|000104d 18uialu|

|000]0.1d |0J1U0)) UOISSIWSURI|

99ua49)9Yy s, Jowwesbo.d
:S0Q 10} 0°¢ uolIsIaA di/dJOL

0-€S19-1€0S

Transmission Control Protocol/
Internet Protocol

TCP/IP Version 2.0 for DOS:
Programmer's Reference

IBM Transmission Control Protocol/
Internet Protocol Version 2.0 for DOS:

Programmer’s Reference

SC31-6153-0

—— Notel

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page Xiii.

First Edition (September 1991)

This edition applies to the IBM Transmission Control Protocol/Internet Protocol Version 2.0 for DOS licensed
program.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM represen-
tative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation

Department E15

P.O. Box 12195

Research Triangle Park, North Carolina 27709
U.S.A.

IBM may use or distribute any of the information you supply in any way or distribute any of the information you
supply without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is required to include the following statements in order to distribute portions of
this document and the software described herein to which contributions have been
made by Sun Microsystems, Massachusetts Institute of Technology, Digital Equip-
ment Corporation, and The University of California.

Portions herein © Copyright 1979, 1980, 1983, 1986, Regents of the University of
California. Reproduced by permission. Portions herein were developed at the Elec-
trical Engineering and Computer Sciences Department at the Berkeley campus of
the University of California under the auspices of the Regents of the University of
California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems, Inc.
1988, 1989.

iv TCP/IP Version 2.0 for DOS: Programmer’s Reference

Contents

© Copyright IBM Corp. 1991

Notices Xiii
Trademarks xiii
About ThisBook XV
Who ShouldUse ThisBook XV
How toUse This Book XV

How This Book Is Organized XV

How the Term “internet” IsUsed Xvii

How the Term “PC” IsUsed xvii

How the Term <TCPBASE>IsUsed xvii

Coding Conventions Used in ThisBook Xvii

How to Read a Syntax Diagram xvii

How Numbers Are Usedin ThisBook xviii
Where to Find More Information L. Xix
Chapter 1. Introducing Computer Networks and Protocols 3
Computer Networks 3
Internet Environment L 3
TCP/IP Protocols and Functions 5
Network Protocols 6
Internetwork Protocols 6
Transport Protocols 7
Applications, Functions, and Protocols 8
Routing 12
Internet Addressing 12
Chapter 2. General Programming Information 17
TCP/IP for DOS Component Interfaces 17
Header Files 17
Library Files 18
Porting Considerations 18
Chapter3. Sockets 21
Programming withSockets 21
Socket Library 34
Porting 34
Compilingand Linking 34
Socket Calls e 35
Chapter 4. Remote Procedure Calls(RPCs) 101
The RPClInterface 101
RPC Supportfor DOS 104
Portmapper 105
enum cint_stat Structure L 106
Remote Procedure Call Library 107
Porting 107
Compilingand Linking 107
Remote Procedure and eXternal Data Representation Calls 108
Chapter 5. File Transfer Protocol Application Programming Interface 189
FTP API Call Library e 189
Compilingand Linking 189

vi

Return Values (ftperrno) 190

FTPAPICalls 190
Chapter6. TimerRoutines 213
Timers andthe TimerTask e 213
A lListof TimerRoutines 213
Chapter 7. TaskingRoutines, 221
Tasking and the Scheduler 221
Tasks, Task State Vectors, and Task Status 221
The Wake Counter 222
A List of Tasking Routines 222
Appendix A. Well-Known Port Assignments 235
TCP Well-Known Port Assignments 235
UDP Well-Known Port Assignments 237
Appendix B. Sample SocketPrograms 239
Socket UDP Client e 239
Socket UDP Server 241
Socket TCP Client e 243
Socket TCP Server 245
Appendix C. Sample RPCPrograms 247
RPC Client e 247
RPC Server e 248
Appendix D. Sample Tasking Program 251
Tasking Program L 251
Appendix E. Socket Quick Reference 255
Appendix F. Remote Procedure Call Quick Reference 257
Appendix G. FTP APl Quick Reference 261
Appendix H. Timer Quick Reference 263
Appendix I. Tasking Quick Reference 265
Appendix J. NETWORKS File Structure 267
Appendix K. MessagesandCodes 269
General Module Errors 270
General Module Internal Errors 286
General Module Warnings 287
Generic Text Messages 291
IFCONFIG Errors 296
Name Server Messages 302
NFS Errors e 303
TSR Errors 310
Appendix L. Related Protocol Specifications 313
Glossary 319

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Bibliography
TCP/IP for DOS Publications
Other TCP/IP Publications
Other Related Publications

Contents

vii

v TCP/IP Version 2.0 for DOS: Programmer’s Reference

Figures

© Copyright IBM Corp. 1991

@ N R LN =

The TCP/IP Layered Architecture 5
Hierarchical Tree 9
Class AAddress 13
Class B Address 13
Class C Address 13
Class D Address 13
Class B Address with Subnet 14
TCP/IP for DOS Architecture, . 17
An Application Uses the sock_init()Call 24
An Application Uses the socket() Call 24
An Application Uses the bind() Call 24
A bind() Call Using the getservbyname()Call 25
An Application Uses the listen() Call 25
An Application Uses the connect()Call 26
An Application Uses the gethostbyname() Call 26
An Application Uses the accept() Call 26
An Application Uses the send() andrecv() Calls 27
An Application Uses the sendto() and recvfrom() Call 27
An Application Uses the select() Call 28
An Application Uses the so_close()Call 28
A Typical TCP Socket Session 30
A Typical UDP Socket Session 31
Remote Procedure Call (Client) 102
Remote Procedure Call (Server) 103

ix

X TCP/IP Version 2.0 for DOS: Programmer’s Reference

Tables

© Copyright IBM Corp. 1991

PN RALON =

TCP Well-Known Port Assignments 235
UDP Well-Known Port Assignments 237
Socket Quick Reference 255
Remote Procedure Call Quick Reference 257
FTP APl Quick Reference 261
Timer Quick Reference 263
Tasking Quick Reference 265
Name Structures of Known Networks 267

xi

X TCP/IP Version 2.0 for DOS: Programmer’s Reference

Notices

The licensed program described in this document and all licensed material avail-
able for it are provided by IBM under terms of the IBM Program Licensed Agree-

ment.

Any reference to an IBM licensed program in this document is not intended to state
or imply that only IBM’'s program may be used.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send inquiries, in writing, to the IBM Director of
Commercial Relations, International Business Machines Corporation, Purchase,

New York, 10577.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the war-
ranties of merchantability and fitness for a particular purpose.

Trademarks

The following terms, denoted by an asterisk (*) at their first occurrences in this pub-
lication, are trademarks of IBM Corporation in the United States or other countries:

AIX
PC/XT
Personal System/2

Micro Channel

Personal Computer AT Personal Computer XT

The following terms, denoted by a double asterisk (**) at their first occurrences in
this publication, are trademarks of other companies:

Trademark
Ethernet

Intel

Microsoft C
Motorola
MS-DOS

NDIS

Network File System
NFS

NiCps/2
PostScript
Ungermann-Bass
UNIX

© Copyright IBM Corp. 1991

Owned By

Xerox Corporation

Intel Corporation

Microsoft Corporation
Motorola, Inc.

Microsoft Corporation

3Com Corporation/Microsoft Corporation
Sun Microsystems, Inc.

Sun Microsystems, Inc.
Ungermann-Bass Corporation
Adobe Systems, Inc.
Ungermann-Bass Corporation
UNIX System Laboratories, Inc.

xifi

Xiv TCP/IP Version 2.0 for DOS: Programmer’s Reference

About This Book

IBM TCP/IP Version 2.0 for DOS: Prggrammer’s Reference describes the rountines
for application programming in IBM Transmission Control Protocol/Internet Pro-
tocol Version 2.0 for Disk Operating System (TCP/IP Version 2.0 for DOS) software
on a personal computer (PC). TCP/IP for DOS is the base product. The following
optional kits are offered separately:

* Network File System** (NFS**) Kit
¢ Programmer’s Tool Kit.

The NFS Kit is a communication option that allows you to communicate with other
NFS servers, and access files and output devices located on that server.

The Programmer’s Tool Kit is a set of Application Programming Interfaces (APls)
that allow a programmer to develop custom code that accesses the capabilities of
TCP/IP for DOS.

Note: In this book, PC refers to personal computer. See “How the Term PC** Is
Used” on page xvii. DOS refers to IBM DOS Version 3.3 or later or MS-DOS
Version 3.3 or later.

Who Should Use This Book

This book is intended for application and system programmers with experience in
writing application programs on a personal computer. You should also be familiar
with the DOS operating system, and the C programming language. Knowiedge of
the TCP/IP protocols and standard TCP/IP user applications is also helpful. In this
book, the term protocol is a set of rules for handling communication tasks.

If you are not familiar with TCP/IP concepts, see Internetworking With TCP/IP
Volume I: Principles, Protocols, and Architectures and Internetworking With TCP/IP
Volume Il: Implementation and Internals.

How to Use This Book

Before you start programming, verify that TCP/IP for DOS and the Programmer’s
Tool Kit is installed on your PC. For information about installing TCP/IP for DOS and
the Programmer’s Tool Kit, see IBM TCP/IP Version 2.0 for DOS: Installation and
Maintenance.

How This Book Is Organized

© Copyright IBM Corp. 1991

Read the beginning section of each chapter to familiarize yourself with the topics
that you need to know for application programming.

Chapter 1, “Introducing Computer Networks and Protocols,” describes computer
networks, an internet environment, and protocols supported by TCP/IP for DOS.
Also included in this chapter is an overview of the routing and addressing schemes
used by TCP/IP for DOS.

Chapter 2, “General Programming Information,” contains fundamental, technical

information about application program interfaces (API) provided with TCP/IP for
DOS.

XV

xvi

Chapter 3, “Sockets,” describes the TCP/IP socket interface and how to use the
socket routines in a user-wriiien appiication.

Chapter 4, “Remote Procedure Calls (RPCs),” describes the remote procedure calls
and how they are used in a user-written application.

Chapter 5, “File Transfer Protocol Application Programming Interface,” describes
the file transfer protocol routines and how they are used in a user-application.

Chapter 6, “Timer Routines,” describes the use of timer routines in creating,
setting, clearing, and removing timers.

Chapter 7, “Tasking Routines,” describes the use of tasking routines'to make a DOS
system appear to run tasks simultaneously.

Appendix A, “Well-Known Port Assignments,” provides the TCP and UDP
well-known port numbers, and includes a description of the services provided with
each port assignment.

Appendix B, “Sample Socket Programs,” provides sample TCP and UDP client and
server C socket communication programs.

Appendix C, “Sample RPC Programs,” provides sample client and server RPC pro-
grams.

Appendix D, “Sample Tasking Program,” provides sample tasking programs.

Appendix E, “Socket Quick Reference,” describes each socket call supported by
TCP/IP for DOS.

Appendix F, “Remote Procedure Call Quick Reference,” describes each remote
procedure call supported by TCP/IP for DOS.

Appendix G, “FTP API Quick Reference,” describes each file transfer call supported
by TCP/IP for DOS.

Appendix H, “Timer Quick Reference,” describes each timer routine supported by
TCP/IP for DOS.

Appendix |, “Tasking Quick Reference,” describes each tasking routine supported
by TCP/IP for DOS.

Appendix J, “NETWORKS File Structure,” provides examples of network names
contained in the NETWORKS file.

Appendix K, “Messages and Codes,” provides a list of messages and codes for
TCP/IP for DOS.

Appendix L, “Related Protocol Specifications,” provides a listing of Requests for
Comments (RFC), upon which many features of TCP/IP for DOS are based.

The book also includes a glossary, a bibliography, and an index.

For comments and suggestions about /IBM TCP/IP Version 2.0 for DOS:
Programmer’s Reference use the Reader’'s Comment Form located at the back of
this book. Use this form to give IBM information that might improve the book.

TCP/IP Version 2.0 for DOS: Programmer’s Reference

How the Term “internet” Is Used

In this book, an internet is a logical collection of networks supported by gateways,
routers, hosts, and various layers of protocols that permit the network to function as
a large, virtual network.

Note: The term “internet” is used as a generic term for a TCP/IP network, and
should not be confused with the Internet, which consists of large national backbone
networks (such as MILNET, NFSNet, and CREN) and a myriad of regional and local
campus networks worldwide.

How the Term “PC” Is Used

In this book, PC refers to models of the IBM Personal Systgm/z* (P§/2*), IBM Per-
sonal Computer XT (PC/XT), IBM Personal Computer AT (PC AT), and any other
personal computer that is fully IBM compatible and can run DOS Version 3.30 or
later.

How the Term <TCPBASE> Is Used

In this book, the generic term <TCPBASE> refers to the specific name of the base
directory in which TCP/IP for DOS is installed. The default base directory for TCP/IP
for DOS is C:\TCPDOS.

Coding Conventions Used in This Book
The following coding conventions are used throughout this book:

¢ Lowercase letters represent values that must be entered in lowercase.

* Lowercase italicized terms represent variable parameters where the user may
supply the values.

¢ Uppercase letters represent commands and file names, which can be typed in
either uppercase or lowercase.

* Periods in numbers separate the whole and the fractional portions of the
numeral.

How to Read a Syntax Diagram

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

The following symbols are used in syntax diagrams:

Symbol Description

> Marks the beginning of the command syntax.

> The command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

> Marks the end of the command syntax.

Required parameters are displayed on the main path. Optional parameters are dis-
played below the main path. Default parameters are displayed above the main
path.

About This Book XVii

Parameters are classified as keywords or variables. Keywords are displayed in
uppercase ieiiers and can be typed in uppercase or iowercase. A command is a
keyword.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. A file name is a variable.

in the following example, drive, path, and drive\directory are variable parameters.
Replace them with the values you want.
™

\
A

> JOIN—drive—drive\directory
I—dr'i ve—J l—path—l

Include all punctuation such as colons, semicolons, commas, quotation marks, and
minus signs shown in the diagram.

Choose One Required Item from a Stack: A stack of parameters with the first on the
main path means that you must choose only one from the stack.

> ANSI ON
Ldr'i ve—l I—path—-l LOF F—J

Y
A

Choose One Optional Item from a Stack: A stack of parameters with the first below
the main path means that you do not have to choose any from the stack, but if you
do, you cannot choose more than one.

> ANSIT >
Ldrive—] Lpath—-I l:gN—/—l
F

F

A

Specify a Sequence More Than Once: An arrow above the main path that returns to
a previous point means the sequence of items included by the arrow can be speci-
fied more than once.

\
A

v . |
»»—TYPE -filename
Ldri ve—I [—path—-l

How Numbers Are Used in This Book

xviii

In this book, humbers over four digits are represented in metric style. A space is
used rather than a comma to separate groups of three digits. For example, the
number sixteen thousand, one hundred forty-seven is written 16 147.

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Where to Find More Information

The following is a list of related publications that you might want to read for more
information about TCP/IP for DOS:

IBM TCP/IP Version 2.0 for DOS: Installation and Maintenance

IBM TCP/IP Version 2.0 for DOS: User’s Guide

Introducing IBM’s TCP/IP Products for 0S/2, VM, and MVS

Internetworking With TCP/IP Volume I: Principles, Protocols, and Architectures
Internetworking With TCP/IP Volume Il: Implementation and Internals.

For more information about related publications, see the “Bibliography” at the back
of this book.

About This Book XiX

XX

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Chapter 1. Introducing Computer Networks and Protocols

© Copyright IBM Corp. 1991

Computer Networks 3
Internet Environment 3
TCP/IP Protocols and Functions 5
Network Protocols 6
Serial Line Internet Protocol (SLIP) 6
Internetwork Protocols 6
Internet Protocol (IP) 6
Internet Control Message Protocol (ICMP) 6
Routing Information Protocol (RIP) 7
Address Resolution Protocol (ARP) L. 7
Transport Protocois e 7
Transmission Control Protocol (TCP) 7
User Datagram Protocol (UDP) 7
Applications, Functions, and Protocols 8
Telnet Protocol e 8
File Transfer Protocol (FTP) 8
Trivial File Transfer Protocol (TFTP) 8
Simple Mail Transfer Protocol (SMTP) 9
Domain Name System (DNS) 9
Remote Printing (LPR) 10
RouteD 10
Network File System (NFS) 10
Remote Procedure Call (RPC) 11
Remote Execution Protocol (REXEC) 11
Post Office Protocol Version2 (POP2) 11
Time Protocol (TIME) 11
Quote of the Day Protocol (COOKIE) 11
Finger Protocol (FINGER) 11
NICNAME/WHOIS Protocol 11
Socket Interfaces 12
Routing 12
Internet Addressing 12
Network Address Format 13
Broadcast Address Format 14
Subnetwork Address Format 14

1

2

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Chapter 1. Introducing Computer Networks and Protocols

This chapter introduces the concepts of computer networks and an internet environ-
ment. The protocols used by TCP/IP are listed by layer, and then described.
Routing and addressing guidelines are also described.

Computer Networks

A computer network is a group of connected nodes that are used for data communi-
cation. A computer network configuration consists of data processing devices, soft-
ware, and transmission media that are linked for information interchange.

Nodes are the functional units, located at the points of connection among the data
circuits. A node, or end point, can be a host computer, a communication controller,
a cluster controller, a video display terminal, or another peripheral device.

Computer networks can be local area networks (LANs), which provide direct com-
munication among data stations on the user’s local premises, or wide area networks
(WANSs), which provide communication services to a geographic area larger than
that served by a LAN. Typically, WANs operate at a slower rate of speed than LANs.

Different types of networks provide different functions. Network configurations vary,
depending on the functions required by the organization. Different organizations
implement different types of networks. The technology used by these networks
varies not only from organization to organization, but often varies within the same
company.

Networks can differ at any or all layers. At the physical Iayeripetworks can run
over various network interfaces, such as token-ring, Ethernet , and serial line.
Networks can also vary as to the architectures they use to implement network strat-
egies. Some of the more common architectures used today are OSI, TCP/IP, SNA,
and ISDN. Networks use different protocols to communicate over the different phys-
ical interfaces available. In addition to these differences, networks can all use dif-
ferent software packages to implement various functions.

To exchange information among these different networks, the concept of an internet
emerged.

Internet Environment

© Copyright IBM Corp. 1991

An internet is a logical collection of networks supported by gateways, routers,
bridges, hosts, and various layers of protocols. An internet permits different phys-
ical networks to function as a single, large virtual network, and permits dissimilar
computers to communicate with each other, regardless of their physical con-
nections. Processes within gateways, routers, and hosts originate and receive
packet information. Protocols specify a set of rules and formats required to
exchange these packets of information.

Protocols are used to accomplish different tasks in TCP/IP software. To understand
TCP/IP, you should be familiar with the following terms and relationships.

A client is a computer or process that requests services on the network. A server is
a computer or process that responds to a request for service from a client. A user
accesses a service, which allows the use of data or some other resource.

A datagram is the basic unit of information, consisting of one or more data packets
that are passed across an internet at the transport ievel.

A gateway is a functional unit that connects two computer networks of different
network architectures. A router is a device that connects networks at the ISO
Network Layer. A router is protocol-dependent and connects only networks oper-
ating the same protocol. Routers do more than transmit data; they also select the
best transmission paths and optimum sizes for packets. A bridge is a router that
connects two or more networks and forwards packets among them. The operations
carried out by a bridge are done at the physical layer and are transparent to TCP/IP
and TCP/IP routing.

A host is a computer, connected to a network, which provides an access point to that
network. A host can be a client, a server, or a client and server simultaneously. In
a communication network, computers are both the sources and destinations of the
packets. The local host is the computer to which a user’s terminal is directly con-
nected without the use of an internet, such as a PC running TCP/IP. A foreign host
is any host on the network including the local host. A remote host is any foreign
host not including the local host. A host is identified by its internet address.

An internet address is a unique 32-bit address identifying each node in an internet.
An internet address consists of a network number and a local address in
dotted-decimal notation. Internet addresses are used to route packets through the
network.

