
--i
::J "'"""'
-~ ~ ::J
::J Cf)

~ 3_
-u Cf)

"'"""' Cf) 0 -· _o
0 ::J
() 0
0 0

::J -"'"""' 0

-u
"'"""' 0 -0
()

0

"'O -I ""'lo
0 "'O

(Q
"""l -
D.> "'O
3<
3~
CD tn
""'I -· -o
tn :::::s

::C N , CD • o
CD
""'I 0
CD ""'I

~c
CD Q

CJ)

(/)
0
w
~

0,
~

(}l
w
6

Transmission Control Protocol/
Internet Protocol

TCP/IP Version 2.0 for DOS:
Programmer's Reference

--------- ----- - -- - ---- -------------·-
IBM Transmission Control Protocol/
Internet Protocol Version 2.0 for DOS:

Programmer's Reference

SC31-6153-0

I Note!

I
Before using this information and the product it supports, be sure to read the general information under
"Notices" on page xiii.

First Edition {September 1991}

This edition applies to the IBM Transmission Control Protocol/Internet Protocol Version 2.0 for DOS licensed
program.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM represen­
tative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Department E15
P.O. Box 12195
Research Triangle Park, North Carolina 27709
U.S.A.

IBM may use or distribute any of the information you supply in any way or distribute any of the information you
supply without incurring any obligation to you.

©Copyright International Business Machines Corporation 1991. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is required to include the following statements in order to distribute portions of
this document and the software described herein to which contributions have been
made by Sun Microsystems, Massachusetts Institute of Technology, Digital Equip­
ment Corporation, and The University of California.

Portions herein © Copyright 1979, 1980, 1983, 1986, Regents of the University of
California. Reproduced by permission. Portions herein were developed at the Elec­
trical Engineering and Computer Sciences Department at the Berkeley campus of
the University of California under the auspices of the Regents of the University of
California.

Portions of this publication relating to RPG are Copyright© Sun Microsystems, Inc.
1988, 1989.

iii

iv TCP/IP Version 2.0 for DOS: Programmer's Reference

Contents

©Copyright IBM Corp. 1991

Notices
Trademarks ..

About This Book
Who Should Use This Book
How to Use This Book ...

How This Book Is Organized
How the Term "internet" Is Used
How the Term "PC" Is Used
How the Term <TCPBASE> Is Used
Coding Conventions Used in This Book
How to Read a Syntax Diagram
How Numbers Are Used in This Book ..

Where to Find More Information

Chapter 1. Introducing Computer Networks and Protocols
Computer Networks
Internet Environment
TCP/IP Protocols and Functions
Network Protocols
Internetwork Protocols

xiii
xiii

xv
xv
xv
xv

xvii
xvii
xvii
xvii
xvii

xviii
...... xix

3
3
3
5

............ 6
6

Transport Protocols . 7
Applications, Functions, and Protocols . 8
Routing . 12
Internet Addressing . 12

Chapter 2. General Programming Information
TCP/IP for DOS Component Interfaces
Header Files
Library Files
Porting Considerations

Chapter 3. Sockets . .

17
17
17
18
18

21
Programming with Sockets . 21
Socket Library . 34
Porting . 34
Compiling and Linking . 34
Socket Calls . 35

Chapter 4. Remote Procedure Calls (RPCs)
The RPG Interface
RPG Support for DOS
Portmapper
enum clnt stat Structure
Remote Procedure Call Library
Porting .. .
Compiling and Linking
Remote Procedure and external Data Representation Calls

101
101
104
105
106
107
107
107
108

Chapter 5. File Transfer Protocol Application Programming Interface 189
FTP API Call Library . 189
Compiling and Linking 189

v

Return Values (ftperrno) 190
FTP API ·Calls. 190

Chapter 6. Timer Routines . 213
Timers and the Timer Task 213
A List of Timer Routines 213

Chapter 7. Tasking. Routines 221
Tasking and the Scheduler 221
Tasks, Task State Vectors, and Task Status 221
The Wake Counter . 222
A List of Tasking Routines 222

Appendix A. Well-Known Port Assignments . 235
TCP Well-Known Port Assignments 235
UDP Well-Known Port Assignments 237

Appendix B. Sample SocketPrograms 239
Socket UDP Client 239
Socket UDP Server . 241
Socket TCP Client . 243
Socket TCP Server . 245

Appendix C. Sample RPC Programs . 247
RPC Client . 247
RPC Server . 248

Appendix D. Sample Tasking Program . 251
Tasking Program .. 251

Appendix E. Socket Quick Reference 255

Appendix F. Remote Procedure Call Quick Reference 257

Appendix G. FTP API Quick Reference 261

Appendix H. Timer Quick Reference 263

Appendix I. Tasking Quick Reference 265

Appendix J. NETWORKS File Structure . 267

Appendix K. Messages and Codes . 269
General Module Errors . 270
General Module Internal Errors 286
General Module Warnings 287
Generic Text Messages . 291
IFCONFIG Errors . 296
Name Server Messages . 302
NFS Errors . 303
TSR Errors 310

Appendix L. Related Protoco• Specifications . 313

Glossary .. 319

Vi TCP/IP Version 2.0 for DOS: Programmer's Reference

"-· j

Bibliography . 327
TCP/IP for DOS Publications 327
Other TCP/IP Publications 327
Other Related Publications 328

Index 331

/~
t '

Contents Vii

Viii TCP/IP Version 2.0 for DOS: Programmer's Reference

Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

"---- /

© Copyright IBM Corp. 1991

The TCP/IP Layered Architecture . 5
Hierarchical Tree . 9
Class A Address . 13
Class B Address
Class C Address
Class D Address

13
13
13

Class B Address with Subnet . 14
TCP/IP for DOS Architecture . 17
An Application Uses the sock_init() Call . 24
An Application Uses the socket() Call . 24
An Application Uses the bind() Call . 24
A bind() Call Using the getservbyname() Call 25
An Application Uses the listen() Call . 25
An Application Uses the connect() Call . 26
An Application Uses the gethostbyname() Call 26
An Application Uses the accept() Call . 26
An Application Uses the send() and recv() Calls 27
An Application Uses the sendto() and recvfrom() Call 27
An Application Uses the select() Call . 28
An Application Uses the so_close() Call . 28
A Typical TCP Socket Session . 30
A Typical UDP Socket Session . 31
Remote Procedure Call (Client) . 102
Remote Procedure Call (Server) 103

ix

X TCP/IP Version 2.0 for DOS: Programmer's Reference

Tables

1. TCP Well-Known Port Assignments 235
2. UDP Well-Known Port Assignments 237
3. Socket Quick Reference 255
4. Remote Procedure Call Quick Reference 257
5. FTP API Quick Reference . 261
6. Timer Quick Reference 263
7. Tasking Quick Reference 265
8. Name Structures of Known Networks 267

© Copyright IBM Corp. 1991 xi

Xii TCP/IP Version 2.0 for DOS: Programmer's Reference

Notices

Trademarks

' /

/~.
I

© Copyright IBM Corp. 1991

The licensed program described in this document and all licensed material avail­
able for it are provided by IBM under terms of the IBM Program Licensed Agree­
ment.

Any reference to an IBM licensed program in this document is not intended to state
or imply that only IBM's program may be used.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send inquiries, in writing, to the IBM Director of
Commercial Relations, International Business Machines Corporation, Purchase,
New York, 10577.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the war­
ranties of merchantability and fitness for a particular purpose.

The following terms, denoted by an asterisk(*) at their first occurrences in this pub­
lication, are trademarks of IBM Corporation in the United States or other countries:

AIX
PC/XT
Personal System/2

IBM
Personal Computer AT
PS/2

Micro Channel
Personal Computer XT

The following terms, denoted by a double asterisk(**) at their first occurrences in
this publication, are trademarks of other companies:

Trademark
Ethernet
Intel
Microsoft C
Motorola
MS-DOS
NDIS
Network File System
NFS
NICps/2
Postscript
Ungermann-Bass
UNIX

Owned By
Xerox Corporation
Intel Corporation
Microsoft Corporation
Motorola, Inc.
Microsoft Corporation
3Com Corporation/Microsoft Corporation
Sun Microsystems, Inc.
Sun Microsystems, Inc.
Ungermann-Bass Corporation
Adobe Systems, Inc.
Ungermann-Bass Corporation
UNIX System Laboratories, Inc.

xiii

XiV TCP/IP Version 2.0 for DOS: Programmer's Reference

About This Book

IBM TCP/IP Version 2.0 for DOS: Programmer's Reference describes the rountines
* for application programming in IBM Transmission Control Protocol/Internet Pro-

tocol Version 2.0 for Disk Operating System (TCP/IP Version 2.0 for DOS) software
on a personal computer (PC). TCP/IP tor DOS is the base product. The following
optional kits are offered separately:

** ** • Network File System (NFS) Kit
• Programmer's Tool Kit.

The NFS Kit is a communication option that allows you to communicate with other
NFS servers, and access files and output devices located on that server.

The Programmer's Tool Kit is a set of Application Programming Interfaces (APls)
that allow a programmer to develop custom code that accesses the capabilities of
TCP/IP for DOS.

Note: In this book, PC refers to personal computer. See "How the Term "PC" Is
Used" on page xvii. DOS refers to IBM DOS Version 3.3 or later or MS-Dos**
Version 3.3 or later.

Who Should Use This Book
This book is intended for application and system programmers with experience in
writing application programs on a personal computer. You should also be familiar
with the DOS operating system, and the C programming language. Knowledge of
the TCP/IP protocols and standard TCP/IP user applications is also helpful. In this
book, the term protocol is a set of rules for handling communication tasks.

If you are not familiar with TCP/IP concepts, see lnternetworking With TCP/IP
Volume I: Principles, Protocols, and Architectures and lnternetworking With TCP/IP
Volume II: Implementation and Internals.

How to Use This Book
Before you start programming, verify that TCP/IP for DOS and the Programmer's
Tool Kit is installed on your PC. For information about installing TCP/IP for DOS and
the Programmer's Tool Kit, see IBM TCP/IP Version 2.0 for DOS: Installation and
Maintenance.

How This Book Is Organized

© Copyright IBM Corp. 1991

Read the beginning section of each chapter to familiarize yourself with the topics
that you need to know for application programming.

Chapter 1, "Introducing Computer Networks and Protocols," describes computer
networks, an internet environment, and protocols supported by TCP/IP for DOS.
Also included in this chapter is an overview of the routing and addressing schemes
used by TCP/IP for DOS.

Chapter 2, "General Programming Information," contains fundamental, technical
information about application program interfaces (API) provided with TCP/IP for
DOS.

xv

Chapter 3, "Sockets," describes the TCP/IP socket interface and how to use the
socket routines in a user-written appiication.

Chapter 4, "Remote Procedure Calls (RPCs)," describes the remote procedure calls
and how they are used in a user-written application.

Chapter 5, "File Transfer Protocol Application Programming Interface," describes
the file transfer protocol routines and how they are used in a user-application.

Chapter 6, "Timer Routines," describes the use of timer routines in creating,
setting, clearing, and removing timers.

Chapter 7, "Tasking Routines," describes the use of tasking routines to make a DOS
system appear to run tasks simultaneously.

Appendix A, "Well-Known Port Assignments," provides the TCP and UDP
well-known port numbers, and includes a description of the services provided with
each port assignment.

Appendix B, "Sample Socket Programs," provides sample TCP and UDP client and
server C socket communication programs.

Appendix C, "Sample RPG Programs," provides sample client and server RPC pro­
grams.

Appendix D, "Sample Tasking Program," provides sample tasking programs.

Appendix E, "Socket Quick Reference," describes each socket call supported by
TCP/IP for DOS.

Appendix F, "Remote Procedure Call Quick Reference," describes each remote
procedure call supported by TCP/IP for DOS.

Appendix G, "FTP API Quick Reference," describes each file transfer call supported
by TCP/IP for DOS.

Appendix H, "Timer Quick Reference," describes each timer routine supported by
TCP/IP for DOS.

Appendix I, "Tasking Quick Reference," describes each tasking routine supported
by TCP/IP for DOS.

Appendix J, "NETWORKS File Structure," provides examples of network names
contained in the NETWORKS file.

Appendix K, "Messages and Codes," provides a list of messages and codes for
TCP/IP for DOS.

Appendix L, "Related Protocol Specifications," provides a listing of Requests for
Comments (RFC), upon which many features of TCP/IP for DOS are based.

The book also includes a glossary, a bibliography, and an index.

For comments and suggestions about IBM TCP/IP Version 2.0 for DOS:
Programmer's Reference use the Reader's Comment Form located at the back of
this book. Use this form to give IBM information that might improve the book.

XVi TCP/IP Version 2.0 for DOS: Programmer's Reference

/

How the Term "internet" Is Used
In this book, an internet is a logical collection of networks supported by gateways,
routers, hosts, and various layers of protocols that permit the network to function as
a large, virtual network.

Note: The term "internet" is used as a generic term for a TCP/IP network, and
should not be confused with the Internet, which consists of large national backbone
networks (such as MILNET, NFSNet, and CREN) and a myriad of regional and local
campus networks worldwide.

How the Term "PC" Is Used
* * In this book, PC refers to models of the IBM Personal System/2 (PS/2), IBM Per-

* * * * sonal Computer XT (PC/XT), IBM Personal Computer AT (PC AT), and any other
personal computer that is fully IBM compatible and can run DOS Version 3.30 or
later.

How the Term <TCPBASE> Is Used
In this book, the generic term <TCPBASE> refers to the specific name of the base
directory in which TCP/IP for DOS is installed. The default base directory for TCP/IP
for DOS is C:\TCPDOS.

Coding Conventions Used in This Book
The following coding conventions are used throughout this book:

• Lowercase letters represent values that must be entered in lowercase.

• Lowercase italicized terms represent variable parameters where the user may
supply the values.

• Uppercase letters represent commands and file names, which can be typed in
either uppercase or lowercase.

• Periods in numbers separate the whole and the fractional portions of the
numeral.

How to Read a Syntax Diagram
The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

The following symbols are used in syntax diagrams:

Symbol - Description

Marks the beginning of the command syntax.

The command syntax is continued.

Marks the beginning and end of a fragment or part of the command
syntax.

- Marks the end of the command syntax.

Required parameters are displayed on the main path. Optional parameters are dis­
played below the main path. Default parameters are displayed above the main
path.

About This Book XVii

Parameters are classified as keywords or variables. Keywords are displayed in
uppercase ietters and can be typed in uppercase or iowercase. A command is a
keyword.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. A file name is a variable.

In the following example, drive, path, and drive\directory are variable parameters.
Replace them with the values you want.

....... - ,---J-.----.-L--J-.---.JOI N-dri ve-dri ve\directory__.[..___l_°J_._ ______ .,..,.,.
Ldrive path

Include all punctuation such as colons, semicolons, commas, quotation marks, and
minus signs shown in the diagram.

___ .·

Choose One Required Item from a Stack: A stack of parameters with the first on the /.
main path means that you must choose only one from the stack. "-·

.... ANSI---rON
Lpathj Lo FF

Choose One Optional Item from a Stack: A stack of parameters with the first below
the main path means that you do not have to choose any from the stack, but if you
do, you cannot choose more than one .

.. .,.,..._,_ld_r_i-ve-J~-.-[-p-a-th-J~ANSI---.6-o-~-~~---------------•

Specify a Sequence More Than Once: An arrow above the main path that returns to
a previous point means the sequence of items included by the arrow can be speci­
fied more than once.

--TYPE L . J
drive

L J filename
path

How Numbers Are Used in This Book
In this book, numbers over four digits are represented in metric style. A space is
used rather than a comma to separate groups of three digits. For example, the
number sixteen thousand, one hundred forty-seven is written 16 147.

Xviii TCP/IP Version 2.0 for DOS: Programmer's Reference

....
."'-. /

Where to Find More Information
The following is a list of related publications that you might want to read for more
information about TCP/IP for DOS:

• IBM TCP/IP Version 2.0 for DOS: Installation and Maintenance
• IBM TCP/IP Version 2.0 for DOS: User's Guide
• Introducing IBM's TCP/IP Products for OS/2, VM, and MVS
• lnternetworking With TCP/IP Volume I: Principles, Protocols, and Architectures
• lnternetworking With TCP/IP Volume II: Implementation and Internals.

For more information about related publications, see the "Bibliography" at the back
of this book.

About This Book XiX

XX TCP/IP Version 2.0 for DOS: Programmer's Reference

f'

(
__/

/

/~,

Chapter 1. Introducing Computer Networks and Protocols

© Copyright IBM Corp. 1991

Computer Networks . 3
Internet Environment , . 3
TCP/IP Protocols and Functions . 5
Network Protocols , . , , , , 6

Serial Line Internet Protocol (SLIP) , , . 6
Internetwork Protocols , , .. , . , , . , , . . . 6

Internet Protocol (IP) ... , , . , 6
Internet Control Message Protocol (ICMP) , 6
Routing Information Protocol (RIP) ... , . 7
Address Resolution Protocol (ARP) , . , , , 7

Transport Protocols . 7
Transmission Control Protocol (TCP) . 7
User Datagram Protocol (UDP) . 7

Applications, Functions, and Protocols . 8
Telnet Protocol . 8
File Transfer Protocol (FTP) . 8
Trivial File Transfer Protocol (TFTP) . 8
Simple Mail Transfer Protocol (SMTP) . 9
Domain Name System (DNS) . 9
Remote Printing (LPR) . 10
RouteD . 10
Network File System (NFS) . 10
Remote Procedure Call (RPC) . 11
Remote Execution Protocol (REXEC) . 11
Post Office Protocol Version 2 (POP2) . 11
Time Protocol (TIME) . 11
Quote of the Day Protocol (COOKIE) . 11
Finger Protocol (FINGER) . 11
NICNAME/WHOIS Protocol . 11
Socket Interfaces . 12

Routing . 12
Internet Addressing . 12

Network Address Format . 13
Broadcast Address Format . 14
Subnetwork Address Format . 14

1

2 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

Chapter 1. Introducing Computer Networks and Protocols

This chapter introduces the concepts of computer networks and an internet environ­
ment. The protocols used by TCP/IP are listed by layer, and then described.
Routing and addressing guidelines are also described.

Computer Networks
A computer network is a group of connected nodes that are used for data communi­
cation. A computer network configuration consists of data processing devices, soft­
ware, and transmission media that are linked for information interchange.

Nodes are the functional units, located at the points of connection among the data
circuits. A node, or end point, can be a host computer, a communication controller,
a cluster controller, a video display terminal, or another peripheral device.

Computer networks can be local area networks (LANs), which provide direct com­
munication among data stations on the user's local premises, or wide area networks
(WANs), which provide communication services to a geographic area larger than
that served by a LAN. Typically, WANs operate at a slower rate of speed than LANs.

Different types of networks provide different functions. Network configurations vary,
depending on the functions required by the organization. Different organizations
implement different types of networks. The technology used by these networks
varies not only from organization to organization, but often varies within the same
company.

Networks can differ at any or all layers. At the physical layer, networks can run
** over various network interfaces, such as token-ring, Ethernet , and serial line.

Networks can also vary as to the architectures they use to implement network strat­
egies. Some of the more common architectures used today are OSI, TCP/IP, SNA,
and ISDN. Networks use different protocols to communicate over the different phys­
ical interfaces available. In addition to these differences, networks can all use dif­
ferent software packages to implement various functions.

To exchange information among these different networks, the concept of an internet
emerged.

Internet Environment

© Copyright IBM Corp. 1991

An internet is a logical collection of networks supported by gateways, routers,
bridges, hosts, and various layers of protocols. An internet permits different phys­
ical networks to function as a single, large virtual network, and permits dissimilar
computers to communicate with each other, regardless of their physical con­
nections. Processes within gateways, routers, and hosts originate and receive
packet information. Protocols specify a set of rules and formats required to
exchange these packets of information.

3

Protocols are used to accomplish different tasks in TCP/IP software. To understand
TCP/IP, you should be familiar with the following terms and relationships.

A client is a computer or process that requests services on the network. A server is
a computer or process that responds to a request for service from a client. A user
accesses a service, which allows the use of data or some other resource.

A datagram is the basic unit of information, consisting of one or more data packets
that are passed across an internet at the transport level.

A gateway is a functional unit that connects two computer networks of different
network architectures. A router is a device that connects networks at the ISO
Network Layer. A router is protocol-dependent and connects only networks oper­
ating the same protocol. Routers do more than transmit data; they also select the
best transmission paths and optimum sizes for packets. A bridge is a router that
connects two or more networks and forwards packets among them. The operations
carried out by a bridge are done at the physical layer and are transparent to TCP/IP
and TCP/IP routing.

A host is a computer, connected to a network, which provides an access point to that
network. A host can be a client, a server, or a client and server simultaneously. In
a communication network, computers are both the sources and destinations of the
packets. The local host is the computer to which a user's terminal is directly con­
nected without the use of an internet, such as a PC running TCP/IP. A foreign host
is any host on the network including the local host. A remote host is any foreign
host not including the local host. A host is identified by its internet address.

An internet address is a unique 32-bit address identifying each node in an internet.
An internet address consists of a network number and a local address in
dotted-decimal notation. Internet addresses are used to route packets through the
network.

Mapping relates internet addresses to physical hardware addresses in the network.
For example, the Address Resolution Protocol (ARP) is used to map internet
addresses to token-ring or Ethernet physical hardware addresses.

A network is the combination of two or more nodes and the connecting branches
among them. A physical network is the hardware that makes up a network. A
logical network is the abstract organization overlaid on one or more physical net­
works. An internet is an example of a logical network.

Packet refers to the unit or block of data of one transaction between a host and its
network. A packet usually contains a network header, at least one high-level pro­
tocol header, and data blocks. Generally, the format of the data blocks does not
affect how packets are handled. Packets are the exchange medium used at the
internetwork layer to send and receive data through the network.

A port is an end point for communication between applications, generally referring
to a logical connection. A port provides queues for sending and receiving data.
Each port has a port number for identification. When the port number is combined
with an internet address, a socket address results.

Protocol refers to a set of rules for achieving communication on a network.

4 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

I

_

/

TCP/IP Protocols and Functions

Telnet FTP TFTP

l
l

SMTP

This section categorizes the TCP/IP protocols and functions by their functional group
(network layer, internetwork layer, transport layer, and application layer). Figure 1
shows the relationship of these protocols and functions within the TCP/IP layered
architecture.

DNS

• Network Layer

- Serial Line Internet Protocol (SLIP)

• Internetwork Layer

Internet Protocol (IP)
Internet Control Message Protocol (ICMP)
Routing Information Protocol (RIP)
Address Resolution Protocol (ARP)

• Transport Layer

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

• Application Layer

Telnet

LPR

File Transfer Protocol (FTP)
Trivial File Transfer Protocol (TFTP)
Simple Mail Transfer Protocol (SMTP)
Domain Name System (DNS)
Remote Printing (LPR)
RouteD
Network File System (NFS)
Remote Procedure Call (RPC)
Remote Execution Protocol (REXEC)
Post Office Protocol Version 2 (POP2)
Time Protocol (TIME)
Quote of the Day Protocol (COOKIE)
Finger Protocol (FINGER)
NICNAME/WHOIS Protocol
Socket Interfaces.

NFS
RouteD I--- REXEC POP2 TIME COOKIE FINGER

RPC

Sockets

NICNAME/
WHO IS

TCP I UDP

IP and ICMP

Application

Transport

RIP l ARP
Inter­
network

Token-Ring, Ethernet V2, IEEE 802.3, IBM PC Network, Serial Line
Physical
Network

,,'"\ Figure 1. The TCP/IP Layered Architecture

"-___/

Chapter 1. Introducing Computer Networks and Protocols 5

Network Protocols
This section describes the protocols that compose the network layer available in
TCP/IP for DOS. Network protocols define how data is transported over a physical
network. These network protocols are not defined by TCP/IP. After a TCP/IP packet
is created, a transport-dependent network header is added by the network protocol
before the packet is sent out onto the network.

Serial Line Internet Protocol {SLIP)
In TCP/IP for DOS, the Serial line Internet Protocol (SLIP) allows you to set up a
point-to-point connection between two TCP/IP hosts over a serial line, such as a
serial cable or an RS-232 connection using a modem and a telephone line. You can
use SLIP to access a remote TCP/IP network from your local host, or to route
datagrams between two TCP/IP networks.

Internetwork Protocols
Protocols in the internetwork layer provide connection services for TCP/IP. These
protocols connect physical networks and transport protocols. This section describes
the internetwork protocols in TCP/IP.

For information about TCP/IP in general, see RFCs 1118, 1180, 1206, 1207, and 1208.
See Appendix L, "Related Protocol Specifications" for a list of related RFCs.

Internet Protocol {IP)
Internet Protocol (IP) provides the interface from the transport level (host-to-host,
TCP, or UDP) protocols to the physical-level protocols. IP is the basic transport
mechanism for routing IP packets to the next gateway, router, or destination host.

IP provides the means to transmit blocks of data (or packets) from sources to desti­
nations. Sources and destinations are hosts identified by internet addresses. Out­
going packets automatically have an IP header prefixed to them, and incoming
packets have their IP header removed before being sent to the higher-level proto­
cols. This protocol provides the universal addressing of hosts in an internet
network.

IP does not ensure a reliable communication, because it does not require acknowl­
edgments from the sending host, the receiving host, or intermediate hosts. IP does
not provide error control for data; it provides only a header checksum. IP treats
each packet as an independent entity unrelated to any other packet. IP does not
perform retransmissions or flow control. A higher-level protocol that uses IP must
implement its own reliability procedures.

For more information about IP, see RFC 791.

Internet Control Message Protocol {ICMP)
Internet Control Message Protocol (ICMP) passes control messages between gate­
ways, routers, and hosts. For example, ICMP messages can be sent in any of the
following situations:

• When a host checks to see if another host is available (PING).

• When a packet cannot reach its destination.

• When a gateway or router can direct a host to send traffic on a shorter route.

6 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

• When a host requests a netmask or a time stamp.

• When a gateway or router does not have the buffering capacity to forward a
packet.

ICMP provides feedback about problems in the communication environment; it does
not make IP reliable. ICMP does not guarantee that an IP packet will be delivered
reliably or that an ICMP message will be returned to the source host when an IP
packet is not delivered or is incorrectly delivered.

For more information about ICMP, see RFC 792.

Routing Information Protocol (RIP)
Routing Information Protocol (RIP) is used by gateways, routers, and hosts to
exchange routing information. This information can be used to maintain routing
table entries.

For more information about RIP, see RFC 1058.

Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) maps internet addresses to hardware
addresses. TCP/IP uses ARP to collect and distribute the information for mapping
tables.

ARP is not directly available to users or applications. When an application sends an
internet packet, IP requests the appropriate address mapping. If the mapping is not
in the mapping table, an ARP broadcast packet is sent to all hosts on the network
requesting the physical hardware address for the host.

For more information about ARP, see RFC 826.

Transport Protocols
The transport layer of TCP/IP consists of transport protocols, which allow communi­
cation between application programs. This section describes the transport proto­
cols in TCP/IP.

Transmission Control Protocol (TCP)
The Transmission Control Protocol (TCP) provides a reliable vehicle for delivering
packets between hosts on an internet. TCP takes a stream of data, breaks it into
datagrams, sends each one individually using IP, and reassembles the datagrams at
the destination node. If any datagrams are lost or damaged during transmission,
TCP detects this tact and resends the missing datagrams. The received data stream
is a reliable copy of the transmitted data stream.

For more information about TCP, see RFC 793.

User Datagram Protocol (UDP)
User Datagram Protocol (UDP) provides an unreliable mode of communication
between source and destination hosts. UDP is built upon the service of the IP pro­
tocol in the internetwork layer. UDP provides a procedure for application programs
to send data to other programs with a minimum of protocol overhead.

Chapter 1. Introducing. Computer Networks and Protocols 7

Like IP, UDP does not offer reliable datagram delivery or duplication protection.
UDP does provide checksums for both the header and data portions of a datagram.
However, applications that require reliable delivery of streams of data should use
TCP.

For more information about UDP, see RFC 768.

Applications, Functions, and Protocols

Telnet Protocol

Applications are provided with TCP/IP for DOS that allow users to use network ser­
vices. These applications are included in the application layer of TCP/IP. The appli­
cation layer is built upon the services of the transport layer. This section describes
the applications, functions, and protocols in TCP/IP.

Telnet Protocol provides a standard method to interface terminal devices and
terminal-oriented processes with each other. Telnet is built upon the services of
TCP in the transport layer. Telnet provides duplex communication and sends data
either as ASCII characters or as binary data.

Telnet is commonly used to establish a logon session on a foreign host. Telnet can
also be used for terminal-to-terminal communication and interprocess communi­
cation.

For more information about Telnet, see RFCs 854, 856, 857, 885, and 1091.

File Transfer Protocol (FTP)
File Transfer Protocol (FTP) makes it possible to transfer data between local and
foreign hosts or between two foreign hosts. FTP is built upon the services of TCP in
the transport layer. FTP transfers files as either ASCII characters or as binary data.

FTP provides functions such as listing remote directories, changing the current
remote directory, creating and removing remote directories, and transferring one or
more files in a single request. Security is handled by passing user IDs and account
passwords to the foreign host.

For more information about FTP, see RFC 959.

Trivial File Transfer Protocol (TFTP)
Trivial File Transfer Protocol (TFTP) is designed only to read and write files to and
from a foreign host. TFTP is built upon the services of UDP in the transport layer.
TFTP allows you to limit drive and directory access.

TFTP, like FTP, can transfer files as either ASCII characters or as binary data.
However, unlike FTP, TFTP cannot be used to list or change directories at a foreign
host, and it has no provisions for user authentication.

For more information about TFTP, see RFC 783.

8 TCP/IP Version 2.0 for DOS: Programmer's Reference

·""--··

/

(

""--

Simple Mail Transfer Protocol (SMTP)
Simple Mail Transfer Protocol (SMTP) is an electronic mail protocol with both client
(sender) and server (receiver) functions.

You do not interface directly with SMTP. Instead, electronic mail software is used to
create mail, which in turn uses SMTP to send the mail to its destination.

TCP/IP for DOS provides an SMTP client for sending mail to SMTP servers. TCP/IP
for DOS does not have an SMTP server; the Post Office Protocol Version 2 (POP2) is
used for receiving mail.

For more information about SMTP, see RFCs 821, 822, and 974. For more informa­
tion about POP2, see RFC 937.

Domain Name System (DNS)
Domain Name System (DNS) uses a hierarchical-naming system for naming hosts.
Each host name is composed of domain labels separated by periods. Local network
administrators have the authority to name local domains within an internet. Each
label represents an increasingly higher-domain level within an internet. The fully
qualified domain name of a host connected to one of the larger internets generally
has one or more subdomains. For example:

host.subdomain.subdomain.rootdomain
or
host.subdomain.rootdomain

Domain names often reflect the hierarchy level used by network administrators to
assign domain names. For example, the domain name eng.mit.edu is the lowest
level domain name, which is a subdomain of mit.edu. The subdomain mit.edu is a
subdomain of edu.

Figure 2 is an example of the DNS used in the hierarchy naming structure across an
internet.

GOV

~
DIVISION STATE

• (root)

M~ h YALE

ENG BUSINESS

Figure 2. Hierarchical Tree

ORG

r--h
REDCROSS SCOUTS USO

Chapter 1. Introducing Computer Networks and Protocols 9

You may refer to hosts in your domain by host name only; however, a name server
requires a fully qualified domain name. The local resolver combines the host name
with the domain name before sending the address resolution request to the domain
name server.

TCP/IP for DOS uses the local resolver functions of a local name resolution file.
This file, called HOSTS, resides in the <TCPBASE>\ETC directory and contains
entries that allow you to map symbolic names to internet addresses. If a name
server is defined using the CUSTOM command, the resolver sends the request to
the name server before using the local HOSTS file.

When using the HOSTS file on a small internet, it is not necessary to use the
hierarchical-naming system used by the larger internets. The following example is
a token-ring network of three users and their entries in the HOSTS file.

129.5.24.1 Hostl vjsPC PCl mathdept
129.5.24.3 PC3 kensPC Host3 # This is Ken's PC
129.5.24.4 PC4 bobsPC

A carriage return must be entered at the end of each line.

In this example, each time the user enters the host name of Hostl or the aliases
vjsPC, PCl, or mathdept, the local name resolver translates it to the internet address
of 129.5.24.1. For more information about the format of network addresses, see
"Network Address Format" on page 13.

For more information about DNS, see RFCs 1034 and 1035.

Remote Printing {LPR)

RouteD

TCP/IP for DOS provides client support for remote printing. This application allows
you to spool files remotely to a line printer daemon (LPD).

For more information about LPR, see RFC 1179.

RouteD uses the Routing Information Protocol (RIP) to dynamically create and main­
tain network routing tables. The RIP protocol arranges to have gateways and
routers periodically broadcast their routing tables to neighbors. Using this informa­
tion, a RouteD server can update a host's routing tables. For example, RouteD
determines if a new route has been created, if a route is temporarily unavailable, or
if a more efficient route exists.

For more information about RouteD, see RFC 1058.

Network File System (NFS)
The Network File System (NFS) client allows you to manipulate files on remote
TCP/IP hosts as if they reside on your local host. NFS is based on the NFS protocol,
and uses the Remote Procedure Call (RPC) protocol to communicate between the
client and the server. The files to be accessed reside on the server host, and are
made available to the user on the client host.

NFS supports a hierarchical file structure. The directory and subdirectory structure
can be different for individual client systems.

For more information about NFS, see RFC 1094.

10 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

/

Remote Procedure Call (RPC)
The Remote Procedure Call Protocol (RPC) is a programming interface that allows
programs to execute subroutines on a foreign host. RPCs are high-level program
calls, which can be used in place of the lower-level calls that are based on sockets.

For more information about RPC, see RFC 1057.

Remote Execution Protocol (REXEC)
Remote Execution Protocol allows you to execute a command on a foreign host and
receive the results on the local host. Remote Execution Protocol provides automatic
logon and user authentication depending on the parameters set by the user.

Post Office Protocol Version 2 (POP2)
The Post Office Protocol Version 2 (POP2) allows you to access electronic mail from
a remote mailbox server. Mail should be posted from hosts to the mailbox server
using SMTP.

For more information about POP2, see RFC 937.

Time Protocol (TIME)
The Time Protocol (TIME) provides a site-independent, machine-readable date and
time. TIME can use either UDP or TCP as the underlying protocol. The TIME server
returns the number of seconds since midnight on January 1, 1900 Universal Time
(UT).

For more information about TIME, see RFC 868.

Quote of the Day Protocol (COOKIE)
The Quote of the Day Protocol (COOKIE) retrieves thoughts for the day from a
network quote server. When a packet is sent to a COOKIE server, COOKIE returns a
message and discards any data contained in the packet. COOKIE can use either
UDP or TCP as the underlying protocol. There is no specific syntax for the message
returned by COOKIE.

For more information about COOKIE, see RFC 865.

Finger Protocol (FINGER)
The Finger Protocol (FINGER) provides an interface for querying the current status
of a remote host or a user ID on a remote host. FINGER uses TCP as the underlying
protocol.

For more information about FINGER, see RFC 1196.

NICNAME/WHOIS Protocol
The NICNAME/WHOIS Protocol provides an interface to the NICNAME/WHOIS direc­
tory service at the Network Information Center, nic.ddn.mil, and to other
NICNAME/WHOIS servers on the Internet. NICNAME/WHOIS uses TCP as the under­
lying protocol.

For more information about NICNAME/WHOIS, see RFC 954.

Chapter 1. Introducing Computer Networks and Protocols 11

Socket Interfaces
Socket interfaces allow users to write their own applications to supplement those
supplied by TCP/IP for DOS. Most of these additional applications communicate ""- ,

Routing

with either TCP or UDP. Some applications are written to communicate directly with
IP. To write applications that use the socket interfaces of TCP/IP for DOS, you must

** be able to compile and link the programs using the Microsoft C compiler, Version
5.10 or later.

Sockets are duplex, which means that data can be transmitted and received simul­
taneously. Sockets allow you to send to, and receive from, the socket as if you are
writing to and reading from any other network device.

The routing functions in an internet are performed at the internetwork layer.
Routing is the process of deciding where to send a packet based on its destination
address. Two kinds of routing are involved in communication within an internet:
direct and indirect.

Direct routing is used when the source and destination nodes are on the same
logical network within an internet. The source node maps the destination internet
address into a hardware address and sends packets to the destination node using
this address. This mapping is normally performed through a translation table. If a
match cannot be found for a destination internet address, ARP is invoked to deter­
mine this address.

Indirect routing is used when the source and destination nodes are on different
logical networks within an internet. The source node sends packets to a gateway or
router on the same network using direct routing. From there, the packets are for­
warded through intermediate gateways or routers, as required, until they arrive at
the destination network. Direct routing is then used to forward the packets to the
destination host on that network. Each gateway, router, and host in an internet has
a routing table that defines the address of the next gateway to other networks (as
well as other nodes on other networks) in an internet.

Internet Addressing
Each internet host is assigned at least one unique internet address. This address is
used by IP and other higher-level protocols. When gateway hosts are used, more
than one address may be required. Each interface to an internet is assigned its own
unique address. Internet addresses are used to route packets through the network.

Addresses within an internet consist of a network number and a local address. A
unique network number is assigned to each network when it connects to another
internet. If a local network is not going to connect to other internets, any convenient
network number is assigned. Some networks are divided into subnets. For more
information about subnets, see "Subnetwork Address Format" on page 14.

Hosts that exchange packets on the same physical network should have the same
network number. Hosts on different physical networks might also have the same
network number. If hosts have the same network number, part of the local address
is used as a subnetwork number. All host interfaces to the same physical network
are given the same subnetwork number.

12 TCP/IP Version 2.0 for DOS: Programmer's Reference

/
/

An internet can provide standards for assigning addresses to networks, broadcasts,
and subnetworks. Examples of these standard formats are described in the fol­
lowing sections.

Network Address Format
A standard internet address uses a two-part, 32-bit address field. The first part of
the address field contains the network address; the second part contains the local
address. The four different types of address fields are classified as A, B, C, or D,
depending on the bit allocation.

Figure 3 represents a class A address. Class A addresses have a 7-bit network
number and a 24-bit local address. The highest order bit is set to 0.

1 l 2 I 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0I Network Local Address

Figure 3. Class A Address

Figure 4 represents a class B address. Class B addresses have a 14-bit network
number and a 16-bit local address with the highest order bits set to 10.

