* Size of Exception Specific Info */
ULONG ExceptionInfo[EXCEPTION_MAXIMUM_PARAMETERS] ;
/* Exception Specfic Info */
}i

that describes the exception and includes the exception type and other exception information.

The EXCEPTIONREGISTRATIONRECORD structure

struct _EXCEPTIONREGISTRATIONRECORD
{
struct _EXCEPTIONREGISTRATIONRECORD * volatile prev_structure;
_ERR * volatile ExceptionHandler;
}s

is described in the last section, “How to Register an Exception Handler.”

The CONTEXTRECORD * structure

struct _CONTEXT
{
ULONG ContextFlags;
ULONG ctx_env([7];
FPREG ctx_stack[8];
ULONG ctx_SegGs;
ULONG ctx_SegFs;
ULONG ctx_SegEs;
ULONG ctx_SegDs;
ULONG ctx_RegEdi;
ULONG ctx_RegEsi;
ULONG ctx_RegEax;



Exception Handling — 107

ULONG ctx_RegEbx;
ULONG ctx_RegEcx;
ULONG ctx_RegEdx;
ULONG ctx_RegEbp;
ULONG ctx_RegEip;
ULONG ctx_SegCs;
ULONG ctx_EFlags;
ULONG ctx_RegEsp;
ULONG ctx_SegSs;
};

is an input/output parameter that contains register contents at the time of the exception. If the exception
handler will return XCPT_CONTINUE_EXECUTION, the structure can be modified. If it is modified
without XCPT_CONTINUE_EXCEPTION being specified, very bad things will happen.

The last parameter, the DISPATCHERCONTEXT structure, is undocumented because it should never be
modified.

The 486 chip uses the address at FS:0 to point to the address of the first exception registration record.
Many compilers implement exception handlers by modifying this value directly, rather than using the OS/2
API, in order to improve performance.

Signal Exceptions

Signal exceptions are special types of exceptions generated by only three events: when the user presses
Cul+C, when the user presses Ctrl+Break, and when another process terminates the application with the
DosKillProcess function.

In order to receive the Ctl+C and the Ctrl+Break exceptions, the thread must call
DosSetSignalExceptionFocus. The kill process signal is sent whether this function is used or not.

Dos and Don’ts for Exception Handlers

e Always deregister the exception handler. Some compilers will do this for you if you use the #pragma
handler. This pragma will set and unset the exception handler where necessary. If you use
DosSetExceptionHandler, you must use DosUnsetExceptionHandler.

e Make sure all semaphores are released if the exceptions are not being handled over to the system
default exception handler (by returning XCPT_CONTINUE_EXCEPTION).

e  An exception handler needs approximately 1.5K of stack in the process to be called. The process will
be terminated if there is not enough stack space.

e An error in the exception handler may generate a recursive exception condition. This creates a
situation that is very difficult to debug. Life will get much easier for the developer if the exception
handler is unset when a fatal error condition occurs.

DosExitList and Exception Handlers

When all threads in a process receive the process termination exception, a process will execute the
functions specified by DosExitList. The functions DosCreateThread and DosExecPgm should not be used
in an exit list routine.

A Guard Page Example

The following example illustrates guard-page handling. Guard pages provide an extra level of protection
for two things, data and thread stacks. A guard page is like a traffic cop with a large brick wall as a stop



108 — The Art of OS/2 Warp Programming

sign. When someone hits that brick wall, he or she is going to have some reaction, in this case, a guard-
page exception. This gives the programmer a chance to clean up the problem. When a page of memory is
committed, it also can be marked as a guard page. If the application writes to the edge of the guard page,
top or bottom, a guard-page exception is generated. The default behavior is designed for dynamic stack
growth, and stacks grow downward. Because of this, the operating system will look to see if the next lower
page is free, and if so, commit it. However, an exception handler gives the programmer some flexibility. If
the application so chooses, it can commit the next higher page in the exception handler, and then return
control back to the function that generated the guard-page exception. This memory management scheme is
the method used by most compilers to control thread stack growth.

GP.C

#define INCL_DOSMEMMGR

#define INCL_DOSEXCEPTIONS

#include <o0s2.h>

#include <stdio.h>

#define NUM_PAGES 8

#define SZ_PAGE 4096

ULONG MyExceptionHandler (PEXCEPTIONREPORTRECORD pTrap) ;

PBYTE pbBase;
BOOL bGuardup;

INT main (USHORT usNumArgs, PCHAR apchArgs([])
{

LONG 1Index;
EXCEPTIONREGISTRATIONRECORD errRegister;
APIRET arReturn;

pbBase = NULL;

if (usNumArgs > 1)
{
bGuardUp = TRUE;
printf ("Guarding up\n");

else
{

bGuardUp = FALSE;

printf ("Guarding down\n");
} /* endif */
errRegister.ExceptionHandler = (_ERR *)&MyExceptionHandler;
arReturn = DosSetExceptionHandler (&errRegister);
printf ("DosSetExceptionHandler returns %1ld\n",

arReturn) ;

/*************'k**********************************************/

/* allocate some memory */
/********************************‘k*******'k*******************/

arReturn = DosAllocMem( (PPVOID)&pbBase,
NUM_PAGES *SZ_PAGE,

PAG_READ|PAG_WRITE) ;
printf("DosAllocMem returns %1d ( pbBase = %p ) \n",
arReturn,

pbBase) ;

if (!bGuarduUp)
{




Exception Handling — 109

arReturn = DosSetMem (pbBase+ ( (NUM_PAGES-1) *SZ_PAGE) ,

SZ_PAGE,
PAG_COMMIT | PAG_READ | PAG_WRITE |
PAG_GUARD) ;
printf ("Return Code from DosSetMem, ""%1d - pbBase = %p\n",
arReturn,
pbBase) ;
/] mm -
// Write to pages, from top to bottom
[ = e e e e
for (lIndex = (NUM_PAGES *SZ_PAGE)-1L; 1lIndex >= 0OL; lIndex
-= 0x0010L)
{
printf("\rWriting to offset 0x%081X",
1Index) ;
pbBase[lIndex] = 1;
printf("\rWritten to offset 0x%081X",
1Index) ;
} /* endfor */
}
else
{
/)= e
// Commit first page and set to guard page
[ = e e
arReturn = DosSetMem(pbBase,
SZ_PAGE,
PAG_COMMIT | PAG_READ | PAG_WRITE |
PAG_GUARD) ;
printf ("Return Code from DosSetMem, ""%1d - pbBase = %p\n",
arReturn,
pbBase) ;
[
// Write to pages, from bottom to top
== o
for (lIndex = OL; lIndex < (NUM_PAGES *SZ_PAGE); lIndex +=
0x0010L)
{
printf ("\rWriting to offset 0x%081X",
1Index) ;
pbBase[lIndex] = 1;
printf("\rWritten to offset 0x%081X",
1Index) ;
} /* endfor */
/* endif */
printf("\n");
ettt i L DD Dt e aan bl
// Free memory area
[/ === m e m e

printf ("Freeing pbBase = %$p\n",
pbBase) ;
arReturn = DosFreeMem (pbBase) ;

printf ("Done\n") ;
return 0;
}

ULONG MyExceptionHandler (PEXCEPTIONREPORTRECORD perrTrap)
{

ULONG ulReturn;
APIRET arReturn;
PBYTE pbTrap;

ulReturn = XCPT_CONTINUE_SEARCH;

if (perrTrap->ExceptionN == XCPT_GUARD_PAGE_VIOLATION)