Mapping relates internet addresses to physical hardware addresses in the network.
For example, the Address Resolution Protocol (ARP) is used to map internet
addresses to token-ring or Ethernet physical hardware addresses.

A network is the combination of two or more nodes and the connecting branches
among them. A physical network is the hardware that makes up a network. A
logical network is the abstract organization overlaid on one or more physical net-
works. An internet is an example of a logical network.

Packet refers to the unit or block of data of one transaction between a host and its
network. A packet usually contains a network header, at least one high-level pro-
tocol header, and data blocks. Generally, the format of the data blocks does not
affect how packets are handled. Packets are the exchange medium used at the
internetwork layer to send and receive data through the network.

A port is an end point for communication between applications, generally referring
to a logical connection. A port provides queues for sending and receiving data.
Each port has a port number for identification. When the port number is combined
with an internet address, a socket address results.

Protocol refers to a set of rules for achieving communication on a network.

4 TCP/IP Version 2.0 for DOS: Programmer’s Reference

TCP/IP Protocols and Functions

This section categorizes the TCP/IP protocols and functions by their functional group
(network layer, internetwork layer, transport layer, and application layer). Figure 1
shows the relationship of these protocols and functions within the TCP/IP layered
architecture.

¢ Network Layer
— Serial Line Internet Protocol (SLIP)
¢ Internetwork Layer

— Internet Protocol (IP)

— Internet Control Message Protocol (ICMP)
— Routing Information Protocol (RIP)

— Address Resolution Protocol (ARP)

¢ Transport Layer

— Transmission Control Protocol (TCP)
— User Datagram Protocol (UDP)

* Application Layer

— Telnet

— File Transfer Protocol (FTP)

— Trivial File Transfer Protocol (TFTP)
— Simple Mail Transfer Protocol (SMTP)
— Domain Name System (DNS)

— Remote Printing (LPR)

— RouteD

— Network File System (NFS)

— Remote Procedure Call (RPC)

— Remote Execution Protocol (REXEC)
— Post Office Protocol Version 2 (POP2)
— Time Protocol (TIME)

— Quote of the Day Protocol (COOKIE)
— Finger Protocol (FINGER)

— NICNAME/WHOIS Protocol

— Socket Interfaces.

NFS
Telnet| FTP |TFTP|{SMTP} DNS | LPR |RouteD REXEC|POP2| TIME |COOKIE | FINGER|NICNAME/
RPC WHOIS
Application
Sockets
Transport
TCP ubP
Inter-
IP and ICMP RIP | ARP |network
Physical
Token-Ring, Ethernet V2, IEEE 802.3, IBM PC Network, Serial Line Network

Figure 1. The TCP/IP Layered Architecture

Chapter 1. Introducing Computer Networks and Protocols 5

Network Protocols

This section describes the protocols that compose the network layer available in
TCP/IP for DOS. Network protocols define how data is transported over a physical
network. These network protocols are not defined by TCP/IP. After a TCP/IP packet
is created, a transport-dependent network header is added by the network protocol
before the packet is sent out onto the network.

Serial Line Internet Protocol (SLIP)

In TCP/IP for DOS, the Serial Line Internet Protocol (SLIP) allows you to set up a
point-to-point connection between two TCP/IP hosts over a serial line, such as a
serial cable or an RS-232 connection using a modem and a telephone line. You can
use SLIP to access a remote TCP/IP network from your local host, or to route
datagrams between two TCP/IP networks.

Internetwork Protocols

Protocols in the internetwork layer provide connection services for TCP/IP. These
protocols connect physical networks and transport protocols. This section describes
the internetwork protocols in TCP/IP.

For information about TCP/IP in general, see RFCs 1118, 1180, 1206, 1207, and 1208.
See Appendix L, “Related Protocol Specifications” for a list of related RFCs.

Internet Protocol (IP)

internet Protocol (IP) provides the interface from the transport level (host-to-host,
TCP, or UDP) protocols to the physical-level protocols. IP is the basic transport
mechanism for routing IP packets to the next gateway, router, or destination host.

IP provides the means to transmit blocks of data (or packets) from sources to desti-
nations. Sources and destinations are hosts identified by internet addresses. Out-
going packets automatically have an IP header prefixed to them, and incoming
packets have their IP header removed before being sent to the higher-level proto-
cols. This protocol provides the universal addressing of hosts in an internet
network.

IP does not ensure a reliable communication, because it does not require acknowl-
edgments from the sending host, the receiving host, or intermediate hosts. [P does
not provide error control for data; it provides only a header checksum. IP treats
each packet as an independent entity unrelated to any other packet. IP does not
perform retransmissions or flow control. A higher-level protocol that uses IP must
implement its own reliability procedures.

For more information about IP, see RFC 791.

Internet Control Message Protocol (ICMP)

6

Internet Control Message Protocol (ICMP) passes control messages between gate-
ways, routers, and hosts. For example, ICMP messages can be sent in any of the
following situations:

e When a host checks to see if another host is available (PING).
* When a packet cannot reach its destination.

¢ When a gateway or router can direct a host to send traffic on a shorter route.

TCP/IP Version 2.0 for DOS: Programmer’s Reference

N

* When a host requests a netmask or a time stamp.

¢ When a gateway or router does not have the buffering capacity to forward a
packet.

ICMP provides feedback about problems in the communication environment; it does
not make IP reliable. ICMP does not guarantee that an IP packet will be delivered
reliably or that an ICMP message will be returned to the source host when an IP
packet is not delivered or is incorrectly delivered.

For more information about ICMP, see RFC 792.

Routing Information Protocol (RIP)
Routing Information Protocol (RIP) is used by gateways, routers, and hosts to
exchange routing information. This information can be used to maintain routing
table entries.

For more information about RIP, see RFC 1058.

Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP) maps internet addresses to hardware
addresses. TCP/IP uses ARP to collect and distribute the information for mapping
tables.

ARP is not directly available to users or applications. When an application sends an
internet packet, IP requests the appropriate address mapping. If the mapping is not
in the mapping table, an ARP broadcast packet is sent to all hosts on the network
requesting the physical hardware address for the host.

For more information about ARP, see RFC 826.

Transport Protocols

The transport layer of TCP/IP consists of transport protocols, which allow communi-
cation between application programs. This section describes the transport proto-
cols in TCP/IP.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) provides a reliable vehicle for delivering
packets between hosts on an internet. TCP takes a stream of data, breaks it into
datagrams, sends each one individually using IP, and reassembles the datagrams at
the destination node. If any datagrams are lost or damaged during transmission,
TCP detects this fact and resends the missing datagrams. The received data stream
is a reliable copy of the transmitted data stream.

For more information about TCP, see RFC 793.

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) provides an unreliable mode of communication
between source and destination hosts. UDP is built upon the service of the IP pro-
tocol in the internetwork layer. UDP provides a procedure for application programs
to send data to other programs with a minimum of protocol overhead.

Chapter 1. Introducing Computer Networks and Protocols 7

Like IP, UDP does not offer reliable datagram delivery or duplication protection.
UDP does provide checksums for both the header and data portions of a datagram.
However, applications that require reliable delivery of streams of data should use

TCP. .

For more information about UDP, see RFC 768.

Applications, Functions, and Protocols

Telnet Protocol

Applications are provided with TCP/IP for DOS that allow users to use network ser-
vices. These applications are included in the application layer of TCP/IP. The appli-
cation layer is built upon the services of the transport layer. This section describes
the applications, functions, and protocols in TCP/IP.

Telnet Protocol provides a standard method to interface terminal devices and
terminal-oriented processes with each other. Telnet is built upon the services of
TCP in the transport layer. Telnet provides duplex communication and sends data
either as ASCII characters or as binary data.

Telnet is commonly used to establish a logon session on a foreign host. Telnet can
also be used for terminal-to-terminal communication and interprocess communi-
cation.

For more information about Telnet, see RFCs 854, 856, 857, 885, and 1091.

File Transfer Protocol (FTP)

File Transfer Protoco! (FTP) makes it possible to transfer data between local and N
foreign hosts or between two foreign hosts. FTP is built upon the services of TCP in
the transport layer. FTP transfers files as either ASCII characters or as binary data.

FTP provides functions such as listing remote directories, changing the current
remote directory, creating and removing remote directories, and transferring one or
more files in a single request. Security is handled by passing user IDs and account
passwords to the foreign host.

For more information about FTP, see RFC 959.

Trivial File Transfer Protocol (TFTP)

Trivial File Transfer Protocol (TFTP) is designed only to read and write files to and
from a foreign host. TFTP is built upon the services of UDP in the transport layer.
TFTP allows you to limit drive and directory access.

TFTP, like FTP, can transfer files as either ASCII characters or as binary data.
However, unlike FTP, TFTP cannot be used to list or change directories at a foreign
host, and it has no provisions for user authentication.

For more information about TFTP, see RFC 783.

8 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP) is an electronic mail protocol with both client
(sender) and server (receiver) functions.

You do not interface directly with SMTP. Instead, electronic mail software is used to
create mail, which in turn uses SMTP to send the mail to its destination.

TCP/IP for DOS provides an SMTP client for sending mail to SMTP servers. TCP/IP
for DOS does not have an SMTP server; the Post Office Protocol Version 2 (POP2) is
used for receiving mail.

For more information about SMTP, see RFCs 821, 822, and 974. For more informa-
tion about POP2, see RFC 937.

Domain Name System (DNS)

Domain Name System (DNS) uses a hierarchical-naming system for naming hosts.
Each host name is composed of domain labels separated by periods. Local network
administrators have the authority to name local domains within an internet. Each
label represents an increasingly higher-domain level within an internet. The fully
qualified domain name of a host connected to one of the larger internets generally
has one or more subdomains. For example:

host.subdomain.subdomain.rootdomain
or
host.subdomain.rootdomain

Domain names often reflect the hierarchy level used by network administrators to
assign domain names. For example, the domain name eng.mit.edu is the lowest
level domain name, which is a subdomain of mit.edu. The subdomain mit.eduis a
subdomain of edu.

Figure 2 is an example of the DNS used in the hierarchy naming structure across an

internet.
® (root)
GOV ORG
EDU '
DIVISION STATE l——— REDCROSS SCOUTS Uso
MIT
YALE
ENG BUSINESS

Figure 2. Hierarchical Tree

Chapter 1. Introducing Computer Networks and Protocols 9

You may refer to hosts in your domain by host name only; however, a name server

requires a fuily qualified domain name. The local resolver combines the host name
with the domain name before sending the address resolution request to the domain
name server.

TCP/IP for DOS uses the local resolver functions of a local name resolution file.
This file, called HOSTS, resides in the <TCPBASE>\ETC directory and contains
entries that allow you to map symbolic names to internet addresses. If a name
server is defined using the CUSTOM command, the resolver sends the request to
the name server before using the local HOSTS file.

When using the HOSTS file on a small internet, it is not necessary to use the
hierarchical-naming system used by the larger internets. The following example is
a token-ring network of three users and their entries in the HOSTS file.

129.5.24.1 Hostl vjsPC PCl mathdept
129.5.24.3 PC3 kensPC Host3 # This is Ken's PC
129.5.24.4 PC4 bobsPC

A carriage return must be entered at the end of each line.

In this example, each time the user enters the host name of Hostl or the aliases
vjsPC, PC1, or mathdept, the local name resolver translates it to the internet address
of 129.5.24.1. For more information about the format of network addresses, see
“Network Address Format” on page 13.

For more information about DNS, see RFCs 1034 and 1035.

Remote Printing (LPR)

RouteD

TCP/IP for DOS provides client support for remote printing. This application allows
you to spool files remotely to a line printer daemon (LPD).

For more information about LPR, see RFC 1179.

RouteD uses the Routing Information Protocol (RIP) to dynamically create and main-
tain network routing tables. The RIP protocol arranges to have gateways and
routers periodically broadcast their routing tables to neighbors. Using this informa-
tion, a RouteD server can update a host’s routing tables. For example, RouteD
determines if a new route has been created, if a route is temporarily unavailable, or
if a more efficient route exists.

For more information about RouteD, see RFC 1058.

Network File System (NFS)

The Network File System (NFS) client allows you to manipulate files on remote
TCP/IP hosts as if they reside on your local host. NFS is based on the NFS protocol,
and uses the Remote Procedure Call (RPC) protocol to communicate between the
client and the server. The files to be accessed reside on the server host, and are
made available to the user on the client host.

NFS supports a hierarchical file structure. The directory and subdirectory structure
can be different for individual client systems.

For more information about NFS, see RFC 1094.

10 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Remote Procedure Call (RPC)

The Remote Procedure Call Protocol (RPC) is a programming interface that allows
programs to execute subroutines on a foreign host. RPCs are high-level program
calls, which can be used in place of the lower-level calls that are based on sockets.

For more information about RPC, see RFC 1057.

Remote Execution Protocol (REXEC)

Remote Execution Protocol aliows you to execute a command on a foreign host and
receive the results on the local host. Remote Execution Protocol provides automatic
logon and user authentication depending on the parameters set by the user.

Post Office Protocol Version 2 (POP2)

The Post Office Protocol Version 2 (POP2) allows you to access electronic mail from
a remote mailbox server. Mail should be posted from hosts to the mailbox server
using SMTP.

For more information about POP2, see RFC 937.

Time Protocol (TIME)

The Time Protocol (TIME) provides a site-independent, machine-readable date and
time. TIME can use either UDP or TCP as the underlying protocol. The TIME server
returns the number of seconds since midnight on January 1, 1900 Universal Time
(um.

For more information about TIME, see RFC 868.

Quote of the Day Protocol (COOKIE)

The Quote of the Day Protocol (COOKIE) retrieves thoughts for the day from a
network quote server. When a packet is sent to a COOKIE server, COOKIE returns a
message and discards any data contained in the packet. COOKIE can use either
UDP or TCP as the underlying protocol. There is no specific syntax for the message
returned by CQOKIE.

For more information about COOKIE, see RFC 865.

Finger Protocol (FINGER)

The Finger Protocol (FINGER) provides an interface for querying the current status
of a remote host or a user ID on a remote host. FINGER uses TCP as the underlying
protocol.

For more information about FINGER, see RFC 1196.

NICNAME/WHOIS Protocol

The NICNAME/WHOIS Protocol provides an interface to the NICNAME/WHOIS direc-
tory service at the Network Information Center, nic.ddn.mil, and to other
NICNAME/WHOIS servers on the Internet. NICNAME/WHOIS uses TCP as the under-
lying protocol.

For more information about NICNAME/WHOIS, see RFC 954.

Chapter 1. Introducing Computer Networks and Protocols 11

Socket Interfaces

Socket interfaces allow users to write their own applications to supplement those
supplied by TCP/IP for DOS. Most of these additional applications communicate
with either TCP or UDP. Some applications are written to communicate directly with
IP. To write applications that use the socket interfaces of TCP/If;for DOS, you must
be able to compile and link the programs using the Microsoft C compiler, Version
5.10 or later.

Sockets are duplex, which means that data can be transmitted and received simul-
taneously. Sockets allow you to send to, and receive from, the socket as if you are
writing to and reading from any other network device.

Routing

The routing functions in an internet are performed at the internetwork layer.
Routing is the process of deciding where to send a packet based on its destination
address. Two kinds of routing are involved in communication within an internet:
direct and indirect.

Direct routing is used when the source and destination nodes are on the same
logical network within an internet. The source node maps the destination internet
address into a hardware address and sends packets to the destination node using
this address. This mapping is normally performed through a translation table. If a
match cannot be found for a destination internet address, ARP is invoked to deter-
mine this address.

Indirect routing is used when the source and destination nodes are on different
logical networks within an internet. The source node sends packets to a gateway or
router on the same network using direct routing. From there, the packets are for-
warded through intermediate gateways or routers, as required, until they arrive at
the destination network. Direct routing is then used to forward the packets to the
destination host on that network. Each gateway, router, and host in an internet has
a routing table that defines the address of the next gateway to other networks (as
well as other nodes on other networks) in an internet.

Internet Addressing

Each internet host is assigned at least one unique internet address. This address is
used by IP and other higher-level protocols. When gateway hosts are used, more
than one address may be required. Each interface to an internet is assigned its own
unique address. Internet addresses are used to route packets through the network.

Addresses within an internet consist of a network number and a local address. A
unique network number is assigned to each network when it connects to another
internet. If a local network is not going to connect to other internets, any convenient
network number is assigned. Some networks are divided into subnets. For more
information about subnets, see “Subnetwork Address Format” on page 14.

Hosts that exchange packets on the same physical network should have the same
network number. Hosts on different physical networks might also have the same
network number. If hosts have the same network number, part of the local address
is used as a subnetwork number. All host interfaces to the same physical network
are given the same subnetwork number.

12 TCP/IP Version 2.0 for DOS: Programmer’s Reference

An internet can provide standards for assigning addresses to networks, broadcasts,
and subnetworks. Examples of these standard formats are described in the fol-
lowing sections.

Network Address Format

A standard internet address uses a two-part, 32-bit address field. The first part of
the address field contains the network address; the second part contains the local
address. The four different types of address fields are classified as A, B, C, or D,
depending on the bit allocation.

Figure 3 represents a class A address. Class A addresses have a 7-bit network
number and a 24-bit local address. The highest order bit is set to 0.

1 2 3
01234567 (89012345 ({67890123 (45678901

0 Network Local Address

Figure 3. Class A Address

Figure 4 represents a class B address. Class B addresses have a 14-bit network
number and a 16-bit local address with the highest order bits set to 10.

1 2 3
01234567 |189012345167890123|45678901

10 Network Local Address

Figure 4. Class B Address

Figure 5 represents a class C address. Class C addresses have a 21-bit network
number and an 8-bit local address with the three highest order bits set to 110.

1 2 3
01234567 |89012345|67890123 (45678901

110 Network Local Address

Figure 5. Class C Address

Figure 6 represents a class D address. Class D networks have a multicast address
that is sent to selected hosts on the network. The four highest order bits are set to
1110.

1 2 3
01234567 |189012345|67890123 (456789601

1110 Multicast Address

Figure 6. Class D Address

Note: Class D addresses are not supported in TCP/IP for DOS.

A commonly used notation for internet host addresses is the dotted-decimal, which
divides the 32-bit address into four 8-bit fields. The value of each field is specified

as a decimal number, and the fields are separated by periods (for example,
010.002.000.052 or 10.2.0.52).

Chapter 1. Introducing Computer Networks and Protocols 13

Address examples in this book use dotted-decimal notation in the following forms:

Class A nnn LI
Class B nnn.nnn .11
Class C nnn.nnn.nnn.ll|

where nnn represents part or all of a network number and /Il represents part or all
of a local address.

Broadcast Address Format

TCP/IP uses IP broadcasting to send datagrams to all the TCP/IP hosts on a network
or subnetwork. A datagram sent to the broadcast address is received by all of the
hosts on the network and processed as if the datagram was sent directly to the
host’s IP address. The IP broadcast address is formed by setting all of the host bits
to ones.

For more information about broadcast address format, see RFCs 919 and 922.

Subnetwork Address Format

The subnetwork capability of TCP/IP divides a single network into multiple logical
networks (subnets). For instance, an organization can have a single internet
network address that is known to users outside the organization, yet configure its
internal network into different departmental subnets. Subnetwork addresses
enhance local routing capabilities, while reducing the number of network numbers
required.

For a subnet, the local address part of an internet address is divided into a subnet
number and a host number, for example:

network_number subnet_number host_number

where:

network_number Is the network portion of the internet address.
subnet_number Is a field of a constant width for a given network.
host_number Is a field that is at least 1-bit wide.

If the width of the subnet_number field is 0, the network is not organized into
subnets, and addressing to the network is done with an internet network address
(network_number). N

Figure 7 represents a class B address with a 6-bit wide subnet field.

1 2 3
01234567 (89012345 167890123 456789601

10 Network Subnet Host

Figure 7. Class B Address with Subnet

The bits that identify the subnet are specified by a bit mask. A bit mask is a pattern
of binary digits used to assign subnet addresses. The subnet bits are not required
to be adjacent in the address. However, the subnet bits generally are contiguous
and located as the most significant bits of the local address.