01234567189~12345 2 I 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 01 Network Local Address

Figure 4. Class B Address

Figure 5 represents a class C address. Class C addresses have a 21-bit network
number and an 8-bit local address with the three highest order bits set to 110.

01234567189~1234516789~123
1 1 0I Network

3
4 5 6 7 8 9 0 1

Local Address

Figure 5. Class C Address

Figure 6 represents a class D address. Class D networks have a multicast address
that is sent to selected hosts on the network. The four highest order bits are set to
1110.

01234567189~1234516789~1231456789~1
1 1 1 0I Multicast Address

Figure 6. Class D Address

Note: Class D addresses are not supported in TCP/IP for DOS.

A commonly used notation for internet host addresses is the dotted-decimal, which
divides the 32-bit address into four 8-bit fields. The value of each field is specified
as a decimal number, and the fields are separated by periods (for example,
010.002.000.052 or 10.2.0.52).

Chapter 1. Introducing Computer Networks and Protocols 13

Address examples in this book use dotted-decimal notation in the following forms:

Class A
Class B
ClassC

nnn.111.111.lll
nnn.nnn.lll.111
nnn.nnn.nnn.111

where nnn represents part or all of a network number and Ill represents part or all
of a local address.

Broadcast Address Format
TCP/IP uses IP broadcasting to send datagrams to all the TCP/IP hosts on a network
or subnetwork. A datagram sent to the broadcast address is received by all of the
hosts on the network and processed as if the datagram was sent directly to the
host's IP address. The IP broadcast address is formed by setting all of the host bits
to ones.

For more information about broadcast address format, see RFCs 919 and 922.

Subnetwork Address Format
The subnetwork capability of TCP/IP divides a single network into multiple logical
networks (subnets). For instance, an organization can have a single internet
network address that is known to users outside the organization, yet configure its
internal network into different departmental subnets. Subnetwork addresses
enhance local routing capabilities, while reducing the number of network numbers
required.

For a subnet, the local address part of an internet address is divided into a subnet
number and a host number, for example:

network_number subnet_ number host_number

where:

network number
subnet_number
host number

Is the network portion of the internet address.
Is a field of a constant width for a given network.
Is a field that is at least 1-bit wide.

If the width of the subnet_number field is 0, the network is not organized into
subnets, and addressing to the network is done with an internet network address
(network_number).

Figure 7 represents a class B address with a 6-bit wide subnet field.

01234567189~12345 2 l 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 0I Network Subnet l Host

Figure 7. Class B Address with Subnet

The bits that identify the subnet are specified by a bit mask. A bit mask is a pattern
of binary digits used to assign subnet addresses. The subnet bits are not required
to be adjacent in the address. However, the subnet bits generally are contiguous
and located as the most significant bits of the local address.

For more information about subnetwork address format, see RFC 950.

14 TCP/JP Version 2.0 for DOS: Programmer's Reference

© Copyright IBM Corp. 1991

Chapter 2. General Programming Information

TCP/IP for DOS Component Interfaces . 17
Header Files . 17

Sockets . 17
Remote Procedure Calls (RPCs) . 18
File Transfer Protocol Application Programming Interface (FTP API) 18

Library Files . 18
Porting Considerations . 18

15

16 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

Chapter 2. General Programming Information

This chapter contains technical information that you need to know before you
attempt to work with the application programming interfaces (API) provided with
TCP/IP for DOS, and described in this book.

You should have installed TCP/IP for DOS and the application programming inter­
faces (APls) in the <TCPBASE> directory.

TCP/IP for DOS Component Interfaces

Header Files

Sockets

© Copyright IBM Corp. 1991

Figure 8 shows the relationship between the major components of TCP/IP for DOS.
The timer and task routines are the interface between TCP/IP applications and UTIL,
the utility terminate and stay resident (TSR) program. The socket routines are the
interface between TCP/IP applications and INET or RI PINET TSRs. UTIL, INET, or
RI PINET, and the hardware TSRs communicate with one another. However, only the

** hardware TSRs communicate with hardware device drivers, such as NDIS , MAC
Drivers, and packet device drivers.

Applications

~i~e~ l ~a~k- -------1
Sockets

!NET
u or
T RI PINET
I
L Hardware

TS Rs

Device
Drivers

Figure 8. TCP/IP tor DOS Architecture

This section lists the header files for each API. These files are in the
<TCPBASE>\INCLUDE directory.

The following is a list of socket application header files.

• TCPERRNO.H
• NETDB.H
• NETINET\IN.H
• SYS\SOCKET.H
• SYS\TIME.H
• TYPES.H

17

Remote Procedure Calls (RPCs)
The following is a list of RPG application header files.

• RPC\AUTH.H
• RPC\A_UNIX.H
• RPC\CLNT.H
• RPC\P _CLNT.H
• RPC\P _PROT.H
• RPC\P _RMT.H
• RPC\RPC.H
• RPC\R_MSG.H
• RPC\TYPES.H
• RPC\SVC.H
• RPC\SVC_AUTH.H
• RPC\XDR.H

File Transfer Protocol Application Programming Interface (FTP API)
The following is a list of FTP API application header files.

Library Files

• FTPAPl.H

The following is a list of library files to which an application must link.

Library File
FTPAPl.LIB
SUN RPG.LIB
TCPIP.LIB

Application
FTP Application Programming Interface (API) calls

** Sun Remote Procedure calls
Socket calls

Porting Considerations
This section contains information about how to port your application.

• To access system return values, you only need to use the errno.h include state­
ment supplied with the compiler.

• To access network return values, you must add the following include statement:

#include <tcperrno.h>

For more information about porting, see the respective chapter for that interface.

18 TCP/IP Version 2.0 for DOS: Programmer's Reference

© Copyright IBM Corp. 1991

Chapter 3. Sockets

Programming with Sockets . 21
Socket Programming Concepts . 21

What is a Socket? . 21
Socket Types . 21
Guidelines for Using Socket Types . 22
Address Families . 22
Socket Address . 22
Internet Addresses . 23
Ports . 23
Network Byte Order . 23

Main Socket Calls . 24
A Typical TCP Socket Session . 28
A Typical UDP Socket Session . 28
Network Utility Routines . 32

Socket Library . 34
Porting . 34
Compiling and Linking . 34
Socket Calls . 35

accept() . 36
bind() . 38
connect() . 41
dosip_init() . 44
endhostent() . 45
endnetent() . 46
endprotoent() . 47
endservent() . 48
gethostbyaddr() . 49
gethostbyname() . 50
gethostent() . 51
gethostid() . 52
getnetbyaddr() . 53
getnetbyname() . 54
getnetent() . 55
getpeername() . 56
getprotobyname() . 57
getprotobynumber() . 58
getprotoent() . 59
getservbyname() . 60
getservbyport() . 61
getservent() . 62
getsockname() . 63
getsockopt() . 64
htonl() . 67
htons() . 68
inet_addr() . 69
inet_lnaof() . 70
inet_makeaddr() . 71
inet_netof() . 72
inet_network() . 73
i net_ ntoa() . 7 4
listen() . 75
ntohl() . 76

19

ntohs() . 77
recv() . 78
recvfrom () . 79
select() . 80
send() . 82
sendto() . 83
sethostent() . 84
setnetent() . 85
setprotoent() . 86
setservent() . 87
setsockopt() . 88
shutdown() . 90
sock_init() . 91
socket() . 92
so_close() . 95
so_flush() . 96
so_read() . 97
so_write() . 98

20 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

(

\.

Chapter 3. Sockets

This chapter describes the socket application program interface (API) provided with
TCP/IP for DOS. Use the socket routines to interface with the TCP, UDP, ICMP, and
IP protocols. This allows a program to communicate across networks with other
programs. You can, for example, make use of socket routines when you write a
client program that must communicate with a server program running on another
computer.

To use the sockets, you must know C programming language. For more information
about sockets, see IBM AIX Version 3 for RISC/6000 Communications Programming
Concepts.

Programming with Sockets
The DOS socket API provides a standard interface to the transport and internetwork
layer interfaces of TCP/IP. It supports two socket types: stream and datagram.
Stream and datagram sockets interface to the transport layer protocols. You choose
the most appropriate interface for an application.

Socket Programming Concepts

© Copyright IBM Corp. 1991

Before programming with the sockets API, it is helpful to consider some important
concepts.

What is a Socket?
A socket is an endpoint for communication that can be named and addressed in a
network. From an application program perspective, it is a resource allocated by the
operating system. It is represented by an integer called a socket descriptor.

The socket interface was designed to provide applications with a network interface
that hides the details of the physical network. The interface is differentiated by the
different services that are provided. Stream and datagram sockets define a different
service available to applications.

Socket Types
The stream socket (SOCK_STREAM) interface defines a reliable connection-oriented
service. Data is sent without errors or duplication and is received in the same order
as it is sent. Flow control is built in to avoid data overruns. No boundaries are
imposed on the data; it is considered to be a stream of bytes. An example of an
application that uses stream sockets is the File Transfer Protocol (FTP).

The datagram socket (SOCK_DGRAM) interface defines a connectionless service.
Datagrams are sent as independent packets. The service provides no guarantees;
data can be lost or duplicated, and datagrams can arrive out of order. The size of a
datagram is limited to the size that can be sent in a single transaction (currently the
default is 8192 and the maximum is 32 768). No disassembly and reassembly of
packets is performed. An example of an application that uses datagram sockets is
the Network File System (NFS).

The socket interface can be extended; therefore, it is possible to define new socket
types to provide additional services. An example of this is the transaction type
sockets defined for interfacing to the Versatile Message Transfer Protocol (VMTP).
Transaction type sockets are not supported by TCP/IP for DOS. Because socket

21

interfaces isolate you from the communication functions of the different protocol
layers, the interfaces are largely independent of the underlying network. In the DOS
implementation of sockets, stream sockets interface to TCP and datagram sockets
interface to UDP. In the future, the underlying protocols may change, but the socket
interface will remain the same. For example, stream sockets may eventually inter­
face to the International Standards Organization (ISO) Open System Interconnection
(OSI) transport class 4 protocol. This means that applications will not have to be
rewritten as underlying protocols change.

Guidelines for Using Socket Types
The following considerations help you choose the appropriate socket type for an
application.

If you are communicating to an existing application, you must use the same proto­
cols as the existing application. For example, if you interface to an application that
uses TCP, you must use stream sockets. For other applications you should consider
the following factors:

• Consider reliability. Stream sockets provide the most reliable connection.
Datagram sockets are unreliable because packets can be discarded, corrupted,
or duplicated during transmission. This may be acceptable if the application
does not require reliability, or if the application implements the reliability on top
of the sockets interface. The tradeoff is the increased performance available
over stream sockets.

• Performance is another consideration. The overhead associated with reliability,
flow control, packet reassembly, and connection maintenance degrade the per­
formance of stream sockets so that they do not perform as well as datagram
sockets.

• The amount of data to be transferred is another consideration. Datagram
sockets impose a limit on the amount of data transferred in a single transaction.
If you send less than 2048 bytes at a time, use datagram sockets. As the amount
of data in a single transaction increases, it makes more sense to use stream
sockets.

Address Families
Address families define different styles of addressing or communication domain. All
hosts in the same addressing family understand and use the same scheme for r · '
addressing socket endpoints. TCP/IP for DOS supports one addressing family: \.
AF _INET. The AF _INET domain defines addressing in the internet domain. AF _INET
is also referred to as a PF _INET. Both are equivalent. PF stands for Protocol
Family. The address families are defined in the <SYS\SOCKET.H> header file.

Socket Address
A socket address is defined by the sockaddr structure in the <SYS\SOCKET.H>
header file. It has two fields, as shown in the following example:

struct sockaddr
{

};

u_short sa_family;
char sa_data[14];

/* address family */
/* up to 14 bytes of direct address */

The sa_family field contains the addressing family. It is AF _INET for the internet
domain. The sa_data field is different for each address family. Each address family
defines its own structure, which can be overlaid on the sockaddr structure.

22 TCP/IP Version 2.0 for DOS: Programmer's Reference

Addressing within an Internet Domain: A socket address in an internet addressing
family comprises four fields: the address family (AF _INET), an internet address, a
port, and a character array. The structure of an internet socket address is defined
by the following sockaddr _in structure, which is found in the <NETINET\IN.H>
header file:

struct in addr
{

u_long s_addr;
} ;

struct sockaddr in
{

};

short sin Jami ly;
u~short sin_port;
struct in_addr sin_addr;
char sin_zero[B];

The sin_family field is set to AF _INET. The sin_port field is the port used by the
application, in network byte order. The sin_addr field is the internet address of the
network interface used by the application. It is also in network byte order. The
sin zero field should be set to all zeros.

Internet Addresses
Internet addresses are 32-bit quantities that represent a network interface. Every
internet address within an administered AF _INET domain must be unique. A
common misunderstanding is that every host must have only one internet address.
In fact, a host has as many internet addresses as it has network interfaces. For
more information about internet address formats, see lnternetworking With TCP/IP
Volume I: Principles, Protocols, and Architectures, and lnternetworking With TCP/IP
Volume fl: Implementation and Internals.

Ports
A port is used to differentiate between different applications using the same protocol
(TCP or UDP). It is an additional qualifier used by the system software to get data to
the correct application. Physically, a port is a 16-bit integer. Some ports are
reserved for particular applications and are called well-known ports. For more
information, see Appendix A, "Well-Known Port Assignments" or see the
<TCPBASE>\ETC\SERVICES file.

Network Byte Order
Ports and addresses are usually specified to calls using the network byte ordering
convention. Network byte order is also known as big endian byte ordering, as in

** ** Motorola microprocessors (compared with little endian byte ordering in Intel
microprocessors). Using network byte ordering for data exchanged between hosts
allows hosts using different architectures to exchange address information. See
pages 24, 25, and 27 for examples of using the htons() call to put ports into network
byte order. For more information about network byte order, see: "accept()" on
page 36, "bind()" on page 38, "htonl()" on page 67, "htons()" on page 68, "ntohl()"
on page 76, and "ntohs()" on page 77.

Note: The sockets interface does not handle application data byte ordering differ­
ences. Application writers must handle byte order differences themselves or use
higher-level interfaces, such as Remote Procedure Calls (RPG).

Chapter 3. Sockets 23

Main Socket Calls
With few socket calls, you can write a very powerful network application.

1. First, an application must be initialized with sockets using the sock_init() call, as
in the example in Figure 9, or using the dosip_init()call. For a more detailed
description, see "sock_init()" on page 91 or "dosip_init()" on page 44.

Figure 9. An Application Uses the sock_init() Call

The code fragment in Figure 9 initializes the process with the socket library.

2. Next, an application must get a socket descriptor using the socket() call, as in
the example in Figure 10. For a more detailed description, see "Socket
Interfaces" on page 12.

Figure 10. An Application Uses the socket() Call

The code fragment in Figure 10 allocates a socket descriptors in the internet
addressing family. The domain parameter is a constant that specifies the
domain where the communication is taking place. A domain is the collection of
applications using the same naming convention. TCP/IP tor DOS supports one
addressing family: AF _INET. The type parameter is a constant that specifies the
type of socket, SOCK_STREAM or SOCK_DGRAM. The protocol parameter is a
constant that specifies the protocol to use. Passing 0 chooses the default pro­
tocol. If successful, socket() returns a positive integer socket descriptor.

3. Once an application has a socket descriptor, it can explicitly bind a unique name
to the socket, as in the example in Figure 11. For a more detailed description,
see "bind()" on page 38.

Figure 11. An Application Uses the bind() Call

This example binds myname to sockets. The name specifies that the application
is in the internet domain (AF _INET) at internet address 129.5.24.1, and is bound
to port 1024. Servers must bind a name to become accessible from the network.
The example in Figure 11 shows two useful utility routines:

24 TCP/IP Version 2.0 for DOS: Programmer's Reference

• inet_addr() takes an internet address in dotted decimal form and returns it in
network byte order. For a more detailed description, see "inet_addr()" on
page 69.

• htons() takes a port number in host byte order and returns the port in network
byte order. For a more detailed description, see "htons()" on page 68.

Figure 12. A bind() Call Using the getservbyname() Call

Figure 12 shows another example of the bind() call on the server side. It uses
the network utility routine getservbyname() to find a well-known port number for
specific service from the <TCPBASE>\ETC\SERVICES file. Figure 12 also
shows wildcard value INADDR ANY. If a host has several network addresses
(multi-homed host), it is likely that messages sent to any of the addresses should
be deliverable to a socket.

4. After binding a name to a socket, a server using stream sockets must indicate its
readiness to accept connections from clients. The server does this with the
listen() call as illustrated in the example in Figure 13.

Figure 13. An Application Uses the listen() Call

The listen() call tells the TCP/IP software that the server is ready to begin
accepting connections and that a maximum of five connection requests can be
queued for the server. Additional requests are ignored. For a more detailed
description, see "listen()" on page 75.

5. Clients using stream sockets initiate a connection request by calling connect(),
as shown in the example in Figure 14 on page 26.

Chapter 3. Sockets 25

Figure 14. An Application Uses the connect() Call

The connect() call attempts to connect sockets to the server with name
servername. This could be the server that was used in the previous bind()
example. The caller optionally blocks until the connection is accepted by the
server. On successful return, the socket s is associated with the connection to
the server. For a more detailed description, see "connect()" on page 41.

Figure 15. An Application Uses the gethostbyname() Call

Figure 15 shows an example of a network utility routine gethostbyname() call to
find out the internet address of serverhost from the name server or the
<TCPBASE>\ETC\HOSTS file.

6. Servers using stream sockets accept a connection request with the accept() call,
as shown in the example in Figure 16.

Figure 16. An Application Uses the accept() Call

If connection requests are not pending on sockets, the accept() call optionally
blocks the server. When a connection request is accepted on sockets, the name
of the client and length of the client name are returned, along with a new socket
descriptor. The new socket descriptor is associated with the client that initiated

26 TCP/IP Version 2.0 for DOS: Programmer's Reference

the connection and s is again available to accept new connections. For a more
detailed description, see "accept()" on page 36.

7. Clients and servers have many calls from which to choose for data transfer. The
send() and recv() calls can be used only on sockets that are in the connected
state. The sendto() and recvfrom() calls can be used at any time. The example
in Figure 17 illustrates the use of send() and recv().

Figure 17. An Application Uses the send() and recv() Calls

The example in Figure 17 shows an application sending data on a connected
socket and receiving data in response. The flags field can be used to specify
additional options to send() or recv(), such as sending out-of-band data.

8. If the socket is not in a connected state, additional address information must be
passed to sendto() and may be optionally returned from recvfrom(). An example
of the use of the sendto() and recvfrom() calls is in Figure 18.

Figure 18. An Application Uses the sendto() and recvfrom() Call

The sendto() and recvfrom() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the
data. See "recvfrom()" on page 79, and "sendto()" on page 83, for more infor­
mation about these additional parameters. Usually, sendto() and recvfrom() are
used for datagram sockets, and send() and recv() are used for stream sockets.

9. Applications can handle multiple sockets. In such situations, use the select() call
to determine the sockets that have data to be read, those that are ready for data
to be written, and the sockets that have pending exceptional conditions. An
example of how the select() call is used, is in Figure 19 on page 28.

Chapter 3. Sockets 27

Figure 19. An Application Uses the select() Call

In this example, the application sets bit masks to indicate the sockets being
tested for certain conditions and also indicates a time-out. If the timeout param- /
eter is NULL, the call does not wait for any socket to become ready on these con- "-
ditions. If the timeout parameter is nonzero, select() waits up to this amount of
time for at least one socket to become ready on the indicated conditions. This is
useful for applications servicing multiple connections that cannot afford to block,
waiting for data on one connection. For a more detailed description, see
"select()" on page 80.

10. A socket descriptor, s, is deallocated with the so_close() call. For a more
detailed description, see "so_close()" on page 95. An example of the so_close()
call is shown in Figure 20.

Figure 20. An Application Uses the so_c/ose() Call

A Typical TCP Socket Session
You can use TCP sockets for both passive (server) and active (client) processes.
While some commands are necessary for both types, some are role-specific. See
Appendix B, "Sample Socket Programs," for sample socket communication client
and server programs.

Once you make a connection, it exists until you close the socket. During the con­
nection, data is either delivered or an error code is returned by TCP/IP.

See Figure 21 on page 30 for the general sequence of calls to be followed for most
socket routines using TCP sockets.

A Typical UDP Socket Session
UDP socket processes, unlike TCP socket processes, are not clearly distinguished
by server and client roles. Instead, the distinction is between connected and uncon­
nected sockets. An unconnected socket can be used to communicate with any host;
but a connected socket, because it has a dedicated destination, can send data to,
and receive data from, only one host.

28 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

Both connected and unconnected sockets send their data over the network without
verification. Consequently, once a packet has been accepted by the UDP interface,
the arrival of the packet and the integrity of the packet cannot be guaranteed.

See Figure 22 on page 31 for the general sequence of calls to be followed for most
socket routines using UDP sockets.

Chapter 3. Sockets 29

CLIENT

Create a stream socket s with the socket()
call.

(optional)
Bind socket s to a local address with the
bind() call.

Connect socket s to a foreign host with the
connect() call •

For the server, s
to accept new c

is dedicat

Read and write data on socket s, using the
send() and recv() calls, until all data has
been exchanged.

Close socket s and end the TCP/IP session
with the so_close() call.

Figure 21. A Typical TCP Socket Session

30 TCP/IP Version 2.0 for DOS: Programmer's Reference

ocket s
onnecti
ed to t

SERVER

Create a stream socket s with the socket()
call.

Bind socket s to a local address with the
bind() call.

With the listen() call, alert the TCP/IP
machine of your willingness to accept
connections.

Accept the connection and receive a second
socket, for example ns, with the accept()
call.

remains available
ons. Socket ns
he client.

Read and write data on socket ns, using the - send() and recv() calls, until all data has --- been exchanged.

Close socket ns with the so_close() call.

Accept another connection from a client, or
close the original socket s with the so_close()
call.

/

CLIENT SERVER

Create a datagram socket s with the socket() Create a datagram socket s with the socket()
call. call.

(optional)
Bind socket s to a local address with the Bind socket s to a local address with the
bind() call. bind() cal 1.

(optional) (optional)
Connect socket s using the connect() call to Connect socket s using the connect() call to
associate s with the server address. associate s with the client address.

Send and receive data on socket s, using the Send and receive data on socket s, using the
sendto() and recvfrom() calls, until all data - sendto() and recvfrom() calls, until all data
has been exchanged. Use the send() and recv() - has been exchanged. Use the send() and recv()
calls if connect() was called. calls if connect() was called.

Close socket s and end the session with the Close socket s and end the session with the
so_ close() cal 1. so_close() call.

Figure 22. A Typical UDP Socket Session

Chapter 3. Sockets 31

Network Utility Routines
The DOS socket API also provides a set of network utility routines to perform useful /-
tasks, such as internet address translation, domain name resolution, network byte \'-
order translation, and access to the database of useful network information. This
section describes a few network utility routines.

Host Names Information: The following is a list of socket calls that provide host
name information:

• gethostbyaddr()
• gethostbyname()
• sethostent()
• gethostent()
• endhostent().

The gethostbyname() call takes an internet host name and returns a hostent struc­
ture, which contains the name of the host, aliases, host address family, and host
address. The hostent structure is defined in the <NETDB.H> header file. The call
gethostbyaddr() maps the internet host address into a hostent structure.

The database for these calls is provided by the name server or
<TCPBASE>\ETC\HOSTS file if a name server is not present. Because of the dif­
ferences in the databases and their access protocols, the information returned may
differ.

The sethostent(), gethostent() and endhostent() calls provide sequential access to
the <TCPBASE>\ETC\HOSTS file.

Network Names Information: The following is a list of socket calls that provide
network names information:

• getnetbyaddr()
• getnetbyname()
• setnetent()
• getnetent()
• endnetent().

The getnetbyname() call takes a network name and returns a netent structure, which

" -

(

contains the name of the network, aliases, network address family, and network ,/
number. The netent structure is defined in the <NETDB.H> header file. The "-
getnetbyaddr() call maps the network number into a netent structure.

The database for these calls is provided by the <TCPBASE>\ETC\NETWORKS file.

The setnetent(), getnetent(), and endnetent() calls provide sequential access to the
<TCPBASE>\ETC\NETWORKS file.

Protocol Names Information: The following is a list of socket calls that provide pro­
tocol names information:

• getprototbynumber()
• getprototbyname()
• setprotoent()
• getprotoent()
• endprotoent().

The getprotobyname() call takes the protocol name and returns a protoent structure,
which contains the name of the protocol, aliases, and protocol number. The

32 TCP/IP Version 2.0 for DOS: Programmer's Reference

c

protoent structure is defined in the <NETDB.H> header file. The
getprotobynumber() call maps the protocol number into a protoent structure.

The database for these calls is provided by the <TCPBASE>\ETC\PROTOCOL file.

The setprotoent(), getprotoent(), and endprotoent() calls provide sequential access
to the <TCPBASE>\ETC\PROTOCOL file.

Service Names Information: The following is a list of socket calls that provide
service names information:

• getservbyname()
• getservtbyport()
• setservent()
• getservent()
• endservent().

The getservbyname() call takes the service name and protocol, and returns a
servent structure, which contains the name of the service, aliases, port number, and
protocol. The servent structure is defined in the <NETDB.H> header file. The
getservbyport() call maps the port number and protocol into a servent structure.

The database for these calls is provided by <TCPBASE>\ETC\SERVICES file.

The setservent(), getservent(), and endservent() calls provide sequential access to
the <TCPBASE>\ETC\SERVICES file.

Network Byte Order Translation: Ports and addresses are usually specified to calls
using the network byte ordering convention. The following calls translate integers
from network to host byte order and from host to network byte order.

Call
htonl()
htons()
ntohl()
ntohs()

Function
Translates host to network, long integer (32-bit)
Translates host to network, short integer (16-bit)
Translates network to host, long integer (32-bit)
Translates network to host, short integer (16-bit).

Internet Address Manipulation: The following calls convert internet addresses and
decimal notation, and manipulate the network number and local network address
portions of an internet address.

Call

inet_addr()

i net_ network()

inet_ntoa()

inet_netof()

inet_lnaof()

inet_makeaddr()

Function

Translates dotted decimal notation to a 32-bit internet
address (network byte order).

Translates dotted decimal notation to a network number (host
byte order), and zeros in the host part.

Translates 32-bit internet address (network byte order) to
dotted decimal notation.

Extracts network number (host byte order) from 32-bit internet
address (network byte order).

Extracts local network address (host byte order) from 32-bit
internet address (network byte order).

Constructs internet address (network byte order) from
network number and local network address.

Chapter 3. Sockets 33

Socket Library

Porting

Domain Name Resolution: Resolver calls are used to resolve the symbolic host
name into an internet address and to extract rnore information about the host from
the database.

The resolver calls determine whether the name server is present or not present by
referencing the custom structure.

To resolve a name with no name server present, the resolver calls check the
<TCPBASE>\ETC\HOSTS file for an entry that maps the name to an address.

To resolve a name in a name server network, the resolver calls query the domain
name server database. If this query fails, the calls then check for an entry in the
local <TCPBASE>\ETC\HOSTS file.

To use the socket routines described in this chapter, you must have the TCPIP.LIB
library file in the <TCPBASE>\LIB directory. Also, the following header files must
be contained in the <TCPBASE>\INCLUDE directory, available on your system.

Socket
TCPERRNO.H
NETDB.H
TYPES.H
NETINET\IN.H
SYS\SOCKET.H
SYS\TIME.H

Description
Contains network error definitions.
Contains data definitions for network utility calls.
Contains data type definitions.
Contains definition for Internet constants and structures.
Contains data definitions and socket structure.
Contains definition of timeval structure.

The IBM DOS socket implementati'!n differs from the Berkeley socket implementa­
tion. The following list summarizes the differences between the IBM DOS socket
implementation and the Berkeley implementation:

• Sockets are not DOS files or devices. Socket numbers have no relationship to
DOS file handles. Therefore, read(), write(), and close() do not work for sockets.
Using read(), write(), or close() gives incorrect results. The recv(), send(), and
so_close() functions must be used instead.

• Some socket calls require that the sock_init() routine or the dosip_init() routine,
be invoked before the socket calls can be run. Therefore, you should always call
either sock_init() or dosip_init(), at the beginning of programs using the socket
interface.

• You must make reference to the additional header file <TCPERRNO.H> if you
want to reference the networking errors other than those described in the
compiler-supplied <ERRNO.H> file.

Compiling and Linking
The following steps describe how to compile and link programs using the Sockets
APls with Microsoft C Version 5.10.

Note: In the following examples, model refers to the memory model you use to
compile your program: L for large model, S for small model, M for medium model,
or C for compact model.

34 TCP/IP Version 2.0 for DOS: Programmer's Reference

Socket Calls

"--··

1. Include the <TCPBASE>\INCLUDE directory at the beginning of the INCLUDE
environment variable so that the C compiler finds the appropriate header files.
You can set this interactively or you can include it in the AUTOEXEC.BAT file.

For example, if the INCLUDE environment variable previously read:

SET INCLUDE=C:\MSC\INCLUDE

You would change it to read:

SET INCLUDE=<TCPBASf>\INCLUDE;C:\MSC\INCLUDE

2. To compile your program, enter the command:

cl /c /J /Fs /Oars /FPc /Zp2 /Pmodel myprog.c

3. To create an executable program, enter the following command:

link /noi /stack:6144 /seg:200 myproj.obj,,,
<TCPBASE>\LIB\modeZ\tcpip.lib;

This section provides the C programming language syntax, parameters, and other
appropriate information for each socket call supported by TCP/IP for DOS.

Chapter 3. Sockets 35

accept()

accept()

Parameter

s

name

name/en

Description

The socket descriptor.

The socket address of the connecting client that is filled by accept()
before it returns. The format of name is determined by the domain
in which the client resides. This parameter can be NULL if the
caller is not interested in the client address.

Must initially point to an integer that contains the size in bytes of
the storage pointed to by name. On return, that integer contains
the size of the data returned in the storage pointed to by name. If
name is NULL, then name/en is ignored and can be NULL.

Description: The accept() call is used by a server to accept a connection request
from a client. The call accepts the first connection on its queue of pending con­
nections. The accept() call creates a new socket descriptor with the same proper­
ties ass and returns it to the caller. If the queue has no pending connection
requests, accept() blocks the caller unless s is in nonblocking mode. If no con­
nection requests are queued ands is in nonblocking mode, accept() returns -1 and
sets errno to EWOULDBLOCK. The new socket descriptor cannot be used to accept
new connections. The original socket, s, remains available to accept more con­
nection requests.

The s parameter is a stream socket descriptor created with the socket() call. It is
usually bound to an address with the bind() call, and can accept connections with
the listen() call. The listen() call marks the socket as one that accepts connections
and allocates a queue to hold pending connection requests. The listen() call allows
the caller to place an upper boundary on the size of the queue.

The name parameter is a pointer to a buffer into which the connection requester's
address is placed. The name parameter is optional and can be set to be the NULL
pointer. If set to NULL, the requester's address is not copied into the buffer. The
exact format of name depends on the addressing domain from which the communi­
cation request originated. For example, if the connection request originated in the
AF _I NET domain, name points to a sockaddr _in structure as defined in the header
file <NETINET\IN.H>. The name/en parameter is used only if name is not NULL.
Before calling accept(), you must set the integer pointed to by name/en to the size,
in bytes, of the buffer pointed to by name. On successful return, the integer pointed
to by name/en contains the actual number of bytes copied into the buffer. If the
buffer is not large enough to hold the address, up to name/en bytes of the
requester's address are copied.

This call is used only with SOCK_STREAM sockets. There is no way to screen
requesters without calling accept(). The application cannot tell the system from
which requesters it will accept connections. The caller can, however, choose to
close a connection immediately after discovering the identity of the requester.

36 TCP/IP Version 2.0 for DOS: Programmer's Reference

accept()

A socket can be checked for incoming connection requests using the select() call
and setting the bit in the read descriptor array.

Return Values and Errno Values: A non-negative socket descriptor indicates
success, the value -1 indicates an error. The value of errno indicates the specific
error.

Errno Value Description

ENOTSOCK

EFAULT

The s parameter is not a valid socket descriptor.

Using name and name/en would result in an attempt to copy
the address into a portion of the caller's address space into
which information cannot be written.

Listen() was not called for sockets. EOPNOTSUPP

ENOBUFS

EOPNOTSUPP

EWOULDBLOCK

Insufficient buffer space available to create the new socket.

The s parameter is not of type SOCK_STREAM.

The s parameter is in nonblocking mode and no connections
are on the queue.

Examples: The following are two examples of the accept() call. In the first, the
caller wishes to have the requester's address returned. In the second, the caller
does not wish to have the requester's address returned.

int clientsocket;
int s;
struct sockaddr clientaddress;
int addrlen;
int accept(int s, struct sockaddr *addr, int *addrlen);
/*socket(), bind(), and listen() have been called*/
/* EXAMPLE 1: I want the address now */

addrlen = sizeof(clientaddress);
cl ientsocket = accept(s, &cl ientaddre·ss, &addrlen);
/* EXAMPLE 2: I can get the address later using getpeername() */
addrlen = 0;
clientsocket = accept(s, (struct sockaddr *) 0, (int*) 0);

See Also: bind(), connect(), getpeername(), listen(), socket().

Chapter 3. Sockets 37

bind()

bind()

Parameter Description

s

name

name/en

The socket descriptor returned by a previous socket() call.

Points to a sockaddr structure containing the name that is to be
bound to s.

The size of name in bytes.

Description: The bind() call binds a unique local name to the socket with
descriptor s. After calling socket(), a descriptor does not have a name associated
with it. However, it does belong to a particular addressing family as specified when
socket() is called. The exact format of a name depends on the addressing family.
The bind() procedure also allows servers to specify from which network interfaces
they wish to receive UDP packets and TCP connection requests.

The s parameter is a socket descriptor of any type created by calling socket().

The name parameter is a pointer to a buffer containing the name to be bound to s.
The name/en parameter is the size, in bytes, of the buffer pointed to by name.

Because s was created in the AF _INET domain, the format of the name buffer is
expected to be sockaddr _in as defined in the header file <NETINET\IN.H>:

struct in addr
{

u_long s_addr;
} ;

struct sockaddr in
{

} ;

short sin Jami ly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[B];

The sin_family field must be set to AF _INET. The sin_port field is set to the port to
which the application must bind. It must be specified in network byte order. If
sin_port is set to 0, the caller leaves it to the system to assign an available port.
The application can call getsockname() to discover the port number assigned. The
sin_addr field is set to the internet address and must be specified in network byte
order. On hosts with more than one network interface (called multi-homed hosts), a
caller can select the interface with which it is to bind.

Subsequently, only UDP packets and TCP connection requests from this interface
(which match the bound name) are routed to the application. If this field is set to the
constant INADDR_ANY, as defined in <NETINET\IN.H>. the caller is requesting that
the socket be bound to all network interfaces on the host. Subsequently, UDP
packets and TCP connections from all interfaces (which match the bound name) are

38 TCP/IP Version 2.0 for DOS: Programmer's Reference

bind()

routed to the application. This becomes important when a server offers a service to
multiple networks. By leaving the address unspecified, the server can accept all
UDP packets and TCP connection requests made for its port, regardless of the
network interface on which the requests arrived. The sin_zero field is not used and
must be set to all zeros.

Return Values and Errno Values: The value 0 indicates success, the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno Description

EADDRINUSE The address is already in use. See the SO REUSEADDR
option described under "getsockopt()" on page 64 and the
SO_REUSEADDR option described under the "setsockopt(}"
on page 88.

EADDRNOTAVAIL The address specified is not valid on this host. For
example, if the internet address does not specify a valid
network interface.

EAFNOSUPPORT The address family is not supported.

ENOTSOCK The s parameter is not a valid socket descriptor.

EFAULT Using name and name/en would result in an attempt to
copy the address into a non-writable portion of the caller's
address space.

EOPNOTSUPP The socket is already bound to an address. For example,
trying to bind a name to a socket that is in the connected
state. This value is also returned if name/en is not the
expected length.

Examples: The following are examples of the bind() call. Several things should be
noted about the examples. The internet address and port must be in network byte
order. To put the port into network byte order, a utility routine, htons(), is called to
convert a short integer from host byte order to network byte order. The address
field is set using another utility routine, inet_addr(), which takes a character string
representing the dotted decimal address of an interface and returns the binary
internet address representation in network byte order. Finally, note that it is a good
idea to zero the structure before using it to ensure that the name requested does not
set any reserved fields. See "connect()" on page 41 for examples of how a client
might connect to servers.

Chapter 3. Sockets 39

bind()

int re;
int s;
struct sockaddr in myname;
int bind(int s,-struct sockaddr *name, int namelen);

/* Bind to a specific interface in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin family= AF INET;
myname.sin=addr = inet=addr("l29.5.24.1"); /*specific interface*/
myname.sin_port = htons(1024);

re= bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to all network interfaces in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin family =AF INET;
myname.sin=addr.s_addr-= INADDR_ANY; /*all interfaces */
myname.sin_port = htons(1024);

re= bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to a specific interface in the internet domain.

Let the system choose a port */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin family =AF INET;
myname.sin=addr = ine(addr("129.5.24.1"); /*specific interface*/
myname.sin_port = 0;

re= bind(s, (struct sockaddr *) &myname, sizeof(myname));

The binding of a stream socket is not complete until a successful call to bind(),
listen(), or connect() is made. Applications using stream sockets should check the
return values of bind(), listen(), and connect() before using any function that
requires a bound stream socket.

See Also: connect(), gethostbyname(), getsockname(), htons(), inet_addr(), listen(),
socket().

40 TCP/IP Version 2.0 for DOS: Programmer's Reference

(
\"'-

\.

/

(
'
'___

connect()

Parameter

s

name

name/en

connect()

Description

The socket descriptor.

The pointer to a socket address structure containing the address of
the socket to which a connection will be attempted.

The size of the socket address pointed to by name in bytes.

Description: For stream sockets, the connect() call attempts to establish a con­
nection between two sockets. For UDP sockets, the connect() call specifies the peer
for a socket. The s parameter is the socket used to originate the connection
request. The connect() call performs two tasks when called for a stream socket.
First, it completes the binding necessary for a stream socket (in case it has not been
previously bound using the bind() call). Second, it attempts to make a connection to
another socket.

The connect() call on a stream socket is used by the client application to establish a
connection to a server. The server must have a passive open pending. If the server
is using sockets, this means the server must successfully call bind() and listen()
before a connection can be accepted by the server with accept(). Otherwise,
connect() returns -1 and errno is set to ECONNREFUSED.

