
Includes 2 ready-to-use
companion disks with over

1 MB of programs

Michael Tischer
036

Abacus
r"mim11 liiliiiil!!I

P ystem
Pro ram.min

by Michael Tischer

Fifth Printing
Printed in U.S.A.

Copyright© 1989, 1990, 1991

Copyright © 1988, 1989, 1990, 1991

Abacus
5370 52nd Street, S.E.
Grand Rapids, MI 49512

DATA BECKER GmbH
Merowingerstrasse 30
4000 Duesseldorf, West Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of Abacus or Data Becker,
GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus can neither guarantee nor be held legally
responsible for any mistakes in printing or faulty instructions contained in this book. The
authors always appreciate receiving notice of any errors or misprints.

This book contains trade names and trademarks of many companies and products. Any
mention of these names or trademarks in this book are not intended to either convey
endorsement or other associations with this book.

PC-DOS, IBM PC, XT, AT, PS/2, OS/2 and PC-BASIC are trademarks or registered
trademarks of International Business Machines Corporation. Ventura Publisher is a
trademark or registered trademark of Xerox Corporation. GEM and CP/M are trademarks or
registered trademarks of Digital Research Corporation. Microsoft Works, Microsoft Quick
C, Microsoft Windows, MS-DOS, XENIX and GW-BASIC are trademarks or registered
trademarks of Microsoft Corporation. Lotus 1-2-3 is a trademark or registered trademark of
Lotus Development Corporation. dBASE is a registered trademark of Ashton-Tate, Inc.
Sidekick, Turbo C and Turbo Pascal are trademarks or registered trademarks of Borland
International. UNIX is a registered trademark of Bell Laboratories. Mickey Mouse is a
registered trademark of Walt Disney Corporation.

Library of Congress Cataloging-in-Publication Data
Tischer, Michael, 1953-
PC system programming for developers I Michael Tischer.
p. cm.
•A Data Becker book.•
ISBN 1-55755-036-0
1. system programming (computer science) 2. Microcomputers-Progranuning. I. Title
QA76.66.T57 1989 005.265--dc20 85-18350

ii

Table of Contents

1. Introduction .. 1

2. The PC's Brain .. 3
2.1 8088 Registers .. 6
2.2 Segment and Offset Addressing ... 8
2.3 The CPU Support Chips .. 13
2.3.1 The DMA Controller ... 13
2.3.2 The Interrupt Controller ... 13
2.3.3 The Programmable Peripheral Interface13
2.3.4 The Clock ... 14
2.3.5 The Timer ... 14
2.3.6 The Screen Controller .. 14
2.3.7 The Disk Controller .. 14
2.3.8 The Math Coprocessors (8087/80287/80387) ... 14
2.4 The CPU and Memory ... 16

3. Introduction to Interrupts .. 19
3 .1 The Structure of the Interrupt Vector Table20
3 .2 Interrupt Types ... 22
3. 2.1 Software Interrupts .. 22
3.2.2 Hardware Interrupts .. 22
3.3 Interrupts at a Glance ... 24

4. Using Interrupts from High Level Languages ... 27
4.1 Interrupt Calls from BASIC .. 28
4.2 Interrupt Calls from Turbo Pascal36
4 .3 Interrupt Calls from C .. .40

5. Using Interrupts from Assembly Language47
5.1 Using Assembler Macro Functions .. .48
5.2 A Sample Macro .. .49

6. The Disk Operating System .. 51
6.1 A Short History of DOS52
6.2 Internal Structure of DOS .. .56
6.3 Booting DOS .. .59

iii

Table of Contents PC System Programming

6.4 COM and EXE Programs ... 60
6.4.1 COM Programs .. 62
6.4.2 EXE Programs ... 66
6.5 Character Input and Output from DOS .. 70
6.5.1 HandleFunctions .. 70
6.5.2 Traditional DOS Functions ... 74
6.6 File Management in DOS ... 84
6.6.1 Handle Functions .. 84
6.6.2 FCB Functions ... 86
6. 7 Accessing the DOS Directory .. 92
6. 7 .1 Searching for Files using FCB Functions .. 94
6.7.2 Searching for Files using Handle Functions ... 95
6.8 The EXEC Function .. 110
6.9 Memory Allocation from DOS .. 119
6.10 DOS Filters ... 132
6.11 <Crtl><Break> and Critical Error Interrupts ... 142
6.12 DOS Device Drivers .. 148
6.12.1 Character Device Drivers .. 150
6.12.2 Block Device Drivers ... 151
6.12.3 Structure of a Device Driver .. 151
6.12.4 Device Driver Functions ... 155
6.12.5 Clock Driver .. 168
6.12.6 Device Driver Calls from DOS ... 169
6.12. 7 Direct Device Driver Access .. 170
6.12.8 Tips on Developing Device Drivers .. 172
6.12.9 Driver Examples ... 172
6.12.10 CD-ROMs ... 192
6.13 DOS Mass Storage .. 196
6.14 Tips on Compatibility between Computers .. 206
6.15 Undocumented DOS Structures .. 208
6.16 DOS 4.0 ... 213

7. TheBIOS .. 219
7.1 Booting the System ... 221
7.2 Determining BIOS Version ... 223
7 .3 Determining the PC Type ... 224
7.4 BIOS Screen Output Functions .. 226
7 .4.1 The EGA and VGA BIOS ... 254
7 .5 Determining System Configuration using BIOS ... 289
7.6 Determining Available RAM using the BIOS ... 291
7.7 Accessing the Floppy Disk from the BIOS .. 297
7 .8 Accessing the Hard Disk from the BIOS .. 323
7 .9 Accessing the Serial Port from the BIOS ... 330
7 .10 The Cassette Interrupt. ... 336
7 .11 Accessing the Keyboard from the BIOS ... 358
7 .12 Accessing the Printer from the BIOS .. 384

iv

Abacus Table of Contents

7.13 Reading the Date and Time from the BIOS ... 395
7.14 BIOS Variables ... 398

8. Terminate and Stay Resident Programs407

9. Sound on the PC .. 447

10. Accessing and Programming the Video Cards .. .457
10.1 Anatomy ot a Video Card .. .460
10.2 The IBM Monochrome Card469
10.3 The Hercules Graphic Card .. 482
10.4 The IBM Color Card .. 497
10.5 EGA and VGA Cards ... 519
10.6 Determining the Type of Video Card ... 537
10. 7 Accessing Video RAM from High Level Languages 554

11. Accessing and Programming the AT Real time Clock 563

12. Keyboard Programming .. 575

13. Expanded Memory Specification .. 597

14. Mouse Programming ... 617

15. Determining Processor Types .. 653

16. PC Hardware Interrupts .. 667

17. Hard Disk Partitioning ... 687

18. The PC Ports ... 699

19. Interaction between Keyboard, BIOS and OOS .. 701

Appendices .. 709
A. Important Hardware Interrupts .. 710
B. BIOS Interrupts and Functions ... 713
C. DOS Interrupts and Functions ... 766
D. EMM Functions ... 849
E. EGANGA BIOS Functions .. 856
F. Mouse Driver Interrupts ... 882
G. Introduction to Number Systems .. 900
H. Glossary of Terms ... 903
I. Scan Codes .. 918
J. ASCII Character Set .. 919

Index ... 921

v

Chapter 1

Introduction

A few years ago, my computer was a small home computer. When I became
interested in the IBM PC, I had to learn a lot of new things. I learned about MS
DOS and became familiar with 8088 assembly language. I soon reached a point
where I started developing commercial PC programs in partnership with my friend
Axel Sellemerten. All of this happened some time ago, but I still clearly
remember sitting at my desk, looking through dozens of PC books and technical
manuals, trying to find a critical piece of information.

These books and manuals were expensive and hard to find. Besides, none of them
covered all aspects of the PC. Some books tell you about PC hardware QI the
BIOS QI DOS. I could never find a book that dealt with the PC as a total system.
No single book was able to provide me with a complete system overview.

This book is the result of my experience with all of these references. The three
main areas of the PC (hardware, the BIOS and DOS) are combined in this book
from a software developer's point of view. This book was written to serve as an
instruction book as well as a reference manual. It is not, and was never intended to
be, a book for the beginner. The book assumes that you're familiar with MS-DOS
and are able to program in one of the four most popular PC programming
languages (machine language, BASIC, Pascal or C).

Organization

The book is divided into five parts. Part I (Chapters 1-5) gives an introduction to
the PC's internal components. Part 2 (Chapter 6) describes the Disk Operating
System (DOS) and Part 3 (Chapter 7) describes the Basic Input Output System
(BIOS). PC hardware that is not part of the central processor is discussed in Part 4
(Chapters 8-18). Part 5 (Chapter 19) describes the interaction between these
components and the keyboard. The book concludes with a large reference section
(Appendices) containing all functions of DOS and the BIOS, among other things.

To understand the content of this book, you must first know something about the
different number systems used in computers. Readers unfamiliar with the binary

1

1. lntroduction PC System Programming

2

and hexadecimal number systems should read Appendix G (Introduction to Number
Systems) before continuing.

Chapters 2 through 5 contain descriptions of PC microprocessors and interrupts. If
you're an experienced assembly language programmer you can skip these chapters,
but you may learn something new by reading them anyway.

BASIC, Pascal and C programmers should read Chapters 2 and 3 and should work
through the subsections in Chapter 4 devoted to your preferred language. Chapter 5
is devoted exclusively to assembly language programming and may be skipped.

Chapter 2

The PC's Brain

While working with the PC, many users have wondered about its ability to solve
complex problems. Users often attribute these abilities to the software or operating
system. The fact is, hardware is as important as the software.

Microprocessor

The microprocessor is the brain of the PC. It understands a limited number of
machine language instructions and processes or executes programs in this machine
language. These instructions are very simple and can't be compared to commands
in high level languages such as BASIC, Pascal or C. Commands in these
languages must be translated into a large number of machine language instructions
that the PC's microprocessor can then execute. For example, displaying text with
the BASIC PRINT statement requires the equivalent of several hundred machine
language instructions.

Machine language instructions differ for each microprocessor used in different
computers. When you hear someone talk about Z-80, 6502 or 8088 machine
language, these terms refer to the microprocessor being programmed.

Intel's 80xx series

The PC has its own family of microprocessor chips, all designed by the Intel
Corporation. The figure on the next page describes the Intel 80xx family tree.
Your PC may contain an 8086, an 8088 (used in the PC/X'I), an 80186, an 80286
(used in the AT) or even an 80386 microprocessor. The first generation of this
group (the 8086) was developed in 1978. The successors of the 8086 were different
from the original chip. The 8088 is actually a step backward since it has the same
internal structure and instructions of the 8086, but is slower than the 8086. The
reason is that the 8086 transfers 16 bits (2 bytes) between memory and the
microprocessor at one time. The 8088 is slower since it transfers only 8 bits (1
byte) at one time.

3

2. The PC's Brain PC System Programming

Multiprocessing

The three other microprocessors of this family are improved versions of the 8086.
The 80186 offers auxiliary functions. The 80286 has additional registers and
extended addressing capabilities. The 80286's biggest advantages over its
predecessors are its multiprocessing and virtual memory capabilities.
Multiprocessing allows several programs to execute at the same time, such as
compiling a program while using a word processor. This capability, which is
based on the fast switching between the individual programs, can also be
implemented through software (e.g., Microsoft Windows®), but working directly
through the processor is more efficient

Virtual memory

4

Virtual memory means that a program appears to use much more memory than is
available in the computer's RAM. Portions bf the programs or data which don't fit
into memory are temporarily stored on the mass storage device (floppy or hard
disk). The computer loads these sections into RAM as needed. The CPU and the
operating system share the task of virtual memory management. Earlier versions
of MS-DOS don't support the multiprocessing or virtual memory capabilities of
the 80286, so most AT computers aren't working to their full potential.

t

20
8

Relative
power

I

80486

6 8~?.....o
8028~ •

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
Year

The Intel 80xx processor family

Abacus 2. The PC's Brain

The 80386 represents current state of the art technology. It has a more extensive
instruction set than the 80286, and offers additional memory protection features.

These processors are all upwardly compatible with software. This means that
machine language programs developed for the 8086 can be executed on the other
processors of this series. On the other hand, a program written for the 80386 may
not run correctly on the 80286 or the 8088, because instructions available on the
80386 may not be available in the earlier processors.

Throughout this book the PC processor is designated as the 8088, even though
your PC may use a different processor.

5

2. The PC's Brain PC System Programming

2.1 8088 Registers

Registers are memory locations within the processor itself, instead of in RAM.
These registers can be accessed much faster than RAM. In addition, registers are
specialized memory locations. The CPU performs arithmetic and logical operations
using its registers.

Common Registers

15 8 7 0
AX

AH l Al
BX

BH l BJ

c"t.r)~-c1
DX

otf}- -oj
DI

SI

SP

BP

ACCUMULATOR

BASE

COUNT

DATA

DESTINATION INDEX

SOURCE INDEX

STACK POINTER

BASER POINTER

Flag Register

15
0 D T S Z
11 10 9 8 7 6

Segment

DS

ES

cs

SS

Program

IP

4

8088 registers

Registers

DATA SEGMENT

EXTRA SEGMENT

CODE SEGMENT

STACK SEGMENT

Counter

I INSTRUCTION
POINTER

2 0

All registers are 16 bits (2 bytes) in size. If all 16 bits of a register contain a 1,
this is the largest number that can be represented within 16 bits. This number is
the decimal number 65535. Therefore, a register can contain any value from 0 to
65535.

Register groupings

6

As shown in the above figure, registers are divided into four groups: common
registers, segment registers, the program counter and the flag register. The different
register assignments are designed to duplicate the way in which a program
processes data-which is the basic task of a microprocessor.

The disk operating system and the routines stored in ROM use the common
registers a great deal, especially the AX, BX, CX and DX registers. The contents
of these registers tell DOS what tasks it should perform and which data to use for
execution.

Abacus 2.1 8088 Registers

These registers are affected mainly by mathematical (addition, subtraction, etc.) and
input/output instructions. They are assigned a special position within the registers
of the 8088 because they can be separated into two 8-bit (I-byte) registers. Each
common register may be thought to consist of three registers: a single 16-bit
register, or two smaller 8-bit registers.

bit 15 bit 8 bit 7 bit 0

AL

bit 15 bit 0

AX register

The registers have designators of H (high) and L (low). Thus the 16-bit AX
register may be divided into an 8-bit AH and an 8-bit AL register. The Hand the L
register designators occur in such a way that the L register contains the lower 8
bits (bit 0 through 7) of the X register, and the H register the higher 8 bits (bits 8
through 15) of the X register. The AH register consists of bits 8-15 and the AL
register of bits 0-7 of the AX register. However, the three registers cannot be
considered independent of each other. For example, if bit 3 of the AH register is
changed, then the value of bit 11 of the AX register also changes automatically.
The values change in both the AH and the AX registers. The value of the AL
register remains constant since it is made of bits 0-7 of the AX register (bit 11 of
the AX register does not belong to it). This connection between the AX, the AH
and the AL register is also valid for all other common registers and can be
expressed mathematically.

You can determine the value of the X register from the values of the H and the L
registers, and vice versa. To calculate the value of the X register, multiply the
value of the H register by 256 and add the value of the L register.

Example: The value of the CH register is 10, the value of the CL register is
118. The value of the CX register results from CH*256+CL, which
is 10*256+118 = 2678.

Specifying register CH or CL, you can read or write an 8-bit data item from or to
any memory location. Specifying register CX, you can read or write a 16-bit data
item from or to a memory location.

7

2. The PC's Brain PC System Programming

2.2 Segment and Offset Addressing

One of the design goals of the 8088 was to provide an instruction set that was
superior to the earlier 8-bit microprocessors (6502, Z80, etc.). A second goal was
to provide easy access to more than 64 kilobytes of memory. This goal was of
special importance since increasing processor capabilities allow programmers to
write more complex applications, which in turn require more memory. The
designers of the 8088 increased the memory capacity or address space of the
microprocessor by more than 16 times to one megabyte.

Address register

The number of memory locations which a processor can access depends on the
width of the address register. Since every memory location is accessed by
specifying a unique number or address, the maximum value contained in the
address register determines the address space. Earlier microprocessors used a 16-bit
address register enabling access to addresses from 0 to 65535. This corresponds to
the 64K memory capacity of these processors.

To address one megabyte of memory the address register must be at least 20 bits
wide. At the time the 8088 was developed, it was impossible to use a 20-bit
address register, so the designers used an alternate way to achieve the 20-bit width:
the contents of two different 16-bit numbers are used to form the 20-bit address.

Segment register

One of the numbers is contained in a segment register. The 8088 has four segment
registers. The second number is contained in another register or in a memory
location. To form a 20-bit number, the contents of the segment register are shifted
left by 4 bits (thereby multiplying the value by 16) and the second number is added
to the first

Segment and offset addresses

These addresses are the segment address and the offset address. The segment address
is formed by a segment register and indicates the start of a segment of memory.
During the address formulation, the offset address is added to the segment address.
The offset address indicates the number of the memory location within the segment
whose beginning was defined by the segment register. Since the offset address can
never be larger than 16 bits, a segment can be no larger than 65,535 bytes (64K).

Segmented address

8

The segmented address results from the combined segment and offset addresses.
This segmented address specifies the exact number of the memory location which
should be accessed. Unlike the segmented address, the segment and the offset
addresses are relative addresses or relative offsets.

Abacus 2.2 Segmenl and Offset Addressing

Log I cal
address
(16 bits

15 14 13 2 1 0 BIT

I I I I I I I I I I I I I I I I 11 o I o I o I_~ :~~:~1

] 151413 2 1 0 Off

I I I I I I I I I I I I I I I I I ad:r:~s -- BIT

Physical 191817 2 1 o

~2~dr:1::> I
BIT

Memory structure using segment and offset addresses

A segment cannot start at every one of the million or so memory locations.
Multiplying the segment register by 16 always produces a segment address that is
divisible by 16. For example, it's not possible for a segment to begin at memory
location 22.

Combining the segment and offset addresses requires special notation to indicate a
memory location's address. This notation consists of the segment address in four
digit hexadecimal format, followed by a colon, and the offset address in four-digit
hexadecimal format. For example, a memory location with a segment address of
2000H and an offset address of AF3H would appear in this notation as 2000:0AF3.
Because of this notation, you can omit the H suffix from hexadecimal numbers.

9

2. The PC's Brain PC System Programming

10

Segment

Segment lSFFFH
address = 1600H

Segment and offset address

::::J
n ...
(I)

3
(I)
::::J -(I)

= 1104H a.
3
(I)

3
0 ...
'<
Al
a.
a. ...
(I)
0
0
(I)
0

The 8088 has four segment registers, which have special roles in the execution of
an assembly language program. There are four registers to accommodate the basic
structure of any program. A program consists of a set of instructions (code). There
are also variables and data items that are processed by the program. A structured
program keeps the code and data separate from each other while they reside in
memory. Assigning code and data their own segments conveniently separates
them.

Each needs a segment address and a segment register. The CS (Code Segment)
register uses the IP (Instruction Pointer) register as the offset address. The CS then
determines the address at which the next assembly language instruction is located.
The IP is also called the Program Counter. When the processor executes the
current instruction, the IP register is automatically incremented to point to the
next assembly language instruction. This ensures the execution of instructions in
the correct order.

Like the CS register, the DS (Data Segment) register contains the segment address
of the data which the program accesses (writing or reading data to or from

- Abacus 2 .2 Segment and Offset Addressing

memory). The offset address is added to the content of the DS register and may be
contained in another register or may be contained as part of the current instruction.

The SS (Stack Segment) register specifies the starting address of the stack. The
stack acts as temporary storage space by some assembly language programs. It
allows fast storage and retrieval of data for various instructions. For example,
when the CALL instruction is executed, the processor places the return address on
the stack. The SS register and either the SP or BP registers form the address that is
pushed onto the stack.

The last segment register is the ES (Extra Segment) register. It is used by some
assembly language instructions to address more than 64K of data or to transfer data
between two different segments of memory.

ES: FFFF

ES:OOOO
CS: FFFF

CS:OOOO
SS:FFFF

SS:OOOO
DS: FFFF

DS:OOOO

Non-overlapplng
segments

ES: FFFF
CS: FFFF

ES:OOOO
CS:OOOO

SS:FFFF

DS: FFFF
SS:OOOO

DS:OOOO

Overlapping
segments

Overlapping and non-overlapping segments

As the figure above shows, two segment registers can specify areas of memory
which overlap, or are completely different from one another. In many cases, a
program doesn't require a full 64K segment for storing code or data. You can
conserve memory by overlapping the segments. For example, you can store data
immediately following the program code by setting the DS and CS registers
accordingly.

11

2. The PC's Brain PC System Programming

12

The flag register is of special importance. Various bits in this register indicate or
signal the special conditions which may occur during execution of an assembly
language instruction. For example, if an arithmetic operation results in a negative
number, the processor sets the S (sign) flag to 1 to indicate this change.

The C (carry) flag is set to I if the sum of two 8-bit numbers cannot be
represented as an 8-bit number.

As the figure above shows, the processor doesn't use all 16 bits of this register.
The unused bits normally contain the value 0.

This ends our short trip into the PC's brain. If you didn't quite follow some of
these concepts, the sample application programs in the sections on the BIOS and
DOS functions should help you understand.

Abacus 2.3 The CPU Support Chips

2.3 The CPU Support Chips

The microprocessor is the computer's brain, and is probably the most intelligent
component in a computer system. However, it cannot supervise all the computer's
functions on its own. For this reason, other components called support chips
perform many other tasks, leaving the processor to concentrate on its primary task
of executing assembly language programs.

These support chips communicate with and control external peripherals such as a
disk drive or the screen display.

Some of these support chips can be programmed using the assembly language
instructions IN and OUT. Since the programming of most support chips is very
complex, we recommend that you leave this up to DOS, unless you have a
complete understanding of the structure and operation of these chips.

The following sections define the most important support chips in the PC.

2. 3. 1 The OMA Controller

This chip gets its name from the acronym DMA which stands for Direct Memory
Access. This chip can directly write data to or read data from RAM. The DMA
controller performs disk input/output operations, moving data from RAM to disk
or from disk to RAM. This relieves the processor of this task and accelerates
program execution.

2.3.2 The Interrupt Controller

Interrupts are signals from individual components of the system to get the CPU's
attention and to initiate certain tasks. Several interrupts or requests for services
from different system components can be outstanding at one time. These requests
are initially handled by the interrupt controller, which passes them on to the CPU.
It assigns priority to every interrupt request according to its source and passes the
request with the highest priority to the CPU. The interrupt controller in the
PC/XT can process up to 8 interrupt requests at the same time. ATs require more
power, so they use two interconnected interrupt controllers which can process up
to 15 interrupt requests simultaneously.

2. 3. 3 The Programmable Peripheral Interface

This chip provides a link between the CPU and the peripherals such as the
keyboard or an audio speaker. However, it only operates as a mediator, addressed by
the CPU for unit access and transmission of certain signals. You cannot bypass
the PPI for direct communication between the CPU and peripherals.

13

2. The PC's Brain PC System Programming

2 .3.4 The Clock

If the microprocessor is the brain of the computer, then the clock could be
considered the heart of the computer. This heart beats several million times a
second (about 14.3 megaHertz) and paces the microprocessor and the other chips in
the system. Since almost none of the chips operate at such high frequencies, each
support chip modifies the clock frequency to its own requirements.

2 .3. 5 The Timer

The timer chip can be used as a counter and timekeeper. This chip transmits
constant electrical pulses from one of its output pins. The frequency of these
pulses can be programmed as needed, and each output pin can have its own
frequency. Each output pin leads to another component. One line goes to the audio
speaker and another to the interrupt controller. The line to the interrupt controller
triggers interrupt 8 at every pulse, which advances the timer count.

2. 3. 6 The Screen Controller

Unlike the chips discussed up until now, the CRT (Cathode Ray Tube) controller
is separate from the main circuit board of the PC. You'll find this chip on the
video board which is mounted in one of the computer's expansion slots. Even
though there are many boards that differ widely in their capabilities (monochrome
display, color display, etc.), all video boards are based on the 6845 CRT controller.
It produces a display on the monitor connected to the computer. The controller has
several internal registers which control the output of the display.

2 . 3. 7 The Disk Controller

This chip is also usually located on an expansion board. It is addressed by the
operating system and controls the functions of the disk drive. It moves the
read/write head of the disk drive over the disk, reads data from the disk and writes
data to the disk.

2.3.8 The Math Coprocessors (8087/80287/80387)

14

The 8088, 80286 and the 80386 are not capable of performing floating point
arithmetic operations directly. There is a socket on the main circuit board of the
PC for adding a special math coprocessor. The PC/XT uses the 8087, the AT the
80287 and the new 80386 uses the 80387 coprocessor.

While floating point arithmetic can be performed using software routines, a math
coprocessor is up to 100 times faster. The 8087 and the 80287 can perform basic

Abacus 23 The CPU Support Chips

math functions such as addition, subtraction, multiplication and division, as well
as the trigonometric functions sine, cosine, etc. They can also compute square
roots of numbers.

In general, only a few application software packages support the math
coprocessors.

15

2. The PC's Brain PC System Programming

2. 4 The CPU and Memory

While the chips described up until now are intelligent system components,
memory is a passive element. Data can be stored and later retrieved from memory.
Each memory location is used to store one byte (8 bits) of data. Memory locations
are identified by a unique address, starting from zero.

The support chips communicate with memory using a bus or path over which the
electronic signals travel.

Address bus

The address bus carries the number of the memory location to be accessed. The
signals on the bus represent a binary number whose value indicates the memory
location for access. Since only those memory locations represented on the address
bus can be accessed, the number which make up the bus lines determine the
number of addressable memory locations.

The PC/XT has a 20-bit address bus and can address a maximum of 220 (about 1
million) different memory locations. The AT has a 24-bit address bus and can
address more than 16 million memory locations.

Data bus

Once the bus knows the address of the memory location to be accessed, data can be
transferred between the individual chips and the memory location over the data bus.
The number of lines in this circuit determine how many bits are transferred to or
from memory simultaneously.

The PC/XT has 8 lines so it can transfer one byte at a time. However, since the
8088 is a 16-bit processor, 16-bit data must often be transferred. There aren't
enough lines to transfer 16-bit data, so the system divides a 16-bit data item into
two 8-bit numbers. These two 8-bit data bytes are transferred one after the other
along the bus.

The 8086 and 80286 processors can transfer 16 bits simultaneously over their 16-
bit-wide data buses. This is one reason why the AT executes programs faster than
the 8088 processor. The 80386 processor can transfer 32 bits at a time.

Word storage

16

All members of the Intel 80xx processor family share the same method of storing
words (16-bit data) in memory. The lower numbered memory location contains
bits 0-7 (the low byte) and the higher numbered memory location contains bits 8-
15 (the high byte). For example, if you store the word 3F87H starting at address
0000:0400, memory location 0000:0400 accepts the low byte 87H and memory
location 0000:0401 accepts the high byte 3FH.

Abacus 2 .4 The CPU and Memory

Two details were left out of the discussion of memory so far:

1.) The processor doesn't care if a memory address is located in a RAM chip
or a ROM chip. The main difference between RAM and ROM lies in the
fact that you can't write or store new data into ROM (hence its name:
Read Only Memory).

2.) The addressable space of the microprocessor (1 megabyte) is allocated into
16 storage segments of 64K each. This is an almost universal division
used on IBM PC/XTs and most compatible machines.

Block Addresses
15 FOOO:OOOO-FOOO:FFFF

lt:L : -El ~
D : 0 D :FFFF
C : -C :FFFF

I Bl - [-RI •J!:EEE.
10 AOOO:OOOO-AOOO:FFFF

: :FF.J':F
: ~ :_f_EIT
: - :FFFF

- :fl'FF

4 4000:0000-4000:FFFF
i 3L QQ: uull.Q ·30ut ~
Z ZJllQ:Q\Jll.Q-ZUUl ~ :r I QQ: JL QO luut :FFFF
0 0000:0000-0000:FFFF

Descr:ill_tion
BIOS ROM
ROM cartr:i&!!;I_e

additiolli!.l BlQ..S I3Q.M

additional video RAM
RAM ~to K

RAM uo to K
RAM UD to J K
RAM _rm_ 1-n lK
RAM im_ to 320K
~ 1d2_ to 256K

RAM llP to .28K
RAM up to 64K, CPU vector table,

DOS & BIOS variables

Memory allocation

The first 10 memory segments are reserved for the main RAM memory, limiting
maximum RAM to 640K. A computer's memory size may differ from one PC
manufacturer to another but has at least 64K installed in segment 0. If you install
additional RAM, its first memory address must immediately follow the last
existing memory address, since no gaps may exist between individual RAM
memory segments. Memory segment 0 has a special role since it contains
import " data and operating system routines.

Memory segment A follows the RAM memory. In this case, an EGA (Extended
Graphics Adapter) is installed. This board uses the memory for the screen display
in different graphic modes.

Memory segment B is reserved for a monochrome or color graphics board. They
share the segment as screen memory. The monochrome board uses the lower 32K
and the color board uses the upper 32K. Each board uses only as much memory as
it needs for the screen display. The monochrome board uses 4 K; the color board
uses 16K because of the additional color capabilities.

17

2. The PC's Brain PC System Programming

The next memory segment contains ROM beginning at segment C. Some
computers store the BIOS routines which aren't part of the original BIOS kernel at
this location. For example, the XT uses these routines for hard disk support. Since
this area isn't fully utilized, it is possible that BIOS routines supporting future
hardware enhancements will also be placed in this memory range.

ROM cartridges

18

Segments D and E are reserved for ROM cartridges. These cartridges extend the
computer with certain ROM routines. The PC has rarely used them and the area
usually remains unused.

Segment F contains the actual BIOS routines, the system loader and the ROM
BASIC available on many computers.

Chapter3

Introduction to Interrupts

This chapter presents a view of interrupts, which are vitally important to the
operation of the 8088 processor. An interrupt is a signal from a peripheral device
or a request from a program to perform a specific service. When an interrupt
occurs, the currently executing program is temporarily suspended and an interrupt
routine begins execution to handle the condition that caused the interrupt.

Program

"'CJ
""I
0

(Q
""I
D>
3
(D

~
(')
c: = 0
::J

Interrupt routine

Save register contents

Return Restore register contents

IRET

Program interrupt

When a program is suspended, the processor saves the contents of the CS and IP
registers on the stack, and begins the interrupt routine. After the interrupt routine
has completed its task, it issues the IRET (Interrupt RETurn) instruction which
restores the contents of the CS and IP registers from the stack, thus resuming the
program.

The interrupt routine saves and restores contents of the other registers before
returning to the interrupted program.

19

3. Introduction to Interrupts PC System Programing

3.1 The Structure of the Interrupt Vector Table

20

So far we've talked about a single interrupt and a single interrupt routine. In fact,
the 8088 has 256 possible interrupts numbered from 0 to 255, not just one.

Each interrupt has an associated interrupt routine to handle the particular condition.
To organize the 256 interrupts, the starting address of the corresponding interrupt
routines are arranged in the interrupt vector table.

When an interrupt occurs, the processor automatically retrieves the starting address
of the interrupt routine from the interrupt vector table.

The starting address of each interrupt routine is specified in the table in terms of
the offset address and segment address. Both addresses are 16 bits (2 bytes) wide.
Therefore each table entry occupies 4 bytes. The total length of the table is 256*4
or 1024 bytes (lK).

0000:003FE
0000:003FC

OOOO:OOOE
OOOO:OOOC

OOOO:OOOA

0000:0008

0000:0006

0000:0004

0000:0002

0000:0000

15

cs
IP

cs
IP
cs
IP
cs
IP
cs
IP

0

Interrupt Purpose
number:

255 Free

3 Breakpoint

2 NMI

1 Single-step

0 Division by 0

Interrupt vector table

The table itself is located in memory from OH to 3FFH. Since the interrupt's
number is the same as the table entry for the corresponding interrupt routine, the
interrupt routine address for interrupt 0 is the zero table entry in locations OH-3H.

Abacus 3.1 The Structure of the Interrupt Vector Table

Memory locations 4H-7H contain the address for the interrupt routine for
interrupt 1, etc. The last interrupt, interrupt 255, occupies the end of the table at
locations 3FCH-3FFH.

To calculate the starting address of an interrupt, simply multiply the interrupt
number by four.

Advantages

An advantage of using the interrupt vector table is that it's easy to change an entry
in the table to the starting address of a user-written interrupt routine. This makes a
new interrupt routine available to any program which can invoke the routine
simply by executing the corresponding interrupt instruction.

The next section explains the different types of interrupts and how they are used in
the system.

21

3. Introduction to Interrupts PC System Programming

3.2 Interrupt Types

Until now, we haven't talked about different types of interrupts. There are two
major types of interrupts-hardware interrupts and software interrupts.

The figure below shows the different interrupt types.

lnterru t

Software
interrupt

Hardware
interru t

System
interru ts

user Internal External
interrupts

Su ressible

Non-su ressible

Interrupt types

3. 2. 1 Software Interrupts

A software interrupt is an interrupt called by the INT instruction in a machine
language program. The INT instruction includes the number of the interrupt to be
signalled. For example, the instruction to call interrupt 5, which sends a hardcopy
of the current screen to the printer, appears as INT 5. The INT instruction allows
you to call any one of the 256 interrupts.

Software interrupts make it possible to use many of the basic operating system
services from either the assembler (or machine language) level or from many of the
higher level languages which support interrupt processing.

3. 2. 2 Hardware Interrupts

22

A hardware device such as a disk drive or keyboard can trigger a hardware intem.lpt.
This is a simple and efficient mechanism for handling events which require
attention.

One example is the keyboard. When you press or release a key, interrupt 9 (the
keyboard interrupt) is signalled. The standard DOS interrupt routine responds by
placing the character value corresponding to the key that was pressed into the

Abacus 3.2 Interrupt Types

keyboard buffer following any value which may have been previously there. If the
keyboard buffer is full, the routine generates a short beep. As in any other
interrupt, the original program continues after the completion of the interrupt
routine.

Maskable interrupts

This interrupt is designated as an external hardware interrupt, because it was
triggered by an external device. For these interrupts, a distinction is also made
between maskable and non-maskable interrupts. The keyboard interrupt just
described belongs in the maskable interrupt category. You can mask (disable) this
interrupt by using the assembler instruction STI (SeT Interrupt flag). If you mask
interrupt 9H, the keyboard ignores any characters you type. To reverse this
condition, use the CLI instruction (CLear Interrupt flag) to re-enable the interrupt.

Non-maskable interrupts

In contrast, a non-maskable interrupt cannot be disabled by the STI instruction.
One example is interrupt 2. This interrupt indicates an error in the PC's memory.
It displays a message on the screen that one or more of the RAM chips is defective
and should be replaced.

The last interrupt type to be described is the internal hardware interrupt. The
processors on the main circuit board of the PC trigger this interrupt. One example
is interrupt 8 which is designated as a timer interrupt. The timer triggers this
interrupt at a rate of 12.8 times per second. It also disables the disk drive motor if
no disk access is in progress.

23

3. Introduction to Interrupts PC System Programming

3.3

24

Interrupts at a Glance

The tables here show the significance which these interrupts occupy in the control
and use of the PC. The next few chapters explain these interrupts in more detail.

Nr.
00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
lB
le
lD
lE
lF
20
21
22
23
24
25
26
27
28-
3F
40
41
42-
45
46
47-
49

Vector
000 - 003
004 - 007
008 - OOB
OOC - OOF
010 - 013
014 - 017
018 - OlB
OlD - OlF
020 - 023
024 - 027
028 - 02B
02C - 02F
030 - 033
034 - 037
038 - 03B
03C - 03F
040 - 043
044 - 047
048 - 04B
04C - 04F
050 - 053
054 - 057
058 - 05B
05C - 05F
060 - 063
064 - 067
068 - 06B
06C - 06F
070 - 073
074 - 077
078 - 07B
07C - 07F
080 - 083
084 - 087
088 - 08B
08C - 08F
090 - 093
094 - 097
098 - 09B
09C - 09F
OAO -

- OFF
100 - 103
104 - 107
108 -

- 117
118 - llB
llC -

- 127

P~ose

CPU: Division by zero
CPU: Single step
CPU: NMI (Error in RAM chip)
CPU: Breakpoint
CPU: Numeric overflow
Hard copy
Unknown instruction (80286 only)
reserved
IRQO: Timer (Call 18.2 per/sec.)
IRQl: Keyboard
IRQ2: Second 8259 (AT only)
IRQ3: Serial interface 2
IRQ4: Serial interface 1
IRQ5: Hard disk
IRQ6: Diskette
IRQ7: Printer
BIOS: Video functions
BIOS: Determine configuration
BIOS: Determine RAM storage size
BIOS: Diskette/hard disk functions
BIOS: Access to serial interface
BIOS: Cassette/enhanced functions
BIOS: Keyboard sensing
BIOS: Access to parallel printer
Call of ROM-BASIC
BIOS: System boot (ALT+CTRL+DEL)
BIOS: Read time/date
Break key not activated (not CTRL-C)
called after every INT 08
Address of the video parameter table
Address of the disk parameter table
Address of the character bit pattern
DOS: Terminate program
DOS: Call DOS function
Address of DOS end of program routine
Address of DOS CTRL-BREAK routine
Address of DOS error routine
DOS: Read diskette/hard disk
DOS: Write diskette/hard disk
DOS: End Prg., remain resident
Reserved for various, non-
documented DOS functions
BIOS: diskette functions
Address of hard disk table 1
Reserved

Address of hard disk table 2
can be used by application programs
for a~u~ose

Abacus 3.3 Interrupts at a Glance

Nr. Vector P':!!:E_ose
4A 128 - 12B Alarm time reached (AT only)
4B- 12C - Can be used by application programs
67 - 19F for any purpose
68- lAO - Unused
6F - lBF
70 lCO - 1C3 IRQ08: Realtime clock (AT only)
71 1C4 - 1C7 IRQ09: (AT only)
72 1C8 - lCB IRQlO: (AT only)
73 lCC - lCF IRQll: (AT only)
74 lDO - 1D3 IRQ12: (AT only)
-- lu4 - lUf /:J lRQU: 8lJL8/ NMI (AT only)
76 108 - lDB IRQ14: Hard disk (AT only)
77 lDC - lDF IRQ15: (AT only)
78- lEO - Unused
7F - lFF
80- 200 - Used by the BASIC
FD - 3C3 interpreter
Fl- 3C4 - Unused
FF - 3CF

General overview-interrupts

25

Chapter4

Using
Level

Interrupts from
Languages

High

The assembly language programmer can invoke an interrupt by loading the
parameters required by the interrupt routine into designated registers and executing
the INT instruction. Although these capabilities aren't available in all higher level
languages, some languages such as Turbo Pascal®, Turbo C® and Microsoft C®
have built-in functions, procedures or subroutines to call the interrupt.

A BASIC programmer can call an interrupt using a short assembly language pro
gram. You'll find an example of this in Section 4.1.

This chapter provides information on calling interrupts from Pascal, BASIC and
C. Each describes how interrupts can be called in the particular language and the
rules the programmer must observe. Each section concludes with a short
demonstration program.

Read through the section devoted to the language with which you feel most
comfortable. A comparison of the three sample programs could be interesting for
those of you who wish to compare the similarities and differences in the three
languages.

The programs are only examples. Experiment as much as you want-you won't
damage your computer if you change them a little.

27

4. Using Interrupts from High Level Languages PC System Programming

4.1 Interrupt Calls from BASIC

28

The two most commonly used BASIC interpreters are BASICA (from IBM) and
GW-BASIC (from Microsoft). This book refers to GW-BASIC, since it can be
used on IBM PCs as well as any compatible PC. The command sets of both are
nearly identical.

GW-BASIC does not have a function for calling interrupts. However, the CALL
command can be used to execute a machine language program. You can also use
the CALL command to pass certain parameters to the called program. The called
machine language program must be located in the 64K used by GW-BASIC for
program statements and variable storage. Because of this, the interpreter must be
told to reserve part of program memory for the machine language routine.
Otherwise the program or variables may overwrite the machine language routine,
causing a system crash. You can reserve memory directly when you call BASIC
from the operating system. Enter the name GWBASIC followed by the /M:
parameter. After the colon, enter the highest memory location you want used by
BASIC. For example, since the sample program starts at memory location 60000,
start the GW-BASIC interpreter as follows:

gwbasic /m:60000

This reserves the required memory space. Now you can place the machine language
routine into memory by making it part of the current BASIC program and loading
it into memory using a suitable subroutine. The current BASIC program must
contain the following commands:

60000
60010
60020
60030
60040
60050
60060
60070
60080
60090
60100
60110
60120
60130
60140
60150
60160
60170
60180
60190
60200
60210
60220
60230

'***'
'* initialize the routine for the interrupt call *'
'*---*'
' * Input: none
'* Output: IA is the Start address of the Interrupt routine
'***'

IA=60000 !
DEF SEG
RESTORE 60130

'Start address of the routine in the BASIC segment
•set BASIC segment

FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine
RETURN 'back to calter

DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
DATA 139, 52, 85, 205, 33, 93, 86, 156, 139, 118, 12, 137, 60, 139, 118
DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
DATA 202, 26, O, 91, 46, 136, 71, 66, 233, 108, 255

The DATA statements contain the machine language routine which performs the
interrupt call. The routine is READ and then POKEd into memory. To start this
routine at another memory location, change the value in line 60070. Remember

Abacus 4.1 interrupt Calls from BASIC

that the parameters used to start GW-BASIC must also be changed so that the
routine cannot be overwritten by the variables of the program.

To use the machine language routine to call an interrupt, this subroutine must of
course be called first. The first line of the user program should therefore be:

100 GOSUB 60000

The actual program which calls the interrupt function during its execution can be
stored between line numbers 100 and 60000. The following program line
demonstrates how this can be done:

200 CALL IA(INTNR%,AH%,AL%,BH%,BL%,CH%,CL%,DH%,DL%,DI%,SI%,ES%,FLAGS%)

The variables within parentheses are the variables passed to the assembly language
program. All variables must pass true integer variables and not constants. The
variable names mentioned above may be changed but their order must remain
unchanged. Within your program they can have other names.

The first variable in this example, called INTNR%, is the number of the interrupt
you want to call. Be careful to specify the exact interrupt number. Also, avoid
passing a variable which has not been initialized. Otherwise, you may call the
wrong interrupt, which could lead to a system crash. The variables following
INTNR % are copied into the processor registers of the same names. If a register is
not used by an interrupt routine, you can pass any integer variable in the
corresponding register variable. The value of the ES register is treated differently. If
the value of ES% is -1, the contents of the DS register is copied to the ES
register.

Following the completion of the interrupt call, the values are returned in the
designated register variables.

This technique works only with half registers (AH, AL, BH ...). It may be
necessary to transform these half registers into a whole register. This can be done
as follows:

300 AX% = AH% * 256 + AL%

On the other hand, a whole register can be split into two half registers with the
following commands:

410 AH% = INT (AX% I 256)
420 AL% = AX% AND 255

After calling interrupt functions, the carry flag in the flag register indicates if the
called functions were executed correctly. In a BASIC program, it may be necessary
to test the carry or zero flags. Since the content of the flag register is in the
variable FLAGS% after the interrupt call, the status of individual flags can be
inspected through this variable. This is possible with the following program
statements:

29

4. Using Interrupts from High Level Languages PC System Programming

200 IF FLAGS% AND l~O THEN PRINT "CARRY-FLAG OFF" ELSE
PRINT "CARRY-FLAG SET"

210 IF FLAGS% AND 64~0 THEN PRINT "ZERO-FLAG OFF" ELSE
PRINT "ZERO-FLAG SET"

Another problem with interrupt calling is passing variable addresses (e.g., character
string output). BASIC stores this set of characters as a string. To determine the
offset address of such a string (the segment address of all variables is constant), use
the V ARPTR function. The LO and HI byte of the offset address can be determined
with the following two program lines:

300 LO~PEEK (VARPTR (STRING _NAME) +l)
310 HI~PEEK(VARPTR(STRING_NAME)+2)

'LO-Byte of the Offset address
'HI-Byte of the Offset address

Garbage collection

30

These addresses should be determined at the beginning of a BASIC program as well
as immediately before each interrupt call, since BASIC frequently performs garbage
collection (removing unused variables and junk data). Garbage collection frees up
variable memory, rearranges remaining data in memory and changes addresses. If a
string address is determined at the beginning of a program, it may change several
times before the interrupt call is made.

Remember to include an end marker ("$" or a CHR$(0)) at the end of the string
(BIOS and DOS functions expect one of these).

Note: Before copying this subroutine and trying it, we have a small
suggestion. During your first attempts something will probably go
wrong. This is perfectly normal, and you can even expect the
computer to crash a couple of times. Save programs
frequently ... especially ~running the program. This way, you
won't have to type in the program again from the beginning.

Here is a short sample program which uses the subroutine described above to
display text on the screen with function 9 of interrupt 21H.

100 '***'
110 I N T D O S B
120 '*---*'
130 Assignment
140
150 '*
160 Author
170 developed
180 last Update

outputs as an example of an Interrupt
a String through a DOS function on
the display screen
MICHAEL TISCHER
07/30/87
04/08/89

*'

190 '***'
200 '
210 CLS : KEY OFF
220 PRINT"NOTE: This program can only be started if the GWBASIC was "
230 PRINT"started from the DOS level with the command "
235 PRINT"<GWBASIC /m: 60000>."
240 PRINT : PRINT"If this is not the case, please input <s> for Stop."
250 PRINT" otherwise press any key ••• ";
260 A$ - INKEY$: IF A$ - "s" THEN END
270 IF A$ ~ "" THEN 260
280 PRINT
290 GOSUB 60000 'install function for interrupt call

Abacus 4.I Interrupt Calls from BASIC

300 T$ = CHR$(13) + CHR$(10) + "this text was output through"
305 T$ = T$ + "Function 9 of Interrupt 21H ... $"
310 INR% = &H21 'Number of interrupt to be called
320 FKT% = 9 'Number of functions to be called
330 OFSLO% = PEEK(VARPTR(T$)+1) 'LO-Byte Offset address to the String
340 OFSHI% = PEEK(VARPTR(T$)+2) 'HI-Byte Offset address to the String
350 CALL IA(INR%,FKT%,Z%,Z%,Z%,Z%,Z%,OFSHI%,OFSLO%,Z%,Z%,Z%,Z%)
360 PRINT : PRINT : PRINT 'output three blank lines
370 END
380 •
60000
60010
60020
60030
60040
60050

'***'
'* initialize the routine for the interrupt call
'*---*'
'* Input : none *'
'*Output: IA is the Start address of the Interrupt routine *'
'***'

60060 •
60070 IA=60000! 'Start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment
60090 RESTORE 60130
60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine
60110 RETURN 'back to caller
60120 •
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12, 139, 60, 139, 118, 8, 139, 4, 61, 255, 255, 117, 2, 140, 216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60, 139, 118, 22, 138, 28, 139, 118, 20, 138, 44, 139, 118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22, 136, 28, 139, 118, 20, 136, 44, 139, 118, 18, 136, 12, 139, 118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

How it works

The program is composed of separate parts. Lines 210-290 call the subroutine to
initialize the machine language function for the interrupt call. Then the individual
variables for the interrupt call are loaded. T$ accepts the string to be output.
CHR$(13) and CHR$(10) print a blank line before the output of the actual text.
This text ends with the "$" character because the DOS function which outputs the
string expects this character as an end marker (it will not display this character).
INR % and FKT% contain the interrupt number and the function number to be
called. Besides these two variables, the variables OFSLO% and OFSHI% contain
the offset address of T$.

The CALL command (line 350) calls the interrupt. The first variable passed is
INR% with the number of the interrupt to be called. Then follows FKT%, which
transfers to the AH register before the interrupt call and informs interrupt 21H of
the function number to be called. Several Z% variables follow. These act as
dummy variables for all registers which have no special significance to the
function which is called. The content of Zo/o is unimportant. The content of the
register into which it is copied is irrelevant for the called function. After the Z%
variables, which determine the contents of the AL, BH, BL, CH and CL registers,
follow the variables OFSHI% and OFSLO%, which set the offset address of the
string in the DX register. The remaining register contents are unimportant for the
function call and are filled with Z%.

31

4. Using Interrupts from High Level Languages PC System Programming

32

To permit the DOS function which is called to output the text, its offset and
segment address must be known. This address is expected in the DS register and
will be set automatically by GW-BASIC.

To conclude this section, here is the listing of the assembler program that we just
used to call an interrupt.

;***
;• BASINT.ASM: This routine offers the capability of
;* calling any interrupt from BASICA or
;* GWBASIC
;*
;**---**
;* Call:
;* CALL ADR(INTNR%,AH%,AL%,BH%,BL%,CH%,CL%,DH%,DL%,DI%,SI%,ES%,FLAGS%) *
;**---**
;* On passing control to the machine language program BASIC
;* deposits the variables on the following positions of the stack
;* INTNR% SP+30 AH% SP+28 AL% SP+26 BH% SP+24
;* BL% SP+22 CH% SP+20 CL% SP+l8 DH% SP+16
;* DL% SP+l4 DI% SP+12 SI% SP+lO ES% SP+B
;* FLAGS% SP+6
;**---**
;* for ES the value -1 is passed, then ES is set to DS
;**!

code segment

assume cs:code,ds:code,es:code,ss:code

;-- the Routine for Interrupt call -----------------------------------

basint

ad 1

setes:

proc far

push bp
rnov bp,sp
push ds
push es

rnov si, [bp+30]
rnov ax, [si]
call set intnr

label near

rnov si, [bp+l2]
rnov di, [si]
rnov si, [bp+B]
rnov ax,[si]
cmp ax, -1
jne setes

mov ax,ds

rnov es,ax
rnov si, [bp+28]
rnov ah, [si J

rnov si, [bp+26]
rnov al, [si]
rnov si, (bp+24]
rnov bh, [si]
rnov si, [bp+22]
rnov bl, [si]
rnov si, [bp+20]
rnov ch, [si]
rnov si, [bp+lBJ
rnov cl, [si]

;GW expected during CALL far procedure

;GW base pointer saved
; Send SP to BP
;GW dta segment stored
;GW extra segment saved

;Get address of variable INTNR
;Move content of this variable to AX
;Store interrupt number

;Address for SET INTNR

;Get address of DI% variables
;Move content of variables to DI
;Get address of variable ES%
;Move content of variable to AX
;was -1 passed?
;No --> set ES

;Set AX to DS and thereby ES

;transfer AX to ES
;Get address of variable AH%
;Move content of variable to AH
;Get address of variable AL\
;Move content of variable to AL
;Get address of variable BH%
;Move content of variable to BH
;Get address of variable BL\
;Move content of variable to BL
;Get address of variable CH%
;Move content of variable to CH
;Get address of variable CL%
;Move content of variable to CL

DS

Abacus 4.1 Interrupt Calls from BASIC

ad 2

mov si,[bp+16]
mov dh, [si]
mov si, [bp+l4]
mov dl, [si]

mov si, (bp+lO I
mov si, [si]
push bp

label near

int 21h

pop bp
push si
pushf

mov si, [bp+l2]
mov [si],di
mov si, [bp+28]
mov [si], ah
mov si, [bp+26]
mov [si],al
mov si, [bp+24]
mov [si],bh
mov si, [bp+22]
mov [si], bl
mov si, [bp+20]
mov [si],ch
mov si, [bp+l8]
mov [si], cl
mov si, [bp+16]
mov [si],dh
mov si, [bp+l4)
mov [si) ,dl
mov si, [bp+S]
mov ax,es
mov [si),ax
pop ax
mov si, [bp+6]
mov [si],ax
pop ax
mov si, [bp+lO]
mov [si) ,ax

pop es
pop ds
pop bp

ret 26

bas int endp

;Get address of variable DH%
;Move content of variable to DH
;Get address of variable DL%
;Move content of variable to DL

;Get address of variable SI%
;Move content of variable to SI
;Store base pointer

;Address for SET_INTNR

;Call interrupt

;Replace base pointer
;Store SI
;Store flag register

;Get address of variable DI%
;Move content of variable to DI
;Get address of variable AH%
;Store AH in this variable
;Get address of variable AL%
;Store AL in this variable
;Get address of variable BH%
;Store BH in this variable
;Get address of variable BL%
;Store BL in this variable
;Get address of variable CH%
;Store CH in this variable
;Get address of variable CL%
;Store CL in this variable
;Get address of variable DH%
;Store DH in this variable
;Get address of variable DL%
;Store DL in this variable
;Get address of variable ES%
;transfer ES to AX
;Store ES (AX) in this variable
;Move flag register from stack to AX
;Get address of variable FLAGS%
;Store FLAGs in this variable
;Move DI register from stack to AX
;Get address of variable SI%
;Store SI (AX) in this variable

;Get GW extra segment back
;Get GW data segment back
;Return GW base pointer

;Addresses of variables on the stack
;are no longer needed

;--
set intnr proc near ;stores the interrupt number

pop bx
mov cs:[bx+ad_2-ad_l+l],al
jmp ad 1

set intnr endp

;--
code ends

end

33

4. Using Interrupts from High Level Languages PC System Programming

34

Some brief notes on this program follow for those not familiar with the calling
and linking of assembly language programs in GW-BASIC: The program first
pushes the base pointer on the stack since it will be reset by the next instruction.
During re-entry into GW-BASIC, the base pointer must have the value it had
during the call of the routine. Then the base pointer is set to the value of the stack
pointer for access to data on the stack. This is necessary for GW-BASIC to pass
the BASIC variables named in the CALL command to the stack. In the next step,
the DS and the ES registers are stored on the stack, because their content may
change during execution of the routine and must be preserved for return to GW
BASIC.

Now the routine can read in the variables and set the various processor registers. It
is important to note that the stack does not contain variable contents, but their
addresses relative to the DS register. Because of this, the address of the variable
must be loaded first and then the relative value of this address.

Which addresses contain the addresses of the individual variables stored on the stack
can be determined from the header of the assembly language routine. First you
must determine the number of the interrupt to be called. This value must be treated
in a different manner than the other variables on the stack because it isn't passed in
one of the processor registers, but is a part of the INT instruction which calls the
interrupt. It is indicated as a byte following the code of the INT instruction (CDH).

To set the interrupt number, the number to be passed must be stored following the
CDH code of the INT instruction. This creates a small problem since this routine
can be POKEd by the BASIC program into any memory location. Because of this,
the address of the INT instruction depends on the current starting address of the
routine instead of remaining constant. The routine doesn't know where the INT
instruction is located.

A small trick can be used to help here. The routine does not know where it is
stored, but the processor knows the location of the INT instruction (it has to
know, otherwise it couldn't execute the routine). The subroutine SET_INTR is
called after the interrupt number is loaded into the AX register. The processor, as
in any CALL instruction, stores the address where the program execution is to
continue on the stack, before calling any subroutine. This is the instruction which
precedes the label AD _I.

Subroutine SET_INTR gets the address of AD_l from the stack. While the address
of the INT instruction is still not known, the distance between AD_l and the INT
instruction remain constant, the address of the INT instruction can be calculated
and the interrupt number can be stored following the instruction. The task ends and
the routine returns to the main program (to the label AD_l).

The rest of the routine consists of repeating instructions which determine the
contents of the different variables and pass them to the corresponding processor

Abacus 4.1 Interrupt Calls from BASIC

registers. The value for the ES register is given a special test: if it is equal to -1,
the value of the DS register is copied to the ES register.

After all registers are loaded, the interrupt is called and the contents of the
processor registers are transferred back to the corresponding BASIC variables. The
last step is to restore the contents of all registers which had been saved on the
stack. Finally control returns to GW-BASIC.

35

4. Using Interrupts from High Level Languages PC System Programming

4.2 Interrupt Calls from Turbo Pascal

INTR

Calling interrupts from Turbo Pascal is very easy. Throughout this book we'll be
using Turbo Pascal Version 4.0.

Turbo Pascal uses the INTR procedure. Since this parameter can accept any value
between 0 and 255, all available interrupts can be called.

MS DOS

36

A special form of this INTR procedure is the MSOOS procedure. It is called in a
manner similar to INTR:

MsDos(Regs:Registers);

The lnterruptNumber parameter needed by Turbo Pascal Version 3.0 isn't required
in this procedure since it always calls interrupt 21H, through which almost all
operating system functions can be called.

In both procedures, the parameter register is a record type which holds the contents
of the registers to be passed. These are copied into the registers before the interrupt
call.

The DOS unit contains the parameters for the type called Registers:

type Registers ~ record
case integer of

0 : (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : word);
1 : (AL, AH, BL, BH, CL, CH, DL, DH : byte);

end;

Once the DOS unit has been included in a Turbo Pascal source code, the var
statement can be used to define the register variables under the name Regs:

var Regs : Registers;

Now Turbo Pascal can easily communicate with the following processor registers:

Regs.ax,
Regs.bx,
Regs.ex,
Regs.ah, etc.

You then pass the values to the registers through standard assignments. For
example:

Register.ax :~ 254;

The same method is used with all other registers.

Abacus 4.2 Interrupt Calls from Turbo Pascal

Unfortunately, the contents of the half registers AH, AL, BL, etc. can't be defined
this way. In this case, a trick can be used by defining the half registers as normal
integer or byte variables and then merging them together into a whole register.

In the case of the AX register, this could be done as follows:

var al,
ah : integer;

Register.ax :- ah shl 8 + al;

In this statement, the AX register is assigned value composed of the sum of the
AH register multiplied by 256 (shifting a variable left by 8 places is equivalent to
multiplying it by 256) and the AL register.

If you must do this repeatedly in a program, it would be useful to define a small
function for this:

function WholeRegister(Lo, Hi : integer) integer;

begin
WholeRegister :- Lo + Hi shl B;

end;

Instead of the above, the following could be written:

Register.ax:- WholeRegister(al, ah);

Before calling the interrupt, you must first specify the interrupt value in the
register. The contents of all other registers are unimportant here. If the called
interrupt returns values to the calling program through registers, they can be
examined by looking at the individual components of the variable register.

Sometimes individual flags pass information from the interrupt to the calling
program. In most cases, the Carry flag serves this purpose. If an error occurs
during the execution of an interrupt, the flag is set.

To test for a set flag, the following Pascal statements are used. They return TRUE
or FALSE as a result depending on whether the corresponding flag was set or not.

carry flag:
zero flag:
sign flag:

(register.flags and 1)
(register.flags and 64)
(register.flags and 128)

Often the address of a variable (usually a text buffer) must be passed to an
interrupt. In this case the Turbo functions Ofs and Seg are used to obtain the offset
or segment addresses of a variable. The name of the variable whose address should
be determined is passed to both functions as the argument:

ofs(variablename)
seg(variablename)

Turbo Pascal uses a different format than DOS and BIOS for string storage,
especially for text buffers (mostly variables of type string).

37

4. Using Interrupts from High Level Languages PC System Programming

38

These formats are illustrated below.

TURBO PASCAL

2 I 11 P "I 11 C" 14--No end of string marker

+.._ ______ String length

DOS & BIOS

NULL
"p " "c" ------i

"$"

String storage - Turbo Pascal and BIOS-DOS

To convert a Turbo Pascal string into DOS or BIOS format, an end character
(ASCII code 0) or the dollar sign "$" (ASCII code 36) is appended. Which of these
two characters you should use for indicating the end of the string is described
during the discussions of individual interrupts. Regardless of which format you
use, the characters appear as in either of the following commands:

string := string+*O;
string := string+*36;

The address returned by the Ofs function ~ ! must be passed to the interrupt,
otherwise the byte which indicates the length of the string is accepted by the
interrupt as its first character.

Here is the sample program. Just like the example in Section 4.1, it displays text
on the screen using function 9 of interrupt 21H:

{**}
(* I NT D O S *}
{*-----------------------------~--------------------------------------*)
{ * Task : as an ei<iirnple this interrupt call outputs *}
(* a string through a function of DOS on *}
(* the displuy *}
(*--*}
(* Author : MICHAEL TISCHER *}
(* developed : 07/30/87 *l
{* last update : 05/04/89 *)
{**}

program INTDOSP;

Abacus 4.2 Interrupt Calls from Turbo Pascal

Uses Dos;

var Regs
Text

: Registers;
: string[128];

{ Register variables for interrupt call)
{ accepts the output text }

{**}
{ * MAIN PROGRAM *)
{**}

begin

Text := f13f10'this text was output with Function 9 of DOS-'+
:InLerrupt 21N ••• :fl3flUT $:;

Regs.ah := $09; { Function number 9 in the AH-Register
Regs.dx := Ofs(Text)+l; (Offset address of the text
Regs.ds := Seg(Text); { Segment address of the text
MsDos(Regs); {Call DOS-Interrupt 21(h)

end.

The variable TEXT contains the text to be displayed. The sequence "#13#10"
places the ASCII code 13, followed by ASCII code 10, at the beginning and the
end of the text, creating a blank line before and after the text. The last character is
the"$" character which indicates the last character of text to DOS.

The number of the function being called (9) is copied to the AH register. Since
Turbo Pascal doesn't allow access to the AH register alone, the entire AX register
must be addressed. The value 0 is loaded into the AL register, but any other value
could be entered into this register since its content has no significance to the called
function. As a last step, before calling interrupt 21H using the MSOOS procedure,
the segment address of the string is placed in the DS register and the offset address
in the DX register.

39

4. Using Interrupts from High Level Languages PC System Programming

4.3 Interrupt Calls from C

40

The C language is the language of choice for most developers. Since it was
originally designed for operating system development, C has provisions to include
machine language routines, which is a benefit within the scope of this book.

The standard libraries of both the Microsoft C and Borland Turbo C compilers have
a number of functions for calling interrupts.

The following functions are of interest to us in this book:

int86
int86x
intdos
intdosx
segread

All functions and applicable data structures are declared in the DOS .H library file.
A program which wants to access one of these functions must therefore link the
file to the current program using the #include preprocessor command.

The three structures WORDREGS, BYTEREGS and SEGREGS pass register
values. WORDREGS contains the whole registers AX, BX, CX, DX, SI, DI and
the Carry flag. On the other hand, BYTEREGS contains the half registers AH,
AL, BH, BL, CH, CL, DH and DL, while SEGREGS represents the segment
registers DS, CS, SS and ES.

The BYTEREGS and the WORDREGS structures are joined in the union REGS
which lets the programmer work selectively with either half or whole registers.

Using a variable of the type REGS (called register here for simplicity's sake) gives
us the following:

union REGS register;

This allows access to individual registers:

AX: register.x.ax
BX: register.x.bx etc.
AH: register.h.ah
AL: register .h.al
BH: register.h.bh etc.

The carry flag is represented by the variable register.x.cflag. If this variable is equal
to 0, the carry flag remains unset. Any other value sets the carry flag.

In the case of the segment register a representative variable can be defined as
follows:

struct SREGS SegRegister;

Abacus

int86

int86x

43 Interrupt Calls from C

The individual components of the variables SegRegister.ds, SegRegister.es, etc.,
correspond to the equivalent processor registers.

The functions starting with the characters int all serve to call interrupts. The
SEGREAD function reads the current contents of the segment register.

The functions that call interrupts use different register variables for input to the
interrupt routine, and output from the interrupt routine. There is an advantage to
this method over returning information to the same register variabk in thal the
input information is not overwritten.

Since the individual functions pass only the address of the variable representing the
register and not the variable itself, it is possible to combine the input and output
registers into a single variable. In this case, the address of one variable is provided
for the variable representing the input and the output registers (this method is used
in the sample program at the end of this section).

Before calling the interrupt, the contents of the input variable are copied to the
corresponding processor registers. Following the interrupt call their contents
become the output variables.

All interrupt functions return the content of the AX register as a result code after
the interrupt call.

Here are the details of the functions and their calls:

The int86 function is called as follows:

int86(IntNumber, InRegister, OutRegister);

IntNumber is a variable or constant indicating the number of the interrupt to be
called. InRegister and OutRegister contain the address of two (or one) variables of
the REGS type. As the variable name suggests, InRegister contains the register
contents before the interrupt call, and OutRegister contains the register contents
after the interrupt call.

The int86x function differs from the int86 function in that it requires an additional
argument of the SREGS type. Its contents are copied into the segment register.
before calling the interrupt, but are not copied back following the call to the
interrupt routine.

The call of the function is as follows:

int86x(IntNumber, InRegister, OutRegister, SegRegister);

41

4. Using Interrupts from High Level Languages PC System Programming

intdos

intdosx

42

The intdos and the intdosx functions differ from the two functions described above,
in that the number of the interrupt to the call is not passed. As the names suggest,
they call DOS interrupt 21H through which most DOS functions can be accessed.

Only the addresses of the input and the output variables representing the processor
registers are passed to the intdos function:

intdos(InRegister, OutRegister);

The intdosx function, like the int86x function, has an additional parameter for the
segment register. The function call is as follows:

intdosx(InRegister, OutRegister, SegRegister);

So far you've seen how to call an interrupt from C and how to set the registers.
You also have to determine the address of a variable.

In C, you can easily determine the address of a variable. To do this, use the address
operator &, which returns the offset address of any desired variable. Use the
SEGREAD function mentioned above to determine the segment address of a
variable. The address of a variable of the SREG type is passed to the function
(using the address operator&) into which the content of the segment register can
be copied.

If, for example, the address of the variable SegRegister is passed to the function
and the variable was previously defined by the command:

union SREG SegRegister;

Then the variable SegRegister.ds contains the segment address of the variable
SegRegister, after calling the SEGREAD function.

While C supports interrupt calls with numerous functions, the library of the
Microsoft C compiler library does not have a function to return the contents of a
memory location. Since such a function could be very valuable in some programs,
the assembler program below contains the PEEKB and POKEB functions for
inclusion in programs created with the Microsoft C compiler. PEEK returns the
contents of a memory location (one byte), while the POKE function writes a one
byte value into a memory location.

Note: If you use the Borland Turbo C compiler, you won't need to use this
program since the Turbo C library already contains the PEEK,
PEEKB, POKE and POKEB functions. Because of this, linking the
assembler program into the C example programs of this book is

Abacus 43 Interrupt Calls from C

unnecessary. Additional infonnation is presented in the header of each
program.

If you are using the Microsoft C compiler, enter the following program with a text
editor and save it under the name PEPO.ASM. It can then be assembled with:

masm pepo;

Here's the program:

;***;
;* P E P 0 *;

;•---*;
;* Task : Makes the PEEKB and POKEB function available for *;
;* inclusion in a C program *;
;*---*;
;* Author MICHAEL TISCHER *;
;* developed : 08/13/87 *;
;* last Update : 04/08/89 *;
;*---•;
; * assemble : MASM PEPO; *;
;***;

IGROUP group text ;Grouping of program segments
DGROUP group const,_bss, data ;Grouping of data segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

public PeekB ;Functions become accessible to
public PokeB ; other programs

CONST segment word public 1 CONST 1 ;this segment accepts all constants
CONST ends

BSS segment word public 'BSS'
BSS ends

DATA segment word public 'DATA'
DATA ends

TEXT segment byte public 'CODE'

;which are readable

;this segment accepts all non
; initialized static variables

;all initialized global and
;static variables are stored in this
; segment

;the Program segment

;-- PEEKS: read a byte from memory ----------------------------
call of C: int ~ PeekB(int Segment, int Offset)

Pee kB proc near

push bp
mov bp,sp
push ds
mov ax, [bp] +4
rnov ds,ax
mov bx, [bp]+6
mov al, [bx]
xor ah, ah
jmp short fctend

Pee kB endp

;store BP on the stack
;transmit SP to BP
;store data segment register
;get first argument (Segment)
;set as data segment
;get second argument (Offset)
;read memory location
;HI-byte of INT to 0
;terminate function

;-- POKEB: write a byte into memory -------------------------
Call C: PokeB(int Segment, int Offset, short int Wert)

PokeB proc near

push bp
mov bp,sp

;store BP on the stack
;transmit SP to BP

43

4. Using Interrupts from High Level Languages PC System Programming

44

push ds ;store data segment reqister
mov ax, [bp]+4 ;Get first arqument (Segment)
mov ds,ax ;Set as data seqrnent
mov bx, [bp]+6 ;Get second arqument (Offset)
mov al, [bp]+B ;Get third arqument (Value)
mov [bx],al ;write into memory location

fctend: pop ds ;Return data seqrnent register
mov sp,bp ;Restore stack pointer
pop bp ;Get BP from stack
ret ;Return to calling C program

PokeB endp

:--
text ends

end
;End of the program seqrnent
;End of the assembler source

The example program below uses the two functions described above. This next
program examines the model identification number or code of the PC and displays
PC type on the screen using a DOS function:

/**/
/* I N T D 0 S */
I*---* I
/* Task an example of an interrupt call, outputs */
/* a string throuqh a DOS function on *I
/* the display screen */
/*--*!
/* Author MICHAEL TISCHER *I
/* developed : 08/30/87 */
/* last update : 04/08/89 *I
/*--*!
I* (MICROSOFT C) *I
I*
/*

Creation MSC INTDOSC
LINK INTDOSC PEPO;

*/
*/

I* Ca 11 INTDOSC *I
/*--*/
/* (BORLAND TURBO C v2.0) */
I*
/*
/*

Creation

Call

through the RUN command in the menu .•. or •..
tee -K intdosc
intdosc

*/
*/
*/

/**/

#include <dos.h> /* include header file */
!* Microsoft C user must uncomment the following line */
/* extern short int peekb (); I* PEEKS must be linked to *I
/* Microsoft C object code */
/**/
/** MAIN PROGRAM **/
/**/

void main()

static char AT[]
static char XT[J
static char PC[]

"\r\nthis computer is an AT\r\n$";
"\r\nthis computer is an XT\r\n$";
"\r\nthis computer is an PC\r\n$";

union REGS Reqister; /* Register variable for interrupt call */

Register .h.ah = 9; /* Function number for output of string */
switch (peekb(OxFOOO, OxFFFE)) /*detect model of PC */

{

case OxFE : Register.x.dx = (int) XT;
break;

/* Address of XT text */

Abacus 4.3 Interrupt Calls from C

case OxFC : Register.x.dx - (int) AT; /* Address of AT text */
break;

case OxFF :
default : Register.x.dx - (int) PC; /* Address of PC text */

)

intdos(&Register, &Register); /* Call DOS interrupt 21H */
}

The main function defines three CHAR pointers which point to the text for each
PC type. Each of them starts and ends with an '°\n" character. This creates a blank
line before and after the text itself.

In the first instruction of the main program the AH register is loaded with the
DOS function number for string output on the screen. Then the model
identification byte is read from memory location FOOO:FFFE using the PEE.KB
function. Depending on the value read, the offset address of the accompanying text
is transferred to the DX register where it is expected by the interrupt 21H function.

In addition to this offset address, the function also requires the segment address of
the text in the DS register. Since the compiler automatically sets this register, you
don't have to be concerned with the segment address. The last instruction of the
program calls the INTOOS function which in turn calls interrupt 21H with the
registers which were defined earlier.

The file header states how it can be executed: If you are using the Microsoft C
computer, then it is important that you link the file with the previously assembled
PEPO program so that the new program contains the PEEKB and POKEB
functions. These can then be called from the C program.

The integrated environment of the Turbo C compiler requires a different procedure.
Compiler options must be set to default values except for under "code generation."
You must set "default char type" to "unsigned", then select Run from the menu.
The options file appears on the disk under the filename INTBSPC.TC.

A small comment about using Borland Turbo C compiler. Several programs in
this book include assembly language routines within the programs. Since Turbo C
differentiates between upper and lowercase characters in function names, you may
have problems compiling programs as entered from this book. To avoid this,
select the OPTION command, then the LINKER command in the command line of
Turbo C before creating a program. The lowest line in the window displays the
option "Case sensitive link". Select OFF here to avoid difficulties with upper and
lowercase letters.

45

Chapter 5

Using Interrupts from
Assembly Language

Unlike programmers using any of the higher level languages, the assembly
language programmer doesn't have to rely on complicated functions or procedures
to call an interrupt. The MOV instruction loads the input parameters into the
registers provided, and the INT instruction calls the interrupt.

Certain interrupts, or the functions hidden behind these interrupts, are called
frequently in many programs. An example of this is interrupt 21H function 9,
which displays text on the screen. You call it by placing function number 9 in the
AH register and the offset address of the text you want displayed in the DX
register. This process looks like this in assembly language:

mov ah,9
mov dx,offset Text
int 2lh

;load function number 9
;load offset address of text
;call DOS interrupt 2lh

Even if you call the function very frequently, it doesn't pay to write a subroutine
for it since the address of the text to be displayed must be passed. All that remains
is to load the value 9 into the AH register and to call the interrupt. You'll find the
three program lines described above included for every function call in a program in
this chapter.

47

5. Using Interrupts from Assembly Language PC System Programming

5.1 Using Assembler Macro Functions

Macros

48

An alternative to this method are macros which most assemblers support.

A macro is a "shorthand" way to write a series of assembly language instructions.
It has a name and may have one or more parameters. During assembly, if the
macro name is encountered, the series of instructions and parameters replace the
macro.

Below is an example of defining and calling a macro using the Microsoft
Assembler (MASM). See your assembler's reference manual for information on
macro handling (and whether your assembler supports macros). Since this macro
displays text, we've named the macro PRINT:

print macro string ;Macro header with Name and Parameter

mov ah,9 ;load function 9
mov dx,offset string ;load offset address of the text
int 2lh ;call DOS interrupt 21h

endm ;the endm command terminates a macro

The first line declares the macro name {PRINT). In this case, the macro also has
one parameter (string). The assembly language instructions follow in successive
lines until the ENDM instruction terminates the macro.

Now you can use the macro to display text:

print Message

In this example, Message is the name of a variable containing the text to be
displayed. In the macro declaration, string is a parameter. During assembly, string
is replaced by Message and creates the following program lines:

mov ah,9
mov dx,offset Message
int 21h

Abacus 52 A Sample Macro

5.2 A Sample Macro

The following program demonstrates the macro just described.

•***•
' ' , M A C R 0 *;
;*---*;
;* Task : in this Program a Macro is used for output *;
·• of a String with Function 9 of Interrupt 21H *;
;*---*;
;* A~~hc~ M~CP.AE~ T~$CHER *;
; * developed : 08/30/87 *;
; * last Update : 04/08/89 *;

;*---*;
;* assembly : MASM MACRO; *;
; * : LINK MACRO; ,

;*---*;
, Call: : MACRO *;
;***;

;== Macro ===

Print macro String ;this is the macro

rnov ah,9 ;load function number
mov dx,offset String ;load off set address of text
int 21h ;call DOS interrupt

endm ; End of macro

;== Constants ===

CR
LF
TEND

equ 13
equ 10
equ 11 $ 11

;ASCII-Code of carriage return
;ASCII-Code of linefeed
;End of a character string

;== Data ==

Data segment

Text db CR,LF, 11 This is how MACROS are used",CR,LF,TEND

Data ends

;== stack ===

stack segment STACK

dw 64 dup (?)

stack ends

;== Code ==

Program segment

assume CS:Program, DS: Data, SS:stack

Start proc far

mov ax,Data
mov ds,ax

Print Text

mov ax,4COOh
int 21h

;program starts here

;set data segment register

;Macro inserted here

;Program terminated with call of a
;DOS function with return of error-code O

49

5. Using Interrupts from Assembly Language PC System Programming

50

Start endp ;End of procedure

;==

Program ends
end Start ;begin with START

After you enter the source program, it can be assembled, linked and executed as
indicated in the header.

Most of the lines in this listing have nothing to do with the actual program but
are definitions and declarations for the assembler.

The macro and constants are defined in the first part of the program, which helps to
make the listing more understandable to the reader. The definition of the data
segment follows, where the string to be displayed is stored as a character string. It
is preceded and followed by a carriage return and a linefeed to display a blank line
before and after the actual text. The text ends with the character "$" (the DOS
function used for text display always looks for this as the last character in a
string).

Following the data segment is the stack segment, which controls the stack during
program execution. Since the program is not very large, the stack can be fairly
small. The last segment is the code segment which contains the program
instructions. It consists of only five commands: The first two instructions
initialize the program. They load the segment address of the data segment into the
DS register to provide access to the text in this segment. Then the macro PRINT
is called, and the text is passed .to it.

The following instructions terminate the program by calling a DOS function.

Note: You may find it useful to group together certain macros into a file or
library. When one of these macros will be used in a program, the
library may be linked or included with the assembly language code.

Chapter 6

The Disk Operating System

The following chapter discusses the PC's operating system, which the PC loads
from floppy diskette or hard disk. It is commonly referred to as PC-DOS, MS
DOS or just DOS.

What is DOS?

Most users only know the user interface of DOS, with which you run programs,
format disks, etc. In the following sections, however, you'll view DOS from an
angle you may not have known existed.

Beneath the surface of DOS many processes takes place. DOS uses a large number
of different routines (called functions) to accomplish its tasks. These functions are
available to the user as well as to DOS. The main focus is on how these functions
can be used in practical applications.

This chapter includes a historical sketch of the development of DOS, highlighting
its origins in the CP/M operating system. You'll learn the differences between
transient and resident commands, COM and EXE files, and DOS file access.

The data structures which act as the connecting link between the different DOS
functions will also be examined in this chapter. These data structures make mass
storage devices such as floppy disks and a hard disk possible.

Finally, this chapter discusses each DOS function in detail, and includes a brief
look at DOS Version 4.0.

51

6. The Disk Operating System PC System Programming

6. 1 A Short History of DOS

DOS appeared in 1980, at a time when 8-bit systems and CP/M 80 operating
systems made up the majority of microcomputers. A few years before, Intel had
designed the 8086 microprocessor, the first generation of 16-bit microprocessors.

In April 1980 the CP/M-86 operating system announced by Digital Research for
use on the 8086 processor was unavailable. A programmer named Tim Paterson
began developing a new operating system. This system is the ancestor of the
current MS-DOS.

At this time a lot of software was available for CP/M-80 systems. The
development of new software for an 8086 operating system would have required
enormous expenses and effort. Paterson's goal was to allow easy conversion of
existing software from CP/M-80 to the new operating system. He tried to include
the functions and the most important data structures of the CP/M-80 operating
system, while removing the weak points of CP/M-80. The finished product was an
operating system that required only 6K of memory. Programs developed for CP/M-
80 could also be converted with little effort to the 8086. The new system was
named 86-DOS.

Meanwhile IBM was developing a 16-bit microcomputer. Microsoft offered to
develop an operating system for it. Microsoft obtained a prototype of the new
computer from IBM, bought the rights to Paterson's operating system, and made
some enhancements to the software. Even though Paterson was participating in the
project, the strict security provisions of IBM prevented him from seeing the
machine for which he had developed an operating system. Despite this, the
development work was concluded in August of 1981. The new operating system
was released for the IBM PC under the name MS-DOS.

Many changes have been made to DOS since 1981. Because these changes are of
great significance to the DOS programmer, this chapter contains a segment for
each major version of DOS. Each segment lists changes from preceding versions
with explanations. Many components of DOS are explained here, which will give
you some idea of the complexity of an operating system.

Version 1.0

52

This version represented a compromise for Microsoft. They had relied heavily on
CP/M-80 and needed to transfer existing programs quickly and easily. This can be
seen in the fact that the file names (eight-character filename, three-character
extension) was identical with CP/M-80. Also, the designation of the disk drives
and the internal structure had many similarities to the successful 8-bit operating
system.

Abacus 6.1 A Short History of DOS

During this time many improvements and enhancements of the hardware occurred,
such as more RAM and faster disk drives. Microsoft decided to make DOS more
hardware independent by removing the association between physical file length and
logical file length.

In CP/M-80 every disk was divided into 128-byte units which could only be
accessed as a whole. This is why you couldn't access individual bytes on the disk
(this created a programming problem that shouldn't have existed in the first place).
DOS solved this problem by making the logical and physical data length
independent of one another. In addition, functions were implemented to permit
reading or writing of more than one data set of a file on a disk. Treating the input
and output devices like files achieved hardware independence. These input and
output devices were assigned their own names:

CON (Keyboard and Display)
PRN (Printer)
AUX (serial Interface)

If you used one of these three names instead of a filename to access a file with a
DOS routine, then the computer addressed the corresponding device and not the
disk drive. This also permitted redirecting input and output from the keyboard or
screen to a file or other device.

Before this time, DOS only supported program files which loaded and executed
from a fixed location in memory. This proved to be impractical, and so Version
1.0 introduced a new program file type. This new file type had a file extension of
.EXE instead of .COM. An .EXE file could be stored and executed from almost
any memory location.

Two changes were made to the command processor, the part of the operating
system which accepts commands from the user and controls the execution of these
commands. The first change was to store the command processor in a separate file
named COMMAND.COM. This allowed programmers to develop a customized
command processor and link it to the system.

The second change was to divide the command processor into a resident and a
transient portion. This approach was taken because early PC systems contained
only a small amount of memory. The resident portion was written to be as small
as possible. Many DOS commands were stored on disk and loaded and run only
when required, hence the name transient. Examples of transient commands are
DISKCOPY and FORMAT.

A major innovation that took MS-DOS Version 1.0 beyond CP/M-80 was the
introduction of the FAT (file allocation table) on disk. Every entry in this table
corresponds to a data area of 512 bytes (called a sector) on the disk. The FAT
indicates whether the sector is allocated to a file or is still available.

53

6. The Disk Operating System PC System Programming

The FAT has special significance in connection with the directory entry which
exists for every file type. Besides the filename and other information, it also
indicates the number of an entry in the FAT which corresponds with the first
sector of a file on the disk. This FAT entry points to another FAT entry which
indicates the next sector which was allocated to the file. The other FAT entries on
a disk perform the same task.

In conclusion two additional developments should be mentioned which make work
with the PC easier for the user:

The introduction of batch processing offers the user the option of placing several
DOS commands into one file. When you "run" this file (which has a file extension
of .BAT), DOS executes the individual commands from this file as if you had
entered the commands from the keyboard, thus saving the user time in entering
frequently used groups of commands repeatedly.

The current date and time follows every filename. DOS includes this data to help
the user determine the last time a file was modified.

When IBM introduced a new PC in 1982 which used both sides of a disk for data
storage, Microsoft released DOS Version 1.1.

Version 2.0

54

IBM announced a new personal computer in March of 1983, called the PC XT,
which in addition to the floppy disk drive also had a hard disk (also called afued
disk). The enormous capacity of this hard disk (10 megabytes) allowed the user to
store several hundred files on one unit, but created some problems for the operating
system. The largest problem was that DOS could only handle one directory for
each storage unit. It would be nearly impossible for the hard disk user to maintain
hundreds of files in a single directory. Microsoft had two options to solve this
problem: They could either borrow an idea from the CP/M-80 operating system, or
from the UNIX operating system.

CP/M views a hard disk as several individual disk drives which share the total
storage on the hard disk, each with only one directory.

UNIX uses a hierarchical file system, in which every storage unit has a root
directory which can contain subdirectories as well as files. Every one of these
subdirectories can have subdirectories within them. This creates a directory tree
whose trunk is the root directory and whose branches are represented by the
individual subdirectories.

Microsoft chose the hierarchical file system, which has since become a popular
component of DOS. This was another step away from CP/M-80 toward an
efficient 16-bit operating system. With the introduction of an hierarchical file
system some major changes had to be made in the area of file control by DOS.
Before this time, file access was conducted through a file control block or FCB.

Abacus 6.1 A Short History of DOS

This file control block had been introduced for compatibility with CP/M-80. The
FCB contained important information about the name, size and location of a file
on disk. This CP/M would not allow access to a file in another directory.

The DOS developers standardized file access through DOS functions. The access to
a file occurs exclusively through the file handles. A handle is a numerical value
passed to the program as soon as it opens a file through a DOS function. The
FCBs were not eliminated, but the programmer no longer came in contact with
them since DOS took over the control block manipulation.

An important innovation was the introduction of installable device drivers. They
offer the programmer the capability of easily including different devices in DOS,
such as an exotic hard disk, a mouse or a tape drive. Version 2.0 introduced the
display device driver ANSI.SYS which gave the programmer flexibility in cursor
positioning and color selection through DOS functions.

Version 2.0 added the option of formatting the individual tracks of a disk with nine
sectors instead of eight. This increased the storage capacity of a single-sided disk
from 160K to 180K, and the capacity of a double-sided disk from 320K to 360K.

Version 3.0

Version 3.0, like Version 2.0, was developed for a new PC, the IBM PC AT. It
was released in August of 1984 and supported the 20 megabyte hard disk of the
A Ts as well as the high capacity 1.2 megabyte floppy disk drive. Many changes
occurred in DOS' s internal routines. They contributed to faster execution of certain
operations, but are transparent to the programmer.

Version 4.0

DOS 4.0 appeared on the market in August 1988. Before this, Microsoft released a
new multiprocessing operating system called OS/2. Before OS/2, multiprocessing
was unknown to MS-DOS.

The user can easily see the changes to DOS 4.0 over earlier versions of DOS. In
place of the line-oriented command line interpreter used by DOS versions 3.3 and
earlier, DOS 4.0 has a Shell allowing user-defined menus, easy selection of
applications, files and directories from both mouse and keyboard.

Most important are the unseen changes made to DOS, particularly in adapting the
operating system to the new hardware standards on the market. As the operating
system has grown in power, it has also grown in complexity and memory use. For
example, earlier versions of DOS were limited to "only" 640K of RAM and a 32
megabyte hard disk. However, DOS 4.0 handles the Expanded Memory System
(EMS) following the LIM standard, normal RAM capacity of up to 8 megabytes,
and hard disks up to 2 gigabytes (2048 megabytes) capacity.

SS

6. The Disk Operating System PC System Programming

6.2 Internal Structure of DOS

Several major components comprise DOS, each with a certain task within the
system. The three most important components are the DOS-BIOS, the DOS kernel
and the command processor. Each appear in a separate file.

DOS-BIOS

DOS-BIOS is stored in a system file which appears under various names
(IBMBIO.COM, IBMIO.SYS or IO.SYS). This file has the file attributes Hidden
and Sys, which means this system file doesn't appear when the DIR command is
entered. The DOS-BIOS contains the device drivers for the following units:

CON (Keyboard and Display)
PRN (Printer)
AUX (Serial Interface)
CLOCK (Clock)
Disk drives and/or hard disks which have the unit
designations A, B and C

If DOS wants to communicate with one of these, it accesses a device driver
contained in this module, which in turn uses the routines of ROM-BIOS. The
DOS-BIOS (i.e., the connection between individual device drivers and other
hardware dependent routines) are the most hardware dependent components of the
operating system, and vary from one computer to another.

Do not confuse the device drivers in this module with the installable device drivers.
The DOS-BIOS device drivers cannot be changed by the user.

DOS kernel

The DOS kernel in the IBMDOS.COM or MSDOS.SYS file is normally invisible
to the user. It contains file access routine handles, character input and output, and
more. The routines operate independent of the hardware and use the device drivers
of DOS-BIOS for keyboard, screen and disk access. The module can be used by
different PCs without being limited to one machine. User programs can access
these functions in the same manner as the ROM-BIOS functions: every function
can be called with a software interrupt. The processor registers pass the function
number and the parameters.

Command processor

56

Unlike the two modules described above, the command processor is contained in
the file named COMMAND.COM. It displays the "A>" or "C>" prompt on the
screen, accepts user input and controls input execution. Many users wrongly think
that the command processor is actually the operating system. In reality it is only a
special program which executes under DOS control.

Abacus 62 Internal Structure of DOS

The command processor, also called a shell in programmer's terminology, actually
consists of three modules: A resident portion, a transient portion and the
initialization routine.

The resident portion (the part that always stays in the computer's memory)
contains various routines called critical e"or handlers. These allow the computer to
react to different events, such as pressing the <Ctrl><C> or <Ctrl><Break> keys
or errors during communication with external devices (e.g., disk drives and
printers). The latter cause the message:

Abort, Retry, Ignore
or
Abort, Retry, Fail

The transient portion contains code for displaying the (A>) prompt, reading user
input from the keyboard and executing the input. The name of this module is
derived from the fact that the RAM memory where it is located is unprotected, and
can be overwritten under certain circumstances. When a program ends, control
returns to the resident portion of the command processor. It executes a checksum
program to determine whether the transient portion was overwritten by the applica
tion program. If so, the resident portion reloads the transient portion.

The initialization portion loads during the booting process and initializes DOS.
This part of the command processor will be examined in detail in the next chapter.
When its job ends, it is no longer needed and the RAM memory it occupies can be
overwritten by another program. The commands accepted by the transient portion
of the command processor can be divided into three groups: internal commands,
external commands and batch files.

Internal commands lie in the resident portion of the command processor. COPY,
RENAME and DIR are internal commands.

External commands must be loaded into memory from diskette or hard disk as
needed. FORMAT and CHKDSK are external commands.

After execution the command processor releases the memory used by these
programs. This memory can then be used for other purposes.

Batch files

A batch file is a text file containing a series of DOS commands. When a batch file
is started, a special interpreter in the transient portion of the command processor
executes the batch file commands. Execution of batch file commands is the same
as if the user entered them from the keyboard. An important batch file is the
AUTOEXEC.BAT file which executes immediately after DOS is first loaded.

Like all commands of a batch file, these commands are checked for internal
commands, external commands or calls to other batch files. If the first is true, the

57

6. The Disk Operating System PC System Programming

58

command executes immediately, since the code is already in memory (in the
transient part of the command processor). If it is an external command or another
batch file, the system searches the current directory for the command. If such a file
doesn't exist in this directory, all directories specified in the PATH command are
searched in sequence. During the search, only files with the .COM, .EXE or .BAT
extensions are examined.

Since the command processor cannot search for all three extensions at the same
time, it first searches for files with .COM extensions, then for .EXE files and
finally for .BAT files. If the search is unsuccessful, the screen displays an error
message and the system waits for new input.

Abacus 63 Booting DOS

6. 3 Booting DOS

When a PC is turned on, the program contained in ROM begins executing. This
ROM program is sometimes called the ROM-BIOS, POST (power-on self test),
resident diagnostics or bootstrap ROM. It performs several tests on the hardware
and memory and then starts to load the DOS.

First the PC checks for a disk in the floppy disk drive. If a disk exists in the
floppy disk drive. the PC checks the disk for the boot sector_ If a disk is not in the
drive, the PC searches for a hard disk from which to boot DOS. If no hard disk
exists, the PC displays an error message asking the user to insert a system disk.

The first sector on a bootable floppy disk or hard disk is called the boot sector. The
program in the boot sector is read into memory and executes. First it checks for
the presence of two files: IBMBIO.COM (sometimes called IO.SYS) and
IBMDOS.COM (sometimes called MSDOS.SYS). A bootable floppy disk or hard
disk must contain these two files or an error message is displayed. Next these
program files are loaded into memory.

The program file IBMBIO.COM consists of two modules. The first contains the
basic device drivers-keyboard, display and disk. The second contains the
initialization sequence for DOS. When the IBMBIO.COM program executes it
continues to initialize the system by moving the DOS kernal (loaded in the
IBMDOS.COM program file) to the last available memory location.

The DOS kernal builds several important tables and data areas, and performs
initialization procedures for individual device drivers which were loaded with the
IBMBIO.COM program file.

Next, DOS searches the boot disk for a file named CONFIG.SYS. If found, the
commands contained in the file are executed. These commands add device drivers to
DOS, allocate disk buffers and file control blocks for DOS and initialize the
standard input and output devices.

Lastly the command processor COMMAND.COM (or other shell specified in the
CONFIG.SYS file) is loaded and control is passed to it. The booting process ends
and the initialization routines remain as "garbage" data in memory until
overwritten by another program.

59

6. The Disk Operating System PC System Programming

6.4 COM and EXE Programs

EXEC

'60

DOS recognizes three types of "program" files: those with file extensions of BAT,
COM and EXE.

This section describes the structure and functions of these last two program types.

One difference between COM and EXE program files is in the size limitation for
each type of program. A COM program cannot exceed 64K in size. An EXE
program can be as large as the memory capacity available to DOS.

In a COM program, the program code, data and stack are stored in one 64K
partition. All of the segment registers are set at the start of the program and remain
fixed for the duration of the program execution. They point to the start of the 64K
memory segment. The contents of the ES register may be changed however, since
it has no direct effect on program execution.

In an EXE program, the code, data and stack may be stored in different segments,
and depending on program size, may be distributed over several segments.

While a COM program file is stored on disk as an image copy of RAM memory,
an EXE program file is stored in a special format that will be described shortly.

Both program types can be loaded and started using the DOS EXEC function. Any
user can access this, but the command processor uses it for executing external
commands. Before the EXEC function loads the program into memory, it reserves
the RAM memory to hold the program. At the beginning of this memory the
EXEC function stores a PSP (program segment prefix) data structure. The program
is then loaded immediately following the PSP. The segment registers and the stack
are initialized and the program is given control. Later, when the program ends, the
memory is released based on the contents of the PSP.

Abacus 6.4 COM and EXE Programs

+ OOH Interru...E_t 20H call (2 ~es)
+ 02H Segment address of menory (1 word)

allocated for a _E_r~ram
+ 04H Reserved (1 byte)
+ OSH Interrupt 21H call (5 bytes) RAM
+ OAR Copy of interrupt (2 words) 0000:0000

vector 22H

l + OEH Copy of interrupt (2 words)
vector 23H

+ 12H Copy of interrupt (2 words)
vector 24H

+ 16H reserved (22 bytes)
+ 2CH Segment address of (1 word)

environment block
+ 2EH reserved (46 ~es)
+ SCH FCB 1 (16 ~s)
+ 6CH FCB 2 (16 ~es)
+ BOH Number of characters (1 byte)

in command line
+ BlH Corrrnand line (ended by CR) (127 bytes)

Structure of the PSP

The PSP itself is always 256 bytes long and contains information important for
DOS and the program to be executed.

Memory location OOH of the PSP contains a DOS function call to terminate a
program. This function releases program memory and returns control to the
command processor or the calling program. Memory location 05H of the PSP
contains a DOS function call to interrupt 21H. Neither of these are used by DOS,
but are leftovers from the CP/M system.

Memory location 02H of the PSP contains the segment address to the end of the
program. Memory location OAH contains the previous contents of the program
termination interrupt vector. Memory location OEH contains the previous contents
of the <Ctrl><C> or <Ctrl><Break> interrupt vector. Memory location 12H
contains the previous contents of the critical error interrupt vector. For each of
these memory locations, the program changes one of the corresponding vectors
during execution; DOS can use the original vector in the event that it detects an
error.

Location 2CH contains the segment address of the environment block. The
environment block contains information such as the current search path and the
directory in which the COMMAND.COM command processor is located on disk.

61

6. The Disk Operating System PC System Programming

Memory locations SCH through 6CH contain a file control block. This FCB is
not often used by DOS since it does not support hierarchical files (paths) and is
also left over from CP/M.

The string of parameters that are entered on the command line following the
program name is called the command tail. The command tail is copied to the
parameter buffer in the PSP beginning at memory location 81H and its length is
stored at memory location 80H. Any redirection parameters are eliminated from the
command tail as it is copied to the parameter buffer. The program can examine the
parameters in the parameter buffer to direct its execution.

The parameter buffer is also used by DOS as a disk transfer area (DT A) for
transmitting data between the disk drive and memory. Most DOS programs do not
use the DTA contained in the PSP because it is another leftover from CP/M.

SS:OOOO
DS:OOOO
ES:OOOO
CS:OOOO

CS:IP

SS:SP

SS:FFFF
CS:FFFF
DS:FFFF
ES:FFFF

~

PSP (256 BYTES)

....
~

Code, data
and stack in
one 64K segment

., Stack adjusts
to the direction
of data and code

ES:OOOO
DS:OOOO

CS:IP

DS:OOOO

~

-----1

......

SS:OOOO ~

SS:SP

PSP (256 BYTES)

Code

(Address defined
by the END
command in an
assembler
program)

Data

Stack

A comparison of COM and EXE programs in memory

6.4.1 COM Programs

62

COM program files are stored on disk as an image copy of memory. Because of
this, no further processing is required during loading. Therefore COM programs
load faster and start execution faster than EXE programs.

A COM program loads immediately following the PSP. Execution then begins at
the first memory location following the PSP at offset IOOH. For this reason, a
COM program must begin with an executable instruction, even it if is only a
jump instruction to the actual start of the program.

Abacus 6.4 COM and EXE Programs

COM program memory limits

As described in the previous section, a COM program is limited to 64K (65,536
bytes) in length. The PSP (256 bytes) and at least 1 word (2 bytes) for the stack
must be reserved from this total. Even though the length of the COM program can
never exceed 64K, DOS reserves the entire available RAM for a program.
Therefore DOS can allocate no further memory, and the COM program cannot call
another program using the EXEC function. This limitation can be overcome by
releasing the unused memory for other uses with a DOS functicr..

When control is turned over to the COM program, all segment registers point to
the beginning of the PSP. Because of this, the beginning of the COM program
(relative to the beginning of the PSP) is always at address IOOH. The stack pointer
points to the end of the 64K memory segment containing the COM program
(usually FFFEH). During every subroutine call within the COM program, the
stack is adjusted by 2 bytes in the direction towards the end of the program. The
programmer is responsible for preventing the stack from growing and overwriting
the program, which would cause it to crash.

There are several ways to end a COM program and return control to DOS or the
calling program:

If the program runs under DOS Version 1.0, it can be terminated by calling
interrupt 21H function 0, or by calling interrupt 20H. It can also be terminated by
using the RET (RETurn) assembler instruction. When this instruction executes,
the program continues at the address which is at the top of the stack. Since the
EXEC function stored the value 0 at this location before turning control over to
the COM program, program execution continues at location CS:O (the start of the
PSP). Recall that this location contains the call for interrupt 20H which
terminates the program.

Programs that run on versions later than DOS Version 1.0, are terminated using
interrupt 21H function 4CH. The terminating program can pass a numeric return
code to the calling program. For example, a value of 0 may indicate that the
program executed successfully, while a non-zero value indicates an error during
execution.

Next we'll talk about a few of the details that the assembly language programmer
will have to take care of in developing a COM program. Note that the high level
language programmer is usually insulated from these details by the compiler or
interpreter, so you may want to skip ahead.

A COM program is limited to a 64K size. The code and data for the program must
be contained within a single segment and addressed through NEAR procedures.
Therefore an assembly language program that is to become a COM program may
not contain any FAR procedures.

63

6. The Disk Operating System PC System Programming

64

Before calling a COM program, DOS reserves all available memory for the
program even though it normally uses only one 64K segment and indicates this by
setting memory location 2 in the PSP. Usually the program terminates and the
memory is made available to DOS again.

In some circumstances you may want to write a program which is to remain
resident after execution. But DOS thinks that there isn't any memory available.
This prevents other programs from loading and executing.

In other circumstances you may want to execute another program from this COM
program using the EXEC function. Again, since DOS thinks that memory is
unavailable, it won't allow the new program to run.

Both of these problems can be circumvented by freeing up the unused memory.

There are two approaches in doing this: release only the memory outside of the
64K COM segment or release memory outside of the 64K COM segment plus any
unused memory within the 64K COM segment. This creates more memory for
other programs, but relocates the stack outside the protected COM segment
memory, leaving it open to be overwritten by other programs. Because of this, the
stack must be relocated to the end of the code segment before releasing the
memory. The stack must have a certain limit in size (in most cases 512 bytes will
be more than enough).

The following sample program can serve as an example for developing a COM
program. A small (init) routine relocates the stack to the end of the code segment
after the start of the program and releases all remaining memory. Even when this
program loads another program, it remains resident. This routine can be useful to
applications, and can be part of any COM program.

;testcorn.asrn
code segment para 'CODE' ;Definition of CODE-segments

start:

org lOOh ;starts at Address lOOH
;directly behind the PSP

assume cs:code, ds:code, es:code, ss:code

jmp init

;all segments point to the CODE
;segment

;Call of the Initialization Routine

;== Data ===

;-- Data, Buffers and ---------
;-- Variables can be stored here

;== Program ===

prog proc near

mov ax,4COOh

;this Procedure is the actual
;Main program and is executed after
;the Initialization

;Terminate Program through calling a

Abacus 6.4 COM and EXE Programs

int 2lh ;DOS function on error code 0

prog endp ;End of the PROG procedure

;-- Initialization --

init: mov
mov
mov
shr
inc
int

jmp

init end label

ah,4Ah
bx, offset
cl,4
bx, cl
bx
2lh
~P. 0ff~~t

prog

near

endp

e~~p

;Change Function number for memory size
;Calculate number of paragraphs (16 byte
;each) available to the program

;Call function through DOS-Interrupt
;Set ~ew ~t~~k-P~~~t2Y

;== stack ===

endp

code

dw (256- ((init_end-init) shr 1)) dup (?)

equ this byte

ends
end start

;the stack has 256 Words, but includes
;the code of the INIT-Routine which
;after its execution is no longer needed

;End of memory used by this
;program

;End of the CODE-segment
;End of the Assembler-Program. For
;execution use START command

First you must assemble the source program using the assembler. In the following
example, we are using the Microsoft assembler. Following assembly, you then
link the object code using the LINK program. When you execute the LINK
program, the following message appears:

Warning: no stack segment

You can disregard this message. If the program contains no errors, the LINK
program creates an EXE file. Since you want a COM program and not an EXE
program developed, you must run the EXE2BIN program as the last step. This
converts EXE programs into COM programs. Here are the steps for preparing an
assembly language program using the Microsoft assembler. The program to
assemble is named TESTCOM.ASM.

masm testcorn;
link testcom;
exe2bin testcorn.exe testcorn.com

If all steps were carried out correctly, the program TESTCOM.COM can be
executed from DOS by simply typing TESTCOM.

65

6. The Disk Operating System PC System Programming

6.4.2 EXE Programs

EXE programs have an advantage over COM programs because they are not
limited to a maximum length of 64K for code, data and stack. The disadvantage of
this is the greater complexity of these files. This means that in addition to the
program itself, other information must be stored in an EXE file.

EXE vs. COM

66

EXE programs contain separate segments for code, data and stack which can be
organized in any sequence. Unlike a COM program, an EXE program loads into
memory from disk and undergoes processing by the EXEC function and then
finally begins execution. This is necessary because of the limitations already
described for COM programs.

EXE programs aren't limited to loading at a fixed memory location, but to any
desired location in memory that's a multiple of 16. Since an EXE program can
have several segments, this requires the use of FAR machine language
instructions. For example, a main program can be in one segment and call a
subroutine in another segment. The segment address must be provided for this
FAR instruction in addition to the offset for the routine to be called. The problem
is that the segment address may be different for every execution of the program.

COM files avoid this problem since the program size is limited to 64K, which
makes the use of FAR commands unnecessary. EXE programs solve this problem
in a more complex way: the LINK program places a data structure at the beginning
of every EXE file which contains the addresses of all segments, among other
things. It contains the addresses of all memory locations in which the segment
address of a certain segment is stored during program execution.

If the EXEC function loads the EXE program, it knows the addresses where the
various segments should be loaded. It can therefore enter these values into the
memory locations at the beginning of the EXE file. Because of this, more time
elapses between the initial program call and when the program actually begins
execution than for a COM program. The EXE program also occupies more
memory than a COM program. The following illustration shows the structure of
the header for an EXE file.

Abacus 6.4 COM and EXE Programs

EXE file header structure
Address Contents 'l;'yQ_e
+OOH EXE ..E_ro...9:_I"am identifier (5A4Dh) 1 WORD
+02H file le!lg_th MOD 512 1 WORD
+04H file length DIV 512 1 WORD
+06H Number of segment addresses for passing 1 WORD
+08H Head~size in paragraphs 1 WORD
+OAH Minimum no. of extra paragraphs needed 1 WORD
+OEH Maximum no. of extra paragraphs needed 1 WORD
+lOH SP register contents on program start 1 WORD
+12H Checksum based on EXE file header 1 WORD
+14H IP r~ister contents on ...E_r~am start 1 WORD
+16H Start of code s~ment in EXE file 1 WORD
+18H Relocation table address in EXE file 1 WORD
+lAH Overla_y_ number 1 WORD
+lCH Buffer memory 1 WORD
+??H Address of passing segment addresses 1 WORD

(relocation table)
+??H Program code, data and stack segment 1 WORD

EXE.file header construction

After the segment references within the EXE program have been resolved to the
current addresses, the EXEC function sets the DS and the ES segment register to
the beginning of the PSP which also precedes all EXE programs in memory.
Because of this, the EXE program can access the information contained in the
PSP, such as the address of the environment block and the parameters contained in
the command line (command tail). The stack address and the contents of the stack
pointer are stored in the EXE file header and accessed from there. This also applies
to the code segment address containing the first instructions of the program, and
the program counter. After the values have been assigned, the program execution
starts.

To ensure compatibility with future DOS versions, an EXE program should
terminate by calling interrupt 21H function 4CH.

Of course, memory must be available for the EXE program. The EXE loader
determines the total program size based on the size of the individual segments of
the EXE program. Then it can allocate this amount of memory and some
additional memory immediately following the EXE program. The first two fields
of the EXE program file header contain the minimum and maximum size of
memory required in paragraphs (I-6 bytes).

First, the EXE loader tries to reserve the maximum number of paragraphs. If this
is not possible the loader tries to reserve the remaining memory which may be no
smaller than the minimum number of paragraphs. These fields are determined by
the compiler or assembler, IlQl the linker. The minimum is 0 and the maximum

67

6. The Disk Operating System PC System Programming

68

allowed is FFFFH. This last number is unrealistic in most cases (it adds up to 1
megabyte) but reserves the entire memory for the EXE program.

This brings us back to the same problem as in COM programs. EXE files make
poor resident programs, but an EXE program may need to call another program
during execution. This is possible only by first releasing the additional reserved
memory. The following program below contains a routine which reduces the
reserved memory to a minimum.

The program uses separate code, data and stack segments. It can serve as a model
for other EXE programs that you can write.

; testexe.asm
;== stack ===

stack segment para stack ;Definition of the stack-segment

dw 256 dup (?) ;the stack has 256 Words

stack ends ;End of the stack-segment

;== Data ==

data segment para 'DATA' ;Definition of the Data-segment

;all data, buffers and variables can be stored here

data ends ;End of the Data segment

;== Code ===

code

prog

prog

;--
;--

'

segment para 'CODE' ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stack

proc far

mov ax,data
rnov ds,ax
call set free

;CS defines the Code, DS
;the Data and SS the stack
;segment

;this procedure is the actual
;Main program and is executed after
;the program start

;Load segment address of the Data segment into
;the OS-Register
;release memory not needed

;store application program here ----------------------

mov ax,4COOh
int 2lh

endp

;terminate with call of DOS function
;on return of error code 0
;terminate

;End of PROG Procedure

SETFREE release memory storage not occupied ---------------
ES ~ Address of PSP Inputt

Output
Register
Info

none
AX, BX, CL and FLAGS are changed
Since the stack-segment is always the last segment in an
EXE file, ES:OOOO points to the beginning and SS:SP
to the end of the program in storage. Because of this the
length of the program can be calculated.

Abacus

setf ree proc near

mov bx,ss
mov ax, es
sub bx, ax

mov ax,sp
mov cl,4
shr ax, cl
add bx, ax
inc bx
mov ah,4ah ,_. 2:t1 .1.Ul.

ret

setf ree endp

code ends
end prog

6.4 COM and EXE Programs

;subtract the two segment addresses
;from each other. The result is the
;number of paragraphs from PSP to
;the beginning of the stack
;since the stackpointer is a the end
;of the stack segment, its content
;gives the length of the stacks
;add to the present length
;one more paragraph as a precaution
;pass new size to DOS

;back to calling program

;End of the CODE-segment
;End of the Assembler program.
;Start execution with the FROG procedure

To develop an EXE program, it must be assembled like a normal program with an
assembler. Then it is linked with the LINK program. If the program contains no
errors, the LINK program creates an EXE file.

Here are the individual steps for preparing an EXE program from the assembly
language source named TESTEXE.ASM.

rnasm testexe;
link testexe;

If all these steps were executed correctly, the program TESTEXE.EXE can be
started from the DOS level by typing TESTEXE.

69

6. The Disk Operating System PC System Programming

6.5 Character Input and Output from DOS

When first learning a programming language, many beginners learn the basic input
and output instructions of the language. In much the same way, programmers get
their experience writing DOS accessible programming by using the functions for
character input and output. For this reason, this book starts with these input and
output functions instead of more complex functions. These input and output
functions can address the keyboard, screen, printer and serial interface.

The functions can be divided into two types: those carried over from the CP/M
operating system and those borrowed from the UNIX operating system. While the
two types of functions can be intermixed, we recommend that you use one type of
function throughout a program for the sake of consistency.

The UNIX type functions use a handle as an identifier to a device. Because of
recent DOS trends to move closer to UNIX, you may want to give the handle
functions precedence.

6. 5. 1 Handle Functions

70

The handle functions perform file access as well as character input to or output
from a device. DOS recognizes the difference by examining the name assigned by
the handle. If the handle is a device name, it addresses the device; otherwise it
assumes that file access should occur. The device names are as follows:

CON Keyboard and display
AUX Serial Interface
PRN Printer
NUL Imaginary device (nothing happens on access)

Output and input go to and from the AUX, PRN and NUL devices. For the device
CON, output is sent to the screen and input is read from the keyboard.

When DOS passes control to a program, five handles are available for access to
individual devices. These handles have values from 0 to 4 and represent the
following devices:

0 Standard i~t (CON)
1 Standard output (CON)
2 Standard output for error messages (CON)
3 Standard serial interface (AUX)

4 Standard _Er inter (PRN)

Here is a short example to help demonstrate the use of this table:

Abacus 65 Character Input and Output from DOS

Display error message

If a program wants to accept input from the user, the handle function 0 indicates
this during the call since the standard input device is addressed. Handle 0 normally
represents the keyboard, permitting user input from the user to the program. Since
the user can redirect standard input, you can redirect input to originate from a file
instead of the keyboard. This redirection remains hidden from the program.

Before discussing these devices, here are some functions used to access any device.

Function 40H of interrupt 21H sends data to a device. The function number (40H)
is passed in the AH register and the handle is passed in the BX register. For
example, to display an error message, the value 2 indicates the handle for
displaying the error message (this device cannot be redirected, so handle 2 always
addresses the console). The number of characters to be in the error message is
passed in the ex register. The characters making up the message are stored
sequentially in memory whose segment address is stored in the DS register and
offset address in the DX register.

Following the call to the function, the carry flag signals any error. If there was no
error, the carry flag is reset and the AX register contains the number of characters
that were displayed. If the AX register contains the value 0, then there was no
more space available on the storage medium for the message. If the carry flag is
set, the error message was not sent and an error code is indicated in the AX
register. An error code of 5 indicates that the device was not available. An error
code of 6 indicates that the handle was not opened.

Function 3FH of interrupt 21H reads character data from a device and has many
similarities to the previous function. Both functions have identical register usage.
The function number is passed in the AX register and the handle in the BX
register. The number of characters read is passed in the ex register and the
memory address of the characters transferred are passed in the DS:DX register pair.

Following the call to the function, the carry flag also signals any error. Again, any
error code is passed in the AX register. Error codes 5 and 6 have the same meaning
as when using function 40H. If the carry flag is reset, then the function executed
successfully. The AX register then contains the number of characters read into the
buffer. A value of 0 in the AX register means that the data to be read should have
come from a file, but that this file contains no more data.

As we already mentioned, it's possible to redirect the input or output when
accessing DOS. For example, a program that normally expects input from the
keyboard can be made to accept the input from a file. So, to avoid having input or
output redirected, you can open a new handle to a specific device which insures that
the transfer of data to or from the desired device takes place instead of to or from a
redirected device.

Use function 3DH of interrupt 21H to open such a device.

71

6. The Disk Operating System PC System Programming

The function number 3DH is passed in the AH register. The AL register contains 0
to enable reading from the device, 1 to enable writing to the device and 2 for both
reading and writing to the device. The name of the device is placed in memory
whose address is passed in the DS:DX register pair. So that the DOS can properly
identify the device name, the names must be specified in uppercase characters. The
last character of the string must be an end character (ASCII value 0).

Following the function calls the status is indicated by the carry flag. A reset flag
means that the device was opened successfully and the handle number is passed
back in the AX register. A set flag indicates an error and the AX register contains
any error code.

The handle is closed using function 3EH of interrupt 21H. The function number is
passed in the AH register and the handle number is passed in the BX register. The
carry flag again indicates the status of the function call. A set carry flag indicates
an error.

You can also close the predefined handles 0 through 4 using this function. But if
you close handle 0 (the standard input device) you'll no longer be able to accept
input from the keyboard.

Let's examine the special characteristics of each device.

Keyboard

72

The keyboard can perform only read operations. The results of the read operations
depend on the mode in which the device was addressed. Here DOS differentiates
between raw and cooked. In the cooked mode DOS checks every character sent to a
device or received from a device to see if it is a special control character. If DOS
finds a special control character, it performs a certain action in response to the
character. In raw mode the individual characters are passed through unchecked and
unmanipulated. DOS normally operates the device in cooked mode for character
input and output. However, you can switch to raw mode within a program (see
below).

The difference between cooked and raw mode can be best explained by an example
of reading the keyboard. Assume that 30 characters are read from the keyboard in
cooked mode. As you enter the characters DOS allows you to edit the input using
several of the control keys. For example <Ctrl><C> and <Ctrl><Break> abort the
input. <Ctrl><S> temporarily halts the program until another key is pressed.
<Ctrl><P> directs subsequent data from the screen to the printer (until <Ctrl><P>
is pressed again). <Backspace> removes the last character from the DOS buffer. If
the <Enter> key is pressed, the first 30 characters (or all characters input up to
now if there are less than 30) are copied from the DOS buffer into the input buffer
of the program without the control characters.

In raw mode all characters entered (including control characters) are passed to the
calling program without requiring the user to press the <Enter> key. After exactly

Abacus

Screen

Printer

65 Character Input an.d Output from DOS

30 characters, control passes to the calling program, even if you pressed the
<Enter> key as the second character of the input.

To display characters on the screen, handle 1 is usually addressed as the standard
output device. Since this device can be redirected, output through this handle can
pass to devices other than the screen. On the other hand, you cannot redirect the
standard error outpul device (handle 2), so error messages that pass through this
handle always appears on the screen. This handle is recommended for character
display on the screen QilU:.

The screen is normally addressed in cooked mode-every character displayed on the
screen is tested for the <Ctrl><C> or the <Ctrl><Break> control characters. This
test slows down the screen output, so sometimes changing to raw mode decreases
program execution time.

Unlike the keyboard and screen, printer output cannot be redirected-at least not
from the user level. An exception to this rule is redirecting output from a parallel
printer to a serial printer. Characters ready to print can be sent to a buffer before
they are sent to the printer. Handle 4 is used to address the standard printer. There
are three standard printer devices LPTl, LPT2 and LPT3. Device PRN is
synonymous with LPTl. When this handle is opened the device name is specified
as one of the three: LPTl, LPT2 or LPT3.

Serial interface

Much of the information that applies to the printer also applies to the serial
interface. For example, serial input and output cannot be redirected to another
device (e.g., from a serial printer to a parallel printer). The programmer can use the
predefined handle 3 for serial access, through which you can address the standard
serial interface (AUX).

Handle 3 is used to address the standard serial device. The two are names COMl
and COM2. A PC can have multiple serial interfaces. Only the first two (COMl
and COM2) are supported by DOS. Since the system doesn't know exactly which
interface to access during AUX device access, you should open a new handle for
access to the specific device.

Errors during read operations in DOS mode are returned to the serial interface in
cooked mode. The number returned to the AX register will not match the number
of characters actually read. We recommend that you operate the serial interface in
the raw mode, even if this mode ignores control characters such as <Ctrl><C> and
EOF (end-of-file).

73

6. The Disk Operating System PC System Programming

6. 5. 2 Traditional DOS Functions

The DOS functions for input and output aren't based on the handle oriented
functions. If you use these functions you won't need to specify a handle, since
each function pertains to a specific device.

Below are the various input and output devices and the way in which these
functions work with them.

Keyboard

74

There are seven DOS functions for addressing the keyboard but they differ in many
ways. For example, they respond differently to the <Ctrl> <Break> key. Some
functions echo the characters on the screen; others don't.

You can use DOS functions OlH, 06H, 07H and 08H to read a single keyboard
character. The function number is passed in the AH register. Following the call,
the character is returned in the AL register.

For DOS function OlH, DOS waits for a keypress if the keyboard buffer is empty.
When this happens, the character is echoed on the screen. If the keyboard buffer is
not empty, a new character is fetched and returned to the calling program. DOS
function 06H can be used for both character input and output. To input a character
a value of FFH is loaded into the DL register. This function doesn't wait for a
character to be input but returns immediately to the calling program. If the zero
flag is set, a character was not read. If the zero flag is reset, a character was read and
returned in the AL register. The character is not echoed on the screen.

DOS functions 07H and 08H are used to read the keyboard similar to function 1.
Both either fetch a character from the keyboard buffer or wait for a character to be
entered at the keyboard. Neither echo the character to the screen. They differ in that
function 08H responds to <Ctrl><C> and function 07H does not.

By using function OBH, a program can determine whether one or more characters
are in the keyboard buffer before calling any functions that read characters. After
calling this function, the AL register contains 0 if the keyboard buffer is empty,
and FFH if the keyboard buffer is not empty.

DOS function OCH is used to clear the keyboard buffer. After it is cleared, the
function whose number was passed to function OCH in the AL registered is
automatically called.

DOS function OAH is used to read a string of characters. Again this function
number is passed in the AH register. In addition, the memory address of a buffer
for the character string is passed in the DS:DX register pair. This buffer is used to
hold the character string. The first byte of the buffer indicates the maximum
number of characters that may be contained in the buffer.

Abacus 65 Character Input and Output from DOS

When this function is called, DOS reads up to the maximum number of characters
and stores them in the buffer starting at the third byte. It reads until either the
maximum number of characters is entered or the <Enter> key is pressed. The
actual number of characters is stored in the second byte of the buffer. Extended key
codes which occupy two bytes each in the buffer may be entered. The first byte of
the pair (ASCII value 0) signifies that an extended key code follows. This means,
for example, that for a maximum buffer size of 10 bytes, only five extended
characters may be entered.

The following table illustrates how the various functions respond to <Ctrl><C>
or <Ctrl><Break>, and provides a quick overview of the individual functions for
character input.

Fct. Task <Ctrl><C> Echo
OlH Character i~ut .:t._eS yes
06H direct character i~ut ro ro
07H Character i~ut ro ro
OBH Character i~ut _yes ro
OAH Character strif!SL i~t .:t._eS ro
OBH Read i~ut-status ~es ro
OCH Reset i~ut-buffer then i~ut varies varies

Screen output

There are three DOS functions for character output.

DOS function 02H outputs a single character to the screen or standard output
device. The character is passed to the DL register.

DOS function 06H which is multi-purpose is also used to output a single
character. The character is passed in the DL register. You can see that the character
whose value is 255 cannot be output since this indicates that the function is to
perform an input operation. Output using this function is faster than using
function 02H since it doesn't test for the <Ctrl><C> or <Ctrl><Break> keys.

DOS function 09H is used for string output. Again, the function number is passed
in the AH register. The address of the string is passed in the DS:DX register pair.
The last character of the string is a dollar sign. In addition, the following control
codes are recognized.

Code ~ration

7 "Bell", ri~s the bell on the PC
8 "Backspace", erases the preceding character and moves the cursor

back ~ one character
10 "Line Feed", (LF) moves the cursor one line down
13 "Carriage Return", (CR) moves the cursor to the beginning of the

current line

As with function 02H, this function also checks for <Ctrl><C> or
<Ctrl><Break>.

75

6. The Disk Operating System PC System Programming

Printer

DOS function 05H is used to output a single character to the printer. If the printer
is busy, this function waits until it is ready before returning control to the calling
program. During this time, it will respond to the <Ctrl><C> and <Ctrl><Break>
keys.

The function number is passed in the AH register. The character to output is
passed in the DL register. The status of the printer is not returned. Most
programmers will elect to use the BIOS function instead of the DOS function for
printer output since you can specify the exact printer device and determine the
printer status using the BIOS version. See Section 7.12 for more detailed
information.

Serial interface

There are two DOS functions for communicating using serial interface-one for
input and one for output. Both functions respond to <Ctrl><C> and
<Ctrl><Break>, but they don't return the status of the serial interface, nor do they
recognize transmission errors.

DOS function 03H is used to input data from the serial interface. The character is
returned in the AL register. Since the data is not buffered, the data can overrun the
interface if the interface receives data faster than this function can handle it.

DOS function 04H is used to output data over the serial interface. The character to
output is passed in the DL register. If the serial interface is not ready to accept the
data, this function waits until it is free.

Again, most programmers prefer to use the BIOS equivalent functions (see Section
7 .9) to perform serial data transmission because of their more complete data
handling capabilities.

Demonstration programs

76

Earlier we mentioned that it was possible to switch a device from cooked mode to
raw mode and back. The BASIC, Pascal and C programs that follow show you
how to do this. They use the IOCTL functions which permit access to the DOS
device drivers (see Section 6.11.7 for details on this routine). These are routines
which serve as interfaces between the DOS input/output functions and the
hardware. The IOCTL functions in these programs tell the CON device driver
(responsible for the keyboard and the display) whether it should operate in the
cooked mode or in the raw mode.

To demonstrate how differently characters respond in the two modes, the programs
switch the CON driver into raw mode first. Then this driver displays a sample
string several times. Unlike cooked mode, pressing <Ctrl><C> or <Ctrl><S> in
raw mode has no effect on stopping program execution or text display.

Abacus 65 Character Input and Output from DOS

After the program finishes displaying the sample string, the driver switches to the
cooked mode. The sample string is displayed again several times. When you press
<Ctrl><C> the program stops (Turbo Pascal version). For the BASIC and C
versions, you can press <Ctrl><C> to stop the program, or press <Ctrl><S> to
pause or continue the display.

Switching between the raw and the cooked mode does not take place directly
through a function. First the device attribute of the driver is determined. This
attribute contains certain information which identifies the driver and describes ii.$
method of operation. One bit in this word indicates if the driver operates in raw or
cooked mode. The programs set or reset this bit, depending on the mode you want
running the driver.

BASIC listing: RA WCOOK.BAS

100 '***'
110 '* RAWCOOK *'
120 '*---*'
130 Task make two subroutines available *'
140 to switch the character driver into RAW- or *'
150 COOKED mode
160 Author MICHAEL TISCHER
170 '* developed 07/23/87 *'
180 last Update 04/08/89
190 '***'
200 '
210 CLS : KEY OFF
220 PRINT"WARNING: This program can only be started if the GWBASIC was"
230 PRINT"started from DOS with the command <GWBASIC /m:60000>."
240 PRINT : PRINT" If this is not the case, please input <s> for Stop."
250 PRINT"otherwise press any key •.. ";
260 A$ ~ INKEY$: IF A$ ~ "s" THEN END
270 IF A$ ~ "" THEN 260
280 GOSUB 60000 'Install function for interrupt call
290 CLS 'erase display
300 HANDLE% ~ 0 'handle is connected with console driver
310 PRINT"RAWCOOK (c) 1987 by Michael Tischer" : PRINT
320 PRINT"The Console driver (Keyboard and Display) is now in RAW-"
330 PRINT"Mode so that during input and output no control characters "
335 PRINT" are recognized~"
340 PRINT"Because of this not even <CTRL> + <S> can stop the "
345 PRINT"following output."
350 PRINT"Try it ••. " : PRINT
360 PRINT "Press any key to start output
365 GOSUB 25000 'Clear keyboard buffer
370 A$ ~ INKEY$
380 GOSUB 52000
390 GOSUB 50000

: IF A$ ~ "" THEN 370 'wait for a key
'Switch console driver into RAW mode

•output Test-String
400 CLS
410 PRINT"The Console driver (Keyboard and Display) is now in "
420 PRINT"COOKED mode. Control characters will be recognized during "
425 PRINT" input/output."
430 PRINT"The following output can be stopped with <CTRL> + <S>."
440 PRINT"Try it ••. " : PRINT

77

6. The Disk Operating System PC System Programming

78

450 PRINT "Press any key to start
455 GOSUB 25000

the output ..• "
'Clear the keyboard buffer

460 A$ = INKEY$
470 GOSUB 51000
480 GOSUB 50000
490 CLS

: IF A$ = "" THEN 460 'wait for a key
'change console driver to the COOKED mode

'output Test-String

500 END
510 '
25000 A$ = INKEY$: IF A$ = "" THEN RETURN
25010 goto 25000

'Clear the keyboard buffer

50000
50010
50020
50030
50040
50050

'***'
'* outputs a Test-String on the Standard output device *'
'*---··
'* Input : none
1 * Output: none

. ' ..
'***'

50060 '
50070 T$ ="Test .••• "
50080 FOR I = 1 TO 250

'Output Test-String
'250 times

50090 FCT% = &H40 : FCT1% 0 'Write function number for handle
50100 INR% = &H21 'Call DOS-Interrupt 21H
50110 ADRLO% = 9 : ADRHI% 0 •output 9 characters at a time
50120 OFSLO% = PEEK(VARPTR(T$)+1) 'LO-byte of offset address of string
50130 OFSHI% = PEEK(VARPTR(T$)+2) 'HI-byte of offset address string
50140 HANDLO% = 1: HANDHI% = 0 'address the standard output device
50150 CALL IA(INR%,FCT%,FCT1%,HANDHI%,HANDLO%,ADRHI%,ADRLO%,OFSHI%,

OFSLO%,Z%,Z%,Z%,Z%)
50160 NEXT 'next run
50170 PRINT
50180 RETURN 'back to caller
50190 •
51000 '***'
51010 '* change device driver to COOKED mode
51020
51030
51040
51050

'*---*'
'* Input : HANDLE%= handle connected with the driver
•• Output: none ..
'***'

51060 '
51070 GOSUB 53000
51080 ATTRIB% = ATTRIB% AND 223
51090 GOSUB 54000
51100 RETURN
51110 '

'Get device attribute of driver
'Find COOKED-Bit

'Set device attribute of driver
'back to caller

52000 '***'
52010 '* change device driver to RAW mode *'
52020 ··---··
52030 '* Input : HANDLE% =handle connected to the driver
52040 '*Output: none

.. ..
52050 '***'
52060 '
52070 GOSUB 53000
52080 ATTRIB% = ATTRIB% OR 32
52090 GOSUB 54000
52100 RETURN
52110 '

'Get device attribute of driver
'Set RAW-Bit

'Set device attribute of driver
'back to caller

53000 '***'
53010 '* Get device attribute of a driver

53020 '*---*'
53030 '* Input : HANDLE% =handle connected with a driver
53040 '* Output: ATTRIB% = Attribute of driver
53050 '* Info Z% used as Dummy-Variable . '

Abacus 65 Character Input and Output from DOS

53060 '* only Bits 0 to 7 of the device attribute
determined 53070 '*

53080 '***'
53090 '
53100 FCT%-&H44 'Function number for IOCTL
53110 FCT1%-0 'Read Function number for IOCTL: Read device attribute
53120 INR%-&H21 'Call DOS-Interrupt 21H
53130 HANDHI% - INT(HANDLE%/256) 'HI-byte of the handle
53140 HANDLO% - HANDLE% AND 255 'LO-byte of the handle
53150 CALL IA(INR%,FCT%,FCT1%,HANDHI%,HANDLO%,Z%,Z%,Z%,ATTRIB%,Z%,Z%,Z%,Z%)
53160 RETURN 'back to caller
53170
~AnAA '***'
54010 '* Set device attribute of a driver
54020
54030
54040
54050
54060

'*---*'
Input : HANDLE% handle connected to a driver

ATTRIB% - the attribute of the driver
1 * Output: none

Info Z% used as Dummy-Variable
54070 '***'
54080 •
54090 FCT%-&H44 'Function number for IOCTL
54100 FCT1%-1 'Set function number for IOCTL: device attribute
54110 INR%-&H21 'Call DOS-Interrupt 21(h)
54120 HANDHI% INT(HANDLE%/256) 'HI-byte of the handle
54130 HANDLO% HANDLE% AND 255 'LO-byte of the handle
54140 ATHI% - INT(ATTRIB%/256) 'HI-byte of the Attribute
54150 ATLO% - ATTRIB% AND 255 'LO-byte of the Attribute
54160 CALL IA(INR%,FCT%,FCT1%,HANDHI%,HANDLO%,Z%,Z%,ATHI%,ATLO%,Z%,Z%,Z%,Z%)
54170 RETURN 'back to caller
54180
60000 '***'
60010 '* Initialize the Routine for Interrupt Call *'
60020 '*---*'
60030 '* Input : none
60040 '* Output: IA is the Start address of the Interrupt-Routine *'
60050 '***'
60060
60070 IA-60000!
60080 DEF SEG

'Start address of the routine in the BASIC-Segment
'Set BASIC-Segment

60090 RESTORE 60130
60100 FOR I% - 0 TO 160
60110 RETURN

READ X% POKE IA+I%,X% NEXT 'Poke Routine
'back to caller

60120 •
60130 DATA
60140 DATA
60150 DATA
60160 DATA
60170 DATA
60180 DATA
60190 DATA
60200 DATA
60210 DATA
60220 DATA
60230 DATA

85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
12, 139, 60, 139, 118, 8, 139, 4, 61, 255, 255, 117' 2, 140, 216

142, 192, 139, 118, 28, 138, 36, 139, 118, 26, 138, 4, 139, 118, 24
138, 60, 139, 118, 22, 138, 28, 139, 118, 20, 138, 44, 139, 118, 18
138, 12, 139, 118, 16, 138, 52, 139, 118, 14, 138, 20, 139, 118, 10
139, 52, 85, 205, 33, 93, 86, 156, 139, 118, 12, 137' 60, 139, 118
28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
22, 136, 28, 139, 118, 20, 136, 44, 139, 118, 18, 136, 12, 139, 118
16, 136, 52, 139, 110, 14, 136, 20, 139, 110, 0, 140, 1n, 137, 4
88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93

202, 26, o, 91, 46, 136, 71, 66, 233, 108, 255

79

6. The Disk Operating System PC System Programming

Pascal listing: RAWCOOK.PAS

80

{***}
{* RAWCOOK *)
{*---•)
{* Task provide two functions to switch *)
{* a character device driver to the RAW- *}
{* or the COOKED mode *)
{*---*}
{* Author MICHAEL TISCHER *)
{* developed : 08/16/87 *)
{ * last Update : 05/11/89 *)
{***}

program RAWCOOKP;

Uses Crt, Dos;

const STANDARDIN = O;
STANDARDOUT = 1;

var Keys : char;

{ CRT and DOS units

{ handle 0 is connected with Standard input
{ handle 1 is connected with Standard output

{ only needed for Demo program

{***}
{* GETMODE: read attribute of device driver in *)
{* Input : the handle passed must be connected to device addressed *)
{* Output : the device attribute *}
{***}

function GetMode(Handle integer) : integer;

var Regs : Registers; { register-Variable for Interrupt call)

begin
Regs.ah := $44;
Regs.bx := Handle;
MsDos { Regs) ;
GetMode Regs.dx

end;

{ Function number for IOCTL: Get Mode

Call DOS-Interrupt 21H
{ Pass device attribute

{***}
{* SETRAW Change a character driver into RAW-Mode *)
{* Input the handle passed must be connected with *)
{* addressed device *)
{ * Output none *}
{***}

procedure SetRaw(Handle integer);

var Regs : Registers; { register-Variable for Interrupt call)

begin
Regs.ax $4401;
Regs.bx Handle;
Regs.dx GetMode(Handle)
MsDos (Regs) ;

end;

(Function number for IOCTL: Set Mode

and 255 or 32; { new device attribute
Call DOS-Interrupt 21H

{***}
{* SETCOOKED
{* Input
{ *
{* Output

Change a character driver into the COOKED-Mode
the handle passed must be connected with the
device addressed
none

*}
*)
*)
*)

{***}

procedure SetCooked(Handle integer);

var Regs : Registers; { register-Variable for Interrupt call J

Abacus 65 Character Input and Output from DOS

begin
Regs.ax $4401;
Regs.bx := Handle;
Regs.dx := GetMode(Handle)
MsDos (Regs) ;

end;

{ Function number for IOCTL: Set Mode

and 223; new device attribute
Call DOS-Interrupt 21H

{***}
{* TESTOUTPUT output a Test-String 1000 times on the Standard *}
{* output device *)
{* Input none *}
{*Output none *}

procedure TestOutput;

var Regs : Registers;
LoopCnt integer;
Test : string[9];

begin
Test := 'Test •;
Regs.bx := STANDARDOUT;
Regs.ex 9;
Regs.ds := Seg(Test);
Regs.dx Ofs(Test)+l;
for LoopCnt := 1 to 1000 do
begin

Regs.ah := $40;
MsDos(Regs);

end;
writeln;

end;

register-Variable for Interrupt call
{ Loop variable

{ The Test-String for output

{ output on the Standard output device
{ Number of characters

{ Segment address of the text
{ Offset address of the text

{ Write function number for handle
{ Call DOS-Interrupt 21H

{***}
{ * MAIN PROGRAM *)
{***}

begin
ClrScr; { Clear screen)
writeln('RAWCOOK (c) 1987 by Michael Tischer'f13f10);
writeln('The Console driver is now in RAW-Mode. Control keys such as <Ctrl><C>');
writeln('are not recognized during output. Press a key to display a text on

't13t10);
writeln('the screen, and try stopping
Keys : = ReadKey;
SetRaw(STANDARDIN);
TestOutput;
ClrScr;
while KeyPressed do

the display by pressing <Ctrl><C>');
{ wait for key }

{ Console driver in RAW mode I
Output Test-String 1000 times }

{ Clear Screen }

Keys := ReadKey; { Empty keyboard buffer
writeln('The Console driver is now in COOKED mode. Control keys such as');
writeln('<CTRL><C> are recognized during output');
writeln('Press a key to start, then press <Ctrl><C> to stop the display');

Keys := ReadKey; { Wait for key
SetCooked(STANDARDIN);
TestOutput;

end.
{ Output Test-String 1000 times

81

6. The Disk Operating System PC System Programming

C listing: RA WCOOK.C

82

/***/
I* R A W C 0 0 K */
/*---*/
I* Task provides two functions for */
/* switching a character device driver into the RAW */
/* or into the COOKED mode */
/*---*/
I* Author MICHAEL TISCHER */
I* developed on : 08/16/87 */
/* last Update : 04/08/89 */
/*---*/
/* (MICROSOFT C) */
/*
/*
/*

Creation

Call

MSC RAWCOOKC;
LINK RAWCOOKC;
RAWCOOKC

*I
*/
*I

!*---•/
I* (BORLAND TURBO C) */
/* Creation : through command RUN in the menu */
/***/

#include <dos.h>
#include <stdio.h>
#include <conio.h>

I* include Header files */

tdef ine STANDARDIN 0
#define STANDARDOUT 1

I* handle 0 is the Standard input device */
/* handle 1 is the Standard output device */

/***/
/* GETMODE: read the attribute of an device driver */
/* Input : the handle must be connected with the addressed device */
I* Output : the device attribute */
/***/

int GetMode(Handle)
int Handle; /* points to the character driver */

union REGS Register; /* register-Variable for Interrupt call */

Register.x.ax - Ox4400;
Register.x.bx - Handle;
intdos(&Register, &Register);
return(Register.x.dx);

I* Function number for IOCTL: Get Mode */

}

/* Call DOS-Interrupt 21H */
I* Pass device attribute */

/***/
/* SETRAW Change a character driver into RAW mode */
/* Input the handle passed must be connected with the addressed */
/*
I* Output

device
none

*I
*/

/***/

int SetRaw(Handle)
int Handle; /* points to the character driver */

union REGS Register; /* register-Variable for Interrupt call */

)

/* Function number for IOCTL: Set Mode */ Register.x.ax Ox4401;
Register.x.bx Handle;
Register.x.dx GetMode(Handle)
intdos(&Register, &Register);

& 255 I 32; I* new device attribute */
/* Call DOS-Interrupt 21H */

Abacus 6.5 Character Input and Output from DOS

/***/
/* SETCOOKED: Changes a character driver into the COOKED mode */
/* Input the handle passed must be connected with the device */
/* addressed *I
/* Output none */
/***/

int SetCooked(Handle)
int Handle; /* points to the character driver */

}

union REGS Register; /* register-Variable for Interrupt call */

/* Function number for IOCTL: Set Mode */ Register.x.ax Ox4401;
Register.x.bx Handle;
Register.x.dx GetMode(Handle)
intdos(&Register, &Register);

& 223; /* new device attribute */
/* Call DOS-Interrupt 21H */

/***/
/* TESTOUTPUT: outputs a Test-String 1000 times on the Standard */
/* output device */
/* Input
/* Output

none
none

*I
*I

/***/

void TestOutput ()

}

int i;
static char Test[) "Test 11 ;

/* Loop Variable */
/* the text for output */

printf{"\n");
for (i ~ O; i < 1000; i++)
fputs(Test, stdout);

printf ("\n");

I* output 1000 times */
/* Output String on the Standard output. */

/***/
/** MAIN PROGRAM **/
/***!

void main()

printf("\nRAWCOOK (c) 1987 by Michael Tischer\n\n");

printf("The Console Driver (Keyboard, Display) is now in");
printf("RAW Mode.\nDuring the following output control characters,\n 11);

printf("such as <CTRL-S> will not be recognized.\n");
printf("Try it.\n\n");
printf ("Please press a key to start ... u);
get ch();
SetRaw(STANDARDIN);
TestOutput () ;

/* wait for key */
/* Console driver into RAW mode */

while (kbhit()) /* in the meantime remove key codes from
getch(); /* keyboard buffer

printf("\nThe console driver is now in COOKED mode. ");
printf("Control keys such as\n<CTRL-S> are recognized during");
printf("output and answered accordingly!\n");
printf("Please press a key to start ••• ");

*I
•/

get ch();
SetCooked(STANDARDIN);
TestOutput ();

/* wait for key */
/* Console driver in the COOKED mode *I

83

6. The Disk Operating System PC System Programming

, 6.6 File Management in DOS

The DOS file management functions are among the most basic available to the
programmer. These functions are used to:

Create and delete files

Open and close files

Read from and write to files

Operating systems such as DOS provide the programmer with functions for file
management. For example, DOS provides functions which return special file
information or functions to rename a file. One peculiarity of DOS is that these
functions exist in two forms because of the combined CP/M & UNIX
compatibility. For every UNIX compatible file function, there is also a CP/M
compatible file function.

FCB functions

The CP/M compatible functions are designated as FCB functions since they are
based on a data structure called the FCB (File Control Block). DOS uses this data
structure for information storage during file manipulation. The user must reserve
space for the FCB within this program. The FCB permits access to the FCB
functions which open, close, read from and write to files.

Since the PCB functions were developed for compatibility with CP/M's functions,
and since CP/M has no hierarchical file system, FCB functions do not support
paths. As a result, FCB functions can only access files which are in the current
directory.

UNIX handle functions

The UNIX compatible handle functions don't have this problem. With these
functions, a handle is used to identify the file to be accessed. The DOS stores
information about each open file in an area that is separate from the program.

6. 6. 1 Handle Functions

84

It is easier for the programmer to access a file using the handle functions than to
access a file using the FCB functions. The handle functions do not require a
programmer to use a data structure for file access like the FCB functions do. In a
manner similar to the functions of the UNIX operating system, file access is
performed using a filename. The filename is passed as an ASCII string when the
file is opened or first created. This must be performed before the first write or read
operation to the file. In addition to the filename, it may contain a device
designator, a pathname and a file extension. The ASCII string ends with the end

Abacus

FILES

6.6 File Management in DOS

character (ASCII code 0). After the file is opened, a numeric value called the handle
is returned. Any further operations to this file are performed using this 16-bit
handle. For a subsequent read or write operation, the handle and not the filename is
passed to the appropriate function.

For each open file, DOS saves certain information pertaining to that file. If the
FCB functions are used, DOS saves the information in the FCB table within the
program's memory block. When the handle functions are used, the information is
stored in an area oul<iide of the program's memory block in a table that is
maintained by the DOS. The number of open files is therefore limited by the
amount of available table space. The amount of table space set aside by DOS is
specified by the FILES parameter of the CONFIG.SYS file:

FILES = X

In DOS Version 3.0, this maximum is 255. If you change the maximum number
of files in the CONFIG.SYS file, the change will not go into effect until the next
time that DOS is booted.

While the FILES parameter specifies the maximum number of open files for the
entire operating system, DOS limits the number of open files to 20 per program.
Since five handles are assigned to standard devices such as the keyboard, monitor
and line printer, only 15 handles are available for the program. For example, if a
program opens three files, DOS assigns three available handles and reduces the
number of additional handles available by three. If this program calls another
program, the three files opened by the original program remain open. If the new
program opens additional files, the remaining number of handles available is
reduced even further.

In addition to the standard read and write functions, there is also a file positioning
function. This lets you specify an exact location within the file for the next data
access. Knowing both a record number and the length of each data record allows
you to specify the position to access a particular data record:

position = record number * length of record

This function is not used during sequential file access since DOS sets the file
pointer during opening or creation of a file to the first byte within the file. Each
subsequent read or write operation moves the file pointer by the number of bytes
read towards the end of the file so that the next file access starts where the previous
one ended.

The following table summarizes the handle functions. For a more detailed
description of these functions, see Appendix C.

85

6. The Disk Operating System PC System Programming

Function No. Operation
3CH Create file
3DH '2E_en file
3EH Close file
42H Move file...E_ointer/determine file size
43H Read/Write file attribute
56H Rename file
57H Read/Write modifications & date/time of file

Here are a few general rules to follow when using these functions:

Functions which expect a filename or the address of a filename as an argument
(e.g., Create File and Open File) expect the segment address of the name in the DS
register and the offset address in the DX register. If the function successfully
returns a handle, it is returned in the AX register.

Functions which expect a handle as an argument expect it in the DX register. After
the call, the carry flag indicates if an error occurred during execution. If an error
occurs, the carry flags is set and the error code is returned in the AX register.

Function 59H of DOS interrupt 21H returns very detailed information concerning
errors which occur during disk operations. This function is available only in DOS
Versions 3.0 and higher.

6. 6. 2 FCB Functions

86

As discussed earlier, DOS uses an FCB data structure for managing a file. The
programmer can use this data structure to obtain information about a file or change
information about a file. For this reason we shall examine the structure of an FCB
before discussing the individual FCB functions.

The FCB is a 37-byte data structure which can be subdivided into different data
fields. The following figure illustrates these fields.

Abacus 6.6 File Management in DOS

RAM
+ OOH Device name (1 ~te) I\ 0000(00 + OlH Filename J_B 12Y.te s_l

+ 09H File mode J_3 12Y.tes_l

+ OCH Current block number J_l word..l
+ OEH Data record size (1 word)
+ lOH File size (2 words)

+ 14H Modification date (1 word)
+ 16H Modification time (1 word)
+ 1 RH 'R:esPrverl 18 bytes\
+ 20H Current data record number(l byte)
+ 21H Data record number for (2 words)

random access

Structure of an FCB

~otice that the name of the file is found beginning at offsets OlH through OBH of
the FCB. The byte at offset 0 is the device indicator, 0 is the current drive, 1 drive
A, 2 drive B, etc.

The filename which begins at offset 1 is an ASCII string. It may not contain a
pathname since it's limited to 8 characters. For this reason, the FCB functions can
access only files in the current directory. Filenames shorter than eight characters
are padded with spaces (ASCII code 32). The file extension, if any, occupies the
next three bytes of the FCB.

At offset OCH of the FCB is the current number of the block for sequential file
access. The two bytes at offset OEH are the record size. The four bytes at offset
IOH are the length of the file.

The date and time of the last modifications to the file are stored beginning at offset
l 4H of the FCB in encoded form.

87

6. The Disk Operating System PC System Programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

I I I I I I I I I I I I I I I 11
~-~~-r-~~~-.A-~~~--.~~~~.A--~~~.~~~-~

I I

I
\.

Hour Minute Seconds in

15 14 13 12 11 10 9 8 7

I I I I I I I I
.A

I I

6 5

I I

2-second
increments (e.g.,
13 means 26)

4 3 2 1 0 bit

I I I I I
.A

I
J

Year (relative to 1980) Month Day of month

Format of time and date stamps in the FCB

An eight-byte data area follows and is reserved for DOS (no user modifications
allowed). The use of this area varies from one version of DOS to another.

Following this reserved data area is the current record number which is used in
connection with the current block number to simulate CP/M operations.

Random files

The last data field of the FCB is used for a type of access in which the data within
the file may be retrieved or written in a non-sequential order. This field is four
bytes long. If a record is equal to or larger than 64 bytes, only the first three bytes
are used for indicating the current record number. All four bytes of this field are
used for records smaller than 64 bytes.

Extended FCB

88

Besides a standard FCB, DOS also supports the extended FCB. Unlike normal
FCBs, extended FCBs access files with special attributes, such as hidden files or
system files. Furthermore, they permit access to volume names and subdirectories
(this doesn't mean that you can access files in other directories besides the current
directory).

An extended FCB is similar to a standard FCB, but it's seven bytes larger. These
seven bytes are located at the beginning of the data structure. All subsequent fields
are therefore displaced by seven bytes.

Abacus 6.6 File Management in DOS

RAM
+ OOH FF (1 b_y_te) 0000:000
+ OlH Reserved (0) (5 b..Y!_es)

I\ l + 06H File attribute . .ll b_y_teJ..
+ 07H Device name (1 byte)
+ 08H Filename (8 b_y_tes)
+ lOH File extension (3 b_y_tes)
+ 13H Current block number (1 word)
+ 15H File record size (1 word)

I/
+ 17H File size (2 words)
+ lBH Modifications-date (1 word)
+ lDH Modifications-time (1 word)
+ lFH Reserved (8 bytes)
+ 27H Current data record number(l b_y_te)
+ 28H Data record number (2 words)

Structure of an extended FCB

The first byte of an extended FCB always contains the value 255 and identifies this
as an extended FCB. Since this address contains the device number in a normal
FCB and can therefore not contain the value 255, DOS can tell the difference
between a normal and an extended FCB. The next five bytes are reserved
exclusively for the use by DOS. They should not be changed. The seventh byte is
a file attribute byte. See Section 6.1.2 for the details of the file attribute byte.

Now that you're familiar with the FCB structures, the next section focuses on
using FCBs for accessing files.

FCB and file access

Before accessing a file, an FCB must be built.in the program's memory area. The
area can be reserved within the data segment of the program or by allocating
additional memory using another DOS function (see Section 6.9).

Although it is possible to write the data directly into the FCB, it is better to use
one of the appropriate DOS functions to do this.

For example, to set the filename in the FCB you can use DOS function 29H. The
function number is passed in the AH register. The address of the FCB is passed in
the ES:DI register pair. The address of the filename is passed in the DS:SI register
pair. The filename is an ASCII string terminated by the end character (ASCII code
0). The AL register contains flags for converting the filename and are discussed in
more detail in Appendix C.

Open FCB

After the FCB is properly formatted the file can be opened or created using a DOS
function. When this happens DOS stores information about that file in the FCB

89

6. The Disk Operating System PC System Programming

DTA

such as the file size, date and time of file creation, etc. At this point the FCB is
considered opened.

By default, the record length is set to 128 bytes when the FCB is opened. To
override this record length, store the desired record length at offset OEH of the FCB
after it is opened. Otherwise the default length will be used.

For record lengths greater than 128 bytes, the record buffer also known as the
DT A, or Disk Transfer Area must be moved to accommodate the longer record
size. Normally, DOS builds the DTA in the PSP (Program Segment Prefix).
Accessing the file using the default DT A for a record length greater than 128 bytes
would overwrite some of the other fields in the PSP.

The most convenient way to select a new DTA is to reserve the space in the
program's data segment. To change the address of the DTA use DOS function
lAH. The address of the new DTA is passed in the DS:DX register pair. DOS
assumes that you have set aside an area large enough to accommodate your largest
record length so you don't have to specify the new length.

File access

90

For sequential file access, processing begins at the first record in the file. DOS
maintains a record pointer in the FCB to keep track of the current record within the
file. Each time the file is accessed, DOS advances the pointer so that the second,
third, fourth, etc record is processed in order.

For random file access, the records can be processed in any order. The position of
each record relative t ~ beginning of the file determines its record number. This
record number is then ..,assed to DOS to access a specific record. The last field of
the FCB is used to specify the record number to DOS.

It's also possible to change from sequential access mode to random access mode
and vice versa since processing depends on a specific DOS function to access the
file. In effect, there are two sets of independent functions, one for sequential access
and one for random functions.

Following is a list of all of the FCB functions of DOS interrupt 21H. A more
detailed description of the functions is found in Appendix C.

Function No. Task
OFH Open file
lOH Close file
13H Delete file
14H Se_g_uent ial read
lSH S~uential write
16H Create file
17H Rename file

Abacus 6.6 File Management in DOS

Function No. Task
lAH Set DTA address

21H Random Read (of record)
22H Random Write (of record)
23H Determine file size
24H Set record number for random access
27H Random read (one or more records)

28H Random write (one or more records)

29H Enter filename into FCB

Some basic rules about these functions should be mentioned here:

Using the FCB functions, you can access several files, each with their own unique
FCB. To tell DOS which file is to be accessed, pass the address of the file's FCB
in the DS:DX register pair.

Most of the functions return an error code in the AL register or the value zero if
the function was successfully completed. For functions which open, close, create
or delete a file, a code of 255 is returned if an error occurs. The other functions
return specific error codes. More detailed information about these errors can be
determined by calling DOS function 59H but is available only in versions of DOS
V3.0 or later.

Handles vs. FCBs

After the two groups of functions made available by DOS have been presented, the
advantages and disadvantages of the individual functions should be discussed
briefly. For those who want to convert a program from the CP/M or UNIX
operating systems into DOS, the choice will be easy, but for those who want to
develop a new program under DOS, this discussion can help in your deciding on
which set of functions to use.

Handles

There are two main advantages to using handle functions. The first is the
capability to access a file in any subdirectory of the disk. The second is that the
handle functions are not limited to the number of FCBs which can be stored in a
program's memory space.

There are a number of additional considerations. You can access the name of a disk
drive only by using an FCB. When the FCB is opened, you can easily determine
its file size and the date of the last modification. The handle functions
automatically provide an area large enough to accommodate the records in the file.

As you can see there are arguments for and against using either the FCB functions
or the handle functions. For future versions of DOS, the handle functions will play
a more important role and the importance of the FCB functions will diminish.
This is reason enough to use the handle functions for your new program
development.

91

6. The Disk Operating System PC System Programming

6. 7 Accessing the DOS Directory

92

There are two groups of DOS functions for working with directories. The first
group is used to manipulate the sulxlirectories and the second to search for files on
the mass storage devices.

With DOS Version 2.0 came the introduction of subdirectories. A mass storage
device could be logically divided into smaller subdirectories which could in tum be
further subdivided. In effect this organization created a directory tree.

Main directory

AUTOEXEC.BAT OMMAND.COM

START.BAT INSTALL.BAT

WKSHT1 WKSHT2

= Directory, subdirectory

= File

Directory tree

In this directory tree, the names and numbers of subdirectories are not static.
Therefore there must be a way to add, change and delete entries on the tree. Other
functions must be available to set the current directory so that a complete
pathname is not required for all file accesses.

At the user level the MD, RD and CD commands can be used to make a directory,
remove a directory and change a current directory. Internally, these commands are
performed with functions 39H, 3AH and 3BH of DOS interrupt 21H.

All three functions use identical calling conventions.

The function number is passed in the AH register. The address of the path is passed
in the DS:DX register pair. The path is a string and may be a complete path
designation including a preceding drive letter followed by a colon (a device name)
and terminated by ASCII code 0. If the device name is omitted, the current device
is the default.

Abacus 6.7 Accessing the DOS Directory

Following execution, the carry flag indicates the return code. If the carry flag is
reset (0), then execution was successful. If the carry flag is set, then an error
occurred and the error code is passed back in the AX register.

Function 39H creates or makes a new directory (Make Directory). The name for the
new directory is specified as the last element in the path. An error will be returned
by the functions if one or more of the directories specified in the path do not exist,
if the new directory name already exists or if the maximum number of files in the
root directory is exceeded.

Function 3AH deletes or removes a directory (Remove Directory). An error will be
returned by the function if the target directory is not empty or the specified
directory does not exist in the current path.

Function 3BH changes the current directory (Change Directory). An error is
returned if the directories named in the path do not really exist.

Function OEH sets the default disk drive. Besides the function number in the AH
register, only the device code of the new current device must be passed in the DL
register. Code 0 stands for the device A, 1 for B, 2 for C, etc.

Directory specification

Before specifying the current directory using function 3BH, it is sometimes
necessary to find the current directory. DOS makes function 47H available to the
programmer for this purpose. Since it can return the path of the current directory
for any device, the device number must be passed to· the function. If this is the
current device, the value 0 must be passed in the DL register. For all other devices,
the value 1 must be passed for drive A, 2 for B, 3 for C, etc.

Besides the device code, the function must also have the address of a 64-byte buffer
within the user program. The DS register contains the segment and the SI register
holds the offset address of this buffer. After the function call this buffer contains
the path designation of the current directory, terminated with the end character
(ASCII code 0). The path designation cannot be preceded by the device name or the
\character. If the current directory is the root directory, the buffer contains only the
end character. If a device code unknown to DOS was passed during the function
call, the carry flag is set and the AX register contains the error code OFH.

Let's consider the functions for searching for one or more files in the current
directory on the current device. Again the parallel between handle and FCB
functions appears. Two function groups exist to search for files. The group of
FCB functions has the disadvantage that they limit the search to files in the current
directory of a certain device, while handle functions allow searching for files in any
directories of any devices. The term "handle" functions doesn't really fit these
functions since they are not addressed with a handle. This designation originated
with the introduction of subdirectories (and therefore the handle functions) in DOS
Version 2.0. Version 1.0 offered only the FCB functions.

93

6. The Disk Operating System PC System Programming

6. 7. 1 Searching for Flies using FCB Functions

94

This method of file search uses functions 1 IH and 12H. Using them you can
search for files with a fixed name or files with a filename extension. Function 1 IH
finds the first file in the current directory. Function 12H finds all other additional
files. The FCBs play a significant role since they mediate between the calling
program and the two functions. Let's see how we can search for files in a directory:

First the program must reserve space for two FCBs. This is done either by
reserving memory in the data area of the program, or by requesting memory from
DOS using function 48H. The programmer can use either normal or extended
FCBs. Extended FCBs offer the advantage of being able to search for files with
special attributes (system or hidden), volume names and subdirectories. The
filename for which the search will be made is specified in one of the FCBs. DOS
places the name of th~ file(s) that it finds in the other FCB. To differentiate
between the two FCBs, they are designated with the names Search FCB and Found
FCB.

The address of the Found FCB must be passed to DOS using function IAH. The
Found FCB becomes the new data transmission area (DTA) when this function call
occurs. This area is important for these two functions as well as all other functions
which transfer data between computer and disks. For this reason function 2FH
should determine the address of the current DTA before activating the new DTA.
When the file search ends, the DT A can be restored to its original state using
function IAH.

After the DTA is set to the Found FCB, the next step is to place the name of the
file you are looking for into the Search FCB. For a more general search, the
wildcards * and ? may be used. You can transfer the filename directly or transfer it
using function 29H. If you want to search through all files, use the filename *. *.
If an extended FCB is used, you may insert an additional value into the attribute
field of the Search FCB to limit the search to files with certain attributes only (see
Section 6.12 for more information on the various attributes).

This concludes the preliminary work. The file search can begin with the current
directory. For this purpose, function llH is called with the function number in the
AH register, the segment address of the Search FCB in DS and the offset address in
the DX register. If the system finds a file with the indicated name, the AL register
contains the value 0 after the function call. If the filename wasn't found, the AL
register contains a value of 255. The found filename and its attributes (if extended
FCBs are used) can be read from the Found FCB. For additional searches, function
12H (not function 1 lH) is called. Function 12H's register contents during call and
return are similar to function 1 lH. If it returns the value 255 in the AL register
during one of the calls, the search has ended.

Abacus 6.7 Accessing the DOS Directory

6. 7. 2 Searching for Flies using Handle Functions

Working with handle functions is easier than working with the FCB functions.
There are functions for searching for the first file (the 4EH function) and
subsequent files (the 4FH function). Both functions return the infonnation to the
DT A. For this reason the DT A should be moved into an area accessible to the
current program before calling either of these functions. This area must have at
least 43 bytes available. As mentioned in connection with the FCB functions, the
DT A should be restored to its original address after the search ends.

During the call of the 4EH function, the function number is passed in the AH
register, the attribute in the CX register and the address of the file to be found in
the DS:DX register pair. The filename is a series of ASCII characters, tenninated
with an end character (ASCII code 0). In addition to a device name, you may add a
complete path designation and the wildcard characters * and ? . If a path is not
specified, DOS assumes that the search should be made in the current directory of
the indicated device. If a device is not specified, the search proceeds on the current
device. After the function call, the carry flag indicates whether a file was found. If
the file couldn't be found, the carry flag is set, and the AX register contains an
error code. An error code of 2H is returned if the indicated path does not exist If no
file could be found, an error code of 12H is returned. If the carry flag is reset, the
DT A contains the infonnation about the file found. It has the following structure:

Address Contents ~
+OOH reserved for DOS 21 l:?Y_tes
+15H Attribute of file found 1 l:?Y_te
+16H Time of last modification 1 word
+18H Date of last modification 1 word
+lAH low word of file size - 1 word
+lEH h~ word of file size 12 l;:Ltes

Function 4FH executes any further searches. The function number is passed in the
AH register, and no other parameters are required. The carry flag indicates if there
are additional files in the current directory to which the search may be applicable.

95

6. The Disk Operating System PC System Programming

Demonstration programs

The three programs below read directory entries and display them on the screen
using one of the handle functions. You'll find the display more user friendly than
the DOS DIR command: the files appear in a window, and the filename display
stops as soon as the window is filled with filenames. This permits easy reading of
filenames. By pressing any key, the program displays any additional pages of
filenames.

All three programs are designed on the same basic principle: first the main
program determines the search path. It contains the names of the directories in
which the search should be made for the files, the names of the files and the device
where the directory is located. This name can contain wildcards (* and ?) to search
for several files at the same time. If the user does not indicate a search path, the
program defaults to the search path"*.*". This displays all files in the current
directory of the current device, as well as the hidden attribute files.

After the program determines the search path, a routine coordinates the loading and
display of individual directory entries. First a routine creates the display window on
the screen for individual entry output. Then a search proceeds for the first entry
using DOS function 4EH. If an entry is found, the screen displays the entry.
Function 4FH searches for all subsequent entries and displays them in the window.

The bottom line of the display window moves up one line with each new line
displayed. Once the entire window fills with data, any further display of entries
stops until the user presses a key. After all entries in the selected directory have
been displayed, the number of files is displayed and the program ends.

BASIC listing: DIRB.BAS

96

100 '***'
110 '* D I R B

120 '*---*'
Task

'* Author
'* developed
'* last Update

: display all files in a directory
in a window on the display

: MICHAEL TISCHER
: 07/23/87
: 04/08/89

*'
*'
*'
*'

130 '*
140 '*
160
170
180
190 '***'
200 '
210 CLS : KEY OFF
220 PRINT"WARNING: This program can be run only if GWBASIC was started"
225 PRINT" from the "
230 PRINT"DOS level with the <GWBASIC /m:60000> command." : PRINT
240 PRINT"If this is not the case, please enter <s> for Stop.•
250 PRINT : PRINT"otherwise press any key .•• •;
260 A$ = INKEY$; IF A$ = "s" THEN END
270 IF A$ = "" THEN 260
280 GOSUB 60000 'Install function for calling interrupt
290 CLS
300 PRINT "DIR (c) 1987 by Michael Tischer"
310 PRINT
320 PRINT"Please input the search path for the file."
330 PRINT"Exarnple: If all files with the extension .BAT in the Root•
340 PRINT" directory of the disk in drive A should be displayed,"
350 PRINT" then please input A:*.BAT."
360 PRINT"With a blank input, all files in the current directory •

Abacus 6.7 Accessing the DOS Directory

370 PRINT"are displayed." : PRINT
380 INPUT "Search Path: ",DIR$
390 IF DIR$ = '"' THEN DIR$ = "*. *"
400 ENTRY\ = 14
410 GOSUB 50000
420 END
430 '

'Input Search Path
'search in current directory
'14 Display entries in window
'Input Directory and output

50000 '***'
50010 '* Input one Directory and display *'
50020
50030
50040
50050
50060

··---*'
Input: DIR$ = the search path

ENTRY% = Number of entries in the window
Out out : none

'***'
50070 '
50080 DIM MONTH$[11) 'accepts names of months
50090 RESTORE 50600
50100 FOR I% = 0 TO 11 READ MONTH$[I%] NEXT
50110 INR% = &H21 'Call DOS-Interrupt 21H
50120 FCT% = &H2F 'Get function number for DTA
50130 CALL IA(INR%,FCT%,Z%,OFSHI%,OFSLO%,Z%,Z%,Z%,Z%,Z%,Z%,DTASEG%,Z%)
50140 DTAOFS% OFSLO% + OFSHI% * 256
50150 CLS
50160 OFFSET% INT((20 - ENTRY%) I 2) + 1 'Start line of window
50170 LOCATE OFFSET%,14
50180 PRINT TAB(14) •f r----r-1"
50190 PRINT TAB(14) "I Filename I Size Date Time I RHSVDI"

I" 50200 PRINT TAB(14)"i~~~~~-+--------------+·-~~~~-,>-~~~-+
50210 FOR I% = 1 TO ENTRY% 'output a line for every entry
50220 PRINT TAB (14) "I I I I I I"
50230 NEXT •output next line
50240 PRINT TAB(14) "l-----.1---.l .l----.i--Ju
50250 NUMWIND% = -1 'Number of entries in window
50260 NUMFND% = 0 'Number of entries found up to now
50270 ATTRIBUTE% = 255 'search for files with any Attribute
50280 GOSUB 51000 'search for first entry
50290 IF NOT(FOUNDIT%) THEN 50500 'no entry found--> finished
50300 NUMFND% = NUMFND% + 1 'Increase number of entries found
50310 NUMWIND% = NUMWIND% + 1 'Increase number of entries in window
50320 IF NUMWIND% <> ENTRY% THEN 50410 'window full?

LOCATE OFFSET%+ENTRY%+4,14 'Set Cursor to line under window
'switch on inverse character display

50330
50340
50350
50360
50370
50380
50390
50400
50410
50420
50430
50440

COLOR 0,7
PRINT" Please press any key ";
A$ = INKEY$
LOCATE ,14

IF As~ "" THEN 50360 'wait for a key

COLOR 7,0
PRINT STRING$(51," ");
NUMWIND% = -1 'the
NUMBER% = 1 : COLOUR% = 7
ULR% = OFFSET% + 2 : LRR%
ULC% = 14 : LRC% = 62
GOSUB 54000

50450 LOCATE OFFSET%+ENTRY%+2,15
50460 PRINT " I
50470 GOSUB 53000
50480 GOSUB 52000
50490 IF FOUNDIT% THEN 50300
50500 LOCATE OFFSET%+ENTRY%+4,14
50510 COLOR 0,7
50520 PRINT STRING$(51," ");
50530 LOCATE ,14
50540 IF NUMFND% = 0 THEN PRINT"

'Cursor in line under window
•switch on nonnal character color

next entry is the first in the window

OFFSET%+ENTRY% + 1

'scroll window up
'Set Cursor to last window line

I
'Output entry

'Get next entry
'continue if no entry is available

'Cursor in line under the window
'switch on inverse character display

'Cursor in line under window
no file found"; : GOTO 50570

50550 IF NUMFND% = 1 THEN PRINT" found one file"; : GOTO 50570
50560 PRINT NUMFND%; "files found";
50570 COLOR 7,0 •switch on normal character color
50580 RETURN
50590
50600 DATA "JAN", "FEB" I 11 MAR" I "APR" I "MAY", "JUN", "JUL", "AUG", "SEP"
50610 DATA "OCT", "NOV", "DEC"

97

6. The Disk Operating System PC System Programming

98

50620 '
51000 '***'
51010 '* Search for first entry in a Directory
51020 '*---*'
51030
51040
51050
51060
51070
51080

'*
'*

'*
'*
'*

Input:

Output:
Info

DIR$ = Search path *'
ATTRIBUTE% = Attribute of file
FOUND_IT% = -1 if entry found, otherwise 0
the Directory entry is entered into Variable DTA%

*'
Z% is a Dummy-Variable

51090 '***'
51100 •
51110 DIR$ DIR$+ CHR$(0) 'Put End character on search path
51120 FCT% &H4E 'Search function number for first entry
51130 INR% = &H21 'Call DOS-Interrupt 21H
51140 ATLO% = ATTRIBUTE% AND 255 'LO-Byte of Attribute
51150 ATHI% = INT(ATTRIBUTE% / 256) 'HI-Byte of Attribute
51160 OFSLO% = PEEK(VARPTR(DIR$)+1) 'LO-Byte of Offset address
51170 OFSHI% = PEEK(VARPTR(DIR$)+2) 'HI-Byte of Offset address
51180 CALL IA(INR%,FCT%,Z%,Z%,Z%,ATHI%,ATLO%,OFSHI%,OFSLO%,Z%,Z%,Z%,FLAGS%)
51190 FOUNDIT% = ((FLAGS% AND 1) = 0) 'Test Carry-Flag
51200 RETURN 'return to calling program
51210 '
52000 '***'
52010 '* find next entry in Directory
52020
52030
52040
52050
52060
52070

'*---*'
Input : DIR$ Search path *'

ATTRIBUTE% = Attribute of file *'
Output: FOUNDIT% = -1 if file found, otherwise 0 *'
Info the Directory entry is read into Variable OTA% *'

52080 Z% is a Dummy-Variable *'
52090 '***'
52100 •
52110 FCT% = &H4F 'Find function number for next entry
52120 INR% = &H21 'Call DOS-Interrupt 21H
52130 CALL IA(INR%,FCT%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,FLAGS%)
52140 FOUNDIT% = ((FLAGS% AND 1) = 0) 'test Carry-Flag
52150 RETURN 'back to calling program
52160 '
53000 '***'
53010 '*Output a Directory entry from the DTA to the display
53020 '*---*'
53030
53040
53050
53060
53070

Input: OFFSET% first line of the Directory window
ENTRY% Number of entries in the Directory window
DTAOFS% Off set address of the OTA *'

'* MONTH$ contains the names of months
Output: none *'

53080 '***'
53090 '
53100 DEF FNDTA(X) = PEEK(DTAOFS% + X)
53110 DEF SEG = DTASEG% 'Set Segment address of the DTA

•output in the last line of the window
'Offset address in OTA for file names

'the END character terminates the name
•output a character of the file name

53120 LOCATE OFFSET%+ENTRY%+2,15
53130 I% = 30
53140 WHILE FNDTA(I\) <> 0
53150 PRINT CHR$(FNDTA(I%));
53160 I% = I\ + 1
53170 WEND
53180 LOCATE OFFSET%+ENTRY%+2,28
53190 PRINT USING "fHUU"; FNDTA(26)

'next character
'End of Loop

'Set Cursor to column 28
+ FNDTA(27) * 256! + FNDTA(28) *

4096! + FNDTA(29) * 65536!;
53200 DATE ~ FNDTA(24) + FNDTA(25) * 256
53210 LOCATE OFFSET%+ENTRY%+2,36
53220 PRINT MONTH$[(INT(DATE I 32) AND 15)
53230 PRINT"/";:PRINT USING "U";DATE AND
53240 PRINT USING "/UH";INT(DATE I 512)
53250 LOCATE OFFSET%+ENTRY%+2,49
53260 FTIME = FNDTA(22) + FNDTA(23) * 256
53270 PRINT USING "U";INT(FTIME I 2048);
53280 PRINT ":";

'Get Date
'Set Cursor to Column 36

- 1]; 'Output name of month
31; 'Output day of month
+ 1980; 'Output year

•set Cursor to column 49
'Get time

•output hour

Abacus 6.7 Accessing the DOS Directory

53290 PRINT USING "ff";INT(FTIME I 32) AND 63; 'Output Minute
'Set cursor to column 59

'test Bits 0 to 4 of file attribute
0 THEN PRINT"X"; ELSE PRINT" ";

'test next Bit
'back to calling program

53300 LOCATE OFFSET%+ENTRY%+2,59
53310 FOR I% = 0 TO 4
53320 IF (FNDTA(21) AND (2AI\)) <>
5333 0 NEXT I%
53340 DEF SEG : RETURN
53350 '
54000 '***'
54010 '* Scroll current display page up or erase *'
54020 ··---*'
54030
54040
54050
54060
54070
54080
54090
54100
54110
54120

'. '. '. '. '. ..

Input :

Output:
Info

NUMBER% how many lines scrolled . '
ULC% - column upper left
ULR% line upper left ..
LRC% - column lower right
LRR% line lower right . '
COLOR% color of erased line . '
none ..
If 0 is given for NUMBER%, the screen area ..
indicated is erased
the Variable Z% is a Dummy

54130 '***'
54140
54150 FCT%=6 'Function number for scrolling up
54160 INR%=&Hl0 'Call BIOS-Video-Interrupt 16H
54170 CALL IA(INR%,FCT%,NUMBER%,COLOUR%,Z%,ULR%,ULC%,LRR%,LRC%,Z%,Z%,Z%,Z%)
54180 RETURN 'back to calling program
54190 '
60000 '*****************~***'

60010 '* Initialize Routine for Interrupt call

60020 ··---··
60030 '* Input : none *'
60040 '* Output: IA is the Start address of the Interrupt-Routine *'
60050 '***'
60060 '
60070 IA=60000!
60080 DEF SEG
60090 RESTORE 60130

'Start address of the Routine in the BASIC-Segment
'Set BASIC-Segment

60100 FOR I% = 0 TO 160 READ X%
60110 RETURN

POKE IA+I%,X% : NEXT 'Poke Routine
'back to calling program

60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142, 192, 139, 118, 28, 138, 36, 139, 118, 26, 138, 4, 139, 118, 24
60160 DATA 138, 60, 139, 118, 22, 138, 28, 139, 118, 20, 138, 44, 139, 118, 18
60170 DATA 138, 12, 139, 118, 16, 138, 52, 139, 118, 14, 138, 20, 139, 118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22, 136, 28, 139, 118, 20, 136, 44, 139, 118, 18, 136, 12, 139, 118
60210 DATA 16, 136, 52, 139, 118, 14, 136, 20, 139, 118, 8, 140, 192, 137, 4
60220 DATA 88, 139, 118, 6, 137, 4, 88, 139, 118, 10, 137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

One problem in the BASIC version of the directory listing occurs during the
directory output. Functions 4EH and 4FH read the entry into the DTA. It would
make more sense to move the DT A to a variable within the program (an integer
array would be best) to make it easier for the routine which outputs the entry to
access the data. BASIC's garbage collection feature makes this difficult. The
integer array containing the DTA moves periodically in storage and the address of
the DT A, stored intemall y in DOS, no longer corresponds with the address of this
integer array.

For this reason, the DOS function 2FH determines the DT A address. As the entries
are displayed, this address accesses the DTA to determine the file infonnation.

99

6. The Disk OperaJing System PC System Programming

Pascal listing: DIRP.PAS

100

{***}
{* DIR P *}
{*---*}
{* Task Display all files of any Directory, *}
{* including Subdirectories and *}
{* Volume Names *}

{*---*}
{* Author MICHAEL TISCHER *}
{* developed on : 7.8.87 *}
{* last Update : 9.21.87 *}
{***}

program DIRP;

Uses
Crt,
Dos;

const ENTRY

type RegTyp

14;

{Turbo 4.0 Units}

{ Number of entries visible }

record
ax, bx, ex, dx, bp,
di, si, ds, es, flags : integer;

{!Turbo 4.0 owners should use the Registers type from the DOS unit.}
end;

{** this is the format of a Directory entry *****}
{** as returned by the functions 4EH and 4FH }
DirBufTyp = record

Path

var DirBuf
DatName

Reservebuf
Attribut
Ztime
Zdate
Datgrlo
Datgrhi
DatName

end;

string [65 J;

DirBufTyp;
Path;

array [1 .. 21] of char;
byte;
integer;
integer;
integer;
integer;
array [1 .. 13] of char

accepts a Directory entry
{ Files to be found

{***}
{* GETFIRST: read in the first Directory entry *}
{ * Input none *}
{* Output true or false, depending if an entry was found *}
{* *}
{* Info the entry is stored in Variable DIRBUF *}
{***}

function GetFirst{DateiName
Attribute

var Register regtyp;

begin

Path;
integer)

{ files to be found
: boolean; { search Attribute

Register-Variable for call of Interrupt

DateiName := DateiName + #0; { terminate filename with NUL
Register.ax $4E shl 8; Function number for search of first
Register.ex Attribute; { Attribute, for which search is performed
Register.ds seg(DateiName); { Segment address of filename
Register.dx succ(ofs(DateiName)); {Offset address of filename
msdos(Dos.Registers(Register));{ Call DOS Interrupt 21H (Turbo 4.0))

{NOTE:Turbo 3.0 users should change previous line to read msdos(Register);}
{ defined in DOS unit.}

if {Register.flags and 1) = O { Test Carry-Flag)

Abacus 6.7 Accessing the DOS Directory

end;

then GetFirst := true
else GetFirst := false;

(Equal to O : file found
{ no file found

{**}
{* GETNEXT read in the following Directory entry *)
(* Input none *)
{* Output true or false, depending if another entry was found *}
{* *}
{* Info this function can only be called after a successful *}
{* call of the function GETFIRST *}
(* the entry is stored in the Variable DIRBUF *}
!**}

function GetNext : boolean;

var Register : regtyp; { Register-Variable for interrupt call }

begin
Register.ax := $4F shl 8;
msdos(Dos.Registers(Register));

(NOTE: Turbo 3.0

if (Register.flags and 1) = 0
then GetNext := true
else GetNext := false;

end;

Function number for next search }
{ Call DOS Interrupt 21H V 4.0)
users should change the previous)

(line to read msdos(Register);}
(Test Carry-Flag)

Equal to O : File found)
otherwise no file found)

{***}
(* PRINTDATA: Output information on an entry *)
(* Input none * l
(* Output none * l
(* Info the information about the entry are taken by this *)
(* procedures from Variable DIRBUF *)
{***}

procedure PrintData;

var Counter : byte;
DataLenghtl,
DataLenght2 : real;

begin
writeln; (the window
Counter := 1; begins with the
while (DirBuf.DatName[Counter)<>fO) do
begin

write(DirBuf.DatName[CounterJ);
Counter := succ(Counter)

end;
gotoxy(l3, ENTRY);

(both Variables are used
(to calculate file length

is scrolled up by one line
first character of the name

(repeat up to NUL

output characters of name
(process next character

DataLenghtl := DirBuf .Datgrhi; { determine file length
if DataLenghtl < 0 then DataLenghtl := 65536.0 + DataLenghtl;
DataLenght2 := DirBuf.Datgrlo;
if DataLenght2 < 0 then DataLenght2 65536.0 + DataLenght2;
write(' I', DataLenghtl • 65536.0 + DataLenght2:7:0};
gotoxy(21, ENTRY);
write(' I');
case (DirBuf.Zdate shr 5 and 15) of (determine month }

1 write ('Jan');
2 write ('Feb');
3 write ('Mar');
4
5
6
7
8
9

10
11
12

write
write
write
write
write
write
write
write
write

('Apr'};
('May');
('Jun•);
('Jul');
('Aug');
('Sep');
('Oct');
('Nov'};
('Dec')

101

6. The Disk Operating System PC System Programming

102

end;
write('/',DirBuf.Zdate and 31:2,'/');
write(DirBuf.Zdate shr 9 + 1980:4);
gotoxy(34, ENTRY);

(determine day
{ determine year

write(' I', DirBuf.Ztime shr 11:2, ':');
write(DirBuf.Ztime shr 5 and 63:3);
gotoxy(44, ENTRY);

{ determine hour
{ determine minutes

evaluate file attribute
write (' I ') ; separator to preceding field
if (DirBuf.Attribut and 1)<>0 then

else
if (DirBuf.Attribut and 2)<>0 then

write ('X') { Read-only?

else
if (DirBuf.Attribut and 4)<>0 then

write(' ');
write('X')
write(' ');
write('X')

else write (1 ');

hidden?

system?

if (DirBuf.Attribut and 8)<>0 then write('X') Volume-Label?
else write (' ') ;

if (DirBuf.Attribut and 16)<>0 then write('X') { Directory?
else write (' ') ;

write('/'); { right border of window frame)
end;

{***}
{* SETDTA set Address of OTA *)
{* Input : see above *)
{* Output : none *)
{***}

procedure SetDTA(Segment,
Offset

{ new Segment address of the OTA
integer); { new Offset address of the OTA

var Register regtyp; { Register-Variable for call of the Interrupt

begin
{ Set Function number for OTA

{ Segment address into OS register
{ Offset address into DX register

Register.ax := $1A shl 8;
Register.ds := Segment;
Register.dx :=Offset;
msdos(Dos.Registers(Register));

{NOTE: Turbo
{ Call DOS-Interrupt 21H)

3.0 users should change the previous)
{line to read msdos{Register);)

end;

{***}
{* BUILDSCREENDISPLAY: prepares the display for output of the
{ • Directory
(* Input : none
{* Output : none

*)
*}
*)
*)

{***}

procedure BuildScreenDisplay;

var Counter : integer;

begin
clrscr; { clear display
window(14, (20-ENTRY) shr 1+1,64, (20-ENTRY) shr 1 +S+ENTRY);
gotoxy(l,1); { Cursor to left upper corner of window
write(•r~~~~~--..~~~_,,-~~~~-y- l•>;
write('I Filename I Size Date Time IRHSVDI');
write('!~~~~~~+---------+~~~~~~+-~~~~+ I ');
for Counter 1 to ENTRY do
write (' I I I I I I '>;

write (•L .L---.l-----.L----.L--Jo);
window(lS, (20-ENTRY) shr 1+4,66, (20-ENTRY) shr 1 +3+ENTRY);
gotoxy(l, ENTRY); { Cursor to upper left corner of window

end;

{***}
{* DIR: controls the input and output of Directories *)
{* Input : none *)

Abacus 6.7 Accessing the DOS Directory

{* Output : none *I
{***}

procedure Dir;

var NumEntries,
Numwind
Key Press

begin

integer;
char;

SetDTA(Seg(DirBuf), Ofs(DirBuf));
clrscr;

Total number of entries found
(Number of entries in window

wait for key activation

{ DirBuf is the new DTA
(clear display

writeln('DIR (c) 1987 by Michael Tischer'f13f10);

writeln('Example: if all files with the extension .BAT in the root ');
writeln('directory of the disk drive should be displayed please input ');
writeln(' A:*.BAT.');
writeln(' If no search path is indicated, all files in the current');
writeln(' directory are displayed.'fl3fl0);

write('Which files are to be displayed:
readln(DatName);
if DatName = 11 then DatName := 1 *.* 1 ;

BuildScreenDisplay;
Numwind := -1;
NumEntries := O;
if GetFirst(DatName, 255) then

repeat
NumEntries := succ(NumEntries);
Numwind := succ(Numwind);
if Numwind = ENTRY then

');
(read in filenames

search for all files
Construct display for output

(no entry in window yet
(no entry found

search for first entry
Attribute does not matter

(found another
(one more entry into

(window

entry
window
full ?

begin
window(14, (20-ENTRY) shr 1
gotoxy(l, 1);
textbackground(7);

(Yes
+5+ENTRY,66, (20-ENTRY) shr 1 +6+ENTRY);

(Cursor to last line of window)
{ white background J

text color (0);
write(' Please press a key

{ black characters}
');

repeat until keypressed;
(read(kbd, KeyPress);)

wait for key press
read key code

gotoxy(l, 1);
textbackground{O);
text color (15);
write ('

(otherwise it remains in the buffer
Cursor to the upper left corner of the window

black background

window (15, (20-ENTRY)
gotoxy(l, ENTRY);
Numwind := O;

{ white characters
I};

shr 1+4, 65, (20-ENTRY) shr 1 +3+ENTRY);
{ return Cursor to old position

start count with 0 again
end;

PrintData;
until not(GetNext);
window(14, (20-ENTRY)
gotoxy(l, 1);
textbackground(7);
text color (0);
write ('
gotoxy (2, 1);
case NumEntries of

(output data of entry
does another entry exist ?

shr 1 +5+ENTRY,65, (20-ENTRY) shr 1 +6+ENTRY);
{ Cursor to the upper left corner of window

{ white background
{ black characters

'};

0 : write('no file found ');
1 : write('found a file ');
else write(NumEntries,' files found')

end;
window(l, 1, 80, 25);

end;
set whole display as window)

{***}
{** MAIN PROGRAMM **)
{***}

begin
Dir; (Load Directory and display)

103

6. The Disk Operating System PC System Programming

end.

In the above Pascal program and in the following C program, accessing the DT A
is much easier than in the BASIC version of the same program. RECORD or
STRUCT defines the structure of the directory entry into the DT A, and the
programs implement a variable of this type. DOS function IAH then transfers the
DTA to this variable. All the information in a directory entry can be easily
accessed. With Turbo Pascal, the display design is particularly easy. Turbo Pascal
also has a procedure to define any display area as a window. However, the C
language program uses the scroll function of the BIOS interrupt IOH to scroll the
directory window one line upward.

C listing: DIRC.C

104

/***/
/* D I R C *I
/*---*/
I* Task : Displays all files in any Directory, */
/* including Sub-Directories and volume names */
/* on the screen. */
!*---*/
/* Author MICHAEL TISCHER */
/* developed on : 08/15/87 */
/* last Update : 04/08/89 */
/*---*/
/* (MICROSOFT C) */
/* Creation : MSC DIRC; */
I* LINK DIRC; *I
/* Call : DIRC */
/*---*/
I* (BORLAND TURBO C) */
/* Creation With the RUN command in the command line */
/* Info Arguments can be passed to the program with */
/* the OPTION/ARGS command in the command line */
I*
/*
/*
/*
/*

or

Creation
Call

of TURBO C

: TCC DIRC
: DIRC

*/
*I
*/
*/
*I

/***/

#include <dos.h>
#include <io.h>
#include <string.h>

#define FALSE 0
#define TRUE 1
#define byte unsigned char
#define ENTRY 14 I* this
#define EZ (20-ENTRY » 1)
#define NRM Ox07
tdef ine INV Ox70 /* black

/* include Header files */

I* Constants make reading of */
/* Program text easier */

many directory entries fit on the screen */
/* first line of Directory window */

I* white characters on black background */
characters on white background (inverted) */

!*-- this is the format of a Directory entry returned by
/*-- the functions 4EH and 4FH

--------•/
*/

struct DirStruct {
byte
byte
unsigned
unsigned
unsigned
char

) ;

Reservebuf (21];
Attribute;

int Ftirne;
int Fdate;
long Fsize;

Fname[l3];

Abacus 6.7 Accessing the DOS Directory

/***/
/* GETPAGE gets the current display page */
/* Input : none */
/* Output : see above */
/***/

byte GETPAGE ()

union REGS Register; /* Register-Variable for Interrupt call */

)

Register.h.ah ~ 15;
1ntB6{Ux1u, &Kegis~er, &Kegis~erJ;

return(Register.h.bh);

I* Function number */
/i Cdll I11t~zr~pt lGi~ ·:

/* Number of current display */

/***/
/* SCROLLUP: moves a display area one or more lines */
/* upward or erases it */

see above
none

/* Input
/* Output
/* Info
/*

if 0 is passed as number, the display area
is filled with blanks

*/
*/
*/
*I

/***/

void ScrollUp(Number, Color, ColurnnUL, LineUL, ColumnLR, LineLR)
int Number; /* Number of lines to be scrolled */
int Color; /* Color or attribute for blanks */
int ColurnnUL; /* Column in the upper left corner of display area */
int LineUL; /* Line in the upper left corner of the display */
int ColurnnLR;/* Column in the lower right corner of the display area */
int LineLR; /* Line in the lower right corner of the display area */

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah 6; /* Function number */
Register.h.al Number; /* Number of lines */
Register.h.bh Color; /* Color of blank line (s) */
Register. h. ch Line UL; /* Coordinates of the scroll */
Register.h.cl ColurnnUL; /* end or erase */
Register.h.dh LineLR; I* Set display window *I
Register.h.dl ColumnLR;
int86 (OxlO, &Register, &Register); /* Call Interrupt lOH */

}

/***/
/* SETPOS sets the position of the cursor in current display page */
/* Input see above */
/* Output none */
/* Info the position of the blinking display cursor is changed */
/* by the call of this function only when the */
/* display page indicated is the current display page */
/* */
/***/

void SetPos(Column, Line)
int Column;
int Line;

/* new Cursor column */
/* new Cursor line */

union REGS Register; /* Register-Variable for Interrupt call */

)

Register.h.ah 2;
Register.h.bh GETPAGE();
Register.h.dh Line;
Register.h.dl Column;
int86(0x10, &Register, &Register);

/* Function number */
/* Display page */
/* Display line */

/* Display column */
/* Call Interrupt lOH */

105

6. The Disk Operating System PC System Programming

106

/***/
I* GETPOS Get the position of the Cursor in current display page */
I* Input : none */
I* Output : see below */
/***/

void GetPos(Column, Line)
int *Column;
int *Line;

/* Column where the Cursor is located */
/* Line where the Cursor is located */

union REGS Register; /* Register-Variable for Interrupt call */

)

Register.h.ah - 3;
Register.h.bh - GETPAGE();
int86(0x10, &Register, &Register);
*Column - Register.h.dl;
*Line - Register.h.dh;

I* Function number */
I* Display page */

/* Call Interrupt lOH */
/* Read result of the Function */

/* from the Registers */

/***/
I* WRITECHAR: writes a character with an attribute to the current */
/* cursor position on the current display page */
/* Input see below */
/* Output none *I
!***/

void WriteChar(Character, Color)
char Character;
int Color;

/* Character for output */
I* its Attribute or color */

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah 9;
Register.h.al Character;
Register.h.bh GETPAGE();
Register.h.bl Color;
Register.x.cx 1;
int86(0x10, &Register, &Register);

)

/* Function number */
I* character for output */

/* Display page */
/* Color of character for output */

/* output character only once */
/* Call Interrupt lOH */

/***/
/* WT writes a character string with constant color starting */
I* at a specified position on the current display page. */
I* Input see below */
/* Output none */
/* Info Text is a Pointer to a character Vector, which contains */
I* the text to be output and is terminated with a 1 \0 1 */
/* character. */
/***/

void WT(Column, Line, Text, Color)
int Column;
int Line;
char *Text;
int Color;

/* Display column for output */
/* Display line for output */

I* Text for output */
/* Color/Attribute of the Text */

union REGS Register; /* Register-Variable for Interrupt call */

SetPos(Column, Line);
while (*Text)

/* Set Cursor */
/* Output Text up to '\0' character */

{

)

WriteChar(' • Color);
Register.h.ah 14;
Register.h.bh - GETPAGE();
Register.h.al - *Text++;
int86(0x10, &Register, &Register);

/* Indicate color */
/* Function number */

I* Display page */
/* of character to be output */

/* Call Interrupt */

Abacus 6.7 Accessing the DOS Directory

/***/
/* CLS Clear current display and set Cursor into upper left */
/*
I* Input
/* Output

corner
none
none

*I
*/
*I

/***/

void Cls ()

)

Scro.i..i.Up(0, NKM., 0, 0, /;, 24};
SetPos(O, O);

;1 Clad£ s~Leetl ±/
/* Set Cursor */

/***/
/* BUILDSCREENDISPLAY: prepares the display for the output of the */
/* Directory. */
I* Input
/* Output

none
none

*/
*I

/***/

void BuildScreenDisplay()

byte i; /* Loop Counter */
Cls(); /*Clear Screen*/
WT (14, EZ, "r------r----r------..,-----r--}, NOF) ;

WT(l4,EZ+l,"I Filename I Size Date Time IRHSVDl",NOF);
WT(14,EZ+2," I +-------+-----+---1",NOF);
for (i ~ EZ+3; i < EZ+3+ENTRY; it+)
WT(14,i, "I I I I l",NOF)·

WT (14, EZ+ ENTRY+3, •{------.l---.l------.l-----.L--J",
NOF);

/***/
/* PRINTDATA: Output information about an entry *I

*/
*/

/* Input : see below
/* Output : none
/***/

void PrintData(DirEntry, Line)
struct DirStruct *DirEntry;
byte Line;

/* a Directory entry */
/* Display line of entry */

byte i ·
static char *Month[]

/* Loop Counter */
/* Vector with Pointer to name of month */

11 JAN 11 , "FEB'~, "MAR", 11APR11 , 11 MAY 11 , 11 JUN 11 ,

"JUL", "AUG", "SEP", "OCT", "NOV", "DEC"
) ;

SetPos (15, Line); /* Set Cursor position for file name */
for (i~O; (*DirEntry) .Fname [i] && i<15 ; printf ("\c", (*DirEntry) .Fname [it+]))

SetPos(28, Line); /*Set Cursor position for file size*/
printf ("%7lu", (*DirEntry) .Fsize); /* Output file size */
SetPos(36, Line); /*Set Cursor position for Date*/
printf ("\s-'ls2d-\4d", Month [((*DirEntry) .Fdate >> 5 & 15) - 1],

(*DirEntry) .Fdate & 31, ((*DirEntry) .Fdate » 9) + 1980);
SetPos(49, Line); /* Set Cursor position for Time*/
printf ("%2d:%2d", (*DirEntry) .Ftime >> 11, (*DirEntry) .Ftime >> 5 & 63);
SetPos(59, Line); /*Set cursor position for Attribute*/
for (i = 1; i <= 16; i <<~ 1)
if { (*DirEntry) .Attribute & i) printf ("X");
else print!(" 11);

107

6. The Disk Operating System PC System Programming

108

/***/
/* GETNEXT read the following Directory entry *I
I* Input
I* Output
/* Info

none
TRUE, when an entry was found, otherwise FALSE
the entry is read into DTA rem

*I
*/
*/

/***/

byte GetNext ()

}

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah = Ox4F; /* Function
intdos(&Register, &Register);
return(!Register.x.cflag);

number for Search of next entry */
/* Call DOS-Intr. 21H */

/* Carry-Flag = O: file found */

/***/
/* GETFIRST read the first Directory entry */
/* Input none */
/* Output TRUE, if entry was found, otherwise FALSE */
I* Info Entry is read into the DTA */
/***/

byte GetFirst(Sname, Attribute)
char *Snarne; /* file to be found */

/* the Search Attribute */ unsigned int Attribute;

union REGS Register;
struct SREGS Segmente;

/* Register-Variable for Interrupt call */
/* accepts Segment register */

segread(&Segrnente); /*Read in content of Segment register*/
Register.h.ah Ox4E; I* Function number for search of first */
Register.x.cx =Attribute; /* Attribute, for which search is made */
Register.x.dx = (unsigned int) Snarne; /* Offset address search path*/
intdosx(&Register, &Register, &Segmente); /* Call DOS-Intr. 21H */
return(!Register.x.cflag); /*Carry-Flag= O: file found*/

)

/***••************/
/* SETDTA sets the DTA to a Variable in the Data Segment */

*/
*/

I* Input : see below
I* Output : none
/***/

void SetDTA(Offset)
unsigned int Offset; I* new Offset address of the DTA */

union REGS Register;
struct SREGS Segment;

/* Register-Variable for Interrupt call */
/* accepts the Segment register */

)

segread(&Segrnent);
Register.h.ah = OxlA;
Register.x.dx = Offset;
intdosx(&Register, &Register,

/* Read in content of Segment register */
/* Set Function number for DTA */

I* Offset address into DX-Register */
&Segment); /*Call DOS-Intr. 21H */

/***/
/* DIR controls the input and output of Directories */
I* Input : see below */
/* Output : none */
/***/

void Dir(Sname, Attribute)
char *Sname; /* Pointer to Character Vector, containing search path */
int Attribute; /* Attribute of file to be found */

Abacus 6.7 Accessing the DOS Directory

int NumEntries,
Numwind;

struct DirStruct DirEntry;

/* Total number of entries found */
/* Number of entries in display */

I* a Directory entry */

SetDTA(&DirEntry); /* DIRENTRY is the new OTA*/
BuildScreenDisplay(); /*Construct display for new Directory output*/

Numwind = NumEntries = O; I* no entry displayed in the window */
/* no entry found */

if (GetFirst(Sname, Attribute)) /*search for first entry */

do
{
PrintData(&DirEntry, EZ+ENTRY+2);
if (++Numwind == ENTRY)

/* output entry */
/* Window full 2 */

{
Numwind = O;
WT(l4, EZ+4+ENTRY,

get ch();
WT(l4, EZ+4+ENTRY,

Please press a key

/* fill a window */

11 , INV);
/* wait for key */

",NRM);

ScrollUp(l, NRM, 15, EZ+3, 63, EZ+2+ENTRY);
WT(l5, EZ+2+ENTRY,

++NumEntries;
)

while (GetNext());
)

I

SetPos (14, EZ+4+ENTRY) ;·
switch (NumEntries)

(

11 ,NOF);

case printf("no files found");
break;

case printf ("one file found ");
break;

default
)

printf ("%d files found ", NumEntries);

/***/
/** MAIN PROGRAM **/
/***/

void main{Number, Argument)
int Number;
char *Argument[];
{
switch (Number)

{
case Dir("*.*", -0);

break;
case Dir(Argument[l],

break;
default : printf ("Invalid

)

/'
/* Number of Arguments + 1 passed */

/* Vector with pointer to Arguments */

/* react according to */
/* Arguments passed */

/* Display all files in current */
I* Directory */

-0); /* Display all files in indicated */
/* Directory *I

number of Parameters\n 11);

109

6. The Disk Operating System PC System Programming

6.8 The EXEC Function

The EXEC function has been mentioned briefly several times before in relation to
the command processor. We'll examine the EXEC function more fully here and
describe its operation.

Parent/child

The EXEC function is one of the many DOS functions which can be called with
interrupt 21H (function 4BH). Generally speaking, this function lets a parent
program (main program) call a child program (secondary program). The child
program is loaded from a mass storage device into memory and then executes. If
this child program doesn't become resident, the memory occupied by the child is
released following program execution. The child program can also call another
program which works with the parent program. This creates a type of program
chaining limited only by the amount of available RAM.

One example of the EXEC function is the command processor. Using the EXEC
function, the command processor executes user-specified programs and becomes the
parent program. Some programs (such as Microsoft Word®) permit the user to
execute DOS commands from the main program using this function.

The parent program can pass parameters to the child program in the command line
and can also pass parameters using the environment block. It can also transfer
information to the child program within the PSP. Since the child program, like all
executable programs, has a PSP preceding it, information can be entered into the
two FCBs within this PSP and made accessible to the child program.

Child program

110

After transferring control to the child program, it can access all files and devices
previously opened by the parent program (or one of the parent programs) with a
handle function. This allows the child program to read information from a file or
write information to a file whose handle is known (the child program doesn't need
to know the filename). This is only possible if the handle was passed by the parent
program in one of the three methods described, or if the child program refers to one
of the five handles which are always open. These file accesses affect the file
pointer. Since values are not reset, these file accesses become "visible" to the
parent program when control returns to the parent program.

After execution of the child program, control returns to the parent program and
execution continues. To pass information (e.g., an error that occurred during the
execution of the child program), the child program can pass a numeric value at the
end of its execution. This can be done using DOS function 4CH, which terminates
a program and returns a code to the parent program.

The communication between parent and child program functions only if both
programs agree on this return value. After control returns to the parent program, it

Abacus 6.8 The EXEC Function

can determine the code using function 4DH of interrupt 21H. To use function 4DH
only the function number is passed in the AH register. The code passed by the
child program is returned to the calling (parent) program in the AL register.

Ending the child program

EXEC

In addition, the contents of the AH register indicate how the child program
terminated. The value 0 indicates a normal termination, while 1 shows that the
child program terminated when the user pressed <Control><C> or
<Control><Break>. If an error during access to a mass storage device forced the
child program to terminate, a code of 2 is passed in the AH register. Finally the
value 3 indicates that the child program terminated from a call to function 3 IH, or
interrupt 27H; the child program then becomes resident in memory.

As mentioned previously, the EXEC function can only load the child program if
enough memory is available. While DOS can estimate the memory needed for
EXE programs fairly accurately, it cannot do the same for COM programs. For
COM programs DOS reserves all unused memory. Because of this, a COM
program cannot call another program with the EXEC function, since DOS reserves
no extra memory. The same is true for many EXE programs. If a call to a child
program is necessary, the required memory space must be released from the calling
program before calling the EXEC function (see Sections 6.4.1 and 6.4.2 for
explanations on how this is done).

If the EXEC function is called, the various parameters are loaded into the registers
before calling interrupt 21H. Function number 4BH is passed in the AH register.
A value of 0 or 3 is passed in the AL register. A value of 0 indicates that the
EXEC function is to load and execute the program while a value of 3 indicates that
the program is loaded as an overlay (without executing it). The address of the name
of the program to be loaded or executed is passed in the DS:DX register pair. And
the address of the parameter block is passed in the ES:BX register pair.

The program name is specified as an ASCII string and ended with a null character
(ASCII code 0). The program name can include the device name and a complete
path description. Its last element is the program name which, besides the name
itself, must have the extension .COM or .EXE. If the device name or path
designation are omitted, the system searches for the program in the current
directory of the current device. Since the EXEC function cannot execute a batch
file directly, the program name passed cannot contain the extension .BAT.

Batch child

If a batch file is to be executed, the COMMAND.COM (command processor) file
must be invoked first. To indicate that a batch file should be executed, the
parameter /c followed by the name of the batch file to be executed is included on
the command line. Besides the ability to execute a batch file, calling the command

111

6. The Disk Operating System PC System Programming

processor with the /c parameter offers the option of calling any other program, and
even internal DOS commands such as DIR.

Besides calling a program directly, it's possible to specify program names without
file extensions during a command processor call. The command processor searches
for an EXE file; then a COM file; and finally a BAT file. If none of these files
exist in the current directory, it searches all directories specified in the PATH
command. This chain of events is not followed during a direct program call
without the addition of the command processor.

The directory which contains the command processor should be specified. If not
specified, it will be loaded from the path indicated by the COMSPEC environment
string of the SET command.

Parameter blocks

Parameters can be passed to the command processor in the parameter block
following the program name. These parameters are identical to the parameters
entered from the keyboard when the program is called. How these parameters affect
the EXEC function will be seen shortly, but first take a look at the parameter
block's structure when the AL register contains the value 0. This block's address is
passed to the EXEC function in the register pair ES:BX.

1 0-1 Segment address of the environment block
2 2-3 Offset address of the command_E_arameter
3 4-5 Segment address of the command_E_arameter
4 6-7 Off set address of the first FCB
5 8-9 Segment address of the first FCB
6 10-11 Offset address of the second FCB
7 12-13 S~ent address of the second FCB

Field 1 indicates the segment address of the child program's environment block.
This block doesn't require an offset address since it always starts at a location
divisible by 16, and therefore its offset address is always to 0.

Environment block

112

The command processor and other programs obtain information from the
environment block. The environment block is a series of ASCII character strings.
This information can include paths for file searches. Each string has the following
syntax, terminated by a null character (ASCII code 0):

Name = Parameter

The individual strings follow each other sequentially (i.e., the null character of one
string is immediately followed by the beginning character of the next string). The
environment block ends with a null character. Any environment block has a
maximum length of 32K.

Abacus 6.8 The EXEC Function

The environment block can be changed or modified by the user using the OOS
SET and PA TH commands. Programs which remain resident after execution are
unaffected by any changes made to the environment block through these two OOS
commands once made resident

If the parent program wants to pass information to the child program using the
environment block, it can either construct a new environment block or supplement
its own environment block with this information. In the first case, the segment
address of the new environment block is specified in the first field of the parameter
block. If the child program should have access to the environment block of the
parent program, specify a value of 0 in this field. Before turning over control to
the child program, the EXEC function stores the segment address of the
environment block in the memory location at address 2CH of the child program's
PSP.

If the child program is to use a new environment block, it should contain at least 3
strings which are normally part of the environment block of the parent program,
and are important to the command processor:

COMSPEC = Parameter
PATH = Parameter
PROMPT = Parameter

If a child program modifies its environment block, the parent program's
environment block remains unchanged after the child program completes its
execution.

Fields 2 and 3 indicate the command parameters' address which is passed to the
PSP of the program starting at address 80H. They must have the same structure in
memory as expected by DOS in the PSP. The first byte indicates the number of
command characters minus 1, then follows the command characters as normal
ASCII codes. The command parameters terminate with a carriage return (ASCII
code 13) which is not included in the character count. The first character in the
string should be a space for compatibility with COMMAND.COM.

To call a batch program (called 00.BAT) using the command processor, the
following command parameters must be specified as a string in memory:

DB 10," /C DO.BAT",13

The EXEC function copies the command parameters in a controlled fashion into
the PSP of the program to be executed. It removes all parameters which would
redirect the input or output, since a redirection of the standard input/output can
only be performed by the parent program. The child program can still use
input/output redirection if the standard input/output handles have been redirected by
the parent program (see Section 6.10 for more detailed information and an example
of this process).

113

6. The Disk Operating System PC System Programming

Fields 6, 7, 10 and 11 indicate two FCBs installed in the PSP at address SCH or
6CH. If this is not required, specify -1 (FFFFH) in these two fields. If program
execution requires it, enter the first two command parameters in the two FCBs
with DOS function 29H. Before passing control to the child program, the EXEC
function copies these two FCBs into the PSP of the child program.

Even though all registers and the parameter block now have the required values, the
EXEC function cannot be called yet. Since it destroys the contents of all registers
up to the CS and IP registers during execution, the contents of all registers must
be placed on the stack before it is invoked. Then the contents of the SS and SP
registers must be stored within the code segment. Only then can interrupt 21H
function 4BH be called to activate the EXEC function. After the EXEC function
ends, the carry flag signals if the function executed normally. Before program
execution can continue, the value of the SS and SP registers must be restored,
from the code segment. Then the contents of the other register can be restored
again from the stack.

The EXEC function serves a different purpose when a value of 3 appears in the AL
register. In this case, it loads a COM program or an EXE program into memory
without executing. After the target program is loaded, control immediately returns
to the calling program. In contrast with sub-function 0, the program loads to a
memory address indicated by the calling program instead of loading to any non
specific location. Since no parameters are passed to the loaded program, the
parameter block has a different structure during the call of sub-function 3 than
during the call of sub-function 0:

FieBj ~e P~se

1 0-1 Segment address where overl~ is loaded
2 2-3 Relocation factor

Before the function is called, the segment address to which the program should be
loaded is specified in the first field of the parameter block. If the calling program
doesn't have enough memory available for loading the external program, it should
request additional memory with one of the DOS memory management functions.
The loaded program loads directly to the segment address indicated with the offset
address 0 since no PSP precedes the program.

Relocation

114

The relocation factor adjusts the segment address of the called program. Since this
factor applies only to EXE programs (COM programs cannot have specific
segment assignments), the relocation factor for COM programs should always be
equal to 0. The relocation factor for EXE programs should indicate the segment
address where the program will be loaded to confirm to the program's segment
assignments.

After the program is loaded, its routines are ready to be accessed. The routines of
the loaded program should always be treated as subroutines; and therefore, called

Abacus 6.8 The EXEC Function

with the machine language CALL instruction. It must always be a FAR type
instruction even though the loaded program may be located immediately following
the calling program, but can never have the same segment address. The offset
address for CALL is always IOOH for a COM program, since execution always
starts immediately following the PSP at address IOOH. This creates a problem.
Sub-function 3 prevents the PSP from loading. Therefore the code segment of the
COM program starts at address 0, not at the offset address IOOH (relative to the
load segment). Since all jump instructions and accesses to data within the COM
program are relative to address lOOH and not address 0, you cannot execute a FAR
CALL instruction with the address of the load segment as the segment address, and
address 0 as the offset address. The segment address for the FAR CALL must
indicate the address of the load segment minus IOH and the address IOOH as the
offset address.

If the COM program specifically acts as an overlay for another program, entry
addresses other than address IOOH are possible. In such a case, only the offset
address for the FAR CALL instruction changes. The segment address must remain
IOH smaller than the address of the load segment.

EXEC and memory

The problem is different for EXE programs. If they are loaded for execution using
sub-function 0, the EXEC function sets the code segment and the instruction
pointer to the instruction which was declared as the first instruction in the
assembler source. This address, however, is unknown to the program which loaded
the EXE program as an overlay. This can easily be remedied by placing the first
executable instruction in the EXE program at the beginning of the EXE program.
This makes its offset address 0. The EXE program source must not be in the
normal sequence with the stack first. In this case, the code segment must be the
first segment in the source to ensure that it begins the EXE program.

The FAR CALL uses the address of the load segment as the segment address, and
address 0 as the offset ad,dress.

While BASIC, Pascal and C have commands or procedures to call a program from
another program, assembly language routines must use DOS function 4BH. To
help you further understand this function, here is an example program.

The framework of the EXE program listed in Section 6.4.2 acts as the basis for
this program. The EXEPRG procedure performs the actual dirty work in this
program. It calls the new program using function 4BH. Two strings which contain
the name of the program to be called and the necessary parameters are passed to it
Both strings end with the null character (ASCII code 0). All variables required by
EXEPRG for execution can be found in the code segment. This offers the
advantage that the lines from the code segment only must be copied into one of the
application programs to use this routine. After calling EXEPRG, the carry flag
signals if an error occurred. If true (carry flag= 1), the AX register contains the error

115

6. The Disk Operating System PC System Programming

116

code as returned by the EXEC function of DOS. If the called program executed
correctly, the carry flag is reset (0) and the tennination code of the called program,
as returned by DOS function 4DH, is returned by the AX register.

Within this program, EXEPRG displays the current directory using the command
processor. The command processor defaults to the current directory of the current
device.

;***;
;* EXEC *;

;•---*;
;•
;•
;•
;•

Task Calls a program with the help of the •;
EXEC function of DOS. In this example •;
program the content of the current •;
Directory of the current device is displayed. •;

;•---*;
;• Author MICHAEL TISCHER *;
;• developed on 08/01/87 •;
;• last Update 04/08/89 •;

;*---*;
;•
;•

assembly : MASM EXEC;
L;INK EXEC;

•;
•;

;*---*;
;* Call : EXEC ,
;***;

;== data ==

data

prgname
prgpara

data

segment para 'DATA'

db "\command .. com",0
db "/c dir",0

ends

;Definition of the data-segment

;Name of the program to be called
;Parameters passed to program

;end of data-segment

;== code ==

code segment para 'CODE' ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stack

exec proc far

exec

;--
;--
;--
;--
;--

mov ax,data
mov ds,ax

call setfree

mov dx,offset
mov si, offset
call exeprg

mov ax,4COOh
int 21h
endp

prgname
prgpara

;Load segment address of the data segment
;into the OS-register

;release unused memory

;offset address of program name
;offset address Of command line
;Call program

;end program with call of a DOS function
;on return of error-code 0

SETFREE: Release memory not used ---------------
ES = address of PSP Input

Output
Register
Info

none
AX, BX, CL and FLAGS are changed
Since the stack-segment is always the last segment in an
EXE-file, ES:OOOO points to the beginning and SS:SP
to the end of the program in memory. Through this the
length of the program can be calculated

setfree proc near

Abacus 6.8 The EXEC Function

mov bx,ss
mov ax, es
sub bx, ax

mov ax,sp
mov cl,4
shr ax, cl
add bx, ax
inc bx

mov ah,4ah
int 21h

ret

;first subtract the two segment addresses
;from each other. The result is
;number of paragraphs from PSP
;to the beginning of the stack
;since the stackpointer is at the end of
;the stack segment, its content indicates
;the length of the stack
;add to current length
;as precaution add another paragraph

;pass new length to DOS

; back to caller

set free endp

;-- EXEPRG: call another program ------------------------------
Input DS:DX = address of the Program Name

;-- DS:SI = address of the Command Line
;--

;--

Output
Register
Info

carry flag = 1 : Error (AX = Error-code)
only AX and FLAGS are changed
Program name and Command Line must be ASCII-String
and terminated with ASCII-code O

exeprg proc near

copypara:

;Transmit Command Line into own buffer
;and count characters

push bx
push ex
push dx
push di
push si
push bp
push ds
push es

mov di, offset
push cs
pop es
xor bl, bl
lodsb
or al, al
je copy end
stosb
inc bl
cmp bl, 126
jne copypara

;Store all registers which are
;destroyed by the call to the
;DOS EXEC function

comline+l ;address of chars in Command Line.
;cs to stack
;back as ES
;Set character count to 0
;read a character
;is it a NUL-code (end)
;Yes --> copied enough
;store in new buffer
;increment character count
;Maximum reached?
;No --> continue

copyend: mov cs:comline,bl ;store number of characters
mov byte ptr es:(di],13 ;finish command line

mov
mov

mov
mov
int

cli
mov
mov
sti

pop
pop
pop

cs:merkss,ss
cs:rnerksp,sp

bx, offset parblock
ax,4BOOh
21h

ss,cs:merkss
sp,cs:merksp

es
ds
bp

;SS and SP must be stored in
;variables in code segment

;ES:BX points to parameter block
;function number for EXEC function
;Call DOS-function

;Set interrupts for a moment from
;stack segment and stackpointer to
;their old values
;Switch interrupt on again

;Get all Registers from stack again

117

6. The Disk Operating System PC System Programming

118

exeend:

merkss
merksp
parblock

comline

exeprg

pop
pop
pop
pop
pop

jc
mov
int

ret

si
di
dx
ex
bx

exeend
ah,4dh
21h

;Errors? YES --> end
;no errors, sense end-code of the
;program which was executed

; back to caller

;-- Variables of this routine only addressable through CS

dw (?)
dw (?)
equ this word
dw 0
dw offset comline
dw seg code
dd 0
dd 0

db 128 dup (?)

endp

;accepts SS during program call
;accepts SP during program call
;Parameter block for EXEC function
;environment block
;offset and segment address of
;modified Command Line
;no data in PSP fl
;no data in PSP t2

;accepts modified Command Line

;== stack ==

stack segment para stack ;Definition of the stack-segment

dw 256 dup (?) ;the stack has 256 Words

stack ends ;End of the stack-segment

;== End ===

code ends ;End of the CODE-segment
end exec ;for execution start with EXEC

Abacus 6.9 Mef1Wry Allocation from DOS

6.9 Memory Allocation from DOS

DOS subdivides the maximum 640K of memory into roughly two areas. The first
area is designated as the operating system area. It begins at memory location
0000:0000 and contains the interrupt vector table, some internal tables, buffers,
variable memory and the operating system code. This code retains the resident
portion of the command processor and the resident and installable device drivers.
The size of this area varies with the version of DOS in use, the sizes of the device
drivers installed, and other factors such as the number of disk buffers available

The second area is designated as the TP A (Transient Program Area). It contains
programs and their environment blocks for execution. The TP A starts after the end
of the operating system area. Depending on the memory requirements of the
individual programs, DOS assigns them different amounts of memory administered
through a special data block preceding every memory range and connected with the
data block of the next memory range. This also applies to memory not assigned to
a program.

This data block, called a memory control block (or MCB) is a 16-byte block
containing a variety of information. An MCB begins at one of the addresses
divisible by 16, and controls memory allocation. DOS looks for the segment
address of the allocated memory range, and is helped in this task through the MCB.
The following table shows the structure of an MCB in memory:

Addres~ Contents -~
+OOH ID ("Z"=last MCB, "M"=another MCB follows) 1 ~te
+OlH Seqment address of corre~ondi129:. PSP 1 word
+03H Number of...E_ar~~s in allocated ra~ 1 word
+OSH unused 11 ~tes
+lOH Allocated memo~ rarig:_e X...E_ar~r~s

As the table above illustrates, the MCB contains three fields. The first field
indicates whether any MCBs follow the current MCB under analysis. The letters
"M" (more MCBs to follow) and "Z" (last MCB) are the initials of one of the
creators of MS-DOS, Mark Zbikowski.

The second field specifies the segment address of the corresponding program's PSP.
This only applies when memory allocation becomes a part of the environment of
the program being handled, in which case the PSP is indicated by the contents of
this field. In most cases, this field simply points to the memory range needed by
the program.

The third field of the MCB specifies the size of the corresponding memory range in
paragraphs. Next follows the memory range itself, then any further MCBs after
that (provided that the first field contains an "M" ID letter). MCBs can be linked
together to create a group, as shown in the figure below:

119

6. The Disk Operating System PC System Programming

120

Start of memory
(0000:0000) ·~
Start of TPA Memo:r:z. Control Block 1

Controlled by Memory Control

Memo:ry_ Control Block 2
Controlled by Memory Control
Memory Control Block 3

Controlled by Memory Control

Memory Control Block 4 (last

Controlled by Memory Control

End of TPA

*
Block

Block

Block 3

MCB) ~
Block 4

~

End of memory TL.,_ ___________ __.T

Memory allocation

If the DOS EXEC loader loads and executes a program, this function immediately
requests two data areas through another DOS function. The first of these two areas
stores the environment block, while the second accepts the current program and the
program's PSP. The size of the area made available to a program is difficult to
estimate from the EXEC loader. This is even more difficult for COM programs
than for EXE programs since COM programs are copies of memory contents and
have no information preceding them. DOS therefore defaults to the maximum and
reserves the total available memory for a COM program.

This method worked well in the early days of DOS, but has created other
problems. While only one program could exist in memory at a time in the early
days of DOS, now it's common for one program to load and run a second program,
or even make one of the programs permanently resident in memory. This can't be
done if no memory exists, as would be the case after loading a COM program.
This is why a COM program should always release the memory it no longer needs
after it starts (see Section 6.4.1 for details on how this happens).

A COM program can only load when a memory range large enough to
accommodate the COM program exists (plus 256 bytes for the PSP and at least 2
bytes for the stack). The COM program ensures that enough memory is available.
Under the minimum conditions presented above, the program probably won't run
without errors, since few programs can operate with only a 2-byte stack.

EXE program files have a set of information created by the linker. The EXEC
loader can determine the amount of memory required for code segment, data and
stack from this information. The start of the EXE program itself contains
additional information about the amount of memory needed for the program. This
amount defines an upper and lower limit of the additional memory, rather than a
specific number of bytes. The EXEC loader tries to reserve the upper limit of

Abacus 6.9 Memory Allocation from DOS

memory if it can. If this is not possible, the EXEC loader uses the lower limit or
reserves the remainder of memory. If the lower limit of memory cannot be
allocated, the loading process aborts and control returns to the program which
called the EXEC loader (in most cases, the command processor).