For more information about subnetwork address format, see RFC 950. "
—

14 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Chapter 2. General Programming information

TCP/IP for DOS Component Interfaces 17
Header Files 1T
Sockets P 4
RemoteProcedureCalIs(RPCs) 18
File Transfer Protocol Application Programmlng Interface (FTP API) 18
Library Files 18
PortmgConsuderatlons P -]

© Copyright IBM Corp. 1991 15

16

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Chapter 2. General Programming Information

This chapter contains technical information that you need to know before you
attempt to work with the application programming interfaces (APIl) provided with
TCP/IP for DOS, and described in this book.

You should have installed TCP/IP for DOS and the application programming inter-
faces (APIs) in the <TCPBASE> directory.

TCP/IP for DOS Component Interfaces

Figure 8 shows the relationship between the major components of TCP/IP for DOS.
The timer and task routines are the interface between TCP/IP applications and UTIL,
the utility terminate and stay resident (TSR) program. The socket routines are the
interface between TCP/IP applications and INET or RIPINET TSRs. UTIL, INET, or
RIPINET, and the hardware TSRs communicate with one another. However, only the
hardware TSRs communicate with hardware device drivers, such as NDIS**, MAC
Drivers, and packet device drivers.

Applications

P _
Timer [Task Sockets

INET
or
RIPINET

-

Hardware
TSRs

Device
Drivers

Figure 8. TCP!/IP for DOS Architecture

Header Files

Sockets

© Copyright IBM Corp. 1991

This section lists the header files for each APl. These files are in the
<TCPBASE>\INCLUDE directory.

The following is a list of socket application header files.

TCPERRNO.H
NETDB.H
NETINET\IN.H
SYS\SOCKET.H
SYS\TIME.H
TYPES.H

17

Remote Procedure Calls (RPCs)

The following is a list of RPC application header files.

RPC\AUTH.H
RPC\A_UNIX.H
RPC\CLNT.H
RPC\P_CLNT.H
RPC\P_PROT.H
RPC\P_RMT.H
RPC\RPC.H
RPC\R_MSG.H
RPC\TYPES.H
RPC\SVC.H
RPC\SVC_AUTH.H
RPC\XDR.H

® © o o o o o o o o o o

File Transfer Protocol Application Programming Interface (FTP API)
The following is a list of FTP API application header files.

* FTPAPILH

Library Files
The following is a list of library files to which an application must link.
Library File Application
FTPAPIL.LIB FTPAppIication Programming Interface (API) calis
SUNRPC.LIB Sun Remote Procedure calls
TCPIP.LIB Socket calls

Porting Considerations

This section contains information about how to port your application.

¢ To access system return values, you only need to use the errno.h include state-
ment supplied with the compiler.

* To access network return values, you must add the following include statement:

#include <tcperrno.h>

For more information about porting, see the respective chapter for that interface.

18 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Chapter 3. Sockets

Programming with Sockets 21
Socket Programming Concepts 21
Whatis a Socket? 21
Socket Types e 21
Guidelines for Using Socket Types 22
Address Families 22
Socket Address 22
Internet Addresses 23
Ports . . . 23
Network Byte Order 23
Main Socket Calls 24
A Typical TCP Socket Session 28

A Typical UDP Socket Session 28
Network Utility Routines, 32
Socket Library 34
Porting 34
Compilingand Linking 34
Socket Calls 35
accept() 36
biNd() 38
connect() 41
dosip_init() 44
endhostent() 45
endnetent() 46
endprotoent() 47
endservent() 48
gethostbyaddr() 49
gethostbyname() 50
gethostent() 51
gethostid() 52
getnetbyaddr() 53
getnetbyname() 54
getnetent() 55
getpeername() 56
getprotobyname() 57
getprotobynumber() 58
getprotoent() 59
getservbyname() 60
getservbyport() 61
getservent() 62
getsockname() 63
getsockopt() 64
htonl() 67
htons() 68
inet_addr() 69
inet_Inaof() 70
inet_makeaddr() 71
inet_netof() 72
inet_network() 73
inet_ntoa() 74
listen() 75
ntohl() 76

© Copyright IBM Corp. 1991 19

20

NONS() . . e 77

FCVl) 78
recvirom() 79
select() 80
send() ... 82
sendto) 83
sethostent() e 84
setnetent() 85
setprotoent() 86
setservent() 87
setsockopt() 88
shutdown() 90
sock_init() 91
socket() 92
SO_CloSe() 95
so_flush() 96
so_read() 97
so_write() 98

TCP/IP Version 2.0 for DOS: Programmer’s Reference

N\

Chapter 3. Sockets

This chapter describes the socket application program interface (API) provided with
TCP/IP for DOS. Use the socket routines to interface with the TCP, UDP, ICMP, and
IP protocols. This allows a program to communicate across networks with other
programs. You can, for example, make use of socket routines when you write a
client program that must communicate with a server program running on another
computer.

To use the sockets, you must know C programming language. For more information
about sockets, see IBM AlX Version 3 for RISC/6000 Communications Programming
Concepts.

Programming with Sockets

The DOS socket API provides a standard interface to the transport and internetwork
layer interfaces of TCP/IP. |t supports two socket types: stream and datagram.
Stream and datagram sockets interface to the transport layer protocois. You choose
the most appropriate interface for an application.

Socket Programming Concepts

© Copyright IBM Corp. 1991

Before programming with the sockets APJ, it is helpful to consider some important
concepts.

What is a Socket?

A socket is an endpoint for communication that can be named and addressed in a
network. From an application program perspective, it is a resource allocated by the
operating system. It is represented by an integer called a socket descriptor.

The socket interface was designed to provide applications with a network interface
that hides the details of the physical network. The interface is differentiated by the
different services that are provided. Stream and datagram sockets define a different
service available to applications.

Socket Types

The stream socket (SOCK_STREAM) interface defines a reliable connection-oriented
service. Data is sent without errors or duplication and is received in the same order
as it is sent. Flow control is built in to avoid data overruns. No boundaries are
imposed on the data; it is considered to be a stream of bytes. An example of an
application that uses stream sockets is the File Transfer Protocol (FTP).

The datagram socket (SOCK_DGRAM) interface defines a connectionless service.
Datagrams are sent as independent packets. The service provides no guarantees;
data can be lost or duplicated, and datagrams can arrive out of order. The size of a
datagram is limited to the size that can be sent in a single transaction (currently the
default is 8192 and the maximum is 32 768). No disassembly and reassembly of
packets is performed. An example of an application that uses datagram sockets is
the Network File System (NFS).

The socket interface can be extended; therefore, it is possible to define new socket
types to provide additional services. An example of this is the transaction type
sockets defined for interfacing to the Versatile Message Transfer Protocol (VMTP).
Transaction type sockets are not supported by TCP/IP for DOS. Because socket

21

22

interfaces isolate you from the communication functions of the different protocol
layers, the interfaces are largely independent of the underiying network. in ihe DOS
implementation of sockets, stream sockets interface to TCP and datagram sockets
interface to UDP. In the future, the underlying protocols may change, but the socket
interface will remain the same. For example, stream sockets may eventually inter-
face to the International Standards Organization (ISO) Open System Interconnection
(OSI) transport class 4 protocol. This means that applications will not have to be
rewritten as underlying protocols change.

Guidelines for Using Socket Types
The following considerations help you choose the appropriate socket type for an
application.

If you are communicating to an existing application, you must use the same proto-
cols as the existing application. For example, if you interface to an application that
uses TCP, you must use stream sockets. For other applications you should consider
the following factors:

* Consider reliability. Stream sockets provide the most reliable connection.
Datagram sockets are unreliable because packets can be discarded, corrupted,
or duplicated during transmission. This may be acceptable if the application
does not require reliability, or if the application implements the reliability on top
of the sockets interface. The tradeoff is the increased performance available
over stream sockets.

* Performance is another consideration. The overhead associated with reliability,
flow control, packet reassembly, and connection maintenance degrade the per-
formance of stream sockets so that they do not perform as well as datagram
sockets.

* The amount of data to be transferred is another consideration. Datagram
sockets impose a limit on the amount of data transferred in a single transaction.
If you send less than 2048 bytes at a time, use datagram sockets. As the amount
of data in a single transaction increases, it makes more sense to use stream
sockets.

Address Families

Address families define different styles of addressing or communication domain. All
hosts in the same addressing family understand and use the same scheme for
addressing socket endpoints. TCP/IP for DOS supports one addressing family:
AF_INET. The AF_INET domain defines addressing in the internet domain. AF_INET
is also referred to as a PF_INET. Both are equivalent. PF stands for Protocol
Family. The address families are defined in the <SYS\SOCKET.H> header file.

Socket Address
A socket address is defined by the sockaddr structure in the <SYS\SOCKET.H>
header file. It has two fields, as shown in the following example:

struct sockaddr

{
u_short sa_family; /* address family */

char sa_data[14]; /* up to 14 bytes of direct address */
}s

The sa_family field contains the addressing family. It is AF_INET for the internet
domain. The sa_data field is different for each address family. Each address family
defines its own structure, which can be overlaid on the sockadadr structure.

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Addressing within an Internet Domain: A socket address in an internet addressing
family comprises four fields: the address family (AF_INET), an internet address, a
port, and a character array. The structure of an internet socket address is defined
by the following sockaddr_in structure, which is found in the <NETINET\IN.H>
header file:

struct in_addr

{
u_long s_addr;

s

struct sockaddr_in

{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

|5

The sin_family field is set to AF_INET. The sin_port field is the port used by the
application, in network byte order. The sin_addr field is the internet address of the
network interface used by the application. It is also in network byte order. The
sin_zero field should be set to all zeros.

Internet Addresses

Internet addresses are 32-bit quantities that represent a network interface. Every
internet address within an administered AF_INET domain must be unique. A
common misunderstanding is that every host must have only one internet address.
In fact, a host has as many internet addresses as it has network interfaces. For
more information about internet address formats, see Internetworking With TCP/IP
Volume I: Principles, Protocols, and Architectures, and Internetworking With TCP/IP
Volume ll: Implementation and Internals.

Ports

A port is used to differentiate between different applications using the same protocol
(TCP or UDP). It is an additional qualifier used by the system software to get data to
the correct application. Physically, a port is a 16-bit integer. Some ports are
reserved for particular applications and are called well-known ports. For more
information, see Appendix A, “Well-Known Port Assignments” or see the
<TCPBASE>\ETC\SERVICES file.

Network Byte Order

Ports and addresses are usually specified to calls using the network byte ordering
conventiog; Network byte order is also known as big endian byte ordering, as ig*
Motorola microprocessors (compared with little endian byte ordering in Intel
microprocessors). Using network byte ordering for data exchanged between hosts
allows hosts using different architectures to exchange address information. See
pages 24, 25, and 27 for examples of using the htons() call to put ports into network
byte order. For more information about network byte order, see: “accept()” on
page 36, “bind()” on page 38, “htonl()” on page 67, “htons()” on page 68, “ntohi()”
on page 76, and “ntohs()” on page 77.

Note: The sockets interface does not handle application data byte ordering differ-
ences. Application writers must handle byte order differences themselves or use
higher-level interfaces, such as Remote Procedure Calls (RPC).

Chapter 3. Sockets 23

Main Socket Calls

With few socket calls, you can write a very powerful network application.

1. First, an application must be initialized with sockets using the sock_init() call, as
in the example in Figure 9, or using the dosip_init()call. For a more detailed
description, see “sock_init()” on page 91 or “dosip_init()” on page 44.

Figure 9. An Application Uses the sock_init() Call

The code fragment in Figure 9 initializes the process with the socket library.

2. Next, an application must get a socket descriptor using the socket() call, as in
the example in Figure 10. For a more detailed description, see “Socket
Interfaces” on page 12.

g

o

Figure 10. An Application Uses the socket() Call

The code fragment in Figure 10 allocates a socket descriptor s in the internet
addressing family. The domain parameter is a constant that specifies the
domain where the communication is taking place. A domain is the collection of
applications using the same naming convention. TCP/IP for DOS supports one
addressing family: AF_INET. The type parameter is a constant that specifies the
type of socket, SOCK_STREAM or SOCK_DGRAM. The protocol parameter is a
constant that specifies the protocol to use. Passing 0 chooses the default pro-
tocol. If successful, socket() returns a positive integer socket descriptor.

3. Once an application has a socket descriptor, it can explicitly bind a unique name
to the socket, as in the example in Figure 11. For a more detailed description,
see “bind()” on page 38.

.

Figure 11. An Application Uses the bind() Call

This example binds myname to socket s. The name specifies that the application
is in the internet domain (AF_INET) at internet address 129.5.24.1, and is bound
to port 1024. Servers must bind a name to become accessible from the network.
The example in Figure 11 shows two useful utility routines:

24 TCP/IP Version 2.0 for DOS: Programmer’s Reference

* inet_addr() takes an internet address in dotted decimal form and returns it in
network byte order. For a more detailed description, see “inet_addr()” on
page 69.

¢ htons() takes a port number in host byte order and returns the port in network
byte order. For a more detailed description, see “htons()” on page 68.

Figure 12. A bind() Call Using the getservbyname() Call

Figure 12 shows another example of the bind() call on the server side. It uses
the network utility routine getservbyname() to find a well-known port number for
specific service from the <TCPBASE>\ETC\SERVICES file. Figure 12 aiso
shows wildcard value INADDR_ANY. If a host has several network addresses

(multi-homed host), it is likely that messages sent to any of the addresses should
be deliverable to a socket.

4. After binding a name to a socket, a server using stream sockets must indicate its
readiness to accept connections from clients. The server does this with the
listen() call as illustrated in the example in Figure 13.

isiin

Figure 13. An Application Uses the listen() Call

The listen() call tells the TCP/IP software that the server is ready to begin
accepting connections and that a maximum of five connection requests can be
queued for the server. Additional requests are ignored. For a more detailed
description, see “listen()” on page 75.

5. Clients using stream sockets initiate a connection request by calling connect(),
as shown in the example in Figure 14 on page 26.

Chapter 3. Sockets 25

26

Figure 14. An Application Uses the connect() Call

The connect() call attempts to connect socket s to the server with name
servername. This could be the server that was used in the previous bind()
example. The caller optionally blocks until the connection is accepted by the
server. On successful return, the socket s is associated with the connection to
the server. For a more detailed description, see “connect()” on page 41.

Figure 15. An Application Uses the gethostbyname() Call

Figure 15 shows an example of a network utility routine gethostbyname() call to
find out the internet address of serverhost from the name server or the
<TCPBASE>\ETC\HOSTS file.

6. Servers using stream sockets accept a connection request with the accept() call,
as shown in the example in Figure 16.

Figure 16. An Application Uses the accept() Call

If connection requests are not pending on socket s, the accept() call optionally
blocks the server. When a connection request is accepted on socket s, the name
of the client and Iength of the client name are returned, along with a new socket
descriptor. The new socket descriptor is associated with the client that initiated

TCP/IP Version 2.0 for DOS: Programmer’s Reference

the connection and s is again available to accept new connections. For a more
detailed description, see “accept()” on page 36.

7. Clients and servers have many calls from which to choose for data transfer. The
send() and recv() calls can be used only on sockets that are in the connected
state. The sendto() and recvfrom() calls can be used at any time. The example
in Figure 17 illustrates the use of send() and recv().

Figure 17. An Application Uses the send() and recv() Calls

The example in Figure 17 shows an application sending data on a connected
socket and receiving data in response. The flags field can be used to specify
additional options to send() or recv(), such as sending out-of-band data.

8. If the socket is not in a connected state, additional address information must be
passed to sendto() and may be optionally returned from recvfrom(). An example
of the use of the sendto() and recvirom() calls is in Figure 18.

Figure 18. An Application Uses the sendto() and recvfrom() Call

The sendto() and recvirom() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the
data. See “recvfrom()” on page 79, and “sendto()” on page 83, for more infor-
mation about these additional parameters. Usually, sendto() and recvfrom() are
used for datagram sockets, and send() and recv() are used for stream sockets.

9. Applications can handle multiple sockets. In such situations, use the select() call
to determine the sockets that have data to be read, those that are ready for data
to be written, and the sockets that have pending exceptional conditions. An
example of how the select() cali is used, is in Figure 19 on page 28.

Chapter 3. Sockets 27

28

Figure 19. An Application Uses the select() Call

In this example, the application sets bit masks to indicate the sockets being
tested for certain conditions and also indicates a time-out. If the timeout param-
eter is NULL, the call does not wait for any socket to become ready on these con-
ditions. If the timeout parameter is nonzero, select() waits up to this amount of
time for at least one socket to become ready on the indicated conditions. This is
useful for applications servicing multiple connections that cannot afford to block,
waiting for data on one connection. For a more detailed description, see
“select()” on page 80.

10. A socket descriptor, s, is deallocated with the so_close() call. For a more
detailed description, see “so_close()” on page 95. An example of the so_close()
call is shown in Figure 20.

Figure 20. An Application Uses the so_close() Call

A Typical TCP Socket Session

You can use TCP sockets for both passive (server) and active (client) processes.
While some commands are necessary for both types, some are role-specific. See
Appendix B, “Sample Socket Programs,” for sample socket communication client
and server programs.

Once you make a connection, it exists until you close the socket. During the con-
nection, data is either delivered or an error code is returned by TCP/IP.

See Figure 21 on page 30 for the general sequence of calls to be followed for most
socket routines using TCP sockets.

A Typical UDP Socket Session

UDP socket processes, unlike TCP socket processes, are not clearly distinguished
by server and client roles. Instead, the distinction is between connected and uncon-
nected sockets. An unconnected socket can be used to communicate with any host;
but a connected socket, because it has a dedicated destination, can send data to,
and receive data from, only one host.

TCP/IP Version 2.0 for DOS: Programmer’s Reference

Both connected and unconnected sockets send their data over the network without
verification. Consequently, once a packet has been accepted by the UDP interface,
the arrival of the packet and the integrity of the packet cannot be guaranteed.

See Figure 22 on page 31 for the general sequence of calls to be followed for most
socket routines using UDP sockets.

Chapter 3. Sockets 29

CLIENT

SERVER

Create a stream socket s with the socket()
call.

Create a stream socket s with the socket()
call.

(optional)
Bind socket s to a local address with the
bind() call.

Bind socket s to a local address with the
bind() call.

With the listen() call, alert the TCP/IP
machine of your willingness to accept
connections.

Connect socket s to a foreign host with the
connect() call.

Accept the connection and receive a second
socket, for example ns, with the accept()
call.

For the server, socket s remains available
to accept new connections. Socket ns
is dedicated to the client.

Read and write data on socket s, using the
send() and recv() calls, until all data has
been exchanged.

Read and write data on socket ns, using the
send() and recv() calls, until all data has
been exchanged.

Close socket s and end the TCP/IP session
with the so_cliose() call.

Close socket ns with the so_close() call.

Figure 21. A Typical TCP Socket Session

- 30 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Accept another connection from a client, or
close the original socket s with the so_close()
call.

Figure

CLIENT

SERVER

Create a datagram socket s with the socket()
call.

Create a datagram socket s with the socket()
call.

(optional)
Bind socket s to a
bind() call.

jocal address with the

Bind socket s tc a local address with the
bind() call.

(optional)
Connect socket s using the connect() call to
associate s with the server address.

(optional)
Connect socket s using the connect() call to
associate s with the client address.

Send and receive data on socket s, using the
sendto() and recvfrom() calls, until all data
has been exchanged. Use the send() and recv()
calls if connect() was called.

Send and receive data on socket s, using the
sendto() and recvfrom() calls, until all data
has been exchanged. Use the send() and recv()
calls if connect() was called.

Close socket s and end the session with the
so_close() call.

Close socket s and end the session with the
so_close() call.

22. A Typical UDP Socket Session

Chapter 3. Sockets

31

Network Utility Routines

The DOS socket API also provides a set of network utility routines to perform useful
tasks, such as internet address translation, domain name resolution, network byte
order translation, and access to the database of useful network information. This
section describes a few network utility routines.