If s is in blocking mode, the connect() call blocks the caller until the connection is
set up, or until an error is received. If the socket is in nonblocking mode then
connect() returns -1 with errno set to EINPROGRESS if the connection can be initi­
ated (no other errors occurred). The caller can test the completion of the con­
nection setup by calling select() and testing for the ability to write to the socket.

When called for a datagram, connect() specifies the peer with which this socket is
associated. This gives the' application the ability to use data transfer calls reserved
for sockets that are in the connected state. In this case, send(), recv(), sendto(), and
recvfrom() are available. Stream sockets can call connect() only once, but
datagram sockets can call connect() multiple times to change their association.
Datagram sockets can dissolve their association by connecting to an invalid address
such as the null address (all fields zeroed).

The name parameter is a pointer to a buffer containing the name of the peer to
which the application needs to connect. The name/en parameter is the size, in
bytes, of the buffer pointed to by name.

If the server is in the AF _INET domain, the format of the name buffer is expected to
be sockaddr_in, as defined in the header file <NETINET/IN.H.>

Chapter 3. Sockets 41

connect()

struct in_addr
{

u_long s_addr;
};

struct sockaddr in
{ -

};

short sin Jami ly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[B];

The sin_tamily field must be set to AF _INET. The sin_port field is set to the port to
which the server is bound. It must be specified in network byte order. The sin_zero
field is not used and must be setto all zeros.

Return Values and Errno Values: The value 0 indicates success, the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno Description

EADDRNOTAVAIL The calling host cannot reach the specified destination.

EAFNOSUPPORT The address family is not supported.

EALREADY The socket s is marked nonblocking, and a previous con­
nection attempt has not completed.

ENOTSOCK The s parameter is not a valid socket descriptor.

ECONNREFUSED

EFAULT

EINPROGRESS

EOPNOTSUPP

EISCONN

ENETUNREACH

ETIMEDOUT

The connection request was rejected by the destination
host.

Using name and name/en would result in an attempt to
copy the address into a portion of the caller's address
space to which data cannot be written.

The sockets is marked nonblocking, and the connection
cannot be completed immediately. The EINPROGRESS
value does not indicate an error condition.

The name/en parameter is not a valid length.

The'socket s is already connected.

The network cannot be reached from this host.

The connection establishment timed out before a con­
nection was made.

Examples: The following are examples of the connect() call. Several things should
be noted about the examples. The internet address and port must be in network
byte order. To put the port into network byte order a utility routine, htons(), is called
to convert a short integer from host byte order to network byte order. The address
field is set using another utility routine, inet_addr(), which takes a character string
representing the dotted decimal address of an interface and returns the binary
internet address representation in network byte order. It is a good idea to zero the
structure before using it to ensure that the name requested does not set any
reserved fields. These examples could be used to connect to the servers shown in
the examples listed with the call, "bind()" on page 38.

42 TCP/IP Version .2.0 for DOS: Programmer's Reference

int s;
struct sockaddr in servername;
int re;
int connect(int s, struct sockaddr *name, int namelen);

connect()

/* Connect to server bound to a specific interface in the internet domain */
/*make sure the sin_zero field is cleared */
memset(&servername, G, sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr = inet_addr("129.5.24.1"); /*specific interface*/
servername.sin_port = htons(1024);

re= connect(s, (struct sockaddr *) &servername, sizeof(servername));

See Also: accept(), bind(), htons(), inet_addr(), listen(), select(), socket().

Chapter 3. Sockets 43

dosip_init()

dosip _initO

Parameter

flags

Description

If dosip_init fails, the flags parameter indicates whether to exit from
the calling program with an error message indicating the cause of
the error, or return to the calling program with a nonzero return
code.

NIF _COMPLAIN

NIF _NOCOMPLAIN

Exit from the program.

Return to the program with a nonzero return
code.

Description: The dosip_init() call initializes the socket data structures and checks

/

~ ..

whether !NET.EXE is running or not running. Therefore, either dosip_init() or /
sock_init() should be called at the beginning of each program that uses socket calls. ·."'

Note: Calling dosip_init() with the NIF _COMPLAIN flag is the same as calling
sock_init().

Warning: If any socket function is called after the failure of dosip_init, unpredictable
results can occur.

See Also: sock_init().

44 TCP/IP Version 2.0 for DOS: Programmer's Reference

endhostent()

/-- -...

endhostent()

Description: The endhostent() call closes the <TCPBASE>\ETC\HOSTS file, which
contains information about known hosts.

See Also: gethostbyaddr(), gethostbyname(), gethostent(), sethostent().

Chapter 3. Sockets 45

endnetent()

endnetent()

Description: The endnetent() call closes the <TCPBASE>\ETC\NETWORKS file,
which contains information about known networks.

See Also: getnetbyaddr(), getnetbyname(), getnetent(), setnetent().

46 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

endprotoent()

endprotoent()

Description: The endprotoent() call closes the <TCPBASE>\ETC\PROTOCOL file,
which contains information about known protocols.

See Also: getprotobyname(), getprotobynumber(), getprotoent(), setprotoent().

Chapter 3. Sockets 47

endservent()

endservent()

Description: The endservent() call closes the <TCPBASE>\ETC\SERVICES file,
which contains information about known services.

See Also: getservbyname(), getservbyport(), getservent(), setservent().

48 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

"---- .

\

('
__/

gethostbyaddr()

Parameter
addr
addrlen
domain

gethostbyaddr()

Description
A pointer to a 32-bit internet address in network byte order.
The size of addr in bytes.
The address domain supported (AF _INET).

Description: The gethostbyaddr() call tries to resolve the host name through a name
server, if one is present. If a name server is not present, gethostbyaddr() sequen­
tially searches the <TCPBASE>\ETC\HOSTS file until a matching host address is
found or an EOF marker is reached.

The gethostbyaddr() call returns a pointer to a hostent structure for the host address
specified on the call.

The <NETDB.H> header file defines the hostent structure, and contains the fol­
lowing elements:

Element

h_name

h aliases

h_addrtype

h_length

h addr

Description

Official name of the host.

A zero-terminated array of alternative names for the host.

The type of address being returned; currently, always set to
AF INET.

The length of the address in bytes.

A pointer to the network address of the host.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a hostent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endhostent(), gethostbyname(), gethostent(), sethostent().

Chapter 3. Sockets 49

gethostbyname()

gethostbyname(}

Parameter
name

Description
The name of the host being queried.

Description: The gethostbyname() call tries to resolve the host name through a
name server, if one is present. If a name server is not present, gethostbyname()
searches the <TCPBASE>\ETC\HOSTS file until a matching host name is found or
an EOF marker is reached.

The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call.

The <NETDB.H> header file defines the hostent structure, and contains the fol­
lowing elements:

Element

h_name

h_a/iases

h_addrtype

h_length

h addr

Description

Official name of the host.

A zero-terminated array of alternative names for the host.

The type of address being returned; currently, always set to
AF INET.

The length of the address in bytes.

A pointer to the network address of the host.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a hostent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endhostent(), gethostbyaddr(), gethostent(), sethostent().

50 TCP/IP Version 2;0 for DOS: Programmer's Reference

\

·~.

gethostent()

gethostent()

Description: The gethostent() call reads the next line of the
<TCPBASE>\ETC\HOSTS file.

The gethostent() call returns a pointer to the next entry in the HOSTS file.

The <NETDB.H> header file defines the hostent structure, and contains the fol­
lowing elements:

Element

h name

h aliases

h_addrtype

h_length

h addr

Description

Official name of the host.

A zero-terminated array of alternative names for host.

The type of address being returned; currently, always set to
AF INET.

The length of the address in bytes.

A pointer to the network address of the host.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a hostent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endhostent(), gethostbyaddr(), gethostbyname(), sethostent().

Chapter 3. Sockets 51

gethostid()

gethostid{)

Description: The gethostid() call gets the unique 32-bit identifier for the current host.

Return Values: The gethostid() call returns the 32-bit identifier of the current host,
which should be unique across all hosts.

52 TCP/IP Version 2.0 for DOS: Programmer's Reference

getnetbyaddr()

Parameter
net
type

getnetbyaddr()

Description
The network address.
The address domain supported (AF _INET).

Description: The getnetbyaddr() call searches the <TCPBASE>\ETC\NETWORKS
file for the specified network address. See Appendix J, "NETWORKS File
Structure," for the format of the NETWORKS file.

The netent structure is defined in the <NETDB.H> header file, and contains the fol­
lowing elements:

Element

n name

n aliases

n_addrtype

n net

Description

Official name of the network.

An array, terminated with a NULL pointer, of alternative names for
the network.

The type of network address being returned. The call always sets
this value to AF _INET.

The network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a netent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endnetent(), getnetbyname(), getnetent(), setnetent().

Chapter 3. Sockets 53

getnetbyname()

getnetbyname(}

Parameter
name

Description
The pointer to a network name.

Description: The getnetbyname() call searches the <TCPBASE>\ETC\NETWORKS
file for the specified network name. See Appendix J, "NETWORKS File Structure,"
for the format of the NETWORKS file.

The getnetbyname() call returns a pointer to a netent structure for the network name
specified on the call.

The netent structure is defined in the <NETDB.H> header file, and contains the fol­
lowing elements:

Element

n name

n aliases

n_addrtype

n net

Description

Official name of the network.

An array, terminated with a NULL pointer, of alternative names for
the network.

The type of network address being returned. The call always sets
this value to AF INET.

The network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a netent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endnetent(), getnetbyaddr(), getnetent(), setnetent().

54 TCP/IP Version 2.0 for DOS: Programmer's Reference

getnetent()

getnetent{)

Description: The getnetent() call reads the next entry of the
<TCPBASE>\ETC\NETWORKS file. See Appendix J, "NETWORKS File Structure,"
for the format of the NETWORKS file.

The getnetent() call returns a pointer to the next entry in the NETWORKS file.

The netent structure is defined in the <NETDB.H> header file, and contains the fol­
lowing elements:

Element

n_name

n aliases

n_addrtype

n net

Description

Official name of the network.

An array, terminated with a NULL pointer, of alternative names for
the network.

The type of network address being returned. The call always sets
this value to AF _INET.

The network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a netent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endnetent(), getnetbyaddr(), getnetbyname(), setnetent().

Chapter 3. Sockets 55

getpeername()

getpeernameO

Parameter

s

name

name/en

Description

The socket descriptor.

The internet address of the connected socket that is filled by
getpeername() before it returns. The exact format of name is
determined by the domain in which communication occurs.

The size of the address structure pointed to by name in bytes.

Description: The getpeername() call returns the name of the peer connected to i
sockets. name/en must be initialized to indicate the size of the space pointed to by ·~
name and is set to the number of bytes copied into the space before the call returns.
The size of the peer name is returned in bytes. If the buffer of the local host is too
small, the peer name is truncated.

Return Values and Errno Values: The value 0 indicates success; the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno

ENOTSOCK

EFAULT

ENOTCONN

Description

The s parameter is not a valid socket descriptor.

Using the name and name/en parameters as specified would
result in an attempt to access storage outside of the caller's
address space.

The socket is not in the connected state.

See Also: accept(), connect(), getsockname(), socket().

(
i

"'

(--,

_/

56 TCP/IP Version 2.0 for DOS: Programmer's Reference

getprotobyname()

Parameter
name

getprotobyname()

Description
A pointer to the specified protocol.

Description: The getprotobyname() call searches the <TCPBASE>\ETC\PROTOCOL
file for the specified protocol name.

The getprotobyname() call returns a pointer to a protoent structure for the network
protocol specified on the call.

The protoent structure is defined in the <NETDB.H> header file, and contains the
following elements:

Element

p name

p_aliases

p_proto

Description

Official name of the protocol.

An array, terminated with a NULL pointer, of alternative names for
the protocol.

The protocol number.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a protoent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endprotoent(), getprotobynumber(), getprotoent(), setprotoent().

Chapter 3. Sockets 57

getprotobynumber()

getprotobynumber()

Parameter
proto

Description
The specified protocol number.

Description: The getprotobynumber() call searches the
<TCPBASE>\ETC\PROTOCOL file for the specified protocol number.

The getprotobynumber(} call returns a pointer to a protoent structure for the network
protocol specified on the call.

The protoent structure is defined in the <NETDB.H> header file and contains the
following elements:

Element

p name

p aliases

p_proto

Description

The official name of the protocol.

An array, terminated with a NULL pointer, of alternative names for
the protocol.

The protocol number.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a protoent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endprotoent(), getprotobyname(), getprotoent(), setprotoent().

58 TCP/IP Version 2.0 for DOS: Programmer's Reference

getprotoent()

getprotoent()

Description: The getprotoent() call searches the <TCPBASE>\ETC\PROTOCOL file
in the directory.

The getprotoent() call returns a pointer to the next entry in the PROTOCOL file.

The protoent structure is defined in the <NETDB.H> header file, and contains the
following elements:

Element

p name

p_aliases

p_proto

Description

Official name of the protocol.

An array, terminated with a NULL pointer, of alternative names for
the protocol.

The protocol number.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a protoent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endprotoent(), getprotobyname(), getprotobynumber(), setprotoent().

Chapter 3. Sockets 59

getservbyname()

getservbyname()

Parameter
name
proto

Description
A pointer to the specified service name.
A pointer to the specified protocol.

Description: The getservbyname() call searches the <TCPBASE>\ETC\SERVICES
file for the specified service name. Searches for a service name must match the
protocol if a protocol is stated.

The getservbyname() call returns a pointer to a servent structure for the network
service specified on the call.

The servent structure is defined in the <NETDB.H> header file, and contains the fol­
lowing elements:

Element

s_name

s_a/iases

s_port

s_proto

Description

Official name of the service.

An array, terminated with a NULL pointer, of alternative names for
the service.

The port number of the service.

The required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a servent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endservent(), getservbyport(), getservent(), setservent().

60 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

·~

getservbyport()

strµct servent
int *port;
c.h.a r . *pNJfo;

Parameter
port
pro to

getservbyport()

Description
The specified port.
A pointer to the specified protocol.

Description: The getservbyport() call sequentially searches the
<TCPBASE>\ETC\SERV!CES file for the specified port number. Searches for a port
number must match the protocol if a protocol is stated.

The getservbyport() call returns a pointer to a servent structure for the port number
specified on the call.

The servent structure is defined in the <NETDB.H> header file, and contains the fol­
lowing elements:

Element

s name

s aliases

s_port

s_proto

Description

Official name of the service.

An array, terminated with a NULL pointer, of alternative names for
the service.

The port number of the service.

The required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a servent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endservent(), getservbyname(), getservent(), setservent().

Chapter 3. Sockets 61

getservent()

getservent()

Description: The getservent() searches for the next line in the
<TCPBASE>\ETC\SERVICES file.

The getservent() call returns a pointer to the next entry in the SERVICES file.

The servent structure is defined in the <NETDB.H> header file, and contains the fol­
lowing elements:

Element

s_name

s aliases

s_port

s_proto

Description

Official name of the service.

An array, terminated with a NULL pointer, of alternative names for
the service.

The port number of the service.

The required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by subse­
quent calls. A pointer to a servent structure indicates success. A NULL pointer indi­
cates an error or end-of-file.

See Also: endservent(), getservbyname(), getservbyport(), setservent().

62 TCP/IP Version 2.0 for DOS: Programmer's Reference

·"-·

getsockname()

Parameter

s

name

name/en

getsockname()

Description

The socket descriptor.

The address of the buffer into which getsockname() copies the
name of s.

Must initially point to an integer that contains the size in bytes of
the storage pointed to by name. Upon return, that integer contains
the size of the data returned in the storage pointed to by name.

Description: The getsockname() call stores the current name for the socket speci­
fied by the s parameter into the structure pointed to by the name parameter. It
returns the address to the socket that has been bound. If the socket is not bound to
an address, the call returns with the family set and the rest of the structure is set to
zero. For example, an inbound socket in the internet domain would cause the name
to point to a sockaddr _in structure with the sin_family field set to AF _INET and all
other fields zeroed.

Stream sockets are not assigned a name, until after a successful call to either
bind(), connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can call
connect() without previously calling bind(). In this case, the connect() call com­
pletes the binding necessary by assigning a port to the socket. This assignment can
be discovered with a call to getsockname().

Return Values and Errno Values: The value O indicates success; the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno

ENOTSOCK

EFAULT

Description

The s parameter is not a valid socket descriptor.

Using the name and name/en parameters as specified would
result in an attempt to access storage outside of the caller's
address space.

See Also: accept(), bind(), connect(), getpeername(), socket().

Chapter 3. Sockets 63

getsockopt()

getsockopt()

Parameter

s

level

optname

optval

opt/en

Description

The socket descriptor.

The level for which the option is set. Only SOL_ SOCKET is sup­
ported.

The name of a specified socket option.

Points to option data.

Points to the length of the option data.

Description: The getsockopt() call gets options associated with a socket. It can be
called only for sockets in the AF _INET domain. Options can exist at multiple pro­
tocol levels; they are always present at the highest socket level.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET as defined in <SYS\SOCKET.H>. To
manipulate options at any other level, such as the TCP or IP level, supply the appro­
priate protocol number for the protocol controlling the option. Currently, only the
SOL_SOCKET level is supported. The getprotobyname() call can be used to return
the protocol number for a named protocol.

The optval and opt/en parameters are used to return data used by the particular get
command. The optval parameter points to a buffer that is to receive the data
requested by the get command. The opt/en parameter points to the size of the
buffer pointed to by the optval parameter. It must be initially set to the size of the
buffer before calling getsockopt(). On return it is set to the actual size of the data
returned.

All of the socket level options expect optval to point to an integer and opt/en to be
set to the size of an integer. When the integer is nonzero, the option is enabled.
When it is zero, the option is disabled.

The following options are recognized at the socket level:

Option

SO BROADCAST

SO DEBUG

SO DONTBLOCK

Description

Toggles the ability to broadcast messages. If this option is
enabled, it allows the application to send broadcast mes­
sages overs, if the interface specified in the destination
supports broadcasting of packets. This option has no
meaning for stream sockets.

Toggles recording of debugging information.

Sets the socket to nonblocking.

64 TCP/IP Version 2.0 for DOS: Programmer's Reference

SO KEEPALIVE

SO RCVBUF

SO_REUSEADDR

SO_SNDBUF

SO_SNDTIMEO

getsockopt()

Toggles keep connection alive. TCP uses a timer called
the keepalive timer. This timer is used to monitor idle con­
nections that might have been disconnected because of a
peer crash or time-out. If this option is toggled, a keepalive
packet is periodically sent to the peer. This is used mainly
to allow servers to close connections that have already dis­
appeared as a result of clients going away without closing
connections. This option has meaning only for stream
sockets.

Gets buffer size for input. This option gets the size of the
receiving buffer from the buffer pointed to by optval. This
allows the buffer size to be tailored for specific application
needs, such as increasing the buffer size for high-volume
connections.

Toggles local address reuse. When enabled, this option
allows local addresses that are already in use to be bound.
This alters the normal algorithm used in the bind() call.
The system checks at connect time to be sure that no local
address and port have the same foreign address and port.
The error EADDRINUSE is returned if the association
al ready exists.

Gets buffer size for output. This option gets the size of the
sending buffer from the buffer pointed to by optval. This
allows the send buffer size to be tailored for specific appli­
cation needs such as increasing the buffer size for high
volume connections.

Sends time-out.

Return Values and Errno Values: The value 0 indicates success; the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno

EADDRINUSE

ENOTSOCK

EFAULT

ENOPROTOOPT

Description

The address is already in use.

The s parameter is not a valid socket descriptor.

Using optval and opt/en parameters would result in an
attempt to access memory outside the caller's address
space.

The optname parameter is unrecognized, or the level
parameter is not SOL SOCKET.

Chapter 3. Sockets 65

getsockopt{)

Examples: The following are examples of the getsockopt() call. See "setsockopt()"
on page 88 for examples of how the setsockopt() call options are set.

int re;
int s;
int optval;
int optlen;
int getsockopt(int s, int level, int optnarne, char *optval, int *optlen);

/* Get the size of the sending buffer */
optlen = sizeof(int);
re = getsoekopt(

s, SOL_SOCKET, SO_SNDBUF, (char*) &optval, &optlen);
if (re = 0)
{

printf("send buffer size= %\n," optval);
}

See Also: getprotobyname(), setsockopt(), socket().

66 TCP/IP Version 2.0 for DOS: Programmer's Reference

htonl()

Parameter
a

Description
The unsigned long integer to be put into network byte order.

Description: The htonl() call translates a long integer from host byte order to
network byte order.

Return Values: Returns the translated long integer.

See Also: htons(), ntohl(), ntohs().

htonl()

Chapter 3. Sockets 67

htons()

htons()

Parameter
a

Description
The unsigned short integer to be put into network byte order.

Description: The htons() call translates a short integer from host byte order to
network byte order.

Return Values: Returns the translated short integer.

See Also: htonl(), ntohl(), ntohs().

68 TCP/IP Version 2.0 for DOS: Programmer's Reference

inet_addr()

Parameter
cp

Description
A character string in standard'.' notation.

inet_addr()

Description: The inet_addr() call interprets character strings representing numbers
expressed in standard'.' notation and returns numbers suitable for use as an
internet address.

Values specified in standard'.' notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When a four-part address is specified, each part is interpreted as a byte of data and
assigned, from left to right, to one of the four bytes of an internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit quan­
tity and placed in the two rightmost bytes of the network address. This makes the
three-part address format convenient for specifying Class B network addresses as
128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit quantity
and placed in the three rightmost bytes of the network address. This makes the
two-part address format convenient for specifying Class A network addresses as
net.host.

When a one-part address is specified, the value is stored directly in the network
address space without any rearrangement of its bytes.

Numbers supplied as address parts in standard'.' notation can be decimal,
hexadecimal, or octal. Numbers are interpreted in C language syntax. A leading Ox
implies hexadecimal; a leading 0 implies octal. A number without a leading 0
implies decimal.

Return Values: The internet address is returned in network byte order.

See Also: inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa().

Chapter 3. Sockets 69

inet_lnaof()

inet_lnaof()

Parameter
in

Description
The host internet address.

Description: The inet_lnaof() call breaks apart the internet host address and returns
the local network address portion.

Return Values: The local network address is returned in host byte order.

See Also: inet_addr(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa().

70 TCP/IP Version 2.0 for DOS: Programmer's Reference

inet_ makeaddr()

Parameter
net
Ina

inet makeaddr()

Description
The network number.
The local network address.

Description: The inet_makeaddr() call takes a network number and a local network
address and constructs an internet address.

Return Values: The internet address is returned in network byte order.

See Also: inet_addr(), inet_lnaof(), inet_netof(), inet_network(), inet_ntoa().

Chapter 3. Sockets 71

inet_netof()

inet_ netof()

Parameter
in

Description
The internet address in network byte order.

Description: The inet_netof() call breaks apart the internet host address and returns
the network number portion.

Return Values: The network number is returned in host byte order.

See Also: inet_addr(), inet_lnaof(), inet_makeaddr(), inet_network(), inet_ntoa().

72 TCP/IP Version 2.0 for DOS: Programmer's Reference

inet network()

Parameter
cp

Description
A character string in standard'.' notation.

inet network()

Description: The inet_network() call interprets character strings representing
numbers expressed in standard '.' notation and returns numbers suitable for use as
a network number.

Return Values: The network number is returned in host byte order.

See Also: inet_addr(), inet_lnaof(), inet_makeaddr(), inet_netof(), inet_ntoa().

Chapter 3. Sockets 73

inet_ntoa()

inet_ntoa()

Parameter
in

Description
The host internet address.

Description: The inet_ntoa() call returns a pointer to a string expressed in the
dotted-decimal notation. inet_ntoa() accepts an internet address expressed as a
32-bit quantity in network byte order and returns a string expressed in
dotted-decimal notation.

Return Values: Returns a pointer to the internet address expressed in
dotted-decimal notation.

See Also: inet_addr(), inet_lnaof(), inet_makeaddr(), inet_network(), inet_ntoa().

74 TCP/IP Version 2.0 for DOS: Programmer's Reference

(
'_

listen()

listen()

Parameter Description

s The socket descriptor.

backlog Defines the maximum length for the queue of pending connections.

Description: The listen() call applies only to stream sockets. It performs two tasks:
it completes the binding necessary for a sockets, if bind() has not been called for s,
and it creates a connection request queue of length backlog to queue incoming con­
nection requests. Once full, additional connection requests are ignored.

The listen() call indicates a readiness to accept client connection requests. It trans­
forms an active socket into a passive socket. Once called, scan never be used as
an active socket to initiate connection requests. Calling listen() is the third of four
steps that a server performs to accept a connection. It is called after allocating a
stream socket with socket(), and after binding a name to s with bind(). It must be
called before calling accept().

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than
SOMAXCONN, as defined in <SYS\SOCKET.H>, backlog is set to SOMAXCONN.

Return Values and Errno Values: The value 0 indicates success, the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno Description

ENOTSOCK The s parameter is not a valid socket descriptor.

EOPNOTSUPP The s parameter is not a socket descriptor that supports the
listen() call.

See Also: accept(), bind(), connect(), socket().

Chapter 3. Sockets 75

ntohl()

ntohl()

Parameter Description
a The unsigned long integer to be put into host byte order.

Description: The ntohl() call translates a long integer from network byte order to
host byte order.

Return Values: Returns the translated long integer.

See Also: htonl(), htons(), ntohs().

76 TCP/IP Version 2.0 for DOS: Programmer's Reference

' I

/

/

"

(

"--·

ntohs()

ntohs()

Description Parameter
a The unsigned short integer to be put into host byte order.

Description: The ntohs() call translates a short integer from network byte order to
host byte order.

Return Values: Returns the translated short integer.

See Also: htonl(), htons(), ntohl().

Chapter 3. Sockets 77

recv()

recv()

Parameter

s

but

Jen

flags

Description

The socket descriptor.

The pointer to the buffer that receives the data.

The length in bytes of the buffer pointed to by the buf parameter.

The flags parameter is set by specifying one or more of the fol­
lowing flags. If more than one flag is specified, the logical OR
operator (I) must be used to separate them. Setting this param­
eter is supported only for sockets in the AF _INET domain.

MSG_ 008 Reads any out-of-band data on the socket.

MSG PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation sees the same data.

Description: The recv() call receives data on a socket with descriptors and stores it
in a buffer. The recv() call applies only to connected sockets.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available at the socket with descriptors, the recv() call waits for a
message to arrive and blocks the caller, unless the socket is in nonblocking mode.

Return Values and Errno Values: If successful, the length, in bytes, of the message
or datagram is returned. The value -1 indicates an error. The value of errno indi­
cates the specific error.

Errno

ENOTSOCK

EFAULT

EWOULDBLOCK

Description

The s parameter is not a valid socket descriptor.

Using the buf and Jen parameters would result in an
attempt to access memory outside the caller's address
space.

The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recvfrom(), select(), send(), sendto(),
setsockopt(), socket().

78 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

recvfrom()

Parameter

s

buf

Jen

flags

name

name/en

recvfrom{)

Description

The socket descriptor.

The pointer to the buffer that receives the data.

The length in bytes of the buffer pointed to by the buf parameter.

A parameter that can be set to O or MSG_PEEK. Setting this
parameter is supported only for sockets in the AF _INET domain.

MSG 008 Reads any out-of-band data on the socket.

MSG PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation sees the same data.

A pointer to a socket address structure from which data is
received. If name is a nonzero value, the source address is
returned.

The size of name in bytes.

Description: The recvfrom() call receives data on a socket with descriptors and
stores it in a buffer. The recvfrom() call applies to any datagram socket, whether
connected or unconnected.

If name is nonzero, the source address of the message is filled. name/en must first
be initialized to the size of the buffer associated with name, and is then modified on
return to indicate the actual size of the address stored there.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
datagram packets are not available at the socket with descriptors, the recvfrom()
call waits for a message to arrive and blocks the caller, unless the socket is in non­
blocking mode.

Return Values and Errno Values: If successful, the length, in bytes, of the message
or datagram is returned. The value -1 indicates an error. The value of errno indi­
cates the specific error.

Errno

ENOTSOCK

EFAULT

EWOULDBLOCK

Description

The s parameter is not a valid socket descriptor.

Using the buf and fen parameters would result in an
attempt to access memory outside.the caller's address
space.

The s parameter is in nonblocking mode and no data is
available to read.

Chapter 3. Sockets 79

select()

select()

See Also: getsockopt(), recv(), select(), send(), sendto(), setsockopt(), socket().

Parameter

nfds

readfds

writefds

exceptfds

timeout

Description

The number of socket descriptors to check.

Points to a bit mask of descriptors to check for reading.

Points to a bit mask of descriptors to check for writing.

Points to a bit mask of descriptors to be checked for exceptional
pending conditions.

Points to the time to wait for the select() call to complete.

Description: The select() call monitors activity on a set of different sockets until a
timeout expires, to see if any sockets are ready for reading or writing, or if any
exceptional conditions are pending. The bit mask is made up of an array of inte­
gers. Macros are provided to manipulate the bit masks.

Macro

FD_SET(socket, bit_mask_address)

FD_CLR(socket, bit_mask_address)

FD _ISSET(socket, bit_mask_address)

FD_ZERO

Description

Sets the bit for the socket in the bit
mask pointed to by bit_mask_address.

Clears the bit.

Returns true if the bit is set for this
socket descriptor; otherwise, it returns
false.

Clears the entire bit mask for all socket
descriptors.

Note: For macros FD_SET, FD_CLR, and FD_ISSET, the parameters socket and
bit_mask_address should be defined in the following manner:

int socket;
struct fd_set *bit_mask_address, bit_mask_address;

The first nfds descriptors in each bit mask are tested for the specified condition.

80 TCP/IP Version 2.0 for DOS: Programmer's Reference

select()

Socket descriptors are specified by setting bits in a bit mask. If timeout is a NULL
pointer, the call blocks indefinitely until one of the requested conditions is satisfied.
If timeout is non-NULL, it specifies the maximum time to wait for the call to com­
plete. To poll a set of sockets, the timeout pointer should point to a zeroed timeva/
structure. The timeval structure is defined in the <SYS\TIME.H> header file and
contains the following fields:

Field
tv sec
tv usec

Description
The number of seconds.
The number of microseconds.

Setting any of the descriptor pointers to zero indicates that no checks are to be
made for the conditions. For example, setting exceptfds to be a NULL pointer
causes the select call to check for only read and write conditions.

Return Values and Errno Values: The total number of ready sockets (in all bit
masks) is returned. The value -1 indicates an error. The value 0 indicates an
expired time limit. If the return value is greater than 0, the socket descriptors in
each bit mask that are ready are set to 1. All others are set to 0. The value of errno
indicates the specific error.

Errno

ENOTSOCK

EFAULT

EINVAL

Description

One of the descriptor sets specified an invalid descriptor.

One of the parameters pointed to a value outside the
caller's address space.

One of the fields in the timeval structure is invalid.

See Also: accept(), connect(), recv(), send().

Chapter 3. Sockets 81

send()

send()

Parameter

s

msg

/en

flags

Description

The socket descriptor.

Points to the buffer containing the message to transmit.

The length of the message pointed to by the msg parameter.

The flags parameter is set by specifying one or more of the fol­
lowing flags, If more than one flag is specified, the logical OR
operator (I) must be used to separate them. Setting this parameter
is supported only for sockets in the AF _INET domain.

MSG_OOB

MSG_FLUSH

Sends out-of~band data on sockets that support
this notion. Only SOCK_STREAM sockets
created in the AF _INET address family support
out-of-band data.

This option flushes the data on send().

Description: The send() call sends packets on the socket with descriptors. The
send() call applies to all connected sockets.

If buffer space is not available at the socket to hold the message to be transmitted,
the send() call normally blocks, unless the socket is placed in nonblocking mode.
The select() call can be used to determine when it is possible to send more data.

Return Values and Errno Values: No indication of failure to deliver is implicit in a
send() routine. The value -1 indicates locally detected errors. The value of errno
indicates the specific error.

Errno

ENOTSOCK

EFAULT

ENOBUFS

EWOULDBLOCK

Description

The s parameter is not a valid socket descriptor.

Using the msg and /en parameters would result in an
attempt to access memory outside the caller's address
space.

No buffer space is available to send the message.

The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recv(), recvfrom(), select(), sendto(), socket().

82 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

sendto()

sendto()

Parameter Description

s The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

/en The length of the message in the buffer pointed to by the msg param­
eter.

flags A parameter that can be set to 0. Setting this parameter is supported
only for sockets in the AF _INET domain.

MSG FLUSH The option flushes the data on send.

to The address of the target.

to/en The size of the address pointed to by to.

Description: The sendto() call sends packets on the socket with descriptors. The
sendto() call applies to any datagram socket, whether connected or unconnected.

Return Values and Errno Values: If successful, the number of characters sent is
returned. The value -1 indicates an error. The value of errno indicates the specific
error.

No indication of failure to deliver is implied in the return value of this call when used
with datagram sockets.

Errno

ENOTSOCK

EFAULT

El NV AL

EMSGSIZE

ENOBUFS

EWOULDBLOCK

Description

The s parameter is not a valid socket descriptor.

Using the msg and fen parameters would result in an
attempt to access memory outside the caller's address
space.

to/en is not the size of a valid address for the specified
address family.

The message was too big to be sent as a single datagram.
The default is 8192, and the maximum is 32 767.

No buffer space is available to send the message.

The s parameter is in nonblocking mode and no data is
available to read.

See Also: recv(), recvfrom(), send(), select(), socket().

Chapter 3. Sockets 83

sethostent()

sethostent()

Parameter
stayopen

Description
Tells the HOST file whether to remain open after each call.

Description: The sethostent() call opens and rewinds the <TCPBASE>\ETC\HOSTS
file. If the stayopen flag is nonzero, the HOSTS file remains open after each call.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of errno indicates the specific error.

See Also: endhostent(), gethostbyaddr(), gethostbyname(), gethostent().

84 TCP/IP Version 2.0 for DOS: Programmer's Reference

setnetent(}

Parameter
stay open

setnetent()

Description
Tells the NETWORKS file whether to remain open after each call.

Description: The setnetent() call opens and rewinds the
<TCPBASE>\ETC\NETWORKS file which contains information about known net­
works. If stayopen is nonzero the NETWORKS file remains open after each call.
See Appendix J, "NETWORKS File Structure," for the format of the NETWORKS file.

Return Values: The value O indicates success; the value -1 indicates an error. The
value of errno indicates the specific error.

See Also: endnetent(), getnetbyaddr(), getnetbyname(), getnetent().

Chapter 3. Sockets 85

setprotoent()

setprotoent()

Parameter
stay open

Description
Tells the PROTOCOL file whether to remain open after each call.

Description: The setprotoent() call opens and rewinds the
<TCPBASE>\ETC\PROTOCOL file, which contains information about known proto­
cols. If the stayopen flag is nonzero, PROTOCOL file remains open after each call.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of errno indicates the specific error.

See also: endprotoent(), getprotobyname(), getprotobynumber(), getprotoent().

86 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

\

setservent()

Parameter
stayopen

setservent(}

Description
Tells the SERVICES file whether to remain open after each call.

Description: The setservent() call opens and rewinds the
<TCPBASE>\ETC\SERVICES file, which contains information about known services
and well-ports. See "Ports," for more information on the SERVICES file.

Return Values: The value 0 indicates success, the value -1 indicates an error. The
value of errno indicates the specific error.

See Also: endservent(), getservbyname(), getservbyport(), getservent().

Chapter 3. Sockets 87

setsockopt{)

setsockopt()

Parameter

s

level

optname

optval

opt/en

Description

The socket descriptor.

The level for which the option is being set. Only SOL_SOCKET is
supported.

The name of a specified socket option.

Points to option data.

Specifies the length of the option data.

Description: The setsockopt() call sets options associated with a socket. It can be
called only for sockets in the AF _INET domain. Options can exist at multiple pro­
tocol levels; they are always present at the highest socket level.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET, as defined in <SYS\SOCKET.H>. To
manipulate options at any other level, such as the TCP or IP level, supply the appro­
priate protocol number for the protocol controlling the option. Currently, only the
SOL_SOCKET level is supported. The getprotobyname() call can be used to return
the protocol number for a named protocol.

The optva/ and opt/en parameters are used to pass data used by the particular set
command. The optval parameter points to a buffer containing the data needed by
the set command. The optval parameter is optional and can be set to the NULL
pointer, if data is not needed by the command. The opt/en parameter must be set to
the size of the data pointed to by optval.

All of the socket level options expect optval to point to an integer and opt/en to be
set to the size of an integer. When the integer is nonzero, the option is enabled.
When it is zero, the option is disabled.

The following options are recognized at the socket level:

Option Description

SO_BROADCAST Toggles the ability to broadcast messages. If this option is
enabled, it allows the application to send broadcast messages
overs, if the interface specified in the destination supports
broadcasting of packets. This option has no meaning for stream
sockets.

SO_DONTBLOCK Sets sockets to nonblocking.

88 TCP/IP Version 2.0 for DOS: Programmer's Reference

/
(
I

"'-

SO KEEPALIVE

SO RCVBUF

setsockopt()

Toggles keep connection alive. TCP uses a timer called the
keepalive timer. This timer is used to monitor idle connections
that might have been disconnected because of a peer crash or
time-out. If this option is toggled, a keepalive packet is period­
ically sent to the peer. This is used mainly to allow servers to
close connections that have already disappeared as a result of
clients going away without closing connections. This option
only has meaning for stream sockets.

Sets buffer size for input. This option sets the size of the
receive buffer to the value contained in the buffer pointed to by
optval. This allows the buffer size to be tailored for specific
application needs, such as increasing the buffer size for
high-volume connections.

SO REUSEADDR Toggles local address reuse. When enabled, this option allows
local addresses that are already in use to be bound. This alters
the normal algorithm used in the bind() call. The system checks
at connect time to be sure that no local address and port have
the same foreign address and port. The error EADDRINUSE is
returned if the association already exists.

SO SNDBUF Sets buffer size for output. This option sets the size of the send
buffer to the value contained in the buffer pointed to by optval
This allows the send buffer size to be tailored for specific appli­
cation needs, such as increasing the buffer size for high-volume
connections.

SO SNDTIMEO Sends time-out.

Return Values and Errno Values: The value 0 indicates success; the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno

EADDRINUSE

ENOTSOCK

EFAULT

Description

The address is already in use.

The s parameter is not a valid socket descriptor.

Using optval and opt/en parameters would result in an attempt
to access memory outside the caller's address space.