The same occurs after program execution when the EXEC loader releases the
reserved memory space for further use, unless prevented by function 31H of
interrupt 21H, called from the program.

Now that you know some of the theoretical aspects of DOS memory management,
here are descriptions of the most important of these DOS functions. Functions
48H, 49H and 4AH are all called through interrupt 21H. The function number is
passed in the AH register.

Function 48H allocates memory. The function number is passed in the AH register
and the number of paragraphs to be reserved (16 bytes per paragraph) is passed in
the BX register. If the requested number of paragraphs can be reserved, the function
returns with the carry flag clear. The AX register indicates the segment address of
the reserved memory. Therefore, it starts at address AX:OOOO. If the program
required more memory than was available, the carry flag is set following the call to
the function and the AX register contains an error code. The BX register contains
the maximum memory available in paragraphs.

Function 49H performs the reverse of function 48H. This function releases
memory previously reserved through function 48H. The segment address of the
memory area to be released is passed in the ES register. This segment address was
originally passed in the AX register when function 48H was called. Normally
function 49H should execute without errors and the carry flag should be reset after
the function call. If this is not the case, it could be caused by either a destroyed
data block (placed ahead of a memory area by DOS), or a segment address passed in
the ES register which doesn't match a reserved memory area.

A third function changes the size of memory area which had been previously
reserved. The memory area can be either enlarged or reduced by using function
4AH. The segment address of the area to be modified is passed in the ES register.
The BX register reserves the number of paragraphs (16-byte units) which the
memory area should contain. The register contents following the call to the
function are identical to those of function 48H.

Since calling DOS functions is relatively easy as far as memory management is
concerned and no special tricks are required, the following program is dedicated to a
different topic, which also relates to DOS memory management. We're talking
about a program that pokes around the system and checks all allocated memory as
well as its contents. The program is intelligent enough to differentiate between
storage areas that contain the environment of a program, a PSP, or other
information.

121

6. The Disk Operating System PC System Programming

122

The assignment of this program is to go through the memory from MCB to MCB
and examine the allocated storage areas. In order to move to the next MCB each
time, it uses the third field within an MCB, which helps it point to the next
MCB. This sets up a loop which will run until the last MCB is discovered, which
will have the letter "Z" in its ID field.

But in order to move through the chain of MCBs, the address of the first link, that
is the first MCB, must be known. DOS lists this within an internal structure
called DIB (DOS Information Block), which is not normally accessible to
application programs, i.e. this represents an undocumented DOS feature (see also
Section 6.15). However, we can find out the address of this structure with the help
of function 52H, which will output the address to the ES:BX register pair when
called.

Curiously, this address points to the second field in the MCB rather than the first
But since it's the first field that contains the address of the first MCB, the
information we're looking for is behind the pointer. Since the pointer on the first
MCB consists of an offset address and a segment address, it is four bytes long and
can therefore be found at the address ES:(BX-4). But be careful with the address
statement, because it makes it seem as though all you have to do is subtract 4
from the contents of the BX register in order to get the effective address of the
desired information in the ES:BX register pair. This will only be successful if the
offset address in the BX register is greater than or equal to 4. But if it is less than
4, the consequences are disastrous, because this leaves a negative number. There is
no such thing as a negative memory address. Let's use an example to make this
clear:

If the value 0 is returned to the BX register as the offset address of the DIB, the
subtraction would give the value OFFFCH. With arithmetic operations, this is
interpreted quite correctly as -4. However, during memory access, this will not
point to the address -4, but rather right to OFFFCH, and therefore to the end rather
than the beginning of the accompanying segment. Of course, you won't find what
you're looking for there.

The program will help you here, first of all by decrementing the delivered segment
address by 1. This reduces the effective address, which you get by appending the
segment address and the offset address, by 16. Finally, by adding 12 to the offset
address, the effective address is reduced by only 4 and points to the desired memory
location. The address of the first MCB can then be taken from this memory
location without any problems.

The loop which runs through all MCBs and analyzes them begins with this
address. First, some status information on the MCB and the memory it controls is
given. This includes:

the MCB number
its address in memory

Abacus 6.9 Memory Allocation from DOS

the address of the memory it controls
the contents of the ID field ("M" or "Z")
the address of the accompanying PSP (independent of whether it
even exists)
the size of the accompanying storage area in paragraphs and bytes

Next, the contents of the storage area that belongs to it are examined. We get its
address by incrementing the segment address of the MCB by 1. The first thing
we11 determine is whether we're dealing with an environment block in this storage
area. We'll know for sure if we find the string COMSPEC= at the beginning of the
area. This string starts every environment block. If this string is found, the
program proceeds as though this were indeed an environment block, and it lists the
individual environment strings. In front of these, it lists the name of the program
the environment block belongs to, which is located at the end of the environment
block for OOS version 3.0 and higher.

If the storage area cannot be identified as an environment block, we could possibly
be dealing with a PSP, and therefore a transient or resident program. The program
will start from here if it finds the machine language command INT 20H (code
OCDH, 020H) in the first two positions of the memory range. This command
starts every PSP.

If the program also does not run into this, it can't tell if the memory range
contains program code, data, or whatever. In this case, the program will send the
first 80 bytes of the storage area to the screen as a hex and ASCII dump, in order
to give you a chance to figure it out for yourself.

After this, the user is prompted to strike any key. When the keystroke is received,
the next MCB is examined, and the program will finally end when the last MCB
has been handled.

The following programs in Pascal and C produce the MCB dump. A BASIC
version could not be implemented here because this program works its way
through the entire memory, and BASIC offers only the DEF, SEG and PEEK
commands for this purpose. The use of these commands is too awkward in this
case and would detract from the real task of the program.

Since both programs are very similar in terms of the logic, function calls, and
variables used, they are described together in the following section.

Both access memory with FAR pointers, since the storage areas to be addressed are
outside of their data segments. While Turbo Pascal automatically uses FAR
pointers, C requires selection of the appropriate memory configuration through
Compact, Huge, Large or with the help of Cast operations, each of which
explicitly defines the task with a FAR pointer. This program goes the latter way,
so that it may also be compiled in a memory configuration that works with NEAR
pointers by default {Tiny, Small, Medium).

123

6. The Disk Operating System PC System Programming

Converting separately retrieved offset and segment addresses to one FAR pointer
presents a problem in both languages. This can be done in C with a macro, which
is already defined in the Include file OOS.H in Turbo C, but is missing in
Microsoft C. For this reason, the macro is defined within the C program, in case it
hasn't been previously defined. In Pascal, the address conversions happen with the
help of a small inline procedure, that enters both addresses directly into the
memory locations that form the pointer.

Beyond these brief remarks, the listings should be able to speak for themselves,
since they are fully documented.

Pascal listing: MEMP.PAS

124

{**}
{* MEMP *)

{*--*}
{* Description : displays the memory blocks allocated by DOS. *l
{*--*}
{* Author MICHAEL TISCHER *}
{* developed on : 08/22/1988 *I
{* last update : 08/22/1988 *}
{**}

program MEMP;

uses DOS, CRT; { bind in the DOS and CRT units

type BytePtr "byte; pointer to a byte I
Range - array [O •• 1000] Of byte; an area, anywhere in RAM I
RngPtr = "Range; { pointer to an area l
MCB record a memory control block l

IdCode char; { "M" a block follows, "Z" = end l
PSP word; segment address of the PSP I
Distance word; { number of paragraphs - 1)

end;
MCBPtr "'MCB; pointer to an MCB
MCBPtr2 AMCBPtr; pointer to an MCBPtr
HexStr string [4] ·; { stores a four-digit hex string

var CvHStr HexStr; { stores the converted hex string

{**}
{* GetDosVer: determines the DOS version *l
{ • Input : none * l
{* Output : the DOS version number {30 for DOS 3.0, 33 for 3.3 etc.) *I
{**}

function GetDosVer : byte;

var Regs : Registers;

begin
Regs.ah := $30;
MsDos(Regs);
GetDosVer := Regs.al

end;

{ stores the processor registers)

{ function no. for "Get Dos Version"
call DOS interrupt $21

• 10 + Regs.ah; { get version number

{**}
{* MK_FP: creates a byte pcinter out of the segment and offset *I
{* addresses passed. *}
{* Input - Seg = segment to which the point should point *}
{* - Ofs =offset address to which the pointer should point *I
{ * Output the pointer *I

Abacus 6.9 Memory Allocation from DOS

{* Info : The pointer returned can be cast to any type pointer *}
{**}

{$F+} This routine is intended for the FAR model and is
also suited for binding into a unit.

function MK_FP{ Seg, Ofs : word) : BytePtr;

begin
inline $88 I $46 I $08 I mov ax, [bp+8] (get segment address)

$89 I $46 I $FE I mov [bp-2] ,ax (and put in pointer)
$88 I $46 I $06 I mov ax, [bp+6] (get offset address)
$89 I $46 I $FC) ; mov [bp-4],ax (and put in pointer)

eno.;

{$F-} { NEAR routines possible again }

{**}
{* HexString: creates a 4-digit hex string out of the number passed *}
{* Input : - HexVal =the number to be converted *}
{ * Output : the hex str.ing *}
{**}

function HexString(HexVal : word) : HexStr;

var Counter,
Nibble byte;

begin
CvHStr := •xxxx•;
for Counter:=4 downto 1 do

begin

{ loop counter
{ the lowest nibble of the word

{ initialize the string
{ run through the 4 digits of the string

Nibble := HexVal and $000f;
if (Nibble > 9) then

{ leave just the lower 4 bits
{ convert to a letter?

CvHStr[Counter] := chr(Nibble - 10 + ord ('A')) { yes
else

CvHStr[Counter
HexVal := HexVal shr 4;

end;
HexString := CvHStr;

end;

{ convert to a number
chr(Nibble + ord('O'));

shift HexVal 4 bits to the right

{ return the created string

{**}
{* FirstMC8: Returns a pointer to the first MC8. *}
{ * Input : none *}
{* Output : pointer to the firs MCB *}
{**}

function FirstMCB : MCBPtr;

var Regs : Registers;

begin
Regs.ah := $52;
MsDos(Regs);

{ stores the processor registers }

(ftn. no.: get address of the DOS info block
{ call DOS interrupt $21

{*-- ES: (BX-4) points to the first MCB, create pointer-------------*}

FirstMCB := MC8Ptr2(MK_FP(Regs.ES-1, Regs.8X+12})•;
end;

{**}
{* Dump: outputs hex and ASCII dump of a memory block. *}
{* Input - DPtr pointer to the memory block to be dumped *}
{* - Num = number of lines to dump (16 bytes each) *}
{ * Output none *}
{**]

procedure Dump(DPtr: RngPtr; Num{Num} : byte);

125

6. The Disk Operating System PC System Progran'!ming

126

type HBStr = string[2];

var Offset,
z
HexStr

integer;
HBStr;

procedure HexByte(HByte

begin

byte) ;

stores 2-digit hex numbers

off set in the memory block
{ loop Counter

stores a hex number for hex dump

HexStr[l] := chr((HByte shr 4) + ord('O'));
if HexStr[l) > '9' then

first digit
convert to letters?

Hexstr[l) := chr(ord (HexStr[l]) + 7) ;
HexStr[2) := chr((HByte and 15) + ord('O'));
if HexStr[2] > '9' then

I yes
I second digit

convert to letters?
(yes HexStr [2) : = chr (ord (HexStr [2]) + 7) ;

end;

begin
HexStr := 'zz';
writeln;
write('DUMP I 0123456789ABCDEF
writeln(' 09 OA OB OC OD OE OF');

(initialize the hex string

00 01 02 03 04 05 06 07 08');

write('-----+-----~--');

writeln('--------------------------');
Offset := O; (start with the first byte in the block
while Num>O do (run through the loop ANZ times

begin
write(HexString(Offset), ' I ');
for Z:=O to 15 do

if (Dptr'[Offset+Z) >= 32) then
write (chr (Dpt,r' [Offset+Z]))

else

process 15 bytes
valid ASCII character?

{ yes, output character
I no

write(' ');
write(' ');
for Z:=O to 15 do

begin

output space instead of character
{ set cursor to the hex portion

{ process 15 bytes

HexByte(Dptr'[Offset+Z));
write(Hexstr, ' ');

convert byte to hex
I output hex string

end;
writeln;
Offset := Offset + 16;
Dec(Num);

end;
writeln;

end;

{ set offset in the next line
decrement number of remaining lines

{**}
{* TraceMCB: runs through the list of MCB's. *l
I* Input : none *)
I* Output : none •)
{**}

procedure TraceMCB;

const Comspec: array[0 .• 7] of char

var CurMCB{CurMCB} : MCBPtr;
Done
Key
NrMCB,
z
MemPtr
DosVer

begin

boolean;
char;

integer;
RngPtr;
byte;

DosVer := GetDosVer;
Done : = false;
NrMCB := l;
CurMCB := FirstMCB;
repeat

'COMSPEC=' ;

{ number of current MCB
I loop counter

{ DOS version number

get DOS version

{ the first MCB is number 1
get pointer to the first MCB

{ follow the MCB chain

Abacus 6.9 Memory Allocation from DOS

if CurMCBA.IdCode = 'Z' then { last MCB reached?
{ yes Done := true;

writeln{'MCB number
writeln('MCB address

NrMCB);
Hexstring (seg (CurMCBA)), ': ',
HexString(ofs(CurMCBA)));
HexString (succ (seg (CurMCBA))), ': ',
HexString(ofs(CurMCBA)));

writeln('Memory addr.

writeln('ID ', CurMCBA.IdCode);
writeln('PSP address HexString(CurMCBA.PSP), ':0000');
writeln('Size , CurMCBA.Distance, ' paragraphs ',

• (', longint (CurMCBA .Distance) shl 4, ' bytes) ');
write ('Contents = ');

{*-- is it an environment? ---------------------------------------*)
Z := O; { start the comparison at the first byte
MemPtr := RngPtr(MK FP(succ(Seg(CurMCBA)), O)); {pointer in RAM
while ((Z<=7) and (ord(Comspec[Z]) = MemPtrA[Z])) do
Inc(Z); { set Z to the nest character
if Z>7 then { was the string found?

begin yes, this is an environment
writeln{'environment');
MernPtr := RngPtr(MK FP(succ(Seg(CurMCBA)), 0));
if DosVer>= 30 then- { DOS Version 3.0 or higher?

begin { yes, get program name
write('Program name = ');
Z := O;
while not({MernPtrA[Z]=O) and

{ start with the first byte
(MernPtrA[Z+l]=O)) do

Inc(z);
Z:=Z+4;
if MernPtrA[Z]<>O then

begin

{ search for empty string
set Z to the start of the prog name

{ is there a prog. name here?

repeat { run through the program name
{ output characters

process the next character
{ to the end of the string

write (chr (MernPtrA [Z])) ;
Inc(Z); {

until MemPtrA[Z]=O;
writeln;

end
else { program name not found)
writeln {•unknown');

end;

{*-- output the environment strings --------------------------*)
writeln(tl3,f10, 'Environment strings');
Z := O; { start with the first byte in the allocated block
while MernPtrA[Z]<>O do { repeat until empty string

begin
write{' ');
repeat

write(chr(MemPtrA[Z]));
Inc (Z) ;

until MernPtrA[Z]=O;
Inc (Z) ; { set to
writeln;

end
end

else
begin

{ output a string
print a character

process the next character
(to the end of the string

the start of the next string
{ end line

{ no envrionment)

{*-- is it a PSP? --*)
{*-- (starts with command INT 20 (code=$CD $20)) -------------*)

MernPtr := RngPtr(MK FP(succ(seg(CurMCBA)), O)); { set pointer
if ((MernPtrA [OJ =$CD) and (MemPtrA [l) =$20)) then

begin { it's a PSP
writeln('PSP (with program following)');

end
else { the command INT 20 was not found)

127

6. The Disk Operating System PC System Programming

begin
writeln('unidentifiable (program or data)');
Dump(MemPtr, 5); {dump the first 5xl6 bytes J

end;
end;

write('==~=~==================================');

writeln('=============== Press a key===');
if (not Done) then
begin { set pointer to the next MCB J

CurMCB :- MCBPtr(MK FP(seg(CurMCBA) + CurMCBA.Distance + 1, 0));
Inc(NrMCB); - { increment the number of the MCB J
Key := ReadKey;

end;
until (Done) { repeat until the last MCB is processed J

end;

{**}
(** MAIN PROGRAM **)
{**}

begin
ClrScr;
TraceMCB;

end.

clear the screen
run through the MCBs

C listing: MEMC.C

128

/**/
I* M E M C */
/*--*!
/* Description : Displays the memory blocks allocated by DOS */
!*--*!
I* Author MICHAEL TISCHER */
/* developed on : 08/23/1988 */
/* last update : 05/12/1989 */
!*--*/
/* (MICROSOFT C) */
/* creation : CL /AS /Zp memc.c */
/* call : MEMC *I
!*--*!
/* (BORLAND TURBO C) *I
/* creation : via the Compile-Make command */
/* (no project file) */
/**/

/*== Include files ===*/

#include <dos.h>
#include <stdlib.h>

!*== Typedefs ==*/

typedef unsigned char byte;
typedef unsigned segadr;
typedef byte boolean;
typedef byte far *FB;

/* build ourselves a byte */
/* a segment address */

/* FAR pointer to a byte */

/*== Constants ===*/

#define TRUE
#define FALSE 0

I* needed for working with boolean */

/*== Structures and unions ===*/

struct MCB {
byte id_code;
segadr psp;
unsigned distance;

I* describes an MCB in memory */
/* 'M' = a block follows, 1 Z1 = end */

I* segment address of the PSP */
/* number of paragraphs reserved */

Abacus 6.9 Memory Allocation from DOS

} ;

typedef struct MCB far *MCBPtr; I* FAR pointer to an MCB */

I*== Macros ==*/

fifndef MK FP /* was MK_FP defined already? */
#define MK_FP (seg, ofs) ((void far *) ((unsigned long) (seg)«161 (ofs)))
#endif

/**

Function : F I R S T MC B
------------------------------=-------------------------------------

Description Returns a pointer to the first MCB.
Input parameters : none
Return value : Pointer to the first MCB

****/

MCBPtr first_mcb()
{
union REGS regs;
struct SREGS sregs;

I* stores the processor registers */
I* stores the segment registers */

regs.h.ah = Ox52; /* ftn. no.: get address of the DOS info block*/
intdosx(®s, ®s, &sregs); /* call DOS interrupt Ox21 */

/*-- ES: (BX-4) points to the firs MCB, create pointer ---------------*/

return(*((MCBPtr far*) MK_FP(sregs.es-1, regs.x.bx+12)));
}

/***
Function : D U M P

--
Description
Input parameters

Outputs hex and ASCII dump of a memory range.
- bptr pointer to a memory area
- num : number of dump lines (each 16 bytes)

* Return value none
***/

void dump(FB bptr, byte num)
{

FB lptr;
unsigned offset;
byte i;

I* running pointer for printing a dump line */
/* offset address relative to BPTR */

/* loop counter */

printf("\nDUMP I 0123456789ABCDEF 00 01 02 03 04 05 06 07 08");
printf (" 09 OA OB OC OD OE OF\n");
printf("-----+--");
printf("-----------------\n");

for (offset=O;
{

num-- ; offset += 16, bptr += 16)
I* run through the loop NUM times */

printf("%04x I •, offset);
for (lptr=bptr, i=16; i-- ; ++lptr) /* print character as ASCII */

)

printf ("%c", (*lptr<32) ? • • *lptr);
printf(" ");
for (lptr=bptr, i=l6; i-- ;
printf("%02X •, *lptr++);

printf ("\n");

/* output character as hex */

/* move to the next line */

/***
* Function : T R A C E M C B
--

129

6. The Disk Operating System PC System Programming

130

* Description
Input parameters

* Return value

Traces the chain of MCB's.
none
none *

***/

void trace mcb ()
{ -
static char fenv[) = { I* first environment string */

•c•, •o•, 'M', •s•, 'P', 'E', •c•, '='
l;

MCBPtr cur_mcb; I* pointer to the current MCB *I
boolean done; /* TRUE if the last MCB was found */
byte nr_mcb, I* number of the current MCB */

i; I* loop variable */
FB lptr; I* running pointer in the environment *I

done = FALSE;
nr mcb = 1;

/* now we get going */
/* the first MCB is number 1 */

cur mcb first mcb(); I* get pointer to the first MCB */
/*process.the individual MCB's */ do - -

{
if (cur mcb->id code == 'Z')
done = TRUE; -

/* last MCB reached? */
I* yes */

printf("MCB number 'kd\n", nr mcb++);
printf("MCB address \Fp\n", cur mcb);
printf("Memory addr. \Np:OOOO\n"-;- FP SEG(cur mcb)+l);
printf("ID 'kc\n", cur mcb->"id code);
printf ("PSP address \Fp\n", (FB) MK_FP (cur_mcb->psp, 0)) ;
printf("Size 'ku paragraphs ('klu bytes)\n",

cur mcb->distance, (unsigned long) cur mcb->distance << 4);
printf ("Contents = ");

/*-- is it an environment? ---*/

for (i=O, lptr=(FB)cur mcb+l6;/* compare first ENV string with FENV */
(i<sizeof fenv)-&& (*(lptr++) == fenv[i++J) ;)

if
{

== sizeof fenv)

printf ("environment\n");
if (osmajor >= 3)

{ -
printf ("Program name = ");

/* was a string found? */
/*yes, it's an environment */

I* DOS version 3.0 or higher? */
/* yes, get program name */

for (; ! (*(lptr++)==O && *lptr==O)

l

if (*(lptr += 3)
{
for (; *lptr ;
printf ("'kc", * (lptr++)) ;

else
printf("unknown");

printf ("\n");

/* find last ENV string *I
/* is there a program name here? */

I* yes */
I* run through the program name *I

/* output a character */

/* no program name was found */

/* move to the next line *I

/*-- output the environment strings ------------------------------*/

printf ("Environment strings\n");
for (lptr=(FB) cur mcb +16; *lptr

{ -

l

printf (" ");
for (; *lptr ;) /* run through
printf ("'kc", * (lptr++)) ;

printf("\n");

++lptr)
I* output a string *I

the string to a NUL character */
I* output a character */

/* move to the next line *I

else
{

I* no envrionrnent */

Abacus 6.9 Memory Allocation from DOS

I*- is it a PSP? ---*/
/*-- (introduced with the command INT 20 (Code=OxCD Ox20)) -------*/

if (*((unsigned far*) MK FP(cur mcb->psp, O)) == Ox20cd)
printf("PSP (with subseq;;ent program)\n"); /*yes*/

else /* the command INT Ox20 was not found */
(

printf("unidentifiable (program or data) \n");
dump((FB) cur mcb + 16, 5); /*dump the first Sx16 bytes*/

) -

PL lnlf (•t== .. } ;
printf("=============== Please press a key ===\n");
if (!done) /* another MCB? */

{ /* yes, set pointer to the next MCB */
cur mcb = (MCBPtr)

MK_FP(FP_SEG(cur_mcb) +cur mcb->distance + 1, O);
getch(); - /*wait for a key*/

)

while { ! done) ;
)

I* repeat until the last MCB has been processed */

/**/
I** MAIN PROGRAM **/
/**/

void main()

printf ("\nMEMC (c) 1988 by Michael Tischer\n\n");
trace mcb(); /*trace the chain of MCB's */

) -

131

6. The Disk Operating System PC System Programming

6. 1 0 DOS Filters

SORT

132

Filters are programs, routines or utilities which accept input and modify the data
for output. Filters do the same on the operating system level: characters are passed
to these filters as input, the filters modify the characters then send the modified
characters as output. This manipulation talces many forms. Filters can sort data,
replace certain data with other data, encode data or decode data.

DOS has three basic filters available:

FIND searches input for a specified set of characters

SORT arranges text or data in order

MORE formats text display

These filters perform simple redirection of standard input/output. They read
characters from the standard input device, manipulate the characters as needed, then
display them on the standard output device. The standard input device under DOS is
the keyboard, and the standard output device is the monitor. DOS versions of 2.0
and higher allow the user to redirect the standard input/output to files. Therefore, a
filter can read characters from the keyboard or from a file, depending on the standard
input device selected. This is possible by using a filter in conjunction with one of
the DOS handle functions for reading and writing. DOS offers five handles:

0 Standard i~t CON (Keyboard)
1 Standard output CON (Screen)
2 Standard error out:J2..ut CON (Screen)
3 Standard serial interface AUX
4 Standard printer PRN

If the user calls a program from the DOS level, the < character redirects input and
the > character redirects output. In the following example, the input comes from
the file IN.TXT instead of the keyboard. The output is written to the file
OUT.TXT instead of the screen:

sort <in.txt >out.txt

After the user enters the above command, DOS recognizes that a program named
SORT should be called. Then it encounters the expression <IN.TXT which
redirects the standard input. This occurs by assigning the handle 0 (standard input,
which formerly pointed to the keyboard) to the file IN.TXT. The expression
>OUT.TXT resets handle 1 to the OUT.TXT file instead of the screen. The affected
handle is first closed, and then the redirected file is opened.

Abacus

Pipes

6.10 DOS Filters

Once the command processor finishes with the command line it calls the SORT
program using the EXEC function (OOS function 4BH). Since the program called
with the EXEC function has all the handles of the calling program available, the
SORT program can input/output characters to handles 0 and 1. Where the
characters originate is unimportant to the program.

After the SORT program completes its work, it returns control to the command
processor. The command processor resets the redirection and waits for further input
from the user.

The filter principle as supported by OOS becomes especially powerful through
pipes. This expression comes from the idea of a pipeline used for transporting oil
or gas. OOS pipes have a similar function: they carry characters from one program
to another and permit the connection of various programs with each other.

When this happens, characters output from one program to the standard output
device can be read by another program from the standard input device. As in the
redirection of the standard input/output, the two programs do not notice the
pipelines. The difference between the two procedures is that under redirection of the
standard input/output devices, data can be redirected only to one device or file,
while the use of pipes allows data transfer to another program.

Combined filters

Pipes allow the user to connect multiple filters. The pipe character I is inserted
between the programs to be connected. An example should make this more
understandable: A text file named DEMO.TXT is sorted and then displayed on the
screen in page format. Even though this task appears to be very complicated at
first, it can be performed easily using two DOS filters: SORT and MORE. SORT
sorts the file and MORE displays the file on the screen in page format.

The question is, how can you tell the command processor to do these things? First
SORT is used. This filter is told to sort the file DEMO.TXT. The redirection of
standard input can be used as illustrated at the beginning of the chapter:

SORT <DEMO.TXT

After the user enters this command, SORT sorts the file DEMO.TXT then
displays the file on the screen. This display would be much easier to read in page
format. Formatted output can be implemented by redirecting the output from
SORT to a file (for example TEMP.TXT) and displaying this file using the
MORE command. The following sequence of commands do this:

SORT <DEMO.TXT >TEMP.TXT
MORE <TEMP.TXT

133

6. The Disk Operating System PC System Programming

134

You can use a pipe to connect the SORT filter and the MORE filter, saving the
user typing time. The following command line sends the output from SORT
directly to MORE and immediately displays the sorted file in page format

SORT <DEMO.TXT I MORE

Any number of filters can be connected using pipes. DOS always executes these
pipelined filters from left to right. It sends the output from the first program as
input to the second program, the second program's output as input to the third
program, etc. The last program can again force the redirection of the output with
the > character so that the final result of the whole program or filter chain travels
to a file or other device instead of the screen.

Note: DOS cannot send data from one filter directly to another because it
would have to execute both filters simultaneously, and the current
version of DOS doesn't have multiprocessing capabilities. Instead,
the following method is used. The input calls the first filter and
redirects its output to a pipe file. After the first filter ends its
processing, it calls the second filter but redirects its input to the pipe
file to read in the output from the first filter. This principle applies
to all filters. The pipe file is stored in the current working directory.

The word "dump" is a computer buzzword for a way to display the contents of a
file in ASCII characters and/or hexadecimal numbers. The DUMP programs below
performs this task as a filter. As the contents are displayed in ASCII format,
DUMP differentiates between normal ASCII characters (letters, numbers, etc.) and
control characters such as carriage return, linefeed, etc. These control characters are
displayed in mnemonic form (e.g., <CR> for carriage return and <LF> for
linefeed). This DUMP filter is fairly simple in structure, yet it can be very useful
to quickly examine a file's contents.

The structure of the DUMP program is typical for a filter. Since DUMP displays a
maximum of nine ASCII characters and/or hexadecimal codes per line, it asks for
nine characters by using the read function from the standard input device. If not
enough characters are available, it reads what characters are available. DUMP
places these characters in a buffer, then converts the characters into ASCII
characters and hex codes. This buffer will accept a comple.te line of 78 characters.
When the buffer processing finishes, the filter uses the handle to write to the
standard output device. This process is repeated until no more characters can be read
from the standard input device.

The following programs are written in Pascal, C and assembly language. Note that
there isn't a BASIC version. The reason is that BASIC, as an interpreted language,
is unsuitable for developing a filter which can be called from the DOS level. A
BASIC compiler would be required for this task.

Abacus 6.10 DOS Filters

Pascal listing: DUMPP.PAS

{**}
{* DUMPP *}
{*--*}
{ * Task a Filter, which reads in characters from the *}
{* Standard input device and outputs them *}
{* as Hex and ASCII dump on *}
{ * the Standard output device *}

{*--*}
{ * Author MICHAEL TISCHER *}
r * de".relc:ped 0!;. : 08/013/~7 * l
{ * last Update : 05/04/89 *}

{*--*}
{ * Info This program can only be called from the *}
{* DOS level after compiling to an EXE file *}
{ * with TURBO *}
{**}

program DUMP;

Uses Dos;

{$V-}

canst NUL O;
BEL 7;
BS 8;
TAB 9;
LF 10;
CR 13;
EOF 26;
ESC 27;

{ Add DOS unit

suppress length test on strings

ASCII-Code NUL-character
ASCII-Code Bell character
ASCII-Code Backspace
A$CII-Code Tab
ASCII-Code Linefeed
ASCII-Code Carriage Return
ASCII-Code End of File
ASCII-Code Escape

type SZText
DumpBf

string[3]; { passes the name of a special character
array[l..80] of char; { accepts the output Dump

{**}
{ * SZ writes the name of a control character into a Buffer *}
{ * Input see below *)
{ * Output none *)
{ * Info after the call of this procedure the pointer *)
{* which was passed, points behind the last character of *)
{* the control character name in the Dump-Buffer *)
{**}

procedure SZ(var Buffer
Text

var Pointer

var Counter : integer;

begin

DumpBf;
SZText;
integer};

{ Text entered here
{ Text to be entered

addr. of text in buffer

Buffer[Pointer] := '<'; { leads control character
for Counter := 1 to length(Text) do { transfer Text to Buffer
Buffer{Pointer + Counter] := Text[Counter];

Buffer[Pointer +Counter+ 1) := '>'; { terminates control char
Pointer Pointer + Counter + 2; { Pointer to next character

end;

{**}
{* DODUMP reads characters in and outputs them as Dump *}
{* Input : none *)
{* Output : none *)
{**}

procedure DoDump;

135

6. The Disk Operating System PC System Programming

136

Ende := false;
repeat

Regs.ah := $3F;
Regs.bx := O;
Regs.ex := 9;
Regs.ds := seg(NewByte);
Regs.dx := ofs(NewByte);
MsDos(Regs);
if (Regs.ax = 0) then Ende
if not(Endc) then
begin
for Counter := 1 to 30

(not the End

I Function number for reading handle
the Standard input device is handle 0

{ read in 9 characters
{ Segment address of the buffer

(Off set address of the buffer
{ Call DOS-Interrupt 21H

true; { no character read2

(NO
{ Fill buffer with blanks

do DurnpBuf [Counter] := • •;
DurnpBuf[31] := f219; Place Separator between Hex and ASCII
NextA := 32; { ASCII-characters follow separator
for Counter := 1 to Regs.ax do { start processing characters
begin { read in

HexChr := ord(NewByte[Counter]) shr 4 + 48; (Hex top 4 bits
if (HexChr > 57) then HexChr := HexChr + 7; { convert char
DumpBuf[Counter * 3 - 2] := chr(HexChr); { store in buffer
HexChr := ord(NewByte[Counter]) and 15 + 48; { Hex bot. 4 bits
if (HexChr > 57) then HexChr := HexChr + 7; { convert number
DumpBuf[Counter * 3 - 1] := chr(HexChr); (store in buffer
case ord{NewByte[Counter]) of { test ASCII-Code

NUL SZ(DurnpBuf, 'NUL', NextA); { NUL-character
BEL SZ(DumpBuf, 'BEL', NextA); (Bell character
BS SZ(DumpBuf, 'BS' , NextA); { Backspace
TAB SZ(DumpBuf, 'TAB', NextA); { Tab
LF SZ(DumpBuf, 'LF' , NextA); { Linefeed
CR SZ(DumpBuf, 'CR' , NextA); Carriage Return
EOF SZ(DumpBuf, 'EOF', NextA); { End of File
ESC SZ(DumpBuf, 'ESC', NextA); { Escape
else
begin { normal character

DumpBuf[NextA] := NewByte[Counter]; { Store ASCII-character
NextA := succ(NextA) (Set pointer to next character

end
end;

end;
DumpBuf[NextA] := f219; { Set End character

Carriage-Return followed by Line
{ feed to buffer end

Function number for writing handle
Standard output device is handle 1

{ Number of characters
{ Segment address of the buff er

{ Off set address of the buff er
{ Call DOS-Interrupt 21H

DurnpBuf[NextA+l] chr(CR);
DumpBuf[NextA+2] chr(LF);
Regs.ah $40; {
Regs.bx := 1; {
Regs.ex := NextA+2;
Regs.ds := seg(DumpBuf);
Regs.dx ofs(DumpBuf);
MsDos(Regs);

end;
until Ende;

end;
{ repeat until no more characters are available

{**}
{ * MAIN PROGRAM *}
{**}

begin
Do Dump;

end.
{ Output Dump }

Abacus 6.10 DOS Filters

C listing: DUMPC.C

/**/
I* D U M P C */
!*--*!
/* Task a Filter which reads in characters from the */
I* Standard input and outputs them as */
/* Hex and ASCII-Dump on */
/* the Standard output device */
/*--*/
I* Author MICHAEL TISCHER */
; I. u~velUfJe<l U11 ; 06/J..4/(i/ * /
I* last Update : 04/08/89 *I
/*--*/
/* (MICROSOFT C) */
/* Creation MSC DUMPC; */
I* LlNK DUMPC; */
I* Call DUMPC [<Input] [>Output] */
/*--*!
/* (BORLAND TURBO C) */
I*
I*

Creation
Call

: tee durnpc
: DUMPC [<Input] [>Output]

*I
*I

/**/

Hnclude <stdio.h> I* include Header-files */
Hnclude <dos.h>

#define byte unsigned char

#define NUL 0 /* Code of NOL-character *I
#define BEL 7 I* Code of Bell *I
#define BS 8 I* Code of Backspace-key *I
#define TAB 9 I* Code of Tab-key *I
#define LF 10 /* Code of Linefeed *I
#define CR 13 /* Code of Return-key *I
#define ESC 27 I* Code of Escape-key *I

#define tohex (c) (((c) <10) ? ((c) I 48) : ((c) + 'A' - 10))

/**/
I* GETSTDIN: reads a certain number of characters from the Standard */
I* input device into a Buffer */
I* Input see below */
/* Output Number of characters read */
/**/

unsigned int GetStdin(Buffer, MaxChar)
char *Buffer; /* Pointer in Character-Vector, which accepts data */
unsigned int MaxChar; /* maximum of characters to be read in */

)

union REGS Register;
struct SREGS Segment;

/* Register-Variable for Interrupt-Call */
/* accepts the Segment register */

segread(&Segment); /*read content of Segment register*/
Register.h.ah Ox3F; /* Function number for */
Register.x.bx O; /* the Standard input device is handle 0 */
Register.x.cx MaxChar; /* Number of Bytes to be read */
Register.x.dx (unsigned int) Buffer; /* Offset address of Buffer */
intdosx(&Register, &Register, &Segment); /*Call Interrupt 21H */
return(Register.x.ax); /*Number of Bytes read to caller */

/**/
I* STRAP Attach character to string
I* Input : see below
/* Output : Pointer behind the last added character

*I
*I
*I

/**/

137

6. The Disk Operating System PC System Programming

138

char *Strap(String, Textpointer)
char *String,

*Textpointer;
I* the source string */

/* Pointer to the text to be attached */

}

while (*Textpointer)
*String++ = *Textpointer++;

return (String);

/* repeat until '\0' detected */
I* transmit character */

I* Pass Pointer to calling function */

/**/
/* DODUMP reads the characters in and outputs them as Dump */
/* Input : none *I
/* Output : none */
/**/

void DoDump ()

char NewByte[9], /*Accepts the characters read */
DumpBuf [80] , I* accepts a line of DUMP */
NextAscii; / points to next ASCII-character in the buffer *I

byte i, I* Loop counter */
Readbytes; /* Number of bytes read in */

DumpBuf[30] = 219;
while ((Readbytes

/* Set separator between Hex and ASCII */
GetStdin (NewByte, 9)) ! = 0)

/* as long as characters are available */

for (i = O; i < 30; DumpBuf[i++] ');
I* Fill buffer with spaces •/

NextAscii = &DumpBuf[31]; /*ASCII-characters start here*/

)

for (i = O; i < Readbytes; i++)
/* process all characters read in */

DumpBuf [i *3 I tohex ((byte) NewByte[i] » 4);
/* convert Code in Hex */

DumpBuf[i*3+1] = tohex ((byte) NewByte[i] & 15);
switch (NewByte [i]) I* evaluate ASCII-Code *I

{

case NUL NextAscii Strap(NextAscii, "<NUL>");
break;

case BEL NextAscii Strap(NextAscii, "<BEL>");
break;

case BS NextAscii Strap(NextAscii, "<BS>"};
break;

case TAB NextAscii Strap(NextAscii, 11 <TAB> 11);

break;
case LF NextAscii Strap(NextAscii, "<LF>");

break;
case CR NextAscii Strap(NextAscii, "<CR>"};

break;
case ESC NextAscii Strap(NextAscii, 11 <ESC> 11);

break;
case EOF NextAscii Strap(NextAscii, "<EOF>");

break;
default *NextAscii++ = NewByte[i];

)

*NextAscii = 219;
* (NextAscii+l} '\r';
*(NextAscii+2) = '\0';
puts (DumpBuf);

/* End character for ASCII representation */
/* Carriage-Return to End of buffer */

/* NUL converted to LF on output */
/* Write String on Standard output device */

!**/
/** MAIN PROGRAM **/
/**/

Abacus

void main()

DoDwnp();
l

6.10 DOS Filters

I* Character input/output */

Assembler listing: DUMP.ASM

;**;
;* DUMP *;

;*---*;
' ; * and outputs them as Hex- and ASCII-Dwnp on *;
; * the Standard output device *;
;*---*;
; * Author MICHAEL TISCHER *;
;* developed on : 08/01/87 *;
, last Update : 04/08/89 *;

;*---*;
; * assemble MASM DUMPA; *;
i * LINK DUMPA; *;
;* (important)... EXE2BIN DUMPA DUMP.COM *;
;*---*;
, Call : DUMP [<Input] [>Output] *;
;***;'

;== Constants ==

NUL equ 0 ; ASCII -Code NUL-Character
BEL equ ;ASCII-Code Bell
BS equ ;ASCII-Code Backspace
TAB equ 9 ;ASCII-Code Tabulator
LF equ 10 ;ASCII-Code Linefeed
CR equ 13 ;ASCII-Code Carriage Return
EOF equ 26 ;ASCII-Code End of File
ESC equ 27 ;ASCII-Code Escape

;== Program starts here ==============================

code segment para 'CODE' ;Definition of CODE-Segments

org lOOh

assume cs:code, ds:code, es:code, ss:code

;-- Start routine ---

dwnp label near

Read in 9 Bytes from Standard input device --------------

xor bx, bx ; Standard input has the handle 0
mov cx,9 ;read in 9 characters
mov dx,offset newbyte ;Address of the buffer
mov ah, 3Fh ;Function code for handle reading
int 21h ;Call DOS-Function
or ax, ax ;characters read in?
jne dodwnp ;YES --> process line
jmp dwnpend ;NO --> DUMPEND

dodwnp: mov dx,ax ; record number of characters read

'
Fill output buffer with Spaces --------------------------

mov cx,15 ;15 Words (30 Bytes)
mov ax,2020h ;ASCII-Code of " " to AH and AL
mov di, offset dwnpbuf ;the Address of the output buffer
cld ;increment on String commands
rep stosw ;Fill buffer with Spaces

139

6. The Disk Operating System PC System Programming

byte in:

sotest:

nose:

hex:

nobal:

hexout:

140

Construct output Buffer --------------------------------

mov
mov
mov
mov

mov
push
mov
mov
add

cx,dx
di,offset
bx, offset
si, offset

ah, [bx]
si
si,offset
dx,offset
dx,6

lodsb
cmp al, 255
je no so
cmp ah, al
jne so test

;Get number of characters read in
dumpbuf+31 ;Position Ascii-Codes in the buffer
newbyte ;Pointer to input buffer
dumpbuf ;Position for Hex-Codes in Buffer

;Read in Byte
;store SI on the Stack

sotab ;Address of special character table
sotext-6 ;Address of special character text

;next entry in special text
;Load code from special char table
;Reached end of table?
;YES --> no special character
;do codes agree?
;NO --> test next table element

Code was a special character ---------------------------

push ex
mov si,dx
lodsb
mov cl,al
rep movsb
pop ex
pop si
mov al,ah
jmp short hex

pop si
mov al,ah
stosb

mov al,ah
and ah, llllb
shr al,1
shr al,1
shr al,1
shr al,1
or ax,3030h
cmp al, 11 911

jbe nobal
add al, "A11 - 11 l "-9
cmp ah, ugu

jbe hexout
add ah, "A11 - 11 l 11-9
mov [si],ax
add si, 3

inc bx
loop bytein

mov al,219
stosb

mov ax,LF shl B + CR
stosw

; Store Counter
; copy DX to SI
;read nwnber of char control codes
;transfer nwnber of characters to CL
;copy designation into buffer
; get counter
;return SI from Stack
;copy character to AL
;calculate Hex-Code

;return SI from Stack
;copy character to AL
;store in buffer

;Code of character to AL
;mask upper 4 Bit in AH
;shift AL right 4 Bits

;convert AH and AL into ASCII-Codes
;is AL a letter?
;NO --> no correction
;correct AL
;is AH a letter?
;NO --> no correction
;correct AH
;store Hex-Code in buffer
;point to next Position

; set pointer to next Byte
;process next Byte

;set separator

;CR and LF terminate buffer
;write in buffer

Send Dump to the Standard output device

mov bx,l ;Standard output is handle 1
mov cx,di ;determine number of characters to be
sub ex, offset dumpbuf ;transmitted
mov dx, offset dumpbuf ;Address of buffer
mov ah,40h ; Function code for handle
int 21h ;call DOS-function
jmp dump ; read in next 9 Bytes

Abacus

dwnpend label near

mov ax,4C00h
int 2lh

6.10 DOS Filters

;Function number for ending program
;end program with End code

;== Data ==

new byte
dwnpbuf

sot ab

so text

code

db 9 dup (?)

db 30 dup (?), 219
db 49 dup (?)

db NUL,BEL,BS,TAB
db LF,CR,EOF,ESC
db 255

equ this byte
db 5, .. <NUL>"
db 5, "<BEL>"
db 4, 11<BS> II

db 5, "<TAB>"
db 4, "<LF> "
db 4, "<CR> II

db S, 11 <EOF> 11

db 5,"<ESC>"

ends
end dump

;the 9 Bytes read in
;the output buffer

;Table of control characters

;Text of special characters
;NUL
;Bell
;Backspace
;Tabulator
;Linefeed
;carriage-Return
;End Of File
;Escape

;End Of CODE-Segment

141

6. The Disk Operating System PC System Programming

6.11 <Ctrl><Break> and Critical Error Interrupts

DOS offers two ways of stopping a program during execution. These situations
occur when the user hits <Ctrl><Break> (<Ctrl><C>), or when a critical error
occurs during access to an external device (i.e., printer, hard disk, disk drive, etc.).
Although the key combination varies with the PC configuration, we'll use
<Ctrl><Break> consistently in this section.

<Ctrl><Break>

Pressing <Ctrl><Break> to stop a program during execution can have some
serious consequences. After the user presses this key combination, DOS abruptly
takes control from the program without allowing the program to perform any
"housekeeping" that may be needed. Files are not closed properly, diverted interrupt
vectors are not reset, and allocated memory is not released. The final result can
range from a loss of data to a system crash.

In order to prevent this, DOS calls interrupt 23H. This interrupt is also known as
the <Ctrl><Break> interrupt. When a program is started, this interrupt points to a
routine which brings about the end of the program. But a program is free to select
a routine of its own, thus maintaining control of what occurs when the user
presses <Ctrl><Break>.

However, the interrupt routine doesn't execute immediately. The break flag
controls when the interrupt routine occurs. This flag can be set at the DOS prompt
using the BREAK (ON/OFF) command from DOS, or with the help of DOS
function 33H, sub-function 1. If the break flag is on, every time a function of
DOS interrupt 21H is called, the keyboard buffer will be checked to see if either
<Ctrl><Break> or <Ctrl><C> has been pressed. If the break flag is off, this check
will be made only when calling the DOS functions that access the standard input
and output devices.

If this test finds the appropriate key combination, the processor registers are loaded
with the values contained in the DOS function to be executed. Only after this is
interrupt 23H called.

If a program directs this interrupt to a routine of its own, there are several ways to
react. For example, the program could open a window on the screen which asks if
the user would like to end the program. It can also decide for itself whether or not
the program should end.

Maintenance

142

If the program chooses to halt execution, some form of clean-up routine should
follow. A routine of this type closes all open files, resets any changed interrupt
pointers, and releases any allocated memory. After this, function 4CH can end the
program without returning control to the interrupt 23H caller.

Abacus 6.11 <Ctrl><Break> and Critical E"or Interrupts

If <Ctrl><Break> is to be ignored, then the IRET assembly language instruction
must return control to DOS. The program must then ensure that all processor
registers contain the same values they had when interrupt 23H was invoked.
Otherwise, the DOS function that was originally called cannot be completed
without error.

Both ways of handling this situation will be demonstrated in an example at the end
of this section.

Critical error interrupt

Unlike the <Ctrl><Break> interrupt, the critical error interrupt call is rarely a
reaction to something the user does intentionally. It is usually a reaction to an
error that occurs when accessing an external device, such as a printer, disk drive, or
hard disk. While the user can correct the error in many cases (e.g., printer not
turned on), other errors can be caused by hardware failures that require repairs (e.g.,
read error while accessing hard disk).

To make allowances for the various kinds of errors, the critical error interrupt
(interrupt 24H) normally points to a DOS routine that displays the following or a
similar message on the screen and waits for input from the user:

(A)bort (R)etry (I)gnore (F)ail

This clears the screen of the program currently under execution. In addition, this
interrupt doesn't provide a "clean" program end. Like <Ctrl><Break>, the program
is in a situation where files are not properly closed, allocated memory is not
released, etc.

Installing an interrupt handler in a program to replace the DOS handler can help
here, too. DOS enlists the help of a processor register to pass this handler various
information when it is called. This helps the interrupt handler locate the source of
the error. Bit 7 in the AH register indicates either a floppy or hard disk access error
(bit 7 oft), or some other error (bit 7 on). In addition, the BP:SI register pair
points to the head of the device driver that was being called when the error
appeared. A detailed error code is contained in the lower 8 bits of the DI register,
and the contents of the upper 8 bits are undefined. This returns the following error
codes:

143

6. The Disk Operating System PC System Programming

Error Codes Passed to the Critical Error Handler

Code Meani~

OOh Disk is write protected
Olh Access to an unknown device
02h Drive not ready
03h Unknown corrunand
04h CRC error
05h Wrong data length
06h Seek error
07h Unknown device type
08h Sector not found
09h Printer out of paper
OAh Write error
OBh Read error
Och General error

When called, the critical error handler can respond by opening a window on the
screen that asks the user to decide to ignore the error, retry the access, or abort the
program. The latter option can only instruct the interrupt to call DOS functions
OlH to OCH. This means that the program ends abruptly, similar to pressing
<Ctrl><Break>. While it is true that calling other DOS functions within the
handler causes no errors in itself, the return to DOS causes a system crash. Such
handlers are also not allowed to end a program through the use of DOS function
4CH. Instead the handler must return to its caller with the help of the IRET
command. With that, DOS expects a code in the AL register that will show it how
to react to the error. It interprets the contents of the AL register as follows:

Output Codes of a Critical Error Handler

144

Code Meani129..
OOh Ignore the error
Olh Retry the operation
02h End program with Interrupt 23h
03h End function called with an
error (DOS 3. 0 l!E_ on~

The last output code in the above list represents the most sensible reaction to an
error that can't be fixed by repeating the operation (as in the example where the
printer needs to be turned on). The receipt of this code invokes the normal ending
of the function call in which the error occurred. The function then sets the carry
flag to signal the error. While this makes a "critical" error and a "normal" error
indistinguishable to the program, it's possible to tell them apart by setting a flag
within the critical error handler.

**;
C E H A N D •;

*--------------------------------=-----------------------------------•;
Description : Forms the basic structure of an assembler *;

program, in which the DOS Ctrl-Break and •;
Critical Error Interrupt are captured •;

*--•;
Author : MICHAEL TISCHER *;
developed on 9/5/1988 •;
last update : 4/8/1989 •;

Abacus 6.11 <Ctrl><Break> arul Critical Error lnt.errupts

;* call CE HAND *;
;* (please leave the disk drive open so that a *;
; * Critical Error occurs.) *;
•**• ' ' ;== constants ==

;== stack ==
stack

stack
; == data
data
er err

segment para stack
dw 256 dup (?)
ends

segment para 'DATA'
db 0

;definition of the stack segment
;the stack is 256 words
;end of the stack segment

;definition of the data segment

cr_typ db 0

;goes to 1, if a critical error occurs
;during access to a peripheral device
;(floppy, hard disk, or printer)
;error number of the critical error

er mes db "Critical error! (A) bort or (R) etry: $"
neXt line db 13,10, 0 $"
end mes db "Program ended normally.$"
brk mes db "Program aborted.$"
dat nam db 11 A:TEST.DAT 11 ,0 ;name of the test file

;end of the data segment data ends
;== code
code

start

dat _open:

exit:

segment para 'CODE' ;definition of the CODE segment
assume cs:code, ds:data, ss:stack
proc far
;-- install both Interrupt Handlers --------------------------
push cs ;put CS on the stack
pop ds ;and return as OS
mov
mov
int
mov
mov
int
mov
mov

'

'
' mov
mov
mov
int
jnc
crnp
je
call
jmp

;--
;--
mov
mov
int
mov
int

ax,2523h
dx, offset
21h
al,24h
dx,offset
2lh
ax, data
ds,ax

you can add

cbreak

cerror

;fct.no.: set Ctrl-Break Handler
;DS:DX now contains the address of H.
;call DOS Interrupt
;now set Interrupt 24h
;DS:DX contains the address of the new H.
;call DOS Interrupt
;load segment address of the data segment in
;in the DS register

your program here

for a demonstration, try to open a file ----------------
on the opened disk drive -----------------

ah, 3dh ;function number: open file
al,O ;file mode: read only
dx,offset dat nam ;DS:DX = addresse of the filename
2lh ;call DOS Interrupt 21h
exit ;no error? NO --> END
cr_err,O ;critical error?
exit ;NO --> END
crit err ;a critical error occured
dat_open ;CRIT_ERR returns only if the operation

;should be retried
; (IGNORE is not possible)

the handler must not be re-installed before the end
of the program, since this is done by DOS

ah,9 ;function number: pass string
dx,offset end mes ;DS:DX =address of the message
21h ;call DOS Interrupt
ax,4C00h ;function no.: end program (ERRCODE=O)
21h ;call DOS Interrupt and end the program

;with it
start endp
;-- CRIT_ERR: called within the program after discovery of a

critical error
crit err proc near

, output message and ask for user input -------------------
ask: mov ah,9 ;function number: output string

mov dx,offset er mes ;DS:DX =address of the message
int 21h ;call DOS Interrupt

145

6. The Disk Operating System PC System Programming

146

mov ah, 1
int 21h
push ax
mov ah,9
mov dx,offset
int 21h
;-- interpret
pop ax
cmp al, 11 A"
je end_up
cmp al,"a"
je end_up
cmp al, •1r"
je crend
cmp al, "R"
jne ask

;function nwnber: input character
; call DOS Interrupt
; note the input
;function nwnber: output string

next line;DS:DX = address of the message
- ;call DOS Interrupt

the user's input ------------------------------
;retrieve the input
;abort?
;go to "clean-up" procedure
;abort?
;go to "clean-up" procedure
; retry?
;go to end of procedure
; retry?

crend: ret
;no, ask again
;return to caller

crit_err endp
;-- END_UP: executes a "clean" ending
end_up proc near

;-- all opened files can be closed and the system memory
;-- allocated by the program can be freed here

mov
mov
int
mov
int

ah,9
dx,offset brk_mes
2lh
ax,4COOh
2lh

;function nwnber: output string
;DS:DX = address of the message
;ca11 DOS Interrupt
;end the program normally with the
; 4Ch function

end_up endp
;-- CBREAK: the new Ctrl-Break Handler ---------------------------------
cbreak proc far

go_on:

;-- all registers altered within this routine (excluding
;-- the Flag Register) have to be secured on the stack
push ds
mov
mov
;--

ax,data ;load the segment address of the
ds,ax ;data segment in the OS-Register

for example, you can open a window here in which the
user is asked if he really wants to end the program

jmp go on ;don't end program
, if the user decides to end the program, a routine with --
;-- which the program can be ended can be started here
jmp end up ;prepare termination of the program
, the program should not be aborted, continue normal
;-- execution
pop ds
iret

;restore saved register
;back to DOS, where the interrupted
;function is continued normally

..:break endp
;-- CERROR: the new Critical Error Handler -----------------------------
cerror proc far

;-- each of the registers (SS, SP, DX, ES, DX, ex und BX)
;-- that was altered within this routine must be saved
;-- on the stack
sti ;allow interrupts again
push ds

Abacus

mov ax, data
mov ds,ax
mov er err, 1
mov ax-;-di
mov cr_typ,al
mov al,3
pop ds
iret

cerror endp

6.11 <Ctrl> <Break> and Critical Error Interrupts

;load segment address of the data segment
;in the OS-Register
;point to critical error
;error number to AX
;note error number
;end function call with error
; fetch DS again

;---
code ends

end start
end of the code segment
start program execution with
the START procedure

147

6. The Disk Operating System PC System Programming

6. 1 2 DOS Device Drivers

A device driver is the part of the operating system responsible for the control of,
and the communication with, the hardware. It represents the lowest level of an
operating system, and permits all other levels to work independent of hardware.
When adapting an operating system to various computers, this is an advantage.
The entire operating system doesn't have to be changed, only the various device
drivers.

In earlier operating systems, device drivers resided in the operating system code.
This meant that changes or upgrades of these routines to match new hardware were
very difficult, if not impossible. DOS Version 2.0 introduced a flexible concept of
device drivers. This makes it possible for the user to adapt even the most exotic
PC clone to DOS.

Custom drivers

Drivers

Since communication between DOS and a device driver is based on relatively
simple function calls and data structures, the assembly language programmer can
develop a device driver to adapt DOS to any device. Unfortunately, device drivers
cannot be programmed in a higher level language.

When developing the code for a driver, the same rules are observed as for
developing a COM program (no direct segment access). The difference is that a
device driver starts at offset address OH, and not at lOOH. The end of this section
explains the assembly language implementation in detail.

During the DOS boot process, the drivers NUL, CON, AUX, PRN and the drivers
for the disk drives and hard drive (if needed) are loaded and installed. They are
arranged sequentially in memory and connected to each other. If the user wants to
install his own driver, he has to inform DOS using the CONFIG.SYS file. This
text file contains the information which DOS requires for configuring the system.
Contents of the CONFIG.SYS file are read and evaluated during the boot process
after linking the standard drivers. If DOS finds the DEVICE= command, it knows
that a new driver should be included. The name of the driver and perhaps a device
and path designation are indicated after the equal sign.

ANSI.SYS

148

The following command sequence includes the ANSI.SYS driver, which is
supplied with DOS. This driver makes enhanced character output and keyboard
functions available:

DEVICE=ANSI.SYS

Abacus 6.12 DOS Device Drivers

The new driver is added to the chain immediately following the NUL device driver
(the first driver in the chain). The ANSI.SYS driver replaces the default CON
driver. To ensure that all function calls for monitor or keyboard communication
operate through ANSI.SYS, the ANSI.SYS driver is placed first in the device
group, and the CON driver is moved farther down the chain of devices. Since the
operating system moves from link to link during the search, it finds the new CON
driver (ANSI.SYS) first and uses it. Therefore, the system ignores the old CON
driver as seen in the illustration below:

Before adding
new CON
driver 5'

Q
CD
Ill
Ill
3·
cc
3
CD
3
0

<
Ill
Q.
Q. ...
CD

~
Ill

The driver chain

ASSIGN

Not all drivers can be replaced with new ones. The NUL driver is always the first
driver in the chain. If you add a new NUL driver, the system ignores the new driver
and continues accessing the original NUL driver. This also applies to the drivers
for floppy disk drives and hard drives. The reason for this is that disk drives have
drive specifiers instead of names such as CON (e.g., A:). A new disk drive can be
added to the system, but since OOS may assign it the name D:, it may not be
addressed by all programs which want to access device A:. This problem can be
avoided by redirecting all device accesses using OOS's ASSIGN command. You
can make the ASSIGN command part of the AUTOEXEC.BAT file. It executes
after adding drivers and executing the CONFIG.SYS file. To redirect all accesses
from drive A: (the first disk drive) to device D: (in this case, a new driver for a new
disk drive), the AUTOEXEC.BAT file must contain the following command
sequence:

149

6. The Disk Operating System PC System Programming

ASSIGN A=D

The drivers for mass storage devices and the drivers such as PRN are handled
differently. DOS has two kinds of device drivers:

Character device drivers

Block device drivers

Character device drivers communicate with the keyboard, screen, printer and other
hardware on a character by character (byte by byte) basis. Block device drivers can
transmit an entire series of characters during each function call (disks, hard disks,
etc.). The two driver groups differ somewhat through the ways each supports
different functions.

6.12.1 Character Device Drivers

Let's start with character device drivers because their structure is simpler than block
device drivers. Character device drivers transmit one byte for every function call.
They communicate with devices such as the keyboard, display, printer and modem.
A device driver can service only one device. Therefore, individual drivers for
keyboard, display, printer, etc., exist in DOS after booting.

Character devices can operate in either cooked mode or raw mode.

Cooked mode

In cooked mode, the device driver reads characters from the device and performs a
test for certain control characters. DOS then passes the character to an internal
buffer. DOS also checks to determine whether any <Enter>, <Ctrl><P>,
<Ctrl><S> or <Ctrl><C> characters exist. If the system detects the <Enter>
character, it ignores any further input from the device driver, even if the specified
number of characters has not yet been read. Then the characters read are copied from
the internal buffer to the buffer of the calling program. If characters are output in
cooked mode, DOS tests for <Ctrl><C> or <Ctrl><Break>. If one of these
combinations is detected, the currently running program stops. Pressing
<Ctrl><S> temporarily stops the program until the user presses any other key.
<Ctrl><P> redirects the output from the screen to the printer (PRN). Pressing
<Ctrl><P> a second time redirects the output from the printer back to the screen.

Raw mode

150

In raw mode, the device driver reads all characters without testing. If a program
wants to read in 10 characters, it reads exactly 10 characters, even if the user
presses the <Enter> key as the second character of the string. Raw mode transmits
the characters direct to the calling program's buffer, instead of using an internal
DOS buffer. During character output, raw mode doesn't test for <Ctrl><C> or
<Ctrl><Break>.

Abacus 6.12 DOS Device Drivers

DOS function 44H of interrupt 21H defines the mode of the character device driver
(see the end of this section for a detailed description of this interrupt).

6.12.2 Block Device Drivers

A block device driver normally communicates with mass storage devices such as
floppy or hard disks, or high speed cassette tapes. For this reason, they
simultaneously transmit a number of characters which are designated as a block. In
some cases, a single call to a function transmits several blocks of data. The sizes
of these blocks can differ from one mass storage device to another, as well as
within one particular mass storage device.

How block device drivers work

Access

Unlike character device drivers, a block device driver can control several devices at
the same time. You can even divide one device into several logical units. For
example, a 40 megabyte hard disk can be divided into two 20 megabyte hard disks
with the names C and D. These logical devices have single-letter specifiers instead
of device names or filenames. The device designation depends on its position in the
chain of device drivers. If a device driver supports several logical devices, single
letters can be used as specifiers in sequential order. This is why the example above
lists two logical drives named C and D instead of C and F.

Every one of these devices must have a file allocation table (FAT) and a root
directory. Block device drivers make no distinction between cooked and raw modes.
They always read and write the exact number of blocks unless an error is detected.

There are several ways to access a device driver. Character device drivers are
accessed using the normal FCB or handle functions by simply indicating the name
of a driver (e.g., CON: instead of a filename). A block device driver is accessed
using the normal DOS functions (file, directory, etc.) by using the drive designator
assigned by DOS during the boot process.

Functions IH through CH of interrupt 21H invoke read and write operations in a
device driver. Two other options exist for accessing device drivers. These will be
discussed shortly.

6.12.3 Structure of a Device Driver

Even though the two types of device drivers differ in some important details, they
do have similar structures. Each has a device header, a strategy routine and an
interrupt routine (a different kind of interrupt from the ones you've read about up
until now).

151

6. The Disk Operating System PC System Programming

Device header

152

The device header appears at the beginning of each device driver and contains
infonnation needed by DOS for implementing the driver.

The first two fields are the link to the next driver (offset and segment address) in
the chain of device drivers. The memory locations required for these link fields
must be reserved by the programmer, but DOS fills in when the driver is installed
in the system. The next field of the device header is the attribute word. The
attribute word describes the device driver and tells DOS, among other things, if it
is a block or character device driver.

Device attribute
+ 06H Offset address of strate routine
+ 08H Offset address of interru t routine
+ OAH Driver name from character driver

or number of devices used by block driver

Device driver header

RAM

0000

Abacus 6.12 DOS Device Drivers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit
1 =O.rTet1t standard I I I lxl lxlxlxlxlxlxlxl I I I I____, oulpJt de\lka

l -- 1 =CUmlt1t standard -- ilputde'vice

- 1=0.net1t
dock device

- 1=rurrent
NULdevice ..
1=Medum ..
chMge
recograed ..., 1 =flOll-IBM
fcnnat
(block driver)

1 =OUlpUt lXllil

~
nslnrtld
(chcvader driver)

1=10Cll. ..
support

<>=block driver .. 1 =Chaa:;Er driver ..

Structure of the device attribute

Only bits 11 through 15 are used by a block driver. The IOCTL bit tells DOS if
this driver supports the IOCTL function of DOS. The end of this chapter and the
descriptions of functions 3 and 12 describe this function in greater detail. Bit 11
first appears in DOS Version 3 and should be 0 in earlier versions. A block driver
indicates whether a medium change is recognized on the device supported (e.g., a
floppy disk drive). If the bit is set, the driver must support a few additional
functions.

The next two fields contain the offset address of the strategy routine and interrupt
routine. The last field contains the name of the device driver if it is a character
device driver. If the name is less than eight characters in length, blank spaces
(ASCII code 32) pad the remaining characters. If it is a block device driver, the first
byte of this field contains the number of logical devices supported by the driver.
The remaining seven bytes of this field remain unused and contain the value 0.

Strategy routine

DOS calls the strategy routine first to initialize the driver, then repeatedly before
each subsequent 1/0 request from the driver's interrupt routine. The address of a data

153

6. The Disk Operating System PC System Programming

structure which contains information about the operation to be performed (the
request header) is passed by DOS to the strategy routine in register pair ES:BX.
The double word pointer to the data block is stored, and control immediately
returns to DOS. DOS then calls the interrupt routine of the driver to perform the
actual operation.

The request header, whose address is passed to the strategy routine, always contains
at least 13 bytes and contains information which tells the driver how to perform
the upcoming operation. Depending on the operations performed, further
information can be added to the end of the request header which differs depending on
the operation.

+ OOH Data block length in bytes (1 word) I\ 0000.0000 + OlH Device number in communication (1 word)
+ 02H Command code (1 word)
+ 05H Reserved (8 bytes)
+ ODH Media descriptor (1 byte)

RAM

+ OEH Buffer offset address (1 word) v + lOH Buffer segment address (1 word)
+ 12H Number (1 word) • + 14H Starting sector (8 bytes)

Structure of the request header

DOS calls the interrupt routine immediately after calling the strategy routine. Its
first task is to save the processor registers that will have their contents changed by
the various functions of the driver to the stack. Then it obtains the command code
from field 3 of the request header and calls the appropriate command code routine.
After executing the routine, it fills in the status field of the request header and
restores the processor registers from the stack. As a last step it returns control to
the calling DOS function.

Status field

154

The value of the status field specifies whether the function executed without error,
or if an error occurred during execution. For this reason, every driver function must
set the DONE bit (bit 8) in the status field. This DONE bit must be set even if the
function is a dummy (non-performing) function.

Abacus

-1=error _J
1 =ready

1:busy

6.12 DOS Device Drivers

Error code when bit 15=1:
O:medium write protected
1 :unknown device
2=drive not ready
3:unknown command
4:read (CRC·) error
5:parameter data block
has a false length
&:search error
7=unknown medium
S:sector not found
9:printer out of paper
1 O:write error
11 =read error
12:common error
13:illegal medium change

Status.field e"or codes

6.12.4 Device Driver Functions

Under DOS Version 2, any installable device driver must support 13 functions,
numbered from 0 to 12, even if their only action consists of setting the DONE
flag in the status word. DOS Versions 3 and 4 include four additional functions
which can be supported, but are not required. Some of these functions concern one
of the two driver types, while others apply to both driver types (e.g.,
initialization). Unused functions must at least set the DONE flag of the status
word. Let's look at the various functions in detail according to their function
numbers.

Request header

Every function described here receives its arguments from the request header (whose
address is passed by DOS to the strategy routine) and stores its "results" in the
request header. For this reason, the offset address to the arguments, relative to the
beginning of the request header, is passed to the specified function. These
arguments are later transferred to variables. Besides this offset address, a flag
indicates whether this information consists of a byte, word or PTR. The P'IR data
type represents a pointer to a buffer and consists of two adjacent words. The first
word is the offset address of the buffer. The second word is the segment address of
the buffer.

155

6. The Disk Operating System PC System Programming

Function 0: Driver lnltlallzatlon

DOS calls this function ·during the system boot procedure to initialize the device
driver. This function can involve hardware initiali7.ation, setting various internal
variables to their default values, or the redirection of interrupts. Since the entire
operating system has not been completely initialized at this point, the
initialization routine can only call functions 1 through OCH and 30H of DOS
interrupt 21H. These functions can be used to determine the DOS version number
and to display a driver identification message on the screen. Even if the newly
linked driver is a CON driver, the output to the display occurs through the old
CON driver, because there are no new drivers linked into the system after
completion of the initialization routine.

Initialization and the request header

The initialization routine can obtain two pieces of information from the request
header. The first item is the memory address containing the text following the
equal sign on the line in the CONFIG.SYS file that loaded the driver into the
system.

A typical line in a CONFIG.SYS file can look like this:

DEVICE=ANSI.SYS

In this case, the device name is ANSI.SYS, which assigns the standard ANSI
escape sequences for screen control to the PC. The memory address passed to the
initialization routine points to the character following the equal sign (in this case,
the A of ANSI.SYS). This makes it possible to store additional information
following the name of the device driver. This information is ignored by DOS, but
can be read by other routines.

Logical device designation

156

The second item is only available under DOS Version 3.0 and higher, and only if
the driver is a block device driver. This is the letter designation of the first logical
device of the driver. The value 0 stands for A, 1 for B, 2 for C, and so on.

The initialization routine must return four parameters to the calling DOS function.
The first parameter is the status of the function, i.e., the indication of whether the
function has executed correctly. For a block device driver, the number of logical
devices supported must also be passed. This information could also be obtained
from the device driver's header, but is ignored by DOS.

Abacus

BPB

6.12 DOS Device Drivers

The next parameter that the device driver must pass to DOS is the highest memory
address which it occupies or uses. This lets DOS know where the next device
driver can be installed.

If the driver is a block device driver, the last argument passed must be the address
of an array which contains an entry for every logical device. This array contains the
addresses of BIOS parameter blocks (BPBs). The address is passed as two words,
the first word contains the otlset, and the second word contains the segment address
of the array. The first two words within this table are the address for the first
logical device supported. The next two words indicate the address for the second
logical device, etc. The BPB, described in detail in Section 6.12, is a data block
containing information which describes a logical device. If all or some of the
logical devices have the same format, all entries in the BPB address table can point
to a single BPB.

+ OOH Bytes per sector (1 word)

+ 02H Sectors per cluster (1 byte)

+ 03H Reserved sectors (including_ boot sectors) (1 word)

+ 05H Number of FATs (1 byte)

+ 06H Maximum number of entries in root directory_ (1 word)

+ OBH Total number of sectors (1 word)

+ OAH Media descr~tor (1 by_te)

+ OBH Number of sectors per FAT (1 word)

BIOS Parameter Block design

FBH = hard disk

F9H = 5.25" diskette, double-sided, 15 sectors per track

FCH = 5.25" diskette, single-sided, 9 sectors per track

FDH = 5.25" diskette, double-sided, 9 sectors per track

FEH = 5.25" diskette, single-sided, 8 sectors per track

FFH = 5.25" diskette, double-sided, 8 sectors per track

Media descriptor byte

157

6. The Disk Operating System PC System Programming

Calli~arameters of function 0:
Offset 2 (bYteI
Offset 18 (ptr)

Offset 22 (byte)

Function number]QI
Address of character that follows the equal sign after the
DEVICE command in the CONFIG.SYS file
Device number of the first device supported by the driver
(O=A, l=B ...) (applies to block device drivers from DOS
Version 3.0 lfil.On!Y}_

Address of first available memory location following the
driver

Offset 18 (ptr) Address of array containing the addresses of BPB (block
devices onl

Function 1: Media Check

158

This function is used only with a block device driver. A character device driver
should merely set the DONE flag of the status word and exit. This function is used
by DOS to determine whether the media (diskette) has changed. It is often used
when examining a disk directory. If the disk medium was not changed since the
last access, DOS still has this information in memory, otherwise DOS must reread
the information from the media which delays the execution of the current task.

In some cases, as with floppy disks, the answer to the question is fairly
complicated. For this reason DOS permits function 1 to answer not only with
"yes" and "no", but also with "don't know." In any case, the answer affects further
DOS activity.

If the media is unchanged, access to the media can take place immediately. If the
media was changed, however, DOS closes all internal buffers related to the current
logical device. This causes the loss of all data which should have been transmitted
to the media. Then it calls function 2 of the current device driver, loads the FAT
and the root directory. If the media check function answers with "don't know," the
additional steps taken by DOS depend on the status of the internal buffers related to
the current logical device. If these internal buffers are empty, DOS assumes that
the media was changed and acts as if function 1 answered "yes." If the buffers
contain data which should have been transmitted to the media, DOS assumes that
the media is intact and writes the data. If the media was indeed changed, the data
written to a changed media may damage the new diskette's file structure.

Since subsequent processing depends on the response from the media check
function, the driver should handle the response carefully. Before enabling the
mechanism used by the function to respond, the function examines the parameters
passed to it. If the driver supports several logical devices, the first parameter is the

Abacus 6.12 DOS Device Drivers

number of devices. Next is a media descriptor code. This code contains information
about the type of media last used in the current logical device. Only devices which
can handle several different formats can use this task. For example, AT disk drives
which can use both 360K and 1.2 megabyte diskette formats.

If the media check function determines that the medium in a device is non
removable (e.g., a fixed disk), it can always respond "not changed". If, on the other
hand the device media can be changed (e.g., a disk), the correct response can only
be determined by fairly complex procedures. If these procedures are not used, the
response should be "don't know".

For the sake of completeness, here are the three procedures which provide fairly
accurate results.

Since a device with changeable media has an opening and closing mechanism, the
function should check to determine whether the media was removed. However, it
cannot determine if the removed media is identical to the newly inserted medium.

If the media has a name, the function should read this name to determine whether
the media was changed. This procedure only makes sense if every media has a
unique name.

The disk drive procedure used by DOS hinges on the fact that changing medium
takes some time. DOS assumes that even a user that can move fast needs about
two seconds to remove a diskette from a drive and insert a new diskette in the same
drive. If two consecutive diskette accesses occur less than two seconds apart, DOS
assumes that no diskette change occurred.

A byte in the data block is used to indicate changes. The value -1 (FFH) means
"changed", 0 means "don't know" and 1 means "not changed".

If the media was changed, the device driver signals a media change (bit 11 in the
device attribute= 1), the address of a buffer must be passed to DOS Version 3 and
newer, which contains the volume name of the previous media This name must
be stored there as an ASCII string and terminated with an end character (ASCII
codeO).

159

6. The Disk Operating System PC System Programming

Returned parameters of function 1:
Offset 3 _{.wor<!}_ Status word
Offset 14 (byte) Was media changed?

FFH = ies OOH = don't know OlH = no
Offset 15 (ptr) Address of buffer containing the previous volume name

l. on!Y_ if device indicates a media chan.fil.

Function 2: Bulld BIOS Parameter Block (BPB)

This function is used only by block device drivers. A character device driver should
just set the DONE flag of the status word and exit. DOS calls this function when
the media check function determines that the media was changed. This function
returns a pointer to a new BPB for the media.

As you can see by the layout of the calling parameters, the device number media
descriptor and a pointer to a buffer are passed to this function by DOS. If the
device is a standard format (bit 13 of the device attribute =0), then the buffer
contains the first sector of the FAT.

Callin
Device number

the FAT see above

Returned parameters of function 2:
Offset 3].wor<fi: I Status word
Offset 18 :fuir..I I A~s of the BPB of addressed device

Function 3: 1/0 Control Read

160

This function passes control information from the character or block device driver
to the application program. It can only be called through function 44H of interrupt
21H if the IOC1L bit in the device attribute word in the device driver header is set.
Different parameters are passed to the function, depending on whether the driver is
a character or a block device driver.

A character device driver is passed the number of characters to be transferred and the
address of a buffer for the transfer of the data.

A block device driver is passed the device number, the media descriptor byte, the
address of the buffer to be used for the data transfer, the pointer to the first sector to
be read and the number of sectors to be read.

Abacus

Callin

6.12 DOS Device Drivers

Address of buffer into which data should be transmitted
Number of sectors to be read (block device) or
Number of characters to be read character device
First sector to be read lock devices onl

Returned parameters of function 3:
Offset 3 Iworcll Status word
Offset 18 (word) Number of sectors read (block device)

Number of characters read{character devictl

Function 4: Read

This function reads data from the device to a buffer specified in the calling
parameter. Should an error occur reading the data, the error status must be set.
Additionally the function must report the number of sectors or bytes read
successfully. Simply reporting an error is not good enough.

Callin

Offset 18 (word) Number of sectors to be read (block device) or
Number of characters to be read character device
First sector to be read lock device onl

Returned _Q_arameters of function 4:
Offset {[worcil Status word
Offset 18 (word) Number of sectors read (block device) or

Number of characters read ~haracter deVic~
Offset 22 (ptr) Pointer to volume ID on return of error OFH (Version 3.0

and h!g_he!'}_

Function 5: Non-destructive Read

This function is used by a character device driver to test for unread characters in the
input buffer. A block device should set the DONE flag of the status word and exit.

DOS tests for additional characters using this function. If more characters exist, the
busy bit must be cleared (set to 0) and the next character passed to DOS. The
character that is passed remains in the buffer so that a subsequent call to a read

161

6. The Disk Operating System PC System Programming

function will return this same character. If no additional characters exist, the busy
bit must be set (set to 1).

Returned parameters of function 5:
Offset 3 _{_wor<n. l Status word
Offset 13 (byaj} The character read

Function 6: Input Status

This function is used to determine if a character is waiting to be read from the
input buffer of a character device. A block device driver should set the DONE flag
of the status word and exit.

If a character is waiting to be read from the input buffer, the busy bit is cleared (set
to 0). If a character is not in the input buffer, the busy bit is set (set to 1).

When a character is waiting to be read, the Input Status function (06H) resets the
status word busy bit to 0 and returns the character to DOS. The character is not
removed from the buffer and is therefore non-destructive. This function is
equivalent to a one-character look ahead.

Returned parameters of function 6:
Offset 3 (word) l Status word: Characters already in buffer= O; Read request to

~ical device = 1

Function 7: Flush Input Buffers

162

This function clears the internal input buffers of a character device driver. Any
characters read but not yet passed to DOS are lost when this function is used. A
block device driver should set the DONE flag of the status word and exit.

Abacus 6.12 DOS Device Drivers

Function 8: Write

This function transfers characters from a buffer to the current device. If an error
occurs during transmission, the status word is used to indicate this error. Both
block and character devices use this function.

The parameters used for this function depend on whether the driver is for a character
or block device. Both pass a buffer address from which a certain number of
characters should be transferred. A character device driver is passed the number of
bytes to be transferred in addition to this information.

A block driver is passed the number of sectors to transfer (not the number of
characters), the number of the device to be addressed, its media descriptor and the
address of the first sector on the medium.

Should an error occur writing the data, the error status must be set. Additionally
the function must report the number of sectors or bytes written successfully.
Simply reporting an error is not good enough.

Media descri tor of device addressed lock device onl
Address of the buffer containin data
Number of sectors to be written (block device)
Number of characters to be written character device
first sector to be written lock device onl

Returned _p1!fameters of function 8:
Offset 3 _iwor<!l._ status word
Offset 18 (word) Number of sectors written (block device)

Number of characters written ~haracter devic~
Offset 22 (ptr) Pointer to volume ID on return of error OFH (Version 3.0

l_!Q}__

Function 9: Write with Verify

This function is similar to function 8, but with the difference that the characters
written are reread and verified.

Some devices, especially character devices such as a monitor or a printer, do not
require verification since either no errors occur during transmission (monitor) or
the data cannot be verified (printer).

163

6. The Disk Operating System PC System Programming

Callin

lock device onl

Number of sectors to be written (block device)
Number of characters to be written character device
First sector to be written lock device onl

Returned parameters of function 9:
Offset 3].worc[Status word
Offset 18 (word) Number of sectors written (block device)

Number of characters written jf:haracter devic~
Offset 22 (ptr) Pointer to volume ID on return of error OFH (Version 3.0

l!lll_

Function 10: Output Status

This function indicates whether the last write operation to a character device is
completed or not. A block device should set the DONE flag in the status word and
exit.

If the last write operation is complete then the busy bit of the status word is
cleared; otherwise the busy bit is set to 1.

Callin
Function number 10

Returned parameter of function 10:
Offset 3 (word) l Status word: The busy bit is 1 if the last character output

has not been conmJeted

Function 11: Flush Output Buffers

164

This function completely clears the output buffer even if it contains characters
waiting for output. A block device should set the DONE flag on the status word
and exit.

Abacus 6.12 DOS Device Drivers

Function 12: 1/0 Control Write

This function passes control information from the application program to the
character or block device driver. It can only be called through function 44H of
interrupt 21H provided the IOC1L bit in the device attribute word in the device
driver header is set. Different parameters are passed to the function, depending on
whether the driver is a character or a block device driver.

A character device driver is passed the number of characters to be written and the
address of the buffer from which these characters are transferred.

A block device driver is passed the device number (in case the driver services
logical devices), the media descriptor byte, the address of the buffer from which the
data is to be written, the number of the first sector to be written and the number of
sectors to be written.

A character device driver returns the number of bytes written. A block device driver
returns the number of sectors written.

Media descri tor of addressed device lock device onl
Address of buffer from which data should be read
Number of sectors to be written (block device)
Number of characters to be written character device
First sector to be written lock device onl

Returned parameters of function 12:
Offset 3 J..wor<!}_ Status word
Offset 18 (word) Number of sectors written (block device)

Number of characters written _{character devic~

The following four functions are supported by DOS version 3.0 and higher.

Function 13: Open

This function can be used only if the OCR (Open/Close/RM) bit in the device
attribute word in the device driver header is set. Its task differs, depending whether
it is a character or block driver.

A block driver uses this function every time a file is opened. This function
determines how many open files exist on this device. Use this command carefully,
since programs which access FCB function calls tend cot to close open files. This
problem can be avoided by assuming during every media change that no files

165

6. The Disk Operating System PC System Programming

remain open. For devices with non-changeable media (e.g., a hard disk) even this
procedure may not help.

Within a character driver, this function can send an initialization string to the
device before transmitting the data. This is an advantage when used for
communication with the printer. The initialization string should not be included in
the driver, but can be called, for example, with the IOCTI.. function of interrupt
21H, which calls function 12 of a driver to transmit it from an application
program to the driver. The function can also be useful because it can prevent two
processes (in a network or in multiprocessing) from both accessing the same
device.

For the devices CON, PRN and AUX, this function is not called since they are
always open.

Function 14: Device Close

166

This function is the opposite of function 13. This function can only be addressed if
the OCR bit in the device attribute word of the device driver header is set Its task
differs, depending whether it is a character or block driver.

A block driver calls it after closing a file. This can be used to decrement a count of
open files. Once all files on a device are closed the driver should flush the buffers
on removable media devices, because it is likely that the user is about to remove
the media.

A character driver can use this function to send some closing control information
to a device after completing output. For a printer this could be a formfeed. As in
function 13, the string could be transmitted from an application program using the
IOCTI.. function.

I Returned :dieter of function 14:
Offset 3 (word I Status word

Abacus 6.12 DOS Device Drivers

Function 15: Removable Media

This function indicates if the media in a block device can be changed or not. This
function is used only if the OCR bit in the device attribute word of the device
driver is set. A character device driver should set the DONE flag in the status word
and exit

If the media can be removed, the busy bit is cleared; otherwise it is set to 1.

Returned parameter of function 15:
Offset 3 (word) I Status word: If the media can be removed, the busy bit must

contain the value 0

Function 16: Output until Busy

This function transfers data from a buffer to an output device until the device is
busy (i.e., can no longer accept more characters). As this function is supported by
character devices, a block device driver should set the DONE flag on the status
word and exit

This function works particularly well with print spoolers, through which files can
be sent to a printer as a background activity while a program executes in the
foreground. It is possible that not all of the characters in the transfer request will
be sent to a device during this function call. This is usually not an error, it could
be the result of the device becoming busy. The function is passed the number of
characters to be transmitted as well as the buffer address. If the output device
indicates during transmission that it can no longer accept additional characters, it
indicates the number of characters successfully transferred and returns control to the
device driver.

Callin_g__12_arameters of function 16:
Offset 2 (byte.l Function number])([
Offset 14JmrI Address of buffer from which data should be read
Offset 18l_worcIT Number of characters to be read

167

6. The Disk Operating System PC System Programming

Returned parameters of function 16:
Offset 3 _{_worc!i. J Status word
Offset 18:Iwor<ill_ Number of characters written

6.12.5 Clock Driver

The clock driver is a character device driver whose only function is to pass the date
and time from DOS to an application. The clock driver can also have a different
name, since DOS identifies it by the fact that bit 2 in the device attribute word of
the device driver header is set to 1, instead of by name. Bit 15 must also be set
since the clock driver is a character device driver. Functions 2AH to 2DH of DOS
interrupt 21H read the date and time and call the driver. A clock driver must
support only functions 4, 8 and 0 (initialization). During the call of function 4
(reading), the date and time pass from the driver to DOS. DOS can set a new date
and time with function 8. Both functions have the time and date passed in a buffer
of 6 bytes in length.

+ OOH Number of days since Jan.1,1980 (1 word)
\ oo=:ooo

+ 02H Minutes (1 byte)

+ 03H Hour (1 byte)

+ 04H Hundredths of seconds (1 byte) I + OSH Seconds byte)

,,
(1

Passing date and time to a clock driver

The date format is unusual. Instead of passing the month, day and year separately,
DOS passes the number of days elapsed since January 1, 1980 as a 16-bit number.
A fairly complex formula converts this number into normal date format, taking
leap years into account. The clock driver normally uses function 0 and 1 of the
BIOS interrupt IAH to read and set the time.

Clocks on AT models

168

AT and AT-compatible computers have a battery powered realtime clock.
Functions 0 and 1 of interrupt lAH use a software controlled time counter and not
the battery powered realtime clock. When the computer is rebooted, the date and
time previously set with driver function 8 is cleared. You can use the clock driver
to access the realtime clock using functions 2 and 5 of interrupt lAH instead of
function 0 and 1.

Abacus 6.12 DOS Device Drivers

6.12.6 Device Driver Calls from DOS

Open

Now that you have some familiarity with the functions of the different device
drivers, you can look toward developing your own personal device driver. Here are
the steps which take place before and after calling a device driver function.

A chain of events begins when a DOS function which handles input and output is
called using interrupt 21H. Calling one of these functions can in turn call a series
of other functions and corresponding read and write operations.

One example of this is when the Open function 3DH is called to open a file in a
subdirectory. First of all, before it can be opened, DOS must find the file. This
may require the searching of a set of directories instead of just reading in the FAT.
During each access of interrupt 2 lH, DOS determines which of the available device
drivers should be used to read or write characters. When this happens, DOS sets
aside an area in memory to store the information required by the device driver.

For files, DOS must convert the number of records to be processed into logical
sector numbers. DOS then calls the strategy routine of the device driver, to which
it passes the address of the newly created data block (request header). Then the
interrupt routine of the driver is called, which stores all registers. It isolates the
function code of the requested function from the data block and starts to process the
function.

If the addressed driver is a character device driver, the function only has to send the
characters to the hardware or request the characters to be read.

Block devices

For a block device (e.g., a mass storage device such as a floppy or hard disk) the
logical sector number must be converted into a physical address before a read or
write access. The logical sector number is broken down into a head, track and
physical sector number.

After the read or write operation ends, the driver function must place a result code
in the status field of the request header to be returned to the calling DOS function.
Next the contents of all registers are restored and control is returned to the calling
DOS function, which, depending on the result of the driver function, sets or resets
the carry flag and places any error code into the AX register. The interrupt function
then returns control to the routine which called interrupt 21H.

169

6. The Disk Operating System PC System Programming

6.12.7 Direct Device Driver Access: IOCTL

Here we discuss IOCTL in detail, since it offers an alternate method of
communicating with the device driver. You can only use these functions if the
IOCTL bit of the device attribute is set

The IOCTL function itself is one of many functions addressable from DOS
interrupt 21H. Its function number is 44H. Three groups of sub-functions are
accessible:

Device configuration

Data transmission

Driver status

The number of the desired sub-function is passed to the IOCTL function in the AL
register. After the function call, the carry flag indicates whether the function
executed correctly. A set carry flag indicates the occurrence of an error and the error
code can be found in the AX register.

Character device driver status

170

The number of the desired sub-function is passed to the IOCTL function in the AL
register. After the function call, the carry flag indicates whether the function
executed correctly. A set carry flag indicates the occurrence of an error and the error
code can be found in the AX register.

Sub-functions 6 and 7 can determine the status of a character device driver. Sub
function 6 can determine if the device is able to receive data. Sub-function 7 can
determine if the device can send data. The handle of this device is passed in the BX
register.

If the device is ready, both functions 6 and 7 return the value FFH in the AL
register.

Sub-function 2 reads control data from the character device driver. The handle is
passed in the BX register and the number of bytes to be read is passed in the CX
register. In addition, the DS:DX register pair contain the address of the buffer into
which the data will be read. If the carry flag is clear, then the function was
successful and the AX register contains the number of characters read. If the carry
flag is set, then there was an error and the AX register contains the error code.

Sub-function 3 writes control information from a buffer to the character device
driver. Again, the handle is passed in the BX register, the number of bytes to be
written in the CX register and the address of the buffer in the DS:DX register pair.

Abacus 6.12 DOS Device Drivers

The return codes are the same as for sub-function 2. These two sub-functions are
used to pass information between the application program and the device driver.

Block device driver status

For

For

Sub-functions 4 and 5 have the same task as sub-functions 2 and 3. However, they
are used for block devices and not character devices. Instead of passing the handle in
register BX, you pass the drive code (O=A, l=B, etc.) in the BL register.

Sub-function 0 is used to get device information for a specified handle. The sub
function number is passed in the AL register and the handle in the BX register. The
function returns the device information word in the DX register.

block devices:

bits 8-15 = reserved
bit 7 = 0 if a block device
bit 6 = 0 if file has been written

1 if file has not been written
bits0-5 = drive code (O=A, B=l, etc.)

character devices:

bit 15 = reserved
bit 14 = 1 if device supports IOCTL sub-functions

0 if device does not support IOCTL sub-
functions

bits 8-13 = reserved
bit 7 = if a character device
bit 6 = 0 if end of file for input device
bit 5 = 0 if cooked mode

1 if raw mode
bit 4 = reserved
bit 3 = 1 if clock device
bit 2 = 1 if NUL device
bit 1 = 1 if standard output device
bit 0 = 1 if standard input device

Cooked and raw modes

Sub-function 1 is used to set device information for a specified handle. This sub
function is often used to set the standard input device from cooked mode to raw
mode or back.

Two final interrupts are sometimes used by block device drivers. These two
interrupts, 25H and 26H are used to read from and write to the disk drive. You can
use these interrupts, for example, to process disks that were formatted using a
"foreign" operating system.

171

6. Th£ Disk Operating System PC System Programming

The device number is passed in the AL register, the number of sectors to be
transferred is passed in the CX register, the starting sector number to be transferred
is passed in the DX register and the buffer is passed in the DS:BX register. The
carry flag is clear if there was no errors. If the carry flag is set, then the error code
is returned in the AX register.

6.12.8 Tips on Developing Device Drivers

Major headaches in developing a device driver occur because of problems that arise
during the testing phases of a new driver. First, a device driver must load into a
memory location assigned to it by DOS, at an address unknown to the
programmer. Second, a newly developed CON driver can't be tested using the
DEBUG program, since DEBUG uses this driver for character input and output.

We recommend that after you write the actual driver, you write a short test
program that calls the individual functions in the same manner as DOS, but
without having the driver installed as part of DOS. The advantages to this are that
everything executes under user control, and the whole process can be corrected with
a debugger. In any case, a new device driver (especially a block device driver)
should only be linked into the system after it has been tested completely and has
been proven to be error-free.

Note: When working with a hard disk, prepare a floppy system diskette
before test booting the system from the hard disk with the new driver
installed for the first time. If a small bug should exist in the new
driver, and the initialization routine hangs up, the booting process
will not end and DOS will be out of control. In such a case, the only
remedy is to reset the system and boot wiih a DOS diskette in the
floppy drive. Once DOS loads, you can then access the hard disk and
remove the new driver.

6.12.9 Driver Examples

172

This section contains a sample device driver for each of the three different types of
device drivers, to demonstrate the information you've read about so far.

The first program is a character driver which corresponds exactly to the format of a
normal console driver. The second program is a block device driver which creates a
160K RAM disk. The final program is a DOS clock driver to support an AT
computer realtime clock.

CONDRY

Task : This program represents a normal Console

Driver (Keyboard and Display Monitor). It should •
serve as a framework for a driver in the form of •
an ANSI.SYS driver.

Abacus 6.12 DOS Device Drivers

;*---*;
; • Author MICHAEL TISCHER • ;
;• developed on 8.4.87 •;
, last Update 9.21.87 •;
;*---*;

..
'

assembly MASM CONDRV;
LINK CONDRV;
EXE2BIN CONDRV CONDRV.SYS

..
' . ;

;*---*;
; • Call Copy into Root Directory, copy the cormnand •;
;• DEVICE~CONDRV.SYS into the file CONFIG.SYS •;
•* and then boot the System. *•

code segment

assume cs:code,ds:code,es:code,ss:code

org 0 ;Program has no PSP therefore start
;at Offset address 0

;== Constants ===

cmd fld equ 2 ;Offset cormnand field in data block
status equ 3 ;Offset status field in data block
end adr equ 14 ;Offset driver end-adr. in data block
num db equ 18 ;Offset number in data block
b adr equ 14 ;Offset buffer address in data block

KEY SZ equ 20 ;Size of key board buffer
num cmd equ 16 ;Subfunctions 0-16 are supported

;== Data ==

Header of Device Driver ---

dw -1,-1
dw 10101000000000llb
dw offset strat
dw offset intr
db "CONDRV

;Connection to next driver
;Driver attribute
;Pointer to strategy routine
;Pointer to interrupt routine
;new Console driver

Jump Table for functions -------------------------

fkt tab

db_ptr

key a
key::::e
key_bu

dw offset init
dw offset dummy
dw offset dummy
dw offset no_sup
dw offset read
dw offset read_b
dw offset dummy
dw offset del in b
dw offset write
dw offset write
dw off set dummy
dw offset dummy
dw offset no_sup
dw offset dummy
dw off set durmny
dw offset dummy
dw offset write

dw (?), (?)

dw 0
dw 0
db KEY_SZ dup (?)

;Function
;Function
; Function
;Function
;Function
; Function
;Function
;Function
;Function
;Function
;Function
;Function
; Function
;Function
; Function
;Function
; Function

0: Initialization
1: Media Check
2: Create BPB
3: I/O control read
4: Read
5: Non-dest. Read
6: Input-Status
7: Erase Input-Buffer
8: Write
9: Write & Verify

10: Output-Status
11: Erase Output-Buffer
12: I/O control write
13: Open (starting at 3.0)
14: Close
15: changeable Medium
16: Out put until Busy

;Address of data block passed

;Pointer to next character in KEY SZ
;Pointer to last character in KEY SZ
;internal Keyboard Buffer

;== Routines and functions of driver ===============================

173

6. The Disk Operating System PC System Programming

174

st rat proc far

mov cs:db ptr,bx
mov cs:db=ptr+2,es

ret

;Strategy routine

;Store address of data block in the
;Variable DB_PTR

;back to caller

strat endp

;--
intr

bc_ok:

proc far

push ax
push bx
push ex
push dx
push di
push si
push bp
push ds
push es
pus hf

push cs
pop ds

;Interrupt routine

;Store registers on the stack

;store also the flag register

;Set data segment register
;Code is identical here with data

les di,dword ptr db_ptr;Address of data block to ES:DI
mov bl, es: [di+cmd fld] ;Get command-code
crop bl, num cmd - ; is command-code permitted?
jle be ok - ;YES --> bc_ok

mov ax,8003h
jmp short intr end

;Code for "unknown Command"
;back to caller

;-- Conmand-Code was o.k. --> Execute corrunand ----------------

shl bl, 1 ;Calculate pointer in jump table
xor bh, bh ; erase BH
call [fkt_tab+bxj ;Call function
les di,dword ptr db_ptr;Address of the data block to ES:DI

;-- Execution of the function completed --------------------

intr end label near

intr

or ax,OlOOh ;Set finished-bit
mov es:[di+status],ax ;store everything in the status field

popf
pop
pop
pop
pop
pop
pop
pop
pop
pop

ret

endp

es
ds
bp
si
di
dx
ex
bx
ax

;Restore flag register
;Restore other registers

;back to caller

;--
dummy proc near

xor ax,ax
ret

;This routine does nothing

;Erase busy-bit
;back to caller

Abacus 6.12 DOS Device Drivers

durruny endp

;--
no_sup proc near

mov ax,8003h
ret

no_sup endp

;This routine called for all functions
;which should really not be called
;Error: Command not recognized
;back to caller

;--
store c proc near

mov [bx+key _buj, al
inc bl
cmp bl,KEY_SZ
jne store e

xor bl,bl

store_e: ret

store c endp

;stores a character in the internal
;keyboard buffer
;Input: AL character

BX = Position of the character

;store character in internal buffer
;increment pointer to End
;End of buffer reached
;NO --> STORE_E

;new end is the beginning of buffer

;back to caller

;--
read proc near

mov ex, es: [di+num_dbJ
jcxz read e
les di,es: [di+b_adrJ
cld
mov si, key a
mov bx, key:::e

read_l: cmp si,bx
jne read 3 -

read_2: xor ah, ah
int 16h
cal 1 store c
cmp al,O
jne read 3

mov al,ah
call store c

read 3: mov al, [si+key_buj
stosb
inc si
cmp si,KEY_SZ
jne read 4

xor si,si

read_4: loop read 1
mov key_a,si

mov byte ptr key_e,bl

read_e: xor ax, ax
ret

;read a certain number of characters
;from the keyboard to a buffer

;read number of characters
;test if equal to 0
;Address of character buffer to ES:DI
;on STOSS count up
;Pointer to next character in KEY SZ
;Pointer to last character in KEY SZ

;other characters in keyboard buffer?
;YES --> READ_3

;Function number for reading is 0
;Call BIOS Keyboard-interrupt
;Store characters in internal buffer
;test if extended code
;no --> READ_3

;Extended Code is in AH
;store
;read character from keyboard buffer
;transmit to buffer of calling funct.
;Increment pointer to next character
;End of buffer reached?
;NO --> READ_4

;next character is the first character
;in the keyboard buffer

;repeat until all characters read
;Store position of the next character
;in the key board buffer
;Store position of the last character
;in the key board buffer

;everything o.k.
;back to caller

175

6. The Disk Operating System PC System Programming

176

read endp

;--
read b proc near

rnov ah, 1
int 16h
je read_:pl

rnov es: [di+l3] ,al
xor ax, ax
ret

read_:pl label near

rnov ax,OlOOh
ret

read b endp

;read the next character from the
;key board but leave in the buffer

;Function number for BIOS-interrupt
;call BIOS Keyboard-interrupt
;no character present --> READ_Pl

;store character in data block
;everything o.k.
;back to caller

;set busy-bit (no character)
;back to caller

;--
del - in b proc near ;erase input buffer

rnov ah,l ;Still characters in the buffer?
int 16h ;Call BIOS key board interrupt
je del e ;no character in the buffer --> END

xor ah, ah ;Remove character from buffer
int 16h ;Call BIOS key board interrupt
jrnp short del in b ;Test for additional characters -

del e: xor ax, ax ;everything o.k.
ret ;back to caller

del - in b endp

;--
write proc near

rnov cx,es: [di+nurn db]
jcxz write e -
ld$ si,es:[di+b_adr)
cld

mov ah,3
int 16h

mov ah,14

write_l: lodsb
int lOh
loop write

write e: xor ax,ax
ret

write endp

;write a specified number of
;characters on the display screen

;Number of characters read
;test if equal to 0
;Address of character-buffer to DS:SI
;on LODSB increment count

;read current display page
;Call BIOS Video-interrupt

;Function number for BIOS interrupt

;read character to be output to AL
;call BIOS Video-interrupt
;repeat until all characters output

;everything o.k.
;back to caller

;--
init proc near ;Initialization routine

rnov word ptr es:[di+end adr),offset init
rnov es:[di+end_adr+2),cs

;Set End-Address of
;the driver

Abacus

xor ax,ax
ret

init endp

;everything o.k.
;back to caller

6.12 DOS Device Drivers

;==

code ends
end

The header of this driver describes a character device driver which handles both the
standard input device (keyboard) and the standard output device (monitor). After
linking it into the system, setting the two bits in the device attribute calls this
driver on all function calls previously handled by the CON driver. Like any other
driver, this driver has a strategy routine and an interrupt routine. The former stores
the address of the datablock in the variable DB_PTR.

The interrupt routine saves the contents of all registers which will be changed by it
on the stack and gets the routine number to be called from the data block. It then
checks whether CONDRY supports this function. If not, it jumps directly to the
end of the interrupt routine and sets the proper error code in the status field of the
request header which was passed to the routine. Then it restores the registers which
were saved on the stack and returns control to the calling DOS function.

For any of the functions that are supported by the device driver, the offset address
of a routine to handle a particular function is determined from the table labeled
FKT_TAB. Notice that the routines named DUMMY and NO_SUP appear several
times. DUMMY is for all functions which apply only to block device drives and
therefore are not used in this driver. The DUMMY routine clears the AX register
and sets the BUSY bit in the status word. The NO_SUP routine handles any
functions which cannot be used since the drive attribute for CONDRY does not
support these functions.

The STORE_C routine can be accessed from the lower level routines in this driver.
Its purpose is to store a character in the internal keyboard buffer of the driver. The
driver really shouldn't have this buffer available since BIOS (whose functions are
used by the driver to read characters from the keyboard) also has such a buffer. The
problem is that the BIOS always returns two characters when pressing a key with
extended codes (cursor keys, function keys etc.). If the higher level functions of
DOS only ask for one character at a time from CONDRY, the second character
must not be lost. It should be stored in a buffer and delivered to DOS by the read
function on the next call. This is STORE_ C's task.

Reading characters

The next routine is the READ function. It obtains the number of characters to be
read from the request header passed by DOS. If it is 0, the routine is terminated
immediately. If not, then a loop starts which executes once for every character read.
It first tests for characters still stored in the internal keyboard buffer. If so, a
character is passed to the buffer of the calling function. If no additional character

177

6. The Disk Operating System PC System Programming

exists in the keyboard buffer, function 0 of the BIOS keyboard interrupt 16H
inputs a character from the keyboard. This character is also passed to the internal
keyboard buffer. If it's an extended keycode, it is divided into two characters. The
next step removes a character from the internal keyboard buffer and passes the
character to the buffer of the calling function. The process repeats until all
characters requested have been passed to DOS. Then the routine ends.

The higher level DOS functions also call the function named READ_P. It tests
whether a character was entered from the keyboard. If not, it sets the BUSY bit in
the status field of the request header passed by DOS, and returns to the calling
function. If a character was entered without having been read, the driver reads this
character and passes it to the calling DOS function in the request header, and resets
the busy bit. The character remains in the keyboard buffer, and on a subsequent call
of the read function, it is again passed to DOS. To test the availability of a
character, the READ _P function uses function 1 of the BIOS keyboard interrupt
16H.

The function DEL_IN_B also gets called by the higher level DOS functions.
DEL_IN_B deletes the contents of the keyboard buffer. It removes characters from
the buffer using function 0 of the BIOS keyboard interrupt until function 1
indicates that no more characters are available. This ends the function and it returns
to the calling function after the busy bit is reset.

Writing characters

WRITE takes the number of characters from a buffer passed by DOS and displays
the characters on the screen. This routine uses function OEH of the BIOS video
interrupt. Once all characters have been displayed, it sets the BUSY bit in the
status field and ends the function. This function also executes when the higher
level DOS functions call the Write and Verify functions.

Initialization

178

The last function, the initialization routine, is called first by DOS. Since
CONDRY does not initialize variables and hardware, the routine simply enters the
driver's ending address into the passed request header. The routine returns its own
starting address since it will never be called again, and is the end of the chain of
drivers.

In its current form the driver has little use, since it uses only those functions
already available to the CON driver of DOS. It would be more practical if an
enhanced driver like ANSI.SYS were developed, through which screen design could
be more tightly controlled. For example, it's possible that such a driver would
have complete windowing capability which could be accessed from any program,
in any programming language.

The following block device driver creates a 160K RAM disk:

Abacus 6.12 DOS Device Drivers

;***;
;* RAMDISK *;

;*---*;
;* Task : This Proqram is a Driver for a 160KB *;
; * RAM-Disk. •;

;*---*;
;* Author MICHAEL TISCHER *;
; * developed orun 8. 4. 87 *;
; * last Update 9. 21. 87 *;

;•---*;
;*
;*

assembly MASM RAMDISK;
LINK RAMDISK;

*;
*;

·* EXE2BIN RAMDISK RAMDISK.SYS *.
;*---*;
;*
;*

Call Copy into Root Directory, enter the conunand
DEVICE=RAMDISK.SYS into the CONFIG.SYS file
and then boot the System.

*;
*;

;***;

code segment

assume cs:code,ds:code,es:code,ss:code

orq 0 ;Program has no PSP therefore begin
;at the offset address 0

Constants ==

cmd fld equ 2 ;Offset command field in data block -
status equ 3 ;Offset status field in data block
nurn dev equ 13 ; Offset number of supported devices
chanqed equ 14 ;Offset medium chanqed?
end adr equ 14 ;Offset driver end-aAdr. in data block
b adr equ 14 ;Offset buffer address in data block
num crnd equ 16 ;the functions 0-16 are supported
num-db equ 18 ;Offset number in data block
bpb_adr equ 18 ;Offset Address of BPB of the media
sector equ 20 ;Offset first sector number
dev des equ 22 ;Offset device-description of RAM-Disk

;== Data ===

erst b equ this byte ;this is the first byte of the driver

Header of the Device-Driver ---------------------------------------

Jump

fkt tab

dw -1,-1
dw 0100100000000000b
dw offset strat
dw offset int r
db 1
db 7 dup (0)

Table for the individual

dw offset i nit
dw offset med test
dw offset qet_bpb
dw offset read
dw offset read
dw offset dununy
dw offset dununy
dw offset dununy
dw offset write
dw offset write
dw offset dununy
dw offset dununy
dw off set write
dw offset dununy
dw off set dummy

;Connection to next driver
;Driver attribute
;Pointer to strategy routine
;Pointer to interrupt routine
;a device is supported
;these bytes give the name

functions -------------------------
;Function O: Initialization
;Function 1: Media Test
; Function 2: created BPB
; function 3: direct readinq
;Function 4: Read
;Function 5: Read, remain in Buffer
;Function 6: Input-Status
;Function 7: Erase Input-Buffer
;Function 8: Write
;Function 9: Write & Verification
;Function 10: Output-Stat us
;Function 11: Erase Output-Buffer
;Function 12: direct Write
;Function 13: Open (after DOS 3.0)
;Function 14: Close

179

6. The Disk Operating System PC System Programming

180

db_ptr
rd_seg

bpb_ptr

boot sek

bpb

dw offset no rem
dw offset write

dw (?)' (?)
dw (?)

dw off set bpb, (?)

db 3 dup (0)

db "MITI 1.0"
dw 512
db 1
dw 1
db 1
dw 64
dw 320
db OFEh

dw 1

;Function 15: changeable Medium?
;Function 16: Output until Busy

;Address of the data block passed
;RD_SEG:OOOO beginning of the RAM-Disk

;Accepts the address of the BPB

;nonnally a jump ccxmnand to the boot
;Routine is stored here
;Name of creator & version number
;512 bytes per sector
;1 Sector per cluster
;1 reserved sector (boot-sector)
;1 File-Allocation-Table (FAT)
;maximum 64 entries in root directory
;total of 320 sectors = 160 KB
;Media descriptor (1 Side with 40
;Tracks of B sectors each)
;every FAT occupies one sector

;-- the Boot routine not included since a System can not----
;-- be booted from a RAM-Disk

vol name db "RAMDISK
db B

;the actual volume-name
;Attribute, defines volume-name

;== Routines and functions of the Driver ===============~==============

st rat proc far

mov cs:db ptr,bx
mov cs:db=ptr+2,es

ret

;Strategy routine

;Store address of the data black
;in the Variable DB_PTR

;back to caller

strat endp

;--
intr

bc_ok:

proc far

push ax
push bx
push ex
push dx
push di
push si
push bp
push ds
push es
pus hf

push cs
pop ds

;Interrupt routine

;Store registers on the stack

;also store flag register

;Set data segment register
;Code identical with data here

les di,dword ptr db ptr;Address of data block ta ES:DI
mov bl,es:[di+cmd_fld] ;Get command-code
cmp bl, num cmd ; is command-code pennitted?
jle bc_ok - ;YES --> bc_ok

mov ax,B003h
jmp short intr end

;Code for "unknown Command 11

;back to caller

;-- Command-Code was o.k. --> Execute Command ----------------

shl bl,l
xor bh,bh
call [fkt_tab+bx]

;Calculate painter in jump table
;erase BH
; Call function

Abacus 6.12 DOS Device Drivers

;-- Execution of the function completed ---------------------

intr end label near
push cs
pop ds

;Set data segment register
;Code is identical with data here

intr

les di,dword ptr db__ptr;Address of the data block to ES:DI
or ax, OlOOh ; Set finished-bit
mov es:[di+status],ax ;store everything in the status field

popf
pop
pop
pop
pop
pop
pop
pop
pop
pop

ret

endp

es
ds
bp
si
di
dx
ex
bx
ax

;Restore flag register
;restore other registers

;back to caller

;--
init

prinm:

proc near ;Initialization routine

the following code is overwritten after the installation -
by the RAM-Disk

determine Device designation of the RAM-Disk ------------

mov ah,30h
int 2lh
cmp al,3
jb prinm

mov al, es: [di+dev _des]
add al, "A 11

mov im_ger,al

mov dx,offset initm
mov ah,9
int 21h

;Sense DOS Version with function 30(h)
;of DOS-interrupt 21(h)
;is it Version 3 or higher ?
;YES --> PRINM

;Get device designation
;convert to letters
; store in installation message

;Address of installation message
;output function number for string
;Call DOS-interrupt

Calculate Address of the first byte after the RAM-Disk -
and set as End Address of the Driver

mov word ptr es: [di+end adr],offset ramdisk+8000h
mov ax,cs - ;Size of RAM-Disk is 32KB plus
add ax,2000h ;2 * 64KB
mov es: [di+end adr+2],ax
mov byte ptr es: [di+num dev],l ;l device supported
mov word ptr es: [di+bpb-adr],offset bpb_ptr ;Address of the
mov es:[di+bpb_adr+2J,ds ;BPB-Pointer

mov
mov
mov
mov
shr
add
mov

;--

mov
xor

ax, cs
bpb__ptr+2,ds
dx,offset ramdisk
cl,4
dx,cl
ax,dx
rd_seg,ax

Create Beat-Sector

es, ax
di, di

;Segment address of RAM-Disk beginning
;Segment address of BPB in BPB-Pointer
;calculate to offset address 0
;Divide offset address by 16 and thus
;convert into segment address
;add the two segment addresses
;and store

;transfer segment address to ES
;Bcots. begins with the 1. byte of RD

181

6. The Disk Operating System PC System Programming

182

init

mov si,offset boot sek ;Address of the boot-sector in memory
mov cx,15 ;only the first 15 words are used
rep movsw ;copy boot-sector into RAM-Disk

;-- Create FAT ---

mov di,512
mov al,OFEh
stosb
mov ax,OFFFFH
stosw
mov ex, 236
inc ax
rep stosw

;FAT begins with the byte 512 of RD
;Write media-descriptor into the first
;byte of the FAT
;Store code for bytes 2 and 3 of FAT
;in FAT
;remaining 236 words occupied by FAT
;Set AX to 0
;Set all FAT-entries to unoccupied

;-- Create Root Directory with Volume-Name -------------

mov di,1024
mov si,offset
mov cx,6
rep movsw

mov cx,1017
xor ax, ax
rep stosw

xor ax, ax
ret

endp

vol _name
;Root Directory starts in 3rd Sector
;Address of volume-name in memory
;the volume-name is 6 words long
;Copy volume-name into RD

;Fill the rest of the directories in
;sectors 2, 3, 4 and 5 with zeros

;everything o.k.
;back to caller

;--
dummy proc near

xor ax,ax
ret

dummy endp

;This Routine does nothing

; Erase busy-bit
;back to caller

;--
med_test proc near ;Media of RAM-Disk

;cannot be changed

mov byte ptr es:[di+changed),1
xor ax, ax ; Erase busy-bit
ret ;back to caller

med test endp

;--
get bpb proc near ;Pass address of BPB to DOS

mov word ptr es: (di+bpb adr),offset bpb
mov word ptr es: [di+bpb=adr+2),ds

xor ax,ax
ret

get_bpb endp

;Erase busy-bit
;back to caller

;--~---

no rem proc near
mov ax,20
ret

;Media of RAM-Disk cannot be changed
;Set busy-bit
;back to caller

Abacus 6.12 DOS Device Drivers

no rem endp

;--
write proc near

xor bp,bp
jmp short move

write endp

;Transmission DOS --> RAM-Disk
;Copy data

;--
reaa proc near

mov bp, 1 ;Transmission RAM-Disk --> DOS

read endp

MOVE: Move a certain number of sectors between RD and DOS
Input : BP = O : transmit from DOS to RD (Write)

1 : transmit from RD to DOS (Read)
Output : none
Registers : AX, BX, ex, DX, SI, DI, ES, DS and FLAGS are changed

;-- Info Information required (number, first sector)
is taken from the data block passed by DOS

move proc near

mov bx, es: [di+num db)
mov dx,es: [di+SectorJ
les di, es: [di+b_adrJ

move_l: or bx,bx
je move e
mov ax,dX
mov cl,5
shl ax,cl
add ax,cs:rd seg
mov ds,ax -
xor si,si
mov ax,bx
cmp ax,128
jbe move 2
mov ax,128

move_2: sub bx,ax
add dx, ax
mov ch,al
xor cl,cl
or bp,bp
jne move 3
mov ax,es
push ds
pop es
mov ds,ax
xchg si,di

move_3: rep movsw
or bp,bp
jne move 1
mov ax,es
push ds
pop es
mov ds, ax
xchg si,di
jmp short move 1

move e: xor ax,ax
ret

move endp

;Number of sectors read
;Number of first sector
;Address of buffer to ES:DI

;More sectors to read
;No more sectors --> END
;Sector number to AX
;Calculate number of paragraphs
; (Segment units) by Multiplication
;with 32, add to Segment start of RD
;transmit to DS
;Offset address is 0
; Number of sectors to be read to AX
;more than 128 sectors to read
;NO --> read all sectors
;YES --> read 128 sectors (64 KB)
;subtract number of sectors read
;add to sectorsto be read next
;Number sect. to be read * 256 words
;Set Lo-byte of word-counter to 0
;Should be read
;NO --> MOVE 3
;Store ES in-AX
;Store DS on the stack
; read ES
;ES and DS are reversed now
;exchange SI and DI
;copy data into DOS-buffer
;read ?
;NO --> maybe other sectors to copy
; Store ES in AX
;Store DS on the stack
; read ES
;ES and DS have been exchanged
;exchange SI and DI again
;additional sectors to copy

;everything o.k.
;back to caller

183

6. The Disk Operating System PC System Programming

;-- RAM-Disk starts here ----------------------------

if ($-erst b) mod 16 ;must start on a memory address
org ($-erst b) + 16 - (($-erst_b) mod 16) ; divisible by 16

endif -

ramdisk equ this byte

initm db "**** 160 KB RAMDISK as Device"
iID:_ger db "?"

db ": installed (c) 1987 by MICHAEL TISCHER$",13,10,10

;--
code ends

end

This driver is similar to the CONDRY driver. The biggest difference between the
two lies in the functions which each supports.

Note: The initialization routine INIT here is more comprehensive than the
CONDRY initialization routine, and remains in memory after the end
of execution even though it is no longer needed. You'll see why this
is so in the paragraph below entitled "The INIT routine".

First, this routine finds the DOS version number using function 30H. If the
version number equals or is greater than 3, the request header passed by DOS
contains the device designation of the RAM disk. The system reads the
designation, changes it to a character and places the character into the installation
message. DOS function 09H is used to display this message on the screen.

Next, the program computes the ending address of the RAM disk. Since the actual
data area of the RAM disk starts immediately after the last routine of this driver,
160K is added to the program's ending address. Further, the address of a variable
(BPB_P'IR) containing the address of the BIOS parameter block is passed to DOS.
This variable describes the RAM disk's format. In this case, it tells DOS that the
RAM disk uses 512 bytes per sector. Each cluster is made up of one sector and
only one reserved sector (the boot sector) exists. In addition, only one FAT exists.
Additional information indicates that a maximum of 64 entries can be made in the
root directory and that the RAM disk has 320 sectors available (160K of memory).
The FAT occupies a single sector, and the media descriptor byte FEH designates a
diskette with one side and 40 tracks of 8 sectors each.

These parameters are then placed into the request header of DOS and the segment
address of the data area of the RAM disk is calculated (which the driver itself
requires, DOS does not need this information).

The INIT routine

184

The RAM disk must now be formatted, to create a boot sector, FAT and a root
directory. Since these data structures are in the first sectors of the RAM disk, a
normal INIT routine (which releases its memory to DOS), would overwrite itself

Abacus 6.12 DOS Device Drivers

with these data structures and would crash the system. This is why the
initialization routine is not at the end of the last routine of the driver, which would
place it at the beginning of the RAM disk's data area.

The boot sector occupies the complete first sector of the RAM disk, but only the
first 15 words are copied into it since DOS only needs these. The name "boot
sector" is actually a misnomer here, since it's impossible to boot a system from a
RAM disk.

The second sector of the RAM disk contains the FAT. The first two entries are the
media descriptor byte and 0 in the entries that follow. These zeros indicate
unoccupied clusters (an empty RAM disk).

The last data structure is the root directory. It contains no entries other than the
volume name.

Remaining routines

This concludes the work of the initialiration routine and returns the system to the
calling function. The remaining driver routines are examined in order.

The DUMMY routine performs the same task as the routine of the same name in
the CONDRY driver.

The MED_TEST routine is found only in block device drivers. This routine
informs DOS whether or not the medium was changed.

The next routine, GET_BPB, simply passes the addresses of the variables which
contain the address of the BPB of the RAM disk to DOS, as the initialization
routine had already done. '

NO_REM allows DOS to sense whether the medium (the RAM disk) can be
changed. You cannot change a RAM disk, so the program sets the BUSY bit in
the status field.

The two most important functions of the driver perform read and write operations.
As in CONDRY, the program calls Write and Verify instead of the normal Write
function, since no data error can occur during RAM access. The routine itself does
very little; it loads the value 0 into the BP register and jumps to the MOVE
routine. The READ routine performs in a similar manner, except that it loads a 1
into the BP register.

MOVE itself is an elementary routine for moving data. The BP register signals
whether data is to move from the RAM disk to DOS or in the opposite direction.
The routine receives all other data (the DOS buffer's address, the number of the
sectors to be transferred and the first sector to be transferred) from the data block
passed by DOS. See the comments in the MOVE routine for details of the
procedure.

185

6. The Disk Operating System PC System Programming

Changes

This RAM disk can of course be enhanced. If you have enough unused memory,
you can extend the size of the RAM disk to 360K. AT owners could make the
RAM disk resident beyond the 1 megabyte boundary. In this case, the data transfer
between DOS and the RAM disk would use function 87H of interrupt 15H.

The clock driver

186

This final sample driver directly accesses the battery powered clock of an AT
computer. It offers the advantage that when the two DOS commands DAIB and
TIME are used, the date and time are passed directly to the battery powered realtime
clock. Reading the date and time reads the information directly from the memory
locations of the realtime clock.

;***;
;* ATC L K ,
;•---*;
;* Task This program is a clock-driver which can be *;
;* used by DOS for functions which access date *;
;* and time on the battery powered clock *;
, of the AT. *;

;*---*;
;* Author MICHAEL TISCHER *;
;• developed on : 8.4.87 *;
;* last Update : 9.21.87 *;
;*---*;
;*
;*
;*

assembly : MASM ATCLK;
LINK ATCLK;
EXE2BIN ATCLK ATCLK.SYS

*;
*;
*;

;*---*;
;*
;*

Call : Copy into root directory place the command
DEVICE=ATCLK.SYS in the CONFIG.SYS file

*;
*;

;* and then boot the system. *;
;***;

code segment

assume cs:code,ds:code,es:code,ss:code

org 0 ;Program has no PSP, therefore
;beginning at offset address 0

;== Constants ==

cmd fld equ 2 ;Offset command-field in data block
status equ 3 ;Offset status field in data block
end adr equ 14 ;Offset driver end-adr. in data block
num db equ 18 ;Offset number in data block
b_adr equ 14 ;Offset buffer-address in data block

;~ Data ==========~=~========================~====~===============

;-- Header of Device-Driver ---

dw -1,-1
dw lOOOOOOOOOOOlOOOb
dw offset strat
dw offset intr
db "$CLOCK •

db_ptr dw (?), (?)

mon tab db 31

;Connection to next driver
;Driver attribute
;Pointer to strategy routine
;Pointer to interrupt routine
;new clock driver

;address of data block passed

;Table with number of days in

Abacus 6.12 DOS Device Drivers

february db 28 ;the months
db 31,30,31,30,31,31,30,31,30,31

;== Routines and functions of the Driver ==============================

st rat

st rat

proc far

mov cs:db ptr,bx
mov cs:db::J,tr+2,es

ret

;Strategy routine

;Record address of the data block in
;the variable DB_PTR

;back to caller

;--
intr proc far

push ax
push bx
push ex
push dx
push di
push si
push bp
push ds
push es
pushf

cld

push cs
pop ds

; interrupt routine

;Save registers on the stack

;Store the flag register

;increment for string commands

;Set data segment register
;Code is identical with data here

les di,dword ptr db_ptr;Address of data block to ES:DI
mov bl,es:[di+crnd fld) ;Get command-code
crnp bl, 4 - ;Should Time/Date be read?
je ck read ; YES --> CK READ
crnp bl~B ;Should Time/Date be written?
je ck write ;YES --> CK WRITE
or bl,bl ;should the-driver be initialized
jne unk fkt ;NO --> unknown function

jmp init ;initialize driver

unk fkt: mov ax,8003h ;Code for "unknown Command"

Function Execution completed ---------------------------

intr end label near

intr

or ax,OlOOh ;Set finished-bit
mov es: [di+status],ax ;store everything in status field

po pf
pop
pep
pop
pep
pep
pep
pep
pep
pep

ret

endp

es
ds
bp
si
di
dx
ex
bx
ax

;Restore flag register
;Restore other registers

;back to caller

;---

187

6. The Disk Operating System PC System Programming

188

ck read proc near ;Read Time/Date from the clock

mov byte ptr es:[di+num db],6 ;6 bytes are passed
les di,es:[di+b_adr] ;Es:DI points to the DOS-buffer

mov ah,4
int lAh
call date_ofs
stosw

mov ah,2
int lAh
mov bl,ch
call bed bin
stosb
mov cl,bl
call bed bin
stosb
xor al,al
stosb
mov cl,dh
call bed bin
stosb

xor ax,ax
jmp short intr end

;Read function number for Date
;Call BIOS Time interrupt
;Change Date afterf(lffset to 1.1.1980
; store in buffer ,

;Read function number for time
;Call BIOS Time interrupt
;Store hour in BL
; convert minutes
; Store in buffer
;Hour to CL
; Convert hour
;Store in buffer
;Hundredth second is O
;Store in buffer
; Seconds to CL
;Convert seconds
;Store in buffer

;everything o.k.
;back to caller

ck read endp

;---
ck write

nodiv:

nosomo:

proc near ;Write Time/Date into clock

mov byte ptr es:[di+num db],6 ;6 bytes are read
les di,es:[di+b_adr] ;Es:DI points to the DOS buffer

mov ax,es:[di]
push ax
call ofs date
mov ch, l9h
mov ah, 5
int lAH

mov al,es:[di+2]
call bin bed
mov cl,al
mov al,es:[di+S]
call bin bed
mov dh,al
mov al, es: [di+3]
call bin bed
rnov ch,al
xor dl,dl
rnov ah,3
int lAH

' Calculate Day of
xor dx,dx
pop ax
or ax, ax
je nodiv
xor dx,dx
mov cx,7
div ex
add dl,3
cmp dl,B
jb nosorno
sub dl,cl
mov al,6
out 70h,al

;Get number of days since 1.1.1980
;store number
;convert into a date
;Year begins with 19 .•
;Set function number for date
;Call BIOS Time interrupt

;Get minute from buffer
; convert to BCD
;bring to CL
;Get seconds from buffer
;convert to BCD
;bring to DH
;Get hours from buffer
; convert to BCD
;bring to CH
;no summer time
;Set function number for time
;Call BIOS Time interrupt

the Week -------------------------------
;HI-word for division
;Get number of days from stack
;is number 0?
;Yes --> bypass division
;HI-word for division
;week has seven days
;divide AX by 7
;1.1.80 was a Tuesday (Day 3)
;is it a Sunday or Monday?
;NO --> no correction necessary
;correct value
;Location 6 in RTC is day of week
;Address to RTC-address register

Abacus 6.12 DOS Device Drivers

mov al,dl
out 71h,al

xor ax,ax
jmp intr end

ck_write endp

;Day of the week to AL
;Day of the week to RTC-data register

;everything o.k.
;back to caller

OFS DATE: Convert number of days since 1.1.1980 into date
Input : AX~ Number of days since 1.1.1980

;-- Output CL - Year, DH - Month and DL : Day
;-- Registers : AX, BX, ex, DX, SI and FLAGS are changed
;-- Info : For conversion of Offsets the Array MON_TAB

of s date proc near

ly:

lyl:

mo:

mov cl,80
mov dh,01
mov bx,365
test cl,3
jne lyl
inc bl
cmp ax,bx
jb mo
inc cl
sub ax,bx
jmp short ly

mov
test
jne
inc

bl,28
cl, llb
nolp2
bl

nolp2: mov february,bl

mol:

day:

mov si,offset man tab
xor bh,bh
mov bl, [si]
crnp ax,bx
jb day
sub ax,bx
inc dh
inc si
jmp short mol

inc al
call bin bed
mov dl,al
mov al, dh
call bin bed
mov dh,al
mov al,cl
call bin bed
mov cl,al

ret

ofs date endp

;Year 1980
;January
;Number of days in a normal year
;is year a leap year?
;NO --> lyl
;Leap Year has one day more
;another year passed?
;NO --> Calculate months
;YES --> Increment year
;deduct number of days in this year
;calculate next year

;Days in February in a normal year
;is the year a leap year?
;NO --> nolp2
;in leap year February has 29 days
;store number of days in February

;Address of months table
;every month has less than 256 days
;Get number of days in month
;another month passed?
;NO --> calculate day
;YES --> deduct day of the month
; increment month
;SI to next month in the table
;calculate next month

;the remainder + 1 is the day
;convert day to BCD
;transmit to DL
;transmit month to AL
; convert to BCD
;move to DH
;move year to AL
; convert to BCD
;move to CL

;back to caller

BIN BCD: Convert Binary-Number to BCD ---------------------------
Input : AL - Binary value
Output : AL ~ corresponding BCD-value

;-- Register : AX, CX and FLAGS are changed

bin bed proc near

xor ah, ah ;prepare 16 bit division
mov ch,10 ;work in decimal system
div ch ;divide AX by 10
shl al,l ; Shift quotient left 4 places

189

6. The Disk Operating System PC System Programming

190

shl
shl
shl
or
ret

bin bed endp

al,1
al,1
al,1
al, ah ;OR remainder

;back to caller

DATE_OFS: Convert Date in number of days since 1.1.1980 ----
Input : CL = Year, DH = Month and DL = Day
Output : AX= Number of days since 1.1.1980

;-- Register AX, BX, ex, DX, SI and FLAGS are changed
;--
;--

Info For conversion of date, the Array MON_TAB
is used

date of s proc near

call bed bin
mov bl,al
mov cl,dh
call bed bin
mov dh, al
mov cl,dl
call bed bin
mov dl, al

year:

nolpyr:

xor
mov
dee
cmp
jb
test
jne
inc
add
dee
jmp

month: mov
test
jne
inc

nolpyrl: mov
xor
mov

monatl: dee
je
mov
add
inc
jmp

ax, ax
ch, bl
bl
bl,80
monat
bl, llb
nolpyr
ax
ax,365
bl
short year

bl,28
ch, llb
nolpyrl
bl
february, bl
ch, ch
bx,offset man tab
dh
add day
cl, [bx]
ax, ex
bx
short monatl

add_day: add ax,dx
dee ax
ret

date_ofs endp

;Convert year to binary
;transmit to BL
;transmit month to CL
;Convert Month to binary
;and transmit again to DH
;transmit day to CL
;convert day to binary
;and again transmit to DL

;O days
;store year
;back one year
;counted back to year 1980
;YES --> convert month
;is year a Leap year ?
;NO --> NOLPYR
;a leap year has one more day
;add days of year
;back one year
;process next year

;Days in February in a normal year
;is current year a Leap Year?
;NO --> NOLPYRl
;in Leap Year February has 29 days
;store in Month table
;every month has less than 256 days
;Address of month table
;decrement number of months
;all month calculated --> TAG
;Get number of days in month
;add to total-days
;BX to next month in the table
;calculate next month

;add current day
;deduct one day (1.1.80
;back to caller

0)

BCD_BIN: Convert BCD to Binary Number ---------------------------
Input : CL = BCD-Value

;-- Output : AL = corresponding binary value
;-- Register : AX, ex and FLAGS are changed

bed bin proc near

rnov al,cl
shr al,1
shr al,l
shr al,l

;Convert BCD-value in CL to binary
; return in AL

;transmit value to AL
;shift 4 places right

Abacus

shr
xor
mov
mul
mov
and
add
ret

bed bin endp

al,1
ah, ah
ch,10
ch
ch, cl
ch, llllb
al,ch

6.12 DOS Device Drivers

;Set AH to 0
;process in decimal system
;multiply AX by 10
;transmit CL to CH
;Set Hi-Nibble in CH to 0
; add AL and CH
;back to caller

;--
p.roc near ;lnlt1a11zat1on routine

;-- the following code can be overwritten by DOS ---------
;-- after installation of the clock

mov word ptr es:[di+end adr],offset init ;Set end address
mov es:[di+end_adr+2],c~ ;of the driver

rnov ah,9
mov dx,offset initrn
int 21h

xor ax,ax
jmp intr end

;Output installation message
;Address of the text
;Call DOS interrupt

;everything o.k.
; back to caller

initm db 13,10,"**** ATCLK-Driver installed. (c) 1987 by"
db II MICHAEL TISCHER11 ,13,10,"$"

init endp

;--
code ends

end

The basic structure of this driver differs from the other drivers in that it calls the
individual functions directly, not through a table of their addresses. Since it only
supports functions OOH, 04H and 08H, it can test the function numbers passed by
DOS directly. If any other function occurs, it signals an error. Besides the INIT
routine, which only sets the ending address of the driver like CONDRY, the driver
only has the Read Time and Date and Write Time and Date functions.

Time routine

The TIME routine is fairly simple. For reading the clock, the routine reads the
time from the memory locations of the clock, converts the time from BCD to
binary format and then passes the time to the DOS buffer. For setting the time,
the reverse occurs: The routine reads the time from the DOS buffer, converts the
code from binary to BCD format and writes the BCD code into the memory
locations of the clock.

DOS uses the same format for indicating time as the clock: Hour, minute and
seconds each comprise one byte.

191

6. The Disk Operating System PC System Programming

Date routine

The DA TE routine is more complicated. While the clock stores day, month and
year as one byte each, date encoding by DOS is the number of days since January
1, 1980. This number must be converted into a date in the form of day, month and
year as DOS writes the time and date. The reverse is true when you call the Read
function: the clock date must be converted into the number of days. Let's look at
how this is done.

The conversion routine starts with the year 1980. January 1, 1980 (called
NUMDA YS from here on) is equal to the value 0. The routine tests whether this
year is less than the current year. If so, it adds the number of days in this year to
NUMDAYS, adding a day to compensate for each leap year. Then it increments the
year and tests again for a smaller number than the current year. This loop repeats
until it reaches the current year. The routine then computes the number of days in
the current year's month of February, and enters this month into a table which
contains the number of days for each month.

In the next step, for every month less than the current month, the routine adds the
number of days in this month to NUMDAYS. Once it reaches the current month,
only the current days of the month are added to NUMDAYS. The end result is
transferred to the DOS buffer and the routine terminates.

Conversion to date format

Converting NUMDA YS into a date operates in reverse. The routine begins with
the year 1980 and tests whether the number of days in this year is less than or
equal to NUMDAYS. If this is the case, the year is incremented and the number of
days in this year is subtracted from NUMDAYS. This loop is repeated until the
number of days in a year is larger than NUMDA YS. The routine then computes
the number of days in the current year's month of February, and enters this month
into the table of the months.

January starts another loop which tests whether the number of days in the current
month is less than or equal to NUMDA YS. If this is the case, the month
increments and the routine subtracts the number of days from NUMDA YS. If the
number of days in a month is larger than NUMDA YS, the loop ends. NUMDA YS
must only be incremented enough to give the day of the month and complete the
date.

The routine then converts the date to BCD format and enters the date in the
memory locations of the clock.

6.12.10 CD-RO Ms

192

Soon after their introduction into the audio world, the compact disk industry began
approaching the PC market. A CD-ROM drive and a PC form an interesting

Abacus 6.12 DOS Device Drivers

combination. The compact disk medium itself is read-only, but 660 megabytes of
data can be stored in the form of text, graphics, etc.

Many publications and references are currently available on CD-ROM, such as:

Telephone directories

Books in Print

The Bible in var10us translat10ns

The English translation of Pravda

In addition, maps, photographic libraries, public domain program collections and
medical databases are available in CD-ROM format. New titles are being published
daily in this growing market.

Why CD-ROM?

The CD-ROM has a clear advantage over the printed medium. Once captured and
digitized, information can be processed by a computer in whatever form the user
needs. The possibilities appear to be limitless, considering how easy it is to read
and compare information.

Another important consideration is the ease of access for many users. Load the
driver software, press a key or two, and the information is on the screen and ready.

You can buy a PC-compatible CD-ROM player for $800 to $1,000 at the time of
this writing. These players are available as either external or internal devices.

Interfacing

The PC's hardware can be easily interfaced to a CD-ROM player. The software
may encounter some problems, however. This is understandable, since DOS was
never intended to support these devices. This subsection shows how a CD-ROM
drive, using the proper drivers and utility programs, can be accessed like a read
only floppy disk drive. This information may not be of immediate use to you.
However, this data will give you a closer look into the world of the device driver
and operating system organization.

This book mentioned earlier that the device drivers act as mediators between the
disk operating system and the external devices such as monitor, printer, disk drives
and hard disks. DOS differentiates between block device drivers and character device
drivers. As a mass storage device capable of reading information in a block mode, a
CD-ROM drive would normally be added to the rest of the system through a block
driver. Here's where the problem begins: DOS makes a number of assumptions
about block devices, and a CD-ROM drive cannot meet the criteria of these
assumptions.

193

6. The Disk Operating System PC System Programming

Memory limitations

In versions of DOS up to and including Version 3.3, the biggest obstacle to
interfacing with a block driver was the 32 megabyte limit imposed on every
volume designated as a block device. The second biggest obstacle is the lack of a
file allocation table (FAT) on a CD-ROM. Instead of the FAT, the CD-ROM
contains a form of data table into which the starting addresses of the various
subdirectories and files are recorded. However, DOS still demands a FAT which it
can at least read during driver initialization.

A character driver works better for implementing a CD-ROM driver, since DOS
makes no assumptions about the structure of the devices connected through
character drivers. Even character drivers are poorly suited for communication with a
CD-ROM drive, since they transmit characters one at a time instead of in groups
of characters. Another disadvantage is the need for a name (e.g., CON) instead of a
device designation. DOS must first see the CD-ROM driver as a character driver to
DOS to prevent read accesses to a non-existent FAT. The CONFIG.SYS file
supplies the name of the device during the system booting process.

Configuring the CD-ROM

The manufacturer usually includes CD-ROM driver software with the CD-ROM
drive package. A driver of this type usually has a name such as SONY.SYS or
HITACHI.SYS, depending on the manufacturer.

The CONFIG.SYS sequence which installs this driver can look something like
this:

DEVICE=HITACHI.SYS /D:CDRl

The device driver selects the name CDRl as the name of the CD-ROM drive.

After executing the initialization routine from DOS, the CD-ROM is treated as a
block driver which has been enhanced with a few special functions supporting CD
ROMs. However, DOS still views the CD-ROM player as a character driver: DOS
cannot view the CD-ROM's directory, nor can it directly access the files on the
CD-ROM.

Driver software extensions

194

To overcome this obstacle, many CD-ROM players come with a TSR (Terminate
and Stay Resident) program named MSCDEX (Microsoft CD-ROM Extension) in
addition to the device driver software (see Chapter 8 for information on TSR
programs). This program must be called from within the AUTOEXEC.BAT file.
The name of the CD driver can be passed to the program from the DOS prompt, as
shown in the following example:

MSCDEX /D:CDRl

Abacus 6.12 DOS Device Drivers

MSCDEX first opens this driver through the DOS OPEN function and provides it
a device designation. DOS assumes that MSCDEX is a device on a remote
network, as supported by DOS in Version 3.1.

MSCDEX brings us closer to the solution, since DOS handles network devices as
files containing more than 32 megabytes. These devices are accessed through
redirection, rather than direct access from DOS. The resident portion of MSCDEX
interfaces to the redirector, and intercepts all calls to the redirector. If MSCDEX
receives a call addressed to the CD-ROM drive, it adapts each instruction to a call
applicable to the CD-ROM driver. This makes a perfect connection between DOS
and the CD-ROM drive, while still allowing access to subdirectories and files at
any time.

To network

Application proqram
•. 9., read ncces~_... DOS redirecto_~

MSC DEX
Network call___..,

Redirector
kernt1.l

1 1 CD-KJM access

DOS o:>mmandI (e.9., DIR) Command CD-KIM

B j - ~ interpreter
device driver

... E!ll1 CX)MMAN).~

Keyboard

I
CD-EIOM drive

CD-ROM access through MSCDEX and its device driver

195

6. The Disk Operating System PC System Programming

6.13 DOS Mass Storage

Many tasks performed by DOS are unseen by the user. This is why some users
underestimate the complexity of DOS. For example, DOS requires many data
structures for handling a mass storage device, and the user may not realize this.
This section looks deeper into DOS and reveals the architecture and operation of
these data structures.

From the user's viewpoint, DOS addresses mass storage devices as volumes where
each individual volume has been assigned a letter. Floppy disk drives are identified
by the letters A and B, while the letters C or D usually identify a hard disk. A
mass storage device can have several volumes. This division into several volumes
or partitions is very practical for hard disks. Partitions on a floppy diskette don't
work as well due to the limited amount of storage space. A hard disk may be
divided into additional partitions if UNIX (or XENIX) is used in addition to DOS.
Each of the two operating systems then has its own volume which is also
designated by its own letter.

Volume names

Sectors

196

Each volume can be assigned a volume name when created, but this volume name
is not a requirement. The DIR command lists volume names when they are
available. Each volume has its own root directory, which can contain multiple
subdirectories and files. These subdirectories and files can be maintained and
manipulated by using one or more of the interrupt 21H functions.

DOS subdivides each volume into a series of sectors. These sectors are organized
sequentially. Each sector contains a specific number of bytes (usually 512) and is
assigned a consecutive number beginning with sector 0. Since function calls with
interrupt 21H are directed to files rather than individual sectors, DOS converts
these file accesses into sector accesses. To do this, DOS uses directories and a data
structure known as the FAT (file allocation table), which you read about earlier in
this book. After the desired sector number has been determined, control is passed to
the device driver which translates this sector number into a physical address. Mass
storage devices such as floppy and hard disks are divided into individual tracks
which contain a certain number of sectors. In addition to the physical sector
number, the driver must also determine the number of the track and the number of
the read head.

Abacus 6.13 DOS Mass Storage

Manufacturer's name, device driver, boot routine

First file allocation table (FAT)
Sector
number

One or more copies of FAT

Root directory with volume names

1• Data register for files and subdirectories

Mass storage device structure

As mentioned above, every volume is divided into various areas containing the
various DOS data structures and individual files. Since the size of the individual
areas can differ depending on the type of mass storage device (and the
manufacturer), every volume contains a boot sector. The boot sector contains all
the information required to access to the different areas and data structures. DOS
creates this sector during disk formatting. Boot sectors always have the same
structure and are always located in sector 0 so that DOS can find and interpret it
properly.

The following illustration shows the layout of the boot sector.

OO(h) Jump command to boot routine (3 bytes)
(E9xxx or EBxx90)

03(h) Manufacturer's name and version number (8 b_ytes)
OB(h) Bytes per sector (1 word)
OD(h) Sectors per cluster (1 byte)
OE(h) Number of reserved sectors (1 word)
lO(h) Number of FATS (1 b...i'._te) , BPB
11 (h) Number of entries in root directo~ (1 word)
13(h) Number of sectors in volume (1 word)
lS(h) Media descr:!:E_tor (1 121_te)
16J.hj_ Number of sectors_Q_er FAT J.l wor<ll.
18(h) Sectors _ll_er track (1 word)
lA(h) Number of read/write heads
lC(h) Number of hidden sectors
lE(h)- BOOT ROUTINE
lFF.J_h_l

Boot sector layout

Boot sector

The name boot sector comes from the fact that DOS boots (i.e., starts) from it.
DOS is loaded and started from disk-it is not usually stored in permanent PC
memory (ROM). After you tum the computer on, the BIOS takes over the system
initialization and loads logical sector 0 of the floppy or hard disk into memory.
Once it completes its work the BIOS starts execution at address 0.

197

6. The Disk Operating System PC System Programming

The boot sector always contains an assembly language JUMP instruction at
address 0. After execution the program continues at a location further into the boot
sector. This instruction can be either a normal jump instruction or a "short jump."
Since the field for this jump instruction is 3 bytes long, but a "short jump" only
requires 2 bytes, a NOP (No Operation) instruction always follows the "short
jump" to fill in the extra byte. This NOP does nothing. A series of fields follow
which contain certain information about the organization of the media. The first
field is 8 bytes long and contains the manufacturer's name, where this medium was
formatted, as well as the DOS version number which performed the formatting.
The next fields contain the physical format of the media (i.e., the number of bytes
per sector, the number of sectors per track, etc.) and the size of the DOS data
structures stored on the media. Since the BIOS and DOS-BIOS functions represent
the lowest level of access to disk drives and hard disks, this area is also designated
as the BIOS parameter block (BPB). Three additional fields, which can provide
additional information to the device driver about the media, follow the BPB; these
three fields aren't used directly by DOS.

Bootstrap

198

Next comes the bootstrap routine to which the jump instruction branches at the
beginning of this boot sector. It handles the loading and starting of DOS through
the individual system components (see Section 6.3).

Several reserved sectors may follow the boot sector. These reserved sectors can
contain additional bootstrap code. The numbers of these sectors are recorded in the
BPB in the field starting at address OEH. It terminates the boot sector and a 1 in
this field indicates that no additional reserved sectors follow the boot sector (this is
the case for most PCs).

In order for DOS to add new files or enlarge existing files, it must know which
sectors of the media are still available. This information is contained in a data
structure called the FAT (file allocation table) which is immediately adjacent to the
media's reserved area. Each entry in the FAT corresponds with a certain number of
logically contiguous sectors, called clusters, on the media. Location ODH of the
boot sector specifies the number of sectors per cluster as part of the BIOS
parameter table. Only multiples of 2 are legal values. On an XT hard disk this
location contains the value 8 (8 consecutive sectors form a cluster). As the
following table demonstrates, the number of sectors comprising a cluster depends
on the storage medium.

Device Sectors ...e.er cluster
Single sided disk drive 1
Double sided disk drive 2

AT hard disk 4
XT hard disk 8

The reason for joining several sectors into a cluster is derived from the logic used
by DOS to write files to a media. It disassembles the file to fit the pieces into the

Abacus 6.13 DOS Mass Storage

sectors which are still available, instead of selecting adjoining sectors for file
storage. This process slows file access since the read/write head must be
repositioned after almost every read function. To avoid an excessive disassembly of
the file, DOS gathers several sequential sectors on the media into a cluster. This
ensures that at least the sectors of a cluster contain a portion of a file. If DOS
didn't use clusters, a file of 24 sectors could be stored in many separate sectors,
which would require the read/write head to be positioned a maximum of 24 times
to read the entire file. The cluster principle saves a lot of time, since the file is
stored in 6 clusters and the read/write head only has to be repositioned 6 times.

There is a problem however. Since a file is assigned at least one cluster, some
storage space is wasted. Consider AUTO EXEC.BAT which is usually no longer
than 150 bytes. Normally, a single sector could contain this file (and still waste
almost 400 bytes), but AUTOEXEC.BAT occupies a cluster of 2048 bytes on an
AT, which wastes more than I .SK of hard disk space.

Now back to the file allocation table:

The size of individual entries in the FAT under DOS Versions 1 and 2 is 12 bits.
For DOS Version 3 and later, the size of an entry in the FAT depends on the
number of clusters: if a volume has more than 4,096 clusters, then each FAT entry
is 16 bits; otherwise each FAT entry is 12 bits. The number of bits per FAT entry
must be determined before file access. The information in the BIOS parameter
block is used for this purpose. The total number of sectors in the volume can be
found starting at location 13H. Divide this number by the number of sectors per
cluster to obtain the number of clusters in the volume.

The first two entries of the FAT are reserved and have nothing to do with the
cluster assignment Depending on the sizes of the individual entries, 24 bits (3
bytes) or 32 bits (4 bytes) can be available. The first byte contains the media
descriptor, while the value 255 fill in the other bytes. The media descriptor, which
is also stored in address· I 5H of the BPB, indicates the device which the media uses
(for example a diskette). The following codes are possible:

Code Device
F8H Hard disk
F9H 5.25" disk drive (AT only)

2 sides, 80 tracks, 15 sectors
FCH 5.25" disk drive

1 side, 40 tracks, 9 sectors
FDH 5.25" disk drive

2 sides, 40 tracks_,_ 9 sectors
FEH 5.25" disk drive

1 side, 40 tracks, 8 sectors
FFH 5.25" disk drive

2 sides, 40 tracks__,_ 8 sectors

This shows the various diskette formats which DOS supports in 5.25" diskettes.

199

6. The Disk Operating System PC System Programming

200

Included in DOS version 1.00 1.10 2.00 2.00 3.00
lMe<U.a d~«tll2!:<2L LE FF [IT ~ F9
Number of read/write heads 1 2 1 2 2
Number of tracks per head 40 40 40 40 BO
Num::£:er ~ sectors :::E:er tra~ :::! [! [! [! [!
Number of Qy_tes~r sector 512 512 512 512 512
Number of sectors per cluster 1 2 1 2 1

!Number o!_ reserved sectors l 11 11 11 L3c
~ber of sectcu:s oer .f.P.I. 1 1 1. l.. 7
Number of FATS 2 2 2 2 2
Number of sectors 4 7 4 7 14
in root directOl2£.
Number of entries 64 112 64 112 224
in root directoEY_
Total number of sectors 320 640 360 720 2400
Free sectors for data 313 620 351 708 2371
Number of clusters 313 315 351 354 2371
Total c<lll_acit;y_ 160K 320K lBOK 360K 1.2_M~

Total file capacity 156.5K 315K 175.5K 354K 1.lBSMeg

DOS 5.25" diskette formats

You may have wondered why the individual entries of the FAT are 12 or 16 bits
wide if all they do is indicate whether a cluster is occupied or not. This could have
been done with one bit: The bit could contain 1 when the cluster is occupied and 0
if the cluster is available. The reason is that the entries in the FAT help mark the
available clusters and identify the individual clusters containing a specific file. The
directory entry of a file tells DOS which cluster holds the first data of a file. The
number of this cluster corresponds to the number of the FAT entry belonging to
it. In this entry is the number of the cluster containing the next sector of file data.
As the following illustration shows, a chain forms in which the individual clusters
assigned to a file can be located in the proper sequence.

Abacus 6.13 DOS Mass Storage

Media descriptor Directory entry for
FAT FORMAT.EXE file entry number (12blt)

0. 00 F 0 R M
1.

2. 04 A T 32 32
3.
4. E x E
5.

6.

7.
8.

9.

A.
B.
c.

74 D.
E. lC 16 89 F.

FAT entry and file clusters

The FAT entry which corresponds to the last cluster of a file must contain a
special code which tells DOS that the file ends here. The following table shows
the meanings of the various FAT entries.

Note:

Code Meanirig_
(O)OOOH Cluster is available
(F) FFOH - (F) FF6H reserved cluster
(F)FF7H Cluster damaged, not used
(F)FFBH - (F) FFFH Last file cluster
(x)xxxH Next file cluster

The first hexadecimal number in parentheses refers to a FAT whose
entries are 16 bits wide.

DOS is designed so that several identical copies of the FAT on the media may be
kept. This offers the advantage that in case of damage to one FAT, it can be
replaced with another, preventing data loss.

The DOS CHKDSK command tests the various FA Ts to see if they are identical.

201

6. The Disk Operating System PC System Programming

Directory structure

202

Now let's look at the structure of a directory.

The root directory of a volume immediately follows the last copy of the FAT.
This root directory (like all subdirectories) consists of 32-byte entries in which
information can be stored about individual files, subdirectories and volume names.
The maximum number of entries in the root directory, and therefore its size, is
stored in the BPB starting at address 1 IH. The FORMAT command specifies both
the size number and the BPB. Before considering individual fields of this data
structure, here's a graphic overview of a directory entry:

+ OOH Filename J_blanks ..2_added w.L ~acesJ _lB :trr_tes_l

+ OBH File extension (blanks _£_added w/ sp_aces) (3 by_tes)

+ OBH File attribute _ll :Qy_te_l

+ OCH Reserved _ll 0 :Qy_t e sJ_

+ 16H Time of last chan_g_e _il word_l

+ 18H Date of last chan_g_e J_l word_l

+ lAH First cluster of file J_l word_l

+ lCH File size (2 words)

Directory entry layout

The first 8 bytes normally contain the name of the current file. If the filename is
shorter than 8 characters, DOS fills the remaining characters with spaces (ASCII
code 32). If the directory entry does not contain information on a file, but the file
is used in another manner, the first byte of the filename (therefore the first byte of
the directory entry) is identified by special code:

Code Meanin..9:_
OOH Last director...i'._ entr_y_

OSH First character of filename
has ASCII code ESH

2EH File applies to current
director_y_

ESH File deleted

The second field contains the three character filename extension. If the extension is
less than three characters in length, DOS fills in the extra characters with blank
spaces (ASCII code 32). The period between filename and extension is displayed by
the DOS command DIR but is not kept in the directory; DIR displays it just to
make the names between easier to read.

Next follows the one-byte attribute field. As shown in the following figure the
individual bits of this field define certain attributes. The various attributes can be
combined so that a file (as in the IBMBIOS.COM file) can have the attributes
READ_ONL Y, SYSIBM and HIDDEN.

Abacus 6.13 DOS Mass Storage

7 6 5 4 3 2

-----1

=write-protected
:read/write enabled
:hidden file

(invisible to DIR)
-------n =system file

--------n:volume name

Attribute field in the directory

While the significance of bits 0 to 4 is easy to see, the significance of bit 5 needs
additional explanation. The name archive bit comes from its use in making backup
copies. Every time a file is created or modified, this bit is set to 1. If a program is
used to backup this file, (for example the DOS BACKUP command), the archive
bit is reset to 0. The next time the BACKUP command is used, it can determine
from the archive bit whether this file has been modified since the last backup. If it
still contains the value 0, the file doesn't have to be backed up again. If the archive
bit contains a 1, the file was modified and should be backed up again.

The attributes volume name and subdirectory will be discussed in more detail
below.

A reserved field which DOS requires for internal operations follows the attribute
field.

The time and date fields indicate when the file was last created or modified. Both
are stored as words (2 bytes), but have special and different formats.

203

6. The Disk Operating System PC System Programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit
,--------, ~,~,-,~,~,~,~,~, ~,~,---,~,~,~,

Hour Minute Seconds In
2-second
Increments (e.g.,)t
(13 means 26)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit
~, ~, ~,~,~,~,~,-,~,~, ~,~,....---r-,~,~,~,

Year (relative to 1980) Month Day of month

Time/datefieldformats in directory entry

The next field indicates the number of the cluster which contains the first data of
the file. It also indicates the number of the FAT containing the number of the next
cluster assigned to the file. This field forms the beginning of a chain through
which all the clusters assigned to a file can be retrieved.

The file size in bytes is stored in 2 words with the lower word stored first. Using a
small formula and the two words, the file size can be calculated as follows:

File size = wordl + word2 • 65,536

Subdirectory and volume name

204

Both subdirectory and volume name deserve special consideration. The volume
name can only exist in the root directory and is indicated by bit 3 of the current
directory entry's attribute field. The filename in a volume entry acts as the volume
name; the DOS commands DIR, VOL and TREE can be used to display the
volume name.

If bit 4 of the current directory's attribute field is set, then this entry is for a
subdirectory. If in addition bit 1 in this field is set, the subdirectory can be
addressed, but will not be displayed when you execute the DIR command. For
these entries, the filename and extension field contain the subdirectory name; the
date and time field contain the time of its creation. The file length field is always
0. The field which normally indicates the first cluster of the file now indicates the
cluster which contains the directory entries of this subdirectory. They have the
same 32-byte structure as the entries in the root directory. As in a normal file, the
entry in the FAT, which corresponds with the subdirectory cluster, points to the
next cluster of the subdirectory, as long as one cluster is enough for the directory
of the subdirectory. This is not true of the root directory which extends through
several sectors or clusters, which follow each other logically. Furthermore the

Abacus 6.13 DOS Mass Storage

individual clusters of the root directory cannot be connected through the FAT,
because it only refers to the data area of the volume. This is the area which accepts
files and subdirectories, but not the root directory.

The process described above reveals that DOS separates the individual files in a
storage unit according to their directories. It doesn't store the files of one directory
in one area, but scatters the files across the storage medium.

When a subdirectory is created, two files are created with the names '.' and ' . .'
which can only be erased when you remove the entire subdirectory. The first of
these two files points to the current subdirectory, and its cluster field contains the
number of the first cluster of the current subdirectory. The second entry points to
the parent directory, which in the directory tree is located ahead of the current
directory. If the parent directory is the root directory, the cluster field contains the
value 0. The path to the root directory can be traced back through this entry, since
as every subdirectory searches for its parent directory it comes closer to the root
directory.

Now back to our discussion of mass storage device structures. The file area follows
the root directory just described. It occupies the remaining storage area of the mass
storage device. It accepts the individual files and various subdirectories. For every
cluster in this area there is an entry in the FAT corresponding to this cluster. If a
file is enlarged, DOS reserves a cluster which is still available to store the
additional data of the file. The FAT entry of the last cluster which formerly
indicated the end of file is changed to point to the new cluster which in tum
contains the new end character. In DOS Versions 1.0 and 2.0, unused clusters are
searched for from the beginning. In DOS Versions 3.0 and up, a more
sophisticated search is used to try to select an unused cluster in the vicinity of
other clusters comprising the file. This reduces the access time to the file as much
as possible. Conversely, when reducing file size or deleting a file, the FAT is
updated to indicate that the unused clusters are again available. They can be used
again when a new file is created or expanded.

205

6. The Disk Operating System PC System Programming

6. 14 Tips on Compatibility between Computers

206

This book discusses three methods of accessing PC hardware.' On the one hand,
you can access available DOS or BIOS functions. On the other hand, you have the
option of developing new functions and routines for direct hardware control. While
this offers no advantage in mass storage device and keyboard access, special
routines for screen display are often much faster and more efficient than BIOS and
DOS routines used to do the same job.

For compatibility, however, DOS functions win hands down. Those of you who
want to develop programs which can run, without problems, on virtually any DOS
computer, must observe some rules for DOS function calls. These rules also apply
to future compatibility. To develop programs under the current DOS versions
which should execute without problems under future versions of DOS, you should
follow the suggestions made below.

Use only DOS functions for screen and hardware access. Do not use BIOS
or other hardware dependent functions.

Display error messages on the standard error device (handle 2).

Use Version 2 UNIX-compatible handle functions for file access. This
ensures compatibility with future versions of DOS.

If you use the old FCB functions for file or directory access (e.g., for
special attributes), make sure no FCBs are opened which are already open,
and no FCBs are closed which are already closed. This could cause
problems in a network.

Check the DOS version number at the beginning of the program and end
the program with an error message if it cannot be executed under this
version.

Store as many constants as needed for program execution (e.g., the paths
of programs and files to be loaded) within the environment block. Access
these values from the environment block within the program.

Release all memory not required by the program using the DOS functions
(this is especially important when working with COM programs).

If you need additional memory, request it by using the proper DOS
functions.

Use the available DOS functions for interrupt vectors; do not access
interrupt vectors directly.

To change the contents of various interrupt vectors within a program,
first save the old contents and restore them before the end of the program.

Abacus 6.14 Tips on Compatibility between Computers

Call one of the DOS functions (31H or 4CH) before the end of the
program to pass a value to the calling program to signal whether the
program was executed correctly. Avoid using the other functions for
ending a program (interrupt 20H and function 0 of interrupt 21H).

Use function 59H of interrupt 21H (available in DOS Versions 3.0 and
higher) to localize error sources.

In conclusion, here is an overview of the older DOS functions to avoid, and the
new equivalent functions that can replace them.

Old New
OOH End _E_ro_g_r am 4CH End Process
OFH QE_en file 3DH 0£en Handle
lOH Close file 3EH Close handle
llH Find first entry_ 4EH Find first entr_y_
12H Find next entry 4FH Find next entry
13H Erase file 41H Erase directory entr_y_
14H Sequential read 3FH Read (thro1:!.!l_h handle)
15H Sequential write 40H Write (throu_q_h handle)
16H Created file 3CH Created handle or

SAH Created tel'!!E_orai:.y_ file or
SBH Created new file

17H Rename file 56H Rename directory entr_y_
21H Random access read 3FH Read (throl!..9:_h handle)
22H Random access write 40H Write (throl!.9_h handle)
23H Sense file size 42H Move file _E_ointer
24H Set data set number 42H Move file _E_ointer
26H Create new PSP 4BH Load and execute from file
27H Random access read 3FH Read (thro1!..2.h handle)
28H Random access write 40H Write (thro1!..2.h handle)

If you follow all these suggestions, your programs will execute on other
computers and under future DOS versions with little or no modifications.

207

6. The Disk Operating System PC System Programming

6.15 Undocumented DOS Structures

208

DOS manages the operating storage media (RAM and mass storage) and programs
which use multiple data structures. Some of these structures are thoroughly
documented and have already been described in this book. These documented
structures include:

Program Segment Prefix (PSP), which precedes every program in
memory

File Control Blocks (FCBs), which control file access

Memory Control Blocks (MCBs), which control RAM

Structures in the header of a device driver

Environment blocks, which contain information strings about every
program in memory

The many structures which DOS keeps in mass storage (boot sector, File
Allocation Table [FAT], root directory, etc.)

In addition, there are a number of undocumented structures. Until quite recently,
only a few people knew of the existence of these structures, since most technical
manuals concerning DOS didn't describe them. The authors of many of these
technical manuals felt that these structures weren't needed for programming, and
that their coding would change in future versions of DOS. The fact is that certain
kinds of programming do depend upon these structures, and that some applications
couldn't be realized at all without them.

Floppy disk and hard disk management utilities make intensive use of the
undocumented structures. If you examine the Norton Utilities® using a debugging
application, you'd see how much this program accesses these structures.

A minor change in these structures took place between DOS Version 3.3 and
Version 4.0, but this is the first change since the introduction of DOS Version 2.0
in 1983. Therefore, the chances are almost nil of finding altered coding in the
undocumented structures of subsequent DOS versions.

Knowing about these structures can be practical data for programming some
applications. This section lists our findings from viewing the Norton Utilities®.

The DOS Info Block (DIB) is the key to accessing the most important DOS
structures. This block holds pointers ~:l several DOS structures and to other
information as well. The knowledge of its existence and construction is useful to a
program only if its address in memory is known. This address is not in a fixed
memory location, nor can it be obtained with any of the documented functions of
DOS interrupt 21H. However, the undocumented function 52H can offer us some

Abacus 6.15 Undocumented DOS Structures

assistance in finding that address. Calling function 52H returns the address of the
OOS Info Block to the ES:BX register pair.

As opposed to all other OOS functions that fetch pointers to a structure or data
area, the contents of the ES:BX register pair point not to the first, but rather to the
second field within the DIB after the function call.

DOS Info Block (DIB) structure
Addr. C'onte~ts Tvoe

-04H Pointer to MCB 1 _E_tr
ES:BX Pointer to first Drive Parameter Block (DPB) 1 _E_tr
+04H Pointer to last DOS buffer 1 _E_tr
+OBH Pointer to clock driver ($CLOCK) 1 _E_tr
+OCH Pointer to console driver (CON) 1 _E_tr
+lOH Maximum sector length (based on all connected 1 word

mass storage devices)
+12H Pointer to first DOS buffer 1 _J>_tr
+16H Pointer to .E_ath table 1 _E_tr
+lAH Pointer to S_y_stem File Table (SFT) 1 ptr
Len...9:_th: lEH (30) ~tes

The first field in the DIB contains a pointer to the Memory Control Block (MCB)
of the first allocated memory area. You will find detailed information on this
structure and what it does in Section 6.9 (Memory Allocation from OOS). The
pointer in the second field of the DIB gives access to a wealth of information that
could not be had in any other way. It points to the first Drive Parameter Block
(DPB), a structure which OOS lays out for all mass storage devices (floppy disks,
hard disks, tape drives, etc.).

Drive Parameter Block (DPB) structure
Addr. Contents 1='Y.E_e
+OOH Number or symbol for corresponding drive 1 byte

(0 = A, 1 = B, etc.)
+OlH Sub-unit of device driver for drive 1 ~te
+02H B_y_tes _E_er sector 1 word
+04H Interleave factor 1 ~te
+OSH Sectors ..E_er cluster 1 ~te
+06H Reserved sectors (for boot sector) 1 word
+OBH Number of File Allocation Tables (FATs) 1 b_y_te
+09H Number of entries in root director_y_ 1 word
+OBH First occl!E_ied sector 1 word
+ODH Last occu..E_ied cluster 1 word
+OFH Sectors _E_er FAT 1 ~te
+lOH First data sector 1 word
+12H Pointer to header (correSJ>_ond. device driver) 1 _E_tr
+16H Media descr~tor 1 byte
+l 7H Used fla...9:_ (OFFH=device not _y_et in use) 1 ~te
+lBH Pointer to next DPB (xxxx:FFFF = last DPB) 1...£.tr
Len...9:_th: lCH (28) ~tes

209

6. The Disk Operating System PC System Programming

210

The first field of the DPB tells us to which device the block belongs. 0 stands for
drive A, 1 for B, 2 for C, etc. The second field specifies the number of the subunit.
To understand the meaning of this field, remember that access to the individual
devices occurs through the device driver. DOS doesn't perform direct access to a
disk drive or hard disk. This keeps DOS from having to deal with the physical
characteristics of a mass storage device. Instead, DOS calls a device driver for this
purpose, which acts as mediator between DOS and hardware.

Of course, not every device has a separate device driver, since one device driver can
support many single devices. For example, the device driver built into DOS
manages the floppy disk drives and the first available hard disk. DOS configures a
DPB for each device, so a hard disk system would automatically have 3 DPBs
available (a DPB is always configured for floppy drive B, even if only one floppy
drive is actually available). Each device receives a number between 0 and the total
number of devices minus 1, to help each driver to identify the devices it manages.
This number is the one found in the subunit field.

The next field lists the number of bytes per sector. Under DOS this is almost
always 512. After this comes the interleave factor, which gives the number of
logical sectors displaced by physical sectors when the medium is formatted (more
on this in Chapter 7). This value can be 1 for floppy disk drives, 6 for the XT hard
disk and 3 for the AT hard disk. For floppy disk drives, this field can also have the
value FEH if no access has been attempted to the disk in the drive. The value FEH
means that the interleave factor is currently unknown.

There are a number of other fields related to these two which have already been
named in connection with the management of mass storage devices through DOS
(see Section 6.13). Among other things, they describe the status and the size of the
structures DOS created to manage mass storage devices. A pointer to the header of
the device driver lies within these fields. DOS uses this pointer when accessing the
device. More information can be obtained with this pointer since, for example, the
driver attribute is listed in the header of the device driver.

Following this field is the media descriptor to which the Used flag is connected.
As long as no access to the device has occurred, this flag contains the value OFFH.
After the first access it changes to 0 and remains unchanged until a system reset.

The DPB ends with a pointer that establishes communication with the next DPB.
Since every DPB defines its end with such a pointer, a kind of chain is created,
through which all DPBs can be reached. To signal the end of the chain, the offset
address of this pointer in the last DPB contains the value OFFFFH. , When a
program needs the information within the DOS, there are many ways to find the
address of the desired DPB. One method is to follow the chain described above by
first finding out the address of the DIB. This gives you the pointer to the first
DPB, from which you can follow the chain until you reach the DPB you want.

Abacus 6.15 UndocumenJed DOS Structures

There's a better way, which isn't as susceptible to changes within the DIB, through
two undocumented DOS functions. This involves the lFH and 32H functions,
which have been part of the DOS function repertoire since Version 2.0, although
not documented by Microsoft. When called, both return a pointer to a DPB to the
DS:BX register pair. While function lFH always delivers a pointer to the DPB of
the current disk drive, the address delivered by function 32H refers to the device
whose number is passed to the function in the DL register at the time it's called. (0
represents the current drive, 1 is drive A, 2 drive B etc.). It's much more flexible
than function IFH.

Access to the various DPBs with the lFH and 32H functions offers a further
advantage, because it forces DOS to retrieve other information such as the
interleave factor and the media descriptor byte, which is ascertained for the disk
drive only after the first access. If you get to the DPB through the pointer in the
DIB block, the various fields may not have been initialized, and could contain the
wrong values.

Besides the pointer to the first DPB, the DIB contains the pointer to the first DOS
buffer at address 12H. These DOS buffers store individual sectors, so that the
sectors don't have to be repeatedly loaded from disk. The DOS buffers can be most
effective when used for storing disk sectors that are frequently needed by the
currently running program. Besides the FAT, these include the root directory and
its subdirectories. The number of buffers can be defined by the user in the
CONFIG .SYS file. If this number exceeds those needed for the FAT, root directory
and subdirectories, normal sectors can also be temporarily stored here, in the hope
that they are called to be loaded again in the near future, and can be taken directly
from the buffer.

So that DOS can quickly check each buffer for the desired sector with every read
operation, the individual sectors are linked together.

DOS buffer structure
Addr. Contents '-!'YE_e
+OOH Pointer to next DOS buffer 1 ptr
+04H Drive number (0 = A, 1 = B etc.) 1 }:)y_te
+05H Flags 1 1?Y_te
+06H Sector number 1 word
+08H Reserved 2 b_y_tes
+OAH Contents of buffered sector 512 b_y_tes
Ler::l_th: 210H (528) b_ytes

As with DPBs, this happens with the help of a pointer which appears at the start
of every buffer. Also, the last buffer is reached when the offset address of the
pointer contains the value OFFFFH. After the field linking one buffer to the next
comes the number of the drive where the buffered sector originates. The value
would be 0 for drive A, 1 for B, 2 for C, etc. Besides the drive number, the
identification of a sector requires a sector number. This is located beginning at
position 06H in the DOS buffer. The last field in the buffer header stores a pointer

211

6. The Disk Operating System PC System Programming

212

to the corresponding DPB, so that DOS can get information on the device which
loaded the buffered sector. Although this is the last field in the header of the DOS
buffer, the buffered sector does not end immediately after this field. There are two
more bytes which follow. The reason for this is that the DOS code is written in
machine language, and when it comes to working with memory blocks, it is most
efficient to have the buffered sector begin with an address that is divisible by 16.

The header of the DOS buffer is not the last place we run across the DPB. It turns
up again in the path table, which starts at address 16H in the DIB. This contains
the current path for each drive as well as a pointer to its DPB.

0 1 2 3 4 S 6 7 8 9 A B C D E F
0000: 41 JA SC 43 41 43 48 4S-OO 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0040: 00 00 00 00 40 20 74 80-02 27 03 FF FF FF FF 02
OOSO: 00 42 3A SC 00 00 00 00-00 00 00 00 00 00 00 00
0060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0070: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0080: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0090: 00 00 00 00 00 40 40 74-80 02 00 00 FF FF FF FF
OOAO: 02 00 43 3A SC S4 43 SC-42 41 SS S3 SC 41 S3 4D
OOBO: SC 48 4S S2 43 40 4F 4E-4F 00 00 00 00 00 00 00
OOCO: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0000: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOEO: 00 00 00 00 00 00 40 60-74 80 02 6S OS FF FF FF
OOFO: FF 02 00 44 3A SC 40 SJ-43 SC 42 49 4E 00 00 00
0100: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0110: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0120: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0130: 00 00 00 00 00 00 00 40-00 00 80 OD 17 00 FF FF
0140: FF FF 02 00

A:\CACHE ••••••••

•••• @ t .. ' ..•...
.B:\. • • .. • • •

••••• @@t ••••••••
•• C:\TC\BAUS\ASM
\HERCMONO •••••••

•••••• @'t •• e ••.•
••• D:\MSC\BIN •••

••••••• @ ••••••••

Memory dump of the path table contents

As long as the LASTDRIVE command is in the system's configuration file, the
table will have entries for drives A through the one specified by LASTDRIVE. If
this command is missing, however, the table will only have entries for each device
supported by the installed device driver. If you change the entries in this table, you
can divert one drive to another. The JOIN and SUBST DOS commands also take
advantage of this by manipulating the path table entry of the drive to be diverted.

Abacus 6.16 DOS 4.0

6.16 DOS 4.0

People were rather surprised when IBM introduced DOS 4.0 instead of DOS 3.4.
The version number suggests vast improvements to this operating system.
Version 4.0 does in fact have some features to offer which clearly set it apart from
its predecessors:

Full-screen system installation

Graphic user interfaces for directory display, file selection and running
programs

Full mouse support

Support of Extended Memory Specification (EMS) according to the LIM
4.0 specification for buffer storage

Hard disk partition (volume) support and support for device capacity larger
than 32 megabytes

Improved file access through optimization of the system code

The introduction of these features mean changes in the operating system code.
Although most of these changes will not affect most application programs, they
may cause problems in programs that lie within the system, as well as programs
developed without following rules of compatibility (see Section 6.14).

Compatibility problems

First of all, the support of hard disk partitions and files larger than 32 megabytes
implies definite changes to the DOS file system. These changes don't affect
programs that manipulate files only through the DOS interrupt 21H functions.
However, many block device drivers and programs that access the DOS structures
of the file system directly will have to be adapted to the new file system. This
includes programs like the Norton Utilities®, PC Tools® and all the other
utilities which perform tasks such as optimizing hard disks and restoring lost files.
All of these will be of little or no use under DOS Version 4.0.

To give you a chance to adapt programs affected by these changes to DOS 4.0, the
following pages give a description of changes to the file system (see Section 6.13
for a comprehensive look at the DOS file system).

In order to best visualize the changes to the file system, let's begin with a picture
of its fundamental structure, which remains valid under Version 4.0. This
fundamental structure can be divided into three layers, one on top of the other.
These range from the logical partitioning of a mass storage device on the top layer
to a purely physical system on the bottom layer. The top layer forms the function
interface to user programs. This interface calls individual functions through
interrupt 21H. No changes are allowed on this level in the switch to DOS 4.0 to

213

6. The Disk Operating System PC System Programming

ensure that all applications that use these functions will continue to run nonnally.
File accesses from the first level are converted to device driver function calls on the
second level. In order to locate each file (i.e., retrieve the sectors which must be
accessed) this level uses various data structures which are kept in the storage
medium. These include:

The boot sector (including the BIOS parameter block [BPB])

• The root directory and its subdirectories

The FAT and its duplicates

These functions cannot be changed as well, since one of the most important
demands placed on the new DOS version is the ability to work with partitions that
were created and fonnatted under previous versions. This is possible only if the
structures listed above are not changed. This does not leave many ways to increase
the capacity of a volume. Since the size of the FAT entry is limited to 16 bits, a
volume can use no more than 65519 clusters. Therefore, an increase is possible
only by using more sectors in a cluster.

When DOS 4.0 sets up new partitions, it assigns the following cluster sizes:

Partition and cluster sizes under DOS 4.0
Max.j>artition size 128 meg_ 256 me~ 512 me_g_ 1028 meg_ 2048 m~
Cluster size 2 K 4 K 8 K 16 K 32 K
Secs • ..E_er cluster 4 8 16 32 64

While this procedure minimizes the changes on the second level of the file system,
it also has a disadvantage: The bigger the partition, the more memory it wastes.
Since the memory in a partition can only be allocated in clusters, some memory is
always wasted when a cluster is not completely filled. This is true of files that are
smaller than the cluster size. Memory space is also wasted in the last cluster of a
larger file, since the size of a file is rarely an integral multiple of the cluster size.

Device driver level

214

The changes become most noticeable on the third level of the file system, called
the device driver level. While character drivers remain unaffected by changes in the
partition size, these changes have a great impact on block drivers that support
partitions of more than 32 megabytes.

It's true that changes on this level could be kept to a minimum by increasing the
sector size from 512 bytes, but this could lead to compatibility problems with
partitions that were configured under previous versions of DOS. The only
alternative was to increase the number of sectors per partition. But when a
partition exceeds the 32-megabyte limit, the 16 bits, which up until now were
used to store the logical sector number, are no longer enough. For this reason,
DOS 4.0 has introduced a new type of block driver that supports partitions larger

Abacus 6.16 DOS4.0

than 32 megabytes, and works with 32-bit sector numbers. DOS recognizes these
drivers with the help of bit l in the device attribute. This bit carried a value of 0 in
previous versions of DOS.

Starting with Version 4.0, DOS knows that it is dealing with a 32 bit driver if
this bit is turned on. Increasing the sector number also changed the structure of the
parameter data block, with which DOS passes information on the functions and
parameters being called, to the device driver. Since a 16-bit field is no longer large
enough for the sector number, DOS 4.0 adds a 32-bit field to the end of the block.
This stores the sector number for a 32-bit driver as a dword (double word). As
usual, the word with the smaller value is stored before that with the larger value.
To indicate that the new field is in use, DOS also loads the value -1 (FFFFH) into
the old field.

Structure of the extended parameter data block when
callin:r_ a function of a 32-bit driver under DOS 4.0
Addr. Contents ~e

+OOH Len_g_th of data block in 12Y_tes 1 b_y_te
+OlH Number of device bein_g_ addressed 1 ~te
+02H Number of function being_ called 1 ~te
+03H Status word 1 word
+05H Reserved 8 ~tes
+ODH Media descr~tor 1 ~te
+OEH Address of ..E_arameter buffer l ..E_tr
+12H Number of sectors to ..E_rocess 1 word
+14H Number of first sector for 16 bit drivers 1 word
+16H Number of first sector for 32 bit drivers 1 dword
Le1!!lth: lAH (26) ~tes

The following driver functions are affected by the change to 32-bit sector numbers:

0 initialize driver

2 setBPB

3 direct read

4 reOO

8 write

9 write and encode

12 direct write

The structure of the BIOS parameter block (BPB), which the initialize driver
function must pass to DOS, has also changed. This structure is also part of the
boot sector of a DOS volume. It has been supplemented by two fields compared to
the old BPB, and now looks like this:

215

6. The Disk Operating System PC System Programming

216

Extended BIOS _E_arameter block (BPB) structure under DOS 4.0
Addr. Contents 1Y.E_e
+OOH B_y_tes _E_er sector 1 word
+02H Sectors _£_er cluster 1 l:>y_te
+03H Number of reserved sectors 1 word
+05H Number of file allocation tables (FATs) 1 by_te
+06H Number of entries in root director_1.. 1 word
+OBH Number of sectors in volume 1 word

iE_artitions <= 32 MB on-lY_)
+OAR Media descri.£.tor 1 ~te
+OBH Number of sectors _E_er FAT 1 word
+OOH Sectors _E_er S_E_Ur 1 word
+OFH Number of read/write heads 1 word
+llH Distance of volume's first sector from first 1 word

sector on medium (E_artitions <= 32 MB onl_y_)
+13H Distance of first sector in volume from first 1 dword

sector on medium (E_artitions > 32 MB onl_y_)
+17H Number of sectors in volume 1 dword

(E_artitions > 32 MB only)
Length: lBH (27) bytes

The two new fields in this extended BPB refer to the total number of sectors in the
volume and the number of sectors between the first sector on the storage medium
and the first sector of the volume. Even though these fields were already present in
the old BPB, they were there only as 16-bit values, and had to be appended as 32-
bit fields. To guarantee maximum compatibility with the drivers of previous DOS
versions, DOS only needs to use the new BPB when the sector numbers cannot be
represented as 16-bit values. This happens if the distance from the first sector on
the storage medium to the first sector in the volume is greater than 32 megabytes.

The new BPB is installed while formatting a volume, but the old 16 bit fields are
used to store the number of sectors and the distance from the first sector when the
conditions mentioned above don't apply. Otherwise, the corresponding values are
entered in the 32 bit fields and the 16 bit fields are assigned a value of 0.

Extending the logical sector number to 32 bits also caused a change in the way the
25H and 26H interrupt functions work. These functions represent the only way for
an end-user program to directly access the individual sectors of a volume via DOS.
If the number of the first sector to be processed was passed to the DX register of
these interrupts by an earlier DOS version, direct sector access is only possible
under Version 4.0 if the volume to be accessed is smaller than 32 megabytes. To
access larger volumes in Version 4.0 and higher, the DS:BX register pair of these
interrupts must receive a pointer to the data block pictured on the next page:

Abacus 6.16 DOS4.0

Structure of data block used in calling interrupts
25H and 26H under DOS 4.0
Addr. Contents Type

+OOH Number of first sector 1 dword
+04H Number of sectors 1 word
+06H Pointer to buffer 1...E_tr
Lef!.cl_th: OAH (10) ~tes

At the same time a value of -1 (FFFFH) must be passed to the CX register, so
that OOS knows that the parameter transfer will not be following the old scheme.
In conclusion, there is one more little innovation to mention. While this has no
impact on program development under DOS 4.0, it does show that the 80386 has
truly come of age. For example, 80386 PCs can use a particular trick to speed up
file access and corresponding buffer and cache operations. DOS uses the
capabilities of the 80386 very skillfully by running string instructions using
bytes, words and dwords (double words). When copying and pushing memory
blocks within the IO.SYS and MSDOS.SYS modules, the following code
sequence is used to process the transcription in dwords:

MOV ex, NUMBER
SHR ex, 1
DB 66h
REP MOVSW

;load number of words to move
;cut number of words to move in half
;dword prefix for string command
;copy memory block

Since neither the 8088 nor the 80286 processors can perform dword operations, the
SHR CX,l and the DB 66H instructions are simply replaced with NOP
instructions when installing the module, if the PC is equipped with a processor
other than an 80386.

217

Chapter 7

The BIOS

BIOS is the abbreviation for Basic Input/Output System. The name indicates that
the BIOS provides basic input and output routines for communicating between
software and the hardware peripherals such as keyboard, screen and disk drive.

Why the BIOS is important

Since these routine calls are standardized, this saves the programmer the trouble of
fitting programs to one particular PC hardware configuration. This means you can
develop a program on one PC or compatible, and run it on another compatible PC
without errors, even though neither the hardware nor the individual BIOS routines
are completely compatible. This hardware independent concept contributed much to
the popularity of the PC. It offers the computer manufacturers the ability to
develop PCs which aren't quite identical to a true IBM PC, yet can run popular
software.

About BIOS functions

BIOS functions occur through the individual routines contained in the BIOS
interrupts IOH to 17H and lAH. The processor registers, whose usage is also
standardized, transfer data from the calling program to the interrupt and from the
interrupt to the calling program.

Number Meanii:!..9..
lOH BIOS di~l~ function call
llH Testii:!..9.. the conf~uration
12H Testin-9'_ RAM
13H BIOS disk functions
14H Functions for a~nchronous communication
lSH Cassette functions
l6H Readin-9'_ the k~board

219

7. TheBIOS PC System Programming

BIOS architecture

220

The BIOS itself is located in PC ROM, making it resident even after the computer
has been turned off. It is stored very high in the processor's address space
beginning at address FOOO:EOOO. It extends to address FOOO:FFFF, the last
location addressable on the Intel 8088 microprocessor. The BIOS routines must
create, store and modify variables, much like any other routine. Since this is
impossible in the BIOS area itself, BIOS stores these variables in the lower part of
memory starting at address 0040:0000.

This chapter begins with a description of the bootstrap, followed by descriptions of
each BIOS function, call and application.

Abacus 7.1 Booting the System

7 .1 Booting the System

Section 6.3 described the booting process of DOS. The examination began at the
point where the first sector of a diskette or hard disk loads into memory. From the
time you switch on the computer to the booting process, a series of events occur.
This section describes those interim events.

Initialization

Program execution in a computer based on the Intel 8088 (or one of its successors)
starts after the computer is turned on at memory location FOOO:FFFO. This
memory location is part of the ROM-BIOS and contains a jump command to a
BIOS routine which takes over system initialization. The location of this routine
may differ from one computer to another (actually from BIOS to BIOS) because
the BIOS changes internally with each manufacturer. The task this routine
performs remains identical for nearly all PCs, however.

System check

First the BIOS tests individual functions of the processor, its registers and some
instructions. If an error occurs during this test, the system stops without
displaying an error message (this is impossible with a defective processor). If the
CPU passes the test, a checksum is computed from each of the ROM's contents
and compared with the various ROMs to determine whether a defect exists there.
Each chip on the main circuit board (such as the 8259 interrupt, the 8237 DMA
controller, and the RAM chips) goes through tests and initialization.

Peripheral testing

After determining the functionality of the main circuit board, the computer tests
the peripherals (keyboard, disk drive, etc.). In addition to these hardware related
tasks, the BIOS variables and the interrupt vector table must be initialized.

The bootstrap loader

Note that no mention has been made of the operating system so far. It hasn't been
loaded into the computer from diskette or hard disk yet. Interrupt 19H, known as
the bootstrap loader, performs this task on startup or on system reset (when you
press the <Alt><Ctrl><Delete> key combination). This routine tries to load some
form of the basic operating system from a predetermined place on the diskette.

Reasons for failure

This bootstrap process may fail for a number of reasons:

There is no disk in the disk drive.

There is a disk in the drive, but the disk isn't bootable (the DOS files are
not available on the diskette). If this occurs, the bootstrap routine

221

7. TheBIOS PC System Programming

222

attempts to find the routine on the other disk drives connected to the PC,
or on a predetermined location on an existing hard disk.

If the system still cannot find the bootable system disk, there are two other reasons
that may be causing a problem:

Some older systems switch to ROM BASIC. This is a small BASIC
interpreter stored in PC ROM directly beneath the BIOS starting at
memory location F000:6000. New PCs display a message on the screen
requesting that the user insert a diskette containing the operating system
into the drive.

BIOS doesn't care what operating system it loads, so it may attempt to
load a non-DOS operating system if one exists on the disk. This makes it
possible to load other operating systems such as XENIX.

Abacus 7.2 Determining BIOS Version

7 .2 Determining BIOS Version

The previous section described memory location FOOO:FFFO in conjunction with
the system startup. Usually a 5-byte-long jump instruction can be found at this
location. After this instruction, an additional 11 bytes are available (to
FOOO:FFFF), which are normally used to store the release date of the BIOS
version.

You can examine the contents of these memory locations to determine which
BIOS version your PC uses. Call the DEBUG program from the DOS prompt

debug

Enter the following line to display the bytes at the end of the ROM-BIOS:

d fOOO:fffO l 10

The next line displays the contents of this memory location as a hexadecimal
number; the characters to the right of the hex display are the corresponding ASCII
codes. Day, month and year appear as two digits separated by "f' characters.

C>debug
-d fOOO:fffO 1 10
FOOO:FFFO EA 58 EO 00 FO 30 32 2F-30 36 2F 38 36 00 FC 00 [••• 02/06/86 •••
-q
C>

BIOS date display in DEBUG

223

7. TheBIOS PC System Programming

7 .3 Determining the PC Type

Usage of certain BIOS functions are more for model identification than for BIOS
version identification. They indicate the type of PC in use. They also indicate
when the BIOS has additional functions (e.g., AT BIOS is better equipped than the
PC and XT BIOS). These extra functions essentially handle string output on the
screen, realtime clock access (standard on the AT) and additional RAM beyond the
1 megabyte memory limit (also standard on the AT).

A program which calls these functions must first ensure that the computer in use
is in fact an AT, and that the functions addressed are available. The programmer
can use the model identification byte located in the last memory location of the
ROM-BIOS at address FOOO:FFFE. This byte can contain the following codes:

Note:

252 or FCH: AT

254 or FEH: XT and portable PC

255 or FFH: PC

These values aren't entirely accurate. Many PC/XT compatibles
indicate completely different values in the model identification byte.
The following rule of thumb may be used: A model identification
byte of 252 identifies an AT; any other number indicates a PC/XT.

Only IBM computers have guaranteed reliable model identification numbers at
memory location FOOO:FFFE. This may not be the case for compatible
computers. Use the DOS program DEBUG to obtain the model identification byte.
Call DEBUG with

debug

Enter the following command sequence:

d fOOO:fffe l 1

The model identification appears as a hexadecimal number on the screen.

Access to the model identification byte from programs

224

The model identification can be obtained directly from a program. Here's a short
assembler program to perform that task:

IDSeg segment at fOOOh
org Offfeh
PcID db (?)

IDSeg ends

push ds
mov ax,IDSeg
mov ds,ax

;store data segment

;Set Data segment to BIOS

Abacus 7 3 Determining tlu! PC Type

cmp PcID,252
pop ds
je IstAT

;Device is a PC/XT

IstAT label near

;test if AT-Code
;restore Data segment

Higher level languages can also find the identification byte. The following BASIC
program uses the PEEK statement for reading the model identification.

10 def seg = &hFOOO
20 if peek(&hFFFE) = 252 then print "AT" else print "PC/XT"

Turbo Pascal uses the mem array to read the model identification:

begin
if mem[$FOOO : $FFFE] = 252 then writeln('AT')

else writeln('PC/XT');
end;

How the model identification is used in a program will be demonstrated in the
programs later in this chapter.

225

7. TheBIOS PC System Programming

7.4 BIOS Screen Output Functions

The BIOS contains a series of routines which display data on the screen and
maintain other display functions. In addition to the video mode, BIOS manages
cursor positioning, text output and graphic display routines. Interrupt lOH calls all
these routines. The processor registers transfer the data between the application
program and the BIOS interrupt routine.

Under DOS versions 1.0 and 1.1, these BIOS routines were the only options for
cursor positioning and color choice. DOS Versions 2.0 and up make these
functions available under DOS as well.

More about compatibility

The BIOS routines execute faster than their corresponding DOS routines. Those
concerned about compatibility and output device redirection may be better off using
DOS routines. In any case, the application itself should dictate which routines will
be used.

The BIOS routines, like the DOS routines, offer the programmer the advantage of
independence from a particular video card (IBM monochrome, IBM color, Hercules,
etc.), since they can be adapted to various cards. Because these cards have different
features supported by BIOS, let's look at the capabilities of these cards before
examining the routines of interrupt 1 OH. Programs demonstrating the function
calls are listed in BASIC, Turbo Pascal, C and assembly language later in this
chapter.

Monochrome display adapter

226

This card displays a page of 25 lines and 80 columns. Column 0 and line 0 are in
the upper left hand comer of the display. The numbering continues to the right and
down from column 0, line 0.

Abacus 7.4 BIOS Screen Output Functions

ROWS

22

231---+---lf--+--+-+--t
24 ..._.....___....._...___,__.._

Line and column numbering-monochrome display

Each of the 2000 (80*25) positions on the screen is represented by a character from
a set of 256 characters (IBM PC standard character set) and an attribute character,
also called an attribute byte. Both characters require one byte apiece, so 2000*2
(4000 bytes) of video RAM must be available to display the entire screen. This
video RAM exists on the video display card. Since video RAM is not part of the
normal RAM, the starting address remains constant at address BOOO:OOOO for the
monochrome card.

While the PC systems have standard character sets for all the video cards described
here, the attribute bytes change from card to card.

As the figure below shows, bits 0 to 2 and 4 to 6 of the attribute byte defines the
foreground and background color of the displayed character.

227

7. TheBIOS PC System Programming

Color

228

-----Character color
Character Intensity

'---------to = normal, 1 = high

'-------------teackground color
____________ Blinking

o = off,1 = on

Attribute byte color structure-monochrome display adapter

Bit 3 of the attribute byte indicates the intensity of the foreground color. If it
contains a 1, the character appears in high intensity. Bit 8 indicates whether the
character on the screen should blink (a 1 in this bit causes the character to blink).
While these bits can be set in any manner, only bit combinations which "look
good" should be used for foreground and background color.

2 1 0 bit

0 0 0 No characters
(black on black)

2 1 0 bit

0 0 1 Underlined characters

2 1 0 bit

1 1 1 Normal characters
(white on black)

2 1 0 bit

0 0 0 Inverse characters
(black on white)

2 1 0 bit

1 1 1 White character field
(white on white)

Colors and attribute byte-monochrome display adapter

graphics adapter (CGA)

This card offers text display of the IBM PC standard character set and various
graphic modes. Text mode works with a resolution of either 80x25 or 40x25
characters. 40x25 resolution displays characters in double width. This mode allows
the management of up to eight different video pages (80x25 mode allows up to

Abacus 7.4 BIOS Screen Output Functions

four different pages). The line and column number assignment is similar to the
monochrome display card

CGA attribute bytes

The attribute byte used on this card mainly selects foreground and background
colors of the characters. A total of 16 colors is available. The first eight of these
may be used as background colors.

Binary Dec. Color
OOOO(b) 0 Black
OOOl(b) 1 Blue
OOlO(b) 2 Green
0011 (b) 3 Turquoise

OlOO(b) 4 Red

OlOl(b) 5 Mi!SI.enta
0110 (b) 6 Brown (dark _y_ellow on some monitors)
0111 (b) 7 L.i,_g_ht Gra_y_ (sometimes white)

lOOO(b) B Dark Gra_y_ (or black)
1001 (b) 9 Lig_ht Blue
lOlO(b) 10 Lig_ht Green

1011 (b) 11 Lig_ht Tu:r-guoise
1100 (b) 12 Light Red
1101 (b) 13 L.iJ!_ht M~enta
1110 (b) 14 Yellow (also li_9:..ht _y_ellow)
1111 (b) 15 White

As the figure below shows, bits 0 to 3 of the attribute bytes represent the
foreground color, while bits 4 to 6 indicate the background color. Bit 7 means the
same as in the monochrome display card: it decides whether the character should
blink.

7 6 5 4 3 2 1 0 bit

l l l I l I
...........,[y

Character color
Background color
Blinking
O = off,1 = on

Attribute 17yte structure-color graphic adapter

This card can emulate a monochrome display card (see above) in which the
attribute character has the same meaning as in the monochrome card, with the
exception that no underlined characters can be produced.

229

7. TheBIOS PC System Programming

Graphic modes and the CGA

Graphic modes can have either a resolution of 640x200 dots with 2 colors or
320x200 dots with 4 colors. In both modes the upper left comer of the screen has
the coordinates 0/0.

No attribute byte exists in this mode since every dot on the display is either
illuminated with a color or not, and not composed of standard characters from a
character set. To display characters from the standard character set in this mode,
they must be drawn on the screen with pixels (dots).

In 320x200 resolution, one of the 16 available colors can be defined as a
background color. The foreground color must be one of three colors in a palette
predetermined by the graphic card. Two palettes are normally available: One
contains the colors cyan, magenta and white, while the other offers the colors
green, red and yellow.

The video RAM of this card starts at location B800:0000 (unlike the monochrome
display card which starts at BOOO:OOOO). This ensures that the video RAMs of the
two cards do not overlap. They can be used in parallel with each displaying data on
its own monitor.

Hercules graphic cards

230

The Hercules graphic card has the same text mode as the IBM monochrome display
adapter, and can display two video pages of text at a time. A Hercules card also
offers a graphic mode in which two video pages can be displayed with a resolution
of 720x348 pixels. Unfortunately, the BIOS cannot access either the two video
pages or the graphic mode. BIOS treats this card like a normal monochrome card,
which can only display one text page of 80x25 characters.

Now that you have some general k!lowledge of graphic adapters, here are the
functions called from interrupt IOH:

Decimal Hex Meanirig_
0 OH Determine Video mode
1 1H Define cursor size
2 2H Determine cursor_.E_osition
3 3H Sense cursor _E_osition
4 4H Read llg_ht _.E_en
5 SH Define current dis_B_lay__2a_g_e
6 6H Scroll di~la_y_ 1.1E_

7 7H Scroll displa_l. down
8 SH Read character I attribute at cursor_.E_osition
9 9H Write character I attribute at cursor ..E_osition
10 AH Write character at cursor ..E_osition
11 BH Determine color ..E_alette for _g_r<!E_hic mode
12 CH Set dis..E_l'!Y._..E_oint in __p-~hic mode
13 DH Sense dis..E_l'!Y.__point in _g_r<!E_hic mode

Abacus 7.4 BIOS Screen Output Functions

Decimal Hex Meanif!CJ_
14 EH Character out_put (like a terminal)
15 FH Determine video mode
19 13H Write character str if!CJ_ (on1:Y_ available on AT)

As always, the processor registers pass the function arguments. Some common
rules define which registers accept which arguments:

The AH register indicates the number of the function Lo be called with interrupt
lOH. If character should be displayed, or a dot placed on the screen in graphic
mode, its value passes to the AL register.

Hercules functions

If the function expects display coordinates for text mode, the X-coordinate
(column) must be loaded into the DL and the Y-coordinate (line) into the DH
register. In graphic mode the ex register accepts the X-coordinate and the DX
register the Y-coordinate. The number of the display page (if required) should be
contained in the BH register.

It is important for assembler programmers that the contents of the BX, ex, DX
and the contents of the segment registers remain the same before and after the
interrupt call. The contents of all other registers may change.

Function OH: Set video mode

Before sending output to the screen, the video mode must be selected. The current
video mode in use might not be the one you desire. Function 0 of interrupt 1 OH
performs this task and also selects the active video card in case the PC has several
video cards connected. For a call to this function through interrupt lOH, the AH
register must contain function number 0 and the AL register must contain the
number of the video mode to be activated. Of course only those video modes that
are supported by the video card in the PC can be activated. The following numbers
correspond to the various video modes (the video card supporting the mode is in
parentheses):

0 40*25 character monochrome text di~liiY_ (Color)
1 40*25 character color text di~l'!Y. (Color)
2 80*25 character monochrome text di~l'!Y. (Mono)
3 80*25 character color text di~l'!Y. (Color)
4 320*200 ...E._ixel _!lra_E_hics with 4 colors (Color)
5 320*200 pixel graphics with 4 colors (Color)

but shown monochrome
6 640*200 _E_ixel _!lr~hics with 2 colors (Color)

The mode makes no difference on a monochrome card, since only one mode exists
(80x25); this mode is constantly active. It uses the internal designation number of
7.

231

7. TheBIOS PC System Programming

Function OFH: Get video mode

The opposite of this function is function OFH, which determines the current video
mode. A value of OFH in the AH register during a call to interrupt IOH executes
this function. It returns the value of the video mode (refer to the table above) in the
AL register. As mentioned above, a monochrome card always returns the value 7.
Besides the video mode, the number of columns per display line in this mode (40
or 80) returns in the AH register and the current display page number in the BH
register.

Function 02H: Set cursor position

After the video mode initialization, screen output can begin. Function 2 defines the
cursor position. Calling this function places the blinking cursor in the desired
location on the screen. This sets the starting position of character display. Prior to
calling this function the AH register should be loaded with the function number
(2), the DH register with the line location of the cursor, and the DL register with
the column location of the cursor. The BH register holds the display page onto
which the cursor should be positioned. Remember that every display page has its
own cursor for positioning the text output, but only one active or blinking display
cursor exists. This active cursor always appears on the currently displayed page.
Function 2 moves the active cursor if the value in the BH register corresponds to
the current screen page.

Function 03H: Read cursor position

232

The counterpart of this function is function 03H. It reads the current cursor
position of a selected display page and returns the position to the calling program.
At the call of this function the AL register must contain the function number (3)
and the BH register the number of the display page whose cursor position is being
read

Monochrome display cards return a value of 0, since the card can only display one
page (numbered 0). After the call of interrupt IOH the DH register contains the
cursor position's line and the DL register the cursor position's column. In addition,
two values are returned to the CH and CL registers which have special
significance. They indicate the starting and ending raster scan (pixel) lines of the
cursor. These lines are independent of the displayed page.

To understand this significance, it is important to know that every text mode
character on color and monochrome cards have heights of 8 and 14 pixels per
character, respectively. The programmer can choose at which of these pixel lines
the blinking cursor begins and at which it stops.

Abacus 7.4 BIOS Screen Output Functions

These values must of course remain within the legal values of the individual video
cards (i.e., 0 to 7 for a color card and 0 to 13 for a monochrome card), otherwise
the blinking text cursor may disappear from the screen.

Function 01H: Define cursor size

While these values are read with the help of function 3, function l is used to set
these values. The AH register loads with a l, the CH register with the starting line
of the cursor, and the CL register with the ending line of the cursor, before calling
interrupt lOH. The starting line must be smaller than or equal to the ending line,
or the cursor becomes invisible.

Function 05H: Set active display page

This book has frequently mentioned the current display page without telling how
to activate this page. Function OSH of interrupt lOH performs this task. Place a
value of 5 in the AH register and the number of the page you want activated
(displayed on the monitor) in the AL register. The number of the page to activate
depends on how many pages are available in the current video card and video mode.
Since the monochrome video card offers only one display page, using this function
with a monochrome card makes no sense at all. The following values are allowed
for the color card's different video modes:

0 to 7 (40*25 character text display [Color-card])
0 to 3 (80*25 character text display [Color-Card])

After selecting the video mode and moving the cursor to the desired location on the
screen, one or more characters are output on the screen in most cases. BIOS makes
various functions available which have different abilities in providing character
display on the screen. One difference between these functions is that they process
control codes in various ways. These control codes are the ASCII codes 7, 8, 10
and 13. They represent the following:

7 Bell LE_roduces a sound
8 Backspace erases preceding character & moves

cursor back one character ..£.OSition
10 Linefeed moves cursor one line down
13 Carri~e return moves cursor to start of current line

Some functions view these codes as normal ASCII characters and execute them
accordingly. Other functions see them as control codes. For example, code 7
produces a sound with some functions. The choice of which function to use
depends on which control code processing is desired.

Text display in graphic mode

Text display functions can be used in both text and graphic modes. Text output in
graphic mode creates different characters since the characters must be drawn on the

233

7. TheB/OS PC System Programming

screen from pixels. The PC uses ASCII codes to set the graphic pixels. While the
character samples for the ASCII codes 0 to 127 are already stored in the ROM, the
character patterns for the codes 128 to 255 must be read from a table in RAM.
This table installs itself in RAM when you execute the DOS GRAFf ABL
command.

BIOS obtains the address of this table from the memory locations 0000:007C to
0000:007F, where the table's offset address lies in the lower two bytes and the
table's segment address in the upper two bytes. These memory locations are inside
the interrupt vector table but can be used for this purpose since interrupt lFH
(whose address normally appears there) remains unused.

Having this table stored in RAM makes it possible to define your own table, so
that special characters which are not contained in the standard character set can be
displayed on the screen. Since every character is comprised of 8 bytes, the first 8
bytes of the table are reserved for ASCII code 128, the next 8 for the code 129, etc.
Each byte contains the bit pattern for one of the 8 lines which compose a
character. Bit 0 represents the dot on the right border of the character matrix, bit 7
the dot on the left border. If you set a bit to 1, this illuminates the corresponding
pixel on the screen.

Function 09H: Write character with attribute
Function OAH: Write character

Functions 09H and OAH are available for character output. Function OAH displays
the character in the color determined oy the attribute corresponding to that
particular screen position. Function 09H sets the color (attribute) of the character
to be displayed. Neither function moves the cursor to the next screen position after
character display. Character output resumes at the same location on the next
function call. Function 02H must be called to move the cursor to the next screen
position for displaying readable text

Determiuing the function call

234

Both functions 09H and OAH interpret the control codes described above as normal
characters and display them accordingly. During the call of these functions the
contents of the AH register depend on whether the user called function 09H and
OAH. The AL register accepts the ASCII code of the character to be displayed. The
display page for character display can be found in the BH register. The CX register
contains a number which indicates how many times the character should be
displayed. Because of this, it's possible to display a character several times with
just one interrupt call {this saves time and memory). If you want the character in
the AL register displayed only once, a 1 must be stored in the CX register during
the function call. Since function 09H also determines the color of the character to
be output, the BL register passes the character color.

Abacus 7.4 BIOS Screen Output Functions

Function OEH: Teletype mode

A serious disadvantage of these two functions is that the cursor's position does not
advance after the function call. Function OEH cures this problem. It acts like a
terminal, hence its name-the TTY (Teletype output) routine. The cursor advances
to the next screen position after a character is displayed. If the cursor reaches the
end of the screen line, it moves to the beginning of the following line. If the
cursor is in the last display screen position (line 24, column 79), the entire screen
is scrolled one line upward and the top line of the screen disappears from the
display area. In addition, the function clears line 24 and the cursor moves to the
beginning of the line.

Another approach to control codes

Unlike functions 09H and OAH, function OEH treats control codes according to
their functions, and not as normal ASCII codes. Like function OAH, characters are
displayed by function OEH using the character color (attribute) already present at
that screen location. This is valid for text mode only. In graphic mode; the
foreground color must be passed in the BL register.

Prior to the function call, the AH register must be loaded with function number
OEH, the AL register loaded with the code of the character to be displayed and the
BH register with the display page intended for character display.

Function 08H: Read character/attribute

While functions 09H, OAH and OEH display characters on the screen, function 08H
makes it possible to read characters from the screen, i.e., to sense the character and
attribute displayed. Before the call, the value 08 must be loaded into the AH
register and the number of the display page from which the character should be
loaded into the BH register. The display position from which the character should
be read is the current cursor position in the display page indicated by the BH
register.

In text mode the character code can be read directly from video RAM. However,
graphic mode requires a comparison between the bit pattern at the current cursor
position and every character's bit pattern in the character set.

After the function call, the AH register contains the attribute (color) and the AL
register contains the ASCII code of the character read.

Function 06H: Scroll window up

Function 06H scrolls the screen up one or more lines, or clears sections of the
screen by displaying spaces (ASCII code 32). These operations can only be
performed on the current display page. To call this function, you must load the AH
register with the function number (6). The AL register is loaded with the number

235

7. TheB/OS PC System Programming

of lines the display should be moved up. A 0 in this register instructs the function
to fill the screen area with spaces instead of scrolling the screen. The BH register
contains the color (attribute) for the blank line. The CH, CL, DH and DL registers
define the display page window to be scrolled or cleared. The C register represents
the upper left corner of the window, while the D register defines the lower right
comer of the window. The following list illustrates the meaning of each register:

R~ Meanin~

CH Line of the upper left corner of the window
CL Column of the upper left corner of the window
DH Line of the lower rkht corner of the window
DL Column of the lower rkht corner of the window

Function 07H: Scroll window down

236

Function 07H scrolls the screen down one or more lines, or clears sections of the
screen by displaying spaces (ASCII code 32). These operations can only be
performed on the current display page. To call this function, you must load the AH
register with the function number (7). The AL register is loaded with the number
of lines the display should be moved down. A 0 in this register instructs the func
tion to fill the screen area with spaces instead of scrolling the screen. The BH
register contains the color (attribute) for the blank line. The CH, CL, DH and DL
registers define the display page window to be scrolled or cleared. The C register
represents the upper left corner of the window, while the D register defines the
lower right comer of the window. The following list illustrates the meaning of
each register:

Reg_ Meanil!..S'..
CH Line of the upper left corner of the window
CL Column of the upper left corner of the window

DH Line of the lower ri~ht corner of the window
DL Column of the lower rkht corner of the window

Abacus 7.4 BIOS Screen Output Functions

Graphic functions

The following are descriptions of the functions used in the different graphic modes.
They can be used in connection with video cards capable of producing graphics.

Function OOH: Set video mode

Function OOH switches on one of the available graphic modes. The border color (or
color palette) should then be selected for the 320x.200 (or text) mode by loading
function number OAH in the AH register. The BH register dictates the use of the
border color or the color palette. If during the function call the BH register contains
a 0, the value in the BL register becomes the background and border color for the
graphic mode. All 16 colors are available, so the BL register can contain a value
between 0 and 15. This function remains valid for the text mode. However, only
the border color can be set. The background color for each character is set
individually by the top 4 bits of the color attribute, and therefore cannot be set for
everything.

If the BH register contains a 1, the value in the BL register (0 or 1) selects the
active color palette. The palettes contain the following colors:

0 Green, red, ellow
1 C an, ma enta, white

Function OBH: Set color palette

Once the graphic mode initializes and the colors are selected, graphic drawing can
begin. Function OBH writes graphic pixels at specified locations of the screen. The
pixel coordinates to be addressed are passed in the ex and DX registers. The values
in these registers depend on the graphic resolution of the current graphic mode. The
ex register contains the X-coordinate (column coordinate) of the pixel, and the DX
register the Y-coordinate (line coordinate) of the pixel. The function call must have
the function number (OBH) passed in the AH register. The color value of the pixel
to be manipulated is passed in the AL register. The Hercules card and the 640x.200
mode of the color card permit the values 0 and 1 only. In the 320x200 mode of the
color card, the values 0 to 3 are allowed for the 4 possible colors. The significance
of these values depends on the active color palette. If a program enables palette 0,
the values have the following significance:

0 Color selected for back.3_round with function OBH
1 Green
2 Red
3 Yellow

237

7. The BIOS PC System Programming

An active palette 1 changes the values slightly:

0 Color selected for background with function OBH
1 C_yan
2 Magenta

3 White

Function OOH: Read pixel

Function ODH is the equivalent of this function, which determines the color value
of a pixel. Before the call, the value ODH must be passed in the AH register, the
X-coordinates of the pixel must be loaded into the ex register, and the Y
coordinates into the DX register. The pixel color is returned as a result in the AL
register. This value corresponds to the rules described in function OBH.

Function 13H: Write string

238

Interrupt lOH includes another function on AT computers. Function 13H displays
strings of characters on the screen. During its call a series of arguments must be
passed, in addition to passing the function number to the AH register. The BH
register accepts the number of the display page on which the string should be
displayed (not necessarily the current display page). The starting position of the
character string on the display is in the DH (line) register and the DL register
(column). The ex register contains the number of characters in the character
string.

The AL register's contents define one of the four possible modes in which the
character string can be displayed. The string format in modes 0 and 1 differ from
string format in modes 2 and 3. Modes 2 and 3 place attribute bytes after every
character in the string. In modes 0 and 1, the individual characters of the string
follow one another in sequence. The attribute byte for all characters depends on the
contents of the BL register. In modes 2 and 3, 2 bytes are stored in the string for
every character displayed. For example, a character string of 4 characters requires 8
bytes of memory. The number of characters to be displayed (4 characters in this
example) must be indicated in the ex register. Another difference between modes 0
and 2 and modes 1 and 3 is in display format. After the string display in modes 1
and 3, the cursor appears following the last character of the string. The next
character displayed with one of the BIOS functions then appears at this position on
the screen. The cursor position does not get updated in modes 0 and 2.

Abacus 7.4 BIOS Screen Output Functions

Demonstration programs

The following programs demonstrate the use of BIOS video interrupt functions
available from higher level languages. In Pascal and C, you'll find that using BIOS
display functions works much faster than the standard procedures and functions
provided in these languages, which use the slower DOS functions. BASIC's use of
BIOS screen functions is minimal, since these functions are even slower than the
BASIC PRINT statement

Advantage

Accessing BIOS video interrupt functions has an advantage over the use of onboard
graphic commands in higher level languages: the BIOS functions can be accessed
at any time.

Disadvantage

There is a serious disadvantage to using BIOS functions for screen output. The
higher level language display commands can accept numerical variables, which are
then converted to ASCII characters. These higher level commands can format the
variables according to decimal places or a certain degree of precision, then display
these variables. However, if numerical variables are to be displayed using the BIOS
functions, they must first be converted into a character string which you must
transfer to the BIOS output function. This procedure takes time.

All three programs are identical in function. Each fills the screen with continuous
characters from the PC character set, then opens two windows in which two arrows
move up and down. How this was done, and how it will actually appear on the
screen, should become clear after you take a closer look at the program codes. The
programs limit their access to one video page, due to incompatibility problems
that could occur between monochrome and color cards. They also do not present
subroutines, functions or procedures for calling the BIOS graphic functions.

Once you understand this section you should be able to easily add the missing
functions and even write a short demo program of your own. Using BIOS video
interrupt assures that the computer will not crash and that nothing major can go
wrong.

BASIC listing: VIDEOB.BAS

100 '***'
110 '* V I D E OB BAS *'
120
130
140
150

'*---*'
Task : Makes some Subroutines available for access

to the Display using the BIOS-Video-Interrupt *'

160 '* Author : MICHAEL TISCHER *'
170 '* developed on : 07/18/87
180 '* last Update : 05/14/89
190 '***'
200 •
210 CLS : KEY OFF
220 PRINT"WARNING: This Program should only be started if GWBASIC was "

239

7. The BIOS PC System Programming

240

230 PRINT"started from the DOS level with <GWBASIC /m:60000>. "
240 PRINT : PRINT" If this was not the case enter <s> for Stop."
250 PRINT"Otherwise press any key ... ";
260 AS = INKEYS : IF AS "s" THEN END
270 IF AS = "" THEN 260
280 CLS
290 GOSUB 60000 'Install function for interrupt call
300 PAGE%=0 'Display page for the output is Page 0
310 COLRR%=7 'light characters on dark background
320 FOR DISPROW%=1 TO 24 •process all display lines
330 FOR DISPCOL%=0 TO 79 'process all display columns
340 CHARACTERS=CHRS((DISPCOL%+DISPROW%*80) AND 255) 'continuous code
350 GOSUB 52000 'Set cursor position
360 GOSUB 57000 'Output character
370 NEXT •next column
380 NEXT 'next line
390 VALUE%=0 'Erase Window
400 ULC%=5 : ULR%=8 : LRC%=19 : LLR%=22 •coordinates of the 1. Window
410 GOSUB 55000 'Erase Window
420 ULC%=60 : ULR%=2 LRC%=74 : LLR%=16 'Coordinates of the 2. Window
430 GOSUB 55000 'Erase Window
440 COLRR%=&H70 'dark letters on light background (inverse)
450 DISPCOL%=5 : DISPROW%=8 'Coordinates for Text output
460 TS=" Window 1 'Text for output
470 GOSUB 58000 'Output Text
480 DISPCOL%=60 : DISPROW%=2 'Coordinates for text output
490 TS=" Window 2 'Text for output
500 GOSUB 58000 'Output Text
510 DISPROW%=0 : DISPCOL%=0 'upper left Display corner
520 T$=STRING$(23," ")+"Arrow number is being drawn "+STRINGS(23," ")
530 GOSUB 58000 'Output Text
540 COLRR%=&HFO 'dark chars on light background (inverse) blinking
550 DISPCOL%=24 DISPROW%=12 'Coordinates for Text output
560 T$=" >>> PC SYSTEM PROGRAMMING <<< " 'Text for output
570 GOSUB 58000 'Output Text
580 VALUE%=1 'always scroll one line
590 FOR ARROWS%=4 TO 0 STEP -1 'Output total of 10 Arrows
600 DISPCOL%=35: DISPROW%=0 'Position for number of Arrows
610 COLRR%=&H70 'dark characters on light backg1ound (inverse)
620 T$=STR$(ARROWS%) 'Convert number of Arrows into ASCII-String
630 GOSUB 58000 'Output Text
640
650
660
670
680
690
700
710
720
730
740

COLRR%=7 'light characters on dark background
•an Arrow consists of 8 Lines FOR COUNTL%=1 TO 8

DISPCOL%=5 : DISPROW%=9 'Coordinates in first Window
T$=STRING$(8-COUNTL%," ")+STRING$(2*COUNTL\-l,"*")+STRING$(8-COUNTL%," ")
GOSUB 58000 'Output Arrow line
DISPCOL%=60 : DISPROW%=16 'Coordinates in second Window
GOSUB 58000 •output arrow line
ULC%=5 : ULR%=9 : LRC%=19: LLR%=22 'Coordinates of 1. Window
VALUE%=1 'scroll one DISPROW
GOSUB 56000 'Scroll Window down
ULC%=60 : ULR%=3

7 50 VALUE%= 1
760 GOSUB 55000
770 NEXT
780 NEXT
790 CLS
800 KEY ON
810 END
820 '

LRC%=74: LLR%=16 'Coordinates of 2. Window
'Scroll one Line

'Scroll Window up
•next Arrow Line

•next Arrow

50000 '***'
50010 '* Sense Video mode and other Parameters
50020 '*---*'
50030
50040
50050
50060
50070

Input
Output

Info

:
none
VMODE% the current Video mode
PAGE% the current Display page
DISPCOL% the number of Columns per Line
the Variable Z% is used as Dummy

50080 1 *** 1

50090

Abacus 7.4 BIOS Screen Output Functions

50100 DISPCOL%~15 'Get Function number for Video mode
50110 INR%~&H10 'Call BIOS-Video-Interrupt 16(h)
50120 CALL IA(INR%,DISPCOL%,VMODE%,PAGE%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
50130 RETURN 'back to caller
50140
51000 '***'
51010 '* Define appearance of blinking Text-Cursor
51020
51030
51040
51050
51060

'*---··

51080

Input : BEGLIN%
ENDL%

Output: none

is the beginning Line of the Text-Cursor
~ is the End Line of the Text-Cursor

Info the Variable Z% is used as Dummy

51090 FKT%~1 'Set Function number for appearance of Cursor
51100 INR%~&Hl0 'Call BIOS-Video-Interrupt 16(h)
51110 CALL IA(INR%,FKT%,Z%,Z%,Z%,BEGLIN%,ENDL%,Z%,Z%,Z%,Z%,Z%,Z%)
51120 RETURN 'back to caller
51130
52000 '***'

52010 '* Set Cursor Position

52020 ··---*'
52030
52040
52050
52060
52070
52080
52090
52100

Input

Output
Info

PAGE%
DISPCOL%
DI SPROW%
none

is the Number of the Display page
is the new Column of the Cursor
is the new Row of the Cursor

The position of the blinking Text-Cursor is only
influenced by the call of this subroutine if the
Display page indicated is the current Display page

52110 the Variable Z% is used as Dummy
*.