Host Names Information: The following is a list of socket calls that provide host
name information:

gethostbyaddr()
gethostbyname()
sethostent()
gethostent()
endhostent().

e o o

The gethostbyname() call takes an internet host name and returns a hostent struc-
ture, which contains the name of the host, aliases, host address family, and host
address. The hostent structure is defined in the <NETDB.H> header file. The call
gethostbyaddr() maps the internet host address into a hostent structure.

The database for these calls is provided by the name server or
<TCPBASE>\ETC\HOSTS file if a name server is not present. Because of the dif-
ferences in the databases and their access protocols, the information returned may
differ.

The sethostent(), gethostent() and endhostent() calls provide sequential access to
the <TCPBASE>\ETC\HOSTS file.

Network Names Information: The following is a list of socket calls that provide
network names information:

¢ getnetbyaddr()
getnetbyname()
setnetent()
getnetent()
endnetent().

The getnetbyname() call takes a network name and returns a netent structure, which
contains the name of the network, aliases, network address family, and network
number. The netent structure is defined in the <NETDB.H> header file. The
getnetbyaddr() call maps the network number into a netent structure.

The database for these calls is provided by the <TCPBASE>\ETC\NETWORKS file.

The setnetent(), getnetent(), and endnetent() calls provide sequential access to the
<TCPBASE>\ETC\NETWORKS file.

Protocol Names Information: The following is a list of socket calls that provide pro-
tocol names information:

¢ getprototbynumber()
¢ getprototbyname()
¢ setprotoent()

¢ getprotoent()

¢ endprotoent().

The getprotobyname() call takes the protocol name and returns a protoent structure,
which contains the name of the protocol, aliases, and protocol number. The

32 TCP/IP Version 2.0 for DOS: Programmer’s Reference

protoent structure is defined in the <NETDB.H> header file. The
getprotobynumber() call maps the protocol number into a protoent structure.

The database for these calls is provided by the <TCPBASE>\ETC\PROTOCOL file.

The setprotoent(), getprotoent(), and endprotoent() calls provide sequential access
to the <TCPBASE>\ETC\PROTOCOL file.

Service Names Information: The following is a list of socket calls that provide
service names information:

getservbyname()
getservtbyport()
setservent()
getservent()
endservent().

The getservbyname() call takes the service name and protocol, and returns a
servent structure, which contains the name of the service, aliases, port number, and
protocol. The servent structure is defined in the <NETDB.H> header file. The
getservbyport() call maps the port number and protocol into a servent structure.

The database for these calls is provided by <TCPBASE >\ETC\SERVICES file.

The setservent(), getservent(), and endservent() calls provide sequential access to
the <TCPBASE>\ETC\SERVICES file.

Network Byte Order Translation: Ports and addresses are usually specified to calls
using the network byte ordering convention. The following calls translate integers
from network to host byte order and from host to network byte order.

Call Function

htonl() Translates host to network, long integer (32-bit)
htons() Translates host to network, short integer (16-bit)
ntohl() Translates network to host, long integer (32-bit)
ntohs() Translates network to host, short integer (16-bit).

Internet Address Manipulation: The following calls convert internet addresses and
decimal notation, and manipulate the network number and local network address
portions of an internet address.

Call Function

inet_addr() Translates dotted decimal notation to a 32-bit internet
address (network byte order).

inet_network() Translates dotted decimal notation to a network number (host
byte order), and zeros in the host part.

inet_ntoa() Translates 32-bit internet address (network byte order) to
dotted decimal notation.

inet_netof() Extracts network number (host byte order) from 32-bit internet
address (network byte order).

inet_Inaof() Extracts local network address (host byte order) from 32-bit
internet address (network byte order).

inet_makeaddr() Constructs internet address (network byte order) from
network number and local network address.

Chapter 3. Sockets 33

Domain Name Resolution: Resolver calls are used to resolve the symbolic host
name into an internet address and 10 exiract more information about the host from
the database.

The resolver calls determine whether the name server is present or not present by
referencing the custom structure.

To resolve a name with no name server present, the resolver calls check the
<TCPBASE>\ETC\HOSTS file for an entry that maps the name to an address.

To resolve a name in a name server network, the resolver calls query the domain
name server database. If this query fails, the calls then check for an entry in the
local <TCPBASE>\ETC\HOSTS file.

Socket Library
To use the socket routines described in this chapter, you must have the TCPIP.LIB
library file in the <TCPBASE>\LIB directory. Also, the following header files must
be contained in the <TCPBASE>\INCLUDE directory, available on your system.
Socket Description
TCPERRNO.H Contains network error definitions.
NETDB.H Contains data definitions for network utility calls.
TYPES.H Contains data type definitions.
NETINET\IN.H Contains definition for Internet constants and structures.
SYS\SOCKET.H Contains data definitions and socket structure.
SYS\TIME.H Contains definition of timeval structure.

Porting

The IBM DOS socket implementation differs from the Berkeley socket impiementa-
tion. The following list summarizes the differences between the IBM DOS socket
implementation and the Berkeley implementation:

¢ Sockets are not DOS files or devices. Socket numbers have no relationship to
DOS file handles. Therefore, read(), write(), and close() do not work for sockets.
Using read(), write(), or close() gives incorrect results. The recv(), send() and
so_close() functions must be used instead.

e Some socket calls require that the sock_init() routine or the dosip_init() routine,
be invoked before the socket calls can be run. Therefore, you should always call
either sock_init() or dosip_init(), at the beginning of programs using the socket
interface.

¢ You must make reference to the additional header file <TCPERRNO.H> if you
want to reference the networking errors other than those described in the
compiler-supplied <ERRNO.H> file.

Compiling and Linking

The following steps describe how to compile and link programs using the Sockets
APIs with Microsoft C Version 5.10.

Note: In the following examples, model refers to the memory model you use to
compile your program: L for large model, S for small model, M for medium model,
or C for compact model.

34 TCP/IP Version 2.0 for DOS: Programmer’s Reference

1. Include the <TCPBASE>\INCLUDE directory at the beginning of the INCLUDE
environment variable so that the C compiler finds the appropriate header files.
You can set this interactively or you can include it in the AUTOEXEC.BAT file.

For example, if the INCLUDE environment variable previously read:
SET INCLUDE=C:\MSC\INCLUDE
You would change it to read:
SET INCLUDE=<TCPBASE>\INCLUDE;C:\MSC\INCLUDE
2. To compile your program, enter the command:
cl /c /3 /Fs JOars /FPc /Zp2 [Amodel myprog.c
3. To create an executable program, enter the following command:

Tink /noi /stack:6144 /seg:20@ myproj.obj,,,
<TCPBASE>\LIB\model\tcpip.lib;

Socket Calls

This section provides the C programming language syntax, parameters, and other
appropriate information for each socket call supported by TCP/IP for DOS.

Chapter 3. Sockets 35

accept()

accept()

Parameter Description
s The socket descriptor.
name The socket address of the connecting client that is filled by accept()

before it returns. The format of name is determined by the domain
in which the client resides. This parameter can be NULL if the
caller is not interested in the client address.

namelen Must initially point to an integer that contains the size in bytes of
the storage pointed to by name. On return, that integer contains
the size of the data returned in the storage pointed to by name. If
name is NULL, then namelen is ignored and can be NULL.

Description: The accept() call is used by a server to accept a connection request
from a client. The call accepts the first connection on its queue of pending con-
nections. The accept() call creates a new socket descriptor with the same proper-
ties as s and returns it to the caller. If the queue has no pending connection
requests, accept() blocks the caller unless s is in nonblocking mode. If no con-
nection requests are queued and s is in nonblocking mode, accept() returns —1 and
sets errno to EWOULDBLOCK. The new socket descriptor cannot be used to accept
new connections. The original socket, s, remains available to accept more con-
nection requests.

The s parameter is a stream socket descriptor created with the socket() call. It is
usually bound to an address with the bind() call, and can accept connections with
the listen() call. The listen() call marks the socket as one that accepts connections
and allocates a queue to hold pending connection requests. The listen() call allows
the caller to place an upper boundary on the size of the queue.

The name parameter is a pointer to a buffer into which the connection requester’s
address is placed. The name parameter is optional and can be set to be the NULL
pointer. If set to NULL, the requester’s address is not copied into the buffer. The
exact format of name depends on the addressing domain from which the communi-
cation request originated. For example, if the connection request originated in the
AF_INET domain, name points to a sockaddr_in structure as defined in the header
file <NETINET\IN.H>. The namelen parameter is used only if name is not NULL.
Before calling accept(), you must set the integer pointed to by namelen to the size,
in bytes, of the buffer pointed to by name. On successful return, the integer pointed
to by namelen contains the actual number of bytes copied into the buffer. If the
buffer is not large enough to hold the address, up to namelen bytes of the
requester’s address are copied.

This call is used only with SOCK_STREAM sockets. There is no way to screen
requesters without calling accept(). The application cannot tell the system from
which requesters it will accept connections. The caller can, however, choose to
close a connection immediately after discovering the identity of the requester.

36 TCP/IP Version 2.0 for DOS: Programmer’s Reference

accept()

A socket can be checked for incoming connection requests using the select() call
and setting the bit in the read descriptor array.

Return Values and Errno Values: A non-negative socket descriptor indicates
success, the value —1 indicates an error. The value of errno indicates the specific
error.

Errno Value Description
ENOTSOCK The s parameter is not a valid socket descriptor.
EFAULT Using name and namelen would result in an attempt to copy

the address into a portion of the caller’s address space into
which information cannot be written.

EOPNOTSUPP Listen() was not called for socket s.
ENOBUFS Insufficient buffer space available to create the new socket.
EOPNOTSUPP The s parameter is not of type SOCK_STREAM.

EWOULDBLOCK The s parameter is in nonblocking mode and no connections
are on the queue.

Examples: The following are two examples of the accept() call. In the first, the
caller wishes to have the requester’s address returned. In the second, the caller
does not wish to have the requester’s address returned.

int clientsocket;

int s3

struct sockaddr clientaddress;

int addrlen;

int accept(int s, struct sockaddr *addr, int *addrlen);
/* socket(), bind(), and listen() have been called */
/* EXAMPLE 1: I want the address now */

addrlen = sizeof(clientaddress);

clientsocket = accept(s, &clientaddress, &addrlen);

/* EXAMPLE 2: I can get the address later using getpeername() */
addrien = 0;

clientsocket = accept(s, (struct sockaddr *) 0, (int *) 0);

See Also: bind(), connect(), getpeername(), listen(), socket().

Chapter 3. Sockets 37

bind()

bind()

Parameter Description

s The socket descriptor returned by a previous socket() call.

name Points to a sockaddr structure containing the name that is to be
bound to s.

namelen The size of name in bytes.

Description: The bind() call binds a unique local name to the socket with

descriptor s. After calling socket(), a descriptor does not have a name associated
with it. However, it does belong to a particular addressing family as specified when
socket() is called. The exact format of a name depends on the addressing family.
The bind() procedure also allows servers to specify from which network interfaces
they wish to receive UDP packets and TCP connection requests.

The s parameter is a socket descriptor of any type created by calling socket().

The name parameter is a pointer to a buffer containing the name to be bound to s.
The namelen parameter is the size, in bytes, of the buffer pointed to by name.

Because s was created in the AF_INET domain, the format of the name buffer is
expected to be sockaddr_in as defined in the header file <NETINET\IN.H>:

struct in_addr

{
u_long s_addr;

IH

struct sockaddr_in

{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

b

The sin_family field must be set to AF_INET. The sin_port field is set to the port to
which the application must bind. It must be specified in network byte order. If
sin_port is set to 0, the caller leaves it to the system to assign an available port.
The application can call getsockname() to discover the port number assigned. The
sin_addr field is set to the internet address and must be specified in network byte
order. On hosts with more than one network interface (called multi-homed hosts), a
caller can select the interface with which it is to bind.

Subsequently, only UDP packets and TCP connection requests from this interface
(which match the bound name) are routed to the application. If this field is set to the
constant INADDR_ANY, as defined in <NETINET\IN.H>, the caller is requesting that
the socket be bound to all network interfaces on the host. Subsequently, UDP
packets and TCP connections from all interfaces (which match the bound name) are

38 TCP/IP Version 2.0 for DOS: Programmer’s Reference

bind()

routed to the application. This becomes important when a server offers a service to
multiple networks. By leaving the address unspecified, the server can accept all
UDP packets and TCP connection requests made for its port, regardless of the
network interface on which the requests arrived. The sin_zero field is not used and

must be set to all zeros.

Return Values and Errno Values: The value 0 indicates success, the value —1 indi-
cates an error. The value of errno indicates the specific error.

Errno

EADDRINUSE

EADDRNOTAVAIL

EAFNOSUPPORT
ENOTSOCK
EFAULT

EOPNOTSUPP

Description

The address is already in use. See the SO_REUSEADDR
option described under “getsockopt()” on page 64 and the
SO_REUSEADDR option described under the “setsockopt()”
on page 88.

The address specified is not valid on this host. For
example, if the internet address does not specify a valid
network interface.

The address family is not supported.
The s parameter is not a valid socket descriptor.

Using name and namelen would result in an attempt to
copy the address into a non-writable portion of the caller’s
address space.

The socket is already bound to an address. For example,
trying to bind a name to a socket that is in the connected
state. This value is also returned if namelen is not the
expected length.

Examples: The following are examples of the bind() call. Several things should be
noted about the examples. The internet address and port must be in network byte
order. To put the port into network byte order, a utility routine, htons(), is called to
convert a short integer from host byte order to network byte order. The address
field is set using another utility routine, inet_addr(), which takes a character string
representing the dotted decimal address of an interface and returns the binary
internet address representation in network byte order. Finally, note that it is a good
idea to zero the structure before using it to ensure that the name requested does not
set any reserved fields. See “connect()” on page 41 for examples of how a client
might connect to servers.

Chapter 3. Sockets 39

bind()

int rc;

int s;

struct sockaddr_in myname;

int bind(int s, struct sockaddr *name, int namelen); o

/* Bind to a specific interface in the internet domain */

/* make sure the sin_zero field is cleared */

memset (d4myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr = inet_addr("129.5.24.1"); /* specific interface */
myname.sin_port = htons(1024);

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname});
/* Bind to all network interfaces in the internet domain */
/* make sure the sin_zero field is cleared */

memset (&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = INADDR_ANY; /* all interfaces */
myname.sin_port = htons(1024);

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to a specific interface in the internet domain.
Let the system choose a port */
/* make sure the sin_zero field is cleared */
memset (&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr = inet_addr("129.5.24.1"); /* specific interface */
myname.sin_port = 0;

rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

The binding of a stream socket is not complete until a successful call to bind(),
listen(), or connect() is made. Applications using stream sockets should check the
return values of bind(), listen(), and connect() before using any function that
requires a bound stream socket.

See Also: connect(), gethostbyname(), getsockname(), htons(), inet_addr(), listen(),
socket().

40 TCP/IP Version 2.0 for DOS: Programmer’s Reference

connect()

connect()

Parameter Description
s The socket descriptor.
name The pointer to a socket address structure containing the address of

the socket to which a connection will be attempted.
namelen The size of the socket address pointed to by name in bytes.

Description: For stream sockets, the connect() call attempts to establish a con-
nection between two sockets. For UDP sockets, the connect() call specifies the peer
for a socket. The s parameter is the socket used to originate the connection
request. The connect() call performs two tasks when called for a stream socket.
First, it completes the binding necessary for a stream socket (in case it has not been
previously bound using the bind() call). Second, it attempts to make a connection to
another socket.

The connect() call on a stream socket is used by the client application to establish a
connection to a server. The server must have a passive open pending. If the server
is using sockets, this means the server must successfully call bind() and listen()
before a connection can be accepted by the server with accept(). Otherwise,
connect() returns —1 and errno is set to ECONNREFUSED.

If s is in blocking mode, the connect() call blocks the caller until the connection is
set up, or until an error is received. If the socket is in nonblocking mode then
connect() returns —1 with errno set to EINPROGRESS if the connection can be initi-
ated (no other errors occurred). The caller can test the completion of the con-
nection setup by calling select() and testing for the ability to write to the socket.

When called for a datagram, connect() specifies the peer with which this socket is
associated. This gives the application the ability to use data transfer calls reserved
for sockets that are in the connected state. In this case, send(), recv(), sendto(), and
recvirom() are available. Stream sockets can call connect() only once, but
datagram sockets can call connect() multiple times to change their association.
Datagram sockets can dissolve their association by connecting to an invalid address
such as the null address (all fields zeroed).

The name parameter is a pointer to a buffer containing the name of the peer to
which the application needs to connect. The namelen parameter is the size, in

bytes, of the buffer pointed to by name.

If the server is in the AF_INET domain, the format of the name buffer is expected to
be sockaddr_in, as defined in the header file <NETINET/IN.H.>

Chapter 3. Sockets 41

connect()

struct in_addr

{
u_long s_addr;

}s

struct sockaddr_in

{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

}s

The sin_family field must be set to AF_INET. The sin_port field is set to the port to
which the server is bound. It must be specified in network byte order. The sin_zero
field is not used and must be set to all zeros.

Return Values and Errno Values: The value 0 indicates success, the value —1 indi-
cates an error. The value of errno indicates the specific error.
Errno Description
EADDRNOTAVAIL The calling host cannot reach the specified destination.
EAFNOSUPPORT The address family is not supported.

EALREADY The socket s is marked nonblocking, and a previous con-
nection attempt has not completed.

ENOTSOCK The s parameter is not a valid socket descriptor.

ECONNREFUSED The connection request was rejected by the destination
host.

EFAULT Using name and namelen would result in an attempt to

copy the address into a portion of the caller’s address
space to which data cannot be written.

EINPROGRESS The socket s is marked nonblocking, and the connection
cannot be completed immediately. The EINPROGRESS
value does not indicate an error condition.

EOPNOTSUPP The namelen parameter is not a valid length.
EISCONN The’socket s is already connected.
ENETUNREACH The network cannot be reached from this host.

ETIMEDOUT The connection establishment timed out before a con-
nection was made.

Examples: The following are examples of the connect() call. Several things shouid
be noted about the examples. The internet address and port must be in network
byte order. To put the port into network byte order a utility routine, htons(), is called
to convert a short integer from host byte order to network byte order. The address
field is set using another utility routine, inet_addr(), which takes a character string
representing the dotted decimal address of an interface and returns the binary
internet address representation in network byte order. It is a good idea to zero the
structure before using it to ensure that the name requested does not set any
reserved fields. These examples could be used to connect to the servers shown in
the examples listed with the call, “bind()” on page 38.

42 TCP/IP Version 2.0 for DOS: Programmer’s Reference

connect()

int s;

struct sockaddr_in servername;

int rc;

int connect(int s, struct sockaddr *name, int namelen);

/* Connect to server bound to a specific interface in the internet domain */
/* make sure the sin_zero field is cleared */

memset (&servername, 0, sizeof(servername));

servername.sin_family = AF_INET;

servername.sin_addr = inet_addr("129.5.24.1"); /* specific interface */
servername.sin_port = htons(1024);

rc = connect(s, (struct sockaddr *) &servername, sizeof(servername));

See Also: accept(), bind(), htons(), inet_addr(), listen(), select(), socket().

Chapter 3. Sockets 43

dosip_init()

dosip_init()

Parameter Description

flags If dosip_init fails, the flags parameter indicates whether to exit from
the calling program with an error message indicating the cause of
the error, or return to the calling program with a nonzero return
code.

NIF_COMPLAIN Exit from the program.

NIF_NOCOMPLAIN Return to the program with a nonzero return
code.

Description: The dosip_init() call initializes the socket data structures and checks
whether INET.EXE is running or not running. Therefore, either dosip_init() or
sock_init() should be called at the beginning of each program that uses socket calls.

Note: Calling dosip_init() with the NIF_COMPLAIN flag is the same as calling
sock_init().

Warning: If any socket function is called after the failure of dosip_init, unpredictable
results can occur.

See Also: sock_init().

44 TCP/IP Version 2.0 for DOS: Programmer’s Reference

endhostent()

endhostent()

Description: The endhostent() call closes the <TCPBASE>\ETC\HOSTS file, which
contains information about known hosts.