110 — The Art of OS/2 Warp Programming

{
DosBeep (300,
100) ;
printf("\n *** Guard exception *** \n");

pbTrap = (PBYTE)perrTrap->ExceptionInfo[l];

// Check that the fault is within our memory zone, so that
// we won't interfere with system handling of stack growth

if ((pbTrap >= pbBase) && (pbTrap < pbBase+NUM_PAGES
*SZ_PAGE) )
{

if (!bGuardup)

arReturn = DosSetMem(pbTrap,
SZ_PAGE,
PAG_READ | PAG_WRITE) ;

printf ("DosSetMem returns %14 "
"( pbTrap = 0x%081X ) \n",
arReturn,
pbTrap) ;

printf ("Going down!\n");
pbTrap -= SZ_PAGE;

if ((pbTrap >= pbBase) && (pbTrap < pbBase+NUM_PAGES
*SZ_PAGE))
{
arReturn = DosSetMem (pbTrap,
SZ_PAGE,
PAG_COMMIT | PAG_READ| PAG_WRITE
| PAG_GUARD) ;

printf ("DosSetMem returns $1ld "
"( pbTrap = 0x%081X ) \n",
arReturn,
pbTrap) ;
} /* endif */

ulReturn = XCPT_CONTINUE_EXECUTION;
}
else
{

arReturn = DosSetMem(pbTrap,
SZ_PAGE,
PAG_READ | PAG_WRITE) ;

printf
("DosSetMem returns %$1d ( pbTrap = 0x%081X ) \n",
arReturn,
pbTrap) ;

printf ("Going up!\n");
pbTrap += SZ_PAGE;




Exception Handling — 111

[ mm e e e e e
// Commit and guard next page above
J e ittt
if ((pbTrap >= pbBase) && (pbTrap < pbBase+NUM_PAGES
*SZ_PAGE))
{
arReturn = DosSetMem (pbTrap,
SZ_PAGE,
PAG_COMMIT | PAG_READ | PAG_WRITE
IPAG_GUARD):

printf ("DosSetMem returns %14 "
" ( pbTrap = 0x%081X ) \n",

arReturn,
pbTrap) ;
} /* endif */
] ] e e e e e e e e
// We can continue execution
[ m e -
ulReturn = XCPT_CONTINUE_EXECUTION;
} /* endif */
} /* endif */
} /* endif */
return ulReturn;
}
GP.MAK
GP.EXE: GP.OBJ
LINK386 @<<
GP
GP
GP
082386
GP
<<
GP.OBJ: GP.C
ICC -C+ -Kb+ -Ss+ GP.C
GP.DEF

NAME GP WINDOWCOMPAT

DESCRIPTION 'Exception handler example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

When an exception occurs, information about the exception is placed in the
EXCEPTIONREPORTRECORD structure, and a pointer to these structures is passed to the exception
handler.




112 — The Art of OS/2 Warp Programming

struct _EXCEPTIONREPORTRECORD

{
ULONG ExceptionNum;
ULONG fHandlerFlags;
struct _EXCEPTIONREPORTRECORD *NestedExceptionReportRecord;
PVOID ExceptionAddress;
ULONG cParameters;
ULONG ExceptionInfo[EXCEPTION_MAXIMUM_PARAMETERS] ;

}:

ExceptionNum is the field that tells the type of exception that has occurred. In our case, we're looking for a
XCPT_GUARD_PAGE_VIOLATION. If the exception is not a guard page, we pass it on through to the
system exception handler by returning XCPT_CONTINUE_SEARCH. If a guard-page exception occurs,
we check to see if we have enough memory to commit one more page. If the memory is available, we
commit another page and set it as a guard page. The last thing we do is return
XCPT_CONTINUE_EXECUTION, which tells the system to bypass the other exception handler and
continue executing the program. The errant function statement will execute correctly, and the program
functions as if no problems had occurred.

Summary

Exception handlers are a flexible way to give the developer control over system errors. Exception handlers
have a lot of restrictions because the process can be dying when the exception handler is executed.
However, with the right amount of prudence, an exception handler provides a powerful tool for error
control.



Chapter 8

Interfacing with OS/2 Devices

The current OS/2 architecture supports three types of device drivers:

e  Virtual device drivers (VDD)
e Physical device drivers (PDD)
e  Presentation drivers (PD)

VDDs are used primarily by the legacy DOS and Windows applications. The virtualization of the physical
devices provides OS/2 with the ability to control the access to these devices through the Virtual Device
Driver. An example of a VDD is a VMOUSE.SYS or a VCDROM.SYS. The first one provides the virtual
support for the mouse pointer requirements, while the latter one makes sure the CD ROM interfaces for the
DOS and Windows applications are supported correctly.

The PD concerns itself mainly with OS/2’s Presentation Manager support. PDs usually run at Ring 2 or
Ring 3, and enable the Presentation Manager (PM) APIs to perform all of the necessary video functions.
These include all aspects of the PM windowing, messaging, and controlling requirements.

The PDDs provide the OS/2 user with the actual access to the standard /O devices. A PDD usually has a
corresponding VDD, which allows the same functionality for the DOS and Windows legacy applications.
The PDDs and VDDs are loaded at system startup and remain loaded for the entire duration of an OS/2
session. PDD architecture also provides OS/2 the flexibility to add nonstandard device support just by
loading the appropriate device driver at startup time. There are two kinds of PDDs: block device drivers
and character device drivers.

A SCSI (Small Computer systems Interface) driver is a type of block device driver. This driver
manipulates the data in blocks of a certain size, and is referred to by the system via a drive letter. A good
example of a PDD is the serial I/O device driver. But many character and block device drivers make up the
device driver suite for OS/2.

This chapter offers two examples of how to talk to the serial devices under OS/2’s control. The first
example utilizes the preferred device driver interface DosDevIOCtI(), while the second shows how to get to
the I/O ports without having to talk to the device driver.