ENOPROTOOPT The optname parameter is unrecognized, or the level param­
eter is not SOL SOCKET.

Examples: The following are examples of the setsockopt() call. See "getsockopt()"
on page 64 for examples of how the getsockopt() options set are queried.

int re;
int s;
int optval;
int setsoekopt(int s, int level, int optname, char *optval, int optlen)

/* Set the send buffer size */
optval = 16384;
re= setsockopt(s, SOL_SOCKET, SO_SNDBUF, (char*) &optval, sizeof(int));

See Also: getprotobyname(), getsockopt(), socket().

Chapter 3. Sockets 89

shutdown()

shutdown()

Parameter Description

s The socket descriptor.

how The condition of the shutdown. The values 0, 1, or 2 set the condi­
tion.

Description: The shutdown() call shuts down all or part of a duplex connection. how
sets the condition for shutting down the connection to sockets.

how can have a value of 0, 1, or 2, where:

• 0 ends communication from sockets.
• 1 ends communication to sockets.
• 2 ends communication both to and from sockets.

Return Values and Errno Values: The value 0 indicates success; the value -1 indi­
cates an error. The value of errno indicates the specific error.

Errno

ENOTSOCK

El NV AL

Description

The s parameter is not a valid socket descriptor.

The how parameter was not set to one of the valid values.
Valid values are 0, 1, and 2.

See Also: accept(), connect(), socket(), so_close().

90 TCP/IP Version 2.0 for DOS: Programmer's Reference

sock_init(}

sock_init()

Description: There are no parameters associated with this call. The sock_init() call
initializes the socket data structures and checks whether or not !NET.EXE is running.
Therefore, sock_init() should be called at the beginning of each program that uses
socket().

Return Values: The value 0 indicates success, the value 1 indicates an error.

See Also: dosip_init().

Chapter 3. Sockets 91

socket()

socket()

Parameter

domain

type

protocol

Description

The address domain requested. It must be AF INET.

The type of socket created, either SOCK_ STREAM or
SOCK DGRAM.

The protocol requested. Some possible values are 0,
IPPROTO_UDP, or IPPROTO_TCP.

Description: The socket() call creates an endpoint for communication and returns a
socket descriptor representing the endpoint. Different types of sockets provide dif­
ferent communication services.

The domain parameter specifies a communication domain within which communi­
cation is to take place. This parameter selects the address family (format of
addresses within a domain) that is used. The only family supported is AF _INET,
which is the internet domain. This constant is defined in the <SYS\SOCKET.H>
header file.

The type parameter specifies the type of socket created. The type is analogous with
the semantics of the communication requested. These socket type constants are
defined in the <SYS\SOCKET.H> header file. The types supported are:

Socket Type

SOCK STREAM

SOCK DGRAM

Description

Provides sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mech­
anism for out-of-band data.

Provides datagrams, which are connectionless mes­
sages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out
of order, lost, or delivered multiple times.

The protocol parameter specifies a particular protocol to be used with the socket. In
most cases, a single protocol exists to support a particular type of socket in a partic­
ular addressing family. If the protocol field is set to 0, the system selects the default
protocol number for the domain and socket type requested. Protocol numbers are
found in the <TCPBASE>\ETC\PROTOCOL file. Alternatively, the getprotobyname()
call can be used to get the protocol number for a protocol with a known name. Cur­
rently, protocol defaults are TCP for stream sockets and UDP for datagram sockets.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,
flow-controlled connections between peer applications. Stream sockets are either
active or passive. Active sockets are used by clients who initiate connection
requests with connect(). By default, socket() creates active sockets. Passive
sockets are used by servers to accept connection requests with the connect() call.
An active socket is transformed into a passive socket by binding a name to the
socket with the bind() call and by indicating a willingness to accept connections with

92 TCP/IP Version 2.0 for DOS: Programmer's Reference

socket{)

the listen() call. Once a socket is passive, it cannot be used to initiate connection
requests.

In the AF _INET domain, the bind() call applied to a stream socket lets the application
specify the networks from which it is willing to accept connection requests. The
application can fully specify the network interface by setting the internet address
field in the address structure to the internet address of a network interface. Alterna­
tively, the application can use a wildcard to specify that it wants to receive con­
nection requests from any network. This is done by setting the internet address
field in the address structure to the constant INADDR ANY as defined in
<SYS\SOCKET.H>.

Once a connection has been established between stream sockets, any of the data
transfer calls can be used: send(), recv(), sendto(), recvfrom(). Usually, a send-recv
pair is used for sending data on stream sockets.

SOCK_DGRAM sockets model datagrams. They provide connectionless message
exchange with no guarantees on reliability. Messages sent have a maximum size.

There is no active or passive analogy to stream sockets with datagram sockets.
Servers must still call bind() to name a socket and to specify from which network
interfaces it wishes to receive packets. Wildcard addressing, as described for
stream sockets, applies for datagram sockets also. Because datagram sockets are
connectionless, the listen() call has no meaning for them and must not be used with
them.

Once an application has received a datagram socket it can exchange datagrams
using the sendto() and recvfrom() calls. If the application goes one step further by
calling connect() and fully specifying the name of the peer with which all messages
will be exchanged, then the other data transfer calls send() and recv() can also be
used. For more information about placing a socket into the connected state, see
"connect()" on page 41.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting
the destination address to be a broadcast address is network interface dependent
(depends on class of address and whether sub-nets are being used). The constant
INADDR_BROADCAST, defined in <SYS\SOCKET.H> can be used to broadcast to
the primary network if the primary network configured supports broadcast.

Outgoing packets have an IP header prefixed to them. IP options can be set and
inspected using the setsockopt() and getsockopt() calls respectively. Incoming
packets are received with the IP header and options intact.

Sockets are deallocated with the so_close() call.

Return Values and Errno Values: A non-negative socket descriptor indicates
success. The value -1 indicates an error. The value of errno indicates the specific
error.

Errno

EPROTONOSUPPORT

Description

The protocol is not supported in this domain or
this protocol is not supported for this socket
type.

Chapter 3. Sockets 93

socket()

Examples: The following are examples of the socket() call.

int s;
struct protoent *p;
struct protoent *getprotobyname(char *name);
int socket(int domain, int type, int protocol);

/* Get stream socket in internet domain with default protocol */
s = socket(AF_INET, SOCK_STREAM, O);

/* Get datagram socket in internet domain for UDP protocol */
p = getprotobyname("udp");
s = socket(AF_INET, p->p_proto);

See Also: accept(), bind(), connect(), getprotobyname(), getsockname(),
getsockopt(), recv(), recvfrom(), select(), send(), sendto(), shutdown(), so_close().

94 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

/

\.

/
i

"'-···

so_close()

Parameter
s

Description
The descriptor of the socket to discard.

so_close()

Description: The so_close() call shuts down the socket associated with the socket
descriptors, and frees resources allocated to the socket. Ifs refers to an open TCP
connection, the connection is closed.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of errno indicates the specific error.

See Also: accept(), socket().

Chapter 3. Sockets 95

so_flush()

so_flush()

Parameter
s

Description
The socket descriptor.

Description: The so_flush() call flushes the packet with descriptors.

96 TCP/IP Version 2.0 for DOS: Programmer's Reference

so_read()

Parameter
s
buf
fen

so_read()

Description
The socket descriptor.
The pointer to the buffer that receives the data.
The length in bytes of the buffer pointed to by the buf parameter.

Description: The so_read() call receives data on a socket with descriptors and
stores it in a buffer. The so_read() call applies only to connected sockets.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available at the socket with descriptors, the so_read() call waits for a
message to arrive and blocks the caller, unless the socket is in nonblocking mode.

Return Values and Errno Values: If successful, the length, in bytes, of the message
or datagram is returned. The value -1 indicates an error. The value of errno indi­
cates the specific error.

Errno

ENOTSOCK

EFAULT

EWOULDBLOCK

Description

The s parameter is not a valid socket descriptor.

Using the buf and fen parameters would result in an
attempt to access memory outside the caller's address
space.

The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recvfrom(), select(), send(), sendto(),
setsockopt(), socket().

Chapter 3. Sockets 97

so_write()

so_write{)

Parameter

s

msg

Jen

Description

The socket descriptor.

Points to the buffer containing the message to transmit.

The length of the message pointed to by the msg parameter.

Description: The so_write() call sends packets on the socket with descriptors. The
so_write() call applies to all connected sockets.

If buffer space is not available at the socket to hold the message to be transmitted,
the so_ write() call normally blocks, unless the socket is placed in nonblocking
mode. The select() call can be used to determine when it is possible to send more
data.

Return Values and Errno Values: No indication of failure to deliver is implicit in a
so_write() routine. The value -1 indicates locally detected errors. The value of
errno indicates the specific error.

Errno

ENOTSOCK

EFAULT

ENOBUFS

EWOULDBLOCK

Description

The s parameter is not a valid socket descriptor.

Using the msg and Jen parameters would result in an
attempt to access memory outside the caller's address
space.

No buffer space is available to send the message.

The s parameter is in nonblocking mode and no data is
available to read.

See Also: connect(), getsockopt(), recv(), recvfrom(), select(), sendto(), socket().

98 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

Chapter 4. Remote Procedure Calls (RPCs)

The RPG Interface .. 101
RPG Support for DOS 104

RPG Client Calls . 104
RPG Server Calls 104

Portmapper .. 105
Contacting Portmapper 105
Target Assistance . 105

enum clnt stat Structure 106
Remote Procedure Call Library 107
Porting . 107
Compiling and Linking . 107
Remote Procedure and eXternal Data Representation Calls 108

auth_destroy() .. 109
authnone _create() . 11 O
authunix_create() 111
authunix _create_ default() . 112
callrpc() ... 113
clnt_broadcast() ... 114
clnt_call() .. 115
clnt_destroy() ... 116
clnt_freeres() . 117
clnt_geterr() .. 118
cl nt_pcreateerror() . 119
cl nt_perrno() . 120
clnt_perror() .. 121
cl nttcp _create() . 122
clntudp_create() ... 123
get_myaddress() ... 124
pmap_getmaps() 125
pmap_getport() .. 126
pmap_rmtcall() .. 127
pmap_set() ... 128
pmap_unset() ... 129
registerrpc() .. 130
rpc_createerr ... 131
svc_destroy() ... 132
SVC fds ... 133
svc_freeargs() .. 134
svc_getargs() ... 135
svc_getcaller() .. 136
svc_getreq() .. 137
svc_register() ... 138
svc_run() . 139
svc_sendreply() ... 140
svc_unregister() ... 141
svcerr _ auth() . 142
svcerr _decode() . 143
svcerr_noproc() ... 144
svcerr_noprog() ... 145
svcerr_progvers() .. 146
svcerr_systemerr() 147
svcerr_weakauth() .. 148

© Copyright IBM Corp. 1991 99

svctcp_create() .. 149
svcudp _create() . 150
xdr_accepted_reply() 151
xdr_array() ... 152
xdr_authunix_parms() 153
xdr_bool() ... 154
xdr_bytes() ... 155
xdr_callhdr() .. 156
xdr_callmsg() ... 157
xdr_double() .. 158
xdr_enum() .. 159
xdr_float() ... 160
xdr_inline() .. 161
xdr_int() ... 162
xdr_long() ... 163
xdr_opaque() ... 164
xdr_opaque_auth() 165
xdr_pmap() .. 166
xdr_pmaplist() .. 167
xdr_reference() .. 168
xdr_rejected_reply() 169
xdr_replymsg() .. 170
xdr_short() ... 171
xdr_string() .. 172
xdr_u_int() ... 173
xdr_u_long() .. 174
xdr_u_short() ... 175
xdr_union() .. 176
xdr_void() ... 177
xdr_wrapstring() ... 178
xdrmem_create() .. 179
xdrrec _create() . 180
xdrrec_endofrecord() 181
xdrrec_eof() .. 182
xdrrec_skiprecord() 183
xdrstdio _create() . 184
xprt_register() .. 185
xprt_unregister() ... 186

100 TCP/IP Version 2.0 for DOS: Programmer's Reference

Chapter 4. Remote Procedure Calls {RPCs)

This chapter describes the high-level remote procedure calls (RPCs) implemented
in TCP/IP for DOS, including the RPC programming interface to the C language, and
communication between processes.

TCP/IP for DOS does not support RPCs with raw sockets, a local portmapper, or a
RPC server on the DOS machine. Applications with client/server functions must run
the server routines on a machine using TCP/IP Version 1.2 for OS/2, TCP/IP Version

* 2.0 for VM, TCP/IP Version 2.0 for MVS or AIX Workstation.

The RPC protocol enables users to work with remote procedures as if the proce­
dures were local. The remote procedure calls are defined through routines con­
tained in the RPC protocol. Each call message is matched with a reply message.
The RPC protocol is a message-passing protocol that implements other non-RPC
protocols such as batching and broadcasting remote calls. The RPC protocol also
supports callback procedures and the select subroutines on the server side.

RPC provides an authentication process that identifies the server and client to each
other. RPC includes a slot for the authentication parameters on every remote pro­
cedure call so that the caller can identify itself to the server. The client package
generates and returns authentication parameters. RPC supports various types of

** authentication, such as the UNIX systems.

In RPC, each server supplies a program that is a set of procedures. The combina­
tion of a host address, a program number, and a procedure number specifies one
remote service procedure. In the RPC model, the client makes a procedure call to
send a data packet to the server. When the packet arrives, the server calls a dis­
patch routine, performs whatever service is requested, and sends a reply back to
the client. The procedure call then returns to the client.

RPC is divided into three layers: highest, intermediate, and lowest. The RPC inter­
face is generally used to communicate between processes on different workstations
in a network. However, RPC works just as well for communication between different
processes on the same workstation.

The port mapper program maps RPC program and version numbers to a
transport-specific port number. The port mapper program makes dynamic binding
of remote programs possible.

To use the RPC protocol, you must be familiar with C language programming and
have a working knowledge of networking concepts.

For more information on the RPC and XDR protocols, see the Sun Microsystems
publication, Networking on the Sun Workstation: Remote Procedure Call Program­
ming Guide.

The RPC Interface

© Copyright IBM Corp. 1991

The RPC interface enables programmers to write distributed applications using
high-level RPCs rather than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a
procedure to send a call message to the server. When the message arrives, the

101

server calls a dispatch routine, and performs the requested service. The server
sends back a reply message, after which the original procedure call returns to the
client program with a value derived from the reply message.

See Appendix C, "Sample RPC Programs," for sample RPC client and server pro­
grams. Figure 23, and Figure 24 on page 103, provide an overview of the
high-level RPC client and server processes from initialization through cleanup.

___ ~------'B-Tn)
*

i

Initialize

Process
Call

Free
Resources

Final
Cleanup

TCP or UDP

i
get_myaddress
pmap_rmtcall
pmap_getmap

[
tcJ pmap_getport

clnt _create
ud

i
auth unix -create [none] create

~'''-''''"''

sucless er~

clnt_call clnt_pcreateerror
clnt broadcast

!
'"h
success error

l
clnt_perror
clnt1eterr

clnt freeres

auth destroy
clnt-destroy

i
UDP only

clnt_perrno

(End)

Figure 23. Remote Procedure Call (Client)

102 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

\"

Receive
Request

Process

Reply

Transaction
Cleanup and
Final
Cleanup

TCP or UDP

i
svc C:J-create

xprt_register
svc_register
pmap set

svc_getreq
svc_ etcaller

XOR encode

UDP ry
registerrpc

svc_getargs

decode routines

''''~''''''

svc_freeargs

pmap_unset
xprt_unregister
svc unregister
svc=destroy

(End)

Figure 24. Remote Procedure Call (Server)

Chapter 4. Remote Procedure Calls (RPCs) 103

RPC Support for DOS

RPC Client Calls

The RPC protocol permits remote execution of subroutines across a TCP/IP network.
RPC, together with the external Data Representation (XDR) protocol, defines a
standard for representing data that is independent of internal protocols or format­
ting. RPCs can communicate between processes on the same or different hosts.

TCP/IP for DOS does not support RPCs with raw sockets, a local portmapper, or a
RPC server on the DOS machine. Applications with client/server functions must run
the server routines on a machine using TCP/IP Version 1.2 for OS/2, TCP/IP Version
2.0 for VM, TCP/IP Version 2.0 for MVS or AIX WorkStation.

The following is a list of RPC client calls supported by TCP/IP for DOS.

auth _destroy()
authunix _create()
callrpc()
clnt_call()
cl nt_f reeres()
cl nt_pcreateerror()
cl nt_perror()
cl ntudp _create()
pmap_getmaps()
pmap_rmtcall()
xdr _accepted _reply()
xdr_array()
xdr_bytes()
xdr_callmsg()
xdr_enum()
xdr _inline()
xdr_long()
xdr_opaque_auth()
xdr _pmaplist()
xdr _rejected_reply()
xdr_short()
xdr_u_int()
xdr_u_short()
xdr_void()
xdrmem_create()
xdrrec _ endofrecord()
xdrrec_skiprecord()
xprt_register()

authnone_create()
authunix_create_default()
clnt_broadcast()
cl nt_ destroy()
clnt_geterr()
clnt_perrno()
cl nttcp _create()
get_myaddress()
pmap _getport()
rpc _ createerr
xdr _authunix_parms()
xdr_bool()
xdr_callhdr()
xdr_double()
xdr_float()
xdr_int()
xdr_opaque()
xdr_pmap()
xdr _reference()
xdr _replymsg()
xdr_string()
xdr_u_long()
xdr_union()
xdr_wrapstring()
xdrrec_create()
xdrrec_eof()
xdrstdio_create()
xprt_unregister()

RPC Server Calls
The following is a list of RPC server calls which are not supported by TCP/IP for
DOS.

pmap_set()
registerrpc()
SVC fds
svc_getargs()
svc_getreq()
svc_run()
svc_unregister()

104 TCP/IP Version 2.0 for DOS: Programmer's Reference

pmap_unset()
svc _destroy()
svc _freeargs()
svc_getcaller()
svc _register()
svc_sendreply()
svcerr _auth()

\

(

_

(
~

-~

Portmapper

svcerr _decode()
svcerr _noprog()
svcerr _system err()
svctcp _create()

svcerr _noproc()
svcerr _progvers()
svcerr _ weakauth()
svcudp_create()

Portmapper is the software that supplies client programs with the port numbers of
server programs.

You can communicate between different computer operating systems when mes­
sages are directed to port numbers rather than to targeted remote programs.
Clients contact server programs by sending messages to the port numbers where
receiving processes receive the message. Because you make requests to the port
number of a server rather than directly to a server program, client programs need a
way to find the port number of the server programs they wish to call. Portmapper
standardizes the way clients locate the port number of the server programs sup­
ported on a network.

Portmapper resides on all hosts on well-known port 111. See Appendix A,
"Well-Known Port Assignments," for other well-known TCP and UDP port assign­
ments.

The port-to-program information maintained by Portmapper is called the portmap.
Clients ask Portmapper about entries for servers on the network. Servers contact
Portmapper to add or update entries to the portmap.

Contacting Portmapper
To find the port of a remote program, the client sends an RPG to well-known port 111
of the server's host. If Portmapper has a portmap entry for the remote program,
Portmapper provides the port number in a return RPG. The client then requests the
remote program by sending an RPG to the port number provided by Portmapper.

Clients can save port numbers of recently called remote programs to avoid having
to contact Portmapper for each request to a server.

Target Assistance
Portmapper offers a program to assist clients in contacting server programs. If the
client sends Portmapper an RPG with the target program number, version number,
procedure number, and arguments, Portmapper searches the portmap for an entry,
and passes the client's message to the server. When the target server returns the
information to Portmapper, the information is passed to the client, along with the
port number of the remote program. The client can then contact the server directly.

Chapter 4. Remote Procedure Calls (RPCs) 105

enum clnt stat Structure
The enum clnt_stat structure is defined in the <RPC\CLNT.H> file.

RPCs frequently return enum clnt_stat information. The following is the format of
the enum clnt_stat structure:

enum clnt_stat {
RPC_SUCCESS=0,
/*
* local errors
*/

RPC_CANTENCODEARGS=l,
RPC_CANTDECODERES=2,
RPC_CANTSEND=3,
RPC_CANTRECV=4,
RPC_TIMEDOUT=5,
/*
* remote errors
*/

RPC_VERSMISMATCH=6,
RPC_AUTHERROR=7,
RPC_PROGUNAVAIL=8,
RPC_PROGVERSMISMATCH=9,
RPC_PROCUNAVAIL=10,
RPC_CANTDECODEARGS=ll,
RPC_SYSTEMERROR=12,
/*
* callrpc errors
*/

RPC_UNKNOWNHOST=13,
/*
* create errors
*/

RPC_PMAPFAILURE=14,
RPC_PROGNOTREGISTERED=15,
/*
* unspeci fi.ed error
*/

RPC FAILED=16
- };

106 TCP/IP Version 2.0 for DOS: Programmer's Reference

/*call succeeded*/

/* can't encode arguments */
/* can't decode results */
/* failure in sending call */
/* failure in receiving result */
/* call timed out */

/* RPC versions not compatible */
/* authentication error */
/* program not available */
/* program version mismatched */
/* procedure unavailable */
/* decode arguments error */
/* generic "other problem" */

/* unknown host name */

/* the pmapper failed in its call */
/* remote program is not registered */

i"

Remote Procedure Call Library

Porting

To use the RPCs described in this chapter, you must have the following header files,
contained in the <TCPBASE>\INCLUDE directory, available on your system:

• RPC\AUTH.H
• RPC\A_UNIX.H
• RPC\CLNT.H
• RPC\P CLNT.H
• RPC\P PROT.H
• RPC\P RMT.H
• RPC\RPC.H
• RPC\R_MSG.H
• RPC\TYPES.H
• RPC\SVC.H
• RPC\SVC AUTH.H
• RPC\XDR.H

The RPC routines are contained in the SUNRPC.LIB file in the <TCPBASE>\LIB
directory. You must also have the TCPIP.LIB file in your <TCPBASE>\LIB direc­
tory.

You should put the following statement at the top of any file using RPC code:

For a summary of each remote procedure call supported by TCP/IP for DOS, see
Appendix F, "Remote Procedure Call Quick Reference."

The IBM DOS RPG implementation differs from the Sun Microsystems RPC imple­
mentation, because functions that rely on file descriptor structures are not sup­
ported by the IBM DOS RPG implementation.

Compiling and Linking
The following steps describe how to compile and link programs using the RPC APl's
with Microsoft C Version 5.10.

Note: In the following examples, model refers to the memory model you will use to
compile your program: L for large model, S for small model, M for medium model,
or C for compact model.

1. Include the <TCPBASE>\INCLUDE directory at the beginning of the INCLUDE
environment variable so that the C compiler finds the appropriate header files.
You can set this interactively or you can include it in the AUTOEXEC.BAT file.

For example, if the INCLUDE environment variable previously read:

SET INCLUDE=C:\MSC\INCLUDE

you would change it to read:

SET INCLUDE=<TCPBASf>\INCLUDE;C:\MSC\INCLUDE

Chapter 4. Remote Procedure Calls (RPCs) 107

2. To compile your program, enter the following command:

cl \c \Amodel myprog.c

3. To create an executable program, enter the following command:

link /stack:6144 myproj.obj,,,<TCPBASf>\LIB\modeZ\sunrpc.lib+
<TCPBASE>\LIB\modeZ\tcpip.lib;

Remote Procedure and external Data Representation Calls
This section provides the syntax, parameters, and other appropriate information for
each remote procedure and external data representation call supported by TCP/IP
for DOS.

108 TCP/IP Version 2.0 for DOS: Programmer's Reference

auth _destroy()

Parameter
auth

Description
A pointer to authentication information.

auth _destroy()

Description: The auth_destroy() call deletes the authentication information for auth.
Once this procedure is called, auth is undefined.

See Also: authnone_create(), authunix_create(), authunix_create_default().

Chapter 4. Remote Procedure Calls (RPCs) 109

authnone _create()

authnone _create()

Description: The authnone_create() call creates and returns an RPC authentication
handle. The handle passes the NULL authentication on each call.

See Also: auth_destroy(), authunix_create(), authunix_create_default().

110 TCP/IP Version 2.0 for DOS: Programmer's Reference

authunix create{)

Parameter

host

uid

gid

fen

aup_gids

authunix_create()

Description

A pointer to the symbolic name of the host where the desired
server is located.

The user's user ID.

The user's group ID.

The length of the information pointed to by aup_gids.

A pointer to an array of groups to which the user belongs.

Description: The authunix_create() call creates and returns an authentication
handle that contains UNIX-based authentication information.

See Also: auth_destroy(), authnone_create(), authunix_create_default().

Chapter 4. Remote Procedure Calls (RPCs) 111

authunix_create_default()

authunix =create_ default()

Description: The authunix_create_defaultO call calls authunix_create() with default
parameters.

See Also: auth_destroy(), authnone_create(), authunix_create().

112 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

."'

(

_

callrpc()

Parameter

host

prognum

versnum

procnum

inproc

in

outproc

out

callrpc()

Description

A pointer to the symbolic name of the host where the desired
server is located.

Identifies the program number of the remote procedure.

Identifies the version number of the remote procedure.

Identifies the procedure number of the remote procedure.

The XDR procedure used to encode the arguments of the remote
procedure.

A pointer to the arguments of the remote procedure.

The XDR procedure used to decode the results of the remote proce­
dure.

A pointer to the results of the remote procedure.

Description: The callrpc() call calls the remote procedure described by prognum,
versnum, and procnum running on the host system. callrpc() encodes and decodes
the parameters for transfer.

Notes:

1. clnt_perrno() can be used to translate the return code into messages.

2. callrpc() cannot call the procedure xdr_enum. See "xdr_enum()" on page 159
tor more information.

3. This procedure uses UDP as its transport layer. See "clntudp_create()" on
page 123 for more information.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: clnt_call{), clnt_perrno(), clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 113

clnt_ broadcast()

clnt_ broadcast()

Parameter

prognum

versnum

procnum

inproc

in

outproc

out

each result

Description

Identifies the program number of the remote procedure.

Identifies the version number of the remote procedure.

Identifies the procedure number of the remote procedure.

The XOR procedure used to encode the arguments of the remote
procedure.

A pointer to the arguments of the remote procedure.

The XOR procedure used to decode the results of the remote proce­
dure.

A pointer to the results of the remote procedure.

The procedure called after each response.

Note: resultproc_t is a type definition:

typedef bool_t (*resultproc_t) ();

Description: The clnt_broadcast() call broadcasts the remote procedure described
by prognum, versnum, and procnum to all locally connected broadcast networks.
Each time clnt_broadcast() receives a response it calls eachresult(). The format of
eachresult() is:

Parameter

out

addr

Description

Has the same function as it does for clnt_broadcast(), except that
the output of the remote procedure is decoded.

Points to the address of the machine that sent the results.

Return Values: If eachresult() returns 0, clnt_broadcast() waits for more replies; oth­
erwise, eachresult() returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the
data link.

See Also: callrpc(), clnt_call().

114 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

__

clnt_call()

Parameter

clnt

procnum

inproc

in

outproc

out

tout

clnt_call{)

Description

Points to a client handle that was previously obtained using
clnttcp_create(), or clntudp_create().

Identifies the remote procedure number.

The XOR procedure used to encode procnum's arguments.

Points to the remote procedure's arguments.

The XOR procedure used to decode the remote procedure's results.

Points to the remote procedure's results.

The time allowed for the server to respond in units of 0.1 seconds.

Description: The clnt_call() call calls the remote procedure (procnum) associated
with the client handle (c/nt).

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: callrpc(), clnt_perror(), clnttcp_create(), clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 115

clnt_destroy()

clnt_ destroy()

Parameter

clnt

Description

Points to a client handle that was previously created using
clntudp_create() or clnttcp_create().

Description: The clnt_destroy() call deletes a client RPC transport handle. This pro­
cedure involves the deallocation of private data resources, including clnt. Once this
procedure is used, clnt is undefined. Open sockets associated with clnt must be
closed.

See Also: clnttcp_create(), clntudp_create().

116 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

."

\

clnt_freeres()

Parameter

c/nt

outproc

out

clnt freeres()

Description

Points to a client handle that was previously obtained using
clnttcp_create() or clntudp_create(}.

The XOR procedure used to decode the remote procedure's results.

Points to the results of the remote procedure.

Description: The clnt_freeres() call deallocates any resources that were assigned
by the system to decode the results of an RPC.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: clnttcp_create(), clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 117

clnt geterr()

clnt_geterr()

Parameter

clnt

errp

Description

Points to a client handle that was previously obtained using
clnttcp_create() or clntudp_create().

Points to the address into which the error structure is copied.

Description: The clnt_geterr() call copies the error structure from the client handle
to the structure at address errp.

See Also: clnt_call(), clnt_pcreateerror(), clnt_perrno(), clnt_perror(),
cl nttcp _create(), clntudp _create().

118 TCP/IP Version 2.0 for DOS: Programmer's Reference

clnt pcreateerror()

clnt_pcreateerror()

Parameter Description

s Points to a string that is to be printed in front of the message. The
string is followed by a colon.

Description: The clnt_pcreateerror() call writes a message to the standard error
device, indicating why a client handle cannot be created. This procedure is used
after the clnttcp_create() or clntudp_create() calls fail.

See Also: clnt_geterr(), clnt_perrno(), clnt_perror(), clnttcp_create(),
clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 119

clnt_perrno()

clnt perrno()

Parameter
stat

Description
The client status.

Description: The clnt_perrno() call writes a message to the standard error device
corresponding to the condition indicated by stat. This procedure should be used
after callrpc() if there is an error.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_perror().

120 TCP/IP Version 2.0 for DOS: Programmer's Reference

clnt_perror()

____ /

Parameter

clnt

s

clnt perror()

Description

Points to a client handle that was previously obtained using
clntudp_create() or clnttcp_create().

Points to a string that is to be printed in front of the message. The
string is followed by a colon.

Description: The clnt_perror() call writes a message to the standard error device,
indicating why an RPC failed. This procedure should be used after clnt_call() if
there is an error.

See Also: clnt_call(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(),
clnttcp_create(), clntudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 121

clnttcp _create()

clnttcp create()

Parameter

addr

prognum

versnum

sockp

sendsz

recvsz

Description

Points to the internet address of the remote program. If addr points
to a port number of 0, addr is set to the port on which the remote
program is receiving.

The remote program number.

The version number of the remote program.

Points to the socket. If sockp is RPC~ANYSOCK, then this routine
opens a new socket and sets sockp.

The size of the send buffer. Specify 0 to choose the default.

The size of the receive buffer. Specify 0 to choose the default.

Description: The clnttcp_create() call creates an RPC client transport handle for the
remote program specified by (prognum, versnum). The client uses TCP as the
transport layer.

Return Values: NULL indicates failure.

See Also: clnt_destroy(), clnt_pcreateerror(), clntudp_create().

122 TCP/IP Version 2.0 for DOS: Programmer's' Reference

\

(

'\

clntudp create()

Parameter

addr

prognum

versnum

wait

sockp

clntudp _create()

Description

Points to the internet address of the remote program. If addr points
to a port number of 0, addr is set to the port on which the remote
program is receiving. The remote portmap service is used for this.

The remote program number.

The version number of the remote program.

UDP resends the call request at intervals of wait time, until either a
response is received or the call times out. The time-out length is
set using the clnt_call() procedure.

Points to the socket. If sockp is RPC_ANYSOCK, this routine opens
a new socket and sets sockp.

Description: The clntudp_create() call creates a client transport handle for the
remote program (prognum) with version (versnum). UDP is used as the transport
layer.

Note: This procedure should not be used with procedures that use large arguments
or return large results. UDP RPC messages can only contain 2 KB of encoded data.

Return Values: NULL indicates failure.

See Also: clnt_destroy(), clnt_pcreateerror(), clnttcp_create().

Chapter 4. Remote Procedure Calls (RPCs) 123

get_myaddress()

get_ myaddress()

Parameter
addr

Description
Points to the location where the local internet address is placed.

Description: The get_myaddress() call puts the local host's internet address into
addr. The port number (addr->sin_port) is set to htons (PMAPPORT), which is 111.

124 TCP/IP Version 2.0 for DOS: Programmer's Reference

pmap _getmaps()

Parameter
addr

pmap _getmaps()

Description
Points to the internet address of the foreign host.

Description: The pmap_getmaps() call returns a list of current program-to-port map­
pings on the foreign host specified by addr.

See Also: pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

Chapter 4. Remote Procedure Calls (RPCs) 125

pmap _getport{)

pmap _getport(}

Parameter
addr
prognum
versnum
protocol

Description
Points to the internet address of the foreign host.
The program number to be mapped.
The version number of the program to be mapped.
The transport protocol used by the program.

Description: The pmap_getport() call returns the port number associated with the
remote program (prognum), the version (versnum), and the transport protocol
(protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the
remote portmap could not be contacted. If Portmapper cannot be contacted,
rpc_createerr contains the RPC status.

See Also: pmap_getmaps(), pmap_rmtcall(), pmap_set(), pmap_unset().

126 TCP/IP Version 2.0 for DOS: Programmer's Reference

(
_

pmap _rmtcall()

\.

Parameter

addr

prognum

versnum

procnum

inproc

in

outproc

out

tout

Description

Points to the internet address of the foreign host.

The remote program number.

The version number of the remote program.

Identifies the procedure to be called.

pmap rmtcall()

The XDR procedure used to encode the arguments of the remote
procedure.

Points to the arguments of the remote procedure.

The XDR procedure used to decode the results of the remote proce­
dure.

Points to the results of the remote procedure.

The time-out period for the remote request.

portp If the call from the remote portmap service is successful, portp con-
tains the port number of the triple (prognum, versnum, procnum).

Description: The pmap_rmtcall() call instructs Portmapper to make an RPC call to a
procedure on that host, on your behalf. This procedure should be used only for
ping-type functions.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: pmap_getmaps(), pmap_getport(), pmap_set(), pmap_unset().

Chapter 4. Remote Procedure Calls (RPCs) 127

pmap set()

pmap~set{)

Parameter
prognum
versnum
protocol
port

Description
The local program number.
The version number of the local program.
The transport protocol used by the local program.
The port to which the local program is mapped.

Description: The pmap_set() call sets the mapping of the program (specified by
prognum, versnum, and protocol) to port on the local machine. This procedure is
automatically called by the svc_register() procedure.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_unset().

128 TCP/IP Version 2.0 for DOS: Programmer's Reference

pmap _unset()

Parameter
prognum
versnum

Description
The local program number.
The version number of the local program.

pmap_unset()

Description: The pmap_unset() call removes the mappings associated with
prognum and versnum on the local machine. All ports for each transport protocol
currently mapping the prognum and versnum are removed from the portmap
service.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set().

Chapter 4. Remote Procedure Calls (RPCs) 129

registerrpc()

registerrpc()

Parameter

prognum

versnum

procnum

procname

inproc

outproc

Description

The program number to register.

The version number to register.

The procedure number to register.

The procedure that is called when the registered program is
requested. procname must accept a pointer to its arguments, and
return a static pointer to its results.

The XOR routine used to decode the arguments.

The XOR routine that encodes the results.

Description: The registerrpc() call registers a procedure (prognum, versnum,
procnum) with the local Portmapper, and creates a control structure to remember
the server procedure and its XOR routine. The control structure is used by
svc_run(). When a request arrives for the program (prognum, versnum, procnum),
the procedure procname is called. Procedures registered using registerrpc() are
accessed using the UDP transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See
"xdr_enum()" on page 159 for more information.

Return Values: The value O indicates success; the value -1 indicates an error.

See Also: svc_register(), svc_run().

130 TCP/IP Version 2.0 for DOS: Programmer's Reference

rpc createerr

rpc _create err

Description: A global variable that is set when any RPG client creation routine fails.
Use clnt_pcreateerror() to print the message.

Chapter 4. Remote Procedure Calls (RPCs) 131

svc _destroy()

svc _destroy()

Parameter Description
xprt Points to the service transport handle.

Description: The svc_destroy() call deletes the RPC service transport handle xprt,
which becomes undefined after this routine is called.

See Also: svctcp_create(), svcudp_create().

132 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

\

\

SVC fds

\.

SVC Ids

Description: A global variable reflecting the RPG service-side read file descriptor
bit mask, but limited to 16 descriptors.

See Also: svc_getreq().

Chapter 4. Remote Procedure Calls (RPCs) 133

svc freeargs()

svc freeargs()

Parameter
xprt
inproc
in

Description
Points to the service transport handle.
The XOR routine used to decode the arguments.
Points to the input arguments.

Description: The svc_freeargs() call frees storage allocated to decode the argu­
ments received by svc_getargs().

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_getargs().

134 TCP/IP Version 2.0 for DOS: Programmer's Reference

svc _getargs()

__ /

Parameter
xprt
inproc
in

Description
Points to the service transport handle.
The XDR routine used to decode the arguments.
Points to the decoded arguments.

svc getargs()

Description: The svc_getargs() call uses the XDR routine inproc to decode the argu­
ments of an RPC request associated with the RPC service transport handle xprt.
The results are placed at address in.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: svc_freeargs().

Chapter 4. Remote Procedure Calls (RPCs) 135

svc _getcaller()

svc _getcaller()

Parameter
xprt

Description
Points to the service transport handle.

Description: This macro obtains the socket address of the client associated with the
service transport handle xprt.

136 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

_

svc _getreq()

svc _getreq()

Description Parameter
SVC fds Service side read file descriptor bit mask.

Description: The svc_getreq() call is used rather than svc_run() to implement asyn­
chronous event processing. The routine returns control to the program when all
sockets in the socks array have been serviced.

See Also: svc_run().

Chapter 4. Remote Procedure Calls (RPCs) 137

svc_register()

svc_register()

Parameter

xprt

prognum

versnum

dispatch

protocol

Description

Points to the service transport handle.

The program number to be registered.

The version number of the program to be registered.

The dispatch routine associated with prognum and versnum.

The structure of the dispatch routine:

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The protocol used. The value is generally one of the following:

• 0 (zero)
• IPPROTO UDP
• IPPROTO TCP

When a value of 0 is used, the service is not registered with
Portmapper.

Description: The svc_register() call associates the program described by (prognum,
versnum) with the service dispatch routine dispatch.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: registerrpc(), svc_unregister(), xprt_register().

138 TCP/IPVersion 2.0for DOS: Programmer's Reference

svc_run()

svc_run()

Description: The svc_run() call does not return control. It accepts RPG requests,
and calls the appropriate service using svc_getreq().

See Also: registerrpc(), svc_getreq().