See Also: gethostbyaddr(), gethostbyname(), gethostent(), sethostenty().

Chapter 3. Sockets 45

endnetent()

endnetent()

Description: The endnetent() call closes the <TCPBASE>\ETC\NETWORKS file,
which contains information about known networks.

See Also: getnetbyaddr(), getnetbyname(), getnetent(), setnetent().

46 TCP/IP Version 2.0 for DOS: Programmer;s Reference

endprotoent()

endprotoent()

Description: The endprotoent() call closes the <TCPBASE>\ETC\PROTOCOL file,
which contains information about known protocols.

See Also: getprotobyname(), getprotobynumber(), getprotoent(), setprotoent().

Chapter 3. Sockets 47

48

endservent()

endservent()

Description: The endservent() call closes the <TCPBASE>\ETC\SERVICES file,
which contains information about known services.

See Also: getservbyname(), getservbyport(), getservent(), setservent().

TCP/IP Version 2.0 for DOS: Programmer’s Reference

gethostbyaddr()

gethostbyaddr()

Parameter Description

addr A pointer to a 32-bit internet address in network byte order.
addrlen The size of addr in bytes.

domain The address domain supported (AF_INET).

Description: The gethostbyaddr(} call tries to resolve the host name through a name
server, if one is present. If a name server is not present, gethostbyaddr() sequen-
tially searches the <TCPBASE>\ETC\HOSTS file until a matching host address is
found or an EOF marker is reached.

The gethostbyaddr() call returns a pointer to a hostent structure for the host address
specified on the call.

The <NETDB.H> header file defines the hostent structure, and contains the fol-
lowing elements:

Element Description

h_name Official name of the host.

h_aliases A zero-terminated array of alternative names for the host.

h_addrtype The type of address being returned; currently, always set to
AF_INET.

h_length The length of the address in bytes.

h_addr A pointer to the network address of the host.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a hostent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endhostent(), gethostbyname(), gethostent(), sethostent().

Chapter 3. Sockets 49

gethostbyname()

gethostbyname()

Parameter Description
name The name of the host being queried.

Description: The gethostbyname() call tries to resolve the host name through a
name server, if one is present. If a name server is not present, gethostbyname()
searches the <TCPBASE>\ETC\HOSTS file until a matching host name is found or
an EOF marker is reached.

The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call.

The <NETDB.H> header file defines the hostent structure, and contains the fol-
lowing elements:

Element Description

h_name Official name of the host.

h_aliases A zero-terminated array of alternative names for the host.

h_addrtype The type of address being returned; currently, always set to
AF_INET.

h_length The length of the address in bytes.

h_addr A pointer to the network address of the host.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a hostent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endhostent(), gethostbyaddr(), gethostent(), sethostent().

50 TCP/IP Version 2.0 for DOS: Programmer’s Reference

gethostent()

gethostent()

- struct hoﬁéhf *ggthkqstyeht'{:)‘
Description: The gethostent() call reads the next line of the
<TCPBASE>\ETC\HOSTS file.

The gethostent() call returns a pointer to the next entry in the HOSTS file.

The <NETDB.H> header file defines the hostent structure, and contains the fol-
lowing elements:

Element Description

h_name Official name of the host.

h_aliases A zero-terminated array of alternative names for host.

h_addrtype The type of address being returned; currently, always set to
AF_INET.

h_length The length of the address in bytes.

h_addr A pointer to the network address of the host.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a hostent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endhostent(), gethostbyaddr(), gethostbyname(), sethostent().

Chapter 3. Sockets 51

gethostid()

gethostid()

Description: The gethostid() call gets the unique 32-bit identifier for the current host.

Return Values: The gethostid() call returns the 32-bit identifier of the current host,
which should be unique across all hosts.

52 TCP/IP Version 2.0 for DOS: Programmer’s Reference

getnetbyaddr()

getnetbyaddr()

Parameter Description
net The network address.
type The address domain supported (AF_INET).

Description: The getnetbyaddr() call searches the <TCPBASE>\ETC\NETWORKS
file for the specified network address. See Appendix J, “NETWORKS File
Structure,” for the format of the NETWORKS file.

The netent structure is defined in the <NETDB.H> header file, and contains the fol-
lowing elements:

Element Description
n_name Official name of the network.
n_aliases An array, terminated with a NULL pointer, of alternative names for

the network.

n_addrtype The type of network address being returned. The call always sets
this value to AF_INET.

n_net The network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a netent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endnetent(), getnetbyname(), getnetent(), setnetent().

Chapter 3. Sockets 53

getnetbyname()

getnetbyname()

Parameter Description
name The pointer to a network name.

Description: The getnetbyname() call searches the <TCPBASE>\ETC\NETWORKS
file for the specified network name. See Appendix J, “NETWORKS File Structure,”
for the format of the NETWORKS file.

The getnetbyname() call returns a pointer to a netent structure for the network name
specified on the call.

The netent structure is defined in the <NETDB.H> header file, and contains the fol-
lowing elements:

Element Description
n_name Official name of the network.
n_aliases An array, terminated with a NULL pointer, of alternative names for

the network.

n_addrtype The type of network address being returned. The call always sets
this value to AF_INET.

n_net The network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a netent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endnetent(), getnetbyaddr(), getnetent(), setnetent().

54 TCP/IP Version 2.0 for DOS: Programmer’s Reference

getnetent()

getnetent()

Description: The getnetent() call reads the next entry of the
<TCPBASE>\ETC\NETWORKS file. See Appendix J, “NETWORKS File Structure,”
for the format of the NETWORKS file.

The getnetent() call returns a pointer to the next entry in the NETWORKS file.

The netent structure is defined in the <NETDB.H> header file, and contains the fol-
lowing elements:

Element Description
n_name Official name of the network.
n_aliases An array, terminated with a NULL pointer, of alternative names for

the network.

n_addrtype The type of network address being returned. The call always sets
this value to AF_INET.

n_net The network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a netent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endnetent(), getnetbyaddr(), getnetbyname(), setnetent().

Chapter 3. Sockets 55

getpeername()

getpeername()

Parameter Description
s The socket descriptor.
name The internet address of the connected socket that is filled by

getpeername() before it returns. The exact format of name is
determined by the domain in which communication occurs.

namelen The size of the address structure pointed to by name in bytes.

Description: The getpeername() call returns the name of the peer connected to
socket s. namelen must be initialized to indicate the size of the space pointed to by
name and is set to the number of bytes copied into the space before the call returns.
The size of the peer name is returned in bytes. |f the buffer of the local host is too
small, the peer name is truncated.

Return Values and Errno Values: The value 0 indicates success; the value —1 indi-
cates an error. The value of errno indicates the specific error.

Errno Description
ENOTSOCK The s parameter is not a valid socket descriptor.
EFAULT Using the name and namelen parameters as specified would

result in an attempt to access storage outside of the caller’s
address space.

ENOTCONN The socket is not in the connected state.

See Also: accept(), connect(), getsockname(), socket().

56 TCP/IP Version 2.0 for DOS: Programmer’s Reference

getprotobyname()

getprotobyname()

Parameter Description
name A pointer to the specified protocol.

Description: The getprotobyname() call searches the <TCPBASE>\ETC\PROTOCOL
file for the specified protocol name.

The getprotobyname() caii returns a pointer to a protoent structure for the network
protocol specified on the call.

The protoent structure is defined in the <NETDB.H> header file, and contains the
following elements:

Element Description
p_name Official name of the protocol.
p_aliases An array, terminated with a NULL pointer, of alternative names for

the protocol.

p_proto The protocol number.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a protoent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endprotoent(), getprotobynumber(), getprotoent(), setprotoent().

Chapter 3. Sockets 57

getprotobynumber()

getprotobynumber()

Parameter Description
proto The specified protocol number.

Description: The getprotobynumber() call searches the
<TCPBASE>\ETC\PROTOCOL file for the specified protocol number.

The getprotobynumber() call returns a pointer to a protoent structure for the network
protocol specified on the call.

The protoent structure is defined in the <NETDB.H> header file and contains the
following elements:

Element Description
p_name The official name of the protocol.
p_aliases An array, terminated with a NULL pointer, of alternative names for

the protocol.

p_proto The protocol number.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a protoent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endprotoent(), getprotobyname(), getprotoent(), setprotoenty().

58 TCP/IP Version 2.0 for DOS: Programmer’s Reference

getprotoent()

getprotoent()

Description: The getprotoent() call searches the <TCPBASE>\ETC\PROTOCOL file
in the directory.

The getprotoent() call returns a pointer to the next entry in the PROTOCOL file.

The protoent structure is defined in the <NETDB.H> header file, and contains the
following elements:

Element Description
p_name Official name of the protocol.
p_aliases An array, terminated with a NULL pointer, of alternative names for

the protocol.

p_proto The protocol number.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a protoent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endprotoent(), getprotobyname(), getprotobynumber(), setprotoent().

Chapter 3. Sockets 59

getservbyname()

getservbyname()

Parameter Description
name A pointer to the specified service name.
proto A pointer to the specified protocol.

Description: The getservbyname() call searches the <TCPBASE>\ETC\SERVICES
file for the specified service name. Searches for a service name must match the
protocol if a protocol is stated.

The getservbyname() call returns a pointer to a servent structure for the network
service specified on the call.

The servent structure is defined in the <NETDB.H> header file, and contains the fol-
lowing elements:

Element Description

s_name Official name of the service.

s_aliases An array, terminated with a NULL pointer, of alternative names for
the service.

s_port The port number of the service.

s_proto The required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a servent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endservent(), getservbyport(), getservent(), setservent().

60 TCP/IP Version 2.0 for DOS: Programmer’s Reference

getservbyport()

getservbyport()

: #include,<netdb;h$
struct servent *getservbyport (port, prata)
int *port;
char *proto;

Parameter Description
port The specified port.
proto A pointer to the specified protocol.

Description: The getservbyport() call sequentially searches the
<TCPBASE>\ETC\SERVICES file for the specified port number. Searches for a port
number must match the protocol if a protocol is stated.

The getservbyport() call returns a pointer to a servent structure for the port number
specified on the call.

The servent structure is defined in the <NETDB.H> header file, and contains the fol-
lowing elements:

Element Description

S_name Official name of the service.

s_aliases An array, terminated with a NULL pointer, of alternative names for
the service.

s_port The port number of the service.

s_proto The required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a servent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endservent(), getservbyname(), getservent(), setservent().

Chapter 3. Sockets 61

getservent()

getservent()

62

Description: The getservent() searches for the next line in the
<TCPBASE>\ETC\SERVICES file.

The getservent() call returns a pointer to the next entry in the SERVICES file.

The servent structure is defined in the <NETDB.H> header file, and contains the fol-
lowing elements:

Element Description

S_name Official name of the service.

s_aliases An array, terminated with a NULL pointer, of alternative names for
the service.

s_port The port number of the service.

s_proto The required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by subse-
quent calls. A pointer to a servent structure indicates success. A NULL pointer indi-
cates an error or end-of-file.

See Also: endservent(), getservbyname(), getservbyport(), setservent().

TCP/IP Version 2.0 for DOS: Programmer’s Reference

getsockname()

getsockname()

Parameter Description

s The socket descriptor.

name The address of the buffer into which getsockname() copies the
name of s.

namelen Must initially point to an integer that contains the size in bytes of

the storage pointed to by name. Upon return, that integer contains
the size of the data returned in the storage pointed to by name.

Description: The getsockname() call stores the current name for the socket speci-
fied by the s parameter into the structure pointed to by the name parameter. It
returns the address to the socket that has been bound. If the socket is not bound to
an address, the call returns with the family set and the rest of the structure is set to
zero. For example, an inbound socket in the internet domain would cause the name
to point to a sockaddr_in structure with the sin_family field set to AF_INET and all
other fields zeroed.

Stream sockets are not assigned a name, until after a successful call to either
bind(), connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can call
connect() without previously calling bind(). In this case, the connect() call com-
pletes the binding necessary by assigning a port to the socket. This assignment can
be discovered with a call to getsockname().

Return Values and Errno Values: The value 0 indicates success; the value —1 indi-
cates an error. The value of errno indicates the specific error.

Errno Description
ENOTSOCK The s parameter is not a valid socket descriptor.
EFAULT Using the name and namelen parameters as specified would

result in an attempt to access storage outside of the caller’s
address space.

See Also: accept(), bind(), connect(), getpeername(), socket().

Chapter 3. Sockets 63

getsockopt()

getsockopt()

Parameter Description

s The socket descriptor.

level The level for which the option is set. Only SOL_SOCKET is sup-
ported.

optname The name of a specified socket option.

optval Points to option data.

optlen Points to the length of the option data.

Description: The getsockopt() call gets options associated with a socket. It can be
called only for sockets in the AF_INET domain. Options can exist at multiple pro-
tocol levels; they are always present at the highest socket level.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET as defined in <SYS\SOCKET.H>. To
manipulate options at any other level, such as the TCP or IP level, supply the appro
priate protocol number for the protocol controlling the option. Currently, only the
SOL_SOCKET level is supported. The getprotobyname() call can be used to return
the protocol number for a named protocol.

The optval and optien parameters are used to return data used by the particular get
command. The optval parameter points to a buffer that is to receive the data
requested by the get command. The optlen parameter points to the size of the
buffer pointed to by the optval parameter. It must be initially set to the size of the
buffer before calling getsockopt(). On return it is set to the actual size of the data
returned.

All of the socket level options expect optval to point to an integer and optlfen to be
set to the size of an integer. When the integer is nonzero, the option is enabled.
When it is zero, the option is disabled.

The following options are recognized at the socket level:

Option Description

SO_BROADCAST Toggles the ability to broadcast messages. If this option is
enabled, it allows the application to send broadcast mes-
sages over s, if the interface specified in the destination
supports broadcasting of packets. This option has no
meaning for stream sockets.

SO_DEBUG Toggles recording of debugging information.
SO_DONTBLOCK Sets the socket to nonblocking.

64 TCP/IP Version 2.0 for DOS: Programmer’s Reference

SO_KEEPALIVE

SO_RCVBUF

SO_REUSEADDR

SO_SNDBUF

SO_SNDTIMEO

getsockopt()

Toggles keep connection alive. TCP uses a timer called
the keepalive timer. This timer is used to monitor idle con-
nections that might have been disconnected because of a
peer crash or time-out. If this option is toggled, a keepalive
packet is periodically sent to the peer. This is used mainly
to allow servers to close connections that have already dis-
appeared as a result of clients going away without closing
connections. This option has meaning only for stream
sockets.

Gets buffer size for input. This option gets the size of the
receiving buffer from the buffer pointed to by optval. This
allows the buffer size to be tailored for specific application
needs, such as increasing the buffer size for high-volume
connections.

Toggles local address reuse. When enabled, this option
allows local addresses that are already in use to be bound.
This alters the normal algorithm used in the bind() call.
The system checks at connect time to be sure that no local
address and port have the same foreign address and port.
The error EADDRINUSE is returned if the association
already exists.

Gets buffer size for output. This option gets the size of the
sending buffer from the buffer pointed to by optval. This
allows the send buffer size to be tailored for specific appli-
cation needs such as increasing the buffer size for high
volume connections.

Sends time-out.

Return Values and Errno Values: The value 0 indicates success; the value —1 indi-
cates an error. The value of errno indicates the specific error.

Errno
EADDRINUSE
ENOTSOCK
EFAULT

ENOPROTOOPT

Description
The address is already in use.
The s parameter is not a valid socket descriptor.

Using optval and optlen parameters would result in an
attempt to access memory outside the caller’s address
space.

The optname parameter is unrecognized, or the /level
parameter is not SOL_SOCKET.

Chapter 3. Sockets 65

getsockopt()

Examples: The following are examples of the getsockopt() call. See “setsockopt()”
on page 88 for examples of how the setsockopt() call options are set.

int rc;

int s;

int optval;

int optlen;

int getsockopt(int s, int level, int optname, char *optval, int *optlen);

/* Get the size of the sending buffer */
optlen = sizeof(int);
rc = getsockopt (
s, SOL_SOCKET, SO_SNDBUF, (char *) &optval, &optlen);
if (rc = 0)
{

}

printf(“send buffer size = %\n," optval);

See Also: getprotobyname(), setsockopt(), socket().

66 TCP/IP Version 2.0 for DOS: Programmer’s Reference

htonl()

htonli()

Parameter Description
a The unsigned long integer to be put into network byte order.

Description: The htonl() call translates a long integer from host byte order to
network byte order.

Return Values: Returns the translated long integer.

See Also: htons(), ntohl(), ntohs().

Chapter 3. Sockets 67

htons()

htons()

Parameter Description
a The unsigned short integer to be put into network byte order.

Description: The htons() call translates a short integer from host byte order to
network byte order.

Return Values: Returns the translated short integer.

See Also: htonl(), ntohl(), ntohs().

68 TCP/IP Version 2.0 for DOS: Programmer’s Reference

inet_addr()

inet_addr()

~u_long:
- char *cp;

Parameter Description
cp A character string in standard ‘.’ notation.

Description: The inet_addr() call interprets character strings representing numbers
expressed in standard ‘.’ notation and returns numbers suitable for use as an
internet address.

Values specified in standard ‘.’ notation take one of the following forms:

a.b.c.d
a.b.c
a.b

a

When a four-part address is specified, each part is interpreted as a byte of data and
assigned, from left to right, to one of the four bytes of an internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit quan-
tity and placed in the two rightmost bytes of the network address. This makes the
three-part address format convenient for specifying Class B network addresses as
128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit quantity
and placed in the three rightmost bytes of the network address. This makes the
two-part address format convenient for specifying Class A network addresses as
net.host.

When a one-part address is specified, the value is stored directly in the network
address space without any rearrangement of its bytes.

Numbers supplied as address parts in standard ‘.’ notation can be decimal,
hexadecimal, or octal. Numbers are interpreted in C language syntax. A leading Ox
implies hexadecimal; a leading 0 implies octal. A number without a leading 0
implies decimal.

Return Values: The internet address is returned in network byte order.

See Also: inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoal().

Chapter 3. Sockets 69

inet_Inaof()

inet_inaof()

Parameter Description
in The host internet address.

Description: The inet_Inaof() call breaks apart the internet host address and returns
the local network address portion.

Return Values: The local network address is returned in host byte order.

See Also: inet_addr(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa().

70 TCP/IP Version 2.0 for DOS: Programmer’s Reference

-

inet_makeaddr()

inet_makeaddr()

Parameter Description
net The network number.
ina The local network address.

Description: The inet_makeaddr() call takes a network number and a local network
address and constructs an internet address.

Return Values: The internet address is returned in network byte order.

See Also: inet_addr(), inet_Inaof(), inet_netof(), inet_network(), inet_ntoa().

Chapter 3. Sockets 71

inet_netof()

inet_netof()

Parameter Description
in The internet address in network byte order.

Description: The inet_netof() call breaks apart the internet host address and returns
the network number portion.

Return Values: The network number is returned in host byte order.

See Also: inet_addr(), inet_Inaof(), inet_makeaddr(), inet_network(), inet_ntoa().

72 TCP/IP Version 2.0 for DOS: Programmer’s Reference

inet_network()

inet_network()

 tinclude <types.h
i #include <netinet\in.h>

U long inet_netw

¢ ha,

Parameter Description
cp A character string in standard ‘.’ notation.

Description: The inet_network() call interprets character strings representing
numbers expressed in standard ‘.’ notation and returns numbers suitable for use as

Return Values: The network number is returned in host byte order.

See Also: inet_addr(), inet_Inaof(), inet_makeaddr(), inet_netof(), inet_ntoal().

Chapter 3. Sockets 73

inet_ntoa()

inet_ntoa()

Parameter Description

in The host internet address.

Description: The inet_ntoa() call returns a pointer to a string expressed in the
dotted-decimal notation. inet_ntoa() accepts an internet address expressed as a
32-bit quantity in network byte order and returns a string expressed in
dotted-decimal notation.

Return Values: Returns a pointer to the internet address expressed in
dotted-decimal notation.

See Also: inet_addr(), inet_Inaof(), inet_makeaddr(), inet_network(), inet_ntoay().