There are obvious advantages for using the device driver interface:

1. Serialization/synchronization controls are built into the driver.
2. All OS/2 device drivers are interrupt driven.

113



114 — The Art of OS/2 Warp Programming

3. It provides a well-defined interface for upward OS/2 migration.
4. Devices can be shared by multiple users.

Generally, the OS/2 applications gain access to the devices through the IOCTL interface, while the DOS
applications can perform the same I/O functions that are allowed under real DOS (not VDM). Only 16-bit
0S/2 code can run at Ring 2 privilege level, which allows the code direct I/O access (IOPL — means I/O
Privilege Level). Occasionally it is advantageous to use the IOPL code to perform a quick read or write
from or to a particular I/O port, but it is not the preferred OS/2 method. For example, if an application is
monitoring room temperature and displays it on the screen, writing a full-blown device driver to access a
particular I/O port on some adapter just to read two bytes of data may not make sense. In this case it is
easier to utilize a 16-bit /O code segment to perform an IN (Input from Port) instruction and read the
temperature data. Synchronization and serialization do not have to be worried about. On the other hand, if
the program reads the temperature and then decides to adjust the environmental conditions, a device driver
must provide serialization and locking controls. '

Serial Interface Example Using DosDevIOCtl

The first of the two serial I/O examples deals with reading the data from the keyboard and transmitting all
of the keystrokes to the 0x3F8 I/O port (COM1).

In order to gain access to the COM1, DEVICE=COM.SYS must be executed correctly at system startup
and COM.SYS must be loaded. Next, a DosOpen call is issued to the device driver with “$COM1” as the
filename. The system is smart enough to recognize the fact that the user is looking to gain access to the
COML1 /O port; if no other program is using the device, the file handle for the COM1 device is granted.
Using this file handle, the process can now issue any DosDevIOCtl call with the appropriate asynchronous
parameters to gain access to the control functions of the NS 8250/16450/16550 UARTSs. Issuing DosRead
and DosWrite requests to the system using the same file handle results in the data being transferred
between the application buffers and the hardware UART.

The program uses the main thread to perform all of the keyboard read functions. The characters read are
transmitted immediately to the COM1 I/O Port via DosWrite function. However, a separate thread is used
to read the data from COM1 and display it on the screen. Since the device driver is capable of processing
both the read and the write requests simultaneously, a better-designed communications program will
dedicate a thread for each major function, such as read or write.

32_TERM.C

#define INCL_O0S2
#define INCL_KBD
#define INCL_VIO
#define INCL_DOSPROCESS
#define INCL_DOSDEVICES
#define INCL_DOSDEVIOCTL
#include <o0s2.h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#define STACK_SIZE 8192
#define BPS 9600
#define KBD_HANDLE 0
#define VIO_HANDLE 0
struct
{

BYTE dataBits;

BYTE parity;




Interfacing with OS/2 Devices — 115

BYTE stopBits;
} lineCtrl =
{

8,

0,

0
Yo

// 8,N,1

DCBINFO dcbInfo;
HFILE hCom; // COM handle
unsigned char inBuffer[256]; // input buffer

void ComThread(void) ;

JRI Kk Kk kkkdkkokkkkkkkkkkkkkhkhhhhhkhhhhhhdkhdkdhhhkkkhhkkkhhhhkhkkx /

/* main */
/***************************************************************/

int main(void)

{

APIRET ulAction,rc = 0;
ULONG ulBaudRate = BPS;
ULONG ulParmLen = 0;
ULONG ulBytesWritten;
TID ComThreadId = 0;
ULONG ulKbdChar = 0;

printf("\n\n Each keystroke is echoed to COM1l, 9600,8,N,1");
printf("\n Ctrl-C or Ctrl-Brk to exit...\n\n");

/*Open and initialize COM1 */
if (DosOpen( (PUCHAR) "COM1",
&hCom,
&ulAction,
oL,
0,
1,
0x12,
0L))
{
printf ("COM1 not available or COMOx.SYS not loaded\n");
exit(1l);
}
/*Set data rate to 9600bps and line format to N81 */

ulParmLen = sizeof (ulBaudRate);

rc = DosDevIOCtl (hCom,
TOCTL_ASYNC,
ASYNC_SETBAUDRATE,
&ulBaudRate,
ulParmLen,
&ulParmLen,
0,
0,
0);

ulParmLen = sizeof(lineCtrl);




116 — The Art of OS/2 Warp Programming

rc = DosDevIOCtl (hCom,
IOCTL_ASYNC,
ASYNC_SETLINECTRL,
&lineCtrl,
ulParmLen,
&ulParmLen,
ol
0,
0);

/*Set device control block parameters */
ulParmLen = sizeof (DCBINFO) ;

rc = DosDevIOCtl (hCom,
TOCTL_ASYNC,
ASYNC_GETDCBINFO,
0,
0,
0,
&dcbInfo,
ulParmLen,
&ulParmLen) ;

dcbInfo.usWriteTimeout = 6000;

/**************************************************'k*********/

/* 60 second write timeout */
/************************************************************/

dcbInfo.usReadTimeout = 6000;

/************************************************************/

/* 60 second readtimeout */
/************************************************************/

dcbInfo. fbCtlHndShake = MODE_DTR_CONTROL;

JREEE KKK K Rk Kk kK kK k kK k ke kkkk ko kkk kA hkh Ak ke ke kkkkkkkkkkkkkkk /

/* enable DTR */

/**‘k*'A'*******************************************************/

dcbInfo. fbFlowReplace = MODE_RTS_CONTROL;

/************************************************************/

/* enable RTS */

/*******************‘k****************************************/

dcbInfo. fbTimeout = MODE_WAIT_READ_TIMEOUT;

/******************************************************‘k*****/

/* wait-for-something reads */
/************************************************************/

ulParmLen = sizeof (DCBINFO) ;

rc = DosDevIOCtl (hCom,
IOCTL_ASYNC,
ASYNC_GETDCBINFO,
&dcbInfo,
ulParmlLen,
&ulParmLen,
O'
0I
0);




Interfacing with OS/2 Devices — 117

/*Create a thread to monitor the serial port

rc = DosCreateThread(&ComThreadId,
(PFNTHREAD) &ComThread,
0,
CREATE_READY,
STACK_SIZE);

/*Monitor the keyboard and output typed characters
Hit Ctrl-C to exit (primitive termination)

while (!rc)

{
if (kbhit())
{
ulKbdChar = (ULONG)getche();
rc = DosWrite(hCom,
&ulKbdChar,
ll
&ulBytesWritten) ;
}
}
printf(

*/

*/

"\n\n Could not write to COM1l, killing the MAIN thread.\n\n")

;

return (rc);

}

/***************************************************************/

/* Thread to read characters from COM1 and write to screen */
/***************************************************‘k***********/

void ComThread(void)

{
ULONG ulBytesRead = 0,1;
APIRET rc = 0;
while (!rc)
{
rc = DosRead (hCom,
inBuffer,
1,
&ulBytesRead) ;
if (ulBytesRead)
{
for (i = 0; i < ulBytesRead; i++)
inBuffer([i] &= Ox7f;
VioWrtTTY (inBuffer,
ulBytesRead,
VIO_HANDLE) ;
}
}

printf ("\n\n Could not read from COM1");
printf("killing the LISTEN thread.\n\n");




118 — The Art of OS/2 Warp Programming
32_ TERM.MAK

ALL: 32_TERM.EXE

32_TERM.EXE: 32_TERM.OBJ
LINK386 /NOI @<<

32_TERM

32_TERM

32_TERM

052386

32_TERM

<<

32_TERM.OBJ: 32_TERM.C
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ 32_TERM.C

32_TERM.DEF

NAME 32_TERM WINDOWCOMPAT

DESCRIPTION '32_TERM example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

The COM.SYS expects the following to be true:

COM1 Must reside at 0x3F8 and use the interrupt level 4.
COM?2 Must reside at 0x2F8 and use the interrupt level 3.