52120 '***'
52130
52140 FKT%~2 'Set Function number for Cursor position
52150 INR%~&Hl0 'Call BIOS-Video-Interrupt 16(h)
52160 CALL IA(INR%,FKT%,Z%,PAGE%,Z%,Z%,Z%,DISPROW%,DISPCOL%,Z%,Z%,Z%,Z%)
52170 RETURN 'back to caller
52180
53000 '***'
53010 '* Read Cursor Position and Beginning and End Row
53020 '* of the blinking Text-Cursor
53030
53040
53050
53060
53070
53080
53090
53100
53110
53120
53130
53140
53150
54000

'*---*'
Input : PAGE%
Output: DISPCOL%

DI SPROW%
BEGLIN%
ENDL%

is the Number of the Display page
Column of the Cursor in the Display page
Row of the Cursor in the Display page
beginning Line of the Text-Cursor
is the End Line of the Text-Cursor

Info the Variable Z% is used as Dummy
'***'
FKT%=3 'Read Function number for Cursor position
INR%~&Hl0 'Call BIOS-Video-Interrupt 16(h)
CALL IA(INR%,FKT%,Z%,PAGE%,Z%,BEGLIN%,ENDL%,DISPROW%, DISPCOL%,Z%,Z%,Z%,Z%)
RETURN 'back to caller

'***'
54010 '* Set the current display page on the
54020 '* screen
54030 '*---*'
54040 Input : PAGE% ~ is the Number of the Display page
54050 '* Output: none
54060 '* Info : the Variable Z% is used as Dummy
54070 '***'
54080 FKT%~5 •set Function number for Display page
54090 INR%~&Hl0 'Call BIOS-Video-Interrupt 16(h)
54100 CALL IA(INR%,FKT%,PAGE%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
54110 RETURN 'back to caller
54120 •
55000 '***'
55010 '* Scroll current Display page up or erase
55020 '*------~--*'

241

7. The BIOS PC System Programming

242

55030
55040
55050
55060
55070
55080
55090
55100
55110
55120

Input VALUE%
ULC%
ULR%
LRC%
LLR%
COLRR%

Output: none

- how many Lines to scroll
Column upper left
Row upper left
Column lower right
Row lower right
COLRR of erased Lines

Info If VALUE% O is indicated, the
Display area is erased
the Variable Z% is used as Dummy

*'
*'
*'
*'

*'

55130 '***'
55140
55150 FKT%-6 •Function number for scrolling up
55160 INR%-&H10 'Call BIOS-Video-Interrupt 16(h)
55170 CALL IA(INR%,FKT%,VALUE%,COLRR%,Z%,ULR%,ULC%,LLR%,LRC%, Z%,Z%,Z%,Z%)
55180 RETURN 'back to caller
55190 '
56000 '***'
56010 '* Scroll current Display Page down or erase
56020 ··---*'
56030
56040
56050
56060
56070
56080
56090
56100
56110
56120
56130
56140

Input : VALUE% how many Lines to scroll
ULC% Column upper left
ULR% Row upper left
LRC% Column lower right
LLR% Row lower right
COLRR% COLRR of erased Lines

Output: none
Info If VALUE% 0 is indicated, the

Display area is erased
The Variable Z% is used as Dummy

*'

'***'

56150 FKT%-7
56160 GOTO 55160

'Function number for scrolling down
'Call is identical with scrolling up

56170
57000 '***'
57010 '*Write a character of a designated COLRR to the current
57020 '* Cursor position in the designated Display Page
57030
57040
57050
57060
57070
57080
57090
57100

'*---*"
Input : CHARACTER$

COLRR%
PAGE%

Output: none

the character for output
COLRR of the character for output
is the Number of the Display page

Info the Variables ZL%, ZH% and ZE% are Dummies
'***'

57110 FKT%-9 'Output function numbers for character and Attribute
57120 INR%-&Hl0 'Call BIOS-Video-Interrupt 16(h)
57130 ZL%-l 'Output character only once (LO-Byte)
57140 ZH%-O 'Output character only once (HI-Byte)
57150 ZE%-ASC (CHARACTER$) 'Get ASCII-Code of character to be output
57160 CALL IA(INR%,FKT%,ZE%,PAGE%,COLRR%,ZH%,ZL%,ZL%, ZL%,ZL%,ZL%,ZL%,ZL%)
57170 RETURN 'back to caller
57180 '
58000 '***'
58010 '* Output a String starting at a certain Position within a
58020 '*Display page with a constant Attribute
58030 1 *---*'
58040
58050
58060
58070
58080
58090
58100
58110
58120
58130
58140
58150

Input : T$
COLRR%
PAGE%
DISPCOL%
DI SPROW%

Output: none

the String for output
COLRR of the String (Attribute)
is the number of the Display page
Column - start of String
Row - start of String

Info the Variables ZC% and ZE% are Dummies
'***'

GOSUB 52000
FOR ZC%=1 TO LEN(T$)

CHARACTER$=" "

'Set Cursor position for Output
•process all chars or strings individually

•output a blank first

Abacus 7.4 BIOS Screen Output Functions

58160 GOSUB 57000
58170 ZE%=ASC(MID$(T$,ZC%,1)) 'Get a character from the String
58180 FKT%=14 'Function number for Teletype-Output
58190 CALL IA(INR%,FKT%,ZE%,PAGE%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
58200 NEXT •output next character
58210 RETURN 'back to caller
58220 '
60000 '***'
60010 '* initialize the Routine for the Interrupt call *'
60020 '*---*'
60030 '* Input : none
60040 '*Output: IA is the Start address of the Interrupt-Routine
600~0 '***'
60060 '
60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC Segment
60090 RESTORE 60130
60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% NEXT 'poke Routine
60110 RETURN 'back to caller
60120
60130 DATA
60140 DATA
60150 DATA
60160 DATA
60170 DATA
60180 DATA
60190 DATA
60200 DATA
60210 DATA
60220 DATA
60230 DATA

85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216

142, 192, 139, 118, 28, 138, 36, 139, 118, 26, 138, 4, 139, 118, 24
138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
138, 12, 139, 118, 16, 138, 52, 139, 118, 14, 138, 20, 139, 118, 10
139, 52, 85, 205, 33, 93, 86, 156, 139, 118, 12, 137' 60, 139, 118

28, 136, 36, 139, 118, 26, 136, 4, 139, 118, 24, 136, 60, 139, 118
22, 136, 28, 139, 118, 20, 136, 44, 139, 118, 18, 136, 12, 139, 118
16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93

202, 26, o, 91, 46,136, 71, 66,233,108,255

The program can be divided into three parts. Lines 100 to 700 represent the
demonstration program proper, which uses the subroutines in lines 50000 to
58220. These subroutines call a special function of the BIOS video interrupt and
access the routine for interrupt calls as described earlier. The program DATA
begins on line 60000.

See the header of each subroutine for the variables of each subroutine and what
each variable does.

It should be noted that all subroutines receive and return numerical values as
integer variables. Do not forget the percentage character after a variable. In certain
cases a real variable of the same name can be initialized, but the subroutine
expected an integer variable and the wrong parameters will be passed to the BIOS
function.

Pascal and C implementations

The individual functions and procedures of the next two programs are fully
documented and should be self-explanatory. The two programs resemble each other
strongly, since the procedures, functions and variables have the same names.

243

7. TheBJOS PC System Programming

Pascal listing: VIDEOP.PAS

{***}
{* V I D E 0 P PASCAL *)
{*---*)
{* Task makes functions available which are *)
{* based on the BIOS-Video-Interrupt but are not *)
{* provided by PASCAL *J

{*---*}
{* Author MICHAEL TISCHER *)
{* developed on : 07/10/87 *)
{* last Update : 05/14/89 *)
{***}

program VIDEOP;

Uses Crt, Dos;

con st NORMAL
BOLD
INVERS
UNDERLINE
BLINK

type TextTyp

var i,
j,
k,
1
I String

$07;
$Of;
$70;
$01;
$80;

string[80];

integer;
string[2];

{ Adds DOS and CRT units to Turbo

Definition of character-attribute
in relation to a monochrome
Display card

{ Loop variable for the Main program)

{ accepts number of Arrows)

{***}
{* GETVIDECMODE: Read current Video mode and Parameters *)
{* Input none *J
{* Output The variables listed below get the values after the *)
{* call of the Procedure *)
{***}

procedure GetVideoMode(var VideoMode, { Number of current Video mode
Number, { Number of Columns per Line
Page : integer); { current display page

var Regs Registers;

begin
Regs.ah := $OF;
intr {$10, Regs);
VideoMode := Regs.al;
Number := Regs.ah;
Page : = Regs .bh;

end;

{ Register-Variable for call of Interrupt

{ Function number
{ Call BIOS-Video-Interrupt

Number of Video mode)
{ Number of characters per line)

Number of the current display page)

{***}
{* SETCURSORTYPE: defines the appearance of the blinking *)
{* Display cursor *)
{* Input see below *)
I* Output none *)
{* Info for a monochrome display card the parameters *)
{* can be between 0 and 13, for a color display *}
{* card between O and 7 *)
{***}

procedure SetCursorType{Beginline, { Beginning line of the cursor
End! : integer); End line of the cursor

var Regs Registers; Register variable for the interrupt call

Abacus 7.4 BIOS Screen Output Functions

begin
Regs.ah
Regs.ch :=
Regs.cl
intr($10,

end;

1;
Beginline;
Endl;

Regs); { Call

Function number
{ Beginning and

(End line
BIOS-Video-Interrupt

{***}
{* SETCURSORPOS: defines the position of the cursor in the *)
{ * display page output *)
{* Input see below *l
{ * Output none *)
{* Info The position of the blinking display cursor changes *}
* only Lhrough the call of Lhis procedure, if Lhe •}
{* indicated display page is the current display page *}
{***}

procedure SetCursorPos(Page,
Column,
Line

{ display whose Cursor is set
{ new Column of the Cursor

integer); { new Line of the Cursor

var Regs

begin
Regs.ah
Regs.bh
Regs.dh
Regs.dl :=
intr ($10,

end;

Registers;

2;
Page;
Line;
Column;

Regs);

{ Register variable for the interrupt

{ Function number
{ display page

Display coordinates

Call BIOS-Video-Interrupt

{***}
{* GETCURSORPOS: senses the position of the cursor in a display *l
{* page and its start and end line *)
{* Input see below *)
{* Output The variables listed below contain the values after *l
{* the call of the procedure *)
{* Info the start and end line of the cursor is independent *)
{* of the indicated display page *)
{***}

procedure GetCursorPos{Page : integer; { the display page

var Regs Registers;

begin
Regs. ah : = 3;
Regs.bh := Page;
intr($1D, Regs);
Column := Regs.dl;
Line := Regs.dh;
Beginline := Regs.ch;
Endl := Regs.cl;

end;

var Column, Column of the cursor
Line, { Line of the cursor
Beginline, Start line of the cursor
Endl : integer); { End line of the cursor

Register variable for the interrupt)

{ Function number
{ Display page

Call BIOS-Video-Interrupt
{ Result of the Function
{ read from the Register

{ and store in proper
{ Variables

{***}
{* SETDISPLAYPAGE: set the display page *)
{* for output on the monitor *)
{* Input see below *)
{ * Output none * J
{***}

procedure SetDisplayPage(Page: integer); { the new display page)

var Regs : Registers; { Register variable for the interrupt)

245

7. TheB/OS PC System Programming

246

begin
Regs.ah := 5;
Regs.al := Page;
intr ($10, Regs);

end;

Function number and display page
{ Screen page

(Call BIOS-Video-Interrupt

{***}
{* SCROLLUP: scrolls a display area by one or more *)
{* lines up or erases it *)
(* Input see below *)
{ * Output none * J
{* Info If Number 0 is passed, the display area *)
{* is filled with blanks *)
{***}

procedure Scroll Up (Number,
COLOR,
ColumnUL,
LineUL,
ColumnLR,
LineLR

var Regs Registers;

begin
Regs.ah 6;
Regs.al Number;
Regs.bh := COLOR;
Regs.ch := LineUL;
Regs.cl ColurnnUL;
Regs.dh := LineLR;
Regs.dl := ColurnnLR;
Intr($10, Regs);

end;

{ Number of lines to be scrolled
{ Attribute for the blank lines created

{ Column in the upper left hand corner
{ line in the upper left corner

{ Column in the lower right corner
integer); { line in the lower right corner

{ Register variable for calling Interrupt

Function number and number

{ Color of empty line(s)
(Upper left

{ coordinates
{ Lower right
{ coordinates

{ Call BIOS-Video-Interrupt

{***}
{ * SCROLLDOWN: Scrolls a display area by one or more *}
{* lines down or erases it *)
{* Input see below *)
{ * output none *)
(* Info If Number 0 is passed, the display area *)
{ * is filled with blanks *)
{***}

procedure ScrollDown(Number, { Number of lines to be scrolled

var Regs Registers;

7•
' Number;

COLOR;
Line UL;
ColurnnUL;
LineLR;
Col1;mnLR;

begin
Regs.ah
Regs.al :=
Regs.bh
Regs. ch :=
Regs.cl
Regs.dh
Regs.dl
Intr($10, Regs);

end;

COLOR, { Attribute for the blank line(s) created
ColurnnUL, (Column in the upper left corner
LineUL, { line in the upper left corner
ColurnnLR, { Column in the lower right corner
LineLR integer}; { Line in lower right corner

Register-Variable for call of Interrupt

Function number and number

{ Color of blank line(s)
{ upper left

{ coordinates
{ Lower right
{ coordinates

{ Call BIOS-Video-Interrupt

{***}
{* GETCHAR: Read a character including Attribute from an indicated *}
{* position in a display page *)
{* Input see below *)
(* Output see below *}
{***}

Abacus 7.4 BIOS Screen Output Functions

procedure GetChar(Page,
Column,
Line : integer;
var Character : char;

display page accessed
{ Display Column

{ Di splay line
{ the character
{ its Attribute var COLOR integer);

var Regs : Registers;
CurColumn,
Cur Line,
CurPage,
Dununy integer;

begi~

Register-Variable for the Interrupt
(current display Column

{ current display line
{ current display page

{ stores Variables which are not needed

GetVideoMode(Dununy, Dummy, CurPage); { sense current display page
GetCursorPos(CurPage, CurColumn, CurLine, { Get cursor position

Dununy, Dummy); {in the current display page
SetCursorPos(Page, Column, Line); { cursor on the position indicated

Regs.ah := 8;
Regs.bh := Page;
Intr ($10, Regs);

{ Get Function number

Character := chr(Regs.al);
COLOR := Regs.ah;
SetCursorPos(CurPage, CurColumn,

for char. and Attribute
{ display page

{ Invoke DOS registers
ASCII-Code of character

Attribute of the character
CurLine);{ Set cursor old position

end;

{***}
{* WRITECHAR: Writes a character with indicated color to the *)
(* current cursor position in the display page *)
{* indicated *)
{* Input see below *)
{ * Output none *)
{* Info during the Output of characters, the control codes *)
{* such as Carriage-Return are treated as ASCII codes *)
{***}

procedure WriteChar(Page : integer;
Character : char;

{ Display page for writing
ASCII-Code of the character

{ its Attribute COLOR integer);

var Regs

begin
Regs.ah
Regs.al
Regs.bh :=
Regs.bl

Registers;

9;
ord (Character);
Page;
COLOR;

Regs.ex 1;
Intr ($10, Regs);

end;

{ Register variable for the interrupt J

{ Function number and character code
{ Display page

{ Display color
{ output character only once

{ Call BIOS-Video-Interrupt

{***}
{* WRITETEXT: Writes a String starting at an indicated position in *)
{* a display page. *)
{* Input see below *)
{ * Output none *}
{* Info During output of characters the control characters *)
{* such as Carriage-Return are treated as such. *}
{* If writing continues beyond the End of the display, *}
{* will be scrolled up one line *}
{***}

procedure WriteText(Page,
Column,
Line,
COLOR
Text

var Regs Registers;

{ Display page for output
{ Column, from which output starts

{ Line, from which output starts
integer; { Color for all characters
TextTyp); { Text for output

Register variable for call of Interrupt }

247

7. TheB/OS PC System Programming

248

Counter integer; I Loop Counter l

begin
SetCursorPos(Page, Column, Line); Set cursor

for Counter := 1 to length(Text) do
begin

WriteChar(Page, ' ', COLOR);
Regs.ah := 14;

process characters
{ in sequence

Color at the current position

Regs.al := ord(Text[Counter]);
Regs.bh := Page;
Intr ($10, Regs);

Function number and character
{ Display page

(Call BIOS-Video-Interrupt
end;

end;

{***}
{** MAIN PROGRAM **}
{***}

begin
clrscr;
for i := 1 to 24 do
for j := 0 to 79 do
begin

SetCursorPos (0, j, i) ;

{ Erase display
Perform line 1 to 24

{ do all Columns }•

WriteChar(O, chr(i*BO+j and 255), NORMAL);
{ position cursor
Write a character

end;
ScrollDown(O, NORMAL, 5, B, 19, 22);
WriteText(O, 5, B, INVERS, ' Window 1
ScrollDown(O, NORMAL, 60, 2, 74, 16);
WriteText{O, 60, 2, INVERS, ' Window 2
WriteText(O, 24, 12, INVERS or BLINK, ' >>>
WriteText(O, O, O, INVERS,

Erase Window 1
I) j

Erase Window 2
') ;
PC SYSTEM PROGRAMMING<<< ');
Still have to draw '+

1 arrows on the screen •);
for i := 49 downto O do { draw a total of 50 Arrows
begin
str(i:2, IString); convert i in ASCII-String
WriteText(O, 37, o, INVERS, IString);
j := 1; { every Arrow consists of 16 lines
while j <= 15 do
begin

k := O;
while k < j do { create a line of the Arrow
begin

SetCursorPos (0, 12- (j shr 1) +k, 9);
WriteChar(O, '*', BOLD);
SetCursorPos(O, 67-(j shr l)+k, 16);
WriteChar(O, '*', BOLD);
k : = succ (k) ;

end;
ScrollDown (1, NORMAL, 5, 9, 19, 22);
ScrollUp(l, NORMAL, 60, 3, 74, 16);
for 1 := 0 to 8000 do

j := j+2;
end;

end;
clrscr;

end.

Arrow Window 1

Arrow Window

scroll Window 1
scroll Window 2

{ Wait Loop

{ Erase display l

Abacus 7.4 BIOS Screen Output Functions

C listing: VIDEOC.C

/***/
/* V I D E 0 C */
/*---*/
I* Task makes functions available which are not */
/* available from the Library of MICROSOFT and */
I* the TURBO C-Compilers */
/*---*/
/* Author MICHAEL TISCHER */
/* developed on : 08/13/87 */
/* last Update : 05/14/89 */
/*---*/
'• \MIC:RGSVF'I C:j •i ,
I* Creation MSC VIDEOC; *I
/* LINK VIDEOC; */
I* Call VIDEOC *I
/*---*/
/* (BCRLAND TURBO C) *I
/* Creation : through the RUN command on the menu bar */
/***/

#include <dos.h> /* include Header-Files */
#include <io.h>

#define NORMAL Ox07 /* Definition of the character Attribute */
#define BOLD Ox OF I* in relation to a monochrome */
#define INVERS Ox70 I* Display card */
#define UNDERLINE OxOl
#define BLINK Ox80

/***/
/* GETVIDEOMODE: Read current Video mode and Parameters *I

*/
*/

/* Input
/* Output

: none
: see below

/***/

void GetVideoMode(VideoMode, Number, Page)
int *VideoMode; /* the Number of the Video mode */
int *Number; /* Number of Columns per line */
int *Page; /* Number of current display page */

union REGS Register; /* Register variable for Interrupt-Call */

Register.h.ah ~ 15;
int86(0x10, &Register, &Register);
*VideoMode ~ Register.h.al;
*Number ~ Register.h.ah;
*Page = Register.h.bh;

/* Function number */
/*Call Interrupt lO(h) */
I* Number of Video mode */

/* Number of Characters per line */
/* Number of current display page */

/***/
/* SETCURSORTYPE: defines the appearance of the blinking display */
I* cursor */
I* Input see below */
I* Output none */
/* Info for a monochrome display card the parameters */
/* can be bet ween 0 and 13. For a color */
/* display card between 0 and 7 *I
/***/

void SetCursorType(Beginline, Endl)
int Beginline;
int Endl;

/* Beginning line of the cursor *I
/* End line of the cursor */

union REGS Register; /* Register variable for Interrupt-Call */

249

7. TheB/OS PC System Programming

250

Register.h.ah 1;
Register.h.ch Beginli~e;
Register.h.cl Endl;
int86(0x10, &Register, &Register);

)

I* Function number */
/* Beginning line of cursor *I

/* End line of cursor *I
I* Call Interrupt lO(h) */

/***/
I* SETCURSORPOS: defines the position of the cursor in the indicated */
/* display page */
I* Input see below */
I* Output none */
/* Info The position of the blinking display cursor changes */
/* only if the call of this function refers to */
I* current display page */
/***/

void SetCursorPos(Page, Column, Line)
int Page; /* Display page where the cursor will be set */
int Column; /* new cursor Column */
int Line; /* new cursor line */

union REGS Register; /* Register variable for Interrupt-Call */

)

Register.h.ah 2;
Register.h.bh Page;
Register.h.dh Line;
Register.h,dl Column;
int86(0x10, &Register, &Register);

I* Function number */
I* Display page */
I* Display line */

/* Display Column */
/*Call Interrupt lO(h) */

/***/
/* GETCURSORPOS: Get the position of the cursor in a certain */
/* display page and its start and end line */
I* Input
I* Output

none
see below

*I
*/

/***/

void GetCursorPos(Page, Column, Line, Beginline, End!)
int Page; /* Number of display page */
int *Column; /* Column, where the cursor is located */
int *Line; /* Line, where the cursor is located */
int *Beginline; /* Start line of the cursor */
int *End!; /* End line of the cursor */

)

union REGS Register; /* Register variable for Interrupt-Call */

Register.h.ah = 3;
Register.h.bh = Page;
int86(0xl0, &Register, &Register);
Column= Register.h.dl; /
*Line = Register.h.dh;
*Beginline = Register.h.ch;
*End! = Register.h.cl;

I* Function number *I
/* Display page *I

I* Call Interrupt 10 (h) */
Read result of the Function */

/* from the Registers */
/* and assign to proper *I

/* Variables */

/***/
/* SETDISPLAYPAGE: sets the display Page which is to be represented */
/* on the display */
/* Input see below */
/* Output none */
/**************************T**/

void SetDisplayPage(Page)
int Page; /* Number of the new current display page */

union REGS Register; /* Register variable for Interrupt call */

Abacus 7.4 BIOS Screen Output Functions

Register.h.ah ~ 5;
Register.h.al ~Page;
int86 (OxlO, &Register, &Register);

)

I* Function number */
/* Display page */

/*Call Interrupt lO(h) */

/***/
/* SCROLLUP: Scrolls a display area up one or several */
I* lines or erases it */
I* Input see below */
I* Output none *I
I* Info If 0 is passed as number, the display */
/* area is filled with blanks */
/***/

void ScrollUp(Number, Color, ColumnUL, LineUL, ColumnLR, LineLR)
int Number; /* Number of lines to be scrolled *I
int Color; I* Color or Attribute for the blank lines *I
int ColumnUL; I* Column in upper left corner of the display area *I
int LineUL; /* Line in upper left corner of the display area */
int ColumnLR; /* Column in lower right corner Of the display area */
int LineLR; /* Line in lower right corner of the display area *I

union REGS Register; /* Register variable for Interrupt call */

Register.h.ah 6; /* Function number */
Register.h.al Number; /* Number of lines *I
Register. h. bh Color; /* Color of blank line(s) */
Register.h.ch Line UL; /* Set Coordinates of the */
Register. h. cl ColumnUL; /* display Window to be scrolled *I
Register. h. dh LineLR; /* or erased */
Register.h.dl ColumnLR;
int86 (OxlO, &Register, &Register) ; /* Call Interrupt 10 (h) */

I

/***/
I* SCROLLDOWN: Scroll a display area by one or more */
/* lines down or erase it */
/* Input see below *I
/* Output none */
I* Info If 0 is passed as number, the display */
/* area is filled with blanks */
/***/
void ScrollDown(Number, Color, ColumnUL, LineUL, ColumnLR, Line LR)
int Number; /* Number of lines to be scrolled */
int Color; /* Color or Attribute for the blank lines */
int ColumnUL; /* Column in upper left corner of the display area */
int LineUL; /* Line in upper left corner of the display area *I
int Col umnLR; /* Column in lower right corner of the display area */
int LineLR; /* Line in lower right corner of the display area */

union REGS Register; /* Register variable for Interrupt call */

Register.h.ah 7;
Register.h.al Number;
Register.h.bh Color;
Register.h.ch LineUL;
Register.h.cl ColumnUL;
Register.h.dh LineLR;
Register.h.dl ColumnLR;
int86 (OxlO, &Register, &Register);

)

/* Function number */
I* Number of lines */

I* Color of blank line(s) */
/* Set Coordinates for the */

/* display window to be */
I* scrolled or erased */

/*Call Interrupt lO(h) */

/***/
/* GETCHAR: Read from a designated display position
/* a character and its Attribute-Byte
/* Input see below
/* Output see below

*/
*/
*/
*I

/***/

251

7. The BIOS PC System Programming

252

void GetChar(Page, Column, Line, Character, Color)
int Page; /* Display page from which the character is to be read *I
int Column; /* Display column of the character */
int Line; /* Display line of the character */
char *Character; /* the character at this position */
int *Color; /* its Attribute-Byte (Color) */

}

union REGS Register;
int Dummy;
int CurPage;
int CurLine;
int CurColumn;

/* Register variable for Interrupt call */
/* for Variables which are not required */

I* the current display page */
/* the current display line */

I* the current display Column */

GetVideoMode(&Dummy, &Dummy, &CurPage); /* Get current display page */
GetCursorPos(&CurPage, &CurColumn, &CurLine, /*Get current cursor*/

&Dummy, &Dummy); I* position */
SetCursorPos(Page, Column, Line); /* Set cursor */
Register.h.ah = 8; /* Function number */
Register.h.bh =Page; /* display page */
int86(0x10, &Register, &Register); /*Call Interrupt lO(h) */
Character = Register.h.al; / Read results from the Registers */
Color = Register.h.ah; / and assign */
SetCursorPos(CurPage, CurColumn, CurLine);/* cursor to old position*/

/***/
I* WRITECHAR: writes a character with an Attribute */

*I
*I
*/

/* at the current cursor position in the page indicated
see below /* Input

I* Output none
/***/
void WriteChar(Page, Character, Color)
int Page; /* The character appears in this display page */
char Character; /* the character to be output */
int Color; /* its Attribute or Color */

}

union REGS Register;

Register.h.ah 9;
Register.h.al Character;
Register.h.bh Page;
Register.h.bl Color;
Register.x.cx 1;

/* Register variable for Interrupt call */

/* Function number */
I* the character to be output */

I* display page */
/* Color of character to be output */

/* output character only once */
/*Call Interrupt lO(h) */ int86(0xl0, &Register, &Register);

/***/
/* WRITETEXT: Writes a character string with constant c~lor */
I* starting at a designated position within a display page*/
/* Input see below */
/* Output none */
/* Info Text is a pointer to a character vector which contains */
/* the text to be output and is terminated */
/* with a '\0' character */
/***/
void WriteText(Page, Column, Line, Color, Text)
int Page; /* the Text is output in this display page */
int Column; /* display Column for Output */
int Line; /* display line for Output */
int Color; /* Color/Attribute of the Text */
char *Text; /* Text for output */

union REGS Register; /* Register variable for Interrupt call */

SetCursorPos(Page, Column, Line); /* Set cursor*/
while (*Text) /* Output Text up to '\0' character */

{

Abacus 7.4 BIOS Screen Output Functions

)

WriteChar(Page, Color);
Register.h.ah 14;
Register.h.bh ~ Page;
Register.h.al ~ *Text++;
int86(0xl0, &Register, &Register);

I*

I* the

Color for characters */
I* Function number */

/* display page */
character for output */

/* Call Interrupt */

/***/
/* CLEARSCREEN: erase the 80*25 character Text display and set */
I* cursor into the upper left display corner */
/* Input none */
I* Output none */
j***********************~*±*±±XX±**AAAAAAAAAAARRRR•****•••••••••••••••/

void ClearScreen()

)

int CurPage;
int Dunrrny;

/* current display page */
/* Dummy variable */

ScrollUp(O, NORMAL, O, O, 79, 24); /*clear screen*/
GetVideoMode(&Durmny, &Dunrrny, &CurPage); /*Get current display page*/
SetCursorPos(CurPage, 0, O); /*Set cursor*/

/***/
/** MAIN PROGRAM **/
/***/
void main()

int i, j, k, l;
char Arrows[3];

I* Loop variables */
/* accepts number of Arrows as ASCII-String */

ClearScreen();
for (i ~ l; i < 25; i++)
for (j ~ O; j < BO; j++)

{

}

SetCursorPos(O, j, i);
WriteChar(O, i*BO+j&255, NORMAL);

ScrollDown(O, NORMAL, 5, B, 19, 22);
WriteText(O, 5, a, INVERS, II Window
ScrollDown(O, NORMAL, 60, 2, 74, 16);
WriteText(O, 60, 2, INVERS, " Window
WriteText (0, 24, 12, INVERS I BLINK, "
WriteText (0, o, O, INVERS, "

2
>>>

.. } ;

I* Clear Screen */
/* process all lines */

/* process all Columns */

I* position cursor */
/* write characters */

/* erase Window */

/* erase Window 2 */
fl);
PC SYSTEM PROGRAMMING <<< II} ;

There are II} ;

WriteText(O, 40, 0, INVERS,"arrows left to draw
for (i ~ 49; i >~ O ; i--)

"} ;
/* draw 50 Arrows */

{
sprintf (Arrows, 11 %-2d", i);
WriteText(O, 37, O, INVERS,
for (j ~ l; j < 16; j+= 2}

/* Convert number of Arrows to ASCII */
Arrows); /* and output */

/* every Arrow consists of 16 lines */
{

)

for (k = O; k < j; k++)
{

/* create a line of the Arrow */

)

SetCursorPos(O, 12-(j>>l)+k, 9);
WriteChar(O, '*', BOW);
SetCursorPos(O, 67-(j>>l)+k, 16);
WriteChar(O, '*', BOW);

ScrollDown(l, NORMAL, 5, 9, 19, 22);
ScrollUp(l, NORMAL, 60, 3, 74, 16);
for (1 = O; 1 < 4000 ; l++)

I* Arrow Window */

/* Arrow Window 2 */

/* Scroll Window 1 down */
/* scroll Window 2 up */

I* Wait Loop *I

)
ClearScreen ();

)
I* Clear Screen */

253

7. TheBJOS PC System Programming

7. 4. 1 The EGA and VGA BIOS

The BIOS functions for screen output have been part of ROM-BIOS since the early
days of the PC. Although they have proven themselves in thousands of
applications, they don't work with the newer types of graphic cards. EGA and
VGA cards are becoming more and more common in the PC market.
Incompatibilities arise between hardware and software, because these cards have
little in common with the CGA and MDA cards for which the original BIOS
functions were intended.

To make EGA and VGA cards compatible with programs that use BIOS functions
to do their screen output, the BIOS functions must first be adapted to the new
hardware standards. The first option would be to replace the ROM-BIOS on the PC
motherboard with new ROMs. This solution can create other problems, because no
set standard currently exists for EGA or VGA. Unlike the CGA and MDA cards,
where the IBM standard took over simply because there were no other alternatives,
EGA and VGA manufacturers have yet to define a universal standard. Such a
standard would have to apply to hardware, options and capabilities as offered by
each manufacturer.

EGA/VGA ROM-BIOS

254

Since trying to adapt the ROM-BIOS included with the computer to every graphic
card on the market is impractical, the manufacturers of these systems use the
opposite approach. They package an independent ROM-BIOS with their video
cards. There is a small ROM on the video card itself which contains the necessary
screen output functions. When the system is booted, the BIOS detects this ROM
expansion and allows it to redirect the BIOS video interrupt 16H to its own
routines, replacing the old functions.

By using these routines, all of the programs which use BIOS functions for output
can be executed without problems, but the enhanced capabilities of these video
cards are not used. Since the ROM-BIOS on the motherboard is intended to work
only with CGA and MDA cards, it supports only the capabilities of these cards.
So the graphic card manufacturers extend the BIOS in these video cards by
including new functions or upgrading old functions, so that the enhanced video
capabilities can be used.

This section is dedicated to these functions. No real standard exists for these BIOS
extensions, as mentioned previously. We could use this section to describe the
video functions of the more important EGA and VGA cards (many different cards),
but even with this information you still wouldn't be able to write programs which
would be compatible with all of the video cards on the market. Writing a program
for a specific video card makes sense only when you want the program to run with
that card only.

Abacus 7.4 BIOS Screen Output Functions

EGA/VGA video modes

Instead, let's look at the lowest common denominator, the video modes and
functions supported by virtually all EGANGA cards. If you stick to this "low
level" standard, you can be fairly sure that your programs will run properly with
all EGANGA cards. The basis of this standard is the set of video modes supported
by the original EGA card, introduced by IBM in 1985, or the original VGA card,
introduced by IBM in 1987. All of the manufacturers of compatible cards have
included similar functions in their own cards, and added their own features.

All EGA and VGA cards have flexibility in common, which allows them to
emulate other video cards, as well as perform other tasks. The type of emulation
depends on the monitor connected, since unlike other cards, EGANGA cards can
by used with different types of monitors.

Monitors and EGA/VGA

If you connect a monochrome monitor to an EGA or a VGA card, it assumes the
features of an MDA or Hercules graphic card. If you connect a color monitor to an
EGA or a VGA, it emulates a normal CGA card. However, EGANGA cards run
best when connected to a multisync monitor, which allows color displays at higher
resolutions than Hercules or CGA. The standard resolutions (640x350 for EGA,
640x480 for VGA) can be displayed on a multisync monitor with no problem.
However, multisync monitors also support the higher resolutions available on
many EGA and VGA cards. Resolutions of 800x600 pixels and 1024x768 pixels,
are common. These higher resolutions can be used only if the EGANGA card has
enough RAM, since the extended graphics mode requires additional video RAM to
handle the higher resolutions. The programmer doesn't have to worry much about
this, because almost all EGA cards come with 256K RAM standard. Very few
EGA cards come with a mere 64K and must be expanded to 256K. Most VGA
cards come equipped with 256K of video RAM, as well as a special VGA BIOS.
This special BIOS may require special drivers to operate in conjunction with
graphical user interfaces such as GEM® or Microsoft Windows®.

In addition, to support the new graphic modes with higher resolutions, EGA cards
offer a palette of 16 colors chosen from the 64 available colors. In text mode it is
also possible to set the heights of individual characters, so that up to 43 lines can
be displayed on the screen at once, instead of the normal 25 lines.

VGA features

The VGA card is even more powerful. In text mode, the VGA card can display 25
lines, 43 lines and even 50 lines of text. In addition, the VGA has even more
colors available (262,144 colors, as opposed to the EGA's 64-color spectrum). Of
course, these colors are only effective when displayed on a monitor that has a high
enough resolution.

255

7. TheB/OS PC System Programming

The rest of this section shows how these extended features can be used and how the
original BIOS functions have changed.

As with the normal BIOS, all of the video modes in the EGA/VGA BIOS are set
with the help of function OOH of the BIOS video interrupt. This function has not
been changed since the old BIOS, but it has been extended. The number of the
video mode to be set is passed in the AL register. The following codes are allowed:

EGA/VGA Card Video Modes
Code Mode MONO COLOR EGA/VGA

OOH 40x25 characters, 16 colors • •
OlH 40x25 characters_,_ 16 colors • •
02H 80x25 characters, 16 colors • •
03H 80x25 characters, 16 colors • •
04H 320x200 _g:_r~hic _E_ixels, 4 colors • •
05H 320x200 _g:_r~hic _E_ixels, 4 colors • •
06H 640x200 _gr~hic_E_ixels, 2 colors • •
07H 80x25 characters-'- monochrome • ODH 320x200 _g:_ril!'hic _E_ixels, 16 colors •
OEH 640x200 gra£hic I'ixels, 16 colors •
OFH 64 Ox350 ... 9 . .r~hic _E_ixels, monochrome •
lOH 640x350 .:.r.ra_E_hic _E_ixels, 16 colors** •
llH 640x480 .:.r.r~hic_E_ixels, 2 colors •*
12H 640x480 .:.r.ra_E_hic _E_ixels, 16 colors •*
13H 230x200 .:.r.ra_E_hic _E_ixels, 256 colors •*

* VGA only
** EGA cards with 64K of added RAM can onl_y_ dis.E_la_y_ 4 colors

EGA and VGA cards can suppress clearing the video RAM when switching to a
new video mode. If you want to to do this, bit 7 of the AL register must be set in
addition to video mode number when the function is called.

The codes listed above are also valid for the function OFH, which is used to
determine the current video mode.

Nothing much has changed in functions OIH to OEH. Slight changes have been
made to functions OlH and 03H, which define and read the design of the cursor. We
will discuss these changes later. You can also get exact descriptions of these
functions from the appendices, where all of the functions of the EGA/VGA BIOS
are described

Extended functions

256

After function OFH, which also appeared in the old ROM-BIOS, we have three
new EGA/VGA functions numbered lOH, l IH, and 12H. These new functions are
dedicated to a specific task and have a number of sub-functions.

Abacus 7.4 BIOS Screen Output Functions

Function 1 OH

Function IOH comprises all of the sub-functions for using the color capabilities of
the EGANGA cards. Before we describe these functions, we should first look at
the way in which the EGA and VGA cards create colors.

Unlike the MDA and CGA cards, the two nibbles of the attribute byte of a
character in text mode do not directly specify the color or attributes of the character
in the EGA. They comprise an index to one of the 16 palette registers of the EGA
card, which then contains the actual color. This makes it possible to set the desired
colors individually, and allows color changes simply by changing the contents of
the palette registers. The interpretation of the palette register contents, and the
number of displayable colors, depend on the type of monitor used. The EGA card
itself can generate 64 colors, but these can be displayed only on EGA or multisync
monitors, since these monitors have the six color lines required (26 = 64). There
are two lines available for each fundamental color (red, green, and blue), where the
two lines control the intensity level of the color. These six lines correspond
directly to the lower six bits of a palette register, as the following figure shows.

7 6 5 4 3 2 1 0 bit

[x~xlrlglbIRIGIB]
l Blue {Intense) Green {Intense) Red (Intense) ...

..... Blue (less Intense) Green (less Intense) --.. Red (less Intense) -....

EGA palette registers when connected to EGA or multisync monitor

This color scheme is not available when a normal color monitor is connected. It
has only four lines for the color representation, three of which are assigned the
fundamental colors red, green, and blue. The fourth line simply allows the
resulting color to be displayed at higher intensity. These limited possibilities affect
the structure of the palette register, which clearly differs from the six-bit structure
used when an EGA or multisync monitor is connected. A total of only 16 colors
can be displayed in this mode.

257

7. TheBIOS PC System Programming

,.....1._,_6~'"'"'"5--~4 -3~....:;,2_...;1;,..,.....;-.,bit
I R

Blue

Green

Red

Intensity

EGA palette registers when connected to a color monitor

The bits of a palette register take on a completely different meaning when the card
is connected to a monochrome monitor. In this case the monitor cannot display
different colors, and can only display bright, inverse, and underlined characters.
When connected to such a monitor, the meanings of the individual bits correspond
to those of the attribute byte of an MDA card, which we examined earlier in this
chapter.

DAC color table

258

The VGA card also uses the most significant and least significant nibbles of the
attribute byte as an index, pointing to one of 16 palette registers. Unlike the EGA
card, which only contains the color code, this byte contains a value between 0 and
255. This number acts as a reference to the DAC (digital analog converter) color
table. This table allows the VGA card to convert a digitally notated color code into
an analog vidl",o signal. The DAC color table sees each color code as three six-bit
values, with each value representing the degree of red, green and blue intensity in
the color.

As the following figure shows, the color code layout in some registers plays a role
which also involves the BIOS. Bit 7 of each value controls the grouping of the
different registers in the DAC color table, thus controlling the mode control
register of the video controller. If this bit contains a 0, the index in the DAC color
table bases its palette register on the contents of bits 0 to 5, and the color select
register on bits 2 and 3. The consequence is that the DAC color table is divided
into four groups of 64 consecutive registers. The value in the palette register
represents the index in this group, whereby the active group itself selects the color
based on the contents of bits 2 and 3 of the color select register.

When bit 7 of the mode control register contains a 1, the DAC color table divides
into 16 groups of 16 consecutive registers. The index of this table is based on bits
0-3 of the corresponding palette register, and bits 0-3 of the color select register.

Abacus 7.4 BIOS Screen Output Functions

These registers select the active color group from within the DAC color table, and
the contents of the palette registers represent the index of this group.

You can use this form of coding for creating fast and easy color changes when
characters on the screen must be changed rapidly. This involves storing different
groups in the DAC color table which specify brighter or darker colors, and quickly
incrementing the active color grouping through the color select register.

3 ~ Btt ---=-· ___ _.o Btt

I 4 - lilt Attrlbule I I 4 ~ Bit Attrlbule I
15 ~ 0 Byte 15 ~ 0 Byte

.-=~~-1a-PaI-.-~-Regls~ ~-=-~,,,~ .. ,.~~-.;,I ~,=--~~1a-PaI-.-~-Regls~ ~=---~n~f~~....:..,I

··::;······
··:::::::··..:-. . · :·:·

7 4 3 2 0

I Color Sdctj;i:~trr I

3 2 0 I croup

r2_55---:~~~-..,..,'~'''~~~~~.o.-=;OF.ney ~2~55'--~~~~---"~~~~~0<-=:F.ney

7 6 7 6

l~o~l..__ ______ ~l:t:i~:f
Mode-Control-Register

11.-1---11 ______ ___.1~~ ~~~=of
Mode-Control-Register

Color code layout of the VGA card

To perfectly emulate a CGA or an MDA card, the EGA/VGA BIOS sets the
individual palette registers (or in the case of the VGA card, the DAC color
registers) to the same color scheme used by a CGA or an MDA card when the
corresponding mode is initialized. In the case of CGA emulation (EGA/VGA card
and a CGA monitor), this means that palette register 0 contains the value 0,
palette register 1 the value 1, etc. At the same time, the color select register of the
VGA card must be set to the first of 16 palettes whose color codes correspond to
those of a CGA card. This also applies to CGA modes 4 and 5 (320x200 pixels,
four colors), which work with one of two color palettes which can be selected via
function OBH, sub-function 1. The EGA BIOS simply loads the corresponding
colors into the lower three palette registers, depending on the palette selected.

Ti1ere is normally no need to change the contents of the palette registers in this
case, since no new colors can be displayed on the screen. Individual colors can
easily be exchanged with each other.

Things are different when an EGA/VGA or multisync monitor is connected. The
EGA/VGA BIOS loads values 0 to 15 into the 16 color registers when the text

259

7. The BIOS PC System Programming

260

mode is initialized, but this does not exhaust the color options of the EGA card.
To make full use of these options, sub-function OOH of function lOH can be used
to load one of the 16 palette registers. In addition to the function number in the
AH register and the sub-function number in AL, this function must also be passed
the number of the palette (0 to 15) in BH and the new color value for this palette
in the BL register. Since this function does not check the number of the register, it
can also be used to change the contents of a 17th palette register (screen border and
background color in the graphics mode), although it is better to use sub-function
OlH of function lOH for this. Besides, it doesn't make much sense to set a
background color in the text modes, because the text display takes up almost the
entire screen with only two or three raster lines left over for the output of a border
color. The contents of this palette register are ignored when a monochrome
monitor is connected.

To call the function for accessing this palette register, the AH register must first
be loaded with the function number lOH and the AL register with the sub-function
number OlH. The BH register holds the border color, which is then loaded into
palette register 16 when the function is called.

Sub-function 02H of function lOH is used when you want to load all of the palette
registers at the same time, including the register for the border color. In addition to
the function and sub-function numbers in AH and AL, respectively, the address of
a table must be passed in the ES:DX register pair. This table contains the values
for the 17 palette registers. When this function is executed, the contents of this
table will be copied into the 17 palette registers and will cause all of the colors on
the screen to change at once.

The last sub-function of function lOH (for EGA only) defines the meaning of a bit
in the text modes. As with the CGA and MDA cards, this bit can also be used on
the EGA card to emphasize a character by either displaying it on a bright
background color or flashing it, if the bit is set. While the meaning of this bit can
be changed only by directly programming the video hardware with CGA or MDA
cards, the EGA/VGA BIOS can perform the same task using sub-function 03H of
function lOH.

As with calling the other sub-functions, the function and sub-function numbers
must be passed in registers AH and AL. The meaning of bit seven of the attribute
byte is determined by the contents of the BL register. The value of zero in this
register sets the bright background color, while the value one causes all characters
on the screen, with bit seven of their attribute bytes set, to flash on and off.

The VGA card has additional functions available for accessing this table. These
functions are all sub-functions of function lOH, and are only accessible from the
VGA card.

The contents of a single DAC color register can be modified using sub-function
lOH. Load the AL register with the sub-function number, the BX register with the

Abacus 7.4 BIOS Screen Output Functions

number of the corresponding register (0-255) and the CH, CL and DH registers
with the color code. Then call the function. To help correctly interpret the contents
of this register, the DAC color table must be coded as an 18-bit value (6 bits for
red, 6 bits for green and 6 bits for blue). The red components must be loaded into
the DH register, the green components into the CH register, and the blue
components into the DL register.

You must load the number of the register to be updated into the BX register. The
registers receive the number of the DAC register to be updated when you call sub
function 15H.

Any number of DAC color registers can be loaded at a time using sub-function
12H. The number of the first DAC color register to be loaded is passed to the BX
register, and the number of DAC color registers to be loaded is passed to the CX
register. The new contents of the DAC color registers are loaded into a buffer (the
address of this buffer is contained in the ES:DX register pair). Each DAC color
register receives three consecutive bytes from this buffer. These three bytes specify
the green components, the red components and the blue components of the color
code.

Reading the DAC color table

Sub-function 17H reads the contents of a group of DAC color registers. The
number of the first DAC color register to be read is passed to the BX register, and
the number of registers is passed to the CX register. The contents of this register
copies the VGA BIOS to a buffer, whose segment and offset address may be found
in the ES.DX register pair. The structure is identical to that of sub-function 12H.
Remember that the registers for each DAC color register consist of three bytes (not
one), and to allocate a buffer of appropriate size.

Organizing the DAC color table

Sub-function 13H allows the organization of the DAC color table and the active
color group, offering two of its own sub-functions. If the BL register contains the
value 0, then the sub-function copies bit 0 of the BH register into bit 7 of the
mode control register of the VGA controller. The organization of the DAC color
table can then be broken down into 4 or 16 groups. However, if the BL register
contains the value 1 when this sub-function is called, then the sub-function copies
the contents of the BH register into the color select register, then selects the active
color group.

The contents of both registers can be conveyed by calling sub-function IAH. After
calling this function, the content of bit 7 of the mode control register is passed to
the BL register, and the contents of the color select register is passed to the BH
register.

261

7. TheBIOS PC System Programming

Gray scales

Sub-function OBH converts the color codes within the DAC color table into gray
scales. Pass the number of the first register to be converted into the BX register,
and the number of registers to be converted to the CX register. The conversion
results in a color value between 0 (black) and 1 (white), based on a red intensity of
30%, a green intensity of 59% and a blue intensity of 11 %.

Palette registers

262

The VGA BIOS still has more sub-functions in function lOH for reading the
palette registers. Sub-function 07H reads the contents of any palette register. When
the function is passed and the number of the palette register is passed to the BL
register, the number of the contents is returned in the BH register. This allows read
access to the contents of the overscan register (the color border on palette register
16), but this access requires the use of sub-function 08H. Like sub-function 07H,
the result is loaded into the BH register.

Sub-function 09H loads the contents of the entire palette table (i.e., all 16 palette
registers and the overscan registers) into a 17-byte buffer. The segment address of
this buffer is loaded into the ES register, and the offset address is loaded into the
DX register.

Another feature of the EGA and VGA cards are their ability to work with a number
of different fonts and font sizes. This feature allows the EGA/VGA cards to be used
with different monitors, in different resolutions. Since the screen resolution is
determined by the monitor hardware and cannot be changed, the video card must
adapt to the monitor's resolution. Exceptions to the rule are the more versatile and
expensive multisync monitors, which get their name from the ability to adapt
themselves to different synchronizations (resolutions).

Of the different monitors which can be used in connection with an EGA or a VGA
card, the color monitor, normally used in conjunction with a CGA card, has the
poorest resolution. It only has a resolution of 640 pixels (horizontal direction) by
200 pixels (vertical direction). If you want to display 25 lines of 80 columns each
on the screen, you will have to use a character matrix of 8 by 8 pixels so that all
of the characters fit on the screen.

Even though the monochrome monitor cannot display different colors, it does offer
a resolution of 720 by 350 pixels when used with an MDA or Hercules graphics
card. The individual characters are displayed with a matrix of 9 by 14 pixels.

EGA and multisync monitors also have a vertical resolution of 350 pixels, but can
only display 640 pixels horizontally. The resolution of individual characters is 8 x
14 pixels-only slightly less than that of the monochrome monitors. VGA cards
and multisync monitors usually support a minimum vertical resolution of 480
pixels, but some units even support 600 raster lines. VGA cards often permit
character matrices of 8x 16 (text mode) and 9x 16 pixels.

Abacus 7.4 BIOS Screen Output Functions

Character generators

In order to support the various resolutions, the EGANGA cards have their own
character generators which can display characters in any height between one and 32
raster lines. The number of text lines per screen depends on the height of the
displayed characters and the resolution of the monitor. To make the best use of this
feature, the EGANGA cards get the bit patterns of the characters from a section of
the video RAM instead of from ROM.

Function 11 H

Normally the character generator is programmed automatically and the appropriate
character set is loaded when a video mode is initialized, but it is possible for a
program to control these features with function 1 IH. You might want to use this
to display more than the usual 25 text lines on a monochrome, EGA, or multisync
monitor. But even if you do want to use 25 lines, these functions offer the ability
to redefine individual characters of the character set or to install an entirely new
character set. This can be done with sub-function OOH. Like all of the sub
functions of function llH, the value llH must be passed in the AH register and
the sub-function number must be passed in the AL register. A number of other
parameters must also be passed in the other processor registers. The BH register
stores the height of the individual characters. Since this function is intended for
modifying individual characters of the current character set, you must load the
height of these characters here. As mentioned above, the height of characters on
monochrome, EGA, or multisync monitors is normally 14 lines (or with the VGA
card, 16 lines on a VGA or multisync monitor), while on color monitors it is 8
lines. The BL register stores the number of the character table in which the
character will be loaded. Theoretically a number 0 through 3 can be given here for
one of the four different character tables, but you should restrict yourself to
modifying character table 0, because it is the only table guaranteed to be accessible
by EGA cards with less than 256K RAM. This character table is also the one into
which the EGA BIOS loads the character definitions when the video mode is
initialized with function OOH. Since you may not want to redefine the entire
character set, the ex register holds the number of characters to be defined
(maximum of 256). The number of the first character to be defined is placed in the
DX register and may not exceed the value 255.

The character definitions themselves are stored in a buffer whose address is passed
in the ES:BP register pair. The bit patterns of the individual characters are placed
in this buffer such that the height of each character (BH register) also specifies the
number of bytes per character in the buffer.

The individual characters are stored sequentially, so the total size of the buffer is
the number of characters multiplied by the height of the characters. The eight bits
of each byte reflect the status of the individual pixels in each raster line. If a bit is
set, the pixel will appear at the corresponding position in the foreground color. If
the bit is cleared, the pixel will appear in the background color. Note that the

263

7. TheBIOS PC System Programming

264

character matrix is actually eight pixels wide, even through the characters are
displayed with a width of nine pixels on a monochrome screen. In this case the
ninth bit is not taken from the character definition, the last bit on each line is
simply duplicated.

Bit 7 6 5 4 3 2 1 0
ES:BP_.

Line 1

2

3

4

5

6

7

8

Line 1

2

I I

I

I I I
I I I

I
I I I I I

I
I I

I

• First character
OOlllOOOb

OOlllOOOb

OOOlOOOOb

lllllllOb

00010000b

00101000b

01000100b

• OOOOOOOOb
Second character

Buffer structure after calling function 11 H, sub-function OOH

As long as characters with the appropriate ASCII codes are displayed on the screen,
the changes will be noticeable immediately after this function is called.

While sub-function OOH can be used to load user-defined characters into the
character set, sub-functions OlH and 02H are used to load the two ROM character
sets contained on the EGANGA card. Sub-function OlH loads the entire 8xl4
character set of the EGANGA card into one of the four character tables. Sub
function 02H loads the 8x8 CGA-compatible character set into one of the four
character tables. In addition to the function and sub-function numbers, both
functions are passed the number of the character table in which the character set is
to be loaded in the BL register. If the character table involved is the one currently
displayed on the screen, then the changes will be visible immediately after the
function is called. Although these two functions load the character sets, they do
not set the character generator to the height of the appropriate character set. For
example, if you load the 8x8 character set into the current character table while the
characters are being displayed in an 8xl4 matrix, you will get a rather strange
display. Raster lines one to eight will have the bit-map of the 8x8 character set
while lines nine to 14 will have the remainder of the 8x 14 set.

Sub-function 04H (available to VGA only) serves a similar purpose to sub
functions OlH, 02H and 03H. The difference is that calling sub-function 04H loads
the 8xl6 ROM character set into one of the four character tables.

Abacus 7.4 BIOS Screen Output Functions

If you want to work with several character sets in parallel, it is recommended that
you load the individual character sets into their own character tables and then
switch between the tables. Sub-function 03H is used to switch to a new character
table. In addition to the function and sub-function numbers, it must be passed the
number of the character table to be activated in the BL register.

Sub-functions IOH, 1 IH, and 12H are almost identical to sub-functions OOH, OIH,
and 02H. They are also used for loading character sets, but they program the
character generator at the same time. This has the result that the characters are
displayed with the proper character height after the function is called. The number
of text lines on the screen changes automatically.

Function IOH is used to load and activate user-defined character sets and is called
exactly like function OOH. The number of text lines which are displayed after the
call to the function results from the vertical resolution of the monitor divided by
the height of the individual characters. If this division is not even and there is a
remainder, the remaining lines will be divided equally between the top and bottom
borders of the screen. Partial text lines are not displayed.

Sub-functions llH and 12H load and activate entire character sets. If the 8x14
character set is loaded with sub-function llH and a monochrome, EGA, or
multisync monitor is being used, 25 lines (EGA) or 28 lines (VGA) will be
displayed on the screen. If this is done while a color monitor is connected, which
has a vertical resolution of only 200 lines, only 14 lines will be displayed on the
screen.

These changes must also be taken into account when calling function 12H, which
loads and activates the 8x8 character set. The usual 25 lines will be visible on a
color monitor, while on the other monitors the screen will consist of 43 text lines
(EGA) or 50 text lines (VGA).

VGA BIOS has an additional sub-function. When sub-function 14H is called, it
loads and activates the 8x16 ROM character set. Only 25 lines of text will appear
on the screen.

Regardless of the number of text lines which result from calling one of these
functions, the EGA BIOS ensures that the traditional BIOS functions for screen
output (function numbers OOH to OFH) will still work properly. Even if the screen
contains 43 lines, you can call the functions for character output, scrolling the
screen, and access the lines outside of the usual 25-line boundary. However, you
should avoid using multiple screen pages and just use page 0, or you may run into
problems with the BIOS versions of various manufacturers.

Cursor emulation

Certain EGA cards can have problems with the mechanism called cursor
emulation. This involves converting the starting and ending lines of the cursor
when the height of the character matrix is changed. For example, if the character

265

7. Tlu!BJOS PC System Programming

height decreases from 14 to 8 lines, then the cursor will be invisible if it was in
the range of raster lines from 9 to 14. To prevent this, the BIOS converts the
starting and ending lines to the new matrix height. This mechanism must be
disabled at the beginning of a program. Unfortunately, no function for doing this
exists in the EGA BIOS; the only way to disable it is to clear a flag in one of the
BIOS variables (bit 0 in the byte at address 0040:0087). The programs at the end
of this section demonstrate this in practice. The VGA BIOS ~possess such a
function, as we'll see shortly.

Function 12H

266

All of the functions described so far can only be used in conjunction with an EGA
card or a VGA card To determine if an EGNVGA card is installed, the EGNVGA
BIOS offers function 12H, which is not available in the normal ROM-BIOS. It is
called with the function number in AH and the value IOH in the BL register. If
this value is still in the BL register after the call, you can assume that no
EGNVGA card is available and the normal ROM-BIOS was called, which does not
support this function. A different value shows that an EGA or a VGA card is
available. In this case the BH, BL, and CL registers contain configuration
information about the installed EGNVGA card.

The value in BH specifies the video mode that will be activated after the system is
booted. Since another mode may have been enabled in the meantime, this
information is of little use. The value in the CL register, which tells you what
kind of monitor the card is driving, is much more useful. The following values are
returned for the individual monitor types:

OBH monochrome monitor
09H high-resolution (EGNVGA or multisync) monitor
08H color monitor

The contents of the BL register are also useful. They specify the amount of RAM
installed in the EGA card. The following codes can appear:

0
2

64K
192K

1
3

128K
256K

This distinction is important if you want to work with multiple character tables or
with the high-resolution graphics modes of the EGNVGA card. For example,
graphics mode number IOH, which offers a resolution of 640x350 pixels, can be
used only if the EGANGA card has at least 128K of RAM. The number of
character tables available also depends on the size of the RAM. This can be
determined by the incrementing by 1 the number returned in the BL register.

Abacus 7.4 BIOS Screen Output Functions

Function 1 AH

Function IAH, sub-function OOH informs the user of whether an EGA card or a
VGA card is installed. This function is only available to VGA cards. You must
pass the function number to the AH register and place the value OOH in the AL
register. This determines whether a VGA card is installed. If the value OOH
remains unchanged, there is no VGA card available, while a returned value of IAH
indicates a VGA card. The contents of the BL register indicate the active video
mode:

Code Meanif!<l
OOH No video card
OlH MDA card I monochrome monitor
02H CGA card I color monitor
03H Reserved
04H EGA card I hig_h-res monitor
OSH EGA card I monochrome monitor

06H Reserved
07H VGA card I anal~ monochrome monitor
OBH VGA card I anal~ color monitor

Function 12H, sub-function 20H can be used to install an alternate hardcopy
routine. This can be used when the screen is displaying more or fewer than 25
lines. Since the normal hardcopy routine of the BIOS assumes that there are 25
lines on the screen, it always prints exactly 25 lines, which may omit some lines
from the hardcopy. The alternate hardcopy of the EGNVGA BIOS always accounts
for the actual number of lines displayed on the screen, and is therefore preferable to
the normal hardcopy routine. It is installed by calling the BIOS video interrupt
IOH, whereby the value 12H is passed in the AH register and the value 20H must
be in the BL register.

The VGA BIOS includes six other sub-functions of function 12H, exclusively for
control of the VGA card. Sub-function 30H helps determine the number of raster
lines available (not text lines) when a VGA is operating with a VGA or multisync
monitor. In CGA mode this becomes only 2W lines instead of 400. The sub
function number must be loaded into the BL register. The VGA BIOS interprets
the number it finds in the AL register as the number of raster lines. A value of 0
in the AL register indicates 200, the value I indicates 350 and the value 2 indicates
400 raster lines.

Working in conjunction with color selection as mentioned above, so that EGA and
VGA cards can load their palettes or DAC registers, the color spectrum of a CGA
card can be emulated. Sub-function 31H enables or disables this emulation in the
VGA card after calling function OOH (video mode selection). Calling this sub
function signaled by the value 0 in the AL register activates green light, while a
value of 1 tells the VGA BIOS to avoid loading the corresponding register.

267

7. The BIOS PC System Programming

Automatic gray scaling

Sub-function 33H specifies the status of automatic gray scale summing. This
summing instructs BIOS accesses to the DAC color table to automatically convert
color values into gray scales. The contents of the AL register indicate this status:
A value of 0 indicates conversion enabled, while a value of 1 indicates no
conversion.

Function 12H, sub-function 34H controls the suppression of cursor emulation. A
value of 0 in the AL register enables cursor emulation, while a value of I
suppresses this emulation.

Function 13H

268

We will mention one last function of the EGA/VGA BIOS. It is not exactly new,
since it was already in the AT ROM-BIOS, but it was not in the PC or XT BIOS.
This is function 13H, which displays a string on the screen. There are four
different output modes available, which differ in how the string is passed to the
BIOS and whether or not the cursor will be placed at the end of the string when the
output is done. Also, the functions differ in whether all the characters in the string
will be given a constant color or provided with individual attributes. In the first
case, the buffer, the address of which is passed in the ES:BP register pair, need
only contain the ASCII codes of the characters to be printed. The color for all of
the characters is taken from the BL register. In the second case, the attribute byte
for each character follows its ASCII code in the buffer.

The contents of the AL register determine which mode will be used:

0 = One color for all of the characters. The cursor position does not
change.

1 = One color for all of the characters. The cursor will be placed after the
last character of the string.

2 = The buffer contains the individual attributes. The cursor position does
not change.

3 = The buffer contains the individual attributes. The cursor will be
placed after the last character of the string.

The number of the screen page on which the string is to appear can be specified in
the BH register, but this should always be the current page. Otherwise problems
will arise with printing control characters (carriage return, linefeed, etc.). The CX
register holds the length of the string. This refers to the number of characters to be
printed (attributes must not be counted in modes 2 and 3). The output position is
passed to function 13H in registers DH (line) and DL (column). And, finally, we
shouldn't forget the function number in the AH register.

Abacus 7.4 BIOS Screen Output Functions

Demonstration programs

After so many register assignments, function numbers, and the like, it helps to be
able to see some example programs to put the information into perspective. Many
of the functions we discussed are found in the programs listed below. Not all of
them are called by the actual main program but are included to show you how it's
done.

The programs have two main tasks. First, they show you how to work with and
program the color palettes. Second, and even more important, these programs
show you what possibilities are offered by defining your own character sets. Here
this is used to display a small graphic in text mode. This could be used when you
want to display a personal or company logo on the screen, but the characters
needed are not found in the ASCII character set. In the example program, this is
demonstrated by displaying the text "PC Internals Michael Tischer" on the screen
in large, fancy lettering while in text mode. This message was first drawn with a
graphics program and then converted to a kind of virtual raster. This corresponds in
density to the character matrix of 8x14 pixels in the text mode when an EGA
monitor is connected. With the help of this raster we discovered that four rows of
30 characters each, for a total of 120 characters, were required to display this
graphic in text mode. The next step was to convert the bit-map of this graphic so
that it could be loaded into one of the character tables with the help of sub-function
OOH of function 1 lH. Each eight consecutive pixels were combined into a byte and
then 14 of these eight-bit units in a column were combined together. The results
are the initialized arrays in the program listing.

Once these data are created, the most time-consuming part of the whole procedure
is done, since all we have to do is call the appropriate function in order to load the
characters into the character table so we are able to display them on the screen.
This proved to be something of a problem in C because none of the functions for
interrupt calls allowed a value to be assigned to the BP register, which is where the
offset address of the character buffer must be passed. We had to write a small
assembly language routine which just loads the parameters passed to it into the
required registers and then calls the BIOS video interrupt.

Inside the example program the bit patterns for the graphic are loaded into the
character definitions for the ASCII codes 128 to 248 with the help of this function.
The new characters replace the foreign characters and the border characters, but the
standard ASCII characters like letters and numbers are retained. You can load the
bit patterns in other parts of the character set as well, if you wish.

One routine in the program which is not executed is called SetLine and allows the
number of text lines on the screen to be set (25 or 43). If you use this function to
put the screen in 43 line mode, you first malCe certain arrangements regarding
screen output. Both Pascal and C send their output to the screen using DOS
functions when printf or writeln is called. Turbo Pascal allows direct access to the
video RAM under certain conditions, but this doesn't change the problem. Here it

269

7. TheBIOS PC System Programmi.ng

depends on whether or not an extended screen driver (ANSI.SYS) is installed. If
such a driver is not installed, the DOS will use BIOS function OEH of interrupt
16H, which also handles screen scrolling. Since this function is part of the EGA
BIOS, it will properly recognize that the screen consists of 43 lines and will not
scroll it until the 44th line is reached. Things are different with most ANSI.SYS
drivers, which perfonn scrolling themselves. Since many of them assume a 25-line
screen, they will scroll until the 26th line is reached and the remaining lines will
be wasted.

To avoid such problems, the two output routines in the example programs offer
the ability to output strings directly to the video RAM and avoid the DOS
functions.

Pascal listing: EGAP.PAS

270

($V-) (don't check length of strings)

{**}
{* EGAP *)

{*--•)
{* Description : demonstrates the use of the functions of the *)
{* EGA/VGA BIOS. *)
{*--•)
{* Author MICHAEL Tr§icHER *)
{* developed on : 08/30/1988 *)
{* last update : 06/07/1989 *}
{**}

program EGAVGAP;

Uses Dos, CRT;
type BytePtr = Abyte;

{ bind in the DOS and CRT units
{ pointer to a byte

VElb = record { describes a screen position as 2 bytes

Character char;
Attribute byte;
end;

VRam = array[0 •• 4000) of VelB;
strings= string[80];

const VIDEO INT = $10;
LINE2S = 25;
LINE43 = 43;
MOMO
COLOR
EGA

= O;
= 1;
= 2;

the ASCII code
{ the attribute

{ describes the video RAM
output string for PrintAt

BIOS video interrupt
{ 25 line screen
{ 43 line screen

constants for GetMonTyp

Font : array [1. .120, 1. .14] of byte = (
{ o, 0,255, 62, 28, 28, 28, 28, 28, 28, 28, 28, 28, 31), E
(O, 0,252, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7, 252), A
(o, O, o, 0,129,195,195,199,199,206,206,142, 14, 14), c
(0, O, 62, 193, 128, 128, 0, 0, 0, o, O, O, 0, 0), H
(O, o, 16, 144, 112, 48, 48, 16, 16, o, o, o, O, 0),
(O, o, O, o, o, o, o, 0, 0, o, o, o, O, 0), L
(o, o, 3, o, . o, 0, o, O, O, 0, o, o, o, 0)' I
(o, 0,254,248,112,112,112,112,112,112,112,112,112,112), N
{ o, o, O, O, o, o, O, O, 0,252, 61, 30, 30, 28), E
(o, 0, 0, o, o, 0, o, 0, 0, 248, 6, 7' 3, 3),
(0, O, o, 0, O, O, 0, O, O, 7, 0, 0, 0,128), c
(o, o, 32, 96,224,224,224,224,224,254,224,224,224,224), 0
(o, o, 0, O, o, o, o, o, o, 1, 6, 12, 28, 24), N
(0, 0, O, o, o, o, o, o, 0,240, 28, 6, 7, 7), T
(o, o, o, o, o, 0, 0, o, 0, 63, 15, 7, 7, 7), A

Abacus 7.4 BIOS Screen Output Functions

o, o, o, o, O, O, 0, 0, O, 30, 39, 71,135, 128) I { I
o, o, o, o, O, 0, o, o, 0,126, 30, 15, 15, 14), { N
o, o, o, o, O, O, o, o, 0,124,131, 3, 1, 1) I { s
o, o, o, o, 0, 0, 0, 0, o, O, 0, 129, 131, 195) I {
o, O, o, o, o, o, o, O, o, o, 62, 193, 128, 0) I { T
o, o, 0, 0, o, 0, O, O, o, o, O, 192, 224, 224) I I H
o, o, 248, 120, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56), I E

O, O, o, 0, o, o, o, o, 0, 31, 48, 48, 48, 48), I
o, o, o, o, O, O, O, o, 0,196, 52, 12, 4, 4), I B
o, 0, o, O, o, o, o, o, o, o, o, O, o, 0), I I
o, o, o, o, o, 0, o, O, o, o, o, O, o, 0), I T
o, o. o, o, O, O, O, O, 0, O, O, O, O, 0), {
o, o, o, o, O, O, o, O, o, O, O, O, O, 0), I p

o, o, o, o, 0, O, O, O, o, o, O, 0, O, 0) I I A
o, o, o, o, o, o, o, o, o, O, o, o, O, 0), I T

28, 28, 28, 28, 28, 28, 28, 28, 62, 255, o, o, O, 0), I T
O, o, O, O, o, o, o, o, O, 128, o, o, o, 0), { E

14, 14, 14, 7, 7, 3, 3, 1, o, o, o, o, o, 0), { R
o, o, 0, o, O, 0,128,128,193, 62, o, O, o, 0), { N
o, o, o, o, 16, 16, 32, 64,128, o, O, 0, o, 0), {
o, 0, o, o, o, O, o, O, o, o, 0, O, o, 0), { 0
o, o, o, o, o, o, o, o, o, 3, o, o, o, 0), { F

(112,112,112,112,112,112,112,112,248,254, o, o, o, 0), {
(28, 28, 28, 28, 28, 28, 28, 28, 62, 255, 0, 0, o, 0), { A
(3, 3, 3, 3, 3, 3, 3, 3, 7, 159, o, o, o, 0), {
(128, 128, 12·8, 128, 128, 128, 128, 128, 192, 240, o, 0, o, 0), (c
(224,224,224,224,224,224, 96, 112, 49, 30, o, o, o, 0), (H
(56, 63, 56, 56, 56, 24, 92, 76, 134, 1, o, o, o, 0), I A
(7,255, o, o, 0, O, 1, 2, 12, 240, O, O, o, 0), (R
(7, 7, 7, 7, 7, 7, 7, 7, 15, 63, O, 0, o, 0), (A
(o, o, o, o, o, o, o, o, 128, 224, o, o, o, 0), { c
(14, 14, 14, 14, 14, 14, 14, 14, 31, 127, o, o, o, 0) I { T
(1, 1, 1, 1, 1, 1, 1, 1, 3, 207, 0, 0, 0, 0) I { E
(192,192,192,193,193,195,195,193,225,248, O, o, o, 0) I { R
(o, 7,120,192,192,128,128,192,195,124, O, O, o, 0), {
(224,224,224,224,224,224,224,240,112, 29, O, o, O, 0), { I
(56, 56, 56, 56, 56, 56, 56, 56, 124, 255, o, o, o, 0), { N
(31, 31, 31, o, o, 64, 96, 96, 112, 71, o, o, o, 0), {
(0,224,248,252, 28, 12, 4, 12, 24,224, o, o, O, 0), { T
(o, o, o, o, O, o, O, o, o, o, o, o, o, 0) I { H
(o, o, o, o, o, o, o, o, o, o, o, o, o, 0), { E
(o, o, o, 0, o, o, o, o, 0, 0, o, o, O, 0), {
(o, 0, 0, o, o, o, o, o, o, O, O, o, o, 0), { A
(O, o, O, O, o, o, o, o, o, O, O, O, O, 0) I { s
(O, 0, O, o, o, o, o, o, o, o, O, O, o, 0), { c
(o, O, 252, 60, 30, 30, 30, 23, 23, 23, 19, 19, 19, 17), { I
(o, o, o, o, o, o, o, 1, 1, 1,130,130,130,196), (
(o, 0,126,120,240,240,240,112,112,112,112,112,112,112), {
(o, o, 28, 28, 28, o, o, 0, 0, 252, 60, 28, 28, 28), { c
(o, o, o, o, o, o, o, o, o, 1, 6, 12, 28, 24), { H
(O, o, 0, O, 0, o, O, O, 0,240, 12, 2, 7, 7), { A
(O, o, 63, 15, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7), (R
(O, 0, o, o, 0, o, o, o, 0, 62, 65,129,128, 0) I { A
(o, O, o, o, O, o, o, o, O, 0,128,192,192,224), (c
(O, o, O, 0, o, 0, O, o, o, 63, 64,224,224,224), (T
(o, O, O, o, 0, o, o, o, O, 0,192, 96, 112, 112) I { E
(o, 0, o, o, o, o, o, o, o, 7, 24, 48, 112, 96), { R
(0, 0, o, o, O, o, o, o, 0,192,112, 24, 28, 28), {
(O, 0, 252, 60, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28) I { s
(o, o, o, o, o, o, o, o, o, o, 0, o, 0, 0), { E
(o, o, o, o, o, o, o, o, o, o, o, o, o, 0), { T
(o, o, 63, 56, 48, 48, 32, 32, 32, o, o, o, o, 0), {
(O, 0,255,112,112,112,112,112,112,112,112,112,112,112), { 0
(o, 0, 225, 225, 97, 32, 32, 32, 32, 15, 3, 1, 1, 1) I { F
(o, o, 192, 192, 192, o, o, o, 0,192,193,195,195,195), {
(o, o, o, 0, o, o, o, o, 0, 252, 3, O, o, 0) I (T
(o, o, 0, o, 0, 0, o, o, o, 64, 65, 195, 71, 70), (H
(0, o, o, o, o, o, 0, 0, 0,124,131, o, 1, 1) I { E
(o, o, 15, 3, 1, 1, 1, 1, 1, 1, 1, 129, 193, 193), {
(o, 0,192,192,192,192,192,192,192,207,208,224,224,192), {

271

7. The BIOS PC System Programming

272

o, O, o, O, o, O, 0, O, o, 128, 96, 112, 48, 56)' B)
o, O, o, O, 0, O, o, O, o, 3, 12, 24, 56, 48)' M)

O, O, o, O, O, O, o, O, 0,224, 56, 12, 14, 14), -)
o, O, o, O, o, O, o, O, 0,126, 30, 14, 15, 15)' p)

0, 0, O, 0, 0, 0, o, O, o, 60, 78, 142, 14, 0), c)
17, 17, 16, 16, 16, 16, 16, 16, 48, 254, o, O, O, 0),

(196,196,232,232,232,112,112, 80, 32, 35, O, O, O, 0),
(112,112,112,112,112,112,112,112,248,254, O, O, o, 0)'
(28, 28, 28, 28, 28, 28, 28, 28, 62, 255, 0, O, o, 0),
(56, 56, 56, 56, 56, 24, 28, 12, 6,129, o, O, o, 0),
(7, O, o, O, o, O, 1, 2, 12, 240, 0, 0, o, 0)'
(7, 7, 7, 7, 7, 7, 7, 7, 15, 63, O, O, o, 0),
(o, o, o, O, o, O, o, O, 129, 231, o, o, o, 0)'
(224,224,224,224,224,225,225,224,240,252, o, o, o, 0),
(o, 3, 60,224,224,192,192,224,225, 62, 0, 0, o, 0)'
(112,240,112,112,112,112,112,120,184, 14, O, O, o, 0)'
(224,255,224,224,224, 96, 112, 48, 24, 7, O, O, o, 0)'
(28, 252, O, O, o, 0, 4, 8, 48, 192, o, O, 0, 0)'
(28, 28, 28, 28, 28, 28, 28, 28, 62, 255, O, O, o, 0)'
(o, o, o, o, o, o, o, o, 0,128, O, o, o, 0)'
(o, o, o, O, o, O, 0, O, 0, O, O, O, o, 0)'
(o, O, o, O, O, O, 0, O, O, 3, O, O, o, 0)'
(112,112,112,112,112,112,112,112,248,254, o, O, o, 0)'
(1, 1, 1, 1, 1, 1, 1, 1, 3, 15, o, O, o, O)'
(193,193,192,192,192,194,195,195,227,250, o, O, o, 0),
(240, 254, 255, 15, 1, O, o, O, 129, 126, 0, O, o, 0)'
(14, 14,142,206,206,198, 71,195,129, o, o, o, o, 0)'
(1, O, o, O, 0, o, o, 0, 131, 124, o, 0, 0, 0),
(193, 1, 1, 1, 1, 1, 65, 129, 3, 15, 0, O, o, 0)'
(192,192,192,192,192,192,192,192,224,249, o, O, O, 0)'
(56, 56, 56, 56, 56, 56, 56, 56, 124, 255, o, 0, 0, 0)'
(112,127,112,112,112, 48, 56, 24, 12, 3, o, 0, o, 0),
(14, 254, o, o, o, O, 2, 4, 24,224, o, O, o, 0),
(14, 14, 14, 14, 14, 14, 14, 14, 31, 127, 0, O, 0, 0),
(o, O, o, O, o, O, o, O, 0,192, o, O, o, 0));

var VLine{VLine), stores the current cursor position
VColumn{VColumn),
NumLine{NumLine) : byte; { number of screen lines
Mono : boolean; TRUE, if monochrome monitor

{**}
{* CEmul: Switches the cursor emulation of the EGA card on or off. *}
{* Input - DOIT = TRUE : cursor emulation on. *}

{ * FALSE: Cursor emulation off. *}
{ * Output the current cursor column *}
{**}

procedure CEmul(Doit : boolean);

var VioinfoByte : byte absolute $0040:$0087;

begin
if Doit then

VioinfoByte := VioinfoByte or 1
else

VioinfoByte := VioinfoByte and 254
end;

{ BIOS info byte)

turn emulation on?
{ yes, set bit 0

(NO
mask out bit O

{**}
{* GetCS: Returns the current output column. *I
{* Input : none
{* Output : the current cursor column

*}
*}

{**}

function GetCS : byte;

begin
GetCS := VColumn;

end;
{ get column from global variable J

Abacus 7.4 BIOS Screen Output Functions

{**}
{* Getcz: Return the current output line. *)
{ * Input : none *)
{* Output : the current output line *)
{**}

function GetCZ : byte;

begin
GetCZ :- VLine;

end;
{ get line from global variable)

{**}
{ * CharDef: Defines the bit pattern of an individual character. *)
{ * Input - ASCII ASCII code of the first char to be defined *)
{ * - TABLE number of the character table (0 bis 3) *)
{ * - MATRIX number of lines in the character matrix *)
{ * - NUMBER number of characters to be defined *)
{ * - BUFPTR - pointer to the buffer with the character *}
{ * Output none *)
{**}

procedure CharDef{ Ascii, Table, Matrix, Number : byte;
BufPtr BytePtr);

var Regs Registers; { processor registers for interrupt call)

begin
Regs.ax
Regs.bh
Regs.bl

$1100;
Matrix;
Table;

Regs.ex Number;
Regs.dx Ascii;
Regs.hp Ofs(BufPtr' };
Regs.es Seg{ BufPtr' };
intr(VIDEO_INT, Regs);

end;

{ ftn. no.: character generator, subftn. 0
{ line height of the matrix

{ number of the character table
number of the character to be defined

{ first character to be defined
{ offset address of the buffer
{segment address of the buffer

{ call BIOS video interrupt

{**}
{ * GetMonTyp: Determines the type of monitor attached. *)
{ * Input none *)
{ * Output : the monitor type: MOMO = monochrome monitor *)
{ COLOR ~ color monitor *)
{ * EGA ~ EGA or Multisync monitor *)
{**}

function GetMonTyp : byte;

var Regs : Registers;

begin
Regs.ah :~ $12;
Regs .bl :- $10;
intr(VIDEO_INT, Regs);
case Regs. cl of

$OB GetMonTyp
$08 GetMonTyp
$09 GetMonTyp

end;
end;

MOMO;
COWR;
EGA;

{ processor registers for interrupt call)

ftn. no.: get configuration
{ subfunction number

{ call BIOS video interrupt
CL contains the monitor type)

{ monochrome monitor)
color monitor }
{ EGA monitor)

{**}
{* SetCur : Sets the blinking cursor and the internal output position *)
{* Input - COLUMN output column (0 79) *)
{* - LINE - output line (1 •. n) *)
{ * Output none *)
{**}

procedure SetCur(Column, Line : byte);

273

7. TheBJOS PC System Programming

274

var Regs Registers;

begin
Regs.ah := $2;
Regs.bh := O;
Regs.dh := Line;
Regs.dl := Column;
intr(VIDEO INT, Regs);
VLine := Line;
VColumn Column;

end;

{ processor registers for interrupt call }

{ ftn. no.: set cursor position
{ screen page O

{ set coordinate

{ call BIOS video interrupt
{ save coordinates in internal variables

{**}
{* SetCol : Defines the contents of one of the 16 color registers in *)
{ * the EGA card. *)
{* Input - REGNR number of the color register *)
{* - COLOR= color value (0 to 63) *)
{ * Output none *)
{**}

procedure SetCol{regnr, color byte);

var Regs : Registers;

begin
Regs.ah $10;
Regs.al := O;
Regs.bl := regnr;
Regs.bh color and 63;
intr(VIDEO_INT, Regs);

end;

processor registers for interrupt call }

ftn. no.: set colors/attributes
{ subfunction 0

set number of the register
{ set color value (mask out bits 6 and 7)

{ call BIOS video interrupt

{**}
{* SetBorder : Defines the border color. *)
{* Input : - COLOR= color value (0 to 63) *}
{ * Output : none *}
{**}

procedure SetBorder(color

var Regs : Registers;

begin
Regs.ah := $10;
Regs.al := 1;
Regs.bh := color and 63;
intr(VIDEO_INT, Regs);

end;

byte);

{ processor registers for interrupt call)

{ ftn. no.: set colors attributes
{ subfunct ion 0

{ set color value (mask out bits 6 and 7)
{ call BIOS video interrupt

{**}
{* SetLines Sets the number of lines. *}
{* Input Sub-function of function llH: *)
{* $11 8x4 character set *}
{* $12 : 8x8 character set *)
{* $14 : 8x16 character set *}
{ * Output none *}
{**}

procedure SetLines(Lines

var Regs : Registers;

begin
Regs.ah $11;
Regs.al Lines;
Regs.bl := O;
intr(VIDEO_INT, Regs);

end;

byte);

{ processor registers for interrupt call)

ftn. no.: character generator
{ sub-function of fnc. llh

{ use character table 0
{ call BIOS video interrupt

Abacus 7.4 BIOS Screen Output Functions

{**}
{* IsEga: Determines if an EGA card is installed and handles the *I
{* initialization of the global variables. *I
{* Input : none *I
{* Output : TRUE, if an EGA card is installed, else FALSE. *I
{**)

function IsEga : boolean;

var Regs : Registers;

begin
Regs.ah := $12;
Regs.bl ·= $10;
intr{VIDEO INT, Regs);
if Regs.bl-<> $10 then

begin
{*- create pointer to
Mono := Regs.bh = 1;
IsEga := TRUE;

end
else

IsEga
end;

FALSE;

{ processor registers for interrupt call I

{ ftn. no.: get video configuration
{ subfunction number

call BIOS video interrupt
is it an EGA or VGA card?

I yes
VRAM depending on the monitor connected -•)

{ connected to monochrome monitor? I
{ an EGA card was discovered }

{ no EGA card discovered }

{**}
{* IsVga: Determines whether a VGA card is installed, and initializes*}
{* the global variables. *I
{ • Input none •}
{* Output TRUE if a VGA card is installed, otherwise FALSE. *}
{* Info Use this function BEFORE calling the ISEGA in your own *}
{* application, since the TRUE for some EGAs also applies *I
{* to this routine as well. *}
{**}

function IsVga : boolean;

var Regs : Registers; { processor register for the interrupt call }

begin
Regs.ah $1A; { function no.: Determine video system
Regs.al := $00;
intr{VIDEO INT, Regs}; { Call BIOS video interrupt
if (Regs.al= $1A) and ((Regs.bl= 7) or (Regs.bl= B)) then

begin { VGA card installed and active
:= FALSE;

TRUE;
Mono
IsVga :=

end
else

IsVga : = FALSE;
end;

{ definitely a VGA card on board

{ no VGA card connected }

{**}
{* PrintAt: Outputs a string at the give screen pcsition with a *}
{* certain attribute. *}
{* Input - COLUMN output column (O .. 79) *)
{* - LINE =output line { 0 •. NUMLINE-1 *)
{* - COLOR attribute for the characters to be printed *}
{* - OUSTR the string to be printed *I
{ • Output : none •)
{**)

procedure PrintAt(Column, Line, Color :
byte; OutStr stringB);

var ColorRAM VRam absolute $BBOO:OOOO; { describes physical VRAM
Mono RAM VRam absolute $BOOO:OOOO; { describes physical VRAM
Index word; index into the VRAM array
Stren, length of the string to be printed
i byte; { running pointer to the string

275

7. TheB/OS PC System Programming

276

begin
Stren :=length(OutStr);
Index := Line * 80 + Column;

if Mono then
begin

for i:=l to Stren do
begin

get length of the string
{ set index in the array

{ yes
(run through the string

MonoRAM[Index].Character
MonoRAM[Index].Attribute:=
inc (Index) ;

OutStr[i]; { set character
Color; (set color

(increment the index
end;

end
else

begin
for i: =1 to Stren do

end;

begin
ColorRAM[Index
ColorRAM[Index
inc (Index) ;

end;

J .Character
J .Attribute :=

output to the color screen

{ run through the string

OutStr[i];{ set character
Color; { set color

{ increment the index

{*-- calculate new cursor position ---------------------------------*)
SetCur((VColumn + VLine * 80 + Stren) mod 80,

(VColumn + VLine * 80 + Stren) div 80);
end;

{**}
{* Blinking : Defines the meaning of bit 7 in the attribute of a *)
{* character in the text modes. *)
{* Input - DoBlink TRUE : blinking *)
{* FALSE: intense background color *)
(* Output none *)

{**}

procedure Blinking(DoBlink

var Regs : Registers;

begin
Regs.ah := $10;
Regs.al := $3;
if DoBlink then

Regs.bl 1
else

Regs.bl := O;
intr(VIDEO INT, Regs);

end; -

boolean);

(processor registers for interrupt call)

{ ftn. no.: set colors/attributes
{ subfunction number

{ blinking?
yes, BL = 1 : blinking

{ no
0 : intense background color

{ call BIOS video interrupt
{ yes, BL

{**}
{* Cls: Clears the screen, causing the video mode to be reset. *)
{* The palette registers will also be filled with the default *)
{* values and the character set will be reset. *)
{ * Input : none *)
{ • Output : none *)
{**}

procedure Cls;

var Regs : Registers;

begin
Regs.ah := $0;
if Mono then

Regs.al := 7
else

Regs.al := 3;
intr(VIDEO INT, Regs);

end; -

{ processor registers for interrupt call J

(ftn. no.: set video mode
connected to monochrome monitor

{ yes, 80x25 text display
{ no, color monitor

{ yes, 80x25 character text display
{ call BIOS video interrupt

Abacus 7.4 BIOS Screen Output Functions

{***********************~**}
{* EgaVga : Demonstrates how to use the functions of the EGA/VGA BIOS.*)
{* Input : TRUE if VGA card installed, otherwise FALSE *)
{* output : none *)
{**}

procedure EgaVga (VGA: boolean);

var i, j, k
Outstr
Regs

begin

word;
strings;
Registers;

{ loop counter
logo output string

{ processor register for the interrupt call

{*-- Add EGA/VGA hardcopy routine *)
Regs.ah := $12; { alternate select function

{ sub-function: install rtne
{ call interrupt

Regs.bl := $20;
intr(VIDEO INT,Regs);
{*-- prepare screen layout
SetCur (0, 0);

---•)
Cls;
Blinking(FALSE);

if (VGA) then
begin

Regs .ah $12;
Regs.bl $30;
Regs.al 1;

{ clear the screen
{ light background instead of blinking

Check compatibility in case characters must be
redefined, and the characters must be changed
into 350-line mode (changed back into EGA
mode).

i ntr (VIDEO_ INT, Regs); { call BIOS video interrupt

SetLines($11);
end;

activate Bx14 character set

CharDef (128, O, 14, 120, BytePtr (@font)); { define character

for i:=l to 250 do
begin

PrintAt(Getcs, GetCZ, ((i
if i <> 250 then

{ run through the loop 500 times
{ write color bars to the video RAM

mod 14) + 1) shl 4, • •);

PrintAt(GetCs, GetCZ, O, ' ') ;
{ last color bar?

{ no
end;

for i:=lO to 15 do
PrinTat (22, i, o,

k := 128;
for i:=O to 3 do

begin
OutStr := • •;
for j:=l to 30 do

begin

{ make room for logo
I);

first character in logo
the logo consists of 4 lines

empty the string
{ each line consists of 30 characters

OutStr := OutStr + chr{ k); { append the char to the string
inc(k); { increment K

end;
PrintAt{24, i+ll, 15, OutStr); output the string

end;
PrintAt(l, 1, 15, ' The most important characters are
PrintAt(l, 2, 15, • still present in spite of the logo!
Printat (1, 3, 15, • 1);

Printat(l, 4, 15, ' !"#$%&" ()*+-./0123456789:;<=>?@ ');
Printat(l, 5, 15, • ABCDEFGHIJKIMNOPQRSTlNXXYZ[\JA ');
Printat(l, 6, 15, • 'abcdefghijklmnopqrstuvxyz{f)-- ');

I);
I) ;

Printat (33, 21, 15, •
Printat (33, 22, 15, •
Printat (33, 23, 15, •
SetCur(34, 22);

press any key to end the program.
I);

');
I);

{ •-- change the colors in the color bars --------------------------*)
i := O; { start value for the color registers J
while (not KeyPressed) do (repeat until key is pressed J

begin
inc (i) ;

for j :=l
{ increment the color value for the first register

to 14 do (run through registers 1 to 14

277

7. TheBIOS PC System Programming

SetCol(j, i+j and 63);
end;

{ write color value in the register I

if (VGA) then { Switch VGA card back into 400-line mode I
begin

Regs.ah := $12;
Regs.bl •• $30;
Regs.al := 2;
intr(VIDEO_INT, Regs); { call BIOS video interrupt

SetLines ($14) ;
end;

Cls;
end;

activate 8x16 character set

I clear screen I

{**}
{** MAIN PROGRAM **}
{**}

begin
if IsVga then

EgaVga (true
else

begin
if IsEga then

begin
if (GetMonTyp = EGA) then

EgaVga (false)
else

begin

{ VGA card installed?
{ YES, run demo

{ EGA card installed?
{ YES

EGA monitor attached?
{ YES, run demo

{ NO, wrong monitor

writeln('This program only works with an EGA');

end
else

writeln('card or VGA card, and a monitor ');
writeln('supported by one of these cards. ');

end;

writeln('No EGA or VGA card installed ••• •+
'Program aborted.');

end;
end.

C listing: EGA VGAC.C

/***********************~**/

/* E G AV G A C */
/*--*/
/* Task : Demonstration using the functions available */
/* in the EGA-/VGA-BIOS */

!*--*/
,. Author MICHAEL TISCHER •/
/* Developed on : 08/30/1988 •/
/* Last update : 05/02/1989 •/

!•--•/
/* (MICROSOFT C) */
/* Creation CL /AS /c EGAVGAC.C */
/* LINK EGAVGAC EGAVGACA; */
I* Call EGAC *I

/*--*/
/* (BORLAND TURBO C) */
/* Creation Make a project file containing the following: */
/* EGAVGAC */
/* EGAVGACA. OBJ *I
/* Before compiling, select the Options menu */
/* and the Compiler option - make sure that the */
/* Small model is active */
I* Select the Linker option - make sure that the •/
I* Case-sensitive link is set to Off */
/* The program will compile with one warning... •/

278

Abacus 7.4 BIOS Screen Output Functions

I* this is okay, it will run correctly *I
/**/

/*== Add include files ===*/

#include <dos. h>
finclude <stdlib.h>
finclude <string.h>
finclude <stdarg.h>
#include <bios.h>

/*== Typedefs ==*/

typedef U!!.sig?:.ed i:::har BYTE;
typedef unsigned int WORD;
typedef BYTE BOOL;

/* Create. a byte * /

/* like BOOLEAN in Pascal */
/* VP = FAR pointer to the video RAM */ typedef struct velb far * VP;

/*== Function definition from the assembler module ===================*/

extern void chardef(BYTE ascii, BYTE table, BYTE lines,
BYTE amount, BYTE far* buf);

/*== Structures ==*/

struct velb /* Describes a two-byte position on the screen *I
BYTE ascii code, /* ASCII code */

attribute; /* Corresponding attribute */
);

/*== Macros ==*/

/*-- MK_FP creates a FAR pointer to an object out of a ---------------*/
/*-- segment address and an offset address ---------------------------*/

#ifndef MK FP /* MK FP not defined yet? */
#define MK_FP (seg, ofs) ((void far *) ((unsigned long) (seg}«l61 (ofs)))
#endif

#define VOFS(x,y)
#define VPOS(x,y)
#define GETCZ ()
#define GETCS ()

(80 * (y) + (x)) /* Offsetpos. in video RAM */
(VP) (vptr + VOFS (x, y }) /* Pointer in VRAM *I
(vline) /* Returns the current cursor line */
(vcolumn) /* Returns the current cursor column */

/*== Constants ===*/

#define TRUE 1 1 /* Constants for working with BOOL */
#define FALSE 1 0

#define VIDEO INT DxlO /* BIOS video interrupt */

#define MONO 0 I* Monitor types for GETMON */
lldef ine COLOR 1
#define EGA 2

#define PAUSE 100

/*== Global variables ==*/

VP vptr;
BYTE vline,

vcolumn;
BOOL mono;

/* Pointer to the first character in video RAM */
/* States the current cursor position */

I* TRUE if a monochrome monitor is connected */

/***
Function : c E M U L

--
Task

Input parameters

Enables/disables cursor emulation on the
EGA card.
- DOIT = TRUE : Emulation on

279

7. TheBIOS PC System Programming

280

FALSE: Emulation off
* Return values : None *
***/

void cemul(BOOL doit)

/*-- Definition of video info byte at offset address Ox87 within ----*/
/*-- the BIOS variable segment --------------------------------------*/

#define VIO INFO BYTE ((BYTE far*) MK_FP(Ox40, Ox87)}

if (doit)
*VIO_INFO_BYTE I= 1;

else
*VIO INFO BYTE &= 254;

/* Cursor emulation enabled? */
I* YES, set bit 0 *I

/* NO, *I
/* clear bit 0 *I

/***
* Function : G E T M 0 N *
--

Task
Input parameters

* Return values

Determines the type of monitor connected.
None
Monitor type

*

*

MONO = monochrome monitor
COLOR= Color monitor
EGA = EGA or multisync monitor

***/

BYTE getmon ()
{
union REGS regs; I* Processor register for interrupt call */

regs.h.ah = Ox12; /* Function
regs.h.bl = OxlO;
int86(VIDEO INT, ®s, ®s);
if (regs.h~cl == OxOB)
return (MONO) ;

if (regs.h.cl Ox08
return(COLOR);

else
return (EGA) ;

number: Determine configuration */
/* Sub-function number */

/* Call BIOS video interrupt */
/* Monochrome monitor? */

/* YES */
/* color monitor? */

/* YES */
/* NO, must be EGA */

/***
Function : s E T c U R

--
* Task Sets the screen cursor and the internal
* position of the output. *

Input parameters - COLUMN the cursor column
* - LINE = the cursor line
* Return values None *
***/

void setcur(BYTE column, BYTE line)
{
union REGS regs; /* Processor register for interrupt call */

regs.h.ah 2; /* Function number */
regs.h.bh O; I* Use video page zero */
regs.h.dh vline = line; /* Use global variables for coordinates */
regs.h.dl vcolurnn = column;
int86(VIDEO_INT, ®s, ®s); I* Call BIOS video interrupt */

}

/***
* Function : s E T c o L
--

Task Defines the contents of one of the 16 EGA
color registers.

*
*

Abacus 7.4 BIOS Screen Output Functions

Input parameters - REGNR Color register number *
- COLOR = Color value (0-15)

Return values None
***/

void setcol(BYTE regnr, BYTE color)

union REGS regs;

regs.h.ah
regs.h.al
regs.h.bl

OxlO;
O;
regnr;

/* Processor register for the interrupt call */

/*Function no.: Set color/attribute*/
I* Sub-function 0 *I

/* Set register number */
rpg~.h~Ph c0l0~ £ ~3;

int86(VIDEO_INT, ®s, ®s);
)

.'* Set eel::::~ n.~"r.be~ { Bits !5 and 7 ~ * ,'
I* Call BIOS video interrupt */

/***
Function : S E T B 0 R D E R

--
Task Sets the border color.
Input parameters: - COLOR = Color value (0-15)
Return values : None

***/

void setborder(BYTE color)

)

union REGS regs; I* Processor register for the interrupt call */

regs.h.ah OxlO;
regs.h.al 1;
regs.h.bh color & 15;
int86(VIDEO_INT, ®s, ®s);

/* Function no.:

I* Call

Set color/attribute */
I* Sub-function 1 */

/* Set color value */
BIOS video interrupt */

/***
Function : S E T L I N E S

--
Determines the number of lines. Task

Input parameters: - Sub-function no. for calling function llH
Oxll 8*14 character set
Ox12 8*8 character set
Oxl4 8*16 character set (VGA only)

Return values None
***/

void setlines(BYTE lines)

union REGS regs; I* Processor register for the interrupt call */

regs.h.ah Oxll;
regs.h.al lines;
regs.h.bl O;
int86(VIDEO INT, ®s, ®s);

) -

I* Function no.: Character generator*/
/* Sub-function no. */

I* Use character table 0 */
I* Call BIOS video interrupt */

/***
Function : I s E G A

--
Task Determines whether an EGA card is installed.
Input parameters: None
Return values TRUE when an EGA or VGA card is installed, and

false in any other case
***/

BOOL is ega ()
{ -
union REGS regs; /* Processor register for the interrupt call */

281

7. TheBIOS PC System Programming

282

)

regs.h.ah = Oxl2; /* Function number: Determine video configuration */
regs.h.bl = OxlO; /* Sub-function number */
int86(VIDEO INT, ®s, ®s); /* Call BIOS video interrupt */
if (regs.h~bl != OxlO) /* Is it an EGA or VGA card? */
/*-- Set pointer in video RAM for attached monitor ----------------*/
vptr = (VP) MK FP((mono= regs.h.bh) ? OxbOOO : OxbBOO, 0);

return(regs.h.bl != OxlO); /* BL != OxlO --> EGA or VGA */

/***
* Function : I S v G A *
------------------------=---

Task Determines whether a VGA card is installed.
Input parameters: None

* Return values TRUE when a VGA card is installed; *
FALSE in any other case.

Info This function should be called before the *
is ega function, because the parameters in the
is-ega function also apply to VGA cards (i.e.,
TRUE will be returned to is ega for a VGA card.
Call is_vga first in your own applications,
then call is ega.

***/

BOOL is vga ()
{ -
union REGS regs; /* Processor register for the interrupt call */

regs.h.ah = OxlA; /*Function no.: Determine video configuration*/
regs.h.al = OxOO; /* Sub-function number */
int86(VIDEO INT, ®s, ®s); /*Call BIOS video interrupt */
if (regs.h~al == OxlA && (regs.h.bl==7 \ \ regs.h.bl==8))

(/* VGA card connected to VGA monitor? */
mono = FALSE;
vptr = (VP) MK_FP(OxbBOO, 0); /* Set pointer in video RAM */
return TRUE;

return FALSE; /* No VGA card installed */

/***
Function : P R I N T A T

--

*

*

Task Displays a string on the screen.

Input parameters: - COLUMN
- LINE

Display column.
Display line.
Character attribute.
Pointer to string.

Return values
Information

- CHCOLOR
- STRING

None
- This function does not recognize format specs

as supplied by PRINTF.
- When the function reaches the end of the

screen, the screen will not scroll up.

*

***/

void printat(BYTE column, BYTE line, BYTE chcolor, char* string)

register VP lptr;
register BYTE i;
unsigned newofs;

/* Floating pointer to video RAM */
/* points to the number of characters */

/* Computes new coordinates */

lptr = VPOS(colurnn, line);
for (i=O ; *string ++lptr, ++1)

(

)

lptr->ascii code *(string++);
lptr->attribute = chcolor;

/* Set pointer in video RAM*/
/* execute string */

/* Character in video RAM */
/* Set character attribute */

Abacus 7.4 BIOS Screen Output Functions

)

/*-- Compute new cursor coordinates --------------------------------*/

vcolumn = (newofs = ((unsigned) line* 80 +column+ i)) % 80;
vline - newofs I 80;

/***
* Function : P R I N T F A T *
**--··
* Task Displays a string on the screen (like PRINTF),
* writing the string directly to video RAM.

Input parameters: - COLUMN = Display column.
* - LINE = Display line.

CHCCLOR~ ChdLetcler color.
- STRING = Pointer to the string.

= Additional arguments as needed.
* Return values None

Information - When the end of the screen is reached, the
* screen will not scroll up.
* string can use the normal format specifier
* group as used with PRINTF.
***/

void printfat(BYTE column, BYTE line, BYTE chcolor, char* string, •••)

I

va list parameter;
char output[255J;

I* Take parameter list for VA ••• Macros from*/
/* the formatted, displayed string */

va start(parameter, string);/* Get parameters
vsprintf(output, string, parameter);
printat(column, line, chcolor, output);

in PARAMETER variable */
/* Convert string */
/* Display string */

/***
Function : B L I N K I N G *

--
* Task Defines the meaning of bit 7 of the attribute *
* byte of a character in text mode. *
* Input parameters: DO BLINK TRUE Blink. *
* FALSE : Light background color.

Return values : none *
***/

void blinking(BOOL doblink
{
union REGS regs;

regs.h.ah OxlO;
regs.h.al Ox3;

I* Processor register for the interrupt call */

regs.h.bl doblink ? 1 : O;
int86 (VIDEO_INT, ®s, ®s);

/*Function no.: Set color/attribute*/
I* Sub-function number */

I* BL = 1 : blinking */
/* Call BIOS video interrupt */

)

,•......•................•..•...••..•..•............•...•.....•...
* Function : c L s *
··--··
* Task Clears the screen and resets the video mode. *
* This reset includes the palette registers, as *
* well as the character set in use. *
* Input parameters: none
* Return values none *
***/

void els()
{

union REGS regs;

regs.h.ah
regs.h.al

OxO;
(mono

/* Processor register for the interrupt call */

? 7 3;
/*Function no.: Set video mode*/

/* 80x25-char text mode *I

283

7. TheBIOS PC System Programming

284

int86 (VIDEO INT, ®s, ®s); /* Call BIOS video interrupt */
J -

I************•,•***
* Function : N O K E Y *
••--**
* Task Tests for a depressed key.

Input parameters: none
Return values TRUE if a key is depressed, otherwise

FALSE.

•

***/

BOOL nokey ()

{

fifdef ~TURBOC~
return(bioskey(1) == O);

#else

I* Using TURBO C to compile? */
/* YES, read keyboard from BIOS */

I* Using Microsoft C to compile .•• */
return(_bios_keybrd(

Jendif
KEYBRD READY) == 0); /*Read from BIOS*/

)

/***
Function : E G A V G A

••--··
Task Demonstrates the application of EGA/VGA BIOS

functions
Input parameters: VGA : TRUE when working with VGA card

FALSE in any other case
Return values none

*

***/

void egavga(BOOL VGA)
{

static BYTE font[120J [14J = { /* Character definition for logo *I
{ o, 0,255, 62, 28, 28, 28, 28, 28, 28, 28, 28, 28, 31), /* T */
(o, 0,252, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7, 252), I* h */
{ 0, o, O, 0,129,195,195,199,199,206,206,142, 14, 14), /* e */
{ O, 0, 62,193,128,128, O, 0, O, 0, 0, o, o, 0), I* s */
{ o, o, 16, 144, 112, 48, 48, 16, 16, o, o, o, o, 0)' /* e *I
{ o, o, O, o, o, o, o, o, O, o, o, o, O, 0), I* */
{ O, o, 3, o, o,. O, o, o, O, O, O, o, o, 0), I* */
{ o, 0,254,248,112,112,112,112,112,112,112,112,112,112), I* *I
{ o, o, o, o, o, o, o, o, o, 252, 61, 30, 30, 28)' /* n */
{ o, O, o, o, o, o, O, o, 0,248, 6, 7, 3, 3), /* e *I
{ o, o, o, o, o, o, o, o, o, 7, o, o, o, 128), /* s */
{ o, O, 32, 96,224,224,224,224,224,254,224,224,224,224J, I* */
{ o, O, o, o, o, O, o, o, 0, 1, 6, 12, 28, 24}, I* c */
(0, o, o, o, O, o, o, o, o, 240, 28, 6, 7, 7), I* 0 */
{ o, o, o, o, o, o, 0, O, o, 63, 15, 7, 7, 7J' I* n */
{ 0, o, o, o, o, O, o, o, O, 30, 39, 71, 135, 128 J, /* t */
{ o, o, o, o, o, o, o, o, o, 126, 30, 15, 15, 14J, I* a *I
{ o, 0, o, o, o, 0, o, o, 0,124,131, 3, 1, lJ, /* i *I
{ 0, O, o, o, o, o, o, o, O, o, 0,129,131,195}, /* n */
{ o, o, o, o, o, o, o, o, o, o, 62, 193, 128, 0), I* *I
{ 0, o, o, o, o, 0, O, o, 0, O, 0, 192, 224, 224 J, /* t *I
{ 0, 0,248,120, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56J, /* h */
(o, O, o, o, o, o, o, o, O, 31, 48, 48, 48, 48J, /* e */
{ o, O, o, o, o, o, O, o, o, 196, 52, 12, 4, 4}, /* */
{ o, O, o, o, o, o, O, O, o, o, O, o, o, OJ, /* b */
{ O, 0, o, o, o, O, O, o, O, o, o, o, O, O}, /* i */
{ O, 0, o, o, 0, O, o, o, O, o, o, o, 0, OJ, I* t */
{ O, o, o, o, 0, o, o, o, o, o, o, o, O, OJ' I* •/
(o, o, o, o, o, o, o, o, o, o, 0, 0, o, OJ' I* p *I
{ o, o, O, o, o, o, O, o, 0, O, o, o, o, OJ' /* a */
(28, 28, 28, 28, 28, 28, 28, 28, 62, 255, o, o, O, 0), I* t */
{ o, o, 0, o, o, o, 0, 0, 0,128, o, o, 0, 0}, I* t */
{ 14, 14, 14, 7, 7, 3, 3, 1, o, O, o, O, O, 0), I* e */
{ O, O, o, o, o, 0,128,128,193, 62, O, o, o, O}, I* r */
{ o, O, o, o, 16, 16, 32, 64,128, 0, O, O, 0, OJ, I* n */

Abacus 7.4 BIOS Screen Output Functions

o, o, o, o, o, o, O, o, 0, o, o, o, o, O}, /* s */
o, o, o, o, o, o, o, o, o, 3, o, o, 0, O}, /* */

1112,112,112,112,112,112,112,112,249,254, o, o, o, o J, I* f */
I 28, 28, 28, 28, 28, 28, 28, 28, 62, 255, o, o, o, 0}, /* o */

I 3, 3, 3, 3, 3, 3, 3, 3, 7, 159, o, o, o, 0}, /* r */
{128,128,128,128,128,128,128,128,192,240, O, o, o, 0}, I* */
{224,224,224,224,224,224, 96, 112, 49, 30, o, o, o, 0}, I* t */
I 56, 63, 56, 56, 56, 24, 92, 76,134, 1, o, o, o, 0}, /* h */

I 7,255, O, O, o, O, 1, 2, 12, 240, o, o, o, 0}, /* e *I
I 7, 7, 7, 7, 7, 7, 7, 7, 15, 63, o, o, o, 0}, /* *I
I O, O, 0, O, o, 0, 0, o, 128, 224, o, o, o, 0}, /* c *I
I 14, 14, 14, 14, 14, 14, 14, 14, 31,127, o, o, o, 0}, /* h *I
I 1, 1, 1, 1, 1, 1, 1, 1, 3, 207, 0, 0, o, OJ, I* a *I
ii92,i92,l92,193,193,195,195,193,225,248, o, o, o, O}, /* r */

I O, 7,120,192,192,128,128,192,195,124, o, o, o, 0}, /* a */
{224,224,224,224,224,224,224,240,112, 29, o, o, o, 0 J, /* c */

I 56, 56, 56, 56, 56, 56, 56, 56, 124, 255, o, O, o, 0 J, /* t */
I 31, 31, 31, O, O, 64, 96, 96, 112, 71, o, o, o, 0 J, /* e *I
I 0,224,248,252, 28,, 12, 4, 12, 24,224, O, o, o, OJ, I* r */

I o, O, O, O, o, O, o, o, o, o, 0, o, 0, OJ, /* s */
(o, o, o, o, o, o, o, o, o, o, 0, o, o, O}, /* */

I o, O, o, 0, 0, 0, o, o, o, o, 0, 0, o, OJ, /* n */
(O, O, O, 0, o, O, o, o, o, o, O, o, o, OJ, /* e */
(O, O, O, O, o, O, o, o, o, 0, o, o, o, OJ, /* e */

I O, o, o, o, o, o, 0, O, o, o, o, 0, o, OJ, /* d */

I o, 0,252, 60, 30, 30, 30, 23, 23, 23, 19, 19, 19, 17J, /* e *I
I O, O, O, O, o, O, o, 1, 1, 1,130,130,130,196J, /* d */

I o, 0,126,120,240,240,240,112,112,112,112,112,112,112}, /* *I
(o, O, 28, 28, 28, o, 0, o, 0,252, 60, 28, 28, 28}, /* *I
(o, o, o, o, o, o, o, O, o, 1, 6, 12, 28, 24}, /* n */
(o, 0, o, o, o, 0, o, o, 0,240, 12, 2, 7, 7J, /* */
(O, O, 63, 15, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7J, /* t */
(o, o, o, o, o, o, o, o, O, 62, 65, 129, 128, OJ, I* h */
(o, O, o, o, o, o, o, o, o, 0,128,192,192,224J, /* e */

I 0, o, o, o, o, o, o, o, o, 63, 64,224,224,224J, I* */
(O, o, o, o, o, o, 0, o, o, 0,192, 96, 112, 112 J, /* *I
(O, o, o, o, o, o, o, o, o, 7, 24, 48,112, 96J, /* 0 */
(o, o, o, o, o, o, 0, o, o, 192, 112, 24, 28, 28J, /* g */

I o, o, 252, 60, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28J, I* 0 */

I o, o, o, o, o, o, O, o, o, o, o, o, 0, OJ, /* */
(o, o, o, o, o, o, o, 0, o, o, o, o, 0, O}, /* a */

I O, 0, 63, 56, 48, 48, 32, 32, 32, o, 0, o, o, OJ, /* t */
(o, o,255,112,112,112,112,112,112,112,112,112,112,112J, /* */
(O, O, 225, 225, 97, 32, 32, 32, 32, 15, 3, 1, 1, lJ, /* t */
(o, 0,192,192,192, o, o, 0, 0,192,193,195,195,195J, /* h */

I o, o, o, o, o, o, o, o, 0,252, 3, o, o, OJ, /* e */
(O, O, O, o, o, 0, o, o, o, 64, 65,195, 71, 70J, /* */
(o, o, o, o, o, o, o, 0, 0,124,131, o, 1, 1 J, /* c */

I o, o, 15, 3, 1, 1, 1, 1, 1, 1, l,129,193,193J, /* e *I
I o, 0,192,192,192,192,192,192,192,207,208,224,224,l92J, /* n */

I O, O, O, o, o, o, o, o, 0,128, 96, 112, 48, 56J, /* t */
(o, o, O, o, o, o, o, o, o, 3, 12, 24, 56, 48J, /* e */

I o, O, O, O, 0 . , o, o, o, o, 224, 56, 12, 14, 14J, /* r */
(o, o, O, o, o, o, o, 0, 0, 126, 30, 14, 15, 15J, /* */
(o, O, O, O, o, o, o, 0, o, 60, 78, 142, 14, OJ, /* 0 */
(17, 17, 16, 16, 16, 16, 16, 16, 48, 254, o, o, o, OJ, /* f */
{196,196,232,232,232,112,112, 80, 32, 35, o, o, o, 0}. /* *I
1112,112,112,112,112,112,112,112,248,254, o, o, o, OJ, /* t */
(28, 28, 28, 28, 28, 28, 28, 28, 62,255, o, o, 0, OJ, /* h */

I 56, 56, 56, 56, 56, 24, 28, 12, 6, 129, o, o, o, OJ, /* e */

I 7, O, o, o, o, o, 1, 2, 12,240, O, o, o, OJ, /* */
(7, 7, 7, 7, 7, 7, 7, 7, 15, 63, o, o, o, OJ, /* s */

I O, O, o, o, o, o, o, 0,129,231, O, o, o, OJ, /* c */
1224,224,224,224,224,225,225,224,240,252, o, o, o, OJ, /* r */

I o, 3, 60,224,224,192,192,224,225, 62, o, o, o, OJ' /* e */
{112,240,112,112,112,112,112,120,184, 14, O, o, o, OJ, /* e *I
{224,255,224,224,224, 96, 112, 48, 24, 7, o, o, 0, OJ, I* n */

I 28,252, O, O, o, o, 4, 8, 48,192, O, o, o, OJ, /* */

I 28, 28, 28, 28, 28, 28, 28, 28, 62,255, o, o, o, 0 J,
(o, o, O, o, 0, O, 0, o, 0,128, o, o, 0, OJ,

285

7. The BIOS PC System Programming

286

0, 0, o, O, o, o, o, O, o, o, o, o, 0, 0),
o, o, o, o, O, o, o, O, O, 3, O, o, o, 0),

1112,112,112,112,112,112,112,112,248,254, o, o, o, 0)'
{ 1, 1, 1, 1, 1, 1, 1, 1, 3, 15, o, o, o, 0)'
{193,193,192,192,192,194,195,195,227,250, o, o, o, 0),
{240,254,255, 15, 1, o, 0, O, 129, 126, 0, 0, O, 0),
{ 14, 14,142,206,206,198, 71, 195, 129, o, o, o, o, 0)'
{ 1, o, O, O, 0, o, O, 0,131,124, O, o, O, 0),
{193, 1, 1, 1, 1, 1, 65, 129, 3, 15, o, o, 0, 0),
{192,192,192,192,192,192,192,192,224,249, O, o, O, 0),
{ 56, 56, 56, 56, 56, 56, 56, 56, 124, 255, O, o, o, 0)'
{112,127,112,112,112, 48, 56, 24, 12, 3, o, o, o, 0),
{ 14, 254, o, o, o, o, 2, 4, 24, 224, o, o, o, 0),
{ 14, 14, 14, 14, 14, 14, 14, 14, 31,127, O, o, o, 0)'
{ o, 0, o, o, o, o, o, o, 0,192, o, o, o, 0)

};

union REGS regs;
unsigned i, j, k;
double delay;

/* Processor register for the interrupt call *I
/* Loop counter */

/* Loop counter for PAUSE */

/*-- Prepare screen --*/
els{);
blinking(FALSE};
setcur(O, O);

/* Clears screen */
/* Light background color instead of blinking */

I* Move cursor to upper left corner */

/*-- Install EGA and VGA hardcopy routine --------------------------*/
regs.h.ah = Ox12; /*Function no.: Alternate Select*/
regs.h.bl = Ox20; I* Sub-funct. Ox20 = Install hardcopy routine */
int86(VIDEO_INT, ®s, ®s); /*Call BIOS video interrupt */

if(VGA)
{

regs.h.ah Ox12;
regs.h.bl Ox30;
regs.h.al 1;
int86(VIDEO_INT, ®s,

setlines(Oxll);
}

®s);

/* Check for compatibility *I
/* and check custom characters *I

/* VGA card in 350-line mode */
I* Toggle EGA card *I

I* Call BIOS video interrupt */

I* Enable 8x14 character set *I

chardef (128, O, 14, 120, (BYTE far *) font); /* Define characters */

for (i=O; i<250; ++i)
{

/* Execute loop 250 times */
/* Write color blocks to video RAM */

printfat(GETCS(),
printfat(GETCS(),

}

GETCZ{), ((i % 14) + 1) « 4, " ");
GETCZ () , 0, " ");

for (i=lO; i<l6; ++i)
printat (22, i, O, "

/* Allocate space for logo */
");

for (k=128, i=O; i<4; ++i)
{

/* The logo consists of ASCII */
/* characters 128-248 */

for (j=O; j<30; ++j)
printfat (j+24, i+ll, 15, "'k", k++);

printat (1, 1, 15, "The most important characters are 11);

printat (1, 2, 15, "still present despite the logo! ");
printat {l, 3, 15, " ");
printat(l, 4, 15, " !\"#$%&' {)*+-./0123456789:;<=>?@ ");
printat{l, 5, 15, "ABCDEFGHIJKLMNOPQRSTUVXXYZ[\\JA ");
printat (1, 6, 15, " 'abcdefghijklmnopqrstuvxyz{ I!--.);
printat (33, 21, 15, "
printat(33, 22, 15, "Press any key to end the program.
printat (33, 23, 15, "
setcur(34, 22);

"};
");
"};

/*-- Change colors in the color blocks -----------------------------*/

i = O; /* Starting value for color register */

Abacus

while
(

nokey())

7.4 BIOS Screen Output Functions

I* Repeat until the user presses a key */

for delay=O.O; delay < PAUSE; ++delay)

++i; /* Increment color value for the first register •/
for (j=l; j<l5; ++j) I* Go through registers 1 to 14 •/

(
setcol (j, i+j & 63); /* Write color value in register •/
if (! nokey ()) I* Key pressed? •/

break; I* YES --> Stop loop before restarting •/

if (VGA I
(

/• Go into 400 line mode •/
/* Enable VGA card •/

regs.h.ah = Ox12;
regs.h.bl = Ox30;
regs.h.al 2;
int86(VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt •/

setlines(Ox14);
)

/* Enable 8*16 character set •/

els();
)

I* Clear screen •/

/**/
!** MAIN PROGRAM **/
/**/

void main()
(
if (is_vga ()

egavga (TRUE) ;
else

{
if is_ega ())

{

if (getmon() == EGA
egavga (FALSE) ;

else

;•

/* Is there

/* No

1• Is there

Is there an

a VGA card installed? *I
/* YES */

VGA installed - go on */

an EGA card installed? *I
/* YES *I

EGA monitor connected? *I
/* YES, start demo *I

{ I* wrong monitor */
printf("This program functions only with an\n");
printf ("EGA monitor. \n");

}

else ;• If no EGA or VGA card connected •/
printf("ATTENTION! There is neither an EGA nor a •

" VGA card installed. \n") ;

Assembler listing: EGA VGACA.ASM

;**;
;* EGAVGACA ..

' ;•--*;
;* Task : Generates a functions for custom designing *;
; * characters. ,

;*--*;
;* Author MICHAEL TISCHER *;
;* Developed on : 09/25/1988 •;
;* Last update : 06/07/1988 *;

;•--•;
;* Assembly MASM EGAVGACA; *;
;* .•• Link with a c program whose memory model *;
; * has been set to SMALL *;
;**;

287

7. The BIOS PC System Programming

288

;== Segment declarations for the c program ========~===================

IGROUP group _text ;Addition to program segment
DGROUP group const,_bss, data ;Addition to data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ;constants

_BSS
BSS

segment word public 'BSS'
ends

;This segment includes all un-initial
; ized static variables

_DATA segment word public 'DATA' ;This segment includes all initialized
;global and static variables

_DATA ends

;== Program ==

TEXT segment byte public 'CODE' ;Program segment

public chardef

;---
;--
;-
;--

CHARDEF: Defines the appearance of a character --------------------
Call from C : void chardef(BYTE ascii, BYTE table, BYTE lines,

BYTE amount, BYTE far* buf);
Return value: none

chardef

sframe
bptr
ret adr
ascli
table
lines
amount
bufptr
sframe

frame

chardef

proc near

struc
dw
dw ?
dw
dw
dw ?
dw
dd ?
ends

equ [bp - bptr]

push bp
mov bp,sp

;Stack access structure
;Take BP
;Return address of calling program
;ASCII code of character
;Number of character table
;Character matrix height

;Number of characters to be defined
;FAR pointer to buffer
;End of structure

;Addresses elements of structure

;Push BP onto stack
;Transfer SP to BP

mov ax,llOOh ;Function no. llH, sub-funct. O
mov bh,byte ptr frame.lines ;Character matrix height
mov bl,byte ptr frame.table ;Number of character table
mov cl,byte ptr frame.amount ;Number of characters
xor ch,ch
mov dl,byte ptr frame.ascii ;Get ASCII code of character
xor dh,dh
les bp,frame.bufptr ;Buffer address to ES:BP
int lOh ;Call EGA BIOS video interrupt

pop bp
ret

endp

;Pop BP off of stack
;Return to C program

;---
text ends

end
;End of code segment
;End of program

Abacus 7 5 Determining System Configuration using BIOS

7 .5 Determining System Configuration using BIOS

Some programs (e.g., copy programs) must determine how many disk drives are
connected to the PC, or how much RAM exists on the main circuit board or
motherboard. This information can be obtained with the help of BIOS interrupt
llH.

The content of individual registers is not important during the call of this
interrupt, since neither the function number nor another argument must be passed.

The configuration, which is determined during the system booting process, is
returned in the AX register. The individual bits of this register contain the
following information:

Bit (s) Meanin_g_
0 E;_g_ual to 1 if 1 or more disk drives are available
1 Unused
2 & 3 RAM memory on the main circuit board

00 = 16K
01 = 32K
10 = 48K
11 = 64K

4 & 5 Video mode duri1l.9:_ ~stem boot
00: unused
01: 40*25 characters - color card
02: 80*25 characters - color card
03: 80*25 characters - mono card

6 & 7 Indicates number of disk drives in system if bit 0 is
1
00 = 1 disk drive
01 = 2 disk drives
10 = 3 disk drives
11 = 4 disk drives

8 E_g_ual to 0 when DMA ch.i.:.E_ is available
9 - 11 Number of RS-232 cards attached
12 Equal to 1 if i<::Y.stick attached
13 Unused
14 & 15 indicates the number of _E_rinters

While this bit assignment is the same for the PC and the XT, it differs from the
configuration word returned by the AT. To interpret the content of the AX register
correctly, you must know the model of the computer being tested.

289

7. TheBIOS PC System Programming

290

Bit Meanin...'l._
00 Equal to 1 if 1 or more disk drives are available
01 Equal to 1 if s_ystem has a math c~ocessor
02-03 Unused
04-05 Video mode durin_g_ s..Y._stem boot

00: Unused
01: 40*25 cnaracters - color card
02: 80*25 characters - color card
03: 80*25 characters - mono card

06-07 Indicates number of disk drives in system if bit 0 is
1
00 = 1 disk drive
01 = 2 disk drives
10 = 3 disk drives
11 = 4 disk drives

08 Unused
09-11 Number of RS-232 cards attached
12-13 Unused
14-15 indicates the number of...£.rinters

Do not use this function to sense the current video mode, since it only indicates
the video mode switched on during system booting. Function ISH of interrupt
lOH provides the number of the current video mode.

Abacus 7.6 Determining Available RAM using the BIOS

7 .6 Determining Available RAM using the BIOS

While interrupt 1 IH only returns the amount of RAM on the main circuit board,
interrupt 12H obtains the amount of RAM available in the entire system. The
total amount of RAM from the main circuit board and any memory expansion
cards are returned. The DIP switch settings on the memory boards determine the
amount of memory reported available on the PC and XT. The interrupt routines
derive the amount of RAM on an AT by reading one of the 64 memory locations
on the battery powered realtime clock.

Memory limits

This method determines RAM below the 1 megabyte limit only. The 8088's
addressing capability limits memory to 1 megabyte, so the PC and XT can report
on the entire memory available. The AT's 80286 processor can manage up to 16
megabytes of memory. However, interrupt 12H cannot report on any RAM beyond
1 megabyte.

The memory size returned is passed in the AX register as a multiple of IK (1024
bytes, not 1000 bytes). For example, if the AX register contains 256, you have
256K of RAM available in your PC.

Demonstration programs

The three program listings in this section are practical examples of the interrupts
described in the preceding section. The three programs, which were written in
BASIC, Pascal and C, are identical in their basic design.

They test the model identification byte in memory location FOOO:FFFE to
determine whether the computer is a PC, XT or AT. The equipment designation
appears on the screen. This model identification acts as the basis for identifying the
processor type as well. The program assumes that an AT has an 80286 and all
other PCs have an 8088 processor. During the next step in the programs, interrupt
12H determines the amount of RAM on the circuit board and returns that amount.
As mentioned above, the AT can have additional RAM memory beyond the 1
megabyte limit. Each program tests for that additional RAM if the equipment
designation indicates an AT. The programs use function 88H of interrupt 15H (see
Appendix B for detailed documentation). For the moment, all you need to know is
that this function passes the amount, in multiples of IK, of RAM above the 1
megabyte limit to the AX register.

After displaying this information, interrupt llH determines the equipment
configuration. The last task of the program consists of filtering out the
information encoded in the bits of the configuration word and displaying it on the
screen.

To keep the program from becoming too long, the programs limit themselves to
the identical bits of the configuration words in the PC, XT and AT. For example,

291

7. The BIOS PC System Programming

the programs skip the AT information concerning the availability of a math
coprocessor.

You may want to rewrite this program so that it displays all the information
contained in the configuration word according to computer type.

The comments in each listing should answer any questions you may have about
program flow.

BASIC listing: CONFIGB.BAS

292

100 '***'
110 '* C 0 NF I GB *'
120 '*---*'

Task

Author
developed on
last Update

Displays the Configuration of the PC

MICHAEL TISCHER
7.20.87
9.21.87

*'

*'

130
140
150
160
170
180 '***'
190 '
200 CLS : KEY OFF
210 PRINT"WARNING: This program should only be started if the GWBASIC "
220 PRINT"was started from the DOS level with <GWBASIC /m:60000>."
230 PRINT : PRINT" If this was not the case, then input <s> for Stop."
240 PRINT"Else press any key •.• ";
250 A$ = INKEY$: IF A$ "s" THEN END
260 IF A$ = "" THEN 250
270 GOSUB 60000 'Install Function for interrupt Call
280 CLS 'Clear Screen
290 DEF SEG = &HFOOO 'BIOS-Segment
300 PRINT "CONFIG (c) 1987 by Michael Tischer"
310 PRINT
320 PRINT "Configuration of Your PC"
330 PRINT "---•
340 PRINT "PC-Type •; 'determine PC type
350 IF PEEK(&HFFFE) &HFF THEN PRINT "PC" GOTO 390
360 IF PEEK(&HFFFE) &HFE THEN PRINT "XT" GOTO 390
370 IF PEEK(&HFFFE) &HFC THEN PRINT "AT" GOTO 390
380 PRINT "unknown"
390 PRINT "Processor 80";
400 IF PEEK(&HFFFE) &HFC THEN PRINT "286" ELSE PRINT •as•
410 INR% = &H12 'BIOS-interrupt reads RAM size
420 DEF SEG 'Set BASIC-Segment again
430 CALL IA(INR%,RAMHI%,RAMLO%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
440 PRINT "RAM-Memory (Main Circuit Board) :";RAMHI*256+RAMLO\;"KB"
450 DEF SEG = &HFOOO 'BIOS-Segment
460 IF PEEK(&HFFFE) <> &HFC THEN 520 'branch if not AT
470 DEF SEG 'set BASIC-Segment again
480 INR% = &H15 'Call Cassette interrupt
490 RAMHI% = &H88 'Function for reading of HI-RAM size
500 CALL IA(INR%,RAMHI%,RAMLO%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
510 PRINT "Additional RAM-Memory :";RAMHI%*256+RAMLO\;"KB beyond 1 MB"
520 DEF SEG 'Set BASIC-Segment again
525 INR% = &Hll 'BIOS-interrupt reads Configuration
530 CALL IA(INR%,CONFHI%, CONFLO%, Z%, Z%, Z'ls, Z%, Z%, Z%, Z%, Z%, Z'ls, Z%)
540 PRINT "Video mode after Start : •;
550 IF CONFLO% AND 48 = 0 THEN PRINT"undefined• : GOTO 590
560 IF CONFLO% AND 48 = 16 THEN PRINT"40*25 Character, Color-Card" GOTO 590
570 IF CONFLO% AND 48 = 32 THEN PRINT"80*25 Character, Color Card" GOTO 590
580 PRINT"80*25 Character, Mono-Card"
590 PRINT"Disk drives :•;INT(CONFL0%/64)+1
600 PRINT"RS232 cards :";INT(CONFHI\/2) AND 3
610 PRINT"Printer cards :";INT(CONFHI%/64)
620 PRINT

Abacus 7.6 Determining Available RAM using the BIOS

'***'

630 END
640 •
60000
60010
60020
60030
60040
60050

'* Initialize the Routine for interrupt-Call *'
'*---*'
1 • Input: none
'* Output: IA the Start address of the interrupt-Routine
'***'

60060 •
60070 IAz60000!
60080 DEF SEG

'Start address of the Routine in the BP.SIC-Segment
'Set BP.SIC-Segment

60090 RESTORE 60130
60100 FOR I\ - 0 IO 160 : READ X% : POKE IATI%,X%
60110 RETURN
60120 •

NEXT •Poke Routine
'back to Caller

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12, 139, 60, 139, 118, 8, 139, 4, 61, 255, 255, 117, 2, 140, 216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

Pascal listing: CONFIGP.PAS

{***}
{* CONFIGP PASCAL*)
(*---*)
{* Task : Outputs the Configuration of the PC on the *)
{ • Display Screen *I
{*---*}
(* Author MICHAEL TISCHER *}
{* developed on : 7/7/87 *I
{* last Update : 5/18/89 *}
{***}

program CONFIGP;

Uses Crt, Dos; { Add DOS and Crt)

{***}
{* PRINTCONFIG: Display PC's configuration *}
{ * Input : none
(* output : none
{* Info : The configuration output depends on the PC type

*)
*}
*}

{***}

procedure PrintConfig;

var AT
Regs

boolean;
Registers;

{ is the PC an AT?
{ Register variable for interrupt call

begin
clrscr;
if mem[$FOOO:$FFFE) = $FC then AT := true

else AT := false;
writeln('Configuration of this PC'I;

(Clear screen
(test if AT or

{ PC or XT

writeln('-- 0);

write ('PC-Type : •);
case mem[$FOOO:$FFFE] of

$FF wri teln (•PC•) ;
$FE : wri teln (• XT •) ;
$FC : writeln('AT')
else writeln('Unknown');

Read PC type again
($FF is a PC

{ $FE is an XT
{ $FC is an AT

293

7. The BIOS PC System Programming

end;
write('Processor
if AT then writeln('80286')

else writeln('8088');
intr($12, Regs);
wri teln ('RAM-Memory
if AT then
begin

Regs.ah :- $88;
Intr($15, Regs);
writeln('additional RAM

end;

INTEL ');
{ the AT has an 80286,

{ PC and XT have an 8088 processor

',Regs.ax,• KB');
(is the PC an AT?

{ YES
Function number for additional RAM size

{ Call BIOS cassette interrupt
',Regs.ax,• KB beyond 1 MB');

Intr($11, Regs); Call BIOS configuration interrupt)
write ('Video mode after start ') ;
case Regs.al and 48 of { Determine video mode)

0 writeln('undefined');
16 writeln('40x25 character color card');
32 writeln('80x25 character color card');
48 writeln('80x25 character mono card')

end;
writeln('Disk drives
writeln('RS-232 cards
writeln('Printer cards

end;

•, succ(Regs.al shr 6 and 3));
', Regs.ah shr 1 and 3);
•, Regs.ah shr 6)

{***}
{ * MAIN PROGRAM *)
{***}

begin
PrintConfig;

end.
{ Display configuration)

C listing: CONFIGC.C

294

/***/
I* C 0 N F I G C */
/*---•/
/* Task : outputs the configuration of the PC on the •/
I* Display Screen •I
/•---•/
1• Author MICHAEL TISCHER •/
I* developed on : 8.13.87 •/
/* last Update : 9.21.87 •/

/•---•/
/* (MICROSOFT C) */
/* Creation MSC CONFIGC */
/* LINK CONFIGC PEPO; */
/* Call CONFIGC */

/*---•/
/* (BORLAND TURBO C) */
/* Creation : With the RUN command in the Command Line •/
/***/

#include <dos.h>
tinclude <io.h>

extern short int PeekB();

#define FALSE 0
#define TRUE 1

/* Include Header-Files •/

/* PEEKB linked with Microsoft c •/

/* Constants make reading the •/
/* Program text easier •/

/***/
/* CLS: Clear Screen and Cursor to upper left corner •I
I* Input : none •/
/* Output : none •I
/***/

void Cls ()

Abacus 7.6 Determining Available RAM using the BIOS

)

union REGS Register;

Register.h.ah 6;
Register.h.al O;
Register.h.bh - 7·
Register .x. ex O;
Register.h.dh 24;
Register.h.dl 79;
intB6(0xlO, &Register,

n-~' _,._ -- '- _,__
nt;;:y.;..::.l..C:.l.. .11.0.11 - Lr

Register.h.bh O;
Register.x.dx O;
intB6(0xlO, &Register,

/* Register-Variable for interrupt-Call */

I* Function number for Scroll-UP */
I* 0 for clear *I

I* white characters on black background */
/* left upper screen corner */

/* Coordinates of the lower *I
/* right screen corner *I

&Register); /* Call BIOS-Video-interrupt */

I* Screen page 0 *I
I* Coordinates of upper left screen corner *I

&Register); /*Call BIOS-Video-interrupt*/

/***/
/* PRINTCONFIG: Output the PC Configuration */
/* Input : none */
/* Output : none *I
/* Info : the configuration output dependent on the PC-Type */
/***/

void PrintConfig()

union REGS Register;
short int AT;

/* Register-Variable for interrupt-Call */
/* the PC and AT? */

Cls ();
if (PeekB(OxFOOO, OxFFFE) == OxFC) AT =TRUE;
else AT = FALSE;

/* Clear Screen */
/* Determine if the */

I* PC and AT */
printf ("CONFIG (c) 19B7 by Michael Tischer\n\n");
printf ("Configuration of this PC\n");
printf("---\n");
printf ("PC-Type : ");
switch(PeekB(OxFOOO, OxFFFE)) /* Determine PC-Type again */

(
case OxFF printf ("PC\n");

break;
case OxFE printf ("XT\n");

break;
case OxFC printf ("AT\n");

break;
default printf(11Unknown\n 11);

break;

/* OxFF a normal PC */

I* OxFE an XT */

/* OxFC an AT */

/* Code unknown */

printf ("Processor : INTEL 80 11);

if (AT) printf("2B6\n"); I* the AT has an B0286, */
else printf ("8B\n"); /* PC and XT have an BOBB Processor •/

printf ("RAM-Memory : ");
intB6(0xl2, &Register, &Register);
printf(11 %d KB\n",Register.x.ax);

/* Get RAM size •I
/* and output */

if (AT)
{

)

Register.h.ah = Ox88;
int86(0xl5, &Register,
printf("additional RAM

/* the PC an AT? */
/* YES */

I* Function number for additional RAM */
&Register); I* Get RAM size */

: %d KB beyond lMB\n", Register.x.ax);

intB6(0xll, &Register, &Register); /*BIOS-Configuration-interrupt */
printf ("Video mode after Start : ");
switch(Register.x.ax & 4B)

{

case 0 printf ("undefined\n");
break;

case 16 printf("40*25 Character Color-Card\n");
break;

case 32 printf("80*25 Character Color-Card\n");

295

7. The BIOS PC System Programming

296

break;
case 48 printf("80*25 Character Mono-Card\n");

break;

printf ("Disk drives
printf ("RS232-Card
printf("Printer-Card

)

%d\n", (Register .x.ax >> 6 & 3) + 1);
%d\n", Register.x.ax >> 9 & Ox03);
%d\n\n", Register.x.ax » 14);

/***/
/** MAIN PROGRAM **/
/***/

void main()

PrintConfig ();
)

/* Output the Configuration */

Abacus 7.7 Accessing the Floppy Disk from the BIOS

7. 7 Accessing the Floppy Disk from the BIOS

A cassette recorder was the primary form of mass storage in the early days of
personal computing. However, floppy drives soon became the standard. PCs can
control a maximum of four disk drives, numbered 0 to 3. DOS designates the first
two units as drive A and drive B.

Early disk-based PC systems used only one side of disks for data storage. DOS
Versions 1.1 and later store data on both sides of the disk.

Disk structure

Each side of a disk consists of 40 tracks of 9 sectors each. Each sector has a
capacity of 512 bytes. The tracks are numbered from 0 to 39. Track 0 is located on
the outer edge and track 39 on the inner edge of the disk. The two disk sides have
designations of side 0 (front) and side 1 (back). This disk has a total storage
capacity of 360K.

The disk drives included with AT computers have 80 tracks with 15 sectors instead
of 40 tracks with 9 sectors. An AT floppy drive can store up to 1.2 megabytes of
data per disk. Systems with a 1.2 megabyte drive can read both 1.2 meg disks as
well as 360K disks.

Note: While it's possible to write 360K formatted disks using an AT type
1.2 megabyte drive, the resulting disks are not always readable by a
standard PC/XT 360K drive.

The following shows the structure of a disk:

297

7. TheBIOS PC System Programming

r··-·----········-·····-----------·-·····-·

Track 1 •
Track 2 ' ,_,\

I
l _ ---

----·-·····---------·······················1
: r···

····1

····--···················-----················

Structure of a disk

Sector 1
Sector 2

This structure is based on DOS specifications. It's possible to program the disk
controller directly or use the various BIOS functions to alter the disk structure.
Some methods of copy protection take advantage of this capability to arrange the
data on the disk in such a way that DOS cannot use the data directly.

The methods of transferring data to or from the disk are identical. First the
read/write head moves to the proper track. Since the disk moves constantly, the
sector to be processed eventually passes by the head, allowing data transfer.

BIOS makes some functions available for disk access at the lowest level. BIOS
thinks of DASD (Direct Access Storage Device) rather than disk drives.

A total of six BIOS disk functions can be accessed by calling interrupt 13H and
passing the function number to the AH register.

Function o: Reset disk

298

Function 0 resets the disk drive. The reset always executes automatically during
system start, but should also occur when an error occurs during the call of one of
these six functions. Before the interrupt call, function number 0 must be loaded
into the AH register. After the execution of the function the error status is returned
in the AH register. A value which indicates the type of error if any, is returned in
the AH register after all 6 functions.

Abacus 7.7 Accessing the Floppy Diskfrom the BIOS

If a program calls the reset function without the disk drive previously reporting an
error, error code 1 (function number not permitted) may be returned in certain
cases, even though no error occurred. For this reason, the function should be called
only after an error, and not after every disk operation.

Function 1: Status

Function 1 senses disk status without disk access. If it returns a value of 0 as a
result, no error occurred. Another value represents one of the following error codes:

OlH Function number not _l)_ermitted
02H Address-markin_g_ not found
03H Write atte!l\j'.)_t on write_l)_rotected disk
04H Sector address not found
06H disk chan_ged
08H OMA-Overrun
09H Data transmission be_y_ond se_g_ment border
lOH Read error
20H Disk controller error
40H Track not found
80H Time-Out error, drive does not re~ond

If one of these errors appear, the disk operation just completed has been repeated
several times following a reset. Most of the time the repeated operation succeeds
without an error. If not, the current program in memory should react to the error
condition in a suitable manner and display an error message.

Working with the functions presented here, a time-out error can occur frequently
after a read operation. It usually occurs because of the speed decrease required to
read the disk: The old speed cannot be resumed immediately after reading.

Function 2: Read

Function 2 reads disk data. The BIOS must know the location from which you
want disk data read. This information is passed in the DL, DH, CL and CH
registers:

DL Drive number (0 to 3)
DH Disk side (always 0 for single sided disks)

0 = Front side
1 = Back side

CL First sector to be read (1 to 9/1 to 15)
CH Track containin_g_ sector to be read

299

7. TheBJOS PC System Programming

Up to 9 sectors (PC/XT disk drives) or 15 sectors (AT disk drives) can be read
using one function call. The AL register specifies this number of sectors. Since
disk drives usually store data belonging together in sequential sectors, this enables
fast data access (e.g., 9 x 512 bytes= 4.5K in one disk revolution).

The address of a buffer in memory must be passed in registers ES and BX since the
data transfer area has no fixed location in RAM in which it can reside. The ES
register accepts the segment address of the buffer and the BX register accepts the
offset address.

The function returns the error status to the AH register, and the number of sectors
read in the AL register. In addition to the AH register, a set carry flag (carry flag=
1) signals the occurrence of an error.

Function 3: Write

Function 3 allows write access to the disk. It accepts arguments similar to those
used in function 2 above:

DL Number of the drive (0 to 3)
DH Disk side (always 0 for single sided disks)

0 = Front side
1 = Back side

CL First sector to be written (1 to 9/1 to 15)
CH Track in which the sector to be written is located

The value in the AL register indicates the number of sectors to be written, while
the ES and BX registers indicate the address of the memory area from which the
data should be read. The function passes the error !lt"t"" in the AH register, and the
number of sectors written in the AL register. The r.arry flag has the same meaning
as in function 2.

Function 4: Verify disk

300

Function 4 tests whether data is transferred properly to and from the disk. The
BIOS bases correct data transmission on a cyclical redundancy check (CRC) value,
instead of just comparing data in memory with data on disk. Using a CRC
involves summing the value of each individual byte in a sector with a specific
fonnula. Since most disk drives work well and have exceptional reliability, most
programmers ignore this function. DOS only uses this function to test data that
was transmitted to a disk in response to an active VERIFY ON flag.

Abacus 7.7 Accessing the Floppy Disk from the BIOS

The register setup is similar to functions 2 and 3 (see above), with the difference
that the AH register must contain 4. Since the function doesn't need a buffer
address, this function does not use the BX and the ES registers.

Note: This function only works properly on a PC or an XT: ATs may
return incorrect results.

Function 5: Format

The last function of interrupt 13H allows the user to format part of a disk. Disk
formatting (e.g., with the DOS command FORMA 1) is a requirement since disks
used by the PC are soft-sectored. This means that software, not hardware,
determines the positioning of the sectors and tracks on the disk. The operating
system must install the tracks and sectors on the disk using this function. Sectors
don't have to contain 512 bytes. This BIOS function lets you format 128, 256,
512 or 1,024 bytes per sector. However, you must format a complete track.

The function number (5) must be passed in the AH register. The AL register is
loaded with the number of sectors to format the track with. This number can be
less than the DOS default values of 9 or 15. The number of the track to be
formatted is passed in the CH register. This track number must be a value from 0
to 39 (PC/Xl) or from 0 to 79 (AT). The number of the disk drive is passed in the
DL register and the disk's side in the DH register.

Besides this information, the format function also requires a field containing
formatting characteristics, which is also needed by the functions for reading,
writing and verifying a sector. The address of this field is passed in the ES and BX
registers. The segment address is loaded in the ES register and the offset address in
the BX register.

This table contains an entry consisting of four bytes for every sector to be
formatted:

B_y_te 1 Track to be formatted
Byte 2 Disk side (always 0 for single sided disks)

0 = Front side
1 = Back side

~te 3 Number of sector
Byte 4 Number of bytes in this sector

0 = 128 bytes
1 = 256 bytes
2 = 512 bytes
3 = 1024 ~tes

Even though the function already possesses the number of the track to be formatted
and the disk side, these items appear here again for reasons of safety. The sectors
are placed into this table sequentially, which assigns the first sector the logical
number l and the second sector the logical number 7.

301

7. TheB/OS PC System Programming

302

While the logical and physical numbers of the sectors usually agree in a disk drive,
it makes sense in a hard disk to change the logical number of a sector instead of its
physical number. The hard disk of the XT reduces access time for individual sectors
by displacing the logical sectors by six in relation to the physical sectors.

Also the number of bytes which a sector can accommodate does not have to be
uniform, since each sector may be defined in the table. With this and other
parameters of the table, copy protection can be developed based on formatting.
Format-based copy protection cannot be processed by the operating system.

In addition to information such as the disk drive and sector number passed to the
BIOS functions during a call, the BIOS also requires a series of other items to
enable some disk operations. These parameters are passed in the device parameter
table. Such a table exists in the ROM BIOS, but you can install your own in
RAM. The address of the new device parameter table must be placed into memory
locations 0000:0078 to 0000:007B. These memory locations should contain the
address of interrupt lEH (the PC doesn't use this interrupt).

DOS also offers the option of providing a unique device parameter table which
changes some values of this table from the BIOS default, accelerating access to the
disk drives.

The table itself consists of 11 bytes. The first two bytes transfer directly to the
disk controller. They indicate the step time and the DMA mode. The step time is
the maximum time period in which the read/write head of the disk drive can move
from one track to another.

The second byte indicates the time the disk drive motor can continue to run after a
disk operation. It defaults to 2 seconds since it assumes that this is the maximum
amount of time between consecutive disk accesses. Disk access speed is quicker if
the disk motor has already achieved operational speed and does not have to be
brought up to speed again. The value in this memory location is based on the 18
unit per second system clock, so a value of 18 represents running time of about
one second

Abacus 7.7 Accessing the Floppy Disk from the BIOS

The value in byte 3 indicates the number of bytes per sector for a write or read
operation. It corresponds to the values for formatting a sector, so it normally
contains the value 3 (512 bytes per sector). If you want to write or read sectors
with other sector sizes, the proper value must be entered into this memory
location.

Byte 4 gives the maximum number of sectors per track. The PC/XT disk drive
defaults to the value 9 in this location, while the AT defaults to the value 15
decimal.

Byte 5 of the table contains a value that represents the amount of empty space
between the end of a sector and the start of the following sector. This space relates
to the time BIOS must allow to elapse until the next sector appears under the
read/write head (not units of length). The value for this memory location defaults
to 42.

Byte 6 determines the data transfer length, which has no influence on data
transmission in most cases.

Since formatting of a disk occurs through the magnetization of certain areas, the
sizes of the non-magnetic spaces between sectors must be determined. Byte 7
records this, and these spaces must be larger than the space between sectors in byte
5 so that the beginning of a sector can be recognized properly.

Byte 8 accepts the ASCII code of the character which fills a sector during
formatting. The BIOS defaults to the division character V (ASCII code 246).

After the read/write head moves from one track to another it requires a rest period
to let the vibrations connected with the movement fade away. Then it can properly
perform any disk accesses which follow.

This rest period given in byte 9 of the table defaults to multiples of 1 millisecond.
While the BIOS grants 25 milliseconds of rest, DOS only permits 15
milliseconds.

The last entry of the table in byte 10 gives the time duration during which the disk
motor achieves operating speed. The value in this memory location defaults to
multiples of 1/8 second. Even here DOS requires more from the read/write head
than BIOS. It provides only a 1/4 second waiting period, as opposed to 1/2 second
for BIOS.

303

7. The BIOS PC System Programming

High density disk drives

304

Part of the introduction of the AT included high density 1.2 megabyte disk drives.
To ensure compatibility with earlier disk drives, they are capable of reading and
writing 320/360K disks despite the increase to the higher capacity of 1.2
megabytes. They can also recognize a change of the disk media. For support of
this new capability, AT BIOS contains three new disk functions which are called
through interrupt 13H like previous functions.

The first of these new functions determines the drive type in use. During the
function call, in addition to function number 15H, the number of the drive (0 or 1,
2 reserved for the hard disk) must be passed in the DL register. The function
returns the type of the drive in the AH register:

AH = 0 no drive available
AH = 1 disk drive does not detect disk chaf!.<l_e
AH = 2 disk drive does detect disk chaf!.<I_e
AH = 3 Hard disk

If the drive detects a disk change it can be sensed with the help of function 16H.
After calling this function by passing the value 16H to the AH register and the
number of the drive (0 or 1), the function returns a number to the AH register
which tells whether the disk was changed since the last disk access. If this register
contains the value 6, the disk was changed. The value 0 indicates that no change
took place.

The last new function, function 17H, must be called before calling the formatting
function (function number 5) on PC/AT or PS/2 machines to tell the controller
how it should format the disk. It should format the disk in either the 320/360K or
the 1.2 megabyte format. Besides the function number in the AH register and the
drive number in the DL register, a code must be passed to the AL register
indicating not only the format type, but also the type of disk drive in use. This

· code has the following meaning:

1 format to 320/360K on a 320/360K-drive
2 format to 320/360K on a 1.2 megab_y_te-drive
3 format to 1.2 MBJ'._te on a 1.2 mega~te-drive

Abacus 7.7 Accessing the Floppy Disk from the BIOS

Demonstration programs

The disk monitor in this section combines all the functions you have read about so
far. The monitor versions, written in BASIC, Pascal and C, all have the same
basic structure. Let's examine this structure before looking at the individual
programs.

The beginning of each program initializes variables, configures the screen and
resets the disk drives. Next the input loop executes; this loop is the center point of
the program. It displays the program prompt DISKMON> and then waits for user
input. After the user enters input and presses the <Return> key, the program
ensures that this input calls an executable command. If the input is illegal, the
program displays an error message and returns to the program prompt. Legal input
calls the subroutine, function or procedure requested.

All three programs support the Help, Format, Get, Fill, Constants and End
commands. The Fill command fills a sector with one character. The End command
terminates the program. There is no Write command in the monitor's command
set. This is because the amount of coding required to create a window for editing
the 512 bytes of a sector would have made the program listings too long.

All disk access commands ask for the track and perhaps the sector number of the
disk, but not the disk drive number or the disk side number. The program defaults
to disk drive 0 (drive A:) and disk side 0. The Constants command lets you change
these defaults so you can access another disk drive or disk side. This command also
specifies the format parameter needed for an AT (i.e., what disk format should be
used).

Like all other user input, the program transfers this input to the BIOS instead of
the program itself. This disk monitor checks the BIOS's reaction to the input. The
BIOS returns an error message in response to illogical or false input. Every disk
monitor command which accesses the disk drive reads the error status of the disk
drive after command execution. An error message then appears on the screen as
needed.

Let's take a close look at the monitor commands:

? Entering a question mark (?) at the program prompt displays a list of
the available commands.

Get This overview includes a Get command which reads and displays a
sector of the disk. An internal buffer stores the contents of this sector
after input and displays the contents on the screen. Certain control
characters such as carriage returns or linefeed are shown as character
strings instead of as ASCII codes. For example, <CR> appears
instead of an actual a carriage return, and <LF> appears instead of a
linefeed. While reading a sector the program assumes that the sector
has the standard format of 512 bytes.

305

7. The BIOS PC System Programming

Format

Reset

The Format command formats the selected sector in a 512-byte
format. Remember that a 360K disk can have a maximum of 9
sectors per track and a 1.2 megabyte disk can have a maximum of 15
sectors per track. You can assign fewer sectors, but you must specify
at least one sector.

The Reset command resets the disk drives. It also can be called by
various commands when the disk drive reports an error. If it's called
by the user before an error occurs, this can cause an error message.
Most disk error messages cannot cause damage to the drive.

BASIC listing: DISKMONB.BAS

306

100 '***'
110 D I S K M 0 N B

120 '*---*'
130
140
150
160
170 '*

Task

Author
developed on
last Update

Diskmon is a small Diskette monitor based *'
on the BIOS-Interrupt 13 (h) *'
MICHAEL TISCHER *'
07/24/87
05/20/89

180 '***'
190 '
200 CLS : KEY OFF
210 PRINT "WARNING: This Program should only be started if GWBASIC was"
220 PRINT "started from the DOS level with <GWBASIC /m:60000>."
230 PRINT : PRINT"If this was not the case, please input <s> for Stop."
240 PRINT "Else press any key ••• ";
250 AS = INKEYS : IF AS = "s" THEN END
260 IF AS = "" THEN 250
270 DIM SECTOR\[255]
280 DIM FD%[29]
290 GOSUB 60000
300 CLS
310 KEY OFF
320 COLOR 0,7

'Stores Sectors to be read or written
'Formatting data (maximum 0-29 = 30 Words)

'Initialize Interrupt-Routine
'Clear Screen

'Turn off Function key assignment
'dark characters on light background (invers)

330 PRINT" DISKMON
340 COLOR 7,0

(c) 1987 by Michael Tischer ? = Help "

350 VIEW PRINT 2 TO 24
360 DR% = 0
370 SIDE% = 0
380 FTYP% = 3
390 DEF SEG &HFOOO

'light characters on dark background
'Lines 2 to 24 form a window

•access unit 0 (A) first
•access the first Diskette side

'1.2 MB Diskettes in 1.2 MB drive
•set BIOS-Segment

400 IF PEEK(&HFFFE)
410 DEF SEG

&HFC THEN AT\ = - 1 ELSE AT% = 0 'test if AT
'Set BIOS-Segment again

420 GOSUB 50000
430 GOSUB 51000 'Output
440 INPUT"DISK-MON>",ES

'Execute Reset
Error message if necessary

'User input prompt
repeat input prompt

'Display Help-Text
450 IF ES "" THEN 440 'no input -->
460 IF ES "?" THEN GOSUB 53000 GOTO 440
470 IF ES "r" THEN GOTO 420
480 IF ES "s" THEN GOSUB 54000 GOTO 430
490 IF ES "f" THEN GOSUB 55000 GOTO 430
500 IF ES "g" THEN GOSUB 56000 GOTO 430
510 IF ES "c" THEN GOSUB 57000 GOTO 440

'Reset
'fi 11 a Sector

' format a Traclc
'Read Sector and display

'Input Constants
' End Program 520 IF ES "e" THEN VIEW PRINT 1 TO 24: CLS END

530 PRINT"unknown Command!" : GOTO 440
540 '
50000 '***'
50010 '* Execute Reset of all Disk drives
50020 '*---*'
50030 '*
50040 '*
50050

Input : none *'
Output: DST\ = the Diskette-Status
Info Z\ is a Dummy-Variable *'

Abacus 7.7 Accessing the Floppy Disk from the BIOS

50060 '***'
50070 •
50080 DST% = O 'Function number for Reset
50090 INR% = &Hl3 'Call BIOS-Diskette-Interrupt 13 (h)
50100 CALL IA(INR%,DST%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
50110 RETURN •back to caller
50120 •
51000 '***'
51010 '* Output Error Message based on the Diskette-Status
51020 ·•---··
51030 '* Input : DST% = Status of the last Diskette operation
51040 '* Output: none
~1050 '***'
51060 •
51070 IF DST% = 0 THEN RETURN •o =everything o.k.
51080 PRINT "ERROR: "•
510 90 IF DST% = &Hl THEN PRINT"Function number not allowed " : GOTO 50000
51100 IF DST% &H2 THEN PRINT"Address-Marking not found" : GOTO 50000
51110 &H3 THEN PRINT"Write attempt on protected Disk" : GOTO 50000 IF DST% =
51120 &H4 THEN PRINT"Sector not found" : GOTO 50000 IF DST%
51130 &H6 THEN PRINT"Diskette changed" : GOTO 50000 IF DST%
51140 &HB THEN PRINT"DMA Overrun" : GOTO 50000 IF DST%
51150
51160
51170
51180

IF
IF

DST%
DST%

&H9 THEN PRirlT"Data transmission beyond segment border"
&HlO THEN PRINT"Read Error" : GOTO 50000

IF
IF

DST%
DST%

&H20 THEN PRINT"Error of Disk-Controller" : GOTO 50000
&H40 THEN PRINT"Track not found" : GOTO 50000

IF DST% = 51190 &HBO THEN PRINT"Time Out Error" : GOTO 50000
51200 PRINT"Error ";DST%;" unknown" : GOTO 50000
51210
53000 '***i
53010 '* Display Help-Text on the screen
53020 ·•---··
53030 '* Input : none
53040 ••Output: none
53050 '***'
53060
53070 PRINT
53080 PRINT"C 0 M M A N D 0 V E R V I E W"
53090 PRINT"-------------------------------"
53100 PRINT"e End"
53110 PRINT"g = Get (Read) "
53120 PRINT"s = Sector fill"
53130 PRINT"r Reset"
53140 PRINT"f = Format"
53150 PRINT"c = Constants"
53160 PRINT"? = Help"
53170 PRINT
53180 RETURN
53190 •

•back to caller

54000 '***'
54010 '* Fill a Sector
54020 '*---*'
54030
54040
54050
54060
54070
54080

Input : DR% the Number of the unit addressed
SIDE% the number of the Disk side addressed

Output: DST% the Diskette status
Info Z% is a Dummy-Variable

'***'

54090 INPUT "Track : .. 'TRACK%
54100 INPUT "Sector : ",SECTOR%
54110 INPUT "Character: ", Z$
54120 IF Z$ = "" THEN Z$ = CHR$ (0)

'Track in which the Sector is located
'Sector to be filled

'Fill Character

54130 FOR I%= 0 TO 511 POKE VARPTR(SECTOR%[0])+I%,ASC(Z$) : NEXT
54140 DST% 3 'Function number for writing
54150 INR% = &Hl3 'Call BIOS-Diskette-Interrupt 13(h)
54160 NUM% = 1 •Number of Sectors
54170 OFSLO% = 0 OFSHI% 0 'initialize Variables
54180 SEG% = -1
54190 NUM% = 1
54200 OFSLO% = VARPTR(SECTOR%[0]) AND 255

'Use BASIC DS for ES
'Number of Sectors to be read

'LO & HI-Byte of the Offset

GOTO 50000

307

7. The BIOS PC System Programming

308

54210 OFSHI% = INT(VARPTR(SECTOR%[0]) I 256) 'address of Var SECTOR%[0]
54220 CALL IA(INR%,DST%,NUM%,OFSHI%,OFSLO%,TRACK%,SECTOR%,SIDE%,DR%, Z%,Z%,SEG%,Z%)
54230 RETURN 'back to caller
54240
55000 '***'
55010 '* Format a Track

55020 ··---··
55030
55040
55050
55060
55070
55080

Input :

output:
Info

DR% = the number of the unit
SIDE% the number of the disk side *'
FTYP% = Type of Disk drive *'
AT% = -1 if computer is an AT, otherwise 0
DST% = the Diskette status
Z% is a Dummy-Variable

55090 '***•
55100 '
55110 IF NOT (AT%) THEN 55150 'if not AT, then no format fitting
55120 FKT% = &H17 'Set Function number for DASD Type
55130 INR% = &H13 'Call BIOS-Diskette-Interrupt 13(h)
55140 CALL IA(INR%,FKT%,FTYP%,Z%,Z%,Z%,Z%,Z%,DR%,Z%,Z%,Z%,Z%)
55150 INPUT "Track : ",TRACK% 'Number of Track to be formatted
55160 INPUT "Number Sectors: ",NUM% 'Number of Sectors to be installed
55170 IF NUM% > 15 THEN 55160 'maximum of 15 Sectors can be installed
55180 FOR I% = 0 TO NUM%-l 'one entry for every Sector
55190 POKE VARPTR(FD%[0])+I%*4,TRACK% 'Enter number of Track
55200 POKE VARPTR(FD%(0])+I%*4+1,SIDE% 'Enter number of side
55210 POKE VARPTR(FD%(0])+I%*4+2,I%+1 'Enter Sector number
55220 POKE VARPTR(FD%[0])+I%*4+3,2 'Format Sector with 512 Bytes
55230 NEXT 'Process Entry for next Sector
55240 DST% 'Function number for Formatting
55250 INR% &H13 'Call BIOS-Diskette-Interrupt 13(h)
55260 OFSLO% = 0 : OFSHI% = 0 'initialize Variables
55270 SEG% = -1 'Use BASIC DS for ES
55280 OFSLO% = VARPTR(FD%[0]) AND 255 'LO and HI-Byte of Offset
55290 OFSHI% = INT(VARPTR(FD%[0]) I 256) 'address of Var. FD%[0]
55300 CALL IA(INR%,DST%,NUM%,OFSHI%,OFSLO%,TRACK%,Z%,SIDE%,DR%, Z%,Z%,SEG%,Z%)
55310 RETURN 'back to caller
55320
56000 '***'
56010 '*read a Sector and display
56020 ··---*'
56030 Input : DR% the Number of the drive to be accessed
56040 SIDE% the number of the Diskette side
56050 Output: DST% the Diskette status
56060 Info Z% is a Dummy-Variable
56070 '***'
56080 '
56090 INPUT "Track : ",TRACK%
56100 INPUT "Sector: ",SECTOR%
56110 DST% = 2

'Track in which the Sector is located
'the Sector to be filled

'Function number for reading
'Call BIOS-Diskette-Interrupt 13(h) 56120

56130
56140
56150
56160
56170
56180
56190
56200
56210
56220
56230
56240
56250
56260
56270
56280
56290
56300
56310
56320

INR\ = &Hl3
NUM% = 1 'Read a Sector
OFSL0% = 0 : OFSHI% = O •create Variables
SEG% = -1 'Use BASIC DS for ES
OFSLO% = VARPTR(SECTOR%[0]) AND 255 'LO and HI-Byte of Offset
OFSHI% = INT(VARPTR(SECTOR%[0]) I 256) 'addr of the Var SECTOR%[0]
CALL IA(INR%,DST%,NUM%,OFSHI%,OFSLO%,TRACK%,SECTOR%,SIDE%,DR%, Z%,Z%,SEG%,Z%)
IF DST% <> 0 THEN RETURN 'on error do not output data
PRINT STRING$ (80, "-");
FOR I% = 0 TO 5ll 'process all Bytes of the Sector read
Z% = PEEK(VARPTR(SECTOR%[0]) +I%) 'get a Byte from the Sector
IF Z% = 0 THEN PRINT "<NUL>"; : GOTO 56350
IF Z% = 7 THEN PRINT "<BEL>"; : GOTO 56350
IF (Z% = 8) OR (Z% = 29) THEN PRINT "<BS>"; GOTO 56350
IF Z% 9 THEN PRINT "<TAB>"; : GOTO 56350
IF Z% 10 THEN PRINT "<LF>"; : GOTO 56350
IF Z% ll THEN PRINT "<HOM>"; : GOTO 56350
IF Z% 12 THEN PRINT "<FF>"; : GOTO 56350
IF Z%
IF Z%
IF Z%

13 THEN PRINT "<CR>"; : GOTO 56350
27 THEN PRINT "<ESC>"; GOTO 56350
30 THEN PRINT "<CUP>"; : GOTO 56350

Abacus 7.7 Accessing the Floppy Disk from the BIOS

GOTO 56350 56330 IF Z\ - 31 THEN PRINT "<CDN>";
56340 PRINT CHR$(Z%);
56350 NEXT

'output Byte as ASCII character
•output next Byte

56360 PRINT
56370 PRINT STRING$ (80, "-");
56380 RETURN
56390 '

•back to caller

57000 '***'
57010 '* Input Constants (Unit number, Diskette side, etc.)
57020 ··---*'
57030
57040
57050
57060

'* Input : AT% = -1 if computer is an AT, else 0
Output: DR% - Number of unit to be accessed

SIDE% = Number of disk. side
fTtl't = Type of Disk drive

57070 '***'
57080 '

: ",DR%
1): ",SIDE%

57090 INPUT "Unit-Number (0-3)
57100 INPUT "Diskette side (0 or
57110 IF NOT(AT%) THEN RETURN
57120 PRINT"Formatting Parameter:"

'Diskette format only for AT

57130 PRINT" 1 = 320/360 KB diskette in 320/360 KB Drive"
57140 PRINT" 2 = 320/360 KB diskette in 1.2 MB Drive"
57150 INPUT" 3 = 1.2 MB diskette in 1.2 MB Drive -- Please input: ",FTYP%
57160 RETURN 'back to caller
57170
60000 '**'
60010 '* initialize the Routine for Interrupt call
60020 ··--*'
60030 '* Input : none
60040 '* Output: IA is the Start address of the Interrupt-Routine
60050 '**'
60060
60070 IA=60000!
60080 DEF SEG

'Start address of the Routine in the BASIC-Segment
'Set BASIC-Segment

60090 RESTCRE 60130
60100 FOR I% = 0 TO 160
60110 RETURN

READ X% POKE IA+ 1%, X% NEXT •Poke Routine
1 back to caller

60120
60130 DATA 85, 139, 236, 30, 6, 139, ll8, 30, 139, 4,232,140, 0, 139, l18
60140 DATA 12, 139, 60, 139, ll8, 8, 139, 4, 61, 255, 255, 117' 2,140,216
60150 DATA 142,192,139,118, 28,138, 36, 139, ll8, 26,138, 4, 139, l18, 24
60160 DATA 138, 60, 139, ll8, 22, 138, 28, 139, 118, 20,138, 44, 139, l18, 18
60170 DATA 138, 12' 139, 118, 16,138, 52, 139, 118, 14, 138, 20, 139, l18, 10
60180 DATA 139, 52, 85, 205, 33, 93, 86, 156, 139, 118, 12,137, 60, 139, 118
60190 DATA 28, 136, 36, 139, 118, 26, 136, 4, 139, 118, 24,136, 60, 139, l18
60200 DATA 22,136, 28, 139, l18, 20, 136, 44, 139, l18, 18, 136, 12, 139, l18
60210 DATA 16,136, 52, 139, llB, 14, 136, 20, 139, l18, 8, 140, 192, 137, 4
60220 DATA 88, 139, l18, 6, 137' 4, 88, 139, l18, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, o, 91, 46, 136, 71, 66,233,108,255

Structurally this program resembles the other BASIC programs which have been
presented. The main program with the input loop is in lines 300 to 540. Then
follow the individual commands of DISKMON which exist as subroutines between
lines 50000 and 57170. The subroutine for initializing the interrupt call starts at
line 60000 (the program uses this interrupt frequently).

The use of a BASIC variable as a buffer for the reading and writing of data is
somewhat complicated in this program. The program dimensions an integer array
with elements from 0 to 255. Since every element in this array requires 2 bytes
(for integer), the program allocates 512 bytes for a buffer. The problem arises from
the BASIC interpreter's garbage collection routine. When it removes data, which is
no longer needed, from the variable storage area, it also moves the data buffer. The

309

7. The BIOS PC System Programming

address of this buffer which was supposed to be passed to BIOS is no longer valid.
Other data are now stored there.

During a write operation this wouldn't be very bad, since only false data would be
written to the disk. During a read operation this could lead to a crash of the BASIC
interpreter, since variable memory could be destroyed. To prevent this, establish
the address of the buffer variable immediately before the BIOS function call. Also,
make sure that the variables which accept this address are constantly available. For
this reason DISKMON initializes the two variables with 0 before storing the
buffer address in them. This offset address must receive the segment address of the
current BIOS function in the ES register. Since the BASIC data segment contains
the buffer address, the contents of the Data segment register DS must be passed to
ES. This is done by passing the value -1 for ES which causes the interrupt
function to copy the contents of the DS registers to ES.

Pascal listing: DISKMONP .PAS

310

{***********.***}
{* D I S KM 0 N P *)
{*---*)
{ * Task : DISKMON is a small disk monitor based on *I
(* the functions of the BIOS diskette *I
(* interrupt 13(h) *I
(*--------------------------~---------------------------------------*)
(* Author : MICHAEL TISCHER *)
(* developed on : 7/9/87 *I
(* last update : 5/19/89 * l
{***}

program DISKMON;

Uses Crt, Dos;

type BufferTyp =array (1 •• 1]
FormatTyp = record

Track,
Side,
Sector,
Length

var Errcode
Command
FTyp,
DriveNum,
Side
Dummy
AT

end;

byte;
: string[l];

: integer;
: integer;
: boolean;

(adds Crt and Dos features

of char;
(BIOS requires this information for

(every sector of
(a track to be formatted

byte;

Error status after diskette operation
(Command input by the user

Diskette type for formatting function
{ Number of current drive

Number of the current diskette side
I Dummy variable

{ is the computer an AT?

{***}
{* RESETDISK: Reset for all attached disk drives *I
{* Input : none *I
I* Output : error status *)
(***}

function ResetDisk : integer;

var Regs : Registers; Register variable for interrupt call

begin
Regs.ah := O; I Function number for reset is 0

Abacus 7.7 Accessing the Floppy Disk from the BIOS

intr($13, Regs);
ResetDisk ·~ Regs.ah;

end;

(Call BIOS disk interrupt
(Read error status

{***}
{* GETDISKSTATUS: reads the error status *)
{* Input : none *)
{ * Output : the error status *)
{***}

function GetDiskStatus integer;

var Regs : Registers; { Register variable for interrupt call)

begin
Regs.ah := 1;
intr($13, Regs);
GetDiskStatus Regs.ah;

end;

{ Function number for error status is 1
{ Call BIOS disk interrupt

(Read error status

{***~*********}

(* READSECTORS: read a certain number of sectors
(* Input : see below
{* Output : error status

*)
*)
*)

{***}

function ReadSectors(DriveNum, { Disk drive for reading
Side, Side or read/write head number
Track, (track to be read
Sector, (The first sector to be read
Number, Number of sectors to be read
SegAdr, Segment address of the buffer
OfsAdr : integer; { Offset address of the buffer
var NumRead : integer) : integer;

var Regs Registers; (Register variable for interrupt call)

begin
Regs.ah 2;
Regs.al Number;
Regs.dh Side;
Regs.dl DriveNum;
Regs.ch Track;
Regs.cl Sector;
Regs.es SegAdr;
Regs.bx := OfsAdr;
intr($13, Regs);
NumRead := Regs.al;
ReadSectors Regs.ah;

end;

(Function number for reading is 2
{ Set number of sectors for reading

{ Set side number
{ Set drive number
{ Set track number

(Set sector number
(Set buffer address

(Call BIOS disk interrupt
(Number of sectors read

{ Read error status

{***}
{* WRITESECTORS: Write a certain number of sectors
{* Input : see below
{* Output : error status

*)
*)
*)

{***}

function WriteSectors(DriveNum, (Disk drive'

var Regs

begin
Regs.ah

Registers;

3;

Side, { Side or read/write head
Track, (Track to be written
Sector, First sector to be written
Number, Number of sectors to be written
SegAdr, (Segment address of the buffer
OfsAdr : integer;{ Offset address of the buffer
var NwnWritten : integer} : integer;

(Register variable for interrupt call)

(Function number for writing is 3)

311

7. The BIOS PC System Programming

312

Regs.al Number;
Regs.dh := Side;
Regs.dl DriveNum;
Regs.ch Track;
Regs.cl := Sector;
Regs.es SegAdr;
Regs.bx := OfsAdr;
intr($13, Regs);
NumWritten := Regs.al;
WriteSectors ·= Regs.ah;

end;

{ Set number of sectors to be read
{ Set side number

{ Set drive number
{ Set track number

{ Set sector number
{ Set buffer address

Call BIOS disk interrupt
Number of sectors written

{ Read error status

{***}
{* SETDASD: must be called for an AT before formatting to indicate *}
{ * if it should be formatted with 3 60 KB * l
{* or with 1.2 MB *}
{ * Input : see below * l
{ • Output : none * l
{***}

procedure SetDasd(DiskForrnat integer);

var Regs : Registers; (Register variable for interrupt call l

begin
Regs.ah :=
Regs.al :=
Regs.dl
intr ($13,

end;

$17;
DiskForrnat;
DriveNum;

Regs);

Function number
(Format

{ Drive number
{ Call BIOS disk interrupt

{***}
(* FORMATTRACK: formats a track
{* Input : see below
{* Output : the error status

*} . }

* l
{***}

function ForrnatTrack(DriveNurn,
Side,
Track,
Number,
Bytes

Number of the disk drive
the side or head number

{ Track to be formatted
Number of sectors in this track

integer} : integer;

var Regs : Registers; { Register variable for interrupt call l
DataField array [1 •• 15] of ForrnatTyp; {maximum 15 sectors]
LoopCnt : integer; { Loop counter }

begin
for LoopCnt : = 1 to Number do Create sector descriptor
begin

DataField[LoopCnt].Track :=Track;
DataField[LoopCnt] .Side := Side;
DataField[LoopCnt].Sector := LoopCnt;
DataField[LoopCnt].Length :=Bytes;{ Number

{ Number of the track
{ Diskette side

{ Number of the sector
of bytes in the sector

end;
Regs.ah 5;
Regs.al := Number;
Regs.es seg(DataField[l]);
Regs.bx ofs(DataField[l]);
Regs.dh Side;
Regs.dl := DriveNum;
Regs.ch := Track;
intr($13, Regs);
ForrnatTrack := Regs.ah;

end;

[Function number, Number
Address of the data field in

(registers ES and BX
{ Side number

{ Drive unit
Set track number

{ Call BIOS disk interrupt
{ Read error status

{***}
(* WRITEERROR: Output error message according to error value *}
{* Input : the error number *l
{ * Output : none * l

Abacus 7.7 Accessing the Floppy Disk from the BIOS

{***}

procedure WriteError(ErrorNumber : integer);

begin
ErrorNumber of case

$00
$01
$02
$03
$04
$06
$08
$09
$10
$20
$40
$80
else

end;

writeln ('ERROR:
writeln ('ERROR:
writeln ('ERROR:
writeln ('ERROR:
writeln ('ERROR:
writeln ('ERROR:
writeln l 1 ERROR:
writeln ('ERROR:
wri teln ('ERROR:
writeln ('ERROR:
wri teln ('ERROR:
wri teln ('ERROR:

{ O means no error
Invalid function number');
Address marking not found');
Write attempt on protected disk');
Sect or not found 1) ;

Diskette changed');
OMA overrun') ;
Data transmiss1nn beyo~d segme~t b0rder 1 };

Read error');
Disk controller error 1);

Track not found'};
Time out error');
Error 1 ,ErrorNumber,' unknown');

if (ErrorNumber <> 0) then ErrorNumber:~ResetDisk; { Reset performed)
end;

{***}
{* CONSTANTS: Input of the two constants and *)
{ * diskette side or head number, as well as diskette *)
{ * type for AT *)
{* Input : none *)
{* Output : none *}
{***}

procedure Constants;

begin
write('Unit-Number {0-3) : ');
readln(DriveNum);
write('Diskette side (0 or 1): ');
readln(Side);
if AT then
begin
writeln ('Format-Parameter:');

Read unit number

Read head number
{ only for AT

writeln(' 1 ~ 320/360-KB-Diskette in 320/360-KB drive');
writeln(' 2 ~ 320/360-KB-Diskette in 1.2-MB drive');
write(' 3 1.2-MB-Diskette in 1.2-MB-drive -- Please input: '),
readln(FTyp)

end;
end;

{***}
(* HELP: Display help text on the screen
{ * Input : none
{ * Output : none

*)
*)
*}

{***}

procedure Help;

begin
writeln(#l3#10'C 0 MM AND 0 VER VI E W');
writeln('------------------------------- 1);

writeln('e End');
writeln('g ~Get (Read)');
writeln('s Sector fill');
writeln (' r Reset');
writeln('f - Format');
writeln('c Constants');
writeln('? ~ Help'fl3tl0);

end;

{***}
{* READSEC: Read a diskette sector and display it on the screen *}

313

7. The BIOS PC System Programming

314

{* Input : none *)

{ * Output : none *I
{***}

procedure READSEC;

var DataBuffer : array [1 •• 512] of char; { the characters read
Track, { the track from which to read
Sector : integer; { Sector to be read

begin
write ('Track ') ;
readln{Track); { Read track from keyboard)
write (1 Sector: '};
readln(Sector); Read sector from the keyboard
ErrCode :- ReadSectors(DriveNum, Side, Track, Sector, 1,

seg(DataBuffer), ofs(DataBuffer), Dummy);
if {ErrCode - 0) then { Error occurred during reading?
begin
write('--'+

·--');
for Dummy:-1 to 512 do
begin

case DataBuffer[Dummy] of

{ output the 512 characters)

#00 write('<NUL>'); { treat control characters separately)
#07 write ('<BEL>') ;
#08 write {'<BS>') ;
#09 write ('<TAB>');
UO write ('<LF>');
t13 write ('<CR>');
#27 write ('<ESC>');
else write(DataBuffer[Dummy]); (output normal character)

end;
end;

write(#l3#10'--'+
·--"};

end
else WriteError(ErrCode);

end;
{ output error message

{***}
{ * FORMAT IT: format a certain number of sectors of a *}
(* track with 512 bytes each *)

{* Input : none *)
(* Output : none *}
{***}

procedure Formatit;

var Track,
Sector

begin

integer;

write (1 Track ') ;

Track to be formatted
l Number of sectors

{ Read number of tracks from keyboard readln(Track);
write (1 Sector: •);
readln (Sector); Read number of sectors from the keyboard)

{ if AT then diskette type I if AT then SetDasd(FTyp);
WriteError(FormatTrack(DriveNum, Side, Track, Sector, 2)};

end;

{***}
{* FILLSECTOR: Fill a sector with a character
I• Input : none
(* Out put : none

*}
*)
*}

{***}

procedure FillSector;

var DataBuffer : array (1 •• 512] of char; { Content of sector to fill }

Abacus 7.7 Accessing the Floppy Disk from the BIOS

LoopCnt,
Track,
Sector : integer;
FillChar : char;

begin
write ('Track ');
readln (Track);
write ('Sector ');
readln(Sector);
write ('Character: •};
readln(FillChar);
for LoopCnt :- 1 to 512

{ Loop counter
{ Track in which the sector is located

{ Nwnber of sector to be filled
{ the fill character

{ Read track from keyboard

Read sector from keyboard

{ Read the fill character from the keyboard
do

~ataBufft:r[I.,c;opCntJ ;= FlllChar; t till Duffer w1tn cnaracters
WriteError(WriteSectors(DriveNum, Side, Track, Sector, 1,

seg(DataBuffer), ofs(DataBuffer), Dummy));
end;

{***}
{** MAIN PROGRAM **)
{***}

begin
clrscr;
textbackground(7);
textcolor(O);

I Clear screen
{ light background

{ dark characters
writeln(' DISKMON: (c) 1987 by Michael Tischer '+ { Headline

textbackground(O);
textcolor{7);
window {l, 2, BO, 25); { only first
DriveNum := O·
Side := O;
FTyp := 3;
if mem[$FOOO:$FFFE) = $FC then AT

WriteError(ResetDisk);
repeat
repeat

write('DISKMON>');
readln {Command) ;

until (Command <> ' ') ;
case (Command [1)) of
• ?• : Help;

else AT

'r' WriteError(ResetDisk);
•s• FillSector;
• f' Formatlt;
'g' READSEC;
• c' : Constants;

? =Help'};
{ dark background

{ light text
line does not belong to window
{ Indicate unit 0 as constant

(Side 0 as constant
1.2 MB diskette in 1.2 MB unit

true { test if AT or
false; { PC or XT

perform Reset

(output prompt
(Read command from keyboard

(? display help text
(r perform reset
{s fill a sector

{f format a track
(g read a sector

{c input constants
else if Command <> •e•

end;
then writeln('unknown command 1);

until (Conunand = 1 e 1); {e end program J
end.

The DISKMON in Pascal and the following version in C strongly resemble each
other. Both have the input loop inside the main program and the individual
commands placed in procedures or functions outside the main program. Unlike the
BASIC version of DISKMON, a difference exists between the DISKMON
commands and the BIOS function call. They are stored in separate program
sections. This has the advantage that the BIOS function calls can be easily
transferred as stand alone modules to other programs.

Problems with addressing the data buffer don't exist in C or in Pascal as they do in
BASIC. The buffer is a local variable.

315

7, The BIOS PC System Programming

There are two small differences between the C and Pascal versions. They are in the
screen display and the administration of constants for unit number, disk side, etc.
While the Pascal version defines these as global variables, the C version defines
them as local variables within the mainO program area.

C doesn't allow easy window definition for performing tasks. This is why the C
version of DISKMON doesn't use the first screen line as a status line to output a
copyright notice and call the Help command.

C listing: DISKMONC.C

316

/**/
I* D I S KM 0 N C *I
/*--*/
I* Task : DISKMON is a short disk monitor program, *I
/* using BIOS interrupt 13(h) functions */
/*--*! /* Author MICHAEL TISCHER *I
/* Developed on : 08/15/1987 */
/* last update : 06/08/1989 */

/*--*/
/* (MICROSOFT C) */
/* Creation : CL /AS DISKMONC.C */
/* Call : DISKMONC * /
/*--*/
/* (BORLAND TURBO C) */
/* Creation Make sure Case-sensitive link is OFF before */
I* compiling & linking */
I* Select Compile/Make or RUN (no project file) */
/**/

/*== Add include files ===*/

#include <dos.h>
#include <stdio.h>
#include <ctype.h>

/*== Typedefs ==*/

typedef unsigned char byte; /* Create a byte */

/*== Constants ===*/

fdefine FALSE 0 /* Constants to make reading the *I
fdefine TRUE 1 I* source code easier */

#define NUL 0 I* null character *I
fdefine BEL 7 I* bell character code •/
tdefine BS 8 /* backspace character code *I
tdefine TAB 9 /* tab character code *I
#define LF 10 I* linefeed character code *I
#define CR 13 I* Return key code */
tdefine EF 26 /* End of file code */
#define ESC 27 I* Escape code */

/*== Macros ===============================~========~===============*/

fifndef MK FP /* MK_FP still undefined? */
#define MK FP (s,o) ((void far *) (((unsigned long) (s) « 16) I (o)))
tdefine peekb(a,b) (* ((byte far *) MK_FP ((a), (b))))
fendif

!*-- The following macros state the offset and segment addresses of --*/
/*-- any pointer ---*/

Abacus 7.7 Accessing the Floppy Disk from the BIOS

#define GETSEG (p) ((unsigned) (((unsigned long) ((void far *) p)) » 16))
#define GETOFS (p) ((unsigned) ((void far •) p))

I* -- Function declarations --•/

byte DRead(byte, byte, byte, byte, byte, byte far •);
byte DWrite(byte, byte, byte, byte, byte, byte far•);

!*== Structures ==*/

struct FormatDes /* Describes format of a sector */
byte Track,

Side,
SPr.tor.

Length;
) ;

/**/
/* RESETDISK: Reset all drives connected to system
/* Input
I* Output

: none
: error status

*/
*/
*/

/**/

byte ResetDisk()

union REGS Register; /* Register variable for interrupt call */

Register.h.ah = O; I* Function number for reset = 0 */
Register.h.dl = O; I* Reset disk drives */
int86(0x13, &Register, &Register); /*Call BIOS disk interrupt*/

/* printf("Result: %d\n", Register.h.ah); */
return(Register.h.ah); /*Return error status*/

)

/**/
/* WDS: Display status of the last disk operation
/* Input : see below
I* Output : TRUE if no error, otherwise FALSE

•/
*I
*/

/**/

byte WDS(Status)
byte Status; /* Disk status */

if (Status)
(

/* Error occurred?
I*

printf("ERROR: ");
switch (Status) /* Display error

case OxOl

case Ox02

case Ox03

case Ox04

case Ox06

case Ox OB

case Ox09

case OxlO

case Ox20

case Ox40

printf (11 Function number
break;
print! ("Address marking
break;

not

not

permitted\n 11);

found\n");

printf(11 Disk is write-protected\n11 };

break;
print! ("Sector not found\n");
break;
printf("Disk changed\n");
break;
printf ("DMA overflow\n") ;
break;
printf ("Data transfer past segment limit\n");
break;
printf(11 Read error\n 11);

break;
printf (11 Disk controller error\n 11 };

break;
print! ("Track not found\n");
break;

YES

msg

*/
*/

*I

317

7. TheBJOS PC System Programming

318

case OxBO

case Oxf f

default
I

ResetDi sk () ;
I

printf ("Time Out error\n");
break;
printf ("Illegal pararneter\n");
break;
printf("Error %d unknown\n", Status);

/* Execute reset on error */

return (!Status};
I

/**/
I* DREAD: Read specified sector from disk */
I* Input
/* Output

: see below
: error status

*I
*/

/**/

byte DRead(Drive, Side, Track,
byte Drive,

Sector, Number, Buffer)
/* Drive number */

I

Side, I* Disk side or read-write head number */
Track, /* Track number *I
Sector, /* First sector to be read */
Number, I* Number of sectors to be written */
far * Buffer; I* FAR pointer to a byte vector */

union REGS Register;
struct SREGS SRegs;

I* Register variable for interrupt call */
I* Variables for segment register */

Register.h.ah 2;
Register.h.al Number;
Register.h.dh Side;
Register.h.dl Drive;
Register.h.ch Track;
Register.h.cl Sector;
Register.x.bx GETOFS (Buffer);
SRegs.es = GETSEG(Buffer);
int86x(Ox13, &Register, &Register,
return(Register.h.ah);

/* Function no. for read is 2 */
/* Number in AL register*/

/* Side in DH register */
/* Drive number in DL */

/* Track in CH register */
/* Sector in CL register */

I* Offset address of buffer */
/* Segment address of buffer */

&SRegs);
/* Return error status */

/**/
I* DWRITE: Write to the specified number of sectors */
/* Input : see below *I
/* Output : error status */
/**/

byte DWrite(Drive, Side, Track, Sector, Number, Buffer)
byte Drive, /* Number of drive to be accessed */

)

Side, /* Disk side or number of read-write head */
Track, /* Track number */
Sector, /* First sector to be written */
Number, /* Number of sectors */
far * Buffer; /* FAR pointer to a byte vector */

union REGS Register;
struct SREGS SRegs;

/* Register variable for interrupt call */
/* Segment register variables */

Register.h.ah 3;
Register.h.al Number;
Register.h.dh Side;
Register.h.dl Drive;
Register.h.ch Track;
Register.h.cl Sector;
Register.x.bx GETOFS(Buffer);
SRegs.es = GETSEG(Buffer);
int86x(Ox13, &Register, &Register,
return(Register.h.ah);

I* Function no. for write is 3 */
/* Number in AL register */

/* Side in DH register */
/* Drive number in DL */

/* Track in CH register */
/* Sector in CL register */

I* Offset address of buffer */
/* Segment address of buffer */

&SRegs); /*BIOS disk int. call*/
/* Return error status */

Abacus 7.7 Accessing the Floppy Disk from the BIOS

/**/
/* FORMAT:
I* Input
/* Output
/* Info
/*
I*
/*

format a track
see below

*I
*I

error status *I
BYTES parameter gives the number of bytes in the for- */
matted sector. The following codes are allowed: */

0 = 128 bytes, 1 = 256 bytes *I
2 = 512 bytes, 3 = 1024 bytes */

/**/

byte Format(Drive, Side, Track, Number, Bytes)
byte Drive,

Side.
Track,
Number,
Bytes;

/* Side/head u.u.r.TJJ.Er * /
/* Track to be formatted */

/* Number of sectors in this track */
I* Number of bytes per sector *I

union REGS Register;
struct SREGS SRegs;

/* Register variable for interrupt call */
/* Segment register variables */

/* Maximum of 15 sectors */
I* Loop counter */

struct FormatDes Formate[l5];
byte i;

if (Number <= 15)
{

for {i = 0; i < Number; i++)
{

}

Formate[i].Track =Track;
Formate[i] .Side = Side;
Formate[i] .Sector i+l;
Formate[i] .Length = Bytes;

I* Is number o.k.? */

/* Set sector descriptor */

I* Track number *I
/* Disk side */

/* Sector increments by 1 */
/* Number of bytes in sector */

Register.h.ah 5· /* Function number for formatting */

}

Register.h.al Number; /* Number in AL*/
Register.h.dh Side; /* Side number in DH */
Register.h.dl Drive; /* Drive in DL */
Register.h.ch Track; /* Track number in CH */
Register.x.bx GETOFS (Formate); /*Offset addr. of table*/
SRegs.es=GETSEG(Formate}; /* Segment address of buffer*/
int86x(Oxl3, &Register, &Register, &SRegs); /*Call BIOS disk intr.*/
return(Register.h.ah); /* Return error status */

else return(OxFF); /* Illegal parameters */

/**/
/* CONSTANTS
I*

Change drive number, disk side and disk type
(PC/XT or AT)

*/
*/
*/

*I
/* Input
/* Output

see below
none

/**/

void Constants(Drive, Side, FTyp, AT)
byte *Drive,

*Side,
FTyp,
AT;

printf("Drive number (0-3): ");
scanf("\d", &Drive);
printf ("Disk side (0 or 1): ");
scanf(11 %d 11 , &Side);
if (AT)

(

printf("Format parameter:\n 11);

/* Pointer to drive variable */
/* Pointer to side variable */

/* Disk drive type */
/* TRUE if computer is an AT */

/* Read drive number */

I* Read head number */
/* Used only by ATs */

printf(" 1 320/360K diskette in 320/360K drive\n");
printf (" 2 320/360K diskette in l.2MB drive\n");
printf(" l.2MB diskette in l.2MB drive - please enter choice: ");

319

7. The BIOS PC System Programming

320

scanf (11 \:d", &FTyp);
l

/**/
/* HELP: Display help screen */

*/
*/

/* Input : none
I* Output : none
/**/

void Help()

)

printf("\nDISKMON (c) 1987 by Michael Tischer\n\n");
printf ("C 0 M M A N D 0 v E R v I E W\n");
printf("-------------------------------\n");
printf (" (E/e) = End\n");
printf("(G/g) =Get (read)\n");
printf (" (S/s) = Fill a sector\n");
printf (" (R/r) Reset\n");
printf("[F/f) Format\n");
printf (" (C/c] Constants\n");
printf (" (?] - Help\n\n");

/**/
I* GET Read a disk sector and display it on the screen */
I* Input : none *I
I* Output : none */
/**/

void ReadSector(Drive, Side)
byte Drive; /* Drive number */
byte Side;

byte Buffer[512);
int i,

Track,
Sector;

printf ("Track : 11);

scanf(.. %d", &Track);
printf ("Sector: ");

/* Disk side number */

I* Contents of filled sector */
/* Loop counter */

I* Track in which filled sector lies */
/* Number of sector to be filled */

/* Read track number from keyboard */

scanf(11 %d 11 , &Sector); /* Read sector number*/
if (WDS(DRead(Drive, Side, Track, Sector, 1, Buffer)))

(

printf(11 --");

printf("--");
for (i = O; i < 512; i++) /' Display characters read from disk */
switch (Buffer[iJ) /• ASCII code conversion*/

case NUL pr intf ("<NUL>") ;
break;

case BEL printf ("<BEL> 11);

break;
case BS printf ("<BS>");

break;
case TAB printf ("<TAB>");

break;
case LF printf {"<LF>");

break;
case CR printf ("<CR>");

break;
case ESC printf("<ESC>");

break;
case EF : printf("<EOF>");

break;
default : printf("%c", Buffer [i));

I

Abacus 7.7 Accessing the Floppy Disk from the BIOS

)

printf("\n--");
printf("--\n");

/**/
/* FORMAT:
/*

Format a specified number of sectors in a track with
512 bytes

*/
*/
*I
*/

/* Input
/* Output

: none
: none

/**/

void Formatit(Drive, Side, AT, FTyp)
byr.e Urive,

Side,
AT,
FTyp;

!* Drive number *I

int Track,
Number;

printf ("Track
scant (11 %d 11 , &Track);
printf("No. of sectors
scanf (11 %d 11 , &Number) ;
if (AT)

{

union REGS Register;

Register.h.ah Ox17;
Register.h.al FTyp;
Register.h.dl Drive;

");

") ;

I*

/* Disk side number */
/* TRUE if computer is an AT */

/* Disk drive type */

/* Track to be formatted */
/* Number of sectors to be formatted */

/* Read track number from keyboard */

/* Read number of sectors *I
/* Is computer an AT? */

Register variable for interrupt call *I

/* Function no. for set DASD-Type *I

int86(0x13, &Register, &Register);
)

/* Call BIOS disk interrupt */

WDS(Format(Drive, Side, Track, Number, 2, AT, FTyp));
)

/**/
/* FILL
/* Input
/* Output

Fill a sector with a character
: see below

*/

*/
*/ : none

/**/

void Fill It (Drive, Side)
byte Drive;
byte Side;

byte Buffer [512];
int i,

Track,
Sector;

char Character;

printf("Track ");
scanf("%d", &Track);
printf("Sector .) ;
scanf ("-\d", &Sector);
printf ("Fill char. ");

I* Drive number *I
/* Disk side number */

I* Contents of sector to be filled */
/* Loop counter */

/* Track in which the sector lies */
/* Number of sector to be filled */

/* Fill character */

/• Read track number from keyboard */

/* Read sector number from keyboard */

scan£ (11 \r%c 11 , &Character); /* Read fill character from keyboard */
for (i = O; i < 512; Buffer[i++] = Character)

WDS (DWrite (Drive, Side, Track, Sector, 1, (byte far *) Buffer));
)

/**/
/** MAIN PROGRAM **I
/**/

321

7. TheBIOS PC System Programming

322

void main()

int Drive,
Side,
FTyp;

byte AT;
char Entry;

/* Drive •/
I* Disk side */

/* Disk and disk drive format */
/* Computer type (AT or PC/XT) */

/* Accept user input */

Drive = Side
FTyp = 3;

O; /* Default of drive O, side 0 *I
/* 1.2-MB diskette in 1.2-MB disk drive •/

/*-- Read PC type from location in R~-BIOS -------------------------*/
AT= (((byte) peekb(OxFOOO, OxFFFE)) == OxFC) ? TRUE: FALSE;
printf ("\n\nDISKMON (c) 1987 By Michael Tischer\n\n");
WDS(ResetDisk()); /* Execute reset first •/
do

I
printf("? = Help> ");
scanf("\r %le", &Entry);
switch(Entry = toupper(Entry))

I
case t? I

case 'R'

case 'S'

case 'F'

case 'G'

Help();
break;
WDS(ResetDisk());
break;
Fillit(Drive, Side);
break;
Formatit(Drive, Side, AT,

Side);

/* Display prompt */
/* Get user input •/

/* Execute command *I

/* Display help screen *I

I* Execute reset •/

I* Fill a sector *I

FTyp);

/* Read sectors •/

case 'C'

break;
ReadSector(Drive,
break;
Constants(&Drive,
break;

&Side, &FTyp, AT);

default if (Entry != 'E')
)

while (Entry!= 'E');
)

printf("Unknown command\n");

/* 11 £ 11 or "e" ends program */

Abacus 7.8 Accessing the Hard Disk from the BIOS

7 .8 Accessing the Hard Disk from the BIOS

The original XT models included 10 megabyte hard disks. Hard disk drives are now
the mass storage device of choice on PCs, with the floppy disk running a close
second. However, the two devices have many features in common.

Like the floppy disk, a hard disk consists of magnetized plates, also called disks,
which can store data as magnetic impulses. Unlike the floppy disk, a hard disk
contains several of these disks. The plates in a hard disk can store data on both
sides, and therefore must have a read/write head above and below each disk for
reading and writing data.

Hard disk format

Hard disk formatting is similar to that of a floppy disk: Each disk is divided into
tracks which have sectors within them. A cylinder consists of all sectors which can
be accessed without moving the read/write heads. In other words, the heads remain
stationary within one cylinder while the disk moves beneath them. Moving the
heads to another set of tracks accesses another cylinder. Every cylinder contains the
same number of sectors, which in tum contain a constant number of bytes.

Partitions

The hard disk has another division beyond track, sector and cylinder levels:
Partitions allow you to configure parts of a hard disk for different operating
systems. Although you can format a disk according to one operating system and
use that operating system exclusively, hard disks allow you to store several
operating systems at once. You can allocate the number of cylinders needed for
each operating system when formatting a hard disk. The frrst sector of the hard disk
contains the information about this memory allocation. This information includes
data about the beginning of each partition and its size, as well as which operating
system lies in th!s partition (e.g., DOS has code 1). It also records which
operating system is active and which operating system should be started during the
system boot.

XT and AT models can control hard disks capable of storing 10 megabytes, 20
megabytes, 40 megabytes and more. Both hard disks have 2 disks (4 sides)
(numbered 0 through 3) and accept 17 sectors per cylinder of 512 bytes each. The
difference in capacity lies only in the number of cylinders. The XT hard disk has
306 cylinders numbered from 0 to 305 on each side of its disk medium; the AT has
615 cylinders numbered from 0 to 614 on each side of its disk medium. The XT
hard disk has a minimum capacity of 10.16 megabytes and the AT hard disk a
minimum capacity of 20.41 megabyte.

Note: Exercise extreme caution when using the BIOS hard disk access
functions. Unlike a disk drive which you can test out with an unused
disk, you can't do the same with a hard disk. Careless use of the
Write or Formatting function could lead to irretrievable data loss. If

323

7. TheB/OS PC System Programming

you plan to try these functions, back up the entire hard disk ~
you try these functions.

BIOS accesses the hard disk through interrupt 13H-the same interrupt used for
floppy disk access. The individual functions are identical for hard disk and floppy
disk drives, but hard disk control is very different from floppy disk drive control.
BIOS uses different modules for controlling the hard disk and disk drives. When
you call interrupt 13H, it accesses the hard disk routine first. This routine tests
whether the hard disk or floppy disk drive should be addressed, based on the device
number in the DL register. If the hard disk is involved, it calls the proper routine
in the hard disk module. On the other hand, if the floppy disk drive should be
addressed, another module must be called by calling interrupt 40H, which points to
the old disk interrupt 13H.

All hard disk functions share the condition that after the function call they use the
carry flag to signify whether they could perform their task or if an error occurred. If
this is the case, the carry flag sets and an error code passes to the AH register. The
individual codes have the following meanings:

OlH Addressed unavailable function or drive
02H Address markin.!l. not found
04H Sector not found
OSH Error durin.!l. controller reset
07H Error durin_'l_ controller initialization
09H OMA transmission error: Segment border crossed
OAH Sector defective
lOH Read error
llH Read error corrected with ECC
20H Controller defect
40H Search 02eration failed
80H Drive does not re~ond (Time out)
AAH Drive not read_y_
CCH Write error

When any one of these errors occur except error 01, execute a reset and try calling
the function again. Most of the time the error won't recur.

l\1ore about errors

324

If error l lH occurs during the read function, the data read in may not actually be
defective. This error indicates that a read error occurred, but that it could be
corrected with the help of the ECC (Error Correction Code) algorithm. This
procedure is similar to the CRC (Cyclic Redundancy Check) process used in the
disk drives. A complicated mathematical formula adds the individual bytes of a
sector. The result of the process goes to the disk in the form of a sector plus four
bytes. If a read error occurs, it can be corrected within certain limits with the help
of the stored ECC results.

Abacus 7.8 Accessing the Hard Disk from the BIOS

The use of processor registers for data transmission becomes another parallel
between the hard disk and floppy disk functions. The function number passes to
the AH register. If the program requires the number of the hard dis1': to be
addressed, it always passes to the DL register. The value 80H always stands for the
first hard disk, and 8 lH for the second hard disk. The number of the read/write head
(and indirectly of the disk addressed) passes to the DH register. The CH register
accepts the cylinder number. Remember that a 10 megabyte hard disk has more
than 306 cylinders. Since this 8-bit register can only address 256 cylinders at a
time, this register alone isn't enough to indicate the cylinder number.

For this reason bits 6 and 7 of the CL register help indicate the cylinder number.
They form bits 8 and 9 of the cylinder number, permitting an addressable range of
1,024 cylinders (0-1,023). Bits 0 to 5 of the CL register provide the number of the
sector to address (they are numbered from 1 to 17 in each cylinder). If you attempt
to access several sectors at a time, the numbers of these sections pass to the AL
register. During read/write operations a buffer address must be indicated from which
data can be read or to which data can be transferred. In such a case, the ES register
passes the segment address and the BX register the offset address of this buffer.

Function OOH: Reset

Function OH resets the controller without the need of any other parameters. After
an error occurs, this function should always be called before the next data access.
The information from the hard disk on which the execution of the reset is based
passes to the DL register.

Function 01 H: Status

Function OIH reads the hard disk drive status (this status is indicated after every
hard disk operation). The number of the drive whose status should be read must be
stored in the DL register.

Function 02H: Read sector

Function 02H reads one or more sectors. A single call of this function can read up
to 128 sectors. This limitation occurs because the hard disk controller transfers data
directly into RAM through the DMA. The DMA chip can only transfer a
maximum of 64K at a time, in one memory segment at a time. For this reason, it
is important that the complete buffer whose address passes to ES:BX fits into the
64K starting with the segment address in ES. Otherwise the DMA chip may report
an error.

This function initially reads all sectors in numerical order within the cylinder
indicated, using the read/write head indicated. Once the function reads the last sector
of a cylinder, and additional sectors should be read, reading continues with the first
sector of the same cylinder, but using a different read/write head. After the function

325

7. The BIOS PC System Programming

accesses the last read/write head and additional sectors still remain, the read process
continues in the first sector of the following cylinder on the first read/write head.

Function 03: Write sector

Function 03H writes one or more sectors. A single call of this function can write
data in up to 128 sectors. This limitation is also caused by the DMA (see function
02Habove).

This function initially writes all sectors in numerical order within the cylinder
indicated, using the read/write head indicated. Once the function writes to the last
sector of a cylinder, and additional sectors should be written, writing continues
with the first sector of the same cylinder, but using a different read/write head.
After the function reaches the last read/write head and additional sectors still
remain, the write process continues in the first sector of the following cylinder on
the first read/write head.

Function 04H: Verify

Function 04H verifies the different sectors of a cylinder. No comparison occurs
between the data on the disk and the data in memory (no buffer address needed in
ES:BX). ECC numbers verify whether the bytes stored return the same results after
processing through the ECC algorithm. The AL register indicates the number of
sectors to be verified.

Function OSH: Format

326

Function 05H formats the hard disk. Before a hard disk can be accessed it must be
formatted. Similar to the function used for formatting a disk, this function must
know the read/write head and cylinder number. In addition, it must pass the address
of the buffer to the register pair ES:BX. This buffer must be 512 bytes long, even
if the function only accesses the first 34 bytes. It contains two bytes for each of
tl!e 17 sectors to be formatted. The first byte indicates whether the sector is in
good condition. Assuming that every sector is in good condition, the value 0 is
entered into this byte. The second byte accepts the logical number which should be
assigned to the current sector. BIOS takes information from the first two bytes in
the table about the first physical sector of the cylinder. Bytes 3 and 4 supply
information about the second physical cylinder. Once the physical series has
already been determined, the logical sequence of the sectors can be set through 2
bytes of a sector indication in this table.

The numbers differ between a logical sector and its respective physical sector. This
shift in logical sectors, called sector interleaving, help optimize access time on a
hard disk.

Abacus 7.8 Accessing the Hard Disk from the BIOS

The average hard disk rotates at 60 revolutions per second. This means that the
next physical sector appears under the read/write head every thousandth of a second.
The hard disk controller is incapable of transferring the 512 bytes of the sector
previously read into the PC's memory. For this reason, the logical sectors shift in
relation to the physical sectors, so that the next logical sector only appears under
the read/write head after the hard disk controller completes the transmission of the
last sector.

The interleave facto1, i.e., the number of sectors by which the logical sectors shift
in relation to the physical sectors, depends on the relationship between the speed at
which the hard disk revolves, and the processing speed of the hard disk controller.
For example, if the interleave factor is 6, this means that for every sector read, a
"jump" of 5 sectors takes place before the next logical sector follows. The closer
this factor comes to 1 (in which case the physical and logical sectors are identical),
the faster the hard disk and the closer the transmission speed comes to the physical
limit.

While XT hard disks operate with an interleave factor of 1:6, AT hard disks are
twice as fast, with an interleave factor of 1:3. The effects of the interleave factor
and the relationship between logical and physical sectors can be seen in the
following table:

AT: physical logical XT: physical logical

sector sector sector sector

1 1 1 1

2 7 2 4

3 13 3 7

4 2 4 10

5 8 5 13

6 14 6 16

7 3 7 2

8 9 8 5

9 15 9 8

10 4 10 11

11 10 11 14

12 16 12 17

13 5 13 3

14 11 14 6

15 17 15 9

16 6 16 12

17 12 17 15

During a function call, BIOS enters a value into the first byte of a sector marker
which tells the calling program whether or not the sector is OK. The value 0
means OK, and the value 128 means a magnetization error occurred. Besides the

327

7. TheBIOS PC System Programming

registers mentioned above, the AL register accepL<i the number of sectors to be
processed. Since the cylinders of the AT and XT hard disks have 17-sector formats,
the AL register should contain the value 17 during the call of this function.

Function OSH: Check disk specs

Function 08H, passing the number of the hard disk in the DL register, checks hard
disk specifications. This is important for examining hard disks with unusual
formats.

After the function call the DL register contains the number of attached hard disks.
This number can be 0, 1 or 2. In addition, the DH register contains the number of
read/write heads. Since the read/write head count always starts at 0, a value of 7
means that 8 heads are available. The CL register (bits 0-7 of the cylinder number)
and the upper two bits of the CH register (bits 8 and 9 of the cylinder number)
indicate the number of cylinders. The counting here also starts at 0. The last
information is found in the lower 6 bits of the CH register. It shows the number
of sectors per cylinder, where the counting begins at 1 (an exception to the rule,
since the other counts in this function begin with 0).

When a user interfaces a foreign hard disk to a PC, the BIOS must know the
characteristics of this hard disk to perform correct access. For this reason it uses
interrupt 4 lH for hard disk 0 and the interrupt 46H for hard disk 1 as pointers to a
table. This table has a format prescribed by BIOS and describes the attached hard
disk drive. BIOS stores a whole series of tables so that BIOS can adjust itself
properly during the system boot from the booting hard disk drive.

Note: If the hard disk is already in the PC and functions properly, do not
attempt to access the hard disk description table, since the hard disk
could be damaged.

A table must be constructed in RAM for foreign hard disk interfacing, and interrupt
vectors 41H or 46H must point to this table. In addition, function 9 must
configure BIOS to use this table. The number 9 declares the function. The number
of the drive (80H or 81H) is loaded into the DL register. You may never have to
use this complicated function: Most hard disk manufacturers include a
configuration program which performs the same task. Check the documentation
which came with the hard disk for the parameters needed for the hard disk
description table.

Function OAH: read ECC
Function OBH: Write ECC

328

Functions OAH and OBH are additional read/write functions. They differ from
functions 2 and 3 in that they read and write the four ECC bytes at the end of each
sector in addition to the 512 bytes of data. Because of this, every sector has 516

Abacus 7.8 Accessing the Hard Disk from the BIOS

bytes instead of 512 bytes, and only 127 sectors can be read or written at one time,
instead of 128 as in functions 2 and 3.

Function OBH: Recalibrate

Function OBH recalibrates one of two hard disks. It also returns the error status,
passing the error number to the DL register.

Function 10H: Check ready status

Function lOH tests whether or not the hard disk whose number is in the DL
register is currently prepared to execute commands. If the carry flag is set on the
return of this function, the hard disk isn't ready. An error code passes to the AH
register.

Function 14H: Self test

Function 14 H forces the controller to perform an internal self test. If the controller
is OK, it returns with a reset carry flag.

Function 15H: Check drive type

Function ISH determines the type of drive. The number of the drive (80H or 8 IH)
passes to the DL register. If the drive is unavailable, it returns the value 0 in the
AH register after the function call. If the AH register contains a value of 1 or 2,
the device indicated is a floppy disk drive. The value 3 indicates a hard disk. If this
is the case, the ex and DX registers contain the number of sectors on this hard
disk. The two registers form a 32-bit number (the ex register contains the upper
16 bits, and the DX register the lower 16 bits).

Note: We chose not to include demonstration programs in this section,
because accessing a hard disk without proper knowledge can have
serious consequences. While floppy disk drive access can be practiced
with an unused or empty disk without worrying about damage, you
only get one hard disk with a PC. One small mistake during access
could destroy all data on a hard disk.

Avoid hard disk access using BIOS functions unless absolutely necessary. Leave
these tasks to DOS functions as much as possible.

329

7. TheBIOS PC System Programming

7.9 Accessing the Serial Port from the BIOS

Computers in every part of the world communicate with each other and exchange
data, Most of the time these computers use normal telephone lines for this
communication. Phone lines only permit slow data transfer, but allow users to
communicate from almost anywhere on the planet. Data transfers serially (i.e., one
bit at a time), while the sender and receiver maintain similar transfer protocols
(parameters for data transfer).

Serial card

330

Since basic PC configurations aren't equipped for this type of data transmission,
data transfer is only possible when the user adds an asynchronous communication
port (IBM's catch phrase for an RS-232 card, or serial inteiface card).

This type of card enables data transfer between two computers direct through a
cable or through phone lines. Both the sender and receiver require a modem to
communicate using the latter method. Modems convert computer signals into
acoustical signals which can then be transmitted over telephone lines.

In addition to hardware, data communication requires software which controls the
RS-232 card. BIOS offers this software in four functions called by interrupt 14H.
Before discussing these functions in detail, let's examine data transfer protocol.

logical 1

logical 0

Direction of data flow•

LSB MSB
0 1 2 4 5 6 7 8

5-8 data bits
(optional)

...--------.

Parity bit
(optional)

1, 1.5 or 2
stopblts
Start bit of

~~ ~-=------1 next character

Asynchronous transmission protocol

bit

Abacus 7.9 Accessing the Serial Port from the BIOS

Word length

Parity

As the figure above shows, only the two line states, 0 and 1 (also called high and
low) are important. The line remains high if no data transmission takes place. If
the line's state changes to low, the receiver knows that data is being transmitted.
Between 5 and 8 bits transfer over the line, depending on the word length.
Unfortunately the BIOS functions only support a word length of 7 or 8 bits. If the
line is low during data transmission, this means that the bit to be sent is 0. High
signals a set bit. The least significant bit is transferred first, and the most
significant bit of the character to be transmitted is transferred last.

The character can be followed by a parity bit which permits error detection during
data transmission. Parity can be even or odd. For even parity, the parity bit
augments the data word to be transmitted, so that an even number of bits results.
For example, if the data word to be transmitted contains three bits set to 1, the
parity bit becomes 1 so that the number of 1 bits increments to four, making an
even number. If the data word contained an even number of 1 bits, the parity bit
would be zero. For odd parity the parity bit is set in such a manner that the total
number of 1 bits is odd.

Stop bits

The stop bits signal the end of the transmission of data. Data transmission
protocol permits 1, 1.5 and 2 stop bits. Some users are confused about the option
of working with 1.5 stop bits, since some believe that you can't divide a bit. The
explanation for this paradox comes from the data transmission protocol.

Baud rate

Old standards dictate that data transfers at a rate of 300 baud (about 300 bits per
second), and one stop bit. The signal for a 1 bit and the signal for a 0 bit are both
events. Binary bits when transmitted in an analog environment such as phone lines
may not be identical with baud rates. Since stop bits always have the value 1, the
line would be high for 1/300 second. If instead you keep the line high for 1/200
second, 1.5 bits are transmitted. The line remains high until a new character
transfers and sets the line transmitting the start bit to low.

Some interfaces work with negative logic. In such a case the conditions for 0 and 1
in the illustration above must be reversed. This doesn't change the basic principle
of serial transmission.

Protocol settings

Data transmission only works if the sender and receiver both match various
protocol parameters. First the baud rate (the number of bits transmitted per second)
must be set. The standard baud rates for data exchange over voice telephone lines
are 300, 1200 and 2400 baud. These baud rates depend on the capabilities of the

331

7. The BIOS PC System Programming

modem in use. For a dedicated (data only) telephone line or for direct data
transmission through a cable, speeds up to 9600 baud are possible. Up to 80 bytes
per second or 4800 bytes per minute can be transmitted at 9600 baud.

The word length depends on the data being transmitted. If the data consists of
normal ASCII characters, a 7-bit word is enough, since the ASCII character set has
only 128 characters. If the data encompasses the complete PC set of 256
characters, 8-bit words are more practical.

Next the necessity of a parity check should be determined, and whether even or odd
parity should be used. In most cases parity checking is recommended, since phone
lines do not always transmit all data correctly. The parity selected is unimportant,
as long as both sender and receiver select the same parity.

The number of stop bits must be defined. One stop bit transmits successive
characters faster than a setting of two stop bits. On the other hand, two stop bits
increase the reliability of transmission.

Sample protocol

UART

332

The following illustration shows a sample transmission of an "A" character with a
protocol of 8 data bits, odd parity and one stop bit. Positive logic and a 300 baud
transmission rate are assumed. Since the ASCII code of the "A" character is 65
(OlOOOOOl(b)) and therefore contains only two 1 bits, the parity bit changes to 1
to set the number of 1 bits to an odd number.

logical 1

logical 0

I I I

lsta! •ttl
8 data bits

(01000001 (b) for "A")

Parity bit

I I ' I ~

~
1/300 second

Transmitting A character: 8-bit word length,] stop bit, odd parity and 300 baud

The brain of an RS-232 card is the UART (Universal Asynchronous Receiver
Transmitter). You should be familiar with the design and capabilities of this
processor, so that you can properly adapt programs to the error messages returned
by the different BIOS functions.

Abacus 7.9 Accessing the Serial Port from the BIOS

Transfer registers

A character transmitted on a data line passes first to a register designated as a
transfer holding register. It remains there until processing ends on the character
preceding it Then the character moves to the transfer shift register from where the
UART transmits the character bit by bit over the data line. Depending on the
configuration, parity and stop bits implement the stream of data. When the BIOS
function passes the status of the data lines to the AH register, bits 5 and 6 indicate
whether these two registers are empty.

Receiver registers

The receiver shift register accepts received data, then transmits the data to the
receiver data register where the UART removes the parity and stop bits. If a
previously received character is still in the data register, bit 1 of the line status sets
to 1 to avoid overwriting. Bit 0 indicates that a character was received. If while
processing the character, the UART discovers that a parity error occurred during the
transmission, it sets bit 2 of the line status. If a breakdown occurs in the agreed
upon protocol (number of parity and stop bits), the action sets bit 3. The UART
always sets bit 4 if the data line remains longer in low (0) status than required for
the transmission of a character. Bit 7 signals a time out error. This occurs
occasionally when the communication between the RS-232 card and the modem
isn't working properly.

__ 7_ 6 .s. 4 3 2 1 0 bit

I I I I I I I I I Receive character

Overwrite character

l 1
In data register

Parity error

Protocol not specified

Line lnterrrupt

Data register clear

Shift register clear

Time out

Line status

Function 0: Passing protocol

Before data can be transmitted or received, the UART must be informed of the
number of stop bits, etc. Function 0 of interrupt 14H serves this purpose. The
function number (0) enters the AH register, and the protocol passes to the AL
register. The bits of the AL register indicate the various parameters:

333

7. The BIOS PC System Programming

Bits Protocol

bit 0,1 Word length
10 (b) - 7 bits
11 (b) - 8 bits

bit 2 Number of Stop bits
0 - 1 Stop bit
1 - 2 StOE_ bits

bit 3,4 Parity check
00 (b) - none
01 (b) - odd
10 (b) - even

bit 5 -7 Baud rate
000 - 110 Baud
001 - 150 Baud
010 - 300 Baud
011 - 600 Baud
100 - 1200 Baud
101 - 2400 Baud
110 - 4800 Baud
111 - 9600 Baud

After initialization the function loads the line status into the AH register.

Function 1: Transmit character

Function 1 transmits characters. During its call, the AH register must contain 1
and the AL register must contain the character to be transmitted. If the character
was transmitted, bit 7 of the AH register changes to 0 after the function call. A 1
signals that the character could not be transmitted. The remaining bits correspond
to the line status.