Chapter 4. Remote Procedure Calls (RPCs) 139

svc _send reply()

svc _ sendreply()

Parameter
xprt
outproc
out

Description
Points to the caller's transport handle.
The XOR procedure used to encode the results.
Points to the results.

Description: The svc_sendreply() call is called by the service dispatch routine to
send the results of the call to the caller.

Return Values: The value 1 indicates success; the value 0 indicates an error.

140 TCP/IP Version 2.0 for DOS: Programmer's Reference

---- ----- ----------

(

svc unregister()

Parameter
prognum
versnum

svc _unregister()

Description
The program number that is removed.
The version number of the program that is removed.

Description: The svc_unregister() call removes all local mappings of (prognum,
versnum) to dispatch routines and (prognum, versnum, *)to· port numbers.

See Also: svc_register().

Chapter 4. Remote Procedure Calls (RPCs) 141

svcerr auth{}

svcerr _ authO

Parameter
xprt
why

Description
Points to the service transport handle.
The reason the call is refused.

Description: The svcerr_auth() call is called by a service dispatch routine that
refuses to execute an RPG request, because of authentication errors.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr _systemerr(), svcerr _ weakauth().

142 TCP/IP Version 2.0 for DOS: Programmer's Reference

./

I

\ ..

I
·__.

svcerr _decode()

Parameter
xprt

Description
Points to the service transport handle.

svcerr _decode()

Description: The svcerr_decode(} call is called by a service dispatch routine that
cannot decode its parameters.

See Also: svcerr_auth(}, svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr _system err(), svcerr _ weakauth().

Chapter 4. Remote Procedure Calls (RPCs) 143

svcerr _ noproc()

svcerr = noproc()

Parameter
xprt

Description
Points to the service transport handle.

Description: The svcerr_noproc() call is called by a service dispatch routine that
does not implement the requested procedure.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noprog(), svcerr_progvers(),
svcerr _ systemerr(), svcerr _ weakauth().

144 TCP/IP Version 2.0 for DOS: Programmer's Reference

svcerr _ noprog{)

/

Parameter
xprt

Description
Points to the service transport handle.

svcerr _ noprog()

Description: The svcerr_noprog() call is used when the desired program is not reg­
istered.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

Chapter 4. Remote Procedure Calls (RPCs) 145

svcerr _progvers()

svcerr _progvers()

Parameter
xprt
low vers
high_vers

Description
Points to the service transport handle,
The low version number that did not match.
The high version number that did not match.

Description: The svcerr_progvers() call is called when the version numbers of two
RPC programs do not match. The low version number and the high version number
are the two version numbers that do not match. One number is the version number
of the client. The other number is the version number of the server.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr _system err(), svcerr _ weakauth().

146 TCP/IP Version 2.0 for DOS: Programmer's Reference

svcerr _ systemerr()

Parameter
xprt

svcerr systemerr{)

Description
Points to the service transport handle.

Description: The svcerr_systemerr() call is called by a service dispatch routine
when it detects a system error that is not handled by the protocol.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_weakauth().

Chapter 4. Remote Procedure Calls (RPCs) 147

svcerr weakauth()

svcerr weakauth()

Parameter
xprt

Description
Points to the service transport handle.

Note: This is the equivalent of: svcerr _auth(xprt, AUTH_TOOWEAK).

Description: The svcerr_weakauth() call is called by a service dispatch routine that
cannot execute an RPC, because of correct but weak authentication parameters.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr _progvers(), svcerr _systemerr().

148 TCP/IP Version 2.0 for DOS: Programmer's Reference

svctcp _create()

Parameter

sock

svctcp create()

Description

The socket descriptor. If sock is RPC_ANYSOCK, a new socket is
created. If the socket is not bound to a local TCP port, it is bound
to an arbitrary port.

send but size The size of the send buffer. Specify 0 to choose the default.

recv but size The size of the receive buffer. Specify 0 to choose the default.

Description: The svctcp_create() call creates a TCP-based service transport to
which it returns a pointer. xprt-+xp_sock contains the transport's socket descriptor.
xprt-+xp_port contains the transport's port number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcudp_create().

Chapter 4. Remote Procedure Calls (RPCs) 149

svcudp _create()

svcudp _create()

Parameter

sockp

Description

Points to the socket associated with the service transport handle. If
sockp is RPC_ANYSOCK, a new socket is created. If the socket is
not bound to a local UDP port, it is bound to an arbitrary port.

Warning: UDP can only transmit 2 KB of data for each packet.

Description: The svcudp_create() call creates a UDP-based service transport to
which it returns a pointer. xprt-+xp_sock contains the transport's socket descriptor.
xprt-+xp_port contains the transport's port number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svctcp_create().

150 TCP/IP Version 2.0 for DOS: Programmer's Reference

.. _/

xdr _accepted _reply()

Parameter
xdrs
ar

xdr accepted reply() - -

Description
Points to an XOR stream.
Points to the reply to be represented.

Description: The xdr_accepted_reply() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error .

Chapter 4. Remote Procedure Calls (RPCs) 151

xdr_array()

xdr_array()

Parameter
xdrs
arrp
sizep
maxsize
e/size
elproc

Description
Points to an XOR stream.
The address of the pointer to the array.
Points to the element count of the array.
The maximum number of elements accepted.
The size of each of the array's elements, found using sizeof().
The XOR routine that translates an individual array element.

Description: The xdr_array() call translates between an array and its external rep­
resentation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

152 TCP/IP Version 2.0 for DOS: Programmer's Reference

·'--.

i

\

/

xdr _ authunix _parms()

Parameter
xdrs
aupp

xdr_authunix_parms()

Description
Points to an XOR stream.
Points to the authentication information.

Description: The xdr _authunix_parms() call translates UNIX-based authentication
information.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 153

xdr bool()

xdr~boolO

Parameter
xdrs
bp

Description
Points to an XDR stream.
Points to the boolean.

Description: The xdr_bool() call translates between booleans and their external rep­
resentation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

154 TCP/IP Version 2.0for DOS: Programmer's Reference

I
l_

xdr bytes()

Parameter
xdrs
sp
sizep
maxsize

Description
Points to an XOR stream.
Points to a pointer to the byte string.
Points to the byte string size.
The maximum size of the byte string.

xdr bytes()

Description: The xdr_bytes() call translates between byte strings and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 155

xdr callhdr()

xdr _ callhdrO

Parameter
xdrs
chdr

Description
Points to an XDR stream.
Points to the call header.

Description: The xdr_callhdr() call translates an RPC message header into XDR
format.

156 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

(

\

/

xdr _ callmsg()
' ·' .,. '

Hnc l u<ie <rp<:\ trit< ti ..
• ~boo1 f
'xctr_'ta1.fm'sg(xdrs, cmsgf· .

.•. ft~u,~i1~~~+~~~- ~~~it·······~·····.

Parameter
xdrs
cmsg

Description
Points to an XDR stream.
Points to the call message.

xdr _ callmsg()

Description: The xdr_callmsg() call translates RPC messages (header and
authentication; not argument data).

Chapter 4. Remote Procedure Calls (RPCs) 157

xdr double()

xdr _double()

Parameter
xdrs
dp

Description
Points to an XDR stream.
Points to a double-precision number.

Description: The xdr_double() call translates between C language double-precision
numbers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

158 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

\

xdr_enum()

Parameter
xdrs
ep

xdr_enum()

Description
Points to an XOR stream.
Points to the enumerated number.

Description: The xdr_enum() call translates between C language enumerated
groups and their external representation. When calling the procedures callrpc() and
registerrpc(), a stub procedure must be created for both the server and the client
before the procedure of the application program using xdr_enum(). This procedure
should look like the following:

The xdr_enum_t procedure is used as the inproc and outproc in both the client and
server RPCs.

For example, an RPG client would contain the following lines:

An RPC server would contain the following line:

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 159

xdr_float()

xdr_float()

Parameter
xdrs
fp

Description
Points to an XOR stream.
Points to the floating-point number.

Description: The xdr_float() call translates between C language floating-point
numbers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

160 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

~

xdr_inline()

··~.

Parameter
xdrs
/en

xdr _inline()

Description
Points to an XDR stream.
The byte length of the desired buffer.

Description: The xdr_inline() call returns a pointer to a continuous piece of the XDR
stream's buffer. The value is long *rather than char *, because the external data
representation of any object is always an integer multiple of 32 bits.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Note: xdr_inline() may return NULL if there is not sufficient space in the stream
buffer to satisfy the request.

Chapter 4. Remote Procedure Calls (RPCs) 161

xdr_int()

xdr_int()

Parameter
xdrs
ip

Description
Points to an XDR stream.
Points to the integer.

Description: The xdr_int() call translates between C language integers and their
external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

162 TCP/IP Version 2.0 for DOS: Programmer's Reference

/
I

xdr_long()

Parameter
xdrs
Ip

Description
Points to an XDR stream.
Points to the long integer.

xdr_long()

Description: The xdr_long() call translates between C language long integers and
their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 163

xdr_opaque()

xdr opaque()

Parameter
xdrs
cp
cnt

Description
Points to an XOR stream.
Points to the opaque object.
The size of the opaque object.

Description: The xdr_opaque() call translates between fixed-size opaque data and
its external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

164 TCP/IP Version 2.0 for DOS: Programmer's Reference

_/

xdr_opaque_auth()

xdr opaque auth() - -

Parameter
xdrs
ap

Description
Points to an XOR stream.
Points to the opaque authentication information.

Description: The xdr_opaque_auth() call translates RPG message authentications.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 165

xdr_pmap()

xdr_pmapO

Parameter
xdrs
regs

Description
Points to an XDR stream.
Points to the portmap parameters.

Description: The xdr_pmap() call translates an RPG procedure identification, such
as is used in calls to Portmapper.

Return Values: The value 1 indicates success; the value 0 indicates an error.

166 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

xdr pmaplist{)

Parameter
xdrs
rp

xdr pmaplist()

Description
Points to an XOR stream.
Points to a pointer to the portmap data array.

Description: The xdr_pmaplist() call translates a variable number of RPC procedure
identifications, such as Portmapper creates.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls {RPCs) 167

xdr _reference()

xdr _reference()

Parameter

xdrs

pp

size

proc

Description

Points to an XOR stream.

Points to a pointer.

The size of the target.

The XOR procedure that translates an individual element of the
type addressed by the pointer.

Description: The xdr_reference() call provides pointer chasing within structures.

Return Values: The value 1 indicates success; the value 0 indicates an error.

168 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

/
I

~

xdr rejected reply() - -

Parameter
xdrs
rr

Description
Points to an XDR stream.
Points to the rejected reply.

xdr _rejected_reply()

Description: The xdr_rejected_reply() call translates RPC reply messages.

Chapter 4. Remote Procedure Calls (RPCs) 169

xdr _replymsg()

xdr _replymsg()

Parameter
xdrs
rmsg

Description
Points to an XDR stream.
Points to the reply message.

Description: The xdr _replymsg() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

170 TCP/IP Version 2.0 for DOS: Programmer's Reference

xdr short()

Parameter
xdrs
sp

Description
Points to an XOR stream.
Points to the short integer.

xdr_short()

Description: The xdr _short() call translates between C language short integers and
their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 171

xdr_string()

xdr string()

Parameter
xdrs
sp
maxsize

Description
Points to an XDR stream.
Points to a pointer to the string.
The maximum size of the string.

Description: The xdr_string() call translates between C language strings and their
external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

172 TCP/IP Version 2.0 for DOS: Programmer's Reference

xdr_u_int()

_ _/

Parameter
xdrs
up

Description
Points to an XDR stream.
Points to the unsigned integer.

xdr_u_int()

Description: The xdr_u_int() call translates between C language unsigned integers
and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 173

xdr_u_longO

xdr_u_iong(}

Parameter
xdrs
utp

Description
Points to an XDR stream.
Points to the unsigned long integer.

Description: The xdr_u_long() call translates between C language unsigned long
integers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

174 TCP/IP Version 2.0 for DOS: Programmer's Reference

xdr _ u _short()

/

Parameter
xdrs
usp

xdr_u_short()

Description
Points to an XOR stream.
Points to the unsigned short integer.

Description: The xdr _u_short() call translates between C language unsigned short
integers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 175

xdr_union()

xdr_union()

Parameter

xdrs

dscmp

unp

choices

dfault

Description

Points to an XOR stream.

Points to the union's discriminant.

Points to the union.

Points to an array detailing the XOR procedure to use on each arm
of the union.

The default XOR procedure to use.

Description: The xdr_union() call translates between a discriminated C language
union and its external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

176 TCP/IP Version 2.0 for DOS: Programmer's Reference

\

(
i

\

(

xdr_void()

_/

xdr_void()

Description: The xdr_void() call may be passed to RPC routines that require a func­
tion parameter. It does not translate external representation and no function is per­
formed.

Return Values: Always a value of 1.

Chapter 4. Remote Procedure Calls (RPCs) 177

xdr _ wrapstring()

xdr _ wrapstring()

Parameter
xdrs
sp

Description
Points to an XOR stream.
Points to a pointer to the string.

Description: The xdr_wrapstring() call is the same as calling xdr_string() with the
maximum size of an unsigned integer. It is useful because many RPC procedures
implicitly invoke two-parameter XOR routines, and xdr_string() is a three-parameter
routine.

Return Values: The value 1 indicates success; the value 0 indicates an error.

178 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

xdrmem _create()

Parameter

xdrs

addr

size

op

Descrip1ion

Points to an XOR stream.

Points to the memory location.

The maximum size of addr.

xdrmem _create()

Determines the direction of the XOR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Description: The xdrmem_create() call initializes the XOR stream pointed to by
xdrs. Data is written to, or read from, addr.

Chapter 4. Remote Procedure Calls (RPCs) 179

xdrrec _create()

xdrrec _create()

Parameter
xdrs
sendsize
recvsize
handle
read it()
writeit()

Description
Points to an XDR stream.
The size of the send buffer. Specify 0 to choose the default.
The size of the receive buffer. Specify 0 to choose the default.
The first parameter passed to readit() and writeit().
Called when a stream's input buffer is empty.
Called when a stream's output buffer is full.

Description: The xdrrec_create() call initializes the XDR stream pointed to by xdrs.

Note: The op field must be set by the caller.

Warning: This XDR procedure implements an intermediate record string. Addi­
tional bytes in the XDR stream provide record boundary information.

180 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

/

xdrrec endofrecord()

Parameter
xdrs
send now

xdrrec _ endofrecord()

Description
Points to an XOR stream.
Specifies nonzero to write out data in the output buffer.

Description: The xdrrec_endofrecord() call can be invoked only on streams created
by xdrrec_create(). Data 1n the output buffer is marked as a complete record.

Return Values: The value 1 indicates success; the value 0 indicates an error.

Chapter 4. Remote Procedure Calls (RPCs) 181

xdrrec eof()

xdrrec ~ eof()

Parameter
xdrs

Description
Points to an XOR stream.

Description: The xdrrec_eof() call can be invoked only on streams created by
xdrrec_create().

Return Values: The value 1 indicates the current record has been consumed; the
value 0 indicates continued input on the stream.

182 TCP/IP Version 2.0 for DOS: Programmer's Reference

xdrrec _ skiprecordO

Parameter
xdrs

xdrrec_skiprecord()

Description
Points to an XOR stream.

Description: The xdrrec_skiprecord() call can be invoked only on streams created
by xdrrec_create(). The XOR implementation is instructed to discard the remaining
data in the input buffer.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: xdrrec_create().

Chapter 4. Remote Procedure Calls (RPCs) 183

xdrstdio _create()

xdrstdio _create()

Parameter

xdrs

file

op

Description

Points to an XDR stream.

The file name for the input and output stream.

Determines the direction of the XDR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Description: The xdrstdio_create() call initializes the XDR stream pointed to by xdrs.
Data is written to, or read from, file.

184 TCP/IP Version 2.0 for DOS: Programmer's Reference

xprt_register()

xprt_register()

Description Parameter
xprt Points to the service transport handle.

Description: The xprt_register() call registers service transport handles with the
RPC service package. This routine also modifies the global variable svc_fds.

See Also: svc_register().

Chapter 4. Remote Procedure Calls (RPCs) 185

xprt_ unregister(}

Parameter
xprt

Description
Points to the service transport handle.

Description: The xprt_unregister() call unregisters an RPG service transport handle.
A transport handle should be unregistered with the RPG service package before it is
destroyed. This routine also modifies the global variable svc_fds.

186 TCP/IP Version 2.0 for DOS: Programmer's Reference

_.,,/

Chapter 5. File Transfer Protocol Application Programming
Interface

© Copyright IBM Corp. 1991

FTP API Call Library .. 189
Compiling and Linking 189
Return Values (ftperrno) 190
FTP API Calls ... 190

ftpappend() .. 191
ftpcd() .. 192
ftpdelete() . 193
ftpdir() .. 194
~~ 1%
ftplogoff() . 196
ftpls() .. 197
ftpmkd() ... 198
ftpping() ... 199
ftpproxy() . 200
ftppwd() ... 201
ftpput() . 202
ftpputunique() . 203
ftpquote() . 204
ftprename() . 205
ftprmd() . 206
ftpsite() . 207
ttpsys() . 208
ping() .. 209

187

(

\

188 TCP/IP Version 2.0 for DOS: Programmer's Reference

Chapter 5. File Transfer Protocol Application Programming
Interface

The File Transfer Protocol (FTP) Application Programming Interface (API) allows
applications to have a client interface for file transfer. Applications written to this
interface can communicate with multiple FTP servers at the same time. A maximum
of 256 simultaneous connections are supported. The interface also allows
third-party proxy transfers between pairs of FTP servers. Consecutive third-party
transfers are allowed between any sequence of pairs of FTP servers.

The API tracks the servers to which an application is currently connected. When a
new request for FTP service is requested, API checks whether there is a connection
to the server. If the connection does not exist, it is established. If the server has
dropped the connection since last use, it is reestablished.

FTP API Call Library
To use the FTP APls described in this chapter, you must have the <FTPAPl.H>
header file, contained in the <TCPBASE>\INCLUDE directory, available on your
system.

The FTP API routines are contained in the FTPAPl.LIB file in the <TCPBASE>\LIB
directory. You must also have the TCPIP.LIB file in your <TCPBASE>\LIB direc­
tory.

You should put the following statement at the top of any file using FTP API code:

For a summary of each FTP API call supported by TCP/IP for DOS, see Appendix G,
"FTP API Quick Reference."

Compiling and Linking

© Copyright IBM Corp. 1991

The following steps describe how to compile and link programs using the FTP APl's
with Microsoft C Version 5.10.

Note: In the following examples, model refers to the memory model you use to
compile your program: L for large model, S for small model, M for medium model,
or C for compact model.

1. Include the <TCPBASE>\INCLUDE directory at the beginning of the INCLUDE
environment variable so that the C compiler finds the appropriate header files.
You can set this interactively or you can include it in the AUTOEXEC.BAT file.

189

For example, if the INCLUDE environment variable previously read:

SET INCLUDE=C:\MSC\INCLUDE

You would change it to read:

SET INCLUDE=<TCPBASf>\INCLUDE;C:\MSC\INCLUDE

2. To compile your program, enter the command:

cl /c /Os /Amodel myprog.c

3. To create an executable program, enter the following command:

link /stack:8192 /seg:2ee myproj.obj,,,<TCPBASf>\LIB\modeZ\ftpapi.lib+
<TCPBASE>\LIB\modeZ\tcpip.lib;

Return Values (ftperrno)
Most functions return a value of -1 to indicate failure and a value of 0 to indicate
success. Two functions do not return 0 and -1 values: ftplogoff(), which is of type

/

void, and ping(), which returns an error code rather than storing the return value in I

FTP API Calls

ftperrno. When the value is -1, the global integer variable ftperrno is set to one of
the following codes:

Return Value Code
FTPSERVICE
FTP HOST
FTP SOCKET
FTPCONNECT
FTPLOGIN
FTPABORT
FTPLOCALFILE
FTPDATACONN
FPTCOMMAND
FTPPROXYTHIRD
FTPNOPRIMARY

Description
Unknown service
Unknown host
Unable to obtain socket
Unable to connect to server
Login failed
Transfer aborted
Problem opening the local file
Problem initializing data connection
Command failed
Proxy server does not support third party
No primary connection for proxy transfer.

This section provides the syntax, parameters, and other appropriate information for
each FTP API call supported by TCP/IP for DOS.

190 TCP/IP Version 2.0 for DOS: Programmer's Reference

ftpappend()

Parameter

host

userid

passwd

acct

local

remote

transfertype

Description

The host running the FTP server.

The user ID used for logon.

The password of the user ID.

The account, when needed, can be NULL.

The local file name.

The remote file name.

ftpappend()

Specifies a binary or ASCII transfer. T _ASCII is for ASCII,
T _BINARY is for binary.

Description: The ftpappend() call appends information to a remote file.

Example: The following is an example of the ftpappend() call.

int re;
rc=ftpappend("conypc","jason","ehgrl",NULL, 11 abc.doc","new.doc",T_ASCII);

In this example, the local ASCII file, abc.doc, is appended to the file, new.doc, in the
current working directory at the host, conypc.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 191

ftpcd()

ftpcd()

Parameter
host
user id
passwd
acct
dir

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
Specifies the new working directory.

Description: The ftpcd() call changes the current working directory.

Example: The following is an example of the ftpcd() call.

int re;
rc=ftpcd("conypc","jason","ehgrl",NULL,"mydir");

In this example, the current working directory is changed to mydi r on the host,
conypc, using the user ID, jason, and the password, ehgrl.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

192 TCP/IP Version 2.0 for DOS: Programmer's Reference

/
f

(
.__

ftpdelete()

Parameter
host
userid
passwd
acct
name

Description
The host running the FTP server.
The user ID used for logon.
The password of the user 10.
The account, when needed, can be NULL.
The file to be deleted.

Description: The ftpdelete() call deletes a file on a host.

Example: The following is an example of the ftpdelete() call.

int re;
rc=ftpdelete("conypc","jason","ehgrl",NULL, 11 abc.l");

ftpdelete()

In this example, the file, abc.l, is deleted on the host, conypc, using the user ID,
jason, and the password, ehgrl.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 193

ftpdir()

ftpdir()

Parameter

host

userid

passwd

acct

local

pattern

Description

The host running the FTP server.

The user ID used for logon.

The password of the user ID.

The account, when needed, can be NULL.

The local file name.

Specifies the file name or pattern of the files to be deleted on the
foreign host. Patterns are any combination of ASCII characters.
The following two characters have special meaning:

The asterisk shows that any character or group of charac­
ters can occupy that position in the pattern.

? The question mark shows that any single character can
occupy that position in the pattern.

Description: The ftpdir() call gets a directory from a host in wide format.

Example: The following is an example of the ftpdir() call.

int re;
rc=ftpdir("conypc","jason","ehgrl",NULL,"conypc.dir","*.c");

In this example, a directory is obtained using a wide format of*. c files, and the
directory is placed in a local file, conypc.dir.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

194 TCP/IP Version 2.0 for DOS: Programmer's Reference

Hpget()

Parameter

host

userid

passwd

acct

local

remote

mode

transfertype

Description

The host running the FTP server.

The user ID used for logon.

The password of the user ID.

The account, when needed, can be NULL.

The local file name.

The remote file name.

Either w for write or a for append.

Specifies a binary or ASCII transfer. T _ASCII is for ASCII,
T _BINARY is for binary.

Description: The ftpget() call gets a file from an FTP server.

Example: The following is an example of the ftpget() call.

int re;

ft pg et()

rc=ftpget("conypc", "jason", "ehgrl" ,NULL, "new.doc", "abc.doc", "w", T_ASCII);

In this example, the ASCII file, abc.doc, on the host, conypc, is copied into the local
current working directory as the file, new.doc. If the file, new.doc, already exists in
the local current working directory, the file, new.doc, is overwritten with the contents
of the file, abc.doc.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 195

ftplogoff()

ftplogoff()

Description: The ftplogoff() call closes all current connections. This call must be
called by an application before terminating.

196 TCP/IP Version 2.0 for DOS: Programmer's Reference

Hp ls{)

Parameter

host

userid

passwd

acct

local

pattern

Description

The host running the FTP server.

The user ID used for logon.

The password of the user ID.

The account, when needed, can be NULL.

ftp ls()

The name of the local file to which the information is placed.

Specifies the file name or pattern of the files to be deleted on the
foreign host. Patterns are any combination of ASCII characters.
The following two characters have special meaning:

*

?

The asterisk shows that any character or group of charac­
ters can occupy that position in the pattern.

The question mark shows that any single character can
occupy that position in the pattern.

Description: The ftpls() call retrieves directory information from a host in short
format and writes it to a local file.

Example: The following is an example of the ftpls() call.

int re;
rc=ftpls("conypc","jason","ehgrl",NULL,"conypc.dir", 11 *.c");

In this example, a directory is obtained using the short format of*. c files and the
directory information is placed in the local file, conypc.dir.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 197

ftpmkd()

ftpmkd()

Parameter
host
use rid
passwd
acct
dir

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The name of the directory to be created.

Description: The ftpmkd() call creates a new directory on a host.

Example: The following is an example of the ftpmkd() call.

int re;
rc=ftpmkd("conypc 11 , 11 jason 11 , 11 ehgrl 11 ,NULL, 11mydir 11);

In this example, the directory, mydi r, is created on the host, conypc, using the user
ID, jason, and the password, ehgrl.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

198 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

\

(
~

ftpping()

Parameter
host
fen

Description
The host running the FTP server.
The length of the ping packets.

ftpping()

addr The buffer in which to return the internet address of the host.

Description: The ftpping() attempts to resolve the host name through a name
server. If the name server is not present, ftpping() searches the HOSTS file in the
ETC directory for a matching host name. Unlike the ping() call, the ftpping() call
could take several seconds because it must resolve the host name before it sends a
ping. For this reason, use the ftpping() call only in the initial attempt to determine if
the host is alive. The ftpping() call sets the addr parameter to the internet address
of the host. After the initial attempt, use this address value to call ping.

Example: The following is an example of the ftpping() call:

int re;
unsigned long addr;

re= ftpping("eonype", 256, &addr);

Return Values: If the ftpping() return value is positive, the return value is the
number of milliseconds it took for the echo to return. If the return value is negative,
it contains an error code. The following list contains ftpping() call return codes and
their corresponding descriptions.

Return Code
PINGREPLY
PINGSOCKET
PING PROTO
PINGSEND
PINGRECV
PING HOST

Description
Host does not reply.
Unable to obtain socket.
Unknown protocol ICMP.
Send failed.
Recv failed.
Unknown host.

Chapter 5. File Transfer Protocol Application Programming Interface 199

ftpproxy()

ftpproxy()

Parameter

host1

userid1

passwd1

acct1

host2

userid2

passwd2

acct2

fn1

fn2

transfertype

Description

The target host running the FTP server.

The user ID used for logon on host 1.

The password of the user ID on host 1.

The account for host 1, when needed, can be NULL.

The source host running the FTP server.

The user ID used for logon on host 2.

The password of the user ID on host 2.

The account for host 2, when needed, can be NULL.

The file to be written on host 1.

The file to be copied from host 2.

Specifies a binary or ASCII transfer. T _ASCII is for ASCII,
T_BINARY is for binary.

Description: The ftpproxy() call copies a file on a specified source host directly to a
specified target host, without involving the requesting host in the file transfer. This
call is functionally equivalent to the FTP client subcommand proxy put.

Note: Both the source and the target hosts must be running the FTP servers for the
ftpproxy() to complete successfully.

Example: The following is an example of the ftpproxy() call.

int re;
rc=ftpproxy ("pcl", 11 0 leg", "erst" ,NULL, /* target host information*/

"pc2","yan", "dssal", NULL, /*source host information*/
"\tmp\newdoc.l", /*target file name*/
"\tmp\doc.1", /*source file name*/
T_ASCII); /* ascii transfer*/

In this example, the ASCII file, \tmp\doc.l, on the host pc2, is copied to host pcl as
thefile, \tmp\newdoc.l.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

200 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

(
\,

ftppwd()

Parameter
host
userid
passwd
acct
but
buff en

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The buffer to store the string returned by the FTP server.
The length of but.

ftppwd()

Description: The ftppwd() call stores the string containing the FTP server
description of the current working directory on the host to the buffer but. The string
describing the current working directory is truncated to fit but if it is longer than
buflen. The returned string is always null-terminated.

Example: The following is an example of the ftppwd() call.

int re;
rc=ftppwd("conypc","jason","ehgrl","dirbuf", sizeof dirbuf);

After the ftppwd() call the buffer dirbuf contains the following:

"C:\" is the current directory.

In this example, the server reply describing the current working directory on host
conypc, using user ID jason with password eghrl, is stored to di rbuf.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ttperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 201

ftpput()

Hp put()

Parameter

host

user id

passwd

acct

local

remote

transfertype

Description

The host running the FTP server.

The user ID used for logon.

The password of the user ID.

The account, when needed, can be NULL.

The local file name.

The remote file name.

Specifies a binary or ASCII transfer. T_ASCll is for ASCII,
T_BINARY is for binary.

Description: The ftpput() call transfers a file to an FTP server.

Example: The following is an example of the ftpput() call.

int re;
rc=ftpput("conypc","jason","ehgrl",NULL,"abc.doc","new.doc",T_ASCII);

In this example, the ASCII file, abc.doc, on the local current working directory is
copied to the current working directory of the host, conypc, as file new.doc. If the
file, new.doc, already exists, the contents of the file, new.doc, is overwritten with the
contents of the file, abc.doc.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

202 TCP/IP Version 2.0 for DOS: Programmer's Reference

ftpputun ique()

Parameter

host

userid

passwd

acct

local

remote

transfertype

Description

The host running the FTP server.

The user ID used for logon.

The password of the user ID.

The account, when needed, can be NULL.

The local file name.

The remote file name.

ftpputunique()

Specifies a binary or ASCII transfer. T _ASCII is for ASCII,
T_BINARY is for binary.

Description: The ftpputunique() call copies a local file to a file on a specified host
and guarantees that the new file has a unique name and that the new file does not
overwrite a file with the same name. If the file already exists on the host, a new and
unique file name is created and used as the target of the file transfer.

Example: The following is an example of the ftpputunique() call.

int re;
rc=ftpputunique(

"conypc", "j as on", "ehgrl 11 , NULL, "abc. doc", "new. doc", T _ASCII);

In this example, the ASCII file, abc.doc, is copied to the current working directory of
the host, conypc, as file new.doc unless the file, new.doc, already exists. If the file,
new.doc, already exists, the file, new.doc, is given a new name unique within the
current working directory on the host, conypc. The name of the new file is displayed
on successful completion of the file transfer.

Return Values: The value O indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 203

ftpquote()

ftpquote()

Parameter
host
user id
passwd
acct
quotestr

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The quote string to be passed to the FTP server verbatim.

Description: The ftpquote() call sends a string to the server verbatim.

Example: The following is an example of the ftpquote() call.

int re;
rc=ftpquote("conypc","jason","ehgrl",NULL,"site idle 2000");

In this example, the idle is set to time out in 2000 seconds. Your server may not
support that amount of idle time.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

204 TCP/IP Version 2.0 for DOS: Programmer's Reference

/
'

ftp rename()

Parameter
host
use rid
passwd
acct
namefrom
nameto

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The original file name.
The new file name.

Description: The ftprename() call renames a file on a host.

Example: The following is an example of the ftprename() call.

int re;
re=ftprename("eonype","jason","ehgrl",NULL,"abe.1","ed.fg"};

ftprename()

In this example, the file, abe.1, is renamed to ed. fg on a host, eonype, using user ID,
jason, with password, ehgrl.

Return Values: The value O indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 205

ftprmd()

ftprmd()

Parameter
host
userid
passwd
acct
dir

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The di rectory to be removed.

Description: The ftprmd() call removes a directory on a host.

Example: The following is an example of the ftprmd() call.

int re;
rc=ftprmd (11 conypc 11 , 11 jason 11 , "ehgrl 11 ,NULL, "mydi r 11);

In this example, the directory, mydi r, is removed on the host, conypc, using the user
ID, jason, and the password, ehgrl.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

206 TCP/IP Version 2.0 for DOS: Programmer's Reference

./

ftpsite()

_j

Parameter
host
user id
passwd
acct
sites tr

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The site string to be executed.

Description: The ftpsite() call executes the site command.

Example: The following is an example of the ftpsite() call.

int re;
rc=ftpsite("conypc","jason","ehgrl",NULL,"idle 2000");

ftpsite()

In this example, the idle time-out is set to 2000 seconds. Your server may not
support that amount of idle time.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ftperrno indicates the specific error.

Chapter 5. File Transfer Protocol Application Programming Interface 207

ftpsys()

ftpsys{)

Parameter
host
use rid
passwd
acct
but
buff en

Description
The host running the FTP server.
The user ID used for logon.
The password of the user ID.
The account, when needed, can be NULL.
The buffer to store the string returned by the FTP server.
The length of but.

Description: The ftpsys() call stores the string containing the FTP server description
of the operating system running on the host to the buffer but. The string describing
the operating system of the host is truncated to fit but if it is longer than but/en. The
returned string is always null-terminated.

Example: The following is an example of the ftpsys() call.

int re;
rc=ftpsys("ralvnm","jason","ehgrl",hostsysbuf, sizeof hostsysbuf);

After the ftpsys() call the buffer hostsysbuf contains the following:

VM is the operating system of this server.

In this example, the FTP server reply describing the operating system of host ralvnm
using user ID jason with password eghrl is stored to hostsysbuf.

Return Values: The value 0 indicates success; the value -1 indicates an error. The
value of ttperrno indicates the specific error.

208 TCP/IP Version 2.0 for DOS: Programmer's Reference

ping()

-~/

pi t'lg (alidt', Zen)
. uJ ong oddr'; ..

tn.t • ler;.if> .

Parameter
addr
/en

Description
The internet address of the host in network byte order.
The length of the ping packets.

ping()

Description: The ping() call sends a ping to the host with ICMP Echo Request. The
ping() call is useful to determine whether the host is alive before attempting FTP
transfers, because time-out on regular connections is more than a minute. The
ping() call returns within 3 seconds, at most, if the host is not responding. If the
return value is positive, the return value is the number of milliseconds it took for the
echo to return. If the return value is negative, it contains an error code. The param­
eter Jen specifies the length of the ping packet(s).

Example: The following is an example of the ping() call.

#include <stdio.h>
#include <netdb.h>
#include <ftpapi.h>

struct hostent *hp; /* Pointer to host info */

main(argc, argv, envp)
int argc;

{

}

char *argv [];
char *envp [] ;

int i;
unsigned long addr;

if (argc!=2) {

}

printf("Usage: p <host>\n");
exit (1);

hp= gethostbyname(argv[l]);
if (hp) {

memcpy((char *)&addr, hp->h_addr, hp->h_length);
i = ping(addr,256);
printf("ping reply in %d milliseconds\n",i);

} else {

}

printf("unknown host\n");
exit (2);

ftplogoff(); /* close all connections */

Chapter 5. File Transfer Protocol Application Programming Interface 209

ping()

Return Values: The following are ping() call return codes and their corresponding
descriptions:

Return Code
PINGREPLY
PINGSOCKET
PINGPROTO
PINGSEND
PINGRECV

Description
Host does not reply.
Unable to obtain socket.
Unknown protocol ICMP.
Send failed.
Recv failed.

210 TCP/IP Version 2.0 for DOS: Programmer's Reference

Chapter 6. Timer Routines

Timers and the Timer Task 213
A List of Timer Routines 213

tm_alloc() ... 214
tm_tset(), tm_set(), and tm_mset() 215
tm_retset(), tm_reset(), and tm_remset() 216
tm_clear() ... 217
tm_free() .. 218

© Copyright IBM Corp. 1991 211

/

212 TCP/IP Version 2.0 for DOS: Programmer's Reference

Chapter 6. Timer Routines

This chapter describes the timer routines in the Application Programming Interface
(API) for TCP/IP for DOS. Use the timer routines to create, set, clear, and remove
timers in your application programs.

Ensure that you have initialized the TCPIP library with the sock_init() or dosip_init()
routines before you call any of the timer routines. See Chapter 3, "Sockets" for
more information about the sock_init() and dosip_init() initialization routines.

Timers and the Timer Task
The sock_init() and dosip_init() calls start a task called the timer task. The timer
task contains timers, which are counters that count down from an initial value to
zero. Think of a timer as an alarm clock. Specifying the initial value sets the timer
(alarm clock). The value of the counter is the time left on the timer. A timer that is
counting down is ticking. When a timer reaches zero, it goes off. After a timer goes
off, it is dormant unless you set it again. If a timer is ticking, stopping the timer and
making it dormant is referred to as clearing the timer.

A List of Timer Routines

©Copyright IBM Corp. 1991

TCP/IP for DOS provides routines for creating, setting, clearing, and removing
timers. The following is a list of timer routines and their functions.

Timer Routine

tm_alloc()

tm_tset()

tm_set()

tm_mset()

tm_retset()

tm_reset()

tm_remset()

tm_clear()

tm_free()

Function

Creates a timer.

Sets a timer to go off in a specific number of ticks.

Sets a timer to go off in a specific number of seconds.

Sets a timer to go off in a specific number of milliseconds.

Changes the time left on a timer that is already ticking. You can
specify the new time in ticks.

Changes the time left on a timer that is already ticking. You can
specify the new time in seconds.

Changes the time left on a timer that is already ticking. You can
specify the new time in milliseconds.

Clears a timer.

Removes a timer from the list of timers. Because timers use
system resources, always remove timers that you no longer
need.

213

tm alloc()

tm_alloc()

Description: The tm_alloc() routine creates a new timer in the timing task.

Return Values: If tm_alloc() is successful, it returns a pointer to the timer it created.
If tm_alloc() is unsuccessful, it returns a NULL pointer.

214 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

(

\"'

tm_tset(), tm_set(), and tm_mset()

tm_tset(), tm_set(), and tm_mset()

Description: The tm_tset(), tm_set() and tm_mset() routines set the tm timer to an
initial value of either ticks ticks, secs seconds, or msecs milliseconds. When the tm
timer goes off, the timer task calls the handler routine with the arg argument. You
are responsible for writing the handler routine.

Chapter 6. Timer Routines 215

tm_retset(), tm_reset(), and tm_remset()

tm_retset{), tm_reset{), and tm_remset{)

Description: The tm_retset(), tm_reset() and tm_remset() routines change the time
left on the tm timer to either ticks ticks, secs seconds, or msecs milliseconds.