The COM.SYS driver provides support for the UART control functions and the RS232C interface only.
No specific devices are supported directly by the COM.SYS driver. It is left up to the applications to
create subsystems or standalone programs to support the RS232C devices (modems and the like). The
COM.SYS is a fully interrupt driven driver and has support for extended hardware buffering that is offered
by the NS 16550 UARTs.

The PDD utilizes a memory buffer between the operating system and the UARTS, and data is copied in and
out of the buffer from and to the UART transmit/receive registers. Once the user has obtained the file
handle for a particular /O port (COM1, COM2, etc.), he or she can use this handle to issue DosRead and
DosWrite requests to move the data between an application and an I/O port. Currently, the system
maintains a 1,024-byte receive and a 128-byte transmit buffer for the COM1-COM4 I/O ports when the
driver is in the non-DMA mode. When the driver is in the enhanced DMA mode, there are two 1,024-byte
receive queues and one 255-byte transmit queue. OS/2 does not guarantee that the sizes will remain
constant with each version of the operating system, and thus the sizes are subject to change. The operating
system also does not guarantee packet delivery to the device drivers in the same order that they were issued
by the application due to the multitasking nature of OS/2.

Serial Interface Example Using inp

The second example is much simpler than the first. As was mentioned before, only 16-bit code is allowed
to execute with IOPL flag enabled. Taking this into consideration we can create a very handy 16-bit DLL
like 16BITIO.DLL that exports the inp(), inpw(), outp(), and outpw() calls. Any 32-bit application can link
with the import 16BITIO.LIB library and allow direct I/O functionality. This particular example uses a




Interfacing with OS/2 Devices — 119
very simple algorithm to check for the presence of an NS 16550 UART by issuing a series of inp() and
outp() calls to the particular COM1 and COM2 I/O port ranges.

CHK16550.C

/* Assume

COM1 -> Ox3F8
COM2 -> 0Ox2FS8

One attempts to first clear the 16550 FIFO by writing a 0x00
to the FIFO Control register at offset 0x02. Then one attempts
to enable the FIFOs by setting bit0 of the FIFO Control
register at offset 0x02. Reading the Interrupt Identification
register at offset 0x02 will tell one if 16550 is present.

KKK KR I KKK KK IR KA KKK KA KA KKK KA KIARKRIAKR KK KK IRRK I KRR RA KA KA K KR Kk kkokkokk

*/

#include <stdio.h>
#include <stdlib.h>
#include "chk16550.h"
int main(void) ;
#define BIT_6_7_SET 0x00C0
int main(void)
{

unsigned Byte = 0;

printf ("\n\n Attempting to find 16550 UART ...");/* test

coM1 */

my_outp (MY_COM1+MY_FIFO_CTRL,

0x00) ; /* Clear the FIFO reg */
Byte = my_inp (MY_COM1+MY_INT_ID);
Byte &= BIT_6_7_SET;

if (!Byte)
{
my_outp (MY_COM1+MY_FIFO_CTRL,
0x01) ; /* Set the FIFO reg */
if (my_inp (MY_COM1+MY_INT_ID)&BIT_6_7_SET)
printf (

"\n\n 16550 appears to be present for COM1->0x3F8.\n")

7

else
printf(
"\n\n 16550 appears to be absent for COM1->0x3F8.\n")
}
else
{
printf(
"\n\n Unknown error for COM1->0x3F8. Exiting ... \n\n");
return (-1);
} /* test COM2 loop? :) */
my_outp (MY_COM2+MY_FIFO_CTRL,

0x00) ; /* Clear the FIFO reg */
if (! (Byte = (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)))
{

my_outp (MY_COM2+MY_FIFO_CTRL,
0x01); /* Set the FIFO reg */




120 — The Art of OS/2 Warp Programming

if (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)
printf (
"\n 16550 appears to be present for COM2->0x2F8.\n\n")

’

else
printf(
"\n 16550 appears to be absent for COM2->0x2F8.\n\n")
}
else
{
printf(
"\n\n Unknown error for COM2->0x2F8. Exiting ... \n\n");

return (-1);
}

return (0);

CHK16550.H
/* Header file for the 16-bit LIB/DLL used to perform IOPL i/o calls */
/* A. Panov 1993,1994,1995 */

extern unsigned short _Farlé _Cdecl my_inp (unsigned short);
extern unsigned short _Farl6é _Cdecl my_outp (unsigned short, unsigned short);

#define MY _COM1 0x3F8

#define MY_COM2 0x2F8

#define MY_INT_ENABLE 1

#define MY_INT_ID 2

#define MY_FIFO_CTRL 2

#define MY_LINE_CTRL 3

#define MY_MODEM_CTRL 4

#define MY _LINE_STATUS 5

#define MY_MODEM_STATUS 6

#define MY_SCRATCH 7

CHK16550.MAK

ALL: CHK16550.EXE

CHK16550.EXE: CHK16550.0BJ
LINK386 /NOI @<<

CHK16550

CHK16550

CHK16550

0S2386+16bitio

CHK16550

<<

CHK16550.0BJ: CHK16550.C

ICC -C+ -Gm+ -Kb+ -Sm -Ss+ CHK16550.C




Interfacing with OS/2 Devices — 121

CHK16550.DEF

NAME CHK16550 WINDOWCOMPAT

DESCRIPTION 'CHK16550 example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

16BITIO.C

/* 16-bit I/0 dll */
_acrtused = 0;

#include <conio.h>
int far _cdecl my_inp(unsigned);

int far _cdecl my_outp(unsigned,unsigned) ;
unsigned far _cdecl my_inpw(unsigned) ;
unsigned far _cdecl my_outpw(unsigned,unsigned) ;

int far _cdecl my_inp(unsigned usPort)
{

}

return (inp(usPort));

int far _cdecl my_outp(unsigned usPort,unsigned usValue)
{
return (outp (usPort,
usValue)) ;
}

unsigned far _cdecl my_inpw(unsigned usPort)
{

}

return (inpw(usPort));

unsigned far _cdecl my_outpw(unsigned usPort,unsigned usValue)
{
return (outpw(usPort,
usValue)) ;