Function 2: Receive character

Function 2 receives characters. After calling this function the AL register contains
the character received. AH contains the value 0 if no error occurred, otherwise the
value corresponds to the line status.

Function 3: Line/modem status

334

Function 3 senses and returns the modem status and line status. It returns the line
status in the AH register and the modem status in the AL register:

Abacus 7.9 Accessing the Serial Port from the BIOS

Bit 0 Modem read_y to send status chan_cr_e
Bit 1 Modem on status chang_e
Bit 2 Tel~hone ring_ing_ status chan_cr_e
Bit 3 Connection to receiver status chan_cr_e
Bit 4 Modem read_y to send
Bit 5 Modem on
Bit 6 Telep_hone rir.:.9:_if.!.9:_
Bit 7 Connection to receiver modem

Bits 4 to 7 represent a duplication of bits 0 to 3. Bits 0 to 3 indicate whether the
contents of bits 4 to 7 have changed since the last reading of the modem status. If
this is the case, the corresponding bit contains the value 1. For example, if bit 2
contains the value 1, this means that the content of bit 6 has changed since the last
reading. In reality it means that the phone just started to ring or has stopped
ringing, depending on the previous value of bit 6.

335

7. The BIOS PC System Programming

7. 1 O The Cassette Interrupt

The cassette interrupt (interrupt 15H) is a leftover from the days when PCs used
cassette recorders exclusively as data storage devices. This interrupt provided four
functions (numbered 0 through 3) for enabling and disabling the cassette recorder
motor, reading from and writing to magnetic tape. As the PC gained ground in the
business world, the disk drive became popular. Consequently, the cassette drive's
popularity faded.

The four cassette interrupt functions remain part of the PC's ROM-BIOS. The XT
has no cassette recorder interface. In addition, the XTs cassette interrupt consists of
a short routine which sets the carry flag and stores an error code in the AH register
to tell the program that the function called is unavailable.

The AT and the cassette interrupt

The cassette interrupt returned with the introduction of the AT. New functions can
be called which have nothing to do with cassette recorder control. The following
describes these functions, available only on AT models.

Among other things, the interrupt makes two functions available based on the
time measurement of the onboard AT realtime clock. The first of these is function
83H. It is useful in situations where the CPU is engaged in a time consuming task
(e.g., computing a complicated formula), but other duties must be performed at the
same time (e.g., checking the keyboard to determine if the user wants to terminate
the operation).

Function 83H: Time flag

336

Function 83H calls the address of a flag (a byte in the user program) in which the
highest level bit is set after a certain time period has elapsed. Within an executing
program this flag can be tested after certain amounts of time. Only two assembly
language instructions are necessary for this, so the testing requires little time.
Function number 83H passes information to the AH register. The segment address
of the flag is loaded into the ES register and the offset address into the BX register.
The time that should elapse until the flag is set is passed to the CX and DX
registers. Both registers form a 32-bit number which indicates the number of
microseconds to wait (1second=1,000,000 microseconds).

The CX register represents the upper 16 bits of this number. To calculate the total
time, the contents of the CX register must be multiplied by 65,536 and the DX
register must then be added to the total. If the waiting period is known in
microseconds, the value for the CX and the DX register can be calculated:

CX = int(Waiting period /65,536)
DX= Waiting period mod 65,536

Abacus 7.10 The Cassette Interrupt

This function can only be called if the previous call of this function has ended (the
time indicated has elapsed). If this is not the case, the function returns immediately
with the carry flag set.

Function 86H: Walt for end time

The second time function, function 86H, differs from function 83H in that it waits
until the time indicated has elapsed. For this reason the function number must pass
to the AH register, and the waiting time to the ex and DX registers during the
function call. To convert the waiting time into two values for the ex and DX
registers, the formula above can be used. This function can only be called if
function 83H was not called previously, and if the time period set during its call
has not yet elapsed. In such a case, the function returns immediately with a set
carry flag to the calling program.

Extended memory

The AT accepts more than 640K of memory. This additional memory (called
extended) begins at 1 megabyte and cannot be accessed in real mode, in which the
80286 processor operates as an 8086 processor. Function 88H determines the
availability and size of this memory. Placing a value of 88H in the AH register
returns the size of RAM beyond the 1 megabyte boundary (excluding RAM from 0
to 640K) in IK increments in the AX register.

Function 87H: Move memory block

Function 87H moves blocks of memory within the total memory space. This
means that blocks of memory can be moved from the area below the 1 megabyte
limit to the area above the 1 megabyte limit, and the other way around. The
function should not be used for the latter, since its call is complicated and has
other disadvantages. To access memory beyond the 1 megabyte barrier, the
processor must be switched into protected mode (full 80286 mode). Function 87H
requires very comprehensive information, since the 80286 processor is more
difficult to program in protected mode than in real mode (8086 emulation under
DOS). See the end of this section for a program which demonstrates the use of
function 87H.

The function number 87H must first be passed to the AH register, then the number
of the words to be moved (words only-not bytes) must be passed to the ex
register. A maximum value of 8000H corresponds to a maximum value of 64K.

Global Descriptor Table

The ES:SI register pair receive the address of the GDT (Global Descriptor Table),
which must be installed in the user program. The GDT describes the individual
memory segments of the 80286 in protected mode. The segments in protected
mode are exempt from the limitations made in real mode. While segments can

337

7. TheBIOS PC System Programming

338

only start at memory locations divisible by 16 in real mode, protected mode
segments may start at any memory location. _Furthermore, protected mode
segments may be any size from 1 byte to 64K.

Another protected mode innovation is the access code defined for every segment. It
indicates whether the segment described is a data segment or a code segment (only
code segments can be executed). The access code also contains information on
access priority, and whether access is even permitted. Every segment descriptor
consists of 8 bytes apiece. Function 87H expects during its call that six segment
descriptors have been prepared in the GDT (i.e., memory space reserved for them).
The figure below illustrates which segment descriptors are involved, as well as the
construction of a segment descriptor.

Addr Segment descriptor

\
GOT

+o
Segment length DUMMY

+2 GOT
Bits 0-15 of segment address

+4 START
Bits 16-23 of segment address

I
DEST. +5

Access code BIOS cs
+6

Reserved (always 8) STACK
+8

Segment descriptor structure as seen by function 87H

.

Addr.

+ OH

+ SH

+lOH

+18H

+20H

+28H

+30H

Only the segment descriptors designated as start and destination are of interest here,
since the BIOS functions fill out the other descriptors. The first describes the
segment from which the data are taken. The destination descriptor describes the
segment into which the data are copied. The length of both segments can be
OFFFFH (64K decimal), even if fewer bytes (or words) copy over in the process. If
a lower value is indicated, do not allow the number of bytes (number of words
multiplied by 2) to be copied to exceed this amount. Otherwise the processor
notices an access across a segment boundary during copying, which triggers an
error. The address of the two memory areas must be converted to a (physical) 24-
bit address. The lower 16 bits of this address enter the second field of the segment
descriptor and the upper 8 bits enter the third field. As access code 92H can be
used, which signals the processor that the described segment is a data segment with
the highest priority; that the segment exists in memory; and that the segment can
be written. The last field of the descriptor exists for reasons of compatibility with
the 80386 processor, and should always contain the value 0.

While the address of the user program's buffer stays fixed, the address beyond the 1
megabyte boundary to which data should be copied can be freely selected (subject

Abacus 7.10 The Cassette Interrupt

to RAM availability). The following table shows the addresses of the various lK
blocks beyond the 1 megabyte border as 24-bit addresses.

0 K lOOOOOH 124 K llFOOOH
1 K 100400H 125 K 11F400H
2 K 100800H 126 K 11F800H
3 K lOOCOOH 127 K llFCOOH
4 K 101000H 128 K 120000H
5 K 101400H 129 K 120400H
6 K 100800H 130 K 120800H
7 K lOOCOOH 131 K 120COOH
8 K 102000H 132 K 121000H
9 K 102400H 133 K 121400H

60 K lOFOOOH 252 K 13FOOOH
61 K 10F400tt 253 K 13F400H
62 K 10F800H 254 K 13F800H
63 K lOFCOOH 255 K 13FCOOH
64 K llOOOOH 256 K 140000H
65 K 110400H 257 K 140400H
66 K l10800H 258 K 140800H
67 K llOCOOH 259 K 140COOH
68 K lllOOOH 260 K 141000H
69 K 111400H 261 K 141400H

After the function call the carry flag indicates the success of the function call. If
the carry flag sets, an error occurred. The value in the AH register indicates the
cause of the error:

AH = 0 No error (carr_y_ fl~ reset)
AH = 1 RAM _E_arit:.Y_ error
AH = 2 GDT defective at function call
AH = 3 _Erotected mode could not be initialized _E_r~erl.:Y_

A disadvantage of this function is that while the processor is in protected mode, all
interrupts must be suppressed. The reason is the fact that during the protected
mode, BIOS interrupts (e.g., timer or keyboard) can be called, but these routines
were developed for operation in real mode only. These interrupts may not work
properly in protected mode. The disadvantage can be clearly seen when you call the
timer. Since its interrupts are suppressed, protected mode performs no time
measurement, and time remains frozen for a moment. If programs call function
87H frequently, the clock may run slow by 20 or 30 seconds fo one day. The clock
can be reset easily to the proper time with software, so software can bypass most
of the disadvantages.

Function 89H: Protected mode

Function 89H switches the AT into protected mode. Only someone developing his
own operating system may have any interest in this function. Any system capable

339

7. TheBIOS PC System Programming

of multiprocessing must run in protected mode. This function goes far beyond the
scope of this book. See the AT technical manual for more infonnation.

Function 84H: Joystick reader

Function 84H reads two joysticks connected to the AT. Two sub-functions operate
within this function: Both return a set carry flag if the adaptor to which the
joysticks should be connected doesn't exist.

The first sub-function executes by passing the function number to the AH register
and the value 0 to the DX register. It returns the status of the joystick fire buttons
in bits 4 to 7 of the AL register.

The second sub-function executes by passing the function number to the AH
register and the value 1 to the DX register. It returns current joystick positions
using X- and Y-coordinates. The X-coordinate for the first joystick can be found in
the AX, and the Y-coordinate in the BX register. For the second joystick, the CX
register contains the X-coordinate and the DX register the Y-coordinate.

Function 85H: Read SysReq key

340

The <System Request> key on the AT keyboard triggers an interrupt without
producing a character code. It cannot be tested with the BIO~ keyboard reading
functions. Function 85H reads the keyboard for the <System Request> key.
Passing the function number to the AH register executes the function. The current
BIOS version doesn't implement this function within the cassette interrupt.
Usually the <System Request> key does nothing when the user presses it.
However, a machine language routine can assign a special application to the
<System Request> key. This program must only "deflect" interrupt 15H to its
own routine. If it's called by a user program or by the system, a user routine
executes instead of the cassette interrupt. It can test whether the AH register
contains the function number 85H. If this is not the case, it calls the old cassette
interrupt. If the AH register contains this function number, the user routine
performs the desired action.

The content of the AL register is also important to this user routine because it
indicates whether the user pressed or released the <System Request> key. 0 means
activated, 1 released.

Abacus 7.10 The Cassette /nlerrupt

Demonstration programs

Of all the functions made available by this interrupt, the most interesting is
probably function SSH. It permits the owners of ATs with memory beyond the 1
meg limit to use memory that is inaccessible to OOS. The programs presented in
this section demonstrate easy calls to function S7H within user programs. To
illustrate the function call, each one of these programs copies the current video
RAM contents directly beyond the 1 megabyte memory border. It then erases the
video RAM and restores it again. The core of these programs is always the routine
which calls function SSH of interrupt 15H. it constructs a GDT for this, enters the
addresss of the start and destination area, as well as the GDT. First it converts the
two addresses (passed as segment and offset addresses) into a 24-bit-wide address.
This routine must be constructed first in assembly language for the higher level
languages, then integrated into the higher level language programs. You11 see how
this is done in the documentation of the individual listings. To avoid detailed
comparison of the various assembler programs for linking into the move function,
the difference lies almost exclusively in the area of the variable passing. Otherwise
the programs are almost identical.

BASIC listing: MOVE.BAS

100 1 *** 1

110 M 0 VE
120 '*---··
130
140
150
160
170

.. Task

Author
developed on
last Update

uses the Routine for moving a storage area ..
to store the Video-RAM ..
MICHAEL TISCHER ..
7.22.87
9. 21. 87 ..

180 '***'
190 •
200 CLS : KEY OFF
210 PRINT"WARNING: This program can only be started if the GWBASIC "
220 PRINT"was started from the DOS level with <GWBASIC /m: 60000>"
230 PRINT : PRINT"If this is not the case, input an <s> to Stop •
240 PRINT"Else, press any key ..• ";
250 A$ = INKEY$: IF A$ = "s" THEN END
260 IF A$ = •• THEN 250
270 CLS 'Clear Screen
280 PRINT"MOVE (c) 1987 by Michael Tischer" : PRINT
290 PRINT"This Program uses Function 87(h) of Interrupt 15(h) to copy blocks "
300 PRINT"of memory between the 'normal' RAM and the RAM beyond the"
310 PRINT"l-Megabyte border.•
320 DEF SEG = &HFOOO 'Set BIOS-segment
330 IF PEEK(&HFFFE) = &HFC THEN 380 'test if AT
340 PRINT"Since this unit is not an AT, but a PC or •
350 PRINT"XT, and they do not have memory the 1-MB limit, •
360 PRINT"this program can not be executed! Sorry ••• •
370 END 'Terminate Program (PC or XT)
380 PRINT"The Program will first copy the current display immediately beyond the "
390 PRINT"l MB border and thens clear the screen. If you then press a key, •
400 PRINT"the old screen content is restored."
410 PRINT : PRINT"Please activate a key to start the program ••• ";
420 A$ = INKEY$: IF A$ = •• THEN 420 'wait for key
430 STARTS% =VIDEOS% : STARTO% - 0 'Start-area is Video-RAM:OOOO
440 GOSUB 60000 'install Function for Interrupt call
450 GOSUB 61000 'install Function for copying memory
460 GOSUB 50000 •get current Video mode
470 IF VMODE\ = 7 THEN VIDEOS\ = &HBOOO ELSE VIDEOS\ = &HB800
480 START0% = 0 : STARTS% =VIDEOS% 'Start address is the Video-RAM

341

7. The BIOS PC System Programming

342

490 DESTS% = 0 : DESTO\ = 0
500 DIRECTION\ = 1

'destination area is 10000:0000
•copy from below to above 1 MB

510 SIZE% = 2000 'the size of the Video-RAM is 200 Words
'move memory 520 GOSUB 51000

530 CLS 'clear screen
540 PRINT"Please activate a key
550 A$ - INKEY$: IF A$ = "" THEN
560 STARTS\ = 0 : STARTO\ = 0

550 •wait for key
•start area is 10000:0000
'Destination area is Video-RAM:OOOO
•copy from above to below 1 MB
•move memory

570 DESTS\ = VIDEOS% : DESTO\ = 0
580 DIRECTION\ = 2
590 GOSUB 51000
600 LOCATE 15, 1 •set Cursor to column 1 of line 15
610 END
620 •
50000 '***'
50010 '* Sense current Video Mode ••

50020 ··---··
50030 Input: none * •
50040 • • output: VMODE% = the current Video mode * •
50050 '* Info the Variable Z% is used as Dummy ..
50060 '***'
50070 Z\=15 'get Function number for Video mode
50080 INR%=&Hl0 'call BIOS-Video-Interrupt 16(h)
50090 CALL IA(INR%,Z%,VMODE%,PAGE%,Z%,Z%,Z%,Z\,Z\,Z%,Z\,Z\,Z\)
50100 RETURN 'back to caller
50110 •
51000 '***'
51010 •• move a memory area
51020
51030
51040
51050
51060
51070
51080
51090
51100
51110
51120
51130

'*---*'
Input: STARTS\

STARTO\
DESTS%
DESTO%
SIZE%

DIRECTION%
data:

0

segment address of the Start area
Offset address of the Start area
segment address of the destination area
Offset address of the destination area
Number of words to be moved
Direction in which to move

from below MB --> to below 1 MB
from below MB --> beyond 1 MB

- from above MB --> below 1 MB
from beyond 1 MB --> beyond 1 MB

51140 Output: none
51150 '***'
51160 CALL MOVE(STARTS%,STARTO%,DESTS%,DESTO\,SIZE\,DIRECTION\)
51170 RETURN 'back to caller
51180 •
60000 '***'
60010
60020
60030
60040
60050
60060
60070
60080
60090
60100
60110
60120
60130
60140
60150
60160
60170
60180
60190
60200
60210
60220
60230
60240

'* initialize the Routine for Interrupt call
·•---*'
1 * Input: none *'
'* Output: IA is the Start address of the Interrupt-Routine
'***'

IA~60000! 'Start address of the Routine in the BASIC-segment
'Set BASIC-segment DEF SEG

RESTORE 60130
FOR I% ~ 0 TO 160 : READ X\ : POKE IA+I%,X\ NEXT •poke Routine
RETURN 'back to caller

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216

142, 192, 139, 118, 28, 138, 36, 139, 118, 26, 138, 4, 139, 118, 24
138, 60, 139, 118, 22, 138, 28, 139, 118, 20, 138, 44, 139, 118, 18
138, 12, 139, 118, 16, 138, 52, 139, 118, 14, 138, 2 0, 139, 118, 10
139, 52, 85, 205, 33, 93, 86, 156, 139, 118, 12, 137, 60, 139, 118

28,136, 36,13~118, 26,136, 4,139,118, 24,136, 60,139,118
22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
16, 136, 52, 139, 118, 14, 136, 20, 139, 118, 8, 140, 192, 137, 4
88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93

202, 26, o, 91, 46,136, 71, 66,233,108,255

Abacus 7.10 The Cassette Interrupt

61000 '***'
61010 '* Initialize Routine for moving of mremory areas.
61020 '*---*'
61030 '* Input: none
61040 '* Output: MOVE is the Start address of the Routine
61050 '***'
61060
61070 DEF SEG 'Set BASIC segment
61080 MOVE=61000! 'Start address of the Routine
61090 RESTORE 61130
61100 FOR I%= 0 TO 140: READ BYTE% POKE MOVE+I%,BYTE% : NEXT
61110 RETURN 'back to caller
61120 •
61130 DATA 232, 115' o. 0, o. o. o, o, o, o, o, o, o, o, 0

61140 DATA O, o, o, 0,255,255, o, o, 16, 146, o, 0,255,255, 0
61150 DATA O, 0, 146, 0, O, o, o, 0, O, 0, o, o, o, o, 0
61160 DATA O, 0, O, 0, O, o, 85,139,236,139,126, 6, 138, 45,139
61170 DATA 126, 12,139, 5, 139, 126, 10, 139, 29, 246, 197' 1,232, 46, 0
61180 DATA 136, 84, 28,137 68, 26, 139, 126, 16, 139, 5, 139, 126, 14, 139
61190 DATA 29,246,197, 2,232, 24, 0,136, 84, 20,137, 68, 18,180,135
61200 DATA 139, 126, 8, 139, 13, 205, 21, 139, 229, 93, 202, 12, o, 94,235
61210 DATA 186, 138, 212, 177' 4, 210, 234, 117' 3,128,202, 16, 211, 224, 3
61220 DATA 195, 115, 2,254,194,195

The DATA statements integrated the interrupt call routine and the memory
movement routine into BASIC. They contain the machine language command
codes, read and POKEd into the BASIC section starting at address 61000. This
address is also stored in the MOVE variable so that the program can be called from
the CALL command in line 51160. For those of you who have mastered assembly
language, here is the program listing from which the DATA lines of the MOVE
function were derived.

Assembler listing: MOVEBA.ASM

;***;
;* MOVE BA *;
;*---*;
;*
;*
;*

Task Makes the functions for moving of
memory blocks beyond the lMB memory limit
available in BASIC for linking

*;
*;
*;

;*---*;
;* Author MICHAEL TISCHER *;
;* developed on : 8.22.87 *;
;* last Update : 9.21.87 ,
;*---*;
;* Info: the Code is fully relocatable so that the *;
;* Routine can be poked to any place within the *;
; * BASIC segment *;
;*---*:
;*
;*
;*

assembly MASM MOVEBA;
LINK MOVEBA;
EXE2BIN MOVEBA MOVEBA.COM

*;
*;
*;

;***;

code segment

assume cs:code,ds:code,es:code,ss:code

;-- MOVE: Copy storage b~ocks beyond the lMB limit -------------------
;-- Call from BASIC: CALL ADR(Sourceseqrnent, StartOffset, Destseqrnent,
;-- DestOffset, Size, Direction);
;-- Info - after the call variables are in the following
;--
;--
;--

Positions on the Stack:
Startseqment SP + 16
StartOffset SP + 14

343

7. TheBIOS PC System Programming

344

;--
;--
;--
;--
;--
;--

;--

move

Dest segment
Dest Offset
Size
Direction

SP + 12
SP + 10
SP + 8
SP + 6

- for Direction the following Codes are accepted
O from below 1 MB --> to below 1 MB
1 from below 1 MB --> to over 1 MB

proc far

2 from above 1 MB --> to below 1 MB
3 from above 1 MB --> to above 1 MB
- the number concerns words not

bytes, and can not be larger than 8000(h)

;GW expects during CALL Far-Procedure

call get adr ;the Address of the Routine

;-- The Global Descriptor Table ---------------------------------------
GDT equ this word

;--

dw 4 dup (?)
dw 4 dup (?)

;segment Descriptors for Dummy-segment

segment Descriptors of the Source-Area ----------------------
dw Offffh ;segment length = 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db OlOh ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in memory with

dw OOOOOh
;highest priority, Writeable
;Compatibility Word for 80386

;-- segment Descriptors of the Destination-Area -----------------
dw Offffh ;segment length = 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db (?) ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in memory with

;highest priority, Writeable
dw OOOOOh ;Compatibility Word for 80386

dw 4 dup (?)
dw 4 dup (?)

;segment Descriptors BIOS-Code-segment
;segment Descriptors Stack-segment

;-- the Code of the MOVE-Routine --------------------------------------

movel: push
mov

mov
mov
mov
mov
mov
mov
test
call

mov
mov

mov
mov
mov
mov
test
call
mov
mov
mov
mov
mov
int

bp ;store GW Basepointer
bp,sp ;move SP to BP

di, [bp+6] ; get Address of the direction Variable
ch, [di] ;move direction to CH
di, [bp+l2] ;get Address of Destsegment-Variable
ax, [di] ;move destination segment address to AX
di, [bp+lO] ;get address of DestOffset-Variable
bx, [di] ;move destination Offset address to BX
ch,l ;Destination beyond 1 MB?
calc adr ;form 24 bit Address

[si+da hi-gdt],dl ; store result
[si+da=lo-gdt],ax

di, [bp+l6]
ax, [di]
di, [bp+l4]
bx, [di]
ch,2
calc adr
[si+sa_hi-gdtJ,dl
[si+sa_lo-gdt],ax
ah,087h
di, [bp+8]
ex, [di]
15h

;get address of the Startsegment-Variable
;move Source segment address to mov
;get Address of StartOffset-Variable
;Source Offset address to BX
;is Source beyond 1 MB?
;form 24 bit Address
;store result

;Parameter for the Function call
;get Address of the Size-Variables
;get number of words
;call RAM-displacement function

Abacus 7.10 The Cassette Interrupt

mov sp,bp
pop bp
ret 12

;restore Stackpointer
;return BP from the Stack
;Addresses of the Variables on the Stack
;are no longer required

Move endp

;-- GET ADR: returns the Off set address of the GDT ------------------
;-- Input none
;-- output SI - Offset address of the GOT
;-- Register : SI is changed

qet adr proc near

pop si ;get Address of GOT from Stack
;jump to actual Routine jmp short movel

get_adr endp

;-- CALC_ADR:
;-- Input
;--
;-- Output
;--
;-- Register

calc adr proc

mov
mov
shr
jne

or

under lmb:shl
add
jnc

inc

no_more: ret

calc adr endp

calculates the 24 bit (physical) Address --------------
AX:BX ~ Buffer address to be converted
Zero Flag ~ 1 : Buffer address beyond 1 MB
DL ~ HI-Byte of Buffer address (bit 16-23)
BX ~ Lo-Word of Buffer address (bit 0-15)
AX, BX, DL, CL and FLAGS are changed

near

dl,ah
cl,4
dl,cl
under lmb

dl,OlOh

ax, cl
ax, bx
no more

dl

;Hi-Byte of the segment address to DL
;move Hi-Nibble of the segment
;address to the Lo-Nibble
;test if beyond 1 MB

;is beyond 1 MB

;segment address times 16
;add Offset address
;test if excess

;yes

;back to caller

;==

code ends
end

The INLINE command, not DATA statements, integrate the MOVE routine into
the following Pascal program.

Pascal listing: MOVEP.PAS

{***}
(* MOVEP *}
{*---*}
{ * Task : With the help of a procedure, Data are *}
{* copied in RAM below and above 1 MB *}
{*---*}
{ * Author MICHAEL TISCHER *}
{* developed on 8/8/87 *}
(* last Update 6/8/8 9 *}

{*---*}
{ * Info This program runs only on ATs and *}
{ * only if RAM beyond 1 MB * J

345

7. The BIOS PC System Programming

346

(* is available *)
{***}

program MOVEP;

Uses crt, Dos; {add Crt and Dos units}

var Keypress : char;

{***}
(* GETPAGE: returns the segment address of the current display page *}
(* Input : none *}
{ * Output : the segment address of the current display page *}

{***}

function GetPage : Longint;

var Regs : Registers; (Processor registers for interrupt calls}

begin
Regs.ah := 15;
intr($10, Regs};
if Regs.al = 7 then GetPage := $8000

else GetPage := $8800;
end;

Function number
(Call BIOS video interrupt

(Monochrome card
(Color card

{**}
(* MOVE: moves memory areas *}
(* Input : see below *}
(* Output : none *}
(* Info: Direction: 0 = from below 1 MB--> to below 1 MB *}
(* 1 from below 1 MB--> to above 1 MB *}
(* 2 from above 1 MB--> to below 1 MB *}
(* 3 from above 1 MB--> to above 1 MB *}
{* Addresses above the lMB boundary are given relative *}
{* to this value *}
{**}

{$F+}
procedure HiMove(StartSeg,

StartOfs,
Destseg,
DestOfs,

begin

Size,
Direction integer);

{ Segment address of the start buffer
{ Off set address of the start buffer

{ Segment address of destination buffer
{ Off set address of destination buffer

(Number of words to be copied
{ Direction in which to copy

inline (
$8B/$7E/$10/$8B/$76/$0E/$8B/$46/$0C/$8E/$C0/$8B/$5E/$0A/
$8B/$46/$08/$8B/$4E/$06/$8A/$E9/$55/$E8/$5E/$00/$00/$00/
$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/
$FF/$FF/$00/$00/$10/$92/$00/$00/$FF/$FF/$00/$00/$00/$92/
$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/
$00/$00/$00/$00/SS0/$8C/$CO/$F6/SC5/$01/$E8/$28/$00/$2E/
$88/$56/$1C/$2E/$89/$46/$1A/$8B/$C7/$8B/$DE/$F6/$C5/$02/
$E8/$16/$00/S2E/$88/$56/$14/$2E/$89/$46/$12/$B4/$87/$0E/
$07/$59/$8B/$F5/$CD/$15/$EB/$17/$5D/$EB/$CF/$8A/$D4/$Bl/
$04/$D2/$EA/$75/$03/$80/$CA/$10/$D3/$E0/$03/$C3/$73/$02/
$FE/$C2/$C3/$5D

};

end;

{***}
(* MAIN PROGRAM *}
{***}

begin
clrscr; Clear Screen }
writeln('MOVEP (c) 1987 by Michael Tischer'};
writeln(f13t10'This Program uses Function 87(h} of •+

Abacus 7.10 The Cassette Interrupt

'Interrupt lS(h) to move blocks of storage ');
writeln('between the •normal" RAM and the RAM beyond the 1 Mega-'+

'Byte storage boundary');
if mern[$FOOO:$FFFE] <> $FC then { test if computer is an AT
begin

writeln(1 Since this computer is not an AT, •+
'but a PC or');

writeln('an XT, and these can not have storage •+
'beyond the 1 MB boundary,');

writeln('this program can not execute on your PC! ');
writeln('Sorry •••• ');

end
else

begit1
writeln('First this display page is moved immediately '+

'beyond the 1 MB storage ');
writeln('boundary. The screen is then cleared. •+

'After a key has been activated, ');
writeln('the old display page is restored.');
writeln(' 'fl3t10'Please activate a key now to •+

•start the program ••• ');
repeat until keypressed;
Keypress :- ReadKey;
HiMove(GetPage,$0000,$0000,$0000,$2000,$1);
clrscr;

Wait for a key
(Read key

Copy video RAM
{ Clear screen

writeln('Please press a key ••• ');
Keypress:- ReadKey;
HiMove($0000,$0000,GetPage,$0000,$2000,$2);
gotoxy(l,15);

{ Read key
Restore video RAM

writeln('That's All!');
end;

end.

For the Pascal programmers interested in assembly language, the assembler listing
of the MOVE function appears here.

Assembler listing: MOVEPA.ASM

;***;
;* M 0 VE P A *;
;•---*;
;* Task copies Data between the RAM below 1 MB and *;
;* above 1 MB *;
;* CAUTION! This is the Version for linking *;
;* in a Pascal Program with INLINE- *;
;* cormnands *;
;*---*;
•*
' ;*
;*

Author
developed on :
last Update

MICHAEL TISCHER
6.8.87
6.8.89

*;
*;
*;

;*---*;
; * assembly MASM MOVEPA; *;
; * LINK MOVEPA; *;
, convert to INLINEs and add to Turbo Pascal *;
;***;

;== Code-segment ==-========-=--------=-=-=--===---==-==------========-

code segment para 'CODE' ;Definition of the CODE-segment

org lOOh ;it begins at Address lOO(h)
;directly behind the PSP

assume cs:cade, ds:code, es:code, ss:code

;~ Program -=-=----=-=-=-=-=-==-=-=-=======================-====~~~=

;--Call: HiMoves(StartSeg,

347

7. TheBIOS PC System Programming

348

;-- StartOfs,
;-- DestSeg,
;-- DestOfs,
;-- NumWords,
;-- Direction: word);

This routine is designed as a FAR call model

move pa

sfrarne
bptr
ret_adr
dire ctn
numwords
destofs
destseg
startofs
startseg
sfrarne

frame

proc near

st rue
dw
dd ?
dw
dw
dw
dw
dw
dw
ends

;Access structure on stack
;Taken by BP
;Return address (FAR)
;Copy direction
;Number of Words being copied
;Destination buffer's offset address
;Destination buffer's segment address
;Starting buffer's offset address
;Starting buffer's segment address
;End of structure

equ [bp - bptr] ;For stack addressing

push bp
mov bp,sp

;Store BP on the Stack
;Move SP to BP

mov di,frame.startseg
mov si,frarne.startofs
mov ax,frame.destseg
rnov es,ax
rnov bx,frarne.destseg
rnov ax,frame.numwords
rnov cx,frame.directn
mov ch,cl
push bp
call getgdt

;Get source segment from stack
;Get source offset from stack
;Get destination segment from stack
;and move to ES
;Get destination offset from stack
;Get numwords from stack
;Get direction from stack
;and send to CH
;Mark BP
;Determine address of GDT

Variables and Data of the MOVE-Function

GDT

sa lo
sa hi

equ this word

THIS IS THE GDT (GLOBAL DESCRIPTOR TABLE) ---------------------
dw 4 dup (?) ;segment Desc. for Dummy-segment
;-- this segment Descriptor describes the GDT itself -------
dw 4 dup (?)

;-- segment Descriptor of the Source-Area -------------------
dw Offffh ;segment length 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db OlOh ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility Word for 80386
;-- segment Descriptor of the Destination-Area --------------
dw Offffh ;segment length = 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db (?) ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility Word for 80386
;-- this segment Descriptor describes the BIOS-Code-segment
dw 4 dup (?)
;-- this segment Descriptor describes the Stacksegment -----
dw 4 dup (?)

;-- END OF THE GDT --

;-- MOVE: Moves Data between memory above and below 1 MB -------------
;-- Input DI:SI = Source address (if above 1 MB as Offset to 1 MB)
;-- ES:BX =Dest. address (if above 1 MB as Offset to 1 MB)
;-- CH =move ••• from--> to
;-- OOb from below 1 MB --> to below 1 MB
;-- Olb = from below 1 MB --> to above 1 MB

Abacus 7.10 The Cassette Interrupt

;-- lOb from above 1 MB --> to below 1 MB
;-- --> to above 1 MB
;--

llb = from above 1 MB
AX Number of words to be movep (max. OBOOOh)

;--
;--

Output Carry-Flag = 1 : Error
Register : AX, BX, DL, CL, SI, ES and FLAG are changed
Info : This function should not be used to move RAM below

1-MB boundary
the

move: push ax ;Store number of words on the Stack
mov ax, es ;Destination segment address to AX
test ch,1 ;is destination above 1 MB?
call calc adr ;form 24 bit Address
mov cs: [bp+28 J, dl ;store result
mov cs: [bp+26],ax
mov ax, di ;Source segment address to AX
mov bx,si ; Source Offset address to BX
test ch, 2 ;is Source above 1 MB?
call calc adr ;form 24 bit Address
mov cs: [bp+20 J, dl ;store result
mov cs: [bp+lB] ,ax
mov ah,087h ;load Parameter for function call
push cs
pop es ;set ES to CS
pop ex ;Get number of Words from Stack
mov si,bp ;load Offset address of GDT
int 15h ;call RAM moving function
jmp short ende ;back to Turbo

move pa endp

;-- GETGDT: Get Address of the GDT and jump to MOVE -------------------
;-- Input : none

Output : CS:BP = Address of the GDT
Register : only BP is changed

;-- Info : this Routine can only be used
of this Program

in the environment

getgdt proc near

pop bp
jmp short move

getgdt endp

;Get Address of GDT from the Stack
;Jump to MOVE-Routine

, CALC_ADR: calculates 24 bit (physical) Address --------------------
;-- Input : AX:BX = Buffer address to be converted
;-- Zero Flag = 1 : Buffer address beyond 1 MB
;-- Output DL = HI-Byte of the Buffer address (bit 16-23)

BX = Lo-Word of the Buffer address (bit 0-15)
; -- Register

calc adr proc

mov
mov
shr
jne

or

under_lmb:shl
add
jnc

inc

no_more: ret

calc adr endp

AX, BX, DL, CL and FLAGS are changed

near

dl,ah
cl,4
dl,cl
under_lmb

dl,OlOh

ax, cl
ax, bx
no more

dl

;Hi-Byte of segment address to DL
;shift Hi-Nibble of segment
;address into Lo-Nibble
;test if above 1 MB

;is above 1 MB

;segment address times 16
;add Offset address to it
;test if overflow

;yes

; back to caller

349

7. The BIOS PC System Programming

ende label near
pop bp

;Code stops here
;Restore BP from atack

;== End ===

code ends ;End of the CODE segment
end movepa ;End of the assembler program

The C program differs from the BASIC and Pascal programs in that the MOVE
function is also present as an assembler routine, but excluded from the C program
listing. First the MOVE assembler program assembles, then the C program is
compiled. You then merge the two programs using the linker. For this reason the
listing of the C program follows with the source listing of the corresponding
assembler function.

C listing: MOVEC.C

350

/***/
/* M 0 VE C */
/*---*/
/* Task: integrates an Assembler-Routine in c, which can */
I* move memory blocks beyond the 1 MB boundary •I
/*---•/
I* Author MICHAEL TISCHER *I
I* developed on : 8.13.87 */
I* last Update : 9.21.87 */

!*---•/
I* (MICROSOFT C) */
I* Creation MSC MOVEC; *I
I* LINK MOVEC MOVECA PEPO; */
I* cau MOVEC • I

!*---•/
I* (BORLAND TURBO C) *I
I* Creation: with Project-File with the following content: •/
/* movec */
I* moveca.obj •I
/***/

#include <dos.h>
#include <io.h>
#include <conio.h>

extern void AdMove();
extern int PeekB();

/* include Header-Files */

/* ADMOVE must be linked */
I* PEEKB must be linked */

/***/
/* GETPAGE; returns the Address of the current display page
I* Input : none
/* Output : see below

*I
*I
*/

/***/

unsigned int GetPAge()

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah = 15; /* Function number to get Video parameter */
int86(0x10, &Register, &Register); /* Call Interrupt lO(h) */
return((Register.h.al == 7) ? OxBOOO : OxB800);

l

/***/
/* CLS Clear Screen
I* Input none
/* output none

*/
*I
*I

Abacus 7.10 The Cassette Interrupt

/***/

void Cls()

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah = 6;
Register.h.al = O;
Register.h.bh - 7;
Register.x.cx - O;
Register.h.dh = 24;

I* Function number for Scroll-UP */
/* 0 is for clear *I

I* white characters on black background */
I* upper left display corner */
/* Coordinates of the lower */

Register.h.dl - 79;
lnt86(0xl0, &Register, &Register);

}

I* right display corner */
I* Call BIOS-Video-Interrupt */

/***/
/** MAIN PROGRAM **/
/***/

void main()

printf ("\nMOVE (c) 1987 by Michael Tischer\n\n");
printf ("This Program uses the Function 87 (h) of Interrupt 15 (h) ");
printf (" to move memory blocks\nbetween the \"normal\" RAM and the ");
printf ("RAM beyond the 1 Mega-Byte storage limit. \n");
if (PeekB(OxFOOO, OxFFFE) !~ OxFC) /* test if AT */

{

printf ("Since this PC is not an AT, but a ");
printf ("PC or XT\nand this PC can not have RAM ");
printf ("beyond the 1 MB storage limit, ");
printf("this program can not be executed! Sorr! ... \n\n");

}
else

}

printf ("After starting the program by pressing a key ");
printf ("the current display\n content is ");
printf("copied directly beyond the 1 MB-limit\n ");
printf ("and then the display is cleared. If another key is ");
printf("\npressed ,the old display is again ");
printf("restored.\n\nPlease press a key to");
printf("start the Program ... ");
getch(); /*wait for a key*/

/*-- Copy current Video Rrm beyond 1 MB --------------------------*/
AdMove(GetPage(), OxOOOO, OxOOOO, OxOOOO, Ox2000, 1);

Cls ();
printf ("\nPlease press a key ... ");
getch ();

/* Clear Screen */

/* get a key */

/*-- Restore Video-RAM ---*/
AdMove(OxOOOO, OxOOOO, GetPage(), OxOOOO, Ox2000, 2);
printf("\n\nThat's It!\n");

Assembler listing: MOVECA.ASM

;***;
;* M 0 V E CA *;

;*---*;
; • Task : Makes the Functions for moving of *;
; * Storage blocks beyond the lMB memory limit *;
; * available for inclusion in c *;
;•---*;
;• Author : MICHAEL TISCHER *;

351

7. The BIOS PC System Programming

352

;*
;•

developed on : 8.13.87
last Update : 9.21.87

*;
*;

;*---*;
; * assembly : MASM MOVECA; *;
;***;

IIOROUP group _text ;Grouping of Program-segments
DGROUP group const,_bss, _data ;Grouping of Data-segments

CONST
CONST

BSS
_BSS

_DATA

GOT

sa lo
sa hi

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

public AdMove ;Functions become accessible to other
;programs

segment word public 'CONST'
ends

segment word public 'BSS'
ends

segment word public 'DATA'

equ this word

dw dup (?)
dw dup (?)

;this segment accepts all
;readable Constants

;this segment accepts not all
;initialized static Variables

;all initialized global and
;static Variables are stored in this
;segment

;the Global Descriptor Table

;segment Desc. for Dummy-segment

;-- segment Descriptors of the Source-Area ---------------------
dw Offffh ; segment length = 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db OlOh ;Hi-Byte of the 24 bit-Address
db 10010010b ; Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility word for 80386

;-- segment Descriptors of the Destination-Area -----------------
dw Offffh ; segment length = 64 KB
dw (?) ;Lo-Word .of the 24-bit-Address
db (?) ;Hi-Byte of the 24-bit-Address
db 10010010b ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility word for 80386

dw
dw

dup (?)

dup (?)
;segment Desc. BIOS-Code-segment
;segment Descriptors Stack-segment

DATA ends

TEXT segment byte public 'CODE' ;the Program segment

;- ADMOVE: Copy Storage Blocks beyond the lMB limit ------------------
;-Call of C: AdMove(Startsegment, StartOffset, Destsegment,

DestOffset, Size, Direction);
;-- Info : - for DIRECTION the following Codes are accepted:
;-- 0 from below 1 MB --> to below 1 MB
;-- 1 from below 1 MB --> to above 1 MB
;-- 2 from above 1 MB --> to below 1 MB
;-- 3 = from above 1 MB --> to above 1 MB
;-- - the number relates to words, not Bytes
;-- and can not be larger than 8000(h)
;-- - for moving of RAM below the 1-MB border
;-- the Functions MOVEDATA or MEMCPY should
;-- be called

AdMove proc near

push bp
mov bp,sp
push si

;store BP on the Stack
;move SP to BP
;c expects unchanged SI

Abacus 7.10 The Cassette interrupt

mov ch, [bp+l4]
mov ax, [bp+B]
mov bx, [bp+lO]
test ch,1
call calc adr
mov da_hl,dl
mov da_lo,ax
mov ax, [bp+4]
mov bx, [bp+6]
test ch,2
call calc adr
mov sa_hi,dl
mov sa lo,ax
mov ah,087h
push ds
pop es
mov ex, [bp+l2]
mov si,offset DGROUP:GDT
int 15h

pop si
mov sp,bp
pop bp
ret

;move Direction to CH
;Destination segment address to AX
;Destination Offset address to BX
;is Destination beyond 1 MB?
;form 24 bit Address
; store result

;Source segment address to AX
;Source Offset address to BX
;is Source beyond 1 MB?
;form 24 bit Address
; store result

;Parameter for the Function call
;load
;st ES to DS
;get number of Words
;load Offset address of GDT
;call RAM moving functions

;restore old SI from Stack
;restore Stackpointer
;get BP from Stack
;Return to calling C-Program

AdMove endp

, CALC_ADR: calculates 24 bit (physical) Address -------------------
AX: BX = Buffer address to be converted , Input

;--
;-- Output

Zero Flag = 1 : Buffer address beyond 1 MB
DL = HI-Byte of the Buffer address (bit 16-23)
BX = Lo-Word of the Buffer address (bit 0-15)

AX, BX, DL, CL and FLAGS are changed Register

calc adr proc

mov
mov
shr
jne

or

under lmb:shl

no more:

calc adr

text

add
jnc

inc

ret

endp

ends
end

near

dl,ah
cl,4
dl,cl
under lmb

dl,OlOh

ax, cl
ax, bx
no more

dl

;Hi-Byte of segment address to DL
;move Hi-Nibble of segment address
;into the Lo-Nibble
;test if beyond 1 MB

;beyond 1 MB

;segment address times 16
;add Offset address
;test if overflow

;yes

;back to caller

;End of the Program-segment
;End of the Assembler-Source

353

7. TheBIOS PC System Programming

Here is the assembler program. No additional program code is required for
integrating the MOVE function because it is built-in.

Assembler listing: MOVEA.ASM

354

;***;
;* MOVE A *;

;*---*;
;* Task : copies data between RAM below 1 MB and *;
;* above 1 MB *;

;•---*;
;*
;*
;*

Author
developed on
last Update

MICHAEL TISCHER
6.8.87

9. 21. 87

..
I' ' •;

•;
;•---*;
;*
;*
;*

assembly MASM MOVEA;
LINK MOVEA;
EXE2BIN MOVEA MOVEA.CCM

•;
*;
*;

;•---•;
;* Call : MOVEA *;
;***;

;== BIOS-segment ==

bios segment at OFOOOh ;used for Addressing of the
;Device-Codes

;Address of the Device-Codes in BIOS
gercode

org OFFFEh
equ this byte

bios ends ;End of the BIOS-segments

;== Code-segment ==

code segment para 'CODE'

org lOOh

;Definition of the CODE-segment

;it begins at Address lOO(h)
;directly after the PSP

assume cs:code, ds:code, es:bios, ss:code

;== Program ===

movea proc near

isat:

;-- Output Initiation Message -----------------------------------

mov dx,offset initm
mov ah,9

;Offset address of the Init message
;output Function number for String
;Call DOS-Interrupt

mov
jmp

int 21h

mov ax,OFOOOh ;segment address of BIOS
mov es,ax ;to ES
cmp es:gercode,OFCh ;is the device an AT
je isat ;YES --> continue to execute Program

Device is PC or XT, Program doesn't run --------------------

dx,offset sorryrn
short pcxt

;Offset address of Text
;Output message and terminate program

;-- User must activate a key to start the program

mov dx,offset dom
mov ah,9
int 21h

xor ah,ah

;Offset address of the Text
;output function number for String
;call DOS-Interrupt

;read a character from the keyboard

Abacus 7.10 The Cassette Interrupt

error:
pcxt:

move a

int 16h ;call BIOS-Keyboard-Interrupt

Move Video-RAM to 1 MB

call getvseg ;Get segment address of Video-RAM
mov di, ax ;and move to DI
xor si,si ;copy starting at Offset address 0

xor bx, bx ;copy after lMB + 0000:0000
mov es,bx
mov ch,1 ;from below 1 MB to above 1 MB
mov ax,2000 ;move 2000
call move ;Words
jc fehler ;on error terminate

;-- Fill Video-RAM with characters --------------------------

call getvseg ;Get segment address of the Video-RAM
mov es, ax ;and move to ES
xor di, di ;start at Offset address 0
mov cx,2000 ; fill the complete Video-RAM with
mov ax,87FEh ;blinking Block-Character
rep stosw

;-- User must activate a key --------------------------------

mov dx,offset usenn
mov ah,9
int 21h

xor ah,ah
int 16h

;Offset address of the Text
;output function number for String
;call DOS-Interrupt

;read a character from the keyboard
;call BIOS-Keyboard-Interrupt

;-- Restore Video-RAM again ---------------------------------

xor di, di ; restore 1 MB + 0000:0000
xor si,si
xor bx, bx
mov ch,lOb ; from beyond 1 MB to below 1 MB
mov ax, 2000 ;move 2000
call move ;Words
jc fehler ;terminate on error

mov ax,4COOh ;terminate Program with call of a DOS
int 21h ;function on return of Error-Code 0

mov dx,offset errm ;Offset address of error message
mov ah,9 ;output function number for String
int 21h ;call DOS-Interrupt
mov ax,4COlh ;terminate Program with call of a DOS
int 21h ;function on return of Error-Code 1

endp

;-- GETVSEG
;-- Input
;-- Output

returns the segment address of the Video-RAM -
none
AX ~ segment address of the Video-RAM
AX, BH and FLAGS are changed ; -- Register

getvseg proc near

mov ah,OFH ;get function number for Video
int lOh ;call BIOS-Video-Interrupt
cmp al,7 ;is a Mono-Card installed?
jne col video ;NO --> Color-Card

mov ax,OBOOOh ;segment addr. of the mono Video-RAM
ret ;back to caller

col video: mov ax,OB800h ; segment addr. of color Video-RAM

355

7. TheB/OS PC System Programming

356

ret ;back to caller

getvseg endp

;-- MOVE: Moves Data between Storage above and below 1 MB -

;--
;--
;--
;--
;--
;--
;--
;--
;--
;--
;--

move

Input
ES:BX
CH

: DI:SI - Sourceaddress (if above 1 MB as Offset to
Dest address (if above 1 MB as Offset to 1 MB)

=move ... from--> to
OOb from below 1 MB --> to below 1 MB
Olb from below 1 MB --> to above 1 MB
lOb - from above 1 MB --> to below 1 MB
llb from above 1 MB --> to above 1 MB

AX - Number of words to be moved (max. OBOOOh)
Output : Carry-Flag = 1 : Error
Register AX, BX, DL, CL, SI, ES and FLAG are changed
Info this function should not be used for moving

from RAM below the 1 MB limit

proc near

1 MB)

push ax
rnov ax,es
test ch, 1
call calc adr
mov da_hi, dl

;record number of Words on the Stack
;Destination segment address to AX
;is Destination above 1 MB?

mov
mov
mov
test
call
mov
mov
mov
push
pop
pop
mov
int
ret

da lo,ax
ax-;-di
bx,si
ch,2
calc adr
sa_hl,dl
sa lo,ax
ah-;-087h
ds
es
ex
si, offset GDT
lSh

;form 24 bit Address
; store result

;Source segment address to AX
;Source Offset address to BX
;is Source above 1 MB?
;form 24 bit Address
;store result

;Parameter for the Function call
;load
;set ES to DS
;read number of Words from Stack
;load Offset address of GDT
;call RAM move function
;back to caller

;-- Variables and Data of the MOVE-Function ---------------------------

GDT equ this word

da lo
da hi

move

;-- THIS IS THE GDT (GLOBAL DESCRIPTOR TABLE) --------------
dw 4 dup (?) ;segment Descs. for Dummy-segment
;-- this segment Descriptor describes the GDT itself -------
dw 4 dup (?)
;-- segment Descriptor of
dw Of fffh
dw (?)
db OlOh
db 10010010b

dw OOOOOh
;-- segment Descriptor of
dw Offffh
dw (?)
db (?)
db 10010010b

dw OOOOOh

the Source-Area ------------------
;segment length = 64 KB
;Lo-Word of the 24 bit-Address
;Hi-Byte of the 24 bit-Address
;Data segment in storage with
;highest Priority, Writeable
;Compatibility Word for 80386

the Destination-Area -------------
;segment length = 64 KB
;Lo-Word of the 24 bit-Address
;Hi-Byte of the 24 bit-Address
;Data segment in storage with
;highest Priority, Writeable

;-- this segment Descriptor
dw 4 dup (?)

;compatibility Word for 80386
describes the BIOS-Code-segment

;-- this segment Descriptor describes the Stack segment ----
dw 4 dup (?)

;-- END OF THE GDT --

endp

Abacus 7.10 The Cassette Interrupt

;-- CALC ADR calculates 24 bit (physical) Address ------------------
AX:BX = Buffer address to be converted ;-- Input

;-- Zero Flag = 1 : Buffer address above 1 MB

'
Output DL = HI-Byte of the Buffer address (bit 16-23)

BX - Lo-Word of the Buffer address (bit 0-15)
AX, BX, DL, CL and FLAGS are changed ' ;-- Register

calc adr proc

mov
mov
shr
jne

or

near

dl,ah
cl,4
dl,cl
under 1mh

~

dl,OlOh

;Hi-Byte of the segment address to DL
;Hi-Nibble of the segment address
;shifted to Lo-Nibble
;test if above 1 MB

; lies above 1 MB

under lmb:shl ax, cl ;segment address times 16
;add Offset address add ax, bx

jnc no more ;test for overflow

inc dl ;yes

no_more: ret ;back to caller

calc adr endp

initm db 13, 10, "MOVE (c) 1987 by Michael Tischer", 13, 10, 13, 10
db "This Program uses the Function 87(h) of Interrupt"
db "lS(h) to copy memory blocks",13,10,"between 'normal' 11

db "RAM and RAM above the 1-Megabyte boundary". 11 , 13, 10, 11 $ 11

dom db "The Program copies first the current display "

sorrym

use rm

er rm

db "content directly", 13, 10, "after the 1-MB-boundary and 11

db "the fills the screen with characters.", 13, 10
db "After a key has been activated, the old 11

db "display content 11 ,13,10,"is restored and the Pro"
db "gram terminated. 11 ,13,10,"Please press a key, to"
db "start the Program ... $"

db "Since this computer is not an AT, 11

db "but a PC or11 I 13, 10 I "XT, and these n

db "PCs can not have storage beyond the 1-MB limit,"
db 13,10, 11 this program can not be started! "
db "Sorry .. . 11 , 13, 10, "$"

db 13,10,"
db "key $"

Please press a

db "WARNING Error on access to RAM above 1 MB"
db 13,10,"$"

;== End ===

code ends ;End of the CODE-segment
end movea ;End of the Assembler-Program.

357

7. TheBJOS PC System Programming

7 .11 Accessing the Keyboard from the BIOS

Interrupt 16H provides three functions to read the keyboard and keyboard status.
The BIOS keyboard functions are very limited: No BIOS functions exist for
removing characters from the keyboard buffer or renaming keys. DOS functions
can perform these operations.

BIOS-proof keys

Some key combinations cannot be read by BIOS as key codes because they execute
commands. Activating the <PrtSc> or <Print> key calls BIOS interrupt SH. This
starts a routine which sends the current screen display to a printer, producing a
hardcopy.

The <Ctrl><Num Lock> keys stop the complete system until the user presses
another key. The keyboard buffer ignores the <Ctrl><Num Lock> keys and the
subsequently pressed key, so programs cannot read these keys.

Pressing the <Ctrl><Break> key combination calls interrupt lBH. Normally the
current program stops and returns to DOS. To prevent this, this interrupt can be
directed to a routine within the application program which continues program
execution if the routine consists of an IRET assembly language instruction only.

ATs and a few advanced PC/XTs have the <Sys Req> key. Its activation calls
interrupt ISH by passing the value 8500H to the AX register. When the user
releases the key, the AX register then receives the value 8501H. The value 85H in
the AH register represents the function number of interrupt ISH. After starting the
system, function 85H of the BIOS interrupt ISH consists only of an IRET
instruction; pressing the <Sys Req> key has no visible result.

Control codes

358

Most people know that any ASCII code can be entered from the keyboard using the
<Alt> key and the keys of the numeric keypad. Few users know about character
entry with the help of the <Ctrl> key. When used in connection with other keys,
this key can enter ASCII codes smaller than code number 32. The following figure
shows which keys can be accessed.

Abacus 7.11 Accessing the Keyboard from the BIOS

!_ec j_yrt_l)_ol l!_eystro~es Dec _iyf!!ol _lieystr~es
16 Ctrl P

9 Ctrl 2
CHuD 17 .. Ctrl D

1 0 Ctrl A 18 i Ctrl R

2 - Ctrl B 1' !I Ctrl S

l • Ctrl C 29 <ff Ctr I T

4 • Ctrl D
21 ~ Ctr I u

5 + Ctrl E
22 - Ctr I u

6 • Ctrl F
23 l Ctrl M

7 -• Ctrl 6 -
BEL 24 t Ctrl X rDCtrl H, Backspac:e, 25 ~ Ctrl V

Shift-
Backspace 26 - Ctrl Z

BS

' (\ Ctrl I EDF
~ 27 Ctrl C, 1--TAB-1 Esc,Shlft-

19 Ctrl J, - Esc,Ctrl-e Ctr I Esc
ESC

LE 28 L_ Ctr I \
11 cJ Ctrl K

2, Ctrl J -12 Q Ctrl L
39 ... Ctrl 6

Ff
13

J'
Ctrl M,__i, 31

T
Ctrl -

Shift ---'
32 Space Space,

CR Shift-
u ~ Ctrl N Space,

Ctr I-Space,
15 {) Ctrl 0 Alt-Space

Character input with the <Ctrl> key

359

7. TheB/OS PC System Programming

Function O: Read keyboard

ASCII

Interrupt 16H normally receives a call when a program expects user input of one or
more characters. If a character was already entered before the function call, the
keyboard buffer empties this character and passes it to the calling program. If there
is no character in the keyboard buffer, function 0 waits until a character has been
input and then returns to the calling program. The caller can determine the
character or activate a key from the contents of the AL and the AH registers.

If the AL register contains a value other than 0, it contains the ASCII code of the
character. The AH register contains the scan code of the active key. The code in the
AL register corresponds to the ASCII codes for character out.put on the screen.
Some differences occur in the control keys:

Code Ke_y_(s)
8 <Back~ce>

9 <Tab>
10 <Ctrl><Return>
13 <Return>
27 <Esc>

Scan codes

The scan code in the AH register indicates the number of the active key, where the
keys on the keyboard are numbered starting with 0. Since PC, XT and AT
keyboards differ, this is unimportant for most programs. Scan codes of the various
keyboards can be found in the Appendices of this book.

Extended key codes

360

If the AL register contains the value 0 after the call, the AH register indicates an
extended keyboard code. The difference between the ASCII code and the extended
keyboard code lies in the fact that certain keys (e.g., the cursor keys) cannot fit
within the PC's 256-character set. The following table provides an overview of
extended keyboard codes:

Code(s) Key(s)
15 <Shift><Tab>
16-25 <Alt><Q>,<W>,<E>,<R>,<T>,<Y>,<U>,<I>,<0>,<P>

30-38 <Alt><A>,<S>,<D>,<F>,<G>,<H>,<J>,<K>,<L>

44-50 <Alt><Z>,<X>,<C> <V>_L,<N>,<M>
59-68 <Fl>-<FlO>
71 <Home>
72 <Cursor ~
73 <P~e ~

75 <Cursor Left>
77 <Cursor Right>

Abacus 7.11 Accessing the Keyboard from the BIOS

Code(s) Ke_y_(s)
79 <End>
80 <Cursor Down>
81 <Pa_g_e Down>
82 <Insert>
83 <Delete>
84-93 <Shift><Fl>-<FlO>
94-103 <Ctrl><Fl>-<FlO>
104-113 <Alt><Fl>-<FlO>
115 <Ctrl><Cursor Left>
116 <Ctrl><Cursor Ri_g_ht>
117 <Ctrl><End>
118 <Ctrl><P~e Down>
119 <Ctrl><Home>
120-131 <Alt><l> <2> <3> <4> <5>..L<6>..L<1>..L<8>..L<9>..L<O>
132 <Ctrl><Pa_g_e U...£.>

Key combinations not contained in this table cannot be sensed using the BIOS
keyboard functions, since they don't generate keyboard codes.

Function 1: Read keyboard

Function 1 also reads the keyboard. Unlike function 0, function 1 leaves the
preceding character in the keyboard buffer. Repeated calls of function 1 or function
0 read the keyboard again. Place the value 1 in the AH register to call function 1.
In contrast to function 0, function 1 immediately infonns the calling program with
the zero flag after the function call if a character is available or not. If the zero flag
equals 1, no character was available. If the zero flag resets, the AL and the AH
registers contain infonnation about the activated key. As in function 0, the AL
register contains the value 0 if the user activated an extended key, and a value
unequal to 0 if the user pressed a "nonnal" key. The AH register contains the scan
code of nonnal keys; extended keys place their codes in the AH register.

Function 2: Read control keys

Function 2 has a completely different task. It reads the status of certain control
keys and conditions (e.g., <Insert>). Place the number 2 in the AH register to call
the function. The keyboard status can be found in the AL register after the function
call.

361

7. TheBIOS PC System Programming

7 65 4 3 21 0

I I I 1- 1 :R!_g_ht SHIFT key pressed

l L 1:Left SHIFT key pressed

1 :CTRL key pressed
1 =ALT key pressed

1 :SCROLL LOCK on

1 :NUM LOCK on

1:CAPS LOCK on
1:1NSERT on

Keyboard status byte

Demonstration programs

The following programs demonstrate the various functions of BIOS keyboard
interrupts as presented here. The four programs can be divided into two groups.
The frrst three programs are written in the higher level languages used throughout
this book. They call the various functions of BIOS keyboard interrupts for their
own uses. The fourth program is an assembler program. It modifies the BIOS
keyboard interrupt functions and processing, and acts as a resident program which
can be accessed at a keypress.

Checking key status

362

All three higher level programs make a subroutine or a function available for
reading characters from the keyboard. This alone is nothing special, since these
languages have their own instructions that serve the same purposes. The important
feature of the function is that it accepts other jobs in addition to the original task
of reading characters. It displays the status of the keyboard functions <Insert>,
<Caps Lock> and <Num Lock> in the upper right hand comer of the screen. This
is especially useful for XT and PC owners, since most keyboards don't indicate the
key status. AT keyboards and some XT keyboards provide light emitting diodes
(LED) which indicate the status of these keys. You never really know if the
<Insert> or <Caps Lock> mode is on or not.

Each program begins with a routine which reads the status of the keyboard
functions through function 2 of BIOS keyboard interrupt 16H. Since the program
only uses the <Insert>, <Caps Lock> and <Num Lock> modes, the program only
views the three highest level bits in the keyboard status byte. Based on this status
byte, a flag initializes for every keyboard function, which indicates the status of
one of these functions or modes within the program. It is reversed when compared
with the current mode. For example, if the <Insert> mode is switched off, the flag
applying to it changes to OFF. An explanation of this follows below.

Abacus 7.11 Accessing the Keyboard from the BIOS

Calling the interrupt function

After initializing the internal flags, the actual routine for keyboard reading can be
called. It also uses function 2 of the BIOS keyboard interrupt to read the keyboard
function status. It then compares the current status of each individual function with
the previous status stored in a flag. During its first call after the initialization
routine, it determines if the status of all three functions has changed since its
previous status. The change in status causes the routine to display the new status
on the screen

This explains the reason for the flag reversal in the initialization routine. It allows
display of the keyboard function status on the screen during the first call of the
keyboard routine, and not after it changed by pressing a key.

Now the routine can proceed to its actual task and read the keyboard. It uses
function 1 of the BIOS keyboard interrupt to detect whether a key is available in
the keyboard buffer of BIOS. If this is not the case, the program jumps to the
beginning of the routine and reads the keyboard function status again. This creates
a loop which runs until a keypress occurs. This loop ensures that any status
change is documented immediately on the screen.

Reading the keys

If a character appears in the BIOS keyboard buffer the loop terminates and BIOS
keyboard interrupt function 2 reads the key. The last step of this routine tests for
an extended key code. If this is the case, the program adds 256 to the code to signal
the calling routine that an extended keyboard code was received. Then control
returns to the calling routine.

This routine reads characters from the keyboard and displays them on the screen.
This process repeats until the user presses a certain key. If the user presses the
<Num Lock>, <Caps Lock> or <Insert> key, the screen immediately displays the
result.

A centralized keyboard routine as presented here can be used in other programs for
additional tasks. For example, with the help of this routine a macro conversion can
change one key into a string of characters. Another application could display help
text on the screen when the user presses a certain key. Lotus 1-2-3® and dBASE®
use this method for displaying help screens.

Note: A small problem occurs with keyboard flag output. Since displaying
keyboard flags on the screen changes the cursor's position,
subsequent screen output from the program occurs at different
locations than expected. These can disturb the screen display. To
prevent this, the keyboard routine must determine the current cursor
position before the keyboard flag display. Then the routine must
restore the cursor position to its old value after displaying keyboard
status. The problem of color is very similar. Here the flag output

363

7. The BIOS PC System Programming

assumes a certain color and the old color must be restored after the
output. The problem is that none of the three languages has a
command to determine the current color. In Pascal programs for
keyboard reading, only a special procedure can set the color by
recording the colors in a variable and setting it with a command.
With these variables the keyboard routine restores the current color
after display of the individual flags.

BASIC listing: KEYB.BAS

364

100 '**'
110 '* K E Y B *'
120 '*--··
130 .. Task makes a subroutine available which reads a character from the keyboard. The status of the control keys (INSERT, CAPS, NUM) are displayed ..

on the screen .. Author MICHAEL TISCHER developed on 7.22.87 last Update 9.21.87 ..

140
150
160
170
180
190
200
210
220 •

'**'

230 CLS : KEY OFF
240 PRINT"WARNING: This Program can only be started if GWBASIC was "
250 PRINT"started from the DOS level with <GWBASIC /m:60000>."
260 PRINT : PRINT"If this is not the case, please input <s> for Stop."
270 PRINT"Else press any key .•• ";
280 A$ = INKEY$: IF A$ •s• THEN END
290 IF A$ = "" THEN 280
300 GOSUB 60000 'install function for Interrupt call
310 CLS 'Clear Screen
320 PRINT"TAST (c) 1987 by Michael Tischer• : PRINT
330 PRINT" You can input some characters and change the status of the NUM,"
340 PRINT"CAPS and INSERT mode, where every change is documented in •
350 PRINT"the upper right corner of the display.•
360 PRINT"The input of <RETURN> terminates the Program ••• • : PRINT
370 PRINT"Your Input: •·
380 GOSUB 50000
390 GOSUB 51000
400 IF LEN (Z$)
410 PRINT Z$;

2 THEN 390

420 IF ASC(Z$) <> 13 THEN 390
430 PRINT
440 END
450 •

'initialize keyboard-Flags
•read a character
•on extended Code do nothing
•output characters
•on RETURN terminate

50000 '**'
50010 '* initialize keyboard-Flags ••
50020 ··--··
50030 Input: none
50040 Output: none *'
50050 Info the Variable Z\ is used as a Dunmy ..
50060 • • the Status of the keyboard Flags is stored in • •
50070 '* variables INSERT\, CAPS\ and NUM\
50080 '**'
50090 •
50100 FKT\=2 'get function number for keyboard status
50110 INR\=&H16 •call BIOS-keyboard-Interrupt 16(h)
50120 CALL IA (INR\, FKT\, FLAGS\, Z\, Z\, Z\, Z\, Z%, Z\, Z\, Z\, Z'l, Z\)
50130 IF FLAGS\ AND 128 THEN INSERT\ = 0 ELSE INSERT\ = -1
50140 IF FLAGS\ AND 64 THEN CAPS\ = 0 ELSE CAPS\ = -1
50150 IF FLAGS\ AND 32 THEN NUM\ = 0 ELSE NUM\ = -1
50160 RETURN 'back to caller
50170 •
51000 '***'

Abacus 7.11 Accessing the Keyboard from the BIOS

51010
51020
51030
51040
51050
51060
51070
51080
51090
51100
51110
51120
51130

'* get a character from the keyboard and maybe output
• * Flag-Status

'*---*'
Input: none
Output: Z$ =the character read
Info the Variable Z\ is used as Dummy

if Z$ is two character long, an extended
keyboard code was input. The first character of the*'
string ls in such a case the NUL-character,
and the second character indicates the Code of the * 1

extended key
'**'

51140 FKT\=2 'get function number for keyboard status
51150 INR%=&H16 'call BIOS-keyboard-Interrupt 16(h)
51160 CALL IA(INR\,FKT\,FLAGS%,Z%,Z%,Z\,Z%,Z%,Z%,Z%,Z%,Z\,Z\)
51170 IF INSERT\= ((FLAGS% AND 128) = 128) THEN 51230
51180 INSERT\ = NOT INSERT% 'Insert-Status has changed
51190 COLMN\ = 75 'Column for Insert-Text
51200 FLAG\ = INSERT% 'Status of Insert-Flags
51210 FTEXT$ = "INSERT" 'Flag-Text
51220 GOSU3 52000 •output Flag-Text
51230 IF CAPS\= ((FLAGS\ AND 64) = 64) THEN 51290
51240 CAPS\ - NOT CAPS% 'Caps-Status has changed
51250 COIMN\ = 69 'Column for Caps-Text
51260 FLAG\ = CAPS% 'Status of Caps-Flag
51270 FTEXT$ = " CAPS " 'Flag-Text
51280 GOSUB 52000 'output Flag-Text
51290 IF NUM\ = ((FLAGS\ AND 32) = 32) THEN 51350
51300 NUM% - NOT NUM\ 'Num-Status has changed
51310 COIMN\ = 66 'Column for Num-Text
51320 FLAG% = NUM% 'Status of Num-Flag
51330 FTEXT$ = "NUM" 'Flag-Text
51340 GOSUB 52000 'output Flag-Text
51350 FKT%=1 •test function number for characters
51360 INR%=&H16 'call BIOS-keyboard-Interrupt 16(h)
51370 CALL IA(INR%,FKT%,Z\,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,FLAGREG%)
51380 IF (FLAGREG% AND 64) = 64 THEN 51140'no key--> get Flags
51390 ZS = INKEY$
51400 RETURN 'back to caller
51410
52000 '**'
52010 •• Set Cursor Position
52020 1 *--*'
52030
52040

Input: FLAG% = Status of Flags either on or off
FTEXT$ = Flag-Text

52050 COLMN% = is the new column for Cursor
52060 CLINE\ " is the new line for Cursor
52070 Output: none
52080 Info : the Variable Z% is used as a Dummy
52090 '**'
52100 •
52110 CURCLINE% = CSRLIN-1
52120 CURCOIMN% = POS(0)-1
52130 LOCATE 1, COIMN%
52140 IF FLAG% THEN COLOR 0,7
52150 PRINT FTEXT$

'record current Cursor line
'record current Cursor column
•cursor position for Flag-Text

ELSE COLOR 0,0

52160 LOCATE CURCLINE%+1,CURCOIMN%+1 'set old Cursor position
52170 FKT%-2 'set function number for Cursor position
52180 INR%=&H10 'call BIOS-Video-Interrupt lO(h)
52190 SEITE% - 0 •set Cursor in display page 0
52200 CALL IA(INR%,FKT%,Z%,SEITE%,Z%,Z%,Z%,CURCLINE%, CURCOIMN%,Z%,Z%,Z%,Z\)
52210 COLOR 7,0
52220 RETURN 'back to caller
52230
60000 '*** 1

60010 '* initialize the Routine for Interrupt-call

60020 '*---*'
60030 Input: none
60040 '*Output: IA is the Start address of the Interrupt-Routine

365

7. The BIOS PC System Programming

60050 '***'
60060 •
60070 IA=60000!
60080 DEF SEG
60090 RESTORE 60130

•start address of the Routine in the BASIC-Segment
•set BASIC-Segment

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% NEXT 'poke Routine
60110 RETURN •back to caller
60120 •
60130 DATA 85, 139, 236, 30, 6, 139, 118, 30, 139, 4, 232, 140, 0, 139, 118
60140 DATA 12, 139, 60, 139, 118, 8, 139, 4, 61, 255, 255, 117, 2, 140, 216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

Pascal listing: KEYP .PAS

366

{***}
{* KEYP *)
{*---*)
{* Task makes a function available for reading a *I
{* character from the keyboard and outputting *I
{* the Status of the control keys (INSERT, *I
{* CAPS, NUM) on the display. *I

{*---*)
{* Author MICHAEL TISCHER *)
{* developed on 07/08/87 *I
{ * last Update 06/10/89 *I
{***}

program KEYP;

Uses Crt,Dos;

{$V-)

type FlagText string[6J;

canst FZ 1;
FS 65;
FlagFore O;
FlagBck 7;

{ Add Crt, Dos units

Suppresses string length check

used for passing the Flag-Name

Line in which the Flags are output
Column from which Flags are output

{ Foreground color of Flags
{ Background color of Flags

{** BIOS keyboard status bits *********************************}
ScrollLock bit)

{ NumLock bit I
{ CapsLock bit)

{ Insert bit)

SCRL 16;
NUML = 32;
CAPL = 64;
INS = 128;
{** Codes of some keys as presented by GETKEY *****************}

BEL 7; { Code for bell character
BS 8;
TAB 9;
LF 10;
CR 13;
ESC 27;
Fl 315;
F2 316;
F3 317;
F4 318;
F5 319;
F6 320;
F7 321;

Code for Backspace character
{ Code for Tab character

{ Code for Linefeed
{ Code for Return

{ Code for Escape character
{ Code for Fl key
{ Code for F2 key
{ Code for F3 key
{ Code for F4 key
{ Code for F5 key
{ Code for F6 key
{ Code for F7 key

Abacus 7.11 Accessing the Keyboard from the BIOS

F8 322;
F9 = 323;
FlO = 324;
CUP = 328;
CLEFT = 331;
CRIGHT = 333;
CDOWN 328;

var Insert,
Nurn,
Caps boolean;
ForeColor,
BckCclcr,
key : integer;

{ Code for F8 key
{ Code for F9 key

{ Code for FlO key
Code for Cursor up

Code for cursor left
Code for Cursor right

{ Code for Cursor down

Status of INSERT flag
(Status of NUM flag

(Status of CAPS flag
current foreground color
current background color

Code of key read

{***}
(* NEGFLAG: negate Flag and output Text *)
{* Input : s.u. *)
(* Output : the new Status of the Flags {true = on, false - off) *)
{***}

function NegFlag(Flag boolean; (the last Status of the Flags
FlagReg, (current Status of the Flag {0 = off)
Column, (Column for the name of the Flags
Cline integer; (Line for the Names of the Flags
Text FlagText) : boolean; Name of the Flags

var CurCline,
CurColumn

begin

integer;
current Line

current Col urnn

if {Flag and (FlagReg = 0)) or
{not(Flag) and (FlagReg <> 0)) then

(test if Status
(of the Flags has changed

(YES
{ record current Line
record current Column

Position for Flag-Name
(is Flag reset?

{ YES

begin
CurCline := WhereY;
CurColumn := WhereX;
gotoxy(Column, Cline);
if FlagReg = 0 then
begin

NegFlag := false;
text color (0);
textbackground(O);

end
else

begin
NegFlag:=true;
textcolor(FlagFore);
textbackground(FlagBck)

end;
write(Text);
gotoxy(CurColumn, CurCline);
textcolor(ForeColor);
textbackground(BckColor)

end
else

Neg Flag
end;

Flag

(Cursor to

Result of the function : Flag off
{ Foreground color is black
l Background color is black

{ Flag is now on I
Result of the function : flag on)

(Foreground color is FLAGFORE)
(Background color is FLAGBCK)

(Output name of the flag
(restore old cursor pcsition

(restore old foreground color
(restore old background color

(Status of flags has not changed)

{***}
{ • GETKEY: Read a character and output the flag status •)
{* Input : none *)
{* Output : Code of the key < 256 : normal key *)
{ • >= 256 : extended key •)
{***}

function Getkey : integer;

var Regs
key Rec

Registers;
boolean;

Register variable for interrupt call
{ indicates if key already received

367

7. The BIOS PC System Programming

368

begin
keyRec :- false;
repeat
Regs.ah :- $2;
intr($16, Regs);

no key received

{ read function number for keyboard status
{ call BIOS keyboard interrupt

{**Adjust flags to new status*************************************}
Insert :• NegFlag{Insert, Regs.al and INS, FS+9, FZ, 'INSERT');
Caps := NegFlag(Caps, Regs.al and CAPL, FS+J, FZ, ' CAPS ');
Num := NegFlag(Num, Regs.al and NUML, FS, FZ, 'NUM');
Regs.ah := $1; { function number for character ready?
intr($16, Regs); { call BIOS keyboard interrupt
if (Regs.flags and FZero = 0) then
begin

KeyRec : = true;
Regs.ah := O;
intr($16, Regs);
if (Regs.al = 0)
then Getkey := Regs.ah or $100
else Getkey := Regs.al;

{ is zero flag set ?
{ YES

(NO
end;

until keyRec;
end;

{ repeat until a key is received

{***}
{ * INIKEY: initialize keyboard flags *)
{* Input : none *)
{ * Output : none *)

{ * Info the keyboard flags are inverted from the current *)
{* status. This outputs their current *)
{ * status during the next call of the GETKEY function. *I
{***}

procedure Inikey;

var Regs : Registers;

begin
Regs.ah := $2;
intr($16, Regs);
if {Regs.al and INS <> 0)

if (Regs.al and CAPL <> 0)

if (Regs.al and NUML <> 0)

end;

{ Register variable for interrupt call I

{ Read function number for keyboard status
{ call BIOS keyboard interrupt

then Insert := false { INSERT flag
else Insert := true; { set

then Caps false { CAPS flag
else Caps : = true; { set

then Num : = false NUM flag
else Num true { set

{***}
{* SCOLOR: sets foreground and background colors for display *)
{' Input : see below *)
{ * Output : none *)

{' Var. the color is stored in the g,lobal variables FORECOLOR •)
{ * and BCKCOLOR •)
{* Info this procedure must be called for setting the color *)
{ * so that after the output of the keyboard flag status, *)

{ • the current text color can be restored *)
{ * since in TURBO no functions exist for sensing *)
{ * this color *)
{***}

procedure Scolor(Foreground, Background : 1nteger);

begin
ForeColor := Foreground;
BckColor := Background;
textcolor(Foreground);
textbackground(Background)

end;

Record foreground color
Record background color

{ Set foreground color
{ Set background color

Abacus 7.11 Accessing the Keyboard from the BIOS

{***}
{ * MAIN PROGRAM *)
{***}

begin
Inikey;
scolor(7,0);

Initialize keyboard flags
{ Color is white on black

clrscr; { Clear screen
writeln(f13110'KEYP (c) 1987 by Michael Tischer');
writeln(f13110'A few characters can be input now and switch •+

'INSERT-, CAPS- or NUM-');
writeln('mode on or off. The status of the three •+

·~cdes is always displayed i~ 1 };

writeln('the upper right corner of the screen.');
writeln('Pressing the <RETURN> or the <Fl>-key terminates the •+

'proqram ... ');
write(#l3fl0'Your Input: ');
repeat

key := Getkey;
if (key< 256) then write(chr(key))

until (key= 13) or (key= Fl);
writeln;

end.

(Input loop
{ Get key

Output (if normal)
Repeat until Fl or CR

C listing: KEYC.C

/***/
/* K E Y C */
/*---*/
/* Task provides a function for reading a */
/* character from the keyboard and to output */
/* the Status of the control keys (INSERT, */
I* CAPS, NUM) on the display. */
/*---*/
/* Author MICHAEL TISCHER */
I* developed on : 8/13/87 */
I* last update : 6/09/89 */

/*---*/
/* (MICROSOFT C) */
I* Creation MSC TASTC; *I
I* LINK TASTC; * /
I* Call TASTC */
/*---*/
/* (BORLAND TURBO C) */
/* Creation Make sure that Case-sensitive link is OFF in */
/* the Options menu/Linker option */
/* Select RUN menu */
/***!

#include <dos.h>
#include <io.h>
tinclude <bios.h>

/* include Header-Files */

/*== Type definitions ===*/

typedef unsigned char byte; I* Create a byte */

/*== Constants ==*/

/*-- Bit layout in BIOS keyboard status -----------------------------*/

#define SCRL 16 I* ScrollLock bit */
#define NUML 32 /* NurnLock bit */
#define CAPL 64 /* CapsLock bit */
#define INS 128 /* Insert bit */

#define FALSE 0 /* Constants make reading of the */
#define TRUE 1 I* Program text easier *I

369

7. The BIOS PC System Programming

370

#define FZ 0
#define FS 65
#define FlagColour Ox70

/*-- Codes of some keys
#define BEL 7
#define BS 8
#define TAB 9
#define LF 10
tdef ine CR 13
#define ESC 27
fdef ine Fl 315
fdefine F2 316
I define F3 317
fdefine F4 318
#define FS 319
tdef ine F6 320
tdefine F7 321
tdefine F8 322
tdefine F9 323
#define FlO 324
#define CUP 328
#define CLEFT 331
fdefine CRIGHT 333
fdefine CDOWN 328

/* Line in which the Flags should be output */
/* Column, in which Flags will be output */

/* black characters on white ground */

as returned by GETKEY () ---------------------•/
/* Bell character code */

/* Backspace key code */
/* Tab key code *I

I* Linefeed code */
I* Return key code •/
/* Escape key code •/

/* Fl key code *I
/* F2 key code *I
I* F3 key code */
/* F4 key code *I
I* FS key code */
I* F6 key code */
I* F7 key code */
I* F8 key code */
/* F9 key code */

/* FlO key code *I
I* Cursor up code *I

/* Cursor left code */
I* Cursor right code */

I* Cursor down *I

/*-- global Variables ---*/
byte Insert,

Num,
Caps;

/* Status of INSERT flag */
/* Status of NUM flag */

/* Status of CAPS flag */

/***/
/* GETPAGE: get the current display page
/* Input : none
/* Output : see below

byte GETPAGE ()

*/
*/
*/

union REGS Register; /' Register variable for interrupt call */

/* function number */ Register.h.ah = 15;
int86(0x10, &Register,
return(Register.h.bh);

)

&Register); /* call interrupt 10 (h) */
I* Number of current display page •/

/***/
/* SETPOS: sets the position of cursor in current display page */
/* Input : see below •/
/* Output : none */
I* Info the position of the blinking cursor changes */
/* with the call of this function only if */
/* display page indicated is the current display page •I
/***/

void SetPos(byte Column, byte Line)

union REGS Register; /* Register-Variable for Interrupt call */

)

Register.h.ah 2;
Register.h.bh GETPAGE();
Register.h.dh Line;
Register.h.dl Column;
int86(0x10, &Register, &Register); /*

/* function number *I
/* Display Page *I
/* Display Line */

/* Display Column *I
call Interrupt lO(h) *I

Abacus 7.11 Accessing the Keyboard from the BIOS

/* GETPOS: Gets the Position of Cursor in the current Display Page */
I* Input : none */
/* Output : see below */
/***/

void GetPos(byte * CurColumn, byte* CurLine)

l

union REGS Register; /* Register variable for interrupt call */

Register.h.ah = 3;
Register.h.bh = GETPAGE();
i~t86{0xl0, &Register, &Register';

*CurColumn = Register.h.dl;
•curLine = Register.h.dh;

I*
/*

I* function number */
/* Display page */

/* call Interrupt 10 !h} */
Result of the function *I
Read from the register *I

/* WRITECHAR: writes a character with an Attribute to */
/* the current cursor position in current display page */
/* Input : see below */
/* Output : none */
/***************************"***/

void WriteChar(char Zcharacter, byte Colour)

l

union REGS Register;

Register.h.ah 9;
Register.h.bh GETPAGE();
Register.h.al Zcharacter;
Register.h.bl Colour;
Register.x.cx l;

/* Register variable for interrupt call */

/* function number */
/* Display Page */

/* the character for output */
/* Color of character to be output */

/* output character only once */
/*call Interrupt lO(h) */ int86(0xl0, &Register, &Register);

/***/
/* WRITETEXT: write a character chain with constant color
/* starting at a certain location in the current
/* Display Page
/* Input : see below
/* Output : none
/* Info Text is a Pointer to a character-Vector which
/*
/*

contains the Text to be output and is terminated with
a 1 \0 1 character.

void WriteText{byte Column, byte Line, char *Text, byte Colour)

*I
*I
*/
*/
*/
*/
*/
*/

union REGS InRegister,
Out Register; /' Register variable for interrupt call */

SetPos (Column, Line);
InRegister.h.ah 14;
InRegister.h.bh = GetPage();
while (*Text)

{

/* set Cursor */
/* function number */

/* Display Page */
/* output Text until 1 \0 1 character */

WriteChar(' •, Colour); /*Indicate color for character */
InRegister.h.al = *Text++; /* the character for output */
int86(0xl0, &InRegister, &OutRegister); /* call Interrupt */

)

/***/
/* CLS: erase current Display Page
I* Input : none
/* output : none

*/
*I
*I

/***/

371

7. The BIOS PC System Programming

372

void Cls ()

union REGS Register; I* Register variable for interrupt call */

/* function number for scroll up */
/* 0 stand for clear */

/* white letters on black background */
/* upper left display corner */
/* Coordinates of the lower */

/* right display corner */

Register.h.ah = 6;
Register.h.al O;
Register.h.bh - 7;
Register.x.cx • O;
Register.h.dh 24;
Register.h.dl = 79;
int86(0x10, &Register, &Register); /*call BIOS-Video-Interrupt */

I

/***/
/* NEGFLAG: negate Flag and output Text
/* Input : see below
/* Output : the new Status of Flags (TRUE = on, FALSE = off)

*/
*I
*/

/***/

byte NegFlag(byte Flag, unsigned int FlagReg,
byte Column, byte Line, char • Text)

byte CurLine,
CurCol urnn,
Colour;

if (! (Flag == (FlagReg ! = 0)))
{

I

GetPos(&CurColumn, &CurLine);
WriteText(Column, Line, Text,
SetPos(CurColumn, CurLine);
return(Flag '1);

else return(Flag);
)

/* current Line */
/* current Column */

/' for Output of Flag-Text •/

/' did Flag change? •/
/* YES */

/* get current Cursor position */
(Flag) ? 0 : FlagColour);

I* set old Cursor position */
I* reverse Bit 1 of Flags */

/* everything remains the same */

/***/
/* KEYREADY: Tests for a character from the keybcard
/* Input: none
/* Output: TRUE if a key is pressed, otherwise FALSE

*/
*I
*/

/***/

int KeyReady ()

(
Ufdef TURBOC

str.ict REGPACK Register;

Register.r ax = 1 << 8;
intr(Oxl6,-&Register);
return(! (Register.r_flags & 64)) ;

#else

return(bios keybrd(K£YBRD READY));

#end if
)

/***/
/* GETKEY: Read a character and Output Flag-Status
/* Input : none
/* Output : Code of key read < 256 : normal key
/* >= 256 : extended ke y

*/
*/
*I
*/

/***/

Abacus 7.11 Accessing the Keyboard from the BIOS

unsigned int GetKey()

union REGS Register; /* Register Variable for Interrupt call */

do
{

Register.h.ah = 2; /• read function number for keyboard status */
int86(0xl6, &Register, &Register); /* call BIOS keyboard interrupt*/
Insert = NegFlag(Insert, Register.h.al & INS, FS+9, FZ, "INSERT");
Caps= NegFlag(Caps, Register.h.al & CAPL, FS+3, FZ, "CAPS");
Num. ::i: NegFlag(Num, Register.h.al & NUML, FS, FZ, 11 NUM11);

while (! KeyReady ()) ;
Register.h.ah = O;
int86(0xl6, &Register,
return((Register.h.al)

)

/* read function number for key */
&Register); /*call BIOS-keyboard-Interrupt*/
? Register.h.al : Register.h.ah I 256);

/***/
/* INIKEY: initialize keyboard-Flags */
/* Input : none */
I* Output : none */
/* Info the keyboard-Flags are reversed compared with the */
/* current stat us. This makes it possible that their */
I* current Status is output on the next call of the *I
1• GETKEY-function. */
/***/

void Inikey ()

union REGS Register; /• Register variable for interrupt call */

Register.h.ah = 2; /* read function number for keyboard status */
int86(0xl6, &Register, &Register); /'call BIOS-keyboard-Interrupt*/
Insert = (Register.h.al & INS) ? FALSE : TRUE ; I* reverse the */
Caps = (Register.h.al & CAPL) ? FALSE : TRUE ; /' current content •/
Nurn = (Register.h.al & NUML) ? FALSE : TRUE ;

/***/
/** MAIN PROGRAM **/
/***/

void main()

)

unsigned int key;

Cls(); /*Clear Screen*/
SetPos(0,0); /*Cursor to left upper screen corner*/
printf ("KEY (c) 1987 by Michael Tischer\n\n");
printf ("You can input some characters and at the same time change ");
printf("INSERT-, CAPS-\nor NUM-status. Every change ");
printf("is displayed in the upper right corner of the screen.\n");
printf ("\n<RETURN> or <Fl> terminates the Input ••• \n\n");
printf(11 Your Input: 11);

Inikey(); /*initialize keyboard-Flags*/
do
(

l

if ((key = Getkey ()) < 256)
printf (11 %c 11 , (char} key);

while (!(key== CR I I key== Fl));
print! ("\n");

I' read key */
/* output (if normal) */

/* repeat until Fl or CR */

373

7. TheBJOS PC System Programming

A resident interrupt driver

374

The next assembler program is a resident interrupt driver. Once a resident program
is installed in memory, other programs or data cannot overwrite it. Another reason
for the name resident lies in the program's ability to point to an interrupt in its
own routine. Instead of DOS, BIOS or another interrupt routine called up to now,
the program calls its own interrupt driver routine. Before examining how this is
done, the assembler program should be explained.

The SHOWCLK program displays the current time on the screen every time the
user presses a certain key after installing it. This occurs until another key is
depressed. The key which causes the time to be displayed must be passed to the
program in the command line during its call. For example, entering the following
at the DOS prompt invokes the program and tells the program to display the time
when the user presses the <FlO> key on the XT, or the <F8> key on the AT
keyboard. When the key is pressed, the time appears on the screen at line 1 starting
at column 40:

showclk 68 /11 /c40

The following removes the SHOWCLK program from memory (note the lack of
parameters):

showclk

The only stipulation is that the actuating key must be one that generates an
extended key code (e.g., a cursor key or function key). The program sets the default
clock position to the upper right corner of the screen. This can be changed by
passing parameters in the command line during the program call. Another facet of
the program is its ability to re-install itself during a new call, if the user desires.

•***•
' ' ;* SHOWCLK *;

;*---*;
;* Task : Outputs the time on the display after pressing•;
; * a key which generates an extended key code -. ;
;* stops when another key is pressed *;
;*---*;
;* Author : MICHAEL TISCHER *;
; * developed on : 8/1/87 *;
; * last Update : 9/21/87 *;
;*---*;
;* assembly : MASM SHOWCLK *;
; * LINK SHOWCLK *;
;* EXE2BIN SHOWCLK SHOWCLK.COM *;
;*---*;
;* Call : SHOWCLK [Key-code] [/lLine] [/cColumn] ,
•***• . '
;== Constants ==

TAB equ 9
LF equ 10
CR equ 13

;~ here starts the actual Program ==============================

Abacus 7.11 Accessing the Keyboard from the BIOS

code segment para 'CODE' ;Definition of the CODE-Segment

org lOOh

assume cs:code, ds:code, es:code, ss:code

start: jmp showinit

;== Data (remain in memory)

alterint equ this dword
intaltofs dw (?)
intaltseg dw (?)

ext key
keycode

linepos
column
line

buffer

db (1)
db (?)

equ this word
db 75
db 0

dw 5 dup (?)

;Call of the Initialization-Routine

;old interrupt vector 16(h)
;Offset address interrupt vector 16(h)
;Segment address interrupt vector 16(h)

;extended keyboard-code, on which
;the program is called

;Line and column in which the time
;is output

;stores the characters from the clock

;== this is the new kyboard-interrupt (remains in memory) ==========

new int

newi_l:

newi_2:

showtirne:

getz:

proc far

jrnp short newi 1

db "MT"

or ah, ah
je newi 2
jrnp aint

pushf
call cs:[alterint]
cmp ax,cs:word ptr
je showtime
jmp aiend

;Identification of the program

;read character (Function 0)?
;YES --> get character and test
;NO --> call old interrupt

;for smulation of an interrupt
;call old interrupt

extkey ;was it the specified key?
;YES --> display clock
;NO --> back

call

the specified key was activated ----------------------

pus hf
push ax
push bx
push ex
push dx
push di
push si
push es
push ds

cld
rnov ah,15
int lOh
rnov ah,3
int lOh
push dx
push cs
pop ds
rnov dx,linepos
rnov ah,2
int lOh
push cs
pop es
mov cx,5
mov di,offset
mov ah,8
int lOh

buffer

;all registers which are changed
; must be stored

;on sring commands count up
;read current display page
;call BIOS video-interrupt
;read current cursor position
;call BIOS video-interrupt
;store on the stack
;Code-sgment to the stack
;return as DS
;set cursor position
; for the time
;call BIOS video-interrupt
;Code-segment to the stack
;return as ES
;read 5 characters
;Address of the character-buffer
;read 1 character
;call BIOS video-interrupt

375

7. The BIOS PC System Programming

376

stosw
inc dl
mov ah,2
int lOh
loop getz
mov dx,linepos
mov ah,2
int lOh
mov ah,2CH
int 21h
mov bl,70h
push ex
mov al, ch
call bia
mov al,":"
call prz
pop ax

;function number
xchg bl, ah
int lOh
inc dl
mov ah,2
int lOh
dee di
jne storz
pop dx
mov ah,2
int lOh

pop ds
pop es
pop si
pop di
pop dx
pop ex
pop bx
pop ax
po pf
xor ah, ah
jrnp newi 2

aint: pushf
call cs:[alterintJ

aiend: ret 2

new int endp

;store character in the buffer
;next display column
;set cursor position
;call BIOS video-interrupt
;get next character
;set cursor position
; for the time
;call BIOS video-interrupt
;get time from DOS
;call DOS-interrupt
;color of clock: inverted
;record minutes
;change hours to ASCII
;and output
; output colon

; get minutes
for character output

;exchange AH and BL
;call BIOS video-interrupt
; next column
;set cursor position
;call BIOS video-interrupt
;output another character
;YES --> STORZ
;get old cursor position
;and set again
;call BIOS video-interrupt

;restore all stored registers

;simulate interrupt-routine
;call next keyboard-routine
; flag-register

;--
BIA: change binary to ASCII and output ------------------------
Input : AL ~ the number to be converted

bia

bia

Output : none
Register : CX, AX, DL and FLAGS are changed

proc

mov
xor
div
or
push
call
pop
mov
call
ret

endp

near

cl,10
ah, ah
cl
ax,3030h
ax
prz
ax
al, ah
prz

;we work in the decimal system
;prepare 16 bit division
;divide AX by CL
;change result to ASCII
; store number
;output character and advance cursor
; read number
;move character to AL
;output character and advance cursor
;back to caller

;-- PRZ: output character and increment cursor position ------------
;-- Input BH Display page for output
;-- AL - the character for output

Abacus 7.11 Accessing the Keyboard from the BIOS

;-- BL = Attribute (color) of the character
;-- Output none

Register : ex, AH, DL and FLAGS are changed

prz proc near

mov ah,9
mov ex, 1
int lOh
mov ah,3
int lOh
inc dl
mov ah,2
int lCt1
ret

prz endp

inst end equ this byte

;function number for character output
;output character only once
;call BIOS video-interrupt
;read current cursor position
;call BIOS video-interrupt
;increment cursor column
;set
;call BIOS vldeo-lnterrupt
;back to caller

;if SHOWCLK installed, memory can be
;released starting at this location

;== Data (can be overwritten by DOS) ========================

badp
installm

deactivm
allinm
noinstm

partab

db "Invalid Parameter 11 ,CR,LF,"$11

db "SHOWCLK (c) 1987 by Michael Tischer", 13, 10, 13, 10
db "SHOWCLK was installed and can be deactivated ",13,10
db "with a new call 11 ,13,10
db 11 (but without Parameters) 11 ,CR, LF, 11 $ 11

db "SHOWCLK was deactivated11 ,CR,LF, 11 $"
db "SHOWCLK is already installed" ,CR, LF, "$"
db "no SHOWCLK installed", CR, LF, 11 $ 11

dw 63 dup (?) ;Address of command line parameter

;== program (can be overwritten by DOS) =======================

deactivate label near ;turn SHOWCLK off

entfe:

no inst:

mov ax, 3516h ;get content of interrupt vector 16
int 2lh ;call DOS-Function
cmp word ptr es: [bx+2], "TM" ;test if SHOWCLK-program
jne no inst ; SHOWCLK not installed --> End

mov dx,es: intaltofs
mov ax,es:intaltseg
mov ds,ax
mov ax,2516h
int 2lh

mov ah,49h
int 2lh

push cs
pop ds

;Offset address of interrupt 16(h)
;Segment address of interrupt 16(h)
;to DS
; reset content of
;interrupt vector 16(h) old routine

;release storage
;of old SHOWCL again

;store CS on the Stack
;restore DS

mov dx,offset deactivm ;Message: program removed
xor al,al ;program performed correctly
jmp showend ;to end of program

mov
jmp

dx,offset noinstm
short noinerr

;Error-Message: no SHOWCLK installed
;output Error-Message and terminate

;-- Start and Initialization-Routine ---------------------------------

showinit proc near

cld ;on String commands count up
mov di,offset partab ;Address of Parameter-Table

377

7. The BIOS

call parmtest
or dl,dl
je deactivate

;evaluate Parameter

mov bx,offset partab
paraout: mov si,[bx]

lodsw
and ah,llOlllllb
cmp ax, "L/"
je getline
cmp ax,"C/"
je getcolumn

PC System Programming

;count Parameter/determine Address
;if no Parameter indicated

;YES --> remove last SHOWCL

;Address of the Parameter-Table
;get Address of a Parameter
;get first two chars of parameter
;lower case letters ~> upper case
;is it line indication ?
;YES --> GETLINE
;is it column indication?
;YES --> GETCOLUMN

;-- Parameter must be Key code ------------------------

378

nextpara:

get line:

crnp extkey,O
je badpara

push bx
push dx
sub si,2
call asciibin
pop dx
pop bx

jc badpara
or ah, ah
jne badpara
mov keycode,al
mov extkey,O

add bx,2
dee dl
jne paraout
jmp short install

mov di, offset line
mov dh,24
jrnp pa.rev al

getcolurnn:mov di, offset column
mov dh,75

pareval: push bx
push dx
call asciibin
pop dx
pop bx

jc badpara
or ah, ah
jne badpara
crnp al,dh
ja badpara
mov [di],al
jrnp short nextpara

all inst: mov dx,offset allinrn
jrnp short noinerr

badpara: mov dx,offset badp
noinerr: mov al,1

jmp showend

install: crnp extkey,O
jne badpara
mov ax,3516h
int 2lh

;Key code discovered?
;YES --> Error

;save Pointer in PARTAB
;save remaining number of Parameters
;set SI to beginning of number
;convert Code to binary
;get remaining number of Parameters
;get Pointer in PARTAB

;no number found --> Error
;number larger than 255?
;YES --> wrong number

;number o.k. record it
;announce Key code discovery

; Address of the next PARTAB-Element
;decrease Parameter counter
;last Parameter? NO--> continue
;Parameter o.k. --> install program

;Address of Line-Variable
;Maximum value for Line
; evaluate Parameter

;Address of the Column-Variable
;Maximum value for column

;store Pointer in PARTAB
;store remaining number of Parameters
;convert Code to binary
;get remaining number of Parameters
;get Pointer in PARTAB

;no number found --> Error
;Number larger than 255?
;YES --> wrong number
;Number larger than permitted?
;YES --> wrong number
;Number o.k. therefore store
;evaluate next prameter

;Error-Message: already installed
;output Error-Message and terminate

;Error-Message: invalid parameter
;Error-Code
;tenninate program

;Key-code discovered?
;NO --> Error
;get content of interrupt vector 16
;call DOS-function

Abacus 7.11 Accessing the Keyboard from the BIOS

anp word ptr es: [bx+2],"TM" ;test if already installed
je allinst ;YES --> Error

mov
mov

mov
mov
int

mov
mov
int

intaltseg,es
intaltofs,bx

dx,offset new int
ax,2516h
21h

dx,offset installm
ah,9
21n

;segment and offset address of the
;stored-interrupt vector 16(h)

;Offset address new interrupt routine
;change content interrupt vector 16
;to user routine

;Message: program installed
;output function number for string
;call DOS-function

;-- only the PSP, the new interrupt-Routine and the ---------
;-- Data must remain resident.

mov dx,offset instend
mov cl,4
shr dx,cl
inc dx
mov ax,3100h
int 21h

showend: mov ah,9
int 21h
mov ah,4Ch
int 21h

showinit endp

;calculate number of paragraphs
(each 16 Bytes) at the disposal

; of the program

;terminate program with End-Code 0
;remain resident

;output string
;call DOS-function
;function number for program
;terminate program with End-Code

;End of PROG-procedure

ASCIIBIN: convert ASCII number to binary (max. 16 Bit)
Input DS:SI = Address of Number as ASCII-string

;-- Output AX = the converted Number
Carry-Flag = 1 : Number too large

Register AX, BX, ex, SI and FLAGS are changed
Info the ASCII-string must be ended with Code 0

asciibin proc near

nx_num:

xor
mov
xor
mov
or
je
cmp
jb
anp
ja
mul
jc
and
add
inc
jmp

ab_ende: clc
ret

ab_err: stc
ab_ret: ret

asciibin endp

bh,bh
cx,10
ax, ax
bl, [si]
bl,bl
ab ende
bl,"0"
ab ret
bl,"9"
ab err
ex
ab ret
b1:-1111b
ax, bx
si
short nx num

;Hi-Byte of every position
;we use decimal system
;preliminary result
;get next number
;NUL-Code (End)?
;YES --> number converted
;test if number
;NO --> Error
;test if number
;NO --> Error
;preliminary Number • 10
;Number > 65535 --> Error
;convert number to binary
;add to preliminary Number
;process next number

;no Error
;back to caller

;Error
;back to caller

;-- PARMTEST: capture Parameter in the Command Line ------------------
;-- Input DS:OOOO = Address of PSP
;-- Output DL = number of parameters found
;-- Register AX, CX, DX, SI and FLAGS are changed

379

7. The BIOS PC System Programming

;-- Info
;--
;--

panntest

getez:

nextz:

parmtend:

space:

Address of every parameter is stored in Array-PARTAB as
Offset address to DS. In addition behind every
parameter an ASCII-Code O is stored.

proc near

cld
xor dx,dx
mov si,80h

mov cl,byte ptr
or cl, cl
je parmtend

inc si
xor ch, ch
lodsb
crop al," "
je space
cmp al, TAB
je space

[si]

;on string commands count up
;number of parameters found
;address where number of characters
;of the command line is stored in PSP
;get number of character
;have parameters been passed?
;NO --> End

;SI points to start of command line
;in ex is the number of characters
;move next character to AL
;is it a space ?
;YES --> SPACE
;is it a Tab-character?
;YES --> SPACE

no Space or Tabulator --------------------------

or dh,dh
jne nextz

inc dl
not dh
mov ax,si
dee ax
stosw

loop getez
mov byte ptr

ret

or dh,dh
je nextz

[si],O

;was last character space ?
;NO --> process next character

;increment number parameters found
;indicates no " 11 or TAB
;calculate address of
; parameter
;store in parameter-Table

;get next character
;NUL-character as parameter-End

;back to caller

;was last character space character?
;YES --> process next character

found next parameter ------------------------------

xor dh,dh
mov b¥te ptr [si-1],0
jmp short nextz

;this character was a space
;NUL-character as parameter-End
;process next character

parmtest endp

;== End =======================================--======-===============

code ends ;End of CODE-Segment
end start

Program flow

380

The file header describes the DOS call of the program. As mentioned above, there
are two basic options for the call: If you call the program without parameters in
the command line, it tries to remove any previously installed SHOWCLK. If you
call the program with parameters, SHOWCLK installs itself. The first parameter
must be the scan code which the user wants to trigger the clock display. The line
and column parameters indicate the clock display area on the screen. If these two
parameters are missing, the clock appears in the upper right hand corner of the
screen.

Abacus 7.11 Accessing the Keyboard from the BIOS

The constant definition follows the file header to ease your reading of the listing.

The code segment definition follows, which accepts the program code and the data.
The ORG IOOH instruction, which places the beginning of the program at address
IOOH, indicates that SHOWCLK is a COM program. A COM program is a good
choice for a resident interrupt driver because of the compactness of having data,
code and stack in one segment.

The label ST ART shows the first executable instruction of the program. It jumps
first to the installation routine of SHOWCLK which has the name SHOWINIT.

This routine loads the address of a table and calls the procedure PARMTEST. It
counts the number of arguments passed in the command line and stores the starting
addresses of the individual parameters into the passed table. After this procedure
ends, SHOWINIT tests whether parameters were passed in the command line. If
this is not the case, it jumps to DEACTIVATE which removes the old
SHOWCLK from memory.

Assuming that arguments were passed to SHOWCLK in the command line,
SHOWINIT now reads the passed parameters and tests them for accuracy. If it finds
a correct key code, this code passes to the KEY CODE variable. If the indication of
a line or column is found, it's tested for an acceptable value. If YES, it moves to
the COLUMN or LINE variable. If an error and unknown parameter or an illegal
coordinate occurs during the argument checking, the program ends with an error
code. If the parameters evaluated are correct, a jump goes to the label INST ALL. A
test searches for a keyboard code. If no keyboard code exists, the program ends with
an error message. If it's available, the program first tests if SHOWCLK is already
installed.

DOS function 35H determines the address of the BIOS keyboard interrupt (the
interrupt pointing to a user routine). It returns the segment address of the interrupt
routine in ES, and the offset address in the BX register. If SHOWCLK was already
installed, an interrupt routine must be located at this address which is constructed
exactly like the interrupt routine which is installed, since SHOWCLK always
installs the same interrupt routine.

The routine starts with a 2-byte jump instruction to the routine itself. An
identification code follows, consisting of two ASCII characters, which can be the
initials of the author. In this case the initials are MT. INST ALL tests the address
of the interrupt routine plus 2 for the ASCII codes of the initials MT. The test is
not for MT, but for TM, since the low byte is always stored before the high byte.
If the code exists, SHOWCLK is already installed and the program terminates with
an error message. If INST ALL finds another bit pattern, it means that no previous
version of SHOWCLK existed. INST ALL can then proceed with installation.

381

7. TheB/OS PC System Programming

Installing SHOWCLK

First INST ALL stores the address of the old interrupt routine in the INT AL TOFS
and INTALTSEG variables. Next the interrupt 16H points through DOS function
25H to the NEWINT routine. The new interrupt routine of interrupt 16H is called
if a program wants to call one of the three functions of this interrupt. A message
tells the user that the program is now installed, and the DOS prompt returns. It's
important that DOS not release the memory occupied by SHOWCLK for other
programs. This could result in another program overwriting the new interrupt
routine, and a system crash during the call of interrupt 16H. To prevent this, the
program terminates with a DOS function which makes a portion of this program
resident and prevents overwriting by other programs. Function 31H must be
informed how many 16-byte paragraphs must be protected, starting from the
beginning of the PSP.

Protecting memory

Once installed, the new interrupt routine must stay protected from changes that
other registers could make to it. At the same time, SHOWCLK's installation
routine must remain unprotected. SHOWCLK places the interrupt routine before
the installation routine. Only the number of bytes between the beginning of the
PSP and the last byte of the interrupt routine, converted into paragraphs, must be
passed to function 32H. The new interrupt routine cannot be overwritten.

This interrupt routine must also contain variables. They are stored between the
program start instruction and the interrupt routine code proper. This ensures that
the variables remain resident in memory. At the beginning of the interrupt routine
(NEWINn is a jump instruction followed by the identification code. When a
program calls interrupt 16H, a jump occurs directly to label NEWI_l. NEWI_l
tests for whether the function number passed to interrupt 16H in the AH register is
0. This is the only function applicable to this program, since the function reads
characters from the keyboard buffer. If you called one of the two other functions,
the program calls the old interrupt 16H and passes control to the calling program.
If function 0 is called, it reads a character from the keyboard with the old keyboard
interrupt The program then compares this character with the key indicated when
the program call occurred. If this is not the case, control returns to the calling
program. If it was the indicated key, preparations begin to display the time on the
screen.

Stack activity

382

First the contents of all registers which change during the course of the program
are stored on the stack so they can be restored to the calling program. Then the five
characters of the display in the position where the time appears are read from the
screen and stored. DOS function 2CH reads the time and converts it to an ASCII
string for display. After the time appears on the screen, the old keyboard interrupt
waits for a keypress. When this occurs, the characters formerly located where the
time appears return to their old positions. The registers return from the stack and

Abacus 7.11 Accessing the Keyboard from the BIOS

the program jumps to the beginning of the routine to read in a key, display the
time again, or pass the key to the calling program.

Deactivating SHOWCLK

The last component to be examined is the program routine called when
SHOWCLK is removed from memory. The installation routine calls it if no
parameter was passed in the command line and begins with the DEACTIVATE
label. The routine tests for whether SHOWCLK is already installed. If this isn't
the case, it cannot be removed, and the program terminates with an error message.
If SHOWCLK was already installed, the keyboard interrupt must point to the old
interrupt routine. The memory containing the old SHOWCLK routine must be
released.

The problem is that the new SHOWCLK, which should remove the SHOWCLK
already in memory, doesn't know the address of the old interrupt routine of
interrupt 16H. It's stored in the old SHOWCLK in the variables INTALTOFS and
INTALTSEG. The two variables are in completely different programs, but there is
a simple method of reading these variables. The old SHOWCLK lies in a different
memory segment from the new SHOWCLK, but the offset addresses of the
variables and routines in both programs are identical. Since you know the segment
address of the old SHOWCLK (the segment address of the interrupt routine), the
contents of the variables INT AL TOFS and INT AL TSEG can be read from the old
SHOWCLK and the interrupt 16H can again point to the original interrupt routine.
Memory can be released again through the segment address of the old SHOWCLK
routine with the help of DOS function 49H. This concludes the task of
DECACTIV A TE and the program can terminate after displaying a message.

Examine the listing step by step and read the comments carefully. This is
important, because the program can serve as a basic framework for any resident
interrupt driver. We'll discuss another form of resident program (the TSR
program) in Chapter 8.

383

7. TheBIOS PC System Programming

7 .12 Accessing the Printer from the BIOS

BIOS offers three functions, called by interrupt 17H, for communicating with one
or more printers interfaced to the PC. These functions have an advantage over the
DOS printer output functions: They can specify the printer to which the output
should go. The printer's number (0, 1 or 2) must be loaded into the DX register
during the function call. After each of the three function calls, the printer status
passes to the AH register. Each bit in this status byte provides information about
the printer's task, whether it still has paper, etc.

7 6 5 4

1= Time out error

------1=Transfer error

1:Prlnter ONLINE
--~~~~~~--1

O:Prlnter OFFLINE

--------....,,1 :Printer out of paper

----------1:Recelve mode selected

O:Prlnter busy

Printer status byte

Time out

384

A time out error occurs when BIOS tries to send data for a certain amount of time
to the printer, but the printer refuses the data and returns a busy message (bit 7
becomes 0). The number of tries BIOS makes before signaling a time out error
depends on the contents of address 0040:0078 in RAM. ROM uses this address for
storing variables. The value 20 which BIOS enters into these memory locations
during the system boot is different from the repeat factor of 20. The value in these
memory locations must be multiplied first by 4, then by 65,536. A value of 20
actually refers to 5 million attempts. This number is relative since the loop which
checks the printer has only a few assembly language instructions processed very
quickly by the CPU. This results in a waiting period of only a few seconds before
the BIOS reports a time out error. If working with the BIOS routine seems to
create more time out errors than usual, try increasing the value in the memory
locations mentioned above so that BIOS makes more attempts. This may help
communication between BIOS and the printer.

Various printer conditions can change a series of bits in the status byte. An ON
LINE (ready to print) printer sets bits 7 and 4. If the printer switches to OFF LINE
(e.g., for page advance) then bit 7 and bit 4 reset and bit 3 sets, indicating a
transmission error.

Abacus 7.12 Accessing the Printer from the BIOS

The program must decide whether new data should be sent to the printer, whether
printer output should end or further steps should be taken.

Function O: Send character

Function 0 transmits a character to the printer. Load the function number into the
AH register and the ASCII code of the character you want sent into the AL
register. After the function call the AH register contains the status byte. If the
character transmissioniprinting failed, the AH register contams the value 1.

Function 1: lnltlallze printer

The second function initializes the printer ports. You should always execute this
function before sending data to the printer for the first time. Load the function
number 1 into the AH register; no other arguments are required.

Function 2: Read printer status

Function 2 loads the status byte into the AH register. As mentioned above, the
status byte tells you the current status of the printer. Load the function number 2
into the AH register; no other arguments are required.

Demonstration programs

The programs listed in this section use the BIOS printer interrupt in the same way
as the programs listed earlier to demonstrate the BIOS keyboard interrupt. The
three higher level language programs listed here send strings to a printer using the
BIOS printer interrupt. The fourth program is an assembly language routine which
adapts the BIOS printer interrupt to its own routine.

The three higher level language programs are similar in organization and are
divided into five sections. One section is the main program. The other four
sections call the various functions of the BIOS printer interrupt. These sections
include a routine for initializing a specific printer interface, a routine for character
or string output and a routine which displays an error message on the screen if
needed. The main program initializes printer interface 0, then prints a test string on
the printer connected to this interface. If an error occurs during one of these two
operations, an error message is displayed on the monitor. This message can be
delayed if no printer is attached to the PC, since BIOS continues addressing the
printer, and gives up after a few attempts. If nothing happens for some time, don't
panic. The program will eventually report its error status.

385

7. The BIOS PC System Programming

BASIC listing: PRINTB.BAS

386

100 '***'
110 P R I N T B
120 '*---·· .. Task makes a subroutine available for sending strings to a printer and registering errors during the output to the printer ..

Author MICHAEL TISCHER developed on 7/22/87 . '
last Update 9/21/87 ..

130
140
150
160
170
180
190
200
210 •

'***'

220 CLS : KEY OFF
230 PRINT"WARNING: This program should be started only if GWBASIC was "
240 PRINT"started from the DOS level with <GWBASIC /m:60000>."
250 PRINT : PRINT" If this is not the case, please input <s> for Stop."
260 PRINT"Otherwise press any key ... ";
270 A$ = INKEY$: IF A$ "s" THEN END
280 IF A$ = "" THEN 270
290 GOSUB 60000 'install Function for Interrupt-Call
300 CLS 'Clear Screen
310 PRINT"PRINT (c) 1987 by Michael Tischer" : PRINT
320 PRINT"If a parallel printer is interfaced to your PC, the "
330 PRINT"following text should appear on it immediately:" : PRINT
340 PRINT"a test of the printer routines ... • : PRINT
350 PRINT"If not, an error message will be output." : PRINT
360 PRINTER% = O •address the first Printer on the PC
370 GOSUB 50000 'initialize Printer
380 GOSUB 53000 •output message
390 T$ ="a test of the printer routines •.• "+CHR$(13)+CHR$(10)
400 GOSUB 51000 •output String on the Printer
410 GOSUB 53000 •output Message
420 PRINT
430 END
440 •
50000
50010
50020
50030
50040
50050
50060

'***'
•• initialize one of the Printer interfaces ..
··---*'
'* Input: PRINTER\= the Number of the Printer to be addressed *'
'• Output: DS\ is the Status of the Printer
'* Info : the Variable Z\ is used as Dummy
'***'

50070 '
50080 PRTHI\ = O 'Hi-Byte of the Printer number
50090 FKT\=2 'initialize Function number for Interface
50100 INR\=&H17 'call BIOS-Printer-Interrupt 17(h)
50110 CALL IA(INR%,FKT%,Z%,Z%,Z%,Z%,Z%,PRTHI%,PRINTER%,Z%,Z%,Z%,Z%)
50120 DS\ = FKT\ AND &H21 •store Printer status in DS\
50130 RETURN 'back to Caller
50140 •
51000 '***'
51010 '* send a String to one of the Printers *'
51020 ··---··
51030 '* Input: T$ = the String to be output
51040 '• PRINTER\ = the Number of the Printer

Output: the Variable DS\ contains the Printer status .. 51050 ••
51060 '***'
51070 •
51080 FOR I = 1 TO LEN(T$)
51090 Z$ = MID$(T$,I,1)
51100 GOSUB 52000

'process all characters of the string
'isolate one character from the string
•output character on the printer

51110 IF DS\<>0 THEN
51120 NEXT I

I = LEN(T$) •on error terminate output

51130 RETURN
51140 '

•process next character
'back to Caller

52000 '***'
52010 •• send a Character to one of the Printers ••

Abacus 7.12 Accessing the Printer from the BIOS

52020 '*---*'
Input: Z$ = the Character to be output 52030

52040 '*
52050

PRINTER% = the Number of the Printer
Output: the Variable DS% contains Printer status

'* Info : the Variable Z% is used as a Dununy

*.

(O=o.k.) *.
*' 52060

52070 '***'
520BO •
52090 CHARACTER%= ASC(Z$) 'the ASCII-Code of the Character
52100 FKT%=0 'print Function number for Character
52110 INR%=&H17 •call BIOS-Printer-Interrupt 17(h)
52120 CAIL IA(INR%,FKT%,CHARACTER%,Z%,Z%,Z%,Z%, PRTHI%,PRINTER%,Z%,Z%,Z%,Z%)
52130 DS% = FKT% AND &H21 •record Printer status in DS\
52140 RETUR.~ 'back tc Caller-
52150 •
53000 '***'
53010 '*Output an error-message on the basis of the Printer-Status
53020 '*---··
53030 Input: DS% = the Printer status *'
53040 '* Output: none *'
53050 '* Info : if the Printer status is o.k., no output
53060 '***'
53070 •
530BO IF DS% = 0 THEN RETURN •everything o.k. --> back to Caller
53090 PRINT"Error on access to Printer: 11 ;

53100 IF (DS% AND 1) <> 0 THEN PRINT"Time-Out-Error" : RETURN
53110 IF (DS% AND B) <> 0 THEN PRINT"I/0 Error" : RETURN
53120 IF (DS% AND 32) <> 0 THEN PRINT"no more paper " : RETURN
53130 PRINT"Error type unknown" : RETURN
53140 •
60000 '***'
60010 '* initialize the Routine for Interrupt-Call
60020
60030
60040
60050
60060

··---*'
'* Input: none
'* Output: IA is the Start address of the Interrupt-Routine *.
'***'

60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
'set BASIC-Segment 600BO

60090
60100
60110
60120

DEF SEG
RESTORE 60130
FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X\
RETURN 'back to Caller

NEXT 'poke Routine

60130 DATA B5,139,236, 30, 6,139,llB, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142, 192, 139, llB, 28, 138, 36, 139, llB, 26, 13B, 4, 139, llB, 24
60160 DATA 138, 60, 139, 118, 22, 138, 2B, 139, 118, 20, 13B, 44, 139, 118, 18
60170 DATA 13B, 12, 139, llB, 16, 13B, 52, 139, llB, 14, 13B, 20, 139, 118, 10
601BO DATA 139, 52, B5, 205, 33, 93, 86, 156, 139, llB, 12, 137, 60, 139, 118
60190 DATA 2B, 136, 36, 139, llB, 26, 136, 4, 139, llB, 24, 136, 60, 139, 118
60200 DATA 22,136, 28,139,llB, 20,136, 44,139,118, lB,136, 12,139,118
60210 DATA 16,136, 52,139,llB, 14,136, 20,139,llB, B,140,192,137, 4
60220 DATA BB, 139, 118, 6, 137, 4, 88, 139, llB, 10, 137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46, 136, 71, 66, 233, 108, 255

387

7. TheBIOS PC System Programming

Pascal listing: PRINTP.PAS

388

{***}
{* P R I N T P *)
{*---*)
{* Task Makes a function available for sending *I
I* strings to a printer and registers *I
{* errors during the output to the printer *I
{*---*)
{* Author MICHAEL TISCHER *)
[* developed on 7/9/87 *I
{* ·last Update 6/09/89 *I
{***}

program PRINTPP;

Uses Crt, Dos; I Add Crt and Dos units

{$V-} Don't test string length

type Output= string[255];

var PrintError : byte; { Printer error code)

{***}
{* PRINTCHARACTER: sends a character to the printer *}
{* Input : see below *}
{* Output : TRUE if an error occurred, else FALSE *}
{* Info : if an error is discovered, the status of the printer is *I
{* stored in the global variable PRINTERROR *I
{***}

function PrintCharacter{Character : char; { Character to be output
Printer : integer) : boolean; { Nr. of Printer

var Regs Registers; { Register variable for interrupt call

begin
Regs.ah := O;
Regs.al := ord(Character);
Regs.dx Printer;
intr ($17, Regs);
if (Regs.ah and $21) <> O then
begin

Function number & code of character
I Printer. number

I Call BIOS printer interrupt
{ Did an error occur?

{ YES
I Display error

Record error code
PrintCharacter := false;
PrintError := Regs.ah;

end
else PrintCharacter := true

end;
I No error

{***}
{* PRINTSTRING: sends a string to the selected printer *}
{* Input : see below *}
{* Output : TRUE if no error occurred, else FALSE *)
{***}

function Printstring(Text
Printer

var Counter
Ok

begin

integer;
boolean;

output;
integer)

I the string to be output
boolean;{ Number of printer

I loop counter
{ Result of the PRINTCHARACTER function

Counter := l; ! begin with the first character in the string
repeat

Ok := PrintCharacter{Text[Counter], Printer); { Print a character
Counter := succ(Counter) { Process next character

until not(Ok) or (Counter> length(Text)); { Terminate on error
PrintString := Ok; { Set result of the function

Abacus 7.12 Accessing the Printer from the BIOS

end;

{**+.**}
{* INITPRINTER: initializes the printer interface •)
(* Input : see below •)
(* Output : true, if no error occurred, otherwise false *}
(* Info : if an Error is detected, the Status of the Printer is *}
(* stored in the gl.Q~al Variable PRINTERROR *}
{***}

function InitPrinter(Printer : integer) : boolean; Printer number

var Hegs : Registers; i Register variables for lnterLupt call

begin
Regs.ah := $2;
Regs.dx := Printer;
intr {$17, Regs);
if (Regs.ah and $21) <> O then
begin
InitPrinter := false;
PrintError := Regs.ah;

end
else InitPrinter := true

end;

{ Function number for !nit
{ Printer number

Call BIOS printer interrupt
(Did an error occur ?

(YES
Display error

Record error code

{ No error

{***}
{* PRINTERROR: outputs error message

Input : none
Output : none

*}
*)
*)

(*
{*
(*

(*
(*

Info the error message
of the variable
PRINTERROR

is displayed according to the content *)
*)
*)

{***}

procedure PrinterError;

begin
write('Error during printer access: ');
if PrintError and 1 <> O
then writeln('Time-Out Error')
else if PrintError and 8 <> O
then writeln('I/O Error')

end;

else if PrintError and 32 <> O
then writeln{'out of paper'}
else writeln('Error unknown•);

Time out error?
(YES

I/O error?
{ YES

I No more paper ?
{ YES

{***}
(* MAIN PROGRAM *}
{***}

begin
clrscr; (Clear screen }
writeln('PRINT (c) 1987 by Michael Tischer');
writeln(f13fl0'If a printer is interfaced to the parallel interface •+

• 0 of the PC, •) ;
writeln('the following text should now appear on this •+

'printer:');
writeln(f13f10'a test of the printer routines •.. 'f13f10);
writeln('Otherwise the program will display an error message!');
writeln;
if InitPrinter(O) then
begin

(Initialize printer interface 0 }

if PrintString('a test of the printer routines ••• '113#10, 0)
then writeln('all o.k.')
else PrinterError

end
else PrinterError;

end.

(display error message
(Initialization error

{ display error message

389

7. TheBIOS PC System Programming

C listing: PRINTC.C

390

/***/
/* P R I N T C *I
/*---*/ /* Task Makes a function available for sending a */
/* string to a printer. If any errors occur */
/* during printing, the program will display */
/* errors on the screen */

/*---*/
/* Author MICHAEL TISCHER */
/* developed on : 8/13/87 */
/* last update : 6/09/89 *I
/*---*/
/* (MICROSOFT C) */
/* Creation MSC PRINTC */
/* LINK PRINTC; */
/* Call PRINTC */
/*---*/
/* (BORLAND TURBO C) *I
/* Creation : with the RUN cormnand in the cormnand line */
/***/

#include <dos.h>
#include <io.h>

/* include header files */

/*== Type definitions ===*/

typedef unsigned char byte;
#define FALSE 0

/* create a byte */
/* Constants make reading of the */

#define TRUE 1 /* program text easier */

/**/
/* PRINTERROR: displays error message */
/* Input : 0 stands for o.k., else error code */
/* Output : TRUE if no error is displayed, else FALSE */
/**/

byte PrintError(Status)
int Status;

{

if (Status)
{

}

printf {"Error during printer access:");
if (Status & 1)
printf ("Time-Out Error\n");
else if (Status & 8)
printf ("I/0 error\n");
else if (Status & 32)
printf ("no more paper\n");
else printf("Error unknown\n");

return (FALSE) ;

else return(TRUE);
}

/* Printer status */

/* Did an error occur ? */
I* YES *I

/* Time-Out Error? */
/* YES */

I* I/0 error? *I
I* YES */

I* No more paper ? */
I* YES */

/* Error detected */

/**/
/* PRINTCHARACTER: sends a character to the printer
/* Input : see below
/* Output : FALSE if no error occurred, else
/* error number

*/
*/
*I
*/

/**/

byte PrintCharacter(Character, Printer)
char Character;
unsigned int Printer;

I* The character for output */
/* Number of the designated printer */

Abacus 7.12 Accessing the Printer from the BIOS

)

union REGS Register; /* Register variables for interrupt call *I

Register.h.ah = O; /* Function number for character printing */
Register.h.al Character; /* Character code */
Register.x.dx =Printer; /* Printer number */
intB6(0x17, &Register, &Register); /*call BIOS printer interrupt*/
return(Register.h.ah & Ox29); /* Leave only error bits*/

/*******************************~************************************/
/* PRINTSTRING: sends a string to the selected printer *I
/* Input : see below *I ,. : FALSE, H no err er -~~·----~

_, __
*' , Vl-<'-l;-'U."- V\...1,..U.J..J..t:U.t l;;:.Lo:;:.t;;:

/* error number *I
/**!

byte PrintString(Text, Printer)
char *Text; /* String to be output (character vector) */
unsigned int Printer; /* Number of the printer */

byte Status; /* The printer status */

Status = FALSE; /* Initialize if string is empty */

/* Output string until end is reached or error occurs during output*/
while (*Text && ! (St~ktus = PrintCharacter (*Text++, Printer)))

return (Status);
)

/***********************•~···1
/* INITPRINTER: initialize the printer interface
/* Input : see below
/* Output : FALSE if no error occurred, else
/* error number

*/
*/
*/
*I

/***********************?**/

byte InitPrinter(Printer)
int Printer; /* Printer interface to be initialized */

)

union REGS Register; /* Register variables for interrupt call */

Register.h.ah = 2;
Register.x.dx = Printer
int86(0x17, &Register, &Register);
return(Register.h.ah & Ox29);

/* Function number for Init */
/* Printer/interface number */

/* Call BIOS printer interrupt */
/* Leave only error bits */

/***/
!** MAIN PROGRAM **/
/***/

void main()

printf("\nPRINT (c) 1987 by Michael Tischer\n\n");
printf ("If a parallel printer is interfaced to this PC\n");
printf(" the following text should appear soon:\n\n");
printf("a test of the printer routines .•. \n\notherwise ");
printf("an error message is displayed on the monitor screen.\n\n");
if (PrintError(InitPrinter(O)))
PrintError(PrintString("a test of the printer routines .•. \r\n") ,O);

391

7. TheBIOS PC System Programming

The assembly language program listed below is a resident interrupt driver. It can
help the user whose printer runs a character set other than the PC standard. This is
true of some Epson printers, whose foreign characters are different from the PC
ASCII character set. The program converts these characters before sending them to
the printer by turning the BIOS printer interrupt to its own routine, which is called
every time the BIOS printer interrupt is called.

It tests for whether or not function 0 (character output to a printer) should be
called, because only this function changes. If not, the call passes to the old printer
interrupt.

If a character should be output, the interrupt looks into a table, with the name
CODETAB, for the character. This table consists of2-byte entries. The first (low)
byte contains the new code of the character to be converted. The second (high) byte
contains the old character code. The table ends with a byte containing the value 0.

The routine checks the second byte of a table entry if it is identical to the character
to be printed. If the character cannot be found in the table, it passes unchanged
through the old printer interrupt for output. If the character exists in the table, it is
replaced by the first byte of the current entry, then sent for output using the old
printer interrupt.

This program has a similar structure to the resident keyboard interrupt driver
presented in Section 7 .11. The main difference between the two programs lies in
the command line, because PRUM (the program listed here) doesn't pass any
parameters. It tests for an existing pre-installed version of itself when it is called.
If no installed PRUM routine exists, it installs itself. Otherwise the installed
version loads from disk or hard disk.

This program can transmit output to the printer using the BIOS printer interrupt as
well as DOS.

Assembler listing: PRUM.ASM

392

;***
;* P RUM
;*---*
; *
;*
;*
;*
. *

Task Points the BIOS printer interrupt to its own
Routine and makes it possible for example
to convert IBM-ASCII to EPSON.
The program is deactivated again on the
second call and removed from memory .

;*---*
;* Author : MICHAEL TISCHER
;* developed on : 8/2/87
;* last update : 6/09/89
;*---*
; * assembly : MASM PRUM; *
; * LINK PRUM;
;* EXE2BIN PRUM PRUM.COM
;*---*

Call : PRUM
;***

;== Actual program starts here ==================================

Abacus 7.12 Accessing the Printer from the BIOS

code segment para 'CODE' ;Definition of the CODE segment

org lOOh

assume cs:code, ds:code, es:code, ss:code

start: jmp prumini ;the first executable command

;-- Data (remain in memory)

alterint equ this dword
i~talt.0.!s dw {?)

intaltseg dw (7)

;Old interrupt vector 17(h)
;Offset address Interrupt vPr,tor 17(h)
;Segment address Interrupt vector 17(h)

;--

code tab db
db
db
db
db
db
db
db
db

The following table contains the new ----------
code followed by the old code -------------------

64, 21
125,129
123,132

91,142
124,148

92, 153
93,154

126, 225
0

~ --------- > '@'
•u• ----------> 1 11

•a•---------->'{'
•A• ----------> '['
•a•---------->• I'
•o• ----------> .,.
101 ----------> 11 I

•e,• ---------->
;End of the table

;-- this is the new printer interrupt (remains in memory) ===--====-=

newpri proc far

jmp short newpri_l

db "CW 11

newpri_l: or ah, ah
jne aint
mov bl,al

test code: lodsw
or al, al
je not found
cmp ah, bl
jne test code
jmp short nreset

not found: mov al,bl
nreset: xor ah, ah

pop ds
pop si
pop bx
po pf

aint: jmp cs: [alterint]

newpri endp

ins tend equ this byte

;Identification of the program

;print character (function 0)?
;NO --> ;address of the code table
;store code in BL
;load old (AH) and new code (AL)
;Reached end of table ?
;YES --> Code not found
;Is it the code for conversion
;NO --> continue to search table

;it was a code for conversion

;move old code to AL again
;set function number 0 again
;restore registers

;to old printer routine

;up to this mem location everything must
; remain resident

;=- Data (can be overwritten by DOS) ----=-----=--===--=-----

installm db 13, 10, "PRUM (c) 1987 by Michael Tischer", 13, 10, 13, 10
db "PRUM was installed and can be deactivated with ", 13, 10
db 11 a new call", 13, 10, 11 $ 11

remove it db "PRUM was deactivated$", 13, 10

;== Program (can be overwritten by DOS) =====-----======-------
;-- Start and Initialization Routine ---------------------------------

393

7. TheBIOS

prumini

install

label near

ax,3517h
21h

PC System Programming

;get content of interrupt vector 17(h)
;call DOS function

mov
int
cmp
jne

word ptr
install

es: [bx+2], "WC" ;test if PRUM program
;SHOWCL not installed --> INSTALL

;-- PRUM was deactivated ------------------------------------

mov dx, es: intaltofs ;Offset address of interrupt 17(h)
mov ax,es:intaltseg ;Segment address of interrupt 17(h)
mov ds,ax ;to DS
mov ax,2517h ;deflect content of the interrupt
int 21h ;vector 17 (h) to old routine

mov ah, 49h ;release storage of old PRUM
int 21h ;again

push cs ;store cs on stack
pop ds ;restore DS

mov dx,offset removeit ;Message: Program removed
mov ah,9 ;write function number for atring
int 21h ;call DOS function

mov
int

;--

ax,4COOh
21h

install PRUM

label near

mov ax,3517h
int 2lh
mov intaltseg, es
mov intaltofs, bx

mov dx,offset newpri
mov ax,2517h
int 21h

;terminate program
;call function program termination

;get content of interrupt vector 17
;call DOS function
;save segment- and offset address
; of the interrupt vector 17 (h)

;Offset address new interrupt routine
; deflect content of interrupt
; vector 17 to user routine

mov dx,offset installm ;Message: Program installed
mov ah,9 ;output function number for string
int 21h ;call DOS function

;-- only the PSP, the new interrupt routine and the --------
;-- data pertaining to it must remain resident. ----------

mov dx,offset instend
mov cl,4
shr dx, cl
inc dx
mov ax,3100h
int 21h

;calculate the number of
;paragraphs (each 16 bytes) available
; to the program

;end program with end code 0 (o.k)
;but remain resident

;== End ===

code ends ;End of the CODE segment
end start

394

Abacus 7.13 Reading the Date and Time from the BIOS

7 .13 Reading the Date and Time from the BIOS

The various time functions of the ROM-BIOS can be addressed through BIOS
interrupt lAH. The PC and XT each have two time/date functions. The AT has
eight time/date functions available to the user.

Realtime clock

The enhanced functions included in the AT operate in conjunction with the AT's
battery powered realtime clock (RTC). The realtime clock continues keeping time
even when the AT is switched off. This clock's method of timekeeping is quite
different from PC and XT time. PC and XT models measure time using timer
interrupt SH, which the system calls about lS.2 times per second. Timer interrupt
SH remains independent of the CPU's clock frequency. The AT ROM-BIOS
maintains control of this interrupt, but only for maintaining software
compatibility with the PC and XT. The AT BIOS receives the current time from
the realtime clock accessing the CPU.

Function OOH: Get clock

Function number OOH gets the current clock time. You can call this function by
passing the number (0) to the AH register. The function loads the time into the
CX and DX registers. These two registers combine to form a 32-bit counter value
(CX contains the most significant 16 bits, while DX contains the least significant
16 bits). The BIOS timer increments this value by 1 each time interrupt SH is
called {lS.2 times per second). The total value is the result of multiplying the
contents of CX register by 65,536 and adding the contents of the DX register.
Dividing this value by lS.2 returns the number of seconds elapsed, which can then
be converted into minutes and hours.

The AT interprets time differently from the PC and XT. The PC/XT BIOS sets
this counter to 0 during the system booting process. The value returned is the time
passed since the computer was switched on (not the actual time). To obtain the
time, the current time must be converted to the value corresponding to the counter,
then passed to the BIOS (more on this later). The AT doesn't require this time
value conversion since BIOS reads the actual time from the realtime clock during
the system boot. It converts this time into a suitable timer value and saves it.
Reading the counter with the help of function 0 on the AT thus provides the
current time.

Besides this counter, a value the AL register indicates whether or not 24 hours
have PflSsed since the last reading. If the AL register contains a value other than 0,
24 hours have passed. This value does not indicate how many 24-hour periods have
elapsed since the last reading.

If the conversion of time values into clock time is too complicated, function 2CH
of DOS interrupt 21H can be used. This function simply reads and converts the

395

7. TheBIOS PC System Programming

current time using function 0 of interrupt lAH (see Chapter 18 of this book for
more information about function 2CH of DOS interrupt lAH).

Function 01 H: Set clock

Function number OlH sets the current clock time. You can call this function by
loading the number 1 into the AH register, the most significant 16 bits of the
counter into the CX register and the least significant 16 bits into the DX register.
These two registers combine to form a 32-bit time value. If the conversion of the
current time into a timer value is too complicated, function 2DH of DOS interrupt
21H can be used instead (see Chapter 18 of this book for more information about
function 2DH of DOS interrupt 21H).

The next six functions are available only on the AT. If you attempt to call these
functions on a PC or an XT, nothing will happen (use the model identification
program described in Section 7.3 to check for AT hardware).

All six functions use BCD format for time and date indications. In this format,
two characters are coded per byte, where the higher number is coded in the higher
nibble and the lower number in the lower nibble. All six functions use the carry
flag following a return from the function call. If the carry flag is set, this indicates
that the realtime clock is malfunctioning (e.g., dead battery). The called function
could not be executed properly.

Function 02H: Get current time

Function 02H reads the realtime clock time. You can call the function by loading
the function number (2) into the AH register. The current time is returned with the
hour in the CH register, minutes in the CL register and the seconds in the DH
register.

Function 03H: Set current time

Function 03H sets the time on the realtime clock. You can call the function by
loading the function number (3) into the AH register, the hour into the CH
register, minutes into the CL register and seconds into the DH register. The DL
register indicates whether the "daylight savings time" option is desired. A 1 in the
DL register selects daylight savings time, while 0 maintains standard time.

Function 04H: Get current date

396

Functions 4 and 5 read and set the date stored in the realtime clock. Both functions
use the century, the year, the month and the day as arguments. The day of the week
(also administered by the realtime clock) does not apply to these functions. If you
want to read the day of the week, direct access must be made to the realtime clock
(see Chapter 10 for instructions on direct access).

Abacus 7.13 Reading the Date and Time from the BIOS

Function 04H gets the current date from the realtime clock. You can call this
function by loading the function number (4) into the AH register. The CH register
contains the first two numbers of the year (the century). The CL register contains
the last two numbers of the year (e.g., 88). The month is returned in the DH
register, and the day of the month in the DL register.

Function 05H: Set current date

Function OSH sets the current date in the realtime clock. You can call this function
by loading the function number (5) into the AH register, either 19 or 20 into the
CH register, the last two numbers of the year into the CL register (e.g., 89
decimal), the month into the DH register, and the day of the month into the DL
register.

Function 06H: Set alarm time

Function 06H allows the user to set an alarm. Since only the hour, minute and
second can be indicated, the alarm time applies only to the current day. When the
clock reaches the alarm time, the realtime clock calls a BIOS routine which in turn
calls interrupt 4AH. A user routine can be installed under this interrupt to simulate
the sound of an alarm clock (you can program the routine to make other sounds).
During the system initialization interrupt 4AH moves to a routine which contains
only the IRET assembly language instruction. The IRET instruction forces the
CPU to terminate the interrupt so that arriving at alarm time doesn't result in any
action visible to the user. You can call this function by loading the function
number (6) into the AH register, the alarm hour into the CH register, the alarm
minute into the CL register and the alarm second into the DH register.

Function 07H: Reset alarm time

Only one alarm time can be set. If this function is called while another alarm time
is set, or has not yet been reached, the carry flag is set after the function call. A
new alarm time doesn't replace the old alarm time; the old time must be deleted
first. You can call this function by loading the function number (7) into the AH
register; no other parameters are required. This call clears the last alarm time so
that a new alarm time can be programmed.

397

7. TheBJOS PC System Programming

7 .14 BIOS Variables

The preceding sections described different BIOS interrupts and their functions.
These functions require a segment of memory for storing variables and data. For
this reason, the BIOS reserves the area of memory between addresses 0040:000 and
0050:0000 for storing internal variables. The contents of most of these variables
can be read using some BIOS functions, or by using direct access. Sometimes
direct access is the easiest method of the two, but it increases the odds of a
program not executing properly on certain PCs. Since the BIOS can vary from PC
to PC, different BIOS versions may use individual memory locations within this
area in different ways. When working with "standard issue" PCs and compatibles
(e.g., IBM, Tandon, etc.), you can assume that the memory assignment provided
here remains constant between machines.

The following list describes the individual variables, their purposes and addresses.
The address indicated is the offset address of segment address 0040H. For example,
a variable with the offset address lOH has the address 0040:0010 or lOH.

OOH-07H

During the booting process, a BIOS routine determines the configuration of its
PC. It determines, among other things, the number of installed serial (RS-232)
interfaces. These interface numbers are stored as four words in memory locations
0040:0000 to 0040:0007. Each one of these words represents one of the four cards
that can be installed for asynchronous data transmission. First the low byte is
stored, followed by the high byte. Since few PCs have four serial cards at their
disposal, the words which represent a missing card contain the value 0.

08H-OFH

During the booting process, a BIOS routine determines the configuration of its
PC. It determines, among other things, the number of installed parallel interfaces.
These card numbers are stored as four words in memory locations 0040:0008 to
0040:000F. Each one of these words stands for one of the four cards that can be
installed for parallel data transmission. First the low byte is stored, followed by
the high byte. Since few PCs have four parallel cards at their disposal, the words
which represent a missing card contain the value 0.

10H-11H

398

This word represents the hardware configuration of the PC as called through BIOS
interrupt l IH. Similar to the above two words, this configuration is determined
during the booting process. The purposes of individual bits of this word are
standardized for the PC and the XT, but can differ in some other computers.

Abacus

12H

7.14 BIOS Variables

This byte provides storage for infonnation gathered during the system self-test,
executed during the booting process and after a warm start. BIOS routines also use
this byte for recognizing active keys. It has no practical use for the programmer.

13H-14H

This word indicates the RAM capacity of the system in kilobytes. This
infonnation is also gathered during the booting process, and can be read using
BIOS interrupt 12H.

15H-16H

17H

18H

These two bytes test the hardware during the booting process. They have no further
use after each hardware test

This is called the keyboard status byte because it contains the status of the
keyboard and different keys. Function 02H of BIOS keyboard interrupt 16H reads
this byte. Accessing this byte allows the user to toggle the <Insert> or <Caps
Lock> key on or off. The upper four bits of this byte may be changed by the user;
the lower four bits must remain undisturbed.

7 65 4 3 21 0

I I ..., 1=Rlght SHIFT key pressed

l L 1:Left SHIFT key pressed

1:CTRL key pressed
1=ALT key pressed

1 :SCROLL LOCK on

1:NUM LOCK on

1:CAPS LOCK on
1:1NSERT on

Keyboard status byte

This byte is similar to byte 17H above, with the difference that this byte indicates
the active status of the <SysReq> and <Break> keys.

399

7. TheBIOS PC System Programming

19H

7 65 4 3 21 0

l l l l l l l l J- 1 :CTRL ke_I_ _e_ressed
1 1 :ALT key pressed

1 :SysReq key pressed
(AT & some XT)

1 :Pause mode active

1=BREAK key pressed

1:NUM ke_I_ _e_ressed

1 :CAPS pressed

1:1NSERT pressed

Extended keyboard status byte

This byte currently serves no purpose; it will be used for status in a proposed
extended keyboard once that keyboard appears on the market

1 AH·1 BH

This word contains the address of the next character to be read in the keyboard
buffer (see also 1EH-3DH below).

1CH-1DH

This word contains the address of the last character in the keyboard buffer (see also
1EH-3DH below).

1 EH-3DH

400

This area of memory contains the actual keyboard buffer. Since every character
stored in the keyboard buffer requires 2 bytes, its 32-byte capacity offers space for a
maximum of 16 characters. For a normal ASCII character, the buffer stores the
ASCII code and then the character's scan code. The scan code is the number of the
activated key which generated the ASCII character. If the character in the keyboard
buffer uses an extended code (e.g., a cursor key), then the first byte contains the
value 0 and the second byte contains the extended key code.

The computer constantly reads characters from the keyboard buffer. If the buffer is
not full, characters can be added. The address of the next character to be read from
the keyboard buffer is stored in the word at memory location 0040:001AH. When a
character is read, the character moves by 2 bytes toward the end of the buffer in

Abacus 7.14 BIOS Variables

memory. When a character was read from the last memory location of the buffer,
this pointer resets to the beginning of the buffer.

The same is true of the pointer in memory location 0040:001C, which indicates
the end of the keyboard buffer. If you add a new character, it is stored in the
keyboard buffer at the location indicated by this pointer. Then the pointer is
incremented by 2 to move toward the end of the buffer. If a new character is stored
at the last memory location of the buffer, this pointer resets to the beginning of
the buffer.

The relationship between the start and end pointers tells something about the
buffer's status. Two conditions are of special interest. The first is the condition
when both pointers contain the same address (no characters are currently available
in the keyboard buffer). The other condition is when a character should be appended
to the end of the keyboard buffer, but adding 2 to the end pointer would point it to
the start pointer. This means that the keyboard buffer is full, i.e., no additional
characters can be accepted.

4 5 6

I I

0040:001E 0040:0024

I 0024H I
Pointer to

last character

in 0040:001C

Normal character:

Extended character:

7

I I
8 9 10 11 12 13 14 15 p
I I I I I I I

0040:003D

...._ ______ 0040:001A

~
Pointer to

next character

in 0040:001A

Two byte

character

ASCII codel Scan

OOH I Code I

Keyboard buffer with start and end pointers

401

7. The BIOS PC System Programming

3EH

3FH

40H

41H

The lowest four bits correspond to the number of installed PC disk drives (you are
allowed a maximum of four drives). These bytes also indicate whether the
connected drives must be calibrated. This is mostly the case after an error occurs
during read, write or search access. When an error occurs, the corresponding bit in
this byte is set to 0.

The four lower bits of this byte indicate whether the current disk drive motor is in
motion. A 1 in the corresponding bit indicates this. In addition, bit 7 is always set
when write access is in progress.

This byte contains a numerical value which indicates the time period until a disk
drive motor switches off. Since BIOS can only access one disk drive at a time, this
value refers to the drive last accessed. Following access to this drive, BIOS places
the value 37 into this register. During every timer interrupt (which occurs about
18.2 times per second), the value in this byte is decremented by l. When it finally
reaches 0, the disk motor is turned off. This takes place after about two seconds.

This byte contains the status of the last disk access. When the byte contains the
value 0, the last disk operation was performed in an orderly manner. Another value
signals that an error code was transmitted by the disk controller.

42H-48H

49H

4AH

402

These seven bytes indicate the status of the NEC disk controller. They also
indicate hard disk controller status on hard disk systems.

This byte contains the current display mode as reported by the BIOS. This is the
same value indicated when the user activates a display mode through function 0 of
the BIOS video interrup.t IOH.

This word contains the number of text columns per display line in the current
display mode.

Abacus

4CH

7.14 BJOS Variables

This word contains the number of bytes required for the display of a screen page in
the current display mode, as reported by the BIOS. In the 80x25-character text
mode, this is 4,000 bytes.

4EH-4FH

This word coni:ains the address of the current screen page now on the monitor,
relative to the beginning of video card RAM. The video RAM of the color card
si:arts at B800:0000 for the first screen page, and at B800:1000 for the second
screen page in 80x25-character text mode. This variable usually contains the value
lOOOH.

50H-5FH

60H

61H

62H

These 16 bytes coni:ain the current cursor position for each screen page. BIOS can
control a maximum of 8 screen pages. BIOS reserves two bytes for each screen
page. The low byte indicates the screen column, which can have values ranging
from 0 to 39 (in 40-column mode) or from 0 to 79 (in 80-column mode). The high
byte indicates the screen line, which can have values ranging from 0 to 24. If you
change the values in this table, the immediate position of the blinking cursor
remains unchanged, but the change will become noticeable the next time you enter
characters into the corresponding display page.

You can use these bytes for positioning the cursor, but we don't recommend this
method.

This byte contains the starting line of the blinking cursor, which can have values
ranging from 0 to 7 (color graphic card) or from 0 to 14 (monochrome graphic
card). Changing the contents of this byte doesn't change the cursor's appearance,
since it must first be transmitted by BIOS to the video controller.

This byte contains the ending line of the blinking cursor, which can have values
ranging from 0 to 7 (color graphic card) or from 0 to 14 (monochrome graphic
card). Changing the contents of this byte doesn't change the cursor's appearance,
since it must first be transmitted by BIOS to the video controller.

This byte contains the number of the currently displayed screen page.

403

7. The BIOS PC System Programming

63H-64H

65H

66H

This word contains the video card port. If a PC contains several video cards, the
value stored will be the address of the currently active video card.

The contents of a video controller card's mode selector dictates the current display
mode. The current value is stored in this memory location.

A color card in medium-resolution graphic mode can display 320x200 pixels in
four different colors. Three of these colors originate from one of the two color
palettes. This byte contains the currently active color palette (either 0 or 1).

67H-6BH

The early PC BIOS versions could use a cassette recorder for data storage. Those
early versions of BIOS used these five bytes for cassette access when storing data.
XT and AT models, which do not have this interface, use these memory locations
in connection with RAM expansion.

6CH-6FH

70H

71H

404

These four bytes act as a 32-bit counter for both BIOS and DOS. The counter is
incremented by 1 on each of the 18.2 timer interrupts per second. This permits
time measurement and time display. The value of this counter can be read and set
with BIOS interrupt lAH. If 24 hours have elapsed, it resets to 0 and counts up
from there.

This byte contains a 0 when the timer routine is between 0 and 24 hours. Byte
70H changes to 1 when the time counter routine exceeds its 24-hour limit. For
every subsequent 24-hour count, this byte remains at 1.

If the BIOS timer interrupt lAH is used to set the time, this byte resets to 0.

This byte indicates whether or not a keyboard interrupt occurs after the user presses
<Ctrl><C> or <Ctrl><Break>. If bit 7 of this byte contains the value 1, a
keyboard interrupt has occurred.

Abacus 7.14 BIOS Variables

72H-73H

During the booting process, a reset command is sent to the keyboard Controller.
For the duration of this reset, the word at this location assumes the value 1234H.

XT BIOS variables

The hardware configurations of the XT permit the introduction of additional
variables. The following is a list of BIOS variables found in the XT and AT.

74H-77H

These four bytes are used only by hard disk systems for hard disk control.

78H-7BH

Each of these four bytes returns the status of one of the four printer ports.

7CH-7FH

Each of these four bytes returns the status of one of the four asynchronous
communication (RS-232) ports.

80H-81 H

This word contains the beginning of the keyboard buffer as the offset address to the
segment address 0040. Since the keyboard buffer normally starts at address
0040:001E, this memory location usually contains the value IEH.

82H-83H

This word contains the end of the keyboard buffer as the offset address to the
segment address 0040. Since the keyboard buffer normally ends at address
0040:003E, this memory location usually contains the value 3EH.

AT BIOS variables

88H

The advanced features of the AT require even more BIOS variables. Here is a list of
the BIOS variables found only on AT models.

This byte contains the last data transmission speed of the disk drive or hard disk.

405

7. TheB/OS PC System Programming

8CH-96H

97H

This memory range cont.ains variables necessary during disk/hard disk access.

This byte reserves a keyboard flag which shows the status of the AT keyboard's
LED (light-emitting diode).

98H-AOH

406

This memory range accepts variables from the battery-powered realtime clock.

All members of the PC family (PC, XT and AT) have a variable in memory
location 0050:0000. This variable works in conjunction with the hardcopy routine
(interrupt 5) to prevent printer output during the printing of another hardcopy. The
'hardcopy routine tests for whether this flag has a value of 0. If so, and no hardcopy
is being printed, the flag changes to 1. The BIOS can check this variable to see
whether a printout is in process. After a successful printout, this flag resets to 0 to
allow additional printing. If an error was detected during printer access, this flag is
set to the value 255 and the printing procedure aborts.

Chapter 8

Terminate and Stay Resident
Programs

Since its birth, DOS has been criticized for its inability to handle multitasking
(running more than one program at a time). Even though OS/2 is capable of
multitasking, it runs only on ATs or 80386-based computers. But TSR (Terminate
and Stay Resident) programs can bring some of the advantages of multitasking
into the world of DOS machines. This type of program moves into the
"background" once it is started, and becomes active when the user presses a
particular key combination. The SideKick® program produced by Borland
International made TSR programs very popular.

Running a TSR program isn't multitasking in the true sense of the word, since
only one program is actually running at any given time. However, with the touch
of a key, the user can immediately access such useful tools as a calculator,
calendar, or note pad. In addition to these applications, macro generators, screen
layout utilities and text editors can also be found in TSR form.

Many TSR programs can even interact with the programs that they interrupt, and
transfer data between the TSR and the interrupted program. One example of this
would be a TSR appointment book that inserts a page from its calendar in a file
loaded into a currently running word processor.

Although many different applications can be implemented with TSR programs,
TSR programs have two things in common:

all use the same basic method of operation

all ~ built on similar programming concepts

This chapter examines these two items, and demonstrates simple implementations
of TSR programs.

407

8. Terminate and Stay Resident Programs PC System Programming

Before we begin, we should point out that this involves very complex
programming. Comprehending this material requires a certain level of
understanding about how things work within the system. This is especially true of
TSR programs, since by their very definition they all but ignore the single-task
nature of DOS, in which one program has access to all of the system resources
(RAM, screen, disk, etc.). A TSR program must contend with many other
elements of the system such as the BIOS, DOS, the interrupted program, and even
other TSR programs. Managing this is a difficult but rewarding task, and can only
be realized in assembly language. Of the available PC languages, only assembly
language offers the ability to work at the lowest system level, the interrupt level.
But although it has this capability, assembly language is as flexible as high level
languages for writing TSR applications such as calculators or note pads. Because
of this we11 list two assembly language programs in this chapter which will allow
you to "convert" Turbo Pascal, Turbo C, and Microsoft C programs into TSR
programs.

Activating TSR programs

408

Let's start by looking at how a TSR program is activated. To make our TSR
program come to the foreground immediately after we press a certain key
combination (called the hotkey), we must install some sort of activiation
mechanism tied to the keyboard. We can use interrupts 09H and 16H, two system
keyboard calls. Interrupt 16H is the BIOS keyboard interrupt, which programs use
to read characters and keyboard status. If we use this interrupt, then our TSR
program can only be activated when the main program is using interrupt 16H for
keyboard input

It would be better to use interrupt 09H, which is called by the processor whenever
a key is pressed or released. We can redirect this interrupt to our own routine,
which can check to see if the TSR program should be activated or not. Before it
does this, the routine should call the old interrupt 09H handler. There are two
reasons for this. The first has to do with the task of interrupt 09H, which informs
the system that the keyboard needs the system's attention in order to transfer
information about a key event. Therefore, interrupt 09H normally points to a
routine within the ROM BIOS which accepts and evaluates information from the
keyboard. Specifically, it receives the code from the keyboard, converts it to an
ASCII code, and then places this code in the BIOS's keyboard buffer. Since our
TSR program neither wants nor is able to handle this job, we must call the
original routine, or keyboard input will be impossible.

The second reason has to do with the fact that it is possible that other TSR
programs were installed before ours, which have redirected interrupt 09H to their
own routines. Since our program is in front of these programs in the interrupt
handler chain, their interrupt routines will not be called automatically if we do not
call the old interrupt handler. The result would be that we could no longer activate
these TSR programs. The end result is that when a TSR program is called via a

Abacus 8. Terminate and Stay Resident Programs

redirected interrupt routine, it should always call the old interrupt handler before or
after its own interrupt processing.

The call must not be made with the INT assembly language instruction, since this
would just recall our own interrupt handler. This would lead to an infinite loop in
most cases, a stack overflow and an eventual system crash. To avoid this we must
save the address of the old interrupt handler when the TSR program is installed.
We can then call the old interrupt handler with this stored address with the help of
a FAR CALL instruction. To simulate calling this handler through the INT
instruction, we must first place the contents of the flag register on the stack with
the PUSHF instruction before the CALL.

return to program
Keypress

interrupt 09 (h) NO

Call old handler activate '4 YES

Call old handler

Call old handler

Read character
from keyboard and
convert to ASCII
code

activate ..

activate

NO

YBS
Hotkey?

NO

YES
Hotkey?

Last installed
TSR program

Other installed
TSR program

First installed
TSR program

Original
handler for interrupt
09(h) in ROM-BIOS

Reading keys for TSR programs using interrupt ()<)H

After the return from the interrupt handler, we can check to see if the hotkey was
pressed to activate the TSR. The BIOS keyboard flag at address 17H in the BIOS
variable segment (segment address 0040H) indicates the status of the following
keys:

right <Shift> key

left <Shift> key

<Ctrl> key

<Alt> key

<Norn> key

<Scroll Lock> key

409

8. Terminate and Stay Resident Programs PC System Programming

DOS

<CapsLock> key

<SysReq> key (AT keyboard only)

If the appropriate keys are pressed, the user is trying to activate the TSR program.
We can only do this if certain conditions are met, all of which come down to the
fact that the DOS is not re-entrant.

Since the TSR program can be activated from the keyboard at any time, regardless
of the other processes in the system, it could conceivably interrupt a call to a DOS
function. This may not lead to problems as long as the TSR program returns to
the interrupted DOS function properly. The problem occurs when the TSR itself
tries to call DOS functions, which is hard to avoid when programming in a high
level language. Here we see the problem of re-entry. This refers to the ability of a
system to allow multiple programs to call and execute its code at the same time.
DOS is not re-entrant, however, since it is a single-task system and assumes that
DOS functions will be called in sequence, and not in parallel.

Calling a DOS function from within a TSR program while another function is
executing leads to problems because the processor register SS:SP is loaded with
the address of one of three DOS stacks when interrupt 21H is called. Which of the
three stacks is used depends on the function group to which the DOS function
belongs, and cannot be determined by the caller. While the DOS function is being
executed, it places temporary data on this stack as well as the return address to the
calling program. If the execution of the function is then interrupted by the
activation of a TSR program which then calls a DOS function, DOS will again
load register pair SS:SP with the starting address of an internal stack. If it is the
same stack that the interrupt function was using, each access to the stack will
destroy the data of the other function call. The DOS function called by the TSR
program will be executed properly, but the problem will occur when the TSR
program ends and control returns to the interrupted DOS function. Since the
contents of the stack have been changed in the meantime by other DOS calls, the
DOS function will probably crash the system.

Bypassing re-entry

410

There are two ways to get around these re-entry problems: A void calling DOS
functions, or allow the TSR program to be activated only if no DOS functions are
being executed. We have already ruled out the first option, so we must use the
second. DOS helps us here by providing the INOOS flag, which is normally only
used inside DOS but which is very useful to us as well. It is a counter which
counts the nesting depth of DOS calls. If it contains the value 0, no DOS
functions are currently being executed. The value 1 indicates the current execution
of a DOS function. Under certain conditions this counter can also contain larger
values, such as when one DOS function calls another DOS function, which is
allowed only in special cases.

Abacus 8. Terminate and Stay Resident Programs

Since there is no DOS function to read the value of this flag, we have to read the
contents directly from memory. The address does not change after the system is
booted, so we can get the address when the TSR is installed and save it in a
variable. DOS function 34H returns the address of the INDOS flag in register pair
ES:BX.

This flag is read in the interrupt handler for interrupt 09H since it checks to see if
the hotkey was pressed, and allows the TSR program to be activated only if the
INDOS flag contains the value 0. This is not the whole solution to the problem,
however. It coordinates the activation of the TSR program with DOS function
calls of the transient program being executed in the foreground, but it does not
allow the TSR program to be called from the DOS user interface. Since the DOS
command processor (COMMAND.COM) uses some DOS functions for printing
the prompt and accepting input from the user, the INDOS flag always contains the
value 1. In this special case we can interrupt the executing DOS function, but we
must make sure that the INDOS flag contains the value 1, because a DOS function
can be called from transient program or from the DOS command processor.

There is a solution for this problem too. It involves the fact that the DOS is in a
kind of a wait state when it is waiting for input from the user in the command
processor. To avoid wasting any valuable processor time, it periodically calls
interrupt 28H, which is responsible for short term activation of background
processes like the print spooler (DOS PRINT command) and other tasks. If this
interrupt is called, it is relatively safe to interrupt DOS and call the TSR program.

To use this procedure, a new handler for interrupt 28H is installed when the TSR
program is installed. It first calls the old handler for this interrupt and then checks
to see if the hotkey has been pressed. If this has occurred, the TSR program can be
activated, even if the INDOS flag is not 0.

One more restriction must still be added-we cannot allow the TSR program to be
activated, even using the handler for interrupt 09H, if time-critical actions are
being performed in the system.

Time-critical actions

These are actions which, for various reasons, cannot be interrupted because they
must complete execution in a relatively short time. In the PC this includes
accesses to the floppy and hard disk, which at the lowest levels are controlled by
BIOS interrupt 13H. If an access to these devices is not completed by a certain
time it can cause serious system disruptions. A dramatic example is if the TSR
program performs an access to these devices before another access, which is
initiated by the interrupted program, has finished. Even if this doesn't crash the
system, it will lead to loss of data.

We can avoid this by installing a new interrupt handler for BIOS interrupt 13H.
When this handler is called, it sets an internal flag which shows that the BIOS disk
interrupt is currently active. Then it calls the old interrupt handler which performs

411

8. Terminate and Stay Resident Programs PC System Programming

the access to the floppy or hard disk. When it returns to the TSR handler, the tlag
is cleared, signalling the end of BIOS disk activity.

To prevent this interrupt handler from being interrupted, the other TSR interrupt
handlers all monitor this flag and will activate the TSR program only if the flag
indicates that the BIOS disk interrupt is not active.

Recursion

One last condition placed on the activation of a TSR program is that recursive
activations are prohibited. Since the hotkey can still be pressed after the TSR
program has been activated, we must prevent the TSR program from being
reactivated before it is finished. We can simply add another flag which is checked
before the TSR is activated. The TSR program sets this flag when it begins and
clears it again just before it ends. If an interrupt handler determines that this flag is
set, it will simply ignore the hotkey.

Once all of these conditions have been satisfied, we can activate the TSR program.

Context switch

412

The process of activating a TSR program is called a context switch. The program
context or environment is all the information needed for operating the program.
This includes such things as the contents of the processor registers, important
operating system information, and the memory occupied by the program. We don't
have to worry about the program memory in our context switch, however, since
our TSR program is already marked as resident, meaning that the operating system
will not give the memory it occupies to other programs.

The processor registers, especially the segment registers, must be loaded with the
values which the TSR program expects. These are saved in internal variables when
the TSR program is installed. Since the contents of these and other registers will
be changed by the TSR program, the contents of the registers must be saved
because they belong to the context of the interrupted program and must be restored
when it is resumed.

The same applies for context dependent operating system information, which for
DOS includes just the PSP (Program Segment Prefix) of the program and the
DT A (Disk Transfer Area). The addresses of both structures must be determined and
saved when the TSR program is installed, so that they can be reset when context is
changed to the TSR program. Also, we must not forget to save the addresses of the
PSP and DT A of the interrupted program before the context change to the TSR
program. There are DOS functions for setting and reading the address of the DT A
(DOS functions lAH and 2FH), but there are no corresponding documented
functions for the PSP. DOS Version 3.0 includes function 62H, which returns the
address of the current PSP, but has no function for setting the address.
Undocumented functions for doing both exist in DOS 2.0: function SOH (set PSP

Abacus 8. Terminate and Stay Resident Programs

address) and 5 lH (get PSP address). Both of these are used in our TSR
demonstration program.

One final task is required of the TSR code. When the TSR program is activated
using interrupt 28H, an active DOS function is interrupted-one whose stack must
not be disturbed. Generally we should take the top 64 words from the current stack
and place them on the stack of the TSR program. This completes the context
change to the TSR program, which means that the TSR program can now be
started

At the moment, the TSR program can be viewed as a completely nonnal program
which can call arbitrary DOS and BIOS functions. The only competitor left in the
system is the foreground program. The TSR must ensure that it leaves both the
foreground program and its screen undisturbed.

Saving the screen context

The tasks were exclusively handled in assembly language. However, the C or
Pascal program comprising the TSR program itself can save the screen context.
This screen context includes the current video mode, the cursor position and the
screen's contents. The contents of the color registers and other registers on the
video card must also be saved, if any of these values are changed by the TSR
program.

As described in Section 7.4, the video mode can easily be detennined with function
OOH of BIOS video interrupt 16H. If the screen is in text mode {modes 0, 1, 2, 3,
and 7), the TSR program must save the first 4000 bytes of video RAM. The video
BIOS can be used for this (see Section 7.4), or you can access the video RAM
directly (see Chapter 10).

Saving the video mode becomes very complicated if a graphics mode is active,
since the video RAM for EGA and VGA cards can be as large as 256K in some
modes. If the TSR program interrupted a transient program, it may not be possible
to allocate a large enough buffer to handle both programs.

This is why many TSR programs will not activate themselves from within
graphics mode, and can only be used in text mode. Since PCs mostly use text
mode, this doesn't present a big problem. GEM® and Microsoft Windows®,
which operate only in graphics mode, are exceptions. Since these programs usually
support some mechanism for parallel execution of calculators, note pads, etc.,
TSR programs can prove less useful under these systems.

The assembler interface

We now have enough infonnation to understand the operation of the two assembly
language interfaces. The two programs are based on the principles we have outlined
here; the differences between them reflect the different syntaxes of compiled C and

413

8. Terminate and Stay Resident Programs PC System Programming

414

Pascal programs. We will first concentrate on the common points of the two
programs.

Both programs assume that the TSR program was installed by the first call from
the DOS level, and will be reinstalled on each new call. It is important to
remember one general rule: a TSR program can be reinstalled only if no other TSR
programs have been installed in the meantime. The LIFO (Last In, First Out)
principle applies here, so the only way a TSR program can be reinstalled is if it
was the last one to be installed, and if the corresponding interrupt vectors point to
its interrupt handlers. If another TSR program was installed following it, the
interrupt vectors point to its handlers.

To support this mechanism, the assembly language interface offers the high-level
program three routines with which install and later reinstall the TSR program. To
decide whether the program should be installed or reinstalled, the first function
should be called to see if the TSR program is already installed. This routine is
passed an identification string, which will play an important role later when the
program is installed. The routine looks for this ID string within the handler for
interrupt 09H. If it finds the string, the TSR program is already installed and can
be reinstalled.

If the ID string is not discovered, the TSR program has not been installed, or
another TSR program redirected the interrupt 09H vector in the meantime. The
TSR program can then be installed with the help of the installation routine. This
routine must receive the ID string used to detect whether the program has already
been installed, the address of the high level routine which will be called when the
TSR program is activated, and the hotkey value. The hotkey value is the bit
pattern in the BIOS keyboard flag which will activate the TSR program and can be
defined within the high level language program with the help of predefined
constants.

The initialization routine first saves the addresses of the interrupt handlers for
interrupts 09H, 13H and 28H. Then the data for the context of the high level
program are read and saved in variables within the code segment, so that they are
available for the interrupt handler and for activation of the TSR program. In the
next step, the new interrupt handlers for interrupts 09H, 13H, and 28H are
installed. Finally, the number of paragraphs after the end of the program which are
to remain resident must be calculated. Here the C and Pascal interfaces differ from
each other. Information about this calculation can be found in the individual
descriptions of the interfaces.

The actual installation is now over and the program is terminated as resident.
Notice that the installation routine does not return to the high level language
program, so all initialization such as memory allocation or variable initialization
must be performed before the call to this routine.

Abacus 8. TerminoJe and Stay Resident Programs

If the test function of the assembly language module determines that the program
is already installed, it can be reinstalled with the help of another function. This
function is passed the address of a routine in the high level language program
which will perform a "cleanup" of the program. This process includes releasing
allocated memory and other tasks. If no such routine is to be called, the assembly
language routine must be passed the value -l. Since the "cleanup" function is in
the TSR program, and not in the program which is performing the reinstallation, a
context switch is necessary. Unlike activation of the TSR program and the
corresponding interruption of the foreground program, this is from the program
which is doing the reinstallation to the already installed TSR program. The
reinstallation returns the redirected interrupt handlers to their old routines and
releases the memory allocated by the TSR program.

In addition to these three functions which are called from the high level language
program, the assembler module contains some routines which may not be called
by high level language programs. These include the interrupt handlers for
interrupts 09H, 13H, and 28H as well as a routine which accomplishes the context
switch to and from the TSR program.

The high level language programs

The following programs in C and Pascal demonstrate the assembly language
routines. They first check to see if the program is already installed or not. On a
new installation, a TSR routine is installed. You can activate the TSR by pressing
both <Shift> keys. It stores the screen contents, then displays a message and asks
the user to press a key. After this is done, the old screen contents are copied back
and the execution of the interrupted program continues.

On a reinstallation, the assembly language reinstallation program calls a cleanup
function in the TSR program. It prints the number of activations of the TSR
program, which is set to zero when the TSR program is installed and incremented
on each activation. This makes it clear that the cleanup function is actually
executed in the installed TSR program and not in the program which performs the
reinstallation.

TSR development

There are some procedures you should follow when developing TSR programs,
that apply to the special characteristics of these programs. First, the program
should be developed as a completely normal program, compiled and executed from
the DOS user interface, or an interactive environment. To prepare for conversion to
a TSR program, you can write an initialization routine and the actual TSR routine
which will be called when the hotkey is pressed. Unlike the TSR version, you can
call these routines in the main procedure/function of the program, allowing
activation independent of any hotkeys. You should completely develop and test the
program in this manner. Once it works correctly, you can convert it to a TSR
program.

415

8. Terminate and Stay Resident Programs PC System Programming

The conversion to a TSR program is relatively simple, and involves linking in the
assembly language module to the program and calling the corresponding functions.
You can see how this is done in detail in the two example programs.

After linking the assembly language routines and converting the program to an
EXE file, it should be started only from DOS. Do not start it from within an
interactive environment like Turbo Pascal or Turbo C.

The C implementation

416

Since TSR programs should use as little memory as possible, the assembly
language interface was developed to be linked with the smallest C memory model
(the small model). In both Microsoft and Turbo C compilers, the program code and
data are placed in two separate segments, each of which may be no larger than
64K. The data includes global and static data as well as the stack and the heap. As
the following figures show, Turbo C and Microsoft C use different memory
organization, despite their similarities. While in Turbo C the stack is placed
behind the heap and moves from the end of the data segment to the end of the heap,
the stack is between the global data and the heap in Microsoft C.

SS:SP
Stack ~

T Heap

Beap

SS:SP ----~.,,.St-ac.,..k -----+
Global ' 11tatic data Global l 11tatic data

OS, ss,E DS,SS,ES~ ~------t
Program code max 64K max 641C.

cs__.
PSP PSP

Turbo C Micro11oft C

Structure of a small model program (Turbo Cl Microsoft C)

If this organization had no effect on the assembly language interface, we would be
ready to allocate the entire 64K of the data segment resident in memory in addition
to the program code. Since this would mean a significant waste of memory, and
TSR programs should use as little memory as possible, the assembly language
should mark as resident only the part of the data segment which is actually
required.

The size of this memory area depends on the size of the data (or objects) which
will be allocated on the heap by the functions callocO and malloc(). You must
guess this size and pass it to the initialization routine so that the end of the
required memory in the data segment can be calculated.

This mechanism allows you to use the heap functions normally within the TSR
program. Unfortunately, this applies only to the Turbo C compiler. Microsoft C
uses an allocation algorithm which assumes that all of the memory to the end of
the data segment is available, so allocating heap storage should be avoided within a

Abacus 8. Terminate and Stay Resident Programs

TSR program compiled with Microsoft C. You should allocate the buffers and
variables required when the TSR program is initialized or place the required objects
in global variables. The example C program allocates the two buffers it needs in
the mainO function and then places the addresses of the buffers in global variables.

There is something else you should be aware of when using Turbo C. Since the
stack grows from the end of the 64K data segment to the heap, it finds itself
outside the program when parts of the data segment are released again, and this in
an area of memory which DOS may give to other programs. To avoid problems
with this, the assembly language interface places the stack immediately after the
heap, giving it 512 bytes of space. This should suffice for most applications, but
may lead to problems if you use large objects (such as arrays) as local variables or
pass them to other functions via the stack. In this case you should enlarge the
stack by setting the constant TC_ST ACK in the assembly language interface to a
larger value.

The different treatment of the stack is the reason that the initialization routine in
the assembly language interface must be told what compiler the TSR program will
be compiled with. In practice you don't have to worry about this since it is handled
within the C program with the help of constants defined with conditional
preprocessor statements.

The TSR initialization routine TSR_INIT must be called with the following
parameters (in the specified order):

Compiler type (0 = Microsoft C, 1 = Turbo C)

Pointer to the C TSR function

Hotkey (mask for reading the BIOS keyboard flag)

Number of bytes to keep free on the heap

Pointer to an identification string

The initialization routine uses the information about the compiler type and the
number of bytes which must be available on the stack to calculate the number of
paragraphs which must remain resident in memory. The C library function SBRK
is called from the assembly language routine to determine the offset address of the
current end of heap. The number of bytes which must be reserved for the heap is
added to this address. With Turbo C we also add the size of the stack, which is
appended to the heap and must also stay resident. The result of this addition is the
offset address of the last byte in memory relative to the start of the data segment.

This address is converted to paragraphs by shifting it four places to the right,
dividing it by 16. The result is the number of paragraphs which must remain
resident in the data segment. In addition, there are the paragraphs from the PSP and
the code segment. They can be calculated by subtracting the segment address of the

417

8. Terminate and Stay Resident Programs PC System Programming

data segment (which is also the ending address of the code segment) and the
segment address of the PSP. Since both Turbo C and Microsoft C store the
segment address of the PSP in a global variable called _PSP, it can be read by the
assembly language routine and included in the subtraction. The program is then
ended by a call to DOS function 3 IH, which keeps the specified number of
paragraphs (passed in the DX register) resident The TSR program is installed.

If a cleanup program is to be called when the program is reinstalled with the
UNINST function, the UNINST function must be passed a pointer to this
function. In C this is done simply by using the name of the function to be called
as a parameter.

If no such function is to be called, the argument -1 must be passed. Since this is
not a valid function pointer, it must be preceded by the following cast operator:

(void (*) (void)) -1

There is a symbol, NO_END_FIN, defined with this expression in the C program
which you can use in the call to UNINST.

You can get additional information from the following listing. It will make a good
basis for developing your own TSR programs.

C listing: TSRC.C

418

/**/
I* T S R C *I
!*--*/
I* Description : C module which is turned into a TSR program */
I* with the help of an assembly language routine. */
/*--*/
/* Author : MICHAEL TISCHER */
I* developed on : 08/15/1988 */
I* last update : 08/19/1988 */

/*--*/
I* (MICROSOFT C) *I
I* creation : CL /AS /c TSRC.C */
I* LINK TSRC TSRCA; */
I* call : TSRC *I
/*--•/
/* (BORLAND TURBO C) *I
I* creation Create project file with the following */
/* contents: */
/* TSRC */

TSRCA.OBJ I*
I*
I*

Before compiling, set Options menu I linker
option I Case sensitive link to OFF

*I
*I
*I

/**/

/*== Include files ===*/

tinclude <stdlib.h>
tinclude <dos.h>

/*== Typedefs ==*/

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef BYTE BOOL;

/* build ourselves a byte */

I* like BOOLEAN in Pascal */

Abacus 8. Terminate and Stay Resident Programs

typedef union vel far • VP; I* VP is a FAR pointer into the VRAM */

fifndef MK FP /* was MK FP already defined? */
fdefine MK_FP (seq, ofs) ((void far *) ((unsiqned lonq) (seq) «161 (ofs)))
fend if
fdefine VOFS(x,y) (80 * (y) + (x))
#define VPOS (x, y) (VP) (vptr + VOFS (x, y))

/*=- Structures and unions -========-===============---------=========*/

struct velb /* describes a screen position as two bytes */
BYTE character, /* the ASCII code *I

attribute; /* correspondinq attribute */
} ;

struct velw /* describes a screen position as one word */
WORD contents; /* stores ASCII character and attribute */

} ;

union vel
struct velb h;
struct velw x·

} ;

/* describes a screen position •/

/*== Link the functions from the assembly module ======================•/

extern int is inst(char• id strinq);
extern void uninst(void (*fkt) (void));
extern int tsr_init(BOOL TC, void (*fkt) (void), unsigned hotkey,

unsiqned heap, char* id_string);

/*== Constants ==*/

fifdef TURBOC
fdefine TC TRUE

felse
fdefine TC FALSE

fend if

/* are we compilinq with TURBO-C? */
/* yes */

/* we are usinq Microsoft C •/

!*-- codes of the individual control keys for buildinq the hotkey mask •/

fdefine RS HI FT 1 I* right SHIFT key pressed •1
fdefine LS HI FT 2 I* left SHIFT key pressed */
fdefine CTRL 4 !* CTRL key pressed */
fdefine ALT 8 /* ALT key pressed •/
#define SCRL AN 16 /* Scroll Lock ON •/
fdefine NUML AN 32 /* Num Lock ON */
fdefine CAPL AN 64 /* Caps Lock ON */
fdefine INS AN 128 /* Insert ON *I
fdefine SCR LOCK 4096 /* Scroll Lock pressed •/
fdef ine NUM LOCK 8192 /* Num Lock pressed •/
#define CAP-LOCK 16384 /* Caps Lock pressed */
#define INSERT 32768 1• INSERT key pressed *I
fdefine NOF Ox07 /* normal color •/
#define INV Ox70 /* inverse color */
#define HNOF OxOf I* briqht normal color */
fdefine HINV Oxf O 1• bright inverse color */

#define HEAP FREE 1024 /* leave lK space on the heap *I

fdefine TRUE, 1 /* constants for working with BOOL */
fdefine FALSE 0

fdefine NO END FTN ((void (*)(void)) -1) I* don't call an end ftn. */

/*== Global variables ===•/

char id_strinq[] = "MiTi"; /* identification strinq */

419

8. Terminate and Stay Resident Programs PC System Programming

420

VP vptr; I* pointer to the first character in video RAM */
I* number of activations of the TSR program */

/* pointer to the buffer with screen contents */
I* pointer to a blank line */

unsigned atimes = O;
union vel * scrbuf;
char * blank_line;

!***
* Function : D I S P I N I T *
--

Description Determines the base address of the video RAM.
* Input parameters : none

Return value : none

*
*
*

***/

void disp init(void)
{ -
union REGS regs;

regs.h.ah = 15;
int86(0x10, ®s, ®s);

/* processor regs for the interrupt call */

/* function numb~r: determing video mode */
/* call the BIOS video interrupt */

/* calculate base addr of the video RAM according to the video mode */

vptr = (VP) MK_FP((regs.h.al == 7) 1 OxbOOO : Oxb800, 0);
I

/***
Function : D I S P P R I N T *

--
Description Output a string to the screen. *
Input parameters : - COLUMN the output column *

- LINE the output line
- COLOR attribute for the characters *

* - STRING pointer to the string *
Return value none *

***/

void disp__print(BYTE column, BYTE line, BYTE
color, char * string)

{

register VP lptr; /* running pointer for accessing the video RAM */

lptr = VPOS(column, line);
for (; *string ; ++lptr)

/* set pointer to the video RAM */
/* run through the string */

(
lptr->h.character
lptr->h.attribute

}

*(string++); /*write char into the video RAM*/
color; /* set attribute for the character */

/***
* Function : S A V E S C R E N *
--

*

*

Description
Input parameters

Return value
Info

Saves the screen contents in a buffer.
- SPTR pointer to the buff er in which the

screen will be saved.

*
*
*

0000 *
It is assumed that the buffer is large enough to *
hold the screen contents. *

***/

void save_screen(union vel * sptr)
{

register VP lptr;
unsigned i;
lptr = VPOS(O, O);

/* running pointer for accessing the video RAM */
/* loop counter */

I* set pointer in the video RAM */

for (i=O; i<2000; i++) /* run through the 2000 screen positions */
(sptr++)->x.contents = (lptr++)->x.contents; /* save char. & attr. */

Abacus 8. Terminate and Stay Resident Programs

/***
* Function : R E S T 0 R E S C R E E N
••----------------------------------=---------------------------------**

Description

Input parameters

Copies the contents of a buffer into the video
RAM.
- SPTR = pointer to the buffer in which the

screen contents are located
Return value none

***/

void restore_screen(union vel * sptr)
{
register VP lptr;
unsigned i;
lptr = VPOS(O, 0);

I* pointer for accessing the video RAM */
/* loop counter */

/* set pointer to the video RAM */

for (i=O; i<2000; i++) /* run through the 2000 screen positions */
(lptr++)->x.contents = (sptr++)->x.contents; /* restore char.&attr.*/

/***
Function : E N D F T N

--
*

*

Description Called when the TSR program is reinstalled.
Input parameters : none
Return value : none

***/

void endftn(void
{

}

/*-- release the allocated buffers ----------------------------------*/

free(blank line);
free ((void *) scrbuf) ;

/* release the allocated buffer */
I* release the buffer */

printf ("The TSR program was activated \u times. \n", atimes);

/***
Function : T s R *

--

*
*
*

Description

Input parameters
Return value

Called by the assembler routine when the hotkey
is pressed.
none
none

***/

void tsr (void)
{

BYTE i; /* loop counter */

++atimes; /* increment the number of activations */
disp_init(); /*determine address of the video RAM*/
save screen(scrbuf); /* save the current screen contents */
for (i=O; i<25; i++) /* run through the 25 screen lines */
disp print(O, i, INV, blank line); /*clear the line*/

disp print(22, 11, INV, "TSRC {c} 1988 by MICHAEL TISCHER");
disp:::print (28, 13, INV, "Please press a key ••. ");
get ch();
restore screen(scrbuf);

} -

I* wait for a key */
/* copy the old screen back */

/**/
/** MAIN PROGRAM **/
/**/

void main()
{
printf("TSRC (c) 1988 by MICHAEL TISCHER\n\n");
if (is_inst(id_string)) /*is the program already installed?*/

421

8. Terminate and Stay Resident Programs PC System Programming

{ /* yes */
printf("TSRC was already installed--now disabling.\n");
uninst(endftn); /*reinstall prg., call ftn. ENDFKT */

/*-- if no end function is to be called, the call is: -------------*/
/*-- uninst(NO_END_FTN); -------------*/

I
else /* no, the program has not been installed yet */

{
/*-- with MSC the heap buffers must be allocated now --------------*/

* sizeof(union vel)); scrbuf = (union vel *) malloc(SO • 25
blank line= (char*) sbrk(80 + 1); /* allocate buffer */

I* terminate buffer with NUL */
/* fill the buffer with spaces */

*(blank line+ 80 > = '\0';
memset(blank_line, ' •, 80);

printf("TSRC now enabled - Start: <LSHIFT> + <RSHIFT>\n");
tsr init(TC, tsr, RSHIFT LSHIFT, HEAP_FREE, id_string);

) -

Assembler listing: TSRCA.ASM

422

;**;
;* TSRCA *;

;*--•;
;*
;•
;*

Description represents the assembler interface to a
C program which can be activated by a hotkey
as a TSR program.

•;
*;
*;

;•--*;
;*
;•
;*

Author
developed on
last update

MICHAEL TISCHER
: 08/10/1988
: 05/26/1989

•;
*;
•;

;*--*;
; * to assemble : MASM TSRCA; *;
;* ••• combine with C program ,
;**;

IGROUP group text ;combination of program segments
DGROUP group const,_bss, _data ;combination of data segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';this segment holds all read-only
CONST ends ;constants

BSS
BSS

segment word public 'BSS'
ends

;this segment stores all uninitialized
;static variables

DATA segment word public 'DATA' ;all initialized and global static
;variables are stored in this
;segment

extrn _psp word ;segment addr of the PSP of the C prg

DATA ends

;== Constants ==~=============

MAX_ID_LEN equ 16
TC STACK equ 512

' ;maximum length of the ID string
;512 bytes are reserved for, the stack
;with .TURBO-C

;== Program ===========~===============~~=~~=========================
I

_TEXT segment byte public 'CODE' ;the program segment

;-- Reference to external (C) functions --------------------------------

extrn _sbrk:near ;returns end address of the heap

Abacus 8. Terminate and Stay Resident Programs

;-- Public declarations of internal functions --------------------------

public
public
public

tsr init
is inst

-unlnst

;allows call from c program

;-- Variables for the interrupt handler -------------------------------
;-- (only accessible via the code segment) -----------------------------

id buf
ce_ptr
ce ofs
ce_seg

db (MAX ID LEN + 1) dup (0) ;buffer for the ID string
equ this dword ;points to the routine CALL_END
dw offset call end ;in the already-installed TSR program
dw

;-- Variables needed for activation of the c program -------------------

c_ss dw 0 ;C stack segment
c_sp dw 0 ;C stack pointer
c ds dw 0 ;c data segment
c es dw 0 ;c extra segment

c dta of s dw 0 ;DTA address of the C program
c_dta_seg dw O

c_ysp dw 0 ;segment addr of the PSP of the C prg
break_adr dw 0 ;break address of the heap
fkt adr dw 0 ;address of the C TSR function

;-- Variables for testing for the hotkey -------------------------------

key_rnask dw O
recur db 0
in bios db 0

daptr equ this
daptr_ofs dw 0
daptr_seg dw 0

dword

;hotkey mark for BIOS keyboard flag
;prevents recursive TSR calls
;shows activity of the BIOS disk
; interrupt

;pointer to the DOS Indos flag
;offset address
;segment address

;-- The following variables store the old addresses of the interrupt
;-- handler, which will be replaced by the new interrupt handler

int9 ptr equ this dword ;old interrupt vector 9h
int9-ofs dw 0 ;offset address of the old handler
int9_seg dw 0 ;segment address of the old handler

int13_ptr equ this dword ;old interrupt vector 13h
int13 ofs dw 0 ;offset address of the old handler
int13_seg dw 0 ;segment address of the old handler

int28_ytr equ this dword ;old interrupt vbector 28h
int28 ofs dw 0 ;offset address of the old handler
int28_seg dw 0 ;segment address of the old handler

Variables which store the information of the interrupted -----------
;-- program.

u dta ofs dw 0 ;DTA address of interrupted program
u_dta_seg dw 0

u_ysp dw 0 ;segment addr of the PSP of int. prg.

uprg_ss dw 0 ;SS and SP of the interrupted prg.
uprg_sp dw 0

;---
;-- TSR_INIT: ends the C program and makes the new interrupt -----------
;-- interrupt handler active

423

8. Terminate and Stay Resident Programs PC System Programming

424

;-- Call from C: void tsr init(bool TC,

;--

;--

- void (fkt *) (void),
int key mask,
unsigned heap byte,
char* id_strlng);

tsr_init proc near

sframeO
bpO
ret_adrO
tcO
fktptrO
keymaskO
heapO
idptrO
sf rameO

frame

tiO:

struc
dw
dw ?
dw
dw
dw
dw
dw
ends

equ [bp - bpO

push bp
mov bp,sp

;structure for accessing the stack
;stores BP
;return address
;compiler (1 = TURBO-C, 0 = MSC
;pointer to C TSR function
;mask for hotkey
;heap bytes required
;pointer to the ID string
;end of the structure

;store BP on the stack
;move SP to BP

;-- save the C segment registers ----------------------------

mov cs:c_ss,ss
mov cs:c_sp,sp
mov
mov

cs:c_es,es
cs:c_ds,ds

;store the registers in the
;corresponding variables

copy the ID string into the internal buff er -------------

mov si,frame.idptrO
push cs
pop es
mov di,offset id_buf
mov cx,MAX ID LEN
lodsb - -
stosb
or al,al
loopne tiO

;DS:SI now points to the string
;move CS to the stack
;and restore as ES
;ES:DI now points to ID BUF
;copy maxmimum of MAX ID LEN chars
;get character from string
;and place in internal buffer
;test for end of string
;continue if char!=O and CX!=O

store the parameters passed ----------------------------

mov
mov
mov
mov

ax,frame.fktptrO
cs: fkt _ adr, ax
ax,frame.keymaskO
cs:key_mask,ax

;get pointer to the c TSR function
;and save
;get mask for hotkey
;and save

;-- determine DTA address of the c program ------------------

mov ah,2fh
int 2lh
mov cs:c dta_ofs,bx
mov cs:c_dta_seg,es

;ftn. no.: get DTA address
;call DOS interrupt
;store address in the corresponding
;variables

;-- determine address of the INDOS flag ---------------------

mov ah,34h
int 21h
mov cs:daptr ofs,bx
mov cs:daptr::::seg,es

;ftn. no.: get addr of the INDOS flag
;call DOS interrupt
;save address in the corresponding
;variables

;-- get the addresses of the interrupt handler -------------

mov ax,3509h
int 21h
mov cs:int9 ofs,bx
rnov cs:int9::::seg,es

;get interrupt vector 9h
;call DOS interrupt
;save address of the handler in the
;appropriate variable

Abacus 8. Terminate and Stay Resident Programs

rnsc:

mov ax,3513h ;get interrupt vector 13h
int 2lh ;call DOS interrupt
mov cs:intl3_ofs,bx ;store address of the handler in the
mov cs:intl3_seg,es ;corresponding variables

mov ax,3528h ;get interrupt vector 28h
int 2lh ;call DOS interrupt
mov cs:int28_ofs,bx ;store address of the handler in the
mov cs:int28 _seg,es ;corresponding variables

;-- install the new interrupt handlers ---------------------

pusn as
mov ax, cs
mov ds,ax

mov ax, 2509h
mov dx, offset
int 2lh

mov ax,2513h
mov dx,offset
int 21h

mov ax,2528h
mov dx,offset
int 2lh

pop ds

int09

int13

int28

;save data segment
;CS to AX and then load into DS

;ftn. no.: set interrupt 9h
;DS:DX stores the addr of the handler
;call DOS interrupt

; ftn. no.: set interrupt 13h
;DS:DX stores the addr of the handler
;call DOS interrupt

;ftn. no.: set interrupt 28h
;DS:DX stores the addr of the handler
;call DOS interrupt

;restore DS from stack

;-- calculatre number of paragraphs which must remain
;-- in memory.

xor ax,ax
push ax
call sbrk

pop ex
add ax,frame.heapO

;determine current break address
;as argument for SBRK on the stack
;call C function SBRK
;AX contains the end addr of the heap
;get argument from stack again
;add required heap memory

;-- With TURBO-C the stack is found behind the heap and
;-- begins with the end of the segment. It must thus
;-- be moved near the heap.

cmp byte ptr .frame.tcO,O ;using TURBO-C?
je msc ;no, MSC

add ax,TC_STACK-1
rnov cs:c_sp,ax
inc ax

;calculate new stack pointer for TC
;and store
;set break address

;-- Calculate number of paragraphs which must remain -------
;-- resident in memory.

mov dx,ax
add dx,15
mov cl,4
shr dx, cl
mov ax,ds
mov bx,_psp
mov cs:c_psp,bx
sub ax,bx
add dx,ax
mov ax,3100h
int 2lh

;get break address into DX
;avoid loss through integer division
;shift 4 times to the right and then
;divide by 16
;move AX to DS
;get segment address of the PSP
;save in a variable
;subtract DS from PSP
;and add to the number of paragraphs
;ftn. no.: end resident program
;call DOS interrupt and end program

_tsr_init endp

;---

425

8. Terminate and Stay Resident Programs PC System Programming

426

;-- IS INST: determines if the program is already installed -----------
;--Call from c : int ist inst(char• id string);
;-- Return value: 1, if the program was already installed, else 0

_is_inst proc near

sframel struc
bpl dw ?
ret adrl dw ?
idptrl dw ?
sframel ends
frame equ [bp - bpl J

push bp
mov bp,sp
push di
push si
push es

;-- detennine segment

mov ax,3509h
int 2lh
mov di, offset id buf
mov si,frame.idptrl

mov cx,O
isiO: lodsb

cmp al, es: [di]
jne not inst
inc di
or al,al
jne isiO

mov cl,l

not_inst: mov ax, ex
pop es
pop si
pop di
pop bp
ret

is inst endp

;structure for accessing the stack
;hold BP
;return address
;pointer to the ID string
;end of the structure

; save BP on the stack
;move SP to BP
;save DI on the stack
;save SI on the stack
;save ES on the stack

address of the current int 9 handler --

;get interrupt vector 9h
;DOS interrupt puts seg addr in ES
;ES:DI points to installed ID BUF
;DS:SI points to the ID_STRING passed

;return code: not installed
;load character from the string
;compare to other string
;not equal --> NOT INST
;increment pointer-in String2
;end of string reached?
;no, keep comparing --> ISIO

;yes --> the program is installed

;get return code from ax
;restore saved registers from stack

;back to the caller

;end of the procedure

;---
;-- CALL_END: calls the end function on reinstallation of the TSR
;-- program.

Input
Info

DI = offset address of the routine to be called
;-- This function is not intended to be called by a C program.

call end proc far

call di
ret

call end endp

;call the end function
;back to the caller

;---
;-- UNINST: reinstalls the TSR program and releases the allocated
;-- memory again.
;-- Call from C void uninst(void (endfkt *) (void));
;-- Info if the value -1 (Oxffff) is passed as the pointer to
;-- the end function, no end functl.on will be called.
;-- Note This function should be called only when a prior call
;-- to IS_INST() has returned the value 1.

_uninst proc near

sframe2 struc ; structure for accessing the stack

Abacus

bp2
ret adr2
ftnptr2
sframe2

frame

8. Terminate and Stay Resident Programs

dw
dw
dw
ends

equ [bp - bp2]

assume es:IGROUP

push bp
mov bp,sp
push di
pusn si
push ds
push es

;stores BP
;return address
;pointer to the end function
;end of the structure

;allow access to the cs variables
;via ES

;save BP on the stack
;move SP to BP
;store DI on the stack
;store Sl on the stack.
;store DS on the stack
; store ES on the stack

determine the seg addr of the current int 9 handler ---
mov
int

ax, 3509h ;get interrupt vector 9h
21h ;DOS interrupt puts seg addr in ES

mov di,frame.ftnptr2
cmp di,Offffh
je no_endftn

;get address of the end function
;no end function called?
;NO ---> NO ENDFTN

;-- Perform context switch to c program and execute ------
;-- the specified end funtion

mov cs:ce_seg,es

mov cs:uprg_ss,ss
mov cs:uprg_sp,sp

ell
mov ss,es:c_ss
mov sp,es:c_sp
sti

push es
mov ah,2fh
int 21h
mov cs:u_dta_ofs,bx
mov cs:u_dta_seg,es
pop es

mov ah,SOh
mov bx,es:c_psp
int 21h

push ds
push es

mov ah, lah
mov dx,es:c dta ofs
mov ds,es:c:::dta:::seg
int 21h

mov ds,es:c_ds
mov es,es:c_es
call cs: [ce_ptr]

;save ES in jump vector

;save current stack segment and
;stack pointer

;allow no more interrupts
;activate the stack of the TSR
;program
;allow interrupts again

;save ES on the stack
;ftn. no.: get DTA address
;call DOS interrupt
;save address of the DTA of the
;interrupted program
;get ES back from the stack

;ftn. no.: set address of the PSP
;get seg addr of the PSP of the C prg
;call DOS interrupt

;save ES and DS on the stack

;ftn. no.: set DTA address
;get offset address of the new DTA
;and segment address of the new DTA
;call DOS interrupt

;set segment register for the
;C program
;call the function

perform context change to the interrupt program -------

mov ah,lah
mov dx,cs:u dta ofs
mov ds,cs:u-dta-seg
int 21h - -

pop es
pop ds

;ftn. no.: set DTA address
;load offset and segment address of
;the interrupted program
;call DOS interrupt

;seg addr of the TSR prog from stack
;restore DS from stack

427

8. Terminate and Stay Resident Programs PC System Programming

428

no_endftn:

uninst

rnov ah,SOh
mov bx,_ysp
int 21h

ell
mov ss,cs:uprg_ss
mov sp,cs:uprg_sp
sti

;ftn. no.: set address of the PSP
;load seg addr of the PSP
;call DOS interrupt

;don't allow interrupts
;restore stack pointer and stack
;segment
;allow interrupts again

;-- reinstall the interrupt handler of the TSR --------------
;-- program

ell
mov ax,2509h
rnov ds,es:int9_seg
mov dx,es:int9_ofs
int 21h

mov ax,2513h
rnov ds, es: intl3 _seg
mov dx,es:int13_ofs
int 21h

mov ax,2528h
mov ds,es:int28_seg
mov dx, es: int28 _ ofs
int 2lh

sti

mov es,es:c_psp
mov ex, es
mov es, es:[02ch
mov ah,49h
int 2lh

mov es, ex
mov ah, 49h
int 2lh

pop es
pop ds
pop si
pop di

pop bp
ret

assume es:DGROUP

endp

;don't allow interrupts
; ftn. no.: set handler for int 9
;segment address of the old handler
;offset address of the old handler
;install the old handler again

; ftn. no. : set handler for int 13
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

; ftn. no.: set handler for int 28
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

;allow interrupts again

;seg addr of the PSP of the TSR prg
;save in ex
;get seg addr of environment from PSP
;ftn. no.: release allocated memory
;call DOS interrupt

;restore ES from ex
;ftn. no.: release allocated memoru
;call DOS interrupt

;get the saved registers back from
;the stack

;back to the called

;combine ES with DGROUP again

;end of the procedure

;---
;-- The new interrupt routine follows ----------------------------------
;---
;-- The new interrupt 09h handler --------------------------------------

int09 proc far

pushf
call cs:int9_ptr

ell
cmp cs:recur,O
jne ik end

;simulate the call of the old handler
;via the INT 9h instruction

;suppress interrupts
;is the TSR prog already active?
;YES: back to the called of int 9

;-- test to see if the BIOS disk int is being executed now

cmp cs:in_bios,O ;BIOS disk interrupt active?

Abacus 8. Terminate and Stay Resident Programs

ik_end:

jne ik end ;yes --> back to the caller

;-- BIOS disk interrupt not active, test for hotkey

push ax
push es
xor ax,ax
mov es,ax

;save ES and AX on the stack

;set ES to the lowest memory segment

mov ax,word ptr es:[417h] ;get BIOS keyboard flag
and ax,cs:key_mask ;mask out the non-hotkey bits
cmp ax,cs:key_mask ;are only the hotkey bits left?
pop es ; get ES and AX
pop ax
jne ik end ;hotkey discovered? no --> oacK

;-- the hotkey was pressed, test to see if DOS is active

push ds
push bx
lds bx,cs:daptr
cmp byte ptr [bx],O
pop bx
pop ds
jne ik end

;save OS and BX on the stack

;DS:BX now point to the INDOS flag
;DOS function active?
;restore BX and OS from the stack

;DOS function active --> IK_END

;-- DOS is not active, activatr TSR program ----------------

call start tsr
iret

;start the TSR program
;back to the interrupted program

int09 endp
;-- the new interrupt 13h handler --------------------------------------

int13 proc far

mov cs:in_bios,1

pus hf
call cs: int13 _ptr
mov cs:in_bios, 0

ret 2

; set flag and show that the BIOS disk
; interrupt is active
; call the old interrupt handler
;simulate via int 13h
;BIOS disk interrupt no longer active

;back to the caller, but don't remove
;the flag reg from the stack first

int13 endp

;-- the new interrupt 2Bh handler -------------------------------------

int28

id end:

idOl:

proc far

pus hf
call cs:int28_ptr

cli
cmp
je
iret

cs:recur,O
idOl

;simulate calling the old interrupt
;handler via int 2Bh

;suppress further interrupts
;is the TSR program already active?
;NO ---> IDOl
;YES ---> back to the caller

;-- the TSR program is not yet active ----------------------

cmp cs:in bios, O
jne id end

;BIOS disk interrupt active?
;YES --> back to the caller

;-- BIOS disk interrupt not active, test for hotkey

push ax
push es
xor ax,ax
mov es,ax

;save ES and AX on the stack

;st ES to the lowest memory segment

mov ax,word ptr es:[417h] ;get BIOS keyboard flag
and ax,cs:key_mask ;mask out the non-hotkey bits

429

8. Terminate and Stay Resident Programs PC System Programming

430

cmp
pop
pop
jne

call
iret

int28 endp

ax,cs:key_mask
es
ax
ik_end

start_tsr

;are only the hotkey bits left?
;restore ES and AX

;hotkey discovered? NO --> back

;start the TSR program
;back to the interrupted program

;-- START_TSR: activate the TSR program ------------------------------

start_tsr proc near

tsrsl:

mov cs:recur,1 ;set TSR recursion flag

;-- perform context change to the C program -----------------

mov cs:uprg_ss,ss
mov cs:uprg_sp,sp

mov ss,cs:c_ss
mov sp,cs:c_sp

push ax
push bx
push ex
push dx
push bp
push si
push di
push ds
push es

;save current stack segment and
;stack pointer

;activate the C program's stack

;save the processor registers on the
;C stack

;-- save 64 words from the DOS stack ------------------------

mov cx,64
mov ds,cs:uprg_ss
mov si,cs:uprg_sp

push word ptr [si]
inc si
inc si
loop tsrsl

mov ah,51h
int 21h
mov cs:u_psp,bx

mov ah,2fh
int 21h
mov cs:u_dta_ofs,bx
mov cs:u_dta_seg,es

mov ah,50h
mov bx, cs:c_psp
int 21h

mov ah,lah
mov dx,cs:c_dta ofs
mov ds,cs:c_dta_seg
int 21h

mov ds,cs:c_ds
mov es,cs:c_es

sti
call cs:fkt_adr
ell

; loop counter
;set DS:SI to the end of the DOS stack

;save word from the DOS stack to the
;C stack and set SI to the next
;stack word
;process all 64 words

;ftn. no.: determine address of PSP
;call DOS interrupt
;save segment address of the PSP

;ftn. no.: get DTA address
;call DOS interrupt
;store address of the DTA of the
;interrupted program

;ftn. no.: set address of the PSP
;get seg addr of the PSP of the C prg
;call DOS interrupt

;ftn. no.: set DTA address
;get offset address of the new DTA
;and the segment address' of new DTA
;call DOS interrupt

;set segment register for the C
;program

;allow interrupts again
;call the start function of the C prg.
;disable interrupts

Abacus 8. Terminate and Stay Resident Programs

tsrs2:

start tsr

;-- perform context change to the interrupted program

mov ah, lah ;ftn. no.: set DTA address
mov dx, cs: u dta ofs ;load offset and segment addresses
mov ds,cs:u::::dta::::seg ;of the OTA of the interrupted program
int 21h ;call DOS interrupt

mov ah,SOh ; ftn. no.: set address of the PSP
mov bx,cs:u_psp ;seg addr PSP of the interrupted prg.
int 2lh ;call DOS interrupt

restore DOS stack again --------------------------------

mov cx,64
mov ds,cs:uprg_ss
mov si,cs:uprg_sp
add si,128
dee si
dee si
pop word ptr [si]
loop tsrs2

pop es
pop ds
pop di
pop si
pop bp
pop dx
pop ex
pop bx
pop ax

mov ss,cs:uprg_ss
mov sp,cs:uprg_sp

mov cs:recur,O
ret

endp

; loop counter
;load DS:SI with the end address of
;the DOS stack
;set SI to the start of the DOS stack
;SI to the previous stack word

;get word from the C stack to DOS stack
;process all 64 words

;restore the saved registers from the
;C stack

;reset stack pointer and stack segment
;of the interrupted program

;reset TSR recursion flag
;back to the caller

;---
text ends

end
;end of the code segment
;end of the program

Turbo Pascal offers only one memory model, unlike the various C compilers. The
organization of this model is well suited to TSR programs .

Free_Ptr__..

Prefix_ Seq ...

.t.
f

Raap

Stack

Global variables

Predefined. constants

Runtime library routines

Additional unit routines

Program code

PSP

1ncreas1nq
momory

addresses

Memory layout of a Pascal program under Turbo Pascal 4.0

431

8. Terminate and Stay Resident Programs PC System Programming

432

The figure above shows that the program code and the required routines from the
various units and the runtime library follow the PSP. After these are the predefined
constants, the global data, and the stack segment. While the size of these program
components are set at compilation and cannot be changed after the program is
loaded into memory, this doesn't apply to the size of the heap. which follows the
stack segment. When new objects are created with the NEW command, the heap
grows toward the end of memory.

Turbo Pascal offers the significant advantage over C compilers of being able to set
the maximum size of the heap, as well as the stack size, with a compiler directive
inside the source code. This is the $M directive, which must be passed the
following parameters:

{$M stack size, minimum heap size, maximum heap size)

All specifications are in bytes, so the directive

{$M 2048, 0, 5000)

results in a 2K stack and a maximum 5000-byte heap. If no such directive is found
in a program, the heap is not limited and it can grow to the end of main memory.
This would have catastrophic results for a TSR program, however, since the entire
memory would have to be reserved for the TSR program and there would be no
memory left for additional programs. But with the $M directive placed at the
beginning of the program, we can set the maximum size of the program in
memory and the number of paragraphs which must remain resident after the
program is terminated.

Turbo Pascal also allows the number of paragraphs to be reserved to be calculated
from the Pascal program, eliminating the complicated calculation in the assembly
language interface. In a C program, important data needed for this calculation
(segment addresses of the PSP and data segment, and size of the heap) are available
only at the assembly language level, but Turbo Pascal places this information in
normal variables, which are available to a Pascal program in the form of pointers.
For our purposes, we need the starting address of the PSP and the end of the heap,
since they mark the start and end of the TSR program in memory.

The figure shows that the segment address of the PSP is found in the variable
PrefixSeg, while the end of the heap is determined with the help of the pointer
variable FreePtr. This variable does not point directly to the end of the heap, but
the segment portion of this pointer contains the end address of the heap minus
$1000. This information is used within the TSR program in the ResPara
procedure, which calculates the number nf paragraphs to remain resident after the
installation of the TSR.

Abacus 8. Terminate and Stay Resident Programs

In addition to this information, the initialization routine Tsrlnit in the assembly
language module must be passed the following information (in the specified order):

Address of the Pascal TSR function

Hotkey (mask for reading the BIOS keyboard flag)

Number of paragraphs to be reserved

Identification string

The Pascal TSR function, the address of which is passed as the first parameter to
Tsrlnit, must be a procedure within the main program and may not be contained in
a unit. Moreover, it may not be converted to a FAR procedure with the $F+
compiler directive, since the assembly language interface assumes that it is a
NEAR procedure. The address of the procedure is determined with the help of the
function OFS and passed to Tsrlnit, since Turbo Pascal would otherwise place
both the offset address and the segment address on the stack.

The same applies to passing the address of a "cleanup" procedure to the function
Unlnst, which reinstalls the TSR program. If such an address is passed, the
corresponding procedure within the installed TSR program will be called before the
reinstallation. If the value $FFFF is passed as the address of this procedure, this
tells the assembly language function that no "cleanup" procedure is to be called.
To improve the readability of the listing, the constant NO _END _FTN is defined in
the constant definitions at the start of the listing. NO_END_FTN is given the
value $FFFF and should be used when calling the assembly language function
Unlnst.

The following listing can answer any additional questions you may have, and will
make a good starting point for your own TSR programs.

Pascal listing: TSRP.PAS

{**}
{* TSRP *}
{*------------------------------~------------------------------------*}
{* Description : creates a TSR program with the help of an *}
{* assembly language module. *}

{*--*}
{* Author : MICHAEL TISCHER *)
{* developed on : 08/18/1988 *}
{* last update : 05/26/1989 *)
{**}

program TSRP;

uses DOS, CRT;

{$M 2048, O, 5120}
{$L tsrpa)

const LSHIFT =
RSHIFT =
CTRL

1;
2;
4;

{ bind in the DOS and CRT units }

2KB for the stack and max. SKB for the heap }
{ bind in the assembler module }

{ left SHIFT key)
{ right SHIFT key)

{ CTRL key }

433

8. Terminate and Stay Resident Programs PC System Programming

434

ALT 8;
SYSREQ = 1024;
BREAK = 4096;
NUM 8192;
CAPS 16384;
INSERT = 32768;

NO_END_FTN = $FFFF;

(ALT key
(SYS REQ key (ST keyboard only)

(BREAK key
(NUM key

(CAPS key
INSERT key

{ don't call an end function

type IdsType =string[16]; (describes the identification string
VBuf = array[l •• 25, 1 •• 80] of word; (describes the screen
VPtr AVBuf; (pointer to a screen buffer

var IdString
MBuf
CBuf
VioPtr

IdsType; (the ID string for the TSR program
(the monochrome video RAM

I the color video RAM
pointer to the video RAM

VBuf absolute $BOOO:OOOO;
Vbuf absolute $8800:0000;
VPtr;

(** Declaration of the external functions in the assembly module ******)

procedure Tsrinit(PrcPtr
KeyMask
ResPara
IdString

word;
word;
word;
IdsType

(off set addr of the TSR proc
(the hotkey (see CONST)

number of para. to be reserved
; external ; (the ID string

function Isinst(IdString: IdsType) boolean ; external

procedure Uninst(PrcPtr: word); external; (reinstall TSR program

var ATimes : integer; (number of TSR activations }

{**}
(* Dispinit: creates a pointer to the video RAM *)
{* Input : none *}
(* output : none *}
{**}

procedure Displnit;

var Regs: Registers;

begin
Regs.ah := $Of;
Intr($10, Regs);
if Regs.al=? then

VioPtr ·= @MBuf
else

VioPtr := @CBuf;
end;

(stores the processor registers }

function no. 15 = read the video mode
{ call the BIOS video interrupt

{ monochrome video card?
(yes, set pointer to the monochrome video RAM

{ it's an EGA, VGA, or CGA card
(set pointer to color video RAM

{**}
{* SaveScreen: saves the screen contents in a buffer *}
{* Input SPTR pointer to a buffer in which the screen contents *}
{* will be saved *}
I* output none *}
{**}

procedure SaveScreen(SPtr : VPtr);

var line,
column byte;

begin

{ the current line
the current column

for line:=l to 25 do { run through the 25 screen lines
for column:=l to 80 do { run through the 80 screen columns

SPtrA[line, column] := VioPtrA[line, column]; { save ch.&attr.

end;

Abacus 8. Terminate and Stay Resident Programs

{**}
{* RestoreScreen: copies the contents of a buffer into the video RAM *I
{* Input BPTR pointer to the buffer whose contents are to be *I
{ • copied into the video RAM *I
{ • Output none *I
{**}

procedure RestoreScreen(BPtr : VPtr);

var line,
column byte;

begin
for line:=! to 25 do

end;

tor column:-1 to 80 do
VioPtrA[line, column]

{ the current line
the current column

{ run through the 25 screen lines
run through the 80 screen columns

:- BPtrA[line, column]; { get ch. & attr.

{**}
{* ResPara: calculates the number of paragraphs which must be *I
{* allocated for the program *I
{ * Input none '*I
{ * Output the number of pa.agraphs to be reserved *I
{*****************•·····~··}

function ResPara : word;

begin
ResPara := Seg(FreePtrA)+$1000-PrefixSeg;

end;
{ number of paragraphs I

{**}
{* EndProc: Called by the assembler module when the TSR program is *)
{ * reinstalled *I
{ * Input none *)
{ * Output none *)
{* Info This procedure must be in the main program and may not *I
{ * be turned into a FAR procedure by the $F+ compiler *I
(* directive. *)
{**)

{$F-)

procedure EndProc;

begin
TextBackground(Black);
TextColor(LightGray);

{ don't make a FAR procedure)

writeln('The TSR program was called '
end;

{ dark background
{ light text

ATimes, 'times.'};

{**)
{* Tsr: This procedure is called by the assembler module after the *)
{ • hot key is pressed. *)
{ * Input none *)

{ * Output none * l
{* Info This procedure must be in the main program and may not *)
{ * be turned into a FAR procedure by the $F+ compiler •)
{* directive. *)
{**)

{$F-)

procedure Tsr;

var BufPtr : VPtr;
Column,
Line : byte;
Key : char;

(don't make a FAR procedure)

{ stores pointer to the allocated blocks
{ the current screen column

{ the current screen line

435

8. Terminate and Stay Resident Programs PC System Programming

beqin
inc(ATirnes);
Dispinit;
GetMem (BufPtr, SizeOf (VBuf)) ;
Savescreen(Bu!Ptr);
Line := WhereY;
Column := WhereX;
TextBackground(LightGray);
TextColor(Black);
ClrScr;

{ increment call counter
determine address of the video RAM

I allocate buffer
{ save the screen contents

{ get current screen line
{ get current screen column

(light background
I dark text

clear the whole screen
GotoXY (22, 12);
write (' TSRP
GotoXY (30, 14);

(c) 1988 by MICHAEL TISCHER');

write('Please press a key ... ');
Key := ReadKey;
RestoreScreen(BufPtr);
FreeMem(Bu!Ptr, SizeOf(VBuf));
GotoXY(Column, Line);

{ wait for a key
{ copy the old screen contents back

(release allocated buffer
{ cursor back to original position

end;

{**}
{** MAIN PROGRAM **}
{**}

begin
writeln('TSRP (c) 1988 by MICHAEL TISCHER');
IdString := 'TROTZKY';
if (Isinst(IdString)) then

begin
{ program already installed?

writeln('The TSR program now disabled.');
Uninst(Ofs(EndProc));

I YES

{ remove the program

{** if no end function is to be called, the call is: ************
** Uninst(NO_END_FTN); ************}

end
else { the program is not installed yet

end.

begin
ATirnes := O; { the program was not activated yet
writeln('TSR program now enabled. Start: <LSHIFT> + •,

'<RSHIFT>');
Tsrinit(Ofs{Tsr), LSHIFT or RSHIFT, ResPara, IdString);

end;

Assembler listing: TSRPA.ASM

436

;**;
, T S RP A *;

;*--•;
;* Description This is the assembler interface to a Turbo *;
;* Pascal 4.0 program which can be activated *;
;* via a hotkey. •;

;•--*;
;*
;*
;*

Author
developed on
last update

MICHAEL TISCHER
: 08/12/1988
: 08/18/1988

*;
*;
*;

;*--*;
;*
;*

Info : The module must be in a program and may not
be bound into a UNIT.

*;
*;

;*--*;
;* to assemble : MASM TSRPA; *;
;* •.. combine with a Turbo Pascal program *;
;**;

DATA segment word public ;Turbo data segment

DATA ends ;end of the data segment

Abacus 8. Terminate and Stay Resident Programs

;== Constants =*•=====================~==============-=-~============~==

MAX_ID_LEN equ 16 ;maximum length of the ID string

CODE segment byte public ;the Turbo code segment

assume cs:CODE, ds:DATA, es:CODE

;-- Public declarations of internal functions --------------------------

public
public
public

tsrinit
isinst
uninst

;allows access by the Turbo program

;-- Variables for the interrupt handler -------------------------------
;-- (accessible only via the code segment ------------------------------

id_buf
ce ptr
ce-ofs
ce_seg

db (MAX ID LEN + 1) dup (0) ;buffer for the ID string
equ this dword ;points to the routine CALL END in the
dw offset call_end ;already-installed TSR program
dw

;-- Variables neded for activation of the Turbo program ---------------

t SS

t_sp
t ds
t es

t dta ofs
(:dta::::seg

t_psp
prc_adr

dw 0
dw 0
dw 0
dw 0

dw 0
dw 0

dw 0
dw 0

;Turbo stack segment
;Turbo stack pointer
;Turbo data segment
;Turbo extra segment

;OTA address of the Turbo program

;seg addr of the PSP of the Turbo prg.
;address of the Turbo TSR procedure

;-- Variables for testing for the hotkey ------------------------------

key_mask
recur
in bios

daptr
daptr_ofs
daptr_seg

dw 0
db 0
db 0

equ this dword
dw O
dw 0

;hotkey mask for BIOS keyboard flag
;prevents recursive TSR calls
;shows activity of the BIOS disk
;interrupt

;pointer to the DOS INDOS flag
;offset address
;segment address

;-- The following variables store the old addresses of the interrupt
;-- handlers which will be replaced by new interrupt handlers

int9_ptr equ this dword ;old interrupt vector 9h
int9 ofs dw 0 ;offset address of the old handler
int9::::seg dw O ;segment address of the old handler

int13__ptr equ this dword ;old interrupt vector 13h
int13 of s dw 0 ;offset address of the old handler
int13::::seg dw O ;segment address of the old handler

int28 ptr equ this dword ;old interrupt handler 28h
int28-ofs dw 0 ;offset address of the old handler
int28_seg dw 0 ;segment address of the old handler

;--
;--

Variables for storing information about the interrupted
program

u dta ofs dw O
u_dta_seg dw 0

u_psp dw 0

;OTA address of interrupted program

;seg addr of the PSP of the int. prg.

437

8. Terminate and Stay Resident Programs PC System Programming

438

uprg_ss
uprg_sp

dw 0
dw 0

;SS and SP of the interrupted prg.