Return Values: If tm_retset(), tm_reset(), or tm_remset() is successful, it returns the I
value of 1 (TRUE). If tm_retset(), tm_reset(), or tm_remset() is unsuccessful because "-
the tm timer is dormant or does not exist, the routine returns the value of 0 (FALSE).

216 TCP/IP Version 2.0 for DOS: Programmer's Reference

tm clear{)

tm_clear()

Description: The tm_clear() routine stops the tm timer from ticking and makes the
timer dormant.

Return Values: If tm_clear() is successful, it returns the value of 1 (TRUE). If
tm_clear() is unsuccessful because the tm timer is already dormant or does not
exist, the routine returns the value of O (FALSE).

Chapter 6. Timer Routines 217

tm_free()

tm_free()

Description: The tm_free() routine removes the tm timer from the timer task.
Ensure that the tm timer is dormant before you remove it.

Nole: Because timers use system resources, always remove timers that you no
longer need.

Return Values: If tm_free() is successful, it returns the value of 1 (TRUE). If
tm_free() is unsuccessful because the tm timer is ticking (not dormant), the routine
returns the value of O (FALSE).

218 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

./

\

Chapter 7. Tasking Routines

Tasking and the Scheduler 221
Tasks, Task State Vectors, and Task Status 221
The Wake Counter . 222
A List of Tasking Routines 222

tk_fork() ... 223
tk _contract() . 224
tk_yield() .. 225
tk_wake() .. 226
tk_block() .. 227
tk_sleep() .. 228
tk_sheli(} .. 229
tk_exit() ... 230
tk_kill() ... 231

© Copyright IBM Corp. 1991 219

220 TCP/IP Version 2.0 for DOS: Programmer's Reference

Chapter 7. Tasking Routines

This chapter describes the tasking routines in the Application Programming Inter­
face (API) for TCP/IP for DOS. Using the tasking routines allows your DOS system to
behave as though it were running a list of tasks simultaneously. For example, if you
write a server application program that waits for requests, you can have this
program running on your computer at the same time that you are using your com­
puter to write a letter.

Ensure that you have initialized the TCPIP library with the sock_init() or dosip_init()
routines before you call any of the tasking routines. See Chapter 3, "Sockets" for
more information about the sock_init() and dosip_init() initialization routines.

Tasking and the Scheduler
In the UTIL there is a scheduler that maintains a circular list of tasks and schedules
time for each task to run. The circular list of tasks is called the tasking ring. Each
task is an independent program that runs once every time the scheduler loops
through the tasking ring (round-robin tasking). Each task runs until it decides to
stop and let the next task run (nonpreemptive, cooperative tasking). The task that is
running at a particular time is called the current task. Each task takes its turn at
being the current task.

All programs in TCP/IP for DOS, including all user application programs, are tasks
that voluntarily stop running and let the next task run. The only exception is DOS
itself. When DOS is running, the scheduler must preempt DOS to let other tasks run.

The scheduler preempts DOS once every tasking interval. The default value of the
tasking interval is 15 ticks (18 ticks = 1 second). To change this value, use the
quantum subcommand of the IFCONFIG command. For more information about the
IFCONFIG command, see IBM TCP/IP Version 2.0 for DOS: User's Guide.

Tasks, Task State Vectors, and Task Status

© Copyright IBM Corp. 1991

A task is a program that runs once every cycle of the tasking ring.

In the ring, each task is represented by a task state vector. This vector contains the
parameters needed to run the task, a unique task identification number, and two
global variables defining the task status.

The identification number is called a Process IDentification number (PIO). The
scheduler stores the PIO for the current task in the variable tk_cur.

The two global variables that define a task's status are the included and marked
variables for removal flag, and the wake counter. The included and marked vari­
ables for removal flag indicates whether a task is included in the tasking ring, or the
task is about to be removed from the tasking ring.

The wake counter indicates whether the task is going to run, or pass up its chance
to run, the next time it is scheduled. If a task is going to run next time it is sched­
uled, the task is awake and the wake counter is greater than zero. If a task is going
to pass up its chance to run next time it is scheduled, the task is asleep and the
wake counter is less than or equal to zero.

221

The current task can change its own status, or change the status of another task.
For example, the current task can keep itself awake, put itself to sleep, or remove
itself from the tasking ring. The current task can also include a new task in the
tasking ring, wake another task, put another task to sleep, or mark another task to
be removed from the tasking ring.

The Wake Counter
The wake counter indicates whether a task is awake or asleep. Consider a task (the
service task) that provides a service to other tasks (the requesting tasks). When the
service task runs, it looks in a queue and provides the service to the first requesting
task in the queue. Next time the service task runs, it provides the service to the next
requesting task in the queue. This continues until the queue is empty. The service
task does not run again until there is at least one requesting task in the queue.

The scheduler does not know anything about the specifics of the tasks it schedules,
so how does the scheduler know when to run or not run the service task? The
answer is in the wake counter. When a requesting task runs, and wants to request
the service, that task puts its request in the queue, and increments the wake count
of the service task. Several requesting tasks may run, and make requests, before
the service task runs.

When the service task is scheduled, the scheduler decrements the wake count of the
service task by one, and the service task provides the service to one of the
requesting tasks. This continues until the wake count reaches zero, and the service
task has provided the service to all the requesting tasks. The service task is always
awake (wake count greater than zero) when one or more requesting tasks are
waiting in the queue, and the service is always asleep (wake count less than or
equal to zero) when there are no requesting tasks in the queue.

A List of Tasking Routines
The following is a list of the tasking routines and their functions.

Tasking Routine

tk_fork()

tk_contract()

tk_yield()

tk_wake()

tk_block()

tk_sleep()

tk_shell()

tk_exit()

tk_kill()

Function

Includes a new task in the tasking ring.

Registers a task in case that task leaves memory (exits) pre­
maturely.

Lets the next task run while keeping the current task awake.

Wakes another task.

Lets the next task run while putting the current task to sleep.

Puts another task to sleep.

Temporarily runs DOS from inside the current task.

Removes the current task from the tasking ring.

Marks another task for removal from the tasking ring.

222 TCP/IP Version 2.0 for DOS: Programmer's Reference

tk_fork()

tk fork()

Description: The tk_fork() routine includes a new task in the tasking ring. The new
task is the program start with the argument arg. The new task has a stack stack of
size stksize. The name of the new task, as a character string, is name. The new
task starts out awake, with a wake count of 1.

Each time you include a new task in the tasking ring with tk_fork(), register the task
with tk_contract(). Registering the task ensures that if the task leaves memory
(exits) prematurely, it is immediately removed from the tasking ring. For more
information, see "tk_contract()" on page 224.

Return Values: If tk_fork() is successful, it returns a nonzero positive integer PIO for
the new task. If tk_fork() is unsuccessful because there is not enough memory for
the new stack, the routine returns the value of 0.

Chapter 7. Tasking Routines 223

tk _contract()

tk_ contract()

Description: The tk_contract() routine registers the task with PIO pid, so that in the
event that the task leaves memory (exits) prematurely, the task is immediately
removed from the tasking ring. Each time you include a new task in the tasking ring
with tk_fork(), register the task with tk_contract().

224 TCP/IP Version 2.0 for DOS: Programmer's Reference

tk_yield()

tk_yield()

Description: The tk_yield() routine lets the next task run, while keeping the current
task awake. This routine increments the wake counter for the current task, to
ensure the current task stays awake.

Return Values: If the current task is still included in the tasking ring, when the the
task is scheduled again, tk_yield() returns with the value of 0. If the current task has
been marked for removal by another task, when the the task is scheduied again,
tk_yield() returns with a nonzero error code. Release all memory and other
resources allocated to the current task, because the scheduler is about to remove
the current task from the tasking ring.

Chapter 7. Tasking Routines 225

tk_wake()

tk_wake{)

Description: The tk_wake() routine wakes the task with PIO pid, by incrementing the
wake counter for that task.

Return Values: If tk_wake() is successful, it returns the value of 0. If tk_wake() is
unsuccessful because pid is not a valid PIO, the routine returns a nonzero integer.

226 TCP/IP Version 2.0 for DOS: Programmer's Reference

tk_block()

tk block()

Description: The tk_block() routine lets the next task in the tasking ring run while
putting the current task to sleep. This routine does not increment the wake counter
for the current task, so the current task remains asleep until another task wakes it
with tk_wake().

Return Values: If the current task is still included in the tasking ring, when the the
task wakes up again, tk_block() returns with the value of 0. If the current task has
been marked for removal by another task, when the the task wakes up again,
tk_block() returns with a nonzero error code. Release all memory and other
resources allocated to the current task, because the scheduler is about to remove
the current task from the tasking ring.

Chapter 7. Tasking Routines 227

tk_sleep()

tk_sleep()

Description: The tk_sleep() routine puts the task with PIO pid to sleep, by decre­
menting the wake counter for that task.

Return Values: If tk_sleep() is successful, it returns the value of 0. If tk_sleep() is
unsuccessful because pid is not a valid PIO, the routine returns a nonzero integer.

228 TCP/IP Version 2.0 for DOS: Programmer's Reference

tk_shell()

\.

tk shell()

Description: The tk_shell() routine temporarily runs DOS from inside the current
task. When DOS is running, you can enter DOS commands at the DOS prompt. To
return to the task, type EXIT at the DOS prompt and then press IJllll. Use this
routine when you want to be able to temporarily leave a task, use DOS commands,
and then return where you left off in the task.

If you call tk_shell with the value of 1 (TRUE) for sigstop, then the scheduler does
not preempt DOS while DOS is temporarily running. If you call tk_shell with the
value of O (FALSE) for sigstop, then the scheduler preempts DOS once every tasking
interval as usual.

Return Values: If tk_shell() is successful, it returns the value of 0. If tk_shell() is
unsuccessful because it cannot run DOS, the routine returns the value of -1 and the
global variable ERRNO is set to the error code.

Chapter 7. Tasking Routines 229

tk_exit()

tk_exit()

Description: The tk_exit() routine removes the current task from the tasking ring.
Release all memory and other resources allocated to the current task before using
tk_exit() to remove the task from the tasking ring.

230 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

/

tk_kill()

Description: The tk_kill() routine marks the task with PID pid for removal from the
tasking ring. The tasker schedules this task once more so you can release the
memory and other resources allocated to that task.

Return Values: If tk_kill() is successful, it returns the value of 0. If tk_kill() is unsuc­
cessful because pid is not a valid PID, the routine returns a nonzero integer.

Chapter 7. Tasking Routines 231

/

232 TCP/IP Version 2.0 for DOS: Programmer's Reference

© Copyright IBM Corp. 1991

Appendixes

Appendix A. Well-Known Port Assignments . 235
TCP Well-Known Port Assignments . 235
UDP Well-Known Port Assignments . 237

Appendix B. Sample Socket Programs . 239
Socket UDP Client .. 239
Socket UDP Server ... 241
Socket TCP Client .. 243
Socket TCP Server 245

Appendix C. Sample RPC Programs . 247
RPC Client ... 247
RPC Server 248

Appendix D. Sample Tasking Program 251
Tasking Program .. 251

Appendix E. Socket Quick Reference 255

Appendix F. Remote Procedure Call Quick Reference 257

Appendix G. FTP API Quick Reference 261

Appendix H. Timer Quick Reference 263

Appendix I. Tasking Quick Reference 265

Appendix J. NETWORKS File Structure . 267

Appendix K. Messages and Codes . 269
General Module Errors 270
General Module Internal Errors 286
General Module Warnings 287
Generic Text Messages 291
IFCONFIG Errors .. 296
Name Server Messages 302
NFS Errors . 303
TSR Errors 310

Appendix L. Related Protocol Specifications . 313

233

/

234 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix A. Well-Known Port Assignments

This appendix lists the well-known port assignments for the TCP and UDP transport
protocols, the port number, keyword, and a description of the reserved port assign­

ment. You can also find a list of these well-known port numbers in the SERVICES

file.

TCP Well-Known Port Assignments
Table 1 lists the well-known port assignments for TCP.

Table 1 (Page 1 of 2). TCP Well-Known Port Assignments

Port Number Keyword Reserved for Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 systat active users active users

13 daytime daytime daytime

15 netstat Netstat who is up or Netstat

19 chargen ttytst source character generator

21 ftp FTP File Transfer Protocol

23 telnet Telnet Telnet

25 smtp mail Simple Mail Transfer Protocol

37 time timeserver timeserver

39 rip resource Resource Location Protocol

42 nameserver name host name server

43 nicname NICNAME/WHOIS NICNAME/WHOIS

53 domain name server domain name server

57 mtp private terminal access private terminal access

69 Hip TFTP Trivial File Transfer Protocol

77 rje netrjs any private RJE service

79 finger finger finger

87 link ttylink any private terminal link

95 supdup supdup SUPDUP Protocol

101 hostname hostname nic hostname server, usually from SRl-NIC

109 pop postoffice Post Office Protocol Version 2.0

111 sunrpc sunrpc Sun remote procedure call

113 auth authentication authentication service

115 sftp sftp Simple File Transfer Protocol

117 uucp-path UUCP path service UUCP path service

119 untp readnews untp USENET News Transfer Protocol

© Copyright IBM Corp. 1991 235

Table 1 (Page 2 of 2). TCP Well-Known Port Assignments

Port Number Keyword Reserved for

123 ntp NTP

160-223 reserved

712 vexec vice-exec

713 vlogin vice-login

714 vs hell vice-shell

2001 filesrv

2106 venus.itc

236 TCP/IP Version 2.0 for DOS: Programmer's Reference

Services Description

Network Time Protocol

Andrew File System authenticated service

Andrew File System authenticated service

Andrew File System authenticated service

Andrew File System service

Andrew File System service, for the Venus
process

/

I

\

(

\

(

UDP Well-Known Port Assignments
Table 2 lists the well-known port assignments for UDP.

Table 2. UDP Well-Known Port Assignments

Port Number Keyword Reserved for Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 users active users active users

13 daytime daytime daytime

15 netstat Netstat Netstat

19 chargen ttytst source character generator

37 lime timeserver timeserver

39 rip resource Resource Location Protocol

42 nameserver name host name server

43 nlcname NICNAME/WHOIS NICNAME/WHOIS

53 domain name server domain name server

67 bootps bootps bootp server

68 boot pc bootpc bootp client

69 Hip TFTP Trivial File Transfer Protocol

75 any private dial out service

77 rje netrjs any private RJE service

79 finger finger finger

111 sunrpc sunrpc Sun remote procedure call

123 ntp NTP Network Time Protocol

135 llbd NCS LLBD NCS local location broker daemon

160-223 reserved

531 rvd-control rvd control port

2001 rauth2 Andrew File System service, for the Venus
process

2002 rfllebulk Andrew File System service, for the Venus
process

2003 rfilesrv Andrew File System service, for the Venus
process

2018 console Andrew File System service

2115 ropcons Andrew File System service, for the Venus
process

2131 rupdsrv assigned in pairs; bulk must be srv +1

2132 rupdbulk assigned in pairs; bulk must be srv +1

j 2133 rupdsrv1 assigned in pairs; bulk must be srv +1

2134 rupdbulk1 assigned in pairs; bulk must be srv +1

Appendix A. Well-Known Port Assignments 237

238 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix B. Sample Socket Programs

This appendix provides examples of the following C language programs:

• Socket UDP client
• Socket UDP server
• Socket TCP client
• Socket TCP server.

Socket UDP Client

© Copyright IBM Corp. 1991

The following is an example of a socket UDP client program:

#include <stdlib.h>
#include <types.h>
#include <netinet/in.h>
#include <sys/socket.h>

main(argc, argv)
int argc;
char **argv;
{

int s;
unsigned short port;
struct sockaddr in server;
char buf[32]; -
/*
* argv[l] is internet address of server argv[2] is port of server.
* Convert the port from ascii to integer and then from host byte
* order to network byte order.
*/

if(argc != 3)
{

printf("Usage: %s <host address> <port> \n",argv[0]);
exit{l);

}
port= htons{atoi{argv[2]));

/* Initialize with sockets */
sock_init{);
/*
* Create a datagram socket in the internet domain and use the
*default protocol {UDP).
*/

if {{s = socket{AF INET, SOCK OGRAM, 0)) < 0)
{ - -

}

perror{"socket{) ");
exit{l);

/* Set up the server name */
server.sin_family = AF_INET; /* Internet Domain */
server.sin_port = port; /* Server Port */
server.sin_addr.s_addr = inet_addr{argv[l]);

/* Server's Address */

strcpy{buf, "Hello");

239

}

/* Send the message in buf to the server */
if (sendto(s, buf, (strlen(buf)+l), 0, &server, sizeof(server)) < 0)
{

}

perror("sendto() ");
exit(2);

/* Deallocate the socket */
so_close(s);

240 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

\

(
I

\

/
I
_

Socket UDP Server
The following is an example of a socket UDP server C language program:

#include <stdlib.h>
#include <types.h>
#include <netinet/in.h>
#include <sys/socket.h>

main()
{

int s, namelen, client_address_size;
struct sockaddr_in client, server;
char buf[32];

/*
* Initialize with sockets.
*/

sock_init();

/*
* Create a datagram socket in the internet domain and use the
*default protocol (UDP).
*/

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{

}

perror("socket()");
exit(l);

/*
*Bind my name to this socket so that clients on the network can
* send me messages. (This allows the operating system to demultiplex
* messages and get them to the correct server)
*
* Set up the server name. The internet address is specified as the
* wildcard INADDR_ANY so that the server can get messages from any
* of the physical internet connections on this host. (Otherwise we
*would limit the server to messages from only one network interface)
*/

server.sin_family = AF_INET; /* Server is in Internet Domain */
server.sin_port = 0; /* Use any available port */
server.sin_addr.s_addr = INADDR_ANY;/* Server's Internet Address */

if (bind(s, &server, sizeof(server)) < 0)
{

}

perror("bind()");
exit(2);

/* Find out what port was really assigned and print it */
namelen = sizeof(server);
if (getsockname(s, (struct sockaddr *) &server, &namelen) < 0)
{

}

perror("getsockname() ");
exit(3);

printf("Port assigned is %d\n", ntohs(server.sin_port));

Appendix B. Sample Socket Programs 241

}

/*
* Receive a message on socket s in buf of maximum size 32
*from a client. Because the last two parameters
*are not null, the name of the client will be placed into the
*client data structure and the size of the client address will
*be placed into client_address_size.
*/

client_address_size = sizeof(client);

if(recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *) &client,
&client_address_size) <0)

{
perror (11 recvfrom () 11) ;

exit(4);
}

/*
* Print the message and the name of the client.
* The domain should be the internet domain (AF_INET).
* The port is received in network byte order, so we translate it to
* host byte order before printing it.
* The internet address is received as 32 bits in network byte order
*so we use a utility that converts it to a string printed in
* dotted decimal format for readability.
*/

printf("Received message %s from domain %s port %d internet address %s\n",
buf,
(client.sin family== AF INET? 11 AF INET 11 : 11 UNKNOWN 11),

ntohs(client.sin_port), - -
inet_ntoa(client.sin_addr)};

/*
* Deallocate the socket.
*/

so_close(s);

242 TCP/IP Version 2.0 for DOS: Programmer's Reference

(
__

Socket TCP Client
The following is an example of a socket TCP client C language program:

/*
* Include Files.
*/

#include <types.h>
#include <netinet\in.h>
#include <sys\socket.h>
#include <netdb.h>
#include <stdio.h>

/*
* Client Main.
*/

main(argc, argv)
int argc;
char **argv;
{

unsigned short port; /* port client will connect to */
char buf[12]; /*data buffer for sending and receiving */
struct hostent *hostnm; /* server host name information */
struct sockaddr in server; /* server address */
int s; /* client socket */

/*
* Check Arguments Passed. Should be hostname and port.
*/

if (argc != 3)
{

fprintf(stderr, "Usage: %s hostname port\n", argv[O]);
exit (1);

}

/*
* Initialize with sockets.
*/

sock_init();

/*
* The host name is the first argument. Get the server address.
*/

hostnm = gethostbyname(argv[l]);
if (hostnm == (struct hostent *) 0)
{

fprintf(stderr, "Gethostbyname failed\n");
exit(2);

}

/*
* The port is the second argument.
*/

port= (unsigned short) atoi(argv[2]);

/*
* Put a message into the buffer.
*/

strcpy(buf, "the message");

Appendix B. Sample Socket Programs 243

}

/*
* Put the server information into the server structure.
* The port must be put into network byte order.
*/

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr =*((unsigned long *)hostnm->h_addr);

/*
* Get a stream socket.
*/

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

}

/*

perror("Socket()");
exit(3);

* Connect to the server.
*/

if (connect(s, &server, sizeof(server)) < 0)
{

}

perror("Connect()");
exit(4);

if (send(s, buf, sizeof(buf), 0) < 0)
{

}

/*

perror("Send()");
exit (5);

* The server sends back the same message. Receive it into the buffer.
*/

if (recv(s, buf, sizeof(buf), 0) < 0)
{

}

/*

perror("Recv()");
exit (6);

* Close the socket.
*/

so_close(s);

printf("Client Ended Successfully\n");
exit(0);

244 TCP/IP Version 2.0 for DOS: Programmer's Reference

Socket TCP Server
The following is an example of a socket TCP server C language program:

/*
* Include Files.
*/

#include <types.h>
#include <netinet\in.h>
#include <sys\socket.h>
#include <stdio.h>

/*
* Server Main.
*/

main(argc, argv)
int argc;
char **argv;
{

unsigned short port;
char buf [12];
struct sockaddr in client;
struct sockaddr in server;
int s;
int ns;
int namelen;

/*

/* port server binds to */
/* buffer for sending and receiving data */
/*client address information */
/* server address information */
/* socket for accepting connections */
/*socket connected to client */
/*length of client name */

* Check arguments. Should be only one: the port number to bind to.
*/

if (argc != 2)
{

fprintf(stderr, "Usage: %s port\n", argv[O]);
exit(l);

}

/*
* Initialize with sockets.
*/

sock_init();

/*
* First argument should be the port.
*/

port= (unsigned short) atoi(argv[l]);

/*
* Get a socket for accepting connections.
*/

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

}

perror("Socket()");
exit(2);

Appendix B. Sample Socket Programs 245

}

/*
* Bind the socket to the server address.
*/

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = INADDR_ANY;

if (bind(s, &server, sizeof(server)) < 0)
{

}

/*

perror("Bind()");
exit(3);

* listen for connections. Specify the backlog as 1.
*/

if (listen(s, 1) != 0)
{

}

/*

perror("Listen()");
exit(4);

* Accept a connection.
*/

namelen = sizeof(client);
if ((ns = accept(s, &client, &namelen)) == -1)
{

}

/*

perror("Accept() ");
exit (5);

* Receive the message on the newly connected socket.
*/

if (recv(ns, buf, sizeof(buf), 0) == -1)
{

}

/*

perror("Recv() ");
exit(6);

* Send the message back to the client.
*/

if (send(ns, buf, sizeof(buf), 0) < 0)
{

}

perror("Send()");
exit(?);

so_close(ns);
so_close(s);

printf("Server ended successfully\n");
exit(O);

246 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix C. Sample RPC Programs

RPC Client

© Copyright IBM Corp. 1991

This appendix provides examples of the following programs:

• RPC client
• RPC server.

The following is an example of an RPC client program:

/* GENERAL RPC CLIENT */
/* Send an integer to the remote host and receive the integer back */
/* PORTMAPPER AND REMOTE SERVER MUST BE RUNNING */

#include <stdio.h>
#include <rpc\rpc.h>
#include <sys\socket.h>
#define intrcvprog ((u_long)150000)
#define version ((u_long)l)
#define i ntrcvproc ((u_ long) 1)

main(argc, argv)
int argc;
char *argv[];

{

}

int innumber;
int outnumber;
int error;

if (argc != 3)
{

fprintf(stderr,"usage: %s hostname integer\n", argv[0]);
exit (-1);

} /* endif */

innumber = atoi(argv[2]);
/*
* Send the integer to.the server. The server should
* return the same integer.
*/

error= callrpc(argv[l],intrcvprog,version,intrcvproc,
xdr_int, (char *)&innumber,xdr_int,(char *)&outnumber);

if (error != 0)
{

fprintf(stderr,"error: callrpc failed: %d \n",error);
fprintf(stderr,"intrcprog: %d version: %d intrcvproc: %d",

intrcvprog, version,intrcvproc);
exit(l);

} /* endif */

printf("value sent: %d value received: %d\n", innumber, outnumber);
exit (0);

247

RPC Server
The following is an example of an RPC server program:

/* GENERIC RPC SERVER */
/* RECEIVE AN INTEGER OR FLOAT AND RETURN THEM RESPECTIVELY */
/* PORTMAPPER MUST BE RUNNING */

#include <rpc\rpc.h>
#include <stdio.h>

#define intrcvprog
#define fltrcvprog
#define intvers
#define intrcvproc
#define fltrcvproc
#define fl tvers

((u_long)150000)
((u_long)150102)
((u_ long) 1)
((u_long)l)
((u_long)l)
((u_long)l)

main()
{

}

int *intrcv();
float *floatrcv();

/*REGISTER PROG, VERS AND PROC WITH THE PORTMAPPER*/

/*FIRST PROGRAM*/
registerrpc(intrcvprog,intvers,intrcvproc,intrcv,xdr_int,xdr_int);
printf("Intrcv Registration with Port Mapper completed\n");

/*OR MULTIPLE PROGRAMS*/
registerrpc(fltrcvprog,fltvers,fltrcvproc,floatrcv,xdr float,xdr float);
printf("Floatrcv Registration with Port Mapper completed\n"); -

/*
* svc run will handle all requests for programs registered.
*/ -

svc run();
printf("Error:svc_run returned!\n");
exit(l);

/*
* Procedure called by the server to receive and return an integer.
*/

int *
intrcv(in)

{

}

int *in;

int *out;

printf("integer received: %d\n",*in);
out = in;
printf("integer being returned: %d\n",*out);
return (out);

248 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

__ /

/*
* Procedure called by the server to receive and return a float.
*/

fl oat *
fl oatrcv (in)

float *in;
{

}

float *out;

printf("float received: %e\n" ,*in);
out=in;
printf("float being returned: %e\n", *out);
return(out);

Appendix C. Sample RPC Programs 249

/

250 TCP/IP Version 2.0 for DOS: Programmer's Reference

\.

Appendix D. Sample Tasking Program

This appendix provides examples of the following tasking functions:

• tk_fork()
• tk_yield().

Tasking Program
/* Illustrates multiple threads using functions:
* tk_fork() tk_yield()
*
* Also the global variable:
* tk cur
*
*This program requires the library TCPIP.LIB
* cl -c -AL -J -Gs -Oars -FPc -Zp2 threads.c
*link /noi /stack:16000 threads,,,%TCPBAS£%\lib\l\tcpip.lib;
*/

#include <types.h>
#include <task.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/timeb.h>
#include <stdlib.h>
#include <conio.h>
void far Bounce(int c);
void far CheckKey(void *dummy);

/* GetRandom returns a random integer between min and max. */
#define GetRandom(min, max) ((rand() % (int)(((max)+l) - (min))) + (min))
#define STACK SIZE 1024
#define BOOL int
#define PCHAR char *
#define CHAR char

BOOL repeat = TRUE;

struct {
int col;
int row;
} vmi;

/* Global repeat flag and video variable */

void VioWrtCellStr(char * cell,int len,int y,int x,int dummy)
{

memcpy((void far *)(0xB8000000 + (((y * 80) + x)*2)),(char far*) cell, len);

© Copyright IBM Corp. 1991

}

void DosSleep(unsigned long duration)
{

struct timeb timel;
struct timeb time2;

ftime(&timel);
do
{

tk_yield();

251

ftime(&time2);
}
while ((((time2.time-timel.time)*1000)+(time2.millitm-timel.millitm) <

duration)); /* enddo */

}

void main()
{

}

PCHAR stack;
CHAR ch= 'A';

sock_init();

/* Get display screen's text row and column infonnation. */
vmi.col = 80;
vmi.row = 25;

/* Launch CheckKey thread to check for tenninating keystroke. */
tk fork(CheckKey, (char near *}NULL, STACK SIZE, "CheckKey", (u_long)0);
tk=contract(tk_cur); -

/* Loop until CheckKey terminates program. */
while(repeat)
{

}

/* On first loops, launch character threads. */
if (tk_fork(Bounce,

(char near *}NULL,
STACK_SIZE,
"Bounce",
(u_long)ch++)) {

tk_contract(tk_cur);
} /* endif */

/* Wait one second between loops. */
DosSleep(1000L);

/* CheckKey - Thread to wait for a keystroke, then clear repeat flag. */
void CheckKey(void *dummy)
{

}

while (!kbhit()) {
tk_yield();

} /* endwhil e * /
tk stats();
getch();
repeat = 0; /* endthread implied */
tk_exit();

252 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

\.

/* Bounce - Thread to create and control a colored letter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*/

void Bounce(int ch)
{

}

/* Generate letter and color attribute from thread argument. */
char blankcell[2];
char blockcell[2];
int xold, xcur, yold, ycur;
BOOL first = TRUE;

blankcell[O] = Ox20;
blankcell[l] = Ox07;
blockcell[O] =ch;
blockcell[l] =(ch% 16) + 1;

/* Seed random-number generator and get initial location. */
srand(tk cur);
xcur = GetRandom(0, vmi.col - 1);
ycur = GetRandom(0, vmi.row - 1);
while (repeat)
{

/* Pause between loops. */
DosSleep(lOOL);

/* Blank out our old position on the screen, and draw new letter. */
if(first)

first = FALSE;
else

VioWrtCellStr(blankcell, 2, yold, xold, 0);
VioWrtCellStr(blockcell, 2, ycur, xcur, 0);

/* Increment the coordinate for next placement of the block. */
xold = xcur;
yold = ycur;
xcur += GetRandom(-1, 1);
ycur += GetRandom(-1, 1);

/* Correct placement (and beep) if about to go off the screen. */
if(xcur < 0)

xcur = l;
else if(xcur == vmi.col

xcur = vmi.col - 2;
else if(ycur < 0)

ycur = 1;
else if(ycur == vmi.row)

ycur = vmi.row - 2;

/* If not at screen border, continue; otherwise beep. */
else

continue;
/* printf("%c",Ox07); */ /*BEEP*/

}
tk_exit();

Appendix D. Sample Tasking Program 253

254 TCP/IP Version 2.0 for DOS: Programmer's Reference

\
_/

Appendix E. Socket Quick Reference

Table 3 describes each socket call supported by TCP/IP for DOS, and identifies the
page in the book where you can find more information.

Table 3 (Page 1 of 2). Socket Quick Reference

SocketCall

accept()

bind()

connect()

dosip_init()

endhostent()

endnetent()

endprotoent()

endservent()

gethostbyaddr()

gethostbyname()

gethostent()

gethostid()

getnetbyaddr()

getnetbyname()

getnetent()

getpeername()

getprotobyname()

getprotobynumber()

getprotoent()

getservbyname()

getservbyport()

getservent()

getsockname()

getsockopt()

htonl()

htons()

inet_addr()

inet_lnaof()

inet_makeaddr()

inet_netof()

© Copyright IBM Corp. 1991

Description Page

Accepts a connection request from a foreign host. 36

Assigns a local address to the socket. 38

Requests a connection to a foreign server. 41

Initializes the socket data structures and checks whether !NET.EXE is 44
running.

Closes the HOSTS file.

Closes the NETWORKS file.

Closes the PROTOCOL file.

Closes the SERVICES file.

Returns information about a host specified by an address.

Returns information about a host specified by a name.

Returns the next entry in the HOSTS file.

Returns the unique identifier of the current host.

Returns the network entry specified by address.

Returns the network entry specified by name.

Returns the next entry in the NETWORKS file.

Returns the name of the peer connected to sockets.

Returns a protocol entry specified by name.

Returns a protocol entry specified by number.

Returns the next entry in the PROTOCOL file.

Returns a service entry specified by name.

Returns a service entry specified by port number.

Returns the next entry in the SERVICES file.

Obtains local socket name.

Returns values of options associated with a socket.

Translates byte order from host to network for a long integer.

Translates byte order from host to network for a short integer.

Constructs an internet address from character strings set in standard
dotted-decimal notation.

Returns the local network portion of an internet address.

Constructs an internet address from a network number and a local
address.

Returns the network portion of the internet address in network byte
order.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

67

68

69

70

71

72

255

Table 3 (Page 2 of 2). Socket Quick Reference

SocketCall

inet_network()

inet_ntoa()

listen()

ntohl()

ntohs()

recv()

recvfrom()

select()

send()

sendto()

sethostent()

setnetent()

setprotoent()

setservent()

setsockopt()

shutdown()

sock_init()

socket()

so_close()

so_flush()

so_read()

so_write()

Description

Constructs a network number from character strings set in standard
dotted-decimal notation.

Returns a pointer to a string in dotted-decimal notation.

Indicates that a stream socket is ready for a connection request from a
foreign client.

Translates byte order from network to host for a long integer.

Translates byte order from network to host for a short integer.

Receives messages on a connected socket.

Receives messages on a datagram socket, regardless of its con­
nection status.

Returns read, write, and exception status on a group of sockets.

Sends packets on a connected socket.

Sends packets on a datagram socket, regardless of its connection
status.

Opens and rewinds the HOSTS file.

Opens and rewinds the NETWORKS file.

Opens and rewinds the PROTOCOL file.

Opens and rewinds the SERVICES file.

Sets options associated with a socket.

Shuts down all or part of a full-duplex connection.

Initializes the socket data structures and checks whether or not
!NET.EXE is running.

Requests that a socket be created.

Closes the socket associated with the descriptors.

Clears the contents of the socket.

Receives messages on a connected socket.

Sends packets on a connected socket.

256 TCP/IP Version 2.0 for DOS: Programmer's Reference

Page

73

74

75

76

77

78

79

80

82

83

84

85

86

87

88

90

91

92

95

96

97

98

_

Appendix F. Remote Procedure Call Quick Reference

Table 4 describes each RPC supported by TCP/IP for DOS, and identifies the page
in the book where you can find more information.

Table 4 (Page 1 of 3). Remote Procedure Call Quick Reference

Remote Procedure Call

auth _destroy()

authnone_create()

authunix_create()

authunix _create_ defau It()

callrpc()

clnt_call()

cl nt_ broadcast()

cl nt_ destroy()

clnt_freeres()

clnt_geterr()

clnt_pcreateerror()

clnt_perrno()

clnt_perror()

clnttcp_create()

clntudp_create()

get_myaddress()

pmap _getmaps()

pmap _getport()

pmap _rmtcal I()

pmap_set()

pmap_unset()

registerrpc()

rpc _ createerr

svc_destroy()

svc_fds()

svc _freeargs()

svc _getargs()

svc_getcaller()

svc_getreq()

© Copyright IBM Corp. 1991

Description

Destroys authentication information.

Creates and returns a NULL RPC authentication handle.

Creates and returns a UNIX-based authentication handle.

Calls authunix_create() with default parameters.

Calls remote procedures.

Calls the remote procedure associated with the client handle.

Calls remote procedures and locally broadcasts messages.

Destroys client's RPC handle.

De-allocates resources assigned for decoding RPC.

Copies the error structure from a client's handle to the local
address.

Indicates why a client handle cannot be created.

Writes error message indicating why RPC failed.

Writes error message indicating why RPC failed.

Creates an RPC client for the remote program using TCP trans­
port.

Creates an RPC client for the remote program using UDP trans­
port.

Returns the local host's internet address.

Returns a list of current program to port mappings on a specified
foreign host.

Returns a port number associated with a remote program.

Instructs a foreign host to make an RPC call on the client's behalf.

Sets the mapping of a server program to a port on local machine.

Resets the mappings on the local machine.

Registers the procedure with the local RPC Portmapper.

Global variable set when any RPC client creation routine fails.

Destroys the RPC service transport handle.

A global variable reflecting the RPC service-side read file
descriptor bit mask.

Frees storage allocated for arguments.

Decodes arguments from an RPC service transport handle.

Obtains the network address of the client associated with the
service transport handle.

Implements asynchronous event processing, and returns control
to the program after all sockets have been serviced.

Page

109

110

111

112

113

115

114

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

257

Table 4 (Page 2 of 3). Remote Procedure. Call Quick Reference

Remote Procedure Call

svc _register()

svc_run()

svc _ sendreply()

svc_unregister()

svcerr_auth()

svcerr _decode()

svcerr _ noproc()

svcerr _ noprog()

svcerr _progvers()

svcerr _systemerr()

svcerr _ weakauth()

svctcp _create()

svcudp _create()

xdr _accepted _reply()

xdr_array()

xdr _authunix_parms()

xdr_bool()

xdr_bytes()

xdr_callhdr()

xdr_callmsg()

xdr _double()

xdr_enum()

xdr_float()

xdr_inline()

xdr_int()

xdr_long()

xdr_opaque()

xdr_opaque_auth()

xdr_pmap()

xdr_pmaplist()

xdr _reference()

Description

Registers procedures on the Portmapper.

Accepts RPC requests, and calls the appropriate service.

Sends the results of an RPC to caller.

Removes the local mapping.

Returns an error reply when the service cannot execute RPC
because of authentication errors.

Returns an error reply when the service cannot decode its para­
meters.

Returns an error reply when the service cannot call procedure
requested.

Returns an error reply when the service cannot call the program
requested.

Returns an error reply when the service cannot call a version of
the program requested.

Returns an error reply when the service detects a system error
that has not been handled.

Returns an error reply when the service cannot execute an RPC
because of weak authentication parameters.

Creates TCP-based service transport.

Creates UDP-based service transport.

Translates RPC reply messages.

Translates an array to its external representation.

Translates UNIX-based authentication information.

Translates booleans to their external representations.

Translates counted byte strings.

Translates an RPC call message header.

Translates RPC call messages.

Translates C double-precision numbers to their external repre­
sentations.

Translates C-enumerated numbers to their external representa­
tions.

Translates C floating-point numbers to their external representa­
tions.

Invokes the inline routine, and returns a pointer to the continuous
piece of XOR buffer.

Translates C integers to their external representations.

Translates C long integers to their external representations.

Translates fixed-size opaque data to its external representation.

Translates RPC authentication data.

Translates port map elements.

Translates a list of port mappings.

Provides pointer chasing within structures.