16BITIO.MAK

ALL: 16BITIO.DLL 16BITIO.LIB

16BITIO.LIB: 16BITIO.DLL
IMPLIB 16BITIO.LIB 16BITIO.DEF

16BITIO.DLL: 16BITIO.OBJ
LINK /NOI @<<

16BITIO

16BITIO.DLL

16BITIO

16BITIO

<<

16BITIO.OBJ: 16BITIO.C
cl -c -AL -G2s -Fc 16BITIO.C




122 — The Art of OS/2 Warp Programming

16BITIO.DEF

LIBRARY INITINSTANCE
PROTMODE
DESCRIPTION '16bitIO example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'
DATA NONSHARED
SEGMENTS _IOSEG CLASS 'IOSEG_CODE' IOPL
EXPORTS
_my_inp
_my_outp
_my_inpw
_my_outpw
STACKSIZE 4096

[SRS

The ASYNC PDD is covered in much greater detail in the IBM Physical Device Driver Reference manual
(10G6266), which is part of the OS/2 Toolkit Technical Library.




Chapter 9

Introduction to Windows

Introduction

The basic building block for all Presentation Manager (PM) programming is a window. Most items
displayed on the screen are windows, of some shape or fashion. A window is designed to react to
messages sent to it either from the system or from another window. These messages are placed into a
message queue that is unique to each PM application. A message is used to signal events that happen to a
window. For example, a WM_CREATE message is sent when a window is halfway through its creation
process; a WM_SIZE message is sent after the user has sized the window; a WM_DESTROY message just
before the destruction of the window is complete. Each window has a specific window procedure that is
used to respond back to the system when a message is sent. The programmer is responsible for creating
this window procedure. The window procedure is a switch statement that will filter out certain messages
that are of interest to the application. The messages that are not interesting can be passed on to a default
window procedure or a default dialog procedure. For instance, the programmer may want to initialize
some data in the WM_CREATE message processing or free up memory when the WM_DESTROY is
received.

What Is a Window?

The first thing to understand when beginning Presentation Manager programming is the concept of a
window. A window is a graphical image of a rectangle that sits on the screen and is used to provide a
uniform interface with which a user can interact. (See Figure 9.1.)

123



124 — The Art of OS/2 Warp Programming

~ 1 Title Bar “1[]

Figure 9.1 A window.

A window can be sized larger or smaller, it can be opened or closed, it can be made visible or invisible.
Suffice it to say that there are a lot of things to do with a window.

Figure 9.2 looks like one window but, in reality, it is five windows:

The frame window

The title bar

The system menu

The maximize/minimize buttons
The client window



Introduction to Windows — 125

System Min/Max
Menu Buttons

M [Fitle bor o @

Frame Window

Client Window

Figure 9.2 Drawing of a window’s components.

Each of the five windows has a window procedure associated with it. In most cases, the programmer will
be able to use the system-defined window procedures for all but the client window. The window procedure
is a function that tells the window how to behave. Windows that share the same window procedure belong
to the same window class. This is a familiar concept for those readers acquainted with object-oriented
programming.

Imagine a fast food restaurant. Each item on the menu could be considered one class—a hot dog class, a
hamburger class, and a pizza class. Suppose mustard, mayo, relish, or cheese could be put on a hot dog, in
any combination. Each of these condiments would be a hot dog style.

The same is true for window classes. There are many predefined window classes, including
some classes specific to pen computing and the multimedia extensions. The classes specific to
Presentation Manager are:

WC_FRAME Frame control class
WC_COMBOBOX Combo box control class
WC_BUTTON Button control class
WC_MENU Menu control class
WC_STATIC Static text control class

WC_ENTRYFIELD Entryfield control class
WC_LISTBOX Listbox control class



126 — The Art of OS/2 Warp Programming

WC_SCROLLBAR
WC_TITLEBAR
WC_MLE
WC_SPINBUTTON
WC_CONTAINER
WC_SLIDER
WC_VALUESET
WC_NOTEBOOK

Scrollbar control class
Titlebar control class
Multi-line edit control class
Spinbutton control class
Container control class
Slider control class
Valueset control class
Notebook control class

Each window class is very different from the others. Some of these predefined classes will be covered in
later chapters. The client window, which is the area inside the window frame, belongs to a user-defined
class. Each window class also contains a set of window styles specific to that class. There is a set of class
styles available to all classes. The styles are:

® © o6 o ¢ o ¢ o o o

CS_MOVENOTIFY
CS_SIZEREDRAW
CS_HITTEST
CS_PUBLIC
CS_FRAME
CS_CLIPCHILDREN
CS_CLIPSIBLINGS
CS_PARENTCLIP
CS_SAVEBITS
CS_SYNCPAINT

These styles will be covered in more detail in the section entitled “Window Stylin’.”

Once we know a little bit about the window classes the operating system offers, we can decide which are
best suited for our application, or, as most of us do-it-yourselfers will do, you can create your own. So,
let’s do just that.

WIN1.C

#define INCL_WIN
#define INCL_GPI

#include
#include
#include
#include

<0s2.h>
<stdio.h>
<stdlib.h>
<string.h>

#define CLS_CLIENT

"WindowClass"

MRESULT EXPENTRY ClientWndProc ( HWND hwndWnd,

ULONG

ulMsg,

MPARAM mpParml,
MPARAM mpParm2 ) ;

INT main
{

( VOID )

habAnchor ;
hmgQueue ;
ulFlags ;
hwndFrame ;
hwndClient ;
bLoop ;




Introduction to Windows — 127

QMSG qmMsg ;

habAnchor = WinInitialize ( 0 ) ;
hmgQueue = WinCreateMsgQueue ( habAnchor, 0 ) ;

WinRegisterClass ( habAnchor,
CLS_CLIENT,
ClientWndProc,
OI
0

ulFlags = FCF_TITLEBAR | FCF_SYSMENU | FCF_SIZEBORDER |
FCF_MINMAX | FCF_SHELLPOSITION | FCF_TASKLIST ;

hwndFrame = WinCreateStdWindow ( HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
oL,
NULLHANDLE,
O/
&hwndClient ) ;

if ( hwndFrame != NULLHANDLE ) {
bLoop = WinGetMsg ( habAnchor,
&qQmMsg,
NULLHANDLE,
0,
0) s
while ( bLoop ) {
WinDispatchMsg ( habAnchor, &gmMsg ) ;
bLoop = WinGetMsg ( habAnchor,
s&QqmMsg,
NULLHANDLE,
0,
0) s
} /* endwhile */