;---
;-- TSRINIT: ends the Turbo program and activates the new interrupt ----
;-- handler
;-- Call from Turbo: procedure Tsrinit(PrzPtr word;
;-- KeyMask word;
;-- ResPara word;

string[16]); ;-- IdString

tsrinit

sframeO
bpO
ret adrO
idptrO
resparaO
keymaskO
prcptrO
sframeO

frame

proc near

struc
dw
dw
dd
dw ?
dw
dw
ends

equ [bp - bpO

push bp
mov bp,sp
push es

l

;structure for accessing the stack
;stores BP
;return address
;pointer to the ID string
;number of paragraphs to be reserved
;mask for hotkey
;pointer to the Turbo TSR procedure
;end of the structure

;save BP on the stack
;move SP to BP
;save ES on the stack

;-- save the Turbo segment registers -----------------------

mov
mov
mov
mov

cs:t_ss,ss
cs:t_sp,sp
cs:t_es,es
cs:t_ds,ds

;save the registers in the appropriate
;variables

;-- copy the ID string into the internal buffer -------------

push ds ;save DS on the stack
lds si, frame. idptrO ;DS:SI now points to the string
push cs ;put CS on the stack
pop es ;and restore as ES
mov di, offset id buf ;ES:DI now points to ID BUF
xor ch, ch ;clear high byte of the-counter
mov cl, [si] ;get length of the string
inc cl ;copy the length byte too
rep movsb ;copy the entire string
pop ds ;restore DS

;-- determine PSP of the Turbo program ----------------------

rnov bx, cs
sub bx,lOh
mov cs:t_psp,bx

;transfer CS to BX
;lOh paragraphs = subtract 256 bytes
;save segment address

;-- save the parameters passed ------------------------------

mov
mov
mov
mov

ax,frame.prcptrO
cs:prc_adr,ax
ax,frame.keymaskO
cs:key_mask,ax

;get pointer to the TSR procedure
;and save
;get mask for the hotkey
;and save

;-- determine DTA address of the Turbo program --------------

mov ah,2fh
int 21h
mov cs:t dta ofs,bx
mov cs:t:::dta:::seg,es

;ftn. no.: get DTA address
;call DOS interrupt
;store address in the appropriate
;variables

;-- determine the address of the INDOS flag -----------------

Abacus 8. Terminate and Stay Resident Programs

mov ah,34h
int 21h
mov cs:daptr ofs,bx
mov cs:daptr=seg,es

;ftn. no.: get adr of the INDOS flag
;call DOS interrupt
;save address in the appropriate
;variables

get the addresses of the interrupt handlers to change ---

mov ax,3509h ;get interrupt vector 9h
int 21h ;call DOS interrupt
mov cs:int9 ofs,bx ;save address of the handler in the
mov cs:int9=seg,es ;appropriate variables

mov ax,3513h ;get interrupt vector 13h
int 21h ;call DOS interrupt
mov cs:1nt13 ofs,bx ;save address of the handler in the
mov cs:intl3=seg,es ;appropriate variables

mov ax,3528h ;get interrupt vector 28h
int 21h ;call DOS interrupt
mov cs:int28 ofs,bx ; save addres of the handler in the
mov cs:int28=seg,es ;appropriate variables

, install the new int erupt handlers -----------------------

push ds
mov ax,cs
mov ds,ax

mov ax,2509h
mov dx,offset int09
int 21h

mov ax,2513h
mov dx,offset int13
int 21h

mov ax,2528h
mov dx,offset int28
int 21h

pop ds

;save data segment
;CS to AX and then load into DS

; ftn. no. : set interrupt 9h
;DS:DX stores the addr of the handler
;call DOS interrupt

;ftn. no.: set interrupt 13h
;DS:DX stores the addr of the handler
;call DOS interrupt

;ftn. no.: set interrupt 28h
;DS:DX stores the addr of the handler
;call DOS interrupt

;get DS back from the stack

;-- End resident program ------------------------------------

mov
mov
int

ax,3100h
dx,frame.resparaO
21h

;ftn. no.: end resident program
;get number of reserved paragraphs
;call DOS interrupt and thus end
; the program

tsrinit endp

;---
;--
;--

ISINST: Determines if the program is already installed ------------
Call from Turbo: function Islnst(IdString : IdsType) : boolean;
Return value: 1, if the program was already installed,

;--

is inst

sframel
bpl
ret adrl
idptrl
sframel

frame

else 0 ·

proc near

st rue
dw
dw ?
dd ?
ends

equ [bp-bpl]

push bp
mov bp,sp
push ds

;structure for accessing the stack
;stores BP
;return address
;pointer to the ID string
; end of the structure

;save BP on the stack
;transfer Sp to BP
;save DS on the stack

439

8. Terminate and Stay Resident Programs PC System Programming

440

isiO:

not_inst:

isinst

;-- determine segment address of the current int 9 handler --

mov ax,3509h
int 21h
mov di,offset id buf
lds si,frame.idptrl

xor dl,dl
mov cl, [si]
mov ch,dl
lodsb
cmp al,es: [di]
jne not_inst
inc di
loop isiO

mov dl,1

mov al,dl
pop ds
pop bp
ret 4

endp

;get interrupt vbector 9h
;DOS interrupt gets seg addr in ES
;ES:DI points to the installed ID BUF
;DS:SI points to the ID_STRING passed

;return code: not installed
;get length of the string
;high byte of the counter to 0
;load character from string
;compare with other string
;not equal --> NOT_INST
;increment pointer to string 2
;compare the next characters

;the strings are identical

;put return code in AL
;get DS back from stack
;get BP back from stack
;back to the caller

;end of the procedure

;----------·~--
;-- CALL_END: calls the end function when the TSR is reinstalled -------
;-- Input
;-- Info

DI = offset address of the routine to be called
This function is not intended to be called by a Turbo

;-- program

call end proc far

call di
ret

;call the end function
;back to the caller

call end endp

;---
;-- UNINST: removes the TSR program and releases the allocated ---------
;-- memory.
;--
;--

Call from Turbo
Info

procedure Uninst(EndPtr : word); external;
If the value $FFFF is passed as the address,
then no end function will be called.
function should be called only if a previous
to IS_INST() returned a value of 1.

;--
;-- Note
;--

uninst

sframe2
bp2
ret adr2
prcptr2
sframe2

frame

proc

st rue
dw ?
dw ?
dw ?
ends

This
call

near

equ [bp - bp2 J

push bp
mov bp,sp
push ds

;structure for accessing the stack
;stores BP
; return address
;pointer to the end procedure
;end of the structure

;save BP on the stack
;transfer SP to BP
;save DS on the stack

;-- detennine seg addr of the current int 9h handler ---
mov ax,3509h ;get interrupt vector 9h
int 21h ;DOS interrupt puts seg addr in ES

mov di,frame.prcptr2
cmp di,Offffh
je no_endprc

;get address of the end procedure
;no end procedure called?
;NO---> NO_ENDPRC

Abacus 8. Terminate and Stay Resident Programs

no_endprc:

;-- Perform context change to the Turbo program and -----
;-- execute the specified end procedure

mov cs:ce_seg,es

mov cs:uprg_ss,ss
mov cs:uprg_sp,sp

cli
mov ss,es:t_ss
mov sp,es:t _sp

push es
mov ah,2fh
int 21h
mov cs:u dta_ofs,bx
mov cs:u_dta _seg, es
pop es

mov ah,SOh
mov bx,es:t_psp
int 21h

push ds
push es

mov ah, lah
mov dx,es:t dta ofs
mov ds,es:t:::dta:::seg
int 21h

mov ds,es:t_ds
mov es,es:t_es

call cs: [ce_ptr]

;save ES in the jump vector

;save current stack segment and stack
;pointer

;disable interrupts
;activate the stack of the TSR
;program

;save ES on the stack
;ftn. no.: get DTA address
;call DOS interrupt
;save OTA address of the interrupted
;program
;get ES from the stack

;ftn. no.: set address of the PSP
;get segment address of the PSP
;call DOS interrupt

;save ES and DS on the stack

;ftn. no.: set DTA address
;get offset address and segment
;address of the new DTA
;call DOS interrupt

;set segment register for the Turbo
;program

;call the end procedure

context change to the Turbo program --------------------

mov ah, lah
mov dx,cs:u dta ofs
mov ds,cs:u-dta-seg
int 21h - -

pop es
pop ds

mov ah,SOh
mov bx,cs
sub bx,lOh
int 21h

cli
rnov ss,cs:uprg_ss
mov sp,cs:uprg_sp
sti

;ftn. no.: set DTA address
;load offset and segment addresses
;of the DTA of the interrupted program
;call DOS interrupt

;restore seg addr of the Turbo program
; from the stack

;ftn. no.: set address of the PSP
;put CS in BX
;calculate segment address of the PSP
;call DOS interrupt

;disable interrupts
;restore stack pointer and stack
;segment
;allow interrupts again

;-- reinstall the interrupt handler of the TSR --------------
;-- program again --------------

cli
mov
mov
mov
int

mov
mov
mov
int

ax, 2509h
ds,es:int9_seg
dx, es: int9 _ ofs
21h

ax,2513h
ds,es:int13 _seg
dx, es: int13 _ ofs
21h

;disable interrupts
; ftn. no.: set handler for int 9
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

; ftn. no.: set handler for int 13
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

441

8. Terminate and Stay Resident Programs PC System Programming

442

rnov
rnov
rnov
int

sti

rnov
rnov
rnov
mov
int
mov
rnov
int

pop
pop
ret

uninst endp

ax,2528h
ds,es:int28_seg
dx,es:int28_ofs
2lh

es,es:t_psp
ex, es
es,es:[02ch
ah,49h
2lh
es, ex
ah,49h
2lh

ds
bp
2

;ftn. no. set handler for int 28
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

;allow interrupts again

;save seg addr of the PSP of the
;Turbo program in ex
;get seg addr of environ from PSP
;ftn. no.: release allocated memory
;call DOS interrupt
;restore ES from ex
;ftn. no.: release allocated memory
;call DOS interrupt

;restore DS and BP from stack

;return to the caller

;end of the procedure

;---
;-- The new interrupt handlers follow ----------------------------------
;---
;-- the new interrupt 09h handler --------------------------------------

int09 proc far

pus hf
call cs:int9_ptr

cli
cmp cs:recur,O
jne ik end

;simulate calling the handler via the
;INT 9h instruction

;suppress interrupts
;is the TSR program already active?
;Yes, back to the caller of int 9

;-- test to see if the BIOS disk int is being executed

cmp cs:in bios,O
jne ik_end

;BIOS disk interrupt active?
;YES --> abck to caller

;-- BIOS disk interrupt is not active, test for hotkey

push ax
push es

;save ES and AX on the stack

xor
mov
mov
and
cmp
pop
pop
jne

ax,ax ;set ES to the lowest memory segment
es, ax
ax,word ptr es:[417h] ;get BIOS keyboard flag
ax,cs:key mask ;mask out the non-hotkey bits
ax,cs:key:::mask ;are only the hotkey bits left?
es ; restore ES and AX
ax
ik end ;hotkey discovered? NO --> return

;-- the hotkey was pressed, test to see if DOS is active

push ds
push bx
lds bx,cs:daptr
cmp byte ptr [bx],O
pop bx
pop ds
jne ik_end

;save DS and BX on the stack

;DS:BX now point to the INDOS flag
;DOS function active?
;get BX and DS from the stack

;DOS function active --> IK_END

;-- DOS is not active, activate TSR program ----------------

call start tsr ;start the TSR program

Abacus 8. Terminate and Stay Resident Programs

ik_end: iret ;back to the interrupted program

int09 endp

;-- the new interrupt 13h handler -------------------------------------

intl3 proc far

mov cs:in_bios,l

pus hf
call cs:intl3__ptr
mov cs:in_bios, O

ret 2

;set flag and show that the BIOS disk
;interrupt is active
;simulate calling the old interrupt
;handler via int 13h
;BIOS disk interrupt no longer active

;back to the caller, but don't get
;the flag reg from the stack first

int13 endp

;-- the new interrupt 28h handler -------------------------------------

int28

id_end:

idOl:

proc far

pus hf
call cs:int28__ptr

ell
cmp
je
iret

cs:recur,O
idOl

;simulate calling the old interrupt
;handler via int 28h

;suppress further interrupts
;is the TSR program already active?
;NO ---> IDOl
;YES ---> back to the caller

;-- the TSR program is not yet active ---------------------

cmp cs:in bios, 0
jne id end

;is BIOS disk interrupt active?
;YES --> back to the caller

;-- BIOS disk interrupt not active, test for hotkey

push ax
push es
xor ax,ax

es, ax

;save ES and AX on the stack

;set ES to the lowest memory segment
mov
mov
and
cmp
pop
pop
jne

ax,word ptr es:[417h] ;get BIOS keyboard flag
ax,cs:key_mask ;mask out the non-hotkey bits
ax,cs:key_mask ;are only the hotkey bits left?
es ; restore ES and AX
ax
ik end

call start_ tsr
iret

;hotkey discovered? NO --> return

;start the TSR program
;back to the interrupted program

int28 endp

;-- START_TSR: activate the TSR program ------------------------------
start tsr proc near

mov cs:recur, 1 ;set the TSR recursion flag

;-- perform context change to the TSR program --------------

mov cs:uprq_ss,ss
mov cs:uprg_sp,sp

rnov ss,cs:t_ss
mov sp,cs:t_sp

push ax
push bx
push ex

;save current stack segment and
; stack pointer

;activate the stack of the
;Turbo program

;save the processor registers on the
;turbo stack

443

8. Terminate and Stay Resident Programs PC System Programming

tsrsl:

tsrs2:

444

push dx
push bp
push si
push di
push ds
push es

;-- save 64 words from the DOS stack -----------------------

mov cx,64
rnov ds,cs:uprg_ss
mov si,cs:uprg_sp

push word ptr [si]
inc si
inc si
loop tsrsl

mov ah,Slh
int 21h
mov cs:u__psp,bx

mov ah,2fh
int 2lh
mov cs:u_dta_ofs,bx
mov cs:u_dta_seg,es

rnov ah,50h
mov bx, cs: t __psp
int 2lh

mov ah,lah
rnov dx, cs: t dta ofs
mov ds, cs:t:::dta:::seg
int 21h

mov ds,cs:t ds -
mov es,cs:t_es

sti

call cs:prc_adr
cli

; loop counter
;set DS:SI to the end of the DOS stack

;save word from the DOS stack on the
;C stack and set SI to the next word

;process all 64 words

;ftn. no.: get addr of the PSP
;call DOS interrupt
;save seg addr of the PSP

;ftn. no.: get DTA address
;call DOS interrupt
;save address of the DTA of the
;interrupted program

;ftn. no.: set address of the PSP
;get seg addr of the Turbo prg PSP
;call DOS interrupt

;ftn. no.: set DTA address
;get offset address of the new DTA
;and segment address of the new DTA
;call DOS interrupt

;set segment register for the
; Turbo program

;allow interrupts again

;call the start function
;disable interrupts

;-- perform context change to the interrupted program

mov ah,lah ;ftn. no.: set DTA address
rnov dx, cs: u dta ofs ;load offset and segment addresses
mov ds, cs:u:::dta:::seg ;of the interrupted program's DTA
int 21h ;call DOS interrupt

mov ah,50h ;ftn. no.: set address of the PSP
mov bx,cs:u_psp ;seg addr of the interrupted prg's PSP
int 21h ;call DOS interrupt

;-- restore DOS stack again ---------------------------------

mov ex, 64
mov ds,cs:uprg ss
rnov si, cs:uprg:::sp
add si,128
dee si
dee si
pop word ptr [si]
loop tsrs2

pop es
pop ds
pop di
pop si

; loop counter
;load DS:SI with the end address of
;the DOS stack
;set SI to the start of the DOS stack
;Si to the previous stack word

;words from Turbo stack to DOS stack
;process all 64 words

;restore the saved registers from the
; Turbo stack

Abacus

pop
pop
pop
pop
pop

mov
mov

mov
ret

start tsr endp

bp
dx
ex
bx
ax

ss,cs:uprg_ss
sp,cs:uprg_sp

cs:recur,O

8. Terminate and Stay Resident Programs

;set stack pointer and segment
;of the interrupted program

;resset TSR recursion flag
;back to the caller

;---
CODE ends

end
;end of the code segment
;end of the program

445

Chapter9

Sound on the PC

Every PC has a built in speaker which beeps when some errors occur, or when the
keyboard buffer is full. The speaker can also generate other sounds. This chapter
demonstrates sound generation through software.

How the PC generates sound

Tones occur when the cone of a speaker oscillates (moves back and forth). A single
oscillation creates a click instead of a musical sound. If a group of oscillations
sounds in rapid succession, a tone occurs. The pitch (the note value) of a tone
depends on the number of cycles (oscillations) that occur per second. The pitch of a
tone in cycles per second is measured in Hertz. For example, if the speaker
oscillates at a rate of 440 times per second, it generates a tone with a frequency of
440 Hertz. Certain pitches have specific note names assigned to them, such as
A440 (the note that sounds at 440 Hertz). The following table shows the pitches
and frequencies of tones generated by the PC. This range covers 8 octaves (almost
the range of a full piano keyboard):

L0ctave 0 1 2 3

c 16.35 c 32.70 c 65.41 c 130. 81
C# 17.32 C# 34.65 C# 69.30 C# 138.59

D 18.35 D 36. 71 D 73.42 D 146.83
D# 19.45 D# 38.89 D# 77.78 D# 155.56

E 20.60 E 41.20 E 82.41 E 164.81

F 21.83 F 43.65 F 87.31 F 174.61
F# 23.12 F# 46 .25 Fif 92.50 F# 185.00

G 24.50 G 49.00 G 98.00 G 196.00

Gif 25.96 G# 51. 91 Gif 103.83 Gif 207.65

A 27.50 A 55.00 A 110. 00 A 220.00

A# 29.14 A# 58.27 A# 116.54 A# 233.08
B 30.87 B 61. 74 B 123.47 B 246.94

447

9. Sound on the PC PC System Programming

[Octave 4 5 6 7

c 261.63 c 523.25 c 1046.50 c 2093.00

C# 277.18 Cif 554.37 Ci 1108. 74 Ci 2217.46
D 293.66 D 587.33 D 1174. 66 D 2349.32
Dit 311.13 Di 622.25 Di 1244.51 Di 2489.02

E 329.63 E 659.26 E 1328.51 E 2637.02

F 349.23 F 698.46 F 1396.91 F 2793.83

Fif 369.99 Fi 739.99 Fi 1479.98 Fi 2959.96

G 392. 00 G 783.99 G 1567. 98 G 3135.96
G# 415.30 G# 830.61 G# 1661.22 G# 3322.44
A 440.00 A 880.00 A 1760. 00 A 3520.00

Ai 4 66 .16 A# 923.33 Ai 1864.66 A# 3729.31

B 493.88 B 987.77 B 1975.53 B 3951.07

The speaker in the PC can generate frequencies from 1 Hertz up to more than
1,000,000 Hertz. However, most human ears are only capable of hearing
frequencies between 20 and 20,000 Hertz. In addition, PC speakers don't reproduce
music very well since they play some tones louder than others. Since the speaker
has no volume control, this effect cannot be changed.

A sound program should oscillate the speaker according to the frequency of the
tones desired. Here is a rough outline of a possible sound generation program:

Invoke the instruction to move the cone forward, then undo the instruc
tion (move the cone back to its original position). Repeat these steps in a
loop so that it occurs as many times per second as required by the
frequency of the tone being generated.

The above procedure has several disadvantages:

The execution speed of individual instructions depends on the processing
speed of the computer.

This program must be adjusted to the processing speed of individual
computers.

The tone becomes distorted when the tone production loop ends.

8253 timer

448

Every PC uses one particular chip for tone generation: The 8253 programmable
timer, which actually maintains control of the internal clock. The 8253 can
perform both timing and sound thanks to its ability to enable a certain action at a
certain point in time. It senses timing from oscillations it receives from the PC's
8284 oscillator, which generates 1,193,180 impulses per second. The 8253 can
then be instructed how many of these impulses it should wait before triggering a
certain action. In the case of tone generation, this action consists of sending an
impulse to the speaker. Before executing this action, the chip must be programmed
for the particular frequency it should generate. The frequency must be converted

Abacus 9. Sound on tlu! PC

from cycles per second into the number of oscillations coming from the oscillator.
This is done with the help of the following formula:

counter = 1,193,180 I frequency

The result of this formula, the variable counter, passes to the chip. As the formula
demonstrates, the result for a high frequency is relatively low, and the result for a
low frequency is relatively high. This makes sense, since it tells the 8253 chip
how many of the 1,193,180 cycles per second it must wait until it can send
another signal to the speaker. The lower the value, the more often it sends a signal
to move the speaker cone back and forth, causing a higher tone.

Ports and PC sound

Communication between the CPU and the 8253 occurs through ports. First the
value 182 is sent to port 43H. This instructs the 8253 that it should start
generating a signal as soon as the interval between individual signals has been
passed. This interval is the value which was calculated with the formula above.
Since the 8253 stores this value internally as a 16-bit number (a value between 0
and 65,535), it limits the range of tones generated to frequencies between 18 and
1,193,180 Hertz. This number must be transmitted to port 42H. Since this is an
8-bit port, the 16 bits of this number cannot be transmitted simultaneously. First
the least significant eight bits are transmitted, then the most significant eight bits
are transmitted.

Now the second step occurs-the 8253 signal is sent to the speaker. The speaker
access occurs through port 61H, which is connected to a programmable peripheral
chip. The two lowest bits of this port must be set to 1 to transmit the 8253 signal
to the speaker. Since the remaining six bits are used for other purposes, they
cannot be changed. For this reason, the contents of port 61H must be read, the
lowest two bits must be set to 1 (an OR combination with 3) and the resulting
value must be returned to port 61H. A tone sounds, which ends only when the bits
just set to 1 are reset again to 0.

449

9. Sourul on the PC PC System Programming

Octave 3 Octave 4
,_,c Di.-r- Fi G A ,..., ,_,c D ~F G Ai-

c D E F G A B c D E F G A B

c = 9121 Fi= 6449 c = 4560 Fi= 3224
Ci= 8609 G = 6087 Ci= 4304 G = 3043
D = 8126 G4t= 5746 D = 4063 Gi= 2873

Dlt= 7670 A = 5423 Di= 3834 A = 2711

E 7239 Ai= 5119 E = 3619 M= 2559
F = 6833 B = 4831 F = 3416 B = 2415

Octave 5

r-Ci D r"""r"1F G r,A r-i

c D E F G A B

c = 2280 Fi= 1612
Ci= 2152 G = 1521
D = 2031 Glt= 1436

D4t= 1917 A = 1355

E 1809 M= 1292

F = 1715 B = 1207

Keyboard setup and timer frequencies

Demonstration programs

GW-BASIC and Turbo Pascal have resident sound commands. The machine
language programmer and C programmer must create their own sound applications.

Demonstration programs follow for both these languages. They can be added to
your own C or assembly language programs.

How they work

450

Both programs produce tones for specific time periods. This is done with the help
of the timer interrupt lCH which is called by the timer interrupt SH 18.2 times
per second. When the tone generation routine executes, it receives the frequency of
the tone and the tone's duration (length). The duration is measured in 18ths of a
second, so the value 18 corresponds to a second and the value 9 corresponds to a
half-second. This value is stored in a variable.

Immediately before activating the tone output, the interrupt routine of interrupt
lCH turns to a user-defined routine. This routine, called 18.2 times per second,
decrements the tone duration in the variable during every call. When it reaches the
value, the tone duration ends and the tone must be switched off. The routine
allocates a variable to notify the actual sound routine of this end. The sound
routine recognizes this immediately, since it has been in a constant wait loop since
switching on the tone. All this loop does is monitor the contents of this variable.
After recognizing the end of the tone, it stops the sound output and returns the
timer interrupt to its old routine.

Abacus 9. Sound on the PC

The sound routine requires the number assigned to this tone, rather than the
frequency itself. This number is related to the table containing the frequencies of
octaves 3 to 5. The value 0 stands for C of the third octave, 1 stands for C-sharp, 2
for D, 3 for D-sharp, etc.

Note: Both the C program and assembly language program demonstrate the
sound routine by playing a scale over the course of two octaves, with
each note sounding for a half a second each. The machine language
demo program and sound routine are stored in one file. The C
versions of these programs are split into two source code files. The C
demo program contains the sound function call only, and the machine
language program which creates the sound must be linked to the
demonstration program.

Assembler listing: SOUNDA.ASM

;**;
;* S 0 U N D A *;

;•--*;
;*
;*
;*

Task : Plays a scale between octaves 3 and 5 of the *;
PC's musical range. This routine can be used •;
for other applications *;

;•--*;
;* Author MICHAEL TISCHER *;
;• Developed on : 08/06/1987 •;
;• Last update : 05/26/89 •;
;*--*;
;* Assembly MASM SOUNDA; *;
; * LINK SOUNDA; *;
;* EXE2BIN SOUNDA SOUNDA.COM *;
;*--•;
;* Call from DOS : SOUNDA *;
;**;

code segment para 'CODE'

org lOOh

;Definition of CODE segments

;Starts at address lOOH
;directly following PSP

assume cs:code, ds:code, es:code, ss:code

;== Program ==

sound

nextune:

proc near

;-- Display message --

mov ah,9
mov dx,offset initm
int 2lh

;Function number for displaying string
;String•s offset address
;Call DOS interrupt 21H

;-- Play scale ---

xor bl, bl ;Start at C of octave 3
mov dl, 9 ;for duration of 1/2 second
call play_tune ;Play note
inc bl ;Next note
crnp bl,36 ;All notes in this octave played?
jne nextune ;NO --> Play next note

;-- Display end message --------------------------------------

mov ah,9 ;Function number for string display

451

9. Sound on the PC PC System Programming

452

sound

mov dx,offset endmes
int 21h

mov ax,4C00h
int 21h

endp

;String's offset address
;Call DOS interrupt 21H

;Program ends when call to a DOS
;function results in an error code
;of 0

;== Main program data ===============================-~================

initm db 13,10,"SOUND (c) 1987 by Michael Tischer",13,10,13,10
db "Your PC should now be playing a chromatic scale in the"
db "3rd and 5th ",13,10,•octaves of its range, if
db •your PC speaker works.",13,10,"$"

endrnes db 13,10,"End",13,10,"$"

;-- PLAY_TUNE: Play a note ---
;--
;--
;--

Input

Output

BL = Note number (relative to c of the 3rd octave)
DL = Duration of note in 1/18 second increments
none

;-- Register AX, ex, ES and FLAGS are changed
;--
;--

Info Inmediately after the tones, control returns to the
calling routine

play_tune proc near

play:

push dx
push bx

;Push DX and BX onto the stack

;-- Adapt timer interrupt to user program ---------------------
push dx ;Push DX and BX onto stack
push bx
mov
int
mov
mov

mov
mov
int
pop

ax,351ch
21h
old time,bx
old:::time+2,es

dx,offset sound ti
ax,251ch
21h
bx

pop dx

mov al,182
out 43h, al
xor bh,bh
shl bx, 1
mov ax, [note+bx]
out 42h,al
mov al,ah
out 42h,al
in al,6lh
or al,llb
mov s ende, 1
rnov s-counter,dl
out 6lh,al

crnp s ende,O
jne play

in al, 61h
and al,llllllOOb
out 61h,al

;Get address of time interrupt
;Call DOS interrupt
;Offset address of old interrupt
;and note segment address

;Offset address of new timer routine
;Set new timer routine
;Call DOS interrupt
;Pop BX and DX off of stack

;Prepare to play note
;Send value to time command register
;BH for addressing note table = 0
;Double note number (fr. word table)

;Get tone value
;LO-byte on timer counter register
;Transfer HI-byte to AL
;and to timer counter register
;Read speaker control bit
;Lowest two bits enable speaker
;Note still has to be played
;Play note for duration
;Disable speaker

;Note finished?
;N) --> Wait

;Read speaker control bit
;Clear lowest two bits
;Disable speaker

;-- Reactivate old timer interrupt ---------------------------

mov cx,ds
mov ax,251ch

;Note DS
;Set function no. for intrrpt vector

Abacus

lds dx,dword ptr old time ;Load old address into DS:DX
int 21h - ;Call DOS interrupt
mov ds,cx ;Return DS

pop bx
pop dx
ret

play_tune endp

;Pop BX and DX off of stack

;Return to callinq proqram

9. Sound on the PC

;-- new timer interrupt --

sound ti proc far ;Call 18 times per second

dee cs:s counter ;Decrement counter
jne st ende ; If still >O, end
mov cs:s ende,O ;Signal note end

st_ende: jmp dword ptr cs:[old_time] ;Goto old timer interrupt

sound ti endp

;== Variable set needed by the routines ===========~=-=================

old time dw (?), (?)
s counter db (?)

s ende db (?)
note dw 9121,8609,8126,7670

dw 7239,6833,6449,6087
dw 5746,5423,5119,4831
dw 4560,4304,4063,3834
dw 3619,3416,3224,3043
dw 2873,2711,2559,2415
dw 2280,2152,2031,1917
dw 1809,1715,1612,1521
dw 1436,1355,1292,1207

;Address of old timer interrupt
;counter for note duration in 1/18
;second increments
;Displays whether note already played

;Note values for octave 3

;Note values for octave 4

;Note values for octave 5

;== End ==

code ends ;End of CODE seqment
end sound ;End of the Assembler-Proqram

Here's the C program to call the sound function and the assembly language listing
of the C sound function.

C listing: SOUNDC.C

/**/
/* S O UN D C */

!*--*/
I* Task : Plays a scale between octaves 3 and 5 of the */
/* PC musical ranqe, usinq an assembler function */

/*--*/
/* Author MICHAEL TISCHER *I
I* Developed on : 08/15/1987 */
/* Last update : 05/26/1989 */

/*--*/
/* (MICROSOFT C) * /
I* Creation CL /AS SOUNDC.C *I
/* LINK SOUNDC SOUNDCA; */
/* Call SOUNDC *I
!*--*/
I* (BORLAND TURBO C) */
I* Creation Create a project file listinq the followinq: *I
I* soundc */
I* sound ca. obj *I
I* Options Before compilinq and linkinq, select the *I
/* Options menu and Linker option. Under the */

453

9. Sound on the PC PC System Programming

I*
I*

Linker options menu, make sure that the
Case sensitive link option is set to Off

*I
*I

/**/

/*== Function declaration from the assembler module =-==============*/

extern void Sound(); /* Add the external assembler routine */

/**/
I** MAIN PROGRAM **/
/**/

void main()

int Note;

printf ("\nSOUND (c) 1987 by Michael Tischer\n\n");
printf("Your PC should now be playing a musical scale in the 3rd & ");
printf (" 5th octaves of\nits range. If you aren •t hearing the notes");
printf(" your PC's speaker may be damaged.\n\n");

for (Note= O; Note< 35; Sound(Note++, 9))
,

printf ("End\n");
}

/* Play a note once each */
/* 1/2 second */

Assembler listing: SOUNDCA.ASM

454

;**;
;* SOUNDCA *;

;•--*;
; * Task Creates a function suitable for inclusion in *;
;* c codes, which enables c to play notes in the *;
; * 3rd, 4th and 5th PC musical octave *;
;*--*;
; * Author MICHAEL TISCHER *;
;* Developed on : 08/15/1987 *;
, Last update : 05/26/1989 *;
;*--*;
, assembly : MASM SOUNDCA; *;
;**;

IGROUP group text ;Merging of program segment
DGROUP group canst, bss, _data ;Merging of data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

public Sound ;Make function public (accessible to
; other programs)

CONST segment word public 'CONST';This segment denotes all read-only
CONST ends

BSS segment word public 'BSS'
BSS ends

DATA segment word public 'DATA'

old time dw (?), (?)
s counter db (?)

s endit
tones

db (?)
dw 9121,8609,8126,7670
dw 7239,6833,6449,6087
dw 5746,5423,5119,4831
dw 4560,4304,4063,3834
dw 3619,3416,3224,3043

;constants

;This segment denotes all static, non-
;initialized variables

;This segment contains all initialized
;global and static varibles

;Address of old timer interrupt
;Counts duration of notes in
;1/18 second increments

;Indicates whether note already played
;Note values for octave 3

;Note values for octave 4

Abacus 9. Sound on the PC

dw 2873,2711,2559,2415
dw 2280,2152,2031,1917 ;Note values for octave 5
dw 1809,1715,1612,1521
dw 1436,1355,1292,1207

_DATA ends

;== Program ==

TEXT segment byte public 'CODE' ;Program msegment

;-- SOUND: Plays a note ---
;-- Call from C Sound((int) Note, (int) Duration);
;-- output
;-- Info
;--
;--

Sound

play:

none
Note is the number of the note relative to 3rd octave
c
Ouration:-Ouration of the note in 1/18-sec. increments

proc near

push bp
mov bp,sp

;Push BP onto stack
;Transfer SP to BP

;-- Modify timer interrupt for user application -------------
mov word ptr cs:setds+l,ds ;Store OS for new timer interrupt
mov ax,35lch ;Get timer i9terrupt's address
int 2lh ;Call DOS interrupt
mov old_time,bx ;Note offset address and segment
mov old time+2,es ;address of old interrupt
mov word ptr cs:stjump+l,bx ;Save for new timer interrupt
mov word ptr cs:stjump+3,es ;
mov bx,ds ;Place OS in BX
push cs ; Push CS onto stack
pop ds ;and pop off OS
mov
mov
int
mov

dx,offset sound ti
ax,25lch
2lh
ds,bx

mov al,182
out 43h,al

mov bx, [bp+4]
xor bh,bh
shl bx, 1
mov ax, [tones+bx]
out 42h,al
rnov al,ah
out 42h,al
in al, 6lh
or al, llb
mov s endit, 1
mov dl, (bp+6]
mov s counter,dl
out 6lh,al

cmp s endit,O
jne play

in al, 6lh
and al,llllllOOb
out 6lh,al

;Offset address of new timer
;Set new timer routine
;Call DOS interrupt
;Restore OS

;Get ready to generate tone

routine

;Send value to timer command register

;Get note
;BH for addressing of note table = 0
;Divide note number (for word table)
;Get note value
;Pass low byte to timer counter register
;Pass high byte to AL
;and to timer counter register
;Read speaker control bit
;Two lowest bits activate speaker
;Still have to play note

;Get note duration
;and store it
;Turn on speaker

;Note ended?
;NO --> wait

;Read speaker control bit
;Clear two lowest bits to
;disable speaker

;-- re-activate
rnov cx,ds

original timer interrupt --------------------
;Note OS

mov ax,25lch ;Set function no. for interrupt vector
old_time ;Load old address into DS:DX lds dx,dword ptr

int 2lh
rnov ds,cx

;Call DOS interrupt
;Return OS

455

9. Sound on the PC PC System Programming

456

mov sp,bp
pop bp
ret

Sound endp

;Restore stack pointer
;Pop BP off of stack
;Return to calling program

;-- new timer interrupt --

sound ti proc far

push ax
push ds

setds: mov ax,OOOOh
mov ds,ax
dee s counter
jne st endit
mov s_endit,O

st_endit: pop ds
pop ax

st jump: db OEAh,O,O,O,O

sound ti endp

;Call this 18 times per second

;Push AX and DS onto stack

;Transfer C to DS

;Decrememt time counter
;If still unequal to 0 then end
;Signal end of note duration
;Pop value off of OS (reset to old value)

;Get AX from stack again

;FAR-JUMP to old timer interrupt

;== Ende ===

_text ends
end

;End of program segment
;End of assembler source

Chapter 10

Accessing
the Video

and Programming
Cards

This chapter explains methods of programming the most popular video cards on
the PC market. Even though the video cards mentioned here differ in their
capabilities, they are all based on the same basic principle. High level languages
such as BASIC, Pascal or C often have their own specific keywords and commands
for controlling screen display. However, many of these commands merely call
BIOS or DOS functions, which are both slow and inflexible in execution.

Direct access

Direct access to the video card is the alternative. Applications from Lotus 1-2-3®
to dBASE® use direct video access coding, to guarantee both speed and that
element of extra control over the video display. The main disadvantage:
Programming in assembly language is required, since the communication here
occurs at the system level. This chapter examines the programming needed for the
best known video cards on the market

Monochrome Display Adapter (MDA), also called a monochrome card

Color Graphics Adapter (CGA), also called a color card

Hercules Graphic Card (HGC)

Enhanced Graphic Adapter (EGA)

Video Graphics Array (VGA)

Most of the graphic cards on the market are compatible with one of the cards
mentioned in this chapter, and the descriptions stated here should apply to those
cards.

457

10. Accessing and Programming the Video Cards PC System Programming

Video Graphics Array (VGA)

This also applies to the newest generation of video cards, the VGA card. Designed
in conjunction with the IBM PS/2 system, the VGA card is now available to the
general public as an add-on card. This chapter demonstrates some general features
of the EGA and VGA, as well as a few programming techniques.

What's needed

Speed

Before a video card can display a character or graphic pixel on a monitor screen or
CRT (cathode ray tube), the card must know the following:

which character or graphic pixel to display

The color of the character or pixel

The location on the screen at which it should be displayed.

PC video cards include RAM which collects information about every CRT screen
pixel or screen location. This RAM memory is called video RAM and interfaces
with the PC's RAM, allowing direct access from the microprocessor.

Rapid screen changes are important in word processing programs and other PC
applications. For example, if you are paging through a word processing document
at high speed, a 25-line, 80-column screen requires the transmission of 2,000
characters through the video card at one time. Fast data transfer is even more
important for high-resolution graphics. For example, the 200x640-pixel IBM
Color Graphics Adapter transmits 128,000 pixels of graphic information at a time.

Display modes

Each type of video card can have more than one display mode. Text and graphics
display may be very different from one another. The monitor cannot distinguish
between the two modes; it just processes the graphic information sent by the video
card (or video controller). For the programmer and the video card, the modes require
completely different programming techniques.

Graphic mode and text mode

458

Graphic mode stores the color of a screen pixel in one or more bits, then transmits
the contents of video RAM more or less directly to the screen. Text mode uses a
different method. The ASCII code of a character is stored in video RAM for each
screen location. When the video controller displays the screen, it obtains the
character pattern of the ASCII code from the ROM chip on the video card, then
converts the code into a character matrix of pixels. This pattern then passes to the
monitor and appears on the screen.

Abacus 10. Accessing and Programming the Video Cards

PC text mode uses the 256-character extended character set (see Appendix I). Since
these characters are numbered sequentially from 0 to 255, one byte is enough for
each screen position to display the character at the proper position.

Attribute bytes

Every screen position has an attribute byte which indicates the color or display
attribute of the character (underlined, blinking, inverse video, etc.). This means
that two bytes are needed for each position on the screen. Therefore, a total of 4000
bytes are required for a 25-line, 80-column screen. This appears to be a lot of
memory at first glance, but is fairly small when compared to the memory
requirements for bit-mapped graphic screen. In graphic mode, each dot is
represented by one or more bits. A resolution of 640x200 pixels requires 128,000
bits (16K).

Another advantage of text mode is the simplicity in exchanging one character for
another on the screen. The bit-map mode has its own advantages. Besides graphic
displays, text can be displayed as individual dots whose pattern is derived from a
character table in RAM installed by the user. This means that the user can design
his own fonts (character sets).

459

10. Accessing and Programming the Video Cards PC System Programming

1 O. 1 Anatomy of a Video Card

The figure below shows the individual hardware components of a video card. The
starting point for creating the picture is always the video RAM. This video RAM
contains information about the characters to be displayed, and their display
attributes (color, style, etc.).

Getting to the screen

The character generator first accesses video RAM, reading the characters one by
one, and uses a character pattern table to construct the bit-map that will later form
the character on the screen. The attribute controller also gets information about the
display attributes (color, underlining, reverse, etc.) of the character from the video
RAM. Both modules prepare this information and send it to the signal controller,
which converts it to appropriate signals to be sent to the monitor. The signal
controller itself is controlled by the CRT controller, which is the central point of
video card operations. Besides the monitor and the video RAM, this CRT
controller is one of the most important components of a video system. We will
examine all these components in greater detail.
, ____________________________ ,
I

Character
pattern

Character
generator

VIDEO RAM

Attribute
controller

I

' '----------------------------·
Block diagram of a video card

The monitor

460

The monitor is the device on which the video data is displayed. Unlike the video
card, the monitor is a "dumb" device. This means it has no memory and cannot be
programmed. All monitors used with PCs are raster-scan devices, in which the
picture is made up of many small dots arranged in a rectangular pattern or raster.

When forming the picture, the electron beam of the picture tube touches each
individual dot and illuminates it if it is supposed to be visible on the screen. This

Abacus 10.1 Anatomy of a Video Card

is done by switching on the electron beam as it passes over this dot, causing a
phosphor particle on the picture tube to light up.

Color monitors

While monochrome monitors need only one electron beam to create a picture,
color monitors use three beams which scan the screen simultaneously. Here a
screen pixel consists of three phosphor particles in the basic colors of light: red,
green, and blue. Each color has a matching electron beam. Any color in the
spectrum can be created by combining these three colors and varying their
intensities.

But since an ionired phosphor particle emits light for only a very brief period of
time, the entire screen must be scanned many times per second to create the
illusion of a stationary picture. PC monitors perform this task between 50 and 70
times per second. This repeated re-scanning is called the refresh rate. One rule of
thumb for this rate: The faster the refresh rate, the better quality the picture.

Each new screen image begins in the upper left corner of the screen. From there
the electron beam moves to the right along the first raster line. When it reaches the
end of this line, the electron beam moves back to the start of the next line down,
similar to pressing the <Return> key on a typewriter. The electron beam then
scans the second raster line, at the end of which it moves to the start of the next
raster line, and so on. Once it reaches the bottom of the screen, the electron beam
returns to the upper left corner of the screen and the process starts over again. The
illustration below shows the path of the electron beam.

Remember that the movement of the electron beam is controlled by the video card,
not by the monitor itself.

Horizontal

ON: --- OFF: ,11,/'

Electron beam scan movement

461

JO. Accessing and Programming the Video Cards PC System Programming

The resolution of the monitor naturally controls the number of raster lines and
columns which the electron beam scans when creating a display. Thus, a monitor
which has only 200 raster lines of 640 raster columns each clearly cannot handle
the high resolutions of an EGA card at 640x350 pixels. The four monitor types
used with a PC generally have the following resolutions:

Resolutions of different monitors
Monitor Vertical Horizontal

Monochrome 350 720
Color 200 640

EGA 350 640
Multis_y_nc variesL U..£ to 600 variesL 1:!E_ to 800

The CRT controller

The CRT Controller or CRTC is the heart of a video card. It controls the operation
of the video card and generates the signals the monitor needs to create the picture.
Its tasks also include controlling light pens, generating the cursor and controlling
the video RAM.

To inform the monitor of the next raster line, the CRTC sends a display enable
signal at the start of each line, which activates the electron beam. While the beam
moves from left to right over each raster column of the line, the CRTC controls
the individual signals for the electron beam(s) so that the pixels appear on the
screen as desired. At the end of the line, the CRTC disables the display enable
signal so that the electron beam's return to the next raster line doesn't make a
visible line on the screen. The electron beam is directed to the left edge of the
following raster line by the output of a horizontal synchronization signal. The
display enable signal is again enabled at the start of the next raster line, and the
generation of the next line begins.

Over scan

462

Since the time that the electron beam needs to return to the start of the next line is
less than the time the CRTC needs to get and prepare new information from the
video RAM, there is a short pause. But the electron beam cannot be stopped, so
we get something called overscan, which is visible as the left and right borders of
the actual screen contents. Although this is an undesirable side effect in one sense,
it is useful because it prevents the edges of the screen contents from being hidden
by the edge of the monitor. If the electron beam is enabled while it is traveling
over this border, a color screen border can be created.

Abacus 10.1 Anatomy of a Video Card

I
1-r-

~
/1

horizon tal
n

Screen contents y rutar lin••

~

1 vertical overscan -1.

'
,_,_

screen border

---------x raster columns

Rasters and overscan on a screen

Once the electron beam reaches the end of the last raster line, the display enable
signal is disabled, and a vertical synchronization signal is sent. The electron beam
returns to the upper left comer of the screen. Again the display enable signal is re
enabled and scanning again begins.

Pause and overscan

As with the horizontal electron beam return, a pause results which is displayed in
the form of overscan, creating a vertical screen border.

Signal timing

The timing of individual signals varies from video mode to video mode. For this
reason, the CRTC has a number of registers which describe the signal outputs and
their timing. The structure of these registers and how they are programmed will be
discussed in the remainder of this section. Many of these registers come from the
registers of the 6845 video controller from Motorola. This controller is used in the
MDA, CGA, and Hercules graphics cards. The EGA and VGA cards use a special
VLSI (very large scale integration) chip as a CRTC, and its registers are somewhat
more complicated. The techniques described here are intended as general
descriptions for all video cards.

463

10. Accessing and Programming the Video Cards PC System Programming

464

Re_<E-sters of the 6845 video controller from Motorola

~ Meaning Access
OOH Total horizontal character Write
OlH Di21'.!i'... horizontal character Write
02H Horizontal ~chronization s~l after ••• char Write
03H Duration of horizontal ~chronization s~nal in char. Write
04H Total vertical character Write
05H A~ust vertical character Write
06H Di2l~ vertical character Write
07H Vertical ~chronization s~nal after ••• char Write
OBH Interlace mode Write
09H Number of scan lines~r screen line Write
OAH Startir.!9:_ line of screen cursor Write
OBH Endir.!9:.. line of screen cursor Write

These registers, like all of the other registers on the video card, are accessed via UO
ports with the assembly language instructions IN and OUT. The registers of the
CRTC are accessed through a special address register, rather than directly from the
address space of the processor. The number of the desired CRTC register is written
to the port corresponding to this address register. Then the contents of this register
can be read into a special data register with the IN assembly language instruction.
If a value is to be written to the addressed register, it must be transferred to the data
register with the OUT instruction. Then the CRTC automatically places it in the
desired register. These two registers are actually found at successive port addresses,
but these addresses vary from video card to video card.

We will include tables throughout the chapter to describe the contents of individual
CRTC registers under the various video modes. Here's an example which shows
how the contents of these registers are calculated and how the individual registers
are related to each other. If you try some of these calculations with your calculator
or PC, you will notice that some of them do not work out evenly. But since the
registers of the CRTC hold only integer values, they will be rounded up or down.

The basis for the various calculations are the bandwidth and the horizontal and
vertical scan rates of a monitor.

Bandwidth and scan rates of different video cards
Video system Resolution Bandwidth Vert. scan rate Horiz. scan
rate
MDA 720 x 350 16.257 MHz 50 Hz * 18.43 KHz*
CGA 640 x 200 14.318 MHz 60 Hz 15.75 KHz
HGC 640 x 200 14.318 MHz 50 Hz 18.43 KHz
EGA 640 x 350 16.257 MHz 60 Hz 21.85 KHz

640 x 200 14.318 MHz 60 Hz 15.75 KHz
720 x 350 16. 257 MHz 50 Hz 18.43 KHz

(*MHz~Megahertz, KHz=Kilohertz, Hz=Hertz

The bandwidths in the figure above specify the number of points which the
electron beam scans per second, and is therefore also called the point or dot rate.
The vertical scan rate specifies the number of screen refreshes per second, while the
horizontal scan rate refers to the number of raster lines which the electron beam
scans per second

Abacus 10.l Anatomy of a Video Card

St.arting with these values, let's practice calculating the individual CRTC register
values for the 80x25 character text mode on a CGA card.

Dividing the bandwidth by the horizontal scan rate we get the number of pixels
(screen dots) per raster line.

Bandwidth
+ Horizontal scan rate

Pixels per line

14.318 MHz
15.570 KHz

Since the CRTC registers generally refer to the number of characters rather than
pixels, this value must be converted to the number of characters per line. This is
done by dividing the number of pixels per line by the width of the character
matrix. On the CGA card this is eight pixels.

+
Pixels per line
Pixels per character

919
8

Characters per line 114

This value, decremented by one, is placed in the first register of the CRTC and
specifies the total number of characters per line. In the second register we load the
number of characters that will actually be displayed per line. The 80x25 character
text mode usually offers 80 characters.

The difference between the total and the number of characters actually displayed per
line is the number of characters which can be displayed between the horizontal
return and the overscan. The difference in this case is 34 characters.

The duration of the horizontal beam return must be entered in the fourth register of
the CRTC. This register stores the number of characters which could be displayed
during this time, rather than the actual time duration. The monitor specifications
define this instead of the video card itself. As a rule this number is between 5% and
15% of the total number of characters per line. A color monitor uses exactly ten
characters.

This leaves 24 characters for the overscan (the horizontal screen border). The third
CRTC register specifies how these characters are divided between the left and right
screen borders. This register specifies the number of character positions which will
be scanned before the horizontal beam return occurs. The BIOS specifies the value
90 here, or after ten characters have been displayed for the screen borders. The
remaining 14 characters are placed at the start of the next line and form the left
screen border.

The calculations for the vertical data, the number of vertical lines, the position of
the vertical synchronization signal, etc., follow a similar scheme. The first
calculation is the number of raster lines per screen. This results from the division

465

10. Accessing and Programming the Video Cards PC System Programming

of the number of lines displayed per second by the number of screen refreshes per
second:

+

+

Pixels per line
Pixels per character

Characters per line

Horizontal scan rate
Screen refreshes

Raster lines

919
8

114

15.750 KHz
60 Hz

262

Since the characters in CGA text mode are eight pixels high by eight pixels wide,
we again divide by eight to get the number of text lines per screen:

+
Raster lines
Pixels per character

262
8

Lines per screen 32

This result must be decremented by one and then loaded into the fifth register of
the CRTC. The number of displayed lines is loaded into the seventh register. Since
seven fewer lines are displayed than are actually available, these extra lines are used
for the vertical beam return and overscan, whereby the vertical beam return begins
after the 28th line.

The character height must be decremented by one and loaded into CRTC register
nine. The decrement results is 7 in this example. This value also determines the
range for the values loaded into register ten and eleven. They specify the first and
last raster lines of the screen cursor. The cursor position is determined by the
contents of registers 14 and 15. They refer to the distance of the character from the
upper left comer of the screen, instead of line and column. This value is calculated
by multiplying the cursor line by the number of columns per line and then adding
the cursor column. The high byte of the result must be loaded into register 14 and
the low byte in register 15.

The video RAM area

466

The contents of registers 12 and 13 determine the area of video RAM displayed on
the screen. To understand these registers, we first need to know something about
the way video RAM is organized.

The third component of the video system determines what will eventually be
displayed on the screen. In text mode, the video RAM contains the ASCII codes of
the characters to be displayed and their attributes. While the organization of video
RAM in this mode is identical for all of the video cards discussed here, the
organization for graphic mode varies from card to card. The description of each card
discusses the way video RAM organizes graphic modes (more on this later).

Abacus 10.1 Anatomy of a Video Card

As the illustration below shows, each screen position occupies two bytes in video
RAM. The ASCII code of the character to be displayed is placed in the first of
these two bytes, the one with the even address. By using eight bits per character
code, a maximum of 256 different characters can be displayed.

RAM

Code

Normal text mode structure in video RAM

After the ASCII code, and always at an odd offset address, follows the attribute
byte, which defines the appearance of the character on the screen. The attribute
controller divides it into two nibbles, whereby the upper nibble (bits four to seven)
describes the character background, and the lower nibble (bits zero to three)
describes the character foreground. This results in two values between zero and
fifteen which are interpreted depending on the type of monitor attached. With a
color monitor (and a CGA or EGA card) both values select one of 16 possible
colors. Each character on the screen can thus have its own foreground and
background colors.

A monochrome monitor cannot display colors, regardless of the adapter. Here the
attribute controls whether the character is displayed at high or low intensity,
inverse, or underlined.

467

10. Accessing and Programming the Video Cards PC System Programming

Character organization in video RAM

To access video RAM, you must know how the individual characters are organized
within this memory. This organization is similar to character display on the
screen.

The first character on the screen (the character in the upper left comer) is also the
first character in video RAM, located at offset position OOOOH. The next character
to the right is located at offset position 0002H. All 80 characters of the first screen
line follow in this manner. Since each screen character takes two bytes of memory,
each line occupies 160 bytes of RAM. The first character of the second screen line
follows the last character of the first line, and so on.

Finding character locations in video RAM

468

You can easily find the starting address of a line within video RAM by
multiplying the line number (starting with zero) by 160. To get from the
beginning of the line to a character within the line, the distance of the character
from the start of the line must be added to this value. Since each character takes
two bytes, this is done simply by multiplying the column number (also starting at
zero) by two. Adding both products together yields the offset position of the
character in the video RAM. These calculations can be combined into a single
formula:

Note:

Offset_position(row, column) =row* 160 +column * 2

Since only 40 characters per line are displayed in 40-column video
modes, the factor 80 must replace the original 160.

The RAM memory of the video card is integrated into the normal RAM of the PC
system, so you can use normal memory access commands to access video RAM.
You must know the segment address of video RAM, which is used together with
the formula above to find the offset position. Section 10.7 shows how this can be
done easily in assembly language, BASIC, Pascal, and C.

Now that we have discussed the most important similarities between the four video
cards, the following four sections describe the capabilities of these cards. In
addition, these sections explain how these capabilities can be used for optimal
screen output.

Abacus 10.2 The IBM Monochrome Card

10.2 The IBM Monochrome Card

The IBM Monochrome Display Adapter, or MDA, is probably the oldest of the
video cards. This card is based on the Motorola 6845 video controller, which is an
intelligent peripheral chip. The 6845 controller constructs a display by generating
the proper signals for the monitor from video RAM.

This card is excellent for text display. This is achieved with a 9xl4 character
matrix, which permits high-resolution character display. The format of this matrix
is unusual since a character generator containing the bit pattern of each character
can only produce characters 8 pixels wide. Characters from the IBM character set
may not connect with each other (e.g., using box characters to draw a box). A
circuit on the graphics card sidesteps this disadvantage by copying the eighth pixel
of the line into the ninth pixel for any characters whose ASCII codes are between
BOH and DFH. This allows the horizontal box drawing characters to connect

Column
....

0 1 2 3 4 5 6 7 8

Row
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Coding stored In ROM character set

Monochrome display adapter-9xl4 character matrix

The character generator requires one byte for each screen line: one bit per pixel,
eight bits per line. Each character requires 14 bytes. The complete character set has
a memory requirement of almost 4K, stored in a ROM chip on the card. For some
reason the card has an SK ROM, leaving the second bank of 4K unused.

Video RAM on the MDA

The video RAM of the card starts at address BOOO:OOOO and extends over 4K (4,0%
bytes). Since the screen display only has space for 2,000 characters and requires

469

10. Accessing and Programming the Video Cards PC System Programming

470

only 4,000 bytes of memory for those characters, the unused 96 bytes at the end of
video RAM are available for other applications.

The following figure shows the meanings of the different values representing the
attribute byte:

7 6 5 4 3 2 1 0 bit

Character color

Character Intensity
....... ------io=normal

1=hlgh Intensity
Back round color

Bllnklng (or background
------------O=off Intensity)

1=on

Attribute byte values-IBM monochrome display adapter

Any combination of bits can be loaded into this byte. However, the MDA only
accepts the following combinations:

7 3 2

? 0 0 0 ? 0 0 0 No character (black on black)

? 0 0 0 ? 0 0 1 underlined character (white on black)

? 0 0 0 ? 1 1 1 White character on black

? 1 1 1 ? 0 0 0 Black character on white (inverse)

? 1 1 1 ? 1 1 1 No character (white on white)

Byte combinations-IBM monochrome display adapter

Besides these bit combinations, bits 3 and 7 of the attribute byte can be set or
unset. Bit 3 defines the intensity of the foreground display. When this bit is set,
the characters appear in higher intensity. Bit 7's purpose varies with the contents
of the control registers (more on this later). For now, all you need to know is that

Abacus 10.2 The IBM Monochrome Card

bit 7 can either enable blinking characters, or enable an intensity matching the
background color.

Monochrome cards have two more registers available: the control register and the
status register.

7 6 5 4 3 2 1 0 bit

LJ Always 1

O:Screen off
1:Screen on

Bit 7 of the attribute
byte:
O:brlght background
1 :blinking

Control register

MDA control register

The control register located at port 3B8H controls the monochrome display
adapter's different functions. As the figure below shows, only bits 0, 3 and 5 are of
importance. Bit 0 controls the resolution on the card. Although the card only
supports one resolution (80x25 characters), this bit must be set to 1 during system
initialization. Otherwise the computer goes into an infinite wait loop. Bit 3
controls the creation of a visible display on the monitor. If bit 3 is set to 0, the
screen is black and the blinking cursor disappears. If bit 3 is set to 1, the display
returns to the screen. Bit 5 has a similar function: If bit 7 in the attribute byte of
the character is set to 1, it enables blinking characters. If bit 7 contains the value
0, the character appears, unblinking, in front of a light background color. This
means that bit 7 of the attribute byte acts as an intensity bit for the background.
This register can only be written. This makes it impossible for a program to
determine whether the display is turned on or off. The normal value for this
register is 29H, meaning that all three relevant bits default to 1.

471

10. Accessing and Programming the Video Cards PC System Programming

7 6 5 4 3 2 1 0 bit

W Horizontal
synchronization
signal: O=off, 1:on
O=Current plxel off
1 =Current plxel on

Status registers (3BAH)

MDA status register

Only bits 0 and 3 are used in the status register; all the other bits must contain the
value 1. Unlike the control register, programs can read this register, but register
contents cannot be changed by program code.

Horizontal synchronization

Bit 0 indicates if a horizontal synchronization signal is being sent to the display
screen. The video card sends this signal after creating a screen line (not to be
confused with a text line, which consists of 14 screen lines) on the screen. This
signal informs the electron gun, which "draws" the picture on the screen, that it
should return to the left border of the current screen line. In this case the bit has
the value 1. Bit 3 contains the value of the pixel where the electron beam is
currently located. A 1 signals that the pixel is visible on the screen and 0 means
that the screen remains black at this location.

MDA internal registers

472

Besides the two registers directly connected to the hardware of the monochrome
display adapter, the 6845 video processor contains a series of internal registers.
These 18 registers are open to user access through the 6845 index register and data
register. The index register is connected to port address 3B4H, the data register at
port address 3B5H. You can only write to the 6845 registers-you cannot read data
from them.

When you enter a value into one of the 18 registers, the number of the register (0-
17) passes first into the index register. Then the value which is transmitted to the
register passes into the data register. The 6845 then transmits the indicated value to
the proper register. Most of these 18 registers should not be modified, since they
contain important data about the screen structure (e.g., synchronization signals)
and incorrect values in these registers can damage the monitor. The following table
shows the meanings of the individual registers and the values which ensure a
correct display.

Abacus 10.2 The IBM Monochrome Card

Registers of the CRTC register in 80x25 text mode
on the Monochrome Di~'!Y.._ Ad'!E._ter (MDA)

~ Meanir::!'l_ Content
OOH Total horizontal character en
OlH Di~'!Y.._ horizontal character 00
02H Horizontal "Y_nchronization s:i,g_nal after ••• char 82
03H Duration of horizontal ~chronization signal in char. 15
04H Total vertical character 25
05H Ad~ust vertical character 6

06H Di~'!Y.._ vertical character 25
07H Vertical ,;y_nchronization s:i,g_nal after ••• char 25
OBH Interlace mode 2
09H Number of scan lines_~r screen line 13
OAH Starti~ line of blinki~ screen cursor 11
OBH Endi~ line of blinki~ screen cursor 12
OCH Starti~ address of di~E_l~ed screen _page (low l>y_te) 0
OOH Starti~ address of displayed screen_E<lge (high k>yte) 0
OEH Character address of blinki~ screen cursor (high byte) 0

OFH Character address of blinkir:!S_ screen cursor (low b_yte) 0
lOH Li_<!ht~n...E_osition (h:!:s_h ~te) *
llH Li_<!ht pen~sition (low ~te) *

*not available on MDA

The following program makes full use of the monochrome display adapter's
capabilities. It was written in assembly language. The individual routines are fully
documented and require no additional explanation. The demonstration program built
into the listing shows practical application of the individual routines.

Assembler listing: VMONO.ASM

;***;
;* VMONO *;

;•---•;
;*
;*

Task : makes some elementary functions available for *;
access to the monochrome display screen •;

;•---•;
;* Info : all functions subdivide the screen . ;
;* into columns 0 to 79 and lines 0 to 24 •;
;*---*;
;•
;*
;*

Author
Developed on
Last Update

MICHAEL TISCHER
: 8/11/87
: 6/14/89

. ;
•;
•;

;*---*;
;*
;*

assembly : MASM VMONO;
LINK VMONO;

•; . ;
;*---*;
;* Call : VMONO *;
;***;

;== Constants ==============~============~=~=~=~=~====~====~==

CONTROL REG
ADDRESS-6845
DATA 6845
VIO_SEG
CUR_START
CUR END
CURPOS HI
CURPOS-LO

DELAY

= 03B8h
= 04B4h
= 03B5h
= OBOOOh
= 10
= 11
= 14

15

= 20000

;Control register port address
;6845 address register
;6845 data register
;Segment address of video RAM
;Register f CRTC: Starting cursor line
;Register f CRTC: Ending cursor line
;Register f CRTC: Cursor pos. hi byte
;Register f CRTC: Cursor pos. lo byte

;Counter for delay loop

473

10. Accessing and Programming the Video Cards PC System Programming

474

;=- Stack ====-======================-==========-----------===========

stack segment para stack ;Definition of stack segment

dw 256 dup (?) ; 256-word stack

stack ends ;End of stack segment

;== Data ===========-====-=-====•========-========-=--====--==-=-===-==

data segment para 'DATA' ;Define data segment

;== the Data for the Demo-Program ~-~---~----~----~-~-~-~-~--

strl
str2
str3
str4
str5

initm

db "a" ,o
db • >PC SYSTEM PROGRMl1ING< •, 0
db • window 1 •, 0
db • window 2 •,o
db • the program is stopped by •
db • pressing a Key •••• •,o

db 13,10,"VMONO (c) 1987 by Michael Tischer",13,10,13,10
db "This demonstration program only runs with •
db" a monochrome",13,10,"display card. If your PC•
db "has another type of display card,",13,10
db "please enter <s> to stop the •
db• program.",13,10,"otherwise press any"
db "key to start ",13,10
db "the program ... 11 ,13,10, 11 $"

;== Data ==

linen

data

dw 0*160,1*160,2*160 ;Start addresses of the lines as
dw 3*160,4*160,5*160 ;offset addresses in the video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

ends ;End of data segment

;== Code ===========================--=================-=

code segment para 'CODE' ;Definition of the CODE segment

assume cs:code, ds:data, es:data, ss:stack

;== this is the Demo-Program =====================================

demo proc far

mov ax,data
mov ds,ax
mov es,ax

;Get segment address of data segment
;and load into DS
; as well as ES

;-- Display initial msg./wait for input ----------------
mov ah,9 ;String output function
mov dx,offset initm ;Address of initial message
int 21h ;Call DOS interrupt 21H

xor ah, ah ;Get function number for key
int 16h ;Call BIOS keyboard interrupt
cmp al, "s" ;was <s> entered?
je ende ;YES --> end program
cmp al,"$" ;was <S> entered?
jne start demo ;NO --> start demo

ende: mov ax,4c00h ;Function nUmber for program end
int 21h ;Call DOS interrupt 21H

Abacus 10.2 The IBM Monochrome Card

startdemo label near
mov cx,OdOOh
call cdef
call els

;Enable full cursor

; Clear screen

;-- Fill screen with ASCII characters -------------

demol:

demo2:

xor di, di ;Start in upper left corner
mov si,offset strl ;Offset address of stringl
mov cx,2000 ;2,000 characters fit on the screen
mov al,07h ;white letters on black background
call print ;Display string
lnc strl ; Increment character in test string
jne demo2 ;NUL code suppressed
inc strl
loop demol ;Repeat output

;-- Create window 1 and window 2 ----------

mov bx,0508h ;Upper left corner of window 1
mov dx, 1316h ;Lower right corner of window 1
mov ah,07h ;White letters, black background
call clear ;Clear window 1
mov bx,3C02h ;Upper left corner of window 2
mov dx,4A10h ;Lower right corner window 2
call clear ;Clear window 2
mov bx,0508h ;Upper left corner of window
call calo ;Convert to offset address
mov si,offset str3 ;Offset address string 3
mov ah,70h ;Black characters, white background
call print ;Display string 3
mov bx,3C02h ;Upper left corner of window 2
call calo ;Convert to offset address
mov si,offset str4 ;Offset address string 4
call print ;Display string 4
xor di, di ;Upper left display corner
mov si,offset str5 ;Offset address string 5
call print ;Display string 5

;-- Display program logo -------------------------------

mov bx,lEOCh
call calo
mov si,offset str2
mov ah,OFOh
call print

;column 30, line 12
;Convert offset address
;Offset address string 2
;Inverse blinking
;Display string 2

;-- Fill window with arrows ----------------------------

xor ch, ch ;Hi-byte of the counter to 0
mov bl,1 arrow: ;Asterisk

arrowO: push
mov
mov
sub
shr
or
:le
mov
rep

arrowl: mov
mov
rep
mov
sub
shr
or
je
mov

bx
di,offset
cl,15
cl, bl
cl,1
cl, cl
arrowl
al, II .
stosb
cl, bl
al,"*M
stosb
cl,15
cl, bl
cl,1
cl, cl
arrow2
al," ..

str3
;Push BX on the stack
;Draw arrow line in string 3
;Total of 15 characters in a line
;Calculate number of spaces
;Divide bY 2 (for left half)
;No blanks ?
; YES --> ARROWl

;Draw blanks in string 3
;Number of asterisks in counter

;Draw stars in string 3
;Total of 15 characters in a line
;Calculate number of blanks
;Divide by 2 (for right half)
;No blanks?
;YES --> ARROW2

475

10. Accessing and Programming the Video Cards PC System Programming

476

rep stosb ;Draw blanks in string 3
arrow2: mov bx,0509h ;below the first line of window 1

call ca lo ;Convert to offset address
mov si,offset str3 ;Offset address string 3
mov ah,07h ;White characters, black background
call print ;Display string 3
mov bx,3Cl0h ;into the lowest line of window 2
call calo ;Convert offset address
call print ;Display string 3

;-- Brief pause --

waitlp:
mov ex, DELAY
loop waitlp

;Loop counter
;count loop to o

;-- Scroll window 1 line down --------------------------

mov bx,0509h ;Upper left corner of window 1
mov dx, 1316h ;Lower right corner window 1
mov cl,l ; Scroll down
call scrolldn ;one line

;-- Scroll window 2 one line up ------------------------

mov bx,3C03h ;Upper left corner window 2
mov dx,4A10h ; Lower right corner window 2
call scroll up ;Scroll up

;-- Was a key pressed? (end program) -------------------

mov ah,1
int 16h
jne end_it

;Function number for testing key
;Call BIOS keyboard interrupt
;Keypress -> goto end of program

;-- NO, display next arrow -----------------------------

pop bx
add bl,2
cmp bl,17
jne arrowO
jmp arrow

;Pop BX from stack again
;2 more stars in next line
; Reached 17 ?
;NO --> next arrow
;No key --> next arrow

;-- Get ready to end program

end_it: ;Get function number for key xor ah, ah
int
mov
call
call
jmp

demo endp

16h
cx,ODOCh
cdef
els
ende

;Call BIOS-keyboard-interrupt
;Restore nonnal cursor

;Clear screen
;Go to end of program

;== Functions =========================--=======================

;-- SOFF: switches the display off -----------------------
;--
,

none
none

;--

Input
Output
register AX and DX are changed

SOFF proc near

mov dx,CONTROL REG
in al,dx -
and al,llllOlllb
out dx,al

ret

SOFF endp

;Address of display control register
; read its content
;bit 3 = O: display off
;set new value (display off)

;back to caller

Abacus 10.2 The IBM Monochrome Card

;-- SON: switches the display on -------------------------
;-- Input
;-- Output
;-- register

none
none
AX and DX are changed

SON proc near

mov dx,CONTROL_REG
in al,dx

;Address of display control register
;Read its content

or al,8
out dx,al
ret

SON endp

;Bit 3 = 1: display on
;Set new value (display on)
; Back to caller

;-- CDEF: sets the start and end line of the cursor -------------
;-- Input CL = Start line

CH = End line
;-- Output none
;-- register : AX and DX are changed
cdef proc near

mov al,CUR_START
mov ah,cl
call setvk
mov al,CUR END
mov ah, ch -
jmp short setvk

cdef endp

;Register 10: start line
;Start line to AH
;Transmit to video controller
;Register 11: end line
;End line to AH
;Transmit to video controller

;-- SETBLINK: sets the blinking display cursor --------------------
;-- Input DI = offset address of the cursor
;-- output none
;-- register BX, AX and DX are changed

setblink proc near

mov bx, di ;Transmit offset to BX
mov al,CURPOS_HI ;Register lS:Hi-byte of cursor off set
mov ah,bh ;HI-byte of the offset
call setvk ;Transmit to video controller
mov al,CURPOS_LO ;Register lS:Lo-byte of cursor offset
mov ah, bl ; Lo-byte of the offset

SETVK is called automatically ------------------------

setblink endp

;-SETVK: sets a byte in one of the registers of the video controller --
;-- Input AL = number of the register
;-- AH = new content of the register
;-- Output none
;-- register : DX and AL are changed

setvk proc near

mov dx, ADDRESS 6845
out dx,al -
jrnp short $+2
inc dx
mov al,ah
out dx,al
ret

setvk endp

;Address of the index register
;Send number of the register
;Small I/O pause
;Address of the index register
;Content to AL
; Set new content
; Back to caller

;-- GETVK: reads a byte from one register of the video controllers -
;-- Input : AL = number of the register

477

JO. Accessing and Programming the Video Cards PC System Programming

478

;-- output
;-- register

AL = content of the register
DX and AL are changed

getvk proc near

mov dx,ADDRESS 6845
out dx,al -
jmp short $+2
inc dx
in al,dx
ret

;Address of the index register
;Send number of the register

;Address of the index register
;Read content to AL
; Back to caller

getvk endp

;-- SCROLLUP: scrolls a window up by N lines ----------------
;-- Input BL = line upper left
;-- BH = column upper left
;-- DL = line lower right

'
DH = column lower right

'
CL = number of lines to scroll

;-- output none
;-- register only FLAGS are changed
;-- Info the display lines released are erased

scrollup proc near

supl:

cld

push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si,di
add bl, cl
call calo
xchg si,di
push ds
push es
mov ax, VIO_SEG
mov ds,ax
rnov es,ax
mov ax,di
rnov bx,si
mov cl, dh
rep rnovsw
rnov di,ax
mov si,bx
add di,160
add si,160
dee dl
jne supl
pop es
pop ds
pop dx
pop ex
pop bx
mov bl,dl
sub bl, cl
inc bl
mov ah,07h

;Increment on string instructions

;Push all changed registers on the
;stack
;In this case the sequence
;must be observed!

;These three registers are restored
;from the stack before ending

;Calculate the number of lines

;Deduct number of lines scrolled
;Calculate number of columns

;Convert upper left in offset
;Record Address in SI
;First line in scrolled window
;Convert first line to offset
;Exchange SI and DI
;Store segment register on
;the stack
; Segment address of the video RAM
;to DS
;and ES
;Record DI in AX
;Record SI in BX
;Number of column in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next line

;Processed all lines ?
;NO --> move another line
;Get segment register from
;stack
;Get lower right corner
;Read number of lines
;Get upper left corner
;Lower line to BL
;Deduct number of lines

;Color : black on white

Abacus 10.2 The IBM Morwchrome Card

call

pop
pop
pop
pop

ret

scroll up endp

clear

si
di
bx
ax

;Erase lines freed

;CX and DX have already
;been read

;Back to caller

;-- SCROLLDN: scrolls a window down N lines ---------------
;-- Input BL = line upper left

BH column upper left
;-- DL = line lower right
;-- DH = column lower right
;-- CL = number of lines to scroll
;-- Output none
;-- register only FIAGS are changed

'
Info display lines released are erased

scrolldn proc near

sdnl:

cld

push ax
push bx
push di
push si

push bx
push ex
push dx

sub dh,bh
inc dh
mov al,bl
mov bl,dl
call calo
mov si,di
sub bl,cl
call calo
xchg si,di
sub dl,al
inc dl
sub dl,cl
push ds
push es
mov ax,VIO_SEG
mov ds,ax
rnov es,ax
rnov ax,di
rnov bx,si
mov cl,dh
rep movsw
mov di,ax
rnov si,bx
sub di, 160
sub si, 160
dee dl
jne sdnl
pop es
pop ds
pop dx
pop ex
pop bx
mov dl,bl
add dl,cl
dee dl
mov ah,07h

;Increment on string instructions

;Store all changed registers on the
;stack
;In this case the sequence
;must be observed

;These three registers are returned
;from the stack before the end
; of the routine

;Calculate the number of the column

;Record line upper left in AL
;Line upper right to line upper left
;Convert upper left into offset
;Record address in SI
;Deduct number of lines to scroll
;Convert upper left in offset
;Exchange SI and DI
;Calculate number of lines
; Deduct number
;of lines to be scrolled
;Push segment register onto stack

;Segment address of video RAM
;to DS
;and ES
;Move DI to AX
;Move SI to BX
;Number column in counter
;Scroll one line
;Get DI from AX
;Restore SI from BX
; Set next line

;All lines processed
;NO --> scroll another line
;Get segment register from
;stack
;Return lower right corner
;Return number of lines
;Return upper left corner
;Upper line to DL
;Add number of lines

;Color : black on white

479

10. Accessing and Programming the Video Cards PC System Programming

480

call clear ;Erase lines which were released

pop si ; CX and DX are
pop di ; already returned
pop bx
pop ax

ret ; Back to caller

scrolldn endp

;-- CLS: Clear the complete screen ------------------------------
;-- Input : none
;-- Output : none
;-- register : only FLAGS are changed

els proc near

mov
xor
mov

;--

els endp

ah,07h
bx, bx
dx,4F18h

Execute Clear

;Color is white on black
;Upper left is (0/0)
;Lower right is (79/24)

;-- CLEAR: fills a designated display with space characters ----
;-- Input AH = Attribute/color
;-- BL = line upper left
;-- BH cclumn upper left
;-- DL = line lower right
;-- DH = cclumn lower right
;-- Output none
;-- register : only FLAGS are changed

clear proc near

cld ;Increment on string instructions
push ex ;Store all registes which
push dx ;are changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call ca lo ;Offset address of upper left corner
mov cx,VIO_SEG ;Segment address of the video RAM
mov es, ex ;to ES
xor ch, ch ;Hi-bytes of the counter to O
mov al," .. ; Space character

clearl: mov si,di ;Move DI to SI
mov cl,dh ;Number of column in counter
rep stosw ;Store space character
mov di,si ;Restore DI from SI
add di, 160 ;Set in next line
dee dl ;All lines processed
jne cl earl ;NO --> erase another line

pop es ;Restore registers from
pop di ;stack
pop si
pop dx
pop ex
ret ; Back to caller

clear endp

;-- PRINT: outputs a string on the Display --------------------

Abacus 10.2 The IBM Monochrome Card

;-- Input
;--
;--
;-- Output

AH = Attribute/color
DI = off set address of the first character
SI = offset address of the string to OS

;-- register
DI points behind the last character output
AL, DI and FLAGS are changed

'
Info

'
print

printO:
printl:

printe:

print

proc

cld
push
push
push
mov
mov
jmp

the string must be terminated with a NUL-character.
other control characters are not recognized

near

si
es
dx
dx,VIO_
es,dx
printl

SEG

;Increment on string instructions
;store SI, DX and ES on the stack

;Segment address of the video RAM
;First to DX and then to ES
;YES --> Output finished

stosw ;Store attribute and color in V-RAM
;Get next character from the string
;Is it NUL

lodsb
or al, al
jne printO ;NO --> output

pop dx ;Get SI, DX and ES back from stack
pop es
pop si
ret ; Back to caller

endp

;- CALO: converts line and column into offset address ----------------
;-- Input BL = line
;--

;--

ca lo

calo

BH = column
Output DI = the offset address
Registers: DI and FLAGS are changed

proc

push
push

shl
mov
xor
mov
xor
add

pop
pop
ret

endp

near

ax
bx

bx,1
al,bh
bh,bh
di, [linen+bx J
ah, ah
di, ax

bx
ax

;Store AX on the stack
;Store BX on the stack

;Column and line times 2
;Column to AL
;Get Hi-byte
;Offset address of the line
;HI-byte for column offset
;Add line- and column offset

;Get BX from stack again
;Get AX from stack again
; Back to caller

;== End ==

code ends ;End of the CODE segment
end demo ;Start program execution w/ demo

481

10. Accessing and Programming the Video Cards PC System Programming

10.3 The Hercules Graphic Card

The Hercules display adapter displays text in both text mode and graphics mode,
with a graphic resolution of 720x348 pixels. This card contains enough RAM for
two display pages. Each display page is 32K, so video RAM can accept a 4K text
page and a graphic page. The first display page extends from address BOOO:OOOO to
B000:7FFF. The second screen page goes from B000:8000 to BOOO:FFFF.

Hercules video RAM

482

The Hercules card's video RAM in text mode has the same cursor character and port
addresses as the IBM monochrome display adapter. With the graphic capabilities,
only a few bits in the status and control register are different from the monochrome
card. An additional configuration register can be addressed from 3BFH. You can
write to this register only. Only bits 0 and 1 are of interest to the programmer.
The former indicates whether the graphic mode can be switched on (1) or not (0).
Bit l determines whether the second display page can be used. Bit 1 contains the
value 1 if the second page is usable.

To avoid conflicts with other video cards (especially color cards), both bits are set
to 0 at the start of the system so that neither graphic mode nor the second display
page are accessible at first. Application programs must configure the Hercules
display adapter through the configuration register if the programs require graphic
mode or the second screen page.

The control register of the Hercules graphic card has ~me differences from that of
the MDA discussed in the preceding section.

7 6 5 4 3 2 1 0 bit

W O:text mode
1 :graphic mode
O:screen off
1:screen on

O:bllnklng disabled
1 :blinking enabled

O:dlsplay screen
page 1

1 =display screen
page 2

The Hercules control register (3B8H)

Abacus 103 The Hercules Graphic Card

Unlike the IBM monochrome display adapter, bit 0 is unused and doesn't have to
be set to 1 during the system boot. Bit 1 determines text or graphic mode: a 0 in
bit 1 enables text mode, while a 1 in bit 1 enables graphic mode. As you shall see
in the following examples, changing these bits isn't enough to switch between
text and graphic modes. The internal registers of the 6845 must be reset as well.
During this process, the screen display must be switched off to prevent the 6845
from creating garbage during its reprogramming.

The Hercules card has a seventh bit in this register. Its contents detennine which of
the two screen pages appear on the monitor screen. If this bit is 0, the first screen
page appears; a 1 calls the second screen page on the screen. Independent of each
other, the user can write to or read from either page at any time. You can only
write to this register; attempts to read this register return the value FFH. Because
of this, it is impossible to switch off the display simply by reading the contents of
the status register and erasing bit 3, regardless of the display mode and the screen
page selected.

7 6 5 4 3 2 1 0 bit

W Horizontal
synchron lzatlon
signal: O=off, 1=on
O:Current pixel off
1 :Current pixel on

Vertical
synchronization
signal: O=on, 1 =Off

Hercules status register (3BAH)

Only the significance of bit 7 makes this register different from the IBM
monochrome card. It's always set to 0 when the 6845 sends a vertical
synchronization signal to the display. This signal is always sent when the last
screen line has been constructed. The electron beam, which constructs the display,
then jumps to the first line of the' screen to start constructing a new screen.

Since the Hercules card uses the same processor as the IBM card, the internal
registers of the 6845 and their meaning are identical to the IBM card. The index
register and data register are also located at the same address. The following values
must be assigned to the various registers in the text and graphic modes
respectively:

483

10. Accessing and Programming the Video Cards PC System Programming

484

No. Meanir.!5l_ Text Gr'!E!iic
0 Horizontal character seeded <J7 53
1 Horizontal character dil!E_l~ed 80 45
2 Horiz. ~nchronization si,.9!!_al after_.character 82 46
3 Horiz. ~nchronization signal width 15 7
4 Vertical character seeded 25 91
5 Vertical character _iustified 6 2
6 Vertical character dil3£].~ed 25 ITT
7 Vert. !l}'Il_chronization signal after_.character 25 ITT
8 Interlace mode 2 2
9 Number of ccan-lines _EE!_r line 13 3
10 Starti1'l9: line of blinkir.!5l_ cursor 11 0
11 Endii:!9'._ line of the blinkii:!9'._ cursors 12 0
12 H~h}i_te of screen~e startii:!9'._ address 0 0
13 Low J:.?y_te of screen ~e startii:!9'._ address 0 0
14 High ~te of blinkir.!5l_cursor char. address 0 0
15 Low ~e of blinkii:!9'._ cursor char. address 0 0
16 Reserved
17 Reserved

As mentioned earlier, the Hercules card in graphic mode provides 348x720
resolution. Every pixel on the screen corresponds to one bit in the video RAM. If
the corresponding bit contains the value 1, the dot is visible on the display,
otherwise it remains dark. The following figure shows the construction of the
video RAM in the graphic mode.

Abacus

+0000 (h) Line 0 (90 bytes)

1---------~-----~~ +OOSA (h) Line 4 (90 bytes)
+OOB4 (h) l-L""1""n-e ""a __________ _,(9.,.0-b-yt-e-s)-I

+1088 (h)

+lOE2 (h)

+1E3C (h)

+1E96 (h)

+2000 (h)

+205A (h)

+20B4 (h)

+3088 (h)

+30E2 (h)

+3E3C(h)

+3E96(h)

+4000 (h)

+405A(h)

+40B4 (h)

+5088 (h)

+SDE2 (h)

+SEJC (h)

+5E96 (h)

+6000 (hi

+605A(h)

+60B4 (h)

Line 336

Line 340

Line 344

unused

Line 1

Line 5

Line 9

Line 337

Line 341

Line 345

unused

Line 2

Line 6

Line 10

Line 338

Line 342

Line 346

unused

Line 3

Line 7

Line 11

+7088 (h) Line 339

+ 7DE2 (h) Line 3 43

+7E3C (h) Line 347

+7E96 (h) unused

+8000 (h)

(90 bytes)

(90 bytes)

(90 bytes)

(362 bytes)

(90 bytes)

(90 bytes)

(90 bytes)

(90 byte.s)

(90 bytes)

(90 bytes)

(362 bytes)

(90 bytes)

(90 byte.9)

(90 bytes)

(90 bytes)

(90 bytes)

(90 bytes)

(362 bytes)

(90 bytes)

(90 bytes)

(90 bytes)

(90 bytes)

(90 bytes)

(90 bytes)

(362 bytes)

103 The Hercules Graphic Card

RAM
0000:0000

Video RAM and the screen under construction

The bit patterns of the individual lines in the video RAM aren't arranged
sequentially, as you might have assumed. The 32K of video RAM is divided into
four 8K blocks. The first block contains the bit pattern for any lines divisible by 4
(0, 4, 8, 12, etc.). The second block contains the bit patterns for lines 1, 5, 9, 13
etc. The third block contains the bit patterns for lines 2, 6, 10, 14, etc., while the
last block contains lines 3, 7, 11, 15 etc. When the 6845 generates a display, it
obtains information for screen line zero from the first data block, screen line one
from the second data block, etc. After it has obtained the contents of the third
screen line from the fourth data block, it accesses the first data block again for the
structure of the fourth line. Each line requires 90 bytes within the individual data
blocks-every pixel requires a bit, and 720 pixels divided by 8 bits (per byte)
equals 90. The first 90 bytes in the first memory area provide the bit pattern for
screen line zero, and the 90 bytes following provide the bit pattern for the fourth
screen line. The zero byte of one of these 90-byte sets represents the first eight
columns of a screen line (columns 0-8). The first byte represents columns 8-15,

485

JO. Accessing and Programming th.e Video Cards PC System Programming

etc. Within one of these bytes, bit 7 corresponds to the left screen pixel and bit 0
corresponds to the right screen pixel.

+ 0 +1 +2 +3 + 4 + 5

-.....
'-:o,,..-~-

~-~
-~ --

7 6 5 4 -3 2 1 0 bit

I I I I I I I I I

+85 +86 +87 +88 +89

...
.. \
\\
\\
\ ';,

7 6 5 4 3 2 1 0 bit

I I I I I I I I I
\
\

Column 0 1 2 3 4 5 6 7 Column 712 719

Relationship between 90-line bytes and screen display

RAM

0000:0000

1

If the screen pixels of a line (0 to 719) and the screen pixels of a column (0 to
347) are sequentially numbered, an equation indicates the address of the bytes
relative to the beginning of the screen page. This address contains the information
for a pixel with the coordinates XfY.

To determine the bit within the byte which represents the pixel, the following
formula can be used:

Address = 2000H * (Y mod 4) + 90 * int(Y/4) + int(X/8)

The following program demonstrates the abilities of the Hercules display adapter.
The individual routines within this program have some differences from the
routines shown in the monochrome display adapter demo program from the
previous section. The routines here enable access to both screen pages, and support
the Hercules graphic mode.

Assembler listing: VHERC.ASM

486

***;
* V H E R C *;

---;
Task

*
: makes a basic function available for

access to the HERCULES GRAPHICS CARD
*;
*;

•---•;
Info : all functions partition the screen display *;

into columns 0-79 and lines 0-24 (text mode) *;
& columns 0-719 and lines 0-347 (graphic mode)*;

---;
* Author

developed on
: MICHAEL TISCHER
: 8/11/87

*;
*;

Abacus 10.3 The Hercules Graphic Card

; • last update : 6/15/89 •;

;*---•;
; • assembly : MASM VHERC; •;
;* LINK VHERC; *;

;•---*;
, call : VHERC •;
;***;

;== Constants ===

CONTROL REG = 03B8h ;Control register port address
ADDRESS-6845 = 03B4h ;6845 address register
DATA 6845 C3B5h ;6845 data register
CONFIG REG 03BFh ;configuration register
VIC SEG = OBOOOh ;Video RAM segment address
CUR_START = 10 ;Reg. f for CRTC: Start cursor line
CUR END = 11 ;Reg. f for CRTC: End cursor line
CURPOS HI = 14 ;Reg. f for CRTC: cursor pos hi byte
CURPOS LO = 15 ;Reg. f for CRTC: cursor pos lo byte

DELAY 20000 ;count for delay loop

;== Macros ===

setmode

setvk

macro modus

mov dx,CONTROL REG
mov al,modus -
out dx,al

endm

macro

mov dx,ADDRESS_6845
out dx,ax

endm

;Set control register

;screen control register address
;Put new mode in AL register
;Send mode to control register

;Write value to CRTC registers
;Input: AL = register number

AH = Value for register

;Index register address
;Display register number and new value

;== Stack ==

stack segment para stack ;Definition of stack segment

dw 256 dup (?) ;Stack is 256 words in size

stack ends ;End of stack segment

;== Data ==

data segment para 'DATA' ;Define data segment

;== Data needed for demo program ============================

initm

strl
str2

domes

db
db
db
db
db
db
db
db

13,10,"VHERC (c) 1987 by Michael Tischer",13,10,13,10
"This demonstration program runs only with "
• a HERCULES",13,10,"graphics card. If your PC "
"has another type of display card, ",13,10
"please input an >s< to stop the "
11 program.",13,10,"0therwise please press any 11

"key to start the ", 13, 10
"program ... 11 , 13, 10, "$'1

db 1,17,16,2,7,0
db 2,16,17,1,7,0

db 13,10
db "This program creates a short graphic demo ",13,10
db •and a text demo. Pressing a key during the",13,10

487

10. Accessing and Programming the Video Cards PC System Programming

488

db •demo ends the program.",13,10
db •Press a key to start the program ••• •,13,10,•$•

;~ Table of line offset addresses ==-====~=============~=

lines

grafikt

textt

data

dw 0*160,1*160,2*160 ;Beginning addresses of the lines as
dw 3*160,4*160,5*160 ;offset addresses in video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

db 35h, 2Dh, 2Eh, 07h, 5Bh, 02h ; Register values for the
db 57h, 57h, 02h, 03h, OOh, OOh ;graphic mode

db 6lh, 50h, 52h, OFh, 19h, 06h ;Register values for the
db 19h, 19h, 02h, ODh, OBh, Och ;text mode

ends ;End of data segment

;== Code segment ===

code segment para 'CODE' ;Definition of the code segment

org lOOh

assume cs:code, ds:data, es:data, ss:stack

;== this is only the Demo-Program ==========================

demo

ende:

startdemo

proc far

mov ax,data
mov ds,ax
mov es,ax

;-- Opening msg., wait

mov ah, 9
mov dx,offset initm
int 2lh

xor ah, ah
int 16h
cmp al,"s"
je ende
cmp al,"S"
jne startdemo

mov ax,4C00h
int 2lh

label near
mov ah, 9
mov dx,offset domes
int 2lh

xor ah, ah
int 16h

;Get segment address of data segment
; Load into DS
;and ES

for input --------------------
;Output function number for string
;address of the message
;Call DOS interrupt

;Get function number for key
;Call BIOS keyboard interrupt
;Was <s> entered?
;YES--> End program
;Was <S> entered?
;NO --> Start demo

;Function number - end program
;Call DOS interrupt 21H

;output function number for string
;address of the message
;Call DOS interrupt

;Get function number for key
;Call BIOS keyboard interrupt

;-- Initialize graphic mode --------------------------

mov al, llb ;Graphic and page 2 possible
call con fig ;Configure
xor bp,bp ;Access display page 0
call grafik ;Switch to graphic mode
xor al,al
call cgr ;Erase graphic page 0
xor bx, bx ;Begin in the upper left
xor dx,dx ;Display corner
mov ax,347 ;Vertical pixels

Abacus

grl:

gr2:

gr4:

gr5:

demol:

demo2:

demo3:

103 The Hercules Graphic Cord

mov ex, 719
push ex
mov ex, ax
push ax
call spix
inc dx
loop gr2
pop ax
sub ax,3
pop ex
push ex
push ax
call spix
inc bx
loop gr3
pop ax
pop ex
sub cx,6
push ex
mov ex, ax
push ax
call spix
dee dx
loop gr4
pop ax
sub ax,3
pop ex
push ex
push ax
call spix
dee bx
loop gr5
pop ax
pop ex
sub cx,6
cmp ax,5
ja grl

xor ah, ah
int 16h

;Horizontal pixels
;Push horizontal pixels on stack
;Vertical pixels in counter
;Push vertical pixels on stack
;Set pixel
; Increment line
;Draw line
;Get vert. pixels from stack
;next line 3 pixels less
;Get horiz. pixels from stack
;Store horizontal pixels
;Push vertical pixels on stack
; Set pixel
;Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Record horizontal pixels
;Vertical pixels in counter
;Note vertical pixels on stack
;set pixel
;Decrement line
;Draw line
;Get vertical pixels from stack
;Next line 3 pixels less
;Get horizontal pixels from stack
;Record horizontal pixels
;Record vertical pixels on stack
;Set pixel
;Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Is the vertical line longer than 5
;YES --> continue

;Wait for function nr. for key
;Call BIOS keyboard interrupt

Initialize text mode ------------------------------

call text
mov cx,OdOOh
call cdef
call els

;-- Display strings in

xor bx, bx
call ca lo
mov si, offset strl
mov ex, 16*25
call print
loop demol

;Switch on text mode
;Switch on full cursor

;Clear screen

display page 0 ------------------
;Start in upper left display corner
;Convert to offset address
;Offset address of stringl
;The string is 5 characters long
;Output string

Display strings in display page 1 ------------------

inc bp
xor bx, bx
call ca lo
mov si,offset str2
mov ex, 16*25
call print
loop demo2

setmode 10001000b

;Process display page 1
;Start in the upper left corner
;Convert to offset address
;Offset address of stringl
;string is 5 characters long
;Output string

;Display text page 1

;-- short Pause ---

489

10. Accessing and Programming the Video Cards PC System Programming

490

pause:

pausel:

demo

mov cx,DELAY
loop pause

setmode OOOOlOOOb

;-- short pause
mov cx,DELAY
loop pausel

mov ah,1
int 16h
je demo3

xor ah, ah
int 16h

mov bp,O
call els
mov cx,ODOch
call cdef
call els
jmp ende

endp

;Load counter
;Count to 65,536

;Display page 0

;Load counter
; Count to 65, 536

;Test function nr. for key
;Call BIOS-keyboard-Interrupt
;No key --> continue

;Get function number for key
;Call BIOS-keyboard-Interrupt

;Display page 1
;Clear screen
; Restore normal cursor

;Clear screen
;End program

;== The actual functions follow ===========================

;-- CONFIG: configures the HERCULES card ------------------------------
;-- Input : AL : bit O o Only text presentation possible
;-- 1 also graphic presentation possible
;-- bit 0 RAM for display page 2 off
;-- 1 RAM for display page 2 on
;-- output : none
;-- Register : AX and DX are changed

config proc near

mov dx,CONFIG REG
out dx,al -
ret

con fig endp

;Address of configuration register
;Set new value
; Back to caller

;--
;--

TEXT: switches the text presentation on --------------------------
Input : none

;-- output : none
Register : AX and DX are changed

text proc near

mov
mov
jmp

text endp

si, offset textt
bl,OOlOOOOOb
short vcprog

;Offset address of the register-table
;Display page O,text mode,blinking
;Program video-controller again

;-- GRAFIK: switches on the graphic mode ------- ---------------------
;-- Input : none
;-- Output : none
;-- Register : AX and DX are changed

grafik

graf ik

proc near

mov si,offset grafikt
mov bl,OOOOOOlOb

endp

;Offset address of the register-table
;Display page O, graphic mode

;-- VCPROG: programs the video controller -----------------------------
;-- Input SI = address of a register-table

Abacus 103 The Hercules Graphic Card

;--
;-- Output
;-- register

BL - value for display-control-reqister
none
A:.·:, SI, BH, DX and FLAGS are chanqed

vcproq

vcpl:

vcproq

proc near

setrnode bl

rnov ex, 12
xor bh,bh
lodsb
mov ah,al
rnov al,bh
setvk
inc bh
loop vcpl

or bl,8
setrnode bl
ret

endp

;Bit 3 • O: display aus

;12 reqisters are set
;Start with reqister 0
;Get reqister value from the table
;Reqister value to A:.H
;Number of the reqister to AL
;Transmit value to the controller
;Address next reqister
;Set additional reqisters

;Bit 3 = 1: display on
; Set new mode
; Back to caller

;-- cDEF: sets the start and end line of the cursor--------------------
;-- Input
;--

cL = start line
cH = end line
none ;-- Output

;-- register AX and DX are changed

cdef proc near

rnov al,CUR START
mov ah,cl -
setvk
rnov al,CUR_END
rnov ah,ch
setvk
ret

;Register 10: start line
;start line to AH
;Transmit to video-controller
;Reqister 11: Endline
; End line to AH
;Transmit to video-controller

cdef endp

;-- SETBLINK
;-- Input
;-- Output
;-- register

sets the blinking display cursor ----------------------
DI = offset address of the cursor
none
BX, AX and DX are chanqed

setblink proc near

rnov bx,di
mov al,CURPOS HI
rnov ah,bh -
set vi<
rnov al,CURPOS LO
rnov ah,bl -
set vi<
ret

;Transmit offset to BX
;Register lS:Hi Byte of cursor offset
;HI byte of the offset
;Transmit to video-controller
;Reqister lS:Lo-Byte of cursor offset
;Lo byte of the offset
;Transmit to CRTC

setblinl< endp

. GETVK
;-- Input
;-- output
;-- register

qetvl< proc

rnov
out
jrnp
inc

reads a byte from one register of the video-controller -
AL = number of the reqister
AL = content of the reqister
DX and AL are changed

near

dx,ADDRESS_6845 ;Address of the index register
dx,al ; Send number of the reqister

$+2 ;Short lo pause
dx ;Address of the index reqister

491

JO. Accessing and Programming the Video Cards PC System Programming

492

in al,dx
ret

;Read content to AL
; Back to caller

getvk endp

;-- SCROLLUp: scrolls a window by N lines upward ----------------------
;-- Input BL = line upper left
;-- BH = column upper left
;-- DL = line lower right
;-- DH= column lower right
;-- CL= number of the lines to be scrolled
;-- BP number of the display page (0 or 1)
;-- Output none
;-- register only FLAGS are changed
;-- Info the display lines released are erased

scrollup proc near

supl:

cld
push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si, di
add bl,cl
call calo
xchg si,di
push ds
push es
rnov ax,VIO_SEG
mov ds,ax
rnov es,ax
mov ax,di
mov bx,si
rnov cl, dh
rep movsw
mov di, ax
rnov si,bx
add di,160
add si,160
dee dl
jne supl
pop es
pop ds
pop dx
pop ex
pop bx
mov bl,dl
sub bl,cl
inc bl
rnov ah,07h
call clear

pop si
pop di
pop bx
pop ax

ret

;Increment for string instructions
;Store all changed registers
; on the stack
;In this case the sequence
;must be followed

;These three registers are returned
;from the stack before
;the end of the routine
;Calculate number of lines
; Deduct number
;of lines to be scrolled
;Calculate number of columns

;Convert upper left in offset
;Note address in SI
;First line in scrolled window
;Convert first line in offset
;Exchange SI and DI
;store segment register
; on the stack
;Segment address of the video RAM
;to OS
;and ES
;Note DI in AX
;Note SI in BX
;Number of columns in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next line

;Processed all lines ?
;NO --> move another line
;Get segment register from
;stack
;Get lower right corner
;Get number of lines
;Get upper left corner
;Lower line to BL
;Deduct number of lines

;Color : black on white
;Erase liberated lines

;CX and DX have been brought back
;already

; Back to caller

Abacus 103 The Hercules Graphic Card

scrollup endp

;-- SCROLLDN: scroll a Window by N lines upwards ----------------------
;-- Input BL line upper left
;-- BH = column upper left
;-- DL = line lower right
;-- DH = column lower right
;-- CL number of the lines to be scrolled
;-- BP = number of the display page (0 or 1)
;--

;--

Output
register
Info

scrolldn proc

cld

push
push
push
push

push
push
push

sub
inc
mov
mov
call
mov
sub
call
xchg
sub
inc
sub
push
push
mov
mov
mov

sdnl: mov
mov
mov

none
only FLAGS are changed
released lines are deleted

near

ax
bx
di
si

bx
ex
dx

dh,bh
dh
al, bl
bl,dl
ca lo
si,di
bl, cl
calo
si,di
dl,al
dl
dl,cl
ds
es
ax,VIO_SEG
ds,ax
es, ax
ax, di
bx,si
cl,dh

;Increment on string instructions

;Secure all changed registers on the
;stack
;In this case the sequence must
;be followed!

;These three registers are
;returned from the stack before the
;end of the routine

;Calculate number of columns

;Record line upper left in AL
;Line lower right top lower left
;Convert upper left in offset
;Note address in SI
;Deduct number of chars to scroll
;Convert upper left in offset
;Exchange SI and DI
;Calculate number of lines

;Deduct number of lines to scroll
;Store segment register on the
;stack
;Segment address of the video RAM
;to DS
;and ES
;Record DI in AX
; Record SI in BX

rep movsw
;Number of columns in counter
;Move a line

mov
mov
sub
sub
dee
jne
pop
pop
pop
pop
pop
mov
add
dee
mov
call

pop
pop
pop
pop

ret

di, ax
si,bx
di, 160
si, 160
dl
sdnl
es
ds
dx
ex
bx
dl,bl
dl,cl
dl
ah,07h
clear

si
di
bx
ax

;Restore DI from AX
;Restore SI from BX
; Set next line

;All lines processed
;NO --> move another line
;Get segment register from
;stack
;Get lower right corner
;Get number of lines
;Get upper left corner
;Upper line to DL
;Add number of lines

;Color : black on white
;Erase liberated lines

;ex and DX have already
;been read

; Back to caller

493

JO. Accessing and Programming the Video Cards PC System Programming

494

scrolldn endp

;--
;--

:--

cLS: clear
Input
Output
register

the whole screen --------------------------------------
BP = number of the display page (0 or 1)
none
only FLAGS are changed

els proc near

mov ah,07h
xor bx,bx
mov dx,4Fl8h

;-- perform clear

;Color is white on black
;Upper left is (0/0)
;Lower right is (79/24)

els endp

' CLEAR:
;-- Input
;--
;--
:--

;--
;-- Output

fills a designated display area with space character ------
AH = Attribute/color
BL line upper left
BH column upper left
DL = line lower right
DH column lower right
BP = number of the display page (0 or 1)
none

; -- register only FLAGS are changed

clear

clearl:

clear

proc near

cld
push
push
push si
push di
push
sub
inc

ex
dx

es
dl,bl
dl

sub dh,bh
inc dh
call calo
mov cx,VIO_SEG
mov es,cx
xor ch,ch
mov al," "
mov si,di
mov cl,dh
rep stosw
mov di,si
add di, 160
dee dl
jne clearl

pop es
pop di
pop si
pop dx
pop ex
ret

endp

;Increment on string instructions
;Secure all changed
;registers on the stack

;Calculate number of lines

;Calculate number of columns

;Offset address of upper left corner
;Segment address of the video RAM
;to ES
;Hi byte of the counter to 0
;Space character
;Note DI in SI
;Number of columns in counter
;Store space character
;Restore DI from SI
; Set next 1 ine
;All lines processed
;NO --> erase another line

;Get secured registers
; from the stack

; Back to caller

;-- PRINT: outputs a string on the display ----------------------------
;-- Input AH attribute/color
;-- DI = offset address of the first character
;-- SI offset address of the strings to DS
;-- BP number of the display page (0 or 1)
;-- Output DI points behind the last character to be output
;-- register AL, DI and FLAGS are changed
;-- Info the string must ne terminated with NUL-character.

Abacus 103 The Hercules Graphic Card

;--

print

printO:
prlntl:

printe:

print

;-- cALO:
;-- Input
;--

other control characters are not recognized

proc near

cld
push si
push es
push dx
mov
mov
jmp
stosw
1ooso
or
jne

pop

dx,VIO SEG
es,dx -
printl

al, al
printO

dx
pop es
pop si

;Increment on string instructions
;SI, DX and ES to the stack

;First segment address of video RAM
;to DX and then to ES
;Get first character from string
;Store attribute and color in V-RAM
;Get next character tram tne string
;Is it NUL
; NO --> output

;Get SI, DX and ES from stack again

ret ;Back to caller

endp

converts
BL
BH
Bp

line and column into offset address ---------------
line
column

Output DI
number of the display page (0 or 1)
offset address

ca lo

register DI and FLAGS are changed

proc near

push ax
push bx

shl bx,1
mov al,bh
xor bh,bh
mov di, [lines+bx]
xor ah,ah
add di,ax
or bp,bp
je caloe

add di,8000h

;Record AX on the stack
;Record BX on the stack

;Column and line times 2
;Column to AL
;Hi byte
;Get offset address of the line
;Hi byte for column offset
;Add lines- and column offset
;Display page 0?
;YES --> address ok

;Add 32 KB for display page 1

caloe: pop bx
pop ax
ret

;Get BX from stack again
;Get AX from the stack again
; Back to caller

calo endp

;--

' ;--

cgr

CGR: clear
Input

Output
register

proc

push
cbw
xor
mov
or
je

add

the complete graphic screen ---------------------------
BP number of the display page (0 or 1)
AL = OOH erase all pixels

FFH : set all pixels
none
AH, BX, ex, DI and FLAGS are changed

near

es ;Record ES on the stack
;Expand AL to AH

di, di ;Offset address in video RAM
bx,VIO_SEG ;Segment address display page 0
bp,bp ;Erase page l?
cgrl ;NO --> erase page 0

bx,0800h ;Segment address display page 1

495

10. Accessing and Programming the Video Cards PC System Programming

496

cgrl: mov es, bx ;Segment address to segment register
mov cx,4000h ;A page is 16K-words
rep stosw ;Fill page
pop es ;Get ES from stack
ret ; Back to caller

cgr endp

;--
;--

SPIX: sets
Input

a pixel in the graphic display --------------------------
BP = number of the display page (0 or 1)

;-- BX = column (0 to 719)
;-- DX = line (0 to 347)

none
;--

Output
register AX, DI and FLAGS are changed

spix proc near

spixl:

push es
push bx
push ex
push dx

xor di,di
mov cx,VIO_SEG
or bp,bp
je spixl

mov cx,0800h

mov
mov
shr
shr
mov
mul
and
mov
ror
mov
mov
shr
add
add
mov
and
sub
mov
shl
mov
or
mov

es, ex
ax,dx
ax,1
ax,1
cl, 90
cl
dx, llb
cl,3
dx,cl
di, bx
cl,3
di, cl
di, ax
di,dx
cl, 7
bx,7
cl, bl
ah, 1
ah, cl
al, es: [di]
al, ah
es:[di],al

pop dx
pop ex
pop bx
pop es
ret

spix endp

;Store ES on the stack
; Store BX on the stack
;store cX on the stack
; Store DX on the stack

;Offset address in video RAM
;Segment address display page 0
; Access page 1 ?
;NO --> access page 0

;Segment address display page 1

;Segment address in segment register
;Move line to AX
;Shift line right 2 times
;This divides by four
;The factor is 90
;Multiply line by 90
;AND all bits except for 0 and 1
; 3 shifts
;Rotate right (* 2000H)
;Column to DI
;3 shifts
;divide by 8
;+ 90 * int(line/4)
;+ 2000H * (line mod 4)
;Maximum of 7 moves
;Column mod B
;7 - column mod 8
;Determine bit value of the pixels

; Get 8 pixels
;Set pixel
;Write B pixels

;Get DX from stack
;Get cX from stack
;Get BX from stack
;Get ES from stack
; Back to caller

;== End ===

code ends ;End of the code segment
end demo

Abacus 10.4 The IBM Color Card

10.4 The IBM Color Card

The IBM Color/Graphics Adapter (CGA) supports two text modes and three
different graphic modes. Like the other two cards, the CGA is based on a 6845
video processor and is equipped with 16K of video RAM which begins at address
B800:0000.

Text modes

Besides the normal text mode of 25 lines and 80 columns, the CGA also has a text
mode consisting of 25 lines and 40 columns. This 40-column mode displays
characters twice as wide as normal 80-column mode. CGA characters are displayed
in an 8x8 matrix, which results in a less distinct display than monochrome display
adapter text. The CGA's video RAM assignment is almost identical to that of the
monochrome card. The attribute byte is different from that of the monochrome
display adapter.

7 6 5 4

,___-t Character color

Character Intensity
------O=normal

1=hlgh Intensity
----------1 Back round color

Blinking
-------------io=off

1:on

Color/Graphics Adapter attribute byte

The lower four bits of the attribute byte indicate one of the 16 available colors.
The meanings of the upper four bits depend on whether blinking is active. If it is
active, bits 4 to 6 indicate the background color (taken from one of the first eight
colors of the color palette), while bit 7 determines whether or not the characters
blink. If blinking is disabled, bits 4 to 7 indicate the background color (taken from
one of the 16 available colors).

497

10. Accessing and Programming the Video Cards PC System Programming

Decimal Hexadecimal Binary Color

0 0 0000 Black
1 1 0001 Blue
2 2 0010 Green
3 3 0011 Cyan
4 4 0100 Red
5 5 0101 Magenta
6 6 0110 , Brown
7 7 0111 Light gray,
8 8 1000 Dark gray
9 9 1001 Light blue

10 A 1010 Light green
11 B 1011 Light cyan
12 c 1100 Light red
13 D 1101 Light magenta
14 E 1110 Yellow
15 F 1111 White

Co/or/Graphics Adapter color palette

Each 80x25 text page requires 4,000 bytes of video RAM. 16K allows a total of
four text pages. The first display page starts at address B800:0000, the second at
B800: 1000, the third at B800:2000 and the last at B800:3000. The 40x25 mode
allows storage of eight display pages, because each display page only requires
2,000 bytes in this mode. The first display page starts at address B800:0000, the
second at B800:0800, the third at B800:1000, etc.

Graphic modes

The CGA supports three different graphic modes, of which only two are usually
used. The co/or-suppressed mode displays 160x100 pixels with 16 colors. The
6845 supports this resolution, but the rest of the hardware doesn't offer color
suppressed mode support. The remaining two graphic modes have resolutions of
320x200 and 640x200 respectively. The 320x200 resolution permits four-color
graphics, while 640x200 resolution only allows two colors.

320x200 resolution

498

The CGA uses up all 16K of its video RAM for displaying a graphic in 320x200
resolution with four colors. This limits the user to one graphic page at a time. Of
the four colors permitted, the background can be selected from the 16 available
colors. The other three colors originate from one of the two user-selected color
palettes, which contain three colors each.

Abacus 10.4 The IBM Color Card

Palette 1: Color 1: t:Lan Palette 2: Color 1: Green
Color 2: Violet Color 2: Red
Color 3: White Color 3: Yellow

Since a total of four colors are available, each screen pixel requires two bits. Four
bits can represent the color numbers (0 to 3). The following values correspond to
the various colors:

0
1
2
3

OO(b) =freely selectable background color
01 (b) = color 1 of the selected palette
lO(b) =color 2 of the selected palette
11 (b) = color 3 of the selected palette

The video RAM assignment in this mode is similar to that of the Hercules card
during graphic display. The individual graphic lines are stored in two different
blocks of memory. The fu.;t block, which begins at address B800:0000, contains
the even lines (0, 2, 4 ...); the second block, which begins at B800:2000, contains
odd lines (1,3,5).

(80 B RAM
80 B 0000:0000
80 B

! (80 B
(80 B
80 B

(192 B

11111111111111111111111111111:r~::.;~7: ~;.:_=:;;.....:~::..:~:-:i:;--------->~_;;;..i....::...::..::...'-ll
JMimili.!lfJ(unused

(80 B
(80 B
(80 B

(8 0 B
(80 B
(80 B

(192 B
•,-L..,..~-~-~-e-!..,..~..,..~------~...,,....,..-~-"""-1'3!'

Video RAM assignment in graphic mode (blocking)

Each graphic line within the two blocks requires 80 bytes, since the 320 pixels in
a line are coded into four pixels to a byte. The first byte in a graphic line (an 80-
byte series) corresponds to the first four dots of the graphic on the screen. Bits 7
and 8 contain the color information for the leftmost pixel, while bits 0 and 1
contain the color information for the rightmost pixel of the byte.

499

10. Accessing and Programming th£ Video Cards PC System Programming

500

bit 7 6 5 4 3 2 1 0

I : I : ·1 : I : I
Column 316 317 318 319

bit 7 6 5 4 3 2 1 0

I : I I : I : I
Column 0 1 2 3

Graphic line coding in 320x200 resolution

RAM
0000:0000

A formula can be derived with the help of this information to determine the byte in
video RAM, similar to the Hercules card. This byte is relative to the starting
address of the screen page, which contains the color information for a pixel. The
screen column (0---319) is designated as X and the screen line (0---199) as Y:

Address= 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/4)

To determine the number of the two bits within this byte which represents the
pixel, use the following formula:

Bit number = 6 - 2 * (X mod 4)

-
For example, if this formula returns 4, this means that the color information for
the dot is coded into bits 4 and 5.

Abacus 10.4 The IBM Color Card

RAM
0000:0000

....

bit 7 6 5 4 3 2 1 0

111111111

bit 7 6 5 4 3 2 1 0

111111111
Column 0 1 2 3 4 5 6 7

Column 632 •••••••••• 639

Graphic line coding in 640x200 resolution

640x200 resolution

High-resolution mode with a resolution of 640x200 dots only allows the use of
two colors. The video RAM assignment in this mode is similar to 320x200 mode.
Each line displays twice as many pixels, with one bit encoding the line instead of
2 bits. Because of this, one screen line requires 880 bytes. Therefore the formulas
for access to a screen pixel are similar.

Address= 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/8)

Bit number = 7 - (X mod 8)

CGA registers

The CGA has a mode selection register at address 3D8H which is comparable with
the control register of the monochrome display adapter. You can write to this
register but not read it.

501

10. Accessing and Programming the Video Cards PC System Programming

7 6 5 4 3 2 1 0 bit

l I 1 I I I I J- 0=40x25 characters
1 =80x25 characters --v- 1 O=text mode
1=graphlc mode (320x200)

O=color display
1=monochrome dlsplay
O=screen off

1 =_g_ra~hlc mode (640x200)

O=brlght background
1 =bllnklng background

unused

Mode selection register

Bit layout

502

Bit 0 of this register determines the text mode display of 80 or 40 columns per
line. A 1 in bit 0 displays 80 columns, while a 0 in bit 0 displays 40 columns.

The status of bit 1 switches the CGA from text mode to the 320x200 bit-mapped
graphic mode. A 1 in this register selects graphic mode, while a 0 selects text
mode.

Bit 2 should be of interest to any users who want to operate their CGA with a
monochrome monitor. If this bit contains the value 1, the 6845 suppresses the
color signal, displaying monochrome mode only.

Bit 3 is responsible for creating screens. If it contains the value 0, the screen
remains black. This suppression is useful when changing between display modes;
it prevents sudden signals from reaching the monitor which could cause damage.

Bit 4 enables and disables 640x200 bitmapped graphic mode. A 1 in bit 4 enables
this mode, while a 0 disables it.

Bit 5 has the same significance as in the monochrome card. If it contains a 0,
blinking stops and bit 7 returns one of the 16 available background colors. This
bit contains a default value of 1, which causes blinking characters.

The various text or graphic modes and the color or monochrome display can be
selected in these modes with this register. Bits 0, 1, 2 and 4 are used for this. The
following table shows how these bits must be programmed to obtain certain
modes:

Abacus 10.4 The IBM Color Card

Bit 4 Bit 2 Bit 1 Bit 0 Result
0 1 0 0 40x25 text monochrome
0 0 0 0 40x25 text color
0 1 0 1 80x25 text monochrome
0 0 0 1 80x25 text color
0 1 1 0 320x200 gr~hic monochrome
0 0 1 0 320x200_!l.r~hic color
1 1 1 0 640x200..9!'.'~ic monochrome

The CGA also has a status register similar to the status register in the
monochrome display adapter. The following figure shows the construction of this
register, which can be found at address 3DAH. It is a read-only register.

7 6 5 4 3 2 1 0 bit

1 :memory access possible
without disturbing
screen contents

1 :video access triggered

.__-iO:vldeo access on
1 :video access off
1 :electronic signal

transmitted In
vertical direction

Status register structure

Bit 0 of this register always contains the value 1 when the 6845 sends a horizontal
synchronization signal to the monitor. This signal is transmitted when the creation
of a line ends and the CRTs electron beam reaches the end of the screen line. The
electron beam then jumps back to the left comer of the screen line. The bit gets its
significance from the condition that the CGA doesn't always allow data reading or
writing within video RAM.

Flickering and the CGA

This problem occurs because the 6845 must continuously access video RAM to
read its contents for screen display. If a program tries to transmit data to video
RAM, problems can arise when the 6845 accesses video RAM at the same time.
The result of this memory collision is an occasional flickering on the screen.

To avoid this problem, you should only access video RAM when the 6845 is not
accessing it. This only occurs when a horizontal synchronization signal travels to
the screen, because it requires a moment of time until the electron beam has carried

503

JO. Accessing and Programming the Video Cards PC System Programming

out this instruction. For this reason, the status register must be read before every
video RAM access on a CGA. This process must be repeated until bit 0 contains
the value 1. When this happens, a maximum of two bytes can then be transmitted
to video RAM.

Demonstration program

The program at the end of this section demonstrates how this process functions.
This delay in video RAM access doesn't occur with monochrome cards because
they are equipped with special hardware logic and fast RAM chips. This is also
true of most of the newer model color cards. Before waiting for the horizontal
synchronization signal, which results in an enormous delay of the display output,
the user should try direct access to video RAM to test his color card's reaction
time.

If many accesses to video RAM occur within a short period of time (e.g., scrolling
the screen), the electron beam doesn't respond fast enough. The screen should be
switched off using bit 3 of the mode selection register. This prevents the 6845
from accessing video RAM, permitting unlimited user access to video RAM.
When data transfer ends, the screen can be switched on again. BIOS uses this
method during scrolling, which results in the flickering "silent movie effect."

Color selection register

504

The color selection register is located at address 3D9H. This register is write-only
(cannot be read).

Background color -
320x200 graphic mode,
border color In 40x25
text mode

=Intensive background
,__ ____ --1 color In text mode

Number of color palette
-------used In 320x200 graphl

mode

Color selection register

The meanings of individual bits in this register depend on the display mode. Text
mode uses the lowest four bits for assigning the background color from the 16
available colors. In 320x200 graphic mode, these four bits indicate the color of all
pixels represented by the bit combination OO(b) (background color).

Abacus 10.4 The IBM Color Card

Bit 5 selects the color palette for 320x200 mode. If this bit contains the value 1,
the first color palette (cyan, violet, white) is selected. A value of 0 selects the
second color palette (green, yellow, red).

Internal registers

The 18 internal registers of the 6845 on this card are accessed exactly like the
monochrome card. The only difference is that the index and the data register are
located at 3D4H and 3D5H. The following table shows the contents which the
register must have for various display modes.

No. Meani'!S._ Textl Text2 Gr~hics

0 Horiz. characters seeded 56 113 56
1 Horiz. characters di!>!>_lay_ed 40 80 40
2 Horiz. synchronization signal to 45 9J 45

•... Characters
3 Horiz. synchronization signal 10 10 10

in characters
4 Vert. characters seeded 31 31 127
5 Vert. characters _iustified 6 6 6
6 Vert. characters display_ed 25 25 100
7 Vert . synchronization signal to 2B 28 112

... characters
8 Interlace mode 2 2 2
9 Number of scan-lines~r line 7 7 1
10 Starti~ line of blinki129:.. cursor 6 6 6
11 Endi~ line of blinki'!S._ cursor 7 7 7
12 Di::E_l~ starti'!S._ address (h:i.:.s..h l?Y_te) 0 0 0
13 Di!>!>_l~ starti~ address (low l?Y_te) 0 0 0
14 Cusrsor character address (h:i,g_h ~e) 0 0 0
15 Cursor character address (low ~te) 0 0 0
16 Reserved
17 Reserved

These registers are of interest to the user since they define the position and
appearance of the cursor on the screen. Section 10.1 described programming these
registers. The CGA adds registers 12 and 13. They indicate the start of the video
page which must be displayed on the screen, as offset of the beginning of the 16K
RAM on the card (B800:0000), divided by 2. Register 12 contains the most
significant 8 bits of this offset, while register 13 contains the least significant 8
bits. Normally both registers contain the value 0, displaying the first screen page
(beginning at the address B800:0000) on the screen. For display of the first screen
page, which begins at location B800:1000 in the 80x25 text mode, the value
lOOOH divided by 2 (800H) must be entered in both registers.

The last of the three programs in this chapter accesses the color/graphics adapter.
The only significant difference between the two preceding programs lies in the fact
that the video controller can synchronize video RAM access and screen
construction. This is necessary on all video cards where direct access to video
RAM causes a flickering on the screen. The WAIT constant, defined directly after
the program header, switches synchronization on or off. Its contents decide during

sos

JO. Accessing and Programming the Video Cards PC System Programming

the assembly of the program, whether to assemble the program lines for
synchronization listed in the source listing. These lines would slow down the
screen considerably, and should only be included if it is absolutely necessary.

Assembler listing: VCOL.ASM

506

;***;
;* VCOL *;

;•-----------.. --•;
;*
;*

Task : Makes some basic functions available for
access to the Color Graphics Adapter (CGA)

*;
*;

;*---•;
;* Info All functions subdivide the screen *;
;* into columns 0 to 79 and lines 0 to 24 *;
;* in text mode and into columns 0 to 719 and *;
;* the lines 0 to 347 in graphic mode. *;
;* the 40 column text mode is not supported ! *;
;* A high resolution graphic screen should appear*;
;* first, followed by a text screen. If the high *;
;* res screen doesn't appear, try running the *;
; * program a few times in succession. *;

;•---*;
; * Author MICHAEL TISCHER *;
;* Developed on : 8/13/87 *;
; * Last update : 6/16/89 *;
;•---*;
;* assembly MASM VCOL (program will assemble with one *;
; * warning - it WILL link & run) *;
; * LINK VCOL; *;
;*---*;
, Call : VCOL *;
;***;

; == Constants ================--==========--=====,,..,,.....=,.,,_==:=z:==

CONTROL REG
CCHOICE-REG
ADDRESS-6845
DATA 6845
VIO_SEG
CUR_START
CUR_END
CURPG HI
CURPG LO
CURPOS HI
CURPOS_LQ
DELAY

= 03D8h
03D9h
03D4h

= 03D5h
OB800h

= 10
- 11
= 12
= 13
= 14

15
20000

;Control register port address
;Color select register port address
;6845 address register
;6845 data register
;Video RAM segment address
;Reg t for CRTC: Cursor start line
;Reg t for CTRC: Cursor end line
;Page address (high byte)
;Page address (low byte)
;Reg t for CRTC: cursor pos high byte
;Reg t for CRTC: Cursor pos low byte
;Counter for delay loop

;== Macros -==-=====--====================-~-========

;-- SETMODE : Macro for configuring screen control register ---------

setmode macro modus

mov dx,CONTROL_REG
mov al,modus
out dx,al

endm

;Address of the display control register
;New mode into the AL register
;Send mode to control register

;-- WAITRET: waits until display is completed ------------------------

waitret macro
local wrl

wrl:
mov dx,3DAh
in al,dx

; Local label

;Address of the display status register
; Get content

Abacus 10.4 The JBM Color Card

local wrl

mov dx,3DAh
wrl: in al,dx

test al,B
je wrl

endm

stack segment para stack

dw 256 dup (?)

stack ends

; Local label

;Address of the display status register
; Get content
;Vertical retrace?
;NO --> wait

;Definition of stack segment

; 256-word stack

;End of stack segment

;== Data ==================================-===========-==a=======-======

data segment para 'DATA' ;Definition of data segment

;== Data required for demo program ====================================

initm

strl

db 13, 10
db "VCOL (c) 1988,1989 by Michael Tischer"
db 13,10,13,10
db "This demo program only runs with a Color/Graphics",13,10
db "Adapter (CGA). If your PC uses another type of",13,10
db "video card press the <s> key to stop the program.",13,10
db 11 Press any other key to start the program .. . 11 , 13, 10, "$11

db 1,0

;== Table of offset addresses of line beginnings =====================
lines dw 0*160, 1*160, 2*160 ;start addresses of the lines as

dw 3*160, 4*160, 5*160 ;offset addresses in the video RAM
dw 6*160, 7*160, 8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

graphict db 38h, 28h, 2Dh, OAh, 7Fh, 06h
db 64h, 70h, 02h, Olh, 06h, 07h

;register values for the
; graphic-modes

textt db 71h, 50h, 5Ah, OAh, lFh, 06h ;register-values for the
db 19h, lCh, 02h, 07h, 06h, 07h ;graphic-modes

wait db 0 ;TRUE (<>0) when caller uses the
; /F switch

data ends ;End of data segment

;== Code ==

code segment para 'CODE' ;Definition of the CODE segment

assume cs:code, ds:data, es:data, ss:stack

;== This is only the Demo-Program =====================================

demo proc far

;-- Look for /F from DOS prompt ------------------------

mov
or
je
mov
mov

switch: cmp

cl,ds:l28
cl, cl
switchl
bx,129
ch,bh

[bx],"F/"

;Get number of bytes from prompt
;No parameters given?
;NO --> Ignore
;BX points to first byte in prompt
;Set loop high byte to 0

;Switch in this position?

507

10. Accessing and Programming the Video Cards PC System Programming

508

je switchl ;YES ~> Switch found
cmp [bx],"f/" ;Switch in this position?
je switchl ;YES --> Switch found
inc bl ;Set BX to next character
loop switch ;Check next character

switchl: mov ax, data ;Get segment addr. of data segment
mov ds,ax ;and load into DS
mov es, ax ;and ES

mov wait, cl ;Set WAIT flag

;-- Display init message and wait for input -------------

mov ah,9
mov dx,offset
int 21h

xor ah, ah
int l6h
cmp al, "s11

je ende
cmp al, "5'1

jne startdemo

ende: mov ax,4COOh
int 21h

startdemo label near
call grafhi
xor al,al
call cgr

grl:

gr2:

gr3:

gr4:

grS:

xor bx,bx
xor dx,dx
mov ax,199
mov cx,639
push ex
mov
push
mov
call
inc
loop
pop
sub

ex, ax
ax
al,1
pixhi
dx
gr2
ax
ax,3

pop ex
push ex
push ax
mov
call
inc
loop
pop
pop
sub

al,l
pixhi
bx
gr3
ax
ex
cx,6

push ex
mov
push
mov
call
dee
loop
pop
sub
pop

ex, ax
ax
al,1
pixhi
dx
gr4
ax
ax,3
ex

push ex
push ax
mov al,1
call pixhi

initm
;Function number for string display
;Address of intial message
;Call DOS interrupt 21H

;Function number: get key
;Call BIOS keyboard interrupt
;<s> key pressed?
;YES --> End program
;<S> key pressed?
;NO --> Start demo

;Function number: End program
;Call DOS interrupt 21H

;switch on 320*200 pixel graphic

;Clear graphic display

;Column 0
;Line 0
;Pixels-vertical
;Pixels-horizontal
;Record horizontal pixels
;Vertical pixels to counter
;Record vertical pixels on the stack

;Set pixel
; Increment line
;Draw line
;Get vertical pixels from the stack
;Next line 3 pixels less
;Get horizontal pixels from the stack
;Record horizontal pixels
;Reco~d vertical pixels on the stack

;Set pixel
; Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Record horizontal pixels
;Vertical pixels to counter
;Record vertical pixels on the stack

;Set pixel
;Decrement line
;Draw line
;Get vertical pixels from stack
;Next line 3 pixels less
;Get horizontal pixels from stack
;Record horizontal pixels
;Record vertical pixels on the stack

;Set pixel

Abacus 10.4 The JBM Color Card

<lemol:

demo2:

dee bx
loop gr5
pop ax
pop ex
sub cx,6
cmp ax,5
ja grl

xor ah, ah
int 16h

call text
xor bp,bp
mov ai,.30h
or ax,bp
mov strl,al
call set col
call set page
call els
xor bx, bx
call ca lo
mov cx,2000
xor ah, ah
mov si,offset
inc ah
call print
loop demo2

xor ah,ah
int 16h
inc bp
cmp bp,4
jne demol

·strl

;Increment column
;Draw line
;Get vertical pixels from the stack
;Get horizontal pixels from the stack
;Next line 6 pixels less
;Is the vertical line longer than 5
;YES--> continue

;Wait for function number of key wait
;Call BIOS keyboard interrupt

;Switch on BOx25 character text mode
;Process screen paoe 0 first
;ASCII code •o•
;Convert page number to ASCII
;Store in string
;Set color
;Activate screen page in BP
;Clear screen page
;Begin in the upper left
;Screen corner with output
;A page contains 2,000 characters
;Start with color code 0
;Offset address of string 1
;Increment color value
;Output string 1
;Repeat until screen is full

;Wait for key
;Call BIOS-Keyboard-Interrupt
;Increment page number
;All 4 pages processed
;NO --> then next page

xor bp,bp ;Activate page 0 again
call setpage
jmp ende

demo endp ; Goto program end

;== The actual functions follow ==========~========~=====

;-- TEXT: switches the text display on --------------------------------
none
none

;-- Input
;-- Output
;-- Register AX, SI, BH, DX and FLAGS are changed

text proc near

mov si,offset textt
mov bl,OOlOOOOlb
jmp short vcprog

text endp

;Offset address of the register-table
;80x25 text mode,blinking
;Program video controller again

;-- GRAFHI: switches the 640*200 pixel graphic mode on -----------------
; -- Input : none
;-- Output : none
;-- Register : AX, SI, BH, DX and FLAGS are changed

grafhi proc near

mov bl,00010010b
jmp short graphic

grafhi endp

;Graphic mode with 640*200 pixels
;Program video controller again

;-- GRAFLO: switches the 320*200 pixel graphic mode on -----------------
;-- Input : none
;-- Output : none
;-- Register : AX, SI, BH, DX and FLAGS are changed

509

10. Accessing and Programming the Video Cards PC System Programming

510

graflo proc near

mov bl,00100010b
graphic: mov si,offset graphict

;Graphic mode with 320*200 pixels
;Offset address of the register table

graflo endp

;-- VCPROG: programs the video controller -----------------------------
;-- Input SI = Address of a register table
;-- BL = Value for display control register

none ;-- Output
;-- Register AX, SI, BH, DX and FLAGS are changed

vcprog

vcpl:

proc near

setmode bl

mov cx,12
xor bh,bh
lodsb
mov ah,al
mov al,bh
call setvk
inc bh
loop vcpl

or bl,B
setmode bl
ret

vcprog endp

;Bit 3 • O: screen off

;12 registers are set
;Start with register 0
;Get register value from table
;Register value to AH
;Number of the register to AL
;Transmit value to controller
;Address next register
;Set addition~! registers

;Bit 3 = 1: screen on
;Set new mode
; Back to caller

;--
;--

SETCOL
Input

Sets the color of the display frame and Background ----
AL = color value

;-- Output none
;-- register AX and DX are changed
;--
;--
;--

Info in text mode the lowest 4 bits indicate the frame color
in graphic mode the lowest 4 bits indicate the frame
and background color, bit 5 selects the color palette

set col proc near

mov dx,CCHOICE REG
out dx,al -
ret

set col endp

;-- CDEF sets the start
;-- Input CL = start line
;-- CH = end line
;-- Output none
;-- register AX and DX are

cdef proc near

mov al,CUR_START
mov ah,cl
call setvk
mov al,CUR END
mov ah,ch -
jmp short setvk

cdef endp

;Address of the color selection register
;Output color value
;Back to caller

and end line of the cursor --------------

changed

;Register 10: start line
;Start line to AH
;Transmit to video controller
;Register 11: end line
;End line to AH
;Transmit to video controller

;-- SETPAGE
;-- Input
;-- Output

sets the screen page ----------------------------------

, register

BP = Number of the screen page (0 to 3)
none
BX, AX, ex and DX are changed

Abacus 10.4 The IBM Color Card

;-- Info
;--

set page

set page

in the Graphic modes the first screen page has the
number O, the second the number 2

proc near

mov bx,bp
mov cl,5
ror bx, cl
mov al,CURPG_HI
mov ah,bh
call setvk
mov al,CURPG_LO
mov ah, bl
jmp short setvk

endp

;Screen paqe to BX
;Multiply by 2,048

;Register 12: Hi byte page address
; Hi byte of the screen page to AH
;Transmit to video controller
;Register 13: Lo byte page address
; Lo byte of the screen page to AH
;Transmit to video controller

;-- SETBLINK sets the blinking cursor ------------------------------
DI = Off set address of the cursor ;-- Input

;-- Output none
;-- register BX, AX and DX are changed

setblink proc near

mov bx,di
mov al,CURPOS HI
mov ah,bh -
call setvk
mov al,CURPOS LO
mov ah,bl -

;Move offset to BX
;Hi byte of the cursor offset
;HI byte of the offset
;Transmit to video controller
;Lo byte of the cursor offset
;Lo byte of the offset

;-- SETVK is called automatically ---------------------------

setblink endp

;-- SETVK
;-- Input
;--
;-- Output
;-- register

setvk proc

mov
out
jmp
inc
mov
out
ret

setvk endp

;-- GETVK
;-- Input
;-- Output
;-- register

getvk proc

mov
out
inc
jmp
in
ret

getvk endp

sets a byte in one register of the video controller ---
AL = Number of the register
AH = new content of the register
none
DX and AL are changed

near

dx,ADDRESS _ 6845
dx,al
short $+2
dx
al, ah
dx,al

;Address of the index register
;Send number of the register
;Short I/O pause
;Address of the index register
;content to AL
;set new content
; Back to caller

gets a byte from one register of the video controller -
AL = Number of the register
AL = Contents of register
DX and AL are changed

near

dx,ADDRESS_
dx,al
dx
short $+2
al,dx

6845 ;Address of the index register
;Send number of the register
;Index register address
; Short io pause
; Set new contents
;Back to caller

;-- SCROLLUP: scrolls a window N lines upward --------~---------------

511

JO. Accessing and Programming the Video Cards PC System Programming

512

;-- Input BL = line upper left
;-- BH = column upper left
;-- DL = line below right
;-- DH = column below right
;-- CL = Number of lines, to be scrolled
;-- BP = Number of the screen page (0 to 3)
;-- output none
;-- register only FLAGS are changed
;-- Info the display

scroll up proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub bh,dh
inc dh
call ca lo
mov si,di
add bl, cl
call calo
xchg si,di

cmp wait,O
je supO

waitret
setmode 001001Qlb

supO: push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es, ax

supl: mov ax, di
mov bx,si
mov cl,dh
rep movsw
mov di, ax
mov si,bx
add di,160
add si, 160
dee dl
jne supl

pop es
pop ds

cmp wait,O
je sup2

setmode 00101101b

sup2: pop dx
pop ex
pop bx
mov bl,dl
sub bl, cl
inc bl

lines liberated are cleared

;On string commands count up

;All changed registers to the
;Secure stack
; In this case the sequence
;must be observed

;These three registers are returned
;before the end of the routine
;From the stack
;Calculate the number of lines

;Subtract number of lines to be s=olled
;Calculate number of columns

;Convert upper left in offset
;Record address in SI
;First line in scrolled window
;Convert first line in offset
;Exchange SI and DI

;Flicker suppressed?
;No --> sueo

;YES -->Wait for retrace
;Disable screen

;Store segment register
;on the stack
;Segment address of the video RAM
;To DS
;And ES

;Record DI in AX
;Record SI in BX
;Number of columns in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next line

;processed all lines ?
;NO --> move another line

;Get segment register from
;Stack

;Flickering suppressed?
;NO --> SUP2

;YES --> Enable screen

;Get lower right corner back
;Return number of lines
;Return upper left corner
;Lower line to BL
;Subtract number of lines

Abacus 10.4 The IBM Color Card

mov
call

pop
pop
pop
pop

ret

scroll up endp

ah,07h
clear

si
di
bx
ax

;Color : black on white
;Clear lines

;ex and DX have already been
;Restored

; Back to caller

;-- SCROLIDN: scrolls a window N lines down ---------------------------
;-- Input BL = line upper left
;-- BH = column upper left
;-- DL = line below right
;-- DH = column below right
;-- CL = number of lines to be scrolled
;-- BP = number of the screen page (0 to 3)

none ;-- Output
;-- register
;-- Info

only FLAGS are changed

scrolldn

sdnO:

sdnl:

the display lines liberated are cleared

proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx

sub dh,bh
inc dh
mov al,bl
mov bl,dl
call calo
mov si,di
sub bl,cl
call ca lo
xchg si,di
sub dl,al
inc dl
sub dl,cl

cmp wait,O
je sdnO

waitret
setmode OOlOOlOlb

push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es, ax

mov ax, di
mov bx,si
mov cl,dh
rep movsw
mov di, ax
mov si,bx
sub di,160
sub si,160
dee dl

;on string commands count up

;Record all changed registers
; On the stack
;In this case the sequence
;Must be observed

;These three registers are returned
;From the stack before the end
; Of the routine

;Calculate the number of columns

;Record line upper left in AL
;Line below right to line below left
;Convert upper left in offset
;Record address in SI
;Subtract number of characters to scroll
;Convert upper left in offset
;Exchange SI and DI
;Calculate number of lines

;Subtract number of lines to be scrolled

;Flicker suppressed?
;NO --> SDNO

;YES --> Wait for retrace
;Disable screen

;Store segment register on the
;Stack
;Segment address of the video RAM
;To DS
;and ES

;Record DI in AX
;Record SI in BX
;Number of columns in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
;Set into next line

;processed all lines

513

10. Accessing and Programming the Video Cards PC System Programming

514

jne sdnl

pop es
pop ds

cmp wait,O
je sdn2

setmode 0010110lb

sdn2: pop dx
pop ex
pop bx
mov dl,bl
add dl,cl
dee dl
mov ah,07h
call clear

pop si
pop di
pop bx
pop ax

ret

scrolldn endp

;NO --> move another line

;Return segment register from
;Stack

;Flicker suppressed?
;NO --> SDN2

;YES --> Enable screen

;Get lower right corner
;Return number of lines
;Return upper left corner
;upper line to DL
;Add number of lines

;Color : black on white
;Erase liberated lines

;CX and DX have already been
;Returned

; Back to caller

;-- CLS: Clear the screen completely ---------------------------------
;-- Input : BP = number of the screen page (0 or 1)
;-- Output : none
;-- register : only FLAGS are changed

els proc near

mov ah,07h
xor bx,bx
mov dx,4Fl8h

;-- Execute Clear

els endp

;Color is white on black
;upper left is (0/0)
;Lower right is (79/24)

;-- CLEAR: fills a designated display area with space characters ------
;-- Input AH = attribute/color
;-- BL = line upper left
;-- BH = column upper left
;-- DL = line below right
;-- DH = column below right
;-- BP = number of the screen page (0 to 3)
; -- out put none
;-- register only FLAGS are changed

clear proc

cld
push
push
push
push
push
sub
inc
sub
inc
call
mov
mov
xor

near

ex
dx
si
di
es
dl,bl
dl
dh,bh
dh
ca lo
cx,VIO_SEG
es, ex
ch, ch

;On string commands count up
;Store all register which are
;Changed on the stack

;Calculate number of lines

;Calculate number of columns

;Offset address of the upper left corner
;Segment address of the video RAM
;To ES
;Hi bytes of the counter to 0

Abacus 10.4 The IBM Color Card

clearl:

clear2:

clear

;-- PRINT:
;-- Input
;--
;--
;--

mov al,•"

anp wait,O
je clearl

push dx
waitret
setmode 00100101b
pop dx

mov si,di
mov cl,dh
rep stosw
mov di,si
add di,160
dee dl
jne cl earl

anp wait,O
je clear2

setmode 00101101b

pop es
pop di
pop si
pop dx
pop ex
ret

endp

;Space character

;Flickering suppressed?
;NO --> CLEARl

;store DX on the stack
;Retrace wait
;Switch screen off
;Return DX from the stack

;Record DI in SI
;Number columns in counter
;Store space character
;Return DI from SI
;Set in next line
;All lines processed
;NO --> erase another line

;Flicker suppressed?
;NO --> CLEAR2

;Enable screen

;Get registers from
;Stack again

; Back to caller

outputs a string on the screen ----------------------------
AH = attribute/color
DI = off set address of the first character
SI = offset address of the strings to DS
BP = numb<ir of the screen page (0 to 3)

;-
;--

'

Output
register
Info

DI points behind the last character output
AL, DI and FLAGS are changed
the string must be terminated by a NUL-character.
other control characters are not recognized ;--

print proc near

cld
push si
push es
push ex
push dx
mov dx,VIO_SEG
mov cl, wait
mov es,dx

jmp short print3

printl label near

or cl, cl
je print2

push ax
mov dx,3DAh

hrl: in al,dx
test al,1
jne hrl
ell

hr2: in al,dx
test al,1
je hr2
pop ax

;On string commands count up
;Store SI, DX and ES on the stack

;Segment address of the video RAM
; Get WAIT flag
;First to DX and then to ES

;Get character and display it

;Flicker suppressed?
;NO --> PRINT2

;Record characters and color
;Address of the display-status-register
; Get content
;Horizontal retrace?
;NO --> wait
;permit no further interrupts
; Get content
;Horizontal retrace?
;YES --> wait
;Restore characters and color

515

10. Accessing and Programming the Video Cards PC System Programming

516

sti ;Do not suppress Interrupts any more

print2:
print3:

stosw
lodsb
or al, al

;Store attribute and, color in V-RAM
;Get next character from the string
;Is it NUL

jne printl ;NO --> output

printe: pop dx ;Get SI, DX, ex and ES from stack
pop ex
pop es
pop si
ret ; Back to caller

print endp

;-- CALO: Converts line and column into offset address ----------------
;-- Input BL = line
;-- BH = column
;-- BP = number of the screen page (0 to 3)
;-- output
; -- register

DI the off set address
DI and FLAGS are changed

calo proc near

push ax
push bx

shl bx,l
mov al,bh
xor bh,bh

;Secure AX on the stack
;Secure BX on the stack

;Column and line times 2
;Column to AL
;Hi byte

mov di, [lines+bx]
xor ah,ah

;Get offset address of the line
;HI byte for column offset

add di,ax
mov bx,bp
mov cl, 4
ror bx,cl

;Add line and column offset
;Screen page to BX
;Multiply by 4 1 096

add di,bx
pop bx

;Add beginning of screen page to offset
;Restore BX from stack

pop ax ;Restore AX from stack
ret ; Back to caller

ca lo endp

;-- CGR: Erase the complete Graphic display ---------------------------
;-- Input AL = OOH erase all pixels
;-- FFH : set all pixels
;-- Output
;-- register
;-- Info
;--

cgr proc

push
cbw
xor
mov
mov
mov
rep
pop
ret

cgr endp

none
AH, BX, ex, DI and FLAGS are changed
this Function erases the Graphic display in both
Graphic modes

near

es ;Store ES on the stack
;Expand AL to AH

di, di ;Offset address in video RAM
bx,VIO_SEG ;Segment address screen page
es, bx ; Segment address into segment
cx,2000h ;One page is BKB words

stosw ;Fill page
es ; Return ES from stack

; Back to caller

register

;-- PIXLO: sets a pixel in the 320*200 pixel graphic mode -----------------
;-- Input BP = number of the screen page (0 or l)
;-- BX - column (0 to 319)
;-- DX = line (0 to 199)
;-- AL = color of the pixels (0 to 3)

Abacus 10.4 The JBM Color Card

none ;-- Output
;-- register AX, DI and FLAGS are changed

pixlo proc near

push ax ;Secure AX on the stack
push bx ;Note BX on the stack
push ex ;store ex on the stack
mov cl,7
mov ah, bl ; Transmit column to AH
and ah,llb ;Column mod 4
shl ah,l ;Column * 2
sub cl, ah :1 - 2 . t column mod 4l
mov ah,11 ;Bit value
shl ax, cl ;Move to pixel position
not ah ;Reverse AH
shr bx,l ;Divide BX by 4 by shifting
shr bx,l ; Right twice
jmp short spix ;Set pixel

pixlo endp

;-- PIXHI: sets a pixel in the 640*200 pixel graphic mode -----------------
;-- Input BP n~r of the screen page (0 or 1)
;-- BX column (0 to 639)
;-- DX = line (0 to 199)
;--
;-- Output
;-- register

pixhi proc

push
push
push
mov
mov
and
sub
mov
shl
not
mov
shr

pixhi

AL color of the pixels (0 or 1)
none
AX, DI and FLAGS are changed

near

ax ; Store AX on the stack
bx ;Note BX on the stack
ex ;Note ex on the stack
cl,7
ah, bl ;Transmit column to AH
ah,lllb ;Column mod 8
cl, ah ;7 - column mod 8
ah,l ;Bit value
ax, cl ;Move pixel position
ah ;Reverse AH
cl,3 ;3 shifts
bx, cl ;Divide BX by 8

set pixel

endp

;--
;--

SPIX: sets
Input

a pixel in the graphic display --------------------------
BX = column offset

;-
;--

' ;--
;--

spix

Output
register

proc

push
push
push

xor
mov
mov
mov
shr
mov
mul

DX = line (0 to 199)
AH = Value to cancel old Bits
AL = new Bit value
none
AX, DI and FLAGS are changed

near

es ; Secure ES on
dx ; Secure DX on
ax ;secure AX on

the stack
the stack
the stack

di,di ;Offset address in video RAM
ex,VIO_SEG ;Segment address screen page
es, ex ;Segment address into segment
ax,dx ;Move line to AX
ax,1 ;Divide line by 2
cl,80 ;The factor is 90
cl ;Multiply line by 80

register

517

10. Accessing and Programming the Video Cards PC System Programming

and dx,1 ;Line mod 2
mov cl,3 ;3 shifts
ror dx,cl ; Rotate right (* 2000H)
mov di, ax ;BO * int(line/2)
add di,dx ;+ 2000H * (line mod 4)
add di, bx ;Add column offset
pop ax ;Return AX from stack
mov bl, es: [di) ;Get pixel
and bl, ah ;Erase Bits
or bl, al ;Add pixel
mov es:[di],bl ;write pixel back

pop dx ;Return DX from stack
pop es ;Return ES from stack
pop ex ;Return ex from stack
pop bx ;Return BX from stack
pop ax ;Return AX from stack

ret ; Back to caller

spix endp

;== end ==~==============

code ends ;End of the code segment
end demo

518

Abacus 105 EGA and VGA Cards

1 0. 5 EGA and VGA Cards

The EGA and VGA cards far exceed their predecessors in both graphics and in text
display capabilities. Other computers have had EGA and VGA capabilities for
some time (e.g., work stations, CAD/CAM applications), but these video cards are
now at prices where many home systems will soon have them.

The range of power of this new generation of video cards can be seen in their very
sharp resolutions and their ability to display almost any number of lines on the
screen. The EGA and VGA cards' greatest feature lies in their ability to emulate
other video cards.

These capabilities come with a price-more complicated hardware and
programming are required. One result of this is that the features of an EGA card or
a VGA card can no longer be realized with the traditional PC video controller (the
Motorola 6845). Instead, most EGA and VGA cards contain a VLSI chip developed
especially for use on an EGA card. At the heart of this component is a video
controller that controls the video signal generation. Its basic task is similar to that
of the 6845, but its registers differ from those of the 6845, both in number and
interaction between registers. Comparing the 6845 and VSLI is like comparing
BASIC and assembly language, where the increase of power is in proportion to the
degree of language complexity.

We recommend that you avoid programming the hardware registers directly unless
you absolutely must do so. Many tasks can be delegated to the BIOS without
wasting much time. Not only will this keep your program code more compact and
easier to read, it will greatly improve the compatibility of your code with other
video cards. Among the tasks which the various functions of the BIOS video
interrupt can perform are:

Initialization of the video mode

Selection of the display page

Cursor positioning

Defining the starting and ending line of the cursor

Palette and border color selection

Setting the size of the character matrix, and thereby the number of text
lines which can be displayed on the screen

Loading user-defined character sets

Reading configuration data

Detailed information about traditional BIOS video functions and the new functions
of the EGA/VGA BIOS can be found in Sections 7.4.

519

10. Accessing and Programming the Video Cards PC System Programming

If you need speed and maximum control over the screen, you should still perform
time-critical actions (e.g., manipulating video RAM) "by hand."

EGA/VGA and text mode

There is no difference between the EGA and MDA or CGA card in text mode. The
video RAM and attribute byte are organized the same way for the EGA card as for
the other two cards-even the location of the video RAM is the same. But since an
EGA card can emulate either a CGA card or an MDA card, depending on the
monitor to which it is connected, you should first determine what kind monitor is
in use. From this the EGA can determine which of the two systems to emulate
(routines presented in Section 10.7 show how this is done). The type of card being
emulated determines where the video RAM can be found in memory, how the bits
of the character attribute byte are interpreted, and how many screen pages are
available.

Remember that the EGA or VGA card does not contain a 6845 CRTC, despite the
fact that it can perfectly emulate its video predecessors. This means that the status
and control registers of the MDA and CGA cards are unavailable. However, since
the settings that are normally made with these registers can also be performed with
the BIOS, we don't really need these registers. You should also remember that
there are no restrictions to accessing the video RAM of an EGA card or a VGA
card when it is in CGA emulation. It is unnecessary to synchronize screen access
with the activity of the CRTC by reading the status register.

The parallels between the organization of the video RAM in the CGA and MDA
cards also apply when the text mode is switched to 43 lines (which is impossible
in CGA emulation). As with any other number of displayed lines, this does not
change the basic structure of the video RAM at all. It is larger, but the formulas
for calculating the offset position of a character and its attribute byte within the
video RAM are still valid.

The VGA card is capable of 25, 43 and even 50 lines in text mode, depending on
the monitor in use.

These parallels also apply to the graphics modes already available to the CGA card.
The position of the video RAM and its structure are identical to the those of the
CGAcard

EGA/VGA and graphic modes

520

The EGA card offers the following new graphics modes:

320x200 pixels, 16 colors (BIOS code: OOH)

640x200 pixels, 16 colors (BIOS code: OEH)

640x350 pixels, 2 colors {BIOS code: OFH)

Abacus

640x350 pixels, 16 colors (BIOS code: lOH)

The VGA card offers the following graphic modes:

640x480 pixels, 2 colors (BIOS ccxle: 1 lH)

640x480 pixels, 16 colors (BIOS code: 12H)

320x200 pixels, 256 colors (BIOS code: 13H)

10.5 EGA and VGA Cards

Some EGA cards have even more mcxles with higher resolution or more colors,
but these mcxles are not part of the EGA standard and are supported by only a few
programs.

It is somewhat difficult to talk about a "standard", because almost every
manufacturer has their own modes. Let's look at the lowest common
denominator-the mcxles which practically all EGA/VGA cards support. These are
the modes supported by the original EGA card, the IBM EGA.

These video mcxles, in which the video RAM can occupy more than lOOK, show a
structure quite different from those used by the MDA, CGA and Hercules cards.
The maximum of 256K. of RAM is divided into four bitplanes which are arranged
in a kind of a three-dimensional organization. From the processor's point of view
these bitplanes reside between segment addresses AOOOH and BOOOH.

Each bitplane contains one bit for each individual pixel. If you place the bitplanes
on top of each other, each pixel is represented by a total of four bits, which
together make up the color value of the pixel. Bitplane zero contains bit zero of
the color value of each pixel, bitplane one contains bit one, and so on. This limits
the number of displayable colors to 16, since four bits (or bitplanes) can represent
24, or 16 different numbers.

The color value obtained from combining individual bitplanes does not correspond
directly to a color. It is actually used as an index into one of the 16 palette
registers of the EGA card, each of which designates a particular color. Since the
EGA card can display a total of 64 different colors, the palette registers allow you
to select 16 of these colors to be displayed on the screen simultaneously. The
individual palette registers can be loaded with the help of the extended EGA BIOS
functions, as described in Section 7.4.

The structure of each bitplane corresponds to the organization of the pixels on the
screen, and parallels that of video RAM in text mcxle. Since each pixel occupies
one bit in the bitplane, eight consecutive pixels are combined into a byte. The
pixels on each line are placed left to right in successive memory locations. The
length of each line can be determined using the formula:

horizontal resolution I 8

521

JO. Accessing and Programming th£ Video Cards PC System Programming

522

Since the individual screen lines follow each other in sequence starting from the
top of the screen, the starting address of each line is obtained by multiplying the
line number by this value. The byte within this line which contains the desired
pixel is calculated by dividing the column number by eight (bits per byte). Adding
this to the starting address of the line gives us the following formula, which
calculates the offset address of the byte containing the coonlinates (X, Y):

Y * (horizontal_resolution I 8) + X I 8

X columns

Y lines

w

Video Display Monitor

Bitplane arrangement on EGA card

The bit number at which the pixel is located in this byte results from the
remainder of the division of the column number by eight

7 - (column_number MOD 8)

These two formulas can be used to localize a pixel within a bitplane and
implement graphics primitives.

However, the bitplanes cannot be accessed individually because they all lie at the
identical segment address. The EGA card has four latch registers, each of which
contains a complete byte from one of the four bitplanes. When the CPU performs
a read access from the EGA video RAM at segment address AOOOH, one byte is
first read from each of the four bitplanes at the specified offset address and loaded
into the four latch registers. This applies to instructions which access memory

Abacus 10.5 EGA and VGA Cards

directly, such as MOV or LODS, as well as all insb'uctions in which a byte from
the video RAM appears as an operand. This can be the case with arithmetic
insb'uctions (ADD, SUB, OR, AND, etc.) and comparison insb'uctions (CMP,
CMPS).

The process is similar for writing bytes to the video RAM. In this situation the
contents of the four latch registers are written back to the four hitplanes.

--
bits 01 2 3 4 5 6 7

I[
A_

CPU IL
read 'l

access LATCHES

BITPLANES

Video RAM access-loading the four latch registers

bits 01234567

----~JI.. t~~~~~~~~~~~~~~~~~~~~fll CPU H_
write I[-=:
access LATCHES

BITPLANES

Video RAM access-writing the four latch registers

Since the latch registers are not directly accessible to the processor, we must
alternate conversion between eight and 32 bits when reading and writing the video
RAM. When reading, 32 bits from the latch registers must be compressed into one
byte, while the eight bits from the CPU when writing must be divided among the
32 bits of the latch registers. The nine graphic controller registers in the EGA card
perform this conversion.

523

JO. Accessing and Programming the Video Cards PC System Programming

524

!EGA graphic controller registers and their default values
Registe!:J MeaninJL Default
OOH Set I Reset OOH
Olli Enable Set I Reset OOH
02H Color Com_E_are OOH
03H Function Select OOH
04H Read MC!£. Select OOH
05H Mode OOH
06H Miscellaneous varies
07H Color Don't Care OFH
OBH Bit Mask FFH

Access to these registers is similar to CRTC register access on the Hercules
graphics card. Here too there is an address register at port address 3DEH, into
which we must first load the number of the register in the graphics controller that
we want to access. The value for this register can then be written to the data
register located at address 3CFH, immediately after the address register. These ports
do not have to be accessed separately: A 16-bit OUT instruction to the address
register performs the access in one move. The AX register, which will be sent to
this port, must contain the register number in the low-order byte (AL), and the
value for this register in the high-order byte (AH). Although values can be loaded
into the graphics controller registers in this manner, it is not possible to read data
from the EGA caret.

The contents of register number five, the mode register, are responsible for the
behavior of the video RAM. This register controls the current read and write
modes and thereby the manner in which the data from the latch registers is
combined with the other registers in the graphics controller and the CPU data.

7 6 5 4 3 2 1 0 bit

------....

Write mode
Possible modes:
O, 1 and 2
Read mode
Possible modes:
O and 1

Mode register structure in EGA card graphics controller

There are a total of two different read modes and three write modes.

Abacus 10.5 EGA and VGA Cards

Read mode o

Read mode 0 is the simpler of the two read modes. As usual, a read access in this
mode first loads the specified byte from the four bitplanes into the four latch
registers. Then the contents of the latch register specified by the lower two bits of
the read map select register (register four) are transferred to the CPU.

bits
01_1_345

0 _l ::0.:
1 l :r

CPU 2 1 :1
ead 3 _l 00 r

ac cess~ LATCHES

~
LXXXXXX..l.OOJ

Read Map
Select Register

7
1-.
-~

~

~

BITPLANES

Video RAM read access in read mode 0

I-
I-

I-

The following sequence of assembly language instructions first sets read mode 0,
then writes the value 2 into the Read Map Select register, and finally reads a byte
from offset address 0003H in the video RAM. As a result, the AL register contains
the bit values for the pixels with coordinates (24, 0) to (31, 0) from bitplane 2.

mov dx,3CEh
mov ax,OOOSh
out dx,ax
mov ax,0204h
out dx,ax
mov ax,OAOOOh
mov ds,ax
mov si,0003h
lodsb

Read mode 1

;port address of the graphics cont. addr. reg.
;write read mode 0 in the mode register

;write the value 2 (plane number) in the
;read map select register
;segment address of the video RAM
;to DS
;offset address into the video RAM
;read byte from plane 2

Read mode I specifies which of the eight pixels in the specified byte of video
RAM is set to a certain color. This is determined by the individual bits in the read
byte which correspond to the one of the eight pixels from the specified byte in the
video RAM. If a pixel has the specified color (appropriate bit map), then the
corresponding bit will be 1, else 0. The bit pattern of the color to be compared
must be loaded into the lower four bits of the Color Compare register. The lower
four bits of the Color Don't Care register show which bitplanes will be taken into
consideration in the comparison. The value 1 includes the given plane in the
comparison, while the value 0 excludes it.

525

10. Accessing and Programming the Video Cards PC System Programming

526

BITPLANES

To CPUllJi

Video RAM read access in read mode 1

The following program sequence determines which of the pixels between
coordinates (0, 0) and (7, 0) have color value five. First, read mode 1 is set by the
Mode register. Then the color value to be tested (five) is loaded into the Color
Compare register. We must also load the Color Don't Care register with the value
1111 b so that all four bitplanes will be included in the comparison. However, this
is the default value and we have not loaded any other value into this register, so we
can skip this step. After programming the registers of the graphics controller, we
load the segment and offset addresses of the pixels to be compared into the DS and
SI registers. Then the read is executed from the video RAM.

Abacus

mov dx,3CEh
mov ax,0805h
out dx,ax
mov ax,0502h
out dx,ax
mov ax,OAOOOh
mov ds,ax
xor si,si
lodsb

105 EGA and VGA Cards

;port address of the graphics cont. addr. reg.
;write read mode 1 into the mode register

;write color value 15 into the
;Color Compare register
;segment address of the video RAM
;to DS
;load offset address 0
;read and compare pixels,
;return result in l\L

Write mode o

Writing to the video RAM in write mode 0 results in a number of operations, all
of which depend on the contents of several registers. The contents of the Bit Mask
register determine whether the value of a bit in the four latch registers will be
written unchanged to the found bitplanes or whether it will first be modified. The
individual bits in the Bit Mask register correspond to the individual bits in the four
latch registers. If a bit in the Bit Mask register is 0, the corresponding bits in the
latch registers will be written to the bitplanes unchanged. If this bit is 1, a
modification will take place, dependent on the contents of the Function Select
register. As the following figure shows, the bits can be replaced or modified with
the logical operations AND, OR, and XOR.

7 6 5 4 3 2 1 0 bit

-------comparison modes
OOb = Replace
01b = AND comparison
10b = OR comparison
11 b = XOR comparison

Function Select Register structure in EGA card graphics controller

The contents of the Enable Set/Reset register determines from where the other
operand in these operations will come. If the lower four bits contain the value 1,
the other operand will come from the lower four bits of the Set/Reset register.
Each of these bits is then combined with the bits from the latch registers as
described by the contents of the Function Select register. All of the bits to be
modified from latch register 0 will then be operated on with bit 0 of the Set/Reset
register. In the same manner, all of the bits to be modified from latch registers 1,
2, and 3 are combined with bits 1, 2, and 3 of the Set/Reset register, respectively.
The byte which is actually written to the graphics controller becomes irrelevant at
this point-the write access is reduced to a trigger, which cannot have any direct
influence on the contents of the latch register (and therefore the bitplanes).

527

10. Accessing and Programming the Video Cards PC System Programming

528

lI
11rnor[]

Set/leet I<!gister

j_
L lO<IR Canparisoiil

JXIJqJgllO >(I){

E\rd:icn
selEtt
mgist:er

Latch to Latch U

ll ~o 010

Byte in: Bitplane #0 Bitplane #1 Bitplane #2 Bitplane #3

Write access to video RAM (write mode 0) when Enable Set/Reset register
contains a value of 0000111 l(b)

The following assembly language fragment assigns the pixels at coordinates (5, 0)
and (7, 0), found at offset address OOOOH in the video RAM, the color 1011 {b).

Since we don't want to change the color of the other pixels, the contents of the
byte are first read into the latch register with a read access to the video RAM. It is
not important which read mode is active because the byte transmitted to the CPU
is irrelevant; all we are interested in is loading the latch register. Since only bits 0
(coordinates (7, 0)) and 2 (coordinates (5, 0)) will be changed, we load the value
OOOOOlOlb (05h) into the bitmask register. In the Function Select register we
write the value 0 because we want to replace bits 0 and 2 with a new bit
combination. We write the color we want to give to the two bits {lOllb = OBh) in
the Set/Reset register. We must also write the value 1111 (b) (OFII) to the Enable
Set/Reset register of the graphics controller so that the color value will be taken
from the Set/Reset register. We can then execute the write access to video RAM.

mov ax,OAOOOh
rnov ds,ax
xor bx,bx
mov al, [bx]
mov dx,3CEh
mov ax,OOOSh
out dx,ax
mov al,03h
out dx,ax
mov ax,0508h
out dx,ax
mov ax,OBOOh
out dx,ax
mov ax,OFOlh
out dx,ax
mov [bx],al

;segment address of the video RAM
;to DS
;load offset address 0
;load byte 0 in the latch register
;port address of the graphic cont. addr. reg.
;read mode O, write more O
;write in the mode register
;write 0 in the Function Select register

;write bit mask in the bitmask register

;write new color value in the Set/Reset register

;write 1111b in the Enable Set/Reset register

;trigger latch register

Things are different when the Enable Set/Reset register contains the value zero. In
this case all of the bits to be modified from the four latch registers are combined
with the CPU byte latch by latch. Here again the type of operation performed

Abacus 10.5 EGA and VGA Cards

depends on the contents of the Function Select register. For example, if the OR
operation is selected and bits 1, 2, 4, and 6 are to be modified, than these bits of
all four latch registers will be individually ORed with bits 1, 2, 4, and 6 in the
CPU byte.

Latch 40 Latch U Latch 42 Latch 43

~ 1n'n111~ '1'1'fi'fi1~ '~f.t.'l'r'i'l'1' ~r'fij'fi~'
~·~'l'l#"li~Dfb\)l\TOlll'fWEkiLt----~'.C\!ii"~'lijf~(o;llQYOlQ;'iliQIOJbQJ---1~..li~oilJ.llIO/l'iTci~nolQJfJi!Q.!01l~--t-=~o:~:ilJ1110T~Qli~o)4-11iri11JJQ}

ll lJUIUIUIOIOlll

Byte in:

1 IT 1 l 1 IT II IT

Ll
Bitplane #0

llllI.fil1l1lLI
Bitplane #1 Bitplane #2 Bitplane #3

Write mode 1

Write mode 1 is quite simple compared to the complex operations of write mode 0.
The contents of the registers and the CPU byte are irrelevant because the contents
of the four latch registers are loaded unchanged into the specified offset address
within the four bitplanes. This is useful for copying the color values of eight
successive pixels to eight other pixels, for instance. The byte containing the eight
pixels can be read under one of the read modes, placing it in the latch registers.
Then a write access can be made to the byte in video RAM to which you want to
copy the color values. The graphics controller will automatically copy the contents
of the latch registers to the specified position within the four bitplanes.

To write these color values to other locations, you can use additional write
accesses. No more read accesses are necessary, since the latch registers already
contain the appropriate values and their contents are not changed by the write
access.

Write mode 2

Write mode 2 resembles a combination of the various modes of write mode 0. As
in write mode 0, the bitmask register detennines which bits will be taken directly
from the latch registers and which will be modified. The manner in which these
bits are manipulated is again determined by the mode selected in the Function
Select register. The lower four bits of the CPU byte will be combined with the

529

10. Accessing and Programming tlu! Video Cards PC System Programming

latch registers, independent of the Enable Set/Reset register. Bit zero of the CPU
byte is combined with all bits in latch register zero which are to be modified. The
same applies for CPU bits 1, 2, and 3, which are combined with the bits of latch
registers 1, 2, and 3, respectively.

1.xi; LIUKlll,]
CPU cyte

J
[1~ Canoarisoi!J

ll<.ll<IXllLOOOXIZI
E\n:t.icn
select
IBJister

Byte in:

lL
ll

J.IQJJ LI
Bitplane 110

IQJll)lJ llllLI
Bitplane Ill

I: ll lli.llll.I
Bitplane 112

Write access to video RAM in write mode 2

lll1.lll1IOOJ1I
Bitplane 113

This mode is good for setting the colors of individual pixels, as we demonstrated
in the example in write mode 0. In contrast to write mode 0, the assembly
language fragment is somewhat shorter because neither the Enable Set/Reset nor
the Set/Reset register has to be programmed. Here is the same example using write
mode2:

mov ax,OAOOOh
mov ds,ax
xor bx,bx
mov al, [bx]
mov dx,3CEh
mov ax,0205h
out dx,ax
mov ax, 0003h
out dx,ax
mov ax,0508h
out dx,ax
mov al,OBh
mov [bx],al

;segment address of the video RAM
;in OS
;load offset address 0
;load byte 0 in the latch registers
;port address of the graphics cont. addr. reg.
;read mode o, write mode 2
;write into the mode register
;write REPLACE mode (0) in the Function
;Select register
;write the bit mask to the bitmask register

;new color value in AL
;and from there to the video RAM and
;into the latch regs and bitplanes

Demonstration program

530

The following program demonstrates the following basic graphics routines:

Calculating the position of a pixel within the video RAM

Setting the color of a pixel

Reading the color of a pixel

Filling the entire video RAM with a color

Abacus 105 EGA and VGA Cards

If you have followed this section closely, especially the material on the read and
write modes, you won't have any problems following the logic of the various
functions. Since it contains detailed documentapon, we won't say anything more
about it

It should be noted that the program is intended for demonstration purposes only.
You can develop it further if you want to make a graphics library out of these
functions. For example, the function PIXPTR loads the segment address of the
video RAM into the ES register for calculating the position of a pixel within the
video RAM each time it is called. This can be eliminated by loading this address
into the register once at the beginning of the program and leaving it there, as long
as the other functions do not change this register.

The graphics controller register programming can also be improved. Here the
various registers are reloaded with the ROM-BIOS default values after the function
has completed. This can be eliminated as long as you do not use the BIOS
functions for character output (in the graphics mode) or the functions for setting
and testing points within the module or program. If you avoid these calls, then
these registers can be reset to their default values once at the end of the program
instead of at the end of each routine.

Assembler listing: VEGA.ASM

;**;
, V E G A *;
;*--*;
;* Task : Creates elementary functions for accessing the *;
;* graphic modes on an EGA/VGA card *;
;*--*;
;*
;*
;•

Author : MICHAEL TISCHER *;
*;
*;

Developed on : 10/3/1988
Last update 6/19/1989

;*--*;
; * Assembly : MASM VEGA; *;
; * LINK VEGA; *;
;*--*;
;* Call : VEGA ,
;**;

;== Constants ==

VIO_SEG = OAOOOh

LINE LEN = 80

BITMASK REG = 8
MODE REG = 5
FUNCSEL REG = 3
MAPSEL REG = 4
ENABLE - REG = 1
SETRES REG = 0
GRAPH CONT = 3CEh
OP_MODE = 0

GR 640 350 = lOh

;Segment address of video RAM
; in graph! c mode
;Every graph! line in EGA/VGA graphic
;modes require 80 bytes
;Bitmask register
;Mode register
;Function select register
;Map-Select register
;Enable Set/Reset register
;Set/Reset register
;Port addressd of graphic controller
;Comparison operator mode:

OOh = Replace
08h = AND comparison
lOh = OR comparison
18h = EXCLUSIVE OR comparison

;BIOS code for 640x350-pixel

531

JO. Accessing and Programming the Video Cards PC System Programming

532

TX_80_25 03h
;16-color graphic mode
;BIOS code for 80*25-char.
;text mode

;~ Stack ===~=~=~=======~====~=======~======~=======~====~====

stack segment para stack ;Definition of stack segment

dw 256 dup (?) ;256-word stack

stack ends ; End of stack segment

;== Data ====~=~=~=======~=============~======~=~=============~=

data segment para 'DATA' ;Definition of data segment

;== Data for the demo program =======~=~=~===========================

initm db 13,10

data

db "VEGA (c) 1988 by Michael Tischer"
db 13,10,13,10
db "This demonstration program operates only with an EGA/",13,10

db "card and a hi-res monitor. If your PC doesn't have this",13,10
db "configuration, please press the <s> key to abort the",13,10
db 11program.",13,10

db "Press any other key to start the program.",13,10,"$"

ends ;End of data segment

;== Code ===

code segment para 'CODE' ;Definition of code segment

assume cs:code, ds:data, es:data, ss:stack

;== Demo program ===

demo

ende:

proc far

mov ax, data ;Get segment addr. from data segment
mov ds,ax ;and load into DS
mov es, ax ;and ES

Display opening message and wait for input ---------------

mov
rnov
int

xor
int
cmp
je
cmp
jne

rnov
int

ah,9
dx,offset
21h

ah, ah
16h
al, "S"
ende
al, 11S 11

startdemo

ax,4COOh
21h

initm
;Function number for string display
;Message address
;Call DOS interrupt

;Get function number for key
;Call BIOS keyboard interrupt
;Was <s> entered?
;YES --> End program
;Was <S> entered?
;NO --> Start demo

;Function no. for end program
;Call DOS interrupt 21H

Initialize graphic mode ----------------------------------

startdemo label near

mov ax,GR_640_350
int lOh

;Initialize 64x350-pixel
;16-color graphic mode

Abacus 10.5 EGA and VGA Cards

dl:

d2:
d3:

mov ch,OOOlOOOOlb
mov ax,350
call fillscr

;Color: Blue
;Number of raster lines: 350
; Fill screen

;-- The program displays two squares on the screens (the
;-- second is really a copy of the first) until the user
;-- presses a key to end the program

xor ch,ch
mov ax,100

inc ch
and ch,15

mov bx,245
call setpix
push ex
call getpix
push ax
push bx
add bx, 100
add ax,100
call setpix
pop bx
pop ax
pop ex
inc bx
cmp bx, 295
jne d3

inc ax
cmp ax,150
jne d2

mov ah,1
int 16h
je dl

mov ax,TX 80 25
int lOh - -
jmp short ende

; Set color to 0
;Starting line of first square

; Increment color
;AND bits 4 and 7

;Starting column of first square
;Set pixel
; Save color
; Get pixel color
;Push coordinates onto stack

;Compute position of second
; square
;Set pixel of copy
;Return coordinates of first square

;Get color
;Increment column
;Reached the last column?
;NO --> Set next pixel

;YES, Increment line
;Reached the last line?
;NO --> Work with next line

; Read keyboard
;Call BIOS keyboard interrupt
;No key pressed --> Continue

;80x25 text mode
; Initialization
;End programm

demo endp

;== Functions used in the demo program =================================

;-- PIXPTR: Computes the address of a pixel within video RAM for the
;-- new EGA/VGA graphic modes
;--
;--
;--
;--
;--
;--
;--
;--

Input AX

output
BX
ES:BX
CL

AH
Registers: ES, AX,

pixptr prcc near

push dx

mov cl, bl

Graphic line
Graphic column
Pointer to the byte in video RAM containing pixel
Number of right shifts for the byte
Number of byte shifts in ES:BX needed to isolate
the pixel
Bitmask for combining with all other pixels
BX and CL are changed

;Push DX onto stack

;Save low byte of graphic column
mov dx,LINE_LEN ;Number of bytes per line to DX
mul dx ;AX = graphic line * LINE_LEN
shr bx,1 ;Shift graphic column three places to
shr bx,1 ;the right, divide by 8

533

10. Accessing and Programming the Video Cards PC System Programming

534

shr bx,l
add bx, ax ;Add line offset

mov ax,VIO_SEG ;Load segment address of video RAM
mov es, ax ;into ES

and cl,7 ;And bits 4 - 7 of graphic column
xor cl, 7 ;Turn bits 0 - 3 then

; subtract 7 - CL
mov ah,1 ;After shift, bit O should be

;left alone

pop dx ;Pop DX off of stack
ret ; Back to caller

pixptr endp

;-- SETPIX: Sets a graphic pixel in the
graphic line
graphic column
pixel color

new EGA/VGA graphic modes ------
;-- Input AX
;--
;--

BX
CH

; -- output none
;-- Registers: ES, DX and CL are changed

set pix proc near

push ax ;Push coordinates onto
push bx ;the stack

call pixptr ;Computer pointer to the pixel

mov CONT dx,GRAPH_ ;Load port addr. of graphic controller

;-- Set bit position in bitmask register ---------------------

shl ah,cl
mov al,BITMASK_REG
out dx,ax

;Mask for bit to be changed
;Move bitmask register from AL
;Write to register

;-- Set read mode 0 and write mode 2 -- ----------------------

mov ax,MODE_REG + (2 shl 8) ;Reg. no. and ,mode value
out dx,ax ;Write in the register

;-- Define comparison mode between preceding latch
;-- contents, and CPU byte

mov ax,FUNCSEL REG+ (OP MODE shl 8) ;Write register number
out dx,ax - ;and comparison operator

;-- Pixel control

mov al, es: [bx]
mov es: [bx] ,ch

;Load latches
;Move color into bitplanes

;-- Set altered registers to their default (BIOS) ------------
;-- status ------------

mov ax,BITMASK_REG + (OFFh shl 8) ;Set old bitmask
out dx,ax ;Write in the register
mov ax,MODE_REG ;Write old value for for mode register
out dx,ax ; into register
mov ah,FUNCSEL_REG ;Write old value for function select
out dx,ax ;register into register

Abacus 105 EGA and VGA Cards

pop bx
pop ax

;Pop coordinates off of stack

ret ;Back to caller

set pix endp

;--
;--

;--

GETPIX: Places a pixel's color in one of the new EGA/VGA----------
graphic modes

Input AX - graphic line
BX = graphic column

Output CH = graphic pixel color
Registers: ES, DX , ex and DI are changed

getplx proc near

gpl:

push ax
push bx

;Push coordinates onto
;the stack

call pixptr ;Computer pointer to pixel
;Move bitmask to CH mov

shl

mov
xor

mov
mov

out
mov
and
neg
rol

dee
jge

;--
;--

mov
pop
pop
ret

ch, ah
ch, cl ;Shift bitmask by bit positions

di, bx ;Move video RAM offset to DI
bl,bl ;Color value will be computed in BL

dx,GRAPH_CONT ;Load graphic controller port address
ax,MAPSEL_REG + (3 shl 8) ;Access bitplane #3

Go through each of the four bitplanes --------------------

dx,ax ;Activate bitplane #AH only
bh,es: [di] ;Get byte from the bit.plane
bh,ch ;Omit uninteresting bits
bh ;Bit 7 = 1, when a pil\el is set
bx,1 ;Shift bit 7 from BH to Bit 1 in

ah ;Decrement bitplane number
gpl ;Not -1 yet? --> next bit plane

The map select register must not be reset, since
the EGA- and VGA-BIOS default to a value of 0

ch, bl
bx
ax

;Get color from CH
;Pop coordinates off
;of stack
; Back to caller

BL

get pix endp

;-- FILLSCR: Sets all screen pixels to one color ------ ----------------
;-- Input AX number of graphic lines on the screen

CH pixel color
Output none
Registers: ES, AX, ex, DI, DX and BL are changed

fillscr proc near

mov
mov
mov
out

mov
out

mov
mul
mov
xor
mov

dx,GRAPH CONT
al,SETRES_REG
ah, ch
dx,ax

ax, ENABLE_ REG +
dx,ax

bx, LINE_ LEN I 2
bx
ex, ax
di,di
ax,VIO_SEG

;Load graphic controller port address
;Numbmer of Set-/Reset registers
;Move bit combination to AL
;Write to the register

(OFh shl 8) ;Write OFH in the
;Enable Set-/Reset register

;Length of a graphic line I 2 into BX
;Multiply by number of graphic lines
;Move to CX as repeat counter
;Address first byte in video RAM
;Segment address of video RAM

535

10. Accessing and Programming the Video Cards PC System Programming

536

mov es,ax
cld
rep stosw

;Load into ES
;Increment on string instructions
;Fill video RAM

;-- Return old contents of Enable Set-/Reset register

mov dx,GRAPH_CONT
mov ax,ENABLE REG
out dx,ax -

ret

fillscr endp

;Load graphic controller port address
;Write OOH in Enable Set-/
;Reset register

; Back to caller

;~ End -==-=•==============~=============~===~=~=============~====

code ends ;End of code segment
end demo ;Start program execution with DEMO

Abacus 10.6 Determining the Video Card Type

10.6 Determining the Type of Video Card

Whenever you want to access video card hardware or use a BIOS function which is
only available in special versions of the BIOS, you should first ensure that the card
in question is actually installed in the system. If your program doesn't make such a
test, then the result may not be what you wanted to appear on the screen.

It is especially important for an application program to recognize the type of video
card installed, if your program is supposed to work the same on all types of cards
while still directly accessing video hardware. The output routines need this
information to make optimum use of the special properties of the given card.

Remember that the PC can have both a monochrome video card (MDA, HGC or
EGA with a monochrome monitor) and a color video card (EGA, VGA, or CGA)
installed, although only one of the two cards may be active at one time.

Combinations allowable for PC video cards
VGA EGA HGC CGA MDA

VGA • •
EGA • • •
HGC • • •
CGA • • •
MDA • • •

We need to find out what video cards are installed. There are no BIOS or DOS
functions for doing this, nor are there any variables we can read. We have to write
an assembly language routine which checks the existence of different video cards.
We can refer to the documentation for the various cards, since most manufacturers
include some procedure for determining if their card is in use. It is important to
keep the test specific (i.e., it does not return a positive result if a certain type of
video card is not installed). This presents problems for EGA and VGA cards, which
can emulate CGA or MDA cards with the appropriate monitor, and are difficult to
distinguish from true CGA or MDA cards.

All of the tests described here are found at the end of this section in the form of
two assembly language programs intended for use with C and Pascal programs.
The functions place the type of video card installed and the type of monitor
connected to it into an array to which the function is passed a pointer. If two video
cards are installed, their order in the array indicates which one is active.

The following cards can be detected by the assembly language routine:

MDAcards

CGAcards

HGCcards

537

10. Accessing and Programming the Video Cards PC System Programming

EGAcanls

• VGAcanls

Since the assembly language routine checks selectively for the existence of a
certain video card, there is a separate subroutine for each type of video card. It bears
the name of the video card for which it tests. These routines have names like
TEST_EGA, TEST_ VGA, etc. The tests could be called sequentially, but certain
tests can be excluded if we know they would return a negative result This is case
for the CGA test, for example, if an EGA or VGA card has already been detected
and is connected to a high-resolution color monitor. A CGA card cannot be
installed alongside such a card, so there is no point in testing for it.

There is a flag for each test which determines whether or not the test will be
performed. Before the first test, the VGA test, all of the flags are set to 1 so that
all of the tests will be performed in order. During the testing, certain flags can be
set to 0 for reasons mentioned above, and the corresponding tests will not be made.

VGA test

538

The tests begin with the VGA test. It is very easy because there is a special
function in the VGA BIOS, sub-function OOH of function lAH, which returns
precisely the information that the assembly language routine needs. The
information is available only if a VGA card and hence a VGA BIOS is installed.
This is the case if the value lAH is found in the AL register after the call. If the
test routine encounters a different value there, the VGA test will be terminated and
the other tests will be performed. This indicates that a VGA card is llil1 installed.

After this function is called, the BL register contains a special device code for the
active video card and the BH register contains a code for the inactive card. The
following codes can occur:

Code Meanin_g_
OOH No video card
Olli MDA card/monochrome monitor
02H CGA card/color monitor
03H Reserved
04H EGA card/hi_g_h-resolution monitor
OSH EGA card/monochrome monitor
06H Reserved
07H VGA card/analqg_monochrome monitor
OSH VGA card/analo_g_ color monitor

These codes are separated into values for the video card and the monitor connected
to it, and loaded into the array whose address is passed to the assembly language
routine. Since this routine already has information about both video cards, the
following tests do not have to be performed. The routine executes the monochrome
test, however, if the functions discover a monochrome card, since it cannot
distinguish between an MDA and HGC card.

Abacus 10.6 Detl!rmining tlu! Video Card Type

EGA test

After the VGA test comes the EGA test, which it performed only if the VGA test
was unsuccessful, and thus the EGA flag was not cleared. It uses a function which
is found only in the EGA BIOS: sub-function lOH of function 12H. If no EGA
card is installed and this function is not available, the value lOH will still be found
in the BL register after the function call. In this case the EGA test ends.

If an EGA card is installed, the CL register will contain the settings of the DIP
switches on the EGA card after the call. These switches indicate what type of
monitor is connected. They are converted to the monitor codes the assembly
language routine uses and placed in the array along with the code for the EGA card
The CGA or monochrome test flag is cleared depending on the type of monitor
connected. The EGA routine ends.

CGA test

If the CGA flag has not been cleared by the previous tests, the CGA test follows
the EGA test. As with the monochrome test, there are no special BIOS functions
which can be used and we have to check for the presence of the appropriate
hardware. In both routines this is done by calling the routine TEST_6845, which
tests to see if the 6845 video controller found on these cards is at the specified port
address. On a CGA card this is port address 3D4H, which is passed to the routine
TEST_6845.

The only way to test the existence of the CRTC at a given port address is to write
some value {other than 0) to one of the CRTC registers and then read it back
immediately. If the value read matches the value written, then the CRTC and thus
the video card are present. But before writing a value into a CRTC register, we
should stop to consider that these registers have a major impact on the
construction of the video signals and careless access to them can not only
thoroughly confuse the CRTC, it can even harm the monitor. Registers 0 to 9 are
out of the question for this test, leaving us with registers 10 to 15, all of which
have an effect on the screen contents. The best we can do is registers 10 and 11,
which control the starting and ending lines of the cursor.

The assembly language routine first reads the contents of register 10 before it loads
any value into this register. After a short pause so that the CRTC can react to the
output. the contents of this register are read back. Before the value read is compared
to the original value, the old value is first written back into the register so that the
test disturbs the screen as little as possible. If the comparison is positive, then a
CRTC is present and so is the video card (CGA in this case). The CGA routine
responds by loading the code for a color monitor into the array, since this is the
only type of monitor which can be used with a CGA card.

539

10. Accessing and Programming the Video Cards PC System Programming

Monochrome test

The last test is the monochrome test, which also checks for the existence of a
CRTC, this time at port address 3B4H. If it finds a CRTC there, then a
monochrome card is installed and we have to figure out if it is an MDA or HOC
hard. The status registers of the two cards, at port address 3BAH, are used to
determine this. While bit 7 of this register has no significance on the MDA card
and its value is thus undefined, it contains a 1 on an HGC card whenever the
electron beam is returning across the screen. Since this is not permanent and
occurs only at intervals of about two milliseconds, the contents of this bit
constantly alternates between 0 and 1.

Hercules

The test routine first reads the contents of this register and masks out bits 0 to 6.
The resulting value is used in a maximum of 32768 loop passes, where the value
is read again and compared with the original value. If the value changes, meaning
that the state of bit 7 changes, then an HOC card is probably installed. If this bit
does not change over the course of 32768 loop passes, then an MDA card is in
use.

Here again we place the appropriate code for the video card in the array. The
monitor code is also set to monochrome, since this is the only monitor which can
be connected to an MDA or HOC card.

Primary and secondary video systems

540

The tests are now over. Now we have to figure out which card is active (primary)
and which is inactive (secondary). If the outcome of the VGA test was positive, we
can skip this because the VGA BIOS routine determines the active card
automatically.

In other cases we can determine the active video card from the current video mode,
which can be read with the help of function OFH of the BIOS video interrupt. If
the value seven is returned, then the 80x25 text mode of the monochrome card is
active. All of the other modes indicate that a CGA, EGA, or VGA card is active.
This information is used to exchange the order of the two entries in the array if it
does not match the actual situation.

The assembly language routine returns control to the calling program.

Here we include C and Pascal programs which call the function GetVIOS from the
assembly language module, and demonstrate how GetVIOS works.

Abacus 10.6 Determining the Video Card Type

C listing: VIOSC.C

/**/
I* V I 0 S C *I
!•--•/
I* Task : Determines the type of video card and monitor *I
I* installed in the system. *I
/*--*/
I* Author MICHAEL TISCHER *I
I* Developed on : 10/02/1988 *I
I* Last update : 06/20/1988 */
!*--*!
/* (MICROSOFT Cj */
I* Creation CL /AS le VIOSC.C *I
I* LINK VIOSC VIOSCA *I
/* Call VIOSC */
/*--~--•/
I* (BORLAND TURBO C) *I
I* Creation Create project file made of the following: */
/* v.rosc */
/* VIOSCA.OBJ */
/• Info Some cards may return errors or •unknown• *I
/**/

/*== Declarations of external functions ====================~=========*/

extern void get_vios(struct vies*);

/*== Type defs ===*/

typedef unsigned char BYTE; /* Create a byte */

/*== Structures ==*/

struct vies /• Describes video card and attached monitor •/
BYTE vcard,

monitor;
);

/*== Constants ===*/

/*-- constants for the video card ------------------------------------*/

tdefine NO VIOS 0 /* No video card *I
tdefine VGA 1 /* VGA card .,
#define EGA 2 I* EGA card *I
tdefine MDA 3 I* Monochrome Display Adapter *I
I define HGC 4 /* Hercules Graphics Card •/
tdefine CGA 5 /* Color Graphics Adapter •/

/*-- Constants for monitor type --------------------------------------•/

tdefine NO MON 0 I* No monitor */
tdef ine MONO 1 I* Monochrome monitor *I
tdefine COLOR 2 I* Color monitor *I
tdefine EGA HIRES 3 /* High-res/multisync monitor */
tdef ine ANLG MONO 4 /* Analog monochrome monitor *I
tdefine ANLG=COLOR 5 /* Analog color monitor *I

!**/
I** MAIN PROGRAM **/
/**/

void main()

static char *vcnames[] =
"VGA",
"EGA",

I* Pointer to the video card name *I

541

10. Accessing and Programming the Video Cards PC System Programming

static char *monnames[]

struct vios vsys[2];

"MDA11 ,

"HGC",
"CGA"

l;

/* Pointer to the monitor type's name */
"monochrome monitor",
"color monitor",
"high-res/multisync monitor",
"analog monochrome monitor",
"analog color monitor"

};

/* Vector for GET VIOS */

get vios(vsys); /*Determine video system *I
printf("\nVIOSC (c) 1988 by Michael Tischer\n\n");
printf ("Primary Video System: %s card/ %s\n",

vcnames[vsys[O].vcard-1], monnames[vsys[O].monitor-1]);
if (vsys[l].vcard !=NO VIOS) /*Is there secondary video system?*/

printf ("Secondary Video System: ts card/ %s\n",
vcnames[vsys[l].vcard-1], monnames[vsys[l].monitor-1]);

Assembler listing: VIOSCA.ASM

542

;**;
;* VIOSCA *;

;*--*;
;* Task Creates a function for determining video *;
;* adapter and monitor type, when linked with *;
;* a C program. *;

;*--*;
;* Author MICHAEL TISCHER *;
;* Developed on : 10/02/1988 *;
;* Last update : 06/20/1989 *;
;*--*;
;* Assembly : MASM VIOSCA; *;
, .•. link to a C program *;
;**;

;== Constants for VIOS structure =======================================

;Video card constants
NO VIOS 0 ;No video card
VGA 1 ;VGA card
EGA 2 ;EGA card
MDA 3 ;Monochrome Display Adapter
HGC 4 ;Hercules Graphics Card
CGA 5 ;Color Graphics Adapter

;Monitor constants
NO MON 0 ;No monitor
MONO 1 ;Monochrome monitor
COLOR 2 ;Color monitor
EGA_HIRES 3 ;High-resolution or multisync monitor
ANLG_MONO 4 ;Analog monochrome monitor
ANLG COLOR 5 ;Analog color monitor

;== Segment declarations for the c program/==========-==============~===

IGROUP group text ;Addition to program segment
DGROUP group const,_bss, _data ;Addition to data segment

CONST
CONST

_BSS

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, ss:DGROUP

segment word public 'CONST';This segment includes all read-only
ends ;constants

segment word public 'BSS' ;This segment includes all

Abacus 10.6 Detemuning the Video Card Type

BSS ends ;un-initialized static variables

_DATA segment word public 'DATA' ;Data segment

vios tab

eqa_dips

equ this byte

;-- Conversion table for return values of function lAH,
;-- sub-function OOH of the VGA-BIOS

db NO VIOS, NO MON
db MDA • MONO
db CGA COLOR
db , ?
db EGA , EGA_ HIRES
db EGA , MONO
db ?
db VGA
db VGA

?
, ANLG MONO
, ANLG:::: COLOR

equ this byte

;No video card
;MDA card and monochrome monitor
;CGA card and color monitor
;Code 3 unused
;EGA card and hi-res monitor
;EGA card and monochrome monitor
;Code 6 unused
;VGA card and analoq mono monitor
;VGA card and analoq color monitor

;-- Conversion table for EGA card DIP switch settings -------

db COLOR, EGA_HIRES, MONO
db COLOR, EGA_HIRES, MONO

DATA ends

;== Program ==-=================

TEXT segment byte public 'CODE' ;Program segment

public _get_vios

;---
GET VIOS: Determines types of installed video cards ---------------

;--Call from C : void get vios(struct vios *vp);
;-- Declaration : struct vlos { BYTE vcard, monitor;);
;-- Return value: none
;-- Info This example uses function in SMALL memory model

_get_vios

sframe
cga_possi
ega_possi
mono_possi
bptr
ret_adr
vp
sfrarne

frame

proc near

st rue
db

; Stack access structure
;Local variable

db ? ;Local variable
db ;Local variable
dw ;Take BP
dw
dw
ends

;Return address to caller
;Pointer to first VIOS structure
;End of structure

equ [bp - cga_possi ;Address elements of

push bp ;Push BP onto stack
sub sp,3 ;Allocate space for
mov bp,sp ;Transfer SP to BP
push di ;Push DI onto stack

mov frame.cga_possi,1 ;Could be CGA
mov frame.ega_possi,1 ;Could be EGA
mov frame.mono_possi,l;Could be MDA or HGC

the structure

local variables

mov di,frame.vp ;Get offset address of structure
mov word ptr [di),NO VIOS ;Still no video
mov word ptr [di+2),NO_VIOS ;system found

call test vga ;Test for VGA card
cmp frame.ega_possi,O ;EGA card still possible?
je gvl ;NO --> Test for CGA

543

JO. Accessing and Programming the Video Cards PC System Programming

544

call test ega ;Test for EGA card
gvl: cmp frame.cga_possi,O ;CGA card still possible

je gv2 ;NO --> Test for MDA/HGC

call test cga ;Test for CGA card
gv2: cmp frame.mono_possi,O;MDA or HGC card still possibleh?

gv3:

je gv3 ;NO --> End tests

call test_mono ;Test for MDA/HGC cards

;-- Determine active video card -----------------------------

cmp
je
cmp
je

mov
int

and
cmp
jne

byte ptr
gvi end
byte ptr
gvi_end

ah,OFh
lOh

al,7
al,7
gv4

[di],VGA ;VGA card active?
;YES, active card already determined

[di+2], VGA ;VGA card as secondary system?
;YES, active card already determined

;Determine active video mode using the
;BIOS video interrupt

;Only modes 0-7 are of interest
;Monochrome card active?
;NO, in CGA or EGA mode

;-- MDA, HGC, or EGA card (mono) is active ------------------

cmp byte ptr [di+l],MONO ;Mono monitor in first structure?
je gvi end ;YES, Sequence o.k.
jmp short switch ;NO, Change sequence

;-- CGA or EGA card currently active ------------------------

gv4: cmp byte ptr [di+l],MONO ;Mono monitor in first structure?

switch:

gvi_end:

jne gvi_end ;NO, Sequence o.k.

mov ax, [di]
xchg ax, [di+2]
mov [di] ,ax

pop
add
pop
ret

di
sp,3
bp

;Get contents of first structure
;Exchange with second structure

;Get DI from stack
;Get local variables from stack
;Get BP from stack
;Return to C program

_get_vios endp

;---
;-- TEST_VGA: Determines whether a VGA card is installed

test_vga proc near

mov ax,laOOh
int lOh
cmp al,lah
jne tvga_end

;Function lAH, sub-function OOH
; calls VGA-BIOS
;Is this function supported?
;NO --> End routine

;-- If function is supported, BH contains the active video
;-- system code; BH contains the inactive video sys. code

mov cx,bx
xor bh,bh
or ch, ch
je tvga_l

;Move result to CX
;Set BH to 0
;Just one video system?
;YES --> Convey first system's code

;-- Convert code of second system ---------------------------

mov bl,ch ;Move second system code to BL
add bl,bl ;Add offset to table
mov ax,offset DGROUP:vios_tab[bx] ;Get code from table and

Abacus 10.6 Determining the Video Card Type

tvga_l:

mov [d1+2] ,ax
mov bl,cl

;place in caller's structure
;Move first system's codes to BL

;-- Convert code of first system ----------------------------

add bl,bl ;Add offset to table
mov ax,offset DGROUP:vios tab[bx] ;Get code from table and
mov [di],ax ;place in caller's structure

mov frame.cga_possi,O ;CGA test failed
mov frame.ega_possi,O ;EGA test failed
mov frame.mono_possi,O ;MONO still needs testing

mov bx, di ;Address of active structure
cmp byte ptr [bx],MOA ;Monochrome system available?
je do_tmono ;YES --> Execute MOA/HGC test

add bx,2 ;Address of inactive structure
cmp byte ptr [bx],MDA ;Monochrome system available?
jne tvga_end ;NO --> End routine

do_tmono: mov word ptr [bx],O ;Pretend that this system
;is still unavailable

mov frame.mono_possi,l;Execute monochrome test

tvga_end: ret ;Back to caller

test_vga endp

;---
;-- TEST_EGA: Determines whether an EGA card is installed

test_ega proc near

mov
mov
int
cmp
je

ah,12h
bl,lOh
lOh
bl,lOh
tega_end

; Function 12H
;Sub-function lOH
;Call EGA-BIOS
;Is the function supported?
;NO --> End routine

; -- When this function is supported, CL contains the EGA
;-- card's DIP switch settings

mov al,cl
shr al,1
mov bx,offset
xlat
mov ah,al
mov al,EGA
call found it

cmp ah,MONO
je is_mono

;Move DIP switch settings to AL
;Shift one position to the right

DGROUP:ega dips ;Offset address of table
;Move element AL from table to AL
;Move monitor type to AH
;It's an EGA card
;Move data to vector

;connected to monochrome monitor?
;YES --> not MDA or HGC

mov frame.cga_possi,O ;Cannot be a CGA card
jmp short tega_end ;End routine

is_mono: mov frame.mono_possi,O;If EGA card is connected to a mono
;monitor, it can be installed as
;either an HGC or MDA

tega_end: ret ;Back to callerr

test_ega endp

;---
;-- TEST_CGA: Determines whether a CGA card is installed

test_cga proc near

545

10. Accessing and Programming the Video Cards PC System Programming

546

test_cga

mov dx,3D4h
call test_ 6845
jc tega_end

mov
mov
jmp

endp

al,CGA
ah, COLOR
found it

;CGA tests port addr. of CRTC addr.
;reg., to see if 6845 is installed
;NO --> End test

;YES --> CGA is installed
;CGA has color monitor attached
;Transfer data to vector

;---
;-- TEST_MONO: Checks for the existence of an MDA or HGC card

test mono proc near

mov dx,3B4h
call test_6845

jc tega_end

;Check port address of CRTC addr. reg ..
;with MONO to see if there's a 6845
; installed
;NO --> End test

;-- If there is a monochrome video card installed, the
;-- following determines whether it's an MDA or an HGC

mov dl, OBAh ;Read MONO status port using 3BAH
in al,dx
and al,80h ;Check bit 7 only and
mov ah, al ;move to AH

, If contents of bit 7 change during one of the following -
;-- readings, the card is handled as an HGC

mov cx,8000h ;Maximum of 32768 loop executionse
test_hgc: in al,dx ;Read status port

and al,80h ;Check bit 7 only
cmp al, ah ;Contents changed?
jne is_hgc ;Bit 7 = 1 --> HGC
loop test_hgc ;Continue loop

mov al,MDA ;Bit 7 <> 1 --> MDA
jmp set mono ;Set parameters

is_hgc: mov al,HGC ;Bit 7 = 1 --> ist HGC
set_mono: mov ah, MONO ;MDA/HGC on mono monitor

jmp found it ;Set parameters

test mono endp

;---
;-- TEST_6845: Sets carry flag if no 6845 exists in port address of DX

test 6845 proc near

wait:

mov
out
inc

in
mov

mov
out

al,OAh
dx,al
dx

al,dx
ah, al

al,4Fh
dx,al

mov cx,100
loop wait

in al,dx
xchg al, ah
out dx,al

cmp ah,4Fh

; Register 10
;Register number of CRTC address reg.
;DX now in CRTC data register

;Get contents of register 10
;and move to AH

;Any value
;Write to register 10

;Short delay loop--gives 6845 time
;to react

;Read contents of register 10
;Exchange AH and AL
;Send old valuen

;Written value read?

Abacus 10.6 Determining the Video Card Type

je t6845 end ;YES --> End test

stc ;NO --> Set carry flag

t6845_end: ret ; Back from caller

test 6845 endp

;---
;--

FOUND IT: Transfers video card type to AL and monitor type to
AH in the video vector

fcund ~ .. prcc near

mov bx,di
cmp word ptr [bx],O
je set_data

add bx,2

set_data: mov [bx],ax
ret

found it endp

;Address of active structure
;Video system already onboard?
;NO --> Data in active structure

;YES, Address of inactive structure

;Place data in structure
;Back to caller

;---
text ends

end
;End of code segment
;End of program

Pascal listing: VIOSP.PAS

{**}
{* VIOSP *}
{*--*}
{ * Task : Returns the type of video card installed. *)
{*--*}
{ * Author MICHAEL TISCHER *)
{* Developed on 10/02/1988 *)
{* Last update 06/19/1989 *}
{*--*}
{ * Info Some of the values given here may not coincide *}
{* with some video cards (e.g., some CGA cards *}
{* may return "Unknown card"). *}
{**}

program VIOSP;

{$L c:\masm\viospa}

con st NO VIOS O;
VGA 1;
EGA 2;
MDA 3;
HGC 4;
CGA 5;

NO MON 0;
MONO 1;
COLOR 2;
EGA HIFES 3;
ANLG MONO 4;
ANLG::: COLOR = 5;

{ Change
{ Link assembler module

path to suit your DOS needs
{ No video card

{ VGA card
{ EGA card

Monochrome Display Adapter
Hercules Graphics Card

{ Color Graphics Adapter

{ No monitor
Monochrome monitor

{ Color monitor
High-resolution monitor

Monochrome analog monitor
{ Color analog monitor

type Vios = record Describes video card and attached monitor
VCard,
Monitor byte;

end;

547

10. Accessing and Programming the Video Cards PC System Programming

ViosPtr = AVios; { Pointer to a VIOS structure I

procedure GetVios(vp : ViosPtr) external ;

var VidSys: array[l •• 2] of Vios; {Array containing video structures)

{**}
{* PrintSys: Gives information about a video system *I
{* Input - VCARD: Code number of the video card *}
{ * - MON : Code number of the attached monitor *}
{ * output none *I
{**}

procedure PrintSys(VCard, Mon : byte);

begin
write(' •);
case VCard of

NO_VIOS : write('Unknown');
VGA write('VGA');
EGA write('EGA');
MDA write ('MDA');
CGA write('CGA');
HGC write ('HGC');

end;
write(' card/ ');

{ For "other" code

case Mon of
NO_MON
MONO

{ For "other" monitors } write('unknown monitor');
writeln('monochrome monitor');
writeln('color monitor');
writeln('high-resolution monitor');

COLOR
EGA HIRES
ANLG MONO writeln('monochrome analog monitor');
ANLG COLOR writeln('color analog monitor');

end;
end;

{**}
{ ** MAIN PROGRAM **}
{**}

begin
GetVios(@VidSys); {Check installed video card}
writeln ('VIOSP (c) 1988 by MICHAEL TISCHER');
write ('Primary video system: ');
PrintSys(VidSys[l].VCard, VidSys[l].Monitor);
writeln(fl3fl0);
if VidSys[2].VCard <>NO VIOS then

begin -
write(1 Secondary video system:'};

Second video system installed?
(YES

PrintSys(VidSys[2] .VCard, VidSys[2].Monitor);
writeln(tl3#10);

end;
end.

Assembler listing: VIOSPA.ASM

548

•**• ' ' ;* VI OS PA *;
;*--*;
; * Task Creates a function for determining the type *;
;* of video card installed on a system. This *;
;* routine must be assembled into an OBJ file, *;
;* then linked to a Turbo Pascal (4.0) program. *;
;*--*;
; * Author MICHAEL TISCHER *;
;* Developed on : 10/02/1988 *;
;* Last update : 06/19/1989 *;
;*--*;
; * assembly : MASM VIOSPA; *;

Abacus 10.6 Determining the Video Card Type

; * • • • Link to a Turbo Pascal program *;
, using the {$L VIOSPA) compiler directive *;
;**;

;=- Constants for the VIOS structure ~========~=====--================

NO_VIOS
VGA
EGA
MDA
HGC
CGA

NO_MON
MONO
COLOR
EGA HIRES
ANLG MONO
ANLG COLOR

= 0
= 1
- 2
= 3
= 4
~ 5

- 0
= 1

2
= 3

;Video card constants
;No video card/unrecognized card
;VGA card
;EGA card
;Monochrome Display Adapter
;Hercules Graphics Card
;Coler Graphics Adapter

;Monitor constants
;No monitor/unrecognized code
;Monochrome monitor
;Color Monitor
;High-resolution/multisync monitor
;Monochrome analog monitor
;Analog color monitor

;== Data segment ===

DATA segment word public ;Turbo data segment

DATA ends

;== Code segment ===

CODE segment byte public ;Turbo code segment

assume cs:CODE, ds:DATA

public getvios

;-- Initialized global variables must be placed in the code segment ----

vies tab equ this word

ega_dips

Conversion table for supplying return values of VGA
BIOS function lA(h), sub-function OO(h)

db NO VIOS, NO MON
db MDA MONO
db CGA , COLOR
db
db EGA

' EGA HIRES
db EGA MONO
db ?
db VGA , ANLG_MONO
db VGA , ANLG_COLOR

equ this byte

;No video card
;MDA card/monochrome monitor
;CGA card/color monitor
; Code 3 unused
;EGA card/hi-res monitor
;EGA card/monochrome monitor
;Code 6 unused
;VGA card/analog mono monitor
;VGA card/analog color monitor

;-- Conversion table for EGA card DIP switches -----

db COLOR, EGA_HIRES, MONO
db COLOR, EGA_HIRES, MONO

;---
;-- GETVIOS: Determines type(s) of installed video card(s) ------------
;--Pascal call : GetVios (vp: ViosPtr); external;
;-- Declaration : Type Vios = record VCard, Monitor: byte;
;-- Return Value: None

getvios proc near

sframe
cga_possi

st rue
db?

;Stack access structure
;local variables

549

10. Accessing and Programming the Video Cards PC System Programming

sso

ega_yossi
mono_yossi
bptr
ret adr
vp
sframe

frame

db ;local variables
db ;local variables
dw ? ;BPTR
dw ? ;Return address of calling program
dd ? ;Pointer to first VIOS structure
ends ;End of structure

equ [bp - cga_yossi] ;Address elements of structure

push bp
sub sp,3
mov bp,sp

;Push BP onto stack
;Allocate memory for local variables
;Transfer SP to BP

mov frame.cga_yossi,1 ;Is it a CGA?
mov frame.ega_yossi,1 ;Is it an EGA?
mov frame.mono_yossi,l;Is it an MDA or HGC?

mov di,word ptr frame.vp
mov word ptr [di],NO VIOS
mov word ptr [di+2],NO_VIOS

;Get offset addr. of structure
;No video system or unknown
; system found

call test vga ;Test for VGA card
cmp frame.egayossi,O ;Or is it an EGA card?
je gvl ;NO -->Go to CGA test

call test_ega ;Test for EGA card
gvl: cmp frame.cga_yossi,O ;or is it a CGA card?

je gv2 ;NO --> Go to MDA/HGC test

call test cga ; Test for CGA card
gv2: cmp frame.monoyossi,O;Or is it an MDA or HGC card?

gv3:

je gv3 ; NO --> End tests

call test mono ;Test for MDA/HGC card

;-- Determine video configuration ---------------------------

cmp
je
cmp
je

byte ptr
gvi end
byte ptr
gvi_end

mov ah,OFh
int lOh

and al,7
cmp al, 7
jne gv4

[di],VGA ;VGA card?
;YES --> Active card already indicated

[di+2],VGA;VGA card part of secondary system?
;YES --> Active card already indicated

;Determine video mode using BIOS video
; interrupt

;Only modes 0-7 are of interest
;Mono card active?
;NO --> CGA or EGA mode

;-- MDA, HGC or EGA card (mono) currently active ------------

cmp byte ptr [di+l],MONO ;Mono monitor in first structure?
je gvi end ;YES, Sequence o.k.
jmp short switch ;NO, Switch sequence

;-- CGA or EGA card currently active ------------------------

gv4: cmp byte ptr [di+l] ,MONO ;Mono monitor in first structure?
jne gvi_end ;NO -->Sequence o.k.

switch:

gvi_end:

mov ax, [di]
xchg ax, [di+2)
mov [di],ax

add sp,3
pop bp
ret 4

getvios endp

;Get contents of first structure
;Switch with second structure

;Add local variables from stack
;Pop BP off of stack
;Clear variables off of stack;
;Return to Turbo

Abacus 10.6 Determining the Video Card Type

;---
;-- TEST_VGA: Determines whether a VGA card is installed

test_vga

tvga_l:

do_tmono:

proc

mov
int
crnp
jne

;--
;--

rnov
xor
or
je

mov
add
rnov
mov
mov

near

ax,laOOh
lOh
al,lah
tvga_end

If function
active video
t.he !na~t!ve

ex, bx
bh,bh
ch, ch
tvga_l

;Function lA(h), sub-function OO(h)
;Call VGA-BIOS
;Function supported?
;NO --> End routine

is supported, BL contains the code of the
system, while BH contains the code of
videc syst.err-.

;Move result in CX
;set BH to O
;Only one video system?
;YES --> Display first system's code

Convert code of second system ---------------------------

bl, ch ;Move second system's code to BL
bl,bl ;Add offset to table
ax,vios tab[bx] ;Get code from table and move into
[di+2J,ax ;caller•s structure
bl, cl ;Move first system's code into BL

Convert code of second system ---------------------------

add bl,bl ;Add offset to table
;Get code from table mov ax,vios_tab[bx]

mov [di],ax ;and move into caller's structure

mov frarne.cga_possi,O ;CGA test fail?
mov frarne.ega_possi,O ;CGA test fail?
mov frame.mono_possi,O ;Test for mono

mov bx, di ;Address of active structure
crnp byte ptr [bx],MDA ;Monochrome system online?
je do tmono ;YES --> Execute MDA/HGC test

add bx,2 ;Address of inactive structure
crnp byte ptr [bx],MDA ;Monochrome system online?
jne tvga_end ;NO --> End routine

mov word ptr [bx],O ;Emulate if this system
;isn't available

mov frame.rnono_possi,l;Execute monochrome test

tvga_end: ret ;Return to caller

test_vga endp

;---
;-- TEST_EGA: Determine whether an EGA card is installed

test_ega proc near

mov ah,12h ;Function 12(h)
mov bl,lOh ; Sub-function 10 (h)
int lOh ;Call EGA-BIOS
crnp bl, lOh ;Is this function supported?
je tega_end ;NO --> End routine

;--
If the function IS supported, CL contains the
EGA card DIP switch settings

mov bl,cl
shr bl,1
xor bh,bh

;Move DIP switches to BL
;Shift one position to the right
;Index high byte to 0

551

10. Accessing and Programming the Video Cards PC System Programming

552

mov ah,ega_dips[bx] ;Get element from table
mov al, EGA ;Is it an EGA card?
call found_it ;Transfer data to the vector

cmp ah, MONO ;Mono monitor connected?
je is_mono ;YES --> Not MDA or HGC

mov frame.cga__possi,O ;No CGA card possible
jmp short tega_end ;End routine

is_mono: mov frame.mono__possi,O;EGA can either emulate MDA or HGC,
;if mono monitor is attached

tega_end: ret ;Back to caller

test_ ega endp

;---
;-- TEST_CGA: Determines whether a CGA card is installed

test_cga proc near

mov
call

dx,3D4h
test_6845

;Port addr. of CGA's CRTC addr. reg.
;Test for installed 6845 CRTC

jc

mov
mov
jmp

test_cga endp

tega_end

al,CGA
ah, COLOR
found it

;NO --> End test

;YES, CGA installed
;CGA uses color monitor
;Transfer data to vector

;---
;-- TEST_MONO: Checks for MDA or HGC card

test mono proc near

mov dx,3B4h ;Port addr. of MONO'S CRTC addr. reg.
call test 6845 ;Test for installed 6845 CRTC
jc tega_end ;NO --> End test

;-- Monochrome video card installed
;--
mov dl,OBAh ;MONO status port at 3BA(h)
in al,dx ;Read status port
and al,80h ;Separate bit 7 and
mov ah, al ;move to AH

;-- If the contents of bit 7 in the status port change
;-- during the following readings, it is handled as an

'
HGC

mov cx,8000h ;maximum 32768 loop executions
test_hgc: in al,dx ;Read status port

and al, 80h ;Isolate bit 7
cmp al,ah ;Contents changed?
jne is_hgc ;Bit 7 = 1 --> HGC
loop test_hgc ;Continue

mov al,MDA ;Bit 7 <> 1 --> MDA
jmp set_mono ;Set parameters

is_hgc: mov al,HGC ;Bit 7 = 1 --> HGC
set_mono: mov ah, MONO ;MDA and HGC set as mono screen

jmp found it ; Set parameters

test mono endp

;---
;-- TEST_6845: Returns set carry flag if 6845 doesn't lie in the

Abacus 10.6 Determining the Video Card Type

;-- port address in DX

test 6845 - proc near

mov al,OAh ; Register 10
out dx,al ;Register number in CRTC address reg.
inc dx ;DX now in CRTC data register

in al,dx ;Get contents of register 10
mov ah, al ;and move to AH

mov al,4Fh ;Any value
out dx,al ;~rite to register 10

mov cx, 100 ;Short wait loop to which
wait: loop wait ;6845 can react

in al,dx ;Read contents of register 10
xchg al, ah ;Exchange Ah and AL
out dx,al ;Send value

cmp ah,4Fh ;Written value been read?
je t6845 end ;YES --> End test

stc ;NO --> Set carry flag

t6845_end: ret ;Back to caller

test 6845 endp

;---
;--

FOUND_IT: Transfers type of video card to AL and type of
monitor in AH in the video vector

found it proc near

mov bx,di
cmp word ptr [bx],O
je set_data

add bx,2

set_data: mov [bx],ax
ret

found it endp

;Address of active structure
;Video system already onboard?
;NO --> Data in active structure

;YES --> Address of inactive structure

;Place data in structure
; Back to caller

;---
code ends

end
;End of code segment
;End of program

553

10. Accessing and Programming the Video Cards PC System Programming

1 O. 7 Accessing Video RAM from High Level Languages

The beginning of this chapter mentioned the option of video RAM access from
high level languages. This would allow the developer to write screen output
routines for high level languages that would execute faster than output commands
available to the languages, BIOS functions, or DOS functions. This option would
be particularly attractive if it meant that we could write these routines without
assembly language programming.

The demonstration programs below implement direct video RAM access routines
which display a string on the screen. Althrough there are some major differences
between the three programs as a result of the differences between the respective
languages (BASIC, Pascal and C), all three programs contain the same elements.

Initialization

Output

Each program includes an initialization routine which determines the segment
address of the video RAM. The routine has a variable which contains the address of
the CRTC address register. There is a direct relationship between the video RAM
and this address register: just as this register is always at port address 3B4H, the
video RAM on a monochrome card is always found at segment address BOOOH.
This combination also applies to color cards, where the address register is at port
address 3D4H and the video RAM is at segment address B800H. If we know the
port address of the CRTC address register, we can determine the segment address of
the video RAM. Once we have determined this address, we can place it in a global
variable and execute the initialization routine.

All three programs have an output routine which uses the segment address we
determined above. Each time the routine displays something, it determines the
starting address of the video page currently displayed on the screen. This ensures
that the output appears on the visible screen, and not on an undisplayed video
page. We can find this from the CRT_START BIOS variable. This variable is
located at address 0040:004E, and specifies the offset address of the displayed video
page relative to the video page found at offset address OOOOH.

After this address is determined, we can access the video RAM. The method used in
the program depends on the given programming language. Let's look at each
program in more detail.

The C implementation

554

From a programming point of view, this is the cleanest of the three
implementations because the video RAM can be treated as a normal variable in C.
We first define the structure VELB, which describes the ASCII/attribute pair as it
appears in the video RAM. We create a new data type, VP, to act as a pointer to
this structure. It is important that this pointer be of type FAR because these

Abacus 10.7 Accessing Video RAM from High Level Languages

structures are in the video RAM and therefore outside the C data segment. Smaller
memory models in C require the declaration of this pointer as a FAR pointer.

The global variable VPTR is initialized to be a pointer to the first ASCII/attribute
pair in page 0 of the video RAM. This occurs in the INIT_DPRINT routine. It is
used within the DPRINT function (the function used for display) as the basis for
addressing the characters within the video RAM.

The. DPRINT function loads the LPTR pointer with the address of the screen
output position passed to the routine. LP'IR is first loaded with the contents of the
global variable VPTR, and then with the offset address of the active video page, as
found in the CRT_ST ART BIOS variable, LP'IR must be cast as a BYIB pointer
because the contents of the BIOS variable refers to bytes, and not to VELB
structures. If the cast operator were missing, the C compiler would generate code
which would first multiply the contents of the BIOS variable by the length of the
VELB structure before adding it, resulting in the wrong value.

We can now add the display position to this pointer. The output position is passed
to DPRINT as row and column coordinates. The video RAM is treated as an array
of 2000 components, each of which is a VELB structure. Since we have computed
the base address of the array in LP'IR, all we need is to index into it. We multiply
the row coordinate by 80 (columns per line) and then add the column coordinate.
Finally we have a pointer to the output position in video RAM, which we can
treat like any other C pointer.

Each time through, the loop increments the pointer to the next VELB structure.
We write the ASCII code of the character and the color passed to DPRINT to the
specified address. This repeats until the program reaches the end of the string.