74 TCP/IP Version 2.0 for DOS: Programmer’s Reference

listen()

listen()

Parameter Description
s The socket descriptor.
backlog Defines the maximum length for the queue of pending connections.

Description: The listen() call applies only to stream sockets. It performs two tasks:
it completes the binding necessary for a socket s, if bind() has not been called for s,
and it creates a connection request queue of length backlog to queue incoming con-
nection requests. Once full, additional connection requests are ignored.

The listen() call indicates a readiness to accept client connection requests. It trans-
forms an active socket into a passive socket. Once called, s can never be used as
an active socket to initiate connection requests. Calling listen() is the third of four
steps that a server performs to accept a connection. It is called after allocating a
stream socket with socket(), and after binding a name to s with bind(). It must be
called before calling accept().

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than
SOMAXCONN, as defined in <SYS\SOCKET.H>, backlog is set to SOMAXCONN.

Return Values and Errno Values: The value 0 indicates success, the value —1 indi-
cates an error. The value of errno indicates the specific error.
Errno Description
ENOTSOCK The s parameter is not a valid socket descriptor.
EOPNOTSUPP The s parameter is not a socket descriptor that supports the

listen() call.

See Also: accept(), bind(), connect(), socket().

Chapter 3. Sockets 75

ntohl()

ntohl()

Parameter Description
a The unsigned long integer to be put into host byte order.

Description: The ntohl() call transiates a long integer from network byte order to
host byte order.

Return Values: Returns the translated long integer.

See Also: htonl(), htons(), ntohs().

76 TCP/IP Version 2.0 for DOS: Programmer’s Reference

ntohs()

ntohs()

g

Parameter Description
a The unsigned short integer to be put into host byte order.

Description: The ntohs() call translates a short integer from network byte order to
host byte order.

Return Values: Returns the translated short integer.

See Also: htonl(), htons(), ntohl().

Chapter 3. Sockets 77

recv()

recv()

78

Parameter Description

s The socket descriptor.
buf The pointer to the buffer that receives the data.
len The length in bytes of the buffer pointed to by the buf parameter.

flags The flags parameter is set by specifying one or more of the fol-
lowing flags. If more than one flag is specified, the logical OR
operator (|) must be used to separate them. Setting this param-
eter is supported only for sockets in the AF_INET domain.

MSG_00B Reads any out-of-band data on the socket.

MSG_PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation sees the same data.

Description: The recv() call receives data on a socket with descriptor s and stores it
in a buffer. The recv() call applies only to connected sockets.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available at the socket with descriptor s, the recv() call waits for a
message to arrive and blocks the caller, unless the socket is in nonblocking mode.

Return Values and Errno Values: [f successful, the length, in bytes, of the message
or datagram is returned. The value —1 indicates an error. The value of errno indi-
cates the specific error.

Errno Description
ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using the buf and /en parameters would result in an
attempt to access memory outside the caller’s address
space.

EWOULDBLOCK The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recvfrom(), select(), send(), sendto(),
setsockopt(), socket().

TCP/IP Version 2.0 for DOS: Programmer’s Reference

recvfrom()

recvirom()

Parameter Description

s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.
flags A parameter that can be set to 0 or MSG_PEEK. Setting this

parameter is supported only for sockets in the AF_INET domain.
MSG_00B Reads any out-of-band data on the socket.

MSG_PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation sees the same data.

name A pointer to a socket address structure from which data is
received. If name is a nonzero value, the source address is
returned.

namelen The size of name in bytes.

Description: The recvfrom() call receives data on a socket with descriptor s and
stores it in a buffer. The recvfrom() call applies to any datagram socket, whether
connected or unconnected.

If name is nonzero, the source address of the message is filled. namelen must first
be initialized to the size of the buffer associated with name, and is then modified on
return to indicate the actual size of the address stored there.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
datagram packets are not available at the socket with descriptor s, the recvfrom()
call waits for a message to arrive and blocks the caller, unless the socket is in non-
blocking mode.

Return Values and Errno Values: If successful, the length, in bytes, of the message
or datagram is returned. The value —1 indicates an error. The value of errno indi-
cates the specific error.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using the buf and len parameters would result in an
attempt to access memory outside the caller’s address
space.

EWOULDBLOCK The s parameter is in nonblocking mode and no data is
available to read.

Chapter 3. Sockets 79

select()

See Also: getsockopt(), recv(), select(), send(), sendto(), setsockopt(), socket().

select()

Parameter Description

nfds The number of socket descriptors to check.

readfds Points to a bit mask of descriptors to check for reading.

writefds Points to a bit mask of descriptors to check for writing. -
exceptfds Points to a bit mask of descriptors to be checked for exceptional

pending conditions.

timeout Points to the time to wait for the select() call to complete.

Description: The select() call monitors activity on a set of different sockets until a
timeout expires, to see if any sockets are ready for reading or writing, or if any
exceptional conditions are pending. The bit mask is made up of an array of inte-
gers. Macros are provided to manipulate the bit masks.

Macro Description
FD_SET(socket, bit_mask_address) Sets the bit for the socket in the bit

mask pointed to by bit_mask_address.
FD_CLR(socket, bit_mask_address) Clears the bit.
FD_ISSET(socket, bit_mask_address) Returns true if the bit is set for this

socket descriptor; otherwise, it returns

false. e
FD_ZERO Clears the entire bit mask for all socket \

descriptors.

Note: For macros FD_SET, FD_CLR, and FD_ISSET, the parameters socket and
bit_mask_address should be defined in the following manner:

int socket;
struct fd_set *bit_mask_address, bit_mask_address;

The first nfds descriptors in each bit mask are tested for the specified condition.

80 TCP/IP Version 2.0 for DOS: Programmer’s Reference

select()

Socket descriptors are specified by setting bits in a bit mask. If timeout is a NULL
pointer, the call blocks indefinitely until one of the requested conditions is satisfied.
If timeout is non-NULL, it specifies the maximum time to wait for the call to com-
plete. To poll a set of sockets, the timeout pointer should point to a zeroed timeval
structure. The timeval structure is defined in the <SYS\TIME.H> header file and
contains the following fields:

Field Description
tv_sec The number of seconds.
tv_usec The number of microseconds.

Setting any of the descriptor pointers to zero indicates that no checks are to be
made for the conditions. For example, setting exceptfds to be a NULL pointer
causes the select call to check for only read and write conditions.

Return Values and Errno Values: The total number of ready sockets (in all bit
masks) is returned. The value —1 indicates an error. The value 0 indicates an
expired time limit. If the return value is greater than 0, the socket descriptors in
each bit mask that are ready are set to 1. All others are set to 0. The value of errno
indicates the specific error.

Errno Description
ENOTSOCK One of the descriptor sets specified an invalid descriptor.
EFAULT One of the parameters pointed to a value outside the

caller’s address space.

EINVAL One of the fields in the timeval structure is invalid.

See Also: accept(), connect(), recv(), send().

Chapter 3. Sockets 81

send()

send()

Parameter Description

s The socket descriptor.

msg Points to the buffer containing the message to transmit.

len The length of the message pointed to by the msg parameter.

flags The flags parameter is set by specifying one or more of the fol-
lowing flags. If more than one flag is specified, the logical OR
operator (|) must be used to separate them. Setting this parameter
is supported only for sockets in the AF_INET domain.

MSG_OOB Sends out-of-band data on sockets that support
this notion. Only SOCK_STREAM sockets
created in the AF_INET address family support
out-of-band data.

MSG_FLUSH This option flushes the data on send().

Description: The send() call sends packets on the socket with descriptor s. The
send() call applies to all connected sockets.

If buffer space is not available at the socket to hold the message to be transmitted,
the send() call normally blocks, uniess the socket is placed in nonblocking mode.
The select() call can be used to determine when it is possible to send more data.
Return Values and Errno Values: No indication of failure to deliver is implicit in a
send() routine. The value —1 indicates locally detected errors. The value of errno
indicates the specific error.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using the msg and /en parameters would result in an
attempt to access memory outside the caller’'s. address
space.

ENOBUFS No buffer space is available to send the message.

EWOULDBLOCK The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recv(), recvirom(), select(), sendto(), socket().
82 TCP/IP Version 2.0 for DOS: Programmer’s Reference

\\

sendto()

sendto()

Parameter Description

s The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

len The length of the message in the buffer pointed to by the msg param-
eter.

flags A parameter that can be set to 0. Setting this parameter is supported
only for sockets in the AF_INET domain.
MSG_FLUSH The option flushes the data on send.

to The address of the target.

tolen The size of the address pointed to by to.

Description: The sendto() call sends packets on the socket with descriptor s. The
sendto() call applies to any datagram socket, whether connected or unconnected.

Return Values and Errno Values: If successful, the number of characters sent is
returned. The value —1 indicates an error. The value of errno indicates the specific
error.

No indication of failure to deliver is implied in the return value of this call when used
with datagram sockets.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using the msg and len parameters would result in an
attempt to access memory outside the caller’s address
space.

EINVAL tolen is not the size of a valid address for the specified
address family.

EMSGSIZE The message was too big to be sent as a single datagram.
The default is 8192, and the maximum is 32 767.

ENOBUFS No buffer space is available to send the message.

EWOULDBLOCK The s parameter is in nonblocking mode and no data is
available to read.

See Also: recv(), recvfrom(), send(), select(), socket().

Chapter 3. Sockets 83

sethostent()

sethostent()

Parameter Description
stayopen Tells the HOST file whether to remain open after each call.

Description: The sethostent() call opens and rewinds the <TCPBASE>\ETC\HOSTS
file. If the stayopen flag is nonzero, the HOSTS file remains open after each call.

Return Values: The value 0 indicates success; the value —1 indicates an error. The
value of errno indicates the specific error.

See Also: endhostent(), gethostbyaddr(), gethostbyname(), gethostent().

84 TCP/IP Version 2.0 for DOS: Programmer’s Reference

setnetent()

setnetent()

Parameter Description
stayopen Tells the NETWORKS file whether to remain open after each call.

Description: The setnetent() call opens and rewinds the
<TCPBASE>\ETC\NETWORKS file which contains information about known net-
works. If stayopen is nonzero the NETWORKS file remains open after each call.
See Appendix J, “NETWORKS File Structure,” for the format of the NETWORKS file.

Return Values: The value 0 indicates success; the value —1 indicates an error. The
value of errno indicates the specific error.

See Also: endnetent(), getnetbyaddr(), getnetbyname(), getnetent().

Chapter 3. Sockets 85

setprotoent()

setprotoent()

Parameter Description
stayopen Tells the PROTOCOL file whether to remain open after each call.

Description: The setprotoent() call opens and rewinds the
<TCPBASE>\ETC\PROTOCOL file, which contains information about known proto-
cols. If the stayopen flag is nonzero, PROTOCOL file remains open after each call.

Return Values: The value 0 indicates success; the value —1 indicates an error. The
value of errno indicates the specific error.

See also: endprotoent(), getprotobyname(), getprotobynumber(), getprotoenty().

86 TCP/IP Version 2.0 for DOS: Programmer’s Reference

setservent()

setservent()

Parameter Description
stayopen Tells the SERVICES file whether to remain open after each call.

Description: The setservent() call opens and rewinds the
<TCPBASE>\ETC\SERVICES file, which contains information about known services
and well-ports. See “Ports,” for more information on the SERVICES file.

Return Values: The value 0 indicates success, the value —1 indicates an error. The
vaiue of errno indicates the specific error.

See Also: endservent(), getservbyname(), getservbyport(), getservent().

Chapter 3. Sockets 87

setsockopt()

setsockopt()

Parameter Description

s The socket descriptor.

level The level for which the option is being set. Only SOL_SOCKET is
supported.

optname The name of a specified socket option.

optval Points to option data.

optien Specifies the length of the option data.

Description: The setsockopt() call sets options associated with a socket. It can be
called only for sockets in the AF_INET domain. Options can exist at multiple pro-
tocol levels; they are always present at the highest socket level.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET, as defined in <SYS\SOCKET.H>. To
manipulate options at any other level, such as the TCP or IP level, supply the appro-
priate protocol number for the protocol controlling the option. Currently, only the
SOL_SOCKET level is supported. The getprotobyname() call can be used to return
the protocol number for a named protocol.

The optval and optlen parameters are used to pass data used by the particular set
command. The optval parameter points to a buffer containing the data needed by
the set command. The optval parameter is optional and can be set to the NULL
pointer, if data is not needed by the command. The opt/len parameter must be set to
the size of the data pointed to by optval.

All of the socket level options expect optval to point to an integer and opt/en to be
set to the size of an integer. When the integer is nonzero, the option is enabled.
When it is zero, the option is disabled.

The following options are recognized at the socket level:

Option Description

SO_BROADCAST Toggles the ability to broadcast messages. If this option is
enabled, it allows the application to send broadcast messages
over s, if the interface specified in the destination supports
broadcasting of packets. This option has no meaning for stream
sockets.

SO_DONTBLOCK Sets sockets to nonblocking.

88 TCP/IP Version 2.0 for DOS: Programmer’s Reference

setsockopt()

SO_KEEPALIVE Toggles keep connection alive. TCP uses a timer called the
keepalive timer. This timer is used to monitor idle connections
that might have been disconnected because of a peer crash or
time-out. If this option is toggled, a keepalive packet is period-
ically sent to the peer. This is used mainly to allow servers to
close connections that have already disappeared as a result of
clients going away without closing connections. This option
only has meaning for stream sockets.

SO_RCVBUF Sets buffer size for input. This option sets the size of the
receive buffer to the value contained in the buffer pointed to by
optval. This allows the buffer size to be tailored for specific
application needs, such as increasing the buffer size for
high-volume connections.

SO_REUSEADDR Toggles local address reuse. When enabled, this option allows
local addresses that are already in use to be bound. This alters
the normal algorithm used in the bind() call. The system checks
at connect time to be sure that no local address and port have
the same foreign address and port. The error EADDRINUSE is
returned if the association already exists.

SO_SNDBUF Sets buffer size for output. This option sets the size of the send
buffer to the value contained in the buffer pointed to by optval
This allows the send buffer size to be tailored for specific appli-
cation needs, such as increasing the buffer size for high-volume
connections.

SO_SNDTIMEO Sends time-out.

Return Values and Errno Values: The value 0 indicates success; the value —1 indi-
cates an error. The value of errno indicates the specific error.

Errno Description
EADDRINUSE The address is already in use.
ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using optval and optlen parameters would result in an attempt
to access memory outside the caller’s address space.

ENOPROTOOPT The optname parameter is unrecognized, or the /evel param-
eter is not SOL_SOCKET.

Examples: The following are examples of the setsockopt() call. See “getsockopt()”
on page 64 for examples of how the getsockopt() options set are queried.

int rc;

int s3

int optval;

int setsockopt(int s, int level, int optname, char *optval, int optlen)

/* Set the send buffer size */
optval = 16384;
rc = setsockopt(s, SOL_SOCKET, SO_SNDBUF, (char *) &optval, sizeof(int));

See Also: getprotobyname(), getsockopt(), socket().

Chapter 3. Sockets 89

shutdown()

shutdown()

90

Parameter Description

s The socket descriptor.
how The condition of the shutdown. The values 0, 1, or 2 set the condi-
tion.

Description: The shutdown() call shuts down all or part of a duplex connection. how
sets the condition for shutting down the connection to socket s.
how can have a value of 0, 1, or 2, where:

¢ 0 ends communication from socket s.
¢ 1 ends communication to socket s.
¢ 2 ends communication both to and from socket s.

Return Values and Errno Values: The value 0 indicates success; the value —1 indi-
cates an error. The value of errno indicates the specific error.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EINVAL The how parameter was not set to one of the valid values.

Valid values are 0, 1, and 2.

See Also: accept(), connect(), socket(), so_close().

TCP/IP Version 2.0 for DOS: Programmer’s Reference

sock_init()

sock_init()

Description: There are no parameters associated with this call. The sock_init() call
initializes the socket data structures and checks whether or not INET.EXE is running.

Therefore, sock_init() should be called at the beginning of each program that uses
socket().

Return Values: The value 0 indicates success, the value 1 indicates an error.

See Also: dosip_init().

Chapter 3. Sockets 91

socket()

socket()

Parameter Description

domain The address domain requested. It must be AF_INET.

type The type of socket created, either SOCK_STREAM or
SOCK_DGRAM.

protocol The protocol requested. Some possible values are 0,

IPPROTO_UDP, or IPPROTO_TCP.

Description: The socket() call creates an endpoint for communication and returns a
socket descriptor representing the endpoint. Different types of sockets provide dif-
ferent communication services.

The domain parameter specifies a communication domain within which communi-
cation is to take place. This parameter selects the address family (format of
addresses within a domain) that is used. The only family supported is AF_INET,
which is the internet domain. This constant is defined in the <SYS\SOCKET.H>
header file.

The type parameter specifies the type of socket created. The type is analogous with
the semantics of the communication requested. These socket type constants are
defined in the <SYS\SOCKET.H> header file. The types supported are:

Socket Type Description

SOCK_STREAM Provides sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mech-
anism for out-of-band data.

SOCK_DGRAM Provides datagrams, which are connectionless mes-
sages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out
of order, lost, or delivered multiple times.

The protocol parameter specifies a particular protocol to be used with the socket. In
most cases, a single protocol exists to support a particular type of socket in a partic-
ular addressing family. If the protocol field is set to 0, the system selects the default
protocol number for the domain and socket type requested. Protocol numbers are
found in the <TCPBASE>\ETC\PROTOCOL file. Alternatively, the getprotobyname()
call can be used to get the protocol number for a protocol with a known name. Cur-
rently, protocol defaults are TCP for stream sockets and UDP for datagram sockets.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,
flow-controlled connections between peer applications. Stream sockets are either
active or passive. Active sockets are used by clients who initiate connection
requests with connect(). By default, socket() creates active sockets. Passive
sockets are used by servers to accept connection requests with the connect() call.
An active socket is transformed into a passive socket by binding a name to the
socket with the bind() call and by indicating a willingness to accept connections with

92 TCP/IP Version 2.0 for DOS: Programmer’s Reference

socket()

the listen() call. Once a socket is passive, it cannot be used to initiate connection
requests.

In the AF_INET domain, the bind() call applied to a stream socket lets the application
specify the networks from which it is willing to accept connection requests. The
application can fully specify the network interface by setting the internet address
field in the address structure to the internet address of a network interface. Alterna-
tively, the application can use a wildcard to specify that it wants to receive con-
nection requests from any network. This is done by setting the internet address
field in the address structure to the constant INADDR_ANY as defined in
<SYS\SOCKET.H>.

Once a connection has been established between stream sockets, any of the data
transfer calls can be used: send(), recv(), sendto(), recvfrom(). Usually, a send-recv
pair is used for sending data on stream sockets.

SOCK_DGRAM sockets model datagrams. They provide connectionless message
exchange with no guarantees on reliability. Messages sent have a maximum size.

There is no active or passive analogy to stream sockets with datagram sockets.
Servers must still call bind() to name a socket and to specify from which network
interfaces it wishes to receive packets. Wildcard addressing, as described for
stream sockets, applies for datagram sockets also. Because datagram sockets are
connectionless, the listen() call has no meaning for them and must not be used with
them.

Once an application has received a datagram socket it can exchange datagrams
using the sendto() and recvfrom() calls. If the application goes one step further by
calling connect() and fully specifying the name of the peer with which all messages
will be exchanged, then the other data transfer calls send() and recv() can also be
used. For more information about placing a socket into the connected state, see
“connect()” on page 41.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting

the destination address to be a broadcast address is network interface dependent

(depends on class of address and whether sub-nets are being used). The constant
INADDR_BROADCAST, defined in <SYS\SOCKET.H> can be used to broadcast to

the primary network if the primary network configured supports broadcast.

Outgoing packets have an IP header prefixed to them. IP options can be set and
inspected using the setsockopt() and getsockopt() calls respectively. Incoming
packets are received with the IP header and options intact.

Sockets are deallocated with the so_close() call.
Return Values and Errno Values: A non-negative socket descriptor indicates

success. The value —1 indicates an error. The value of errno indicates the specific
error.