WinDestroyWindow ( hwndFrame ) ;
} /* endif */

WinDestroyMsgQueue ( hmgQueue ) ;
WinTerminate ( habAnchor ) ;
return 0 ;

}

MRESULT EXPENTRY ClientWndProc ( HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2 )

switch ( ulMsg ) {
case WM_ERASEBACKGROUND:
return MRFROMSHORT ( TRUE ) ;

default:
return WinDefWindowProc ( hwndWnd,
ulMsg,
mpParml,
mpParm2 ) ;

} /* endswitch */

return MRFROMSHORT ( FALSE ) ;




128 — The Art of OS/2 Warp Programming
WIN1.MAK

WIN1.EXE: WIN1.OBJ
LINK386 @<<

WIN1

WIN1

WIN1

052386

WIN1

<<

WIN1.OBJ: WINl.C
ICC -C+ -Kb+ -Ss+ WIN1l.C

WIN1.DEF

NAME WIN1 WINDOWAPI

DESCRIPTION 'Simple window example
Copyright (c) 1992 by Kathleen Panov
All rights reserved.'

STACKSIZE 16384

The INCLUDE Files

The OS/2 Toolkit provides oodles and oodles of header files. These files contain structure definitions,
function prototypes, and many system-defined constants to make OS/2 programs much easier to read. The
large size of these files and the tremendous amount of overhead they create make it advantageous to
selectively pick and choose those parts that are applicable to a program. This is done by placing a series of
#defines before the inclusion of OS2.H. In this program, we will use #define INCL_WIN.

#define INCL_WIN
#include <o0s2.h>

This is an all-encompassing define that will include the necessary headers for all the Win... functions. This
is overkill in most cases, but for our first example we’ll keep things simple.

The Window Procedure Definition

MRESULT EXPENTRY ClientWndProc ( HWND hwndwWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2 ) ;

Window procedures are declared in a very special way, using the prefix MRESULT EXPENTRY. In
OS2DEF .H, these expand to VOID * _System. The return type, MRESULT, gives the window procedure
the freedom to return whatever it needs to by using the VOID * type. The _System tells the C-Set/2
compiler that the operating system will be calling the function. It is a good idea to use the Presentation
Manager—defined data types when dealing with window procedures and messages. There is a good
probability that some definitions will change when moving to other machine architectures, and by using the
defined data types, we save some headaches if we need to port the application to some other version of
OS/2. A more detailed explanation of window procedure is in the section “The Window Procedure
Revisited.”

The function’s parameters are HWND hwndWnd, ULONG msg, MPARAM mpParml, and MPARAM
mpParm2. This may look very familiar to Microsoft Windows programmers. The variable hwndWnd is a




Introduction to Windows — 129
window handle. Each window has its own unique window handle, and most Win... functions will include
this as a parameter. In this case, hwndWnd is the window to which the message is being sent. The
parameter ulMsg is the specific message being sent to the window. We will cover messages in more detail
in Chapter 11.

The last two parameters are mpParml and mpParm2, which have the type MPARAM. These are “shape-
shifter” parameters. MPARAM is really a PVOID in disguise. This gives the operating system two 32-bit
spaces to insert whatever data corresponds to the message being sent. These values could be pointers or
short or long integers. For example, the message WM_MOUSEMOVE is sent whenever the mouse is
moved. The first message parameter, mpParml, would contain two SHORTs. The second message
parameter, mpParm2, also contains two SHORTSs. Figure 9.3 provides a breakdown of a message-
parameter variable.

Y Coordinate X Coordinate

| SHORT2(16bits)  SHORTA( 16 bits) ,
T

32-bit MPARAM mp1

Figure 9.3 Breakdown of a message-parameter variable.

Helper Macros

Many data-type conversions are necessary in a Presentation Manager application because of the multiple
data types that can be used as an MPARAM or MRESULT. MRESULT is the value returned by the
window procedure and is also a “shape-shifter.” The Toolkit includes a group of helper macros to make
these conversions easier.

Table 9.1 presents the macros used to convert some standard data type into a MPARAM data type that can
be used when sending or posting a window message.

Table 9.1 Macros to Convert into MPARAM

MPFROMVOID 0
MPFROMP PVOID
MPFROMHWND HWND
MPFROMCHAR CHAR
MPFROMSHORT SHORT
MPFROM2SHORT 2 SHORTs
MPFROMSH2CH 2 CHARs
MPFROMLONG ULONG

Table 9.2 presents the macros used to convert a MPARAM data type into a standard data type that can be
used when receiving a window message.



130 — The Art of OS/2 Warp Programming

Table 9.2 Macros to Convert from MPARAM

PVOIDF ROMMP PVOID

HWNDFROMMP HWND
CHAR1FROMMP CHAR
CHAR2FROMMP second CHAR
CHAR3FROMMP third CHAR
CHAR4FROMMP fourth CHAR
SHORT1FROMMP low SHORT
SHORT2FROMMP high SHORT
LONGFROMMP ULONG

Table 9.3 presents the macros used to convert a MRESULT data type into a standard data type that can be
used to examine a return value for the window procedure.

Table 9.3 Macros to Convert from MRESULT

PVOIDFROMMR PVOID
SHORT1FROMMR low SHORT
SHORT2FROMMR high SHORT
LONGFROMMR ULONG

Table 9.4 presents the macros used to convert a standard data type into a MRESULT data type that can be
used to construct a return value from the window procedure.

MRFROMP PVOID
MRFROMSHORT SHORT
MRFROM2SHORT 2 SHORTs
MRFROMLONG ULONG

Presentation Manager Program Initialization

habAnchor = WinInitialize ( 0 ) ;
hmgQueue = WinCreateMsgQueue ( habAnchor, 0 ) ;

The beginning of a PM program will always start with a few things. First, Winlnitialize is called to obtain
an anchor block handle, or HAB. An anchor block is specific to each thread that contains a window
procedure.

HAB WinInitialize( ULONG flOptions)

The only parameter for Winlnitialize is a ULONG that is used for initialization options. In a PM
environment, this should be 0. An anchor block currently contains error information for each thread and
also may be used for “future portability issues.” Each Presentation Manager thread should obtain its own
anchor block for two reasons: portability and also to obtain error information specific to that thread.



Introduction to Windows — 131

HMQ WinCreateMsgQueue( HAB hab, LONG lQueuesize)

WinCreateMsgQueue will create a message queue for the thread that called the function. The message
queue is how Presentation Manager communicates back and forth with the windows. The first parameter is
the anchor block handle, habAnchor. The second parameter is the queue size. A parameter of O indicates
the default queue size in OS/2, which holds 10 messages. A full queue will cause the user interface to
respond rather slowly and sometimes to stop responding completely. The default queue size should be fine
for most applications. If a queue is getting too full, the program should be checked to see where messages
are getting backlogged. (One of the requirements for a PM interface is a crisp user response. Any response
that consumes more than 100 milliseconds probably should be put in a separate thread. See Chapter 30 for
more information on multithreading in a PM program.)