C listing: DVIC.C

/**/
/* D V I C */
/*--*/
/* Task : Demonstrates direct access to video RAM. *I
/*--*/
/* Author : MICHAEL TISCHER * /
/* Developed on : 10/01/1988 */
/* Last update : 06/21/1989 */
/*-------------------------------------,------------------------------*/
/* (MICROSOFT C) */
/* Creation : CL /AS DVIC.C */
/* Call : DVIC *I
/*--•/
I* (BORLAND TURBO C) *I
/* Creation : RUN menu command (no project file needed) */
/**/

/*== Include files ===*/

#include <dos.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <bios.h>

SSS

10. Accessing and Programming the Video Cards PC System Programming

556

/*== Type definitions ====~~====================================*/

typedef unsigned char BYTE;
typedef struct velb far * VP;
typedef BYTE BOOL;

/* Create a byte */
/* VP = FAR pointer in video RAM */
/* similar to BOOLEAN in Pascal */

/*== Structures ===-================~======-========---===-~*I

struct velb { /* Describes a 2-byte position on the screen */
BYTE character, /* ASCII code */

attribute; /* Character attribute */
J;

/*== Macros ==-===-======--====-=======================*I

/*-- MK FP creates a FAR pointer to an object from a segment
/*-- address and offset address

-------*/
-------*/

fifndef MK FP /* MK FP not defined yet? */
#define MK-FP(seg, ofsJ ((void far*) ((unsigned long) (seg)<<l61 (ofs)))
fendif -

#define COLOR(VG, HG) ((VG « 3) + HG)

/*== Constants ==*/

tdefine TRUE 1
#define FALSE 0

/* Constants for use with BOOL */

/*-- The following constants return pointers to variables from the ---*/
I*-- BIOS variable segment at segment address Ox40 ---*/

fdefine CRT START {{unsigned far*) MK FP{Ox40, Ox4E))
fdefine l\DDR 6845 {{unsigned far*) MK=FP{Ox40, Ox63))

#define NORMAL
fdefine BRIGHT
#define INVERSE
#define UNDERSCORED
#define BLINKING

#define BLACK
tdefine BLUE
#define GREEN
#define COBl\LTBLUE
#define RED
tdef ine VIOLET
#define BROWN
#define LIGHTGRAY
fdef ine DARKGRAY
fdef ine LIGHTBLUE
fdef ine LIGHTGREEN
fdef ine LIGHTCOBALT
#define LIGHTRED
fdef ine LIGHTVIOLET
tdefine YELLOW
tdefine WHITE

Ox07
OxOf
Ox70
OxOl
Ox80

OxOO
OxOl
Ox02
Ox03
Ox04
OxOS
Ox06
Ox07
OxOl
Ox09
OxOA
Ox OB
OxOC
Ox OD
Ox OE
OxOF

I* Character attribute definition */
/* Based on monochrome video card*/

I* Color attributes for color card */

/*==Global variables=========~~========== -- -======*/

VP vptr; /* Pointer to first character in video RAM */

/***
Function : D p R I N T

••------------------------~--**

*
*

*

Task

Input parameters

Writes a string directly to video RAM

- COLUMN
- LINES
- COLOR

output column
=output row

Character attribute

*
*
*
*
*

Abacus 10.7 Accessing Video RAM from High Level Languages

* - STRING - Pointer to string
Return value None *

***/

void dprint(BYTE column, BYTE lines, BYTE color, char* string)

register VP lptr;
register BYTE i;

/* Floating pointer in video RAM */
/* Points to number of characters */

/*-- Set pointer to output position in video RAM --------------------*/
lptr = (VP) ((BYTE far*) vptr + *CRT_START) +lines* 80 +column;
for {i=O ; *string ; ++lptr,. ++!) !* Exet:>ute string */

lptr->character - *(string++);
lptr->attribute = color;

/* Character in video RAM */
/* Set character attribute */

}

/***
* Function : I N I T D P R I N T
••----------------------------=---------------------------------------**

Task
Input parameters

* Return value
Info

Determines video RAM segment address for DPRINT
None
None
Allocates segment address of video RAM in VPTR
global variable

*

*
***/

void init_dprint()

vptr
}

(VP} MK_FP((*ADDR_6845 Ox3B4) ? OxBOOO OxBSOO, 0);

/***
* Function : C L S *
--

Task Clears the screen with the help of DPRINT

Input parameters - COLOR = Character attribute
Return value None

***/

void els(BYTE color)

static char blankline[Bl] =
(' ' ' ' ' , ' ' ' ' ' , ' ' , ' ' , ' ' , '

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' , , , , , , ,
' . . . ' ' ' ' . . ' ' . ' . , , , , , , , ' ' ' ' ' ' ' ' ' . , , ,

' ' , ,
' ' ' ' ' ' ' ' . , , ,

'
,

'
,

' ' , ' ' ' ' ' , ' ' , ' . , '\0'
} ;

register BYTE i;

for (i=O; i<24; ++i)
dprint(O, i, color, blankline);

' ' ' ' ' ' ' ,
'

,
' ' ' ' ' ' ' ' , , , , . . ' ' . . . , , , , . . ' ' . ' ' , , , , . . ' ' . ' , , , ,

' ' ' ' ' ' ' ' , , , ,
' ' ' . ' . ' ' , ,

'
,

' ' ' ' , , ' ' ' ' ' , , , ,
' ' ' ' ' ' ' ' , , , ,

/* Loop counter */

/* Execute each line */
/* Display blank line */

/***
* Function : N O K E Y *
--

Task Tests for a keypress
Input parameters : None
Return value : TRUE if a key is pressed, otherwise FALSE

***/

557

10. Accessing and Programming the Video Cards PC System Programming

BOOL nokey()

{
fifdef TURBOC
return""!"bioskey(1) ~ 0);

#else

I* Compiling this with TURBO C? *I
/* YES, read keyboard from BIOS */

/* Usinq Microsoft C */
) == 0); /*Read from BIOS*/ return (bios keybrd (KEYBRD READY

tendif - - - -

I

/**/
/** MAIN PROGRAM **/
/**/

void main()
(

BYTE firstcol,
color,
colUJDn,
lines;

/* Color of first square on the screen */
/* Color of current square */
/* Current output position */

init_dprint(); /*Determine seqment address of video RAM*/
els(COLOR(BLACK, GREEN)); /* Clear screen*/
dprint(22, O, WHITE, "DVIC - (c) 1988 by Michael Tischer");
firstcol = BLACK /* Start with black */
while(nokey()) /*Repeat until the user presses a key*/

{
if (++firstcol > WHITE)
firstcol = BLUE;

color = firstcol;

/* Reached last color? */
/* YES, continue with blue */

I* Set first color on the screen */

/*-- Fill screen with squares -------------------------------------*/
for (column=O; column < BO; column += 4)
for (lines=l; lines < 24; lines += 2)

I

I
dprint(column, lines,
dprint(column, lines+l,
color = ++color & 15;

color, "-");/*Block characters can*/
color, "-");/*be created by press- *I

/* inq <Alt><2><1><9> */

The Pascal implementation

558

By using the keyword ABSOLU1E or by linking in a small assembly\language
routine it would also be possible to treat the video RAM as a normal variable in
Turbo Pascal. But there's an easier way.

Turbo Pascal offers the arrays MEMW and MEM for accessing memory which is
outside of the data segment of the Turbo Pascal program. The array MEM consists
of bytes and the array MEMW of words. The two arrays don't actually exist and are
just mapped to the address space, but that doesn't affect their usefulness.

We can write values into the array as well as read from it. This is done with the
following statement:

MEMW[segment address offset address J := expression

or

variable ·= MEMW[segment address offset address J

Abacus 10.7 Accessing Video RAM from High Level Languages

The MEM array might be easier to use for this particular application since we will
be alternating between ASCII characters and a constant attribute. However, the
output procedure DPrint uses the MEMW array instead, because 16-bit accesses are
performed faster than two successive 8-bit accesses on 16-bit machines.

When accessing the MEMW array, DPrint takes the segment address of the video
RAM from the variable VSeg, which is initialized at the start of the program in
the procedure InitDPrint. As described before, this is done by examining the BIOS
variable which contains the port address of the CRTC address register. This and the
other BIOS variables are declared using the ABSOLUTE keyword, allowing them
to be used in the program like any other global variables.

The offset within the MEMW array is computed from the starting address of the
screen page. The coordinates are passed to DPrint, in which the row coordinate is
multiplied by 160 and the column coordinate by two. When running through the
string to be printed, the memory offset is incremented by two on each pass,
moving it one ASCII/attribute pair to the right.

Pascal listing: DVIP.P

{**}
{* DVIP *)
{*--*)
{* Task : Demonstrates direct access to video RAM from *)
{ * Turbo Pascal *)

{*--*)
{ * Author : MICHAEL TISCHER *)
{* Developed on : 10/02/1987 *)
{* Last update : 06/20/1989 *)

{**}

program DVIP;

Uses Crt, Dos;

canst NORMAL = $07;
LIGHT = $Of;
INVERSE = $70;
UNDERSCORED = $01;
BLINKING = $80;

BLACK = $00;
BLUE = $01;
GREEN = $02;
COBALTBLUE = $03;
RED = $04;
VIOLET = $05;
BRCMN = $06;
LIGHTGRAY = $07;
DARK GRAY = $01;
LIGHTBLUE = $09;
LIGHTGREEN = $DA;
LIGHTCOBALT = $OB;
LIGHTRED = $DC;
LIGHTVIOLET = $OD;
YELLOW = $OE;
WHITE = $OF;

type TextTyp = string[80];

var VSeg : word;

{ Use CRT and DOS units

Define character attributes in
conjunction with monochrome
video card

{ Color attributes for color card)

{ Segment address of video RAM)

559

10. Accessing and Programming the Video Cards PC System Programming

560

{**}
"{* InitDPrint: Determines segment address of video RAM for DPrint *)
(* Input : none *I
(* Output : none *I
{**}

procedure InitDPrint;

var CRTC_PORT : word absolute $0040:0063; (Variable in BIOS var.seq.)

beqin
if CRTC PORT = $3B4 then

VSeq :-= $BOOO
else

VSeq := $B800;

{ Monochrome card connected?
{ YES, video RAM at BOOO:OOOO

{ NO, must be a color card
{ Video RAM at BBOO:OOOO

end;

{**}
{* DPrint:
{* Input
{.

Writes a string direct into video RAM
- COLUMN: Output column
- LINES : Output line

*}
*}
*}
) ., (- COLOR : Color (attribute) for individual characters

(* - STROUT: String to be displayed
{* Output none *)
{**}

procedure DPrint(Column, Lines, Color : byte; StrOut : TextTypJ;

var PAGE OFS word absolute $0040:$004E; { Variable in BIOS var.seq.
Offset word; (Pointer to current output position
i, j byte; { Loop counter
Attribute : word; (Attribute for output

beqin
Offset := Lines * 160 + Column * 2 + PAGE OFS;
Attribute := Color shl 8; (Hiqh byte for word access to video RAM
i :=length(Strout); Determine string lenqth
for j:=l to i do { Execute string

begin (Put character & attribute directly into video RAM
memw[VSeq:Offset] :=Attribute or ord(StrCut[j]);
Offset := Offset + 2; { Set offset to next ASCII/attribute pair

end;
end;

{**}
(* Demo: Demonstrates application of DPrint *)
{* Input : none *}
(• Output : none •}
{**}

procedure demo;

var Column,
Lines,
Color

beqin

integer;

TextBackGround (BLACK) ;
ClrScr;
DPrint(22, O, WHITE, 'DVIP
Randomize;
while not KeyPressed do

beqin

{ Current output position }

(Turn background black
{ Clear screen

- (c) 1988 ~Y Michael Tischer');
(Enable random number generator

(Repeat until user presses a key

1;

Select column, row and
color at random

Column:= Random(76);
Lines := Random(22) + 1;
Color := Random(14) +
DPrint(Column, Lines, Color, '[[[[');{Block character can be

Abacus 10.7 Accessing Video RAM from High Level Languages

DPrint(Column, Lines+l, Color, '[[[[');{ created by pressing
end; {<Alt><2><1><9>

ClrScr; { Clear screen
end;

{**}
{ ** MAIN PROGRAM * *}
{**}

begin
InitDPrint;
Demo;

end.

Initialize output using DPrint
{ Demonstrate DPrint

The BASIC implementation

This version doesn't really fulfill its goal, since it is slower than the already slow
PRINT command. But we have included it for the sake of completeness, and
because it is a good example of how you can access the entire address space of the
8088 from within BASIC.

The commands DEF SEG, PEEK, and POKE are the heart of memory access in
BASIC. DEF SEG sets the segment address of the "current" 64K segment. PEEK
and POKE can then be used to read and write bytes from or to this segment. This
technique is used in the initializ.ation routine at line number 50000, which first
defines the BIOS variable segment as the current segment. From there two PEEK
commands read the port address of the CRTC address register and the variable VR
is loaded with the segment address of the video RAM.

This address is used in the output routine at line number 51000 in combination
with the DEF SEG command, which defines the video RAM as the current
segment. But first we calculate the offset address in the video RAM by reading the
start address of the current screen page from the BIOS variable area and then adding
the offset address of the output position within the video RAM. As in the Pascal
version, this is calculated by adding the product of the row coordinate (variable
CLINE%) by 160 and the column coordinate (COLUMN%) by 2.

BASIC listing: DVIB.B

100
110
120
130
150
160
170

'**'
D V I B

'*--*'
Task Demonstrates direct access to video RAM
Author : MICHAEL TISCHER *'
Developed on : 10/01/1988
Last update : 06/21/1989

180 1 ** 1

190 '
200 CLS : KEY OFF
210 GOSUB 50000 'Determine segment address of video RAM
220 COLUMN%-22 : CLINE%-O COL% - 15
230 T$ - "DIVB - (c) 1988 by MICHAEL TISCHER" : GOSUB 51000
240 FCGL% - O : T$ - " [[[[" 'Define string and starting color
250 A$ - INKEY$: IF A$<>'"' THEN 400 'Repeat until user presses a key
260 FCOL% - FCOL% + 1 'Increment starting color
270 IF FCOL% > 15 THEN FCOL% - 1 'When FCOL%-16 make FCOL%-1
280 COL% - FCOL%
290 FOR COLUMN%-O TO 76 STEP 4
300 FOR Z\-1 TO 24 STEP 2

'Set color for first square
'Execute for each column

'Execute for each line

561

10. Accessing and Programming the Video Cards PC System Programming

562

310 CLINE\ = 2' : GOSUB 51000
320 CLINE' = Z'+l GOSUB 51000
330 COL' - COL\ + 1 AND 15
340 NEXT
350 NEXT
360 GOTO 250
370 '
400 CLS
410 END
460 •

'Display first line of square
'Display second line

•Set next color

'Clear screen

50000 '**'
50010 '* Determine segment add:t;ess of video RAM *'
50020 ··--~--··
50030 • * Input : none *'
50040 '* output : VR is the segment address of video RAM
50050 '**'
50060 '
50070 DEF SEG = &H40 'Segment address of BIOS variable range
50080 VR = PEEK(&H63) + PEEK(&H64) * 256 'Get CRTC port
50090 IF VR = &H3B4 THEN VR = &HBOOO ELSE VR = &HB800
50100 RETURN 'Back to caller
50120 '
51000 '**'
51010 '* Write string direct into video RAM *'
51020 '*--*'
51030 • * Input - COLUMN% = the output column *'
51040 - CLINE\ = the output line *'
51050 '* - COL% = string color
51060 - T$ = the string to be displayed
51070 Output : none *'
51080 '**'
51090 '
51100 DEF SEG = &H40 'Segment address of BIOS variable range
51110 OF\ = PEEK(&H4E) + PEEK(&H4F) * 256 'Starting address of page
51120 OF\ = OF\ + COLUMN\ * 2 + CLINE\ * 160 'Offset Of first character
51130 DEF SEG = VR 'Set segment address of video RAM
51140 FOR I\=l TO LEN(T$) 'Execute string
51150 POKE OF%, ASC(MID$(T$,I%,1)) 'ASCII code in video RAM
51160 POKE OF%+1, COL% 'Color in video RAM
51170 OF%= OF%+ 2 'Set offset to next character
51180 NEXT
51190 RETURN
51200 '

'Back to caller

Chapter 11

Accessing and Programming
the AT Realtime Clock

The AT has a battery operated realtime clock on the main circuit board. The clock
is part of the Motorola MC-146818 processor. This processor also contains 64
bytes of battery backup RAM. This RAM accepts clock data and system
configuration data. It can be accessed through port addresses 70H to 7FH.
However, only ports 70H and 71H are of interest to the user.

Realtime clock registers

As the following table shows, the clock has thirteen memory registers of interest

Re_gister Meaning
0 Current second
1 Alarm second
2 Current minute
3 Alarm minute
4 Current hour
5 Alarm hour
6 Da_y_ of the week
7 Number of day
8 Month
9 Year
10 Clock status r~ister A
11 Clock status register B
12 Clock status register C
13 Clock status register D

Every time field (second, minute, hour) has a similar alarm field. These alarm
fields allow the programmer to set the clock to trigger an interrupt at a parucular
time of the current day (more on this later).

563

11. Accessing and Programming the AT Realtime Clock PC System Programming

Weekday

Year

The day of the week provides the number of the current weekday: The value 1
represents Sunday, the value 2 stands for Monday, 3 for Tuesday, etc.

The year is counted relative to the century (the system assumes 1900). The value
87 in this field represents the year 1987.

The four status registers allow user programming of the clock.

7 6 5 4

Interrupt frequency

-------Time frequency

VIP
------------1o:Tlme not actualized

1 =Time actualized

Status register A of the clock

The ROM-BIOS set the two lower fields of these registers during the system boot.
The interrupt frequency field has a default value of OllO(b). This value results in
an interrupt frequency of 1024 interrupts per second (an interrupt every 976,562
microseconds).

The contents of the time frequency field is OlO(b). This field triggers a time
frequency of 32,768 kiloHertz.

Bit 7 of the status register is of interest to the programmer in conjunction with
these two fields. It indicates whether a second has just elapsed, and increments the
time fields (seconds, minutes, hour). If a second hasn't elapsed, this bit contains a
1. This bit is interesting because you can only read the individual time fields when
the time is not being updated. Otherwise a minute could pass and the second
counter reset to 0 before the minute counter could be incremented. This could cause
a time jump from 13:59:59 to 13:59:00, then the correct display of 14:00:01 one
second later.

Accessing status register A

564

Since status register A is a part of the 64-byte RAM, you can access it like any
other memory location. First you load the number of the memory location to be
accessed into the AL register (in this case, the value 10). Then you pass this value
to port 70H using the OUT instruction. The chip recognizes that an access to one

Abacus 11. Accessing and Programming the AT Realtime Clock

of its memory locations occurred. Either an OUT instruction then writes to port
71H or an IN instruction reads the memory contents from port 7IH.

The following instructions read or write a memory location in the realtime clock:

READ:
mov al,Memory_location
out 70h,al
in al, 7lh

WRITJ::
mov al,Memory_location
out 70h,al
mov al,New_contents

Status register B

Some clock settings can be programmed through status register B. Bit 0 of status
register B controls daylight savings time status. When this bit is set to 1, it
indicates that daylight savings time is in effect. A value of 0 (the default value for
this bit) shows that standard time is in effect.

Bit 1 decides whether the clock should operate in 12-hour or 24-hour mode. In 12-
hour mode it switches after every 12 hours (midnight and noon) to 1 o'clock again.
The 24-hour mode switches to 1 o'clock after 24 hours. 24-hour mode is active
when you boot the system.

7 6 5 4 3 2 1 0 bit ..,... ______ _

I I I I I I I I I ~~~~~ht savings time

l b;no J
24-/12-hour format
0:12-hour
1 :24-hour

!Time and date format
O:BCD
1:blna!'.I_

_!flock generator
h_:off

:on
Call Interrupt after
time actualization
O:no
1=yes

Call alarm Interrupt
O:no
1:_I..eS

Call periodic Interrupt
O:no
1:yes

Actualize time
O:yes
1:no

Clock status register B

565

11. Accessing and Programming the AT Realtime Clock PC System Programming

566

Bit 2 defines the fonnat in which the time and date fields are stored. If this bit
contains a 1, the various dates are stored in binary notation. The year (19)87 is
coded as OIOIOlll{b) in BCD fonnat, which is switched on by the value 0 in bit
2. Two numbers are stored in every byte. The higher half is stored in the most
significant four bits and the lower half in the least significant four bits.

27 26 25 24 23 22 21 20 Bit value

7654 3210
Binary lol1lol1lol1l1l1I

0 +64+ 0 +16 + 0 + 4 + 2 + 1 = 87

23 22 21 20 23 22 21 20 Bit value
7 6 5 4 3 2 1 0

BCD l1lololol I o I 1 I 1 I 1 I
8+0+0+0=8 0+4+2+1

8*10 + 7

(8*10) + 7 87

The number 87 in binary and in BCD (Binary Coded Decimal) format

Normally this bit contains a 0 and the numbers are stored in BCD fonnat

Note: BIOS assumes BCD representation when performing the date
function with interrupt lAH. Application programs which call these
functions and obtain the infonnation in binary format instead of the
expected BCD may crash. The same applies to the 12-hour/24-hour
time measurement, although a change to the 12-hour cycle wouldn't
result in as serious consequences as the change in the date.

Bit 4 determines whether an interrupt should be called after the time (and date)
update. This bit must contain a 1 if an interrupt should be called. The system
suppresses this interrupt by setting this bit to 0 during the booting process.

Bit 5 can trigger an alarm. The clock reads the alarm time from locations 1, 3 and
5 (seconds, minutes and hours) of clock RAM. When the alarm time is reached, an
interrupt executes when bit 5 is set to 1. The system suppresses this interrupt
when it sets bit 5 to 0 during the booting process.

Bit 6 controls periodic interrupt calls when it is set to 1. The frequency of the
interrupt calls depends on the interrupt frequency coded into bits 0-3 of status
register A. Since the default value on bootup is a frequency of 1,024 kiloHertz, the
interrupt triggers every 967 ,562 microseconds. Since bit 6 is set to 0 at the system

Abacus 11. Accessing and Programming th£ AT Realtime Clock

start, an application program must set it to 1 before periodic interrupt calls can
execute.

Bit 7 controls the periodic updating of the time and date, once every second. This
bit is set to 0 when you boot the system so that the time constantly increments.
Before entering a new date and time in the various memory locations, this bit
should be frrst set to 1 to prevent the clock from changing the time immediately.
Once you have entered all the data necessary, this bit can be reset and the time can
continue updating.

Calling the correct interrupt

We've used the phrase "calling the interrupt" many times in this section, without
really telling you ~ interrupt should be called. Even though there are several
reasons for the clock to call an interrupt (alarm time, periodic interrupts, etc.),
interrupt 70H is the interrupt consistently called. This interrupt contains a BIOS
routine which controls the two time functions in interrupt 15H, among other
things.

The routine uses status register C of the clock to determine the reason for the call.
Only bits 4, 5 and 6 of this register are of interest to us here. They correspond to
the bits in status register B. For example, when you trigger the alarm interrupt
(which can only occur if bit 5 in status register B was set) then bit 5 in status
register C is also set to indicate that the alarm time has been reached.

7 6 5 4 3 2 1 0 bit

1111:11:1::::1111: I I I 11:11111·::1:111:1:11::1:1·1:::.:111::11:·:.::11::1111:::m1·11111·1.::11
·····.··.· ····.· .. . ··.····· ···.·

1=close time actualization

1:perlodlc Interrupt call

1=alarm time reached

Status register C

The flfst task of the routine which intercepts interrupt 70H is to read status register
C. The routine then determines the reason for the interrupt call and reacts
accordingly.

567

11. Accessing and Programming the AT Realtime Clock PC System Programming

Status register D

Status register D only has one bit of interest: bit 7. It indicates the status of the
battery which maintains the storage of data, even when the PC's power supply is
turned off. If this bit has the value 0, you should replace the battery because the
present battery is dead or near death.

Some configuration information follows status register D.

~te Meanin...'l.
14 Dia_gpostic b_y_te
15 Status on termination of the ~stem
16 Disk descri.E_tion
17 reserved
18 Hard Disk descri.E_tion
19 reserved
20 Con f i_g_ur at ion
21 Low ~te of the main memory in kilo~es
22 H.i:gh b_y_te of the main memor_y_ in kilo~tes
23 Low by_te of the additional memory in kilo~tes
24 H-1='l_h b_y_te of the additional memor_y_ in kilo~tes
25-45 reserved
46 H-1='l_h ~te of the checksum for memor_y_ locations 16-32
47 Low byte of the checksum for memory_ locations 16-32
48 Low b_y_te of the additional memo9'._ in kilo~tes
49 High ~te of the additional memor_y_ in kilob~tes
50 the first two numbers of the centur_y_ as BCD number
51 Boot information
52-63 reserved

Diagnostic byte (address 14)

Bit Meanin_g_
0-2 reserved
3 0 = Hard disk and controller o.k.

1 = Hard disk not present or not functional
4 0 = Memory size in memory locations 21-24

1 = other memor_y_ size determined duri~ bootinq
5 0 = Configuration in memory location 20 o.k.

1 = another confi...!l_uration found duriJ!<l. booti~
6 0 = Checksum in memory location 46 and 47 o.k.

1 = Checksum in memor_y_ location 46 and 47 is false
7 0 = Battery is o.k.

1 = Batter_y_ dead or almost dead

568

Abacus 11. Accessing and Programming the AT Realtime Clock

Disk description (address 16)

bit meaning_
0-3 ~e of second installed drive (DOS designation: B)

OOOO(b) = no second disk drive
OOOl(b) = 320/360K drive
0010 (b) = 1.2 m~a~te drive

4-7 ~e of first installed drive (DOS des.iJ!.nation: A)

0000 (b) = no disk drive
0001 (b) = 320/360K drive

Note: If you program the clock for generating time-dependent interrupts,
and you point interrupt vector 70H to a user routine, remember that
if the user routine's end doesn't return to the BIOS, you must send an
EOI instruction to the ATs two interrupt controllers, since interrupt
70H is a hardware interrupt triggered by one of these controllers.

Demonstration programs

The three programs listed below show how you can access the realtime clock from
BASIC, Pascal or C. Three routines in particular perform most of the functions.
The first routine reads a value from one of the clock's memory locations. The
second routine places a value there. The third routine checks whether the clock is
operating in binary mode or BCD mode, then reads a memory location in the
clock, converting the contents of this location from BCD into binary if necessary.
This routine is important for access to all memory locations containing
information on date and time which could be coded in BCD or in binary format

The main program checks the battery on the clock. If there's power in the battery,
the program calls two routines which read the contents of the memory locations
for the current date and current time from the clock, among other things. This data
appears on the screen.

The main program doesn't access the routine for description of memory locations.
It should be easy to convert the program so that the routine for the description of
memory locations writes to the clock instead of reading date and time. This is just
a suggestion; feel free to experiment.

BASIC listing: RTC.BAS

100 '***••·
110 R T C

120 '*---··
130 '* Task : makes two Subroutines available
140 '* for reading and writing data
150 '* from the RTC of the AT *'
160 '* Author : MICHAEL TISCHER *'
170 '* developed on : 7.24.87 *'
180 •• last Update : 9.21.87
190 '***••·
200 '
210 CLS 'Clear Screen
230 PRINT"RTC (c) 1987 by Michael Tischer• : PRINT

569

11. Accessing and Programming tlu! AT Realtilne Clock PC System Programming

570

240 PRINT"Information from the battery buffered real time clock •
250 PRINT"---=--·-----==--·--====--=-=----~~•
260 PRINT
270 ADR' • 14 : GOSUB 50000 'read diagnostic-byte from the RTC
280 IF (CON' AND 128) = 0 THEN 310 'bit 8 - 1 --> battery o.k.
290 PRINT" WARNING! The battery of the clock is low!"
300 F.ND
310 ADRt - 11 : GOSUB 50000 •read status-register B of the RTC
320 PRINT"- the clock is operated in •;(CON' AND 2) * 6 + 12;"hour-mode •
330 PRINT"- the time: •;
340 ADR\ = 4 : GOSUB 52000 •read the hour and convert to decimal
350 PRINT USING "ff:";CON';
360 ADR\ = 2 : GOSUB 52000
370 PRINT USING •ff:";CON\;
380 ADR' • 0 : GOSUB 52000
390 PRINT USING "ff";CON\
400 PRINT"- the date: •;
410 ADR\ = 6 : GOSUB 52000
420 RESTORE 540

•read the minutes and convert to decimal

•read the seconds and convert to decimal

•read day of week and convert to decimal

430 FOR It = 1 TO CON\ : READ DAY$: NEXT 'read name of the day
440 PRINT DAY$;•, the •;
450 ADR\ = 7 : GOSUB 52000 'read day of month and convert to decimal
460 PRINT USING "11.";CON\;
470 ADR\ = 8 : GOSUB 52000 'read month and convert to decimal
480 PRINT USING "U.";CON\;
490 ADR\ = 9 : GOSUB 520QO 'read year and convert to decimal
500 PRINT USING "IHl";CON\+1900
510 PRINT
520 F.ND
530 '
540 DATA "Sunday", 11Monday 11 , 11 Tuesday", 11Wednesday"
550 DATA "Thursday","Friday•,•saturday•
560 '
SQQQQ '***G
50010 '* read the content of a memory location of the RTC
50020 ··---*'
50030 '* Input: ADR\ =the number of the memory location (0 to 63)
50040 '* Output: CON% = the content of this storage location
50050 '***'
50060 '
50070 OUT &H70,ADR%
50080 CON\ = INP(&H71)
50090 RETURN

'number of memory location to RTC-address-register
'read Content from RTC-data-register
'back to caller

50100 '
51000 '***'
51010 '* write a memory location in the RTC *'
51020 '*---*'
51030 '* Input: ADR\ =the number of the memory location (0 to 63) *'
51040 CON% = the new content of this memory location
51050 '* Output: none
51060 '***'
51070 '
51080 OUT &H70,ADR%
51090 OUT &H71,CON%
51100 RETURN

'number of memory location to RTC-address-register
•write new content into RTC-data-register
'back to the caller

51110 '
52000
52010
52020
52030
52040
52050
52060

'***'
'* read the content of a date or time memory location
'* from the RTC and convert to decimal
'*----------------~--*'

Input : ADR\ = the number of the memory location (0 to 63)
'* Output: CON% =the new content of this memory location
'* Info : ADR' is changed by this subroutine

*'
*'
*'

52070 '***'
52080 '
52090 GOSUB 50000 •read content of the memory location
52100 BCD% = CON\ 'record content of the memory location
52110 ADR% = 11 'Address of the Status registers B of the RTC
52120 GOSUB 50000 'read its content
52130 IF (CON% AND 2) 0 THEN 52150 'test if BCD-mode

Abacus 11. Accessing and Programming the AT Realtime Clock

52140 BCD% - (BCD% AND 15) + INT(BCD% I 16) * 10
52150 CON% - BCD%

•convert BCD to decimal
•set return value

52160 RETURN 'back to caller

Pascal listing: R TC.PAS

{***}
{* RTC *I

{*---*}
{ • Task : makes two Functions available for reading and •}
{ • writing data in the RTC *}

{*---*!
{. Author MICHAEL TISCHER • }
{* developed on : 7.10.87 *}
{* last Update : 9.21.87 *I
{***}

program RTCP;

Uses
Crt;

const RTCAdrPort
RTCDtaPort

$70;
$71;

{Turbo 4.0 only}

Address-Register of the RTC
{ Data-Register of the RTC

SECONDS
MINUTE
HOUR
DAYOFWEEK
DAY

O;
2;
4;
6;
7;
B;
9;

{ Addresses of some memory locations of RTC

MONTH
YEAR
STATUSA
STATUSB
STATUSC
STATUSD
DIAGNOSIS
YEARHUNDRED

10;
11;
12;
13;
14;
50;

{***}
{* RTCREAD: reads the content of a memory location of the RTC *}
{ * Input the address of the memory location in the RTC *I
{ • output the content of this memory location * J
{ * Info if the Address is outside the permitted area * J
{* (0 to 63), the value -1 is returned *I
{***}

function RTCRead(Address : integer) : integer;

begin
if (Address < 0) or (Address > 63)
then RTCRead := -1
else
begin

port[RTCAdrPort] :=Address;
RTCRead := port[RTCDtaPort]

end
end;

{ is the Address o.k.?
{ NO!

{ transmit Address to the RTC
{ read its Content

{***}
{* RTCDT read a memory location for date or time from the *I
{ • RTC and convert the result into a binary value *}
{* if the RTC works in BCD-Format *I
{ * Input the address of the memory location in the RTC * J
{* output the content of this memory location as binary value *}
{* Info if the address is outside the permitted area (0 - 63) *}
{* the value -1 is returned *I

571

11. Accessing and Programming the AT Realtime Clock PC System Programming

572

{***}

function RTCDT(Address integer) : integer;

var Value : integer; { for memory of a value which was read I

begin
if (RTCRead(STATUSB) and 2 = 0)
then RTCDT := R~CRead(Address)
else

BCD- or Binary-Mode?
(is Binary-Mode

{ is BCD-Mode
begin

Value :=
RTCDT :=

RTCRcad(Address); { get Content of the memory location
(Value shr 4) * 10 + Value and 15{ convert BCD to binary

end
end;

{***}
(* RTCWRITE: write a value into one of the memory locations of RTC *}
(* Input see below *I
{*Output none *I
(* Info the address can be between 0 to 63 *}
{***}

procedure RTCWrite(Address : integer;
Content : byte);

begin
port[RTCAdrPort]
port[RTCDtaPort] :=

end;

Address;
Content

{ the address of the location
(the new content

{ transmit address to the RTC
{ write new value

{***}
{* MAIN PROGRAM *}
{***}

begin
clrscr; { Clear Screen }
writeln('RTC (c) 1987 by Michael Tischer'#l3#10);
writeln('Information from the real time clock ');
writeln('==='f13#10);
if RTCRead(Diagnosis) and 128 = O then { is the Battery o.k.? }
begin { the Battery is o.k.)
writeln('-the clock is being operated in •, (RTCRead(STATUSB) and 2)*6+12,

• hour-mode•) ;
writeln('- the time: ', RTCDT(HOUR), ':', RTCDT(MINUTE):2,

':', RTCDT(SECONDS):2);
write (' - the date: •) ;
case RTCDT(DAYOFWEEK) of

1 write('Sunday');
2 write ('Monday•);
3 write (•Tuesday•) ;
4 write('Wednesday');
5 write('Thursday');
6 write{'Friday');
7 write (•Saturday•)

end;

{ Read Day of the Week }

writeln(', the ',RTCDT(DAY), RTCDT(MONTH),

end
else
write('

end.

RTCDT(YEARHUNDRED), RTCDT(YEAR));

(the Battery of the RTC is exhausted!
WARNING! The Battery of the clock is low!')

Abacus 11. Accessing and Programming the AT Realtime Clock

C listing: RTC.C

/***/
I* R T C *I
/*---*/ /* Task : provides two Functions for reading and writing */
/* Data in the Real Time clock */

/*---*/
I* Author MICHAEL TISCHER */
I* developed on : 8.15.87 */
I* last Update : 9.21.87 */

/*---*/
I* (MICROSOFT C) *!
/* Creation MSC RTCC; */
/* LINK RTCC; */
/* Call RTCC *I
/*---•/
/* (BORLAND TURBO C) */
I* Creation : Through the RUN command in the command line */
/***/

finclude <dos.h>
#include <conio.h>

#define byte unsigned char

fdefine RTCAdrPort Ox70
tdef ine RTCDtaPort Ox71

#define SECONDS 0
fdefine MINUTE 2
fdefine HOUR 4
tdefine DAYOFWEEK 6
#define DAY 7
#define MONTH 8
#define YEAR 9
fdef ine STATUSA 10
#define STATUSB 11
#define STATUSC 12
#define STATUSD 13
tdef ine DIAGNOSE 14
#define YEARHUNDRED 50

/*

/* Include header-files */

/* address-register of the RTC */
I* data-register of the RTC */

addresses of some memory locations of RTC *I

/***/
/* RTCREAD: reads the content of a memory location of the RTC
/* Input : the address of the memory location in the RTC

*/
*/
/ / Output : the Content of this memory location

/***/

byte RTCRead(Address)
byte Address;

}

outp(RTCAdrPort, Address);
return(inp(RTCDtaPort));

/* the memory location of the RTC */

I* transmit address to the RTC */
/* read content and transmit to caller */

/***/
I* RTCDT reads date or time from one of the memory locations */
/* and converts the result into a Binary value */
/* if the clock works in BCD-Format */
/* Input the address of the memory location in the RTC */
/* Output the content of this memory location as Binary Value */
I* Info :if the address is outside the permitted area */
I* (0 to 63) the Value -1 is returned */
/***/

byte RTCDt(Address)
byte Address; /* the memory location in the RTC */

573

11. Accessing and Programming the AT Realtime Clock PC System Programming

574

{

}

if (RTCRead(STATUSB) & 2)
return((RTCRead(Address) >> 4)

else return(RTCRead(Address));

/* BCD- or binary mode? *I
* 10 + (RTCRead(Address) & 15));

/* is binary mode *I

/***/
/* RTCWRITE: write a value into one of the memory locations of RTC */
/* Input see below */
/* Output none */
/* Info the address must be between O to 63 */
/***/

void RTCWrite(Address, Content)
byte Address;

outp(RTCAdrPort, Address);
outp(RTCDtaPort, Content);

}

/* address of the memory location */

/* transmit address to the RTC */
I* write new value */

/***/
/** MAIN PROGRAM **/
/***/

void main()

static char *Weekdays[] = /* Names of the weekdays */

"Sunday 11 , 11 Monday", 11 Tuesday", 11Wednesday 11 ,"Thursday", 11 Friday11 , 11 Saturday11

};

printf("\nRTC (c) 1987 by Michael Tischer\n\n");
printf ("Information from the real time clock\n");
printf("===\n\n");
if (! (RTCRead(DIAGNOSE) & 128}) /* is the Battery o.k.? */

{ /* the Battery is o.k. */
printf ("- The clock is operated in \d hour mode \n",

(RTCRead(STATUSB) & 2)*6+12);
printf("- the time: %2d:%2d:%2d\n",

RTCDt(HOUR), RTCDt(MINUTE), RTCDt(SECONDS));
printf ("- the date: ");
printf("\s, der %d.%d.%d\d\n", Weekdays[RTCDt(DAYOFWEEK)-1],

RTCDt(DAY), RTCDt(MONTH), RTCDt(YEARHUNDRED), RTCDt(YEAR));

else printf(" WARNING! The battery of the clock is low!\n");

Chapter 12

Keyboard Programming

The keyboard is an independent umt m the PC system, and has its own
microprocessor and memory. The processor informs the system when a key is
pressed or released. It does this by sending the system something called a scan code
when a key is pressed or released. In both cases the key is indicated by a code
which depends on the position of the key. These scan codes have nothing to do
with the ASCII or extended keyboard codes to which the system later converts the
keypresses.

Communication with the system is performed over two bi.directional lines using a
synchronous serial communications protocol. In addition to the actual data line
used to transfer the individual bits, the clock line synchronizes the periodic
transmission of signals. Transfers are made in one-byte increments, whereby a stop
bit is transmitted first (with the value 0), followed by the eight data bits,
beginning with the least significant bit. A parity bit, calculated using odd parity,
follows the eighth data bit. The transfer of a byte then concludes with a stop bit,
which forms the eleventh bit of the transfer. At both ends of the communications
line (i.e., in the PC and in the keyboard itself) are devices which convert the
signals on the data line to bytes and back again.

Although all types of PCs use this form of communication, we must distinguish
between PC/XT and AT models. These systems use different processors as
keyboard controllers. The Intel 8048 used in the keyboards of PCs and XTs is a
relatively "dumb" device, which can only send the scan codes to the system.
However, the 8042 processor used in AT and 80386 keyboards can do much more.
Here the communication between the system and the keyboard becomes relatively
complex, and the system can even control parts of the keyboard.

The heart of this communication at the keyboard end is represented by a status
register and input and output buffers. The buffers transfer:

Keyboard codes which correspond to pressing or releasing a key

Data which the system requests from the keyboard

575

12. Keyboard Programming PC System Programming

576

These buffers can be accessed at port 60H on the AT.

The input buffer can be written at port 60H as well as port 64H. The port which is
used depends on the type of information to be transferred. If the system wants to
send a command code to the keyboard, it must be sent to port 60H, while the
corresponding data byte is sent to port 64H. Both end up in the keyboard input
buffer, but a flag in the status register indicates whether a command byte (port
64H) or a data byte (port 60H) is involved.

In addition to this flag, bits 0 and 1 of the keyboard status register are especially
important for communication with the keyboard. Bit 0 indicates the status of the
output buffer. If this bit is 1, then the output buffer of the keyboard contains
information which has not yet been read from port 60H. Reading from this port
will automatically set this bit back to 0, indicating that there is no longer a
character in the output buffer.

Bit 1 of the status register is always set whenever the system has placed a character
in the input buffer, before this character is processed by the keyboard. Nothing
should be written to the keyboard input buffer unless this bit is equal to 0,
signalling that the input buffer is empty.

1 = Output buffer full

""-----t 1 = In ut buffer full

Command/data
1 = Output from port 64(h)
0 = Output from port 60(h)

'-----------1 1 = Keyboard active

----------- 1 = Time out error (output)

------------- 1 =Time out error (Input)

--------------1 1 = Parity error

AT keyboard controller status registers

Of the various commands that a system can send to the keyboard, two are of
interest for applications programs because they also play a roll outside a keyboard
interrupt handler. The first of these commands sets the typematic or repeat rate of
the keyboard. This is the number of make codes per second which the keyboard
will send to the system when a key is pressed and held down. It can be between
two and 30 codes per second. To prevent the keys from repeating unintentionally,
this repeat function does not begin until after a certain delay. This delay time can
be set by the user and is encoded in binary as follows:

Abacus 12. Keyboard Programming

Codin_g_ for AT kqboard delq rate

Code Delq rate
00 (b) 1/4-second

01 (b) 1/2-second
10 (b) 1/4-second

11 (b) 1 second

The keyboard will observe these times with a tolerance of ±20%.

The repeat rate, also called the typematic rate by IBM, is also encoded in binary.
The following table shows the relationship between the repeat (typematic) rate and
the number of repetitions per second.

'l'.YE_ematic rate codes for the AT k~oard
Code RPS* Code RPS Code RPS Code RPS
11111 (b) 2.0 10111 (b) 4.0 01111 (b) 8.0 00111 (b) 16.0
11110 (b) 2.1 10110 (b) 4.3 01110 (b) 8.6 00110 (b) 17.1

11101 (b) 2.3 10101 (b) 4.6 01101 (b) 9.2 00101 (b) 18.5
11100 (b) 2.5 10100(b) 5.0 01100 (b) 10.0 OOlOO(b) 20.0
11011 (b) 2.7 10011 (b) 5.5 01011 (b) 10.9 00011 (b) 21.8
11010 (b) 3.0 10010(b) 6.0 01010 (b) 12.0 OOOlO(b) 24.0
11001 (b) 3.3 10001 (b) 6.7 01001 (b) 13.3 OOOOl(b) 26. 7
11000 (b) 3.7 lOOOO(b) 7.5 01000 (b) 15.0 OOOOO(b) 30.0

*R~etitions Rer second

This relationship may seem somewhat arbitrary at first, but it does follow a
mathematical formula. The binary value of bits 0, 1, and 2 of the repeat rate form
variable A, and the binary value of bits 3 and 4 form variable B:

(8 + A) * 2B * 0.00417 * 1/second

The delay and repeat rate values are combined into a byte by placing the five bits
of the repeat rate in front of the delay value. However, we can't just send this value
straight to the keyboard. We must first send the appropriate command code (34H)
and then the repeat parameters. Both bytes must be sent to port 60H, but we
cannot just send them with an OUT instruction. We have to use a transmission
protocol which includes reading the keyboard status, and which also accounts for
the possibility that the transfer might not work the first time. Since we have to do
this for both bytes, we should write a subroutine to do it. The structure of this
subroutine is shown in the following flowchart.

577

12. Keyboard Programming

YES

Error counter - 3

Read keyboard
status port

Send character to
keyboard data port

Read keyboard
status port

NO

Read answer from
data port

Okay, end

NO

PC System Programming

Decrement

error counter

Error, end

NO

Program flowchart-byte transfer via keyboard

578

Abacus 12. Keyboard Programming

We first load an error counter which allows the routine to try to send the byte three
times before an error is returned. Then the keyboard status port is read in a loop
until bit 0 is cleared and the input buffer of the keyboard is empty. Then we can
send the character to port 60H. To make sure that the character got there all right (a
parity error might have occurred, for example), the keyboard sends back a reply
code. This has been received when bit 1 of the keyboard status port is set.

This register is again read from port 64H in a loop until this condition is met.
Now we can read the reply to our transmission from the keyboard data port. If it is
the code OFAH, which stands for "acknowledge," the transmission was successful.
Any other code indicates an error, which tells the subroutine to decrement the error
counter and repeat the whole process, provided the counter has not reached zero. In
this case the subroutine ends and signals an error to the caller.

Demonstration programs

To give you an example of how this works, the following pages contain programs
in BASIC, Pascal, and C which you can use to set the key repeat parameters on
your keyboard. The heart of these programs is an assembly language routine which
sends the parameters to the keyboard. Within this routine is the subroutine we just
discussed, which is first called to send the Set Typematic instruction to the
keyboard. Another call is used to send the parameters themselves.

In the Pascal and C versions, the key repeat rate and the delay values are specified
as separate parameters following the program name entered at the DOS prompt
Naturally this is not possible in GW-BASIC, so the two parameters are read
within the program with the INPUT command

We also included the listing of the assembly routines for the various programs.
The BASIC and Pascal programs include these with DAT A or INLINE statements;
the linker links these statements to the C version of the program.

To see the effect of the key repeat rate, first try setting the smallest repeat rate (0)
and then the highest rate (30). Try pressing and holding a key at each of these
settings to see the results.

BASIC listing: TYPMB.BAS

100 '**'
110 T Y P M B

120 '*--*'
130 Description : Sets the key repeat rate of the AT keyboard.
150 '* Author : MICHAEL TISCHER
160 '* developed on : 09/08/1988
170 '* last update : 09/08/1988

*.

180 '**'
190 •
200 CLS : KEY OFF
210 PRINT "Note: This program may be run only if GWBASIC has been started";
220 PRINT "from the DOS level"
230 PRINT "with the command <GWBASIC /m:60000> and the computer is an AT."
260 PRINT : PRINT" If this is not the case, then please enter <s> for Stop."
280 PRINT "Otherwise press any other key .•• •;

579

12. Keyboard Programming PC System Programming

290 A$ = INKEY$: IF A$ = "s" THEN END
300 IF A$ = "" THEN 290
310 CLS 'clear screen
320 GOSUB 60000 'install assembler routine
330 PRINT "TYPMB - (c) 1988 by MICHAEL TISCHER"
340 PRINT •sets the repeat rate of the AT keyboard." : PRINT
350 INPUT "Delay before repeat (O=minimum, 3=maximum) ";V\
360 IF V\<0 OR V\>3 THEN 350
370 INPUT "Key repeat rate (30=minimum, O=maximum) ";W%
380 IF W%<0 OR W%>30 THEN 370
390 TYPRATE% = V% * 32 + W%
400 CALL TR(TYPRATE\, OK%) 'set key repeat rate
410 IF NOT OK% THEN 440
420 PRINT "The key repeat rate has been set.•
430 END
440 PRINT "Error accessing the keyboard controller.•
450 END
460 '
60000 '**'
60010 '* Install the routine for setting the key repeat rate. ..
60020 '*--*'
60030 '• Input : none *'
60040 '* output: TR is the start address of the assembler routine *'
60050 '* Calling the routine: CALL TR(TYPRATE%, OK%) *'
60060 1 **'
60070 '
60080 TR=60000!
60090 DEF SEG
60100 RESTORE 60140
60110 FOR H = 0 TO 71
60120 RETURN
60130 '

'start addr of the routine in the BASIC segment
'set BASIC segment

READ X% POKE TR+I%,X% NEXT 'poke routine
'back to the caller

60140 DATA 85,139,236, 51,210,180,243,250,232, 23, 0,117, 11,139, 94
60150 DATA B,138, 39,232, 13, 0,117, 1, 74,251,139, 94, 6,137, 23
60160 DATA 93, 202, 4, O, Bl, 83, 179, 3, 51, 201, 228, 100, 168, 2, 224
60170 DATA 250,138,196,230, 96,228,100,168, 1,225,250,228, 96, 60,250
60180 DATA 116, 7,254,203,117,230,128,203, 1, 91, 89,195

Assembler listing: TYPMBA.ASM

580

;**;
;* TY P MB A *;
;*--*;
;• Description Assembler routine for use with a GWBASIC *;
;•
;•

program, which sets the key repeat rate of the •;
AT keyboard. •;

;*--*;
;•
;•
;•

Author
developed on
last update

MICHAEL TISCHER
: 27.08.1988
: 27.08.1988

•; . ;
•;

;*--*;
; * to assemble MASM TYPMBA; *;
; * LINK TYPMBA *;
;* EXE2BIN TYPMBA TYPMBA.BIN *;
; • . • . convert to DATA statements and insert in •;
;* a BASIC program *;
•**• , ,

;== Constants ==

KB_STATUS_P
KB_DATA_P

OB FULL

IB FULL

ACK_SIGNAL

equ 64h
equ 60h

equ 1

equ 2

equ Ofah

;status port of the keyboard
;keyboard data port

;Bit 0 in the keyboard status port
;one character in the output buffer
;Bit 1 in the keyboard status port
;one character in the input buffer

;keyboard acknowledge signal

Abacus 12. Keyboard Programming

SET_TYPEM equ Of3h ;set-key-repeat code

MAX TRY equ 3 ;number of retries

code segment para 'CODE' ;definition of the CODE segment

org lOOh

assume cs:code, ds:code, ss:code, es:code

;---
;-- SET TYPM: Determines tne xey repeat rate to be sent to the

keyboard controller

' ;--
;--

Call
Info

set_typrn

sframe
bptr
ret_adr

ok adr
tr adr
sframe

frame

error:

CALL Adresse(TYPRATE%, OK%)
If the key repeat rate can be set, the value will be
placed in TYPRATE, else 0

proc far

st rue
dw
dd

dw
dw
ends

equ [bp - bptr

push bp
mov bp,sp

xor dx,dx

I

mov ah,SET_TYPEM
ell
call send_kb
jne error

mov bx,frame.tr_adr
mov ah, [bx]
call send kb
jne error

dee dx

sti
mov bx,frame.ok adr
mov [bx],dx -
pop bp
ret 4

;GW expects FAR procedures

;structure for accessing the stack
;stores BP
;return address to the caller
; (FAR address)
;address of the OK variable
;address of the var with the rep rate
; end of the structure

;addresses the elements of the structure

;save BP on the stack
;transfer SP to BP

;assume transfer failed
;set command code for key rep rate
;disable interrupts
;send to the controller
;error? yes --> Error

;get address of the TYPRATE variable
;get key repeat rate
;send to the controller
;error? yes --> Error

;everything OK, return -1

;allow interrupts again
;get address of the OK variable
;put error static there
;get BP back from stack
;back to GW-BASIC and remove the
;variables from the stack

set_ typrn endp

;---
;--
;--
;--
;--

SEND KB: send a byte to the keyboard controller --------------------
Input
Output
Registers:
Info

AH ~ the byte to be sent
zero flag: O~rror, l~K
AX and the flag register are used
this routine is intended for use only within this
module

send_kb proc near

push ex
push bx

mov bl,MAX_TRY

;save all registers used in this
;routine on the stack

;maximum of MAX_TRY retries

581

12. Keyboard Programming PC System Programming

skb_3:

skb_end:

;-- wait until the controller is ready to receive data

xor cx,cx
in al,KB STATUS P
test al,IB-FULL
1 oopne skb:::: 2

;maximum of 65536 loop passes
;read contents of the status port
;still a character in the input buffer?
;yes --> SKB_2

;-- send character to the controller ---------~----~--------

mov al,ah
out KB_DATA_P,al
in al,KB STATUS P
test al,os::::ruLL -
loope skb_3

;get character in AL
;send character to the data port
;read contents of the status port
;answer in the output buffer?
;no --> SKB_3

;-- get reply from controller and evaluate

in al,KB DATA P
cmp al,ACK_SIGNAL
je skb end

;read reply from data port
;was the character accepted?
;YES --> everything OK

;-- the character was not accepted ---------------------------

dee bl ;decrement error counter
jne skb 2 ; retries left?

;YES --> SKB_2

or bl,l ;NO, set zero flag to o, indicating
;an error

pop bx ; restore the registers from the stack
pop ex
ret ;back to the caller

send kb endp

;== Ende ===

code ends ;end of the code segment
end set_tyµn

Pascal listing: TYPMP.PAS

582

{**}
{* TYPMP *)
{*--*)
{* Description : Sets the key repeat rate of the AT keyboard. *I
{*--*)
{ * Author MICHAEL TISCHER *}
{* developed on : 08/27/1988 *I
{* last update : 08/27/1988 *I
{*k**}

program TYPMP;

{**}
{* SetTyµn: Sends the key repeat rate to the keyboard controller *I
{* Input RATE : the repeat rate to be set *I
{* Output TRUE, if the value was set, FALSE if an error occurred *I
{ * accessing the controller *I
{* Info This function can be bound into a UNIT *}
{**}

{$F+}

function SetTyµn(Rate

begin
inline (

(this function uses the FAR call model }

byte I : boolean;

Abacus 12. Keyboard Programming

end;

$32/$D2/$B4/$F3/$FA/$E8/$13/$00/$75/$0A/$8A/$66/$06/$E8/
$0B/$00/$75/$02/$FE/$C2/$FB/$88/$56/$FF/$EB/$27/$90/$51/
$53/$B3/$03/$33/$C9/$E4/$64/$A8/$02/$E0/$FA/$8A/$C4/$E6/
$60/$E4/$64/$AB/$01/$El/$FA/$E4/$60/$3C/$FA/$74/$07/$FE/
$CB/$75/$E6/$80/$CB/$01/$5B/$59/$C3

);

{$F-}

{**}
{** MAIN PROGRAM **}
{**}

var Delay,
Speed,
Fposl,

(stores the delay
{ stores the key repeat rate

FPos2 : integer;
ParErr : boolean;

begin

(error position in string conversion
(error in parameter passing

writeln(f13f10, 'TYPMP
ParErr := true;

(c) 1988 by MICHAEL TISCHER');
(assume error in parameters

(were 2 parameters passed?
{ YES

if ParamCount = 2 then
begin

val(ParamStr(l), Delay, FPosl);
val(ParamStr(2), Speed, FPos2);
if ((FPosl=O) and (FPos2=0)) then

if ((Delay< 4) and (Speed <32))
ParErr := false;

(first parameter to integer
(second parameter to integer

{ error in conversion?
(no, value OK?

(yes, then parameters are OK
then

end;
if (ParErr) then { are parameters OK?

begin I no
writeln(Call TYPMP delay key_repeat rate');
writeln (• 1 , 130, ' ', f30);
writeln(' I h;

(* Vertical line can be created using <Alt><179>; *}

wri teln (' ------1.---1 r -------1.-----------1');
{* Upper left corner can be created using <Alt><21B>; *}
(* Horizontal line can be created using <Alt><l96>; *)
{* Brace pointing 'up' can be created using <Alt><l93>; *)
{* Upper right corner can be created using <Alt><191> *)

writeln (' I 0 : 1/4 second I I 0 : 30.0 rep.ls. h;
{* Vertical line can be created using <Alt><179>; *}

writeln (' 1 1/2 second I I 1 26. 7 rep.ls. h;
writeln{' 2 : 3/4 second I I 2 24.0 rep./s. I•);
writeln{' I 3 : 1 second I I 3 21.8 rep.ls. h;
writeln (' {-----------------------{ I•);

{ * Left brace can be created using <Al t><l 95>; *}
{* Horizontal line can be created using <Alt><l96>; *}
{* Right brace can be created using <Alt><180>; *}

writeln (' I all values q20% I I h;
wri teln (' L -------------------J I•) ;

{* Lower left corner can be created using <Alt><192>; *}
(* Horizontal line can be created using <Alt><196>; *}
{* Lower right corner can be created using <Alt><217>; *}

writeln(' I 28 : 2.5 rep.ls. h;
{* Vertical line can be created using <Alt><l79>; *}

writeln(' I 29 2.3 rep.ls. h;
writeln(' I 30 : 2.1 rep.ls. h;
writeln(' I 31 : 2.0 rep.ls. I•);

writeln(' L-------------------J•);
{* Lower left corner can be created using <Alt><192>; *}
{* Horizontal line can be created using <Alt><l96>; *}
{* Lower right corner can be created using <Alt><217>; *}

end

583

12. Keyboard Programming PC System Programming

else the parameters are OK
begin

if (SetTypm((Delay shl 5) +Speed)) then set key repeat rate
writeln('The keboard repeat rate was set.')

else
writeln('ERROR accessing the keyboard controller.');

end;
end.

Assembler listing: TYPMPA.ASM

584

•**• ' ,
;* T Y P M P A *;
;*--*;
;*
;*
;*

Description Assembler routine for use with a Turbo Pascal *;
program, which sets the key repeat rate of the *;
AT keyboard. *;

;*--•;
; * Author MICHAEL TISCHER *;
;* developed on : 27.08.1988 *;
, last update : 27. 08.1988 *;

;*--*;
;*
;*
;*

to assemble MASM TYPMPA;
LINK TYPMPA

*;
*;
*; EXE2BIN TYPMPA TYPMPA.BIN

; * . . . convert to INLINE statements ,
;**;

;== Constants ==

KB STATUS P equ 64h ; stat us port of the keyboard - -
KB_DATA_P equ 60h ;keyboard data port

OB_FULL equ ;Bit O in the keyboard status port
;one character in the output buffer

IB FULL equ 2 ;Bit 1 in the keyboard status port
;one character in the input buffer

ACK SIGNAL equ Ofah ;keyboard acknowledge signal
SET_TYPEM equ Of3h ;set-key-repeat code

MAX TRY equ 3 ;number of retries

;== Program code ==

code segment para 'CODE' ;definition of the CODE segment

org lOOh

assume cs:code, ds:code, ss:code, es:code

;---
SET TYPM: Determines the key repeat rate to be sent to the

keyboard controller
Info

set _typm

sframeO
bpO
ret adrO

trateO
sframeO

frame

Set up as a NEAR call

proc near

struc
dw
dd ?

dw ?
ends

equ [bp - bpO

push bp

l

;GW expects FAR procedures

;structure for accessing the stack
;stores BP
;return address to the caller
; (FAR address)
;address of the var with the rep rate

;end of the structure

;addresses the elements of the structure

;The following instructions are executed by Turbo
;save BP on the stack

Abacus 12. Keyboard Programming

mov bp,sp ;transfer SP to BP

xor dl,dl ;assume transfer failed
mov ah,SET_TYPEM ;set command code for key rep rate
cli ;disable interrupts
call send_kb ;send to the controller
jne error ;error? yes --> Error

mov ah,byte ptr frame.trateO ;get address of the TYPRATE variable
call send kb ;send to the controller
jne error ;error? yes --> Error

inc dl ;everything OK, return TRUE

error: sti ;allow interrupts again
;put error static there

;get BP back from stack
;back to Turbo Pascal

mov [bp-1],dl
pop bp
jmp ende

set_typm endp

;---. SEND_KB: send a byte to the keyboard controller --------------------
;--
;--

Input
Output
Registers:

AH - the byte to be sent
zero flag: 0-error, 1-0K
AX and the flag register
this routine is intended

are used
;-- Info for use only within this
;-- module

send kb proc near

skb 1:
skb_2:

skb 3:

skb end:

send kb

push ex
push bx

mov bl,MAX_TRY

;save all registers used in this
;routine on the stack

;maximum of MAX_TRY retries

;-- wait until the controller is ready to receive data

xor cx,cx
in al,KB_STATUS P
test al,IB_FULL
loopne skb_2

;maximum of 65536 loop passes
;read contents of the status port
;still a character in the input buffer?
;yes --> SKB_2

;-- send character to the controller -------------------------

rnov al,ah
out KB DATA_P,al
in al,KB_STATUS_P
test al,08 FULL
loope slcb_J

;get character in AL
;send character to the data port
;read contents of the status port
;answer in the output buffer?
;no --> SKB_3

;-- get reply from controller and evaluate

in al,KB DATA p
cmp al,ACK_SIGNAL
je skb end

;read reply from data port
;was the character accepted?
;YES --> everything OK

;-- the character was not accepted ---------------------------

dee bl ;decrement error counter
jne skb 2 ; retries left?

;YES --> SKB_2

or bl,1 ;NO, set zero flag to O, indicating
;an error

pop bx ; restore the registers from the stack
pop ex
ret ;back to the caller

endp

585

12. Keyboard Programming PC System Programming

;--
ende label near
;= End ==~~============================-===========

code ends ;end of the code segment
end set_tyµn

C listing: TYPMC.C

586

/**/
I* T Y P M c *I
!*--*/
/* Description : Sets the key repeat rate on the AT keyboard */
I* according to the preferences of the user. *I
/*--*/
I* Author MICHAEL TISCHER */
/* developed on : 08/28/1988 */
/* last update : 08/28/1988 */
/*--*/
/* (MICROSOFT C) *I
/* creation CL /AS /c TYPMC.C */
I* LINK TYPMC TYPMCA; */
/* call TYPMC */
/*--*/
I* (BORLAND TURBO C) *I
I* creation via project file with following contents: *I
I* TYPMC */
I* TYPMCA.OBJ */
/**/

/*== Include files ===*/

#include <stdlib.h>

/*== Typedefs ==============================~~===============*/

typedef unsigned char byte;
typedef byte boo!;

I* build ourselves a byte */
/* always TRUE or FALSE */

/*== Constants ===*/

#define TRUE 1
#define FALSE 0

I* needed for working with BOOL */

/*== Declaration of external functions in the assembler module =====*/

extern bool set_tyµn(byte trate); /* sets the key repeat rate */

/**/
/** MAIN PROGRAM **/
/**/

void main(int argc, char *argv[])
{

int delay,
speed;

/* stores the specified delay */
/* stores the specified repeat rate */

printf ("\nTYPMC {C) 1988 by MICHAEL TISCHER\n");
if (argc!=3 I I ((delay= atoi{argv[l]))<O I I delay>3) I I

((speed= atoi(argv[2]))<0 I I speed>31))
/* illegal parameters were passed *I

printf ("call: TYPMC delay key repeat rate\n");
printf (" \xle - \xle\n");

printf (" I l\n");
/* Vertical line can be created using <Alt><l79>; */

printf(" J.---1 r-------J.-----------1'\n");
/* Upper left corner can be created using <Alt><218>; */

Abacus 12. Keyboard Programming

/* Horizontal line can be created using <Alt><196>;
/* Brace pointing 'up' can be created using <Alt><193>;
/* Upper right corner can be created using <Alt><191>

printf (" I O : 1/4 second I I 0 : 30.0 rep.ls.
/* Vertical line can be created using <Alt><179>;

printf (" 1 1/2 second I I 1 26. 7 rep.ls.
printf(" 2 : 3/4 second I I 2 24.0 rep./s.
printf (" I 3 : 1 second I I 3 21.8 rep.ls.

print f (" ~ ----------------------~
/* Left brace can be created using <Alt><195>;
/* Horizontal line can be created using <Alt><196>;
/* P_ight brae~ t:'a!'. bf:> rreatPd ns1ng <Alt><180>;

printf (" I all values q20% I I
printf(" L------------------J I

*I
*/
*/

l\n");
*/

l\n");
l\n");
t\n");

l\n");
*/
*/
*I

l\n");
l\n");

/* Lower left corner can be created using <Alt><192>; */
I* Horizontal line can be created using <Alt><196>; */
I* Lower right corner can be created using <Alt><217>; */

printf (" I 28 : 2. 5 rep. /s. l\n");
/* Vertical line can be created using <Alt><l79>; */

printf(" I 29 2.3 rep.ls. l\n");
printf(" I 30 : 2.1 rep.ls. l\n");
printf (" I 31 : 2. 0 rep.ls. l\n");

printf (" L-------------------J\n");
/* Lower left corner can be created using <Alt><192>;
/* Horizontal line can be created using <Alt><l96>;
/* Lower right corner can be created using <Alt><217>;

}

*/
*I
*/

else I* the pararnetes are OK */
(
if (set typn((delay « 5) + speed))
printfC"The keyboard repeat rate was set. \n");

else

/* set repeat rate */

printf("ERROR accessing the keyboard controller.\n");

Assembler listing: TYPMCA.ASM

;**;
;* TYPMCA *;

;*--*;
;* Description Assembler routine for setting the key repeat *;
;* rate on an AT keyboard. For linking with a *;
, C program. *;
;*--*;
;*
;*
:•

Author
developed on
last update

MICHAEL TISCHER
: 08/27/1988
: 08/27/1988

*·
' *;

*;
;*--*;
; * to assembler : MASM TYPMCA; *;
; * . . . link with a C program *;
;**;

;== Constants ==

KB_STATUS_P equ 64h ;keyboard status port
KB DATA P equ 60h ;keyboard data port

OB FULL equ 1 ;bit 0 in keyboard status port
;a character in the output buffer

IB FULL equ 2 ;bit 1 in the keyboard status port
; a character in the input buffer

ACK SIGNAL equ Ofah ;keyboard acknowledge signal
SET TYPEM equ Of3h ;set-repeat-rate code

587

12. Keyboard Programming PC System Programming

588

MAX TRY equ 3 ;number of retries allowed

;== Segment declarations for the c program =======================~~==

IGROUP group text ;combination of the program segments
DGROUP group Const, bss, data ;combination of the data segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';this segment stores all of the
CONST ends ; read-only constants

BSS
-BSS

segment word public 'BSS'
ends

;this segment stores all of the
;uninitialized static variables

DATA segment word public 'DATA' ;all initialized global and static
;variables are stored in this segment

DATA ends

;== Program ==============================~~===========~~============

TEXT segment byte public 'CODE' ;the program segment

public _set_typm

;---
;-- SET TYPM: sends the key repeat rate to the keyboard controller ----
;--Call from c : bool set typem(byte trate);
;-- Return value: TRUE, if-the repeat rate was set
;-- FALSE, if an error occurred

set_typm proc near

sframeO struc
bpO dw
ret_adrO dw ?
trateO dw ?
sf rameO ends

frame equ [bp-bpO]

push bp
mov bp,sp

xor dx,dx
mov ah,SET_TYPEM
cli
call send kb
jne error

mov ah, byte ptr
call send kb
jne error

inc dl

error: sti
mov ax,dx
pop bp
ret

_set_typm endp

;structure for accessing the stack
;stores BP
;return address to caller
;repeat rate to be set
;end of the structure

;addresses the elements of the structure

;save BP on the stack
;transfer SP to BP

;assume transfer fails
;set command code for rep rate
;disable interrupts
;send to the controller
;error? YES --> Error

frame.trateO ;get key repeat rate
;send to the controller
;error? YES --> Error

;everything OK, return TRUE

;allow interrupts again
;return value to AX
;get BP back from stack
;back to the C program

;---
;--

;--
;--

SEND_KB: send a byte to the keyboard controller --------------------
Input
Output
Registers:
Info

AH = the byte to be sent
zero flag: O=error, l=OK
AX and the flag register are changed
This routine is to be called only within the module

send kb proc near

Abacus

skb_l:
skb_2:

skb_3:

skb_end:

send kb

push ex
push bx

mov bl,MAX_TRY

12. Keyboard Programming

;save all registers which are changed
;in this routine on the stack

;maximum of MAX_TRY retries

;-- wait until the controller is ready to receive data

xor cx,cx
in al,KB STATUS P
test al,IB=FULL -
loopne skb_2

;maximum of 65536 loop passes
;read contents of status port
;still a char in the input buffer?
;YES --> SKB_2

;-- send character to the controller -------------------------

mov al,ah
out KB DATA P,al
in al~KB STATUS P
test al,OB-FULL -
loope skb_J

;get character in AL
;send character to the data port
;read contents of the status port
;reply in output buffer?
;NO --> SKB_3

;-- get and evaluate relpy from controller -------------------

in al,KB DATA p
cmp al,ACK SIGNAL
je skb end

;read reply from data port
;was the character accepted?
;YES --> everything OK

;-- the character was not accepted ---------------------------

dee bl ;decrement error counter
jne skb 2 ;still retries left?

;YES --> SKB_2

or bl,1 ;NO, set zero flag to o to indicate
;the error

pop bx ; restore the registers from the stack
pop ex
ret ;return to caller

endp

;---
text ends

end
;end of the code segment
;end of the program

We can use this same method to turn the LEDs on the AT keyboard on and off.
The corresponding instruction code is number OEDH, and is called the Set/Reset
Mode Indicators instruction.

After this command code has been successfully transmitted, the keyboard waits for
a byte which reflects the status of the three LEDs. One bit in this byte stands for
one of the three LEDs, which is turned on when the corresponding bit is set.

Bit JI LED
0 Scroll Lock
1 Num Lock
2 C~s Lock
Bits 3-7 unused

589

12. Keyboard Programming PC System Programming

590

Setting and resetting these bits make sense only when the keyboard mode which
they indicate is enabled or disabled.

These modes are managed in the BIOS, not the keyboard. For example, the
keyboard doesn't automatically convert all of the letters to uppercase in Caps Lock
mode. The keyboard can only associate a key with a virtual key number, rather
than a specific character. This key number is then converted to an ASCII or
extended keyboard code by the BIOS. Naturally this also applies to the Caps Lock
key, which simply sends a scan code to the computer when it is pressed. The BIOS
assigns the Caps Lock function to this key by setting an internal flag which marks
this mode as active, then sends the Set/Reset Mode Indicators instruction to the
keyboard to light the appropriate LED.

Although these keyboard modes are normally enabled and disabled by the user
pressing the corresponding keys, it may be useful to set a mode from within a
program. This is the case for keyboards which have separate cursor keys and a
numerical keypad, for example. Since most keyboards can only enter numbers
when Num Lock mode is on, it makes sense to set this mode automatically when
the system is started.

To do this we just set the appropriate BIOS flag and then turn on the
corresponding LED on the keyboard to inform the user that this mode has been
activated.

In practice, a program just has to set the appropriate BIOS mode, since the BIOS
automatically controls the keyboard LEDs. Whenever one of the functions of the
BIOS keyboard interrupt is called, the BIOS checks to see if the status of the LEDs
matches the keyboard status, as indicated in an internal variable. If a discrepancy
arises, the BIOS automatically sets the LEDs to the status given in the keyboard
status flag.

Since the position of this flag in the BIOS variable segment and the meaning of
the individual bits is completely documented (see also Section 7.14), we can easily
change these modes.

The following programs in BASIC, Pascal, and C offer routines which can enable
or disable the individual modes. It should be noted that although PCs and XTs
have corresponding LEDs, these programs will not work or change the modes
without changing the status of the LEDs on a PC or XT keyboard. This is because
these keyboards are equipped with an 8048 processor, which does not offer the
ability to manage the LEDs. The fact that these LEDs do turn on and off according
to the modes has nothing to do with the BIOS, and is handled directly by the
keyboard.

Abacus 12. Keyboard Programming

BASIC listing: LEDB.BAS

100 '**'
110 '* L E D B *'
120 ··--*'
130
140
150
160
170
180

..
Description

Author
developed on
last update

Sets the various bits in the BIOS keyboard ..
flag, causing the LED's on the AT keyboard ..
to flash. ..
MICHAEL TISCHER . .
09/10/1988 ..
09/10/1988 ..

190 '**'
'"Inn 1

210 CLS : KEY OFF
220 PRINT "NOTE: This program can be run only if GWBASIC was started from"
230 PRINT "the DOS level with the command <GWBASIC /m: 600000> and the"
240 PRINT •computer is an AT."
250 PRINT
260 PRINT "If this is not the case, please enter <s> for STOP."
270 PRINT "otherwise press any other key .•• •;
300 A$ = INKEY$: IF A$ = "s" THEN END
310 IF A$ = "" THEN 300
320 CLS
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

GO SUB
PRINT

60000
"LEDB -

'install routine for the interrupt call
(c) 1988 by MICHAEL TISCHER"

PRINT PRINT "Watch the LEDs on your
SCRL% = 16
NUML% 32
CAPL% 64
FOR X% = 1 TO 10

FLAGS% = CAPL% : GOSUB 50000
FOR Y% = 1 TO 100 : NEXT
GOSUB 51000
FLAGS% = NUML% : GOSUB 50000
FOR Y% = 1 TO 100 : NEXT
GOSUB 51000
FLAGS% = SCRL% : GOSUB 50000
FOR Y% = 1 TO 100 : NEXT
GOSUB 51000

490 NEXT
500 FLAGS% = SCRL% OR NUML% OR CAPL%
510 FOR X% = 1 TO 10
520 GOSUB 50000
530 FOR Y% = 1 TO 400 NEXT
540 GOSUB 51000
550 FOR Y% = 1 TO 400 NEXT
560 NEXT
5 70 PRINT "That's all."
580 END
590

keyboard!"
'the SCROLL LOCK flag

'the NUM LOCK flag
'the CAPS LOCK flag

•run through the loop 10 times
• set CAPS LOCK

'delay loop
'CAPS LOCK off again

• set NUM LOCK
'delay loop

'NUM LOCK off again
' set SCROLL LOCK

'delay loop
'SCROLL LOCK off again

•manipulate all three flags
•run through loop 10 times

•set all three flags
'delay loop

'clear all flags again
'delay loop

50000 '**'
50010 •• set one or more of the flags in the BIOS keyboard status ••

50020 ··--··
50030 Input FLAGS% = the flags to be set ..
50040 •• Output : none ..
50050 •• Info : the variable Z% is used as•a dummy variable
50060 '**'
50070 •
50080 DEF SEG = &H40 •set BIOS variable segment
50090 POKE &Hl7, PEEK(&Hl7) OR FLAGS% •set the flags
50100 INTR% = &H16 •call BIOS keyboard interrupt
50110 AH% = 1 •function 1: character ready?
50120 DEF SEG •switch back to the GW segment
50130 CALL IA(INTR%,AH%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
50140 RETURN 'back to the caller
50150 •
51000 '**'
51010 •• clear one or more the flags in the BIOS keyboard status

51020 ··--··

591

12. Keyboard Programming PC System Programming

51030 '* Input FLAGS% = the flags to be cleared *'
51040 '* Output none *'
51050 '* Info the variable Z% is used as a dummy variable ..
51060 '**'
51070 •
51080 DEF SEG = &H40 'set BIOS variable segment
51090 POKE &H17, PEEK(&H17) AND NOT(FLAGS\) 'clear the flags
51100 INTR\ = &H16 'call the BIOS keyboard interrupt
51110 AH\ = 1 •function 1: character ready?
51120 DEF SEG •switch back to the GW segment
51130 CALL IA(INTR%,AH\,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
51140 RETURN 'back to the caller
51150 •
60000 '**'
60010 '* initialize the routine for the interrupt call
60020 '*--··
60030 •• Input : none *'
60040 '*Output : IA is the start address of the interupt routine *'
60050 '**'
60060 •
60070 IA=60000!
60080 DEF SEG

'start address of the routine in the BASIC segment
•set BASIC segment

60090 RESTORE 60130
60100 FOR I\ = 0 TO 160
60110 RETURN
60120 •

READ X% POKE IA+I%,X% NEXT 'poke routine
'back to the caller

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

Pascal listing: LEDP.PAS

592

{**}
{* LEDP *}

{*--*)
{* Description sets the various bits in the BIOS keyboard *}
{* status byte causing the LEDs on the AT *}
{* keyboard to turn on. *}
{*--*}
{* Author MICHAEL TISCHER *}
{* developed on : 08/16/1988 *}
{* last update : 08/17/1988 *}
{**}

program LEDP;

uses CRT, bind in the CRT unit
DOS; bind in the DOS unit

con st SCRL - 16; Scroll Lock bit
NUML 32; { Num Lock bit
CAPL 64; { Caps Lock bit
INS - 128; { Insert bit

{**}
{* SETFLAG: sets one the flags in the BIOS keyboard status byte *}
{* Input : the flag to be set (see constants} *I
(* Output : none *I
{**}

procedure SetFlag(Flag : byte);

Abacus 12. Keyboard Programming

var BiosTSByte
Regs

byte absolute $0040:$0017;{ BIOS keyboard status byte
Registers; { processor registers for interrupt call

begin
BiosTSByte := BiosTSByte or Flag;
Regs.AH := 1;
intr ($16, Regs);

end;

mask out the corresponding bit
function no.: character ready?
{ call BIOS keyboard interrupt

{**}
{* CLRFLAG: clears one of the flags in the BIOS keyboard status byte *)
{* Input : the flag to be cleared {see constants) *}
{ • Output : none *}
{**}

procedure ClrFlag{Flag: byte);

var BiosTSByte
Regs

byte absolute $0040:$0017; { BIOS keyb. status byte
Registers; { processor registers for interrupt call

begin
BiosTSByte := BiosTSByte and {not Flag); { mask out bit
Regs.AH := l; { function no.: character ready?
intr($16, Regs); { call BIOS keyboard interrupt

end;

{**}
{ ** MAIN PROGRAM **}
{**}

var counter : integer;

begin
writeln('LEDP (c) 1988 by Michael Tischer');
writeln(tl3,t10, 'Watch the LEDs on your keyboard!');

for counter:=l to 10 do
begin

SetFlag { CAPL);
Delay (100) ;
ClrFlag (CAPL) ;
Set Flag (NUML);
Delay (100) ;
ClrFlag(NUML);
Set Flag (SCRL);
Delay (100) ;
ClrFlag (SCRL) ;

end;

for counter:=l to 10 do
begin

SetFlag(CAPL or SCRL or NUML);
Delay (200) ;
ClrFlag(CAPL or SCRL or NUML);
Delay (200) ;

end;
end.

{ run through the loop 10 times

{ turn on CAPS
wait 100 milliseconds
{ turn CAPS off again

{ turn on NUM
wait 100 milliseconds

{ turn NUM off again
{ turn SCROLL LOCK off

{ wait 100 milliseconds
turn SCROLL LOCK off again

{ run through loop 10 times

{ all three flags on
wait 200 milliseconds
{ all flags off again
wait 200 milliseconds

593

12. Keyboard Programming PC System Programming

C listing: LEDC.C

594

/**/
I* L E D C *I
!*--*!
/* Description Sets the various bits in the BIOS keyboard */
/* flag, causing the LEDs on the AT keyboard to */
I* flash. */
!*--*/
I* Author MICHAEL TISCHER */
/* developed on : 22.08.1988 */
/* last update : 22.08.1988 */
/*--*/
I* (MICROSOFT C) *I
I* creation : CL /AS LEDC.C */
I* call : LEDC */
/*--*/
/* (BORLAND TURBO C) */
I* creation : via the command CCMPILE / MAKE */
/**/

/*== Include files =============================~=~=================*/

#include <dos.h>

/*==Macros =======~===*/

fifndef MK FP /* was MK FP already defined? */
fdefine MK-FP (seg, ofs) ((void far *) ((unsigned long) (seg) «161 (ofs)))
#endif -

/*== Constants ===~==*/

#define SCRL 16
fdef ine NUML 32
#define CAPL 64
#define INS 128

/* Scroll Lock bit */
/* Nmn Lock bit */

/* Caps Lock bit */
/* Insert bit *I

/*-- BIOS_KBF creates a pointer to the BIOS keyboard flag ------------*/

#define BIOS_KBF ((unsigned far*) MK_FP(Ox40, Ox17))

/***
* Function : D E L A Y *
--

Description
Input parameters
Return value
Info

Waits a certain length of time.
PAUSE = the nmnber of milliseconds to wait.
none

*
*

Since this function uses the BIOS timer for time *
measurement, the accuracy is limited to about
1/60 of a second. *

***/

void delay(unsigned pause)
l
long timer;
union REGS inregs,

out regs;

/* stores the timer value to be reached */
/* stores the processor registers */

I* INREGS before, OUTREGS after the intr call */

inregs.h.ah = O;
int86(0xla, &inregs, &outregs);

/* ftn. no.: read timer*/
I* call BIOS timer interrupt */

/*- calculate the target time value and check to see if this
/*- value has been reached.

----*/
----*/

timer

do

outregs.x.dx + ((long) outregs.x.cx << 16) +
(pause* 18 + ((pause<< 1) I 10)) I 1000;

int86(0xla, &inregs, &outregs);
I* polling loop */

/* read timer again */

Abacus 12. Keyboard Programming

while ((outregs.x.dx + ((long) outregs.x.cx << 16)) <=timer);
)
/***
• Function : s E T F L A G •

••--··
• Description Sets individual bits or flags in the BIOS

keyboard flag.
Input parameters
Return value

FLAG = the bits or flags to be set
none

***/

void set flag(unsigned flag)
{ -

)

union R£GS regs;

*BIOS_KBF I= flag;
regs.h.ah = 1;
int86(0x16, ®s,

/* stores the processor registers */

I* set the specified bits in the keyboard flag •/
/• ftn. no.: character present? •/

®s); /• call BIOS keyboard interrupt •/

/***
Function : C L R F L A G

••--------------------------=---**
Description

Input parameters
Return value

Cleai~ individual bits or flags in the BIOS
keyboard flag.
FLAG = the bits or flags to be cleared
none

*

***/

void clr_flag(unsigned flag)
{

union REGS regs;

*BIOS KBF &= -flag;
regs.h.ah = 1;

/• stores the processor registers */

int86(0xl6, ®s, ®s);
)

/* mask out bits in the BIOS keyb. flag */
/* ftn. no.: character present? */
/* call BIOS keyboard interrupt */

/**/
/•• MAIN PROGRAM **/
/**/
void main()
{

unsigned i; /* loop counter*/

printf ("LEDP (c) 1988 by Michael Tischer\n\n"):
printf ("Watch the LEDs on your keyboard! \n"):

for (i=O; i<lO; ++i)
{
set flag(CAPL);
delay< 100 >:
clr flag(CAPL);
set - flag (NUML) ;
delay< 100 >:
clr flag(NUML);
set - flag (SCRL) ;
delay(100 >:
clr flag(SCRL);

I -

for (i=O; i<lO; ++i)
{

I

set_flag(CAPL I SCRL NUML);
delay (200) ;
clr flag(CAPL SCRL NUML);
delay(200 >:

/* run through the loop 10 times */

/* turn CAPS on */
/• wait 100 milliseconds */

/* turn CAPS off again */
/* turn on NUM •/

/• wait 100 milliseconds */
I* turn NUM off again */

/* turn on SCROLL LOCK */
I* wait 100 milliseconds */

/* turn SCROLL LOCK off again */

/• run through the loop 10 times */

I* all three flags on */
I* wait 200 milliseconds */

/• all flags off again */
I* wait 200 milliseconds */

595

Chapter 13

Expanded Memory
Specification

When the IBM PC was being developed in 1980 its capabilities were quite
advanced for its time. This was also true of the size of its main memory. The
maximum size of 640K seemed so large at the time that no one could imagine
what a user would do with so much memory. Thus the first PCs were equipped
with 64K, then 128K, and later 256K of memory. But today memory requirements
are much greater and the standard amount of RAM for PCs, and especially ATs,
has grown to the full 640K.

As we enter the age of the 80386 microprocessor, with the introduction of graphic
user interfaces and multitasking operating systems (Windows®, OS/2®), 640K
will soon no longer be enough to make full use of the capabilities of the PC. But
we have reached a boundary that cannot be crossed by just adding more memory
chips to the computer. A normal PC or XT is limited to 640K and an AT to 16
megabytes. The 16 meg is only available in the protected mode of the 80286
processor, and is inaccessible to normal DOS applications.

Adding memory

To provide a way around this problem, some leading PC firms got together several
years ago and devised a way to add more memory to PCs, XTs and A Ts that could
also be accessed under DOS. These companies were Lotus (the developers of Lotus
1-2-3), Intel (manufacturer of PC processors) and Microsoft (developers of MS
DOS and OS/2). They developed a standard known as the LIM standard, after the
first letters of the company names.

This standard allows up to 8 megabytes to be added to a PC on an expansion card.
Only 64K of this 8 megabytes is visible in the 1 megabyte address range of the
8088 processor, in a window called the page frame. Memory installed in this
manner is called expanded memory, and should not be confused with the extended

597

13. Expanded Memory Specification PC System Programming

598

memory which ranges beyond 1 megabyte on an AT. The whole system is referred
to as the expanded memory system, or EMS for short.

Main memory

BIOS

ROM extensions

Video RAM

Extra video RAM

Working RAM

FFFF

0000

1 megabyte
EMS memory

----------1
----------1

['. '. '. '. :'. '. '. '. '. '. ~ "' ,., ..
-- - ----- --,
----------,

~ = = = = = = = = = =1 r ----------1

=========]

EMS memory access (UM standard) using a window

There is always at least 64K in the 1 megabyte address space of the PC which is
not used for main memory, BIOS, video RAM, or other system expansions, so the
EMS developers decided to use this as a window into the EMS memory. Usually
this window is at segment address DOOOH, but the EMS hardware allows it to be
changed.

Since this window is under the 1 megabyte memory limit, it can be accessed with
normal assembly language instructions, similar to the way the video RAM is
accessed. Both read and write accesses are possible. We will look at concrete
examples of these accesses later on in this chapter.

Abacus 13. Expanded Memory Specification

Page frame division

The whole procedure is somewhat refined by the fact that the page frame is further
divided into 16K pages. This allows the programmer to access four completely
different, and perhaps widely separated, pages from the EMS memory.

The registers on the EMS card allow the programmer to set which pages of the
EMS memory will be visible in the page frame. The address lines on the EMS
card are programmed so that the EMS pages are mapped into the page frame and
appear in the 8088's address space. This process is known as bank-switching.

In addition to the hardware, the EMS also includes a software interface which
handles programming the EMS registers and other memory management tasks. It
is called the EMM (Expanded Memory Manager) and gives you a standard interface
which you can use to access the EMS cards of different manufacturers. This also
applies for the extended EMS standard (EEMS) developed by AST Research,
Quadram, and Ashton-Tate, which goes far beyond the LIM standard.

The EMM

Similar to the DOS interrupt 21H, which provides a standard interface to the
operating system functions, the EMM functions can be called through interrupt
67H. Before a program tries to use EMS memory and the corresponding EMM, it
should first check to make sure that an EMS is installed. If it does not do this and
there is no EMM, the results of a call to interrupt 67H are completely
unpredictable. Maybe it just won't work; maybe the system will crash.

To prevent this, a program which uses the EMS should first check to make sure it
exists. To do this we can use the fact that the EMM is bound into the system as a
normal device driver when the computer is booted. As such, it naturally has a
driver header which precedes it in memory and defines its structure for DOS. The
name of the driver is found at address 10 in the driver header. The LIM standard
prescribes that this name must be EMMXXXXO. The example programs at the end
of this chapter test for this name by first determining the segment address of the
interrupt handler for interrupt 67H. If the EMM is installed, the segment address
points to the segment into which the EMMXXXXO device driver was loaded.
Since the driver header is at offset address 0 relative to the start of this segment, we
just compare the memory locations starting at 10 with the name EMMXXXXO to
see if the EMS memory and the corresponding EMM are installed.

Once this is verified, access to this memory requires just three steps:

1.) Just as conventional memory must be allocated with a DOS function, a
program must first allocate a certain number of EMS pages for itself from
the EMM. The number of pages to be allocated depends on both the
memory requirements of the program and how much EMS memory is
available.

599

13. Expanded Memory Specification PC System Programming

2.) If the desired number of pages were successfully allocated, the specified
pages must first be loaded into one of the four pages of the page frame so
that data can be written into them or read from them. This results in a
mapping between one of the allocated pages and one of the four physical
pages within the page frame.

3.) When the program is ended or it is done using the EMS storage, the
allocated pages should be released again. If this is not done, the allocated
pages will still be owned by the program (even after it ends) and cannot
be given to other programs.

As with DOS interrupt 21H, the function number of an EMM call must be loaded
into the AH register before the interrupt call. In contrast to the DOS functions, the
function number does not correspond directly to the value in the AH register and
you must add 3FH to the function number. Thus for a call to function 2H you
would have to load the value 3FH + 2H or 41H into the AH register. After the
function call this register contains the error status of the function. The value 0
signals that the function was executed successfully, while values greater than or
equal to 80H indicate an error.

About errors

You can get the error codes from the error descriptions in the Appendices, but you
should be aware of one particular error. If the value 84H is in the AH register after
a call to EMM interrupt 67H, it means that an invalid function number was passed
in the AH register.

The following functions are required for a transient program to access the EMS
memory:

Function Task

OlH Get EMM status

02H Get s~ment address of the _E.a_g_e frame
03H Get number of ~es

04H Allocate EMS ~_g_es
OSH Set mappirl<l

06H Release EMS pa_g_es

To guarantee proper operation of the EMS hardware and the EMM, you should
check the EMM status before allocating EMS memory. This is done with function
OIH, which requires no parameters beside the function number in the AH register.
If it returns the value 0 in the AH register, then everything is OK and you can start
working with the EMS memory.

Limits to EMS allocation

600

Naturally the number of allocatable EMS pages is limited by the number of free
pages. Thus you should ensure that the memory requirements of the program do
not exceed the available memory. Here we can use function 03H, which returns the

Abacus 13. Expanded Memory Specification

number of free EMS pages. This function requires no parameters beside the
function number and returns the number of unallocated pages in the BX register. It
also returns the total number of inst.ailed EMS pages in the DX register.

If enough EMS memory exists for our program, or if the memory requirements are
adapted to the available memory, we can then allocate the memory. Function 04H
must be passed the number of pages to be allocated in the BX register. If the
requested number of pages were successfully allocated (AH register contains 0 after
the function call), the caller will find a handle to the allocated pages in the BX
register. This handle must be used to access the allocated pages and identifies the
caller to the EMM. This handle must be saved by the caller and losing it means
not only that the allocated pages cannot be accessed, they can also no longer be
released. This function can be called multiple times by a program to allocate
multiple logical page blocks.

Once we have the page handle we can start accessing the pages. The handle is
passed to the appropriate functions in the DX register. This also applies to
function 05H, which maps a logical page to one of the four physical pages of the
page frame. The number of the logical page is passed in the BX register and the
physical page number in the AL register. Note that both specifications start at
zero. If you have allocated 15 pages, then the numbers of the logical pages run
from zero to 14.

Once the appropriate page is in the page frame, it can be accessed just like normal
memory. The offset address of the start-of-page is calculated from the physical page
number, but the corresponding segment address must be determined with an EMM
function. Since this address does not change while working with the EMS
memory, you can read it once at the beginning of the program and then save it in a
variable. Function 02H returns the segment address of the page frame in the BX
register.

When you are done using the EMS, be sure to return the allocated pages to the
EMM. All you have to do is pass the page handle to function 06H.

In addition to these six functions, which a normal program can use to access EMS
memory, there are six more functions which can be useful under certain
circumstances. These are the following:

Function Task
07H Get EMM version number
OBH Save current mappii:!..9:.
09H Reset saved mappin..:.r.
OCH Get number of EMM handles
ODH Get the number of _E_~es allocated to a handle
OEH Get all handles and numbers of allocated ~es

601

13. Expanded Memory Specificalion PC System Programming

Version numbers

Reading the EMM version number is of interest because the LIM standard has
changed somewhat since it was introduced. Some functions are no longer supported
and new functions have been added. The functions presented here are from Version
3.2, which has now been superseded by version 4.0. Version 3.2 represents a good
compromise not only because is it very widely used, but because it is also
completely compatible with Version 4.0. If you don't want to support earlier or
later EMS versions in your program, you should check the version number at the
start of the program. The version number will be returned in the AL register after a
call to function 07H. It is encoded as a BCD number.

Functions 08H and 09H are important for TSR programs which want to use the
EMS memory for their own purposes. When a TSR program interrupts a transient
program and places itself in the foreground, it must take into account the fact that
the interrupted program may have been using EMS memory and had created a
certain mapping. Since this mapping must not be changed when returning to the
interrupted program, it must be saved when the TSR is activated and then restored
when the TSR exits. Function 08H saves the current EMM mapping and function
09H resets the saved status. Both functions must be passed the handle of the
function. In this case it is the handle of the TSR program, not the handle of the
interrupted program.

The last three functions are only important for the memory manager and will not
be discussed here. More information can be found in the appendix in the EMM
function descriptions.

Demonstration programs

602

The following pages contain two programs, one written in Pascal and one in C,
which illustrate how to use EMS memory. There is no assembly language
program since, in principle, calls to the EMM functions involve just loading
variables and constants into registers and calling the EMM interrupt 67H. Using
the information in the Appendices, it should be easy to write an assembly
language program which uses the EMS. There is no BASIC program because
EMS memory is intended to be used with complex and memory-intensive
applications for which BASIC (or at least GW-BASIC) is not suited.

The two programs are almost identical, so we will limit ourselves to a discussion
of the basic program structure. The programs offer a number of functions and
procedures which can be used to access the various EMM functions. Both
programs also contain a function called EMS_INST (or Emsinst) which determines
if an EMM is installed. In Pascal we have a problem because a pointer has to be
loaded with an address which consists of separate segment and offset addresses.
Since this is not possible in Pascal, there is an INLINE procedure called MK_FP
which (like the C macro of the same name) combines a segment and an offset
address into a (FAR) pointer. The fact that this is a FAR pointer is important
because the page frame is not in the program's data segment and thus cannot be

Abacus 13. Expanded Memory SpecijicaJion

addressed via the DS register. This is not a problem in Turbo Pascal because the
code is generated to work with FAR data pointers. In C we have to make sure that
the program is compiled in a memory model which uses FAR pointers for data.
This occurs in compact, large, and huge models.

The main program firsts tests to see if EMM is present and then uses various
functions to obtain status information about the EMS memory, which it displays
on the screen. Then a page is allocated and mapped to the first page (page 0) of the
page frame. The current contents of the video RAM are copied into this page and
the video RAM is then erased.

After the copy procedure, a message is displayed for the user and the program waits
for a key to be pressed. Then it copies the old screen contents back to video RAM
from page 0 of the page frame and the program ends.

This program shows that the contents of a page in the page frame can be treated
just like ordinary data. After you have created a pointer to the corresponding page
you can manipulate the data on this page, including complex objects like
structures and arrays, just like any other data. It is important to make sure that
your objects fit on one page or that you do not forget to change pages or load a
new page into the page frame to access larger objects.

C listing: EMMC.C

/**/
/* E M M C */
/*--*/
I* Description : a collection of functions for using EMS */
/* storage (expanded memory). */
/*--*/
/* Author : MICHAEL TISCHER */
/* developed on : 08/30/1988 */
I* last update : 08/30/1988 */

/*--*!
/* (MICROSOFT C) */
I* creation : CL /AC EMMC.C */
/* call : EMMC *I
/*--*/
/* (BORLAND TURBO C) */
/* creation via the RUN command in the menu line */
I* (no project file) */
I* Info : Note that the Compact memory model must be */
/* selected via the compiler model menu option. •/
/**/

#include <dos.h>
finclude <stdlib.h>
tinclude <string.h>

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef BYTE BOOL;

I* build ourselves a byte */

I* like BOOLEAN in Pascal */

/*== Macros =========-==*/

603

13. Expanded Memory Specification PC System Programming

604

/*-- MK_FP creates a FAR pointer out of segment and offset addresses -*/

tifndef MK FP /* is MK FP defined yet? */
tdefine MK-FP (seg, ofs) ((void far *) ((unsigned long) (seg) «161 (ofs)))
tendif -

/*-- PAGE_ADR returns a pointer to the physical page X within the ----*/
/*-- page frame of the EMS memory. ----*/

tdefine PAGE_ADR(x) ((void*) MK_FP(ems_frame seg() + ((x) « 10), 0))

/*== Constants -~====~=~================~=========~====~========*/

tdefine TRUE 1
#define FALSE 0

tdef ine EMS INT Ox67
tdefine EMS=ERR -1

/* constants for working with BCXJL */

I* interrupt number for access to the EMM */
I* returned on error *I

/*== Global variables ===================================~=======~==*/

BYTE emm _ ec; I* the EMM error codes are placed here */

/***
Function : E M S I N S T *

--
Description

Input parameters
Return value

Determines if EMS memory and the associated
EMS driver (EMM) are installed.
none
TRUE, if EMS memory installed, else FALSE

*
*

***/

BCXJL ems inst ()
{ -
static char emm name[]
union REGS regs;
struct SREGS sregs;
BYTE i;

= l 'E', 'M', 'M', •x•, •x•, •x•, •x•, •o• 1:
/* processor registers for interrupt call */

/* segment registers for the interrupt call */
I* loop counter *I

I* pointer to the name in the interrupt handler */ char *errun_inspect;

/*-- construct pointer to name in the header of a switch driver ----*/

regs.x.ax = Ox3567; /* ftn. no.: get interrupt vector Ox67 */
intdosx(®s, ®s, &sregs); /* call DOS interrupt Ox21 *I
emm_inspect = (char*) MK_FP(sregs.es, 10); /*construct pointer*/

/*-- search for the name of the EMS driver -------------------------*/

for(i=O; i<sizeof emm name && *(emm_inspect++)==erran_name[i++];)

return(i == sizeof emm_name);
)

I* TRUE if name found *I

/***
Function : E M S N U M P A G E *

••--··
Output Determines the total number of EMS pages
Input parameters : none
Return value : EMS ERR on error, else the number of EMS pages

·························*···••/
int ems num page()

{ - -
union REGS regs; I* processor registers for interrupt call */

regs.h.ah = Ox42;
int86(EMS INT, ®s, ®s);
if (erran ec = regs.h.ah)
return (EMS ERR);

else -

I* ftn. no.: get number of pages */
I* call EMM *I

I* did an error occur? */
/* yes, display error */

I* no error *I

Abacus 13. Expanded Memory Specification

return(regs.x.dx); /* return total number of pages */

/***
Function : E M S F R E E P A G E *

**--------------------------=---------=-------------------------------··
* Description

Input parameters
Return value

Returns the number of free EMS pages.
none
EMS_ERR on error, else the number of free EMS
pages.

*

* •
***/

int ems_free_page()
{
union REGS regs; /* processor registers for interrupt call */

regs.h.ah - Ox42; I* ftn. no.: get number of pages *I
int86(EMS_INT, ®s, ®s); /* call EMM *I
if (ellll\ ec - regs.h.ah) I* did an error occur? *I

return(EMS_ERR); /* yes, display error *I
else /* no error *I
return(regs.x.bx) ; /* return number of free pages */

/***
Function : E M S F R A M E S E G *

··--------------------------=-----------=-----------------------------**
Description

Input parameters
Return value

Determines the segment address of the EMS page
frames.
none
EMS ERR on error, else the segment address of
the page frame.

*
•
•
*

***/

WORD ems frame seg ()
{ - -
union REGS regs; /* processor registers for interrupt call */

regs.h.ah = Ox41; /*
int86(EMS INT, ®s, ®s);
if (ernrn_ec = regs.h.ah)
return (EMS ERR);

else -
return(regs.x.bx);

ftn. no.: get

I*

segment addr page frame •/
/* call EMM */

I* did an error occur? *I
I* yes, display error *I

/* no error */
return segtment address *I

/***
* Function : E M S A L L 0 C *

--------------------------=---
Description Allocates the specified number of pages and

returns a handle for accessing these pages.
Input parameters PAGES : the number of pages to be allocated

(each 16 KByte)
Return-Wert EMS ERR on error, else the EMS handle.

***/

int ems alloc(int pages)
{ -
union REGS regs; /* processor registers for interrupt call */

regs.h.ah = Ox43; /* ftn. no.: allocate pages•/
regs.x.bx = pages; /* set number of pages to be allocated •/
int86(EMS INT, ®s, ®s); /* call EMM •/
if (ellll_ec - regs.h.ah) /* did an error occur? */

return(EMS ERR); /*yes, display error*/
else - /* no error */
return(regs.x.dx); /*return EMS handle•/

/***

605

13. Expanded Memory Specification PC System Programming

606

* Function : EMS MAP *
··--------------------------=---**

Description Maps one of the allocated pages specified *
* by the given handle onto a physical page in the *

page frame. *
Input parameters HANDLE: the handle returned by EMS_ALLOC *

* LOGP : the logical page (0 to n-1) *
* PHY SP : the physical page (0 to 3) *

Return-Wert FALSE on error, else TRUE. *
***/

BOOL ems map(int handle, int logp, BYTE physp)
(-
union REGS regs; /* processor registers for interrupt call */

regs.h.ah = Ox44;
regs.h.al = physp;
regs.x.bx = logp;
regs.x.dx = handle;
int86(EMS_INT, ®s, ®s);
return (!(emm_ec = regs.h.ah));

}

/* ftn. no.: set mapping*/
/* set physical page */
/* set logical page */

/* set EMS handle */
!* call EMM *I

/***
* Function : E M S F R E E *
--

Description Releases the memory specified by the handle. *
Input parameters : HANDLE: the handle returned by EMS_ALLOC
Return value : FALSE on error, else TRUE. *

***/

BOOL ems free(int handle)
I -
union REGS regs; /* processor registers for interrupt call */

regs.h.ah = Ox45; /* ftn. no.: release pages */
regs.x.dx = handle; /* set EMS handle */
int86 (EMS_INT, ®s, ®s); /* call EMM *I
return (! (emm_ec = regs.h.ah));/* if AH contains o, everything's OK */

}

/***
* Function : E M S V E R S I 0 N *
··--**
•
•
•
*
*

Description
Input parameters
Return va 1 ue
Info

Determines the EMM version number.
none

the EMM version number

*
*

EMS_ERR on error, else
In the version number,
1.1, 34 for 3.4, etc.

10 stands for 1.0, 11 for *

***/

BYTE ems_version()
(
union REGS regs;

regs.h.ah = Ox46;

/* processor registers for interrupt call */

int86(EMS INT, ®s, ®s);
if (emm_ec = regs.h.ah)

/* ftn. no.: get EMM version num. */
/* call EMM •I

I* did an error occur? */
/* yes, display error */

error, calculate version number from BCD number •/
& 15) + (regs.h.al >> 4) • 10);

return (EMS ERR);
else - /* no

return((regs.h.al

/***
* Function : E M S S A V E M A P *
••--**

*
Description

Input parameters
Return value

Saves the mapping between the logical and
physical pages.
HANDLE: the handle returned by EMS_ALLOC.
FALSE on error, else TRUE.

Abacus 13. Expanded Memory Specification

***/

BCX>L ems save map(int handle)
I - -
union REGS regs; I* processor registers for interrupt call */

regs.h.ah - Ox47;
regs.x.dx - handle;
int86(EMS INT, ®s, ®s);
return (!Cemm_ec = regs.h.ah));/*

/* ftn. no.: save mapping*/
I* set EMS handle */

/* call EMM *I
if AH contains O, everything's OK *I

/***
Function : EMS RESTORE MAP *

••--------------------------=---------------=-------------------------··
Description Restores a mapping between logical and physical

pages saved with EMS SAVE MAP. *
Input parameters
Return value

HANDLE: the handle returned by EMS ALLOC
FALSE on error, else TRUE. - *

***/
BCX>L ems restore map(int handle)

I - -
union REGS regs; /* processor registers for interrupt call */

regs.h.ah = Ox4B;
regs.x.dx = handle;
int86(EMS INT, ®s, ®s);
return (!(emm_ec = regs.h.ah));/*

/* ftn. no.: restore mapping*/
/* set EMS handle */

/* call EMM *I
if AH contains O, wverything's OK*/

/***
Function :PRINT E R R

------------------------------=-------------------------------------
Description

Input parameters
Return value
Info

Prints an EMS error message on the screen and
ends the program.
none
none
This function may only be called if an error
occurred on a prior call to the EMM.

*

*

***/

void print err()
I -
static char nid [] = "unidentifiable";
static char *err vec[] =

{ "Error in the-EMS driver (EMM destroyed)",
"Error in the EMS hardware",

} ;

nid,
"Illegal EMM handle",
"EMS function called does not exist",
"No more EMS handles available",
"Error while saving or restoring the mapping",
"More pages requested than physically present•,
"More pages requested than are still free",
"Zero pages requested",
"Logical page does not belong to handle",
"Illegal physical page number",
"Mapping storage is full",
"The mapping has already been saved",
"Restored mapping without saving first•

print f (• \nError
printf("

in access to EMS memory !\n");
••. \s\n", (emm_ec<OxBO / / emm_ec>OxBE) ?

nid: err vec[emm ec-OxBOJ);
/* End program with error exit(1);

}

/* OxBO
/* OxBl
/* Ox82
I* Ox83
/* Ox84
/* Ox85
/* OxB6
/* Ox87
I* OxBB
I* Ox89
I* OxBA
/* OxBB
I* OxBC
I* OxBD

code *I

/***
Function V R A D R *

*I
*I
*/
*I
*/
*/
*/
*/
*/
*I
*I
*/
*I
*I

607

13. Expanded Memory Specification PC System Programming

608

--
*
*
*

Description
Input parameters
Return value

Returns a pointer to the video RAM.
none
VOID pointer to the video RAM.

* •

***/

void *vr adr ()
{ -
union REGS regs;

regs.h.ah = OxOf;

/* processor registers for interrupt call */

int86(0xl0, ®s, ®s);
return (MK_FP((regs.h.al==7) ?

I* ftn. no.: get video mode *I
/* call BIOS video interrupt */

OxbOOO : OxbBOO, 0));

/**/
I** MAIN PROGRAM **/
!**/

void main()
{
int numpage,

handle,
i;

WORD pageseg
BYTE emmver;

/* number of EMS pages */
I* handle to access to the EMS memory */

/* loop counter */
/* segment address of the page frame */

I* EMM version number */

printf ("EMMC (c) 1988 by MICHAEL TISCHER\n\n");
if (ems inst()) /*is EMS memory installed?*/

< - I* yes */
/*-- output information about the EMS memory ----------------------*/

if ((emmver =
print err();

else -

ems_version()) == EMS_ERR) /*get version num. */
I* error: output error message and end program */

I* no error */
printf("EMM version number

emmver/10, emmver%10);
: %d.%d\n•,

if ((numpage = ems_num_page()) == EMS_ERR) /*get number of pages */
print_err(); /*error: output error message and end program*/

printf("Number of EMS pages : %d (%d KByte)\n•,
numpage, numpage << 4);

ems_free_page()) == EMS_ERR) if ((numpage
print err() ;

printf(• •••
numpage,

I* Error: output error message and end program */
free : \d (%d KByte)\n",

numpage « 4);

if { (int) (pageseg = ems frame seg()) == EMS ERR)
print_err(); /* Error: output error message and end program*/

printf("Segment address of the page frame: %X\n•, pageseg);

printf("\nNow a page will be allocated from the EMS memory and\n");
printf("the screen contents will be copied from the video RAM\n");
printf("to this page.\n");
printf ("
get ch();

press any key\n");
/* wait for a key *I

/*-- allocate a page and map it to the first logical page in ---*/
/*-- page frame.
if ((handle= ems alloc(l))
print err(); /* Error:
if (!ems map(handle, o, O))
print_err(); /*Error:

---*/
EMS_ERR)

output error message and end program */
/* set mapping */

output error message and end program */

/*-- copy 4000 bytes from the video RAM to the EMS memory ---------*/

memcpy(PAGE_ADR(O), vr_adr(), 4000);

Abacus

I

for (i-0; i<24; ++i)
printf("\n");

13. Expanded Menwry Specification

/* clear the screen *I

printf("The old screen contents will now be cleared and will be\n");
printf("lost. But since it was stored in the EMS memory, they\n");
printf("can be copied from there back into the video RAM.\n");
printf (" ••• press any key\n");
getch(); /*wait for a key*/

/*-- copy the contents of the video RAM from the EMS memory
/*-- and release the allocated EMS memory again.

----*/
----•/

memcpy!vr adrO, PAGE ADR(O),
if (!ems-free(handle)
print err(); I* Error:

printf("END");

4000); /* copy VRl\M back * !
/* release memory */

output error message and end program */

else I* the EMS driver was not detected */
printf ("No EMS memory installed. \n");

Pascal listing: EMMP .PAS

{**}
{* EMMP *)

(*--*)
{* Task : Implement certain functions to demonstrate *I
{* access to EMS memory using EMM. *I
{*--*)
(* Author MICHAEL TISCHER *)
{* Developed on : 08/30/1988 *)
(* Last update : 06/21/1989 *I
{**}

program EMMP;

Uses Dos, CRT;

type ByteBuf
CharBuf
BytePtr
CharPtr

const EMS INT
EMS ERR
W EMS ERR
EmmName

var EmmEC,
i
Handle,
EmmVer
NumPage,
PageSeg
Keypress

array[0 •. 1000]
array[0 •• 1000]
"'ByteBuf;
"CharBuf;

$67;
-1;
$FFFF;
array[O •. 7]

byte;

integer;

word;
: char;

of byte;
of char;

of char

Add DOS and CRT units

One memory range as bytes
One memory range as chars
{ Pointer to a byte range
{ Pointer to a char range

Interrupt I for access to EMM
(Error if this occurs

(Error code in WORD form
'EMMXXXXO'; {Name of EMM

{ Allocation of EMM error codes
{ Loop counter

Handle for access to EMS memory
{ Version number of EMM

{ Number of EMS pages
Segment address of page frame

{**}
{* MK_FP: Creates a byte pointer from the given segment and offset *I
{ * addresses. *I
{* Input - Seg = Segment to which the pointer should point *I
{* - Ofs =Offset addr. to which the pointer should point *I
{ * Output Entire pointer *I
{* Info The returned pointer can be recast toward any other *I
{ • pointer. *I
{**}

{$F+) This routine is intended for a FAR model, and
should therefore be treated as one UNIT

609

13. Expanded Memory Specification PC System Programming

610

function MK_FP(Seq, Ofs word) BytePtr;

beqin
inline

end;

{$F-)

$BB I $46 I $OB I
$B9 I $46 I $FE I
$BB I $46 I $06 I
$B9 I $46 I $FC);

mov ax, [bp+BJ (Get seqment address)
mov [bp-2],ax (and place in pointer)
mov ax, [bp+6J (Get offset address)
mov [bp-4],ax (and place in pointer)

{ Re-enable NEAR routines I

{**}
{* Emsinst: Determines the existence of EMS and correspondinq ~ *)
{* Input : none *I
{* Output : TRUE if EMS is available, otherwise FALSE *)
{**)

function Emsinst : boolean;

var Regs
Name
i

begin

Registers;
CharPtr;
inteqer;

Processor reqister for the interrupt call
{ Pointer to the EMM names

{ Loop counter

{*-- Move pointer to name in device driver header ------------------*)
Regs.ax := $3567;
MsDos(Regs);

{ Function t: Get interrupt vector $67)
{ Call DOS interrupt $21 I

Name := CharPtr(MK_FP(Regs.es, 10)); { Move pointer I

(*-------- Search for EMS driver---*)
i := O; { Start comparison with first character
while ((i<sizeof(EmmName)) and (NameA[i]=EmmName[i])) do

Inc(i); (Increment loop counter
Emsinst (i = sizeof(EmmName)); { TRUE if name is found

end;

{**}
(* EmsNumPage: Determines the total number of EMS pages *)
(* Input : none *)
{*Output : EMS ERR if error occurs, otherwise number of EMS pages *)
{**}

function EmsNumPage : integer;

var Regs : Registers; (Processor register for the interrupt call)

begin
Regs.ah := $42;
Intr(EMS INT, Regs);
if (Regs~ah <>O) then

begin
EmmEC := Regs.ah;
EmsNumPage EMS ERR;

end -
else

EmsNumPage Regs.dx;
end;

(Function t: Determine number of pages
(Call EMM

Error occurred?
(YES

(Get error code
{ Display error

No error
(Return total number of pages

{**}
(* EmsFreePage: Determines the number of free EMS pages *I
(* Input none * l
(* Output : EMS ERR if error occurs, otherwise the number of un- *)
(* used EMS pages * l
{**}

function EmsFreePage : integer;

var Regs : Registers; { Processor register for the interrupt call)

Abacus 13. Expanded Memory Specification

begin
Regs.ah :- $42;
Intr(EMS INT, Regs);
if (Regs~ah <>0) then

begin
EmmEC :- Regs.ah;
EmsFreePage EMS_ERR;

{ Function f: Determine no. of pages
(Call EMM

Error occurred?
(YES

Mark error code
{ Display error

end
else

EmsFreePage ·= Regs.bx;
end;

(No error
{ Return number of free pages

{**~

{* EmsFrameSeg: Determines the segment address of the page frame •)
{* Input : none *)
{* Output : EMS ERR if error occurs, otherwise the segment address *)
{**}

function EmsFrameSeg : word;

var Regs : Registers;

begin
Regs.ah := $41;
Intr(EMS INT, Regs);
if (Regs~ah <>0) then

begin

Processor register for the interrupt call)

{ Function f: Get segment addr. page frame
(Call EMM

EmmEC := Regs.ah;
EmsFrameSeg := W EMS ERR;

Error occurred?
{ YES

Mark error code
Display error

end - -
else

EmsFrameSeg := Regs.bx;
end;

{ No error
{ Return segment addr. of page frame

{**}
{* EmsAlloc: Allocates the specified number of pages and returns a •)
{* handle for access to these pages •)
{* Input PAGES: Number of allocated pages •)
{* Output EMS ERR returns error, otherwise the handle *)
{**}

function EmsAlloc(Pages

var Regs : Registers;

begin
Regs. ah := $43;
Regs.bx := Pages;
Intr(EMS_INT, Regs);
if (Regs.ah <>0) then

begin
EmmEC := Regs.ah;
EmsAlloc := EMS_ERR;

end
else

EmsAlloc := Regs.dx;
end;

integer) : integer;

{ Processor register for the interrupt call)

Function f: Alocate pages
Set number of allocated pages

{ Call EMM
Error occurred?

{ YES
Mark error code

Display error

{ No error
Return handle

{**}
{* EmsMap Creates an allocated logical page from a physical page in*)
{* the page frame *)
{* Input HANDLE: Handle received from EmsAlloc *)
{* LOGP : Logical page about to be created *)
{* PHYSP : The physical page in page frame *)
{* Output FALSE if error, otherwise TRUE *)

{*************••······································••k••••··········}
function EmsMap(Handle, LogP : integer; PhysP : byte) : boolean;

var Regs : Registers; Processor register for the interrupt call)

611

13. Expanded Memory Specification PC System Programming

612

begin
Regs.ah ·= $44;
Regs.al := PhysP;
Regs.bx := LogP;
Regs.dx ·= Handle;
Intr(EMS INT, Regs);
EnunEC :=-Regs.ah;
EmsMap := (Regs.ah = 0)

end;

Function f: Set mapping
(Set physical page

(Set logical page
(Set EMS handle

{ Call EMM
(Mark error code

(TRUE is returned if no error

{**}
(* EmsFree Frees memory when given with an allocated handle *I
(* Input : HANDLE: Handle received by AllocErns *I
(* Output : FALSE if an error, otherwise TRUE *I
{**}

function EmsFree(Handle

var Regs : Registers;

begin
Regs.ah := $45;
Regs.dx := handle;
Intr{EMS_INT, Regs);
EnunEC := Regs.ah;
EmsFree := (Regs.ah = 0)

end;

integer) : boolean;

{ Processor register for the interrupt call)

Function #: Release page
{ Set EMS handle

(Call EMM
{ Mark error code

(TRUE is returned if no error

{**}
(* EmsVersion: Determines the version number of EMM *I
(* Input none *I
{* Output : EMS ERR if error occurs, otherwise the version number *)
{* (11;;;1.1, 40=4.0, etc.) *)
{**************************************!*******************************}

function EmsVersion : integer;

var Regs : Registers; { Processor register for the interrupt call I

begin
Regs.ah := $46;
Intr(EMS INT, Regs);
if (Regs~ah <>0) then

begin
ErnrnEC := Regs.ah;
ErnsVersion := EMS ERR;

end -

{ Function f: Determine EMM version
(Call EMM

Error occurred?
{ YES

Mark error code
(Display error

else { No error, compute version number from BCD number
EmsVersion ·= (Regs.al and 15) + (Regs.al shr 4) * 10;

end;

{**}
(* ErnsSaveMap: Saves dispay between logical and physical pages of the *I
(* given handle *I
(* Input : HANDLE: Handle assigned by ErnsAlloc *)
{* Output : FALSE if error occurs, otherwise TRUE *I
{**}

function ErnsSaveMap(Handle : integer) : boolean;

var Regs : Registers;

begin
Regs.ah := $47;
Regs.dx := handle;
Intr(EMS_INT, Regs);
EnunEC := Regs.ah;
EmsSaveMap ·= (Regs.ah

end;

{ Processor register for the interrupt call I

0)

Function #: Map save
{ Set EMS handle

{ Call EMM
{ Mark error code

Return TRUE if no error

Abacus 13. Expanded Memory Specification

{**}
{* ErnsRestoreMap: Returns display between logical and physical pages, *}
{* from the page saved by ErnsSaveMap *}
{* Input : HANDLE: Handle assigned by ErnsAlloc *}
{* Output : FALSE if an error occurs, otherwise TRUE *}
{**}

function EmsRestoreMap(Handle : integer) : boolean;

var Regs : Registers; (Processor register for the interrupt call)

begin
Regs.ah := $48; Function t: Restore map

(Set EMS handle
(Call EMM

(Mark error code
(TRUE returned if no error

Regs.dx := handle;
Intr{EMS_INT, Regs);
ErnrnEC :• Regs.ah;
ErnsRestoreMap :- (Regs.ah = 0)

end;

{**}
{* PrintErr: Displays an error message and ends the program *)
(* Input
(* Output
{* Info

none *}
none *}
This function is called only if an error occurs during a *}
function call within this module *) { *

{**}

procedure PrintErr;

begin
writeln('ATTENTION! Error during EMS memory access');
write (' • . • ');
if ((ErnrnEC<$80) or (ErnrnEc>$8E) or (ErnrnEc=$82)) then

writeln('Unidentifiable error')
else

case ErnrnEC of
$80 writeln('EMS driver ecror (EMM trouble)');
$81 writeln('EMS hardware error');
$83 writeln('Illegal EMM handle');
$84 writeln('Called EMS function does not exist');
$85 writeln('No more free EMS handles available');
$86 writeln('Error while saving or restoring mapping');
$87 writeln('More pages requested than are actually

•available');
$88 writeln('More pages requested than are free');
$89 writeln('No pages requested');
$8A writeln('Logical page does not belong to handle');
$88 writeln('Illegal physical page number');
$8C writeln('Mapping memory range is full'};
$8D writeln('Map save has already been done');
$8E writeln('Mapping must be saved before it can•,

•be restored•) ;
end;

Halt;
end;

{ Program end I

{**}
{* VrAdr: Returns a pointer to video RAM *}
{ * Input : none *I
{* Output : Pointer to video RAM *I
{**}

function VrAdr : BytePtr;

var Regs : Registers;

begin
Regs.ah := $Of;
Intr ($10, Regs);

{ Processor register for the interrupt call }

Function f: Determine video mode
{ Call BIOS video interrupt

613

13. Expanded Memory Specification PC System Programming

04

if (Reqs.al • 7) then
VrAdr •• MK_FP($BOOO, 0)

else

Monochrome video card?
YES, video RAM at BOOO:OOOO

{ Color, EGA or VGA card
{ Video RAM at B800:0000 VrAdr •• MK_FP($B800, 0);

end;

{**}
{* PageAdr: Returns address of a physical page in page frame *I
{* Input : PAGE: Physical page number (0-3) *J
{* Output : Pointer to the physical page *J
{**}

function PageAdr(Page : integer) : BytePtr;

begin
PageAdr := MK_FP(EmsFrameSeg + (Page shl 10), 0);

end;

{**}
{** MAIN PROGRAM **}
{**}

begin
ClrScr; { Clear screen

(c) 1988 by MICHAEL TISCHER',f13t10); writeln (• EMMP
if Emsinst then { Is EMS memory installed?

begin { YES
{*-- Display EMS memory information --------------*}

EmmVer := EmsVersion; { Determine EMM version number
if EmmVer = EMS ERR then { Error occurred?

PrintErr; { YES, Display error message and end program
writeln('EMM Version number : ',EmmVer div 10,

EmmVer mod 10);

NumPage := EmsNumPage; (Determine total number of pages
if NumPage = EMS ERR then (Error occurred?

PrintErr; - { YES, Display error message and end program
writeln('Number of EMS Pages : •, NumPage, • (',

NumPage shl 4, • KByte) ');

NumPage := EmsFreePage; { Determine number of free pages
if NumPage = EMS ERR then { Error occurred?

PrintErr; - (YES, Display error message and end program
writeln(' ••• free EMS pages remaining: •, NumPage, • (',

NumPage shl 4, • KByte) ');

PageSeg := EmsFrameSeg; Segment address of page frame
if PageSeg = W EMS ERR then { Error occurred?

PrintErr; - - { YES, Display error message and end program
writeln('Segment address of page frame: •, PAgeSeg);

writeln;
writeln('Now a page from
writeln('screen contents
wri teln (•page. •) ;
writeln{'

EMS memory can be allocated, and the');
can be copied from video RAM into this');

Keypress := ReadKey;
Please press a key');
Wait for a keypress J

{*-- Page is allocated, and the data is passed to the first-----*}
{*-- logical page in the page frame -----*}

Handle := EmsAlloc(1);
if Handle = EMS ERR then

PrintErr; { YES, Display
if not(EmsMap(Handle, O, 0)) then

PrintErr; { Error: Display

{ Allocate one page
{ Error occurred?

error message and end program
{ Set mapping

error message and end program

{*-- Copy 4000 bytes from video RAM into EMS memory--*}

Abacus 13. Expanded Memory Specification

Move(VrAdrA, PageAdr(O)A, 4000);

ClrScr;
while KeyPressed do

Keypress :~ ReadKey;

(Clear screen
(Read keyboard buffer

writeln('Old screen contents are cleared. However, the data ');
writeln('from the screen is in EMS, and can be re-copied onto ');
writeln('the screen. ');
writeln(' Please press a key');
Keypress :~ ReadKey; (Wait for a keypress)

{*--Copy contents of video RAM from EMS memory and release --*)
{*--the allo~ated EMS memory --*}

Move(PageAdr(O)A, VrAdrA, 4000);
if not(EmsFree(Handle)) then

PrintErr; (Error: Display
GotoXY (1, 15);
writeln('END')

{ Copy over video RAM
(Release memory

error message and end program

end
else

writeln('ATTENTION!
end.

(EMS driver not available)
No EMS memory installed.');

615

Chapter 14

Mouse Programming

A few years ago mice were considered luxuries for PC applications. Today most
PCs have mice connected to them. Part of the mouse's popularity stems from the
development of new and more powerful video standards such as EGA and VGA.
These graphic cards helped advance the graphic user interfaces such as GEM® and
Microsoft Windows®, which are almost unusable without a mouse.

Applications and operating systems alike benefit from mouse support. Ventura
Publisher® and Microsoft Works® both make intensive use of the mouse. In
addition, DOS Version 4.0 accepts mouse as well as keyboard input.

A software interface acts as the connection between a program and the mouse.
Microsoft Corporation designed this interface for its own mice, but other mouse
manufacturers accept this interface as a standard. The interface was made available
to the industry as a minimum standard to retain compatibility with the Microsoft
mouse.

This function interface is usually installed either through a device driver which is
loaded during system boot, or through a terminate and stay resident (TSR) program
such as MOUSE.COM, included with the Microsoft mouse package.

Mouse functions

Mouse functions may be accessed in the same way as DOS and BIOS functions
(you may wish to review the techniques used for addressing DOS and BIOS
functions-see Chapters 6 and 7 for more information). The individual functions
can be called through interrupt 33H. The identification number of the function
must be passed to the AX register. The other processor registers are used in various
combinations for passing information to a function.

A total of 34 different functions can be called in this manner, but most
applications use only a few of these functions. Before we examine each function,
let's look at the concepts behind the mouse interface. This will help you to
understand the way individual functions work. We deliberately concentrated here on

617

14. Mouse Programming PC System Programming

text oriented mouse control. Pixel oriented applications should use a graphic
interface such as Windows or GEM from the start, because they provide friendlier
functions for mouse input than the programming interface offered in this chapter.

About mouse buttons

Unlike the keyboard, which has many keys and keyboard codes for each key, a PC
mouse usually has two or even three mouse buttons. These mouse buttons permit
the user to select data in an application program. Another important piece of
information is the actual position of the mouse's pointer (cursor) on the screen.
The word pointer stems from the pointer's usual shape: an arrow or a pointing
finger.

The mouse driver software always interprets the pointer's location on the screen
relative to a virtual graphic screen. This virtual screen's resolution depends on the
video mode and video card currently in use. Since this virtual graphic display
screen is also used within the text modes to determine the mouse's position and
forms the basis for communication with the mouse interface, a conversion occurs
between the graphic coordinates and the mouse pointer's line/column position.
Since every column or line corresponds to eight pixels, the graphic coordinates
must be either divided by eight or left shifted by three places in binary mode,
which mathematically produces the same result. The processor executes the
shifting much faster than it can execute the actual division.

More about the mouse pointer

618

The pointer shows the mouse's relative location on the screen. Its shape can vary
from application to application, and it can even change appearance within an
application. Word processors often display the mouse pointer as a block, similar to
the text cursor. In text mode the application can only determine the starting and
ending line of the pointer. The pointer's size depends on the current character
matrix and video mode. The options for creating a software pointer are more
complex, since two 16-bit values called the screen mask and cursor mask govern
the pointer's appearance.

The mouse driver must determine the appearance of the pointer every time the
pointer changes position on the screen. The cursor mask and screen mask values
are linked with the two bytes which describe the character code and the character
color within video RAM. This linkage occurs in two steps. First the character code
and the attribute byte are linked with screen mask through a binary AND. The
result of this connection is then linked with the cursor mask through an exclusive
OR. The result then appears on the screen.

Abacus 14. Mouse ProgrQllll'1Ung

This type of linkage allows a number of options for changing the pointer's
appearance. Four of the most common pointer options are:

• Pointer appears as one specific character in one specific color

• Pointer appears as one specific character, but color changes when the
pointer overlaps a character (e.g., inverse video)

Pointer appears as one specific character, but the character color changes
when the pointer overlaps a character

Pointer appears as one specific character, but character color changes to a
variant of the character color when the pointer overlaps a character

The standard measurement unit in the mouse interface is the mickey, named after
Mickey Mouse® (1 mickey = 1/200"). The mouse hardware measures all distances
in multiples of mickeys. We will use this as the measurement standard throughout
the rest of this chapter.

Function OOH: Reset mouse driver

A program should call the function OOH before calling any of the mouse functions.
This resets the mouse driver. It can also determine whether a mouse and mouse
driver exist, by examining the content of the AX register after the function call. If
the AX register contains the value OOOOH after the function call, no mouse driver
was installed. Even if a mouse is connected, the mouse driver no longer exists. If a
mouse driver and mouse exist, function OOH returns the value FFFFH in the AX
register. The BX register contains the number of buttons on the mouse. As
mentioned above, PC mice usually have two mouse buttons, although some mice
have three buttons. Since very few applications need or use three buttons, two
buttons will be all you'll need in most cases.

Function OOH resets the numerous mouse parameters to their default values. The
mouse pointer moves to the center of the screen. The cursor mask and screen mask
are defined in such a manner that the cursor appears as an inverse video rectangle.
Video page 0 is selected as the default page on which the pointer appears. The
pointer disappears from the screen immediately.

Function 01 H: Display mouse pointer

Function OlH displays the pointer on the screen. Load the function number into
the AX register; no other parameters are needed. Since the mouse driver follows the
movement of the mouse even when the mouse pointer has been disabled, it may
not necessarily reappear at the position where it was when it disappeared.

619

14. Mouse Programming PC System Programming

Function 02H: Remove mouse pointer

Function 02H removes the mouse pointer from the screen. Load the function
number into the AX register; no other parameters are needed. The calls between
functions OIH and 02H must be called in proper proportions to be effective. For
example, calling function 02H twice in succession means that you must also call
function OlH twice in succession to return the pointer to the screen.

Functions OIH and 02H aren't used very much. Often, all you11 need to do is call
function OOH and function OlH at the beginning of a program, and call function
02H at the end of the program. These functions come into play more frequently if
the application program writes characters directly into video RAM, bypassing the
slow DOS and BIOS display routines. Avoid writing characters over the mouse
pointer, or two things will happen:

1) The mouse pointer disappears if overwritten by another character.

2) The mouse driver produces the wrong character on the screen when the
user moves the mouse pointer. Before the pointer appears at a certain
position on the screen, it records the character which occupied this
position until now. This character is restored to the old position as soon
as the pointer moves to another position on the screen. During a direct
write access to video RAM, the driver does not record that a new character
was output at the position of the pointer. Therefore, the old (and
incorrect) character is displayed on the screen during the movement of the
pointer.

You can avoid this potential source of errors by removing the pointer before
character output, and returning the old character to the screen. The new character
will be stored when the pointer is restored to the screen. This action should not be
done for every character output, since it slows the system down and negates the
advantages of direct access to video RAM. We recommend that you remove the
pointer once from the screen before extensive output such as construction of a
screen window. After the operation the pointer can be restored on the screen.

Even though the DOS and BIOS character output functions write their output
directly to video RAM, you shouldn't worry about programming the pointer when
working with these functions The reason is that during installation, the mouse
driver moved interrupt vector IOH, which handles BIOS and DOS screen output, to
its own routine. The driver can then display or disable the pointer as needed.

Function 04H: Move mouse pointer

620

Function 04H allows movement of the pointer to a specific location on the screen,
without moving the mouse. Pass the function number to the AX register, the new
horizontal coordinate (column) to the CX register, and the new vertical coordinate
(line) to the DX register. Please note that these coordinates, like all other
functions, must be relative to the virtual screen. Text coordinates must be

Abacus 14. Mouse Programming

multiplied by eight (or shifted left three binary places) before they can be passed to
function 04H. The coordinates must be located inside a screen area designated as
the mouse's range of movement.

Function OOH sets the complete range of the mouse's movement to the entire
screen area. Functions 07H and 08H limit this range to a smaller area.

Function 07H & OSH: Set range of movement

Function 07H specifies the horizontal range of movement. Pass the function
number to the AX register, the minimum X-coordinate to the ex register and the
maximum X-coordinate to the DX register.

Function 08H specifies the vertical range of movement. Pass the function number
to the AX register, the minimum Y-coordinate to the ex register and the
maximum Y-coordinate to the DX register.

After calling these functions the mouse driver automatically moves the pointer
within the range, unless it is already within the indicated borders. The user cannot
move the pointer outside this range.

Function 1 OH: Exclusion area

In addition to the area of movement allotted to the pointer, the mouse driver also
supplies an exclusion area. This exclusion area is a section of the screen which
renders the mouse pointer invisible when the user moves the pointer into this
section. The mouse pointer becomes visible again as soon as the user moves the
pointer away from the exclusion area. This area is undefined after the call of
function OOH. It can be defined at any time by calling function lOH, but the
mouse driver can control only one exclusion area at a time. The coordinates of the
exclusion area are passed to function lOH in the ex:DX and SI:DI register pairs.
These register pairs specify the upper left comer and lower right comer
respectively. ex and SI accept the X-coordinate, DX and DI the Y-coordinate.

The exclusion area and function 02H play special roles during direct access to video
RAM. Although function 02H removes the pointer from the screen, this can occur
in conjunction with function lOH only if the pointer is already within the
exclusion area, or if the user moves the pointer within the exclusion area. This
makes function lOH practical for situations involving the creation of a larger
display area (e.g., a window). This allows the pointer to remain on the screen as
long as it is not within this exclusion area.

The exclusion area can be removed by calling function OlH or function OOH.
Function 01H makes tlie pointer visible automatically if it is already within the
exclusion area.

621

14. Mouse Programming PC System Programming

Function 1DH: Set display page

Function lDH sets the display page on which the pointer appears. This function is
required only if the program switches a display page other than the current one to
the foreground through direct video card programming. Pass the number of the
display page to the BX register. When BIOS interrupt lOH activates a display
page, this function can be omitted, since the mouse driver will automatically adapt
to the change.

Function OFH: Set pointer speed

Two parameters determine the speed at which the mouse pointer moves on the
display screen. They specify the relationship between the distance of a pointer
movement and the pixels traversed in the virtual mouse display screen. Function
OFH allows the user to set these parameters for horizontal and vertical movement
The parameters are passed in the ex and DX registers (horizontal and vertical,
respectively). These numbers indicate the number of mickeys, which correspond to
eight pixels in the virtual mouse display screen. These eight pixels correspond to
one line or column in the text mode display screen.

The default values after calling function OOH are 8 horizontal mickeys and 16
vertical mickeys. In text mode the pointer moves one column after the pointer is
moved 8 mickeys (about .04") horizontally. A jump to the next line occurs only
after the pointer is moved 16 mickeys (about .08") vertically.

These settings normally can be set at default values, since they work well with all
resolutions in text mode. This function allows changes if you want faster or
slower pointer movement

Function OAH: Set pointer shape

Function OAH determines the appearance of the pointer in text mode. The cursor
mask and screen mask mentioned above are determining factors of the pointer's
appearance in text mode. Pass OAH to the AX register and the value determining
the cursor's shape to the BX register.

Software-specific pointer

622

If the BX register contains the value 0, the mouse driver selects the pointer as
specified by the software. The screen mask number must be loaded into the ex
register, and the cursor mask number must be loaded into the DX register. These
numbers indicate the addresses from which the mouse driver can access pointer
shape parameters.

Abacus 14. Mouse Programming

Hardware-specific pointer

If the BX register contains the value 1, the mouse driver selects the pointer as
specified by the hardware. Starting line of the hardware pointer must be loaded into
to the CX register, and the ending line must be loaded into the DX register.

Video mode and pointer size

Remember that the allowable values for starting line and ending line depends on
the video mode currently in use:

The monochrome display adapter allows values from 0 to 13.

The color graphics adapter only allows values from 0 to 7.

EGA and VGA cards accept values from 0 to 7. The EGANGA BIOS
automatically adapts the number selected to the size of the character
matrix currently in use.

The functions listed up until now set the various parameters which control the
mouse driver. The mouse driver also supports a group of functions which read the
mouse's position as well as the status of the mouse buttons. These functions can
be divided into two categories for reading external devices such as the mouse,
keyboard, printer or disk drives. These categories are the polling method and the
interrupt method. The mouse driver supports both methods.

Polling method

The polling method constantly reads a device within a loop. This loop terminates
only when the desired event occurs. Since the execution of this loop requires the
full capabilities of the CPU, no time normally remains to perform other tasks.

Interrupt method

The interrupt method has an advantage over the polling method, since the interrupt
system allows the CPU to execute other tasks until the desired event occurs. Once
this happens, the mouse driver calls an interrupt routine which reacts to the event
and executes further instructions.

Function 03H: Get pointer position/button status

The polling method offers four functions which operate in conjunction with the
mouse interface. These functions can be accessed through function 03H, which
return the current pointer position and mouse button status. Function 03H passes
the horizontal pointer position to the ex register and the vertical pointer position
to the DX register. Since these coordinates also refer to the virtual mouse screen,
they must be converted to the text screen's coordinate system by dividing the
components by eight, or by shifting the bits right by three binary places.

623

14. Mouse Programming PC System Progranumng

The following table shows how the mouse button status is returned to the BX
register. Only the three lowest bits represent the status of one of the two or three
mouse buttons. The bit for the corresponding mouse button contains the value 1
when the user presses that mouse button during the function call.

M:>use button status returned in the BX register after calling
function 03H
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 •Bits
xxxxxxxxxxxxx • Disreqard these bits

1 - left mouse button activated
1 - right mouse button activated

1 = center mouse button activated

Function OCH: Set event handler

624

Function OCH sets the address of a mouse event handler (interrupt routine). The
function number must be passed to the AX register. The segment and offset address
of the event handler must be passed to the ES:DX register pair. The event mask
must be passed to the ex register. The individual bits of this flag determine the
conditions under which the event handler should be called. The following table
shows the ex register coding:

Event mask codil!2_ in ex r~ister duri~ function OCH call
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 • Bits
xxxxxxxxx • Disr~rd these bits

1 - Mouse movement
1 - Left mouse button activated

1 - Left mouse button released
1 - Ri_g_ht mouse button activated

1 - Ri_g_ht mouse button released
1 - Center mouse button activated

1 - Center mouse button released

The mouse driver calls the event handler after executing the function, as soon as at
least one of the specified events occurs. The call is made using the FAR call,
rather than the INT instruction. This difference is important to remember when
developing an event handler, since the handler must be ended with a FAR RET
instruction rather than an IRET instruction. Similar to an interrupt routine, none
of the various processor registers can be changed when they are returned to the
caller. For this reason the registers must be stored on the stack immediately after
the call, and the register contents must be restored at the end of the routine.

Information is passed to the event handler from the mouse driver through
individual processor registers. The information concerning the event can be found
in the AX register, where each bit has the same significance as in the event mask
during the call of function OCH (see above table). Individual bits may be set which
have no meaning for the event handler. For example, if the event handler should
only be called when the left mouse button is activated (bit 1), bits 0 and 4 may

Abacus 14. Mouse Programming

also be set during the event handler call, because the mouse was moved and the
right mouse button had been released at the same time.

The event handler can obtain the current button status from the contents of the ex
register. The coding is identical during the call to the function 03H. Bits 0 to 2
represent the different mouse buttons. The current pointer position can be found in
the ex and DX registers, representing the horizontal and vertical positions,
respectively. The position can only be set after conversion to the text screen's
coordinate system.

During the development of an event handler, the DS register should point to the
data segment of the mouse driver during the handler call, instead of the interrupted
program. If the event handler accesses its own data segment, it must first load its
address into the DS register.

Function 18H: Install alternate event handler

Function 18H allows the installation of an event handler which reacts to limited
range keyboard events as well as mouse events. This function signals an event if
the <etrl>, <Alt> or <Shift> keys are pressed when a mouse button is pressed or
released.

This function is almost identical in register assignments as function OCH. The
event mask in the ex register has been extended by the three events, as shown in
the following table:

Event mask codin__g_ in ex r~ister durir:!S!_ function 18H call
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 ~ Bits
xxxxxxxx ~ Disr~ard these bits

1 = Mouse movement
1 = Left mouse button activated

1 = Left mouse button released
1 = R~ht mouse button activated

1 = R~ht mouse button released
1 = Shift key pressed during

mouse button event
1 = Ctrl key pressed during mouse

button event
1 = Alt key pressed during mouse

button event

Even during the call of such an alternative event handler, little changes in
comparison with the event handlers which were installed by calling function OCH.
Only the content of the AX register must be interpreted a little differently, since its
construction corresponds to the event mask shown above.

Up to three alternative event handlers can be installed by calling function 18H.
During the function OCH call, the event handler indicated replaces the previously

625

14. Mouse Programming PC System Programming

installed handler. Three different event handlers can be installed by calling function
18H three times. This is only valid if the three event handlers are equipped with
different event masks. If an event mask passes to function 18H which is already
equipped with a handler, the new handler replaces the existing handler.

Demonstration programs

626

This chapter lists programs in C and Turbo Pascal which demonstrate mouse
access functions. These programs show the techniques of developing and installing
an event handler, which is the most complicated part of mouse reading. Both
programs include functions or procedures which call various mouse functions.
These routines require little programming-they load the processor registers with
the necessary values, then call interrupt 33H. Since the event handler needs the
most programming, the text here will focus on that subject.

Installing an event handler in a higher level language program is somewhat
difficult, since it must meet certain requirements. These requirements are normally
beyond the control of a programmer in a higher level language. The requirements
are as follows:

The event handler must be a FAR procedure, and must be terminated with
a FAR RET instruction.

The event handler must store the various processor registers during the
call and restore them before completion.

• The event handler must load the segment address of the higher level
language data segment into the DS register to provide access to global
variables of the program.

These requirements can be met in some versions of Turbo Pascal, Turbo C and
Microsoft C, although some very complex programming would be required. The
traditional solution (write a routine in assembly language) is easier and faster to
implement Therefore, we wrote the event handler itself in assembler, assembled
the program and linked the resulting object module to the higher level language
program.

This assembler routine is named AssmHand. It stores the various processor
registers on the stack after the call, then calls a C function or Pascal procedure
named MouEventHandler. The AssmHand routine passes arguments provided by
the mouse driver to the MouEventHandler routine. These arguments include:

The event flag, which describes the event that caused the handler call.

The current mouse button status.

The current position of the mouse pointer.

Abacus 14. Mouse Programming

This information is converted from virtual graphic screen coordinates into text
screen coordinates (25 lines x 80 columns).

The stack handles parameter passing. The C version of AssmHand must pass the
arguments onto the stack in the reverse order of their declaration. After loading the
DS register and calling the higher level language routine, these arguments must be
taken from the stack again by incrementing the stack pointer by the memory
requirements of the arguments (8 bytes). This is only required for the C version of
the routine. The Turbo Pascal version performs this task on its own.

After calling this routine, the AssmHand routine returns the processor registers to
the stack and passes control to the caller using a FAR RET instruction.

The AssmHand instructions execute very quickly, but the handler itself may require
more execution time than expected. This introduces the problem of recursion, since
an event in connection wil.it the mouse may recur during the handler execution.
The AssmHand driver then must be recalled before the previous call tenninated.

To avoid this situation and the complications which can occur, AssmHand
maintains a variable named active in its code segment. During execution this
variable contains the value 1. Before setting this variable, the program tests if
active already contains the value 1. This indicates that the last call was not yet
completed. If this situation occurs, the handler execution terminates immediately,
thus avoiding recursion.

Even if this method avoids recursion problems, remember that it can produce its
own problems. The suppression of the higher level language handler does not take
note of the event, because the handler was not called by the mouse driver.
Although we offer the recursion trap as an option, we recommend that you
program the higher level language handler as efficiently as possible to avoid using
processor time. This will keep call suppression to a minimum.

AssmHand must first be installed through function OCH, using the
MouISetEventHandler procedure/function. MouISetEventHandler is called by the
Moulnit procedure/function, which initializes the mouse module. This should be
called by any application program as the first procedure/function of this module.
The number of lines and columns of the display screen must be passed to it as
arguments, to determine the size of an internal buffer needed for the various
procedure/functions within the module.

This buffer allows division of the screen into individual mouse ranges, each
equipped with its own code, cursor mask and screen mask. These mouse regions
are very important in mouse access. They permit the definition of objects such as
sliders, O.K. buttons or menu items. As soon as the user moves the pointer to and
object and presses a mouse button, the object executes a particular step in the
program.

627

14. Mouse Programming PC System Programming

628

MouDefRange defines these regions. The registration of these regions occurs
through the procedure/function MouDefRange, which must receive a pointer to a
vector or array, and the number of elements stored there. These elements of the
type RANGE describe a screen area and the cursor or screen mask assigned to the
pointer as soon as it reaches this area. An area can comprise a single character or
the total screen. The user can define the array with individual area descriptors. The
area code depends on the position of the descriptor within the array, and is provided
automatically by the procedure/function MouDefRange. The first area has the value
0, the second the value 1, etc. The screen areas not covered by an area descriptor are
assigned the code NO _RANGE.

During the creation of this array, especially during the definition of the cursor and
screenmask in the PtrMask array, the C implementation provides helpful macros
and constants. The Pascal program has functions and constants available for this
purpose. The creation of a variable of the type PTRVIEW, stored in the PtrMask
field within an area descriptor, is handled by the macro or function MouPtrMask.
The cursor and screen mask for the character must be passed to MouPtrMask to
define the pointer's appearance on the screen.

If PtrSameChar is indicated, the pointer appears as the character which it covers. If
another pointer is desired, the pointer can be defined with PtrDifChar. When the
call occurs, enter the ASCII code of the desired character for PtrDifChar.

As a second parameter MouPtrMask gets the pointer's color from the cursor mask
and screen mask. Many options for color are possible:

PtrSameCol ensures that the pointer assumes the color of the character
currently overlapped by the pointer.

• PtrSameColB creates a pointer which assumes the color of the character
currently overlapped. However, bit 7 of the attribute byte is set to 1 so
that the character either blinks or appears with a high-intensity
background color.

PtrlnvCol makes the pointer appear in the inverse color of the character
currently overlapped by the pointer.

PtrDifCol displays the pointer on the screen in the color indicated by the
code following PtrDifCol.

In addition to the different mouse areas specified through MouDefRange, a pointer
can be assigned to the remaining screen, which is the area carrying the code
NO_RANGE. A program can use MouSetDefaultPtr to obtain the cursor and
screen mask of the pointer as a parameter of type PTRVIEW. The constants and
macros or functions described above can be used to create this parameter.

The MouEventHandler changes the cursor and screen mask for each area. Since it is
called for every mouse event (including mouse movement), it can determine the

Abacus 14. Mouse Programming

mouse area where the pointer is currently located. To make this happen as fast as
possible, it tests if the mouse area contains the position of the pointer.

MouEventHandler uses the internal region buffer which was created by Moulnit
during the call. It reflects exactly the video RAM structure, and contains one byte
for every screen position. Each byte contains the code of the area to which the
screen position was assigned. The event handler can use the current position of the
pointer as an index to this area buffer. A single memory access is enough to
determine the mouse area in which the pointer is located. The area code found is
stored in the global variable MouRng, and is used as an index to the array of the
mouse descriptor from which it determines the cursor and screen mask for this area.

The higher level language event handler has another assignment which may be
even more important. It controls the variable MouEvent, in which the current
mouse events are stored. This task cannot be performed by simply copying the
mouse events which were passed through AssmHand from the mouse driver. This
only shows the current event, but no preceding events. If the user presses and holds
the left mouse button, then presses the right mouse button, this results in two
event handler calls. This signals each case of an active mouse button. The
preceding call (the active left mouse button) is no longer recognized by the call,
since it reports only the current event (the depressed right mouse button).

The event handler must isolate the various events which are reflected in the
EvFlags variable, and accept only new events in the MouEvent variable. This
variable reflects the current status of the mouse buttons, and the pointer's current
movement or position. MouEvent can handle the most important mouse sensing
tasks, waiting for the occurrence of a certain event (usually a pressed mouse
button).

MouEventWait waits for the occurrence of an event which was specified by the
bitmask that was passed earlier. This bitmask can be defined through the logical
OR function with the following constants:

EV _MOU_MOVE

EV _LEFT_PRESS

EV _LEFT _REL

EV _RIGHT_PRESS

EV _RIGHT_REL

Mouse movement

Left mouse button pressed

Left mouse button released

Right mouse button pressed

Right mouse button released

The procedure/function can be instructed to wait for one or more of these events to
occur. The AND or OR correspond to the logical comparisons of the same names.
Which events occur can be sensed through the results of a bitmask in which the
individual bits represent the various events, and through which the constants
described above can be sensed.

629

14. Mouse Programming PC System Programming

Pascal listing: MOUSEP.PAS

630

{**}
{* M 0 U S E P • P A S *I
{*--~--------------*} {* Task : Demonstrate the different functions available *I
{ * in mouse prograrraning *I
{*--*}
{ * Author MICHAEL TISCHER *}
{* Developed on : 04/21/1989 *I
{* Last update : 06/01/1989 *I
{**}

uses Dos; { Add DOS unit

{$L c:\tp\mousepa} { Link assembler module
I adjust path to your system needs I

{==Declaration of external functions===-====-~~==~~}

{$F+}
procedure AssmHand external
{$F-}

canst

I FAR function I
{ Assembler event handler I

{ FAR functions no longer accessible I

{-- Event-Codes ---}

EV_ MOU_ MOVE
EV_LEFT_PRESS
EV_LEFT_REL
EV_RIGHT_PRESS
EV RIGHT REL
EV::::Mou_ALr.

LBITS
RB ITS

NO RANGE 255;

PtrSameChar
PtrSameCol
PtrinVCol
PtrSameColB
PtrinVColB

l;
2;
4;
8;

16;
31;

6;
24;

$00ff;
$00ff;
$7777;
$807f;
$F777;

(Mouse movement
{ Left mouse button pressed

{ Left mouse button released
{ Right mouse button pressed

{ Right mouse button released
I All mouse events

EV LEFT_PRESS or EV_LEFT_REL
EV RIGHT PRESS or EV RIGHT REL - - - -

Mouse pointer not in xy range I

Same character
Same color
Inverse color
Same color, blinking
Inverse color, blinking

EAND O; { Event comparisons for MouEventWait
EVOR l;

CRLF = 113110; I CR/LF I

{== Type declarations ============~~================}

type FNCTPTR = longint;
PTRVIEW = longint;
RANGE record

xl,
yl,
x2,
y2
PtrMask

end;

byte;
PTRVIEW;

RNGARRAY =array [0 •• 100] of RANGE;
RNGPTR = ARNGARRAY;
PTRREC record

Ofs word;
Seg word;

end;

I Address of a FAR function
{ Mask for mouse pointer
Describes a mouse range

{ Upper left and lower
{ right coordinates for the

{ specified range

{ Mask for mouse pointer

Allows access to any
mouse pointer record

{ existing

Abacus 14. Mouse Programming

PTRVREC • record
ScreenMask
CursorMask

end;

word;
word;

{ Allows access to
{ PTRVIEW

RNGBUF
BBPTR

- array [0 •• 10000] of byte;
.., ""RNGBUF;

Range buffer
{ Pointer to a range buffer

{-=global variables---=--------------------------------}

var NumRanges, { Number of ranges
TLine, Number of text lines
TCol byte; Number of text columns
MouAvail boolean; TRUE if mouse is available
OldPtr, Old mouse pointer appearances
StdPtr PTRVIEW; { Mask for standard mouse pointer
BufPtr BBPTR; Pointer to range recognition buffer
ActRngPtr: RNGPTR; { Pointer to current range vector
BLen integer; { Range buffer length in bytes
ExitOld pointer; { Pointer to old exit procedure

{-- Variables which are~~_gaded into mouse handler on every call --}

MouRng,
MouCol,
Mou Row
MouEvent

byte;
integer;

{ Current mouse range
Mouse column (text screen)
{ Mouse line (text screen)

(Event mask

{-- Variables which load with any occurrence of expected events -}

EvRng,
EvCol,
EvRow : byte;

(Range in which the mouse can be found
{ Mouse column

{ Mouse line

{**}
{* MouPtrMask: Executes Cursor-Mask and Screen-Mask from a bitmap *}
{ * containing character and color *}
{**--**}
{* Input Chars Bitmask of character as found in cursor-Mask *}
{ * and Screen-Mask *}
{* Color = Bitmask of character color as found in *}
{* Cursor-Mask and Screen-Mask *}
{* Output Cursor-Mask and Screen-Mask as a value of typ PtrView *}
(* Info: The constants PtrSameChar, PtrSameCol, PtrSameColB, *}
{* PtrinVCol, PtrinVColB, and the results of the PtrDifChar *}
I* and PtrDifCol functions also control character & color *}
{**}

function MouPtrMask{ Chars, Color : word J : PTRVIEW;

var Mask : PTRVIEW;

begin
PTRVREC (Mask) .ScreenMask

PTRVREC (Mask J .CursorMask
MouPtrMask := Mask;

end;

I For creating Cursor-Mask and Screen-Mask J

I Color and $ff) shl 8) +
Chars and $ff};
Color and $ff00) + (Chars shr 8 };

(Return mask to caller

{**}
{* PtrDifChar: Defines character structure of cursor and screen *}
{ * mask in conjunction with character * J
{**--**}
{* Input ASCII code of the character on which pointer is based *}
{* Output Cursor and screen mask for this cursor *}
{* Info: Function result should be computed with the help of the *}
{* MouPtrMask function *}
{*****************~**}

function PtrDifChar(Chars : byte) : word;

631

14. Mouse Programming PC System Programming

632

begin
PtrDifChar :- Chars shl 8;

end;

{**}
{* PtrDifCol: Creates the character segment of the cursor and screen *I
{* mask in conjunction with the mouse pointer color *I
{**--**}
{* Input Character color on which the mouse pointer will be based *I
{* Output cursor and screen mask for this color *I
{* Info: The function's result should be computed with the help *I
{* of the MouPtr:Mask function *I
{**}

function PtrDifCol(Color: byte I : word;

begin
PtrDifCol := Color shl 8;

end;

{**}
{* MouDefinePtr: Assigns the mouse driver the cursor mask and *I
{* screen mask, from which the driver can create the *)
{ * mouse pointer * l
{**--**}
{* Input Mask =The cursor and screen mask as a parameter of *I
{ * type PTRVIEW *I
{* Info: - The mask parameter should be created with the help of *)
{* the MouPtrMask function *I
{* - The most significant 16 bits represent the screen mask,*}
{* the least significant 16 bits represent cursor mask *I
{**}

procedure MouDefinePtr(Mask : PTRVIEW };

var Regs : Registers;

begin
if OldPtr <> Mask then

begin
Regs.AX := $000a;
Regs.BX := O;
Regs.ex := PTRVREC(
Regs.DX := PTRVREC(
Intr($33, Regs);
OldPtr := Mask;

end;
end;

{ Processor regs for interrupt call)

{ Mask change since last call?
{ YES

{ Funct. no. for
{

Mask).ScreenMask;
Mask).CursorMask;

•set text pointer type•
Create software pointer

{ Low-word is AND mask
High-word 1st XOR mask

{ Call mouse driver
{ Reserve new bitmask

{**}
{* MouEventHandler: Called by the assembler routine AssmHand as soon *)
{* as a mouse event occurs *}
{**--**)
{* Input EvFlags The event mask *I
{* ButState Current mouse button status *)
{* X, Y Current coordinates of the mouse pointer on *)
{* the text screen *)
{**}

procedure MouEventHandler{ EvFlags, ButState, x, y: integer);

var NewRng : byte;

begin

MouEvent ·= MouEvent and not(l);
MouEvent := MouEvent or { EvFlags and 1);

Number of new range l

Bit 0 excluded
{ Bit 0 copied

if (EvFlags and LBITS) <> O then { Lft button released or pressed?
begin { YES

Abacus 14. Mouse Programming

MouEvent :- MouEvent and not(LBITS); {Remove previous status
MouEvent := MouEvent or (EvFlags and LBITS) ; I Add status

end;
if (EvFlags and RBITS) <> 0 then

begin
Rgt button released or pressed?)

[YES }
·- MouEvent and not(RBITS); [Remove previous status}
:= MouEvent or (EvFlags and RBITS); I Add status }

MouEvent
MouEvent

end;

MouCol x;
MouRow := y;

Convert columns to text columns
[Convert lines to text lines

[--Determine range in which the mouse should be found and
{--determine whether range nas changes since the previous call
[-- of the handler. If so, the cursor image must be redefined.

----!
----}
----}

NewRng := BufPtrA[MouRow * TCol + MouCol);
if NewRng <> MouRng then

I Get range
I New range?

begin
if NewRng = NO RANGE then

MouDefinePtr(StdPtr)
else

MouDefinePtr(ActRngPtrA[NewRng
end;

I YES
Outside of a range?

YES, standard pointer
{ NO, range recognized

I . PtrMask) ;

MouRng ·= NewRng;
end;

{ Reserve range number in global variable }

{**}
{* MouIBufFill: Store the code for a mouse range within the *}
[* modulare range memory *I
{**---------------------~--**}
{* Input xl, yl = Upper left corner of the mouse range *}
{* x2, y2 = Lower right corner of the mouse range *}
I* Code = Range code *}
{**}

procedure MouIBufFill(xl, yl, x2, y2, Code : byte);

var Index : integer;
Column,
Line : byte;

begin
for Line:=yl to y2 do

begin

Points to array
I Loop counter

Count individual lines

Index := Line
for Column:=xl

begin

* TCol + xl; First line index
to x2 do { Go through the columns in this line

BufPtrA[Index
inc (Index) ;

end;
end;

end;

:= Code; I Save code
[Set index to next array

{**}
{* MouDefRange: Allows the registration of different screen ranges,*}
{* which the mouse recognizes as different ranges. *}
I* The mouse pointer's appearance changes when it *}
I* senses each range *I
{**--**}
I* Input Number = Number of screen ranges * J
{* BPtr = Pointer to the array in which the individual *}
I* ranges are written as a structure of type *}
I* RANGE *I
{* Info: - The free areas of the screen are assigned the code *}
{* NO_RANGE *}
{* - When the mouse pointer enters one of the ranges, *I
I* the mouse range calls the event handler *I
{**}

633

14. Mouse Programming PC System Programming

634

procedure MouDefRange (Number byte; BPtr : RNGPTR) ;

var ActRng,
Range byte;

begin
ActRngPtr := BPtr;
NumRanges := Number;
FillChar (Bu!PtrA I BLen, NO RANGE) ;
for Range:=O to Number-1 do-
with BPtrA(Range] do

Number of the current range
{ Loop counter

Reserve pointer to vector
{ and number of ranges

{ All elements-NO RANGE
Check out different ranges

MouIBufFill(xl, yl, x2, y2, Range);

{-- Redefine mouse pointer --)
ActRng := BufPtrA[MouRow * TCol + MouCol);
if ActRng = NO RANGE then

{ Get range
Outside a range?

MouDefinePtr(StdPtr)
else

YES, standard pointer
{ NO, range recognized

MouDefinePtr(BPtrA(ActRng].Pt:tMask);
end;

{**}
{* MouEventWait: Waits for a specific mouse event *I
{**--**}
{* Input TYP = Type of comparison between different events *I
{* WAIT EVENT = Bitrnask which specifies the awaited event *)
{ * Output Bitrnask of the occurring event *I
{* Info: - WAIT EVENT can be used in conjunction with OR for other*)
{* constants like FN MOU MOVE, FN LEFT PRESS etc. *}
{* - Comparison types Can be given as AND or OR. If AND is *I
{* selected, the function returns to the caller if all *)
{ • anticipated events occur. OR returns the function to •)
{* the caller if at least one of the events occurs. *I
{**}

function MouEventWait(Typ : BYTE; WaitEvent : integer) : integer;

var ActEvent
Line,
Column
CEnd

begin

integer;

byte;
boolean;

Column := MouCol;
Line := MouRow;
CEnd := false;

repeat

{ Reserve current mouse position)

{--Wait for one of the events to occur ---------------------------)

if Typ = EAND then
repeat

ActEvent := MouEvent;
until ActEvent = WaitEvent

else
repeat

ActEvent := MouEvent;
until (ActEvent and WaitEvent

ActEvent := ActEvent and WaitEvent;

{ AND comparison?
{ YES, all events must occur

{ Get current event

OR comparison
{ At least one event must occur

{ Get current event
<> O;

{ Check event bits only

{--While waiting for mouse movement, the event is accepted)
{-- nonly if the mouse pointer moves to another line and/or)
{-- column in the text screen -)

if (((WaitEvent and FN MOU MOVE) <> O) and
(Column = MouCol) and (Line = MouRow)) then

begin I Mouse moved, but still at the same screen position
Act Event : = ActEvent and not (FN MOU MOVE) ; { Move bit out
CEnd := (ActEvent <> 0); - {-Still waiting for events?

Abacus 14. Mouse Programming

end
else

CEnd ·= TRUE;
until CEnd;

EVCol :- MouCol;
EvRow :- MouRow;
EvRng :• MouRng;

MouEventWait := ActEvent;
end;

{ Event occurs I

{ Determine current mouse position
{ and range in global

{ variables

{**!
{* MouISetEventHandler: Installs an event handler which is called *}
{ * when a particular mouse event occurs. *I
{**--**}
{* Input
{*

EVENT = Bitmask which describes the event, called *}
through an event handler *}

{* FPTR = Pointer to the event handler of type FNCTPTR *}
{* Info:
{*
{*
{*

- EVENT can be used through OR comparisons in conjunc- *}
tion with constants like EV MOU MOVE, EV LEFT PRESS etc*}
The event handler must be a-FAR-procedure, and change *}
none of the given processor registers * J

(**}

procedure MouISetEventHandler(Event : integer; FPtr: FNCTPTR);

var Regs : Registers;

begin
Regs.AX := $000C;
Regs.ex := event;
Regs.DX:= PTRREC(FPtr).Ofs;
Regs.ES := PTRREC{ FPtr) .Seg;
Intr { $33, Regs) ;

end;

Processor regs for interrupt call)

{ Funct. no. for •set Mouse Handler"
{ Load event mask

{ Off set address of handler
{ Segment address of handler

{ Call mouse driver

{**}
{* MouIGetX: Returns the text column in which the mouse pointer can *}
{* be found *}
{**--**}
{ * Output : Mouse column converted to text screen *}

{**}

function MouIGetX : byte;

var Regs : Registers;

begin
Regs.AX := $0003;
Intr($33, Regs);
MouIGetX Regs.ex shr 3;

end;

{ Processor regs for interrupt call J

Functs no. for "Get mouse position"
{ Call mouse driver

Convert column and return new value

{**}
{* MouIGetY: Returns the text line in which the mouse pointer can *}
{* be found *}
{**--**}
{* Output : Mouse line converted to text screen *}
{**)

function MouIGetY : byte;

var Regs : Registers;

begin
Regs.AX := $0003;
Intr($33, Regs);
MouIGetY := Regs.DX shr 3;

end;

{ Processor regs for interrupt call J

Funct. no. for "Get mouse position"
{ Call mouse driver

{ Convert line and return new value

635

14. Mouse Programming PC System Programming

636

{**}
{* MouShowMouse: Show mouse pointer on the screen *I
1••-------------------~-----------~--------------------------------••1
{* Info: Calls between MouShowMouse and MouHideMouse must be evenly *I
{ • balanced •I
{**}

procedure MouShoWl~ouse;

var Regs : Registers;

begin
Regs.AX := $0001;
Intr{ $33, Regs);

end;

{ Processor regs for interrupt call I

{ Funct. no. for "Show Mouse"
{ Call mouse driver

{**}
{* MouHideMouse: Hide mouse pointer from the screen *I
1••---~---••1
{* Info: Calls between MouShowMouse and MouHideMouse must be evenly *I
{ • balanced •I
{**}

procedure MouHideMouse;

var Regs : Registers;

begin
Regs .AX : = $0002;
Intr{ $33, Regs);

end;

{ Processor regs for interrupt call I

{ Funct. no. for "Hide Mouse•
{ Call mouse driver

{**}
{* MouSetMoveArea: Specify movement range for mouse pointer *I
{**--**}
{* Input xl, yl = Coordinates of range's upper left corner *I
{ • x2, y2 = Coordinates of range• s lower right corner •I
{* Info: - The coordinates indicate the text screen coordinates, *I
{* and not the virtual graphic screen used by the mouse *I
{* driver *I
{**}

procedure MouSetMoveArea{ xl, yl, x2, y2 : byte);

var Regs : Registers; { Processor regs for interrupt call I

begin
Regs.AX := $0008; Funct. no. for "Set vertical limits"
Regs.ex ·= integer(yl shl 3; { Conversion to virtual
Regs.DX := integer { y2 shl 3; { mouse screen
Intr ($33, Regs); { Call mouse driver
Regs.AX := $0007; { Funct. no. for "Set horizontal limits"
Regs.ex := integer(xl shl 3; { Conversion to virtual
Regs.DX := integer{ x2 shl 3; { mouse screen
Intr($33, Regs) ; { Call mouse driver

end;

{**}
{* MouSetSpeed: Configures movement speed of mouse pointer *I
1••--••1
{* Input XSpeed = Speed in X-direction *I
{* YSpeed = Speed in Y-direction *I
{* Info: - Parameters are measured in units of *I
{* mickeys {8 per pixel} *I
{**}

procedure MouSetSpeed{ XSpeed, YSpeed : integer I;

var Regs : Registers; { Processor regs for interrupt call I

Abacus 14. Mouse Programming

begin
Regs.AX :- $000f;
Regs.ex := xspeed;
Regs.DX := YSpeed;
Intr ($33, Regs);

{ Funct. no. for "Set mickeys to pixel ratio• }

{ Call mouse driver)
end;

{**}
{* MouMovePtr: Moves mouse pointer to a specific position on the *}
{ • screen *}
{**--••}
{* Input COL - New screen column for mouse pointer *!
{ * RCM - New screen line for mouse pointer •}
{* Info: - The coordinates indicate the text screen, and not the *}
{* virtual graphic screen used by the mouse driver *}
{**}

procedure MouMovePtr(Col, Row : byte);

var Regs
NewRng

begin

Registers;
byte;

{ Processor regs for interrupt call
Range into which the mouse is moved

Regs.AX : = $0004;
MouCol := col;
MouRow := row;
Regs.ex :=integer{
Regs.DX := integer(
Intr($33, Regs);

{ Funct. no. for "Set mouse pointer position"
{ Store coordinates in

{ global variables
col shl 3; Convert coordinates and store
row shl 3; in global variables

{ Call mouse driver

NewRng := BufPtrA[Row• TCol + Col);
if NewRng <> MouRng then

begin
if NewRng = NO RANGE then

MouDefinePtr(StdPtr)
else

MouDefinePtr (ActRngPtrA [NewRng
end;

{ Get range
{ New range?

{ YES
Outside of a range?

YES, standard pointer
{ NO, range recognized

J .PtrMask) ;

MouRng := NewRng;
end;

{ Place range number in global variable)

{**}
{* MouSetDefaultPtr: Defines default pointer appearance for screen *)
{* ranges not assigned as special ranges *)
{**--••)
{* Input Standard =Cursor and screen mask for mouse pointer *)
{* Info: - The parameters should be created with the help of the *)
{ • MouPtrMask function •)
{**}

procedure MouSetDefaultPtr(Standard: PTRVIEW);

begin
StdPtr := Standard; { Reserve bitmask in global variable)

{-- If the pointer isn't currently in a range, convert to default ---)

if MouRng = NO RANGE then
MouDefinePtr(-Standard);

end;

{ No range?
{ NO

{**}
{* MouEnd: End the mouse module functions and procedures *)
{**--••)
{* Info: - This procedure doesn't have to be called direct from the*)
{* application, since the Mouinit function defines this *)
{* as the exit procedure *)
{**}

637

14. Mouse Programming PC System Programming

638

{$F+} { must be FAR to allow call as exit procedure J

procedure MouEnd;

var Regs Registers;

begin
MouHideMouse;
Regs.AX := O;
Intr($33, Regs);

FreeMem(BufPtr, BLen } ;

ExitProc := ExitOld;
end;

{$F-J

{ Processor regs for interrupt call I

Hide mouse from screen
{ Reset mouse driver
{ Call mouse driver

Release allocated memory

Restore old exit procedure

{ No more FAR procedures J

{**}
{* Mouinit: Initializes mouse functions and procedures as well as •)
{ • variables *}
{**--**}
{* Input Columns =Number of screen columns *}
{* Lines =Number of screen lines *I
{* Output TRUE if a mouse driver is installed, else FALSE *}
{* Info: - This function must be the first called from an *}
{* application program, before other procedures and *}
{ * functions can be called *}
{**}

function Mouinit(Columns, Lines : byte) : boolean;

var Regs : Registers;

begin
TLine := Lines;
TCol := Columns;

ExitOld := ExitProc;
ExitProc := @MouEnd;

{ Processor regs for interrupt call }

{ Store number of lines and
columns in global variables

Set address of exit procedure
Define MouEnd as exit procedure

{--Allocate and fill mouse range -----------------------------------}

BLen := TLine * TCol; { Number of characters in screen
GetMern (BufPtr, BLen) ; { Allocate internal range buffer
MouIBufFill(O, O, TCol-1, TLine-1, NO_RANGE);

Regs.AX := O;
Intr($33, Regs);

Initialize mouse driver
{ Call mouse driver

Mouse driver installed? Mouinit := (Regs.AX <> O) ;

MouSetMoveArea(O, o, TCol-1, TLine-1); { Set move area

MouCol
MouRow
MouRng
MouEvent
StdPtr
OldPtr

:= MouIGetX; Load current mouse position
:= MouIGetY; { into global variables
:= NO_RANGE; { Pointer in no set range
:= EV LEFT REL or EV RIGHT REL; { No mouse button pressed
:= MouPtrMask(PTRSAMECHAR~ PTRINVCOL); { Std. pointer
:= PTRVIEW(0);

{-- Install assembler event handler "AssmHand" ------------------------!
MouISetEventHandler(EV_MOU_ALL, FNCTPTR(@AssmHand));

end;

{***
* MAIN PROGRAM *
***}

const Ranges : array[0 •• 4] of RANGE= { The mouse range }

Abacus 14. Mouse Programming

(
(xl: O; yl: O; x2: 79; y2: 0), Top line
(xl: O; yl: l; x2: O; y2: 23), Left column
(xl: O; yl: 24; x2: 78; y2: 24), Bottom line
(xl: 79; yl: l; x2: 79; y2: 23), Right column
(xl: 79; yl: 24; x2: 79; y2: 24) Lower right corner

) ;

var Dummy integer; { Get result from MouEventWait)

begin
(-- Configure mouse pointer for the different mouse ranges ----------}
Ranges[0].PtrMask := MouPtrMask(PtrDifChar($18l, PtrinVColl;
Ranges[1].PtrMask := MouPtrMask(PtrDifChar($lb), PtrinVCol);
Ranges[2].PtrMask := MouPtrMask(PtrDifChar($19), PtrinVCol);
Ranges[3].PtrMask := MouPtrMask(PtrDifChar($la), PtrinVCol);
Ranges[4].PtrMask := MouPtrMask(PtrDifChar($58), PtrDifCol($40));

writeln(fl3fl0,'MOUSEP - (c) 1989 by MICHAEL TISCHER'fl3tl0);
if Mouinit(BO, 25) then { Initialize mouse module }
begin { OK, there's an installed mouse driver J
writeln('Move the mouse pointer around the screen. As you move ',CRLF,

'it around the edge of the screen, you will see the mouse',CRLF,
'pointer change its appearance. The pointer shape changes •,CRLF,
•as you move the mouse from edge to edge. 1 ,CRLF,CRLF,
'To end this program, move the mouse pointer to the ',CRLF,
'lower right corner of the screen, and press both the ',CRLF,
'left and right mouse buttons at the same time. ');

MouSetDefaultPtr(MouPtrMask(PtrDifChar($DB), PtrDifCol(3)));
MouDefRange(5, @Ranges); { Range definition }
MouShowMouse; Display mouse pointer on the screen }

{-- Wait until the user presses both the left and right mouse
{-- buttons simultaneously while the pointer is in range 4

-----}
-----}

repeat { Read loop
Dummy := MouEventWait (EAND, EV_LEFT_PRESS or EV_RIGHT_PRESS) ;

until EvRng = 4;
end

else { No mouse installed OR no mouse driver installed }
writeln(•Sorry, no mouse driver currently installed.');

end.

Assembler listing: MOUSEPA.ASM

;**;
;* MOUSE PA *;
;*--*;
; * Task : Create mouse called event handler for use with *;
;* a Turbo Pascal program. *;
;•--*;
;*
;*
;*

Author
Developed on
Last update

MICHAEL TISCHER
: 04/24/1989
: 04/24/1989

*;
*;
*;

;*--*;
; * assembly MASM /MX MOUSEPA; or *;
;* TASM -MX MOUSEPA; *;
; * . • • add to MOUSEP program code *;
•**· ' '
;== Data segment ====--==============================-=========---========

DATA segment word public
DATA ends ;note--no variables in this proqrarn

;== Program ==--====-==========-======--=========

CODE segment byte public ;Program segment

639

14. Mouse Programming PC System Programming

640

assume CS:CODE ;CS points to the code segment whose
;contents are unknown to DS, SS & ES

public AssmHand ;Allows the TP program to read
;the address of the assembler handlers

extrn MouEventHandler near ;TP event handler to be called

active db 0 ;points to whether a call can occur

;---
;-- AssmHand : The event handler which first calls the mouse driver, then
;-- calls the TP MouEventHandler procedure
;-- Direct call from TP not allowed

AssmHand proc far

;-- First save all processor registers on stack ---

cmp active,O
jne ende

rnov active, 1

push ax
push bx
push ex
push dx
push di
push si
push bp
push es
push ds

;Call done yet?
;NO--> Don't exit call

;No more calls, please

;-- Push arguments for TP function call onto stack
;-- Call:
;-- MouEventHandler (EvFlags, ButStatus, x, y: integer);

push ax
push bx

mov di,ex
mov cl,3

shr di,cl
push di

shr dx,cl
push dx

;Push event flags onto stack
;Push mouse button status onto stack

;Move horizontal ordinate onto DI
;Counter for coordinate number

;Divide DI (horizontal ord.) by 8 and
;push onto stack

;Divide DX (vertical ord.) by 8 and
;push onto stack

mov ax,DATA ;Segment address of data segment AX
mov ds,ax ;Move data from AX to OS register

call MouEventHandler ;Call TP procedure

;-- Get reserved registers from stack -----------------------

pop ds
pop es
pop bp
pop si
pop di
pop dx
pop ex
pop bx
pop ax

mov active,O ; Re-enable call

Abacus 14. Mouse Programming

ende: ret ;Return to mouse driver

AssmHand endp

;---
CODE ends

end
;End of code segment
; End of program

C listing: MOUSEC.C

/**/
I* M 0 U S E C • C */
/*--*/
I* Task : Demonstrates mouse access from the C language */
/*--*/
I* Author MICHAEL TISCHER */
/* Developed on : 04/20/1989 */
I* Last update : 06/14/1989 */
/*--------·--*I
/* Microsoft C *I
I* Creation : CL /AS MOUSEC.C MOUSECA.OBJ */
I* Call : MOUSEC *I
/*--*/
/* Turbo C (integrated system) */
I* Creation Create a project file containing the following:*/
I* MOUSEC */
I* MOUSECA.OBJ *I
/*
/*
I*
I*
/*
I*
I*
I*
/*
/*
I* Call

Make sure that memory model is set to small. */
If you didn't assemble the MOUSECA.ASM file */
using the /MX option in MASM, make sure that */
Case-Sensitive Link on Linker options is OFF. •/
Disable stack checking before compilation. */
>>NOTE: One warning will occur (about the */
ButState in the MouEventHandler function). */
The program will run. Do N O T remove •/
the ButState declaration - the AssmHand routine•/
needs it<<
MOU SEC

*I
*/

/**/

/*== Add include files ===*/

#include <dos.h>
finclude <stdlib.h>

extern void far AssmHand(void); /* External declaration */
/* of assembler handler */

/*== Typedefs ==*/

typedef unsigned char BYTE; /* Create a byte *I
typedef unsigned long PTRVIEW; /* Mouse pointer mask */
typedef struct { /* Describe a mouse range •/

BYTE xl, /* Upper left coordinates of the *I
yl, /* specified range •/
x2, I* Lower right corner of the *I
y2; /* specified range •/

PTRVIEW ptr_mask; I* Mouse pointer mask */
J RANGE;

typedef void (far * MOUHAPTR) (void) ; /* Pointer to event handler •/

/*== Constants ===~========*/

#define TRUE
#define FALSE

1
0

/*-- Event codes ---*/
#define EV MOU MOVE 1 /* Move mouse *I

641

14. Mouse Programming PC System Programming

642

fdef ine EV LEFT PRESS 2
fdefine EV-LEFT-REL 4
#define EV-RIGHT PRESS 8
#define EV-RIGHT-REL 16
#define EV-MOU ALL 31

fdefine NO_RANGE 255

/* Left mouse button pressed */
/* Left mouse button released */
I* Right mouse button pressed */

/* Right mouse button released */
/* all mouse events */

/* mouse pointer not in range xy */

I*-- Macros --*/

#define MouGetCol() (ev col) I* Return mouse position & *I
fdefine MouGetRow() (ev-row) /* range the moment the */
tdefine MouGetRange ()
fdefine MouAvail()

(ev-rng) /* event occurs •/
(mavail /* Available mouse = TRUE */

fdefine MouGetCurCol()
fdefine MouGetCurRow()
fdefine MouGetCurRng()
fdefine MouisLeftPress()
fdefine MouisLeftRel()
fdefine MouisRightPress()
fdefine MouisRightRel()
#define MouSetMoveAreaAll()

(moucol /* Returns current mouse */
(mourow /* position and current */
(mourng /* mouse range */
(mouevent & EV LEFT PRESS)
(mouevent & EV:::: LEFT:::: REL)
(mouevent & EV RIGHT PRESS)
(mouevent & EVYIGHT::::REL)
MouSetMoveArea(O, O, tcol-1, tline-1);

fdefine ELVEC(x) (sizeof(x) I sizeof(x[O])) I* No. of elements in X */

/*-- Bitmask creation macros defining mouse pointer's appearance.
/*--Syntax for calling MouPtIMask (sample):
/*-- MouPtIMask(PTRDIFCllAR('x'), PTRINVCOL)
/*-- When the pointer is represented as a lowercase x, the inverse
/*-- character color takes effect.

fdefine MouPtIMask(z, f)\
((((PTRVIEW) f) >> 8 << 24) + (((PTRVIEW) z) >> 8 << 16) +\

(((f) & 255) << 8) + ((z) & 255)

#define PTRSAMECHAR (OxOOff) I* Same cahracter
#define PTRDIFCllAR (z) ((z) « 8 /* Other characters
#define PTRSAMECOL (OxOOff) /* Same color
#define PTRINVCOL (Ox7777) /* Inverse color
#define PTRSAMECOLB (Ox807f) /* Same color (blinking)
#define PTRINVCOLB (OxF777) /* Inverse color (blinking)
fdefine PTRDIFCOL (f) ((f) « 8) /* other color
fdefine PTRDIFCOLB(f) (((f) I Ox80) « 8) I* Other color (blinking)

---*/
---*/
---*!
---*/
---*/

*I
*I
*I
*I
*/
*/
*/
*I

fdefine EAND 0 /* Event comparisons for MouEventWait() *I
#define EVOR 1

fdefine MOUINT(rin, rout) int86(0x33, &rin, &rout)
tdefine MOUINTX(rin, rout, sr) int86x(Ox33, &rin, &rout, &sr)

/*--Macros for converting mouse coordinates between virtual mouse */
/*-- screen and text screen ----*/

#define XTOCOL(x)
#define YTOROW(y)
#define COLTOX(c)
#define ROWTOY(r)

(x) » 3
(y) » 3
(c) « 3
(r) « 3

/* x v 8 */
I* Row v 8 */

/* c x 8 */
I* Row x B */

/*== global variables =====================-======~=* /

BYTE tline,
tcol,
mavail = FALSE;

/* No. of text lines */
/* No. of text columns */

/* TRUE when mouse is available */

/*-- Mask for standard mouse pointer ---------------------------------*/

PTRVIEW stdptr = MouPtrMask (PTRSAMECllAR, PTRINVCOL) ;

BYTE * bbuf,
num_range = O;

/* Ptr to range recognition buffer */
/* No range defined until now */

Abacus 14. Mouse Programming

RANGE * cur range; I* Pointer to current range vector */
I* Length of BBUF in bytes */ int bl en;

/*-- Variables which load every time the mouse handler is called -----•/

BYTE mourng = NO_RANGE,
moucol,

/* Current mouse range •/
I* Mouse column (text screen) */

/* Mouse row (text screen) •/
/* Event mask •I

rnourow;
int mouevent = EV LEFT REL + EV RIGHT_REL;

/*-- Variables which load every time an event anticipated by the
/*-- mouse handler cccurs

---•/
---•i

BYTE ev _rng,
ev_col,
ev_row;

/* Range in which the mouse can be found •/
/* Mouse column •/

/* Mouse row •I

/***
Function : M o u D e f i n e P t r

--
Task

Input parameters

Defines the cursor mask and screen mask which
determines the mouse pointer's appearance
MASK = Both bitmasks, made into a 32-bit value

of type UNSIGNED LONG
None

•

Return value
Info Most significant 16 bits of MASK = screen mask

least significant 16 bits of mask = cursor mask •
***/

fpragma check_stack(off) I* No stack checking here •/

void MouDefinePtr(PTRVIEW mask)
{
static PTRVIEW oldercursor
union REGS regs;

(PTRVIEW) O; /* Last value for MASK */
/* Processor regs for interrupt call */

if (oldercursor !=mask
{

/* Changes since last call? */
/* YES */

/* Funct. no. for "Set text pointer type" */
I* Create software pointer */

/* Low word is AND-mask */
/* High word is XOR-mask */

/* Call mouse driver */
I* Note old bitmask */

regs.x.ax
regs.x.bx

OxOOOa;
O;

regs.x.cx mask;
regs.x.dx = mask >> 16;
MOUINT(regs, regs);
oldercursor = mask;

/***
Function : M o u E v e n t H a n d 1 e r

--
Task

Input parameters

Return value
Info

Calls AssmHand routine from mouse driver, when
a mouse related event occurs.
EvFlags =Event's event mask
ButState = Mouse button status
X, Y current pointer position, converted

into text screen coordinates
None
- This function ise only operational through a

mouse driver call, and shouldn't be called
from another function.

***/

void MouEventHandler(int EvFlags, int ButState, int x, int y)
{
fdef ine LBITS
#define RBITS

unsigned newrng;

EV LEFT PRESS I EV LEFT REL)
EV:::RIGHT_PRESS I EV_RIGHT_REL

I* New range number •/

643

14. Mouse Programming PC System Programming

644

l

mouevent &- -1;
mouevent I• (EvFlags & 1);

I* Clear bit 0 *I
I* Copy EvFlags to bit O •/

if (EvFlags & LBITS)
I
mouevent &= -LBITS;
mouevent I= (EvFlags

l

if (EvFlags & RBITS)
I
mouevent
moue vent

moucol = x;
mourow = y;

&= -RBITS;
I= (EvFlags

I* Left mouse button pressed or released? *I
I* YES *I

I* Clear previous status *I
& LBITS) ; I* Add new status *I

I* Right mouse button pressed or released? *I
/* YES, Clear and set bits *I

I* Clear previous status *I
& RBITS) ; /* Add new status •/

/* Convert columns into text columns */
I* Convert rows into text rows */

/*-- Check range in which mouse is currently located, and compare
/*--to range since last call. If a change occurs, the pointer's
/*-- appearance will have to be changed.

--•/
---•/
---*/

newrng = *(bbuf + mourow * tcol + moucol);
if (newrng != mourng)
MouDefinePtr((newrng==NO_RANGE) ? stdptr :

/* Get range •I
/* New range? */

rnourng = newrng;
(cur range+newrng)->ptr mask);

I* Place range niiinber in global variables •/

fpragma check stack
fpragma check-stack

/* Re-enable stack checking and old •/
/* status */

/**********************~**
Function : M o u I B u f F i l l *

--
Task Stores a specific screen range code within

screen memory affecting the module
Input parameters xl, yl = Upper left corner of the screen

Return value
Info

x2, y2 Lower right corner of the screen *
CODE = Range code
None
This functions should only be called from within *
this module.

***/

static void MouIBufFill(BYTE xl, BYTE yl,
BYTE x2, BYTE y2, BYTE code)

register BYTE * lptr;
BYTE i, j;

lptr = bbuf + yl * tcol + xl;

/* Floating pointer to range mem. */
/* Loop counter */

/* Pointer to first line •/

/*-- Go through individual lines ------------------------------------•/
for (j=x2 - xl + 1 ; yl <= y2; ++yl, lptr+=tcol)
memset(lptr, code, j); /*Set code*/

/***
* Function : M o u D e f R a n g e

--
*

*
*
*

Task

Input parameters

* Return value
Info

Allows the definition of different screen ranges •
which configure a different code for the mouse
pointer, depending on the pointer's location. *
- NUMBER Number of screen ranges *
- PTR Pointer to screen description vector *

(type RANGE)
None *
- Free screen ranges receive the code NO RANGE.
- When entering the specified screen range, the

Abacus 14. Mouse Programming

*

mouse handler automatically changes the mouse
pointer's appearance to correspond with that
range.

- Since the specified pointer is stored, but the •
specified vector isn't copied to a separate
buffer, the contencs of the vecros should not
be changed on the next call of this function.

***/

void MouDefRange(BYTE number, RANGE * ptr)
{
register BYTE i,

range;

cur_range = ptr;
num range - nwnber;
memset{ bbuf, NO RANGE, blen);
for (i=O ; i<number ; ++ptr)
MouIBufFill (ptr->xl, ptr->yl,

I* Loop counter *I
/* Meuse ranqe */

/* Reserve pointer to vector
/* and number of ranges

ptr->x2, ptr->y2, i++);

*I
*I

/*-- Redefine mouse pointer ------------------------------~----------•/

range= *(bbuf + mourow • tcol + moucol); /*Current mouse range*/
MouDefinePtr((range ==NO RANGE) ? stdptr

{cur_range+range)->ptr_mask);

/***
Function : M o u E v e n t W a i t

**--··
•
*

•
•
•

•

Task Waits for a specific event from the keyboard •
Input parameters : TYP Establishes comparison between

Return value
Info

different events.
WAIT EVENT Bitmask which specifies wait event. •
Bitmask which describes this or another event.
- WAIT_EVENT can be used with other constants

such as EV MOU MOVE or EV LEFT PRESS when used *
in conjunction-with EVOR.- -

- EAND & EVOR are allowable types. EAND has the •
ability to return to the caller once ALL events•
have occurred; EVOR returns to the caller when •
at least one event occurs.

***/

int MouEventWait{ BYTE typ, int wait_event
{

int cur event; /* Current event mask */
I* Last mouse position */ register BYTE column = moucol,

line = mourow;
BYTE ende = FALSE; I* TRUE if an event occurs *I

while (!ende) /* Repeat until event occurs *I
{

/*-- Wait until one of the events occurs --------------------------•/

if { typ = EAND) /* EAND: All events must occur •/
while { {cur_event = mouevent) != wait_event)

else /* EVOR: At least one event must occur •/
while { ((cur_event = mouevent) & wait_event) ~ 0)

cur event &= wait_event; /* Check event bits only */

/*-- When moving the mouse, the event is only accepted if the --*/
/*--pointer moves to'another row or column on the text screen --•/

if ((wait event & EV MOU MOVE) && column==moucol && line-mourow)
(- - 1* Mouse moves, but in same screen position */
cur event &= (-EV_MOU_MOVE); /* Examine move bit •/

645

14. Mouse Programming PC System Programming

646

ende = (cur_event != O);
I

else
ende -= TRUE;

ev_col = moucol;
ev_row = mourow;
ev rng • mourng;
return(cur event);

I -

I* Are events pending? */

I* Event occurred *I

/* Set current mouse position */
/* and mouse range; place in */
/* global variables *I

/* Return event mask */

/***
Function : M o u I s e t E v e n t H a n d 1 e r

--
* Task Installs an event handler which handles events *
* called from the mouse driver. *

Input parameters EVENT = Bitmask which specifies the event which *
calls the event handler. *

PTR = Pointer to the mouse handler *
None
- EVENT can be used in conjunction with the EVOR *

comparison on constants such as EV_MOU_MOVE, *
EV LEFT PRESS

***/

Return value
Info *

*

static void MouISetEventHandler(unsigned event, MOUHAPTR ptr I
{
union REGS regs;
struct SREGS sregs;

regs.x.ax = OxOOOC;
regs.x.cx = event;
regs.x.dx = FP OFF(ptr);
sregs.es = FP=SEG(ptr);
MOUINTX(regs, regs, sregs);

I

/* Processor regs for interrupt call */
I* Segment register for interrupt call */

/* Funct. no. for "Set Mouse Handler" */
I* Load event mask */

/* Offset address of handler */
I* Segment address of handler */

/* Call mouse driver */

/***
* Function : M o u I G e t X
••--**

Task Determines text column in which pointer lies. *
Input parameters : None
Return value : Mouse pointer column, relative to text screen

***/

static BYTE MouIGetX(void)
{
union REGS regs;

regs.x.ax- Ox0003;
MOUINT(regs, regs);
return XTOCOL(regs.x.cx);

/* Processor regs for interrupt call */

I* Funct. no. for "Get mouse position" */
/* Call mouse driver */

I* Convert and return column */

/***
Function : M o u I G e t Y

--
* Task Determines text row in which pointer lies.

Input parameters : None
Return value : Mouse pointer row, relative to the text screen

***/

static BYTE MouIGetY(void)
{
union REGS regs;

regs.x.ax= Ox0003;
MOUINT{regs, regs);
return YTOROW(regs.x.dx);

I

/* Processor regs for interrupt call */

/* Funct. no. for "Get mouse position" */
/* Call mouse driver */

/* Convert and return row */

Abacus 14. Mouse Programming

/***
Function : M o u s h o w M o u s e *

--
Task
Input parameters
Return value
Info

Display mouse pointer on the screen.
None
None
Calls of MouHidemMouse() and MouShowMouse() must *
be kept balanced.

***/

void MouShowMouse(void)
i
union REGS regs;

regs.x.ax - OxOOOl;
MOUINT(regs, regs);

)

/* Processor regs for interrupt call */

I* Funct. no. for "Show Mouse• */
I* Call mouse driver */

/***
* Function : M o u H i d e M o u s e *
--
* Task

Input parameters
Return value
Info

Hide mouse pointer from screen.
None
None
Calls of MouHidemMouse() and MouShowMouse() must *
be kept balanced.

***/

void MouHideMouse(void)
{

union REGS regs;

regs.x.ax - Ox0002;
MOUINT(regs, regs);

)

I* Processor regs for interrupt call */

I* Funct. no. for "Hide Mouse" *I
/* Call mouse driver */

/***
Function : M o u s e t M o v e A r e a

--
Task

Input parameters

Defines a screen range within which the mouse
pointer may be moved.
xl, yl Coordinates of upper left corner
x2, y2 - Coordinates of lower right corner
None Return value

Info - Both parameters apply to text screen, NOT the
mouse driver's virtual graphic screen

***/

void MouSetMoveArea(BYTE xl, BYTE yl, BYTE x2, BYTE y2)
{
union REGS regs; /* Processor regs for interrupt call */

regs.x.ax Ox0008; /* Funct. no. for "Set vertical Limits" */
regs.x .. cx ROWTOY(yl) ; I* Conversion to virtual */
regs.x.dx ROWTOY(y2) ; I* mouse screen */
MOUINT (regs, regs); /* Call mouse driver */
regs.x .. ax Ox0007; I* Funct. no. for "Set horizontal Limits" */
regs.x.cx - COLTOX(xl) ; /* Conversion to virtual */
regs.x.dx - COLTOX(x2) ; I* mouse screen */
MOUINT (regs, regs); /* Call mouse driver */

)

/***
* Function : M o u s e t s p e e d *
--

Task

Input parameters

Determines the difference between mouse movement •
speed and the resulting pointer speed on the
screen.
- XSPEED - Horizontal speed

647

14. Mouse Programming PC System Programming

648

* - YSPEED = Vertical speed
None

*
*
*
*

Return value
Info - Both parameters are based on mickeys

(mickey I 8 pixel),
***/

void MouSetSpeed(int xspeed, int yspeed)
{
union REGS regs; /* Processor regs for interrupt call */

regs.x.ax OxOOOf; /* Funct. no. for •set mickeys to pixel ratio" */
regs.x.cx = xspeed;
regs.x.dx = yspeed;
MOUINT(regs, regs);

I
I* Call mouse driver */

/***
Function : M o u M o v e P t r

--
Task Moves the mouse pointer to a specific position

* on the screen. *
Input parameters - COL = new screen column *

- RCM = new screen row *
* Return value None *
* Info - Both parameters apply to the text screen, NOT *
* to the mouse driver's virtual graphic screen *
***/

void MouMovePtr (int col, int row)
{

)

union REGS regs;
unsigned newrng;

regs.x.ax Ox0004;
regs.x.cx COLTOX(
regs.x.dx = ROWTOY(
MOUINT(regs, regs);

/* Processor regs for interrupt call */
/* Range in which the mouse can move */

/* Funct. no.
moucol col);
rnourow = row) ;

for "Set mouse pointer position" */
/* Convert coordinates
/* in global variables

and store */
*/

/* Call mouse driver */

newrng = *(bbuf + mourow * tcol + moucol);
if (newrng != mourng)
MouDefinePtr((newrng==NO_RANGE) ? stdptr:

I* Get range */
I* New range? *I

mourng = newrng;
(cur range+newrng)->ptr mask);

I* Place range nilrnber in global variables */

/***
Function : M o u S e t D e f a u 1 t P t r *

--
Task Defines mouse pointer for screen ranges without

the help of MouDefRange. *
Input parameters
Return value

STANDARD = Bitrnask for standard mouse pointer *
None

***/

void MouSetDefaultPtr(PTRVIEW standard)
{
stdptr = standard; /* Place bitrnask in global variables */

I*-- If mouse is currently in no range, go direct to conversion
/*-- to new pointer appearance

---*/
---*/

if (MouGetRange() ==NO RANGE
MouDefinePtr(standard);

/* Not in any range? */
I* NO */

/***
Function : M o u E n d

--
Task Ends mouseC module functions.
Input parameters : None *

Abacus 14. Mouse Programming

*

Return value
Info

None
Function is called automatically when program
ends, as long as Mouinstall is called first.

*

*
***/

void MouEnd(void
(
union REGS regs;

MouHideMouse () ;
regs.x.ax = O;
MOUINT(regs, regs);

free (bbuf) ;
)

/* Processor regs for interrupt call */

I* Hide mouse pointer from screen */
/* Reset mouse driver */
/* Call mouse driver */

/* Release allocated memory •/

/***
Function : M o u I n i t *

------------------------------~-------------------------------------
Task
Input parameters

Return value
Info

Initializes variables and mousec module
Columns, = Text screen resolution
Lines
TRUE if a mouse is installed, else FALSE •
This function must be called as the first one in •
the module.

***/

BYTE Mouinit(BYTE columns, BYTE lines)
{
union REGS regs; /* Processor regs for interrupt call */

tline lines;
tcol = columns;

atexit(MouEnd);

/* Store no. of lines and cols
/* in global variables

•/
•/

/* Call MouEnd at end of program •/

/*-- Allocate and fill mouse range buffer ---------------------------•/

bbuf = (BYTE *) malloc(blen = tline • tcol);
MouIBufFill(O, O, tcol-1, tline-1, NO RANGE);

regs.x.ax = O; /* Initialize mouse driver */
MOUINT (regs, regs}; I* Call mouse driver *I
if (regs.x.ax != Ox ff ff /* Mouse driver installed? *I
return FALSE; I* NO *I

MouSetMoveAreaAll(); I* Set range of movement *I

rnoucol MouIGetX (); I* Load current mouse pos. •/
mourow MouIGetY () ; /* into global variables *I

!*-- Install assembler event handler "AssmHand" ---------------------•/
MouISetEventHandler(EV_MOU_ALL, (MOUHAPTR) AssrnHand);

return mavail = TRUE;
)

/* Mouse is installed •/

/***
* M A I N P R 0 G R A M
***/

int main (void)
{
static RANGE ranges[]

{
{ O, O, 79, O, MouPtrMask(PTRDIFCHAR(OxlB),
{ O, 1, O, 23, MouPtrMask(PTRDIFCHAR(Oxlb),
{ O, 24, 78, 24, MouPtrMask(PTRDIFCHAR(Ox19),
{ 79, 1, 79, 23, MouPtrMask(PTRDIFCHAR(Oxla),
(79, 24, 79, 24, MouPtrMask(PTRDIFCHAR('X'),

/* Mouse ranges •/

PTRINVCOL)),
PTRINVCOL)) ,
PTRINVCOL)),
PTRINVCOL)),
PTRDIFCOLB(Ox40))),

649

14. Mouse Programming PC System Programming

} ;

printf("\nMOUSEC - (c) 1989 by MICHAEL TISCHER\n\n");
if (Mouinit(80, 25)) /*Initialize mouse module*/

(/* OK, there is an installed mouse driver */
printf("Move the mouse pointer around on the s=een. When you move\n"\

"the mouse pointer to the border of the screen, the\n"\
"mouse pointer changes in appearance, depending upon its\n"\
"Current position. \n\n"
"Move the mouse pointer to the lower right corner of the\n"\
"screen, and press both the left and right mouse buttons\n"\
"to end this demo program.\n");

MouSetDefaultFtr (MouPtrMask (PTRDIFCllAR (' [') , PTRDIFCOL (3))) ;
MouDefRange(ELVEC(ranges), ranges); /*Range definition*/
MouShowMouse(); /* Display mouse pointer on the screen*/

/*-- Wait until the user presses the left and right mouse --*/
/*-- buttons simultaneously, AND the mouse pointer lies int --*/
/*-- range 4 --*/

do
MouEventWait(EAND, EV LEFT PRESS

while (MouGetRange() != 4);

return O;

/* Read loop */
EV_RIGHT_PRESS);

I* Return OK code to DOS */

else
(

/* No mouse OR mouse driver installed */

printf("Sorry, no mouse driver installed. \n");
return 1; /* Return error code to DOS *I

Assembler listing: MOUSECA.ASM

650

;**;
;* MOUSE CA *;

;*--*;
;*
;*
;*

Task Mouse driver event handler intended for
linking to a c program compiled as a SMALL
memory model.

*;
*;
*;

;*--*;
; * Author MICHAEL TISCHER *;
;* Developed on : 04/20/1989 *;
;* Last update : 06/14/1989 *;

;*--*;
; * assembly : MASM /MX MOUSECA; *;
; * . • • link to program MOUSEC *;
;**;

;== Segment declarations for the c program =============================

IGROUP group _text ;Inclusion for program segment
DGROUP group const, bss, _data ;Inclusion for data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST
CONST

BSS
_BSS

segment word public 'CONST';This segment includes all read-only
ends ; constants

segment word public 'BSS'
ends

;This segment includes all un
;initialized static variables

DATA segment word public 'DATA' ;This segment includes all initialized
;global and static variables

DATA ends

;== Program ==~=====•=-=========

Abacus 14. Mouse Programming

_TEXT segment byte public 'CODE' ;Program segment

public AssmHand ;Gives the C program the ability to
;access assembler handler addresses

extrn _MouEventHandler near ;Event handler to be called

active db 0 ;Indicates whether a call is under
;execution

;---
;-- AssmHand : The event handler called by the mouse driver, then
:-- - called by the MouEventHandler O function
;-- Call from C: not allowed!

AssmHand proc far

;-- Place all processor registers on the stack ---

cmp active,O
jne ende

mov active,1

push ax
push bx
push ex
push dx
push di
push si
push bp
push es
push ds

;Call still not finished?
;NO --> Do not exit call

;No more calls

;-- Place all arguments for calling c FCT on the stack
;-- Call: MouEventHandler (int EvFlags, int Butstatus,
;-- int x, int y) ;

mov di, ex ;Place horizontal coordinate in DI
mov cl,3 ;Counter for coordinate number
shr dx,cl ;Divide DX (vertical coord.) by 8
push dx ;and place on the stack

shr di, cl ;Divide DI (horizontal coord.) by 8
push di ;and place on the stack

push bx ;Push mouse button status onto stack
push ax ;Push event flag onto stack

mov ax,DGROUP ;Move segment address of DGROUP to AX
mov ds,ax ;Move AX to OS register

call _MouEventHandler ;c function call

add sp,8 ;Get arguments from stack

;-- Pop register contents off of stack ---------

pop ds
pop es
pop bp
pop si
pop di
pop dx
pop ex
pop bx
pop ax

mov active,O ;Re-enable call

651

14. Mouse Programming PC System Programming

ende: ret ;Return to mouse driver

AssmHand endp

;---
text

652

ends
end

;End of code segment
;End of program

Chapter 15

Determining
Types

Processor

There are number of utility programs on the market today which can tell you about
the configuration of a PC. This information can include the amount of available
RAM, the running DOS version and the type of processor the PC has.

This information can be very useful for developing programs in high level
languages, since code generation can be adapted to the particular processor. For
example, both Microsoft C and Turbo C allow special code generation for the
8088, the 80286 and the 80386, which makes full use of the capabilities of the
particular processor and instruction set. This can dramatically improve performance
for programs which work with large groups of data. One way to take advantage of
this would be to compile the program once for each of the three processor types.
Then a program could be developed to serve as the boot for the actual program.
This boot program would determine the type of processor being used and load the
main program version most compatible with the processor.

Which processor is which?

This raises the question of how to determine which type of processor is being
used, since unlike other configuration information, we cannot find this out by
making a BIOS or DOS call. Unfortunately, there is no machine language
instruction which instructs the processor to reveal its identity, so we have to use a
trick. This trick relies on a condition which, according to a few hardware
manufacturers, is totally impossible.

This is a test which involves the different ways the various processors execute
certain machine language instructions. Although processors from the 8086 to the
80386 are upwardly software compatible, the development of this processor series
brought small changes in the logic of certain instructions. Since these changes are
only noticeable in rare situations, a program developed for the 8088 processor will
also run correctly on all other processors in the Intel 80x86 series. But if we

653

15. Determining Processor Types PC System Programming

654

deliberately put a processor into such a situation, we can detennine its identity
from its behavior.

These differences are only noticeable at the assembly language level, so our test
program must be written in assembly language. We have included listings at the
end of this chapter which allow the test routine to be included in Pascal, C and
BASIC programs as well.

NO NO
80386

YES
80186/881---------4~

NO NEC V20/V30 .__ ____ _

.. 86 processor

Determining processor type on a PC

Abacus 15. Determining Processor Types

As the flowchart above shows, the routine consists of several tests which can
distinguish various processor types from one another. The next test executes only
when the current test returns a negative response.

Flag register test

The first test concerns the different layout of the flag register in the different
processors. The meaning of bits 0 to 11 is the same in all processors, but bits 12-
15 are also defined in processors from 80286 up (through the introduction of the
protected mode). This can be noticed in the instructions PUSHF (push the contents
of the flag register onto the stack) and POPF (fetch the contents of the flag register
from the stack). On processors through the 80188 these instructions always set
bits 12-15 of the flag register to 1, but this doesn't occur in the 80286 and 80386
processors. The first test in the routine takes advantage of this fact, in which it
places the value 0 on the stack and then loads it into the flag register with the
POPF instruction. Since there is no instruction for comparing the contents of bits
12 to 15, the flag register is pushed back onto the stack with a PUSHF
instruction. This is so we can get the contents into the AX register with POP AX,
where we can test bits 12 to 15.

If all four bits are set, then the processor cannot be an 80286 or an 80386, and the
next test is performed. However, if not all four bits are set, then we have reduced
the set of possible processors to the 80826 and the 80386. Since POPF also
operates differently between these two processors, it is easy to tell them apart We
simply repeat the whole process, this time by placing the value 07000H on the
stack instead of 0. When the flag register is loaded with the POPF instruction, bits
12 to 14 of the flag register will be set to 1. If these bits are no longer 1 when the
contents of the flag register are fetched from the stack, then the processor must be
an 80286, which, in contrast to the 80386, sets these three bits back to 0. The test
is then concluded for these two processors.

Narrowing down the field

If the processor did not pass the first test, the following test will show if it is an
80188 or 80186. With the introduction of these two processors, the shift
instructions (like SHL and SHR) were changed in the way they use the CL register
as a shift counter. While in previous processors the number of shifts could be
between 0 and 255, the upper three bits of the CL register are now cleared before
the instructions starts, limiting the number of shift operations. This makes sense
since a word will contain all zeros anyway after at most 16 shifts (17, if the carry
flag is shifted). Additional shifts will cost valuable processor time and will not
change the value of the argument at all.

The second test makes use of this behavior by shifting the value OFFH in the AL
register 21H positions to the right with the SHR instruction. If the processor
executing the instruction is an 80188 or later type, the upper three bits of the shift
counter will first be cleared, and only one shift is performed instead of 21H shifts.

655

15. Determining Processor Types PC System Programming

021H (00100001(b)) number of shifts
& OlfH (OOOlllll(b)) mask out the upper three bits

OOlH (OOOOOOOl(b)) actual number of shifts

Unlike its predecessors, which would actually shift the value OFFH to the right
021H times and return the value 0, the 80188 and 80186 will return the value
07FH. By checking the contents of the AL register after the shift we can easy tell
if the processor is an 80188 or 80186 (AL not zero), or not (AL equal to 0). If the
processor also fails this test, then we know it is an 8088/8086 or V20/30.

V20 and V30 processors

The V20 and V30 processors are 8088/8086 "clones" which use the same
instruction set as their Intel cousins, but which operate considerably faster due to
the optimization of internal logic and improved manufacturing. This speed also
results in a higher cost, so some PC manufacturers avoid using these processors.

In addition to the faster execution of instructions, these processors also corrected a
small error which occurs in the 8088 and 8086 processors. If a hardware interrupt
is generated during the execution of a string instruction (such as LODS) in
connection with the REP(eat) prefix and a segment override, the execution of this
instruction will not resume after the interrupt has been processed. This can easily
be determined because the CX register, which functions as the loop counter in this
instruction, will not contain a 0 as expected after the instruction.

We make use of this behavior in the test program by loading the ex register with
the value OFFFFH, and then executing a string instruction 65535 times with the
REP prefix and segment override. Since even a fast processor needs some time to
do this, a hardware interrupt will be generated during one of the 65535 executions
of this instruction. In the case of the 8088 or 8086, the instruction will not be
resumed after the interrupt, and the remaining "loop passes" will not execute. The
test program verifies this from the ex register after the instruction has been
executed.

Data bus test

Queue

656

Once we have distinguished between the 8088/8086 and the V20/30, one last test
is performed for all processors (except the 80286 and 80386). In this test we
determine if the processor is using an 8-bit or a 16-bit data bus. This allows us to
tell the difference between the 8088 and 8086, the V20 and V30, or the 80188 and
the 80186. We cannot determine the width of the data bus with assembly language
commands, but the data bus width is related to the length of the instruction queue
within the processor.

The queue stores the instructions following the instruction currently being
executed. Since these instructions are taken from the queue and not from memory,

Abacus 15. Determining Processor Types

this improves execution speed. This queue is six bytes long on processors with a
16-bit data bus, but only four bytes long on processors with an 8-bit data bus.

The last test is based on this difference in length. The string instruction STOSB
(store string byte) used in connection with the REP prefix modifies three bytes in
the code segment immediately following the STOSB instruction. These bytes are
placed so that they are found within the queue on a processor with a six-byte
queue; the processor won't even notice the change. On a processor with a four-byte
queue, these instructions are still outside the queue, so the modified versions of the
instructions are loaded into the queue. The program makes use of this by
modifying the instruction INC DX, which increments the contents of the DX
register which contains the processor code in the routine. This instruction is
executed only when the processor has a six-byte queue, and the instruction was
already in the queue by the time the modification was performed.

On a processor with a four-byte queue, this instruction is replaced by the STI
instruction, which doesn't affect the contents of the DX register (or the processor
code). STI sets the interrupt bit in the processor flag register. Since this procedure
always increments the processor code by one for 16-bit processors, the processor
codes in the routine are chosen so that the code for the 16-bit version of a
processor always follows the code for the 8-bit version of the same processor.

The following BASIC and Pascal programs use DAT A or inline statements instead
of assembly language. However, we included the assembly language versions of
these statements here so that you can follow the program logic. The C
implementation requires direct linking of C and the assembly language routine.

BASIC listing: PROCH.BAS

100 '**'
110 P R 0 C B *'
120 ··--*'
130 '* Task : Examines the main processor and tells the * •
140 user the processor type
150 '* Author : MICHAEL TISCHER
160 Developed on : 09/06/1988 *'
170 '* Last update : 05/23/1989
180 '**'
190 '
200 CLS : KEY OFF
210 PRINT"ATTENTION: This program should only be run when GW-BASIC is loaded from•
220 PRINT"the DOS prompt using the command <GWBASIC /m:60000>."
230 PRINT : PRINT"If this isn't the case, press the <s> key to stop.•
240 PRINT"otherwise, press any other key to continue... •;
250 AS = INKEYS : IF A$ = "s" THEN END
260 IF AS = "" THEN 250
270 CLS 'Clear screen
280 GOSUB 60000 'Install assembler routine
290 CALL PT(PTYP%) 'Determine processor type
300 RESTORE 1000 'Read DATA statements starting at line 1000
310 FOR I% = 0 TO PTYP% READ PS : NEXT 'Get processor name
320 PRINT "PROCB - (c) 1988 by MICHAEL TISCHER"
330 PRINT "Your PC contains a(n) ";PS;" processor.•
340 END
350 •
1000 DATA "INTEL 8088", "INTEL 8086", "NEC v20•, "NEC V30"
1010 DATA "INTEL 80186", "INTEL 80188", "INTEL 80286", "INTEL 80386"

657

15. Determining Processor Types PC System Programming

1020 •
60000 '**'
60010 • * Routine for determining onboard processor type *'
60020 '*--*'
60030 Input : none *'
60040 '* output : PT is the starting address of the assembler routine *'
60050 '* Call to the routine:CALL PT(PTYP\) *'
60060 '**'
60070 •
600BO PT=60000!
60090 DEF SEG
60100 RESTORE 60140

•starting address of BASIC segment routine
'Define BASIC segment

60110 FOR I\ = 0 TO 105 READ X\ POKE PT+I\,X\ NEXT 'POKE routine
60120 RETURN 'Return to caller
60130 •
60140 DATA 85,139,236,156, 6, 51,192, B0,157,156, BB, 37, 0,240, 61
60150 DATA 0,240,116, 19,17B, 6,1B4, 0,112, B0,157,156, BB, 37, 0
60160 DATA 112,116, 54,254,194,235, 50,144,17B, 4,176,255,177, 33,210
60170 DATA 232,117, 1B,17B, 2,251,190, O, 0,1B5,255,255,243, 3B,172
601BO DATA 11, 201, 116, 2, 178, O, 14, 7, 253, 176, 251, 1B5, 3, O, 232
60190 DATA 23, 0,250,243,170,252,144,144,144, 66,144,251, 50,246,139
60200 DATA 126, 6, 137, 21, 7, 157, 93, 202, 2, O, 95, 131, 199, 9, 235
60210 DATA 227

Assembler listing: PROCBA.ASM

658

;**;
;* P R O C BA *;
;•--*;
; • Task: Determines the type of processor installed in *;
;* a PC *;
;* This BASIC version of the program converts *;
;* DATA statements into machine language, and *;
;* executes this code in the BASIC program *;
;*--*;
; * Author MICHAEL TISCHER *;
;* Developed on : 09/05/1988 •;
; * Last update : 05/ 24/1989 •;
;*--*;
; * assembly MASM PROCBA; *;
; * LINK PROCBA; *;
;* EXE2BIN PROCBA PROCBA.BIN *;
;* convert to DATA statements and add to *;
, a BASIC program *;
;**;

;== Constants ==

p_80386 equ 7 ;Codes for different processor
p_802B6 equ 6 ;types
p_80186 equ 5
p_80188 equ 4
p_v30 equ 3
p_v20 equ 2
p_8086 equ 1
p_80B8 equ 0

;== Code ===

code segment para 'CODE' ;Definition of CODE segment

org lOOh

assume cs:code, ds:code, ss:code, es:code

getproc proc far

push bp
mov bp,sp

;GW-BASIC waits for CALL FAR procedure

;Push BP onto stack
;Move SP after BP

Abacus

pus hf
push es

15. Determining Processor Types

;Save contents of flag registers
;Mark ES

;-- test for 80386/80286 - -----------------------------------

xor ax, ax ;Set AX to 0 and
push ax ;push onto stack
po pf ;Get as flag register from stack
pushf ;Put on stack again and
pop ax ; return to AX
and ax,OfOOOh ;Don't clear the top 4 bits
cmp ax,OfOOOh ;Are bits 12-15 all equal to l?
je not_a_386 ;YES-> Not an 80386 or 80286

;-- Test to see if it should be handled as 80386 or 80286

mov dl,p_80286 ;This narrows it down to one of the
mov ax,07000h ;two processors
push ax ;Push value 07000H onto the stack
popf ;Return as flag register
pus hf ;and push back onto stack
pop ax ;Pop off and return to AX register
and ax,07000h ;Do not mask bits 12-14
je pende ;Are bits 12-14 equal to 01

;YES-> Treat it as an 80286

inc dl ;NO-> Treat it as an 80386
jmp pend ;Test ended

;-- Test for 80186 or 80188 ----------------------------------

not a 386 label near

t88 86

t86_1:

mov
mov
mov
shr
jne

dl,p_80188
al,Offh
cl,021h
al, cl
t88 86

;Load code for 80188
;set all bits in AL register to
;Number of shift operations after CL
;Shift AL CL times to the right
;If AL<>O then it must be handled as
;80188 or 80186

;-- Test for NEC V20 or V30 --- ------------------------------

mov dl,p_v20
sti
mov si,O
mov ex, Offffh
rep lods byte

or ex, ex
je tB8 B6

mov dl,p_808B

ptr

;Load code for NEC V20
;Interrupts should be enabled starting
;with the first byte in ES
;Read a complete segment

es:[si] ;REP with segment override
;works only with NEC V20/V30 chips
;Has the complete segment been read?
;YES--> it's a V20 or V30

;NO--> must be an 8088 or BOB6

;-- Test for .•• BB or •.• 86 I V20 or V30 ---------------------

label near

push cs ;Push CS onto the stack
pop es ;and pop off to ES
std ;Using string inst. count backwards
mov al, Ofbh ;Code for "ST!"
mov cx,3 ;Execute string instruction 3 times
call get_di ;Call starting address DI
ell ;Suppress interrupts
rep stosb
cld ;Using string inst. ocunt backwards
nop ;Fill queue with dummy command
nop
nop

15. Determining Processor Types PC System Programming

q_end:

pend

getproc

inc dx
nop
sti

;Increment processor code

;Re-enable interrupts

;---
label near ;End processor test

xor dh,dh ;Set high byte or processor code to 0
mov di, [bp+6] ;Get addr. of processor code variables
mov [di],dx ;Place processor code in this variable
pop es ;Pop off stack and place in ES
po pf ;Pop flag register off of stack and
pop bp ;Return BP
ret 2 ;FAR return takes us back to GW-BASIC

;Remove parameters from stack

endp ;End of PROG procedure

;-- GET_DI Check with DI for 88/86 Test -------------------------------

get_di proc near

pop di
add di,9
jmp t86 1

get_di endp

code ends
end getproc

;Pop return address off of stack
;Remove starting 9 bytes from it
;Return to the test routine

;End of CODE segment

Pascal listing: PROCP.PAS

{**}
{* PROCP *}
{*--*}
{ * Task : Examines the processor type in the PC and *}
{ * tells the user the processor type *}

{*--*}
{ * Author MICHAEL TISCHER *}
{* Developed on : 08/16/1988 *}
{* Last update : 05/23/1989 *}
(**}

program PROCP;

type ProNames = array[0 •• 7] of string[ll]; {Array of processor names

con st ProcName : P roNames = I 'INTEL 8088', Code 0
'INTEL 8086', Code 1
'NEC V20', Code 2
'NEC V30', Code 3
'INTEL 80188', Code 4
'INTEL 80186', Code 5
'INTEL 80286', Code 6
'INTEL 8038 6'); Code 7

{**}
{* GETPROC: Determines processor type in PC *I
{ * Input none *}
{* Output Processor code (see CONST) *I
{* Info This function can be used in a program when added as *I
{* a UNIT *}
{**}

function getproc : byte;

begin { Machine code routine for determining processor type I

660

Abacus 15. Determining Processor Types

inline (
$9C/$51/$52/$57/$56/$06/$33/$C0/$50/$9D/$9C/$58/$25/$00/
$F0/$3D/$00/$F0/$74/$13/$B2/$06/$B8/$00/$70/$50/$9D/$9C/
$58/$25/$00/$70/$74/$36/$FE/$C2/$EB/$32/$90/$B2/$04/$BO/
$FF/$Bl/$21/$D2/$E8/$75/$12/$B2/$02/$FB/$BE/$00/$00/$B9/
$FF/$FF/$F3/$26/$AC/$0B/$C9/$74/$02/$B2/$00/$0E/$07/$FD/
$BO/$FB/$B9/$03/$00/$E8/$16/$00/$FA/$F3/$AA/$FC/$90/$90/
$90/$42/$90/$FB/$88/$56/$FF/$07/$5E/$5F/$5A/$59/$9D/$EB/
$07/$90/$5F/$83/$C7/$09/$EB/$E4

);
end;

{**}
{** MAIN PROGRAM **)
{**}

begin
writeln('PROCP (c) 1988 by MICHAEL TISCHER');
writeln(f13110, 'Your PC contains a(n) ', ProcName[getproc],

' processor. ') ;
writeln(f13f10);

end.