Errno Description

EPROTONOSUPPORT The protocol is not supported in this domain or
this protocol is not supported for this socket
type.

Chapter 3. Sockets 93

socket()

Exampies: The following are exampies of the socket(j cali.
int s;
struct protoent *p;

struct protoent *getprotobyname(char *name);
int socket(int domain, int type, int protocol);

/* Get stream socket in internet domain with default protocol */
s = socket (AF_INET, SOCK_STREAM, 0);

/* Get datagram socket in internet domain for UDP protocol */
p = getprotobyname("udp");
s = socket (AF_INET, p->p_proto);

See Also: accept(), bind(), connect(), getprotobyname(), getsockname(),

getsockopt(), recv(), recvfrom(), select(), send(), sendto(), shutdown(), so_close().

94 TCP/IP Version 2.0 for DOS: Programmer’s Reference

so_close()

so_close()

Parameter Description
s The descriptor of the socket to discard.

Description: The so_close() call shuts down the socket associated with the socket
descriptor s, and frees resources allocated to the socket. If s refers to an open TCP
connection, the connection is closed.

Return Values: The value 0 indicates success; the value —1 indicates an error. The
value of errno indicates the specific error.

See Also: accept(), socket().

Chapter 3. Sockets 95

so_flush()

so_fiush()

Parameter Description
s The socket descriptor.

Description: The so_flush() call flushes the packet with descriptor s.

96 TCP/IP Version 2.0 for DOS: Programmer’s Reference

so_read()

so_read()

Parameter Description

s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

Description: The so_read() call receives data on a socket with descriptor s and
stores it in a buffer. The so_read() call applies only to connected sockets.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available at the socket with descriptor s, the so_read() call waits for a
message to arrive and blocks the caller, uniess the socket is in nonblocking mode.

Return Values and Errno Values: If successful, the length, in bytes, of the message
or datagram is returned. The value -1 indicates an error. The value of errno indi-
cates the specific error.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using the buf and /en parameters would result in an
attempt to access memory outside the caller’s address
space.

EWOULDBLOCK The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recvirom(), select(), send(), sendto(),
setsockopt(), socket().

Chapter 3. Sockets 97

so_write()

so_write()

Parameter Description

s The socket descriptor.

msg Points to the buffer containing the message to transmit.

len The length of the message pointed to by the msg parameter.

Description: The so_write() call sends packets on the socket with descriptor s. The
so_write() call applies to all connected sockets.

If buffer space is not available at the socket to hold the message to be transmitted,
the so_write() call normally blocks, unless the socket is placed in nonblocking
mode. The select() call can be used to determine when it is possible to send more
data.

Return Values and Errno Values: No indication of failure to deliver is implicit in a
so_write() routine. The value —1 indicates locally detected errors. The value of
errno indicates the specific error.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using the msg and len parameters would result in an
attempt to access memory outside the caller’s address
space.

ENOBUFS No buffer space is available to send the message.

EWOULDBLOCK The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recv(), recvfrom(), select(), sendto(), socket().

98 TCP/IP Version 2.0 for DOS: Programmer’s Reference

© Copyright IBM Corp. 1991

Chapter 4. Remote Procedure Calls (RPCs)

The RPC iInterface 101
RPC Support for DOS 104
RPC ClientCalls 104
RPC ServerCalls 104
Portmapper 105
Contacting Portmapper 105
Target Assistance 105
enum cint_stat Structure 106
Remote Procedure Call Library 107
Porting 107
Compilingand LinkKing 107
Remote Procedure and eXternal Data Representation Calls 108
auth_destroy() 109
authnone_create() 110
authunix_create() 111
authunix_create_default() 112
callrpe() 113
cint_broadcast() 114
cint_call() 115
cint_destroy() 116
cint_freeres() 117
cint_geterr() 118
cint_pcreateerror() 119
cint_perrno() 120
cint_perror() 121
cinttcp_create() 122
cintudp_create() 123
get_myaddress() 124
pmap_getmaps() 125
pmap_getport() 126
pmap_rmtcall() 127
pmap_set() 128
pmap_unset() 129
registerrpC() 130
rpe_createerr 131
sve_destroy() 132
sve_fds ... 133
sve_freeargs() 134
sve_getargs() 135
sve_getcaller() 136
sve_getreq() 137
sve_register() 138
SVC_TUN() . . o oot 139
sve_sendreply() 140
sve_unregister() 141
sveerr_auth() 142
sveerr_decode() 143
SVCEIT_NOPTOC() . . . o ottt e 144
sveerr_noprog() 145
SVCerr_progvers() e 146
sveerr_systemerr() 147
sveerr_weakauth() 148
99

svetep create() 149

sveudp create() 150
xdr_accepted_reply() 151
xdr_array() 152
xdr_authunix_parms() 153
xdr_bool() 154
xdr_bytes() 155
xdr_callhdr() 156
xdr_callmsg() 157
xdr_double() 158
xdr_enum() 159
xdr_float() 160
xdroinline() 161
xdr int() ... 162
xdr_long() 163
Xdr_opaque() 164
xdr_opaque_auth() 165
XAr_pmap() ... 166
xdr_pmaplist() e 167
xdr_reference() 168
xdr_rejected_reply() 169
xdr_replymsg() 170
xdr_short() 171
xdr_string() 172
xdr_u_int() ... 173
xdr_u_long() 174
xdr_u_short() 175
xdr_union() ... 176
xdr_void() ... 177
xdr_wrapstring() 178
xdrmem_create() 179
xdrrec_create() 180
xdrrec_endofrecord() 181
xdrrec_eof() 182
xdrrec_skiprecord() 183
xdrstdio_create() 184
xpri_register() 185
xpri_unregister() 186

100 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Chapter 4. Remote Procedure Calls (RPCs)

This chapter describes the high-level remote procedure calls (RPCs) implemented
in TCP/IP for DOS, including the RPC programming interface to the C language, and
communication between processes.

TCP/IP for DOS does not support RPCs with raw sockets, a local portmapper, or a
RPC server on the DOS machine. Applications with client/server functions must run
the server routines on a machine using TCP/II*D Version 1.2 for OS/2, TCP/IP Version
2.0 for VM, TCP/IP Version 2.0 for MVS or AIX WorkStation.

The RPC protocol enables users to work with remote procedures as if the proce-
dures were local. The remote procedure calls are defined through routines con-
tained in the RPC protocol. Each call message is matched with a reply message.
The RPC protocol is a message-passing protocol that implements other non-RPC
protocols such as batching and broadcasting remote calls. The RPC protocol also
supports callback procedures and the select subroutines on the server side.

RPC provides an authentication process that identifies the server and client to each
other. RPC includes a slot for the authentication parameters on every remote pro-
cedure call so that the caller can identify itself to the server. The client package
generates and returns authentic%tjon parameters. RPC supports various types of
authentication, such as the UNIX systems.

In RPC, each server supplies a program that is a set of procedures. The combina-
tion of a host address, a program number, and a procedure number specifies one
remote service procedure. In the RPC model, the client makes a procedure call to
send a data packet to the server. When the packet arrives, the server calls a dis-
patch routine, performs whatever service is requested, and sends a reply back to
the client. The procedure call then returns to the client.

RPC is divided into three layers: highest, intermediate, and lowest. The RPC inter-

face is generally used to communicate between processes on different workstations
in a network. However, RPC works just as well for communication between different
processes on the same workstation.

The port mapper program maps RPC program and version numbers to a
transpori-specific port number. The port mapper program makes dynamic binding
of remote programs possible.

To use the RPC protocol, you must be familiar with C language programming and
have a working knowledge of networking concepts.

For more information on the RPC and XDR protocols, see the Sun Microsystems
publication, Networking on the Sun Workstation: Remote Procedure Call Program-
ming Guide.

The RPC Interface

© Copyright IBM Corp. 1991

The RPC interface enables programmers to write distributed applications using
high-level RPCs rather than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a
procedure to send a call message to the server. When the message arrives, the

101

server calls a dispatch routine, and performs the requested service. The server
sends back a reply message, after which the original procedure call returns to the
client program with a value derived from the reply message.

See Appendix C, “Sample RPC Programs,” for sample RPC client and server pro-
grams. Figure 23, and Figure 24 on page 103, provide an overview of the
high-level RPC client and server processes from initialization through cieanup.

(Begin)
TCP or UDP get_myaddress UDP only
pmap_rmtcall
pmap_getmap
tcp pmap_getport
c]nt[: _Create
ud
Initialize
none— _create
auth[:unix _create
unix— _create_default
success error
v
cInt_call cInt_pcreateerror callrpc
cint_broadcast
Process XDR routines XDR routines
Call
success error success error
cInt_perrno
cInt_perror
clnt_Teterr
Free v
Resources cint_freeres
Final auth_destroy
Cleanup cint_destroy

(End)

Figure 23. Remote Procedure Call (Client)

102 TCP/IP Version 2.0 for DOS: Programmer’s Reference

Initialize

Receive
Request

Process

Reply

Transaction
Cleanup and
Final
Cleanup

TCP or UDP

tep
svcl: _Create

udp
xprt_register
svc_register
pmap_set

UDP only
e

registerrpc

svc_getreq
svc_getcaller

svc_run——»

svc_getargs

XDR encode

decode routines

—

error

SVCerr_XXX

-

success

svc_sendreply

svc_freeargs
]

/

pmap_unset
xprt_unregister
svc_unregister
svc_destroy

<«

(End)

Figure 24. Remote Procedure Call (Server)

Chapter 4. Remote Procedure Calls (RPCs)

103

RPC Support for DOS

The RPC protocol permits remote execution of subroutines across a TCP/IP network.
RPC, together with the eXternal Data Representation (XDR) protocol, defines a
standard for representing data that is independent of internal protocols or format-
ting. RPCs can communicate between processes on the same or different hosts.

TCP/IP for DOS does not support RPCs with raw sockets, a local portmapper, or a
RPC server on the DOS machine. Applications with client/server functions must run
the server routines on a machine using TCP/IP Version 1.2 for OS/2, TCP/IP Version
2.0 for VM, TCP/IP Version 2.0 for MVS or AIX WorkStation.

RPC Client Calls
The following is a list of RPC client calls supported by TCP/IP for DOS.
auth_destroy() authnone_create()
authunix_create() authunix_create_default()
callrpc() cint_broadcast()
clnt_call() clnt_destroy()
cint_freeres() cint_geterr()
cint_pcreateerror() cint_perrno()
cint_perror() cinttcp_create()
cintudp_create() get_myaddress()
pmap_getmaps() pmap_getport()
pmap_rmtcall() rpc_createerr
xdr_accepted_reply() xdr_authunix_parms()
xdr_array() xdr_bool()
xdr_bytes() xdr_callhdr()
xdr_callmsg() xdr_double()
xdr_enum() xdr_float()
xdr_inline() xdr_int()
xdr_long() xdr_opaque()
xdr_opaque_auth() xdr_pmap()
xdr_pmaplist() xdr_reference()
xdr_rejected_reply() xdr_replymsg()
xdr_short() xdr_string()
xdr_u_int() xdr_u_long()
xdr_u_short() xdr_union()
xdr_void() xdr_wrapstring()
xdrmem_create() xdrrec_create()
xdrrec_endofrecord() xdrrec_eof()
xdrrec_skiprecord() xdrstdio_create()
xprt_register() xprt_unregister()

RPC Server Calls
The following is a list of RPC server calls which are not supported by TCP/IP for
DOS.
pmap_set() pmap_unset()
registerrpc() svc_destroy()
sve_fds svc_freeargs()
svc_getargs() svc_getcalier()
svc_getreq() svc_register()
svc_run() svc_sendreply()
svc_unregister() svcerr_auth()

104 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svcerr_decode() svcerr_noproc()

svcerr_noprog() svcerr_progvers()
svcerr_systemerr() svcerr_weakauth()
svctcp_create() svcudp_create()

Portmapper

Portmapper is the software that supplies client programs with the port numbers of
server programs.

You can communicate between different computer operating systems when mes-
sages are directed to port numbers rather than to targeted remote programs.
Clients contact server programs by sending messages to the port numbers where
receiving processes receive the message. Because you make requests to the port
number of a server rather than directly to a server program, client programs need a
way to find the port number of the server programs they wish to call. Portmapper
standardizes the way clients locate the port number of the server programs sup-
ported on a network.

Portmapper resides on all hosts on well-known port 111. See Appendix A,
“Well-Known Port Assignments,” for other well-known TCP and UDP port assign-
ments.

The port-to-program information maintained by Portmapper is called the portmap.
Clients ask Portmapper about entries for servers on the network. Servers contact
Portmapper to add or update entries to the portmap.

Contacting Portmapper

To find the port of a remote program, the client sends an RPC to well-known port 111
of the server’s host. If Portmapper has a portmap entry for the remote program,
Portmapper provides the port number in a return RPC. The client then requests the
remote program by sending an RPC to the port number provided by Portmapper.

Clients can save port numbers of recently called remote programs to avoid having
to contact Portmapper for each request to a server.

Target Assistance

Portmapper offers a program to assist clients in contacting server programs. If the
client sends Portmapper an RPC with the target program number, version number,
procedure number, and arguments, Portmapper searches the portmap for an entry,
and passes the client’s message to the server. When the target server returns the
information to Portmapper, the information is passed to the client, along with the
port number of the remote program. The client can then contact the server directly.

Chapter 4. Remote Procedure Calls (RPCs) 105

enum cint_stat Structure

The enum clnt_stat structure is defined in the <RPC\CLNT.H> file.

RPCs frequently return enum cint_stat information. The following is the format of

the enum cint_stat structure:

enum cint_stat {

RPC_SUCCESS=0,

/*

* local errors

*
RPC_CANTENCODEARGS=1,
RPC_CANTDECODERES=2,
RPC_CANTSEND=3,
RPC_CANTRECV=4,
RPC_TIMEDOUT=5,
/*

* remote errors

*/
RPC_VERSMISMATCH=6,
RPC_AUTHERROR=7,
RPC_PROGUNAVAIL=8,
RPC_PROGVERSMISMATCH=9,
RPC_PROCUNAVAIL=10,
RPC_CANTDECODEARGS=11,
RPC_SYSTEMERROR=12,

*

* callrpc errors
*

RPC_UNKNOWNHOST=13,
/*

* create errors

*/
RPC_PMAPFAILURE=14,
RPC_PROGNOTREGISTERED=15,
/*

* unspecified error

*/

RPC_FAILED=16

}s

106 TCP/IP Version 2.0 for DOS: Programmer’s Reference

/*

call succeeded */

can't encode arguments */
can't decode results */
failure in sending call */
failure in receiving result */
call timed out */

RPC versions not compatible */
authentication error */
program not available */
program version mismatched */
procedure unavailable */
decode arguments error */
generic "other problem" */

unknown host name */

/* the pmapper failed in its call */
/* remote program is not registered */

Remote Procedure Call Library

To use the RPCs described in this chapter, you must have the following header files,
contained in the <TCPBASE>\INCLUDE directory, available on your system:

RPC\AUTH.H
RPC\A_UNIX.H
RPC\CLNT.H
RPC\P_CLNT.H
RPC\P_PROT.H
RPC\P_RMT.H
RPC\RPC.H
RPC\R_MSG.H
RPC\TYPES.H
RPC\SVC.H
RPC\SVC_AUTH.H
RPC\XDR.H

The RPC routines are contained in the SUNRPC.LIB file in the <TCPBASE>\LIB
directory. You must also have the TCPIP.LIB file in your <TCPBASE>\LIB direc-
tory.

You should put the following statement at the top of any file using RPC code:

For a summary of each remote procedure call supported by TCP/IP for DOS, see
Appendix F, “Remote Procedure Call Quick Reference.”

Porting

The IBM DOS RPC implementation differs from the Sun Microsystems RPC imple-
mentation, because functions that rely on file descriptor structures are not sup-
ported by the IBM DOS RPC implementation.

Compiling and Linking

The following steps describe how to compile and link programs using the RPC API’s
with Microsoft C Version 5.10.

Note: In the following examples, model refers to the memory model you will use to
compile your program: L for large model, S for small model, M for medium model,
or C for compact model.

1. Include the < TCPBASE >\INCLUDE directory at the beginning of the INCLUDE
environment variable so that the C compiler finds the appropriate header files.
You can set this interactively or you can include it in the AUTOEXEC.BAT file.

For example, if the INCLUDE environment variable previously read:
SET INCLUDE=C:\MSC\INCLUDE

you would change it to read:

SET INCLUDE=<TCPBASE>\INCLUDE;C:\MSC\INCLUDE

Chapter 4. Remote Procedure Calls (RPCs) 107

2. To compile your program, enter the following command:
¢l \c \Amodel myprog.c
3. To create an executable program, enter the following command:

link /stack:6144 myproj.obj,,,<TCPBASE>\LIB\model\sunrpc.1lib+
<TCPBASE>\LIB\model\tcpip.lib;

Remote Procedure and eXternal Data Representation Calls

This section provides the syntax, parameters, and other appropriate information for
each remote procedure and external data representation call supported by TCP/IP
for DOS.

108 TCP/IP Version 2.0 for DOS: Programmer’s Reference

auth_destroy()

auth_destroy()

Parameter Description
auth A pointer to authentication information.

Description: The auth_destroy() call deletes the authentication information for auth.
Once this procedure is called, auth is undefined.

See Also: authnone_create(), authunix_create(), authunix_create_default().

Chapter 4. Remote Procedure Calls (RPCs) 109

authnone_create()

authnone_create()

Description: The authnone_create() call creates and returns an RPC authentication

handle. The handle passes the NULL authentication on each call.

See Also: auth_destroy(), authunix_create(), authunix_create_default().

110 TCP/IP Version 2.0 for DOS: Programmer's Reference

authunix_create()

authunix_create()

Parameter Description

host A pointer to the symbolic name of the host where the desired
server is located.

uid The user’s user ID.

gid The user’s group ID.

len The length of the information pointed to by aup_gids.

aup_gids A pointer to an array of groups to which the user belongs.

Description: The authunix_create() call creates and returns an authentication
handle that contains UNIX-based authentication information.

See Also: auth_destroy(), authnone_create(), authunix_create_default().

Chapter 4. Remote Procedure Calls (RPCs) 111

authunix_create_default()

authunix_create_default()

Description: The authunix_create_defauit() call calls authunix_create() with default
parameters.

See Also: auth_destroy(), authnone_create(), authunix_create().

112 TCP/IP Version 2.0 for DOS: Programmer’s Reference

calirpc()

callrpc()

Parameter

host

prognum
versnum
procnum

inproc

in

outproc

out

Description

A pointer to the symbolic name of the host where the desired
server is located.

Identifies the program number of the remote procedure.
Identifies the version number of the remote procedure.
Identifies the procedure number of the remote procedure.

The XDR procedure used to encode the arguments of the remote
procedure.

A pointer to the arguments of the remote procedure.

The XDR procedure used to decode the results of the remote proce-
dure.

A pointer to the results of the remote procedure.

Description: The callrpc() call calls the remote procedure described by prognum,
versnum, and procnum running on the host system. callrpc() encodes and decodes
the parameters for transfer.

Notes:

1. cint_perrno() can be used to translate the return code into messages.

2. callrpc() cannot call the procedure xdr_enum. See “xdr_enum()” on page 159
for more information.

3. This procedure uses UDP as its transport layer. See “cintudp_create()” on
page 123 for more information.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: cint_call(), cInt_perrno(), cintudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 113

cint_broadcast()

cint_broadcast()

Parameter Description

prognum Identifies the program number of the remote procedure.

versnum Identifies the version number of the remote procedure.

procnum Identifies the procedure number of the remote procedure.

inproc The XDR procedure used to encode the arguments of the remote
procedure.

in A pointer to the arguments of the remote procedure.

outproc The XDR procedure used to decode the results of the remote proce-
dure.

out A pointer to the results of the remote procedure.

eachresult The procedure called after each response.