Creating a New Class

WinRegisterClass ( habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0

The function WinRegisterClass is used to create a new class of windows, in this case CLS_CLIENT.

BOOL WinRegisterClass( HAB hab,
PSZ pszClassName,
PFNWP pfnWndProc,
ULONG flStyle,
ULONG cbWindowData)

The first parameter is the anchor block, habAnchor. The next parameter is the class name. This parameter
is a null-terminated string. The next parameter is the window procedure the class is assigned to,
ClientWndProc. The fourth parameter is the class styles used for the new class. We’re not going to use
any class styles for now, so we put 0 here. The last parameter is the number of bytes of storage space that
will be tacked on to each window belonging to this class. This piece of space is commonly referred to as
“window words.” This is covered in more detail later.

Creating a Window

By now readers are probably thinking “But I just wanted to create one lousy window.”
Well, this is it, the function call you’ve been waiting for: WinCreateStdWindow. This
function actually creates five windows as stated earlier; but only two that are of any
interest to us—the frame window and the client window.

ulFlags = FCF_TITLEBAR | FCF_SYSMENU | FCF_SIZEBORDER |
FCF_MINMAX | FCF_SHELLPOSITION | FCF_TASKLIST ;

hwndFrame = WinCreateStdWindow ( HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
oL,
NULLHANDLE,
0/

&hwndClient ) ;



132 — The Art of OS/2 Warp Programming

The function returns the frame window handle.

HWND WinCreateStdWindow (

HWND hwndParent,

ULONG flStyle,

PULONG pflCreateFlags,
PSZ pszClassClient,
PSZ pszTitle,

ULONG flStyleClient,
HMODULE Resource,
ULONG ullID,

PHWND phwndClient)

The first parameter specified is the parent of the frame window. We’ll discuss parents and owners in a
minute. The second parameter is the frame style. A frame can draw from two sets of styles: frame styles,
because this is a frame window; and window styles, because the frame class is a subset of the window class
“window.” The most common window style available is WS_VISIBLE. Yep, you guessed it, this means
the window is not only created but will show up as well.

The third parameter is the frame flags. Frame flags describe how the frame will look. The possible
descriptors are OR’ed together. Figure 9.4 is a diagram of all the possible descriptors and the bits that

correspond to them.

Lel7 s us e r3Tv2luil o] ol 8] 7] 6] 5] o] 3] 2] 1] o]

L rorrmesw
FCF_SYSMENU
FCF_MENU

FCF_SIZEBORDER
FCF_MINBUTTON
FCF_MAXBUTTON

FCF_VERTSCROLL

FCF_HORZSCROLL

FCF_DLGBORDER

FCF_BORDER

FCF_SHELLPOSITION

FCF_TASKLIST

FCF_NOBYTEALIGN

FCF_NOMOVEWITHOWNER

FCFICON

FCF_ACCELTABLE

FCF_SYSMODAL

FCF_SCREENALIGN

FCF_MOUSEALIGN

FCF_TITLEBAR
FCF_SYSMENU
FCF_MENU

FCF_MINBUTTON
FCF_SIZEBORDER
FCF_MAXBUTTON

Table 9.5 Frame Creation Flags Description

Figure 9.4 Frame creation flags.

Creates a title bar on the frame.

Creates a system menu on the frame.

Creates an application menu on the frame. This is loaded from the
resource file or .DLL. (See Chapter 12 for more information.)

Creates a minimize button on the frame.

Creates a sizing border on the frame.

Creates a maximize button on the frame.



FCF_MINMAX
FCF_HORZSCROLL
FCF_DLGBORDER
FCF_VERTSCROLL
FCF_BORDER
FCF_SHELLPOSITION

FCF_TASKLIST
FCF_NOBYTEALIGN
FCF_NOMOVEWITHOWNER
FCF_ICON
FCF_ACCELTABLE

FCF_SYSMODAL
FCF_SCREENALIGN

FCF_MOUSEALIGN

FCF_STANDARD

FCF_AUTOICON

FCF_HIDEBUTTON
FCF_HIDEMAX

Introduction to Windows — 133

) aon - L
Creates both a minimize and maximize button on the frame.
Creates a horizontal scroll bar on the frame.

Creates the thick dialog box border on the frame.

Creates a vertical scroll bar on the frame.

Creates a thin border on the frame.

The system determines the initial size and placement of the frame
window.

Adds the program title to the task list and window title to the window
list.

Do not optimize window movements in 8 pel multiples.

The frame window will not move when the owner is moved.

An icon is added to the frame. This is loaded from the resource file or
.DLL. (See Chapter 12 for more information.)

An accelerator table is added to the frame. This is loaded from the
resource file or .DLL. (See Chapter 12 for more information.)

The frame window is system modal.

The frame window is positioned relative to the desktop rather than
relative to the owner window.

The frame window is positioned relative to the position of the mouse
rather than relative to the owner window.

FCF_TITLEBAR | FCF_SYSMENU | FCF_MINBUTTON |
FCF_MAXBUTTON | FCF_SIZEBORDER | FCF_ICON | FCF_MENU
| FCF_ACCELTABLE | FCF_SHELLPOSITION | FCF_TASKLIST.

A WM_PAINT message will not be sent to the application when the
frame window is iconized.

Creates “hide” button on the frame.

Creates “hide” and maximize buttons on the frame.

In this example, we’ll use the following flags: FCF_TITLEBAR, FCF_SYSMENU, FCF_SIZEBORDER,
FCF_TASKLIST, FCF_MINMAX, and FCF_SHELLPOSITION.

v
\

Gotcha!

e, By

a.y
3

Be sure to pass a pointer to a ULONG as this parameter.

The fourth parameter is the name of the window class that the client window will belong to; in this case,
we use the string defined by CLS_CLIENT. The next parameter is the window text for the title bar. The
sixth parameter is the client window style. Since we defined the parent of the client window hwndFrame
to have the style WS_VISIBLE, the client, as a child of hwndFrame, will inherit the WS_VISIBLE style.
This means we don’t have to specify any window styles here; we’ll just leave that a 0.

The next parameter is the resource ID location. The next parameter contains the resource ID for the frame
window. This one resource ID will point to all the resources that are defined for the frame. This includes



134 — The Art of OS/2 Warp Programming

the menu, icon, accelerator table, and any other items defined using the frame creation flags. For more
information on resources, see Chapter 12.

The last parameter is the address of a window handle. Presentation Manager will place the client window
handle into this variable upon the function’s return.