258 TCP/IP Version 2.0 for DOS: Programmer's Reference

Page

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Table 4 (Page 3 of 3). Remote Procedure Call Quick Reference

Remote Procedure Call

xdr _rejected_reply()

xdr _replymsg()

xdr_short()

xdr_string()

xdr_u_int()

xdr_u_long()

xdr_u_short()

xdr_union()

xdr_void()

xdr_wrapstring()

xdrmem_create()

xdrrec _create()

xdrrec _ endofrecord()

xdrrec_eof()

xdrrec_skiprecord()

xdrstdio_create()

xprt_register()

xprt_unregister()

Description

Translates rejected RPC reply messages.

Translates RPC reply messages.

Translates between C short integers and their external represen­
tations.

Translates between C strings and their external representations.

Translates between C unsigned integers and their external rep­
resentations.

Translates between C unsigned long integers and their external
representations.

Translates between C unsigned short integers and their external
representations.

Translates between a discriminated C union and its external rep­
resentations.

Returns a value of 1.

Translates strings to their external representation.

Initializes the stream object that is pointed to by the XDRs; writes
to or reads from memory.

Initializes the stream object that is pointed to by the XDRs; writes
to or reads from a buffer.

Marks the data in the output buffer as a completed record.

Marks the end of the file, after using the rest of the current record
in the XOR stream.

Discards the rest of the XOR stream's current record in the input
buffer.

Initializes the stream object that is pointed to by the XDRs; writes
to or reads from the standard input-output stream file.

Registers service transport handles with the RPC service
package.

Unregisters the RPC service transport handle before it is
destroyed.

Page

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

Appendix F. Remote Procedure Call Quick Reference 259

260 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix G. FTP API Quick Reference

Table 5 describes each FTP API routine supported by TCP/IP for DOS, and identities
the page in the book where you can find more information.

Table 5. FTP AP/ Quick Reference

FTP API Call

ftpappend()

ftpcd()

ftpdelete()

ftpdir()

ft pg et()

ftplogoff()

ftp ls()

ftpmkd()

ftpping()

ftpproxy()

ftp put()

ftpputunique()

ftppwd()

ftpquote()

ftp rename()

ftprmd()

ftpsite()

ftpsys()

ping()

© Copyright IBM Corp. 1991

Description

Appends information to a remote file.

Changes the current working directory.

Deletes files on a remote machine.

Obtains a directory from a remote machine in wide format.

Obtains a file from a remote server.

Closes all current connections.

Obtains a directory from a remote machine in short format.

Creates a new directory on a target machine.

Attempts to resolve the host name through a name server.

Transfers a file between two remote servers without sending the file to
a local machine.

Transfers a file to a remote FTP server.

Transfers a file to a remote host and names it uniquely on a remote
machine.

Stores the string containing the FTP server description of the current
working directory on the host to the buffer.

Sends a string to the server verbatim.

Renames a file on a remote machine.

Removes a directory on a target machine.

Executes the site command.

Stores the string containing the FTP server description of the oper­
ating system running on the host to the buffer.

Sends a ping to the remote host to determine if that host is alive.

Page

191

192

193

194

195

196

197

198

199

200

202

203

201

204

205

206

207

208

209

261

262 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix H. Timer Quick Reference

Table 6 describes each TIMER ROUTINE supported by TCP/IP for DOS, and identi­
fies the page in the book where more information is located.

Table 6. Timer Quick Reference

Timer Routines

tm_alloc()

tm_clear()

tm_free()

tm_mset()

tm_remset()

tm_reset()

tm_retset()

tm_set()

tm_tset()

© Copyright IBM Corp. 1991

Description

Creates a timer.

Clears a timer.

Removes a timer from the list of timers. Because timers use
system resources, always remove timers that are no longer
needed.

Sets a timer to go off in a specific number of milliseconds.

Changes the time left on a timer that is already ticking. The new
time is specified in milliseconds.

Changes the time left on a timer that is already ticking. The new
time is specified in seconds.

Changes the time left on a timer that is already ticking. The new
time is specified in ticks.

Sets a timer to go off in a specific number of seconds.

Sets a timer to go off in a specific number of ticks.

Page

214

217

218

215

216

216

216

215

215

263

264 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix I. Tasking Quick Reference

Table 7 describes each TASKING ROUTINE supported by TCP/IP for DOS, and iden­
tifies the page in the book where more information is located.

Table 7. Tasking Quick Reference

Tasking Routines

tk_block()

tk _contract()

tk_exit()

tk_fork()

tk_kill()

tk_shell()

tk_sleep()

tk_wake()

tk_yield()

© Copyright IBM Corp. 1991

Description

Lets the next task run while putting the current task to sleep.

Registers a task in case that task leaves memory (exits) prema­
turely.

Removes the current task from the tasking ring.

Includes a new task in the tasking ring.

Marks another task for removal from the tasking ring.

Temporarily runs DOS from inside the current task.

Puts another task to sleep.

Wakes up another task.

Lets the next task run while keeping the current task awake.

Page

227

224

230

223

231

229

228

226

225

265

266 TCP/IP Version 2.0 for DOS: Programmer's Reference

Appendix J. NETWORKS File Structure

The NETWORKS file contains the network name, number, and alias(es) of known
networks. The NETWORKS file must reside in your <TCPBASE>\ETC directory, or
in the directory specified by the ETC environment variable. The NETWORKS file is
used only by the following socket calls:

• endnetent()
• getnetbyaddr()
• getnetbyname()
• getnetent()
• setnetent().

Table 8 provides examples of network names contained in the NETWORKS file.

Table 8. Name Structures of Known Networks

Name of File Contents of File

NETWORKS official_network_name network_number alias(es)

© Copyright IBM Corp. 1991

Sample File Entries

ne-region 128.1 classb.net1
at1-region 128.2 classb.net2
lab-net 192.5.1 classc.net5

267

268 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

,I

\.

(

'_

\.

_/

Appendix K. Messages and Codes

© Copyright IBM Corp. 1991

TCP/IP for DOS displays the following types of messages:

• Informational messages
• Warning messages
• Error messages
• Internal error messages.

Informational messages provide general information. Warning messages signify an
unusual occurrence that does not stop the module. Error messages occur when the
module cannot continue. Internal error messages signify an unexpected error.

Each type of message shows the name of the module that generated the message.
In warning, error, and internal error messages, the type of message follows the
module name. Messages are grouped as follows:

• General Modules

Errors
Internal Errors
Warnings

• Generic Text Messages

• IFCONFIG Errors

• Name Server Messages

• NFS Errors

• TSR Errors.

Within each of these groups, messages appear in alphabetical order according to
the message text. For example, the following message:

error: You must specify a host and command

appears before:

error: You must specify a name to query

Nole: Some modules, for example FTP and TELNET, are interactive. These shell
and menu-based modules provide some messages that are self-explanatory and are
not described in this appendix.

269

General Module Errors

The following error messages can appear in dif­
ferent modules.

module: error: A cormnand must be supplied

Module: REXEC ASH

Explanation: An attempt to execute the specified
command failed, because no remote command was
supplied.

User Response: Reissue the command and include a
remote command to be executed.

module: error: A local user name must be supplied

Module: ASH

Explanation: An attempt to execute the specified
command failed, because no local user name was sup­
plied on the command line and none was provided
interactively.

User Response: Reissue the command and either
include the local user name on the command line or
provide it when prompted.

module: error: A login name must be supplied

Module: REXEC ASH

Explanation: An attempt to execute the specified
command failed, because no logon name was supplied.
The logon name is your logon ID on the remote host.

User Response: Reissue the command and include the
logon name.

module: error: Closing service 'service': message

Module: NETWATCH

Explanation: An attempt to close service failed for the
reason specified in message. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Component file must be specified
after '-c' option

Module: COMPOSE

Explanation: The -c option requires a valid file name
following it.

User Response: Reissue the COMPOSE command
with a valid file name following the -c option.

270 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: Conflicting options: '-a' and '-b'

Module: TFTP

Explanation: An attempt to execute the specified
command failed, because both the BINARY and ASCII
modes of transfer were specified. These options are
mutually exclusive.

User Response: Reissue the command, specifying
only one of these options.

module: error: Conflicting options: '-b' and '-f'

Module: LPR

Explanation: An attempt to execute the specified
command failed, because both local binary file printing
and passing the file through the PR filter on a UNIX
server. These options are mutually exclusive.

User Response: Reissue the command, specifying
only one of these options.

module: error: Conflicting options: '-h' and '-c'

Module: FTP

Explanation: An attempt to execute the specified
command failed, because both byte count and hash
mark options were specified. These options are mutu­
ally exclusive.

User Response: Reissue the command, specifying
only one of these options.

module: error: Conflicting options: '-U' and '-T'

Module: COOKIE

Explanation: An attempt to execute the specified
command failed, because both the UDP and TCP proto­
cols were specified. These options are mutually exclu­
sive.

User Response: Reissue the command, specifying
only one of these options.

module: error: Conflicting options: 'Q' and 'h'

Module: PREV NEXT SHOW

Explanation: The options are in conflict. Q means to
be quite, but h means give information.

User Response: Reissue the command without either
the Q or h parameter.

\

module: error: Consecutive delimiters not supported

Module: COOKIE COMPOSE CUSTOM FINGER
FOLDER FTP HOST INC LPR NEXT NICNAME PING
POST PREV REFILE REPL RMF RMM SCAN SEND
SETCLOCK SHOW TFTP

Explanation: An attempt to execute the specified
command failed, because two option delimiters(-) were
specified on the command line without an intervening
option.

User Response: Reissue the command making sure
that an option letter follows each option delimiter.

module: error: Could not access mail file:
filename: message

Module: POST

Explanation: The message should provide an explana­
tion.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Could not allocate mail socket:
socket: message

Module: POST

Explanation: The specified socket could not be allo­
cated at this time.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Could not create output file
filename: message

Module: NETWATCH

Explanation: An attempt to create the output file
filename failed for the reason specified in message.
See the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Could not establish telnet session
with host

Module: TELNET

Explanation: An attempt to execute the specified
command failed.

User Response: Make sure that host can be resolved
into an internet address and that it is active.

module: error: Caul d not find fi 1 e filename:
message

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the file filename. could not be
found for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Could not fork packet display task:
message

Module: NETWATCH

Explanation: An attempt to fork the packet display task
failed for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Could not fork queue task: message

Module: PING

Explanation: An attempt to fork the queue task failed
for the specified reason. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Caul d not fork send task: message

Module: PING

Explanation: An attempt to fork the send task failed for
the specified reason. See the explanation for message
contained in "Generic Text Messages" on page 291 for
more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

Appendix K. Messages and Codes 271

module: error: Could not open device PRN: message

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the print device PRN: could
not be opened. See the explanation for message con­
tained in "Generic Text Messages" on page 291 for
more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Cou 1 d not open fi 1 e filename:
message

Module: LPR

Explanation: An attempt to execute the specified
command failed, because filename could not be opened
for reading. See the explanation for message con­
tained in "Generic Text Messages" on page 291 for
more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Could not open requested file:
message

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the requested file could not
be opened. See the explanation for message contained
in "Generic Text Messages" on page 291 for more
information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Decrease size and/or range: message

Module: PING

Explanation: An attempt to build an ICMP echo request
of the requested size and/or range failed for the reason
specified in message. See the explanation for
message contained in" Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

272 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: DOS error whi 1 e setting date

Module: SETCLOCK

Explanation: An error occurred somewhere within
DOS while attempting to set the system date.

User Response: Reissue the command, and if the con­
dition persists, contact your network administrator.

module: error: DOS error while setting time

Module: SETCLOCK

Explanation: An error occurred somewhere within
DOS while attempting to set the system time.

User Response: Reissue the command, and if the con­
dition persists, contact your network administrator.

module: error: Draft folder must be specified
after '-d' parameter

Module: COMPOSE

Explanation: The -d parameter must be followed by a
valid folder name.

User Response: Reissue the COMPOSE command
with a valid folder name following the -d parameter.

module: error: Duplicate or conflicting
parameters!

Module: FOLDER

Explanation: Two or more parameters are in conflict
or are duplicated.

User Response: Examine the FOLDER command for
duplicate or conflicting parameters, correct the
problem, and reissue the FOLDER command.

module: error: Either host or '-s' must be
specified

Module: PING

Explanation: An attempt to execute the specified
command failed, because the name of a host was not
specified and server mode was not indicated.

User Response: Reissue the command supplying
either a host name or the -s option.

module: error: Empty packet received

Module: COOKIE

Explanation: The quote server returned a packet of
zero length.

User Response: The quote server is not following the
quote of the day protocol ad defined in RFC 865.
Reissue the command, specifying an RFC compliant
quote server.

\

module: error: Error reading requested file:
message

Module: LPR

Explanation: An attempt to read the requested file in
order to copy it to device PRN: failed for the reason
specified in message. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Error writing to PRN

Module: LPR

Explanation: An attempt to write the requested file on
device PRN: failed.

User Response: Make sure that device PRN: is
attached and reissue the command. If the situation per­
sists, contact the appropriate support personnel.

module: error: File must be specified after 1 -f'
parameter

Module: COMPOSE

Explanation: The -f parameter requires a valid file
name following it.

User Response: Reissue the COMPOSE command
with a valid file name following the -f parameter.

module: error: Filename must be specified

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the name of the file to be
printed was not specified.

User Response: Reissue the command and specify the
name of the file that should be printed.

module: error: Folder must be specified after '+'

Module: COMPOSE FOLDER INC NEXT

Explanation: The + subcommand means change to
another folder and must be followed by a folder name.

User Response: Reissue the command with a valid
folder name following the '+' subcommand, or omit
the + subcommand.

module: error: Invalid class value 'value'

Module: HOST

Explanation: An attempt to execute the specified
command failed, because class value contains an
option delimiter (-) as the first character.

User Response: Reissue the command and include a
valid class name after the option.

module: error: Invalid option placement

Module: TFTP

Explanation: An attempt to execute the specified
command failed, because the neither -p nor -g option
was not specified before any other parameters.

User Response: Reissue the command, specifying the
-p or -g option prior to any parameters on the command
line.

module: error: Invalid parameter for negation
parameter

Module: COMPOSE FOLDER INC NEXT POST

Explanation: The parameter shown is either not valid
for this command or cannot be negated for this
command.

User Response: Reissue the command without the
negation (!) of this parameter.

module: error: Invalid parameter: parameter

Module: FOLDER INC POST

Explanation: The parameter displayed is not valid
with this command.

User Response: Reissue the command without the
invalid parameter.

module: error: Invalid type value 'string'

Module: HOST

Explanation: An attempt to execute the specified
command failed, because the type value string was
invalid.

User Response: Reissue the command with a valid
type value.

module: error: Invalid version in template, copy
aborted

Module: CUSTOM

Explanation: An attempt to execute the specified
command failed, because the internal version of the
template custom structure was invalid.

User Response: Reissue the command with a valid
version of the template.

Appendix K. Messages and Codes 273

module: error: Loca 1 printer not ready

Module: LPR

Explanation: The local printer has timed out.

User Response: Determine why print device PRN: has
timed out, correct the situation, and reissue the
command.

module: error: Local printer out of paper

Module: LPR

Explanation: The local printer is either out of paper or
not turned on, where the term local printer refers to
print device PRN:.

User Response: Correct the situation and reissue the
command.

module: error: Mail file must be specified

Module: POST

Explanation: The POST command must have a mail
file name specified.

User Response: Reissue the POST command with a
valid mail file name.

module: error: Mail home must be specified after
'-H' parameter

Module: COMPOSE FOLDER INC NEXT

Explanation: The -H parameter causes the command
to use a different Mailhome path, but it must be fol­
lowed by a valid path.

User Response: Reissue the command with a valid
path following the -H parameter.

module: error: Message must be specified after
'-m' parameter

Module: COMPOSE

Explanation: The -m parameter was found, but no
message followed it.

User Response: Reissue the command with a
message following the -m parameter.

module: error: Missing parameters

Module: TFTP

Explanation: TFTP has not been supplied with enough
parameters. The -g, get, -p, and put options require
several other parameters.

User Response: Reissue the command using the
proper number of parameters.

274 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: Multiple files not supported

Module: LPR

Explanation: An attempt to execute the specified
command failed, because multiple files were specified.
These commands send only a single file to be printed.

User Response: Reissue the command specifying a
single file to be printed.

module: error: Multiple folders not supported

Module: FOLDER

Explanation: The FOLDER command specifies more
than one folder.

User Response: Reissue the command by speci.fying
only one folder.

module: error: Multiple hosts not supported

Module: COOKIE FTP PING SETCLOCK

Explanation: An attempt to execute the specified
command failed, because more than one host name
was specified on the command line.

User Response: Reissue the command supplying a
single host name.

module: error: No alternate POP port specified
after '-a' parameter

Module: INC

Explanation: A valid POP2 host name must follow the
-a parameter.

User Response: Reissue the INC command with a
valid POP2 host following the -a parameter.

module: error: No available (down) hardware tsrs to
listen with

Module: NETWATCH

Explanation: An attempt to execute the specified
command failed, because the is no downed hardware
TSR to listen with. This command requires that the
hardware TSR be down.

User Response: Reissue the command after downing
the appropriate hardware TSR.

module: error: No from field in mail file.

Module: POST

Explanation: SMTP requires information in the FROM:
field of the mail to be sent.

User Response: Complete the FROM: field and the
reissue the POST command.

\.

module: error: No host specified after '-s'
parameter

Module: INC

Explanation: A valid POP2 host must follow the '-s'
parameter.

User Response: Reissue the INC command with the
name of your POP2 host following the '-s' parameter.

module: error: No hostname has been specified

Module: COOKIE REXEC RSH

Explanation: An attempt to execute the specified
command failed, because no host name was specified.

User Response: Reissue the command and include the
host name.

module: error: No parameter specified after

Module: COMPOSE FOLDER INC NEXT

Explanation: The negation (!) parameter requires a
valid parameter following.

User Response: Reissue the command with the
parameter that you wish to negate following the !.

module: error: No password specified after '-p'
parameter

Module: INC

Explanation: A password must follow the -p param­
eter.

User Response: Reissue the INC command with a
password following the -p parameter.

module: error: No primary recipients found in
address list.

Module: POST

Explanation: SMTP requires a valid recipient in the
address list.

User Response: Correct the mail file and reissue the
POST command.

module: error: No remote folder specified after
'-f' parameter

Module: INC

Explanation: A folder name must follow the -f param­
eter.

User Response: Reissue the INC command with a
valid folder name following the -f parameter.

module: error: No resolvable name servers specified

Module: HOST

Explanation: An attempt to execute the specified
command failed, because a resolvable name server
was not specified on the command line and none are
specified in the custom structure.

User Response: Reissue the command and specify a
name server or modify the custom structure to include
at least one name server and then reissue the
command.

module: error: No target specified

Module: FINGER

Explanation: An attempt to execute the specified
command failed, because neither a host name or
user@host combination was specified on the command
line.

User Response: Reissue the command, specifying a
host name or user@host combination.

module: error: No time server specified

Module: SETCLOCK

Explanation: An attempt to execute the command
failed, because no time server was specified on the
command line and there are none defined in the
custom structure.

User Response: Reissue the command, and either
specify a time server on the command line or include at
least one in the custom structure.

module: error: No To: field found

Module: POST

Explanation: The SMTP requires information in the TO:
field to establish what user is going to receive the mail.

User Response: Complete the To: field and reissue the
POST command.

module: error: No user specified after '-u'
parameter

Module: INC

Explanation: A user name must follow the -u param­
eter.

User Response: Reissue the INC command with a user
name following the -u parameter.

Appendix K. Messages and Codes 275

module: error: No valid address found in from
field.

Module: POST

Explanation: SMTP requires the mail file to contain a
valid FROM: address.

User Response: Correct the mail file using a valid
FROM: address and reissue the POST command.

module: error: Old or corrupt custom structure

Module: CUSTOM

Explanation: An attempt to customize the custom
structure failed because of an incompatibility with
CUSTOM. The internal version number for the custom
structure differs from that of CUSTOM itself or the
custom structure has become corrupted.

User Response: Reissue the command after replacing
your version of the custom structure (NETDEV.SYS)
with the one supplied with TCP/IP for DOS.

module: error: Only one class name may be specified

Module: HOST

Explanation: An attempt to execute the specified
command failed, because the class name option was
specified more than once on the command line.

User Response: Reissue the command, specifying the
class name option only once.

module: error: Only one configuration file can be
specified

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because multiple instances of the f
option were specified.

User Response: Reissue the command specifying the f
option once.

module: error: Only one emulator type can be
specified

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because multiple instances of thee
option were specified.

User Response: Reissue the command specifying the
e option once.

276 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: Only one of host or '-s' must be
specified

Module: PING

Explanation: An attempt to execute the specified
command failed, because the name of a host and the
server mode were both indicated. These two tasks are
mutually exclusive.

User Response: Reissue the command supplying
either a host name or the -s option.

module: error: Only one type name may be specified

Module: HOST

Explanation: The type name option was specified on
the command line more than once.

User Response: Reissue the command using the type
name option only once.

module: error: Opening service 'service': message

Module: NETWATCH

Explanation: An attempt to open service service failed
for the reason specified in message. See the explana­
tion for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Option expected

Module: COOKIE CUSTOM FINGER FTP HOST LPR
NETWATCH NICNAME PlNG SETCLOCK TELNET TFTP

Explanation: An attempt to execute the specified
command failed, because the option delimiter(-) was
encountered without a following option.

User Response: Reissue the command with an option
following the delimiter.

module: error: Out of memory

Module: COMPOSE FOLDER NEXT POST

Explanation: There is not enough memory to complete
the command.

User Response: If possible, unload some terminate
and stay resident (TSR) programs and reissue the
command.

module: error: Parameter expected

Module: COMPOSE FOLDER INC NEXT POST PREV
REFILE REPL RMF RMM SCAN SEND SHOW

Explanation: The command found a - with no param­
eter after it.

User Response: Reissue the command without the -,
or with a valid parameter following the-.

module: error: Requested name 'name' is al ready in
use

Module: NETWATCH

Explanation: Attempt to execute the specified
command failed, because the requested name name is
already in use.

User Response: In order to watch on name, use
IFCONFIG to down name, then reissue the command.

module: error: Requested name 'name' is not a
hardware tsr

Module: NETWATCH

Explanation: An attempt to execute the specified
command failed, because name name was not a hard­
ware TSR. The hardware TSR only needs to be speci­
fied if you have more than one hardware installed in
your system.

User Response: Use the IFCONFIG command to obtain
the names of the resident TCP/IP for DOS TSRs, then
reissue the command with the correct name.

module: error: Requested name 'name' is not an
installed tsr

Module: NETWATCH

Explanation: An attempt to execute the specified
command failed, because the requested name name in
not an installed TSR.

User Response: Reissue the command with the name
of an installed, downed, TSR.

module: error: Resetting listen mode for 'service'
:message

Module: NETWATCH

Explanation: An attempt to reset listen mode for
service failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Server closed connection
prematurely

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the file did not transfer suc­
cessfully. In all probability, the server closed the con­
nection prematurely.

User Response: Reissue the command. If the situ­
ation persists, contact the appropriate server support
personnel.

module: error: Setting listen mode for service
'service':message

Module: NETWATCH

Explanation: An attempt to set service service to listen
mode failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Show program must be specified after
'-p' parameter

Module: NEXT

Explanation: The -p parameter must be followed by
the name of a valid executable program.

User Response: Reissue the NEXT command with the
name of a valid executable SHOW program following
the -p parameter.

module: error: Statefile must be specified after
'-S' parameter

Module: COMPOSE FOLDER INC NEXT

Explanation: The -S parameter must be followed by a
valid state file.

User Response: Reissue the command without the -S
parameter, or follow it with a valid state file.

module: error: Subdirectories are not supported

Module: COMPOSE FOLDER REFILE REPL RMF RMM
SCAN SHOW PREV NEXT INC

Explanation: The + parameter expects a folder name,
not a DOS path.

User Response: Reissue the command with a folder
name following the +.

Appendix K. Messages and Codes 277

module: error: The 'character' option requires an
Argument

Module: NETWATCH

Explanation: An attempt to execute the specified
command failed, because the 'character' option
requires an argument.

User Response: Reissue the command and include the
proper argument after the option.

module: error: The '-c' option requires a class
name

Module: HOST

Explanation: An attempt to execute the specified
command failed, because the -c option requires a class
name.

User Response: Reissue the command and include the
class name after the option.

module: error: The '-e' option requires an emulator
type

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because the -e option requires the
emulator type.

User Response: Reissue the command and include the
emulator type after the option.

module: error: The '-f' option requires a file name

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because the -f option requires the
name of the configuration file.

User Response: Reissue the command and include the
name of the configuration file after the option.

module: error: The '-1' option requires a packet
length

Module: PING

Explanation: An attempt to execute the specified
command failed, because the -I option requires the
length in bytes of the ICMP echo request.

User Response: Reissue the command and include the
packet length after the option.

module: error: The '-1' option requires a remote
login name

Module: REXEC ASH

Explanation: An attempt to execute the specified
command failed, because the -I option requires a logon
name. The logon name is your logon ID on the remote
host.

278 TCP/IP Version 2.0 for DOS: Programmer's Reference

User Response: Reissue the command and include the
logon name after the option.

module: error: The '-m' option requires a packet
rate

Module: PING

Explanation: An attempt to execute the specified
command failed, because the -m option requires the
rate, in pings per second, for the ICMP echo requests.

User Response: Reissue the command and include the
packet rate after the option.

module: error: The '-n' option requires a packet
count

Module: PING

Explanation: An attempt to execute the specified
command failed, because the -n option requires the
number of ICMP echo requests to send.

User Response: Reissue the command and include the
packet count after the option.

module: error: The '-n' option requires a positive
packet count

Module: PING

Explanation: An attempt to execute the specified
command failed, because the -n option requires a posi­
tive number of ICMP echo requests to send.

User Response: Reissue the command and include a
positive packet count after the option.

module: error: The '-n' option requires a query
type

Module: HOST

Explanation: An attempt to execute the specified
command failed, because the -n option requires a
query type.

User Response: Reissue the command and include the
query type after the option.

module: error: The '-p' option requires a password

Module: REXEC ASH

Explanation: An attempt to execute the specified
command failed, because the -p option requires a pass­
word.

User Response: Reissue the command and include the
password after the option.

module: error: The '-p' option requires a port
number

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because the -p option requires the
TCP port number.

User Response: Reissue the command and include the
TCP port number after the option.

module: error: The '-p' option requires a printer
name

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the -p option requires a
printer name.

User Response: Reissue the command and include the
printer name after the option.

module: error: The 1 -r' option requires a maximum
packet range

Module: PING

Explanation: An attempt to execute the specified
command failed, because the -r option requires the
range (size in bytes) of the ICMP echo request.

User Response: Reissue the command and include the
maximum packet range after the option.

module: error: The 1 -r' option requires a retry
value

Module: host SETCLOCK

Explanation: An attempt to execute the specified
command failed, because the -r option requires the
number of retries to be attempted in the event of a
timeout.

User Response: Reissue the command and include the
retry value after the option.

module: error: The '-s' option requires a server
name

Module: LPR

Explanation: An attempt to execute the specified
command failed, because the -s option requires the
name of an appropriate server.

User Response: Reissue the command and include the
name of the appropriate server after the option.

module: error: The '-t' option requires a time-out
value

Module: COOKIE FINGER HOST NICNAME PING
SETCLOCK

Explanation: An attempt to execute the specified
command failed, because the -t option requires the
number of seconds which determine when a request or
connection is timed out.

User Response: Reissue the command and include the
time-out value after the option.

module: error: The '-u' option requires a local
user name

Module: RSH

Explanation: An attempt to execute the specified
command failed, because the -u option requires a local
user name.

User Response: Reissue the command and include a
local user name after the option.

module: error: The '-w' option requires a wait
count

Module: PING

Explanation: An attempt to execute the specified
command failed, because the -w option requires the
number of seconds to wait before sending an ICMP
echo request.

User Response: Reissue the command and include the
wait count after the option.

module: error: The duplicate use of the '-p' option
is not supported

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because multiple instances of the -p
option were specified.

User Response: Reissue the command specifying the
-p option once.

module: error: The invalid maximum packet range
'range' was specified

Module: PING

Explanation: An attempt to execute the specified
command failed, because the packet range range was
illegal. Legal packet ranges are positive integers.

User Response: Reissue the command, specifying a
legal packet range.

Appendix K. Messages and Codes 279

module: error: The invalid packet length 'length'
was specified

Module: PING

Explanation: An attempt to execute the specified
command failed, because the packet length specified
was illegal. Legal values for length are positive inte­
gers less than 32 767.

User Response: Reissue the command, specifying a
legal packet length.

module: error: The invalid packet rate 'rate' was
specified

Module: PING

Explanation: An attempt to execute the specified
command failed, because the packet rate was illegal.
Legal values for rate are positive integers less than 32
112.

User Response: Reissue the command, specifying a
legal packet rate.

module: error: The invalid retry value 'value' was
specified

Module: HOST SETCLOCK

Explanation: An attempt to execute the specified
command failed, because the retry value was illegal.
Legal values for retry are positive integers.

User Response: Reissue the command, specifying a
legal retry value.

module: error: The invalid time-out value 'value'
was specified

Module: COOKIE FINGER HOST NICNAME PING
SETCLOCK

Explanatlon: The time-out value specified on the
command line was out of range.

User Response: Reissue the command, specifying a
legal time-out value.

module: error: The invalid wait count 'value' was
specified

Module: PING

Explanation: An attempt to execute the specified
command failed, because the wait count specified was
illegal. Legal wait counts are positive integers.

User Response: Reissue the command, specifying a
legal wait count.

280 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: The port number must be a positive
integer

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because the TCP port number was not
a positive integer.

User Response: Reissue the command with a positive
integer following the -p option.

module: error: Timed out connecting to host

Module: FINGER

Explanation: An attempt to execute the specified
command failed, because the specified host did not
respond during the connection period.

User Response: Reissue the command an include the
-t option with a larger time-out value. If the situation
persists, contact your network administrator.

module: error: Timed out terminating transmission

Module: FINGER

Explanation: The specified command timed out while
attempting to terminate the transmission. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message Is
insufficient to resolve the problem, contact your
network administrator.

module: error: Too many devices/files specified

Module: CUSTOM

Explanation: An attempt to execute the specified
command failed, because more than two parameters
were indicated on the command line. The first param­
eter should be the device and file to be customized,
and the second, a template to be overlayed onto the
first.

User Response: Reissue the command specifying only
two parameters on the command line.

module: error: Too many targets specified

Module: FINGER

Explanation: An attempt to execute the specified
command failed, because more than 10 host or
user@host combinations were specified.

User Response: Reissue the command reducing the
number of host or user@host combinations.

f

_

(
I

_

module: error: Too many tsr names to watch on

Module: NETWATCH

Explanation: An attempt to execute the specified
command failed, because too many TSR names were
specified.

User Response: Reissue the command and reduce the
number of TSR names to watch.

module: error: Transmitting to broadcast address
not supported

Module: LPR PING TFTP

Explanation: An attempt to execute the specified
command failed, because it attempted to transmit to a
broadcast address.

User Response: No response is necessary.

module: error: Transmitting to local machine not
supported

Module: : LPR PING TFTP

Explanation: An attempt to execute the specified
command failed, because the local machine was speci­
fied as the object. These programs can only transmit to
remote hosts.

User Response: Reissue the command, specifying a
remote host.

module: error: Unable to allocate socket: message

Module: COOKIE FINGER HOST LPR NICNAME
SETCLOCK

Explanation: An attempt to allocate a socket failed for
the specified reason. See the explanation for message
contained in "Generic Text Messages" on page 291 for
more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to allocate storage: message

Module: CUSTOM HOST LPR PING TFTP

Explanation: An attempt to allocate storage failed for
the specified reason. See the explanation for message
contained in "Generic Text Messages" on page 291 for
more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is

insufficient to resolve the problem, contact your
network administrator.

module: error: Unab 1 e to bind socket: message

Module: FINGER HOST LPR SETCLOCK

Explanation: An attempt to bind a local address to a
socket failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to close connection:
message

Module: FINGER

Explanation: An attempt to close the connection failed
for the specified reason. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator. error: Unable to compute
file size:messsage

module: error: Unab 1 e to connect: message

Module: COOKIE FINGER LPR NICNAME

Explanation: An attempt to connect failed for the
reason specified in message. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to determine local address:
message

Module: LPR

Explanation: An attempt to determine the internet
address of the local machine failed for the reason spec­
ified in message. See the explanation for message
contained in "Generic Text Messages" on page 291 for
more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

Appendix K. Messages and Codes 281

module: error: Unable to determine printserver

Module: LPR

Explanation: An attempt to execute the specified
command failed, because an LPD printer server was
not specified on the command line and one was not
specified in the custom structure.

User Response: Reissue the command and specify a
printer server or modify the custom structure to include
one. Note that LPR and QPR share the printer server
specified in the custom structure.

module: error: Unable to initialize icmp protocol
layer: message

Module: PING

Explanation: An attempt to initialize the ICMP protocol
layer failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to load secondary command
processor: message

Module: PING TFTP

Explanation: An attempt to load a secondary command
processor failed for the reason specified in message.
See the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to receive time response:
message

Module: SETCLOCK

Explanation: An attempt to receive a time response
failed for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

282 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: Unable to receive: message

Module: COOKIE FINGER NICNAME LPR

Explanatlon: An attempt to receive data failed for the
reason specified in message. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to resolve addressaddress :
nameserver

Module: COOKIE FINGER HOST LPR NICNAME PING
SETCLOCK TFTP

Explanation: An attempt to resolve the address
address failed for the reason specified in message.
See the explanation for message contained in "Name
Server Messages" on page 302 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to set socket to
non-blocking:message

Module: FINGER

Explanation: An attempt to set a socket to nonblocking
mode failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to terminate transmission:
message

Module: FINGER

Explanation: An attempt to terminate transmissions
failed for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

(

\

(

\

module: error: Unable to transmit icmp echo
request: message

Module: PING

Explanation: An attempt to transmit the ICMP echo
request failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to transmit: message

Module: COOKIE FINGER LPR NICNAME

Explanation: An attempted transmission failed for the
reason specified in message. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to wait for acknowledgment:
message

Module: FINGER

Explanation: An attempt to execute the specified
command failed, because it could not wait for an
acknowledgment for the specified reason. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to wait for reply: message

Module: COOKIE FINGER NICNAME

Explanation: An attempt to execute the specified
command failed, because the specified reason pre­
vented it from waiting for a reply. See the explanation
for message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to wait for shutdown
acknowledgment: message

Module: FINGER

Explanation: An attempt to wait for a shutdown
acknowledgment failed for the reason specified in
message. See the explanation for message contained
in "Generic Text Messages" on page 291 for more
information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to wait to close connection:
message

Module: FINGER

Explanation: An attempt to wait to close the con­
nection failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unab 1 e to wait to connect: message

Module: FINGER

Explanation: An attempt to wait for the connection
failed for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: Unable to wait to receive: message

Module: FINGER

Explanation: An attempt to wait for a response failed
for the specified reason. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

Appendix K. Messages and Codes 283

module: error: Unable to write to temporary mail
file: mailfile

Module: SEND

Explanation: The temporary mail file has a read only
attribute, or it is located on a write protected drive.

User Response: Specify a different mail file, or
remove the file or drive protection.

module: error: Unbalanced [] in 'hostname'

Module: FINGER

Explanation: An attempt to execute the specified
command failed, because brackets ([])were not bal­
anced. When specifying a host as an internet literal, for
example [hostname], you must provide a] for each[.

User Response: Reissue the command with the
correct command line syntax.

module: error: Unknown emulator name: 'emulator
name'

Module: TELNET

Explanation: An attempt to execute the specified
command failed, because emulator name is not a valid
emulator type.

User Response: See the TELNET command in IBM
TCP/IP Version 2.0 for DOS: User's Guide for the valid
emulator types.

module: error: Unknown option : character

Module: CUSTOM COOKIE FINGER FTP HOST LPR
NETWATCH NICNAME PING SETCLOCK TELNET TFTP

Explanation: An attempt to execute the specified
command failed, because option character is not avail­
able with this command.

User Response: Reissue the command only using
valid options. If necessary, use the help option(-?) to
obtain a list of all the valid command options.

module: error: Unknown parameter: parameter

Module: COMPOSE FOLDER INC NEXT REFILE REPL
RMM SCAN SEND SHOW

Explanallon: The parameter is not a valid parameter
with this command.

User Response: Reissue the command without param­
eter.

284 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: error: Unknown transfer mode specified

Module: TFTP

Explanation: An attempt to execute the specified
command failed due to an unknown transfer mode
being specified on the command line. The transfer
mode must be specified as the 5th argument. Sup­
ported transfer modes are ASCII and BINARY.

User Response: Reissue the command specifying the
5th argument (transfer mode) as either ASCII or
BINARY.

module: error: Upping service 'name': message

Module: NETWATCH

Explanation: An attempt to up the service name failed
for the reason specified in message. See the explana­
tion for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: error: You must specify a host and command

Module: REXEC RSH

Explanation: An attempt to execute the specified
command failed, because neither a remote host and
command were not specified.

User Response: Reissue the command, specifying a
remote host and command.

module: error: You must specify a name to query

Module: HOST

Explanation: An attempt to execute the specified
command failed, because neither a name to be
resolved into an internet address nor an internet
address which to be resolved into the corresponding
host name were specified.

User Response: Reissue the command specifying
either a host name or an internet address to be
resolved.

module: error: You must specify at least one domain
name server

Module: HOST

Explanation: An attempt to execute the specified
command failed, because a domain name server was
not specified on the command line and none are speci­
fied in the custom structure.

User Response: Reissue the command and specify a
domain name server or modify the custom structure to
include at least one domain name server and then
reissue the command.

(

rnodule: error: You must specify at least one
IEN-116 nameserver

Module: HOST

Explanation: An attempt to execute the specified
command failed, because a IEN-116 name server was
not specified on the command line and none are speci­
fied in the custom structure.

User Response: Reissue the command and specify a
IEN-116 name server or modify the custom structure to
include at least one IEN-116 name server and then
reissue the command.

rnodule: error: You must specify the name you wish
resolved

Module: HOST

Explanation: An attempt to execute the specified
command failed, because a host name to be resolved
into an internet address was not supplied on the
command line.

User Response: Reissue the command, specifying the
name you wish to have resolved using a IEN-116 name
server.

module: error: You must specify the structure and
template

Module: CUSTOM

Explanation: An attempt to execute the specified
command failed, because the -c (copy) option requires
the name of the custom structure and template.

User Response: Reissue the command and include the
names of the custom structure and template.