Assembler listing: PROCPA.ASM

;**;
;• P R 0 C P A *;
;*--*;
;•
;•
;•
;*

Tasl< Determines the type of processor installed in
a PC.

•;
*;

This version is converted by INLINE statements *;
and then used by a Pascal program. •;

;•--•;
;* Author MICHAEL TISCHER *;
;* Developed on : 08/22/1988 •;
; * Last update : 05/24/1989 •;
;•--*;
;•
;•
;•

assembly MASM PROCPA;
LINK PROCPA;

•;
•;
•; EXE2BIN PROCPA PROCPA.BIN

; * . . . convert to INLINE statements and add to *;
;* Pascal programs *;
•**• ' '

;== Constants ==

p_80386 equ 7 ;Codes for different types of
p_80286 equ 6 ;processors
p_80186 equ 5
p_80188 equ 4
p_v30 equ 3
p_v20 equ 2
p_8086 equ 1
p_8088 equ o
;== Code =================~===============~===========================

code

getproc

segment para 'CODE' ;Definition of CODE segment

org lOOh

assume cs:code, ds:code, ss:code, es:code

proc near

pushf
push ex
push dx
push di

;This program is the essential main
;program

;Get contents of flag registers
;Get contents of all altered registers
;and push them onto stack

661

15. Determining Processor Types PC System Programming

662

push si
push es

;-- Test for 80386/80286 -------------------------------------

xor
push
po pf
pus hf
pop
and
onp
je

ax, ax
ax

ax
ax, OfOOOh
ax, OfOOOh
not_a_386

;Set AX to 0
;and push onto stack
;Pop into flag register from stack
;Return to stack
;And pop back into AX
;Avoid clearing the to 4 bits
;Are bits 12-15 all equal to l?
;YES->Not an 80386 or an 80286

;-- Test whether to handle it as an 80386 or 80286 -----------

mov dl,p 80286
mov ax,o?oooh
push ax
po pf
pus hf
pop ax
and ax,07000h
je pende

inc dl
jmp pende

;This narrows it down to one of
;the two processors
;Push value 7000H onto the stack
;Pop off as flag register
;and push it back onto the stack
;Pop off and return to AX register
;Avoid masking bits 12-14
;Are bits 12-14 all equal to 0?
;YES->Handle it as an 80286

;NO->Handle it as an 80386
;End of test

;-- Test for 80186 or 80188 ----------------------------------

not a 386 label near

t88_86

t86_1:

mov dl,p_80188
mov al,Offh
mov cl,021h
shr al,cl
jne t88 86

;Load code for 80188
;set all bits in AL register to 1
;Number of shift operations after CL
;Shift AL CL times to the right
;If AL is unequal to 0 it must be
;handled as an 80188 or 80186

;-- Test for NEC V20 or V30 ----------------------------------

mov dl,p_v20
sti
mov si, 0
mov cx,Offffh
rep lods byte

or ex, ex
je t88 86

mov dl,p_8088

;Load code for NEC V20
;Interrupts should be enabled starting
;with the first byte in ES
;Read a complete segment

ptr es:[si] ;REP w/ segment override only
;works with NEC V20 and V30 processors
;Has complete segment been read?
;YES-> V20 or V30

;NO-> Must be an 8088 or 8086

;-- Test for 8088 or 8086/V20 or V30 -------------------------

label near

push cs
pop es
std
mov al, Ofbh
mov cx,3
call get_di
cli
rep stosb
cld
nop
nop
nop

;Push cs onto stack
;Pop off to ES
;Using string inst. count backwards
;Instruction code for "STI"
;Execute string instruction 3 times
;Get starting address of DI
;Suppress interrupts

;Using string inst. count backwards
;Fill queue with dummy instruction

Abacus

q_end:

inc dx
nop
sti

15. Determining Processor Types

;Increment processor code

;Re-enable interrupts

;---
pende label near ;End testing

mov [bp-1] ,dl ;Place processor code in return var.
pop es ;Pop saved registers from
pop si ;stack
pop di
pop dx
pop ex
po pf ;Pop flag register from stack and
jmp endit ;Return to calling program

getproc endp ;End of PROG procedure

;-- GET DI examines DI for 88/86 test ----------------------------------

get di proc near

pop di
add di, 9
jmp t86_1

endit label near

get_di endp

\.
I

;Pop return address off of stack
;Take first 9 bytes from there
;Return to the testing routine

;== End ================~======~=~~========~=~~====================

code ends ;End of CODE segment
end getproc

C listing: PROCC.C

/***~****************/

I* P R 0 C C */
/*--*/ /* Task : Determines the processor type in a PC *I
/*--*/
/* Author MICHAEL TISCHER */
/* Developed on : 08/14/1988 */
/* Last update : 06/22/1989 */
/*--*/
/* (MICROSOFT C) */
/*
I*
/*

Creation

Call

CL /AS /c PROCC.C
LINK PROCC PROCCA
PROCC

*/
*/
*/

/*--*/
/* (BORLAND TURBO C) */
/* Creation Create a project file containing these lines: */
I* PROCC */
/* PROCCA.OBJ */
/**/

extern int getproc () I* Includes the assembler routine */

/**/
/** main program **/
/**/

void main()

static char * procname [] I* Vector w/ pointers
"Intel 8088",
"Intel 8086",
"NEC V20",

to proc. names */
I* Code o */
I* Code 1 */
/* Code 2 *I

663

15. Determining Processor Types PC System Programming

"NEC V30",
"Intel 80188",
"Intel 80186",
"Intel 80286",
"Intel 80386"

I;

printf ("\nPROCC (c) 1988 by Michael Tischer\n\n");
printf("This PC contains a(n) %s processor\n•,

procname[getproc() J);

I*
I*
I*
I*
I*

Code 3 *I
Code 4 */
Code 5 ~/
Code 6 *I
Code 7 *I

Assembler listing: PROCCA.ASM

664

;**;
;* PROCCA *;

;*--*;
; • Task Make a function available to a c program which •;
;• examines the type of processor installed in a •;
;• PC and informs the calling program of this •;
;* information. *;

;*--•;
; * Author MICHAEL TISCHER *;
;• Developed on : 08/15/1988 •;
;* Last update : 05/24/1989 *;
;*--*;
; * assembly : MASM PROCCA; *;
;• .•. link to a C program ,
;**;

!GROUP group _text ;Include program segment
DGROUP group const, bss, _data ;Include data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

BSS
BSS

segment word public 'BSS'
ends

;This segment includes al un-initial
; ized static variables

DATA segment word public 'DATA' ;This segment includes all initialized
;gobal and static variables

_DATA ends

;== Constants ==

p_80386 equ 7 ;Codes for different processor tpyes
p_B0286 equ 6
p_80186 equ 5
p_80188 equ 4
p_v30 equ 3
p_v20 equ 2
p_8086 equ 1
p_8088 equ 0

;== Program ==

TEXT segment byte public 'CODE' ;Program segment

public _getproc ;Function made available for other
;programs

;-- GETPROC: Determines the type of processor in the current PC -------
;--Call from C int getproc(void);
;-- output : The processor type~s number (see constants above)

_getproc proc near

pus hf ;Secure flag register contents

Abacus 15. Determining Processor Types

;-- Test for 80386/80286 -------------------------------------

xor ax,ax
push ax
po pf
pushf
pop ax
and ax,OfOOOh
cmp ax, 0 fOOOh
je not_a_386

;Set AX to 0
;and push onto stack
;Pop flag register off of stack
;Push back onto stack
;and pop off of AX
;Do not clear the upper 4 bits
;Are bits 12-15 al equal to l?
;YES --> Not an 80386 or 80286

;-- Test for handling as an 80386 or 80286 -------------------

mov dl,p 80286
mov ax,o?oooh
push ax
po pf
pus hf
pop ax
and ax,07000h
je pende

inc dl
jmp pende

;In any case, this routine checks for
;one of the two processors
;Push 07000h onto stack
;Pop flag register off
;and push back onto the stack
;Pop into AX register
;Bits 12-14 not included
;Are bits 12-14 all equal to 0?
;YES--> Handle it as an 80286

;NO --> Handle it as an 80386
;End test

Test for 80186 or 80188 ----------------------------------

not a 386 label near

t88 86

mov
mov
mov
shr
jne

dl,p_80188
al,Offh
cl,021h
al,cl
t88 86

;Load code for 80188
;Set all bits in AL register to 1
;Move number of shift operations to CL
;AL CL shift to the right
;If AL <> o, handle is as an
;80188 or 80186

:-- Test for NEC V20 or V30 ----------------------------------

mov dl,p_v20 ;Load code for NEC V20
sti ;Enable interrupts
push si ;Mark contents of SI register
mov si,O ;Starting with first byte in ES, read
mov cx,Offffh ;a complete segment
rep lods byte ptr es:[si) ;REP with a segment override

pop
or
je

si
ex, ex
t88 86

mov dl,p_8088

; (works ony with NEC V20, V30)
;Pop SI off of stack
;Has entire segment been read?
;YES--> V20 or V30

;NO --> Must be 8088 or 8086

Test for 88/86 or V20/V30 --------------------------------

label near

push cs ;Push CS onto stack
pop es ;and pop ES off
std ;Increment on string instructions
mov di, offset q_end
mov al,Ofbh ;Instruction code for "ST!"
mov cx,3 ;Execute string instruction 3 times
cli ;Suppress interrupts
rep stosb
cld ;Increment on string instructions
nop ;Fill queue with dmnny instructions
nop
nop

inc dx ;Increment processor code

665

15. Determining Processor Types

q_end:
nop
sti

PC System Programming

;Re-enable interrupts

;---
pen de

_getproc

_text

666

label

popf
xor
mov
ret

endp

ends
end

near

dh,dh
ax,dx

; End testing

;Pop flag register off of stack
;Set high byte of proc. code to 0
;Processor code•return value of funct.
;Back to caller

;End of procedure

;End of program segment
;End of assembler source

Chapter 16

PC Hardware Interrupts

Now that you're more familiar with the DOS and BIOS interrupts that are triggered
by software, let's look at hardware interrupts. As the term suggests, these
interrupts operate mainly through calls from PC hardware.

We11 begin with the interrupts which are called directly by the processor. These
eight interrupts can also be triggered by software through the use of the INT
instruction.

Interrupt OOH: Division by zero

The 8088 has two assembly language instructions (DIV and IDIV) which permit
division of a 16-bit or 32-bit whole number by an 8-bit or a 16-bit whole number.
According to the general rules of mathematics, division by zero is illegal. This
means that you cannot perform the equation 485/0. The equation has no result.
Because of this, the 8088 prohibits any divisions using a denominator of 0. If a
division by zero occurs, the processor triggers interrupt 0. The vector assigned to it
is pointed to by DOS during its initialization to its own routine. During the call
of this interrupt, the DOS routine call executes. Most versions of DOS display a
"Division by Zero" message. The program then continues with the instruction
following the division that caused the error.

Interrupt 01 H: Sing le step

The CPU calls this interrupt when the TRAP bit in the flag register of the CPU is
set to 1. The interrupt then receives a call after every execution of a machine
language instruction. This interrupt allows the user to trace the execution of every
instruction in a assembly language program to determine changes in register
contents or the instructions executed.

Constant re-execution of interrupt 1 during an execution of interrupt 1 could cause
infinite recursion, and an eventual stack overflow. To prevent this, the processor

667

16. PC Hardware lnJerrupts PC System Programming

resets the TRAP bit during entry into the interrupt routine. It stores the complete
flag register and the TRAP bit on the stack.

If an IRET instruction ends this interrupt routine, it automatically sets the TRAP
bit to the old value by restoring the complete flag register from the stack. After
completion of the next instruction, interrupt 1 is recalled. Once the programmer
has obtained all desired information about the program, the TRAP bit can be
disabled. However, the program being examined doesn't know it's being run in
single-step mode, and has no instruction to reset the TRAP bit in the flag register.

Resetting the TRAP bit

The key to this problem lies in interrupt 1 's routine. This is where the TRAP bit
must be reset. Even this is somewhat complicated, since the bit was reset during
the call of this routine, then later reset as part of the flag register from the stack.
The only option of resetting the TRAP bit is taking the flag register from the
stack from within the interrupt routine, resetting the TRAP bit and return the
complete flag register to its original position on the stack. If an IRET instruction
then terminates the interrupt routine, the CPU restores the flag register from the
stack. Since the TRAP bit is no longer set, no additional calls of interrupt routine
result, and the program executes undisturbed.

Interrupt 1 is rarely executed in application programs. Because of this, DOS sets
the vector of interrupt 1 to an IRET instruction. If a program accidentally sets the
TRAP bit, nothing happens aside from slower execution, since interrupt 1
executes after every instruction. Interrupt 1 is most useful in utility programs
(e.g., the DEBUG program) which permit program execution in trace mode, i.e.,
execution of every machine language instruction at slow speed.

Interrupt 02H: NMI

This non-maskable interrupt (NMI) is so designated because it cannot be masked
(i.e., you cannot prevent this interrupt's execution). You can suppress the
execution of all interrupts using the CLI instruction, except this one. NMI alerts
the user of any errors in RAM. These errors can be caused by defects in one of the
system's RAM chips. Since a defective RAM chip can cause serious damage and
data problems in the system, this interrupt receives top priority over all others.

During the system boot, DOS points the vector to its own routine. If a RAM error
does occur, this calls the proper BIOS routine which displays a message on the
screen and stops the system.

Interrupt 03H: Breakpoint

668

This interrupt is also used in utility programs. Unlike the other interrupts, which
are called by two-byte-long assembly language instructions (byte l=CDH, byte
2=interrupt number), interrupt 3 can be called with a single-byte assembly

Abacus 16. PC Hardware Interrupts

language instruction (CCH). This interrupt is very useful for testing programs up
to a certain point in the code. Interrupt 3 halts a running program, and allows the
user to examine the current contents of the registers.

Applying interrupt 3

Using a specific utility program for reference (e.g., DEBUG), you place a call for
interrupt 3 in the program in process where you want execution to stop. When the
processor reaches this location during program execution, it calls interrupt 3. The
testing program contains a routine which displays the current register contents and
other data. Then this routine replaces the interrupt 3 call with the instruction
which fonnerly occupied its location.

You could argue that instead of the call for interrupt 3, any other interrupt could be
called to interrupt the program, if a suitable interrupt routine had been installed to
display register contents, etc. Interrupt 3 offers some advantages over this. It can
be called with a single-byte instruction.

Imagine a program in which a RET instruction occurs at some location. This
instruction is one byte long and normally ends a subroutine. Another subroutine
follows which starts with an assembly language instruction. The user wants to
examine the register contents at the end of the first subroutine. He would place a
breakpoint (the call for interrupt 3) at the same location as the RET instruction.

The single-byte instruction to call interrupt 3 has an advantage here. If this
instruction was two or more bytes long, it would overwrite the RET instruction,
and part or all of the first instruction in the following subroutine. If this program
call occurred in the course of execution, the program code would change and a crash
could happen. This doesn't happen since the instruction for calling interrupt 3 is
only one byte. At worst it would overwrite only one instruction.

This interrupt has no application other than use with a testing/debugging utility.
Otherwise, DOS points to a routine which contains an IRET (Interrupt RETum)
instruction, which immediately returns the system to the interrupted program.

Interrupt 04H: Overflow error

This interrupt can be called by a instruction which is based on a condition. It's the
INTO (INTerrupt on Overflow) assembly language instruction which only calls
interrupt 04H when a set overflow bit occurs in the flag register during execution.
This can happen after math operations (e.g., multiplication using the MUL
instruction), if the result of this operation cannot be represented within a set
number of bits. This interrupt can also be called using the normal INT instruction,
but this instruction doesn't read the status of the overflow bit Since this interrupt
is seldom used, DOS sets it to an IRET instruction.

669

16. PC Hardware Interrupts PC System Programming

Interrupt 05H: Hardcopy

Interrupt 05H belongs with the BIOS interrupts, even though it is technically a
hardware interrupt. Pressing the <Prt Sc> key calls this interrupt through BIOS.
This key has labels which differ from one manufacturer to another. The Tandy
1000 HD version is labeled <PRINT>, but most others have <PrtSc> labels. This
key sends the current contents of the screen to a printer interfaced to the PC. This
printout is called hardcopy.

DOS initializes the vector of this interrupt in the vector table. Both assembly
language programs and programs written in high level languages can access this
interrupt using the INT instruction.

Interrupts 06H-07H: Unused

At the time of this writing, interrupts 06H and 07H are unused. They are reserved
for later use, but can be used now for other applications.

Interrupts 08H-OFH

Interrupts 08H to OFH are generated by the 8259 interrupt controller. This chip
receives all interrupt demands within the system first. It determines the priority in
which multiple interrupt requests must be executed. The interrupt given highest
priority passes through the INTR line to the CPU. Up to eight interrupt sources
(devices) can be connected to the 8259, with each device assigned a different
priority. With the help of the interrupt bits in the flag register, the CPU can
suppress all interrupt calls from the 8259 (except NMI interrupt 2-see above).

Interrupt generation from special equipment can be prevented. For this the interrupt
mask register of the 8259 must be accessed through port 21H. The eighth bit of
this register is connected to the maximum of eight devices which create interrupts.
Bit 0 represents device 0, bit 7 the device with the number 7. If a bit has the value
0, the CPU receives the interrupt calls generated by the device assigned to it from
the 8259. If it contains the value 1, the interrupt calls are suppressed. If several
interrupt calls occur at the same time, the device which is connected to bit 0 gets
the highest priority and bit 7 the lowest priority. If the highest priority interrupt
has been processed, theoretically the interrupt with the next priority down can be
transmitted from the 8259 to the CPU.

Interrupt instruction register

670

The 8259 knows about the completion of an interrupt call through its interrupt
instruction register at port address 20H. This register enables communication
between a program and the 8259. When an interrupt initiated by a device attached
to the 8259 finishes processing, it must send an OUT assembly language
instruction which transmits the value 20H (an EOI = End Of Interrupt) to this

Abacus 16. PC Hardware Interrupts

port This tells the 8259 that interrupt processing is done, and the next interrupt
can be called.

The bit assignment in the interrupt mask registers (i.e., device assignments and
priorities) differ between individual members of the PC family. You can usually
assume that the device connected to bit 0 of the interrupt mask register triggers
interrupt 08H. The device connected to bit 1 triggers interrupt 09H, etc. Interrupt
OFH (the last interrupt called by the 8259) is triggered by the device attached to bit
7 of the interrupt mask register. Generally these eight interrupts have designations
of IRQO, etc. up to IRQ7. IRQ stands for Inte"upt ReQuest.

AT interrupt controllers

The AT has two 8259 interrupt controllers, so it can control up to 16 interrupt
sources. The interrupts in the second controller have designations ranging from
IRQ8 to IRQ15. If an interrupt request is made from one of the eight interrupt
sources of the second interrupt controller, it simulates the request from a device
connected to bit 2 of the first interrupt controllers. Because of this, all interrupt
requests from the second interrupt controller have a higher priority than those from
devices 4 to 7 of the first interrupt controllers. If several devices demand attention
from the second interrupt controller, it services the interrupt source with the
highest priority, which is the one connected to the lowest bit in the interrupt mask
register.

Interrupt requests from the devices on the second interrupt controller can be
suppressed by manipulating the corresponding bits in the interrupt mask register.
This register is located at port address AIH, not at 21H like the first interrupt
controller. The interrupt instruction register of the second interrupt controller, to
which the EOI instruction must be sent after the completion of the interrupt from
this controller, is at address AOH instead of 20H. In addition to the EOI instruction
to the second interrupt controller, an EOI instruction must be sent to the first
interrupt controller on port 20H at the end of the interrupt routine. This results
from the interconnection between these two controllers, since every interrupt
request to the second interrupt controller triggers an interrupt request on the first
interrupt controller.

671

16. PC Hardware Interrupts PC System Programming

672

The following figures show the interrupt request devices and their priorities.

PC
-4 decreasing priority

7 6 5 4 3 2 1 0 bit ----------Interrupt controller
at pon 20(h)

--'""'Timer
...._ __ ---t Keyboard

--------- ~:S serlal Interface

Floppy disk

.__-------------1 Parallel printer

Interrupt requests and priorities (PC)

XT
-4 decreasing priority

7 6 5 4 3 2 1 0 bit

l I I I I j:i·~:l:ii::1.11 J J- Interrupt controller
at pon 20(h)

l l Timer
Keyboard

2nd serlal Interface
1st

Hard disk
Floppy disk

Parallel printer

Interrupt requests and priorities (XI')

Abacus 16. PC Hardware interrupts

AT decreasing priority

7 6 5 4 3 2 1 0 bit

Interrupt controller
at port AO(h)

..------... lntanupt cantrollw
atporll!O(h)

decreasing priority

lnJerrupt requests and priorities (AT)

Interrupt 08H: Timer

The PC's 8253 timer chip oscillates at 1,193,180 cycles per second. It receives its
signal from the 8284A clock generator chip. After 65,536 of these signals (about
18.2 cycles per second), it calls interrupt 08H, which the 8259 transmits to the
CPU. Since the occurrence of these interrupt calls is independent of the clock
frequency, this interrupt works well for time measurement. After 18.2 calls means
that a second has elapsed. BIOS points the interrupt vector of this interrupt to its
own routine, which is called 18.2 times per second. The routine increments the
time counter at every call and switches off the disk motor if no access to the disk
has occurred within a certain span of time. After this task has been completed, the
routine calls interrupt ICH. It can be accessed by the user for routines which
depend upon a continuous signal.

Interrupt 09H: Keyboard

The keyboard has either an Intel 8048 processor (for PC/XT) or an 8042 processor
(for AT). It controls the keyboard and registers if a key was pressed, released or
pressed and held. The keyboard chip sends a signal to the 8259, which causes the
CPU to call interrupt 09H (unless an interrupt request with a higher priority is
present). The CPU calls a BIOS routine which reads the character from the
keyboard and stores it in the keyboard buffer.

673

16. PC Hardware Interrupts PC System Programming

Interrupts OAH-OCH: Various

These interrupts vary with the hardware connected to the computer. Check your
technical manuals and hardware manuals for more information, and experiment.

Interrupt OOH: Hard disk

The system calls interrupt ODH if a hard disk is connected to the computer. This
occurs when a read or write operation ends and BIOS must be informed of this fact

Interrupt OEH: Disk

The disk controller(s) calls this interrupt in conjunction with the 8259 when the
controller needs the attention of the CPU. A BIOS routine following this interrupt
communicates on the lowest level with the controller. During the call of this
interrupt, the controller passes certain information to inform BIOS that a read or
write operation was completed, or an error occurred.

Interrupt OFH: Printer

A parallel printer calls this interrupt in conjunction with the 8259 when the
controller needs the attention of the CPU.

AT interrupts

Because of the second interrupt controller in the AT, it has more hardware
interrupts than the PC or XT. This second interrupt controller can call interrupts
70H to 77H. These interrupts were available to older PCs for application
programs. Recently manufactured PCs and XTs cannot use these interrupts.
Similar to the first interrupt controller, the device connected with bit 0 of the
second interrupt controller's interrupt mask triggers interrupt 70H. The device on
bit 1 calls interrupt 71H, bit 2 calls interrupt 72H, etc.

Only interrupts 70H and 75H are called by the interrupt controller because devices
are only connected to bits 0 and 5 of the interrupt mask register. However, the
interrupt vectors of interrupts 71H to 74H and 76H and 77H should not be
redirected.

Interrupt 70H: Realtlme clock

674

Interrupt 70H can stop a program because of alarm time, the current time and date,
or just an interrupt call repeated within a certain time span. The interrupt is
normally serviced by a BIOS routine which detects the reason for the interrupt then
responds accordingly.

Abacus 16. PC Hardware/nJerrupts

Interrupt 75H: Math coprocessor

Interrupt 75H informs the AT's CPU that a mathematical coprocessor (80287)
attached to the system requires attention (e.g., because it has completed a certain
calculation).

Interrupt 76H: AT hard disk

The AT hard disk controller calls this interrupt after completing a hard disk access.

Demonstration programs

The two sample programs below demonstrate some of the hardware interrupts
described in this chapter. Both programs are resident interrupt drivers which are
installed and deactivated using the same principles as demonstrated by programs
earlier in this book.

The first program displays the current time in the upper right comer of the display
screen. The second program sends the contents of a screen to a file instead of a
printer.

Clock timing

Before discussing each program's structure, you should know about the basic
principles of the clock. Interrupt lCH implements the clock. Timer interrupt 8H
calls interrupt lCH 18.2 times per second.

When this routine counts the number of calls that occur, it knows that exactly one
second elapses after 18.2 calls, and that it must display the time on the screen once
every second. This is great, except that the clock can count one, two, even 18
calls-but not 18.2 calls.

One solution would be to have the clock update the screen display after 18
interrupt calls. This would result in the clock running fifteen minutes fast every
day. You can solve this problem using a trick that we use in everyday living. Our
year doesn't have exactly 365 days. Every four years the calender has a leap year,
which keeps our dates on schedule with Earth's realtime clock.

The PERMCLK program does something similar with the clock. After 18 calls of
the timer interrupt routine, the clock advances one second and the new time appears
on the screen. Therefore, the time advances by five seconds after 5xl8 (90) calls.
Five seconds in reality equals 5x18.2 (91) calls. To compensate for the missing
call, the program adds a sixth second after 19 calls. This makes the time
measurement more accurate. Since a second actually corresponds to 18.20648193
calls, the clock will still be fast by a few seconds after a day passes. To
compensate for this, an additional second is introduced after 20 calls. This makes
the clock only about a second fast within a 24-hour period. That's fairly accurate,

675

16. PC Hardware lnterr11pts PC System Programming

676

especially when you consider that the average PC doesn't remain switched on for
more than eight hours at a time.

;**;
;* P E R M C L K *;
;*--*; ;*
;*

Task : displays the current time on the
display Screen

•;
*;

;•--*;
;* Author MICHAEL TISCHER *;
;* developed on : B.10.87 *;
;* last Update : 9.21.87 *;
;*--*;
; * assembly MASM PERMCLK; *;
; * LINK PERMCLK; *;
;* EXE2BIN PERMCLK PERMCLK.CCM *;
;*--*;
;* Call : PERMCLK *;
;**;

;== Constants ===

CLKCOLUMN = 72
CLKLINE = 0
CLKNUM = 6
CLKCOLOR = 70h

;line and column in which the time
;is displayed
;after how many 1/18 s. is the clock displayed
;color of the clock: inverted

; = here starts the actual Program ==---===========,,•,===-========-=

code segment para 'CODE' ;Definition of the CODE-segment

org lOOh

assume cs:code, ds:code, es:code, ss:code

start:

;== Data

alterint
intaltofs
intaltseg

time
tenhours
onehour

tenmint
onemin

tensecs
one sec

tcount
numcount
countl
count2

jmp perminit

(remain in memory

equ this dword
dw (?)
dw (?)

equ this byte
db (?)
db (?)
db ...
db (?)
db (?)
db ":"
db (?)
db (?)

db 18
db CLKNUM
db 5
db 31

;Call of the initialization routine

;old interrupt vector lCH
;offset address interrupt vector lCH
;segment address interrupt vector lCH

;accepts the current time
;10 hours as ASCII
;one hours as ASCII

;ten minutes as ASCII
;one minutes as ASCII

;ten seconds as ASCII
;one seconds as ASCII

;decremented on every timer-call
;display counter for clock
;correction counter 1
;correction counter 2

;== this is the new keyboard-interrupt (remains in memory) ~-~=====

new int proc far

jmp short newtimer

db "JS" ;Identification of the program

newtimer: push ax ;record all registers which are changed

Abacus

push bx
push ex
push dx
push di
push si
push es
push ds

push cs
pop ds

det:::' rn...Imcount
jne non um

mov numcount,CLKNUM

nonum: dee tcount
je ne~tsec

cmp numcount,255
jne stl
jmp restore

next sec: mov tcount,18
dee countl
jne set time
mov countl, 5
inc tcount
dee count2

jne set time
mov count2,31
inc tcount

set time: inc one sec
cmp onesec, "·"

stl: jne output
rnov onesec,"0 11

inc tensecs
cmp tensecs, 11 6"
jne output
mov tensecs,"0"
inc onemin
cmp onemin, 11 :"

jne output
mov onemin, 11 0 11

inc tenmint
cmp tenrnint, 11 6 11

jne output
mov tenmint, "0"
inc onehour
cmp onehour,":"
jne test24
mov onehour, 11 0 11

inc tenhours
jmp short output

test24: cmp onehour,"4"
jne output
cmp tenhours,"2"

jne output
mov tenhours,"0"
mov onehour,"0"

output: mov ah,15
int lOh
mov ah,3
int lOh
push dx

16. PC Hardware Interrupts

;by the program

;store CS on the stack
;return as OS

;decrement cou:riter for display
;not yet zero

;set to original value

;already called 18 times
;YES --> one Second passed
;display clock now ?
;NO --> output
;YES --> back

;set Call-counter new
;correction-counterl dee. 5 times
;NO --> increment ASCII-time
;YES --> set to 5 again
;increment Call-counter
;correction-counter2
;decremented 31 times?
;NO --> increment ASCII-time
;YES --> set again to 31
;increment Call-counter

;increment one second (ASCII)
;one second = 10?
;NO --> output time
;set one second to zero
;increment ten second (ASCII)
;ten second= 6 (60 Seconds)?
;NO --> output time
;set ten seconds to zero
;increment one minute (ASCII)
;one minute = 10?
;NO --> output time
;set one minute to zero
;increment ten minute (ASCII)
;ten minute = 6 (60 Minutes)
;NO --> output time
;set ten minute to zero
;increment one hour (ASCII)
;one hour = 10?
;NO --> test 24 hour
;YES --> set one hour to zero
;increment ten hour (ASCII)

;one hour = 4?
;NO --> output time
;YES --> ten hour = 2?
;NO --> output time
;a new day started

;read current display page
;call BIOS video-interrupt
;read current cursor-position
;call BIOS video-interrupt
;store on stack

677

16. PC Hardware Interrupts PC System Programming

678

pritime:

restore:

newint

inst end

mov si,offset time
mov cx,1
mov dx, CLKLINE sh! 8
mov bl,CLKCOLOR
mov di,8
mov ah,2
int lOh
mov dh,CLKLINE sh! 8
inc dl
mov ah,9
lodsb
int lOh
dee di
jne pritime

pop dx
mov ah,2
int !Oh

pop ds
pop es
pop si
pop di
pop dx
pop ex
pop bx
pop ax
jmp cs: [alterint]

endp

equ this byte

;offset address of the time-string
;write each character once

+ CLKCOLUMN ;cursor-?osition for time
;color of the clock
;8 characters are output
;set cursor-position
;call BIOS video-interrupt
;repeat line
;increase column for next character
;output a character
;get character from the string
;call BIOS video-interrupt
;all characters processed ?
;NO --> output next character

;get old cursor-position
;and set again
;call BIOS video-interrupt

;restore all recorded registers
;again

;jump to old timer-Interrupt

;if SHOWCL is installed, memory
;can be released from here on

;== Data (can be overwritten by DOS ===--====~=--=~=--=--=

installm db 13,10,"PERMCLK (c) 1987 by Michael Tischer",13,10,13,10
db "PERMCLK was installed and can be deactivated ",13,10
db "through a .new Call",13,10,•$•

deactmsg db "PERMCLK was deactivated ",13,10,"$"

;== Program (can be overwritten by DOS) ===-====-======-=======

;-- Start and Initialization Routine -----------------------------

perminit proc near

ax,351Ch
2lh

;get content of interrupt vector le
;call DOS-function

mov
int
cmp
jne

word ptr
install

es:[bx+2],•SJ" ;test if PERMCLK
;not yet installed --> install

;-- PERMCLK deactivated again ---------------------------

mov dx, es: intaltofs ;offset address of interrupt lCH
mov ax, es: intaltseg ;segment address of interrupt lCH
mov ds,ax ;to DS
mov ax,251Ch ;return content of the interrupt
int 2lh ;vector lCH to old routine

mov ah, 49h ;release the storage of old
int 2lh ;PERMCLK again

push cs ; store CS on the stack
pop ds ;return as DS

mov dx,offset deactmsg ;message: program removed
mov ah,9 ;output function number for string
int 2lh ;call DOS function

Abacus 16. PC Hardware Interrupts

mov
int

;--

ax,4COOh
2lh

Install PERMCLK

;code for program executed correctly
;end program with end-code

install: mov intaltseg, es ;segment and offset address of the
;interrupt vector lCH mov intaltofs, bx

mov ah,02Ch
int 021h
mov al,cl
mov di, offset ten.'nint
call binascii
mov al,ch
mov di,offset tenhours
call binascii
mov al,dh
mov di,offset tensecs
call binascii

mov dx,offset new int
mov ax,251Ch
int 21h

;read function number for time
;call DOS interrupt 21H
;transmit minute to AL
;ASCII ~esult to TENMINT
;convert 2 numbers to ASCII
;transmit hour to AL
;ASCII result to TENHOURS
;convert 2 numbers to ASCII
;transmit seconds to AL
;ASCII result to TENSECS
;convert 2 numbers to ASCII

;offset address new interrupt-routine
;point content of the interrupt
;vector lC to user routine

mov
mov
int

dx,offset installm ;message: program installed

' ;--

mov
mov
shr
inc
mov
int

ah,9 ;output function number for string
21h ;call DOS-function

only the PSP, the new interrupt-routine and the -------
Data for it, must remain resident

dx,offset instend ; calculate the number of
cl,4 ;paragraphs (each 16 Bytes) which
dx,cl ;the program has available
dx
ax,3100h ;end program with end-code 0 (o.k)
21h ;but remain resident

perminit endp

:--
;--

;--

BINASCII
Input

Output
Register

convert binary-value into 2-digit ASCII ---------------
AL = the binary-value to be converted
DI = the offset address for the 2 ASCII numbers
none
AX, CL and FLAGS are changed

binascii proc near

xor ah,ah
mov cl,10
div cl
or ax,03030H
mov [di] ,ax
ret

binascii endp

;HI-Byte for division = 0
;decimal system is used
;divide value by 10
;convert result into ASCII
;and store
;back to caller

;== End ==============================-===========~====================

code ends ;end of the CODE-segment
end start

Installation and reinstallation has similarities to the resident interrupt driver already
discussed. It installs itself during its first call and deactivates itself on the
following call.

679

16. PC Hardware Interrupts PC System Programming

680

The code following the INSTALL label initializes all the program's variables.
First the DOS function 2CH reads in the current time, converts the time into
ASCII code and places the data in the variables TENHOURS, TENMINT and
TENSECS. These variables, which are part of an ASCII string, act as buffers for
the time display and are updated once every second. After these variables have been
initialized, the program installation takes place.

Let's look at the clock itself, the new interrupt routine of interrupt lCH. It begins
in the listing at the label NEWINT. It jumps to the label NEWTIMER to bypass
the identification code. All registers changed by the following commands are stored
on the stack. Then the counter (the variable) NUMCOUNT is decremented.
NUMCOUNT has nothing to do with time measurement; it detennines how often
to display the time on the screen. Nonnally the clock must be redisplayed when
the time has changed (every second). Since the screen scrolls in some applications
(e.g., DOS), the clock would quickly disappear from the display. To display a
clock that looks stationary, it must be redisplayed more often than once a second.

When NUMCOUNT reaches the value 0, this means that the clock display
reappears with the following commands, even if a new second hasn't occurred.
After NUMCOUNT reaches zero, it resets to its original value so that it can be
decremented again the next time the routine is called. The constant CLOCKNUM
contains the original value (6), which displays the clock after 6/18 second (one
third of a second). You may preset other values to display the clock more or less
often.

At the label NONUM the counter TCOUNT decrements. It contains the number of
remaining calls until a second has elapsed. If the number is equal to zero, a second
has elapsed and a jump occurs to the label NEXTSEC where it resets to 18 so that
the next second can be displayed after 18 calls.

If a second hasn't elapsed, the program tests for whether the variable NUMCOUNT
reached zero and resets to its starting value during this call of the timer interrupt. If
this was the case, the time appears on the screen and the interrupt ends. If the time
isn't displayed, the interrupt can be ended directly.

After NEXTSEC resets TCOUNT to 18, the first correction counter decrements. If
it is equal to zero, it means that five seconds have elapsed and that the next second
can only be initiated after 19 calls. The TCOUNT counter increases from 18 to 19
and the first correction counter resets to five. Then the second correction counter
decrements. If it then contains the value zero, then 3 lxS seconds have passed and
the next second can only be initiated after 20 calls.

At the label SETTIME, incrementing the least significant digit of seconds (one) in
the variable ONEMIN sets the new time. A test is made for the start of a new
minute, a new hour or a new day; the time changes accordingly.

Abacus 16. PC Hardware Interrupts

The label OUTPUT begins the actual time display. OUTPUT reads the current
display page and cursor position. This data passes to the stack so it can be restored
after the time is displayed on the screen. The cursor moves into position and the
program displays the clock, character by character.

In the final step, the previously stored current cursor position is removed from the
stack and set This occurs through a function of the BIOS video interrupt.

This concludes the work of the timer routine. It restores the registers from the
stack, passing them unchanged to the interrupted program. It finally ends with a
jump to the old timer routine.

The HC2FILE program

The second sample program in this chapter reroutes hardcopy data to a file instead
of a printer. The program requires the entry of the program name and the path and
name of the hardcopy file. This name can contain a device and path designation,
but must have a three digit number as an extension (e.g., 000 or 153). A sample
call would look like this from the DOS prompt:

C>hc2file a:hc.001

You would then press <Shift><Prt Sc> as you would for a printed screen
hardcopy. To capture hardcopies in sequence, the number in the file extension
automatically increments after the creation of every hardcopy file. For example, the
first hardcopy goes to a file named HC.001 and a second hardcopy would go to a
file named HC.002. During output the individual characters are read from the
current display page, but their colors (an attribute) are not stored. The screen lines
in the file write to disk in sequence (no carriage returns separate lines). You can
view this file on the screen using the DOS TYPE command.

The program expects a filename during the first call from the DOS level. If you
omit the filename, the HC2FILE program will not be installed. If you call the
program again after its installation without passing a filename, it deactivates the
installed hardcopy program and releases the memory it occupied. If the program is
called again with a filename after a successful installation, the installed hardcopy
program remains active, and the new name for the hardcopy file takes effect.

Perhaps the new hardcopy interrupt routine may be of interest. You call it after
installation by pressing <Shift> <Prt Sc>.

First it determines the number of the current display page and the current cursor
position using a function of the BIOS video interrupt. It stores these on the stack,
returning them to BIOS after the output of the hard copy. Then it opens the file
which is to receive the hard copy. An error message is output if the attempt fails.
In the next step the display screen content is read line for line into a buffer
(starting at the beginning of the PSP) and is written from there to a file. Here also

681

16. PC Hardware Interrupts PC System Programming

an error message is output through DOS if an error is reported and the file is
erased

If the hardcopy could be output successfully, the file is closed and the extension of
the filename (the number of the hardcopy) is incremented. Once the number 1,000
is reached, the numbering restarts at 0.

Warning:

682

An important restriction during the use of this program must be observed. It can
only be called when no access is made simultaneously by DOS to the disk or hard
disk. If the new hardcopy is called during the DOS access, most systems will crash
because DOS is not capable of controlling several file or disk accesses
simultaneously. DOS is not re-entrant. Remember this limitation when using this
routine, because it cannot be bypassed.

;***************************~***************************************;
;• H C 2 F I L E •;
;•---*;
;*
;*
;*
;*
;*
;•

Task Outputs the Hardcopy of an BO-column-text •;
screen in a file instead of the printer. *;
The file must have a three digit number *;
as extension which is incremented after •;
the output of the hard copy so that several *;
hard copy files can be created in succession*;

;•---*;
;• WARNING after installation of this program •;
;• no hard copy may be called during •;
;* a disk or hard disk access. •;
;• The system will crash since DOS is not *;
;* reentrant! •;
;•---*;
;• Author MICHAEL TISCHER •;
;* developed on : 8.11 .. 87 •;
;* last Update : 9.21.87 *;
;*---*;
;* assembly MASM HC2FILE; *;
;* LINK HC2FILE; *;
;* EXE2BIN HC2FILE HC2FILE.CCM *;
;*---*;
; * Call : HC2FILE [(Dr:) (Path) Filename. zzz] •;
•***• . .
;== here starts the actual Program ==============================

code segment para 'CODE' ;definition of the CODE-segment

org lOOh

assume cs:code, ds:code, es:code, ss:code

start: jmp hcinit

;== Data (remain in storage)

alterint equ this dword
intaltofs dw (?)
intaltseg dw (?)

print
handle

db 0
dw (?)

;Call of the initialization-routine

;old Interrupt vector OSH
;offset address Interrupt vector OSH
;segment address Interrupt vector OSH

;indicates if printing is in progress
;key for access to File

hcerr db "HC2FILE: Error on output of the hard copy",13,10,"$"

Abacus 16. PC Hardware Interrupts

;-- this is the new hard copy interrupt (remains in memory) -----~---

new int

newhc:

dohc:

next line:

error:

datclose:

proc far

jmp short newhc

db "RL"

sti
cmp cs:print,O
je dohc
imp newhcend

mov cs:print, 1
push ax
push bx
push ex
push dx
push di
push si
push es
push ds

mov ax,cs
mov ds,ax
mov es,ax
cld

mov ah,15
int lOh
mov ah,3
int lOh
push dx

mov
xor
mov
int
jc

mov

mov
inc
cmp
je
call
jnc

ah,3Ch
ex, ex
dx,130
2lh
error

handle, ax

bl,-1
bl
bl,25
datclose
hcline
next line

mov ah,3Eh
mov bx,handle
int 2lh
mov ah,4lh
mov dx,130
int 21h

mov dx,offset hcerr
mov ah,9
int 21h
jmp short restore

;Identification of the program

;interrupts are again permitted
;printing in progress?
;NO --> print out
;YES --> do not output hard copy

;print now
;save all registers which are changed

;bring CS to AX
;and then set DS and ES

;on string commands count up

;read current display page
;call BIOS video-interrupt
;read current cursor-position
;call BIOS video-interrupt
;store on the stack

;create function number for file
;should become normal file
;filename at DS:130
;call DOS-interrupt 21H
;carry-flag set --> Error

;save handle of the file

;begin with line 0
;increment line number
;all lines printed ?
;YES --> close file
;NO --> output a line
;no error --> next line

;close function nr. for file
;access-key
;call DOS-interrupt 21H
;erase function nr. for file
;filename at DS:130
;call DOS-interrupt 21H

;error message offset address
;output function nr. for string
;call DOS-interrupt 21H

all lines output successfully -----------------------

mov ah, 3Eh ;close function nr. for file
mov bx, handle ;access-key
int 21h ;call DOS-interrupt 21H
jc error ;not closed --> Error

mov bx,128 ;address of number of command line

683

16. PC Hardware Interrupts PC System Programming

684

mov
add
xor
inc
anp
jne
mov
inc
cmp
jne
mov
inc
cmp
jne
mov

restore: pop
mov
int

mov
pop
pop
pop
pop
pop
pop
pop
pop

newhcend: iret

new int endp

;-- HCLINE
;-- Input
,
;-- Output
;-- Reqister

hcline proc

push

xor
xor
mov

qetc: mov
mov
int
mov
int

bl, [bx]
bl, 128
bh,bh
byte ptr
byte ptr
restore
byte ptr
byte ptr
byte ptr
restore
byte ptr
byte ptr
byte ptr
restore
byte ptr

dx
ah,2
lOh

print,O
ds
es
si
di
dx
ex
bx
ax

;number of characters in camnand line
;calculate character end address
;Hi-Byte of the address is 0

[bx] ;increment last number
[bx],•:• ;reached ten?

;NO --> RESTORE
[bx],"0" ;set one number back to 0
[bx-1] ;increment ten number
[bx-1],•:•;has hundred been reached?

;NO --> RESTORE
[bx-1],•o•;ten numbers set back to 0
[bx-2] ;increment number
[bx-2],":";has one thousand been reached?

;NO --> RESTORE
[bx-2],•o•;whole number is aqain O

;qet old cursor-position
;and set aqain
;call BIOS video-interrupt

;hard copy output finished
;restore all stored reqisters

;back to keyboard routine

Write a display line into the file ---------------
BL - the number of the line
BH = the number of the display paqe
Carry-flaq - 1 : Error
AX, ex, DX, SI, DI and FLAGS are chanqed

near

bx

di, di
dl,dl
si,80

ah,2
dh,bl
lOh
ah,8
lOh

;store BX on the stack

;copy at start of PSP
;start with column O
;process 80 columns

;set function number for cursor
;display line to DH
;call BIOS video-interrupt
;read function number for character
;call BIOS video-interrupt

stosb ;store character in the buffer
;increment column inc dl

dee si
jne qetc

mov ah,40h
mov bx, handle
mov cx,80
xor dx,dx
int 21h

pop bx
ret

hcline endp

instend equ this b¥te

;all column processed?
;NO --> qet next character

;function nr. for writinq
;access key
;every line has 80 bytes
;offset address of the buffer is O
;call DOS-interrupt 21H

;restore BX
;back to caller

;if HC2FILE is installed, the memory

Abacus 16. PC Hardware Interrupts

;can be released starting here

;== Data (can be overwritten by DOS) --------===-------------
l.nstallm

deactmsg
ninstall
newnam

db 13,10,"HC2FILE (c) 1987 by Michael Tischer",13,10,10
db "HC2FILE was installed and can be ",13,10
db "deactivated with a new call (without parameter) ",13,10
db "A new call with parameters changes the ",13,10
db "Name of the file to which hardcopy is output.",13,10,"$"
db "HC2FILE was deactivated",13,10,"$"
db "HC2FILE was not yet installed",13,10,"$"
db "HC2FILE was already installed, only filename •
db "was changed",13.10~"$"

;=• Program (can be overwritten by DOS) ••-======--------------

;-- Start and Initialization-Routine ---------------------------------

hcinit

away:

hcfend:
hcfendl:

proc near

mov si,128 ;address of the command line in PSP
cmp byte ptr [si] ,O ;was parameter passed
mov ax,3505h ;get content of interrupt vector 5
int 21h ;call DOS-function (flags remain)
jne install ;NO --> install program

;-- HC2FILE deactivate again ------------------------------

cmp word ptr es:[bx+2),"LR" ;test if HC2FILE
je away ;YES --> remove again

mov
mov
jmp

mov
mov
mov
mov
int

mov
int

push
pop
mov
xor
mov
int
mov
int

dx, offset ninstall
al, 1
short hcfendl

dx,es:intaltofs
ax, es: intaltseg
ds,ax
ax,2505h
21h

ah,49h
21h

cs
ds

;was not yet installed
;end-code: error
;terminate program

;offset address of interrupt 5
;segment address of interrupt 5
;to DS
;set content of the interrupt
;vector 5 to old routine again

;release the memory of old
; HC2FILE again

;store CS on the stack
; restore OS

dx,offset
al, al

deactmsg ;message: program removed
;end-code: everything o.k.

ah,9
21h
ah,4Ch
21h

install HC2FILE

;output function number for string
;call DOS-function
;function nr. for prg.termination
;end program with end-code

install: cmp word ptr es: [bx+2), "LR" ;test if HC2FILE
jne newinst ;NO --> first installation

;-- was already installed, change only filename -------------

mov cl, [si]
inc cl
xor ch,ch
mov di,128
cld
rep movsb

xor al,al
stosb
mov dx,offset newnam

;number of characters in command line
;also the number of characters
;erase HI-Byte
;also ES:DI, but in old HC2FILE
;on string commands count up
;copy filename in PSP
;of the old HC2FILE
;NUL terminates the filename
;store in PSP of the old HC2FILE
;offset address of the message

685

16. PC Hardware Interrupts PC System Programming

686

newinst:

jmp short hcfend

mov intaltseg, es
mov intaltofs, bx

mov bl, [si]
add bl,129
xor bh,bh
mov byte ptr [bx],O

mov dx,offset new int
mov ax,2505h
int 21h

mov dx,offset installm
mov ah,9
int 21h

;terminate program

;store segment and offset
;address of interrupt vector OSH

;number of characters in command line
;calculate end addr. of character
;Hi-Byte of the address is O
;set NUL behind the file name

;offset address new interrupt-routine
;deflect content of the interrupt
;vector 5 to user routine

;message: program installed
;output function number for string
;call DOS-function

;-- only the PSP, the new interrupt-routine and the ----~--
;-- Data pertaining to it must remain resident.

mov dx,offset instend
mov cl,4
shr dx,cl
inc dx
mov ax,3100h
int 21h

;calculate number of paragraphs
;(each 16 Bytes) available to
;the Program

;end program with end-code 0 (o.k)
;but remain resident

hcinit endp

;== End ===-=============

code ends ;End of the CODE-segment
end start

Chapter 17

Hard Disk Partitioning

FDISK is the hard disk partitioning program available in MS-DOS. You probably
used the FDISK command if you installed your own hard drive, or if you've
enhanced a PC with an operating system such as XENIX, CP/M-86 or OS/2.
FDISK is the key to operating high capacity hard disks and to installing multiple
operating systems on one computer.

FDISK represents only one step of a three step formatting process. This process
formats and partitions a hard disk drive, preparing it for one or more operating
systems.

Low level formatting

The first step, called low level formatting, divides the hard disk into cylinders
(tracks) and sectors. This division writes corresponding address markers on the hard
disk. Low level formatting is required, since many hard disk units come from the
manufacturer unformatted, like floppy disks.

Some XT-compatible PCs had to be low level formatted using the DEBUG
program. DEBUG called the low level format routine from the hard disk
controller's ROM-BIOS. Most hard disk manufacturers now provide programs
which make the low level formatting process much simpler.

Partitioning

The next step in formatting the hard disk is partitioning. As the name suggests,
this process divides the hard disk into definite regions. The original purpose of
partitioning was to divide hard disks into areas which could be occupied by
different operating systems, without the operating systems conflicting with one
another.

The drop in hardware prices in the late 1980s provided another reason for
partitioning. Hard disks became available at low prices with capacities of 40
megabytes and more.

687

17. Hard Disk Partitioning PC System Programming

This posed a problem. Versions of DOS below Version 3.3 could only support a
maximum of 32 megabytes per hard disk. In addition, earlier versions of DOS
couldn't partition hard disks into several units.

DOS version 3.3

Version 3.3 of DOS still limited hard disk access to a maximum of 32 megabytes,
but offered some alternatives to the user. DOS 3.3 allowed the configuration of a
primary partition in the first 32 megabytes of the hard disk, as well as 23
additional extended partitions using drive specifiers of D to Z. Since every extended
partition can have up to 32 megabytes, this partitioning increased the maximum
hard disk capacity to 768 megabytes. FDISK names these partitions PRI DOS and
EXT DOS.

DOS version 4.0

688

DOS version 4.0 permits mass storage device support up to 2 gigabytes, thanks to
revised device drivers. However, many users still prefer partitioning their hard disk
unit into logical hard disks (smaller drives), since file management is easier on the
logical drives than having hundreds of files on one drive.

FDISK creates a special sector called the partition sector which it places on the
first hard disk sector (head 0, cylinder 0, sector 1). BIOS loads this partition sector
into memory address 0000:7COO, unless the user has placed a disk in drive A:
before power-up or reset H the computer finds the code sequence 55H, AAH in the
last two bytes of this 512-byte sector, it treats this sector as executable and starts
program execution with the first byte of the sector. Otherwise, BIOS displays an
error message and either starts an infinite loop or starts ROM BASIC, depending
on the manufacturer and version of the system.

Hard disk _E_artition sector layout
Addr. Content Typ_e
+OOOH Partition code
+lBEH 1st ent~ in the_.E._artition table 16 bJ:'._tes
+lCEH 2nd ent~ in the _E_artition table 16 bJ:'._tes
+lDEH 3rd ent~ in the _.E._artition table 16 b_y_tes
+lEEH 4th ent~ in the _.E._artition table 16 bJ:'._tes
+lFEH Partition sector rec~nition code (AA55H) 2 b..Y,tes
Length: 200H (512) ~tes

The program code in the boot sector recognizes the active partition and the
operating system to be started. The boot sector and the required operating system
code loads and executes. Since this program code by definition must also be at
memory address 0000:7COO, the pardtion code moves to memory address
0000:0600 and releases the memory for the boot sector.

Abacus 17. Hard Disk Partitioning

The routine obtains the location of the boot sector to be loaded from the hard disk,
and the boot sector's corresponding partition. The partition table located in the
partition sector at address lBEH contains this information.

Partition table ent;:y_ lqout
Addr. Content Type
+OOH Partition status 1 byte

OOH = inactive
BOH = boot .:e?rtition

+OlH Read/write head where ..E_artition starts 1 b_y_te
+02H Sector and c_y_linder where ..E_artition starts 1 word
+04H Partition type 1 byte

OOH = entry not occupied
OlH = DOS with 12-bit FAT (primary partition)
02H = XENIX
03H = XENIX
04H = DOS with 16-bit FAT (primary partition)
OSH = extended DOS-Partition (after DOS 3.3)
06H = DOS-4.0 partition with more than 32 meg
DBH = Concurrent DOS
Other codes possible in conjunction with other
~erati!!S.. ~stems or !!E_ecial driver software

+OSH Read/write head at end of ..E_artition 1 b_y_te
+06H Sector and ~linder at end of ..E_artition 1 word
+08H Distance of first sector of the partition 1 dword

(boot sector) from partition sector
(measured in sectors)

+OCH Number of sectors in this £artition 1 dword
Length: lOH (16) bytes

Every partition is described within this table through a 16-byte structure. Since the
table is almost at the end of the partition sector, there is only room available for
four entries. This limits the number of partitions to four. To provide more
partitions on a hard disk, some manufacturers offer a special configuration program
which moves the table ahead within the partition sector and installs new partition
code which accesses the reconfigured table. The basic format of the table remains
unchanged. Remember that individual partition entries do not always start with the
first table entry. The partition of a hard disk can be described through the first,
second, third or even fourth table entry.

The boot partition can be recognized through the first field of the partition
structure. The value OOH stands for "inactive," while the value 80H indicates the
partition for booting. If the partition code detects no bootable partition, more than
one partition, or even unknown code during the table check, the booting process
terminates and the system goes into an endless loop. The only alternative is to
reset the system.

If the partition code recognizes the partition to be booted, it can determine the
position of this partition on the hard disk through the two following bits. The
sector and cylinder number are coded in the form compatible with BIOS interrupt

689

17. Hard Disk Partitioning PC System Programming

690

13H (disk/hard disk). Bits 6 and 7 of the sector number represent bits 8 and 9 of
the cylinder number. Interrupt 13H and its functions are the only means of
accessing the hard drive. DOS functions are unavailable until after the system
boots DOS.

Even though this information is enough to load the boot sector of the starting
partition, the partition table contains some additional information which is
important for later changes and additions. The position of the boot sector is
followed by a field which describes the type of operating system hidden behind the
partition.

Besides the starting sector, the ending sector of the partition is indicated in the
partition sector. The position of this sector is again described through an indication
of the head, cylinder and sector numbers. The last two fields of a table entry
contain the number of sectors within the partition, the distance of the boot sector
of the partition from the partition sector, as counted in sectors.

When the partition table is checked, it usually determines that the first partition
starts with sector one, track zero of the second read/write head, instead of
immediately following the partition sector. This wastes almost all of track one of
the first read/write head, almost the complete first track of the first head is wasted,
not counting the partition sector in the first sector of this track.

The extended DOS partitions suffer from some inconsistencies. First of all, DOS
Version 3.3 allows only one extended partition on a hard disk, other than the
primary partition. FDISK provides the extended partition with a partition sector
containing a partition table instead of program code. This table consists of two
entries:

1.) A description of the extended partition proper, along with a partition type
value of either 1 (DOS partition with 12-bit FAn or 4 (DOS partition
with 16-bit FAn

2.) A description of the next extended DOS partition, if one is present

Any additional extended partitions are preceded by partition sectors, as described
above. This creates a chained list which ends only when the partition type field
within the partition sector contains the value 0.

The following programs in Pascal and C display the contents of the partition
sector, and follow the partition sectors of any extended partitions.

Abacus 17. Hard Disk Partitioning

Pascal program: FIXPARTP.PAS

{**}
{* FIXPARTP.PAS *I
{*--*}
{* Task : Display hard disk partitioninq *I
{*--*!
{ * Author MICHAEL TISCHER *I
{* Developed on : 04/26/1989 *I
{* Last update : 06/22/1989 *I
{*--*!
{* Call : FIXPARTP [Drive number] *I
{* Default is drive O {drive C:) *)
{**}

uses Dos; { Add DOS unit I

type SecPos = record
Head byte;
SecCyl : word;

end;

Describes the position of a sector
{ Read/write head

{ Sector and cylinder number

PartEntry

Part Sec

record
Status
Start Sec
PartTyp
EndSec
SecOf s
SecNum

end;

record
Boot Code
Part Table
IdCode

end;

byte;
SecPos;
byte;
SecPos;
lonqint;
lonqint;

{ Entry in the partition table
{ Partition status

{ First sector
{ Partition type

{ Last sector
Off set of the boot sector

{ Number of sectors

{ Describes the partition sector I
array [0 •• $1BD] of byte;
array [1 •• 4] of PartEntry;
word; { $AA55 I

{**}
{* ReadPartSec : Read a partition sector from the hard disk and *I
{ • place in a buffer *I
{**--••1
{* Input - HrdDrive BIOS code of the drive ($80, $81 etc.) *I
{* - Head Read/write head number *I
{ * - SecCyl Sector and cylinder number in BIOS format *I
{ * - Buf Buffer into which sector should be loaded *I
{**}

function ReadPartSec(HrdDrive, Head
SecCyl

byte;
word;

var Regs Registers;

begin
Regs.AX := $0201;
Regs.DL := HrdDrive;
Regs.DH := Head;
Regs.ex := secCyl;

var Buf

Regs.ES seg{ Buf);
Regs.BX := ofs(Buf);
Intr($13, Regs);
ReadPartSec := { Regs.Flags

end;

PartSec) : boolean;

Processor regs for interrupt call I

{ Function no. for "Read", 1 sector
{ Load additional

and 1)

{ parameters into the
{ different registers

{ Call hard disk interrupt I
O; {Carry flag indicates errorl

{**}
{* GetSecCyl: Determines the combined sector/cylinder coding of BIOS *)
{* sector and cylinder number *I
{**---~-----••)
{* Input : Seceyl : Value to be decoded *)

691

17. Hard Disk Partitioning PC System Programming

692

{*
{*

Sector : Reference to the sector variable
Cylinder : Reference to the cylinder variable

*I
*I

{**}

procedure GetSecCyl(SecCyl : word; var Sector, Cylinder: integer);

begin
Sector
Cylinder

end;

:- SecCyl and 63; Exclude bits 6 and 7 I
:=hi(SecCyl) + (lo(SecCyl) and 192) shl 2;

{**}
{* ShowPartition: Displays hard disk partitioning on the screen *I
(**--**}
{* Input : DR : Number of the corresponding hard disk drive *}
{* (O, 1, 2 etc.} *I
{**}

procedure ShowPartition(DR: byte);

var Head
SecCyl
Parsec
Entry
Sector,
Cylinder
Regs

byte;
byte;
Part Sec;
byte;

integer;
Registers;

{ Head of current partition
{ Sector and cylinder of current partition

{ Current partition sector
{ Loop counter

Get sector and
cylinder numbers

{ Processor regs for interrupt call

begin
writeln;
DR := DR + $80;
if ReadPartSec (DR, o, 1, Parsec)

{ Prepare drive number for BIOS
then { Read partition sector

begin
Regs.AH := 8;

{ Sector is readable
(Read drive data

Regs.DL := DR;
Intr($13, Regs}; Call hard disk interrupt

Sector, Cylinder); GetSecCyl(Regs.ex,
writeln(•r~--------------------'+

-------------l•J;
Upper left corner can be typed using <Alt><201>
Top horiz. line can be typed using <Alt><205>
Upper right corner can be typed using <Alt><187>)

writeln('I Drive ', DR-$80, ': ', Regs.DH+1:2,
' Heads with ', Cylinder:S, ' cylinders and ',
Sector:3, ' sectors I');

{ Vert. lines can be typed using <Alt><186>
writeln(' I Partition table in partition sector •+

I'>;
Vert. lines can be typed using <Alt><186>

writeln ('{-T--T---------T-------'T' +

writeln(' I

------T---T---{ ');
{ Left T can be typed using <Alt><204>
{ Top T can be typed using <Alt><209>
{ Right T can be typed using <Alt><l85>

I Start I'+
End !Dis.fr.I I'>:

{ First and last vert. lines
{ Remaining vert. lines

wri teln (' If. IBootlType

can be typed using <Alt><l86>
can be typed using <Alt><l79>

!Head Cyl. Sec.I'+
'Head Cyl. Sec.IBootseclNumber I');

{ First and last vert. lines can be typed using <Alt><l86>
{ Remaining vert. lines can be typed using <Alt><179>

writeln(•{~+---+---------+-------+•+
-------+---~r---{•1;

left T can be typed using <Alt><204>
crosses can be typed using <Alt><216>
Right T can be typed using <Alt><l85>

Abacus 17. Hard Disk Partitioning

for Entry:-1 to 4 do { Execute table entries I

end;

with ParSec.PartTable[Entry] do
begin

write <'I ', Entry, 'I');
{ Type first line using <Alt><186>, second using <Alt><179> I

if Status - $80 then write ('YES •)
else write {'NO');

write('!');
{ Type thin vert. line using <Alt><179>

case PartTyp of Display partition type
$00 write (•Not occupied •);
$01 write('DOS, 12-bit FAT ');
vV£

$03
$04
$05
$DB
else

end;

write\: XENIX ;) ;
write ('XENIX •) ;
-write('DOS, 16-bit FAT ');
write('DOS, extd.partition');
write ('Concurrent DOS •) ;
write('Unknown (',PartTyp:3, ') I);

GetSecCyl(StartSec.SecCyl, Sector, Cylinder);
write{'!', StartSec.Head:2, • ',Cylinder:S, • •,sector:3);
GetSecCyl(EndSec.SecCyl, Sector, Cylinder);

{Enter vert. line using <Alt><l79>
write(' I', EndSecaHead:2, • •,cylinder:S, • ',Sector:3);

{Enter vert. line using <Alt><l79>
writeln(1 I', Sec0fs:7, •J•, SecNum:7, 'I');

{ Enter first and second vert. lines using <Alt><179>,
{ third line using <Alt><186>

writeln (' L -J.--J.--------J. J.' +
-----.L---.l---J-n3no1;

Left angle can be typed using <Alt><200>
Horiz. lines can be types using <Alt><205>
Bottom Ts can be typed using <Alt><207>
Right angle can be typed using <Alt><188>

end
else

writeln('Error during boot sector access!');
end;

{***
MA IN PROGRAM

***}

var Hrd.Drive,
DError

begin

integer;
Variables for converting
given arguments

writeln(f13f10'-------------------------------- FIXPARTP - {c) ',
' 1989 by MICHAEL TISCHER);

HrdDrive := O; { Default is first hard disk
if ParamCount - 1 then other drive specifier given?

begin { YES
val(ParamStr(l), HrdDrive, DError); { ASCII/decimal
if DError <> 0 then Conversion error?

begin { YES
writeln(#13fl0'Illegal drive specifier!');
exit;

end;
end;

ShowPartition(HrdDrive);
end a

{ End program

{ Display partition sector)

693

17. Hard Disk Partitioning PC System Programming

C program: FIXPARTC.C

694

/**/
I* F I X P A R T C • C *I
/*--*/ /* Task : Displays hard disk partitioning *I
/*----------------------~---*/
I* Author MICHAEL TISCHER */
/* Developed on : 04/26/1989 */
/* Last update : 06/22/1989 */
!*--~--*/

/* Call : FIXPARTC [Drive number] */
/* Default is drive O (Drive C:) */
/**/

#include <dos.h>
#include <string.h>
#include <stdlib.h>

/*== Constants =================================•====-================*/

fdefine TRUE
#define FALSE

1 == 1)
l== 0)

/*== Macros =======================================-=====:a============*/

tdefine HI (x)
#define LO (x)

* ((BYTE *) (&x) +1)
* ((BYTE *) &x))

/* Returns high byte of a word */
I* Returns low byte of a word */

/*== Type declarations ===*/

typedef unsigned char BYTE;
typedef unsigned int WORD;

typedef struct {

typedef struct

BYTE Head;
WORD SecCyl;

) SECPOS;

BYTE
SECPOS
BYTE
SECPOS
unsigned long
unsigned long

) PARTENTRY;

/* Describes the position of a sector */
/* Read/write head */

I* Sector and cylinder number */

I* Entry in the partition table */
Status; /* Partition status */
Start Sec; /* First sector */
PartTyp; /* Partition type */
EndSec; /* Last sector *I
SecOfs; /* Offset of boot sector •/
SecNum; I* Number of sectors •/

typedef struct { /* Describes the partition sector */
BYTE BootCode [OxlBE] ;
PARTENTRY PartTable[4];
WORD IdCode; /* OxAASS */

I PARTSEC;

typedef PARTSEC far *PARSPTR; /* Pointer > partition sector in memory */

/**/
I* ReadPartSec : Reads a partition sector from the hard disk into a */
/* buffer */
/* Input - HrdDrive BIOS code of the drive (Ox80, Ox81 etc.) •/
I* - Head Number of read/write heads •/
I* - SecCyl Sector and cyinder number in BIOS format •I
I* - Buf Buffer into which sector should be loaded *I
I* Output : TRUE if sector is read without error, otherwise FALSE */
/**/

BYTE ReadPartSec(BYTE HrdDrive, BYTE Head, WORD SecCyl, PARSPTR Buf)

Abacus 17. Hard Disk Partitioning

union REGS Regs;
struct SREGS SRegs;

Regs.x.ax - Ox0201;
Regs.h.dl - HrdDrive;
Regs.h.dh - Head;
Regs.x.cx - SecCyl;
Regs.x.bx - FP OFF(Buf);
SRegs.es - FP=SEG(Buf);

/* Processor regs for interrupt call */

I* Funct.no. for "Read•, 1 Sector */
/* Load parameters into */

/* different registers as *I
/* needed */

int86x(Ox13, &Regs, &Regs, &SRegs);
return !Regs.x.cflag;

I* Call hard disk interrupt */

/**/
I* GetSecCyl: Determines the combined sector/cylinder coding from */
/* BIOS sector/cylinder number */
I* Input SecCyl Value to be decoded */
I* Sector Reference to the sector variable */
/* Cylinder Reference to the cylinder variable */
I* Output: none */
/**/

void GetSecCyl(WORD SecCyl, int *Sector, int *Cylinder)

*Sector
*Cylinder

)

SecCy. l'.')' 63; /* Exclude bits 6 and 7 */
HI (S~cl:yl) + (((WORD) LO (SecCyl) & 192) « 2) ;

/**/
I* ShowPartition: Displays hard disk partitioning on the screen */
I* Input: LW : Number of the hard disk (0, 1, 2, etc.) */
/* Output: none */
/**/

void ShowPartition(BYTE LW)
{
#define AP ParSec.PartTable[Entry]

BYTE Head, I* Head for current partition */
/* Loop counter *I

and cylinder of current partition */
/* Current partition sector */

Entry,
SecCyl; I* Sector

PART SEC Parsec;
int Sector, /* Get sector and cylinder */

Cylinder; I* number *I
union REGS Regs; /* Processor regs for interrupt call */

printf ("\n");
LW I= OxBO; I* Prepare drive number for BIOS */

Read partition sector */
/* Sector can be read */

if (ReadPartSec(LW, O, 1, &Parsec)) /*
{

Regs.h.ah = 8;
Regs.h.dl = LW;

/* Read disk data */

int86(Oxl3, &Regs, &Regs); /*Call hard disk interrupt*/
GetSecCyl(Regs.x.cx, &Sector, &Cylinder);
printf ({-------------------

---------------1\n"};
/* Upper left corner can be typed using <Alt><201>
I*
I*

printf ("I Drive

*I
*I Horizontal line can be typed using <Alt><205>

Upper right corner can be typed using <Alt><187> *I
%2d: %2d heads with %4d"

11 cylinders, %3d sectors l\n",
LW-Ox80, Regs.h.dh+l, Cylinder, Sector);

/* Vertical lines at beginning and end can be typed using <Alt><186> */
printf ("I Partition table in partition sector

l\n");
/* Vertical lines at beginning and end can be typed using <Alt><186> *I

695

17. Hard Disk Partitioning PC System Programming

696

printf (·~-T--T T T"
------·T---T------1\n");

/* Left T can be typed using <Alt><l99> */
/* Horiz. lines can be typed using <Alt><205> */
/* Ts in middle of line can be typed using <Alt><209> */
/* Right T can be typed using <Alt><l85> */

printf ("I I I I start I"
End !Dis.fr.I l\n");

/* First and last vertical lines in the above line */
/* can be typed using <Alt><186> */
/* Remaining vertical lines can be typed using <Alt><179> */

printf("lf.IBootjType !Head Cyl. sec.I"
"Head Cyl. Sec.IBootSeclNumber l\n");

/* First and last vertical lines in the above line */
/* can be typed using <Alt><186> */
I* Remaining vertical lines can be typed using <Alt><l79> */

printf(·~-1---1----------1------+
-------t---__,1----~\n");

I* Left T can be typed using <Alt><204> */
/* Horizontal lines can be typed using <Alt><205> */
I* Crosses can be typed using <Alt><215> */
I* Right T can be typed using <Alt><185> *I

/*-- Check partition table --*/
for (Entry=O; Entry < 4; ++Entry)

{

printf ("I \dj", Entry) ;
I* First vertical line can be typed using <Alt><186> */
/* Second vertical line can be typed using <Alt><179> •/

if (AP.Status == OxBO) /* Partition active? */
printf ("Yes ");

else
printf ("No ");

printf ("I");
I* Vertical line can be typed using <Alt><179> */

switch (AP.PartTyp) /* Display partition types *I
{

case OxOO printf ("Not occupied ") :
break;

case OxOl printf ("DOS, 12-Bit FAT ..) ;
break;

case Ox02 printf ("XENIX H) ;

break;
case Ox03 printf ("XENIX ");

break;
case Ox04 printf ("DOS, 16-Bit FAT ") ;

break;
case Ox05 printf(11 DOS, extended part .. ") ;

break;
case OxDB printf ("Concurrent DOS ..) ;

break;·
default printf ("Unknown (\3d) .

' ParSec.PartTable[Entry] .PartTyp) ;

/*-- Display physical and loqical parameters --------------------*/
GetSecCyl(AP.StartSec.SecCyl, &Sector, &Cylinder);
printf ("l\2d \Sd %3d •, AP .StartSec,Head, Cylinder, Sector) ;

I* Vertical line can be typed using <Alt><l79> */
GetSecCyl (AP.EndSec.SecCyl, &Sector, &Cylinder) ;
printf("l\2d \5d \3d ", AP.EndSec.Head, Cylinder, Sector);

/* Vertical line can be typed using <Alt><l79> */

)
printf ("l\6lu l%6lu l\n", AP. SecOfs, AP .SecNurn) ;

/* First and second vertical lines can be typed using <Alt><l79> */
/* Third vertical line can be typed using <Alt><186> */