If WinCreateStdWindow fails, NULLHANDLE is returned. Before we attempt to do anything else, it is a
good idea to check the return handle to make sure it is valid; if not, the application should quit, preferably
with some sort of error message.

Message, Message, Who’s Got the Message?

bLoop = WinGetMsg ( habAnchor,
&gmMsg,
NULLHANDLE,
O ’
0) ;
while ( bLoop ) {
WinDispatchMsg ( habAnchor, &gmMsg ) ;
bLoop = WinGetMsg ( habAnchor,
&qQmMsg,
NULLHANDLE,
0,
0) ;
} /* endwhile */

The two functions, WinGetMsg and WinDispatchMsg, are the keys to getting the message queue up and
running. Without some form of message retrieval and dispatch, the system will respond with a “Program
not responding...” error message. The secret to a well thought out Presentation Manager application is a
message queue that is quick and responsive. WinGetMsg will retrieve the message from the message queue
and place it into the variable gmMsg. The QMSG structure looks very similar to the variables that are
passed to the window procedure. Eventually the QMSG structure will be passed on to ClientWndProc or to
the window procedure for the window receiving the message. WinGetMsg and WinDispatchMsg form a
post office for messages. They pick up the messages and then make sure that the messages are delivered to
the correct window.

BOOL WinGetMsg( HAB hab,
PQMSG pamsgmsg,
HWND hwndFilter,
ULONG ulFirst,
ULONG ulLast )

The first parameter of WinGetMsg is the anchor block handle. The next one is the address of the QMSG
structure that will handle the retrieved message information. The next three parameters are not used in this
example. They provide a way for WinGerMsg to choose selectively which messages to pick out of the
queue. By specifying zeroes here, WinGerMsg will retrieve all messages from the message queue in the
order they were placed there. After the message is retrieved from the queue, it is then passed on to
WinDispatchMsg.

MRESULT WinDispatchMsg( HAB hab,
POMSG pgmsgMsg )



Introduction to Windows — 135

It is WinDispatchMsg’s job to take the message from the gmMsg variable and send it on to the window
procedure associated with the window it is addressed to. For instance, if gmMsg.hwnd were equal to
hwndWnd, WinDispatchMsg would take gmMsg and send it on to ClientWndProc.

/* QMSG structure */
typedef struct _QMSG /* gmsg */
{
HWND hwnd; /* window handle that msg is being sent to */
ULONG msg; /* the message itself */
MPARAM mpl; /* Message Parameter 1 */
MPARAM mp2; /* Message Parameter 2 */
ULONG time; /* Time msg was sent */
POINTL ptl; /* Mouse position when msg was sent */
ULONG reserved;
} QMSG;
typedef QMSG *PQMSG;

The QMSG structure contains a lot of very interesting information about the message. The first field in the
structure, hwnd, is the window handle the message is for. The field msg is the constant identifying the
message. Some common messages are WM_CREATE, WM_PAINT, WM_QUIT, and WM_SIZE. The
next two parameters, mpl and mp2, are the message parameters. Each message has a set use for these
parameters. Usually they are used to convey more information about the message. The time field contains
the time the message was sent, and the ptl field is a structure that contains the mouse position when the
message was sent.

Terminating a Program

You may have noticed that WinGetMsg and WinDispatchMsg were running in a while
loop. While WinGetMsg returns a TRUE value, this loop continues to process
messages. When WinGetMsg receives a WM_QUIT, WinGetMsg returns FALSE and
will fall out of the loop. At this point, the user has elected to close the application,
and it’s time for the final cleanup. We have created three things that need to be
destroyed—the frame window hwndFrame, hmgQueue, and habAnchor. Each of these items has its own
destroy function.

BOOL WinDestroyMsgQueue( HMQ hmg )
BOOL WinDestroyWindow( HWND hwnd )
BOOL WinTerminate( HAB hab )

By destroying hwndFrame, we also are destroying the client window, the title bar, and all the other
windows that were children of the frame.

WinDestroyWindow ( hwndFrame ) ;
} /* endif */

WinDestroyMsgQueue ( hmgQueue ) ;
WinTerminate ( habAnchor ) ;
return 0 ;

The Window Procedure Revisited

You might have looked over main and thought, “Is this it?” Well, no. We’ve presented just the tip of the
iceberg. The window procedure is the meat of a Presentation Manager program. A window procedure’s
sole purpose in life is to respond to the messages for the window that belongs to it. It is also important to



136 — The Art of OS/2 Warp Programming

realize that multiple windows can and will access the same window procedure. Programmers must be very
careful with static and global variables or flags. They can come back to haunt developers if two windows
are accessing the same procedure. It is a good idea to avoid these if at all possible.

Most window procedures are nothing more than a giant switch statement, with a case for each message. A
window procedure does not have to respond to every message; it can filter the majority of the messages
through to a function, WinDefWindowProc or WinDefDIgProc. This function lets the system handle
messages in a system default manner. As the creator of the window procedure, it is the programmer’s job
to pick out which messages will trigger a response in your program. For instance, when a WM_SIZE
message is received, the programmer may wish to reflow any text on the window so that it is all visible and
centered. Passing messages on to WinDefWindowProc or WinDefDigProc is very safe.

279  Gotcha!

Be very careful about accidentally reversing WinDefWindowProc and WinDefDlgProc.
Strange things can occur when calling WinDefWindowProc for a dialog box or using
aj‘é WinDefDlgProc for a non-dialog box window.

The default action for these messages is listed in the online reference for the Toolkit. A few messages are
very important to a window procedure. These will be covered later in this chapter.

In this example the window procedure, ClientWndProc, is very small. It’s not quite the smallest window
procedure available, but it’s pretty close.

MRESULT EXPENTRY ClientWndProc ( HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2 )

switch ( ulMsg ) {
case WM_ERASEBACKGROUND:
return MRFROMSHORT ( TRUE ) ;

default:
return WinDefWindowProc ( hwndwnd,
ulMsg,
mpParml,
mpParm2 ) ;

} /* endswitch */

return MRFROMSHORT ( FALSE ) ;
}

The only message that is utilized in CliensWndProc is WM_ERASEBACKGROUND. This message is used to fill
the client window with the system-window background color. If we let this message pass on to
WinDefWindowProc, the background of the window would be transparent and the desktop would show
through. By returning TRUE, we tell the system to paint the client window with the background color. In
some cases, this message doesn’t need to be processed if the painting is handled in the WM_PAINT
message. In a window procedure, most messages have a default handling of returning FALSE.
Programmers can save a few extra function calls by returning FALSE themselves from the handled instead
of calling WinDefWindowProc.



Introduction to Windows — 137

Parents and Owners

Earlier we had mentioned the concept of parents and owners. These terms are used often in Presentation
Manager programming. It is important to understand each one. Every window has a parent, except for the
desktop window. I