Note: resultproc_t is a type definition:
typedef bool_t (*resultproc_t) ();

Description: The cInt_broadcast() call broadcasts the remote procedure described
by prognum, versnum, and procnum to all locally connected broadcast networks.
Each time cInt_broadcast() receives a response it calls eachresult(). The format of
eachresult() is:

Parameter Description

out Has the same function as it does for cint_broadcast(), except that
the output of the remote procedure is decoded.

addr Points to the address of the machine that sent the results.

Return Values: If eachresult() returns 0, cint_broadcast() waits for more replies; oth-
erwise, eachresult() returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the
data link.

See Also: callrpc(), cint_call().

114 TCP/IP Version 2.0 for DOS: Programmer’s Reference

cint_call()

cint_call()

Parameter Description

cint Points to a client handle that was previously obtained using
cinttcp_create(), or clntudp_create().

procnum Identifies the remote procedure number.

inproc The XDR procedure used to encode procnum’s arguments.

in Points to the remote procedure’s arguments.

outproc The XDR procedure used to decode the remote procedure’s results.

out Points to the remote procedure’s results.

tout The time allowed for the server to respond in units of 0.1 seconds.

Description: The cint_call() call calls the remote procedure (procnum) associated
with the client handle (c/nt).

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: calirpc(), cint_perror(), cinttcp_create(), cintudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 115

cint_destroy()

cint_destroy()

Parameter Description

cint Points to a client handle that was previously created using
cIntudp_create() or cinttcp_create().

Description: The cint_destroy() call deletes a client RPC transport handle. This pro-
cedure involves the deallocation of private data resources, including c/nt. Once this
procedure is used, cint is undefined. Open sockets associated with c/nt must be
closed.

See Also: cinttcp_create(), cintudp_create().

116 TCP/IP Version 2.0 for DOS: Programmer’s Reference

cint_freeres()

cint_freeres()

Parameter Description

cint Points to a client handle that was previously obtained using
cinttcp_create() or cintudp_create().

outproc The XDR procedure used to decode the remote procedure’s results.

out Points to the results of the remote procedure.

Description: The cint_freeres() call deallocates any resources that were assigned
by the system to decode the results of an RPC.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: cinttcp_create(), clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 117

cint_geterr()

cint_geterr()

Parameter Description

cint Points to a client handle that was previously obtained using
cinttcp_create() or cintudp_create().

errp Points to the address into which the error structure is copied.
Description: The cint_geterr() call copies the error structure from the client handle
to the structure at address errp.

See Also: cint_call(), cInt_pcreateerror(), cint_perrno(), cint_perror(),
clnttcp_create(), cintudp_create().

118 TCP/IP Version 2.0 for DOS: Programmer’s Reference

cint_pcreateerror()

cint_pcreateerror()

Parameter Description

s Points to a string that is to be printed in front of the message. The
string is followed by a colon.

Description: The cint_pcreateerror() call writes a message to the standard error
device, indicating why a client handle cannot be created. This procedure is used
after the cinttcp_create() or cintudp_create() calls fail.

See Also: cint_geterr(), cint_perrno(), cint_perror(), cinttcp_create(),
clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 119

cint_perrno()

cint_perrno()

Parameter Description
stat The client status.

Description: The cInt_perrno() call writes a message to the standard error device
corresponding to the condition indicated by stat. This procedure should be used
after callrpc() if there is an error.

See Also: callrpc(), cint_geterr(), cint_pcreateerror(), cint_perror().

120 TCP/IP Version 2.0 for DOS: Programmer’s Reference

cint_perror()

cint_perror()

Parameter Description

cint Points to a client handle that was previously obtained using
clntudp_create() or cinttcp_create().

S Points to a string that is to be printed in front of the message. The
string is followed by a colon.

Description: The cint_perror() call writes a message to the standard error device,
indicating why an RPC failed. This procedure should be used after cint_call() if
there is an error.

See Also: cint_call(), cint_geterr(), cint_pcreateerror(), cint_perrno(),
cinttcp_create(), cintudp_create().

Chapter 4. Remote Procedure Calis (RPCs) 121

cinttcp_create()

cinticp_create()

Parameter Description

addr Points to the internet address of the remote program. If addr points
to a port number of 0, addr is set to the port on which the remote
program is receiving.

prognum The remote program number.

versnum The version number of the remote program.

sockp Points to the socket. If sockp is RPC_ANYSOCK, then this routine
opens a new socket and sets sockp.

sendsz The size of the send buffer. Specify 0 to choose the default.

recvsz The size of the receive buffer. Specify 0 to choose the default.

Description: The cinttcp_create() call creates an RPC client transport handle for the
remote program specified by (prognum, versnum). The client uses TCP as the
transport layer.

Return Values: NULL indicates failure.

See Also: cint_destroy(), cint_pcreateerror(), cintudp_create().

122 TCP/IP Version 2.0 for DOS: Programmer’s Reference

cintudp_create()

cintudp_create()

Parameter

addr

prognum
versnum

wait

SOCkp

Description

Points to the internet address of the remote program. If addr points
to a port number of 0, addr is set to the port on which the remote
program is receiving. The remote portmap service is used for this.

The remote program number.
The version number of the remote program.

UDP resends the call request at intervals of wait time, until either a
response is received or the call times out. The time-out length is
set using the cint_call() procedure.

Points to the socket. If sockp is RPC_ANYSOCK, this routine opens
a new socket and sets sockp.

Description: The cintudp_create() call creates a client transport handle for the
remote program (prognum) with version (versnum). UDP is used as the transport

layer.

Note: This procedure should not be used with procedures that use large arguments
or return large results. UDP RPC messages can only contain 2 KB of encoded data.

Return Values: NULL indicates failure.

See Also: cint_destroy(), cint_pcreateerror(), cinttcp_create().

Chapter 4. Remote Procedure Calls (RPCs) 123

get_myaddress()

get_myaddress()

Parameter Description
addr Points to the location where the local internet address is placed.

Description: The get_myaddress() call puts the local host's internet address into
addr. The port number (addr—>sin_port) is set to htons (PMAPPORT), which is 111.

124 TCP/IP Version 2.0 for DOS: Programmer’s Reference

pmap_getmaps()

pmap_getmaps()

Parameter Description
addr Points to the internet address of the foreign host.

Description: The pmap_getmaps() call returns a list of current program-to-port map-
pings on the foreign host specified by addr.

See Also: pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

Chapter 4. Remote Procedure Calls (RPCs) 125

pmap_getport()

pmap_getport()

Parameter Description

addr Points to the internet address of the foreign host.
prognum The program number to be mapped.

versnum The version number of the program to be mapped.
protocol The transport protocol used by the program.

Description: The pmap_getport() call returns the port number associated with the
remote program (prognum), the version (versnum), and the transport protocol
(protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the
remote portmap could not be contacted. If Portmapper cannot be contacted,
rpc_createerr contains the RPC status.

See Also: pmap_getmaps(), pmap_rmtcall(), pmap_set(), pmap_unset().

126 TCP/IP Version 2.0 for DOS: Programmer’s Reference

pmap_rmtcall()

pmap_rmtcall()

Parameter

addr

prognum
versnum
procnum

inproc

in

outproc

out

tout

portp

Description

Points to the internet address of the foreign host.
The remote program number.

The version number of the remote program.
Identifies the procedure to be called.

The XDR procedure used to encode the arguments of the remote
procedure.

Points to the arguments of the remote procedure.

The XDR procedure used to decode the results of the remote proce-
dure.

Points to the results of the remote procedure.
The time-out period for the remote request.

If the call from the remote portmap service is successful, portp con-
tains the port number of the triple (prognum, versnum, procnum).

Description: The pmap_rmtcall() call instructs Portmapper to make an RPC call to a
procedure on that host, on your behalif. This procedure should be used only for
ping-type functions.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: pmap_getmaps(), pmap_getport(), pmap_set(), pmap_unset().

Chapter 4. Remote Procedure Calis (RPCs) 127

pmap_set()

pmap_set()

Parameter Description

prognum The local program number.

versnum The version number of the local program.
protocol The transport protocol used by the local program.
port The port to which the local program is mapped.

Description: The pmap_set() call sets the mapping of the program (specified by
prognum, versnum, and protocol) to port on the local machine. This procedure is
automatically called by the svc_register() procedure.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: pmap_getmaps(), pmap_getport(), pmap_rmtcali(), pmap_unset().

128 TCP/IP Version 2.0 for DOS: Programmer’s Reference

pmap_unset()

pmap_unset()

Parameter Description
prognum The local program number.
versnum The version number of the local program.

Description: The pmap_unset() call removes the mappings associated with
prognum and versnum on the local machine. All ports for each transport protocol
currently mapping the prognum and versnum are removed from the portmap
service.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set().

Chapter 4. Remote Procedure Calls (RPCs) 129

registerrpc()

registerrpc()

130

Parameter

prognum
versnum
procnum

procname

inproc

outproc

Description

The program number to register.
The version number to register.
The procedure number to register.

The procedure that is called when the registered program is
requested. procname must accept a pointer to its arguments, and
return a static pointer to its resulits.

The XDR routine used to decode the arguments.

The XDR routine that encodes the results.

Description: The registerrpc() call registers a procedure (prognum, versnum,
procnum) with the local Portmapper, and creates a control structure to remember
the server procedure and its XDR routine. The control structure is used by
svc_run(). When a request arrives for the program (prognum, versnum, procnum),
the procedure procname is called. Procedures registered using registerrpc() are
accessed using the UDP transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See
“xdr_enum()” on page 159 for more information.

Return Values: The value 0 indicates success; the vaiue —1 indicates an error.

See Also: svc_register(), svc_run().

TCP/IP Version 2.0 for DOS: Programmer’s Reference

rpc_createerr

rpc_createerr

Fineiie e

~ struct rpc_createerr rpc_createer

Description: A global variable that is set when any RPC client creation routine fails.
Use cint_pcreateerror() to print the message.

Chapter 4. Remote Procedure Calls (RPCs) 131

svc_destroy()

svc_destroy()

Parameter Description
xprt Points to the service transport handle.

Description: The svc_destroy() call deletes the RPC service transport handle xprt,
which becomes undefined after this routine is called.

See Also: svctcp_create(), svcudp_create().

132 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svc_fds

svc_{ds

Description: A global variable reflecting the RPC service-side read file descriptor
bit mask, but limited to 16 descriptors.

See Also: svc_getreq().

Chapter 4. Remote Procedure Calls (RPCs) 133

svc_freeargs()

svc_freeargs()

Parameter Description

xprt Points to the service transport handle.

inproc The XDR routine used to decode the arguments.
in Points to the input arguments.

Description: The svc_freeargs() call frees storage allocated to decode the argu-
ments received by svc_getargs().

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_getargs().

134 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svc_getargs()

svc_getargs()

Parameter Description

xprt Points to the service transport handle.

inproc The XDR routine used to decode the arguments.
in Points to the decoded arguments.

Description: The svc_getargs() call uses the XDR routine inproc to decode the argu-
ments of an RPC request associated with the RPC service transport handle xprt.
The results are placed at address in.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_freeargs().

Chapter 4. Remote Procedure Calls (RPCs) 135

svc_getcaller()

svc_getcaller()

Parameter Description
xprt Points to the service transport handle.

Description: This macro obtains the socket address of the client associated with the
service transport handle xprt.

136 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svc_getreq()

svc_getreq()

Parameter Description
svc_fds Service side read file descriptor bit mask.

Description: The svc_getreq() call is used rather than svc_run() to implement asyn-
chronous event processing. The routine returns control to the program when all
sockets in the socks array have been serviced.

See Also: svc_run().

Chapter 4. Remote Procedure Calls (RPCs) 137

svc_register()

svc_register()

Parameter Description

xprt Points to the service transport handle.

prognum The program number to be registered.

versnum The version number of the program to be registered.
dispatch The dispatch routine associated with prognum and versnum.

The structure of the dispatch routine:

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

protocol The protocol used. The value is generally one of the following:

* 0 (zero)
* [PPROTO_UDP
e IPPROTO_TCP

When a value of 0 is used, the service is not registered with
Portmapper.

Description: The svc_register() call associates the program described by (prognum,
versnum) with the service dispatch routine dispatch.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: registerrpc(), svc_unregister(), xprt_register().

138 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svc_run()

svc_run()

Description: The svc_run() call does not return control. It accepts RPC requests,
and calls the appropriate service using svc_getreq().

See Also: registerrpc(), svc_getreq().

Chapter 4. Remote Procedure Calls (RPCs) 139

svc_sendreply()

svc_sendreply()

Parameter Description

xprt Points to the caller’s transport handle.

outproc The XDR procedure used to encode the results.
out Points to the results.

Description: The svc_sendreply() call is called by the service dispatch routine to
send the results of the call to the caller.

Return Values: The value 1 indicates success; the value 0 indicates an error.

140 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svc_unregister()

svc_unregister()

Parameter Description
prognum The program number that is removed.
versnum The version number of the program that is removed.

Description: The svc_unregister() call removes all local mappings of (prognum,
versnum) to dispatch routines and (prognum, versnum, *) to port numbers.

See Also: svc_register().

Chapter 4. Remote Procedure Calls (RPCs) 141

svcerr_auth()

svcerr_auth() :

Parameter Description
xprt Points to the service transport handle.
why The reason the call is refused.

Description: The svcerr_auth() call is called by a service dispatch routine that
refuses to execute an RPC request, because of authentication errors.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

142 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svcerr_decode()

svcerr_decode()

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_decode() call is called by a service dispatch routine that
cannot decode its parameters.

See Also: svcerr_auth(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

Chapter 4. Remote Procedure Calls (RPCs) 143

svcerr_noproc()

svcerr_noproc()

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_noproc() call is called by a service dispatch routine that
does not implement the requested procedure.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noprog(), svcerr_progvers(),
svecerr_systemerr(), svcerr_weakauth().

144 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svcerr_noprog()

svcerr_noprog()

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_noprog() call is used when the desired program is not reg-
istered.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

Chapter 4. Remote Procedure Cails (RPCs) 145

svcerr_progvers()

svcerr_progvers()

Parameter Description

xprt Points to the service transport handle.
low_vers The low version number that did not match.
high_vers The high version number that did not match.

Description: The svcerr_progvers() call is called when the version numbers of two
RPC programs do not match. The low version number and the high version number
are the two version numbers that do not match. One number is the version number
of the client. The other number is the version number of the server.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

146 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svcerr_systemerr()

svcerr_systemerr()

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_systemerr() call is called by a service dispatch routine
when it detects a system error that is not handled by the protocol.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_weakauth().

Chapter 4. Remote Procedure Calls (RPCs) 147

svcerr_weakauth()

svcerr_weakauth()

Parameter Description
xprt Points to the service transport handle.

Note: This is the equivalent of: svcerr_auth(xprt, AUTH_TOOWEAK).

Description: The svcerr_weakauth() call is called by a service dispatch routine that
cannot execute an RPC, because of correct but weak authentication parameters.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_systemerr().

148 TCP/IP Version 2.0 for DOS: Programmer’s Reference

svctcp_create()

svctcp_create()

Parameter Description

sock The socket descriptor. If sock is RPC_ANYSOCK, a new socket is
created. If the socket is not bound to a local TCP port, it is bound
to an arbitrary port.

send_buf size The size of the send buffer. Specify 0 to choose the default.
recv_buf _size The size of the receive buffer. Specify 0 to choose the default.

Description: The svctcp_create() call creates a TCP-based service transport to
which it returns a pointer. xprt—xp_sock contains the transport’s socket descriptor.
Xprt—xp_port contains the transport’s port number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 149

svcudp_create()

svcudp_create()

Parameter Description

SOCKp Points to the socket associated with the service transport handle. If
sockp is RPC_ANYSOCK, a new socket is created. If the socket is
not bound to a local UDP port, it is bound to an arbitrary port.

Warning: UDP can only transmit 2 KB of data for each packet.

Description: The svcudp_create() call creates a UDP-based service transport to
which it returns a pointer. xprt—+xp_sock contains the transport’s socket descriptor.
xprt—>xp_port contains the transport’s port number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svetcp_create().

150 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_accepted_reply()

Parameter Description
xdrs Points to an XDR stream.
ar Points to the reply to be represented.

Description: The xdr_accepted_reply() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 151

xdr_array()

xdr_array()

Parameter Description

xdrs Points to an XDR stream.

arrp The address of the pointer to the array.

sizep Points to the element count of the array.

maxsize The maximum number of elements accepted.

elsize The size of each of the array’s elements, found using sizeof().
elproc The XDR routine that translates an individual array element.

Description: The xdr_array() call translates between an array and its external rep-
resentation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

152 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_authunix_parms()

xdr_authunix_parms()

Parameter Description
xdrs Points to an XDR stream.
aupp Points to the authentication information.

Description: The xdr_authunix_parms() call translates UNIX-based authentication
information.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 153

xdr_bool()

xdr_bool()

Parameter Description
xdrs Points to an XDR stream.
bp Points to the boolean.

Description: The xdr_bool() call translates between booleans and their external rep-
resentation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

154 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_bytes()

xdr_bytes()

Parameter Description

xdrs Points to an XDR stream.

sp Points to a pointer to the byte string.
sizep Points to the byte string size.
maxsize The maximum size of the byte string.

Description: The xdr_bytes() call translates between byte strings and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 155

xdr_callhdr()

xdr_callhdr()

Parameter Description
xdrs Points to an XDR stream.
chdr Points to the call header.

Description: The xdr_callhdr() call translates an RPC message header into XDR
format.

156 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_callmsg()

xdr_callmsg()

“#include <rpc\rpe.h>

R
xdr_callmsg(xdrs, ansg)
XBR *xdrs; e i g L

~struct rpc_msg *m

Parameter Description
xdrs Points to an XDR stream.
cmsg Points to the call message.

Description: The xdr_callmsg() call translates RPC messages (header and
authentication; not argument data).

Chapter 4. Remote Procedure Calls (RPCs) 157

xdr_double()

xdr_doubie()

Parameter Description
xdrs Points to an XDR stream.
dp Points to a double-precision number.

Description: The xdr_double() call translates between C language double-precision
numbers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

158 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_enum()

xdr_enum()

Parameter Description
xdrs Points to an XDR stream.
ep Points to the enumerated number.

Description: The xdr_enum() call translates between C language enumerated
groups and their external representation. When calling the procedures calirpc() and
registerrpc(), a stub procedure must be created for both the server and the client
before the procedure of the application program using xdr_enum(). This procedure
should look like the following:

The xdr_enum_t procedure is used as the inproc and outproc in both the client and
server RPCs.

For example, an RPC client would contain the following lines:

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 159

xdr_float()

xdr_float()

Parameter Description
xdrs Points to an XDR stream.
fp Points to the floating-point number.

Description: The xdr_float() call translates between C language floating-point
numbers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

160 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_inline()

xdr_inline()

Parameter Description
xdrs Points to an XDR stream.
len The byte length of the desired buffer.

Description: The xdr_inline() call returns a pointer to a continuous piece of the XDR
stream'’s buffer. The value is Tong * rather than char * because the external data
representation of any object is always an integer multiple of 32 bits.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Note: xdr_inline() may return NULL if there is not sufficient space in the stream
buffer to satisfy the request.

Chapter 4. Remote Procedure Calls (RPCs) 161

xdr_int()

xdr_int()

Parameter Description
xdrs Points to an XDR stream.
ip Points to the integer.

Description: The xdr_int() call translates between C language integers and their
external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

162 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_long()

xdr_long()

Parameter Description
xdrs Points to an XDR stream.
Ip Points to the long integer.

Description: The xdr_long() call translates between C language long integers and
their externai representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 163

1 xdr_opaque()

xdr_opaque()

Parameter Description

xdrs Points to an XDR stream.

cp Points to the opaque object.
cnt The size of the opaque object.

Description: The xdr_opaque() call translates between fixed-size opaque data and
its external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

164 TCP/IP Version 2.0 for DOS: Programmer’s Reference

xdr_opaque_auth()

Parameter Description
xdrs Points to an XDR stream.
ap Points to the opaque authentication information.

Description: The xdr_opaque_auth() call translates RPC message authentications.

Return Values: The value 1 indicates success; the value 0 indicates an error.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>