printf (•l-.1--.l .l l.•

Abacus 17. Hard Disk Partitioning

else

~~~~~i~~-i~~-~n· ); 
/* Left angle can be typed using <Alt><200> */ 
/* Horizontal lines can be typed using <Alt><205> */ 
I* Ts can be typed using <Alt><207> •I 
/* Right angle can be typed using <Alt><lBB> */ 

printf("Error during boot sector access!\n"); 

/*********************************************************************** 
* MAIN PROGRAM 
***********************************************************************/ 

int main( int argc, char •argv(J ) 
{ 

} 

int HrdDrive; 

printf( "\n-------------------------------- FIXPARTC - (c)" 
" 1989 by MICHAEL TISCHER ---\n" ); 

HrdDrive = O; /* Default is first hard disk •/ 
if ( argc == 2 ) /* Other drive specified? •/ 

{ /* YES */ 
HrdDrive = atoi ( argv[l] ); 
if ( HrdDrive == O && '•argv[l] != '0' ) 

{ 
printf("\nillegal drive specifier!"); 
return( 1 ); /*End program*/ 

) 

ShowPartition( HrdDrive ); /*Display partition sector*/ 
return( 0 ) ; 

697 





Chapter 18 

The PC Ports 

Ports 

Chapter 2 of this book described a series of CPU support chips which help the 
CPU control the system. These chips stay in constant contact with the CPU, 
which delegates tasks to and obtains information from the support chips. 

The ports represent the interfaces between the CPU and the other system hardware. 
A port can be viewed as an 8-bit-wide data input or output connected to a particular 
piece of hardware. A port has an assigned address with values ranging from 0 to 
65,535. The CPU uses the data bus and address bus to communicate with the 
ports. If the CPU needs access to a port, it transmits a port control signal. This 
signal instructs the other hardware that the CPU wants to access a port instead of 
RAM. Ports have addresses which are also assigned to memory locations in RAM, 
but these addresses have nothing to do with those memory locations. The port 
address is placed on the lowest 16 bits of the address bus. This instructs the system 
to transfer the eight bits of information following on the data bus to the proper 
port. The hardware connected with this port receives the data and responds 
accordingly. 

The SO(x)xx processor series has two instructions that control this process from 
within a program. The IN instruction inputs data from a port to the CPU; the 
OUT instruction outputs data from the CPU to a port. 

The system can set the port address of a certain hardware device-this address is not 
a constant value. For this reason, there are many similarities in port addressing 
between the PC, XT and AT. There are few differences between the PC and XT, 
but many differences exist between the PC and AT. 

699 



18. The PC Ports PC System Programming 

The following table shows the port addresses of individual chips in each system. 

C~onent PC/XT M 

DMA controller (8237A-5) 000-00F 000-0lF 
Interru_E.t controller (8259A) 020-021 020-03F 
tirrer 040-043 040-0SF 
Pr~ammable Pert!>_heral Interface (PPI 8255A-5) 060-063 none 
K~oard (8042) none 060-06F 
Realtime clock (MC146818) none 070-07F 
DMA _E_<l9_e register 080-083 080-09F 
Interru_E.t controller 2 (8259A) none OAO-OBF 
DMA controller 2 (8237A-5) none OCO-ODF 
Math coprocessor none OFO-OFl 
Math c'2E..rocessor none OF8-0FF 
Hard disk controller 320-32F 1F0-1F8 
Garre ..E_Ort 200-20F 200-207 
Ex_E.ansion unit 210-217 none 
Interface for second _E.arallel __E!'.'inter none 278-27F 
Second serial interface 2F8-2FF 2F8-2FF 
Proto~card 300-31F 300-31F 
Network card none 360-36F 
Interface for first _E.arallel _Erinter 378-37F 378-37F 
Monochrorre Display Adapter and B0-3BF 3B0-3BF 

lE_arallel_E.rinter connection 
Color/Grai:>_hics Adaj>ter 3D0-3DF 3D0-3DF 
Disk controller 3F0-3F7 3F0-3F7 
First serial interface 3F8-3FF 3F8-3FF 

700 



Chapter 19 

Interaction 
Keyboard, 

between 
BIOS and DOS 

The preceding chapters of this book described three levels of PC system 
architecture: 

DOS 

BIOS 

hardware 

We've examined each level separately throughout this book. This chapter 
investigates the interaction between the three levels. We'll use the keyboard as an 
example, because it best illustrates the connection between the three levels. We'll 
start with the lowest level (the hardware itself) and progress to the highest level (an 
application program which communicates with the user through the keyboard). 

Hardware level 

The hardware level consists of the keyboard itself, which connects to the CPU 
through a cable. This keyboard contains either an Intel 8048 {PC/Xn or 8042 
(An processor. The processor's task monitors the keyboard to determine whether a 
key was depressed or released. If a user depresses a key for longer than half a 
second, the 8048 enables key repeat at a rate of 10 characters per second. While the 
8048 can only repeat at this frequency, the 8042's repeat frequency can be changed 
to other values. This repetition continues until the user releases the key. The 
keyboard processor assigns each key a number, instead of a character or ASCII 
code. It views control keys such as <Shift> and <Ctrl> like any other key. In the 
83-key standard PC keyboard, the processor assigns numbers to the keys ranging 
from 1 to 83 decimal. 

701 



19. Interaction between Keyboard, BIOS and DOS PC System Programming 

BIOS level 

When you press a key, this key code passes to the CPU as a byte. When you 
release the key the processor passes the code to the CPU again, along with an 
added 128. This is the same as setting bit 7 in the byte. The keyboard instructs the 
8259 interrupt controller that the CPU should trigger interrupt 9H. If the CPU 
responds we reach the next level, because a BIOS routine is controlled through 
interrupt 9H. While this routine is being called, the keyboard processor sends the 
key code to port 60H of the main circuit board using the asynchron.ous 
transmission protocol. The BIOS routine checks this port and obtains the number 
of the depressed or released key. This routine then generates an ASCII code from 
this key code. 

This task is more complex than first appears, since the BIOS routine must test for 
a control key such as <Shift> or <Alt>. Depending on the key or combination of 
keys, either a normal ASCII code or an extended keyboard code may be required. 
The extended key codes include any keys which don't necessarily input characters 
(e.g., cursor keys). 

Once BIOS determines the correct code, this code passes to the 16-byte BIOS 
keyboard buffer. If it is full, the routine produces a beep which informs the user of 
an overflow in the keyboard buffer. The processor returns to the other tasks which 
were in progress before the call to interrupt 9. 

The next level, BIOS interrupt 16H, reads the character in the keyboard buffer and 
makes it available to a program. This interrupt includes three BIOS routines for 
reading characters from the keyboard buffer, as well as the keyboard status (e.g., 
which control keys were pressed). These three routines can be called with an INT 
assembly language instruction from an application program. 

DOS level 

702 

The keyboard's device driver routines represent the DOS level. These DOS routines 
read a character from the keyboard and store the character in a buffer, using the 
BIOS functions from interrupt 16H. In some cases, the DOS routines may clear 
the BIOS keyboard buffer. If the system uses the extended keyboard driver 
ANSI.SYS, ANSI.SYS can translate certain codes (e.g., function key 1) into other 
codes or strings. For example, it's possible to program the <FlO> key to display 
the DIR command on the screen. You can theoretically call device driver functions 
from within an application program, but in practice DOS functions usually address 
these functions. 

DOS is the highest level you can go. Here you'll find the keyboard access 
functions in DOS interrupt 21H. These functions call the driver functions, 
transmit the results and perform many other tasks. For example, characters and 
strings can be read and displayed directly on the screen until the user presses the 
<Return> key. These strings are called by an application program and form the end 
of this chain of events. 



Abacus 19. Interaction between Keyboard, BIOS and DOS 

Application program 

Interrupt 21 (h) (DOS routine) 

DOS keyboard driver 

Interrupt 16(h) (BIOS routine) 

Keyboard buffer 

Interrupt 9(h) (BIOS routine) 

Keyboard with 8042 or 8048 processor 

Levels of keyboard access 

The keyboard access levels are as follows: 

(1) Enables functions available for keyboard access 

8 
© 
© 
© 
0 
© 

(2) Reads a character with the functions of interrupt 16H and converts it into 
other characters or character strings as needed 

(3) Reads keyboard status or a character from the keyboard buffer and transfers 
it to the calling program 

(4) Accepts the character entered 

(5) Receives codes from the keyboard, converts them into ASCII or extended 
keyboanl codes and adds them to the keyboanl buffer 

(6) Calls interrupt 9 when the key is depressed or released 

When you consider the many levels through which a key code has to travel before 
reaching an application program, you might be thinking that direct keyboard access 
would be much faster. In principle that's true, but the proce8s as described above 
offers several advantages. One advantage is that the system offers complex 
functions which reduce programming work, such as simultaneously displaying a 
line on the screen as you enter it from the keyboard. Also, using higher level 
functions make programs hardware independent, so that they'll run on PCs that 
may not be hardware-compatible with the IBM PC but still use DOS as the 
operating system. 

703 



19. Interaction between. Keyboard, BIOS and DOS PC System Programming 

704 

The program which concludes this chapter demonstrates a method of changing the 
system levels. The challenge is to increase the si7.e of the BIOS keyboard buffer. 
The keyboard buffer usually holds up to 16 characters before emitting beeps to tell 
the user that the buffer is full. 

The assembler program which follows increases the size of the keyboard buffer to 
128 characters (256 bytes). It generates extended interrupt handlers for hardware 
keyboard interrupt OOH and BIOS keyboard interrupt 16H. 

;**********************************************************************; 
;* KEYBUF *; 
;•--------------------------------------------------------------------*; 
;* 
;* 
;* 
;* 
;* 

Task Installs extended keyboard reading interrupt *; 
routines and implements a virtual keyboard *: 
buffer of up to 256 bytes (128 characters). *; 
An initial call installs the program, while a *: 
second call disables the program. *; 

;•--------------------------------------------------------------------•; 
;* Author MICHAEL TISCHER *; 
;* Developed on : 08/24/1988 *; 
;* Last update : 06/23/1989 *; 
;*--------------------------------------------------------------------•; 
; * Assembly : MASM KEYBUF; *; 
; * LINK KEYBUF; *; 
;* EXE2BIN KEYDUF KEYBUF.COM , 
;*--------------------------------------------------------------------*; 
, Call : KEYBUF *; 
•**********************************************************************• ' ' 
;== BIOS variable segment ========~====~============================== 

bios segment at 40h ;Segment begins at 0040:0000 

org lah 

;-- BIOS pointer points to the keyboard ring buffer ----------

dw (?) 
dw (?) 

bios ends 

;Pointer to next character 
; Pointer to last character 

;== Constants ===========~=============~=========~=~================ 

KB_LEN equ 128 ;Keyboard buffer length must be a 
;power of 2 (change this constant to 
;change the size of the keyboard buffer 
;e.g., 2, 4, 8, 16, 32, etc.) 

;~ Start of program ====~=~=~=======~===~=~==========~========== 

code segment para 'CODE' ;Definition of CODE segment 

org lOOh 

assume cs:code, ds:code, es:code, ss:code 

start: jmp kb_ini ;First executable instruction 

;== Data (stays in memory) =~=~==========~~=~====~=~=======~=== 

keybuf_id dw •cs• ;Identifies the program 

env_seg dw (?) ;Segment address of environment 

int9 equ this dword ;Old interrupt vector 09H 



Abacus 19. Interaction between Keyboard, BIOS and DOS 

int9 ofs dw (?) 
int9=seg dw (?) 

int16 equ this 
int16 ofs dw (?) 
int16=seg dw (?) 

dword 

;Offset address interrupt vector 09H 
;Segment address interrupt vector 09H 

;Old interrupt vector 16H 
;Offset address interrupt vector 16H 
;Segment address interrupt vector 16H 

;-- Virtual keyboard buffer is placed in the PSP of this program, 
;-- making the program resident until a second call disables it 

next key 
cur key 

dw O 
dw KB_LEN - 2 

;Offset address of next key 
;Offset address of current key 

;=• New interrupt hander ~---====~-~-~=~---~-~-~----~=~======= 

new_int9 proc far ;New INT 9H handler 

ni9_0: 

ni9_1: 

ni9_end: 

new int9 

assume ds:bios 

pus hf 
call cs:int9 

;Assign OS the BIOS variable segment 

;Simulate interrupt call to old INT 
;9H handler 

Get character from BIOS keyboard buff er ------------------

cli 
push es 
push ds 
push di 
push bx 
push ax 

mov ax,bios 
mov ds,ax 
mov di,cs:nextkey 
mov bx,b_next 

cmp bx, b last 
je ni9 end 

;Push all registers which will be 
;changed by this new interrupt 
;handler onto the stack 

;Get segment address of BIOS variable 
;segment to OS 
;Move DI to next character in KEYBUF 
;BIOS: Get address of next character 

;Still a character in BIOS kbd buffer? 
;No more characters --> END 

;-- Still a character in the BIOS keyboard buffer --

mov ax, [bx] 
add bx,2 
cmp bx,3eh 
jne ni9 1 

mov bx,leh 

cmp di,cs:curkey 
je ni9_0 
mov cs: [di] ,ax 
add di,2 
and di,KB_LEN-1 
jmp ni9 0 

mov cs:nextkey,di 
mov b_next,bx 
pop ax 
pop bx 
pop dl 
pop ds 
pop es 

iret 

assume ds:code 
endp 

;Get character from BIOS kbd. buffer 
;Set pointer to next character 
;Reached end of keyboard buffer? 
;NO --> NI9_1 

;YES --> Set start of kbd. buffer 

;Virtual keyboard buffer full yet? 
;YES --> Don't store any more chars 
;Characters in virtual kbd. buffer 
;Set pointer to next character 
;Wrap-around 
;Get next character 

;Mark position for next character 
;Set BIOS pointer to next character 
;Pop registers off of stack 

;Return to interrupt caller 

;DS indicates code segment 

;-- New handler for BIOS keyboard interrupt 16H ----------------------

705 



19. Interaction between Keyboard, BIOS and DOS PC System Programming 

706 

new_int16 proc far ;New interrupt 16H handler 

nil6_0: 

nil6_1: 

ni16_2: 

status: 

sti 
cmp ah,1 
ja status 

;Enable interrupt 
;Read keyboard status? 
;YES --> Status 

;-- Update keyboard LEDs when function 1 of the old keyboard -
;-- handler is called 

push ax ;Push function code on the stack 

pus hf ;Push flags onto stack 
mov ah,1 ;Funct.no.: Key ready? 
call cs:[intl6] ;Call old handler 

pop ax ;Pop function code off of stack 
push bx ;Push BX onto stack 

lllOV bx,cs:curkey ;Get pointer to current key 
add bx,2 ;set to next word 
and bx,KB_LEN-1 ;Wrap-around 
or ah, ah ; Read character? 
je ni16 2 ;YES --> Get character from buffer 

;-- Function 1: Help caller determine whether a character ls -
;-- available 

cmp bx,cs:nextkey ;Found a character in KEYBUF? 
je nil6_1 ;NO --> NI16_1 

mov ax, cs: [bx] ;YES, Get character from KEYBUF 
pop bx ;Pop BX off of stack 
ret 2 ;Return to caller but DO NOT remove 

;flags from stack 

;-- Function O: Read character from the keyboard buffer 

cmp bx,cs:nextkey ;Character found in KEYBUF? 
je nil6 0 ;NO --> NI16_0 

lllOV ax, cs: [bx] IYES -- > Get character from KEYBUF 
lllOV cs:curkey,bx ;store position for current character 
pop bx ;Pop BX off of stack 
iret. ;Return to caller 

jmp cs: [int16] ;Jump to old handler 

new_intl6 endp 

;-----------------------------------------------------------------------
inst end equ this byte ;Everything must remain resident up 

;to this memory location 

;~ Data (cann be overwritten from DOS) ====-===~================= 

installm db 13,10,"--- KEYBUF (c) 1988 by Michael Tischer ---",13,10,13,10 
db "KEYBUF now enabled. Entering KEYBUF a second time",13,10 
db "from the DOS prompt disables the KEYBUF program.",13,10,"$" 

removeit db 13,10,"--- KEYBUF (c) 1988 by Michael Tischer ---",13,10 
db "KEYBUF program now disabled.",13,10,"$" 

;= Program (can be overwritten from DOS) ==-===-=====-========= 

;-- Start and nitialization routine ------------------------------------

kb ini label near 

mov ax,3509h ;Get contents of interrupt vector 9H 



Abacus 

install 

19. Interaction between Keyboard, BIOS and DOS 

int 21h ;Cal DOS function 
cmp es:keybuf id,"CS" 
jne install -

;Program already installed? 
; NO --> Install 

;-- If KEYBUF is already installed, remove it ----------------

cli ;Disable interrupts 
lds dx,es:int9 ;DS:DS - old handler address int9H 
rnov ax,2509h ;Return interrupt vector for int 9H 
int 21h ;to old interrupt handler 

lds dx, es: int16 ;DS:DS - Old handler address int16H 
mov ax,2516h ;Return interrupt vector 16H 'CO old 
int 21h ;interrupt handler 
sti ;Enable interrupt 

mov bx, es ;Move segment address of program 
mov es,es:env_seg ;Get segment address of environment 
mov ah,49h ;from code segment and 
int 2lh ;release memory 

mov es, bx ;Release memory of 
mov ah, 49h ;old KEYBUF using 
int 2lh ;DOS interrupt 4 9H 

push cs ;Push CS onto stack 
pop ds ;Pop DS off of stack 

mov dx,offset removeit ;Message: Program disabled 
mov ah,9 ;Write function number for string 
int 2lh ;Call DOS function 

mov 
int 

ax,4C00h 
21h 

Install KEYBUF 

;Funct. no.: End program 
;Call DOS interrupt --> END 

label near 

mov 
rnov 

rnov 
int 
mov 
rnov 

mov 
int 
mov 
mov 

cli 
mov 
mov 
int 

rnov 
rnov 
int 
st! 

Ia order to configure new keyboard buffer within the 
PSP, the segment address must first be moved to the end 
of the PSP, where it cannot be overwritten 

ax, [2Ch] 
env_seg,ax 

ax,3509h 
2lh 
int9_seg,es 
int9_ofs,bx 

ax,3516h 
21h 
intl 6 _ seg, es 
intl6_ofs,bx 

ax,2509h 
dx,offset new int9 
2lh 

; Load segment address of environment 
; and place in code segment 

;Get contents of interrupt vector 9H 
;Call DOS function 
;Mark segment and off set address of 
; interrupt vector 9H 

;get contents of interrupt vector 16H 
;Call DOS function 
;Mark segment and offset address of 
;interrupt vector 16H 

;Disable interrupt 
;Funct. no.: Set interrupt vector 9H 
;Offset addr. of new int. 9H handler 
;Call DOS interrupt 

ax,2516h 
dx,offset 
21h 

;Funct. no.: Set interrupt vector 16H 
new int16;0ffset addr. of new int. 16H handler 

- ;Call DOS interrupt 
;Enable interrupts 

mov dx,offset installrn ;Message: Install program 
rnov ah,9 ;Function number for string display 
int 2lh ;Call DOS function 

707 



19. Interaction between Keyboard, BIOS and DOS PC System Programming 

code 

708 

;-- Just PSP, new interrupt routine and corresponding -------
;-- data must be resident --------

mov dx,offset ins tend ;Get off set address of last byte 
add dx,15 ;Make paragraph •full" 
mov cl,4 ;Compute number of resident 
shr dx,cl ;paragraphs 
mov ax,3100h ;Terminate but keep resident program 
int 21h ;with end code of (0) 

ends ;End of code segment 
end start 



Appendices 

Appendices A to F contain descriptions of each interrupt. 

Appendix A. 
AppendixB. 
AppendixC. 
AppendixD. 
AppendixE. 
AppendixF. 

Important Hardware Interrupts 
BIOS Interrupts and Functions 
DOS Interrupts and Functions 
EMM Functions 
EGANGA BIOS Functions 
Mouse Driver Interrupts 

710 
713 
766 
849 
856 
882 

These descriptions include documentation of the interrupt, any sub-functions (if 
applicable) and a listing of input and output registers (if applicable). Each interrupt 
title has the following format: 

Interrupt hex numberH 
Interrupt_ name 

lnterrupt_type (i/o_register) 

Every processor register important to the called function is mentioned. Registers 
that aren't included in this list don't apply to the called function, and can contain 
any value during the call of the interrupt 

The output listing identifies the register that contains information returned by the 
function after the call is completed. The register assignment depends on whether or 
not the function call is successfully executed. If a specific value is supposed to be 
in the AX register after a successful execution, but the function doesn't execute 
properly, then the value in this register won't have any meaning. Problems in each 
function will be addressed as needed. 

In addition to the description of the input and output registers, details about the 
function may also be included. For example, the function may be used in 
conjunction with another function. There may also be information about any 
changes in register contents caused by the function call. This is very important to 
the assembly language programmer who wants to keep data in a register after the 
function call. This programmer wants to avoid any changes in the contents of the 
registers. 

709 



Appendix A 

Important Hardware 
Interrupts 

Interrupt OOH Hardware (CPU) 
Division by zero 

The CPU calls this interrupt when it encounters a divisor of 0 during one of the 
two assembly language division instructions (DIV or IDN). According to the rules 
of mathematics, dividing a number by 0 is illegal. During the booting process, 
this interrupt points to a routine that, when called, displays the "Division by Zero" 
error message (or a similar message) on the screen. The interrupt continues with 
the execution of the current program. 

Interrupt OlH 
Single step 

Hardware (CPU) 

The CPU calls this interrupt when the TRAP bit in the flag register of the CPU 
has been set to 1. Then the interrupt is called after the execution of each assembly 
language instruction. This allows the user to follow these instructions, determine 
the changes in register contents and determine which instructions are executed. To 
prevent the call of the interrupt after the execution of every instruction in the trap 
routine (which would create an endless loop and a stack overflow), the processor 
resets the TRAP bit upon entry to the trap routine. If the trap routine ends with 
the IRET instruction, it automatically resets the TRAP bit to its old value by 
restoring the complete flag register from the stack. Because of this, the execution 
of the next instruction calls interrupt 1 again. Once the programmer has obtained 
the necessary information about a program from single step mode, the TRAP 
mode (or TRAP bit) can be disabled. 

710 



Abacus Appendix A: Important Hardware Interrupts 

Interrupt 02H 
NMI 

Hardware (CPU) 

The hardware calls this interrupt when an error is discovered in the RAM chips. 
The system calls the non-maskable interrupt because this type of error impairs the 
capabilities of the system, and can lead to a crash. The NMI has the highest 
priority of all interrupts and therefore is executed faster than other interrupts. The 
NMI usually calls a BIOS routine which informs the user of a memory error, lists 
the number of defective memory chips and stops the system. 

If the NMI detects an error, the math coprocessor included in some PCs can also 
trigger the NMI. Even though NMI usually cannot be suppressed, the PC allows 
an exception to this rule. Some PC/XT and AT models have a special port (port 
AOH on PCs and XTs, port 70H on ATs). If a 0 value is written to one of these 
ports, the NMI interrupt is disabled . If the ports return the value 80H, the NMI 
interrupt is enabled. 

Interrupt 03H 
Breakpoint 

Hardware (CPU) 

While the other interrupts can be called with a two-byte assembly language 
instruction (first byte CDH, second byte the number of the interrupt), interrupt 3 
is called by the single-byte instruction CCH. This interrupt can be used to test 
programs when you want to execute the program up to a certain instruction, then 
stop and display the current register contents. Utilities designed for program testing 
like DEBUG implement this by placing calls for interrupt 3 where the break 
should occur. When the program is executed and the processor reaches the 
instruction, it calls interrupt 3. The program testing utility contains a routine 
which displays the register contents and other information. 

Interrupt 04H 
Overflow 

Hardware (CPU) 

This interrupt can be called by the INTO (INTerrupt on Overflow) conditional 
assembly language instruction. The call occurs when the overflow bit in the flag 
register is set during the execution of the INTO instruction. This can happen 
following math operations (e.g., multiplication with the MUL instruction) that 
produce a result which cannot be represented within a specified number of bits. 
This interrupt can also be called with the normal INT instruction, but this 
instruction isn't controlled by the status of the set overflow bit. Since it is seldom 
used, DOS points this interrupt to an IRET instruction. 

Interrupt OSH 
Hard copy 

BIOS 

BIOS calls this interrupt when the user presses the <Prt Sc> key. The system then 
makes a hardcopy by sending the current screen contents to a printer. BIOS 

711 



Aependix A : Important Hardware Interrupts PC System Programming 

initializes the interrupt vector from the vector table and points to the BIOS 
hardcopy routine in ROM-BIOS. Assembly language and programs written in 
higher level languages can use this interrupt with the INT instruction to get a 
hardcopy during program execution. 

Interrupt 08H 
Timer 

Hardware (8259 interrupt controller) 

In the PC, the 8259 timer chip receives 1,193,180 signals per second from the 
heart of the system, which is an oscillating quartz crystal. After 65,536 of these 
signals (1 second), it triggers a call of interrupt 8, which the 8259 transmits to the 
CPU. Since the frequency of the call of this interrupt is independent of the system 
clock frequency, interrupt 8 works well for timekeeping. The PC also uses the 
interrupt for timekeeping. BIOS points the interrupt vector of this interrupt to its 
own routine, which is called 18.2 times per second. A time counter increments 
every second and disables the disk drive motor if disk access hasn't occurred within 
a certain time period. 

Interrupt 09H 
Keyboard 

Hardware (8259 interrupt controller) 

712 

PC keyboards contain an independent processor. This Intel processor carries either 
the number 8048 (PC/XT) or 8042 (AT). This processor monitors the keyboard 
and registers whether a key was depressed or released. When either of these actions 
occur, this processor must inform the CPU so that the code of the activated key 
can be sent to the system and processed. The keyboard instructs the interrupt 
controller to call interrupt 9. This interrupt calls a BIOS routine that reads the 
character from the keyboard and places it into the keyboard buffer. 



Appendix B 

BIOS Interrupts and 
Functions 

Interrupt lOH: Video functions 
Function Description Page Number 
OOH Set video mode .................................................... 716 
OIH Define cursor type ................................................ 716 
02H Position cursor .................................................... 717 
03H Read cursor position ............................................. 718 
04H Read lightpen position .......................................... 718 
05H Select current display page ..................................... 719 
06H Initialize window/scroll text upward ........................ 719 
07H Initialize window/scroll text downward .................... 720 
08H Read character/attribute .......................................... 720 
09H Write character/attribute ......................................... 721 
OAH Write character ..................................................... 722 
OBH Select palette (sub-function 0) ................................ 723 
OBH Select color palette (sub-function 1) ......................... 723 
OCH Write graphic pixel... ............................................ 724 
ODH Read graphic pixel. ............................................... 724 
OEH Write character ..................................................... 725 
OFH Read display mode ................................................ 726 
13H Write character string (AT only) .............................. 726 

Interrupt UH: Determine configuration ................................ 727 

Interrupt 12H: Determine memory size .................................. 728 

Interrupt 13H: Disk 
Function Description Page Number 
OOH Reset floppy disk system ....................................... 729 
OIH Read disk status .................................................. 730 
02H Read disk ............................................................ 731 
03H Write to disk ....................................................... 731 
04H Verify disk sectors ............................................... 732 

713 



Appendix B: BIOS Interrupts and Functions PC System Programming 

05H Format track ...................................................... 733 
15H Determine drive type (AT only) .............................. 734 
16H Determine disk change (AT only) ............................ 735 
17H Detennine disk fonnat (AT only) ............................ 735 

lnterru;.;t 138: Hard disk 
Function Description Page Number 
OOH Reset {XT and AT only) ........................................ 736 
OlH Read disk status (XT and AT only) .......................... 736 
02H Read disk (XT and AT only) ................................... 737 
03H Write to disk (XT and AT only) .............................. 738 
04H Verify disk sectors (XT and AT only) ....................... 740 
05H Format cylinder (XT and AT only) .......................... 741 
08H Check fonnat {XT and AT only) ............................. 742 
09H Adapt to foreign drives (XT and AT only) ................. 743 
OAH Extended read (XT and AT only) .............................. 744 
OBH Extended write (XT and AT only) ............................ 745 
ODH Reset (XT and AT only) ........................................ 746 
IOH Drive ready? (XT and AT only) .............................. 747 
llH Recalibrate drive (XT and AT only) ......................... 748 
14H Controller diagnostic (XT and AT only) ................... 748 
15H Determine drive type (AT only) .............................. 749 

Interrupt 148: Serial interface 
Function Description Page Number 
OOH Initialize ............................................................ 750 
OlH Output character .................................................. 751 
02H Input character .................................................... 751 
03H Read status ........................................................ 752 

Interrupt lSH: Cassette interrupt (AT only) 
Function Description Page Number 
83H Set flag after time interval (AT only) ....................... 752 
84H Read joystick fire button (sub-function 0) (AT only) ... 753 
84H Read joystick position (sub-function 1) (AT only) ...... 753 
85H <Sys Req> key activated (ATonly) ......................... 754 
86H Wait (AT only) .................................................... 754 
87H Move memory areas (AT only) ............................... 754 
88H Determine memory size beyond 1 megabyte (AT only)755 
89H Switch to protected mode (AT only) ........................ 755 

Interrupt 16H: Keyboard 
Function Description Page Number 
OOH Read character ..................................................... 756 
OlH Read keyboard for character .................................... 756 
02H Read keyboard status ............................................ 757 

714 



Abacus Appendix B. BIOS Interrupts and Functions 

Interrupt 178: Parallel printer 
Function Description PaKe Number 
OOH Write character .................................................... 757 
OlH Initialize printer .................................................. 758 
02H Read printer status ............................................... 758 

Interrupt 188: Call ROM BASIC ........................................... 759 

Interrupt 198: Boot process •••••••••••••••••••••..••••••••••••••• 7 59 

Interrupt 1A8: Date and time 
Function Description Page Number 
OOH Read time counter ............................................... 759 
OlH Set time counter ................................................. 760 
02H Read realtime clock (AT only) ................................ 760 
03H Set realtime clock (AT only) .................................. 761 
04H Read date from realtime clock (AT only) ................... 761 
05H Set date in realtime clock (AT only) ........................ 762 
06H Set alarm time (AT only) ...................................... 762 
07H Reset alarm time (AT only) ................................... 763 

Interrupt 1B8: <Break> key pressed ....................................... 763 

Interrupt 1C8 Periodic interrupt ........................................... 764 

Interrupt 1D8 Video table ...................................................... 764 

Interrupt 1E8 Drive table ...................................................... 764 

Interrupt 1F8 Character table ................................................ 765 

715 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt lOH, function OOH 
Video: Set video mode 

BIOS 

Input: 

Output: 

Selects and initializes a video mode and clears the screen. This function is a fast 
method of clearing the screen while maintaining the current video mode. 

AH= OOH 
AL= Video mode 

0: 40x25 text mode, monochrome 
1: 40x25 text mode, color 
2: 80x25 text mode, monochrome 
3: 80x25 text mode, color 
4: 320x200 4-color graphics 
5: 320x200 4-color graphics 

(colors displayed in monochrome) 
6: 640x200 2-color graphics 
7: Internal mode 

No output 

(color card) 
(color card) 

(mono card) 
(color card) 
(color card) 
(color card) 

(color card) 
(mono card) 

Remarks: The colors for modes 4, 5 and 6 can be set with function 11. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function OlH 
Video: Define cursor type 

BIOS 

Input: 

Output: 

Defines the starting and ending lines of the cursor. This cursor exists independently 
of the current display page. 

AH= OlH 
CH = Starting line of the cursor 
CL = Ending line of the cursor 

No output 

Remarks: The values allowed for the cursor's starting and ending line depend on the 
installed video card The following values are permitted: 

716 

Monochrome display cards: 0-13 
Color display cards: 0-7 

BIOS defaults to the following values: 

Monochrome display cards: 
Color display cards: 

11-12 
6-7 



Abacus Appendix B. BIOS Interrupts and Functions 

You can use this function to set the cursor only within the permitted 
ranges. Setting cursor lines outside these parameters may result in an 
invisible cursor or system problems. 

The contents of the BX, CX, DX registers and the segment registers SS, 
CS and DS are not affected by this function. The contents of all the other 
registers may change, especially the SI and DI registers. 

Interrupt lOH, function 02H 
Video: Position cursor 

BIOS 

Input: 

Output: 

Repositions the cursor, which determines the screen position for character output 
by using one of the BIOS functions. 

AH= 02H 
BH = Display page number 
DH= Screen line 
DL = Screen column 

No output 

Remarks: The blinking cursor moves through this function when the addressed 
display page is the current display page. 

Values for the screen line parameter range from 0 to 24. 

Values for the screen column parameter range from 0 to 79 (for an 80-
column display) or from 0 to 39 (for a 40-column display), depending on 
the selected video mode. 

You can make the cursor disappear by moving it to a nonexistent screen 
position (e.g., column 0, line 25). 

The number of the display page parameter depends on how many display 
pages are available to the video card. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

717 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt 108, function 038 
Video: Read cursor position 

BIOS 

Senses the text cursor's position, starting lj.ne and ending line in a display page. 

Input: 

Output: 

Remarks: 

AH= 03H 
BH = Display page number 

DH = Screen line in which the cursor is located 
DL = Screen column in which the cursor is located 
CH = Starting line of the blinking cursor 
CL = Ending line of the blinking cursor 

The number of the display page parameter depends on how many display 
pages are available to the video card 

Line and column coordinates are related to the text coordinate system. 

The contents of the BX register and the SS, CS and DS segment registers 
are not affected by this function. The contents of all the other registers 
may change, especially the SI and DI registers. 

Interrupt 108, function 048 
Video: Read lightpen position 

BIOS 

Senses the position of the lightpen on the screen if applicable. 

Input: 

Output: 

Remarks: 

718 

AH= 04H 

AH = Lightpen position reading status 
0: Lightpen position unreadable 
1: Lightpen position readable 

DH= Screen line of the lightpen (text mode) 
DL = Screen column of the lightpen (text mode) 
CH = Screen line of the lightpen (graphic mode) 
BX= Screen column of the lightpen (graphic mode) 

This function call must be repeated until 1 is returned in the AH register, 
because only then can coordinates be read from the other registers. 

Coordinates indicated represent the current video mode's resolution. 

Usually the coordinates of the light pen cannot be accurately sensed in the 
graphic mode. The Y-coordinate (line) is always a multiple of 2, so it 
isn't possible to determine whether the lightpen is in line 8 or 9. The X
coordinate (column) is always a multiple of 4 in 320x200 graphic mode 
and a multiple of 8 in the 640x200 biunap mode. 

The contents of the CL register and the SS, CS and DS segment registers 
are not affected by this function. The contents of all the other registers 
may change, especially the SI and DI registers. 



Abacus Appendix B. BIOS /n1errupts and Functions 

Interrupt lOH, function OSH 
Video: Select current display page 

BIOS 

Selects the current display page (text mode only) which should be displayed. 

Input: AH= 05H 
AL= Display page number 

Output: No output 

Remarks: The number of the display page depends on the number of display pages 
available to the video card. 

On switching to a new display page, the screen cursor points to the 
position of the text cursor in this page. 

Switching between various display pages does not affect their contents 
(the individual characters). 

You can write characters to an inactive display page. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of the 
other registers, such as the SI and DI registers, may change. 

Interrupt lOH, function 06H BIOS 
Video: Initialize window/scroll text upward 

Input: 

Output: 

Clears window or scrolls a portion of the current display page up by one or more 
lines, depending on the input. 

AH= 06H 
AL= Number of window lines to be scrolled upward (O=clear window) 
CH = Screen line of the upper left comer of the window 
CL = Screen column of the upper left corner of the window 
DH = Screen line of the lower right corner of the window 
DL = Screen column of the lower right comer of the window 
BH = Color (attribute) for blank line(s) 

No output 

Remarks: Initializing a window (placing a 0 in the AL register) fills the window 
with blank spaces (ASCII code 32). 

The contents of the lines scrolled out of the window are lost and cannot 
be restored. 

Function 0 of this interrupt is better for clearing the entire screen. 

719 



Appendix B: BIOS lnlerrupts and Functions PC System Programming 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function 07H BIOS 
Video: Initialize window/scroll text downward 

Input: 

Output: 

Clears window or scrolls a portion of the current display page up by one or more 
lines, depending on the input. 

AH= 07H 
AL= Number of window lines to be scrolled downward (O=clear window) 
CH = Screen line of the upper left comer of the window 
CL = Screen column of the upper left corner of the window 
DH = Screen line of the lower right corner of the window 
DL = Screen column of the lower right corner of the window 
BH = Color (attribute) for blank line(s) 

No output 

Remarks: This function only affects the current display page. 

Initializing a window (placing a 0 in the AL register) fills the window 
with blank spaces (ASCII code 32). 

The contents of the lines scrolled out of the window are lost and cannot 
be restored. 

Function 0 of this interrupt is better for clearing the entire screen. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function 08H 
Video: Read character/attribute 

BIOS 

Input: 

Output: 

720 

Reads the ASCII code of the character at the current cursor position and its color 
(attribute). 

AH= 08H 
BH = Display page number 

AL= ASCII code of the character 
AH= Color (attribute) 



Abacus 

Remarks: 

Appendix B. BIOS Interrupts and Functions 

The number of the display page depends on the number of display pages 
made available to the video card. 

This function can also be called in graphic mode. The function compares 
the bit pattern of the character on the screen with the bit pattern of the 
character in character ROM of the video card and with the character 
patterns stored in a RAM table whose addresses appear in interrupt lFH. 
If the character cannot be identified, the AL register contains the value 0 
after the function call. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of the 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function 09H 
Video: Write character/attribute 

BIOS 

Input: 

Output: 

Writes a character with a certain color (attribute) to the current cursor position in a 
predefined display page. 

AH= OOH 
BH = Display page number 
CX = Number of times to write the character 
AL= ASCII code of the character 
BL= Attribute 

No output 

Remarks: If the character should be displayed several times (the value of the CX 
register is greater than 1), all characters must fit into the current screen 
line in the graphic mode. 

The control codes (e.g., bell, carriage return) appear as normal ASCII 
codes. 

This function can display characters in graphic mode. The patterns of the 
characters, with the codes from 0 to 127, are determined by a table in 
ROM. The patterns of the characters with the codes from 128 to 255 are 
determined by a RAM table that was previously installed by DOS the 
GRAFf ABL command. 

In text mode, the contents of the BL register define the attribute byte of 
the character. In graphic mode this register determines the color of the 
character. The 640x200 bitmap mode only allows the values 0 and 1 for 
selecting colors from the color palette. The 320x200 bitmap mode only 
allows the values 0 to 3 for selecting colors from the color palette. 

If the graphic mode is active during character output and bit 7 of the BL 
register is set, an exclusive OR is performed on the character pattern and 
the graphic pixels behind the character pattern. 

721 



Appendix B: BIOS Interrupts and Functions PC System Programming 

After character output, the cursor remains in the same position as the 
character. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function OAH 
Video: Write character 

BIOS 

Input: 

Output: 

Writes a character to the current cursor position in a predefined display page by 
using the color of the character previously at this position. 

AH= OAH 
BH = Display page number 
CX = Number of times to write the character 
AL= ASCII code of the character 

No output 

Remarks: If the character should be displayed several times (the value of the CX 
register is greater than 1), all characters must fit into the current screen 
line in the graphic mode. 

722 

The control codes (e.g., bell, carriage return) appear as normal ASCII 
codes. 

This function can display characters in graphic mode. The patterns of the 
characters with the codes from 0 to 127 are determined by a table in ROM 
and the patterns of the characters with the codes from 128 to 255 are 
determined by a RAM table previously installed by the GRAFfABL 
command. 

In text mode, the contents of the BL register define the attribute byte of 
the character. In graphic mode this register determines the color of the 
character. The 640x200 bitmap mode only allows the values 0 and 1 for 
selecting colors from the color palette. The 320x200 bitmap mode only 
allows the values 0 to 3 for selecting colors from the color palette. 

If the graphic mode is active during character output and bit 7 of the BL 
register is set, an exclusive OR is pedormed on the character pattern and 
the graphic pixels behind the character pattern. 

The cursor remains in the same position after character output 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 



Abacus Appendix B. BIOS Interrupts and Functions 

Interrupt lOH, function OBH, sub-function 0 
Video: Select palette 

BIOS 

Selects the border and background color for graphic or text mode. 

Input: 

Output: 

Remarks: 

AH= OBH 
BH= 0 
BL= Border/background color 

No output 

In graphic mode, the color value passed defines the color of both the 
border and background. In text mode, the background color of each 
character is defined individually, so the passed color value only defines the 
color of the screen border. 

Values for the colcr passed can range from 0 to 15. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function OBH, sub-function 1 
Video: Select color palette 

BIOS 

Selects one of the two color palettes for the 320x200 bitmapped graphic mode. 

Input: 

Output: 

Remarks: 

AH= OBH 
BH= 1 
BL= Color palette number 

No output 

Two color palettes are available. They have the numbers 0 and 1 and 
contain the following colors: 

Palette 0: Green, red, yellow 
Palette 1: Cyan, magenta, white 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

723 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt lOH, function OCH 
Video: Write graphic pixel 

BIOS 

Input: 

Output: 

Draws a color pixel at the specified coordinates in graphic mode. 

AH= OCH 
AL= Pixel color value (see below) 
BH = Graphics page 
CX = Screen column 
DX= Screen line 

No output 

Remarks: The pixel value color parameter depends on the current graphic mode. 
640x200 bitmapped mode only permits the values 0 and 1. In the 
320x200 bitmapped mode, the values 0 to 3 are permitted, which gener
ates a certain color according to the chosen color palette. 0 represents the 
selected background color; 1 represents the first color of the selected color 
palette; 2 represents the second color of the color palette, etc. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function ODH 
Video: Read graphic pixel 

BIOS 

Input: 

Output: 

Reads the color value of a pixel at the specified coordinates in the current graphic 
mode. 

AH= OOH 
DX= Screen line 
CX = Screen column 

AL= Pixel color value 

Remarks: The pixel color value parameter depends on the current graphic mode. 
640x200 bitmapped mode permits the values 0 and 1 only. In the 
320x200 bitmapped mode, the values 0 to 3 are permitted, which gener
ates a certain color according to the color palette chosen. 0 represents the 
selected background color; 1 represents the first color of the selected color 
palette; 2 represents the second color of the color palette, etc. 

724 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 



Abacus Appendix B. BIOS /nJerrupts and Functions 

Interrupt lOH, function OEH 
Video: Write character 

BIOS 

Input: 

Output: 

Writes a character at the current cursor position in the current display page. The 
new character uses the color of the character that was previously in this position 
on the screen. 

AH= OEH 
AL= ASCII code of the character 
BL= Foreground color of the character (graphic mode only) 

No output 

Remarks: This function executes control codes (e.g., bell, carriage return) instead of 
reading them as ASCII codes. For example, the function sounds a beep 
instead of printing the bell character. 

After this function displays a character, the cursor position increments so 
that the next character appears at the next position on the screen. If the 
function reaches the last display position, the display scrolls up one line 
and output continues in the first column of the last screen line. 

The foreground color parameter depends on the current graphic mode. 
640x200 bitmapped mode only permits the values 0 and 1. In the 
320x200 bitmapped mode, the values 0 to 3 are permitted, which 
generates a certain color according to the chosen color palette. 0 represents 
the selected background color; 1 represents the first color of the selected 
color palette; 2 represents the second color of the color palette, etc. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

725 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt lOH, function OFH 
Video: Read display mode 

BIOS 

Reads the number of the current video mode, the number of characters per line and 
the number of the current display page. 

Input: AH= OFH 

Output: AL= Video mode 
0: 40x25 text mode, monochrome 
1: 40x25 text mode, color 
2: 80x25 text mode, monochrome 
3: 80x25 text mode, color 
4: 320x200 4-color graphics 
5: 320x200 4-color graphics 

(colors represented in monochrome) 
6: 640x200 2-color graphics 
7: lntemal mode 

AH= Number of characters per line 
BH = Current display page number 

(color card) 
(color card) 

(mono card) 
(color card) 
(color card) 
(color card) 

(color card) 
(mono card) 

Remarks: The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

Interrupt lOH, function 13H 
Video: Write character string 

BIOS (AT only) 

Input: 

Output: 

726 

Displays a character string on the screen, starting at a specified screen position on 
a specified display page. The characters are taken from a buffer whose address 
passes to the function. 

AH= 13H 
AL= Outputmode(0-3) 

0: Attribute in BL, retain cursor position 
1: Attribute in BL, update cursor position 
2: Attribute in the buffer, retain cursor position 
3: Attribute in the buffer, update cursor position 

BH = Display page number 
BL= Attribute byte of the character (modes 0 and 1 only) 
BP = Offset address of the buffer 
CX = Number of characters to be displayed 
DH = display line 
DL = display column 
ES = segment address of the buffer 

No output 



Abacus 

Remarks: 

Interrupt UH 

Appendix B. BIOS Interrupts and Functions 

Modes 1 and 3 set the cursor position following the last character of the 
character string. On the next call of a BIOS function for character output, 
the next string of characters appears following the original character 
string. This does not occur in the modes 0 and 2. 

In modes 0 and 1, the buffer contains only the ASCII codes of the 
characters to be displayed. The BL register contains the color of the 
character string. However, in modes 2 and 3 each character has its own 
attribute byte when the character is stored in the buffer. The BL register 
doesn't have to be loaded in this mode. Even though the character string is 
twice as long in these modes as the number of the characters to be 
displayed, the CX register requires only the number of ASCII characters 
in the string and not the total length of the character string. 

Control codes (e.g., bell) are interpreted as control codes only, and not as 
characters. 

When the string reaches the last position on the screen, the display scrolls 
upward by one line and output continues in the first column of the last 
screen line. 

The contents of the BX, CX, DX registers and the SS, CS and DS 
segment registers are not affected by this function. The contents of all 
other registers may change, especially the SI and DI registers. 

BIOS 
Determine configuration 

Reads the configuration of the system as recorded during the booting process. 

Input: No input 

Output: AX= Configuration 

PC and XT: Bit 0: 1 if the system has one or more disk drives 
Bit 1: Unused 
Bits 2-3: RAM available on main circuit board 

00: 16K 
01: 32K 
10: 48K 
11: 64K 

Bits 4-5: Video mode after system boot 
00: Unused 
01: 40x25,colorcard 
02: 80x25, color card 
03: 80x25,monocard 

Bits 6-7: Number of disk drives in the system if bit 0 is equal to 1 
00: 1 disk drive 
01: 2 disk drives 
10: 3 disk drives 
11: 4 disk drives 

727 



Appendix B: BIOS Interrupts and Functions PC System Programming 

AT: 

Remarks: 

Bit8: 
Bits 9-11: 

0 when a OMA chip is presr.nt 
Number of RS-232 cards connected 

Bit 12: 
Bit 13: 

1 when system has a joystick attached 
Unused 

Bits 14-15: Indicates the number of printers available 

Bit 0: 1 if the system has one or more disk drives 
Bit 1: 1 when a math coprocessor exists in the system 
Bit 2-3: Unused 
Bit 4-5: Video mode during system boot 

00: Unused 
01: 40x25, color card 
02: 80x25, color card 
03: 80x25, mono card 

Bits 6-7: Number of disk drives in the system if bit 0 is equal to 1 

Bit 8: 

00: 1 disk drive 
01: 2'disk drives 
10: 3 disk drives 
11: 4 disk drives 

Unused 
Bits 9-11: Number of RS-232 cards connected 

Unused Bit 12-13: 
Bits 14-15: Indicates the number of printers available 

The type of PC must be known {PC, XT or An in order to properly 
interpret the meanings of the individual bits of the configuration word. 

The memory size indicated in bits 2 and 3 of the PC/XT configuration 
word refers only to the main circuit board. Interrupt 12H lets you 
detennine the total amount of available memory. 

The video mode recorded in bits 4 and 5 is the mode that was activated 
when the system was switched on. To determine the current video mode 
use function 15 of interrupt lOH. 

The contents of the AX register are affected by this function. 

Interrupt 12H 
Determine memory size 

BIOS 

Input: 

Output: 

Remarks: 

728 

No input 

AX= Memory size in kilobytes 

The PC and the XT can accept a maximum of 640K of RAM. The AT 
accepts up to 14 megabytes of RAM memory beyond the 1 megabyte 
limit. The memory size returned by this function ignores this extended 
memory. To determine the memory size beyond the 1 megabyte limit, 
use function 88H of interrupt 15H (available only on the An. 

The contents of the AX register are affected by this function. 



Abacus Appendix B. BIOS Interrupts and Functions 

Interrupt 13H, function OOH 
Disk: Reset 

BIOS 

Input: 

Output: 

Resets the disk controller and any connected disk drives. A reset should be executed 
after each disk operation during which an error occurred. 

AH= OOH 
DL= Oor 1 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

Remarks: The value in the DL register is unnecessary since all the disk drives 
execute a reset. XT and AT models use this register to determine whether 
a reset should be performed on the disk drives or the hard disk. 

The following error codes can occur: 

OlH: Function number not permitted 
02H: Address not found 
03H: Write attempt on write protected disk 
04H: Sector not found 
08H: DMA overflow 
09H: Data transmission beyond segment border 
lOH: Read error 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, unit not responding 

The contents of the BX, CX, DX, SI, DI, PB registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function OlH 
Disk: Read status 

BIOS 

Reads the status of the disk drive since the last disk operation. 

Input: 

Output: 

Remarks: 

AH= OlH 
DL= Oor 1 

Carry flag=O: Operation completed (AH=O) 
Carry flag= 1: Error {AH=error code) 

The value in the DL register is unnecessary, since disk drives constantly 
return their status. XT and AT models use this register to determine 
whether the status of the hard disk should be checked. 

729 



Appendix B: BIOS Interrupts and Functions PC System Programming 

The following error codes can occur: 

OlH: Function number not permitted 
02H: A~ not found 
03H: Write attempt on write protected disk 
04H: Sectornot found 
08H: OMA overflow 
09H: Data transmission beyond segment border 
lOH: Read error 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, unit not responding 

The contents of the BX, CX, DX, SI, DI, PB registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 02H 
Disk: Read disk 

BIOS 

Input: 

Output: 

Remark: 

730 

Reads one or more disk sectors into a buffer. 

AH= 02H 
AL= Number of sectors to be read 
BX= Offseta~ofbuffer 
CH = Track number 
CL = Sector number 
DH= Disk side number (0 or 1) 
DL = Disk drive number 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

The number of sectors to be read into the AL register is limited to sectors 
which logically follow each other on a track on one side of the disk. 



Abacus Appendix B: BIOS Interrupts and Functions 

The following error codes can occur: 

OIH: Fwiction number not pennitted 
02H: A~ not found 
03H: Write attempt on a write protected disk 
04H: Sector not found 
08H: OMA overflow 
09H: Data transmission over segment border 
IOH: Read error 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, <lfive not responding 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all the other 
registers may change. 

Interrupt 138, function 038 
Disk: Write to disk 

BIOS 

Input: 

Output: 

Remark: 

Writes one or more sectors to a disk. The data to be transmitted are taken from a 
buffer. 

AH= 03H 
AL= Number of sectors to be written 
BX= Offset~ of buffer 
CH= Track number 
CL = Sector number 
DH= Disk side number (0 or 1) 
DL = Disk drive number 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag= 1: Error (AH=error code) 

The number of sectors that can be written in the AL register is limited to 
sectors which logically follow each other on a track on one side of the 
disk. 

The following error codes can occur: 

OIH: Fwiction number not permitted 
02H: Address not fowid 
03H: Write attempt on a write protected disk 
04H: Sector not found 

731 



Appendix B: BIOS lnlerrupts and Functions PC System Programming 

08H: OMA overflow 
09H: Data transmission over segment border 
lOH: Read ttror 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, drive not responding 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 04H 
Disk: Verify disk sectors 

BIOS 

Input: 

Output: 

Compares one or more sectors on disk with the data stored in a buffer. This can be 
used to verify that the data was properly saved to disk. 

AH= 04H 
AL= Number of sectors to be verified 
BX = Offset address of buffer 
CH = Track number 
CL = Sector number 
DH= Disk side number (0 or 1) 
DL = Disk drive number 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag= I: Error (AH=error code) 

Remarks: The number of sectors to be verified in the AL register is limited to 
sectors which logically follow each other on a track on one side of the 
disk. 

732 

The following error codes can occur: 

OlH: Function number not permitted 
02H: Address not found 
03H: Write attempt on a write protected disk 
04H: Sector not found 
08H: DMA overflow 
09H: Data transmission over segment border 
IOH: Read error 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, drive not responding 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 



Abacus Appendix B: BIOS Interrupts and Fwu:tions 

Interrupt 13H, function OSH 
Disk: Format track 

BIOS 

Input: 

Output: 

Remark: 

Formats a complete track on one side of a disk. A buffer which contains 
information about the sectors to be formatted must be passed to the function. 

AH= 05H 
AL= Number of sectors to be formatted 
BX= Offset address of buffer 
CH = Track number 
DH= Disk side number (0or1) 
DL = Disk drive number 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag= I: F.rror (AH=error code) 

The number of sectors to be formatted is limited to sectors which 
logically follow each other on a track on one side of the disk. 

The buffer passed in ES:BX contains an entry consisting of four 
consecutive bytes for every sector to be formatted. 

1: Track number 
2: Page number 
3: Logical sector number 
4: Number of bytes in this sector: 

0: 128 bytes 
1: 256 bytes 
2: 512 bytes (PC standard) 
3: 1,024 bytes 

The logical sector number increments continuously, but may not be the 
same as the physical sector number. 

The following error codes can occur: 
I 

OIH: Function number not permitted 
02H: Address not found 
03H: Write attempt on a write protected disk 
04H: Sector not found 
08H: DMA overflow 
09H: Data transmission over segment border 
IOH: Read error 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, drive not responding 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all the other 
registers may change. 

733 



Appendix B: BIOS Interrupts .and FtmCtions PC System Programming 

Interrupt 13H, function 15H 
Disk: Determine drive type 

BIOS (AT only) 

Input: 

Output: 

Remark: 

Senses disk change and drive type. The AT supports both the standard 320/360K 
drives and the 1.2 megabyte drives. 

AH= 15H 
DL = Disk drive number (0 or 1) 

Carry flag=O: Operation completed (AH=unit type) 
AH=O: Device not present 
AH=l: Unit does not recognize disk change 
AH=2: Unit recognizes disk change 
AH=3: Hard disk (see remarks below) 

Carry flag= 1: Error 

The AT has a controller which selectively controls 2 disk drives and a 
hard disk, or one disk drive and 2 hard disks. In the latter case, the first 
hard disk has the number 1 and can be accessed with this function. 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 16H 
Disk: Media change 

BIOS (AT only) 

Input: 

Output: 

Senses a disk change. The AT supports both the standard 320/360K drives and the 
1.2 megabyte drives. This function reads any disk change that may have occurred 
since the last disk access. 

AH= 16H 
DL = Disk drive number (0 or 1) 

AH=O: No disk change 
AH=6: Disk changed since last disk access 

Remarks: The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

734 



Abacus Appendix B: BIOS Interrupts and Functions 

Interrupt lJH, function 178 
Disk: Determine disk format 

BIOS (AT only) 

Input: 

Output: 

Remark: 

Determines the fonnat of a disk. The ATs 1.2 megabyte disk drive can read both 
320/360K disks and 1.2 megabyte disks. While the BIOS can detennine disk 
fonnat during a read or write access. it first must be informed of the fonnat 
Function 23 must be called on the AT before you can call function 5 (fonnat). 

AH= 17H 
AL= Fonnat 

AL=l: 320/3(i()K format on 320/360K drive 
AL=2: 320/360K format on 1.2 megabyte drive 
AL=3: 1.2 megabyte format on 1.2 megabyte drive 

Carry flag=O: Operation completed 
Carry flag= 1: Error 

The following error codes can occur: 

OIH: Function number not pennitted 
02H: Address not found 
03H: Write attempt on a write protected disk 
04H: Sector not found 
08H: DMA overflow 
09H: Data transmission over segment border 
IOH: Read error 
20H: Error in disk controller 
40H: Track not found 
80H: Time out error, drive not responding 

The contents of the BX, CX, DX, SI, DI. BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

735 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt 13H, function OOH 
Hard disk: Reset 

BIOS (XT and AT only) 

Input: 

Output: 

Resets the hard disk controller and any interfaced hard disk drives. A reset should be 
executed after every hard disk operation during which an error was reported. 

AH= OOH 
DL= 80H or 81H 

Carry flag=(): Operation completed (AH=O) 
Carry flag= I: Error (AH=enur code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

The value in the DL register is unnecessary since all the hard disk drives 
execute a reset. XT and AT models use this register to determine whether 
a reset should be performed on the disk drives or on the hard disk. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sectornot found 
OSH: Error on controller reset 
07H: Error during controller initialization 
09H: OMA transmission error: Segment border exceeded 
OAH: Defective sector 
IOH: Read error 
l IH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function OlH 
Hard disk: Read disk status 

BIOS (XT and AT only) 

Input: 

Output: 

736 

Reads the status of the hard disk since the last hard disk operation. 

AH= OlH 
DL= 80H or 81H 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=enur code) 



Abacus 

Remarks: 

Appendix B: BIOS Interrupts and Functions 

The first hard disk drive is assigned the number 80H. the second is 
assigned the number 81H. 

The value in the DL register is unnecessary since the status is 
consistently returned for each disk drive. XT and AT models use this 
register to determine whether the status of the disk drives or hard disk 
should be checked. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
05H: Error on controller reset 
07H: Error during controller initialization 
09H: OMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 IH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of the other 
registers may change. 

Interrupt 13H, function 02H 
Hard disk: Read disk 

BIOS (XT and AT only) 

Input: 

Output: 

Reads one or more hard disk sectors into a buffer. 

AH= 02H 
AL = Number of sectors to be read (1-128) 
BX = Offset address of buffer 
CH = Cylinder number 
CL = Sector number 
DH= Read/write head number 
DL = Hard disk number (80H or 8 lH) 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

737 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

Since the eight bits of the CH register can address only 256 cylinders at a 
time, bits 6 and 7 of the CL register (sector number) fonn bits 8 and 9 of 
the cylinder number, which enables the addressing of up to 1,023 
cylinders at a time. 

If several sectors are being read and the system reaches the last sector of a 
cylinder, reading continues at the first sector of the next cylinder of the 
next read/write head. If the system reaches the last read/write head, reading 
continues on the first sector of the following cylinder on the first 
read/write head. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sectornot found 
OSH: Error on controller reset 
07H: Error during controller initialization 
09H: OMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
l lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 03H 
Hard disk: Write to disk 

BIOS (XT and AT only) 

Writes one or more sectors to the hard disk. The data to be transmitted are taken 
from a buffer in the calling program. 

Input: AH= 03H 

738 

AL= Number of sectors to be written (1-128) 
BX= Offset address of buffer 
CH = Cylinder number 
CL = Sector number 
DH= Read/write head number 
DL = Hard disk number (80H or 8 lH) 
ES = Buffer segment address 



Abacus 

Output: 

Remarks: 

Appendix B: BIOS Interrupts and Functions 

Carry flag=O: Operation completed (AH=O) 
Carry flag= I: Error (AH=error code) 

The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

Since the eight bits of the CH register can address only 256 cylinders at a 
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of 
the cylinder number, enabling the addressing of up to 1,023 cylinders at a 
time. 

If several sectors are being written and the system reaches the last sector 
of a cylinder, writing continues at the first sector of the next cylinder of 
the next read/write head. If the system reaches the last read/write head, 
writing continues on the first sector of the following cylinder on the first 
read/write head. 

The following error codes can occur: 

OIH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
05H: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
IOH: Read error 
1 IH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

739 



Appendix B: BIOS Interrupts and Functwns PC System Programming 

Interrupt 13H, function 04H 
Hard disk: Verify disk sector 

BIOS (XT and AT only) 

Input: 

Output: 

Verifies one or more sectors of a hard disk. Unlike the corresponding floppy disk 
function, the data on the hard disk are not compared with the data in memory. 
During data storage, four check bytes are stored for every sector; these check bytes 
verify the contents of a sector. 

AH= 04H 
AL = Number of sectors to be verified (1-128) 
BX= Offset address of buffer 
CH= Cylinder number 
CL = Sector number 
DH= Read/write head number 
DL = Hard disk number (80H or 8 lH) 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

740 

Since the eight bits of the CH register can only address 256 cylinders at a 
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of 
the cylinder number, which enables the addressing of up to 1,023 
cylinders at a time. 

If several sectors are being verified and the system reaches the last sector 
of a cylinder, verification continues at the first sector of the next cylinder 
of the next read/write head. If the system reaches the last read/write head, 
verification continues on the first sector of the following cylinder on the 
first read/write head. 

The following error codes can occur: 

OIH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
OSH: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 



Abacus Appendix B: BIOS Interrupts and Functions 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function OSH 
Hard disk: Format cylinder 

BIOS (XT and AT only) 

Input: 

Output: 

Formats a complete cylinder (17 sectors) of a hard disk. A buffer, which contains 
information about the sectors to be formatted, must be passed to the function. 

AH= 05H 
AL= 17 
BX= Offset address of buffer 
CH = Cylinder number 
CL= 1 
DH= Read/write head number 
DL = Hard disk number (80H or 81H) 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

Since the eight bits of the CH register can only address 256 cylinders at a 
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of 
the cylinder number, which enables the addressing of up to 1,023 
cylinders at a time. 

I 

Since a complete cylinder is always formatted, the first sector to be 
formatted in the CL register is always sector 1. For the same reason the 
number of sectors to be formatted in the AL register is always 17, since 
the average hard disk operates with 17 sectors per cylinder. 

The buffer, whose address is passed in ES:BX, must always be at least 
512 bytes long. Only the first 34 bytes of this buffer are used for 
formatting the 17 sectors of a cylinder. Two succeeding bytes contain 
information about the corresponding physical sector. Before the function 
call, the first byte isn't significant. After the function call the first byte 
indicates whether or not the sector could be formatted (OOH) or (80H). The 
second byte returns the logical sector number of the physical sector and 
must be placed in the buffer by calling the program before the function 
call. 

741 



Appendix B: BIOS Interrupts and Functions PC System Programming 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
05H: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read mur 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 08H 
Hard disk: Check format 

BIOS (XT and AT only) 

Conveys the formatting information found on the hard disk. 

Input: 

Output: 

Remarks: 

742 

AH= 08H 
CH = Cylinder number 
CL = Sector number 
DH = Read/write head number (O=first head) 
DL = Hard disk number 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

Since the eight bits of the CH register can address only 256 cylinders at a 
time, bits 6 aild 7 of the CL register (sector number) form bits 8 and 9 of 
the cylinder number, enabling the addressing of up to 1,023 cylinders at a 
time. 

The total capacity of the hard disk unit in bytes can be calculated with the 
following formula: 

Capacity = Heads * Cylinders * Sectors * 512 



Abacus Appendix B: BIOS Interrupts and F1111etions 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: A~ not found 
04H: Sectornot found 
OSH: Error on controller reset 
07H: Error during controller initialization 
09H: OMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 09H BIOS (XT and AT only) 
Hard disk: Adapt to foreign drives 

Interfaces other hard disk drives for access through BIOS functions. 

Input: 

Output: 

Remarks: 

AH= 09H 
DL = Number of hard disk to be interfaced (80H or 8lH) 

Carry flag=O: Operation completed (AH=O) 
Carry flag= I: Error (AH=error code) 

The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

BIOS takes the information about the hard disk drive to be interfaced 
(number of units, read/write heads, etc.) from a table. The address of this 
table for the hard disk unit numbered 80H is stored in interrupt vector 
4 lH, and the unit numbered 8 lH is stored in interrupt 46H. 

The following error codes can occur: 

OIH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
OSH: Error on controller reset 
07H: Error during controller initialization 
09H: OMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 

743 



Appendix B: BIOS /nte"upts and Functions PC System Programming 

20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function OAH 
Hard disk: Extended read 

BIOS (XT and AT only) 

Input: 

Output: 

Reads one or more sectors from the hard disk drive into a buffer. Besides the actual 
512 bytes stored in the sector, the function also reads the four check bytes (ECC). 

AH= OAH 
AL= Number of sectors to be read (1-127) 
BX= Offset address of buffer 
CH = Cylinder number 
CL = Sector number 
DH= Read/write head number 
DL = Hard disk number (80H or 81H) 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

744 

Normally the controller computes the four check bytes. Here the buffer 
reads the information direct 

Since the eight bits of the CH register can only address 256 cylinders at a 
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of 
the cylinder number, enabling the addressing of up to 1,023 cylinders at a 
time. 

If several sectors are being read and the system reaches the last sector of a 
cylinder, reading continues at the first sector of the next cylinder of the 
next read/write head. If the system reaches the last read/write head, reading 
continues on the first sector of the following cylinder on the first 
read/write head. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
05H: Error on controller reset 



Abacus 

07H: 
09H: 
OAH: 
lOH: 
llH: 
20H: 
40H: 
80H: 
AAH: 
CCH: 

Appendix B: BIOS Interrupts and Functions 

Error dwing controller initialization 
DMA transmission error: Segment border exceeded 
Defective sector 
Read error 
Read error corrected by ECC 
Controller defect 
Search operation failed 
Time out, unit not responding 
Unit not ready 
Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function OBH 
Hard disk: Extended write 

BIOS (XT and AT only) 

Input: 

Output: 

Writes one or more sectors to the hard disk drive. Besides the actual 512 bytes 
stored in a sector, four check bytes (ECC) stored at the end of every sector are 
transmitted from the buffer. 

AH= OBH 
AL= Numberof sectors to be read (1-127) 
BX= Offset address of buffer 
CH = Cylinder number 
CL = Sector number 
DH= Read/write head number 
DL = Hard disk number (80H or 8 lH) 
ES = Buffer segment address 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

Normally the controller calculates the four check bytes. Here the system 
reads them direct from the buffer. 

Since the eight bits of the CH register can only address 256 cylinders at a 
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of 
the cylinder number, enabling the addressing of up to 1,023 cylinders at a 
time. 

If several sectors are being written and the system reaches the last sector 
of a cylinder, writing continues at the first sector of the next cylinder of 
the next read/write head. If the system reaches the last read/write head, 
writing continues on the first sector of the following cylinder on the first 
read/write head. 

745 



Appendix B: BIOS Interrupts and Functions PC System Programming 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: A~ not found 
04H: Sector not found 
05H: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function ODH 
Hard disk: Reset 

BIOS (XT and AT only) 

Input: 

Output: 

Resets the hard disk controller and any interfaced hard disk drives. A reset should be 
executed after every hard disk operation during which an error was reported. 

AH= ODH 
DL = Hard disk drive number (80H or 81H) 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: Error (AH=error code) 

Remarks: The value in the DL register is unnecessary since all the hard disk drives 
execute a reset. XT and AT models use this register to determine whether 
a reset should be performed on the disk drives or on the hard disk. 

746 

This function is identical to function 0 listed above. 

The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: A~ not found 
04H: Sector not found 
05H: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 



Abacus 

20H: 
40H: 
80H: 
AAH: 
CCH: 

Appendix B: BIOS Interrupts and Functions 

Controller defect 
Search operation failed 
Time out, unit not responding 
Unit not ready 
Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function lOH 
Hard disk: Drive ready? 

BIOS (XT and AT only) 

Input: 

Output: 

Determines if the drive is ready (i.e., the last operation has been completed and the 
drive can perform the next task). 

AH= lOH 
DL = Hard disk drive number (80H or 8 IH) 

Carry flag=(): Drive ready (AH=O) 
Carry flag= 1: Error (AH=error code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sector not found 
05H: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

747 



Appendix B: BIOS Interrupts and F1111Ctions PC System Programming 

Interrupt 13H, function UH 
Hard disk: Recalibrate drive 

BIOS (XT and AT only) 

Recalibrates hard disk after an error occlll'S, especially after a read or write error. 

Input: 

Output: 

Remarks: 

AH= llH 
DL = Hard disk drive number (80H or 8 lH) 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: F.rror (AH=errorcode) 

The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

The following error codes can occur: 

OlH: Addressed function or unit not available 
02H: Address not found 
04H: Sectornot found 
OSH: Error on controller reset 
07H: Error during controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function 14H 
Hard disk: Controller diagnostic 

BIOS (XT and AT only) 

Initializes an internal diagnostic test of the hard disk controller. 

, Input: 

Output: 

Remarks: 

748 

AH= 14H 
DL = Hard disk drive number (80H or 8 lH) 

Carry flag=O: Operation completed (AH=O) 
Carry flag=l: F.rror (AH=error code) 

The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 



Abacus Appendix B: BIOS Interrupts and Functions 

The following error codes can occur: 

OIH: Addressed function or unit not available 
02H: Address not found 
04H: Sectornot found 
OSH: Error on controller reset 
07H: Error dilling controller initialization 
09H: DMA transmission error: Segment border exceeded 
OAH: Defective sector 
lOH: Read error 
1 lH: Read error corrected by ECC 
20H: Controller defect 
40H: Search operation failed 
80H: Time out, unit not responding 
AAH: Unit not ready 
CCH: Write error 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 13H, function lSH 
Hard disk: Determine drive type 

BIOS (AT only) 

Input: 

Output: 

Determines whether or not the computer hardware assigned numbers 80H and 81H 
are hard disk drives. The AT contains a controller capable of controlling both hard 
disks and disk drives. This controller can manage either two disk drives and one 
hard disk, or one disk drive and two hard disks. 

AH= 15H 
DL = Hard disk drive number (80H or 81H) 

Carry flag=O: Operation completed (AH=drive type) 
0: Equipment not available 
1: Drive does not recognize disk change 
2: Drive recognizes disk change 
3: Hard disk unit 

Carry flag=l: Error (AH=error code) 

Remarks: The first hard disk drive is assigned the number 80H, the second is 
assigned the number 81H. 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

749 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt 14H, function OOH 
Serial port: Initialize 

BIOS 

Initializes and configures a serial port This configuration includes parameters for 
word length, baud rate, parity and stop bits. 

Input: AH= OOH 

Output: 

Remarks: 

750 

DX= Number of serial port (O=first serial port, l=second serial port) 
AL = Configuration parameters 
Bits 0-1: 

Bit 2: 

Bits 3-4: 

Bits 5-7: 

Word length 
IO(b) = 7 bits 
ll(b) = 8 bits 
Number of stop bits 
OO(b) = I stop bit 
Ol(b) = 2 stop bits 
Parity 
OO(b) =none 
Ol(b)=odd 
ll(b) =even 
Baud rate 
OOO(b) = 110 baud 
OOl(b) = 150 baud 
OIO(b) = 300 baud 
Oll(b) = 600 baud 
IOO(b) = 1200 baud 
IO 1 (b) = 2400 baud 
llO(b) = 4800 baud 
lll(b) = %00 baud 

AH = Serial port status 
Bit 0: Data ready 
Bit 1: Overrun error 
Bit 2: Parity error 
Bit 3: Framing error 
Bit 4: Break discovered 
Bit 5: Transmission hold register empty 
Bit 6: Transmission shift register empty 
Bit 7: Time out 

AL= Modem status 
Bit 0: Modem ready to send status change 
Bit I: Modem on status change 
Bit 2: Telephone ringing status change 
Bit 3: Connection to receiver status change 
Bit 4: Modem ready to send 
Bit 5: Modem on 
Bit 6: Telephone ringing 
Bit 7: Connection to receiver modem 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all the other 
registers may change. 



Abacus Appendix B: BIOS Interrupts and Functions 

Interrupt 14H, function OlH 
Serial port: Send character 

BIOS 

Sends a character to the serial port. 

Input: 

Output 

Remarks: 

AH= OIH 
DX = Number of serial port (O=first serial port, l=second serial port) 
AL= Character code to be sent 

AH: Bit 7 = 0: Character transmitted 
Bit 7 = 1: Error 
Bit 0-6: Serial port status 

Bit 0: Data ready 
Bit 1: Overrun error 
Bit 2: Parity error 
Bit 3: Framing error 
Bit4: Break discovered 
Bit 5: Transmission hold register empty 
Bit 6: Transmission shift register empty 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 14H, function 02H 
Serial port: Read character 

BIOS 

Receives a character from the serial port. 

Input: 

Output: 

Remarks: 

AH= 02H 
DX = Number of serial port (O=first serial port, l=second serial port) 

AH: Bit 7 = 0: Character received: 
AL = Character received 
Bit 7 = 1: Error: 
Bit 0-6: Serial port status: 

Bit 0: Data ready 
Bit 1: Overrun error 
Bit 2: Parity error 
Bit 3: Framing error 
Bit 4: Break discovered 
Bit 5: Transmission hold register empty 
Bit 6: Transmission shift register empty 

This function should only be called if function 3 has determined that a 
character is ready for reception. 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

751 



Appendix B: BIOS /nlerrupts and Functions PC System Programming 

Interrupt 14H, function 03H 
Serial port: Read status 

BIOS 

Reads the status of the serial port. 

Input: 

Output: 

Remarks: 

AH= 03H 
DX= Number of the serial port (the frrst serial port has the number 0) 

AH = Serial port status 
Bit 0: Data ready 
Bit 1: Overrun error 
Bit 2: Parity error 
Bit 3: Framing error 
Bit 4: Break discovered 
Bit 5: Transmission hold register empty 
Bit 6: Transmission shift register empty 

AL= Modem status: 
Bit 0: Modem ready to send status change 
Bit 1: Modem on status change 
Bit 2: Telephone ringing status change 
Bit 3: Connection to receiver status change 
Bit 4: Modem ready to send 
Bit 5: Modem on 
Bit 6: Telephone ringing 
Bit 7: Connection to receiver modem 

This function should always be called before calling function 2 {read 
charocter). 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt lSH, function 83H BIOS (AT only) 
Cassette interrupt: Set flag after time interval 

Sets bit 7 of a flag to 1 after a certain amount of time in microseconds elapses. 

Input: 

Output: 

Remarks: 

752 

AH= ~3H 
ES = Segment address of the flag 
BX= Offset address of the flag 
CX = High word of elapsed time in microseconds 
DX= Low word of elapsed time in microseconds 

No output 

A microsecond is a millionth of a second. 

The contents of the BX, SI, DI, BP registers and the segment registers are 
not affected by this function. The contents of all other registers may 
change. 



Abacus Appendix B: BIOS Interrupts and Functions 

Interrupt 158, function 848, sub-function 0 
Cassette interrupt: Read joystick switch settings 

BIOS (AT only) 

Input: 

Output: 

Reads the status of switches on joysticks interfaced to a PC, if game ports and 
joysticks are present. 

AH= 84H 
DX= 0 

Carry flag=l: No game port connected 
Carry flag=O: Game port present: 
AL = Switch settings: 

Bit 7=1: Firstjoystick's first switch enabled 
Bit 6=1: Firstjoystick's second switch enabled 
Bit 5=1: Secondjoystick's first switch enabled 
Bit 4=1: Second joystick's second switch enabled 

Remarks: Sub-function 1 reads the joystick position(s). 

The contents of the BX, CX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 158, function 848, sub-function 1 
Cassette interrupt: Read joystick position 

BIOS (AT only) 

Input: 

Output: 

Reads the positions of joysticks interfaced to a PC if game ports and joysticks are 
present. 

AH= 84H 
DX= 1 

Carry flag= I: No game port connected 
Carry flag=O: Game port present: 
AX= X-position of first joystick 
BX = Y-position of first joystick 
CX = X-position of second joystick 
DX = Y-position of second joystick 

Remarks: Sub-function 0 reads the joystick switch status. 

The contents of the SI, DI, BP registers and the segment registers are not 
affected by this function. The contents of all other registers may change. 

753 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt lSH, function SSH BIOS (AT only) 
Cassette interrupt: <Sys Req> key activated 

Input: 

Output: 

Responds to pressure or release of the <Sys Req> key. The keyboard routine calls 
this function. 

AH= 85H 
AL= 0: <Sys Req> key depressed 
AL= 1: <Sys Req> key released 

No output 

Remarks: This function acts as an intermediary for application programs, so that the 
application program will respond appropriately when the user presses the 
<Sys Req> key. 

Interrupt lSH, function 86H 
Cassette interrupt: Wait 

BIOS (AT only) 

Returns control to the calling program after a certain amount of time has elapsed. 

Input: AH= 86H 

Output: 

CX = High word of pause time in microseconds 
DX= Low word of pause time in microseconds 

No output 

Remarks: A microsecond is a millionth of a second. 

The contents of the BX, SI, DI, BP registers and the segment registers are 
not affected by this function. The contents of all other registers may 
change. 

Interrupt lSH, function 87H BIOS (AT only) 
Cassette interrupt: Move memory areas 

Input: 

Output: 

754 

Moves areas of RAM from below the 1 megabyte limit to the range above the 1 
megabyte limit, and from above the 1 megabyte limit to below the 1 megabyte 
limit. 

AH= 87H 
CX = Number of words to move 
ES = Segment address of global descriptor table 
SI = Offset address of global descriptor table 

Carry flag=(): No error 
Carry flag= 1: Error: 

AH=l: RAM parity error 
AH=2: Incorrect GDT on function call 
AH=3: Protected mode could not be initialiud 



Abacus 

Rematks: 

Appendix B: BIOS Interrupts and Functions 

See Section 7.10.1 for more infonnation about the global descriptor table 
(GD1). 

Only words can be transferred; individual bytes cannot be transferred. 

Maximum amount of memory allowed in a transfer is 64K. The value in 
the ex register cannot exceed 8000H. 

All interrupts are disabled during the memory block move. 

The contents of the BX, ex, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 15H, function 88H BIOS (AT only) 
Cassette interrupt: Determine memory size beyond 1 megabyte 

Determines the amount of memory installed beyond the 1 megabyte limit. 

Input: 

Output: 

Remarks: 

AH= 88H 

AX = Memory size 

The value in the AX register represents memory in kilobytes (K). 

Memory size below the 1 megabyte limit can be determined using 
interrupt 12H. 

The contents of the BX, ex, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 15H, function 89H BIOS (AT only) 
Cassette interrupt: Switch to virtual mode 

Switches the 80286 processor to virtual mode. 

Input: 

Output: 

Rematks: 

AH= 89H 

No output 

This function should be called only if you know how virtual mode 
operates. Improper use of this function can easily lead to a system crash. 

755 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt 16H, function OOH 
Keyboard: Read character 

BIOS 

Input: 

Output: 

Reads a character from the keyboard buffer. If the buffer doesn't contain a character, 
the function waits until a character is entered. Then the character is read and 
removed from the keyboard buffer. 

AH= OOH 

AL= 0: Extended key code: 
AH= Extended key code 

AL> 1: Normal key activated: 
AL = ASCII code of key 
AH= Scan code of key 

Remarks: ASCII code definition occurs independent of the keyboard. Scan codes 
apply only to the type of keyboard attached to the PC. See Appendix J for 
a list of ASCII codes and Section 7 .11 for a list of extended key codes. 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 16H, function OlH 
Keyboard: Read keyboard for character 

BIOS 

Input: 

Output: 

Reads the keyboard buffer for a character ready to be entered. If a character is 
available, the function passes the character to the calling function. The character 
remains in the keyboard buffer and can be re-read when a program calls either 
function 0 (see above) or function 1. The function returns to the calling program 
immediately after the call. 

AH= OlH 

Zero flag= 1: No character in the keyboard buffer 
Zero flag = 0: Character available in keyboard buffer: 
AL = 0: Extended key code: 

AH= Extended key code 
AL> 1: Normal key: 

AL = ASCII code of the key 
AH = Scan code of the key 

Remarks: ASCII code definition occurs independent of the keyboard. Scan codes 
only apply to the type of keyboard attached to the PC. See Appendix J for 
a list of ASCII codes and Section 7 .11 for a list of extended key codes. 

756 

The contents of the CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 



Abacus Appendix B: BIOS Interrupts and Functions 

Interrupt 16H, function 02H 
Keyboard: Read keyboard status 

BIOS 

Reads and returns the status of certain control keys and various keyboard modes. 

Input: AH= 02H 

Output: AL= Keyboard status 

7 65 4 j 21 0 

I- 1=Rlght SHIFT key pressed 

l L 1 =Left SHIFT key pressed 

1 =CTRL ke_y_ pressed 

1 =ALT key pressed 

1 :SCROLL LOCK on 

1:NUM LOCK on 

1:CAPS LOCK on 
1:1NSERT on 

Keyboard status 

Remarks: The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 17H, function OOH 
Printer: Write character 

Input: 

Output: 

Writes a character to one of the printers interfaced to the PC. 

AH= OOH 
AL = Character code to be printed 
DX= Printer number 

AH = Printer status: 
Bit 0=1: Time out error 
Bit 1: Unused 
Bit 2: Unused 
Bit 3=1: Transfer error 
Bit 4=0: Printer offline 
Bit 4=1: Printer online 
Bit 5= 1: Printer out of paper 
Bit 6=1: Receive mode selected 
Bit 7=0: Printer busy 

BIOS 

757 



Appendix B: BIOS Interrupts and F1'11Ctions PC System Programming 

Remarks: Parallel port LPTl is assigned the number 0, parallel port LPT2 is 
assigned the number 1 and parallel port LPT3 is assigned the number 2. 

The contents of the BX, ex, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 178, function 018 
Printer: Initialize printer 

BIOS 

Initializes the print.er interfaced to the PC. This function should be executed before 
executing function 0 (see above). 

Input: AH = OlH 

Output: 

Remarks: 

DX = Print.er number 

AH = Printer status 

Parallel port LPTl is assigned the number 0, parallel port LPT2 is 
assigned the number 1 and parallel port LPT3 is assigned the number 2. 

The contents of the BX, ex, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

/ 
Interrupt 178, function 028 BIOS 
Printer: Read printer status 

Returns the status of the printer interfaced to the PC. 

Input: 

Output: 

Remarks: 

758 

AH= 02H 
DX= Print.er number 

AH = Printer status 

Parallel port LPTl is assigned the number 0, parallel port LPT2 is 
assigned the number 1 and parallel port LPT3 is assigned the number 2. 

The contents of the BX, ex, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 



Abacus Appendix B: BIOS Interrupts and Functions 

Interrupt 18H BIOS 
Call ROM BASIC 

Accesses BASIC in ROM if a system disk cannot be found during the system 
bootstrap process. 

Input: No input 

Output: No output 

Remarks: Very few PCs or compatibles have built-in ROM BASIC (this is a 
throwback from the early days of the PC). If a PC doesn't have ROM 
BASIC, interrupt 18H returns the system to the calling program. 
However, if the PC does has ROM BASIC, interrupt 18H calls BASIC. 
In most cases, the only way to return to DOS is by warm-starting the 
computer (pressing the <Ctrl><Alt><Delete> keys) or turning the 
computer off and on again. Some versions of ROM BASIC allow an exit 
to DOS by entering the SYSTEM command from BASIC. 

Interrupt 19H BIOS 
Boot process 

Input: 

Output: 

Boots the computer. 

No input 

No output 

Remarks: Pressing the <Ctrl><Alt><Delete> keys invokes this interrupt from the 
keyboard. 

Interrupt lAH, function OOH 
Date and time: Read clock count 

BIOS 

Reads the current clock count. The clock count increments 18.2 times per second. 
This calculates the time elapsed since the computer was switched on. 

Input: 

Output: 

AH= OOH 

CX = High word of the clock count 
DX= Low word of the clock count 
AL = 0: Less than 24 hours have elapsed since the last reading 
AL<>O: More than 24 hours have elapsed since the last reading 

759 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Remarks: The AT, which has a battery powered realtime clock, sets the clock count 
to the current time when the computer boots. PCs (which don't have 
realtime clocks) set the counter to 0 during booting. 

The contents of the BX, CX, DX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other regis
ters may change. 

Interrupt lAH, function OlH 
Date and time: Set clock count 

BIOS 

Input: 

Output: 

Sets the contents of the current clock count, which increments 18.2 times per 
second. This calculates the time elapsed since the computer was switched on and 
sets the current time through this function. 

AH= OlH 
CX = High word of clock count 
DX= Low word of clock count 
No output 

Remarks: The AT, which has a battery powered realtime clock, sets the clock count 
to the current time when the computer boots. PCs (which don't have 
realtime clocks) set the counter to 0 during booting. PC owners should 
use this function to set the current time. 

The contents of the AX, BX, CX, DX, SI, DI, BP registers and the 
segment registers are not affected by this function. The contents of all 
other registers may change. 

Interrupt lAH, function 02H BIOS (AT only) 
Date and time: Read realtime clock 

Reads the time from the realtime clock. 

Input: 

Output: 

Remarks: 

760 

AH= 02H 

Carry flag = 0: O.K.: 
CH= Hours 
CL= Minutes 
DH= Secmxh 

Carry flag = 1: Dead clock battery 

All time readings appear in BCD formal 

The contents of the BX, SI, DI, BP registers and the segment registers are 
not affected by this function. The contents of all other registers may 
change. 



Abacus Appendix B: BIOS lnlerrupts and Functions 

Interrupt lAH, function 03H BIOS (AT only) 
Date and time: Set realtime clock 

Sets the time on the realtime clock. 

Input: 

Output: 

Remarks: 

AH= 03H 
CH= Hours 
CL= Minutes 
DH= Seconds 
DL = 1: Daylight Saving Time 
DL = O: Standard Time 

No output 

All time settings must be in BCD format. 

The contents of the BX, SI, DI, BP registers and the segment registers are 
not affected by this function. The contents of all other registers may 
change. 

Interrupt lAH, function 04H BIOS (AT only) 
Date and time: Read date from realtime clock 

Reads the current date from the realtime clock. 

Input: 

Output: 

Remarks: 

AH= 04H 

Carry flag= 0: O.K.: 
CH= Century (19 or 20) 
CL= Year 
DH= Month 
DL= Day 

Carry flag = 1: Dead clock battery 

All date readings appear in BCD format. 

The contents of the BX, SI, DI, BP registers and the segment registers are 
not affected by this function. The contents of all other registers may 
change. 

761 



Appendix B: BIOS Interrupts and FIUU:tions PC System Programming 

Interrupt lAH, function 05H BIOS (AT only) 
Date and time: Set date in realtime clock 

Sets the current date in the realtime clock. 

Input: 

Output: 

Remarks: 

AH= 05H 
CH= Century (19 or 20) 
CL= Year 
DH= Month 
DL= Dcly 

No output 

All date settings must be in BCD format. 

The contents of the BX, CX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt lAH, function 06H 
Date and time: Set alarm time 

BIOS (AT only) 

Sets aiarffi time for the current day. The alarm time triggers interrupt 4AH. 

Input: 

Output: 

Remarks: 

762 

AH= 06H 
CH= Hours 
CL= Minutes 
DH= Seconds 

Carry flag=O: O.K. 
Carry flag= 1: Dead clock battery m: programmed alarm time. 

All alarm settings must be in BCD format. 

During booting, interrupt 4AH points to an IRET command. If this 
interrupt doesn't point to a particular routine responding to the alarm, 
nothing will happen once the alarm time is reached. 

Only one alarm time can be active at a time. If another alarm setting 
already exists, you must first delete it by using interrupt 26-IAH, 
function 7 (see below). 

The contents of the BX, CX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 



Abacus Appendix B: BIOS Interrupts and Functions 

Interrupt lAH, function 078 
Date and time: Reset alarm time 

BIOS (AT only) 

Clears an existing alarm setting created by using function 06H above. 

Input: AH= om 
Output: No output 

Remarks: This function must be called when you want to change an alarm setting. 
Reset the alarm, then use function 06H to set the new alarm time. 

The contents of the BX, CX, SI, DI, BP registers and the segment 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt lBH BIOS/DOS 
Keyboard: <Break> key pressed 

Input: 

Output: 

Records the occurrence of a <Ctrl><Break:> key combination and triggers interrupt 
IBH. During the system boot, BIOS sets interrupt IBH to an IRET command in 
order to prevent any reaction. 

This routine sets a flag to indicate that the user has pressed <Ctrl><Break>. 
Following the execution of one of the DOS functions, this flag is tested for 
character input or output. If the system encounters <Ctrl><Break>, the current 
program stops. In addition, when a batch file is in process, the program asks 
whether the batch file should be continued or terminated. 

Pressing <Ctrl><C> doesn't activate the interrupt. This key combination forces 
DOS to end the currently executing program. However, the DOS functions for 
character input/output search for this key combination. 

To prevent termination of an application program, this interrupt can also be 
pointed to a user routine by pressing <Break> or <Ctrl><Break>. 

No input 

No output 

Remarks: Before returning control to the calling program, this interrupt must 
restore all registers to their previous values. 

763 



Appendix B: BIOS Interrupts and Functions PC System Programming 

Interrupt lCH 
Periodic interrupt 

BIOS 

The timer IC calls interrupt SH approximately 18.2 times per second. Aftec ending 
its task, it calls interrupt lCH in order to allow an application program access to 
the signals from the timer IC. During booting, BIOS initializes the interrupt 
vector of interrupt 1 CH so that it points to an IRET command, which prevents 
any response if the interrupt is called. For example, this interrupt can be pointed to 
a user routine to create a constant display clock on the screen. 

Input: No input 

Output: No output 

Remarks: This interrupt must restore all registers to their previous values before 
returning control to the calling program. 

Interrupt lDH BIOS 
Video table 

Sets a pointer to a table. The vector of this interrupt in the vector table, starting at 
address 0000:0074, stores the offset and segment address of this table. The table 
itself contains a collection of parameters used by BIOS for initializing a certain 
video mode. This involves the 16 memory locations on the video card, whose heart 
is a 6845 video processor. For this reason the table to which the vector points and 
which is part of the ROM-BIOS, consists of 16 consecutive bytes that indicate the 
contents of individual registers for a certain video mode. The first of these 16 bytes 
is copied into the first register of the 6845, the second byte into the second 
register, etc. The table in ROM contains a total of four 16-byte entries: 40x25 
color mode, 80x25 color mode, 80x25 monochrome mode and one entry for the 
various color graphics modes. 

Do not call this interrupt If you do, the system will attempt to read the video 
table as executable code and will crash. 

Input: No input 

Output: No output 

Interrupt lEH BIOS/DOS 
Drive table 

764 

Sets a pointer to a table. The vector of this interrupt in the vector table starting at 
address 0000:0078 stores the offset and segment address of this table. The table 
itself contains a collection of parameters used by BIOS in disk drive access. BIOS 
has a table in ROM, but deviates the interrupt vector of interrupt 30 to its own 
table which allows faster disk access than the BIOS table (see Section 7. 7 for more 
information about this table). 



Abacus 

Input: 

Output: 

Appendix B: BIOS /nJerrupts and Functions 

Do not call this interrupt. If you do call it, the system will attempt to read the 
drive table as executable code and will crash. 

No input 

No output 

Interrupt lFH 
Character table 

BIOS/DOS 

Input: 

Output: 

Sets a pointer to a table. The vector of this interrupt in the vector table, starting at 
address 0000:007C, stores the offset and segment address of this table. The table 
itself contains character patterns for the characters possessing ASCII codes 128 to 
255. BIOS needs this table in order to display the graphic mode characters on the 
screen. These characters are displayed by placing the character patterns, which are 
stored in this table, on the screen as individual pixels. 

Since the character patterns for codes 0 to 127 are already stored in a table in 
ROM-BIOS, this table contains only the character patterns for codes 128 to 255. 
The DOS GRA.FfABL command loads a table for codes 127 to 255 into RAM and 
points the interrupt vector of interrupt 31 to this table. A user table can be added to 
display on the screen, in graphic mode, certain characters that are not part of the 
normal PC character set. The construction of the table requires that eight 
consecutive bytes define the appearance of the character. The first eight bytes of the 
table define the appearance of ASCII code 128, the next eight bytes define ASCII 
code 129, etc. Each set of eight bytes represent the eight lines which denote a 
character in graphic mode. The eight bits of each byte indicate the eight columns 
of pixels for each line. 

Do not call this interrupt. If you do call it, the system will attempt to read the 
character table as executable code and will crash. 

No input 

No output 

7tl5 



Appendix C 

DOS Interrupts and Functions 

Function Description Page Number 
Interrupt 20H Terminate program ................ ~ ........................ 773 

Interrupt 21H functions-arranged by function groups 

Character input 
Function 

Character 

Program 
• 

OlH 
03H 
06H 
07H 

08H 
OAH 
OBH 
OCH 

output 
Function 
02H 
04H 
05H 
06H 
09H 

termination 
Function 
OOH 
31H 
4CH 

Description Page Number 
Character input with echo (Ver. 1 and up) ................. 773 
Auxiliary input (Ver. 1 and up) ............................... 775 
Direct console I/O (Ver. 1andup) ........................... 776 
Unfiltered character input without echo 
(Ver. 1 and up) ................................................... 777 
Character input without echo (Ver. 1 and up) ............. 778 
Buffered input (Ver. 1 and up) ................................. 779 
Get input status (Ver. 1 and up) .............................. 780 
Reset input buffer and then input (Ver. 1 and up) ....... 780 

Description Page Number 
Character output (Ver. 1 and up) ............................. 774 
Auxiliary output (Ver. 1andup) ........................... .,775 
Printer output (Ver. 1 and up) ................................. 776 
Direct console I/O (Ver. 1 and up) ........................... 776 
Output character string (Ver. 1 and up) ..................... 778 

Description Page Number 
Terminate program (Ver. 1 and up) .......................... 773 
Terminate and stay resident (Ver. 2 and up) ............... 799 
Terminate with return code (Ver. 2 and up) ................ 825 

766 



Abacus 

Subdirectory access 

RAM control 

Device driver 

Time and date 

Function 
39H 
3AH 
3BH 
47H 

Function 
48H 
49H 
4AH 
58H 

58H 

access 
Function 
44H 

44H 

44H 

44H 

44H 

44H 

44H 

44H 

44H 

44H 

44H 

44H 

Function 
2AH 
2BH 
2CH 
2DH 

Appendix C: DOS Interrupts and Functions 

Description PaG Number 
Create subdirectory (Ver. 2 and up) .......................... 804 
Delete subdirectory (Ver. 2 and up) .......................... 805 
Set current directory (Ver. 2 and up) ......................... 805 
Get current directory (Ver. 2 and up) ........................ 821 

Description Page Number 
Allocate memory (Ver. 2 and up) ............................ 821 
Release memory (Ver. 2 and up) ............................. 822 
Modify memory allocation (Ver. 2 and up) ................ 822 
Get allocation strategy (sub-function 0) 
(Ver. 3 and up) ................................................... 830 
Set allocation strategy (sub-function 1) 
(Ver. 3 and up) ................................................... 830 

Description Page Number 
IOCTL: Get device info (sub-function 0) 
(Ver. 2 and up) .................................................... 813 
IOCTL: Set device info (sub-function 1) 
(Ver. 2 and up) .................................................... 813 
IOCTL: Read data from character device 
(sub-function 2) (Ver. 2 and up) .............................. 814 
IOCTL: Send data to character device 
(sub-function 3) (Ver. 2 and up) .............................. 815 
IOCTL: Read data from block device 
(sub-function 4) (Ver. 2 and up) ............................. 816 

IOCTL: Send data to block device 
(sub-function 5) (Ver. 2 and up) .............................. 816 
IOCTL: Read input status 
(sub-function 6) (Ver. 2 and up) ............................. 817 
IOCTL: Read output status 
(sub-function 7) (Ver. 2 and up) .............................. 817 
IOCTL: Test for changeable block device 
(sub-function 8) (Ver. 3 and up) ............................. 818 

IOC1L: Test for local or remote drive 
(sub-function 9) (Ver. 3.1 and up) ........................... 818 
IOCTL: Test for local or remote handle 
(sub-function 10) (Ver. 3.1 and up) ......................... 819 

IOCTL: Change retry count 
(sub-function 11) (Ver. 3 and up) ............................ 819 

Description Page Number 
Get system date (Ver. 1 and up) .............................. 796 
Set system date (Ver. 1 and up) ............................... 797 
Get system time (Ver. 1 and up) ............................. 797 
Set system time (Ver. 1 and up) .............................. 797 

767 



Appendix C: DOS Interrupts and Functions PC System Programming 

DTA 
Function 
lAH 
2FH 

Search directory 
Function 
llH 

12H 

4EH 

4FH 

File access (FCB) 
Function 
OFH 
lOH 
13H 
14H 
15H 
16H 
17H 
21H 
22H 
23H 
24H 
27H 
28H 
29H 

File access (handle) 
Function 

768 

3CH 
3DH 
3EH 
3FH 
40H 
41H 
42H 
45H 
46H 
5AH 
56H 

Description Page Number 
SetDTA address(Ver. 1 and up) ............................. 788 
Get DTA address (Ver. 2 and up) ..........•..........•.•..... 798 

Description Page Number 
Search for first matching directory FCB 
(Ver. 1 and up) ................................................... 783 

Search for next matching directory FCB 
(Ver. 1 and up) ................................................... 783 

Search for first matching directory FCB 
(Ver. 2 and up) ................................................... 826 
Search for next matching directory handle 
(Ver. 2 and up) .................................................... 827 

Description Page Number 
Open file (FCB) (Ver. 1 and up) .............................. 782 
Close file (FCB) (Ver. 1 and up) ............................. 782 
Delete file (FCB) (Ver. 1 and up) ............................ 784 
Sequential read (FCB) (Ver. 1 and up) ...................... 786 
Sequential write (FCB) (Ver. 1 and up) ..................... 786 
Create or truncate file (FCB) (Ver. 1 and up) ............. 786 
Rename file (FCB) (Ver. 1 and up) .......................... 787 
Random read (FCB) (Ver. 1 and up) ......................... 790 
Random write (FCB) (Ver. 1 and up) ....................... 791 
Get file size in records (FCB) (Ver. 1 and up) ............ 792 
Set random record number (Ver. 1 and up) ................. 792 
Random block (FCB) (Ver. 1 and up) ....................... 794 
Random block write (FCB) (Ver. 1 and up) ............... 795 
Parse filename to FCB (Ver. 1 and up) ..................... 795 

Description Page Number 
Create or truncate file (handle) (Ver. 2 and up) ........... 806 
Open file (handle) (Ver. 2 and up) ............................ 807 
Close file (handle) (Ver. 2 and up) ........................... 808 
Read file or device (handle) (Ver. 2 and up) ................ 808 
Write to file or device (handle) (Ver. 2 and up) ........... 809 
Delete file (handle) (Ver. 2 and up) .......................... 810 
Move file pointer (handle) (Ver. 2 and up) ................. 810 
Duplicate handle (Ver. 2 and up) ............................. 820 
Force duplicate of handle (Ver. 2 and up) .................. 820 
Create temporary file (handle) (Ver. 3 and up) ............ 834 
Rename file (handle) (Ver. 2 and up) ........................ 828 



Abacus 

Interrupt vectors 
Function 
25H 
35H 

Disk/hard disk access 
Function 

PSP access 

OOH 
OEH 
19H 
lBH 

lCH 

36H 

Function 
26H 
62H 

DOS flag access 
Function 
2EH 
33H 
33H 
54H 

File information access 
Function 
43H 
43H 
57H 
57H 

Country-specific functions 

Appendix C: DOS Interrupts and Functions 

Description J>aie Number 
Set interrupt vector (Ver. 1 and up) .......................... 793 
Get interrupt vector (Ver. 2 and up) ......................... 801 

Description PaKC Number 
Diskreset(Ver. 1 and up) ...................................... 781 
Set default disk drive (Ver. 1 and up) ........................ 781 
Get default disk drive (Ver. 1 and up) ....................... 788 
Get allocation information for default drive 
(Ver.1 and up) .................................................... 789 
Get allocation information for specified drive 
(Ver. 2 and up) .................................................... 789 
Get free disk space (Ver. 2 and up) ........................... 801 

Description Page Number 
Create PSP (Ver. 1 and up) .................................... 793 
Get PSP address (Ver. 3 and up) .............................. 839 

Description PaKC Number 
Set verify flag (Ver. 1 and up) ................................ 798 
Get <Ctrl><Break> flag (sub-function 0) ................. 800 
Set <Ctrl><Break> flag (sub-function 1) ................. 800 
Get verify flag (Ver. 2 and up) 

Description PaKC Number 
Get file attributes (sub-function 0) (Ver. 2 and up) ...... 811 
Set file attributes (sub-function 1) (Ver. 2 and up) ...... 812 
Get file date and time (sub-function 0) (Ver. 2 and up).829 
Set file date and time (sub-function 1) (Ver. 2 and up). 829 

Function Description Page Number 
38H Get country (Ver. 2 and up) .................................... 802 
38H Get country (sub-function 0) (Ver. 3 and up) ............. 802 
38H Set country (sub-function 1) (Ver. 3 and up) .............. 804 

Other functions 
Function 
30H 
4BH 
4BH 
4DH 
59H 

Description Page Number 
Get MS-DOS version number (Ver. 2 and up) ........... 799 
Execute program (sub-function 0) (Ver. 2 and up) ....... 823 
Execute overlay program (sub-function 3) ................ 824 
Get return code (Ver. 2 and up) ............................... 826 
Get extended error information (Ver. 3 and up) ........... 831 

769 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 22H 
Interrupt 23H 
Interrupt 24H 
Interrupt 25H 
Interrupt 26H 
Interrupt 27H 

Interrupt 2FH 
Function 
OOH 
OlH 
02H 
03H 
04H 

Terminate address ........................................... 841 
<Ctrl><C> handler address ............................ 841 
Critical error bandier address ......................... 842 
Absolute disk read .......................................... 843 
Absolute disk write ........................................ 844 
Terminate and stay resident ........................... 845 

Print spooler 
Qescription Pai:e Number 
Get print spooler install status ................................ 846 
Send file to print spooler ....................................... 846 
Remove file from print queue ................................. 847 
Cancel all filesl in print queue ................................ 847 
Hold print job for status check ................................ 846 

Interrupt 21H functions-arranged by function numbers 

770 

Function 
OOH 
OIH 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 
OFH 
lOH 
llH 
12H 
13H 
14H 
15H 
16H 
17H 
19H 
lAH 
lBH 

lCH 

21H 
22H 
23H 

Description Page Number 
Program terminate (Ver. 1 and up) ........................... 773 
Character input with echo 01er. 1 and up) ................. 774 
Character output 01er. 1 and up) ............................. 774 
Auxiliary input (Ver. 1 and up) ............................... 775 
Auxiliary output 01er. 1 and up) ............................. 775 
Character output to printer (Ver. 1 and up) ................ 776 
Direct character input/output 01er. 1 and up) ............. 776 
Unfiltered character input without echo (Ver. 1 and up)777 
Character input without echo (Ver. 1 and up) ............. 778 
Output character string 01 er. 1 and up) ..................... 778 
Buffered input 01er. 1 and up) ................................. 779 
Get input status (Ver. 1 and up) .............................. 780 
Reset input buffer and then input (Ver. 1 and up) ....... 780 
Disk reset 01 er. 1 and up) ...................................... 781 
Set default disk drive (Ver. 1 and up) ........................ 781 
Open file (FCB) (Ver. 1 and up) .............................. 782 
Close file (FCB) 01er. 1 and up) ............................. 782 
Search for frrst match (FCB) 01er. 1 and up) ............. 783 
Search for next match (FCB) 01 er. 1 and up) ............. 784 
Delete file (FCB) 01er. 1 and up) ............................ 784 
Sequential read (FCB) 01er. 1 and up) ...................... 785 
Sequential write (FCB) 01er. 1 and up) ..................... 786 
Create or truncate file (FCB) 01er. 1 and up) ............. 786 
Rename file (FCB) 01er. 1 and up) .......................... 787 
Get default disk drive 01er. 1 and up) ....................... 788 
Set DT A address (Ver. 1 and up) ............................. 788 
Get allocation information for default drive 
01er. 1 and up) .................................................... 789 
Get allocation information for specified drive 
(Ver. 2 and up) ................................................... 789 

Random read (FCB) 01er. 1 and up) ......................... 790 
Random write (FCB) 01er. 1 and up) ....................... 791 
Get file size in records (FCB) (Ver. 1 and up) ............ 792 



Abacus 

Function 
24H 
25H 
26H 
27H 
28H 
29H 
2AH 
2BH 
2CH 
2DH 
2EH 
2FH 
30H 
31H 
33H 

33H 

35H 
36H 
38H 
38H 
38H 
39H 
3AH 
3BH 
3CH 
3DH 
3EH 
3FH 
40H 
41H 
42H 
43H 
43H 
44H 

44H 

44H 

44H 

44H 

44H 

44H 

Appendix C: DOS Interrupts and Functions 

Description Pai:;e Number 
Set random record number (Ver. 1 and up) ................. 792 
Set interrupt vector (Ver. 1 and up) .......................... 793 
Create PSP (Ver. 1 and up) .................................... 793 
Random block read (FCB) (Ver. 1 and up) ................. 794 
Random block write (FCB) (Ver. I and up) ............... 795 
Parse filename to FCB (Ver. 1 and up) ..................... 795 
Get system date (Ver. 1 and up) .............................. 796 
Set system date (Ver. 1 and up) ............................... 797 
Get system time (Ver. 1 and up) ............................. 797 
Set system time (Ver. 1 and up) .............................. 797 
Set verify flag (Ver. 1 and up) ................................ 798 
Get DTA address (Ver. 2 and up) ............................. 798 
Get MS-DOS version number (Ver. 2 and up) ........... 799 
Terminate and stay resident (Ver. 2 and up) ............... 799 
Get <Ctrl><Break> flag (sub-function 0) 
(Ver. 2 and up) .................................................... 800 
Set <Ctrl><Break> flag (sub-function 1) 
(Ver. 2 and up) .................................................... 800 
Get interrupt vector (Ver. 2 and up) ......................... 801 
Get free disk space (Ver. 2 and up) ........................... 801 
Get country (Ver. 2 and up) .................................... 802 
Get country (sub-function 0) (Ver. 3 and up) ............. 802 
Set country (sub-function 1) (Ver. 3 and up) .............. 804 
Create subdirectory (Ver. 2 and up) .......................... 804 
Delete subdirectory (Ver. 2 and up) .......................... 805 
Set current directory (Ver. 2 and up) ......................... 805 
Create or truncate file (handle) (Ver. 2 and up) ........... 806 
Open file (handle) (Ver. 2 and up) ............................ 807 
Close file (handle) (Ver. 2 and up) ........................... 808 
Read file or device (handle) (Ver. 2 and up) ................ 808 
Write to file or device (handle) (Ver. 2 and up) ........... 809 
Delete file (handle) (Ver. 2 and up) .......................... 810 
Move file pointer (handle) (Ver. 2 and up) ................. 810 
Get file attributes (sub-function 0) (Ver. 2 and up) ...... 811 
Set file attributes (sub-function 1) (Ver. 2 and up) ...... 812 
IOCTL: Get device info (sub-function 0) 
(Ver. 2 and up) .................................................... 813 
IOCTL: Set device info (sub-function 1) 
(Ver. 2 and up) ................................................... 813 

IOCTL: Read data from character device (sub-function 2) 
(Ver. 2 and up) .................................................... 814 
IOCTL: Send data to character device (sub-function 3) 
(Ver. 2 and up) .................................................... 815 
IOCTL: Read data from block device (sub-function 4) 
(Ver. 2 and up) .................................................... 816 
IOCTL: Send data to block device (sub-function 5) 
(Ver. 2 and up) .................................................... 816 
IOCTL: Read input status (sub-function 6) 
(Ver. 2 and up) .................................................... 817 

771 



Appendix C: DOS Interrupts and Functions PC System Programming 

772 

Function 
44H 

44H 

44H 

44H 

44H 

45H 
46H 
47H 
48H 
49H 
4AH 
4BH 
4BH 
4CH 
4DH 
4EH 
4FH 
54H 
56H 
57H 
57H 
58H 

58H 

59H 
5AH 
5BH 
SCH 
5EH 
5EH 
5EH 
5FH 

5FH 
5FH 
62H 
63H 
63H 

63H 

Description Pafle Number 
IOCIL: Read output status (sub-function 7) 
(Ver. 2 and up) .................................................... 817 
IOCIL: Test for changeable block device 
(sub-function 8) (Ver. 3 and up) .............................. 818 
IOCIL: Test for local or remote drive 
(sub-function 9) (Ver. 3.1 and up) ........•..•............... 818 
IOC1L: Test for local or remote handle 
(sub-function 10) (Ver. 3.1 and up) ......................... 819 

IOCTL: Change retry count (sub-function 11) 
(Ver. 3 and up) .................................................... 819 
Duplicate handle (Ver. 2 and up) ............................. 820 
Force duplicate of handle (Ver. 2 and up) .................. 820 
Get current directory (Ver. 2 and up) ...........•............ 821 
Allocate memory (Ver. 2 and up) ............................ 821 
Release memory (Ver. 2and up) ...............•............. 822 
Modify memory allocation (Ver. 2 and up) ................ 822 
Execute program (sub-function 0) (Ver. 2 and up) ....... 823 
Execute overlay (sub-function 3) (Ver. 2 and up) ........ 824 
Terminate with return code (Ver. 2 and up) ................ 825 
Get return code (Ver. 2 and up) ............................... 826 
Search for first match (Ver. 2 and up) ....................... 826 
Search for next match (handle) (Ver. 2 and up) ........... 827 
Get verify flag (Ver. 2 and up) ................................ 828 
Rename file (handle) (Ver. 2 and up) ........................ 828 
Get file date and time (sub-function 0) (Ver. 2 and up).829 
Set file date and time (sub-function 1) (Ver. 2 and up). 829 
Get allocation strategy (sub-function 0) 
(Ver. 3 and up) ..............•.•..............................•... 830 
Set allocation strategy (sub-function 1) 
(Ver. 3 and up) .................................................... 831 
Get extended error information (Ver. 3 and up) ........... 832 
Create temporary file (handle) (Ver. 3 and up) ............ 834 
Create new file (handle) (Ver. 3 and up) .................... 835 
Control record access (Ver. 3 and up) ....................... 835 
Get machine name (sub-function 0) (Ver. 3 and up) .... 836 
Set printer setup (sub-function 2) (Ver. 3 and up) ...•... 836 
Get printer setup (sub-function 3) (Ver. 3 and up) ......• 837 
Get redirection list entry (sub-function 2) 
(Ver. 3 and up) .................................................... 837 
Redirect device (sub-function 3) (Ver. 3 and up) ......... 838 
Cancel redirection (sub-function 4) (Ver. 3 and up) .•... 839 
Get PSP address (Ver. 3 and up) .............................. 839 
Get lead byte table (sub-function 0) (Ver. 2.25 only) ... 840 
Set or clear interim console flag (sub-function 1) 
(Ver. 2.25 only) ................................................... 840 
Get interim console flag (sub-function 2) 
(Ver. 2.25 only) .........................•......................... 840 



Abacus AppendiJC C: DOS Interrupts and Functions 

Interrupt 20H 
Terminate program 

DOS 
(Version 1 and up) 

Input: 

Output: 

Restores the three interrupt vectors whose contents were stored in the PSP before 
the program call, terminates the currently running program and returns control to 
MS-OOS. If the program redirected the vectors to its own routine, these vectors 
cannot be overwritten by another program. However, the terminating program 
releases the RAM it had occupied. Before turning control over to the calling 
program, this memory releases and all data buffers clear. 

CS = Segment address of the PSP 

No output 

Remarks: COM programs automatically store the segment address of the PSP in the 
CS register. EXE programs require additional programming to load the 
segment address of the PSP into the CS register. Since the code and the 
PSP are stored in two separate segments, the address of the PSP must be 
loaded into the CS register. The code executes from another segment, 
which makes it impossible to call interrupt 32. To help overcome this 
problem, the value 0 and then the segment address of the PSP are pushed 
onto the stack. If a FAR RETURN command then executes, the program 
execution continues in the PSP segment at offset address 0. There a call 
for interrupt tenninates the program. 

For the first version of OOS, this interrupt is the usual method for ending 
a program. To terminate a program in DOS Version 2 and up, functions 
3 IH or 4CH of OOS interrupt 21 H should be called instead. 

Interrupt 21H, function OOH 
Terminate program 

DOS 
(Version 1 and up) 

Input: 

Output: 

Terminates execution of the currently running program and returns control to the 
calling program. Before this happens, the three interrupt vectors, whose contents 
had been stored in the PSP before the call of the program, are restored. If the 
program redirects these vectors to its own routine, they cannot be overwritten by 
another program. However, the terminating program does release the RAM it had 
occupied. Before turning control over to the calling program, the function releases 
this memory and clears all buffers. 

AH= OOH 
CS = segment address of the PSP 

No output 

Remarks: COM programs automatically store, in the CS register, the segment 
address of the PSP. Since the code and the PSP are stored in two separate 
segments, you cannot execute this function from an EXE program. 

773 



Appendix C: DOS Interrupts and Functions PC System Programming 

Instead of this function, use either function 3 lH or 4CH of interrupt 21H 
for terminating a program. 

Interrupt 21H, function OlH 
Character input with echo 

DOS 
(Version 1 and up) 

Input: 

Output: 

Reads a character from the standard input device and displays it on the standard 
output device. When the function is called but a character doesn't exist, the 
function waits until a character is available. Since standard input and output can be 
redirected, this function is able to read a character from an input device other than 
the keyboard and send it to an output device other than the screen. The characters 
that are read may originate from other devices or from a file. If the character comes 
from a file, the input doesn't redirect to the keyboard once it reaches the end of the 
file. So, the function continues to try to read data from the file after it passes the 
end 

AH= OlH 

AL= Character read 

Remarks: If extended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code. 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 02H 
Character output 

DOS 
(Version 1 and up) 

Input: 

Output: 

Displays a character on the standard output device. Since this device can be 
redirected, the character can be displayed on another output device or sent to a file. 
This function doesn't test whether or not the storage medium (disk or hard disk) is 
already full. Therefore, it will continue to try to write characters to this file. 

AH= 02H 
DL = code of the character to be output 

No output 

Remarks: Control codes such as backspace, carriage return and linefeed are executed 
when the function sends characters to the screen. If the output is redirected 
to a file, control codes are stored as normal ASCII codes. 

774 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 



AbacKS Appendix C: DOS Interrupts and Fwtetions 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function 03H 
Read character auxiliary input 

DOS 
(Version 1 and up) 

Input: 

Output: 

Reads a character from the serial port. Access defaults to the device with the 
designation COMI, unless a MODE command previously redirected serial access. 

AH= 03H 

AL = Characttt received 

Remarks: Since the serial port has no internal buffer, it can receive characters faster 
than it can read them. The unread characters are then ignored. 

Before calling this function, communication parameters (baud rate, 
number of stop bits, etc.) must be set using the MODE command. 
Otherwise DOS defaults to 2400 baud, one stop bit, no parity and a word 
length of 8 bits. 

The BIOS functions called from interrupt 14H are a more efficient way to 
access the serial port. Since they also allow reading of the serial port 
stabls, these functions offer more flexibility than the DOS functions. 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 04H 
Auxiliary output 

DOS 
(Version 1 and up) 

Input: 

Output: 

Sends a character to the serial port. Unless a MODE command previously 
redirected serial access, access defaults to the device with the designation COMl. 

AH= 04H 
DL = Character set for output 

No output 

Remarks: As soon as the receiving device sends a signal to the function indicating 
that it is ready to receive it, the function transmits the character. Control 
then returns to the calling program. 

Before calling this function, communication parameters (baud rate, 
number of stop bits, etc.) must be set using the MODE command. 

775 



Appendix C: DOS Interrupts and Functions PC System Programming 

Otherwise DOS defaults to 2400 baud, one stop bit, no parity and a word 
length of 8 bits. 

The BIOS functions called from interrupt 14H are a more efficient way to 
access the serial port. Since they also allow reading of the serial port 
status, they offer more flexibility than the DOS functions. 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function OSH 
Character output to printer 

DOS 
(Version 1 and up) 

Input: 

Output: 

Sends a character to the printer. Access defaults to the device with the designation 
LPfl (identical to PRN), unless a MODE command previously redirected printer 
access. 

AH= OSH 
DL = Character code to be printed 

No output 

Remarks: The function transmits the character only when the printer signals that it 
is ready to receive it. Then control returns to the calling program. 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The BIOS functions called from interrupt l 7H are more efficient for 
printer access. They offer more flexibility than the DOS printer functions 
for character output. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function 06H 
Direct console I/O 

DOS 
(Version 1 and up) 

776 

Reads characters from the standard input device and displays them on the standard 
output device. The read or written character isn't tested by the operating system 
(e.g., <Ctrl><C> has no effect on the program). Since standard input and output 
can be redirected, this function can read a character from an input device other than 
the keyboard and sends it to an output device other than the screen. The characters 
read may originate from other devices or from a file. When writing characters, this 
function doesn't test whether or not the storage medium {disk or hard disk) is 



Abacus 

Input: 

Output: 

Appendix C: DOS Interrupts and F1111etions 

a1ready full. Also, the calling program cannot detennine whether all the characters 
have been read from an input file. 

During character input, the function doesn't wait until a character is available. 
Instead, the function returns control to the calling program. 

AH= 06H 
DL = 0-254: Send character code 
DL = 255: Read a character 

Character output: No output 
Character input Zero flag= 1: No character ready 
Zero flag=(): Character read is in the AL register 

Remarks: If ext.ended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code. 

ASCII code 255 (blank) cannot be displayed with this function because 
the function interprets ASCII code 255 as a command to input a character. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 218, function 078 DOS 
(Version 1 and up) Unfiltered character input without echo 

Input: 

Output: 

Reads a character from the standard input device without displaying the character on 
the standard output device. If a character doesn't exist when the function is called, 
the function waits until a character is available. The read character is not tested by 
the operating system (e.g., <Ctrl><C> has no effect on the program). Since 
standard input and output can be redirected, this function can read a character from 
an input device other than the keyboard. The characters that are read may originate 
from other devices or from a file. If the characters come from a file, the input 
doesn't redirect to the keyboard once it reaches the end of file. This causes the 
function to continue to try reading data from the file after it passes the end of file. 

AH= 07H 

AL= Character read 

Remarks: If extended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

777 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 08H 
Character input without echo 

DOS 
(Version 1 and up) 

Input: 

Output: 

Reads a character from the standard input device without dispJaying the character on 
the standard output device. If no character exists when the function is called, the 
function waits until a character is available. 

Since standard input can be redirected, this function can read a character from an 
input device other than the keyboard. The characters read may originate from other 
devices or from a file. If the characters come from a file, the input doesn't redirect 
to the keyboard on reaching the end of file, so the function continues to try reading 
data from the file after it passes the end of file. 

AH= 08H 

AL= Character read 

Remarks: If extended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code. 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 09H 
Output character string 

DOS 
(Version 1 and up) 

Input: 

Output: 

Displays a character string on the standard output device. Since this device can be 
redirected, the character may be displayed on another output device or sent to a file. 
This function doesn't test whether or not the storage medium (disk or hard disk) is 
already full, and will continue to try to write the string to a file. 

AH= OOH 
DS = String segment address 
DX = String offset address 

No output 

Remarks: The string must be stored in memory as a series of bytes which contain 
the ASCII codes of the characters to be output A dollar sign character "$" 
(ASCII code 36) indicates, to DOS, the end of the string. 

778 

Control codes, such as backspace, carriage return and linefeed, are executed 
within the string. 

The contents of the processor registers and the fJag registers are not 
affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function OAH 
Buffered input 

DOS 
(Version 1 and up) 

Input: 

Output: 

Reads a number of characters from the standard input device and transmits the 
characters to a buffer. The input ends when the user presses the <Return> key. The 
ASCII code of this key (13) is then placed in the buffer as the last character of the 
string. 

Since standard input can be redirected, this function can read a character from an 
input device other than the keyboard. The characters read may originate either from 
other devices or from a file. If the characters come from a file, the input doesn't 
redirect to the keyboard on reaching the end of file, so the function continues to try 
reading data from the file after it passes the end. 

AH= OAH 
DS = Buffer segment address 
DX= Buffer offset address 

No output 

Remarks: The first byte of the buffer accepts the maximum number of characters 
(including the carriage return which ends the input) which can be read into 
the buffer, starting at memory location 2. In order to inform the function 
of the maximum number of characters it may read, this information must 
be entered, by the calling program, into the buffer before the function 
call. 

After completion of the input, DOS places the number of characters read 
(excluding the carriage return) in memory location 1. 

The buffer must be the number of the characters to be read plus 2 bytes. 

When the input reaches the second to last memory location in the buffer, 
the computer beeps if you attempt to enter any character other than the 
<Return> key (end of input). 

Extended key codes occupy two bytes in the buffer. The first byte 
contains the code 0, and the second byte contains the extended key code. 

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The <Backspace> and cursor keys let you edit the input without storing 
these keys in the buffer. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

779 



Appendix C: DOS Interrupts and Fwu:tions PC System Programming 

Interrupt 21H, function OBH 
Get input status 

DOS 
(Version 1 and up) 

Input: 

Output: 

Detennines whether a character is available for reading from the standard input 
device. 

AH= OBH 

AL = 0: No character available 
AL= 255: One or more characters available for reading 

Remarks: If the function encounters a <Ctrl><C> character (ASCII code 3), it calls 
interrupt 23H. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function OCH 
Reset input buffer and then input 

DOS 
(Version 1 and up) 

Input: 

Output: 

Clears the input buffer then calls one of the character input functions. Since all the 
character input functions get their characters from the standard input device and 
standard input may redirected, this function only operates when the keyboard is the 
standard input device. In this case the characters could be entered before the 
function call but not read by a function. These existing characters are erased to 
ensure that the function call only reads characters which were inputted after its call. 

AH= OCH 
AL = Function to be called during call of function 10 
DS = Input buffer segment address 
DX = Input buffer offset address 

Functions 1, 6, 7 and 8: AL= Characterto be read 
Function 10: No output 

Remarks: Functions 1, 6, 7, 8 and 10 can be passed to the function as calling func
tions. 

780 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function ODH 
Disk reset 

DOS 
(Version 1 and up) 

Input: 

Output: 

Sends all data stored in an internal DOS buffer to a block driver device (e.g., disk 
drive, hard disk). The open files (handles or FCBs) remain open. 

AH= ODH 

No output 

Remarks: Despite this function call, all open files must be closed in an orderly 
manner. Otherwise the current directory entry of the file may not update 
properly, which prevents access to new file data. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function OEH 
Select default disk drive 

DOS 
(Version 1 and up) 

Input: 

Output: 

Defines the the current default disk drive. Its designation appears as a prompt on 
the screen when the command interpreter expects input from the user. The drive 
indicated here will be used for all file access in which no special device was 
specified. 

AH= OEH 
DL = Drive number 

AL= Number of installed drives or volumes 

Remarks: Drive A: has code number ofO, drive B: code number 1, etc. 

Even if the PC has only one disk drive and one hard disk, the number of 
volumes in the AL register can be greater than two because the hard disk 
can be divided into multiple volumes. In addition, the PC can have one or 
more RAM disks as part of its configuration. For a PC with a single disk 
drive, you can only have two volumes because drive A: also simulates 
driveB:. 

Unlike DOS Version 2, which permits 63 different device codes, DOS 
Version 3 permits 26 different devices (the letters A to Z). To keep 
compatibility between versions, limit your device access to a maximum 
of 26 devices. 

BIOS interrupt 1 lH does a better job of reading the number of disk drives 
than this function. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

781 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function OFH 
Open file (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Opens a file if one is available. After this function call executes successfully, the 
file can be read or written. 

AH= OFH 
DS = FCB segment address of the file 
DX= FCB offset address of the file 

AL= 0: File found and opened 
AL= 255: File not found 

Remarks: Both nonnal and extended FCBs can be used. 

If the file was found, DOS enters, into the FCB, the file size, the date and 
the time of its creation or last modification. 

DOS sets the record length at 128 bytes. This record length can be 
changed in the FCB before opening a file. If you need a longer record 
length, the DTA must be moved (the original DTA is only 128 bytes 
long). 

If random file access is perfonned, the random record field in the FCB 
must be set after the file opens successfully. 

The file pointer points to the first byte of the file after the file opens. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function lOH 
Close file (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Writes all data currently in the DOS buffer to the file and closes the file. In 
addition, the directory entry changes to reflect the new file size and the date and 
time of the most recent modification to the file. 

AH= lOH 
DS = FCB segment address of the file 
DX= FCB offset address of the file 

AL = 0: File closed and directory entry revised 
AL= 255: File not found in directory 

Remarks: Only open files can be closed. 

782 

For disk files, the disk which was in the drive when the function call 
occurred must also be the disk that contains the file. Otherwise, the 



Abacus Appendix C: DOS Interrupts and Functions 

function call writes an incorrect FAT and an incorrect directory to the 
disk, which makes the data that is already on the disk useless. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function UH 
Search for first match (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Searches for the first occurrence in the disk directory of the filename indicated in 
the FCB. 

AH= llH 
DS = FCB segment address 
DX= FCB offset address 

AL= 0: File found 
AL= 255: File not found 

Remarks: The FCB passed to the function contains the drive specifier and the 
filename for which the function should search. 

The filename can contain the wildcard "?" to search for a group of files. 

The search is made only in the current directory of the indicated device. 

If the function searches for a normal file, a normal FCB can pass the 
information to the function. However, if you wish to search for a file 
with special attributes (volume name, subdirectories, hidden files, etc.), 
extended FCBs must be used. 

If a file was found, the DT A contains an FCB of the same type as the 
FCBs. This FCB in the DT A contains the found filename. For this 
reason, the DT A must always be large enough to accept either a normal 
or an extended FCB. 

The DT A can be switched to its own buffer using function lAH, to 
ensure that it is large enough to accept the FCB. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

783 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 12H 
Search for next match (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Searches for additional occurrences in the disk directory of the filename indicated in 
the FCB, after the file was found by function 17 (see above). 

AH= 12H 
DS = FCB segment address 
DX = FCB offset address 

AL= 0: File found 
AL= 255: File not found (no other files available) 

Remarks: This function can only be called after calling function l IH. 

The FCB passed to the function contains the drive specifier and the 
filename for which the function should search. 

If another filename was found its name is recorded in the FCB at the 
beginning of the DT A. 

The DT A can be switched with function IAH to its own buffer to ensure 
that it is large enough to accept the FCB. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 13H 
Delete file (FCB) 

DOS 
(Version 1 and up) 

Erases one or more files in the current directory of the specified device. 

Input: 

Output: 

Remarks: 

784 

AH= 13H 
DS = FCB segment address 
DX= FCB offset address 

AL= 0: file(s) erased 
AL= 255: No file(s) found, or file(s) assigned Read Only attribute (undeletable) 

The FCB passed to the function contains both the device on which the 
files to be erased are located and the name of the file. 

The filename can contain the wildcard "?" to erase a group of files. 

Only files in the current director:• of the indicated device may be erased. 

If the function is used to delete a normal file, a normal FCB can pass the 
information to the function. However, if you want to delete a file with 
special attributes (volume name, subdirectories, hidden files, etc.), 
extended FCBs must be used 



Abacus Appendix C: DOS Interrupts and Functions 

Volumes may be deleted with this function; subdirectories may not 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 14H 
Sequential read (FCB) 

DOS 
(Version 1 and up) 

Reads the next sequential data block from a file. 

Input: 

Output: 

Remarks: 

AH= 14H 
DS = FCB segment address 
DX= FCB offset address 

AL= 0: Block read 
AL= 1: End of file reached 
AL= 2: Segment wrap 
AL = 3: Partial record read 

The function can only be called after the file was opened by the indicated 
FCB. 

The DTA reads the block. If the OTA is not large enough, function lAH 
must move the DT A into its own buffer. 

The FCB records the size of the block and the corresponding number of 
bytes read. 

Error 2 occurs when the DT A reaches the end of a segment and the block 
being read extends beyond the end of the segment 

Error 3 occurs when a partial block appears at the end of the file. The 
block is read in anyway and blank spaces bring the block up to the 
allocated block size. 

After reading a block, the file pointer resets to the beginning of the next 
block so that the next function call automatically reads the next block. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

785 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function lSH 
Sequential write (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Writes a sequential block to a file. 

AH= 15H 
DS = FCB segment address 
DX= FCB offset address 

AL= 0: Block written 
AL= 1: Medium (disk/hard disk) full 
AL= 2: Segment overflow 

Remarks: The function can only be called after the file was opened by the indicated 
FCB. 

The DT A writes the block it contains to the file. If the DT A is not large 
enough to hold the file, function lAH must be used to move the OTA 
into its own buffer. 

The FCB records the size of the block and the corresponding number of 
bytes written. 

Error 2 occurs if the DT A reaches the end of a segment and the block 
being written extends beyond the end of the segment 

After writing a block, the file pointer resets to the beginning of the next 
block, so that the next function call automatically writes the next block. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 16H 
Create or truncate file (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Creates a new file, or dumps the contents of an existing file (file size=O bytes). 
This function call allows other functions to read or write to the open file. 

AH= 16H 
DS = FCB segment address 
DX = FCB offset address 

AL = 0: File created or cleared 
AL= 255: File could not be created (e.g., directory full) 

Remarks: The contents of an existing file called by this function are lost. 

786 

After calling this function, the file is already open; you don't need to open 
the file using function OFH (see above). 



Abacus Appendix C: DOS Interrupts and Functions 

If you open the file using an extended FCB, you can assign certain 
attributes to the file (e.g., volume name, hidden file, etc.). 

You cannot create a subdirectory using this function. 

After opening the file, the file pointer moves to the first byte of the file. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 218, function 178 
Rename file (FCB) 

DOS 
(Version 1 and up) 

Renames one or more files in the current directory of the specified device. 

Input: 

Output: 

Remarks: 

AH= 17H 
DS = FCB segment address 
DX = FCB offset address 

AL= 0: File(s) renamed 
AL= 255: No file found, or new filename matches old filename 

The FCB here is a special FCB, based on a normal FCB. The first 12 
bytes contain the drive specifier and the name of the file to be renamed. 
However, this type of FCB has the new drive specifier and the new 
filename stored starting at memory location lOH. The drive specifier must 
be identical for both filenames. 

The name of the file to be renamed can contain the wildcard "?", which 
renames several files. If the new filename contains the wildcard "?", the 
places in the filename and extension where a question mark appears in 
this parameter remain unchanged 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

787 



Appendix C: DOS Interrupts and Functions PC System Progrmnming 

Interrupt 21H, function 19H 
Get default disk drive 

DOS 
(Version 1 and up) 

Returns the drive specifier of the default (current) disk drive. 

Input: 

Output 

Remarlcs: 

AH= 19H 

AL= Drive specifier 

This function identifies drive A as code 0, drive B as code 1, etc. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function lAH 
Set DT A address 

DOS 
(Version 1 and up) 

Transfers the DTA (Disk Transfer Area) to another area of memory. The DTA acts 
as buffer memory for all FCB supported file accesses. 

Input: 

Output 

Remarks: 

788 

AH= lAH 
DS = New DTA segment address 
DX= New DT A offset address 

No output 

This function must be called if the existing DT A has insufficient memory 
to handle the transmitted data. 

When the program starts, MS-DOS places the DTA at address 128 in the 
PSP. Since the program starts after address 255 of the PSP, it is 128 
bytes long. 

DOS does not test the length of the DT A. Instead it assumes that the 
DT A is large enough to accept the transmitted data. If this is not the case, 
a DOS function can overwrite the excess data. 

DOS recognizes an error during various functions if the DT A is at the end 
of a segment and the data to be transmitted exceeds the end of the 
segment. 

The contents of the processor registers and the flag registers are not 
affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function lBH DOS 
(Version 1 and up) Get allocation information for default drive 

Returns infonnation about the fonnat of the default drive. 

Input: 

Output: 

Remarks: 

AH= lBH 

AL= Number of sectors per cluster 
DS = Media descriptor segment address 
BX= Media descriptor offset address 
DX= Number of clusters 

The media descriptor can return the following codes: 

F8H: Hard disk 
F9H: Disk drive: double-sided, 15 sectors per track (AT only) 
FCH: Disk drive: single-sided, 9 sectors per track 
FDH: Disk drive: double-sided, 9 sectors per track 
FEH: Disk drive: single-sided, 8 sectors per track 
FFH: Disk drive: double-sided, 8 sectors per track 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function lCH DOS 
(Version 1 and up) Get allocation information for specified drive 

Returns infonnation about the fonnat of the specified drive. 

Input: 

Output: 

Remarks: 

AH= lCH 
DL = Drive specifier 

AL= Number of sectors per cluster 
DS = Media descriptor segment address 
BX = Media descriptor offset address 
DX= Number of clusters 

This function identifies drive A as code 0, drive Bas code 1, etc. 

The media descriptor can return the following codes: 

F8H: Hard disk 
F9H: Disk drive: double-sided, 15 sectors per track (AT only) 
FCH: Disk drive: single-sided, 9 sectors per track 
FDH: Disk drive: double-sided, 9 sectors per track 
FEH: Disk drive: single-sided, 8 sectors per track 
FFH: Disk drive: double-sided, 8 sectors per track 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

789 



Appendix C: DOS Interrupts and Functions 

Interrupt 2l(h), function lDH 
Reserved 

Interrupt 2l(h), function lEH 
Reserved 

Interrupt 2l(h), function lFH 
Reserved 

Interrupt 21(h), function 20H 
Reserved 

PC System Programming 

DOS 
(Version 1 and up) 

DOS 
(Version 1 and up) 

DOS 
(Version 1 and up) 

DOS 
(Version 1 and up) 

Interrupt 21H, function 21H 
Random read (FCB) (Version 

DOS 
1 and up) 

Reads a specified file record into the DT A. 

Input: 

Output: 

Remarks: 

790 

AH= 21H 
DS = FCB segment address 
DX = FCB offset address 

AL= 0: Record read 
AL= 1: End offile reached 
AL= 2: Segment overflow 
AL = 3: Partial record read 

The function can only be called after the file was opened by the indicated 
FCB. 

The record whose address is stored in the FCB starting at location 21H is 
read. 

The DT A reads the record. If the DT A is not large enough, function lAH 
must be called to move the DT A into its own buffer. 

The FCB records the size of the record and the corresponding number of 
bytes read. 

During the function call, the file pointer moves to the beginning of the 
record being read so that a subsequent call of a sequential read (function 
14H-see above) reads the same record sequentially. 

The record number does not increment following the function call, so a 
new call of this function would read the same record. 

Error 2 occurs when the DT A reaches the end of a segment and the record 
being read extends beyond the end of the segment 



Abacus Appendix C: DOS Interrupts and Functions 

Error 3 occurs when a partial record appears at the end of the file. The 
record is read in anyway and blank spaces bring the record up to the 
allocated record size. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 22H 
Random write (FCB) 

DOS 
(Version 1 and up) 

Writes data from memory to the specified record in a file. 

Input: 

Output: 

Remarks: 

AH= 22H 
DS = FCB segment address 
DX = FCB offset address 

AL= 0: record was written 
AL= 1: Medium (disk/hard disk) full 
AL= 2: segment overflow 

The function can only be called after the file was opened by the indicated · 
FCB. 

The record whose address is stored in the FCB starting at location 21H is 
read. 

The record is written from the DT A to the file. If the DT A is not large 
enough, function IAH must move the DTA into its own buffer. 

The FCB records the s;ze of the record and the number of bytes read. 

During the function call, the file pointer moves to the beginning of the 
record being read. This instructs subsequent calls of a sequential read 
(function 14H-see above) to read the same record sequentially. 

The record number does not increment following the function call, so a 
new call of this function would read the same record. 

Error 2 occurs when the DT A reaches the end of a segment and the record 
being written extends beyond the end of the segment. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

791 



Appendix C: DOS lnlerrupts and Functions PC System Programming 

Interrupt 21H, function 23H 
Get file size in records (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Detennines the sire of a file based on the number of records in that file. 

AH= 23H 
DS = PCB segment address 
DX= PCB offset address 

AL= 0: Number of records found starting at FCB address 21H 
AL= 255: File not found 

Remarks: The FCB passed contains the drive specifier as well as the name and 
extension of the file to be examined. 

Unlike the other FCB supported file accesses, the FCB requires the record 
size before the application can call this function. 

A record size of 1 returns the size of the file in bytes. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 24H 
Set random record number 

DOS 
(Version 1 and up) 

Input: 

Output: 

Sets the record number in the FCB to the current position of the file pointer. 
Random access may begin at the point at which earlier sequential accesses left off. 

AH= 24H 
DS = PCB segment address 
DX= PCB offset address 

No output 

Remarks: The function can only be called after the file was opened by the indicated 
FCB. 

792 

The contents of the processor registers and the flag registers are not 
affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function 25H 
Set interrupt vector 

DOS 
(Version 1 and up) 

Input: 

Output: 

Sets any interrupt vector to another routine. 

AH= 25H 
AL= Interrupt number 
DS = New interrupt routine segment address 
DX= New interrupt routine offset address 

No output 

Remarlcs: Before calling this function, the old contents of the interrupt vector to be 
changed should be read and stored using function 35H. After the program 
terminates, the old contents of the interrupt vector should be restored. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function 26H 
Create PSP 

DOS 
(Version 1 and up) 

Input: 

Output: 

Copies the PSP (program segment prefix) of the executing program to a specified 
address in memory. 

AH= 26H 
DX= New PSP segment address 

No output 

Remarlcs: The new PSP offset address is 0. 

DOS Version 1 uses this function to execute other programs by creating a 
PSP, loading the program after this PSP and executing it. 

For DOS Version 2 up, use the EXEC function 4BH to load and execute 
additional programs instead of this function. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

793 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 27H 
Random block read (FCB) 

DOS 
(Version 1 and up) 

Reads one or more sequentially stored records into memory. 

Input: 

Output: 

Remarks: 

794 

AH= 27H 
CX = Number of records to be read 
DS = FCB segment address 
DX= FCB offset address 

AL= 0: Record read 
AL= 1: End of file reached 
AL= 2: Segment overflow 
AL = 3: Partial record read 
CX = Number of records read 

The function can only be called after the file was opened by the indicated 
FCB. 

The starting record is the record whose address is stored in the FCB, 
starting at location 21H. 

The record data passes to the DT A. If the DT A is not large enough, 
function lAH must move the DT A into its own buffer. 

The PCB records the size of the record and the corresponding number of 
bytes read. 

After the function call, the file pointer moves to the end of the last record 
that was read so that it points to the next record (following the last record 
re.id). 

Error 2 occurs when the DT A reaches the end of a segment and the record 
being read extends beyond the end of the segment 

Error 3 occurs when a partial record appears at the end of the file. The 
record is read in anyway and blank spaces bring the record up to the 
allocated record size. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 



Abacus Appendix C: DOS lnlerrupts and Functions 

Interrupt 21H, function 28H 
Random block write (FCB) 

DOS 
(Version 1 and up) 

Input: 

Output: 

Writes one or more records in sequence to the specified file. 

AH= 28H 
CX = Number of records to be written 
DS = FCB segment address 
DX= FCB offset address 

AL= 0: Record written 
AL= 1: Medium (disk/hard disk) full 
AL= 2: Segment overflow 
CX = Number of records written 

Remarks: The function can only be called after the file was opened by the indicated 
FCB. 

The starting record is the record whose address is stored in the FCB 
starting at location 2 IH. 

The FCB records the size of the record and the corresponding number of 
bytes read. 

The data is written from the DT A to the file. If the DT A is not large 
enough, function lAH must move the DTA into its own buffer. 

After the function call, the file pointer moves to the end of the last record 
written so that it points to the next record, which follows the last record 
written. The record number increments by the number of records written. 

Error 2 occurs when the DT A reaches the end of a segment and the record 
being written extends beyond the end of the segment 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 29H 
Parse filename to FCB 

DOS 
(Version 1 and up) 

Transfers an ASCII format filename into the proper fields of an FCB. The filename 
can include a drive specifier, filename and file extension. 

Input: AH= 29H 
DS = Segment address of filename in memory 
SI = Offset address of filename in memory 
ES = FCB segment address 
DI= FCB offset address 

795 



Appendix C: DOS Interrupts and Functions PC System Programming 

Output: 

Remarks: 

AL= Transmission parameters: 
Bit 1 = 1: The drive specifier in the FCB changes only if the filename 

passed contains a drive specifier 
0: The drive specifier changes anyway. If the filename passed 

contains no drive specifier, the the FCB defaults to 0 
(current drive) 

Bit 2 = 1: The filename in the FCB changes only if the filename 
parameter passed contains a filename 

0: The filename changes. If the filename passed does not con
tain a filename, the filename in the FCB fills with spaces 
(ASOI code 32) 

Bit 3 = 1: The file extension in FCB changes only if the filename 
passed contains an extension 

0: The file extension in the FCB changes. If the filename 
passed has no extension, the extension field is padded with 
spaces (ASOI code 32) 

Bits 4-8: Should contain the value 0 

AL= 0: The filename passed contains no wildcards 
AL= 1: The filename passed contains wildcards 
AL= 255: Invalid drive specifier 
DS = Segment address of the first character after parsed filename 
SI = Offset address of the first character after parsed filename 
ES = FCB segment address 
DI= FCB offset address 

The filename must end with an end character (ASCII code 0). 

If the filename contains the wildcard "*", all corresponding fields in the 
FCB fill with the wildcard "?". 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 2AH 
Get system date 

DOS 
(Version 1 and up) 

Reads the current system date. 

Input: 

Output: 

Remarks: 

796 

AH= 2AH 

AL= Day of the week (O=Sunday, l=Monday, etc.) 
CX= Year 
DH= Month 
DL= Day 

DOS calls the clock driver to read the date. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function 2BH 
Set system date 

DOS 
(Version 1 and up) 

Sets the current system date as returned by function 2AH (see above). 

Input: 

Output: 

Remarks: 

AH= 2BH 
CX= Year 
DH= Month 
DL= Day 

AL= 0: O.K. 
AL= 255: Date incorrect 

The date passes to the clock driver. 

If the PC does not have a realtime clock, the date remains in effect until 
the PC is switched off or rebooted. 

If the date entry is incorrect, the PC retains the old date. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 2CH 
Get system time 

Gets the current system time. 

Input: 

Output: 

Remarks: 

AH= 2CH 

CH= Hours 
CL= Minutes 
DH= Seconds 
DL = Hundredths of a second 

DOS calls the clock driver to read the time. 

DOS 
(Version 1 and up) 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 2DH 
Set system time 

Sets the current system time. 

Input: AH= 2DH 
CH= Hours 
CL= Minutes 
DH= Seconds 
DL = hundredths of a second 

DOS 
(Version 1 and up) 

797 



Appendix C: DOS Interrupts and Functions PC System Programming 

Output: AL= 0: O.K. 
AL= 255: Incorrect time 

Remarks: The time passes to the clock driver. 

If the PC does not have a realtime clock, the time remains in effect until 
the PC is switched off or rebooted. 

If the time entry is incorrect, the PC retains the old time. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 2EH 
Set verify flag 

DOS 
(Version 1 and up) 

Input: 

Output: 

Sets the verify flag. This flag determines whether data should be verified after a 
write operation to a block driver for proper transmission. 

AH= 2EH 
DL= 0 
AL= 0: Don't verify data 
AL= 1: Verify data 

No output 

Remarks: This flag can be controlled at the user level with the VERIFY ON and 
VERIFY OFF commands. 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function 2FH 
Get DT A address 

DOS 
(Version 2 and up) 

Input: 

Output: 

Returns the address of the DT A (Data Transmission Area), which serves as a data 
buffer for all FCB supported file accesses. 

AH= 2FH 

ES = OTA segment address 
BX= OTA offset address 

Remarks: This function determines the address of the DT A, but not the DT A's size. 

798 

After the start of a program, the DT A starts at memory location 128 of 
the PSP and has a length of 128 bytes. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 



Abacus Appendix C: DOS /nlerrupts and Functions 

Interrupt 218, function JOH 
Get MS-DOS version number 

DOS 
(Version 2 and up) 

Input: 

Output: 

Returns the DOS version number. 

AH= 30H 

AL= Major version number (e.g., version 2.01=2) 
AH= Minor version number (e.g., version 3.01=01) 

Remarks: The major (whole) version number represents the number preceding the 
decimal point. For example, the version number 3.3 returns the major 
version number 3. 

The minor (fractional) version number represents the number following 
the decimal point. It is always given as two digits. For example, Version 
2.1 returns the minor version number 10 (OAH). 

If the AL register contains a value of 0, the program runs under DOS 
Version 1. DOS Version 1.0 cannot use this function. 

The contents of the DX, SI, DI, BP, CS, DS, SS, ES and the flag 
registers are not affected by this function. 

Interrupt 21H, function 31H 
Terminate and stay resident 

DOS 
(Version 2 and up) 

Input: 

Output: 

Terminates the currently executing program and returns control to the calling 
program. The current program remains in memory for later recall. 

AH= 31H 
AL= Return code 
DX= Number of paragraphs to be reserved 

No output 

Remarks: The return code in the AL register indicates whether or not the program 
called by it correctly executes. The calling program can read this number 
by calling function 77 (4DH). This value can be tested from within a 
batch file using the ERRORLEVEL and IF commands. 

The number of 16-byte paragraphs to be reserved indicates how many 
bytes, beginning with the PSP, cannot be released for other uses. 

Memory blocks reserved by function 48H are not affected by the value in 
the DX register because they can only be released by calling function 
49H. 

799 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 33H, sub-function 0 
Get <Ctrl><Break> flag 

DOS 
(Version 2 and up) 

Input: 

Output: 

Reads the <Ctrl><Break> flag. This determines whether DOS should test for 
active <Ctrl><C> or <Ctrl><Break> keys on each function call, or on character 
input/output calls. <Ctrl><C> and <Ctrl><Break> trigger interrupt 23H. 

AH= 33H 
AL= 0 

DL = 0: Test only during character input/output 
DL = 1: Test on every function call 

Remarks: Since the <Ctrl><Break> flag is not part of the environment block of a 
program, it affects all programs which call the DOS character functions 
that test for <Ctrl><C> or the <Break> key. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 33H, sub-function 1 
Set <Ctrl><Break> fiag 

DOS 
(Version 2 and up) 

Input: 

Output: 

Sets and onsets the <Ctrl><Break> flag. This determines whether DOS should test 
for the activation of the <Ctrl><C> or <Ctrl><Break> keys on each DOS 
function call or character input/output calls. <Ctrl><C> and <Ctrl><Break> 
trigger interrupt 23H. 

AH= 33H 
AL= 1 
DL = 0: Test only during character input/output 
DL = I: Test on every function call 

No output 

Remarks: Since the <Ctrl><Break> flag is not part of the environment block of a 
program, it affects all programs which call the DOS character functions 
that test for <Ctrl><C> or the <Break> key. 

800 

The contents of the processor registers and the flag registers are not 
affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function 35H 
Get interrupt vector 

DOS 
(Version 2 and up) 

Returns the current contents of an interrupt vector and the address of the interrupt 
routine that belongs to it. 

Input: 

Output: 

Remarlcs: 

AH= 35H 
AL= Interrupt number 

ES = Interrupt routine segment address 
BX= Interrupt routine offset address 

To ensure compatibility with future versions of DOS, instead of reading 
the vector's contents directly from the interrupt vector table, call this 
function for reading an interrupt vector. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

Interrupt 21H, function 36H 
Get free disk space 

DOS 
(Version 2 and up) 

Input: 

Output: 

Remarks: 

Returns information about the device (the block driver) from which the 
available memory space can be calculated. 

AH= 36H 
DL = Device code 

AX= 65535: Device unavailable 
AX< 65535: Number of sectors per cluster 
BX= Number of available clusters 
CX = Number of bytes per sector 
DX = Total number of clusters on the device 

This function identifies drive A as code 0, drive Bas code 1, etc. 

The remaining memory on the medium can be computed from the number 
of bytes per sector multiplied by the number of sectors per cluster, 
multiplied by the number of free clusters. 

The contents of the SI, DI, BP, CS, DS, SS, ES and the flag registers are 
not affected by this function. 

801 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 38H 
Get country 

DOS 
(Version 2 and up) 

Input: 

Output: 

Determines country-specific parameters, which are set in the CONFIG.SYS file 
using the DOS COUNTRY command. 

AH= 38H 
AL= 0 
DS = Buffer segment address 
DX = Buffer offset address 

No output 

Remarlcs: Before the function call, function 30H should be used to determine the 
DOS version. This can help the programmer compensate for differences 
between DOS versions during the call and return of this function. 

The buffer must have at least 32 bytes allocated for recording the various 
country-specific parameters. 

Following the function call, the individual bytes of this buffer contain the 
following information : 

Bytes 0-1: Date format 
0 =USA: Month-day-year 
1 =Europe: day-month-year 
2 =Japan: Year-month-day 

Byte 2: ASCII code of the currency symbol 
Byte 3: 0 
Byte 4: ASCII code of the thousand character (comma/period) 
Byte 5: 0 
Byte 6: ASCII code of decimal character {period/comma) 
Byte 7: 0 
Bytes 8-31: reserved 

The contents of the processor registers and the flag registers are not 
affected by this function. 

Interrupt 21H, function 38H, sub-function 0 
Get country 

DOS 
(Version 3 and up) 

Gets the country-specific parameters that are currently set. 

Input: AH= 38H 

802 

DS = Buffer segment address 
DX = Buffer offset address 
AL = 0: read current country parameters 
AL= 1-254: Country code parameters to be read 
AL= 255: Country code parameters to be read placed in the BX register 



Abacus 

Output: 

Remarks: 

Appendix C: DOS Interrupts and Functions 

Carry flag=O: O.K. 
Carry flag=l: Invalid country code 

Before the function call, function 30H should be used to determine the 
DOS version. This can help the programmer compensate for differences 
between DOS versions during the call and return of this function. 

The buffer must have at least 32 bytes allocated for recording the various 
country specific parameters. 

Following the function call, the individual bytes of this buffer contain the 
following information: 

Bytes 0-1: Date format 
0 =USA: Month-day-year 
1 = Europe: Day-month-year 
2 =Japan: Year-month-day 

Bytes 2-6: Currency indicator (string terminated by an end character) 
Byte 7: ASCII code of the thousand character (comma/period) 
Byte8: 0 
Byte 9: ASCII code of decimal character (period/comma) 
Byte 10: 0 
Byte 11: ASCII code of the date separation character 
Byte 12: 0 
Byte 13: ASCII code of the time separation character 
Byte 14: 0 
Byte 15: Currency format 

bit 0 = 0: Currency symbol before the value 
bit 0 = 1: Currency symbol after the value 
bit 1 = 0: No spaces between value and currency symbol 
bit 1=1: Space between value and currency symbol 

Byte 16: Precision (number of decimal places) 
Byte 17: Time format 

bit 0 = 0: 12-hour clock 
bit 0 = 1: 24-hour clock 

Bytes 18-21: Address of character conversion routine (see below) 
Bytes 22-33: reserved 

Addresses 18 to 21 are the offset and segment addresses of a FAR 
procedure, which is used for accessing the country specific characters from 
the character set of the PC. The routine views the AL register's contents 
as the ASCII code of a lower case letter that should be converted to a 
capital letter. If a capital letter exists, it is retained in the AL register after 
the call. If the letter doesn't exist, the contents of the AL register remain 
unchanged. For example, the routine could be used to convert a lower case 
"a" into a capital "A". 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
the flag registers are not affected by this function. 

803 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 38H, sub-function 1 
Set country 

DOS 
(Version 3 and up) 

Input: 

Output: 

Sets the current country-specific parameters. These parameters can be read using 
function 38H, sub-function 0. Previous versions of DOS required country-specific 
settings fromthe CONFIG.SYS file using the COUNTRY command. this 
function allows the user to set and change these parameters after booting. 

AH= 38H 
DX= 65535 
AL= 1-254: Number of the country 
AL > 254: Look in BX for country number 
BX= Number of the country (if AL> 254) 

Carry flag=O: O.K. 
Carry flag= I: Invalid country code 

Remar.ks: Before the function call, function 30H should be used to determine that 
this command exists. 

This function only allows setting of the country code, for which DOS has 
preset parameters. These parameters cannot be changed from this function. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 39H 
Create subdirectory 

DOS 
(Version 2 and up) 

Creates a new subdirectory on the specified device. 

Input: 

Output: 

Remarks: 

804 

AH= 39H 
DS = Subdirectory path segment address 
DX = Subdirectory path offset address 

Carry flag=O: Subdirectory created 
Carry flag= I: Error (AX= error code) 

AX=3: Path not found 
AX=5: Access denied 

The subdirectory path passed is an ASCII string which is terminated by 
an end character (ASCil code 0). 

If the subdirectory path contains a drive specifier, the indicated device is 
accessed. Otherwise DOS creates the subdirectory on the current device. 

An error can occur if any element of the path designation doesn't exist, a 
subdirectory already exists by that name, or the directory to be made is a 
subdirectory of the root directory and it is already filled. 



Abacus Appendix C: DOS Interrupts and Functions 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

'Interrupt 21H, function 3AH 
Delete subdirectory 

DOS 
(Version 2 and up) 

Deletes a subdirectory from the specified drive. 

Input: 

Output: 

Remarks: 

AH= 3AH 
OS = Subdirectory path segment addre~ 
DX= Subdirectory path offset~ 

Carry flag=(): Subdirectory deleted 
Carry flag=l: Error (AX= error code) 

AX=3: Path not found 
AX=5: Access denied 
AX=6: Directory to be deleted is the current directory 

The subdirectory path passed is an ASCII string which is terminated by 
an end character (ASCII code 0). 

If the subdirectory path contains a drive specifier, the indicated device is 
ace~. Otherwise DOS deletes the subdirectory from the current device. 

An error can occur if any element of the path designation doesn't exist, 
the subdirectory is the current directory, or the directory to be deleted still 
contains files. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 3BH 
Set current directory 

DOS 
(Version 2 and up) 

Sets the current subdirectory for the device indicated. 

Input: 

Output: 

Remarks: 

AH= 3BH 
OS = Subdirectory path segment addre~ 
DX= Subdirectory path offset ad~ 

Carry flag=O: Subdirectory set 
Carry flag=l: Error (AX= error code) 

AX=3: Path not found 

The subdirectory path passed is an ASCII string which is terminated by 
an end character (ASCII code 0). 

If the subdirectory path contains a drive specifier, the indicated device is 
ace~. Otherwise DOS deletes the subdirectory from the current device. 

805 



Appendix C: DOS Interrupts and Functions PC System Programming 

An error can occur if any element of the path designation doesn't exist 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 3CH 
Create or truncate file (handle) 

DOS 
(Version 2 and up) 

Input: 

Output: 

Creates a new file, or dumps the contents of an existing file (file size=O bytes). 
This function call allows other functions to read or write to the open file. 

AH= 3CH 
CX = File attribute 
Bit 0 = 1: File is read only 
Bit 1 = 1: Hidden file 
Bit 2 = 1: System file 
DS = Filename segment address 
DX= Filename offset address 

Carry flag=O: O.K. (AX= file handle) 
Carry flag=l: Error (AX= error code) 

AX=3: Path not found 
AX=4: No available handle 
AX=5: Access denied 

Remarks: The various bits of the file attribute can be combined with each other. 

806 

The filename must be available as an ASCII string terminated by an end 
character (ASCII code 0). The filename parameter can contain a driver 
specifier, path, filename and extension. No wildcards are allowed. If you 
omit the drive specifier or path, DOS accesses the current drive or current 
directory. 

An error can occur if any element of the path designation doesn't exist, if 
the file must be created in the root directory which is already full, or if a 
file with the same name already exists but cannot be cleared because it is 
write protected (bit 0 in the file attribute byte= 1). 

If the function call executed successfully, all other handle functions can be 
called with this handle once the file opens. 

The file pointer is set to the first byte of the file. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 



Abacus Appendix C: DOS Interrupts and Fwictions 

Interrupt 21H, function 3DH 
Open file (handle) 

DOS 
(Version 2 and up) 

Opens an existing file for access by other functions. 

Input: 

Output: 

Remarks: 

AH= 3DH 
AL= Access mode 
Bits 0-2: Read/write access 

OOO(b) = File is read only 
OOl(b) =File can only be written 
OlO(b) =File can be read and written 

Bit 3: O(b) 
Bits 4-6: File sharing mode 

OOO(b) = Only current program can access the file (FCB mode) 
OOI(b) =Only the current program can access the file 
0 lO(b) = Another program can read but not write the file 
011 (b) = Another program can write but not read the file 
1 OO(b) = Another program can read and write the file 

Bit 7: Handle flag 
0 = Child program of the current program can access file handle 
1 = Current program can access file handle only 

DS = Filename segment address 
DX = Filename offset address 

Carry flag=O: O.K. (AX = file handle) 
Carry flag= I: Error (AX= error code) 

AX=l:Missing file sharing software 
AX=2: File not found 
AX=3: Path not found or file doesn't exist 
AX=4: No handle available 
AX=5: Access denied 
AX=l2: Access mode not permitted 

The filename must be available as an ASCII string terminated by an end 
character (ASCII code 0). The filename parameter can contain a driver 
specifier, path, filename and extension. No wildcards are allowed. If you 
omit the drive specifier or path, DOS accesses the current drive or current 
directory. 

If the function call executes successfully, all other handle functions can be 
called with this handle once the file opens. 

The file pointer is set to the first byte of the file. 

DOS Version 2 uses only bits 0 to 2 of the access mode. All other bits, 
even under Version 3, should be 0 to ensure proper execution of the call. 

DOS Version 3 uses the file sharing mode in bits 4 to 6 of the access 
mode only if the file is on a mass storage device which is part of a 
network. These three bits decide if and how the file, while it is open 

807 



Appendix C: DOS lnterru.pts and Fimctions PC System Programming 

using the current call, may be accessed by other programs from other PCs 
on the network. 

Error 12 can occur only under DOS Version 3 and only within a network 
when the file is already opened by another program and if no other 
program can gain access to that file. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 3EH 
Close file (handle) 

DOS 
(Version 2 and up) 

Input: 

Output: 

Writes any data in the DOS buffers to a currently open file, then closes the file. If 
changes occur to the file, the new file size and the last date and time of 
modification are added to the directory. 

AH= 3EH 
BX= Handle to be closed 

Carry flag=(): O.K. 
Carry flag=l: Error (AX= error code) 

AX=6: Unauthorized handle or file not opened 

Remarks: Do not accidentally call this function with the numbers of the previous 
handle (the numbers 0 to 4) because the standard input device or standard 
output device may close. This would leave you unable to enter characters 
from the keyboard or display characters on the screen. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 3FH 
Read file or device (handle) 

DOS 
(Version 2 and up) 

Input: 

Output: 

808 

Reads a certain number of characters by using a handle from a previously opened 
file or device and passes the characters to a buffer. The read operation starts at the 
current file pointer position. 

AH= 3FH 
BX= File or device handle 
ex = Number of bytes to be read 
DS = Buffer segment address 
DX = Buffer offset address 

Carry flag=O: O.K. (AX= number of bytes read) 
Carry flag=l: Error (AX= error code) 

AX=5: Access denied 
AX=6: Illegal handle or file not open 



Abacus 

Remarks: 

Appendix C: DOS Interrupts and FIUICtions 

Characters can be read from a file or from a device (e.g., the standard input 
device [keyboard], which has the handle 0). 

When the carry flag resets after the function call but the AX register has 
the value 0, this means that the file pointer has already reached the end of 
the file before the function call. So, no files could be read. 

When the carry flag resets after the function call but the contents of the 
AX register are smaller than the contents of the CX register before the 
function call, this means that the desired number of bytes wasn't read 
because the end of the file was reached. 

After the function call, the file pointer follows the last byte read. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 40H 
Write to file or device (handle) 

DOS 
(Version 2 and up) 

Output: 

Writes a certain number of characters from a buffer to an open file or device by 
using a handle. The write operation begins at the file pointer's current position. 

AH= 40H 
BX= File or device handle 
CX = Number of bytes to be written 
DS = Buffer segment address 
DX = Buffer offset address 

Carry flag=O: O.K. (AX = number of bytes written) 
Carry flag= 1: Error (AX = error code) 

AX=5: Access denied 
AX=6: Illegal handle or file not open 

Remarks: Characters can be written to a file or to a device (e.g., the standard output 
device [screen], which has the handle 1). 

When the carry flag resets after the function call but the AX register has 
the value 0, this means that the file pointer has already reached the end of 
the file before the function call. Therefore no files could be written. 

When the carry flag resets after the function call but the contents of the 
AX register are smaller than the contents of the CX register before the 
function call, this means that the desired number of bytes were not 
written because the end of file was reached. 

After the function call, the file pointer follows the last byte written. 

809 



Appendix C: DOS Interrupts and Functions PC System Programming 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 41H 
Delete file (handle) 

DOS 
(Version 2 and up) 

Input: 

Output: 

Deletes the filename passed to the function. Through the call of this function, a 
file is erased and its name is passed to the function. 

AH= 41H 
DS = Filename segment address 
DX= Fiiename offset address 

Carry flag=O: O.K. 
Carry flag=l: Error (AX = error code) 

AX=2: File not found 
AX=5: Access denied 

Remarks: The ftlename must be available as an ASCII string terminated by an end 
character (ASCII code 0). The filename parameter can contain a drive 
specifier, path, ftlename and extension. No wildcards are allowed. If you 
omit the drive specifier or path, DOS accesses the current drive or current 
directory. 

An error occurs when any element of the path designation doesn't exist or 
when the file has the attribute Read Only and therefore can not be written 
to or deleted. This attribute can be changed by using function 43H. 

You cannot delete subdirectories or volume names with this function. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 42H 
Move file pointer (handle) 

DOS 
(Version 2 and up) 

Moves the file pointer of a previously opened file by using its handle. This allows 
random access because the individual records don't have to be read in sequence. The 
new file pointer position is given as an offset from the current position, either 
from the beginning of the file or from the end of the file. The offset itself is 
indicated as a 32-bit number. 

Input: AH= 42H 

810 

AL= Offset code 
AL=O: Offset is relative to the beginning of the file 
AL=l: Offset is relative to the current position of the file pointer 
AL=2: Offset is relative to the end of the file 

BX= Handle 
CX = High word of the offset 



Abacus 

Output: 

Remarks: 

Appendix C: DOS Interrupts and Functions 

DX= Low word of the offset 

Carry flag=O: O.K. 
DX = High word of the file pointer 
AX =Low word of the file pointer 

Carry flag=l: Error (AX= error code) 
AX=l: Illegal offset code 
AX=6: Illegal handle or File not open 

If offset codes 1and2 are accessed, negative offsets may be used t.o move 
the file pointer backwards or to place the pointer at the beginning of the 
file. It's possible to set the file pointer before the end of the file, which 
causes an error during the next read or write access to the file. 

The position of the file pointer passed after the function call is always 
relative to the beginning of the file. The offset code used during the 
function call is independent of this file pointer position. 

Passing offset code 2 and offset 0 returns the size of the file. This action 
moves the file pointer to the last byte of the file and the pointer's 
position returns to the calling program after the function call. 

The contents of the BX, CX,, SI, DI, BP, CS, DS, SS and ES registers 
are not affected by this function. 

Interrupt 21H, function 43H, sub-function 0 
Get file attributes 

DOS 
(Version 2 and up) 

Determines file attributes. 

Input: 

Output: 

Remarks: 

AH= 43H 
AL= 0 
DS = Filename segment address 
DX = Filename offset address 

Carry flag= 0: O.K. (CX =file attribute) 
Bit 0=1: File can be read but not written 
Bit l=l: File hidden (not displayed on DIR) 
Bit 2=1: File is a system file 
Bit 3=1: File is the volume name 
Bit 4=1: File is a subdirectory 
Bit 5=1: File was changed since the last date/time 
Carry flag = 1: Error (AX = error code) 

AX=l: Unknown function code 
AX=2: File not found 
AX=3: Path not found 

The filename must be available as an ASCII string terminated by an end 
character (ASCII code 0). The filename parameter can contain a driver 
specifier, path, filename and extension. No wildcards are allowed. If you 

811 



Appendix C: DOS /nterr"f'IS and Functions PC System Programming 

omit the drive specifier or path, DOS accesses the current drive or current 
directory. 

An error occurs when any element of the path designation or the file does 
not exist. 

The contents of the BX, CX, , SI, DI, BP, CS, DS, SS and ES registers 
are not affected by this function. 

Interrupt 21H, function 438, sub-function 1 
Set file attributes 

DOS 
(Version 2 and up) 

Sets the file attributes. 

Input: 

Output: 

Remarks: 

812 

AH= 43H 
AL= 1 
CX = File attributes 
Bit 0 = l: File can be read but not written 
Bit 1 = 1: File hidden (not displayed on DIR) 
Bit 2 = 1: File is a system file 
Bit 3 =0 
Bit4 = 0 
Bit 5 = 1: File was changed since the last date/time 
DS = Filename segment address 
DX= Filename offset address 

Carry flag=O: O.K. 
Carry flag=l: Error (AX= error code) 

AX=l: Unknown function code 
AX=2: File not found 
AX=3: Path not found 
AX=5: Attribute cannot be changed 

The filename must be available as an ASCII string terminated by an end 
character (ASCII code 0). The filename parameter can contain a driver 
specifier, path, filename and extension. No wildcards are allowed. If you 
omit the drive specifier or path, DOS accesses the current drive or current 
directory. 

An error occurs when any element of the path designation or the file does 
not exist. 

Neither subdirectories nor volume names can be accessed with this 
function. For this reason bits 3 and 4 of the file attribute must be 0 
during the function call. If you attempt to access a subdirectory or a 
volume name anyway, the function returns error code 5. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function 44H, sub-function 0 
IOCTL: Get device information 

DOS 
(Version 2 and up) 

Input: 

Output: 

Permits access of a character driver's device attribute. 

AH= 44H 
AL= 0 
BX= Handle 

Carry flag:::(): O.K. (DX= device atttibute) 
Bit 14= 1: Processes control characters through IOC1L 
Bit 7 = 1: Character driver 
Bit 5 = 0: Cooked mode operation 

1: Raw mode operation 
Bit 3 = 1: Oock driver operation 
Bit 2 = 1: NUL driver operation 
Bit 1 = 1: Console output driver (screen) 
Bit 0 = 1: Console input driver (keyboard) 
Carry flag=l: Error (AX= error code) 

AX=l: Unknown function code 
AX=6: Handle not opened or does not exist 

Remarks: A handle is passed (not the name of the addressed character driver which 
must be connected with this driver). This can be one of the five pre
assigned handles (0 to 4). A handle could have been previously opened for 
a certain device with the help of the Open function (function 3DH), and 
then passed to the function. For example, since the standard input and 
output devices (handles 0 and 1) can be redirected, this method assures that 
the indicated device is accessed. 

If bit 7 in the device attribute is unequal to 1, the driver addressed is not a 
character driver and the significance of the individual bits in the device 
attribute disagrees with those of the device driver. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 1 
IOCTL: Set device information 

Sets the character device attributes. 

Input: AH= 44H 
AL= 1 
BX= Handle 
CX = Number of bytes written 
DX= Device attributes 

DOS 
(Version 2 and up) 

Bit 14= 1: Processes control characters through IOC1L using sub
functions 2 and 3 

Bit 7 = 1: Character driver 

813 



Appendix C: DOS In1em1pts and Functions PC System Programming 

Output: 

Bit 5 = 0: Cooked mode operation 
Bit 5 = 1: Raw mode operation 
Bit 3 = 1: Clock driver operation 
Bit 2 = 1: NUL driver operation 
Bit 1 = 1: Console output driver (screen) 
Bit 0 = I: Console input driver (keyboard) 

Carry flag=O: O.K. 
Carry flag=l: Error (AX= Error code) 

AX=l: Unknown function code 
AX=6: handle not opened or handle does not exist 

Remarlcs: A handle is passed but it is not the name of the addressed character device, 
which must be connected with this device. This can be one of the five 
pre-assigned handles (0 to 4). A handle could have previously been 
opened, with the Open function, for a certain device and then passed to the 
function. For example, since the standard input and output devices 
(handles 0 and 1) can be redirected, this method assures that the indicated 
device is accessed. 

To change various device attribute bits with this function, use sub
function 0 to read the device attributes first. Then this sub-function can 
reset the device attribute bits in the device driver. 

If bit 7 in the device attribute is unequal to 1, the driver addressed is not a 
character driver. The meanings of the individual bits in the device attribute 
disagree with those in the device driver. 

This function is especially useful for switching between cooked mode and 
raw mode within a character driver {bit 5). 

The contents of the BX, CX, DX, SI, DI, BP, CS, OS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 2 
IOCTL: Read data from character device 

DOS 
(Version 2 and up) 

Reads data from a character device. This function defines the number of bytes of 
data to read from the buffer, which contains the data taken from the character 
device. 

Input: AH= 44H 
AL= 2 
BX= Handle 

814 

CX = Number of bytes to be read 
OS = Buffer segment address 
DX = Buffer offset address 



Abacus 

Output: 

Remarks: 

'Appendix C: DOS Interrupts and Functions 

Carry flag=O: O.K. (AX= Number of bytes sent) 
Carry flag=l: Error (AX= Error code) 

AX=l: Unknown function code 
AX=6: Handle not opened or does not exist 

A handle is passed, but it is not the name of the addressed character device 
which must be connected with this device. This can be one of the five 
pre-assigned handles (0 to 4). A handle could have previously been opened 
with the Open function (function number 3DH) for a certain device, then 
passed to the function. For example, since the standard input and output 
devices (handles 0 and 1) can be redirected, this method assures that the 
indicated device is occessed. 

An error always occurs if the handle passed is connected with a block 
driver instead of a character driver. 

The driver defines the data type and structure. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 3 
IOCTL: Send data to character device 

DOS 
(Version 2 and up) 

Input: 

Output: 

Sends data from an application program directly to a character device. The calling 
function defines the number of bytes to be transferred from a buffer to the device. 

AH= 44H 
AL= 3 
BX= Handle 
CX = Number of bytes to be transmitted 
DS = Buffer segment address 
DX= Bufferoffset address 

Carry flag=O: O.K. 
AX = Number of bytes sent 

Carry flag= I: Error (AX= Error code) 
AX= l: Unknown function code 
AX=6: Handle not opened or does not exist 

Remarks: A handle is passed, but it is not the name of the addressed character device 
which must be connected with this device. This can be one of the five 
pre-assigned handles (0 to 4). A handle could have previously been opened 
with the Open function (function number 61) for a certain device, then 
passed to the function. For example, since the standard input and output 
devices (handles 0 and 1) can be redirected, this method assures that the 
indicated device is accessed. 

An error always occurs if the handle passed is connected with a block 
driver instead of a character driver. 

815 



Appendix C: DOS Interrupts and Functions PC System Programming 

The driver defines the data type and structure. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 4 
IOCTL: Read data from block device 

DOS 
(Version 2 and up) 

Input: 

Output: 

Reads data for an application directly from a block device. The calling function 
defines the number of bytes to be copied by the device into a buffer. 

AH= 44H 
AL= 4 
BX= Device designation 
ex = Number of bytes to be read 
DS = Buffa segment address 
DX= Buffer offset address 

Carry flag=O: O.K. 
AX= Number of bytes sent 

Carry flag= 1: Error (AX = Error code) 
AX=l: Unknown function code 
AX=15: Unknown device 

Remarks: Instead of defining the device driver, the device designation parameter 
defines the device from which data will be received. Code 0 represents 
device A;, 1 represents device B:, etc. 

The driver defines the data type and structure. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 5 
IOCTL: Send data to block device 

DOS 
(Version 2 and up) 

Input: 

Output: 

816 

Sends data from an application program directly to a character device. The calling 
function defines the number of bytes to be transferred from a buffer to the device. 

AH= 44H 
AL= 5 
BX= Device designation 
CX = Number of bytes to be sent 
DS = Buffa segment address 
DX= Buffer offset address 

Carry flag=O: O.K. 
AX = Number of bytes sent 

Carry flag= 1: Error (AX = Error code) 
AX=l: Unknown function code 



Abacus 

Remarks: 

Appendix C: DOS Interrupts and Functions 

AX=15: Unknown device 

Instead of defining the device driver, the device designation parameter 
defines the device from which data will be received. Code 0 represents 
device A;, 1 represents device B:, etc. 

The driver defines the data type and structure. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 6 
IOCTL: Read input status 

DOS 
(Version 2 and up) 

Input: 

Output: 

Determines whether a device driver can transmit data to an application program. 

AH= 44H 
AL= 6 
BX= Handle 

Carry flag=O: O.K. (AX= Input status) 
AX=O: Driver not ready 
AX=255: Driver ready 

Carry flag= 1: Error (AX = Error code) 
AX=l: Unknown function code 
AX=5: Access denied 

Remarks: The handle passed can refer to either a character driver or a file. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 7 
IOCTL: Read output status 

DOS 
(Version 2 and up) 

Input: 

Output: 

Determines whether a device driver can receive data from an application program. 

AH= 44H 
AL= 7 
BX= Handle 

Carry flag=O: O.K. (AX = Output status) 
AX=O:Driverisnotready 
AX=255: Driver is ready 

Carry flag=l: Error (AX= Error code) 
AX=l: Invalid function number 
AX=5: Access denied 

817 



Appendix C: DOS Interrupts and Fwictions PC System Programming 

Remarlcs: The handle passed can refer to either a character driver or a file. 

H the handle refers to a file, the block device driver signals its read'ness to 
receive data, even- if the medium containing the file is full and no 
additional data can be appended to the end of the file. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 8 
IOCTL: Test for changeable block device 

DOS 
(Version 3 and up) 

Input: 

Output: 

Determines whether the block device medium (e.g., disk, hard disk, etc.) can be 
changed. 

AH= 44H 
AL= 8 
BL= Device designation 

Carry flag=O: O.K. (AX=status code) 
AX = 0: Medium changeable 
AX = 1: Medium unchangeable 

Carry flag=l: Error (AX= Error code) 
AX=l: Invalid function number 
AX=15: Invalid drive number 

Remarks: The device designation parameter defines the device being addressed instead 
of the device driver. Code 0 represents device A:, 1 represents device B:, 
etc. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function 9 
IOCTL: Test for local or remote drive 

DOS 
(Version 3.1 and up) 

Input: 

Output: 

818 

Determines whether a drive (block device) is local (part of the PC making the 
inquiry) or remote (part of another PC in a network). 

AH= 44H 
AL= 9 
BL= Device designation 

Carry flag=O: O.K. 
DX = device attribute 
Bit 12 = 0: Loc8I 
Bit 12 = 1: Remote 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function number 
AX=15: Invalid drive specification 



Abacus Appendix C: DOS Interrupts and Functions 

Remarks: You can access this sub-function only if networking software has 
previously been installed. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function OAH 
IOCTL: Test for local or remote handle 

DOS 
(Version 3.1 and up) 

Input: 

Output: 

Determines whether a file associated with this handle is local (part of the PC 
making the inquiry) or remote (part of another PC in a network). 

AH= 44H 
AL= OAH 
BX= Handle 

DX= IOCILcode 
Bit 15 = 0: Local 
Bit 15 = 1: Remote 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function number 
AX=6: Handle not opened or does not exist 

Remarlcs: You can access this sub-function only if networking software has 
previously been installed. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 44H, sub-function OBH 
IOCTL: Change retry count 

DOS 
(Version 3 and up) 

Input: 

Output: 

Sets the variables that specify the number of attempts at file access. One PC 
within a network may try to access a file that is already being accessed by another 
PC. The PC attempting access repeats the file access procedure the number of 
times and the number of waiting periods defined by these variables. 

AH= 44H 
AL= OBH 
BX= Number of attempts 
CX = Waiting time between attempts 

Carry flag=O: O.K. 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function number 

Remarlcs: You can only access this sub-function if networking software has 
previously been installed. 

819 



Appendix C: DOS Interrupts and Functions PC System Programming 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 45H 
Duplicate handle 

DOS 
(Version 2 and up) 

Input: 

Output: 

Creates a duplicate of the handle passed. This duplicate handle interfaces with the 
same file or device as the first handle. If the first handle refers to a file, the value of 
the first handler's file pointer joins with the file pointer of the duplicate handle. 

AH= 45H 
BX= Handle 

Carry flag=O: O.K. {AX = the new handle 
Carry flag=l: Error (AX= Error code) 

AX=4: No additional handle available 
AX=6: Handle not opened or does not exist 

Remarks: Without having to close the file, this function updates a file directory 
entry after its modification. A file can be closed using function 62 (3EH). 

If the file pointer of one of the two handles changes position due to the 
call of a read or write function, the other file pointer also changes 
automatically. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 46H 
Force duplicate of handle 

DOS 
(Version 2 and up) 

Input: 

Output: 

Refers a second file handle to the save device or file as the first file handle. The 
second handle's file pointer also contains the same value as the first handle's file 
pointer. 

AH= 46H 
BX= First handle 
CX = Second handle 

Carry flag=O: O.K. 
Carry flag= 1: Error {AX = Error code) 

AX=4: No additional handle available 
AX=6: Handle not opened or does not exist 

Remarks: If the function call connects the second handle to an open file, the file 
closes before the forced duplication. 

820 

If the file pointer of one of the handles changes position due to the call of 
a read or write function, the other file pointer also changes automatically. 



Abacus Appendix C: DOS Interrupts and Functions 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 47H 
Get current directory 

DOS 
(Version 2 and up) 

Input: 

Output: 

Gets an ASCII string listing the complete path designation of the current directory 
of the indicated device. This string passes to the specified buffer. 

AH= 47H 
DL = Device designation 
DS = Buffer segment address 
SI = Buffer offset address 

Carry flag=O: O.K. 
Carry flag=l: Error (AX=Error code) 

AX=15: Invalid drive specification 

Remarks: The device designation parameter defines the device being ~instead 
of the device driver. Code 0 represents the current device, 1 represents 
device A:, etc. 

The path description in the buffer terminates with an end character (ASCII 
code 0). This description has no drive specifier or \ character (root 
directory specifier). If the root directory is the current directory, the end 
character becomes the first character in the buffer. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 48H 
Allocate memory 

DOS 
(Version 2 and up) 

Reserves an area of memory for program use. 

Input: 

Output: 

Remarks: 

AH= 48H 
BX= Number of paragraphs to be reserved 

Carry flag=O: O.K. 
AX=Memory area segment address) 

Carry flag=l: Error (AX= Error code) 
AX=7: Memory control block destroyed 
AX=8: Insufficient memory 

BX= Number of paragraphs available 

A paragraph consists of 16 bytes. 

821 



Appendix C: DOS Interrupts and FM11Ctions PC System Progrfl11U1Ung 

If memory allocation was successfully executed, the allocated range 
begins at address AX:OOOO. 

This function always fails when executed from within a COM program 
because the PC assigns the total amount of free memory to a COM 
program when it executes. 

The contents of the CX, DX, SI, DI, BP, CS, DS, SS and ES registers 
are not affected by this function. 

Interrupt 21H, function 49H 
Release memory 

DOS 
(Version 2 and up) 

Input: 

Output: 

Releases memory previously allocated by function 72 (49H-see above) for any 
purpose. 

AH= 49H 
ES = Memory area segment~ 

Carry flag=O: O.K. 
Carry flag= l: Error (AX = Error code) 

AX=7: Memory control block destroyed 
AX=9: Incorrect memory area passed in ES 

Remarlcs: Since DOS knows the size of the memory area to be released, no 
parameter exists for passing memory size. 

If the wrong segment address appears in the ES register during the 
function call, memory assigned to another program can be released. This 
can lead to a system crash or other consequences. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 4AH 
Modify memory allocation 

DOS 
(Version 2 and up) 

Input: 

Output: 

822 

Changes the size of a memory area previously reserved using function 72 (3FH
see above). 

AH= 4AH 
BX= New memory area size in paragraphs 
ES = Memory area segment~ 

Carry flag=(): O.K. 
Carry flag=l: Error (AX= Error code) 

AX=7: Memory control block destroyed 
AX=8: Insufficient memory 

BX= Number of paragraphs available 



Abacus Appendix C: DOS Interrupts and Functions 

Remades: A paragraph has 16 bytes. 

If the wrong segment address appears in the ES register during the 
function call, memory assigned to another program can ~ released. This 
can lead to a system crash or other consequences. 

Since the PC assigns the total amount of free memory to a COM 
program when it executes, this function call always fails when executed 
from within a COM program. 

COM programs should use this function to release all unnecessary 
memory since all RAM becomes part of a COM program. This is 
especially important before calling the EXEC function (function number 
75 (4BH). 

The contents of the CX, DX, SI, DI, BP, CS, DS, SS and ES registers 
are not affected by this function. 

Interrupt 21H, function 4BH, sub-function 0 
Execute program 

DOS 
(Version 2 and up) 

Input: 

Output: 

Executes another program from within a program and continues execution of the 
original program after the called program finishes its run. The function requires the 
name of the program to be executed and the address of a parameter block, which 
contains information that is important to the function. 

AH= 4BH 
AL= 0 
ES = Parameter block segment address 
BX= Parameter block offset address 
DS = Program name segment address 
DX = Program name offset address 

Carry flag=O: O.K. 
Carry flag=l: Error (AX= Error code) 

AX=l: Invalid function number 
AX=2: Path or program not found 
AX=5: Access denied 
AX=8: Insufficient memory 
AX= 10: Wrong environment block 
AX=ll: Incorrect format 

Remarks: The directory name passed is an ASCII string which is terminated by an 
end character (ASCII code 0). It can contain a path designation and drive 
specifier. No wildcards are allowed. If no drive specifier or path 
designation exists, the function accesses the current drive or directory. 

Only EXE or COM programs can be executed. To execute a batch file, 
the command processor (COMMAND.COM) must be called using the /c 
parameter followed by the name of the batch file. 

823 



Appendix C: DOS Interrupts and Functions PC System Programming 

The parameter block must have the following format: 

Bytes 0-1: Environment block segment address 
Bytes 2-3: Command parameter offset address 
Bytes ~5: Command parameter segment address 
Bytes 6-7: First FCB offset address 
Bytes 8-9: First FCB segment address 
Bytes 10-11: Second FCB offset address 
Bytes 12-13: Second FCB segment address 

If the segment address of the environment block is a 0, the called program 
has the same environment block as the calling program. 

The command parameters must be stored so that the parameter string 
begins with a byte representing the number of characters in the command 
line. Next follow the individual ASCII characters, which are terminated 
by a carriage return (ASCII code 13) (this carriage return is not counted as 
a character). 

The first FCB passed is copied to the PSP of the called program starting 
at address SCH. The second FCB passed is copied to the PSP of the called 
program starting at address 6CH. If the called program does not obtain 
information from the two FCBs, any desired value can be entered into the 
FCB fields at the parameter block:. 

After the call of this function, all registers are destroyed except the CS 
and IP registers. For later recall, save their contents before the function 
call. 

The program called should have all the handles available to the calling 
program. 

Interrupt 21H, function 4BH, sub-function 3 
Execute overlay 

DOS 
(Version 2 and up) 

Input: 

Output: 

824 

Loads a second program into memory as an overlay without automatically 
executing the second program. 

AH= 4BH 
AL= 3 
ES = Parameter block segment address 
BX = Parameter block offset address 
DS = Program name segment address 
DX= Program name offset address 

Carry flag=O: O.K. 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function number 
AX=2: Path or program not found 
AX=5: Access denied 
AX=8: Insufficient memory 



Abacus Appendix C: DOS Interrupts and Functions 

AX=lO: Wrong environment block 
AX= 11: Incorrect format 

Remarks: The directory name passed is an ASCII string which is terminated by an 
end character (ASCII code 0). It can contain a path designation and drive 
specifier. No wildcards are allowed. If no drive specifier or path 
designation exists, the function accesses the current drive or directory. 

Only EXE or COM programs can be executed. To execute a batch file, 
the command processor (COMMAND.COM) must be called using the /c 
parameter followed by the name of the batch file. 

The parameter block must have the following format: 

Byte0-1: 

Byte2-3: 

Segment address where the overlay will be stored 
(offset address=<)) 
Relocation factor 

The relocation factor requires the value 0 for COM programs. Use the 
segment address at which the program should load when accessing EXE 
programs. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 4CH 
Terminate with return code 

DOS 
(Version 2 and up) 

Input: 

Output: 

Terminates a program and passes an end code for which function 77 (4DH-see 
below) searches. This function releases the memory previously occupied by the 
terminated program. 

AH= 4CH 
AL= Return code 

No output 

Remarks: This function may be used for program termination instead of the other 
functions listed earlier. 

This function call restores the contents of the three interrupt vectors that 
were stored in the PSP when the program started execution. 

Before passing control to the calling program, all handles opened by this 
program close, along with the corresponding files. This is not applicable 
to files accessed using FCBs. 

A batch file can test for the return code using the ERRORLEVEL and IF 
batch commands. 

825 



Appendix C: DOS Interrupts and Functions PC System Programming 

Interrupt 21H, function 4DH 
Get return code 

DOS 
(Version 2 and up) 

Input: 

Output: 

Checks a program, called from another program by the EXEC function, for the 
return code passed by the called program when it terminates. 

AH= 4DH 

AH= Type of ·program termination 
AH=O: Normal end 
AH=l: End through <Ctrl><C> or <Break> 
AH=2: Device access error 
AH=3: Call of function 49 (3 IH) 

AL= Return code 

Remarks: This function reads the return code of the called program only once. 

The contents of the AX, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
flag registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 21H, function 4EH 
Search for first match 

DOS 
(Version 2 and up) 

Searches for the first occurrence of the filename listed. The file can have certain 
attributes, so a search can be made through subdirectories and volume names. 

Input: AH= 4EH 

Output: 

Remarks: 

826 

CX = File attribute 
DS = Filename segment address 
DX= Ftlename offset address 

Carry flag=O: 0.K. 
Carry flag= 1: Error (AX = Error code) 

AX=2: Path not found 
AX=18: No ftle with the attribute found 

The directory name passed is an ASCII string which is terminated by an 
end character (ASCII code 0). It can contain a path designation and drive 
specifier. No wildcards are allowed. If no drive specifier or path 
designation exists, the function accesses the current drive or directory. 

The search defaults to normal files (attribute 0). Any set attribute bits 
extends the search to normal files and any other file types. 

If a matching file occurs, the first 43 bytes of the DT A contain the 
following information about this file: 

Bytes 0-20: Reserved 
Byte 21: File attribute 
Bytes 22-23: Time of last modification to file 



Abacus Appendix C: DOS Interrupts and Functions 

Bytes 24-25: Date of last modification to file 
Bytes 'lh-27: Low word of file size 
Bytes 28-29: High word of file size 
Bytes 30-42: ASCII filename and extension tenninated 

by an end character (ASCII code 0) 

This function may only be called to search for the first occurrence of a 
file. If you want to search for a group of files using wildcards, function 
4FH (see below) must be called. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 4FH 
Search for next match (handle) 

DOS 
(Version 2 and up) 

Input: 

Output: 

Searches for subsequent occurrences of the filename listed after function 78 (above) 
executed successfully. 

AH= 4FH 

Carry flag=O: O.K. 
Carry flag=l: Error {AX=Error code) 

AX=l8: No other files found with this attribute 

Remarks: If a matching file occurs, the first 43 bytes of the DT A contain the 
following information about this file: 

Bytes 0--20: 
Byte21: 
Bytes 22-23: 
Bytes 24-25: 
Bytes 'lh-27: 
Bytes 28-29: 
Bytes 30--42: 

Reserved 
File attribute 
Time of last modification to file 
Date of last modification to file 
Low word of file size 
High word of file size 
ASCII filename and extension terminated 
by an end character (ASCII code 0) 

This function can only be called if function 4EH has been called once and 
if the OTA remains unchanged. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

827 



Appendix C: DOS Interrupts and Fwu:tions PC System Programming 

Interrupt 218, function 548 
Get verify flag 

DOS 
(Version 2 and up) 

Input: 

Output: 

Gets the current status of the verify flag. This flag determines whether or not data 
transmitted to a medium (floppy disk or hard disk) should be verified after the 
transmission. 

AH= 54H 

AL= Verify flag 
AL=O: Verify off 
AL= 1: Verify on 

Remarlcs: Function 2EH (see above) controls the status of the verify flag. 

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and 
flag registers are not affected by this function. 

Interrupt 218, function 568 
Rename file (handle) 

DOS 
(Version 2 and up) 

Input: 

Output: 

Renames a file or moves the file to another directory of a block device. Moving is 
possible only within the different directories of one particular device (i.e., you can't 
move a file from a hard disk directory to a floppy disk directory). 

AH= 56H 
DS = Old filename segment address 
DX= Old filename offset address 
ES = New filename segment address 
DI = New filename offset address 

Carry flag=(): O.K. 
Carry flag= I: Error (AX = Enor code) 

AX=2: File not found 
AX=3: Path not found 
AX=5: Access denied 
AX=l 1: Not the same device 

Remades: The directory name passed is an ASCII string which is terminated by an 
end character (ASCII code 0). It can contain a path designation and drive 
specifier. No wildcards are allowed. If no drive specifier or path 
designation exists, the function accesses the current drive or directory. 

828 

An error occurs if you attempt to move the file to a filled root directory. 

This function cannot access subdirectories or volume names. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 



Abacus AppendiJc C: DOS Interrupts and F1111etions 

Interrupt 21H, function 57H, sub-function 0 
Get file date and time 

DOS 
(Version 2 and up) 

Input: 

Output: 

Gets the date and time of the creation or last modification of a file. 

AH= 57H 
AL= 0 
BX= Handle 

Carry flag=O: O.K. 
CX=Time 
DX=Date 

Carry flag= I: Error (AX = Error code) 
AX=l: Invalid function 
AX=6: Invalid handle 

Remarks: In order for it to be accessed with a handle, the file must have been 
previously opened or created using one of the handle functions. 

The time appears in the CX register in the following format 

Bits 0-4: 
Bits 5-10: 
Bits 11-15: 

Seconds in 2-second increments 
Minutes 
Hours 

The date appears in the DX register in the following format: 

Bits 0-4: 
Bits 5-8: 
Bit 9-15: 

Day of the month 
Month 
Year (relative to 1980) 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function 57H, sub-function 1 
Set file date and time 

DOS 
(Version 2 and up) 

Input: 

Output: 

Stores the date and time of the creation or last modification of a file in the 
corresponding file and device. 

AH= 57H 
AL= 1 
BX= Handle 
CX= Time 
DX= Date 

Carry flag=O: O.K. 
Carry flag=l: Error (AX= Error code) 

AX=l: Invalid function 
AX=6: Invalid handle 

829 



Appendix C: DOS Interrupts and Functions PC System Programming 

Remarlcs: In order to be accessed with a handle, the file must have been previously 
opened or created using one of the handle functions. 

The time appears in the ex register in the following format: 

Bits 0-4: 
Bits 5-10: 
Bits 11-15: 

Seconds in 2-second increments 
Minutes 
Hours 

The date appears in the DX register in the following format: 

Bits 0-4: 
Bits 5-8: 
Bit 9-15: 

Day of the month 
Month 
Year (relative to 1980) 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function SSH, sub-function 0 
Get allocation strategy 

DOS 
(Version 3 and up) 

Input: 

Output: 

Determines the method currently in use by MS-DOS for allocating blocks of 
memory. If a program allocates memory using function 48H, different programs in 
memory may already have memory blocks assigned to them. Since these requested 
memory blocks vary in size, DOS has three methods of allocating memory to a 
program: 

First fit: DOS starts searching at the start of memory and allocates the 
first memory block it finds of the requested size; 

Best fit: DOS searches all available memory blocks and allocates the 
smallest suitable memory block it finds (the most efficient method); 

Last fit: DOS starts searching at the end of memory and allocates the first 
memory block it finds of the requested size. 

AH= SSH 
AL= 0 

Carry flag=O: O.K. 
AX=O: First fit (start from beginning of memory) 
AX= 1: Best fit (search for best-fitting memory block) 
AX=2: Last fit (start from end of memory) 

Carry flag=l: Error (AX= Error code) 
AX=l: Invalid function number 

Remarks: The allocation strategy applies to all programs. 

830 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 



Abacus Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function 58H, sub-function 1 
Set allocation strategy 

DOS 
(Version 3 and up) 

Input: 

Output: 

Defines the method currently in use by MS-DOS for allocating blocks of memory. 
If a program allocates memory using function 48H, different programs in memory 
may already have memory blocks assigned to them. Since these requested memory 
blocks vary in size, DOS has three methods of allocating memory to a program: 

First fit: DOS starts searching at the start of memory and allocates the 
first memory block it finds of the requested size; 

Best fit: DOS searches all available memory blocks and allocates the 
smallest suitable memory block it finds (the most efficient method); 

Last fit: DOS starts searching at the end of memory and allocates the first 
memory block it finds of the requested size. 

AH= 58H 
AL= 1 
BX = Allocation strategy 

BX=O: First fit (start from beginning of memory) 
BX=l: Best fit (search for best-fitting memory block) 
BX=2: Last fit (start from end of memory) 

Carry flag=O: 0.K. 
Carry flag= I: Error (AX= Error code) 

AX=l: Invalid function number 

Remarks: The allocation strategy applies to all programs. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

831 



Appendix C: DOS Interrupts and Functions PC System Programmi.ng 

Interrupt 21H, function 59H 
Get extended error information 

DOS 
(Version 3 and up) 

Input: 

Output: 

Gets information about errors that occur during the call of one of the functions of 
either interrupt 21H or interrupt 24H. This information includes detailed 
information about the error, its origin and the action the user should take to 
alleviate the error. 

AH= 59H 
BX= 0 

AX = Description of error 
BH = Cause of error 
BL= Recommended action 
CH = Source of error 

Remarks: The following codes describe the error: 

Code Error 
0: No error 
1: Invalid function number 
2: File not found 
3: Path not found 
4: Too many files open at once 
5: Access denied 
6: Invalid handle 
7: Memory control block destroyed 
8: Insufficient memory 
9: Invalid memory address 
10: Invalid environment 
11: Invalid fonnat 
12: Invalid access code 
13: Invalid data 
14: Re.served 
15: Invalid drive 
16: Current directory cannot be removed 
17: Different device 
18: No additional files 
19: Medium write protected 
20: Unknown device 
21: Device not ready 
22: Unknown command 
23: CRC error 
24: Bad request structure length 
25: Seek error 

832 



Abacus Appendix C: DOS Interrupts and Functions 

Code 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
80: 
81: 
82: 
83: 

Error 
Unknown medium type 
Sector not found 
Printer out of paper 
Write error 
Read error 
General failure 
Sharing violation 
Lock violation 
Unauthorized disk change 
FCB not available 
File already exists 
Reserved 
Directory cannot be created 
Terminate after call of interrupt 24H 

The following codes describe the cause of the error: 

Code Error 
1: No memory available on the medium 
2: Temporary access problem-may end soon 
3: Access unauthorized 
4: Internal error in system software 
5: Hardware error 
6: Software failure not caused by running application program 
7: Application program error 
8: File not found 
9: Invalid file format/type 
10: File locked 
11: Wrong medium in drive, bad disk or medium problem 
12: Other error 

The following codes describe the action needed to fix the error: 

Code Error 
1: Repeat process several times, then ask user to abort/ignore 
2: Repeat process several times pausing each time, then ask 

user to abort/ignore 
3: Ask user for correct information (e.g., filename) 
4: Terminate program as completely as possible 
5: Terminate program NOW (no file closing, etc.) 
6: Ignore error 
7: Ask user to remove error source and repeat process 

833 



Appendix C: DOS Interrupts and Functions PC System Programming 

The following codes describe the source of the error: 

Code Error 
1: Unknown 
2: Block device (disk drive, hard disk, etc.) 
3: Networlc 
4: Serial device 
5: RAM 

The contents of the CS, DS, SS and ES registers are not affected by this 
function. All other register contents are destroyed. 

Interrupt 21H, function SAH 
Create temporary file (handle) 

DOS 
(Version 3 and up) 

Input: 

Output: 

Creates a temporary file in memory for storage during program execution. The 
filename doesn't matter because the access occurs through the assigned handle. 
Since this function allows several files open at the same time, DOS creates 
filenames from the current date and time. Every temporary file is ensured its own 
particular name because the function cannot be called more than once at a time. 

AH= 5AH 
CX = File attribute 
DS = Directory segment address 
DX = Directory offset address 

Carry flag=O: O.K. 
AX=Handle 
DS=Complete filename segment address 
DX=Complete filename offset address 

Carry flag=l: Error (AX = Error code) 
AX=3: Path not found 
AX=5: Access denied 

Remarks: The directory name passed is an ASCII string which is terminated by an 
end character (ASCII code 0). It can contain a path designation and drive 
specifier. No wildcards are allowed. If no drive specifier or path 
designation exists, the function accesses the current drive or directory. 

834 

The bits of the file attribute have the following meanings: 

Bit 0 = 1: Read only file 
Bit 1=1: Hidden file 
Bit 2 = 1: System file 

Temporary files are not automatically deleted after program execution. 
The file must be closed using function 3EH, then the temporary file must 
be deleted using function 4 lH. 



Abacus Appendix C: DOS Interrupts and FJU1Ctions 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. 

Interrupt 21H, function SBH 
Create new file (handle) 

DOS 
(Version 3 and up) 

Input: 

Output: 

Creates a file in the specified directory based upon an ASCII file format If no drive 
specifier or path is provided, the file opens in the default (current) directory. 

AH= SBH 
CX = File attributes: 

CX=OO: Nonnal file 
CX=Ol: Read-only file 
CX=02: Hidden file 
CX=04: System file 

DS = ASCII file specification segment address 
DX = ASCII file specification offset address 

Carry tlag=O (AX= file handle) 
Carry flag= 1 (AX = Error code) 

AX=3: Path not found 
AX=4: No handle available 
AX=5: Access denied 
AX=80(50H):Filealreadyexis~ 

Remarks: An error occurs when any element of the path designation doesn't exist, 
when the filename already exis~ in the specified directory, or when an 
attempt is made to create the file in an already full root directory. 

The file defaul~ to the normal read/write attribute, which allows both read 
and write operations. This attribute can be changed by using function 
43H. 

Interrupt 21H, function SCH 
Control record access 

DOS 
(Version 3 and up) 

Locks or unlocks a particular section of a file. This function operates on 
multitasking and networking systems. 

Input: AH= SCH 
AL= Function code 

AL=OO: Lock file section 
AL=Ol: Unlock file section 

BX= File handle 
ex = High word of section offset 
DX= Low word of section offset 
SI = High word of section length 
DI = Low word of section length 

835 



Appendix C: DOS Interrupts and Functions PC System Programming 

Output: Carry flag=O: Successful lock/unlock 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function code 
AX=6: Invalid handle 
AX=33 (2 IH): All or part of section already locked 

Remarks: This function can only be used on files already opened or created using 
functions 3CH, 3DH, 5AH or 5BH. 

The corresponding call to unlock a file region must contain the identical 
file offset and file region length. 

Interrupt 21H, function SEH, sub-function 0 
Get machine name 

DOS 
(Version 3.1 and up) 

Input: 

Output: 

Returns the address of an ASCII string which defines the local computer type 
within a network. 

AH= 5EH 
AL= 00 
DS = User buffer segment address 
DX = User buffer offset address 

Carry flag=O: Successful execution 
CH = 00: Name undefined 
CH > 00: Name defined 
CL= NETBIOS name number (when CH<>OO) 
DS = Identifier segment address (when CH<>OO) 
DX= Identifier offset address (when CH<>OO) 
Carry flag= I: Error (AX= Error code) 

AX=l: Invalid function code 

Remarks: The computer type is a 15-byte-long string terminated by an end character 
(ASCII code 0). 

Interrupt 21H, function SEH, sub-function 2 
Set printer setup 

DOS 
(Version 3.1 and up) 

Specifies a string which precedes all output to a particular printer used by a 
network. This string allows network users to assign their own individual printing 
parameters to the shared printer. 

Input: AH= 5EH 
AL= 02 

836 

BX= Redirection list index (see Remarks below) 
ex = Printer setup string length 
DS = Printer setup string segment address 
SI = Printer setup string offset address 



Abacus 

Output: 

Appendix C: DOS Interrupts and Functions 

Carry flag=O: Successful execution 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function code 

Remarks: The contents of register BX (redirection list index) come from function 94 
5EH, sub-function 2. Function 5EH, sub-function 3 (see below) can 
supply the current printer setup string. 

Interrupt 21H, function SEH, sub-function 3 
Get printer setup 

DOS 
(Version 3.1 and up) 

Input: 

Output: 

Gets the printer setup string assigned to a particular network printer by using 
function 5EH, sub-function 2 (see above). 

AH= 5EH 
AL= 03 
BX= Redirection list index) 
DS = Setup string receiving buffer segment address 
SI = Setup string receiving buffer offset address 

Carry flag=(): Successful execution 
CX=Printer setup string length 
ES=Segment address of buffer retaining setup string 
DI::Offset address of buffer retaining setup string 

Carry flag=l: Error (AX= Error code) 
AX=l: Invalid function code 

Remarks: The contents of register BX (redirection list index) come from function 
5EH, sub-function 2. Function 5EH, sub-function 3 can supply the 
current printer setup string. 

Interrupt 21H, function SFH, sub-function 2 
Get redirection list entry 

DOS 
(Version 3.1 and up) 

Gets the system redirection list This list assigns local names to network printers, 
files or directories. 

Input: AH= 5FH 
AL= 02 
BX= Redirection list index (see Remarks below) 
DS = Device name buffer segment address (16 bytes) 
SI = Device name buffer offset address (16 bytes) 
ES = Network name buffer segment address (128 bytes) 
DI = Network name buffer offset address (128 bytes) 

837 



Appendix C: DOS Interrupts and Functions PC System Programming 

Output: 

Remarks: 

Carry flag=(): Successful execution 
BH = Status flag 

0: Valid device 
1: Invalid device 

BL= Device type 
3: Printer 
4: Drive 

BP= Destroyed 
ex = Parameter value in memory 
DX= Destroyed 
DS = ASCII format local device name segment address 
SI = ASCII format local device name offset address 
ES = ASCII format network name segment address 
DI= ASCII format network name offset address 
Carry flag=l: Error (AX = Enor code) 

AX=l: Invalid function code 
AX=18: No more files available 

The contents of register CX come from function 5FH, sub-function 3 (see 
below). 

Interrupt 21H, function SFH, sub-function 3 
Redirect device 

DOS 
(Version 3 and up) 

Redirects device access in a network, assigning a network name to a local device. 

Input: 

Output: 

Remarks: 

838 

AH= 5FH 
AL= 03 
BL= Device type 

BL=3: Printer 
BL=4: Drive 

ex = Parameter value in memory 
OS = ASCII format local device name segment address 
SI = ASCII format local device name offset address 
ES = ASCII format network name and password segment address 
DI= ASCII format network name and password offset address 

Carry flag=O: Successful execution 
Carry flag= I: Enor (AX = Enor ccxle) 

AX=l: Invalid function ccxle; string format incorrect; 
device redirected 

AX=3: Path not found 
AX=5: Access denied 
AX=8: Insufficient memory 

The contents of register CX are supplied from function 5FH, sub-function 
3. 

Device names can be drive specifiers (e.g., A:), printer names (i.e., LPTl, 
PRN, LPT2 or LPT3) or null strings. If you enter a null string and pass-



AbacllS Appendix C: DOS Interrupts and FWtCtions 

word as the device name, DOS tries to open access to the network using 
the password. 

Interrupt 21H, function SFH, sub-function 4 
Cancel redirection 

DOS 
(Version 3 and up) 

Input: 

Output: 

Disables the current redirection by removing local name assignments to network 
printers, files or directories. 

AH= 5FH 
AL= 04 
BX= Redirection list index (see Remarks below) 
DS = ASCII format local device name segment address 
SI = ASCII fonnat local device name offset address 

Carry flag::(): Successful execution 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function code; device name not on network 
AX=l5: Redirection halted 

Remarks: Device names can be drive specifiers (e.g., A:), printer names (i.e., LPTI, 
PRN, LPT2 or LPT3) or strings beginning with double backslashes (i.e., 
\\). A string preceded by two backslashes terminates communications 
between the local computer and the network. 

Interrupt 21H, function 62H 
Get PSP address 

DOS 
(Version 3 and up) 

Gets the segment address of the PSP from the currently executing program. 

Input: 

Output: 

Remarks: 

AH= 62H 

BX= PSP segment address 

The PSP starts at address BX:OOOO. 

The contents of the AX, CX, DX, SI, DI, BP, CS, DS, SS, ES registers 
and the flag registers are not affected by this function. 

839 



Appendix C: DOS Interrupts and Functions 

Interrupt 21H, function 63H, sub-function 0 
Get lead byte table 

PC System Programming 

DOS 
(Version 2.25 only) 

Gets the address of the system table which defines the byte ranges for the PC's 
extended character sets. 

Input: AH= 9963H 
AL = 00: Get address of system lead byte table 

Output: DS = Table segment address 
SI = Table offset address 

Remarks: This function is available only in DOS Version 2.25. 

Interrupt 21H, function 63H, sub-function 1 
Set or clear interim console flag 

Input: 

Output: 

Clears the interim console flag. 

AH= 63H 
AL= 01: Clear or set interim console flag 
DL = Interim console flag setting 

DL=Ol: Set interim console flag 
DL=OO: Clear interim console flag 

No output 

DOS 
(Version 2.25 only) 

Remarks: This function is available only in DOS Version 2.25. 

Interrupt 21H, function 63H, sub-function 2 
Get interim console flag 

Gets the interim console flag. 

Input: AH= 63H 
AL = 02: Get interim console flag value 

Output: DL = Flag value 

DOS 
(Version 2.25 only) 

Remarks: This function is available only in DOS Version 2.25. 

Interrupt 21H, function 64H 
Reserved 

Interrupt 21H, function 65H 
Get extended country information 

Gets information about the specific country/code page. 

Input: AH= 65H 
AL= sub-function: 

AL= 1: Get international information 

840 

DOS 
(Version 3 and up) 

DOS 
(Version 3.3 and up) 



Abacus 

Output: 

Remarks: 

Appendix C: DOS Interrupts and Functions 

AL = 2: Get uppercase pointer table 
AL= 4: Get pointer to uppercase pointer table (filename) 
AL = 6: Get pointer to collation table 

BX= Code page: 
BX= -1: active CON device 
ex = Length of buffer allocated to receive information 
DX = Country ID number 
DX = -1: Default 
ES:DI = Address of buffer allocated to receive information 

Carry flag=(): Successful execution 
Carry flag= I: Error (AX= Error code) 

The information this function returns is an extended version of the 
information returned by int 21H, function 38H. 

An error may occur if the country code in DX is invalid, or if the code 
page number is different from the country code, or if the buffer length 
specified in the ex register is less than five bytes. If the buffer is not 
long enough to receive all the information, the function accepts as much 
information as the buffer will accept. This buffer contains the following 
information after the call: 

Byte 0: ID code for information 
Bytes 1-2: Length of buffer 
Bytes 3-4: Country ID 
Bytes 5-6: Code page 
Bytes 7-8: Date format 
0 =USA: Month-day-year 
1 = Europe: Day-month-year 
2 = Japan: Year-month-day 
Bytes 9-13: Currency indicator 
Bytes 14-15: ASCII code of the thousand character (comma/period) 
Bytes 16-17: ASCII code of the decimal character (period/comma) 
Bytes 18-19: ASCII code of the date separation character 
Bytes 20-21: ASCII code of the time separation character 
Byte 22: Currency format 
bit 0 = 0: Currency symbol before the value 
bit 0 = 1: Currency symbol after the value 
bit 1 = 0: No spaces between value and currency symbol 
bit 1=1: Space between value and currency symbol 
Byte 23: Precision (number of decimal places) 
Byte 24: Time format 
bit 0 = 0: 12-hour clock 
bit 0 = 1: 24-hour clock 
Bytes 25-28: Address of character conversion routine 
Bytes 29-30: ASCII data separator 
Bytes 31-40: Reserved 

841 



Appendix C: DOS lnierrupts and Functions PC System Programming 

Interrupt 21H, function 66H 
Get or set code page 

DOS 
(Version 3.3. and up) 

Input: 

Output: 

Gets or sets the current code page. 

AH= 66H 
AL= sub-function: 

AL = 1: Get code page 
AL = 2: Select code page 

BX= Selected code page (if AL= 2) 

Carry flag=O: Successful execution 
If AL =1 used for input: 

BX =active code page 
DX =default code page 

Carry flag= 1: Error (AX = Error code) 

Remarks: If sub-function 2 is used, COUNTRY.SYS supplies the code page 
number. 

The DEVICE ... (CONFIG.SYS), NLSFUNC and MODE CP PREPARE 
commands (AUTOEXEC.BAT) must have already configured the system 
for code page switching before this function may be called. 

Interrupt 21H, function 67H 
Set handle count 

DOS 
(Version 3.3 and up) 

Input: 

Output: 

Sets the maximum number of accessible files and devices that may be currently 
opened using handles. 

AH= 67H 
BX= Number of handles desired 

Carry flag=O: Successful execution 
Carry flag=l: Error (AX= Error code) 

Remarks: The PSP's default table reserved for the process can control 20 handles. 

An error occurs if the content of the BX register is greater than 20, or if 
insufficient memory exists to allocate a block for the extended table. 

If the number in the BX register is greater than the number of entries 
assigned by the FILES entry in the CONFIG.SYS file, no error occurs. 
However, attempts at opening a file or device fail if all file entries are in 
use, even if file handles are still available. 

Interrupt 21H, function 68H 
Commit file 

DOS 
(Version 3.3 and up) 

842 

Writes all DOS buffers associated to a specific handle to the specified device. If the 
handle points to a file, the file's contents, date and size are updated. 



Abacus 

Input: 

Output: 

Appendix C: DOS Interrupts and Functions 

AH= 68H 
BX= File handle 

Carry flag=(): Successful execution 
Carry flag= 1: Error (AX = Error code) 

Remarks: This function performs the same task as closing and reopening a file or 
duplicate handle, even without handles. If this function accesses a 
character device's handle, the carry flag returns 0 but nothing else 
happens. 

Multiprocessing and networking applciations maintain control of the file. 

Interrupt 22H 
Terminate address 

DOS 
(Version 1 and up) 

Contains the address of a routine which terminates a program. Control returns to 
the program that called for termination. You should never call this routine directly. 

DOS stores the contents of this interrupt vector in the PSP of the program to be 
executed before passing control to the program. This prevents program changes to 
the vector, which could prevent DOS from calling the termination routine. 

Interrupt 23H 
<Ctrl><C> handler address 

DOS 
(Version 1 and up) 

Contains the address of a routine which executes when the user presses <Ctrl><C> 
or <Ctrl><Break>. You should never directly call this routine. 

DOS stores the contents of this interrupt vector in the PSP of the program to be 
executed before passing control to the program. This prevents program changes to 
the vector, which could prevent DOS from calling the termination routine. 

Interrupt 24H 
Critical error handler address 

DOS 
(Version 1 and up) 

Represents a routine called during hardware access (e.g., disk drive) when a critical 
error occurs. You should never directly call this routine. 

When an application routine is called during a critical error, bit 7 of the AH 
register indicates the type of failure (0 =disk/hard disk error, 1= other errors). A 
disk/hard disk error will only be reported after several attempted accesses. During 
the call, the DI register receives one of the following codes: 

0: Disk write protected 
1: Access on unknown device 
2: Drive not ready 
3: Invalid command 
4: CRC error 
5: Bad request structure length 
6: Seek error 
7: Unknown device type 

843 



Appendix C: DOS Interrupts and Functions PC System Programming 

8: Sector not found 
9: Printer out of paper 
10: Write error 
11: Read error 
12: General failure 

The error routine restores the SS, SP, DS, ES, BX, CX and DX registers to the 
same values that they contained during the call. During execution it can only 
access functions 1 to OCH of interrupt 21H. It should be terminated by an IRET 
instruction and pass one of the following codes to the AL register: 

0: Ignore error 
I: Repeat the operation 
2: Terminate program using interrupt 23H 
3: Fail system call (Version 3 and up only) 

If a program changes the content of this interrupt vector, the program can 
terminate without restoring the memory contents. Since RAM can be released and 
used by other programs, the critical error routine can be overwritten by another 
program in memory. When this occurs, a critical error could cause a system crash 
because a completely different code now exists at the location of the old error 
handler routine. 

Before passing control to the program, DOS stores the contents of this interrupt 
vector in the PSP of the program to be executed. This prevents program changes 
to the vector, which could prevent DOS from calling the termination routine. 
During program termination, the contents of the interrupt vector pass from the 
PSP to the vector; then the system calls the routine. 

Interrupt 25H 
Absolute disk read 

DOS 
!Version 1 and up) 

Input: 

Output: 

844 

Reads one or more consecutive sectors from a disk or hard disk. 

AL = Drive specifier 
CX= Number of sectors to read 
DX= First sector to read 
DS= Buffer segment address 
BX= Buffer offset address 

Carry flag=O: O.K. 
Carry flag= I: Error (AX = Error code) 

AX=l: Bad command 
AX=2: Bad address 
AX=4: Sector not found 
AX=8: DMA error 
AX=l6: CRC error 
AX=32: Disk controller error 
AX=64: Seek error 
AX=l28: Device does not respond 



Abacus 

Remarks: 

Appendix C: DOS Interrupts and Functions 

In the AL register 0 represents drive A:, 1 represents drive B:, etc. 

All the sectors of the medium can be accessed. DOS itself uses this 
interrupt to read the root directory and the FAT of a medium. The data are 
read from the medium into the buffer of the calling program. After the 
function call, the contents of all registers, except the segment register, 
may change. 

After the interrupt call, the stack pointer changes position because two 
bytes stored on the stack during the call are removed and not returned. 
These bytes represent the flag register, which can be read from the stack 
using the POPF instruction. The old value of the stack pointer can be set 
by adding 2 to its contents. If you omit the stack pointer correction, the 
stack could overflow. Because of this, you cannot call this interrupt from 
higher level languages. You must call it from assembly language. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 26H 
Absolute disk write 

DOS 
(Version 1 and up) 

Writes one or more consecutive sectors to a disk or hard disk. 

Input: 

Output: 

Remarks: 

AL = Device designation 
CX = Number of sectors to be written 
DX = First sector to be written 
DS = Buffer segment address 
BX = Buffer offset address 

Carry flag=O: O.K. 
Carry flag= I: Error (AX = Error code) 

AX=l: Bad command 
AX=2: Bad address 
AX=3: Medium write protected 
AX=4: Sector not found 
AX=8: DMA error 
AX=16: CRC error 
AX=32: Disk controller error 
AX=64: Seek error 
AX=l28: Device does not respond 

In the drive specifier 0 represents drive A:, I represents drive B:, etc. 

All the sectors of the medium can be accessed. DOS itself uses this 
interrupt to write the root directory and the FAT to a medium. The data 
are written from the buffer of the calling program to the medium. After 
the function call, the contents of all registers, except the segment register, 
may change. 

845 



Appendix C: DOS Interrupts and Functions PC System Programming 

After the interrupt call, the stack pointer changes position because two 
bytes stored on the stack during the call are removed and not returned. 
These bytes represent the flag register, which can be read from the stack 
using the POPF instruction. The old value of the stack pointer can be set 
by adding 2 to its contents. If you omit the stack pointer correction, the 
stack could overflow. Because of this, you cannot call this interrupt from 
higher level languages. You must call it from assembly language. 

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES 
registers are not affected by this function. The contents of all other 
registers may change. 

Interrupt 27H DOS 
(Version 1 and up) Terminate and stay resident 

Input: 

Output: 

Terminates the currently executing program and returns control to the program that 
called the current program. Unlike other functions used for program termination, 
the memory used by the current program keeps the program code for later recall. 

CS = PSP segment address 
DX= Number of bytes+ 1 to be reserved 

No output 

Remarks: This function is only suitable for calling COM programs. 

The number of bytes to be reserved relates to the beginning of the PSP. 

The value in the DX register has no effect on memory blocks reserved by 
function 48H of interrupt 21H. 

An error occurs during the call of this interrupt if the value in the DX 
register ranges from FFFlH to FFFFH. 

This interrupt does not close open files. 

Interrupt 2FH, sub-function 0 
Get print spool install status 

DOS 
(Version 3 and up) 

Input: 

Output: 

846 

Gets current installation status of the print spooler. 

AH= 2FH 
AL= 0 

Carry flag=O: Successful execution 
AL= 0: O.K. to install 
AL= 1: Don't install 
AL= 255: Already installed 
Carry flag= I: Error (AX= Error code) 

AX=l: Invalid function 
AX=2: File not found 
AX=3: Path not found 



Abacus Appendix C: DOS Interrupts and Functions 

AX=4: Too many files currently open 
AX=S: Access denied 
AX=8: Print queue full 
AX=9: Print spooler busy 
AX=12: Name too long 
AX=15: Invalid drive 

Interrupt 2FH, sub-function 1 
Send file to print spooler 

Input: 

Output: 

Passes a file to the print spooler. 

AH= 2FH 
AL= 1 
DS = Print packet (see below) segment address 
DX = Print packet (see below) offset address 

Carry flag=O: Successful execution 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function 
AX=2: File not found 
AX=3: Path not found 
AX=4: Too many files currently open 
AX=5: Access denied 
AX=8: Print queue full 
AX=9: Print spooler busy 
AX=12: Name too long 
AX=15: Invalid drive 

DOS 
(Version 3 and up) 

Remarks: The five-byte print packet contains print spooler information. The first 
byte indicates the DOS version (O=Versions 3.1 to 3.3); the remaining 
bytes indicate the segment and offset addresses of the file specification. 

Interrupt 2FH, sub-function 2 
Remove file from print queue 

Input: 

Output: 

Deletes a file from the print spooler queue. 

AH= 2FH 
AL= 2 
DS = ASCII-format file segment address 
DX = ASCII-format file offset address 

Carry flag=O: Successful execution 
Carry flag= 1: Error (AX = Error code) 

AX=l: Invalid function 
AX=2: File not found 
AX=3: Path not found 
AX=4: Too many files currently open 
AX=S: Access denied 
AX=8: Print queue full 

DOS 
(Version 3 and up) 

847 



Appendix C: DOS Interrupts and Functions PC System Programming 

Remarks: 

AX=9: Print spooler busy 
AX=12: Name too long 
AX=15: Invalid drive 

This sub-function allows wildcards (? and *) in file specifications, 
allowing you to delete more than one file at a time from the print queue. 

Interrupt 2FH, sub-function 3 
Cancel all files in print queue 

DOS 
(Version 3 and up) 

Input: 

Output: 

Cancels all files waiting in the print spooler queue for printing. 

AH= 2FH 
AL= 3 

Carry flag=(): Successful execution 
Carry flag= I: Error (AX= Error code) 

AX=l: Invalid function 
AX=2: File not found 
AX=3: Path not found 
AX=4: Too many files currently open 
AX=5: Access denied 
AX=8: Print queue full 
AX=9: Print spooler busy 
AX=12: Name too long 
AX=15: Invalid drive 

Interrupt 2FH, sub-function 4 
Hold print jobs for status check 

DOS 
(Version 3 and up) 

Halts all print jobs while testing for spooler status. 

Input: 

Output: 

Remarks: 

848 

AH= 2FH 
AL= 4 

Carry flag=(): Successful execution 
Carry flag= 1: Error 
DX = Number of errors 
DS = Print queue segment address 
SI = Print queue offset address 

The print queue segment and offset addresses point to a set of 64-byte 
filenames in the queue. Each entry contains an ASCII file specification. 

The first filename in the queue is the file currently printing in the print 
spooler. The last filename in w~ queue has a zero in the first byte of the 
specification. 



Appendix D 

EMM Functions 

Interrupt 67H, function lH 
Extended memory: Get status 

LIM/EMS 

Returns the error status of the EMM after calling any EMS functions. 

Input: 

Output: 

Remarks: 

AH= 40H 

AH = EMM status 
AH=OOH: O.K. 
AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 

Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 
This function should be the first EMM call a program makes, to ensure 
that the hardware and software are functioning properly. 

Interrupt 67H, function 2H LIM/EMS 
Extended memory: Get segment address or the page frame 

Determines the segment address of the page frame. 

Input: 

Output: 

Remarks: 

AH= 41H 

AH= 0: O.K. 
BX= Page frame segment address 
AH> O:Enor 

AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 

Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 
The addresses of the four physical pages can be calculated from this 
segment address, whereby the first page starts at address 
PAGE_FRAME:OOOO. The three other pages follow at 16K intervals. 

849 



Appendi;c D: EMM Functions PC System Programming 

Interrupt 67H, function 3H LIM/EMS 
Extended memory: Get number of EMS pages 

Input: 

Output: 

Informs the calling program how many 16K EMS pages are installed, and how 
many EMS pages are still available or unallocated. 

AH=42H 

AH= 0: O.K. 
BX= Number of free (unallocated) pages 
DX= Total number of EMS pages 
AH> 0: Error 

AH=80H: Internal error, EMM possibly destroyed 
AH=8IH: EMS hardware error 

Remarlcs: Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The number of kilobytes of free EMS memory can be calculated by 
multiplying the number of free pages by 16. 

Interrupt 67H, function 4H LIM/EMS 
Extended memory: Allocate EMS memory 

Allocates a given number of 16K EMS pages for later access. 

Input: 

Output: 

Remarks: 

850 

AH= 43H 
BX= Number of logical (16K) pages to be allocated 

AH= 0: O.K. 
DX= Handle for accessing allocated memory 
AH> 9: Error 

AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 
AH=85H: No more handles available 
AH=87H: Not enough pages free 
AH=88H: No pages were requested 

Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The handle returned can be used for future access and for releasing the 
allocated memory. If this handle is "lost", the handle cannot be recovered, 
nor can memory be released or used by other programs. 

A call to this function may fail because there are not enough pages free or 
because the EMM has been called so often that no more handles are 
available. 

The handles normally have the numbers FFOOH, FEOIH, FD02H, 
FC03H, etc. 



Abacus Appendix D: EMM Functions 

Interrupt 678, function SH 
Extended memory: Set mapping 

LIM/EMS 

Input: 

Output: 

Places one of the pages previously allocated by function 4H in one of the four 
physical pages within the page frame. 

AH= 44H 
AL= Physical page number (0 to 3) 
BX= Logical page number 
DX= Handle 

AH= Error status 
AH=OOH: O.K. 
AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 
AH=83H: Invalid handle 
AH=8AH: Invalid logical page 
AH=8BH: Invalid physical page 

Remarks: Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The handle used when calling this function must have been returned by a 
previous call to EMM function 4H. 

The logical pages are numbered from 0 on, so that the value 0 must be 
passed to access the first logical page. The largest value allowed is the 
number of allocated pages minus one. 

Before accessing the physical page, the segment address of the page frame 
must be determined with function 2H. 

Interrupt 67H, function 6H 
Extended memory: Release pages 

LIM/EMS 

Input: 

Output: 

Releases pages allocated with function 4H to the EMM. This makes these pages 
available to other applications. 

AH= 45H 
DX= Handle 

AH = Error status: 
AH=OOH: O.K. 
AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 
AH=83H: Invalid handle 
AH=85H: Error while saving and restoring mapping 

851 



Appendix D: EMM Functions PC System Programming 

Remades: Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The handle used when calling this function must have been returned by a 
previous call to EMM function 4H. 

All of the pages allocated to this handle are released by this function. It is 
impossible to release individual pages. 

After a successful call to this function the handle is no longer valid and 
cannot be used for accessing EMS memory. 

If the function returns an error, you should repeat the call at least three 
times or the pages will remain allocated and will not be available for 
other programs. 

Interrupt 67H, function 7H LIM/EMS 
Extended memory: Get EMM version 

Input: 

Output: 

Determines the version number of the EMM (Expanded Memory Manager). 

AH=46H 

AH= 0: O.K. 
AL= EMM version number 
AH> 0: Error 

AH=80H: Internal error, EMM poSStbly destroyed 
AH=81H: EMS hardware error 

Remarks: Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The EMM version number is stored in the AL register as a BCD number, 
in which the upper four bits represent the version number preceding the 
decimal point and the lower four bits represent the version number 
following the decimal point. See also the demonstration programs in 
Chapter 13. 

Interrupt 67H, function SH 
Extended memory: Save mapping 

LIM/EMS 

Saves current mapping between the four physical pages in the page frame and the 
associated logical pages. 

Input: AH= 47H 
DX= Handle 

852 



Abacus 

Output: 

Remarks: 

AH= Error status 
AH=OOH: O.K. 

Appendix D: EMM FIU1Ctions 

AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 
AH=83H: Invalid handle 
AH=8CH: Mapping memory full 
AH=8DH: Mapping for handle already stored, not restored using 

function 9H 

Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 foc more information). 

The handle used when calling this function must have been returned by a 
previous call to EMM function 4H. 

This function is intended for use within a TSR program or by the 
operating system in a multitasking environment, but can be used by any 
program. 

Interrupt 67H, function 9H 
Extended memory: Restore mapping 

LIM/EMS 

Restores mapping between the logical and physical pages saved by function SH. 

Input: 

Output: 

Remarks: 

AH= 4SH 
DX=Handle 

AH= Error status: 
AH=OOH: O.K. 
AH=SOH: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 
AH=83H: Invalid handle 
AH=SEH: Mapping storage contains no entry for this handle 

Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The handle used when calling this function must have been returned by a 
previous call to EMM function 4H. 

Calling this function fails whenever the mapping for this handle has not 
been saved with function SH, or the mapping has already been restored by 
a previous call to function 9H. 

This function is intended for use within a TSR program or by the 
operating system in a multitasking environment, but can be used by any 
program. 

853 



Appendix D: EMM Functions PC System Programming 

Interrupt 67H, function OCH LIM/EMS 
Extended memory: Get number of bandies 

Input: 

Output: 

Returns the number of memory blocks and the number of handles allocated by • 
function 4H. 

AH= 4BH 

AH= 0: O.K. 
BX= Number of allocated handles 
AH> O:Error 

AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 

Remarlcs: Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The number of allocated handles is not the same as the number of 
programs which are currently accessing the EMS memory. Each program 
can request an arbitrary number of EMS memory blocks/handles with 
function 4H. 

Interrupt 67H, function ODH LIM/EMS 
Extended memory: Get number of allocated pages 

Returns the number of pages which have been allocated to the specified handle. 

Input: 

Output: 

Remarks: 

854 

AH= 4CH 
DX= Handle 

AH= 0: O.K. 
BX= Number of allocated pages 
AH> 0: Error 

AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 
AH=83H: Invalid handle 

Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

The number of allocated pages must range from 1 to 512. 



Abacus Appendix D: EMM Functions 

Interrupt 678, function OEH 
Extended memory: Get all handles 

LIM/EMS 

Input: 

Output: 

Loads the numbers of all active handles and the number of pages aliocated to each 
into an array. 

AH=48H 
ES = Segment address of array 
DI = Offset address of array 

AH=O:O.K. 
BX =Number of allocated logical pages 
AH> 0: Error 

AH=80H: Internal error, EMM possibly destroyed 
AH=81H: EMS hardware error 

Remarks: Do not call this function unless you know that EMS memory and a 
corresponding EMM are installed (see Chapter 13 for more information). 

If the function returns successfully, the memory area to which the ES:DI 
register pair points will contain two words for each active handle. The 
first word contains the handle itself and the second word contains the 
number of pages allocated to the handle. The number of these entries is 
returned in the BX register. 

Since the EMM can manage a maximum of 256 handles, the array will 
never occupy more than 1024 bytes (lK). 

855 



Appendix E 

EGA/VGA BIOS Functions 

Interrupt lOH, function OOH EGA/VGA 
Screen: Set video mode 

Sets and initializes the video mode. 

Input: AH= OOH 

Output: 

Remarks: 

AL= EGA video mode 
0: 40x25-character text. 16 colors (EGA/VGA - color monitor) 
1: 40x25-character text, 16 colors (EGA/VGA- color monitor) 
2: 80x25-character text. 16 colors (EGA/VGA- color monitor) 
3: 80x25-character text. 16 colors (EGA/VGA - color monitor) 
4: 320x200 pixel graphics, 4 colors (EGA/VGA - color monitor) 
5: 320x200 pixel graphics, 4 colors (EGA/VGA - color monitor) 
6: 640x200 pixel graphics, 2 colors (EGA/VGA - color monitor) 
7: 80x25-character text. mono (EGA/VGA - mono monitor) 
13: 3'.?..0x200 pixel graphics, 16 colors (EGA/VGA - color monitor) 
14: 640x200 pixel graphics, 16 colors (EGA/VGA - color monitor) 
15: 640x350 pixel graphics, mono (EGA/VGA - mono monitor) 
16: 640x350 pixel graphics, 4 colors (64K EGA-hi-res monitor) 

640x350 pixel graphics, 16 colors (128K EGA/VGA-hi-res 
monitor) 

17: 640x480 pixel graphics, 2 colors (VGA only) 
18: 640x480 pixel graphics, 16 colors (VGA only) 
19: 320x200 pixel graphics, 256 colors (VGA only) 

No output 

Modes 0 and 1, 2 and 3, 4 and 5 differ in the output of the color signal 
that is suppressed in the first mode. This isn't possible on an EGA/VGA 
card so the modes are identical. If bit 7 of the AL register is set when this 
function is called, the contents of the video RAM will not be erased when 
the new mode is enabled. The task is to program the video controller and 
define a color palette. The contents of registers BX, CX, DX, SI, DI, BP 
and the segment registers are not affected by this function. 

856 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt lOH, function OlH 
Screen: Define cursor appearance 

EGA/VGA 

Input: 

Output: 

Defines the starting and ending lines of the screen cursor. This function is 
independent of the display page being displayed. 

AH= OlH 
CH= Starting line of the cursor 
CL = Ending line of the cursor 

No output 

Remarks: Since the possible values depend on the size of the current video mode's 
character matrix, the values in the CH and CL registers always refer to an 
eight-line character matrix. The values should thus be between zero and 
seven. The EGA/VGA BIOS adapts these values to the current size of its 
own character matrix. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function 02H 
Screen: Position cursor 

EGA/VGA 

Moves the cursor into position on the screen. 

Input: AH= 02H 

Output: 

Remarlcs: 

BH = Video page number 
DH= Screen line 
DL = Screen column 

No output 

The cursor moves only if the specified display page is the current page. 

The values for the screen line and column are based on the resolution of 
the current display mode. 

Assigning the DH and DL registers values for a non-existent screen 
position (e.g., column 0, line 255) makes the cursor disappear from the 
screen. 

The number of the display page is based on how many display pages the 
card has available. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

857 



Appendix E: EGA/VGA BIOS F1111etimls PC System Programming 

Interrupt 10H, function 03H 
Screen: Read cursor position 

EGA/VGA 

Input: 

Output: 

Reads the position of the text cursor on the screen and the starting and ending lines 
of the screen cursor. 

AH= 03H 
BH = Video page number 

DH = Screen line in which cursor is located 
DL = Screen column in which cursor is located 
CH = Starting line of screen cursor 
CL = Ending line of screen cursor 

Remades: The screen line and screen column parameters refer to the text coordinate 
system, even if a graphic mode is active. 

The starting and ending lines of the cursor are returned correctly only in 
the text modes. They have no meanings in graphic modes. 

The contents of registers BX, SI, DI, BP and the segment registers are not 
affected by this function. 

Interrupt 10H, function OSH 
Screen: Select current display page 

EGA/VGA 

Input: 

Output: 

Selects the current display page, and thereby the page which appears on the screen 
(text mode only). 

AH= OSH 
AL= Display page number 

No output 

Remades: The number of available display pages depends on the amount of video 
RAM installed on the EGANGA card. 

858 

When a new page is selected the screen cursor will be moved to the 
position of the text cursor on this page. 

Switching between different pages does not change the contents of these 
pages. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt 108, function 068 
Screen: Scroll text lines up 

EGA/VGA 

Input: 

Output: 

Scrolls part of the current display page up by one or more lines. 

AH= 06H 
AL= Number of lines to be scrolled up 

AL=O: aear window 
CH = Screen line of upper left corner of window 
CL = Screen column of upper left corner of window 
DH= Screen line of lower right corner of window 
DL = Screen column of lower right comer of window 
BH= Color (attribute) for blank line(s) 

No output 

Remarks: Normally the contents of the current display page are scrolled, but in the 
320x200 four-color graphic mode this function only affects display page 
0. 

Clearing the screen window (number of lines = 0) is the same as filling it 
with spaces (ASCII code 32). 

The contents of the lines scrolled out of the window are lost and cannot 
be recovered. 

Use function 0 of this interrupt to clear the screen. 

The interpretation of the attribute byte in the BL register depends on the 
current video mode. In text mode it is interpreted as any other attribute 
byte in video RAM. In 640x200 two-color mode this byte represents the 
color value for eight successive pixels. In 320x200 four-color mode this 
byte represents the color value of four successive pixels. In all other 
graphic modes it represents the color of all of the pixels in the cleared 
screen area. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt 108, function 078 
Screen: Scroll text lines down 

Scrolls part of the current display page down one or more lines. 

Input: AH= 07H 
AL= Number of lines to be scrolled down 

AL=O: aear window 
CH = Screen line of upper left corner of window 
CL= Screen column of upper left corner of window 
DH= Screen line of lower right corner of window 

EGA/VGA 

859 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Output: 

Remarks: 

DL = Screen column of lower right comer of window 
BH = Color (attribute) for blank line(s) 

No output 

Normally the contents of the current display page are scrolled, but in 
320x200 four-color graphic rnode this function only affects display page 
0. 

Clearing the screen window (number of lines = 0) is the same as filling it 
with spaces (ASCII code 32). 

The contents of the lines scrolled out of the window are lost and cannot 
be recovered. 

To clear the entire screen, use function 0 of this interrupt instead. 

The interpretation of the attribute byte in the BL register depends on the 
current display mode. In the text mode it is interpreted like any other 
attribute byte in the video RAM. In the 640x200 two-color mode this 
byte represents the color value for eight successive pixels. In the 320x200 
four-color mode it represents the color value of four successive pixels. In 
all other graphic modes it represents the color of all of the pixels in the 
cleared screen area. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function 08H 
Screen: Read character/color 

EGA/VGA 

Input: 

Output: 

Reads and returns the ASCII code and color {attribute) of the character at the current 
cursor position. 

AH= 08H 
BH = Video page number 

AL= ASCII code of character 
AH= Color (attribute) 

Remarks: This function can also be called in the graphic mode, whereby the bit 
pattern of the character on the screen will be compared with the bit 
patterns of the characters. If the character cannot be identified, the AL 
register will contain the value zero after the call. 

860 

In the 320x200 four-color graphic mode this function only affects display 
pageO. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt lOH, function 09H 
Screen: Write character/color 

EGA/VGA 

Input: 

Output: 

Writes character with the specified color at the current cursor position (in a 
specified display page). 

AH= 09H 
BH = Video page number 
CX = Repeat factor 
AL= ASCII code of character 
BL= Attribute 

No output 

Remarks: If the graphic mode is active and the specified character is to be printed 
more than once (the value of the CX register is greater than 1), all of the 
characters must fit on the current screen line. 

In the 320x200 four-color graphic mode this function correctly works 
only on display page 0. 

Within a graphic mode the attribute in the BL register specifies the 
foreground color of the character, whereby the background color is zero. If 
bit seven is set, the character will be XORed with the bitmap at the 
output position. 

The controls codes for bell, carriage return, etc. are not recognized as 
control codes, and are displayed as normal ASCII characters. 

This function can also be used to output characters in the graphic mode, 
in which case the character patterns are taken from one of the EGA 
character tables. 

This function does not move the cursor to the next screen position. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function OAH 
Screen: Write character 

EGA/VGA 

Input: 

Output: 

A character will be written to the current screen position on the specified display 
page and the color of the old character at this position will be retained. 

AH= OAH 
AL= ASCII code of the character 
BH = Video page number 
BL= Foreground color of character for graphic modes 
ex = Repeat factor 

No output 

861 



Appendix E: EGA/VGA BIOS Ftmetions PC System Programming 

Remarks: If the graphic mode is active and the specified character is to be printed 
more than once (the value of the ex register is greater than 1), all of the 
characters must fit on the current screen line. 

The controls codes for bell, carriage return, etc. are not recogniud as such 
and are displayed as nonnal ASCII characters. 

This function can also be used to output characters in the graphic mode, 
in which case the character patterns are taken from one of the EGA 
character tables. 

Within a graphic mode the attribute in the BL register specifies the 
foreground color of the character, whereby the background color is urn. If 
bit seven is set, the character will be XORed with the bitmap at the 
output position. 

This function does not move the cursor to the next screen position. 

The contents of registers BX, ex, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function OBH, sub-function 0 
Screen: Select border/background color 

EGA/VGA 

Input: 

Output: 

Selects the border and background color for the graphic or text mode. 

AH= OBH 
BH= 0 
BL= Bader/background color 

No output 

Remarks: This function should be called only when the EGA/VGA card is in the 
320x200 or 640x200 graphic mode. Use function IOH for all other 
modes. 

Bits zero to three of the BL register set the background and border color. 
Setting bit four will enable high-intensity colors. 

The contents of registers BX, ex, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function OBH, sub-function 1 
Screen: Select color palette 

Selects one of the two color palettes for the 320x200 graphic mode. 

Input: AH= OBH 
BH= 1 
BL= Color palette number 

862 

EGA/VGA 



Abacus 

Output: 

Remarlcs: 

Appendix E: EGA/VGA BIOS FllllCtions 

No output 

This function should be called only when the EGA/VGA card is in the 
320x200 or 640x200 graphic mode. Use function lOH for all other 
modes. 

The EGA/VGA BIOS emulates the two CGA color palettes with the 
numbers 0 and 1. They contain the following colors: 

Palette 0: green, red, yellow 
Palette 1: cyan, magenta, white 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function OCH 
Screen: Write pixel 

EGA/VGA 

Input: 

Output: 

Sets the color value of a screen pixel in the graphic mode. 

AH= OCH 
BH = Video page 
DX = Screen line 
CX = Screen column 
AL= Color value 

No output 

Remarks: The color value depends on the colors available in the current display 
mode. 

If bit seven of the AL register is set, the color value will be XORed with 
the previous color value of the pixel. 

The display page is ignored in the 320x200 four-color graphic mode. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function ODH 
Screen: Read pixel 

EGA/VGA 

Input: 

Output: 

The color value of a pixel in the graphic mode is returned. 

AH= ODH 
BH = Video page 
DX = Screen line 
CX = Screen column 

AL= Color value 

863 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Remarks: The color value depends on the colors available in the current display 
mcxle. 

The display page is ignored in the 320x200 four-color graphic mode. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function OEH 
Screen: Write character 

EGA/VGA 

Input: 

Output: 

Writes a character to the current cursor position on the current display page. The 
color of the old character at this position will be retained. 

AH= OEH 
AL = ASCII charocter ccxle 
BL= Foreground color of charocter 

No output 

Remarks: This function does not treat the various control codes like bell and 
carriage as normal characters, and implements them as the control 
characters they represent 

After displaying a character with this function, the cursor position is 
incremented so that the next character will be printed at the following 
screen position. If the last screen position has been reached, the screen 
will be scrolled up one line and the output will continue in the first 
column of the last screen line. 

If bit seven of the BL register is set, the color value will be XORed with 
the previous color value of the pixels. The background color is zero. 

Characters can be displayed in the graphic mode with this function. The 
character patterns are taken from one of the EGA character tables. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function OFH EGA/VGA 
Screen: Returns current display mode 

Input: 

Output: 

864 

Reads the number of the current display mode, the number of characters per line, 
and the number of the current display page. 

AH= OFH 

AL= Video mode: 
0: 40x25-character text, 16 colors (EGANGA - color monitor) 
1: 40x25-character text, 16 colors (EGANGA- color monitor) 



Abacus 

Remark: 

Appendix E: EGA/VGA BIOS Functions 

2: 80x25-character text, 16 colors (EGANGA - color monitor) 
3: 80x25-character text, 16 colors (EGANGA - color monitor) 
4: 320x200 pixel graphics, 4 colors (EGANGA - color monitor) 
5: 320x200 pixel graphics, 4 colors (EGANGA - color monitor) 
6: 640x.200 pixel graphics, 2 colors (EGANGA - color monitor) 
7: 80x25-character text, mono (EGANGA - mono monitor) 
13: 320x200 pixel graphics, 16 colors (EGANGA - color monitor) 
14: 640x200 pixel graphics, 16 colors (EGANGA - color monitor) 
15: 640x.350 pixel graphics, mono (EGANGA - mono monitor) 
16: 640x350 pixel graphics, 4 colors (64K EGA - high-resolution 

monitor) 
640x350 pixel graphics, 16 colors (128K EGANGA - high
resolution monitor) 

17: 640x.480 pixel graphics, 2 colors (VGA only) 
18: 640x480 pixel graphics, 16 colors (VGA only) 
19: 320x200 pixel graphics, 256 colors (VGA only) 
AH= Number of characters per line 
BH = Number of current display page 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function OOH 
Screen: Set palette registers 

EGA/VGA 

Input: 

Output: 

Sets the contents of a palette register in the attribute controller of the EGANGA 
card 

AH= lOH 
AL= OOH 
BL= Color value 
BH = Register to be addressed 

No output 

Remarlcs: Since the register number is not checked by the BIOS, you can also 
program the other registers in the attribute controller. These include the 
mode control register, overscan register and others. 

The contents of registers BX, CX, DX, SI, DI, BP, and the segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function OlH 
Screen: Set screen border color 

EGA/VGA 

Copies resulting value into the overscan register of the EGA attribute controller. 

Input: AH= lOH 
AL= OIH 
BH = Borde.r color 

865 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Output: 

Remark: 

No output 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt 108, function lOH, sub-function 028 
Screen: Set all palette registers 

EGA/VGA 

Input: 

Output: 

Configures all 16 palette registers and the overscan register. 

AH= lOH 
AL= 02H 
ES = Segment address of color table 
DX = Offset address of color table 

No output 

Remarks: The ES:BX register pair points to a 17-byte table. The first 16 bytes will 
be ttansferred to the 16 palette registers of the attribute controller and the 
17th byte will be copied into the overscan register. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt 108, function 108, sub-function 03H 
Screen: Set blinking attribute 

EGA/VGA 

Input: 

Output: 

Remark: 

Determines whether bit 7 in the attribute byte of a character in the text mode will 
enable character blinking, or display characters on a high-intensity background. 

AH= IOH 
AL= OOH 
BL= Blinking attribute 

BL--0: high-intensity background 
BL=l: blinking 

No output 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt 108, function lOH, sub-function 078 
Screen: Read out palette register 

VGA 

Reads the contents of one of the attribute controller's palette registers. 

Input: AH= lOH 
AL= 07H 
BH = Number of palette register 

866 



Abacus 

Output: 

Remarks: 

Appendix E: EGA/VGA BIOS Functions 

BL= Contents of addressed palette register 

Since the BIOS doesn't verify the number of the palette register read, this 
function can read all the registers of the attribute controller. 

The contents of registers BL, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function 08H 
Screen: Read contents or overscan register 

VGA 

Input: 

Output: 

Returns the contents of the overscan register containing the screen's border color. 

AH= lOH 
AL= 08H 

BH = Contents of the overscan register 

Remarlcs: The contents of registers BL, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function 09H VG A 
Screen: Read contents or all palette registers and the overscan register 

Input: 

Output: 

Copies the contents of the 16 palette registers and overscan register into a buffer. 

AH= lOH 
AL= OOH 
ES = Segment address of the buffer 
DX = Offset address of the buffer 

No output 

Remarks: The buffer must be a minimum of 17 bytes long to allow room for all 
the palette registers (bytes 0-15) plus the overscan register (byte 16). 

The contents of registers BL, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function lOH 
Screen: Define a DAC color register 

Allows the definition of one of the 256 available DAC color registers. 

Input: AH = IOH 
BX= Number of the DAC color register (0-255) 
CH = Green value 
CL= Blue value 
DH= Red value 

VGA 

867 



Appendix E: EGA/VGA BIOS Functions PC System Programmi.ng 

Output: 

Remarks: 

No output 

Only bits 0 to 5 in the CH, CL and DH registers are of importance to 
this function. All other bits are ignored. 

The contents of registers BL, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function 12H 
Screen: Load multiple DAC color registers 

VGA 

Input: 

Output: 

Allows the definition of multiple DAC color registers. 

AH= lOH 
AL= 12H 
BX= Number of the first DAC color register (0-255) 
CX = Number of registers to be loaded 
ES = Segment address of the buffer 
DX = Offset address of the buffer 

No output 

Remarks: The assigned buffer must be able to hold a group of three consecutive 
bytes for each DAC color register. The first byte contains the red value; 
the second byte contains the green value; and the third byte contains the 
blue value. These first three bytes correspond to the first DAC color 
register being accessed, the next three for the bytes to the next DAC color 
register. 

Only bits 0 to 5 in the CH, CL and DH registers are of importance to 
this function. All other bits are ignored. 

If the sum of BX and CX is greater than 255, the first DAC color register 
is reloaded after the last register is loaded. 

The contents of registers BL, CX, DX, SI, DI, BP and all segment 
registers are unchanged by this function. 

Interrupt lOH, function lOH, sub-function 13H VGA 
Screen: Select color register or select a DAC register group 

Input: 

Output: 

868 

Manipulates bit 7 of the mode control registers. 

AH= IOH 
AL= 13H 
BL= OOH or OlH (see below) 
BH = see below 

No output 



Abacus 

Remarks: 

Appendix E: EGA/VGA BIOS Functions 

This sub-function performs as two different sub-functions, depending on 
the value contained in the BL register. Sub-function OOH allows color 
sele.ction, while sub-function OlH allows the sele.ction of the active DAC 
register group. 

Sub-function OOH copies bit 0 in the BH register into bit 7 of the mode 
control register, thus providing a method of color selection. If bit 0 in the 
BH register contains a value of 0, then the 256 DAC color registers are 
divided into four groups of 64 registers. Color selection involves bits 0-5 
in the corresponding palette register, as well as bits 2-3 of the color select 
register. These eight bits act as the index for the DAC color register. If 
bit 0 in the BH register contains a 1, the DAC color registers are divided 
into 16 groups of 16 registers. Then color selection involves the lowest 4 
bits of the palette register and the lowest 4 bits of the color select 
register, acting as the 8-bit index to the DAC color table. 

Sub-function OlH loads the color select register, whose contents are 
specified by the active group of DAC color registers. The contents of the 
BH register are copied to the color sele.ct register. 

The contents of registers BL, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function 15H 
Screen: Read a DAC color register 

VGA 

Returns the contents of one of the 256 DAC color registers. 

Input: 

Output: 

Remarks: 

AH= IOH 
AL= 15H 
BX= Number of the DAC color registers 

CH = Green value 
CL = Blue value 
DH= Red value 

Only bits 0 to 5 in the CH, CL and DH registers are of importance to 
this function. All other bits are ignored. 

The contents of registers BX, DL, SI, DI, BP and all segment registers 
are not affected by this function. 

869 



Appendix E: EGAJVGA BIOS Functions PC System Programming 

Interrupt lOH, function lOH, sub-function 17H VGA 
Screen: Load contents of multiple DAC color registers 

Loads several DAC color registers at a time. 

Input: 

Output: 

Remarks: 

AH= lOH 
AL= 17H 
BX= Number of the first DAC color register to be loaded (0-255) 
CX = Number of registers to be loaded 
ES= Segmentaddressofbuffer 
DX= Offset address of buffer 

No output 

The contents of each DAC color register are represented within a buffer by 
three consecutive bytes. The red value is loaded into the first of these 
registers; the green value is loaded into the second of these registers; and 
the blue value· is loaded into the third register. The first group of three 
bytes corresponds to the first DAC color register addressed, the second 
group to the next DAC color register, etc. 

Only bits 0 to 5 in the CH, CL and DH registers are of importance to 
this function. All other bits are ignored. 

If the sum of BX and CX is greater than 255, the first DAC color register 
is reloaded after the last register is loaded (wrap-around occurs). 

The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function 18H 
Screen: Load DAC mask register 

VGA 

Loads the specified value into the DAC mask register. 

Input: 

Output: 

Remarks: 

870 

AH= IOH 
AL= 18H 
BL= Value ofDAC mask register 

No output 

The contents of the DAC mask register play an important role in color 
selection. An AND instruction adds it to the index access to the DAC 
color table. 

The contents of registers BH, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt lOH, function lOH, sub-function 19H 
Screen: Read out contents of the DAC mask register 

VGA 

Input: 

Output: 

Reads the current contents of the DAC mask register. 

AH= lOH 
AL= 19H 

BL= Contents of the DAC mask register 

Remarlcs: The contents of the DAC mask register play an important role in color 
selection. An AND instruction adds it to the index access to the DAC 
color table. 

The contents of registers BH, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function lAH VGA 
Screen: Returns method of color selection and color select register 

Input: 

Output: 

Returns the method of color selection, contained in the contents of bit 7 of the 
mode control register. It also returns the contents of the color select register chosen 
by the active group of DAC color registers. 

AH= lOH 
AL= lAH 

BL= Bit 7 of mode control register 
BH = Contents of color select registers 

Remarlcs: The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function lOH, sub-function lBH 
Screen: Convert DAC color register into gray scales 

Converts a specified range within a DAC color table into gray scales. 

Input: AH= lOH 
AL= lBH 

Output: 

BX= Number of first DAC color register to be converted 
CX = Total number of DAC color registers to be converted 

No output 

VGA 

Remarlc:s: Conversion into grays results from changes to the red, green and blue 
values, as well as the intensity of these values. The default factor for red 
is 0.3, the default factor for green is 0.59, and the default for blue 0.11. 

871 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

The contents of registers BX, ex, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function llH, sub-function OOH 
Screen: Load user-defined character set 

EGA/VGA 

Input: 

Output: 

Loads a user-defined character set from RAM into one of the two EGA character 
tables. 

AH= llH 
AL= OOH 
BH = Lines per character (also bytes per character) 
BL= Character table (0 or I) 
ex= Number of characters in table 
DX = ASCII code of first character in table 
ES = Segment address of character table in RAM 
BP= Offset address of character table in RAM 

No output 

Remarks: A maximum of 512 characters can be loaded per character table. 

The loaded character set is not activated, nor are the CRTe registers 
programmed to the size of the characters. The changes will not be visible 
on the screen unless the character definitions are loaded into the active 
character table. 

The contents of registers BX, ex, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function llH, sub-function OlH 
Screen: Load 8x14 character set 

EGA/VGA 

Input: 

Output: 

Loads the entire 8xl4-pixel character set from EGA/VGA ROM-BIOS into one of 
the two character set tables. 

AH= 11H 
AL= OIH 
BL= Character table (0 or I) 

No output 

Remarks: The loaded character set is not activated, nor are the CRTC registers 
programmed to the size of the characters. The changes will not be visible 
on the screen unless the character definitions are loaded into the active 
character table. 

872 

The contents of registers BX, ex, DX, SI, DI, BP and the segment 
registers are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt lOH, function llH, sub-function 02H 
Screen: Load 8x8 character set 

EGA/VGA 

Input: 

Output: 

Loads the entire 8x8-pixel character set from EGA/VGA ROM-BIOS into one of 
the two character set tables. 

AH= llH 
AL= 02H 
BL= Character table (0 or 1) 

No output 

Remarks: The loaded character set is not activated, nor are the eRTe registers 
programmed to the size of the characters. The changes will not be visible 
on the screen unless the character definitions are loaded into the active 
character table. The EGA card displays 43 lines on the screen, while the 
VGA card displays 50 lines. 

The contents of registers BX, ex, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function llH, sub-function 03H 
Screen: Activate character set 

EGA/VGA 

Activates one (or two) of the four 256-character character sets. 

Input: 

Output: 

Remarks: 

AH= llH 
AL= 03H 
BL= Number of the character set to activate 

No output 

Bits zero and one of the BL register specify the number of the character 
set to be accessed when bit three of the attribute byte of the character is 
zero. 

Bits two and three of the BL register specify the number of the character 
set to be accessed when bit three of the attribute byte of the character is 
one. 

If the contents of bits zero and one are identical to the contents of bits 
two and three of the BL register, then bit three of the character attribute 
byte has no effect on the character displayed. Only 256 different characters 
can then be displayed on the screen. 

The contents of registers BX, ex, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

873 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Interrupt lOH, function llH, sub-function 04H 
Screen: Load 8xl6 character set 

VGA 

Input: 

Output: 

Loads the entire 8xl6-pixel character set from the VGA BIOS into one of the two 
character set tables. 

AH= UH 
AL= 04H 
BL= Corresponding character set table (0 or I) 

No output 

Remarks: The loaded character set is not activated, nor are the CRTC registers 
programmed to the size of the characters. The changes will not be visible 
on the screen unless the character definitions are loaded into the active 
character table. The VGA card displays 25 text lines on the screen. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function llH, sub-function lOH 
Screen: Load and activate user-defined character set 

EGA/VGA 

Input: 

Output: 

Loads a user-defined character set from RAM into one of the two EGA character 
tables and activates it by programming the CRTC registers. 

AH= UH 
AL= !OH 
BH = Lines per character (also bytes per character) 
BL= Character table (0 or 1) 
CX = Number of characters in table 
DX = ASCII code of first character in table 
ES = Segment address of character table in RAM 
BP= Offset address of character table in RAM 

No output 

Remarlcs: A maximum of 512 characters can be loaded per character table. 

874 

The number of text lines displayed on the screen results from the height 
of the individual characters. It is calculated by dividing the number of 
screen lines (350) by the character height. 

The starting and ending lines of the screen cursor are automatically 
adapted to the height of the new character matrix. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt lOH, function llH, sub-function llH 
Screen: Load and activate 8x14 character set 

EGA/VGA 

Input: 

Output: 

Loads the entire 8xl4-pixel character set from EGNVGA ROM-BIOS into one of 
the two character set tables, and activates it by programming the CRTC registers. 

AH= lOH 
AL= llH 
BL= Character table (0 or I) 

No output 

Remarks: The function sets the EGA screen to display 25 lines of text, or sets the 
VGA screen to display 28 lines of text. 

The starting and ending lines of the screen cursor are automatically 
adapted to the height of the new character matrix. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function llH, sub-function 128 
Screen: Load and activate 8x8 character set 

EGA/VGA 

Input: 

Output: 

Loads the entire 8x8-pixel character set from the ROM-BIOS of the EGNVGA 
card into one of the two character set tables, and activates it by programming the 
CRTC registers. 

AH= IOH 
AL= 12H 
BL= Character table (0 or 1) 

No output 

Remarks: The function sets the screen to display 43 lines of text (EGA) or 50 lines 
of text (VGA). 

The starting and ending lines of the screen cursor are automatically 
adapted to the height of the new character matrix. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

875 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Interrupt lOH, function UH, sub-function 14H 
Screen: Load 8x16 character set 

VGA 

Input: 

Output: 

Loads a complete 8x16 character set from the VGA card BIOS into one of the two 
character set tables, and activates it through CRTC register programming. 

AH= IOH 
AL= 14H 
BL= Character table (0 or 1) 

No output 

Remarks: When this function is called, the VGA card displays 25 lines of text on 
the screen. 

The starting and ending lines of the screen cursor automatically change to 
match the height of the new character matrix. 

The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function UH, sub-function 30H 
Screen: Get information about the character generator 

EGA/VGA 

Returns various information about the current status of the character generator. 

Input: 

Output: 

Remarks: 

876 

AH= llH 
AL= 03H 
BH = Type of information desired 

BH=O: contents of interrupt vector lFH 
BH=l: contents of interrupt vector4J:::r 
BH=2: address of the ROM 8x14 character table 
BH=3: address of the ROM 8x8 character table 
BH=4: address of the second half of the 8x8 character table 
BH=5: address of the alternative ROM 9x14 character table 
BH=6: Address of the alternative ROM 8x16 character table 
BH=7: Address of the alternative ROM 9x16 character table 

CX = Height of current character matrix 
DL = Number of columns per line - 1 
ES = Segment address of the pointer 
BP = Offset address of the pointer 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers CS, DS and SS are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt lOH, function 12H, sub-function lOH 
Screen: Determine EGA/VGA configuration 

Input: 

Output: 

Reads the configuration of the EGAN GA card 

AH= 12H 
BL= IOH 

BH = Monitor connected 
BH=O: color or high-resolution monitor 
BH=l: monochrome monitor 

BL= EGANGA RAM capacity 
BL=0:64K 
BL=l: 128K 
BL=2: 192K 
BL=3:256K 

EGA/VGA 

Remarks: The contents of registers DX, SI, DI, BP and the segment registers are 
not affected by this function. 

Interrupt lOH, function 12H, sub-function 20H 
Screen: Activate alternate bardcopy routine 

EGA/VGA 

Installs an alternative hardcopy routine which prints as many lines as are displayed 
on the screen. The hardcopy routine of the normal ROM-BIOS always prints 25 
lines and is not suited for creating a hardcopy of the EGANGA modes, which 
display more than 25 lines on the screen. 

Input: 

Output: 

AH= 12H 
BL= 20H 

No output 

Remark: The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function 12H, sub-function 30H 
Screen: Specify number of scan lines 

Selects the number of scan lines on the screen. 

Input: AH= 12H 
BL= 30H 

Output: 

AL = Scan line status 
AL=O : 200 scan lines (EGA and VGA) 
AL=l : 350.scan lines (EGA and VGA) 
AL=2 : 400 scan lines (VGA only) 

No output 

EGA/VGA 

877 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Remarks: The selected number of scan lines can only be displayed when the 
appropriate video card and monitor are in use. For example, a eGA 
monitor can only display 200 scan lines, even if the video card can 
operate in a higher resolution. 

The contents of registers BX, ex, DX, SI, DI and BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function 12H, sub-function 31H 
Screen: Toggle palette register loading 

VGA 

Input: 

Output: 

Toggles the automatic loading of palette registers in VGA BIOS. The system 
either loads alternate display modes when function OOH is invoked, or loads default 
values. 

AH= 12H 
BL= 31H 
AL = Automatic palette register loading 

AL=O:Yes 
AL=l:No 

No output 

Remarks: The contents of registers BX, ex, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function 12H, sub-function 32H 
Screen: Enable/disable CPU access to video RAM 

EGA/VGA 

Enables or disables direct CPU access to video RAM and its different 1/0 ports. 

Input: 

Output: 

Remarks: 

878 

AH= 12H 
BL= 32H 
AL= Access status 

AL=O: Access enabled 
AL=l: Access denied 

No output 

The EGA BIOS doesn't recognize this function, but you can still suppress 
video card access directly using bit 1 of the output register (port address 
3C2H). 

The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 



Abacus Appendix E: EGA/VGA BIOS Functions 

Interrupt 108, function 128, sub-function 338 VG A 
Screen: Enable/disable automatic gray scaling in DAC color registers 

Input: 

Output: 

Toggles automatic gray scaling in VGA BIOS. This is different from function 
IOH, sub-function IBH, which enables selective gray scaling in DAC color 
registers. 

AH= 12H 
BL= 33H 
AL= DAC color register gray scaling 

AL=O:On 
AL=l :Off 

No output 

The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt 108, function 128, sub-function 34H 
Screen: Enable/disable text cursor emulation 

VGA 

Input: 

Output: 

Toggles text cursor emulation mode. Calling function OIH (for defining the 
starting and ending lines of the cursor) doesn't compensate for character matrices in 
different resolutions. This function controls that change when in VGA mode. 

AH= 12H 
BL= 34H 
AL= Cursor emulation mode 

AL=O:On 
AL=l:Off 

No output 

Remarks: The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt 108, function 128, sub-function 368 
Screen: Suppress screen refresh 

VGA 

Temporarily suppresses screen refresh. Disabling refresh relieves video RAM of 
many system level tasks, especially those involving complex screen graphics. 

Input: 

Output: 

AH= 12H 
BL= 36H 
AL = Screen refresh 

AL=O:On 
AL=l:Off 

No output 

879 



Appendix E: EGA/VGA BIOS Functions PC System Programming 

Remarks: The contents of registers BX, CX, DX, SI, DI, BP and all segment 
registers are not affected by this function. 

Interrupt lOH, function 13H 
Screen: Display a string 

EGA/VGA 

Input: 

Output: 

Displays a string at a specified position on the screen, in a specific display page. 
The characters are taken from a buffer whose address is i}assed to the function. 

AH= 13H 
AL= Output mode (0-3) 

AL=O: Attribute in BL, reserve cursor position 
AL=l: Attribute in BL, update cursor position 
AL=2: Attributes in buffer, reserve cursor position 
AL=3: Attributes in buffer, update cursor position 

BL= Attribute byte of characters (modes 0 and 1 only) 
CX = Number of characters to be printed 
DH= Screen line 
DL = Screen column 
BH = Video page 
ES = Segment address of the buffer 
BP = Offset address of the buffer 

No output 

Remarks: In modes 1 and 3 the cursor position is placed after the last character of 
the string so that BIOS output will continue at the character after the 
string. This does not happen in modes 0 and 2. 

880 

In modes 0 and 1 the buffer contains only the ASCII codes of the 
characters to be printed. The color of all of the characters in the string is 
specified by the BL register. In modes 2 and 3, each character in the buffer 
is followed by the corresponding attribute byte, so that each character has 
its own attribute. The BL register does not have to be loaded in these 
modes. Although the string must be twice as long as the number of 
characters to be printed in these modes, the CX register contains just the 
number of ASCII characters to be printed, not the string buffer's length. 

Control codes such as bell and carriage return are interpreted as control 
codes and not as nonnal ASCII codes. An error occurs when carriage 
return and linefeed are printed on a display page other than zero, however. 
These characters may be printed on display page 0, regardless of the 
display page specified in BH. 

When the last screen position ir reached the screen will move up one line 
and the output will continue with the first column of the last screen line. 

When printing in the graphic mode the contents of the BL register 
detennine the foreground color of the character (the background is zero). If 



Abacus Appendix E: EGA/VGA BIOS Functions 

bit seven of the BL register is set, the color value will be XORed with 
the old color value. 

This function can also be used to print characters in the graphic mode, in 
which case the character patterns will be taken from one of the EGANGA 
character tables. 

The contents of registers BX, CX, DX, SI, DI, BP and the segment 
registers are not affected by this function. 

Interrupt lOH, function lAH 
Screen: Determine video card type 

VGA 

Detennines the existence of the active video caret 

Input: 

Output: 

Remarks: 

AH= 13H 
AL= 0 

AL= lAH 
BL= Device code for active video card 
BH = Device code for inactive video card 

If the value lAH is not loaded into the AL register, then the video card in 
operation is not a VGA card (the IAH indicates a VGA BIOS). The 
function can return the following device codes: 

FFH = Unknown video card 
OOH= No video card 
OIH = MDA with monochrome display 
02H = CGA with CGA monitor 
04H =EGA with EGA or multisync monitor 
05H = EGA - monochrome display 
07H = VGA - analog monochrome display 
08H = VGA - analog color display (VGA, multisync) 

The contents of registers CX, DX, SI, DI, BP and all segment registers 
are not affected by this function. 

881 



Appendix F 

Mouse Driver Interrupts 

Interrupt 33H, function OOH 
Reset mouse driver 

Mouse 

Resets (initializes) the mouse driver. 

Input: 

Output: 

Remarks: 

AX= OOOOH 

AX = Mouse installation status 
AX=FFFFH: Mouse driver installed 
AX=OOOOH: Error, no mouse driver installed 

BX= Number of mouse buttons 

The reset process executes the following tasks: 

Moves the mouse pointer to the center of the screen and clears the pointer 
from the screen. When enabled, the default pointer appears as an inverse 
video square. The representation is always in display page 0, independent 
of the current display mode. The entire screen area becomes the total range 
of mouse movement. 

Installs the event handler is installed by a program (default is disabled). 

Installs lightpen emulation (default is disabled). 

Specifies mouse pointer's speed. Default relative speed is 8 mickeys per 8 
horizontal pixels and 16 mickeys per 16 vertical pixels. 

Specifies maximum mouse speed (default is 64 mickeys per second). 

882 



Abacus Appendix F: Mouse Driver Interrupts 

Interrupt 33H, function OlH 
Display mouse pointer 

Mouse 

Input 

Output: 

Displays the mouse pointer on the screen. This pointer follows any movement the 
user makes with the mouse device. 

AX= OOOIH 

No output 

Remarks: This function increments an internal counter which determines whether 
the mouse pointer should be displayed on the screen. When the mouse 
driver is initialized using function OOH, this pointer contains the value -1 
(i.e., the mouse pointer does not appear). If this counter contains the 
value 0 after calling function OIH, the mouse pointer appears on the 
screen. 

The mouse driver follows the mouse movement even when the mouse 
pointer is not displayed on the screen. After calling this function, the 
mouse pointer may not appear at the same location as it was when the 
pointer was previously removed by calling function OOH or function 02H. 

Interrupt 33H, function 02H 
Remove mouse pointer 

Mouse 

Removes the mouse pointer from the screen. 

Input 

Output: 

Remarks: 

AX= 0002H 

No output 

This function decrements an internal counter which determines whether 
the mouse pointer should appear on the screen. If the counter contains the 
value 0, the mouse pointer is displayed on the screen, while the value -1 
removes the mouse pointer from the screen. 

The mouse driver follows the mouse movement even when the mouse 
pointer is not displayed on the screen. 

After calling this function, the mouse pointer may not appear at the same 
location as it was when the pointer was previously removed by calling 
function OOH or function 02H. 

883 



Appendix F: Mouse Driver Interrupts PC System Programming 

Interrupt 33H, function 03H Mouse 
Get pointer position/button status 

Input 

Output 

Returns the current position of the mouse pointer and the current status of the 
mouse buttons. 

AX= 0003H 

BX= Mouse button status 
Bit O=l: Left mouse button activated 
Bit 1=1: Right mouse button activated 
Bit 2=1: Center mouse button activated 
Bits 3-15: Unused 

CX = X coordinate (horizontal mouse position) 
DX= Y coordinate (vertical mouse position) 

Remarks: The coordinates returned in the CX and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

If the mouse is equipped with only two mouse buttons, the information 
about the central mouse button does not have significance. 

Interrupt 33H, function 04H 
Move mouse pointer 

Mouse 

Moves the active mouse pointer to a certain position on the screen. 

Input 

Output: 

Remarks: 

884 

AX= 0004H 
CX = X coordinate (horizontal mouse position) 
DX= Y coordinate (vertical mouse position) 

No output 

The coordinates returned in the CX and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

If the position indicated is outside the range of movement specified by 
functions 07H and 08H, the function adjusts coordinates so that the 
mouse pointer remains within this range of movement. 

The mouse pointer moves to the new position, even if the mouse is not 
currently visible. Once re-enabled, the mouse pointer appears at this new 
position. 



Abacus Appendix F: Mouse Driver Interrupts 

Interrupt 33H, function OSH Mouse 
Determine number of times mouse button was activated 

Input 

Output: 

Informs the calling program of how often a mouse button has been pressed since 
the last call of function 05H. Function 05H also informs the calling program of 
the pointer's location on the screen when the button was last activated. 

AX= 0005H 
BX= Mouse button activated 

BX=O: Left mouse button 
BX=l: Right mouse button 
BX=2: Center mouse button 

BX = Status of all mouse buttons: 
Bit O=l: Left mouse button activated 
Bit 1=1: Right mouse button activated 
Bit 2=1: Center mouse button activated 
Bits 3-15: Unused 

BX= Mouse buttons activated since last function call 
CX = Horizontal mouse position during the last activation 
DX= Vertical mouse position during the last activation 

Remarks: The coordinates returned in the CX and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. The activation counter for the 
mouse button addressed is reset to 0 when this function is called. 

Interrupt 33H, function 06H Mouse 
Determine number of times mouse button was released 

Input 

Output: 

Informs the calling program of how often a mouse button has been released since 
the last call of function 06H. Function 06H also informs the calling program of 
the pointer's location on the screen when the button was last activated. 

AX= 0006H 
BX= mouse button addressed 

BX=O: Left mouse button 
BX=l: Right mouse button 
BX=2: Center mouse button 

BX= Status of all mouse buttons 
Bit 0=1: Left mouse button activated 
Bit 1=1: Right mouse button activated 
Bit 2=1: Center mouse button activated 
Bits 3-15: Unused 

BX= Mouse buttons activated since last function call 
CX = Horizontal mouse position during the last activation 
DX= Vertical mouse position during the last activation 

885 



Appendix F: Mouse Driver lnlerrupts PC System Programming 

Remarlcs: The coordinates returned in the ex and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

The activation counter for the mouse button addressed is reset to 0 when 
this function is called. 

Interrupt 338, function 078 Mouse 
Set horizontal range of movement 

Input 

Output: 

Defines the horizontal range of movement for the mouse pointer. Once set, the 
user cannot move the mouse pointer out of this range. 

AX= 0007H 
ex = Minimal horizontal pointer position 
DX= Maximum horizontal pointer position 

No output 

Remarks: The coordinates passed in the CX and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

If the mouse pointer is outside of this range when function 07H is called, 
the mouse driver automatically moves the mouse pointer within the 
limits of the range of movement. If the value in the DX register is less 
than the value in the ex registers, the two parameters are exchanged. 

Interrupt 338, function 088 
Set vertical range of movement 

Mouse 

Input 

Output: 

Defines the vertical range of movement for the mouse pointer. Once set, the user 
cannot move the mouse pointer out of this range. 

AX= 0008H 
ex= Minimum vertical pointer position 
DX= Maximum vertical pointer position 

No output 

Remarks: The coordinates passed in the ex and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

886 

If the mouse pointer is outside of this range when function 07H is called, 
the mouse driver automatically moves the mouse pointer within the 
limits of the range of movement. 



Abacus Appendix F: Mouse Driver /nterr"Pts 

If the value in the DX register is less than the value in the CX registers, 
the two parameters are exchanged. 

Interrupt 33H, function 098 Mouse 
Set mouse pointer (graphic mode) 

Input 

Output: 

Defines the appearance of the mouse pointer in graphic mode, as well as the 
bitfield which compensates for the pixels around the mouse pointer. 

AX= 0009H 
BX = Pointer width starting at left border of bitfield 
CX = Pointer height starting at top border of bitfield 
ES = Segment address of bitfield 
DX = Offset address of bitfield 

No output 

Remarks: The bitfield consists of 64 bytes, of which the first 32 are an AND 
comparison, and the remaining 32 are an OR combination. Both sets of 
bytes are based upon the current pixel pattern. 

Interrupt 33H, function OAH 
Set mouse pointer (text mode) 

Mouse 

Input 

Output: 

Defines the bitmask which specifies the appearance of the mouse pointer in text 
mode. 

AX= OOOAH 
BX= Pointer type 

BX=O: Software pointer 
BX=l: Hardware pointer 

CX = AND mask (software pointer) or starting line (hardware pointer) 
DX = XOR mask (software pointer) or ending line (hardware pointer) 

No output 

Remarks: If the software pointer is selected, the code of the character beneath the 
mouse pointer and its attribute byte are combined logically with the mask 
in the CX register through a binary AND, and then with the value in the 
DX register through an exclusive OR (XOR). The attribute byte is 
combined with the most significant byte (CH and DH). The character code 
is combined with the least significant byte (CL and DL). 

The hardware pointer is the same shape as the normal text mode cursor. 
Monochrome mode values for the starting and ending lines range from 0 
to 13. Color mode values for the starting and ending lines range from 0 to 
7. 

887 



Appendix F: Mouse Driver Interrupts PC System Progr«11111Ung 

Interrupt 33H, function OBH 
Determine movement values 

Mouse 

Input 

Output: 

Determines the distance between the current mouse position and the mouse 
position during the last call of function OBH. 

AX= OO>BH 

CX = Horizontal distance from last point in mickeys 
DX= Vertical distance from last point in mickeys 

Remarks: These values must be interpreted as signed numbers. Positive values 
indicate movement toward the bottom or right border of the screen, while 
negative values indicate movement toward the top or left border of the 
screen. 

These values are given in mickeys.(1 mickey=l/200 inch) rather than in 
pixels. 

Interrupt 33H, function OCH 
Set event handler 

Mouse 

Input 

Output: 

Sets the address of an event handler called by the mouse driver when a particular 
mouse event occurs. 

AX= OOOCH 
CX = Events which trigger the call of the event handler (event mask) 
Bit 0: Mouse movement 
Bit 1: Left mouse button activated 
Bit 2: Left mouse button released 
Bit 3: Right mouse button activated 
Bit 4: Right mouse button released 
Bit 5: Center mouse button activated 
Bit 6: Center mouse button released 
Bits 7-15: Unused 
ES = Segment address of handler 
DX = Offset address of handler 

No output 

Remarks: The event handler is called by the mouse driver through a FAR call 
assembler instruction, and therefore must be terminated with a FAR RET 
instruction. None of the various processor registers may be returned to the 
caller with a changed content. 

888 

The mouse driver passes the following information to the event handler 
through the processor registers during the call: 

AX = event mask. The bits correspond to the various events as indicated 
in the CX register during the installation of the event handler. In 



Abacus Appendix F: Mouse Driver Interrupts 

addition, other bits can be set, since the value reflects the current 
status of the mouse driver, and is not limited to the selected events. 

BX= mouse button status: 

Bit 0 =Left mouse button activated 
Bit 1 = Right mouse button activated 
Bit 2 =Center mouse button activated 

ex = horizontal mouse position. 

DX = vertical mouse position. 

SI = length of last horizontal mouse movement 

DI = length of the last vertical mouse movement. 

DS = data segment of the mouse driver. 

The coordinates returned in the CX and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

The values in the SI and DI registers refer to mickeys (one mickey = 
1/200 inch). 

These mickey values must be interpreted as signed numbers. Positive 
values indicate movement toward the bottom or right border of the screen, 
while negative values indicate movement toward the top or left border of 
the screen. 

Interrupt 33H, function ODH 
Enable lightpen emulation 

Mouse 

Input 

Output: 

Enables emulation of the lightpen, and simulates a lightpen which if none is 
present. 

AX= OOODH 

No output 

Remarks: Lightpen emulation only makes sense when used with an application 
which supports the lightpen, or makes lightpen reading routines available 
(e.g., the PEN command in PC-BASIC). 

The lightpen and mouse are closely related in programming: The position 
of the mouse pointer is directly related to the lightpen's position on the 
screen, and pressing the left and right mouse button has the same result as 
pressing the button on the lightpen. 

889 



Appendix F: Mouse Driver Interrupts PC System Programming 

Interrupt 338, function OEH 
Disable lightpen emulation 

Mouse 

Input 

Output: 

Disables the lightpen emulation enabled by a previous call to function ODH. 

AX= OOOEH 

No output 

Remarks: Lightpen emulation only makes sense when used with an application 
which supports the lightpen, or makes lightpen reading routines available 
(e.g., the PEN command in PC-BASIC). 

The lightpen and mouse are closely related in programming: The position 
of the mouse pointer is directly related to the lightpen's position on the 
screen, and pressing the left and right mouse button has the same result as 
pressing the button on the lightpen. 

Interrupt 33H, function OFH 
Set pointer speed 

Mouse 

Input 

Output: 

Defines the relationship between mickeys and screen pixels. This specifies the 
sensitivity of the mouse and the speed at which the mouse pointer moves across 
the screen. 

AX= OOOFH 
CX = Number of horizontal mickeys 
DX= Number of vertical mickeys 

No output 

Remarks: Values in the CX and DX registers can range from 1 to 32767. 

890 

The default setting is 8 horizontal mickeys and 16 vertical mickeys. This 
causes the mouse pointer to move twice as fast horizontally as it moves 
vertically. 

Calling function OOH (Reset mouse driver) changes any previously set 
values to the default values. 



Abacus Appendix F: Mouse Driver Interrupts 

Interrupt 33H, function lOH 
Exclusion area 

Mouse 

Input 

Output: 

Designates any area of the screen as an exclusion area. The mouse pointer 
disappears if moved into the exclusion area. 

AX= OOlOH 
CX = X-coordinate, upper left comer of exclusion area 
DX = Y-coordinate, upper left corner of exclusion area 
SI = X-coordinate, lower right comer of exclusion area 
DI = Y-coordinate, lower right corner of exclusion area 

No output 

Remarks: The coordinates passed in the CX, DX, DI and SI registers refer to the 
pixel positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

Calling function OOH (Reset mouse driver) or function OlH (Display 
mouse pointer) deletes the exclusion area coordinates. 

Interrupt 33H, function 13H Mouse 
Set maximum for mouse speed doubling 

Input 

Output: 

Sets the maximum limit for doubling mouse speed. If the speed of the mouse 
movement exceeds a certain limit, the mouse driver doubles the mouse pointer 
speed by doubling the movement's relationship between points and mickeys. 

AX= 0013H 
DX= Limit in mickeys per second 

No output 

Remarks: l mickey= 1/200 inches. 

To prevent doubling of the mouse speed, the limit can be set higher. 

Speeds in excess of 5,000 mickeys per second cannot be achieved by 
practical means. 

891 



Appendix F: Mouse Driver Interrupts PC System Programming 

Interrupt 33H, function 14H 
Exchange event handlers 

Mouse 

Input 

Output: 

Installs a new event handler for certain mouse events, but also retains the address 
of the old event handler. 

AX= 0014H 
CX = Events which should trigger event handler call 
Bit 0: Mouse movement 
Bit 1: Left mouse button activated 
Bit 2: Left mouse button released 
Bit 3: Right mouse button activated 
Bit 4: Right mouse button released 
Bit 5: Center mouse button activated 
Bit 6: Center mouse button released 
Bit 7-15: Unused 

ES = Segment address of new event handler 
DX= Offset address of new event handler 

CX = Event mask of the previously installed event handler 
ES = Segment address of previously installed event handler 
DX = Offset address of previously installed event handler 

Remarks: The event handler is called by the mouse driver through a FAR call 
assembler instruction, and therefore must be terminated with a FAR RET 
instruction. None of the various processor registers may be returned to the 
caller with a changed content. 

892 

The mouse driver passes the following information to the event handler 
through the processor registers during the call: 

AX = event mask. The bits correspond to the various events as indicated 
in the CX register during the installation of the event handler. In 
addition, other bits can be set, since the value reflects the current 
status of the mouse driver, and is not limited to the selected events. 

BX= mouse button status: 

Bit 0 =Left mouse button activated 
Bit 1 = Right mouse button activated 
Bit 2 =Center mouse button activated 



Abacus Appendix F: Mouse Driver Interrupts 

ex = horizontal mouse position. 

DX = vertical mouse position. 

SI = length of last horizontal mouse movement 

DI = length of the last vertical mouse movement. 

DS =data segment of the mouse driver. 

The coordinates returned in the ex and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

The values in the SI and DI registers refer to mickeys (one mickey = 
1/200 inch). 

These mickey values must be interpreted as signed numbers. Positive 
values indicate movement toward the bottom or right border of the screen, 
while negative values indicate movement toward the top or left border of 
the screen. 

Interrupt 33H, function 15H 
Determine mouse status buffer size 

Mouse 

Input 

Output: 

Returns the size of the mouse status buffer, in which a program can store the 
complete status of the mouse driver. 

AX= 0015H 

BX = Mouse status buffer size in bytes 

Remarks: Function 16H (Store mouse status) stores the mouse status in the buffer. 

Interrupt 33H, function 16H 
Store mouse status 

Mouse 

Stores mouse status information in a buffer. 

Input 

Output: 

Remarks: 

AX= 0016H 
ES = Segment address of mouse status buffer 
DX = Offset address of mouse status buffer 

No output 

The caller is responsible for creating a buffer large enough to contain all 
the status information. Before calling this function, call function 15H 
(Determine mouse status buffer size) to determine the size of the mouse 
status buffer. 

893 



Appendix F: Mouse Driver Interrupts PC System Programming 

This function works well when called before executing a program using 
the EXEC function. This allows the mouse status to be saved in 
memory, then restored from within the called program. 

Interrupt 33H, function 17H 
Restore mouse status 

Mouse 

Input 

Output: 

Reads all mouse parameters from a buffer where they had been stored by function 
16H. 

AX= 0017H 
ES = Segment address of mouse status buffer 
DX= Offset address of mouse status buffer 

No output 

Interrupt 33H, function 18H 
Install alternate event handler 

Mouse 

Input 

Output: 

This function permits a program to install a limited range event handler. This 
handler can be called by the mouse driver when certain mouse events occur in 
conjunction with the keyboard. 

AX= 0018H 
CX = Events which should trigger the call of the event handler 
Bit 0: Mouse movement 
Bit 1: Left mouse button activated 
Bit 2: Left mouse button released 
Bit 3: Right mouse button activated 
Bit 4: Right mouse button released 
Bit 5: Shift key pressed during mouse button event 
Bit 6: Ctrl key pressed during mouse button event 
Bit 7: Alt key pressed during mouse button event 
Bits 8-15: Unused 
ES = Segment address of event handler 
DX= Offset address of event handler 

AX = Installation status 
AX=0018H: Event handler installed 
AX=FFFFH: Event handler could not be installed 

Remarks: At least one of bits 5 to 7 must be set in the event mask of the CX 
register to ensure that the event reacts to at least one of the control keys. 
If the programmer prefers not to read the Shift, Ctrl or Alt keys along 
with mouse buttons, use functions OCH or 14H instead. 

894 

An error can occur if three alternate event handlers were previously 
installed, or if an event handler with the same event mask already exists. 



Abacus 

Remarks: 

Appendix F: Mouse Driver Interrupts 

The event handler is called by the mouse driver through a FAR call 
assembler instruction, and therefore must be terminated with a FAR RET 
instruction. None of the various processor registers may be returned to the 
caller with a changed content. 

The mouse driver passes the following information to the event handler 
through the processor registers during the call: 

AX = event mask. The bits correspond to the various events as indicated 
in the CX register during the installation of the event handler. In 
addition, other bits can be set, since the value reflects the current 
status of the mouse driver, and is not limited to the selected events. 

BX = mouse button status: 

Bit 0 =Left mouse button activated 
Bit 1 = Right mouse button activated 
Bit 2 = Center mouse button activated 

ex = horizontal mouse position. 

DX = vertical mouse position. 

SI = length of last horizontal mouse movement 

DI = length of the last vertical mouse movement. 

DS = data segment of the mouse driver. 

The coordinates returned in the CX and DX registers refer to the pixel 
positions in the virtual mouse display screen rather than physical 
positions on the actual display screen. 

The values in the SI and DI registers refer to mickeys (one mickey = 
1/200 inch). 

These mickey values must be interpreted as signed numbers. Positive 
values indicate movement toward the bottom or right border of the screen, 
while negative values indicate movement toward the top or left border of 
the screen. 

895 



Appendix F: Mouse Driver Interrupts PC System Programming 

Interrupt 33H, function 19H Mouse 
Determine address of alternate event handler 

Input 

Output: 

Returns the address of an alternate event handler to the caller. 

AX= 0019H 
CX = Event handler event mask 

CX = OOOOH: Error 
ES = Segment address of event handler 
DX = Offset address of event handler 

Remarks: See the description of function 18H above for additional information 
about the meanings of each bit in the event mask. 

The function call fails if no alternate event handler with the indicated 
event mask was previously installed. 

Interrupt 33H, function lAH 
Set mouse sensitivity 

Mouse 

Input 

Output: 

Defines the relationship between physical mouse movement and mouse pointer 
movement Also defines the maximum for doubling mouse speed. 

AX= OOIAH 
BX= Number of horizontal mickeys 
CX = Number of vertical mickeys 
DX = Maximum limit for doubling the mouse speed 

No output 

Remarks: Values in the CX and DX registers can range from 1to32767. 

896 

The default setting is 8 horizontal mickeys and 16 vertical mickeys. This 
causes the mouse pointer to move twice as fast horizontally as it moves 
vertically. 

To prevent doubling of the mouse speed, the limit can be set higher. 

Speeds in excess of 5,000 mickeys per second cannot be achieved by 
practical means. 

Calling function OOH (Reset mouse driver) changes any previously set 
values to the default values. 



Abacus Appendix F: Mouse Driver Interrupts 

Interrupt 33H, function lBH 
Determine mouse sensitivity 

Mouse 

Input 

Output: 

Returns the parameters previously set by calling function lAH or functions OFH 
and 13H. 

AX= OOlBH 

BX= Number of horizontal mickeys 
CX = Number of vertical mickeys 
DX = Maximum limit for doubling the mouse speed 

Interrupt 33H, function lCH Mouse 
Set mouse hardware interrupt rate 

Input 

Output: 

Determines the frequency at which the mouse hardware reads the current mouse 
position and mouse button status. 

AX= OOlCH 
BX= Interrupt rate 
Bit 0: No interrupts 
Bit 1: 30 interrupts per second 
Bit 2: 50 interrupts per second 
Bit 3: 100 interrupts per second 
Bit 4: 200 interrupts per second 
Bits 5-15: Unused 

No output 

Remarks: This function is only available for the Inport mouse. 

If more than one bit is set in the BX register, only the least significant 
bit which is set counts. 

The mouse's resolution increases with the number of interrupts. The 
increased number of mouse interrupts decreases the speed of the 
foreground program. 

Interrupt 33H, function lDH 
Set display page 

Mouse 

Specifil!s the display page on which the mouse pointer appears. 

Input AX= OOlDH 
BX= Number of the display page 

Output: No output 

Remarks: Default value is display page 0. 

897 



Appendix F: Mouse Driver Interrupts PC System Programming 

Calling this function only makes sense if the application program works 
with several display pages, as available on CGA, EGA and VGA cards. 

Interrupt 33H, function lEH 
Determine display page 

Mouse 

Input 

Output: 

Detennines the display page on which the mouse pointer appears. 

AX= OOIEH 

BX= Number of the display page 

Interrupt 33H, function lFH 
Deactivate mouse driver 

Mouse 

Input 

Output: 

Deactivates the current mouse driver and returns the address of the previous 
interrupt handlers for interrupt 33H. 

AX= OOlFH 

AX = Error status 
AX=FFFFH: Error 
AX=OOlFH: O.K. 

ES = Segment address of previous event handler 
BX = Offset address of previous event handler 

Remarks: This call releases any previously installed and active mouse driver 
interrupt routines. The exception to this is the handler for interrupt 33H, 
but the caller can reload this interrupt vector with its original value since 
this address is returned in the ES:BX register pair. 

Interrupt 33H, function 20H 
Activate mouse driver 

Input 

Output: 

898 

Activates a mouse driver previously deactivated by function lFH. 

AX=0020H 

No output 

Mouse 



Abacus Appendix F: Mouse Driver Interrupts 

Interrupt 338, function 218 
Reset mouse driver 

Mouse 

Input 

Output: 

Resets the mouse driver, disables the mouse pointer and disables the currently 
installed event handler. 

AX= 0021H 

AX = Error status 
AX=FFFFH: Error 
AX=0021H: O.K. 

BX= Number of mouse buttons 

Remarks: Unlike function OOH, this function does not perform a total mouse 
hardware reset 

Interrupt 33H, function 24H 
Determine mouse type 

Mouse 

Input 

Output: 

Determines the type of mouse installed and the version number of the mouse 
driver. 

AX= 0024H 

BH = Whole number of the version number 
BL= Fraction of the version number 
CH = Mouse type 

CH=l: Bus mouse 
CH=2: Serial mouse 
CH=3: lnp6rt mouse 
CH=4: PS/2 mouse 
CH=S: HP mouse 

CL= IRQ number 
CL=O: PS/2 
CL=2, 3, 4, 5 or 7: IRQ number in the PC 

Remarks: If the version number of the mouse driver is for example 6.24, the value 
6 is returned in the BH register and the value 24 is returned in the BL 
register. 

899 



Appendix G 

Introduction to Number 
Systems 

Throughout this book we talked about numbers notated in the binary and 
hexadecimal systems instead of the normal decimal system. This Appendix 
presents a brief introduction to these number systems. 

Decimal system 

Before explaining the new number systems, you should know the basic concepts 
of the decimal system. The decimal number 1989 can also be written as 
1*1000+9*100+8*10+9*1. This shows that if you number the digits from right 
to left, the first number represents a column of ones, the second number represents 
a column of tens, the third number represents a column of hundreds and the fourth 
number represents a column of thousands. The numbers increase from right to left 
in powers of 10. 

The first digit of any number system has the value 1. The factor by which the 
value increases from one column to the next differs among the number systems. 
This factor corresponds to the numbers with which the number system works. The 
factor is 10 with the decimal system because ten different numbers are available for 
each digit (0 to 9). 

This principle of powers for each column also applies to the binary and 
hexadecimal systems. 

Binary system 

Since a computer recognizes the numbers 0 and 1 on its lowest functional level, 
the binary system is essential to computing. The value of the numbers double 
from column to column because the binary system only uses powers of two for 
each column (i.e., the numbers 0 and 1 instead of the numbers 0 to 9). 

900 



Abacus Appendix G: Introduction to Number Systems 

Now let's count the binary places starting from right to left as we did in the 
decimal example described above. The first (right hand) position counts as one, the 
second as two, the third as four and the fourth as eighL The places then follow as 
16, 32, 64, 128, etc. 

For example, 11001 binary converts to 25 decimal, or the equation 
1*16+1*8+0*4+0*2+1*1. 

Hexadecimal system 

Unlike the binary system, the hexadecimal system operates witb more basic 
numbers than the decimal system. This system counts single digits from 0 to F. 
Since only the ten numbers of the decimal system are able to represent a number, 
the numbers from 10 to 15 in hexadecimal use the letters A to Fin addition to the 
numbers 0 to 9. AH stands for 10, BH for 11, CH for 12, DH for 13, EH for 14 
and FH for 15. 

By using 16 numbers or letters for each position, the value by which each position 
increments is 16. 

The first position has the value 1, the second 16, the third 256 and the fourth 
4,096. 

For example, the hexadecimal number FB3H converts into 4,019 decimal, or 
15*256+11*16+3*1. 

Hex and binary 

The hexadecimal system and the binary system are easily converted back and forth. 
For example, one four-digit binary number converts to a single-digit hexadecimal 
number. Because of this, the hexadecimal system is an important part of assembly 
language programming. It's much simpler to convey a byte (an eight-bit number) 
using two hexadecimal digits than it is for the developer to compute a 16-bit 
binary equivalent. 

This book denotes all binary numbers by the letter (b ), and all hexadecimal 
numbers by the letter H. 

The following illustrations should help explain number systems more clearly. 

901 



Appendix G: Introduction to Number Systems PC System Programming 

Places 5 4 3 2 1 

Decimal 10000 1000 100 10 1 

Binary 16 8 4 2 1 

Hexadecimal 65536 4096 256 16 1 

Number positions in each number system 

Decimal Bina9'.'._ Hexadecimal 
0 0 (b) OH 
1 1 (b) 1H 
2 10 (b) 2H 
3 11 (b) 3H 
4 100 (b) 4H 
5 101 (b) SH 
6 llO(b) 6H 
7 111 (b) 7H 
8 1000 (b) SH 
9 1001 (b) 9H 

10 1010 (b) AH 
11 1011 (b) BH 
12 1100 (b) CH 

128 lOOOOOOO(b) BOH 
129 10000001 (b) BlH 
256 100000000 (b) lOOH 

1024 lOOOOOOOOOO(b) 400H 
4096 lOOOOOOOOOOOO(b) lOOOH 

65535 llllllllllllllll(b) FFFFH 

Comparing selected numbers in each number system 

902 



Appendix H 

Glossary of Terms 

8086, 8088, 80186, 80286, 80386 

Microprocessors manufactured by the Intel Corporation. They are upwardly 
compatible, which means that the 80836 can execute any program developed for an 
8086, 8088, 80186 or 80286 microprocessor. However, the 8088 can't always 
execute an application developed for one of the later microprocessors. The 
processors of this family act as main processors for different types of PCs. 

Address 

The Intel-80xx family of microprocessors form an address from one of the four 
segment registers, in conjunction with another register or a constant. The contents 
of the segment register becomes the segment address, and the other register or 
constant becomes the offset address. Both addresses are logical addresses that are 
related to a physical address (the actual number of a memory location). This 
physical address can be determined by multiplying the segment register by 16 and 
adding the offset address. 

Address area 

The number of memory locations addressable by a microprocessor. 

Address bus 

A line connecting the CPU with memory (RAM and ROM). If the CPU wants to 
address a memory location, it must first place its address on the address bus in 
order to set the "switches" for access to this memory location. 

Arena header 

The data structure which precedes the memory area of the TP A assigned to a 
program. DOS uses this area to store the memory area's size and other 
information. 

903 



Appendix H: Glossary of Terms PC System Programming 

ASCII 

Abbreviation for American Standard Code for Information Interchange. 
ASCII is a standardized assignment of numbers from 0 to 255 that represents 
characters (e.g., letters, numbers). The ASCII codes from 0 to 127 comprise the 
standard ASCII character set, while the codes from 128 to 255 comprise the 
extended ASCII character set. 

Assembly language 

A small number of simple instructions that the processor can understand. Every 
higher level language program is finally translated into these instructions for 
processing by the CPU. 

Asynchronous data transfer 

AT 

Also known as serial transfer. Bytes are transmitted and/or received bit by bit 
according to a predetennined transfer protocol. 

Abbreviation for Advanced Technology. AT computers have an 80286 
processor. 

Attribute 

A byte following each character that defines the character's color and appearance for 
display on the screen. 

AUTOEXEC.BAT 

Filename for the automatically executing batch file for which DOS searches during 
the booting process. After DOS is loaded and started, it searches the root directory 
of the device from which it booted for a file named AUTOEXEC.BAT. During the 
booting process, this batch file executes programs and parameters through the 
command processor. 

Batch files 

Baud 

BCD 

904 

Text files saved with the file extension .BAT. These files contain DOS commands 
or command sequences. Batch file execution treats these commands as if the user 
had entered the commands from the keyboard 

A measurement of data transfer speed. One baud roughly equals one data bit per 
second. 

Abbreviation for Binary Coded Decimal. This number represents a two-digit 
decimal number encoded in one byte. The upper four bits represent the most 
significant digit and the lower four bits represent the least significant digit. 



Abacus Aependix H: Glossary of Terms 

Binary system 

BIOS 

The number system understandable by a computer at its lowest level. Binary 
notation counts from 0 to 1. The first position of a binary number has the value l, 
the second has the value 2, the third has the value 4, the fourth has the value 8, 
etc. 

Abbreviation for Basic Input/Output System. It contains the device drivers 
which perform access to the peripheral devices such as the keyboard, monitor, disk 
drives, etc. The BIOS is located in addresses FOOO:EOOO---FOOO:FFFF. 

BIOS interrupts 

Interrupts lOH to 17H and interrupt lAH, through which the many functions of 
the ROM-BIOS can be called. 

BIOS version 

Release date of the BIOS as stored in the eight bytes starting at memory location 
FOOO:FFF5. This version appears in the form Month/Day/Year. 

Block driver 

The device drivers which control access to devices that process data in data blocks 
(disk drives and hard disks). Block drivers are addressed through a letter (drive 
specifier) which enables one block driver to control several devices with different 
letters. The disk driver has the drive specifiers A: and B:, while the hard disk driver 
can be addressed with the specifier C:. 

Boot sector 

Contained on every mass storage medium from which DOS can be booted. Sector 
0 contains certain information and a short program which loads a DOS boot 
routine, then initializes DOS. 

Booting 

BPB 

CALL 

The process that starts after the user has switched on the computer. BIOS tests and 
initializes the various circuit chips in the system, then loads the operating system. 

Abbreviation for BIOS Parameter Block. The BPB defines the format and 
design of a mass storage device (disk drive and hard disk) for DOS. It is available 
in the boot sector of every mass storage device, but must be passed to DOS by the 
initialization routine of a block device driver. 

Assembly language instruction that triggers the execution of a subroutine. After 
the routine ends, a RET instruction executes, which is followed by the instruction 
following the initial CALL. 

905 



Appendix H: Glossary of Terms PC System Programming 

Carry flag 

Bit 0 in the processor's flag register. Many operating system functions use it to 
tell the calling program whether the called function executed correctly, or if an 
error occurred. In the latter case, the carry flag is set (1) after the function call. 

Character driver 

A device driver which controls access to devices that process characters as bytes. 
The screen, keyboard and printer are device drivers. Character drivers have their own 
names, such as CON, PRN and AUX. 

Child program 

CLI 

A program which is called by another program. For example, if the FORMAT 
command is called from the DOS level, the parent program is the command 
processor. 

Clear interrupts instruction. This instruction instructs the CPU to ignore all 
subsequent interrupt requests until the STI (STart Interrupts) instruction re-enables 
interrupt response (the NMI [Non-Maskable Interrupt] is exempt from this 
instruction). 

Clock driver 

A character device responsible for getting the time and date from DOS, 
incrementing the time and date and passing the incremented amounts back to DOS. 

Clock generator 

Cluster 

Produces several million pulses per second and synchronizes various components 
of the system with each other. 

Multiple sectors of a mass storage device. Files and subdirectories can be stored in 
different clusters. The number of sectors per cluster varies from one device to 
another. 

COM files 

Executable programs which must be stored within a 64K memory segment COM 
files combine program code, data and stack in this 64K area 

COMMAND.COM 

The file containing the MS-DOS command processor. 

Command line 

906 

A line from which program or batch file calls can be entered into the command 
processor. 



Abacus Appendix H: Glossary o[Terms 

Command parameters 

The name for all characters passed in the command line, following the program or 
batch file calls. The EXEC function copies these parameters into the PSP of the 
loaded program. 

Command processor 

CON 

Also called shell. The command processor is a part of the operating system which 
accepts and processes user input. Its main function is to load and start application 
programs and batch files. 

Abbreviation for CONsole driver, the two device drivers which control the 
keyboard and the screen. 

CONFIG.SYS 

The DOS configuration file. It contains certain commands for configuring DOS, as 
well as additional device drivers. CONFIG.SYS loads and executes only once 
(during the booting process). 

Control characters 

ASCII characters which represent certain non-alphanumeric characters. This applies 
to all ASCII codes less than 32. The PC only uses ASCII codes 0, 7, 8, 9, 10, 11, 
12 and 13 as control characters. 

Cooked mode 

Character mode that checks for certain unusual characters, which are either 
converted to other characters or completely filtered out. Character drivers operate 
either in raw mode or cooked mode. 

CP/M-80 

CPU 

CRC 

Early operating system, the predecessor of MS-DOS. CP/M is used by computers 
that are based upon Z-80 microprocessors. 

Abbreviation for Central Processing Unit. The microprocessor which forms 
the "brain" of a computer. 

Abbreviation for Cyclical Redundancy Check. The CRC tests for errors 
during data transfer to and from a disk. 

907 



Appendix H: Glossary o/Terms PC System Programmbag 

CRT 

DASD 

Abbreviation for Cathode Ray Tube. A CRT generates a screen display with 
the help of an electron beam which sends electrical impulses to a glass screen at 
the end of the CRT. 

Abbreviation for Direct Access Storage Device. In DOS and BIOS 
terminology this concept is used for disk drives and hard disks. 

Data bus 

A data line which connects the CPU with memory (RAM and ROM). Data can be 
transmitted between the CPU and memory over this line. 

Device driver 

Disks 

Driver systems which interface DOS and hardware by making basic functions 
available for communicating with the hardware. Device driver functions can be 
called by the higher level DOS functions. DOS differentiates between character 
drivers and block drivers. 

Flat plastic materials containing magnetic media for storing data. Formatted disks 
are partitioned into tracks and sectors. 

Disk controller 

Regulates the activities of the disk drive. 

Disk status 

Lists the status of the last disk operation. It indicates if and when an error occurred 
during this disk access. 

Disk formats 

The PC market supports several disk formats. PC and XT disk drives use 5-1/4" 
disks that are formatted on one or two sides. Each side contains 40 tracks with 
eight or nine sectors per track (each sector stores 512 bytes). The capacity of these 
disks is between 160K (single-sided) and 360K (double-sided). The AT uses 5-1/4" 
disks with two formatted sides, each side containing 80 tracks with 15 sectors per 
track (each sector stores 512 bytes). The total capacity of these disks is 1.2 
megabytes. 

The newest disk formats on the market allow the use of 3-1/2" micro floppy disks. 

Display page 

908 

Also called screen page and video page. Some video cards can control one or more 
display pages. Only one of these pages can be displayed on the screen at one time. 



Abacus 

DMA 

Apeendix H: Glossary o[Terms 

Abbreviation for Direct Memory Access. Transmits data from the circuit 
chips of a peripheral device directly into memory, without making a detour 
through the CPU. 

DMA controller 

DOS 

DTA 

ECC 

EGA 

EMM 

EMS 

A chip capable of transferring large amounts of data directly into memory without 
passing through the CPU. A good example is the access to a disk drive or hard 
disk drive. 

Abbreviation for Disk Operating System. DOS sets up basic file handling 
tasks for communicating between computer and disk drive(s). 

Abbreviation for Disk Transfer Area. File and directory accesses use the DTA 
for disk data transmission. Its size depends upon the current operation, where the 
calling program must ensure that enough memory exists to accept the transmitted 
data. After the start of a program, DOS places the beginning of the DT A into 
memory location 128 of the PSP, which makes 128 bytes available. 

Abbreviation for Error Correction Code. ECC is used when data is stored on a 
hard disk. Unlike the CRC, the ECC permits the recognition of errors as well as 
their correction within certain parameters. 

Abbreviation for Enhanced Graphic Adapter. This is a special, high 
resolution variation on the Color/Graphics Adapter (CGA). 

Abbreviation for Expanded Memory Manager. Allows access to EMS memory. 

Abbreviation for Expanded Memory System. This section of RAM goes beyond 
the 1 megabyte limit set by PCs and XTs. EMS is only accessible through the 
EMM. 

End character 

Also called return code. The end character is ASCII code 0, which is sometimes 
assigned the name NUL. It usually indicates the last character in a character string. 

909 



Appendix H: Glossary of Terms PC System Programming 

Environment block 

EOI 

Every program has an assigned environment block whose address is stored in the 
PSP of the current program. The environment block itself consists of a series of 
ASCII strings which contain certain information, such as the search path for files 
(PATii). 

Abbreviation for End Of Interrupt. This instruction indicates.the completion of 
a hardware triggered interrupt to the interrupt handler. 

Extended key code 

Keys and key combinations that can be entered with a PC keyboard but have no 
direct relation to the ASCII character set. They are often entered by pressing and 
holding the <Alt> key, then entering a three-digit number on the numeric keypad 

EXE files 

EXEC 

Executable programs which can be of any length and can store their code, data and 
stack in different memory segments (see also COM files). 

DOS function for loading and executing programs. The command processor also 
uses this function to execute applications programs and batch files. 

FAR instructions 

FAT 

FCB 

Machine language instructions that contain an address of a variable or a subroutine 
with a segment address and an offset address. They can address variables or 
subroutines located in another memory segment (farther away than 64K). 

Abbreviation for File Allocation Table. This is a table located on every 
external storage medium (disk and hard disk). It informs DOS which areas of a 
storage medium are available, which areas are already occupied with data, and 
which areas are useless because of defects. The FAT also links together the 
different parts of a file. 

Abbreviation for File Control Block. DOS controls file access to RAM using 
FCBs. 

Fixed disk 

Another term for hard disk. 

910 



Abacus 

Filter 

Aependix H: Glossary o[Terms 

A program that reads characters from the standard input device, manipulates them 
in some desired way, and then displays them on the standard output device. 

Flag register 

A 16-bit register in which several of these bits indicate certain aspects of the 
processor's status. 

Function 

A routine that can be called with a DOS or BIOS interrupt 

Garbage collection 

GDT 

A routine that removes variables which are no longer required from the variable 
memory of a BASIC program. Every BASIC interpreter has garbage collection. 

Abbreviation for Global Descriptor Table. The GDT describes the individual 
memory segments when the processor is in protected mode. 

General registers 

Handle 

The processors of the Intel-80xx family have the following general registers: AX, 
BX, CX, DX, DI, SI and BP. They are all 16 bits wide. The AX, BX, CX and DX 
registers can be separated into two 8-bit registers. These two half registers are 
designated as AH, AL, BH, BL, CH, CL, DH and DL. 

A numerical value that acts as a key for access to files and devices. It is passed by 
DOS to a program which calls one of the functions for opening or creating a file 
or device. 

Hard disk 

A mass storage unit consisting of several magnetic media stacked on top of one 
another. Unlike disks, hard disks are divided into cylinders and sectors. Each of 
these disks can store data on both their top and bottom sides. 

Hard disk format 

The PC hard disk format consists of 17 sectors per cylinder and 512 bytes per 
sector. The number of disks and the number of cylinders per disk may vary. 

Hardware interrupt 

An interrupt or interrupt request, called by PC hardware, to attract the attention of 
the CPU to a device (e.g., the keyboard). Certain devices only call certain 
interrupts. 

911 



Appendix H: Glossary of Terms PC System Programming 

Hexadecimal system 

IN 

A number system distantly related to the binary system. The basic numbering of 
this system goes from 0 to 15, instead of from 0 to 9 (the numbers 10 to 15 are 
represented by the letters A, B, C, D, E and F). The first position of a hexadecimal 
number has the value l, the second 16, the third 256, the fourth 4,096, etc. 

Assembly language instruction to read data from a port into the CPU. 

Internal commands 

All commands whose code is stored in the transient portion of the command 
processor, and, therefore, don't have to be loaded from a storage medium (e.g., 
DIR, COPY and VER). 

Interrupt 

An interruption of a program through an interrupt call, the execution of an 
interrupt routine and, finally, the resumption of the interrupted program. The 
processors of the lntel-80xx family can process 256 different interrupts which are 
divided into hardware and software interrupts. 

Interrupt controller 

Monitors the various interrupt requests within the system and decides which 
interrupts to process first. 

Interrupt routine 

The program called during the appearance of an interrupt. Each interrupt has its 
own interrupt routine, whose address is stored in the interrupt vector table. The 
interrupt routine must be terminated with a machine language IRET instruction. 

Interrupt vector table 

IRET 

912 

A table containing the addresses of the interrupt routines, which are called when a 
particular interrupt appears. Each entry in this table consists of two words. The 
first word contains the offset address and the following word contains the segment 
address of the interrupt routine. The table starts at memory location 0000:0000, 
where the address of the interrupt routine for interrupt 0 is stored. The four 
following memory locations contain the address of the interrupt routine for 
interrupt l, etc. 

The Interrupt RETum assembly language instruction. IRET terminates the 
execution of an interrupt routine and then continues the execution of the program 
at the location following the interruption of the program. 



Abacus Apeendix H: Glossary o[Terms 

Keyboard status 

Indicates whether the user has pressed the <Shift>, <Ctrl> or <Alt> keys, and 
whether the <Insert>, <CapsLock>, <NumLock> or <ScrollLock> modes are 
active. 

Kilobyte 

Abbreviated as K. Equals 210 or 1,024 bytes. 

Math coprocessor 

Relieves the CPU of the processing of complicated floating-point mathematical 
formulas. It also accelerates the processing of worksheets within a spreadsheet 
program. 

Megabyte 

Often abbreviated as meg. Equal to 210 kilobytes or 1,048,576 bytes. 

Media descriptor byte 

A byte within the File Allocation Table (FAT), which identifies the mass storage 
device's current format. DOS can manipulate the various formats of the mass 
storage which it supports and also checks the media descriptor byte for the current 
format. 

Memory allocation 

In all PCs the lower 640K is assigned to RAM. The video RAM follows, and then 
the ROM, which extends to the 1 megabyte memory limit. ATs may have up to 
15 megabytes of additional RAM. 

Microprocessor 

The brain of a computer. Its main task is to execute assembly language 
instructions. 

Model identification 

The type of PC used, as coded into address FOOO:FFFE. FCH stands for AT, FEH 
often stands for XT and FFH often stands for PC. 

MS-DOS 

Abbreviation for MicroSoft Disk Operating System. MS-DOS is the 
primary PC operating system. 

Multiprocessing 

The simultaneous execution of several programs (not supported by DOS at the 
time of this writing). 

913 



Appendix H: Glossary of Terms PC System Programming 

NEAR instructions 

Nibble 

NMI 

OUT 

Assembly language instructions that cont.ain the offset address of only a variable or 
a subroutine (no segment address). These instructions can address variables or 
subroutines located only within the current 64K memory segment 

Also spelled nybble. Bytes can be subdivided into two nibbles. The low nibble 
occupies bits 0 to 3 of a byte, while the high nibble occupies bits 4 to 7 of a byte. 

Abbreviation for Non-Maskable Interrupt. The NMI remains constantly 
active. It is the only interrupt not affected by the CLI assembly language 
instruction. 

An assembly language instruction which sends data to a port. 

Overlay 

A program loaded into memory allocated for it by another program. The calling 
program calls certain routines within this overlay as needed. 

Paragraph 

A group of 16 bytes in the 8088 which starts at a memory location divisible by 16 
(e.g., 0, 16, 32, 48, etc.). 

Parent program 

Parity 

PC 

A program that can execute another program (see child program) and continue its 
own processing after the child program's execution. For example, if a FORMAT 
command is called from DOS level, the command processor is the parent program. 

A process used to detect errors during serial data transmission. Either even or odd 
parity can be used. 

Abbreviation for Personal Computer (i.e., all computers equipped with a 8088 
or 8086 processor). 

Peripheral interface 

Connects the CPU to various peripheral devices (e.g., speaker). 

914 



Abacus 

Ports 

Appendix H: Glossary o[Terms 

The connections between the CPU and various other circuit chips within the 
system. Each chip has one or more assigned ports, which have a specific address. 
The CPU addresses the individual chips by writing values into the proper port or 
by reading values from the proper port. 

Printer status byte 

PRN 

Describes the current status of the printer. It can indicate whether the printer is out 
of paper, is switched ONLINE or has not responded (time-out). 

The device designation of the printer. 

Program counter 

Also called IP (Instruction Pointer). The program counter and the CS segment 
register combined form the memory address from which the processor will read the 
next command to be executed. 

Protected mode 

PSP 

RAM 

Allows multiprocessing, more than 1 megabyte of memory and control over 
virtual memory on computers possessing the 80286 and 80386 processors. 

Abbreviation for Program Segment Prefix. The PSP is a 256 byte long data 
structure, which is placed in front of every program to be executed but not stored 
with the file on disk or hard disk. The program itself or program data start after 
this data structure. 

Abbreviation for Random Access Memory. This is the memory that the user 
can read from and write to. 

Raw mode 

Character mode that transmits all characters from a device to the calling program 
without any changes (see cooked mode). 

Real mode 

Forces 80286 and 80386 processors to emulate dual high-speed 8088 processors 
incapable of multiprocessing or control of more than 1 megabyte of memory. 

Register 

Memory locations inside the processor that provide faster access than memory 
locations in RAM. 

915 



Appendix H: Glossary of Terms PC System Programming 

Reset 

A resetting and reboot of the system. You can trigger a reset by pressing the 
<Alt><Ctrl><Delete> key combination. 

Resident 

ROM 

Programs that remain in memory after execution without being overwritten by 
other programs or data. Resident programs can be recalled later. 

Abbreviation for Read Only Memory. ROM can only be read, not written. 

ROM BASIC 

A small BASIC interpreter, placed in the ROMs of older PCs starting at address 
F000:6000. ROM BASIC is called by the system when BIOS fails to load the 
operating system. 

RS-232 

RTC 

An interface that permits the computer to communicate with other devices over 
only one line. The individual data is transmitted serially (i.e., bit by bit). 

Abbreviation for RealTime Clock. The battery backed clock on the AT. 

Scan code 

Sector 

A code passed to the CPU by the keyboard processor when a key is pressed or 
released. It indicates the number assigned to the key within the keyboard. For this 
reason, the scan codes of the various PC keyboards differ from each other. 

The smallest data division of a disk or hard disk. A sector contains 512 bytes. 

Segment descriptor 

Describes the location and size of the segment in addition to other information. It 
is used in protected mode on the 80286 and 80386 processors. All segment 
descriptors are gathered in the global descriptor table (GD'I). 

Segment register 

The processors of the Intel-80xx family have four 16-bit segments that define the 
beginning of a 64K memory segment. They are named DS, ES, CS and SS. 

Software interrupts 

916 

An interrupt or interrupt request called by a program using the INT instruction. 
Each of the 256 existing interrupts can be called using this instruction. 



Abacus Appendix H: Glossary of Terms 

Standard input device 

The keyboard. The standard input can be redirected to another device or a file using 
the< character. 

Standard output device 

STI 

The monitor screen. The standard output can be redirected to another device or a file 
using the > character. 

The STart Interrupts assembly language instruction. This instruction disables 
any previous CLI command and re-enables all inactive interrupts. 

Time-out 

Timer 

TPA 

UART 

Occurs during communication between the CPU and a device when the CPU sends 
data to the device and, after a certain amount of time, the device offers no response. 

Similar to the clock. The timer generates a cyclical signal used to measure time. 

Abbreviation for Transient Program Area. This is the part of RAM below the 
I megabyte limit not occupied by DOS that is used for storing programs and data. 

Abbreviation for Universal Asynchronous Receiver Transmitter. A chip 
that acts as the controller for the serial interface. 

Video controller 

Displays a picture on the screen by sending the proper signals to the monitor. 

Video RAM 
RAM, which is used for storing characters or graphics for display on the screen, 
made available by a video card. It can be addressed like normal RAM. 

Virtual memory 

Permits program access to memory, which it assumes to be RAM but is actually a 
mass storage device. Virtual memory must first be loaded into RAM for access. 

Volume 

Part of a mass storage device that has files, its own FAT, its own root directory 
and its own subdirectories. Each volume can have its own volume name. While 
disks can store only one volume under DOS, hard disks can be divided into several 
volumes to accommodate several operating systems. 

917 



Appendix I 

Scan Codes 

PC!XT keyboard scan codes 

AT keyboard scan codes 

918 



Appendix J 

ASCII Character Set 

Dec. Dec. Dec. Dec. 

r 
Hex 

r 
Hex 

r 
Hex 

r 
Hex r ?r. r ?r. r ?r. r F'1r. 

0 00 32 20 64 40 @ 96 60 
1 01 Q 33 21 65 41 A 97 61 a 
2 02 • 34 22 II 66 42 B 98 62 b 
3 03 • 35 23 # 67 43 c 99 63 c 
4 04 • 36 24 $ 68 44 D 100 64 d 
5 05 • 37 25 % 69 45 E 101 65 e 
6 06 • 38 26 & 70 46 F 102 66 f 
7 07 • 39 27 I 71 47 G 103 67 g 
8 08 a 40 28 ( 72 48 H 104 68 h 
9 09 0 41 29 ) 73 49 I 105 69 i 

10 OA [IJ 42 2A * 74 4A J 106 6A j 
11 OB (f 43 2B + 75 4B K 107 6B k 
12 oc Q 44 2C 76 4C L 108 6C 1 
13 OD ) 45 20 - 77 40 M 109 60 m 
14 OE .Q 46 2E • 78 4E N 110 6E n 
15 OF l:f 47 2F I 79 4F 0 111 6F o 
16 10 ~ 48 30 0 80 50 p 112 70 p 
17 11 ... 49 31 1 81 51 Q 113 71 q 
18 12 t 50 32 2 82 52 R 114 72 r 
19 13 !! 51 33 3 83 53 s 115 73 s 
20 14 ! 52 34 4 84 54 T 116 74 t 
21 15 § 53 35 5 85 55 u 117 75 u 
22 16 - 54 36 6 86 56 v 118 76 v 
23 17 t 55 37 7 87 57 w 119 77 w 
24 18 t 56 38 8 88 58 x 120 78 x 
25 19 .j. 57 39 9 89 59 y 121 79 y 
26 lA -+ 58 3A 90 5A Z 122 7A z 
27 lB .... 59 3B 91 5B [ 123 7B { 
28 lC .... 60 3C < 92 5C \ 124 7C I 

I 
29 lD ++ 61 30 = 93 50 ] 125 70 } 
30 lE • 62 3E > 94 5E A 126 7E 
31 lF ., 63 3F ? 95 5F 127 7F ll! 

919 



AppendiJC J: ASCII Character Set PC System Programming 

Dec. Dec. Dec. Dec. 

r 
Hex 

r 
Hex 

r 
Hex 

r 
Hex 

r ~- r ~r. r ~- r ~-
12S so c 160 AO a 192 co L 224 EO a 
129 Sl ii 161 Al 1 193 Cl .L 22S El .8 
130 S2 e 162 A2 0 194 C2 T 226 E2 r 
131 S3 a 163 A3 u 19S C3 ~ 227 E3 7r 

132 S4 ii 164 A4 ii 196 C4 22S E4 l: 
133 SS a. 16S AS :N 197 cs + 229 ES a 
134 S6 a. 166 A6 • 19S C6 ~ 230 E6 µ. 
13S S7 Q 167 A7 " 199 C7 I~ 231 E7 ,.. 
136 SS e 16S AS (. 200 cs I!: 232 ES t 
137 S9 e 169 A9 ..- 201 C9 If 233 E9 e 
13S SA e 170 AA..., 202 CA :!!: 234 EA n 
139 SB i 171 AB ~ 203 CB if 235 EB 6 
140 SC i 172 AC % 204 cc I} 236 EC oo 
141 SD i 173 AD 20S CD = 237 ED q, 
142 SE A 174 AE « 206 CE ~} 238 EE £ 
143 SF A 17S AF » 207 CF ='= 239 EF n 
144 90 E: 176 BO ••···. 208 DO JL 240 FO = 
145 91 ae 177 Bl M 209 01 =;= 241 Fl ± 
146 92 IF. 178 B2 I 210 02 lr 242 F2 ~ 

147 93 0 179 B3 I 211 03 IL 243 F3 s 
148 94 0 180 B4 i 212 04 b 244 F4 r 
149 9S 0 181 BS ~ 213 05 F 245 F5 J 
150 96 1l 182 B6 ~I 214 06 rr 246 F6 + 
lSl 97 u 183 B7 11 21S 07 * 247 F7 ~ 
1S2 98 y 184 B8 "I 216 08 =t= 248 F8 . 
153 99 6 18S B9 ~I 217 09 J 249 F9 . 
154 9A U 186 BA II 218 DA r 250 FA 
155 9B ¢ 187 BB ii 219 DB I 2Sl FB j 
156 9C £ 188 BC :!J 220 DC • 252 FC f7 
157 90 ¥ 189 BO JI 221 DD I 253 FD 2 

15S 9E ll 190 BE ::I 222 DE I 254 FE • 
159 9F f 191 BF 1 223 OF • 2S5 FF 

920 



Index 

Interrupt 13H, f86-DOS 
6845 index register 
8042 keyboard processor 
8048 keyboard processor 
8086 
8088 
8253 chip 
8259 timer chip 
80186 
80286 
80386 

Aborting a program 
Absolute disk read 
Absolute disk write 
Activate character set 
Activate mouse driver 
Adapt to foreign hard disk 
Addres.s 
Address bus 
Address notation 
Address operator & 
Address register 
Address space 
AH register 
Alarm interrupt 
Allocate memory 

52 
472 
712 
712 

3,903 
3, 8, 903 

449 
671, 712 

3,903 
3,903 
3,903 

142 
844 
845 
873 
898 
743 

8,903 
16,699,903 

9 
42 

8 
8 

45 
397 

Allocated expanded memory pages 
Allocating memory 

821 
854 
121 

Alternate hardcopy 
ANSI.SYS 
Arena header 
ASCII 
Assembly language 
ASSIGN 
Asynchronous data transfer 

877 
55, 148, 156 

903 
904 

1, 3, 47, 904 
149 
904 

AT 
AT hard disk 
ATP 
Attribute byte 
AUTOEXEC.BAT 

Background color 
BACKUP 
BASIC 

904 
675 
330 

459,460,497,904 
57, 149, 199,904 

862 
203 
96 

Basic Input Output System (BIOS) 
1, 711, 905 

Batch files 
Baxi 

54, 57, 111-112, 904 

BCD format 
Binary coded decimal (BCD) 

Binary system 
BIOS 

331, 904 
396, 566 

396, 566, 
900,904 
900,905 

BIOS architecture 
BIOS cassette interrupt 
BIOS configuration functions 
BIOS date functions 
BIOS floppy disk functions 
BIOS hard disk functions 
BIOS Interrupts: 

Interrupt lAH, function 02H 
Interrupt lAH, function 03H 
Interrupt lAH, function 04H 
Interrupt lAH, function 05H 
Interrupt lAH, function 06H 
Interrupt lAH, function 07H 
Interrupt IOH, function 13H 
Interrupt 13H, function 15H 
Interrupt 13H, function 15H 
Interrupt 13H, function 16H 
Interrupt 13H, function 17H 

711 
220 
714 
713 
395 
713 
714 

760 
761 
761 
762 
762 
763 
726 
734 
749 
734 
735 

921 



Index 

Interrupt 15H, function 83H 
Interrupt 15H, function 84H 
Interrupt 15H, function 85H 
Interrupt 15H, function 86H 
Interrupt 15H, function 87H 
Interrupt 15H, function 88H 
Interrupt 15H, function 89H 

BIOS Interrupts (XT and AT only): 

752 
753 
754 
754 
754 
755 
755 

Interrupt 13H, function OOH 736 
Interrupt 13H, function OAH 744 
Interrupt 13H, function OBH 745 
Interrupt 13H, function ODH 746 
Interrupt 13H, function OlH 736 
Interrupt 13H, function 02H 737 
Interrupt 13H, function 03H 738 
Interrupt 13H, function 04H 740 
Interrupt 13H, function 05H 741 
Interrupt 13H, function 08H 742 
Interrupt 13H, function 09H 743 
Interrupt 13H, function IOH 747 
Interrupt 13H, function 1 lH 748 
Interrupt 13H, function 14H 748 

BIOS keyboard functions 714 
BIOS memory functions 713 
BIOS Parallel printer functions 715 
BIOS Parameter Block (BPB) 157, 160, 

198, 214, 215, 905 
BIOS printer interrupt 385, 715 
BIOS screen output 226 
BIOS serial interface functions 714 
BIOS time functions 395 
BIOS variable memory 398 
BIOS version 223 
Bitfield 887 
Bitmap mode 460, 721 
Bitplanes 521 
Blinking attribute 866 
Blockdevicedriver 150, 156, 171, 

Boot sector 
Booting 
Bootstrap 
Border color 

194, 816, 905 
59, 185, 197,905 

221, 715, 759,905 
198,221 

862 
BPB-see BIOS Parameter Block 
<Break> key 715, 763 
Breakpoint 668-669, 711 
Buffer 814 
Buffered input 779 

PC System Programming 

Byte table 

C language 
CALL 
Call ROM BASIC 
Calling interrupts 

840 

104 
905 

715, 759 

Cancel all files in print queue 
Cancel redirection 

27 
848 
839 

12, 37,905 Carry flag 
Cassette interrupt 
Cathode ray tube 
CD-ROM 
CGA 
Change 
Change directory 
Change retry count 
Character device driver 

Character generator 
Character input 
Character matrix 
Character output 
Character set 
Character table 
Child program 
CHKDSK 
CLI 
Clock 
Close file (FCB) 
Close file 
Clusters 
Code segment 
Color palette 

297,336 
458 

193-194 
254,463 

121 
93 

819 
150, 170, 194, 

815,906 
460,875 

766, 774, 777 
469 

70, 767, 774 
265,459,872 

715, 765 
110, 906 

201 
23 

14, 906 
782 
808 

198,906 
10 

498, 721, 723 
504, 871 

498 
228, 

254,497 
51, 60, 62, 112, 

825,906 
73 

53, 56, 111, 907 
56, 111,823, 906 

Color selection register 
Color-suppressed mode 
Color/Graphics Adapter (CGA) 

COM programs 

COMl 
Command processor 
COMMAND.COM 
Common registers 
Compact disk (CD) 
Compatibility 
COMSPEC 
CONFIG.SYS 

6 
193 
206 
112 

59, 85, 149, 156, 
194,907 



Abacus 

Configuration 289 
Configuration register 482 
Control codes 233 
Control record access 835 
Control register 4 71 
Controller diagnostic 748 
Cooked mode 72, 150, 171, 814, 907 
Country-specific data 769, 770 
CP/M 51-52, 70, 84, 687, 907 
Create file 786, 806, 835 
Create new file 835 
Create PSP 793 
Create subdirectory 804 
Create temporary file 834 
Critical error handler 57, 142, 800, 842 
Critical error handler address 843 
CRT 458, 908 
CRT controller (CRTC) 14, 460, 

<Ctrl> key 
<Ctrl><Break> 
Cursor definition 
Cursor positioning 
Cycles 

462,857, 872 
359 
800 

232, 716,856,857 

Cyclic Redundancy Check 

232, 717, 857 
447 

324, 907 

DAC color register 867 
DAC color table 258 
DAC mask register 870 
DAC register group 868 
DASD 908 
Data bus 16, 699, 908 
Data segment 10 
Data structures 196 
Data transfer protocol 330 
Date 54, 395, 715, 759-762, 

DEBUG program 
Decimal system 
Define cursor type 
Delete file (PCB) 
Delete file 
Delete subdirectory 
Determine configuration 
Determine disk format 
Determine drive type 

796, 797,829 
172 
900 

233, 716 
784 
810 
805 
727 
735 

Determine Format of the Hard Disk 
Determine Hard Disk type 

734 
742 
749 

Index 

Determine memory size 
Determine mouse sensitivity 
Determine mouse type 
Determine pointer display page 
Determine processor type 
Determine video card type 
Device attribute 

728, 755 
897 
899 

897,898 
653 

880, 881 
77, 814 

Device close 
Device driver 
Device driver access 
Device redirection 

166 
148, 215. 817. 908 

151, 767 

Devices 
Digital Research 
DIR command 
Direct console I/0 

838 
53 
52 
96 

776 
Direct Memory Access (DMA) 13, 325, 

909 
457 
96 
93 

889,890 

Direct video access 
Directory lister programs 
Directory search 
Disable lightpen emulation 
Disable mouse pointer 
Disk access 
Disk change 
Disk controller 
Disk format 
Disk monitor program 
Disk operating system 
Disk reset 
Disk status 
Disk transfer area (DT A) 
Disk/hard disk access 
Display attributes 
Display modes 
Display mouse pointer 
Display page 
Division by zero 
DMA 
DOS 4.0 
DOS 
DOS buffer 
DOS flag access 
DOS functions 
DOS Info Block (DIB) 

883 
297, 769 
303, 735 

14, 908 
735, 742,908 

305 
51 

781 
730,908 

62, 90 
769 
460 
458 

882,883 
856-858, 908 

710 
13, 325,909 

213 
201 
211 
769 

96,206 
208 

DOS Interrupt 21H, function SCH 
DOS kernel 

835 
56 

799 
56 

DOS version number 
DOS-BIOS 

923 



Index 

Drive information 789 
Drive Parameter Block (DPB) 209 
Drive table 715, 764 
Driver initialization 148, 156 
DTA 62,99, 768, 788,827,909 
DUMP program 134 
Duplicate handle 820 

EGA 
EGA attribute controller 
EGA BIOS 
EGA character generator 
EGA functions 
EGNVGA configuration 
EGNVGA Interrupts: 

254,463,909 
865 
254 
263 
856 

856, 877 

Interrupt lOH, function OOH 
Interrupt lOH, function OAH 
Interrupt lOH, function OBH 
Interrupt lOH, function OCH 
Interrupt lOH, function ODH 
Interrupt IOH, function OEH 
Interrupt lOH, function OFH 
Interrupt lOH, function OIH 
Interrupt lOH, function 02H 
Interrupt lOH, function 03H 
Interrupt lOH, function 05H 
Interrupt lOH, function 06H 
Interrupt lOH, function 07H 
Interrupt lOH, function 08H 
Interrupt lOH, function 09H 
Interrupt lOH, function IOH 

856 
861 
862 
863 
863 
864 
864 
857 
857 
858 
858 
859 
859 
860 
861 

865-866 
Interrupt lOH, function 1 IH 

872-874 
Interrupt lOH, function 1 IH 

875,876 
Interrupt lOH, function 12H 

877-878 
Interrupt IOH, function 13H 880 

Electron beam 461 
EMM Interrupts: 

Interrupt 67H, function 0 
Interrupt 67H, function 0 
Interrupt 67H, function 0 
Interrupt 67H, function 1 
Interrupt 67H, function 2 
Interrupt 67H, function 3 
Interrupt 67H, function 4 

924 

854 
854 
855 
849 
849 
850 
850 

PC System Programming 

Interrupt 67H, function 5 851 
Interrupt 67H, function 6 851 
Interrupt 67H, function 7 852 
Interrupt 67H, function 8 852 
Interrupt 67H, function 9 853 

Enable mouse pointer 882, 883 
End character 909 
End oflnterrupt (EOI) 670, 910 
Environment block 112, 208, 823, 910 
Error Correction Code (ECC) 324, 909 
Error display 71 
Exchange mouse event handlers 892 
Exclusion area 621, 890, 891 
EXE programs 51, 60, 66, 112 

825, 910 
EXEC function 

60,66, 110, 132,823,910 
Execute overlay 824 
Execute program 823 
Expanded Memory Manager (EMM) 

849, 852,909 
Expanded Memory Specification (EMS) 

213, 909 
850 
854 
851 

Expanded memory allocation 
Expanded memory handles 
Expanded memory mapping 
Expanded memory segment address 
Expanded memory status 
Extended FCB 

849 
849 
88 

Extended keyboard codes 360, 910 
Extended merr.or.1- ;:.!!;:::::.ition 
Extended memory mapping 
Extended memory segment address 
Extended memory status 
Extended MS system page 
Extended partitions 
Extended read 
Extended write 
External commands 
External hardware interrupt 
Extra segment 

850 
851 
849 
849 
850 
688 
744 
745 

57 
23 
11 

FAR instruction 115, 910 
FAT-see File Allocation Table 
FCB functions 84, 91, 206, 768 
FCB-see File Control Block 
File access (FCB) 768 
File access (handle) 768 



Abacus 

File Allocation Table (FA1) 53, 194, 
198, 214, 910 

File Control Block (FCB) 55, 62, 84, 
208 

File date 830 
File handle 55, 70, 85, 768, 820 
File information access 769 
File search using FCB functions 94 
File search using handle functions 95 
File time 830 
Filters 132, 911 
Fixed disk 54, 741, 910 
Flag register 6, 12, 911 
Flush input buffers 162, 164 
Flush output buffers 164 
Force duplicate of handle 820 
Foreign hard disks 743 
FORMAT 202 
Format diskette 733 
Format hard disk 326, 741 
Format hard disk cylinder 741 
Function 911 

Garbage collection 
GDT 
General registers 
Get <Ctrl><Break> flag 
Get allocation strategy 
Get country 
Get current directory 
Get default drive 
Get device information 
Get Drive information 
Get DT A address 
Get extended error information 
Get file attributes 
Get file date and time 
Get free disk space 
Get input status 
Get interim console flag 
Get machine name 

30, 911 
337, 911 

911 
800 
830 
802 

93,821 
788 
813 
789 
798 
832 
811 
829 
801 
780 
840 
836 

Get MS-DOS version number 
Get pointer position/button status 
Get print spool install status 

799 
884 
846 

Get printer setup 
Get PSP address 
Get redirection list entry 
Get return code 

837 
839 
837 
826 

Get system date/time 
Get verify flag 
Get video mode 
GRAFTABL 
Graphic mode 
Graphic user interfaces 
Gray scales 
GW-BASIC 

Index 

796,797 
828 
232 

234, 721, 764 
458 
213 

871, 878, 879 
28 

Handle 70, 815, 911 
Handle functions 96 
Hard disk 54, 3 23 
Hard disk error codes 324 
Hard disk format 911 
Hard disk function calls 325 
Hard disk interrupts 674 
Hard disk partition support 213, 687 
Hanlcopy 670, 711 
Hardware interrupt 22, 667, 710, 911 
Hardware (CPU) Interrupts: 

Interrupt OOH 
Interrupt OlH 
Interrupt 02H 
Interrupt 03H 
Interrupt 04H 
Interrupt 05H 
Interrupt 08H 

710 
710 
711 
711 
711 
711 

(8259 interrupt controller) 712 
Interrupt 09H 

(8259 interrupt controller) 712 
432 

230, 255, 
463,482 

Heap 
Hercules graphic cards 

Hertz 447 
Hexadecimal system 899, 912 
Hidden files 96 
Hierarchical file system 54 
High density disk drives 303 
High level languages 3, 711, 712 
Hold print jobs for status check 848 
Horizontal synchronization signal 472 
Hotkey 408 

1/0 Control Read 
1/0 Control Write 
IBMBIO.COM 
IN 
Initialize 

160 
165 

59,202 
464,699,912 

750 

925 



Index PC System Programming 

Initialize printer 385, 758 Math coproceswr 14, 675, 710 
Input buffer 575 711, 913 
Input status 162,817 MCB 209 
Installable device drivers 55 MDA 254,463 
Instruction pointer 10 Media change 734 
INT instruction 27,47, 711, 712 Media check 158 
int86 function (C) 40-41 Media descriptor 199, 210, 913 
intdos function (C) 41-42 Megabyte 8, 291, 913 
intdosx function (C) 40,42 Memory 16, 754 
Intel Corporation 3, 712,903 Memory block allocation 822, 831, 913 
interim console flag (840 Memory Control Block 119, 208, 209 
Interleave factor 210 Memory location 16 
Internal commands 57, 912 Memory release 121, 822 
Internal DOS structure 56 Memory segments 17 
Internal hardware interrupts 23 Microprocessor 3, 8, 575, 913 
Interrupt controller 13, 670, 912 Microsoft Assembler (MASM) 48 
Interrupt requests 13, 671 Microsoft C compiler 416 
Interrupt routine 20,912 Microsoft Corporation 52 
Interrupt vector 801 Microsoft mouse 617 
Interrupt vector table 20,912 Mode selection register 501,502 
Interrupts 19 Model identification byte 291, 913 
INTO (INTerrupt on Overflow) Modify allocation (Vers 2 and up) 822 

instruction 711 Monochrome Display Adapter (MDA) 
INTR procedure (Pascal) 36 226,463,469,482,497 
IO.SYS 59 Mouse button activation counter 
IOC1L 165, 170, 819 884,885 
IRET (Interrupt RETum) 19, 711 Mouse button release counter 885 

Mouse button status 883,884 
JOIN 212 Mouse buttons 618 
Joysticks 753 Mouse event handlers 888,891 

Mouse interface 617 
Keyboard access 72, 358, 712 Mouse interrupts: 
Keyboard controller 576 Interrupt 33H, function OOH 882 
Keyboard output functions 74 Interrupt 33H, function OAH 887 
Keyboard programming 575 Interrupt 33H, function OBH 888 
Keyboard status 913 Interrupt 33H, function OCH 888 
Kilobyte 913 Interrupt 33H, function ODH 889 

Interrupt 33H, function OEH 890 
LASTDRIVE 212 Interrupt 33H, function OFH 890 
Lightpen 713,882,889 Interrupt 33H, function OlH 883 
Logical hard disk 688 Interrupt 33H, function lAH 896 
Logical sector 216 Interrupt 33H, function lBH 897 
Low-level formatting 687 Interrupt 33H, function lCH 897 

Interrupt 33H, function lDH 897 
Macros 48 Interrupt 33H, function lEH 898 
Make directory 93 Interrupt 33H, function lFH 898 
Maskable interrupts 23 Interrupt 33H, function 02H 883 
Match 826-827 Interrupt 33H, function 03H 884 

926 



Abacus Index 

Interrupt 33H, function 04H 884 Open file 807 
Interrupt 33H, function 05H 885 Operating system area 119 
Interrupt 33H, function 06H 885 OS/2 687 
Interrupt 33H, function 07H 886 Oscillation 447 
Interrupt 33H, function 08H 886 OUT 464,699,914 
Interrupt 33H, function 09H 887 Output buffer 575 
Interrupt 33H, function IOH 891 Output character string 778 
Interrupt 33H, function 13H 891 Output status 164, 817 
Interrupt 33H, function 14H 892 Output until busy 167 
Interrupt 33H, function 15H 893 Overlapping segments 11 
Interrupt 33H, function 16H 893 Overlays 114, 914 
Interrupt 33H, function 17H 894 Overscan register 856, 866 
Interrupt 33H, function 18H 894 
Interrupt 33H, function 19H 896 Palette register 865,877,878 
Interrupt 33H, function 20H 898 Paragraph 914 
Interrupt 33H, function 21H 899 Parameter block 111, 823 
Interrupt 33H, function 24H 899 Parent program 110, 840, 914 

Mouse pointer 618~622,882,883 Parity 332, 914 
Mouse pointer range of movement Parity bit 331 

885,886 Parse filename to FCB 795 
Mouse pointer shape 886,887 Partition code 689 
Mouse programming 617 Partition sector 688 
Mouse speed doubling 891 Partitions 323, 687-689 
Mouse status buffer size 893 Pascal 100 
MOV instruction 47 Paterson, Tim 52 
Move file pointer 810 PATH 112-113 
Move memory areas 754 PC 914 
Move mouse pointer 884 PC Tools® 213 
MS-DOS 51 PC-DOS 51 
MS CD EX 195 Periodic interrupt 764 
MsDos procedure (Pascal) 36 Peripheral interface 914 
MSDOS.SYS 59 Pipe file 134 
MUL instruction 711 Pipes 133 
Multiprocessing 4, 835, 913 Pixel 724 
Multisync monitor 255 Pointer position 883, 884 
Multitasking 835 Pointer speed 890 

Ports 699,915 
NEAR instruction 914 Position cursor 717 
Network 819, 835-836 Predefined handles 70 
Nibble 914 Primary partition 688 
Non-destructive read 161 Print queue 847 
Non-maskable interrupt (NMI) 23, 710 Print spooler 846-847 
Non-overlapping segments 11 print Character 776 
Norton Utilities® 208, 213 Printer access 384, 758 

Printer interrupt 674 
Offset address 8,42,903 Printer output functions 73, 76 
Open 165 Printer status 385, 758 
Open file (FCB) 782 Processor registers 219 

927 



Index 

Processor type 291 
Programcalls 110 
Program counter 6, 10 
Program Segment Prefix (PSP) 60, 67 

208, 769, 793,915 
Program termination 766 
Programmable peripheral interface 13 
Programmable timer 448 
Prompt 57 
Protected mode 337, 915 
<Prt Sc> key 670 
PSP access 769 
PTR data type 155 

RAM 291, 325, 767, 915 
RAM control 767 
RAM determination 291 
Random block read 794 
Random block write 795 
Random read 790 
Random write 791 
Raster 462 
Raster-scan devices 460 
Raw mode 72, 150, 171, 814,915 
Read 161 
Readcharacter 720, 751, 775, 860 
Read clock count 759 
Read control keys 361 
Read cursor position 232, 718 
Read data from block device 816 
Read data from character device 814 
Read date from realtime clock 761 
Read Disk 730 
Read disk status 299 
Read display mode 726 
Read file 808 
Read hard disk 325, 326, 736,737 
Read hard disk format 328 
Read HI-RAM size 337 
Read input status 817 
Read Interrupt-Vector 801 
Read joystick 753 
Read Keyboard 361, 756, 757 
Read output status 817 
Read pixel 238, 863 
Read printer status 758 
Read realtime clock 760 
Read status 752 

928 

Ready 
Realtime Clock 

PC System Programming 

747 
336, 395-397, 563, 

674, 761-763 
Realtime clock register 564 
Recalibrate hard disk 329, 748 
Receive character 334 
Receiver shift register 333 
Redirect device 838 
Redirection of interrupts 156 
Refresh rate 461 
Register 6, 35 
Relative addresses 8 
Release extended memory pages 851 
Release memory 822 
Relocation factor 114 
Removable media 167 
Remove directory 93 
Remove file from print queue 847 
Remove mouse pointer 883 
Rename file 787, 828 
Reserved 846 
Reset alarm time 763 
Reset disk 729 
Reset hard disk 736, 737, 746 
Reset input buffer and then input 780 
Reset mouse driver 882, 899 
Resident commands 51 
Resident interrupt driver 373, 391, 675, 

Restore mouse status 
ROM BASIC 
ROM cartridges 
ROM-BIOS 
Root directory 
RS-232card 

Scan code 
Scan lines 
Screen border color 
Screen controller 
Screen refresh 
Scrolling 
Search directory 
Search for match (FCB) 
Sector 
Sector interleaving 
Segment address 
Segment descriptor 

679 
893,894 

222, 715,916 
18 

221,254,905 
202 

330,916 

360,575,916 
877 
865 

14 
879 
859 
768 

783-784 
54,916 

326 
8,903 

338 



Abacus 

Segment register 
Segmented address 
Segreacl 

6, 8, 42, 916 
8 

Select color palette 
Select Current Drive 
Select current display page 
Select drive 
Select palette 
Send Character 
Send character (BIOS printer) 
Send data to block device 
Send data to character device 
Send file to print spooler 
Sensegraphic pixel 
Sequential read 

40 
723 
781 
719 
781 
723 
775 
385 
816 
815 
847 
724 
785 
786 Sequential write 

Serial interface 73, 330, 751 
Serial interface functions 
Serial port 
Set <Ctrl><Break> flag 
Set alarm time 
Set allocation strategy 
Set clock count 
Set country 
Set current directory 
Set date in realtime clock 
Set disk type 
Set display page 
Set DT A address 
Set file attributes 
Set file date and time 
Set flag after time interval 
Set graphic pixel 
Set mouse display page 
Set mouse event handler 

73, 76, 330 
751 
800 
762 
831 
760 
804 
805 
762 
304 
233 
788 
812 
829 
752 

237, 724 
622 

Set mouse hardware interrupt rate 
Set mouse pointer display page 
Set mouse sensitivity 

888 
897 
897 
896 
887 
836 

Set pointer shape (text mode) 
Set printer setup 
Set random record number 
Set realtime clock 
Set system date 
Set system time 
Set Verify flag 
Setting 
Scan 
Shell 

792 
761 
797 
797 
798 
333 
461 
907 

Index 

Signal controller 
Single step 
Single step interrupt 
Small registers 
Software interrupt 
SORT 
Sound 

460 
667 
710 

7 
22,916 

132 
447-451 

451 
358 

11 
917 
917 

503, 564, 575 

Sound demonstration program 
Special keys 
Stack segment 
Standard input device 
Standard output device 
Status register 
ST! 
Stop bits 
Subdirectory access 
SUB ST 
Support chips 
Switch to protected mode 
System configuration 
System Request 
System request 

Teletype output 
Temporary file 
Terminate address 

23, 917 
331, 332 

767 
212 

13 
755 
292 
754 
754 

235 
834 
843 

Terminate and Stay Resident (TSR) 
407, 846 

Terminate program 142, 767, 773, 825 
Terminate with return code 825 
Test for changeable block device 818 
Test for local or remote drive 818 
Test for local or remote handle 819 
Text cursor emulation 879 
Text mode 458 
Time 395, 759-763, 768, 797, 829 
Time and date 767 
Time measurement 54, 336, 395 
Time-out error 333, 384, 917 
Timekeeping 395 
Timer 14, 448, 673, 917 
TPA-see Transient Program Area 
Trace mode 668 

74 
333 
333 

51 
119, 903 

Traditional input/output functions 
Transfer holding register 
Transfer shift register 
Transient commands 
Transient Program Area (TP A) 

929 



Index 

Transmit characters 
TRAP bit 
Truncate file 
TSR 846TSR programs 
Turbo C Compiler 
Turbo Pascal string 
Typematic 

334 
710 
806 
407 

45,416 
38 

577-579 

UART 332 
Undocumented DOS structures 208 
Unfiltered character input without echo 

777 
UNIX 54, 70,84, 196 
Upwardly compatible 903 
User interface 617 

Verify disk 
Verify flag 
Verify sector 
Vertical synchronization signal 
VGA BIOS 
VGA character generator 
VGA Interrupts: 

732 
798, 828 
326, 740 

483 
254 
263 

Interrupt IOH, function lAH 881 
Interrupt lOH, function IOH 

866-871 
Interrupt IOH, function 11H 

sub-function 04H 874-876 
Interrupt IOH, function 12H 

sub-function 31H 878-879 
VGA video modes 255 
Video cards 14, 457 
Video controller 458 
Video controller registers 4 72 
Video functions 713 
Video Graphics Array (VGA) 254, 458 
Video mode 231, 856 
Video page 908 
Video RAM 458, 482, 856 
Video table 764 715 
Virtual memory 4, 917 
Volume 917 

Wait 
Wildcards 
Wool 
Word length 
Write 

930 

754 
96 
16 

331,332 
163 

PC System Programming 

Writecharacter 722, 757, 861, 864 
Write character/attribute 721, 860 
Write character/color 861 
Write to disk 731 
Write to file 809 
Write with verify 163 

XENIX 196,687 



Abacuslilll~ catalog 
p 1 800-451-4319 Order Toll Free -

"ds MI49512 Grand Rapt ' S 5370 52nd Street SE • 0 •Fax: (616) 698-032 
(616) 698-033 Phone: 



Beginners Books for ne\~ PC Cscrs 

Beginners Series books remove the confusing jargon and get you up 
and running quickly with your PC. 

PC and Compatible Computers for Beginners -
For the absolute newcomer to personal computers. 
Describes the PC and all of its components in a non
technical way. Introduces DOS commands. 
ISBN 1-55755-060-3 $18.95 
Canada: 52072 $22.95 

MS-DOS for Beginners - Describes the most 
important DOS commands clearly and 
understandably. Teaches skills required to more 
effectively use your PC. 
ISBN 1-55755-061-1 $18.95 
Canada: 52071 $22.95 

EXCEL for Beginners- Newcomers to this powerful 
spreadsheet and graphics software will learn to master 
Excel's many features in a short while. 
ISBN 1-55755-067-0 $18.95 
Canada: 52067 $22.95 

Microsoft Works for Beginners - A thorough 
introduction to this "all-in-one" software package. 
Loaded with simple, practical examples. 
ISBN 1-55755-063-8 $18.95 
Canada: 52070 $22.95 

Ventura Publisher for Beginners* - Presents the 
basics of the premier desktop publishing package. 
Many examples and illustrations. 
ISBN 1-55755-064-6 $18.95 
Canada: 52074 $22.95 

*Companion Disk available for $14.95 each ($19.95 CDN) 

To order direct call Toll Free 1-800-451-4319 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



Beginners Books for ne"' PC Users 

UNIX for Beginners - Clearly describes this popular 
operating system, Logon procedures, file concepts and 
commands using simple and clear examples. 
ISBN 1-55755-065-4 $18.95 
Canada: 52073 $22.95 

Lotus 1-2-3 for Beginners - Presents the basics with 
examples that are presented clearly and without 
confusing 'computer jargon'. Includes Release 2.2 
information. 
ISBN 1-55755-066-2 $18.95 
Canada: 52069 $22.95 

G W-BASIC Programming for Beginners* -A simple 
introduction to programming the PC using the BASIC 
language. Learn many of the commands writing sample 
programs and taking chapter quizzes. 
ISBN 1-55755-062-X $18.95 • 
Canada: 52068 $22.95 

Microsoft Word for Beginners - Explains what a 
beginner needs to know to become more productive 
with this powerful word processor. Step-by-step 
examples. 
ISBN 1-55755-068-9 $18.95 
Canada: 52075 $22.95 

COBOL for Beginners* - Teaches this popular 
language using MBP, MicroFocus and Microsoft 
COBOL. Includes quizzes, explanations and 
demonstrations. 
ISBN 1-55755-070-0 
Canada: 53904 $22.95 

$18.95 

dB ASE IV for Beginners - Simply and easily explains 
the fundamentals of dBASE. Learn to operate this 
package in no time and utilize its powerful commands 
and functions. 
ISBN 1-55755-069-7 $18.95 
Canada: 52066 $22.95 

*Companion Disk available for $14.95 each ($19.95 CDN) 

To order direct call Toll Free 1-800-451-4319 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



Beginners Books for new PC Users 

Beginners Series books remove the confusing jargon and get you up 
and running quickly with your PC. 

PC and Compatible Computers for Beginners - For 
the absolute newcomer to personal computers. 
Describes the PC and all of its components in a non
technical way. Introduces DOS commands. 
ISBN 1-55755-060-3 $18.95 
Canada: 52072 $22.95 

MS-DOS for Beginners - Describes the most 
important DOS commands clearly and understandably. 
Teaches skills required to more effectively use your 
PC. 
ISBN 1-55755-061-1 $18.95 
Canada: 52071 $22.95 

EXCEL for Beginners - Newcomers to this powerful 
spreadsheet and graphics software will learn to master 
Excel's many features in a short while. 
ISBN 1-55755-067-0 $18.95 
Canada: 52067 $22.95 

Microsoft Works for Beginners - A thorough 
introduction to this "all-in-one" software package. 
Loaded with simple, practical examples. 
ISBN 1-55755-063-8 $18.95 
Canada: 52070 $22.95 

Ventura Publisher for Beginners* - Presents the 
basics of the premier desktop publishing package. 
Many examples and illustrations. 
ISBN 1-55755-064-6 $18.95 
Canada: 52074 $22.95 

*Companion Disk available for $14.95 each ($19.95 CON) 

To order direct call Toll Free 1-800-451-4319 . 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



Beginners Books for new PC Users 

UNIX for Beginners - Clearly describes this popular 
operating system, Logon procedures, file concepts and 
commands using simple and clear examples. 
ISBN 1-55755-065-4 $18.95 
Canada: 52073 $22.95 

Lotus 1-2-3 for Beginners - Presents the basics with 
example~ lhal are presented clearly and without 
confusing 'computer jargon'. Includes Release 2.2 
information. 
ISBN 1-55755-066-2 $18.95 
Canada: 52069 $22.95 

GW-BASIC Programming for Beginners* -A simple 
introduction to programming the PC using the BASIC 
language. Learn many of the commands writing sample 
programs and taking chapter quizzes. 
ISBN 1-55755-062-X $18.95 
Canada: 52068 $22.95 

Microsoft Word for Beginners -~-----~ 
Explains what a beginner needs to know to become 
more productive with this powerful word processor. 
Step-by-step examples. 
ISBN 1-55755-068-9 $18.95 
Canada: 52075 $22.95 

COBOL for Beginners* - Teaches this popular 
language using MBP, MicroFocus and Microsoft 
COBOL. Includes quizzes, explanations and 
demonstrations. 
ISBN 1-55755-070-0 
Canada: 53904 $22.95 

$18.95 

dBASE IV for Beginners -
Simply and easily explains the fundamentals of dBASE. 
Learn to operate this package in no time and utilize its 
powerful commands and functions. 
ISBN 1-55755-069-7 $18.95 
Canada: 52066 $22.95 

*Companion Disk available for $14.95 each ($19.95 CDN) 

To order direct call Toll Free 1-800-451-4319 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



Developer's Series Books 

Programming VGA Graphics 
VGA is now the standard display mode 
among the top selling PC software 
packages. If you develop software and 
want to support VGA mode, 
Programming VGA Graphics will help 
you write for almost any VGA video card. 
Programming VGA Graphics is a 
collection of language extensions for the 
Turbo Pascal and Turbo BASIC 
programmer. 

Programming VGA Graphics also 
includes real world applications - a game called "The search for alien planet 
Earth" and a multicolor fractal demonstration for video mode 19. 
Beginning programmers and professional developers alike can profit from 
Programming VGA Graphics. What can YOU do with VGA? Find out 
with our Programming VGA Graphics. 670pages. W/2companiondisks. 
Item# B099 ISBN 1-55755-099-9. $39.95 
Canada: 57908 $51.95 

QuickBASIC Toolbox 
isforallQuickBASICprogrammerswho 
want professional results with minimum 
effort. It's packed with powerful, ready
to-use programs and routines you can 
use m your own programs to get 
professional results quickly. 

Some of the topics include: 
• Complete routines for SAA, interfacing 

mouse support, pull-down menus, windows, 
dialog boxes and file requestors 

• Descriptions of QuickBASIC routines 
• A BASIC Scanner program for printing completed project listings and more 

This book/disk combination will teach you how to write even better 
QuickBASIC. 130 pages. Available March 1991. 

QuickBASIC Toolbox, with companion disk. 
Item#Bl04 ISBN 1-55755-104-9 $34.95 
Canada: 57911 $45.95 

To order direct call Toll Free 1-800-451-4319 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



Productivity Series Books 

PC Assembly Language Step by Step 
For lightning execution speed, no 
computer language beats assembly 
language. This book teaches you PC 
assembly and machine language the right 
way - one step at a time. The companion 
diskette contains a unique simulator 
which shows you how each instruction 
looks as the PC executes it. Includes 
companion diskette containing assembly 
language simulator. 
ISBN 1-55755-096-4. $34.95 
Canada: 53927 $45.95 

Upgrading & Maintaining your PC 
Your PC represents a major investment. 
This book shows you how to turn your 
PC into a high performance computing 
machine. It describes what you'll see 
when you open the "hood" and how all of 
the parts work together. Whether you 
want to add a hard drive, increase your 
memory, upgrade to a higher resolution 
monitor, or tum your XT into a fast AT 
or 386 screamer, you'll see how to do it 
easily and economically, without having 
to be an electronics wizard. 
ISBN 1-55755-092-1. $24.95 
Canada: 53926 $33.95 

To order direct call Toll Free 1-800-451-4319 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



Windows Software 

New BeckerTools 2.0 for Windows: 
Indispensable utilities for every Windows user 
If you' re a Windows user you'll appreciate BeckerTools Version 2 
for Windows. BeckerTools will dramatically speed-up your file and 
data management chores and increase your productivity. Where 
Windows' File Manager functions end, BeckerTools features begin 
by giving you powerful, yet flexible features you need to get the job 
done quickly. BeckerTools has the same consistent user interface 
found in Windows so there's no need to learn 'foreign' commands 
or functions. Manipulating your disks and files are as easy as 
pointing and shooting with the mouse. You'll breeze through flex
ible file and data functions and features that are friendly enough for 
a PC novice yet powerful enough for the advanced user.You won't 

find yourself 'dropping out' of Windows to perform powerful and essential DOS functions like 
undeleting a file or waiting for a diskette to be formatted. BeckerTools has the enhanced applications 
available with the click of a mouse button. Item #S 110 ISBN 1-55755-110-3. With 3 1/2" and 5 1/4" 
diskettes. Suggested retail price $129.95. 

BeckerTools Version 2 is as easy 
as pointing and shooting with the 
mouse. BeckerTools takes ad
vantage of Windows' multitasking 
capabilities and BeckerTools 
keeps you informedofit's progress 
as it works. 

Here are some of the things that you can easily do with BeckerTools Version 2: 

• Launch applications - directly from BeckerTools 
• Associate files - logically connects applications 

with their file types 
• Backup (pack files) hard disk - saves 50% to 80% 

disk space - with password protection 
• User levels - 3 levels for beginning, intermediate 

and advanced users 
• Undelete - recover deleted files 
• Undelete directories - recover directories in addition 

to individual files 
• Delete files - single, groups of files or directories, 

including read-only files 
• Duplicate diskettes - read diskette once, make 

multiple copies 

• Edit text - built-in editor with search and replace 
• Format diskettes - in any capacity supported by 

your drive and disk type 
• Compare diskettes - in single pass 
• Wipe diskette - for maximum security 
• Screen blanker - prevent CRT "burnout" 
• File grouping - perform operations on files as a 

group 
• Create a bootable system diskette 
• Reliability checking - check for physical errors on 

disk media 
• Edit files - new hex editor to edit virtually and type 

of file 
• Dozens of other indispensable features 

To order direct call Toll Free 1-800-451-4319 
In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item. 

Michigan residents add 4% sales tax. 



P · ystem 
Pro rammin 

An in-depth reference for the DOS programmer 

PC System Programming for Developers is a literal encyclopedia for the DOS programmer. 
Whether you program in assembly language, C, Pascal or BASIC, you'll find dozens of practical , 
parallel working examples in each of these languages. 

PC System Programming for Developers clearly describes the technical aspects of program
ming under DOS. More than 900 pages are devoted to making DOS programming easier. 

Some of the topics covered include: 

• PC memory organization 

• Using extended and expanded memory 

• Hardware and software interrupts 

COM and EXE programs 

• Handling program interrupts in BASIC, 
Turbo Pascal , C and assembly language 

• DOS structures and functions 

• Fundamentals of the BIOS 

• Programming graphics cards 

• TSR programs and more 

• Writing device drivers 

Look for other books in our Developer's Series. 

Includes two companion disks with over 1 MB of source code. 
These disks contain all the source files listed in the book -
complete and error-free. Saves you hours of typing in the program file. 

5370 52nd Street SE· Grand Rapids, Ml 49512 $59.95 USA 

ISBN 1-55755-036-0 

9 781557 550361 


	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862
	863
	864
	865
	866
	867
	868
	869
	870
	871
	872
	873
	874
	875
	876
	877
	878
	879
	880
	881
	882
	883
	884
	885
	886
	887
	888
	889
	890
	891
	892
	893
	894
	895
	896
	897
	898
	899
	900
	901
	902
	903
	904
	905
	906
	907
	908
	909
	910
	911
	912
	913
	914
	915
	916
	917
	918
	919
	920
	921
	922
	923
	924
	925
	926
	927
	928
	929
	930
	931
	932
	933
	934
	935
	936
	937
	938
	xBack