Appendix K. Messages and Codes 285

General Module Internal Errors

The following internal error messages can appear
in different modules.

module: INTERNAL ERROR: Bad return from getopt():
value

Module: COOKIE CUSTOM FTP FINGER HOST LPR
NETWATCH NICNAME PING REXEC RSH TFTP
SETCLOCK

Explanation: A normally unreachable section of code
has been accessed.

286 TCP/IP Version 2.0 for DOS: Programmer's Reference

User Response: Report this occurrence to your TCP/IP
for DOS support personnel.

module: INTERNAL ERROR: main: Impossible condition:
Report this occurrence to DOS/IP support

Module: TFTP

Explanation: A normally unreachable section of code
has been accessed.

User Response: Please contact your TCP/IP for DOS
support personnel and provide any information about
the conditions under which this error occurred.

(

(

(

General Module Warnings

The following are warning messages that can
appear in different modules.

module: warning: Address for host hostname not
found.

Module: POST

Explanation: No name server was able to supply an
address for hostname

User Response: Reissue the POST command with the
correct IP address.

module: warning: Bad address address detected and
ignored.

Module: POST

Explanation: Mail could not be delivered to address.

User Response: Reissue the POST command with a
correct address for the address shown.

module: warning: Binary printing ignored on UNIX
LPD print server

Module: LPR

Explanation: The -b option directing binary file printing
was specified when printing was to be performed by a
remote UNIX LPD print server. The -b option is valid
only for local printing.

User Response: If binary file printing is required,
reissue the command and specify a local printer. If
binary file printing is not required, reissue the
command removing the -b option.

module: warning: Can not get data from console,
issuing quit command

Module: FTP

Explanation: A Ctrl-Z was entered while in the FTP
shell.

User Response: No response is necessary.

module: warning: Connection timed out

Module: FINGER NICNAME

Explanation: An attempt to execute the specified
command failed, because the time-out period expired
before receiving any data.

User Response: Reissue the command, and if pos­
sible, increase the timeout period.

module: warning: Could not connect to host
host name

Module: POST

Explanation: The hostname was not running an SMTP
server.

User Response: Reissue the POST command at a later
time, or if a POP2 server is available, SEND the mail to
the POP2 server and let it deliver the mail to hostname.

module: warning: Could not get address for mail
gateway to deliver mail to name

Module: POST

Explanation: The mail gateway could not be located.
No name server could provide an address for the mail
gateway.

User Response: Correct the mail gateway name and
reissue the POST command.

module: warning: Could not send mail to address

Module: POST

Explanation: POST attempted to deliver mail to
address using SMTP, but the mail could not be deliv­
ered.

User Response: Examine the address carefully. If
everything appears to be correct, reissue the POST
command.

module: warning: Date field ignored in mail draft

Module: SEND

Explanation: The SEND command found that the DATE:
field already contained a date. The SEND command
ignored the DATE: field and stamped the field with the
proper date.

User Response: No action is required.

module: warning: Error transmitting mailfile:
message

Module: POST

Explanation: The contents of message should explain
this error.

User Response: Follow the action recommended by
the system.

module: warning: Host address reports an internal
error

Module: HOST

Explanation: The domain name server address was
unable to process the query because of an internal
problem.

User Response: Reissue the command directing it to a
different domain name server, or wait a period of time

Appendix K. Messages and Codes 287

and reissue the command to the same domain name
server. If the problem persists contact your network
administrator.

module: warning: Host address returns a format
error

Module: HOST

Explanation: The domain name server address was
unable to interpret the query.

User Response: Reissue the command directing it to a
different domain name server, or wait a period of time
and reissue the command to the same domain name
server. If the problem persists contact your network
administrator.

module: warning: host has ended this FTP session.

Module: FTP

Explanation: The remote host has ended the FTP
session.

User Response: If more information is required,
contact the responsible support personnel for the
remote host's FTP service.

module: warning: Host hostname rejected DATA
command.

Module: POST

Explanation: The hostname has rejected the data
transmission.

User Response: Reissue the POST command. If the
same error continues to occur, ensure that you can
POST mail to another host, if possible, and that other
stations can POST mail to hostname.

module: warning: Host hostname rejected delivery
address address.

Module: POST

Explanation: The hostname responded to SMTP, but
rejected mail delivery.

User Response: Ensure that the address in the mail
file is valid for hostname.

module: warning: Host hostname rejected HELO
command

Module: POST

Explanation: The remote host has refused to accept
mail from this system at this time.

User Response: Contact the network administrator of
the remote host to determine why it is rejecting mail
from your user ID.

288 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: warning: Host hostname rejected mail file
after it was transmitted

Module: POST

Explanation: The remote host has refused mail from
your system after it was delivered.

User Response: Contact the network administrator of
the remote host to determine why it is rejecting mail
from your user ID.

module: warning: Host hostname rejected MAIL FROM
command.

Module: POST

Explanation: The remote host has refused to accept
mail from this system at this time.

User Response: Contact the network administrator of
the remote host to determine why it is rejecting mail
from your user ID.

module: warning: Maximum number of arguments
exceeded, stopping at argument number 'command'

Module: FTP

Explanation: An attempt was made to execute more
than 100 FTP commands in a command file. The last
command executed was command which is number
value in the file.

User Response: None necessary.

module: warning: Name server address does not
support recursive queries

Module: HOST

Explanation: Recursive query support is optional on
the part of domain name servers.

User Response: Reissue the command and direct the
query to a domain server which provides recursive
query support.

module: warning: Name server address refuses to
answer the question

Module: HOST

Explanation: Name server address refused to respond
to the query for policy reasons. For example, the
domain name server might not want to provide the
information to your particular machine, or it might not
perform that particular operation such as a zone
transfer.

User Response: Reissue the command and direct the
query to a domain name server that provides the infor­
mation you want. 'name' does not exist

module: warning: No CMOS clock found. Ignoring
'-c' option

Module: SETCLOCK

Explanation: The -c option was specified on an IBM PC
or PC/XT. These machines do not come with a CMOS
clock. This option is ignored.

User Response: No response is necessary.

module: warning: No response from address

Module: HOST

Explanation: The domain name server address did not
respond. This situation can be due to the domain name
server crashing or from exceeding the time-out period.

User Response: Reissue the command after deter­
mining that the domain name server at address is oper­
ational. If the domain name server is operational,
increase the time-out period using the -t option.

module: warning: No valid addresses found in sender
field of mail header

Module: POST

Explanation: The SMTP header is not correct.

User Response: Correct the mail header and then
reissue the POST command.

module: warning: Only one tftp server may be active
at a 'time.

Module: TFTP

Explanation: An attempt was made to execute the
specified command while in a secondary command
processor. Only one server can be active.

User Response: No response is necessary.

module: warning: Serveraddress: message

Module: HOST

Explanation: An attempt to obtain name resolution
failed, because name server address reported a
problem. See the explanation for message contained
in "Name Server Messages" on page 302 for more
information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: warning: Time service not responding,
Clock not set.

Module: SETCLOCK

Explanation: An attempt to execute the specified
command failed, because there was no response from
any of the time servers. Time servers may not have
responded, because they are down or are not currently
providing time service.

User Response: Reissue the command, specifying a
different time server.

module: warning: Timed out closing connection

Module: FINGER

Explanation: The specified command timed out while
attempting to close the transmission. See the explana­
tion for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: warning: Timed out receiving data:message

Module: FINGER

Explanation: The specified command timed out while
attempting to receive data. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: warning: Timed out sending to host

Module: FINGER

Explanation: The specified command timed out while
attempting to send data.

User Response: Reissue the command. If the situ­
ation persists, contact your local TCP/IP for DOS
support personnel.

module: warning: Timed out waiting for reply

Module: POST

Explanation: You have timed out waiting for a reply
from the remote host.

User Response: If this error continues to occur, then
contact the network administrator of the remote host to
determine why it is slow to respond.

Appendix K. Messages and Codes 289

module: warning: Unable to allocate local
resources: message

Module: HOST

Explanation: An attempt to allocate local resources
when attempting name resolution failed for the reason
specified in message. See the explanation for
message found in "Name Server Messages" on
page 302 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: warning: Unable to transmit: message

Module: SETCLOCK

Explanation: An attempt to transmit failed for the
reason specified in message. See the explanation for
message found in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

module: warning: Unknown error message (value) from
dm_resolve

Module: HOST

Explanation: The domain name server returned an
unknown error code, value.

User Response: Contact your network administrator or
your TCP/IP for DOS support personnel for more infor­
mation.

290 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: warning: Unrecognized cl ass type 'string'
will be ignored

Module: HOST

Explanation: The class type specified by string is not
recognized as a legitimate class and is ignored. Only
class mnemonics as specified in RFC 1035 are recog­
nized.

User Response: Reissue the command after con­
sulting IBM TCP/IP Version 2.0 for DOS: User's Guide
to obtain the valid classes.

module: warning: Unrecognized query type 'string'
will be ignored

Module: HOST

Explanation: The type of query specified by 'string' is
not recognized as a legitimate query type and is
ignored. All query type mnemonics defined in RFC
1035 with the exception of AXFR are legitimate.

User Response: Reissue the command after con­
sulting IBM TCP/IP Version 2.0 for DOS: User's Guide
to obtain the valid query type.

module: warning: Error waiting for tftp connection:
message

Module: TFTP

Explanation: An attempt to initialize the command
failed for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

Generic Text Messages

The following generic text messages can appear in
different modules.

Address already in use

Explanation: A socket has already been bound to an
address.

Address family not supported by protocol family

Explanation: Attempt was made to specify an address
family other than AF _INET.

Arg list too long

Explanation: The argument list exceeds 128 bytes, or
the space required for the environment information
exceeds 32K bytes.

Argument too large

Explanation: The argument to a math function is not in
the domain of the function.

Bad memory address

Explanation: The system encountered a memory fault.
Since TCP/IP does not have memory protection, some
system calls check the validity of pointers passed to
them. This error occurs when a pointer check reveals
that the passed pointer is zero (O).

Bad file number

Explanation: The specified file handle is not a valid file
handle value, does not refer to an open file, or an
attempt was made to write to a file or device opened for
read access (or the reverse).

Block device required

Explanation: A character device was specified where
a block device is required.

Broken pipe

Explanation: Attempt was made to write on a socket or
pipe whose foreign side is no longer accepting data.

Can't assign requested address

Explanation: Attempt was made to assign an address
to an unsupported socket or an address could not be
resolved.

Can't send after socket shutdown

Explanation: Attempt was made to read or write on a
socket which has been shutdown.

Connection refused

Explanation: Attempt at connecting to a peer was
refused. This can result from trying to connect to a
service that is not supported or by exceeding the
maximum number of connections.

Connection reset by peer

Explanation: A stream connection was forcibly closed
(reset) by a peer host. This happens, for example,
when the remote socket loses the connection due to a
time-out or reboot.

Connection timed out

Explanation: A request to connect or send to a peer
failed, because they did not correctly respond for a
period of time. The time-out period is dependent on the
specific protocol used, i.e. stream or datagram.

Cross-device link

Explanation: Attempt was made to move a file to a dif­
ferent device (using the rename() function).

Destination address required

Explanation: Attempt was made to perform an opera­
tion on a socket without specifying the destination
address.

Directory not empty

Explanation: Attempt was made to remove a directory
which is not empty.

Disc quota exceeded

Explanation: Attempt to write to a file or create a
directory or link failed, because your quota of storage
was exhausted.

Error reading or writing the NETCUST device

Explanation: Attempt to read from or write to the
device NETCUST failed.

Exec format error

Explanation: Attempt was made to run a file that was
not executable or that had a non-valid executable file
format.

Appendix K. Messages and Codes 291

File exists

Explanation: The O_CREAT and O_ESCL flags were
specified when opening a file, but the named file
already existed.

File name too long

Explanation: The file portion of a path was longer than
twelve (12) characters (eight for the file name itself,
one for a period, and three for the extension) or the
length of the path was greater than 64 characters.

File table overflow

Explanation: The system's table of open files is full; no
more requests to open a file can be accepted until a
previously open file is closed.

File too large

Explanation: The size of the specified file exceeds the
maximum (approximately 2G bytes).

Host is down

Explanation: Attempt was made to perform a socket
operation to a host which was down.

I/O error

Explanation: An 1/0 error occurred when attempting to
write to a network device.

I 11 ega l seek

Explanation: Attempt was made to perform a seek on
a socket or pipe.

Interface is deaf now

Explanation: Attempt was made to disable packet
reception on a network interface that was already disa­
bled.

Interface is down now

Explanation: Attempt was made to bring an interface
down which was already down.

Interface is hearing now

Explanation: Attempt was made to enable packet
reception on an network interface that was already
enabled.

Interface is installed now

Explanation: Attempt was made to install a network
interface which was already installed.

292 TCP/IP Version 2.0 for DOS: Programmer's Reference

Interface is up now

Explanation: Attempt was made to bring an interface
up which was already up.

Interrupted system call

Explanation: An interrupt occurred during a system
call.

Invalid argument

Explanation: An invalid value was given for one of the
arguments to a function. For example, the value given
for the origin when positioning a file pointer is before
the beginning of the file.

IOCTL failed

Explanation: Attempt to perform an IOCTL on the
NETCUST device failed.

Is a directory

Explanation: Attempt was made to write to a directory.

Message too long

Explanation: Attempt was made to send a packet
which was larger than the internal message buffer or
some other limit through a socket.

Mount device busy

Explanation: Attempt was made mount a device which
is already in use or an attempt was made to unmount a
drive which was the current drive, has been substituted
or joined.

Network dropped connection on reset

Explanation: The foreign host has rebooted.

Network is down

Explanation: There is no access to the network.

Network is unreachable

Explanation: Attempt was made to perform a network
operation to an unreachable network.

No buffer space available

Explanation: Attempt to perform an operation on a
socket failed due to a lack of buffer space.

No children

Explanation: Attempt to initiate the tasking system or
to create a child process failed.

No error condition exists

Explanation: Value indicating no error.

No !NET TSR has been loaded

Explanation: Attempt to use the INET TSR failed as it
has not been loaded into memory.

No more processes

Explanation: Attempt to add a child process failed as
the maximum number of tasks allowed has been
reached.

No room for additional entry

Explanation: Attempt to allocate resources for network
access failed due to lack of resources, for example, the
maximum number of connections has been reached.

No route to host

Explanation: Attempt was made to perform a socket
operation to an unreachable host.

No space left on device

Explanation: No more space for writing is available on
the device. (For example, the disk is full).

No such device

Explanation: An invalid or non-existant device was
supplied as an argument on a system call.

No such device or address

Explanation: The specified device did not exist.

No such file or directory

Explanation: The specified file or directory does not
exist or could not be found. This message can occur
whenever a specified file did not exist or a component
of a path name does not specify an existing directory.
It can also occur if a file name exceeds 8 characters, or
if the file name extension exceeds 3 characters.

No such process

Explanation: The specified process did not exist.

No Utility TSR has been loaded

Explanation: Attempt to use the Utility TSR failed as it
had not been loaded into memory.

Not a directory

\ Explanation: A directory name was not specified
_/ where one is required, for example, in a path name.

Not a typewriter

Explanation: The specified device was not a typewriter
or a device to which this call applies.

Not enough core

Explanation: Not enough storage was available. This
message can occur when not enough storage was
available to run a child process or when the allocation
request in an sbrk() or getcwd() call cannot be satisfied.

Not owner

Explanation: Attempt was made to modify a file in
such a way forbidden by anyone except its owner.

Operation already in progress

Explanation: Attempt was made to perform an opera­
tion on a nonblocking object which already has an
operation in progress. For example, attempting to
close a TCP connection which is in the process of being
closed.

Operation not supported on socket

Explanation: Attempt was made to perform an opera­
tion on a socket which is not supported. For example,
trying to accept a connection on a socket of type
SOCK_DGRA~.

Operation now in progress

Explanation: Attempt was made to perform an opera­
tion which takes a long time to complete on a non­
blocking object.

Operation would block

Explanation: Attempt was made to perform an opera­
tion on an object in nonblocking mode which would
cause a process to block. For example, attempting to
read from a socket created as nonblocking when no
information is present.

Operation would cause deadlock

Explanation: Locking violation: the file cannot be
locked after 10 attempts.

Permanent failure of the network driver

Explanation: The network driver was not functional.
Examine the network hardware and confirm that it is
functioning properly and that it is configured correctly.

Appendix K. Messages and Codes 293

Permission denied

Explanatlon: The permission setting of the file does
not allow the specified access. This error can occur in
a variety of circumstances. It signifies that an attempt
was made to get access to a file in a way that is incom­
patible with the attributes of the file.

Protocol family not supported

Explanation: Attempt was made to use a protocol
family which has been neither configured nor imple­
mented into the system.

Protocol not available

Explanation: Attempt was made to specify a bad
option or level in a getsockopt() or setsockopt() call.

Protocol not supported

Explanation: Attempt was made to use a protocol
which has neither been configured nor been imple­
mented into the system.

Protocol wrong type for socket

Explanation: A protocol was specified which is not
supported by the requested socket type. For example,
the UDP protocol was specified for socket type
SOCK_STREAM.

Read-only file system

Explanation: Attempt was made to write to a read-only
file.

Result too large

Explanation: An argument to a math function is too
large, resulting in partial or total loss of significance in
the result. This error can also occur in other functions
when an argument is larger than expected (for
example, when the path name argument to the getcwd()
function is longer than expected).

RVD related disk error

Explanation: An unknown error was generated by an
RVD disk operation.

Service agent table is full

Explanation: Attempt to load a service into the service
table failed as it would exceed the maximum number
allowed.

Socket is already connected

Explanation: A request was made to connect to an
already connected socket or a sendto() call was
attempted with a socket of type TCP.

294 TCP/IP Version 2.0 for DOS: Programmer's Reference

Socket is not connected

Explanation: A request was made to send or receive
data on a socket which was not connected.

Socket operation on non-socket

Explanation: Attempt was made to perform a socket
operation on a non-socket or the socket type is not
valid.

Socket type not supported

Explanation: Attempt was made to use a socket type
which has either not been configured or implemented
into the system.

Software caused connection abort

Explanatlon: A reset was sent to the foreign host due
to some internal condition.

Failure on the part of the network driver

Explanation: Failure on the part of the network driver
to deliver the requested packet to the wire.

Text file busy

Explanation: Attempt has been made to modify a
pure-procedure program that is currently being exe­
cuted.

Too many levels of symbolic links

Explanation: Attempt was made to lookup a path name
which contains greater than the maximum number of
symbolic links.

Too many links

Explanation: Attempt was made to exceed the
maximum number of links to a file.

Too many open files

Explanation: No more file handles are available, so no
more files can be opened.

Too many processes

Explanation: Attempt was made to fork a task which
would overflow the process table.

Too many references: can't splice

Explanation: The limit of files has been exhausted.

Too many users

Explanation: The system call could be completed,
because too many users were logged into the system.

/

\

Unknown error condition

Explanation: An indeterminable error occurred.

Unclean situation (you clean it up)

Explanation: An unforeseen situation has occurred.
Perform any necessary cleanup. This error is most
notably caused by the death of a process.

UTIL TSR is not up

Explanation: Attempt to use UTIL failed, because it
has not been loaded.

Appendix K. Messages and Codes 295

IFCONFIG Errors

The following error messages can appear when
using the IFCONFIG command.

ifconfig: error: downing hardware tsr: Interface is
down now

Module: IFCONFIG

Explanation: The IFCONFIG hwr DOWN command was
issued when the hardware TSR has been terminated.

User Response: Entering the IFCONFIG hwr DOWN
command when the hardware TSR has been terminated
has no effect.

ifconfig: error: downing utility tsr: Interface is
down now

Module: IFCONFIG

Explanation: The IFCONFIG UTIL DOWN command
was issued when UTIL has been terminated.

User Response: Entering the IFCONFIG UTIL DOWN
command when UTIL has been terminated has no
effect.

ifconfig: error: hwr: 'address' requires an
internet address/mask

Module: IFCONFIG

Explanation: The IFCONFIG INET IP CONFIG hwr
ADDRESS command must be followed by a valid
internet address.

User Response: Reissue the command with a valid
internet address following the address parameter.

ifconfig: error: hwr: base: requires a hexadecimal
argument

Module: IFCONFIG

Explanation: The base port address parameter was
either missing or not valid.

User Response: Reissue the command using a valid
base port address following the base parameter.

ifconfig: error: hwr: baud: requires one of the
following values: 110, 134.5, 150, 300, 600, 1200,
1800, 2000, 2400, 4800, 9600, 19200, 38400

Module: IFCONFIG

Explanation: The baud rate parameter was either
missing or not valid.

User Response: Reissue the command using a valid
baud rate following the baud parameter.

296 TCP/IP Version 2.0 for DOS: Programmer's Reference

ifconfig: error: hwr: 'broadcast' requires an
internet address/mask

Module: IFCONFIG

Explanation: The IFCONFIG INET IP CONFIG hwr
BROADCAST command must be followed by a valid
internet address.

User Response: Reissue the command with a valid
internet address following the broadcast parameter.

ifconfig: error: hwr: com: requires a value in the
range (1 - 8)

Module: IFCONFIG

Explanation: The COM port parameter was either
missing or not valid.

User Response: Reissue the command using a valid
COM port following the COM parameter.

ifconfig: error: hwr: data: requires a value in the
range (5 - 8)

Module: IFCONFIG

Explanation: The number of data bits parameter was
either missing or not valid.

User Response: Reissue the command using a valid
data bits number following the data parameter.

ifconfig: error: hwr: dialtmo: requires a value in
the range (0 - 65535)

Module: IFCONFIG

Explanation: The dial-up time-out parameter was
either missing or not valid.

User Response: Reissue the command using a valid
dial-up time-out following the dialtmo parameter.

ifconfig: error: hwr: flags: 'route' requires you
to specify ON or OFF

Module: IFCONFIG

Explanation: The only valid route flags are on and off.
One of these must be specified.

User Response: Reissue the command using either on
or off following the FLAGS ROUTE parameters.

ifconfig: error: hwr: int: requires a value in the
range (0x60 - 0x80)

Module: IFCONFIG

Explanation: The interrupt vector parameter was
either missing or not valid.

User Response: Reissue the command using a valid
interrupt vector following the int parameter.

(

\

\.

ifconfig: error: hwr: mtu: requires a value in the
range (nnn - nnn}

Module: IFCONFIG

Explanation: The parameter following the mtu param­
eter is missing or not valid.

User Response: Reissue the command using a valid
mtu value following the mtu parameter.

ifconfig: error: hwr: 'netmask' requires an
internet address/mask

Module: IFCONFIG

Explanation: The IFCONFIG INET IP CONFIG hwr
NETMASK command must be followed by a valid
internet address.

User Response: Reissue the command with a valid
internet address following the netmask parameter.

ifconfig: error: hwr: 'parameter' is an ill formed
address

Module: IFCONFIG

Explanation: The parameter must be a valid internet
address in dotted decimal format or hexadecimal
format.

User Response: Reissue the command, replacing the
invalid parameter with a valid internet address.

ifconfig: error: hwr: 'parameter' is an unknown
conmand for this service

Module: IFCONFIG

Explanation: The parameter is not valid with the hwr
subcommands.

User Response: See IBM TCP/IP Version 2.0 for DOS:
User's Guide for a list of valid parameters for the hwr
subcommands.

ifconfig: error: hwr: 'parameter' is an unknown
flag

Module: IFCONFIG

Explanation: The parameter following the flags param­
eter is not valid. The only valid parameter that follows
flags is route.

User Response: Reissue the command with the route
parameter and a valid route flag following the flags
parameter.

ifconfig: error: hwr: parity: type 'parameter'
invalid

Module: IFCONFIG

Explanation: The parity type parameter was not valid.

User Response: Reissue the command using a valid
parity type following the parity parameter. The valid
parity types are: none, odd, even, bit1, and bitO.

ifconfig: error: hwr: parity: requires a parity
type

Module: IFCONFIG

Explanation: The parity type parameter was missing.

User Response: Reissue the command using a valid
parity type following the parity parameter. The valid
parity types are: none, odd, even, bit1, and bitO.

ifconfig: error: hwr: stop: requires a value in the
range (1 - 2}

Module: IFCONFIG

Explanation: The number of stop bits parameter was
either missing or not valid.

User Response: Reissue the command using a valid
stop bits number following the stop parameter.

ifconfig: error: inet: 'ackdelay' value 'parameter'
out of range (1 - 65535)

Module: IFCONFIG

Explanation:. The parameter for the new ackdelay was
not valid.

User Response: Reissue the command using an
ackdelay value between 1 and 65 535 ticks.

ifconfig: error: inet: config does not find an
interface named 'parameter'

Module: IFCONFIG

Explanation: Before a network interface can be config­
ured using the IFCONFIG INET IP CONFIG command, it
must be created.

User Response: Create the network interface using
the IFCONFIG INET IP CREATE command, then reissue
the IFCONFIG INET IP CONFIG command.

ifconfig: error: inet: 'default_mss' value
'parameter' out of range (1 - 65 535)

Module: IFCONFIG

Explanation: The parameter for the new default_mss
was not valid.

User Response: Reissue the command using a
default_mss value between 1 and 65 535 bytes.

Appendix K. Messages and Codes 297

ifconfig: error: inet: delete does not find an
interface named 'pv. 'parameter'

Module: IFCONFIG

Explanation: The interface parameter does not exist.

User Response: Use the IFCONFIG INET IP SHOW
command to see a list of active network interfaces.
Reissue the IFCONFIG INET IP DELETE command using
a valid network interface name.

ifconfig: error: inet: 'far_rtt' value 'parameter'
out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new far_rtt was not
valid.

User Response: Reissue the command using a far_rtt
value between 1 and 65 535 ticks.

ifconfig: error: inet: 'flushsqtmo' value
'parameter' out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new flushsqtmo
was not val id.

User Response: Reissue the command, using a
flushsqtmo value between 1 and 65 535 ticks.

ifconfi g: error: i net: 'i p delete' requires an
interface name

Module: IFCONFIG

Explanation: The name of the network interface to be
deleted was not given.

User Response: Use the IFCONFIG INET IP SHOW
command to see a list of active network interfaces.
Reissue the IFCONFIG INET IP DELETE command using
a valid network interface name.

ifconfig: error: inet: 'keep_tmo' value 'parameter'
out of range (1 - 65 535)

Module: IFCONFIG

Explanation: The parameter for the new keep_tmo was
not valid.

User Response: Reissue the command using a
keep_tmo value between 1 and 65 535 ticks.

ifconfig: error: inet: legal operations for route
are 'add' ,'delete', or 'flush'

Module: IFCONFIG

Explanation: The add, delete, or flush parameter must
follow the IFCONFIG INET IP ROUTE command.

User Response: Reissue the command with a valid
parameter following ROUTE.

298 TCP/IP Version 2.0 for DOS: Programmer's Reference

ifconfig: error: inet: legal types for route add
are 'net', 'default' or 'host'.

Module: IFCONFIG

Explanation: The net, default, or host parameter must
follow the IFCONFIG INET IP ROUTE ADD command.

User Response: Reissue the command with a valid
parameter following ADD.

ifconfig: error: inet: legal types for route delete
are 'net', 'default' or 'host'.

Module: IFCONFIG

Explanation: The net, default, or host parameter must
follow the IFCONFIG INET IP ROUTE command.

User Response: Reissue the command with a valid
parameter following DELETE.

ifconfig: error: inet: 'max_keep' value 'parameter'
out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new max_keep
was not valid.

User Response: Reissue the command using a
max_keep value between 1 and 65 535 transmissions.

ifconfig: error: inet: 'maxretries' value
'parameter' out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new maxretries
was not valid.

User Response: Reissue the command using a
maxretries value between 1 and 65 535 ticks.

ifconfig: error: inet: 'near_rtt' value 'parameter'
out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new near_rtt was
not valid.

User Response: Reissue the command using a
near_rtt value between 1 and 65 535 ticks.

ifconfig: error: inet: 'parameter' is an unknown
command for this service

Module: IFCONFIG

Explanation: The parameter is not valid with the INET
subcommand.

User Response: See IBM TCP/IP Version 2.0 for DOS:
User's Guide for a list of valid parameters for the INET
subcommand.

(
',

~

ifconfig: error: inet: 'pktcount' requires an
argument in the range (0 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new pktcount was
not valid.

User Response: Reissue the command using a
pktcount value between 0 and 65 535 ticks.

ifconfig: error: inet: 'reasmtmo' requires an
argument in the range (0 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new reasmtmo
was not valid.

User Response: Reissue the command using a
reasmtmo value between 0 and 65 535 ticks.

ifconfig: error: inet: 'reflushtmo' requires an
argument in the range (0 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new reflushtmo
was not valid.

User Response: Reissue the command using a
reflushtmo value between 0 and 65 535 ticks.

ifconfig: error: inet: 'route add default' requires
a router address

Module: IFCONFIG

Explanation: The IFCONFIG INET IP ROUTE ADD
DEFAULT command requires a valid router address.

User Response: Reissue the command using a valid
router address.

ifconfig: error: inet: 'route add host' requires
destination router

Module: IFCONFIG

Explanation: The IFCONFIG INET IP ROUTE ADD HOST
command requires a valid destination address and a
valid router address.

User Response: Reissue the command using valid
destination and router addresses.

ifconfig: error: inet: 'route add net' requires
destination router mask

Module: IFCONFIG

Explanation: The command, IFCONFIG INET IP ROUTE
ADD NET, requires a valid destination address, a valid
router address, and a valid network mask.

User Response: Reissue the command, using valid
destination, router, and network mask addresses.

ifconfig: error: inet: 'route delete default'
requires a router address

Module: IFCONFIG

Explanation: The IFCONFIG INET IP ROUTE DELETE
DEFAULT command requires a valid router address.

User Response: Reissue the command using a valid
router address.

ifconfig: error: inet: 'route delete host' requires
destination router

Module: IFCONFIG

Explanation: The IFCONFIG INET IP ROUTE DELETE
HOST command requires a valid destination address
and a valid router address.

User Response: Reissue the command using valid
destination and router addresses.

ifconfig: error: inet: 'route delete net' requires
destination router mask

Module: IFCONFIG

Explanation: The IFCONFIG INET IP ROUTE DELETE
NET command requires a valid destination address, a
valid router address, and a valid network mask.

User Response: Reissue the command using valid
destination, router, and network mask addresses.

ifconfig: error: inet: route: 'parameter' is an ill
formed destination address

Module: IFCONFIG

Explanation: The parameter for the router address is
not a valid internet address.

User Response: Reissue the command using a valid
internet address for the router parameter.

ifconfig: error: inet: route: 'parameter' is an ill
formed network mask

Module: IFCONFIG

Explanation: The parameter for the network mask is
not a valid internet address.

User Response: Reissue the command using a valid
internet address for the network mask parameter.

ifconfig: error: inet: route: 'parameter' is an i 11
formed router address

Module: IFCONFIG

Explanation: The parameter for the router address is
not a valid internet address.

User Response: Reissue the command using a valid
internet address for the router parameter.

Appendix K. Messages and Codes 299

ifconfig: error: inet: 'routetmo' requires an
argument in the range (0 - 65535)

Module: IFCONFIG

Explanatlon: The parameter for the new routetmo was
not valid.

User Response: Reissue the command using a
routetmo value between O and 65 535 ticks.

ifconfig: error: inet: 'tw_expire' value
'parameter' out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new tw_expire was
not valid.

User Response: Reissue the command using a
tw_expire value between 1 and 65 535 ticks.

ifconfig: error: inet: 'win_percent' value
'parameter' out of range (1 - 100)

Module: IFCONFIG

Explanatlon: The parameter for the new win_percent
was not valid.

User Response: Reissue the command using a
win_percent value between 1 and 100 percent.

ifconfig: error: inet: 'zerowintmo' value
'parameter' out of range (1 - 65535)

Module: IFCONFIG

Explanation: The parameter for the new zerowintmo
was not valid.

User Response: Reissue the command using a
zerowintmo value between 1 and 65 535 ticks.

ifconfig: error: Negative arguments are invalid

Module: IFCONFIG

Explanation: IFCONFIG does not accept a parameter
that has a value less than zero.

User Response: Reissue the command with valid
parameter values.

ifconfig: error: No Packet Driver found!

Module: IFCONFIG

Explanation: A packet driver for the network interface
has not been loaded in memory.

User Response: Load the appropriate packet driver
before running TCPSTART.

300 TCP/IP Version 2.0 for DOS: Programmer's Reference

ifconfig: error: shutdown: 'hwr' could not be
removed, is currently up

Module: IFCONFIG

Explanation: The IFCONFIG hwr DOWN command
must be executed before the SHUTDOWN command is
issued.

User Response: Run the IFCONFIG hwr DOWN
command, then reissue the SHUTDOWN command.

ifconfig: error: shutdown: 'hwr' is not last in
memory

Module: IFCONFIG

Explanation: The specified hardware TSR is not the
last TSR loaded in memory. The TSRs must be
removed in the reverse order that they were loaded.

User Response: Remove all TSRs loaded after the hwr
TSR.

ifconfig: error: shutdown: 'inet' is not last in
memory

Module: IFCONFIG

Explanation: The specified INET TSR is not the last
TSR loaded in memory. The TSRs must be removed in
the reverse order that they were loaded.

User Response: Remove all TSRs loaded after the
specified INET TSR.

ifconfig: error: shutdown: 'util' could not be
removed, is currently up

Module: IFCONFIG

Explanation: The IFCONFIG UTIL DOWN command
must be executed before the SHUTDOWN command is
issued.

User Response: Run the IFCONFIG UTIL DOWN
command, then reissue the SHUTDOWN command.

ifconfig: error: shutdown: 'util' is not last in
memory

Module: IFCONFIG

Explanatlon: The specified UTIL TSR is not the last
TSR loaded in memory. The TSRs must be removed in
the reverse order that they were loaded.

User Response: Remove all TSRs loaded after the
specified UTIL TSR.

/

ifconfig: error: 'tsr' is not an installed service

Module: IFCONFIG

Explanation: Either UTIL, INET, or the appropriate
hardware TSR is not installed.

User Response: Be sure the network interface has
been configured using the CUSTOM program, and that
the TC PST ART command has been issued.

ifconfig: error: Unknown option -letter

Module: IFCONFIG

Explanation: You have used an invalid option with the
IFCONFIG command.

User Response: See IBM TCP/IP Version 2.0 for DOS:
User's Guide for a list of valid options for the IFCONFIG
command.

ifconfig: error: upping hardware tsr: Interface is
now up

Module: IFCONFIG

Explanation: The IFCONFIG hwr UP command was
issued when the hardware TSR was already loaded in
memory.

User Response: Entering the IFCONFIG hwr UP
command when the hardware TSR is already loaded in
memory has no effect.

ifconfig: error: upping hardware TSR: Unrecoverable
hardware error

Module: IFCONFIG

Explanation: The network interface has not been prop­
erly configured.

User Response: Use the CUSTOM program to double
check the network interface configuration. Check with
your network administrator to be sure that the interface
configuration is correct.

ifconfig: error: upping utility tsr: Interface is
now up

Module: IFCONFIG

Explanation: The IFCONFIG UTIL UP command was
issued when UTIL was already loaded in memory.

User Response: Entering the IFCONFIG UTIL UP
command when UTIL is already loaded in memory has
no effect.

ifconfig: error: util: 'flags chkindos' requires
you to specify ON or OFF

Module: IFCONFIG

Explanation: The only acceptable parameter for
IFCONFIG UTIL FLAGS CHKINDOS is on or off.

User Response: Reissue the command with the on or
off parameter following CHKINDOS.

ifconfig: error: util: 'parameter' is an unknown
command for this service

Module: IFCONFIG

Explanation: The parameter is not valid with the UTIL
subcommand.

User Response: See IBM TCP/IP Version 2.0 for DOS:
User's Guide for a list of valid parameters for the UTIL
subcommand.

ifconfig: error: util: 'parameter' is an unknown
flag

Module: IFCONFIG

Explanation: The only valid parameter following
IFCONFIG UTIL FLAGS is CHKINDOS.

User Response: Reissue the command with
CHKINDOS following FLAGS.

ifconfig: error: util: pool: value out of range
(10240 - 61440)

Module: IFCONFIG

Explanation: The value given for the new pool size
was not between 10 240 and 65 535 bytes.

User Response: Reissue the command with a valid
pool size.

ifconfig: error: util: quantum: value out of range
(0 - 18)

Module: IFCONFIG

Explanation: The value given for the new quantum was
not between 0 and 18.

User Response: Reissue the command with a valid
quantum.

Appendix K. Messages and Codes 301

Name Server Messages

The following error messages can appear when
using a name server.

Fonnat error in name resolution query

Explanation: The name resolution request had an
invalid format. If this error is displayed contact TCP/IP
for DOS support.

Name resolution query rejected

Explanation: Due to administrative policy the query
was rejected.

Name resolution server did not reply

Explanation: The name server did not respond within
the time-out value.

302 TCP/IP Version 2.0 for DOS: Programmer's Reference

Name resolution server does not implement request

Explanation: The name server is not supporting name
service for internet addresses. Contact your network
administrator.

Name resolution server error

Explanation: The name server detected an error in its
processing. If this error is displayed contact your
network administrator.

Name resolver unable to allocate resource

Explanation: System resources to attempt name resol­
ution were not currently available. The error is usually
due to an out of memory condition.

No error condition exists

Explanation: Value indicating no error. This message
should normally never be displayed. If this error is dis­
played, contact TCP/IP for DOS support.

Unknown host name specified

Explanation: The server could not determine an
address for the specified name.

\,

'_

NFS Errors

The following error messages can appear in the
IBMNFS module.

IBMNFS: a dosnfs tsr has not been activated

Module: NFS

Explanation: An attempt to execute a command failed,
because the DOSNFS TSR has not been activated.

User Response: This error message should never be
displayed. Please contact TCP/IP for DOS support.

IBMNFS: a dosnfs tsr has not been 1 oaded

Module: NFS

Explanation: An attempt to execute NFS has failed,
because DOSNFS has not been previously loaded into
memory.

User Response: Load DOSNFS and then reissue the
command.

IBMNFS: a utility tsr has not been loaded

Module: NFS

Explanation: Network services are not available,
because no utility TSR has been loaded.

User Response: Make sure that a utility, internet,
hardware, and DOSNFS TSR are loaded into memory
and reissue the command.

IBMNFS: close failed on file #value: message

Module: NFS

Explanation: An attempt to close the indicated file
while removing the DOSNFS TSR failed for the reason
specified in message. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: No response is necessary.

IBMNFS: dosnfs: message

Module: NFS

Explanation: An attempt by NFS to invoke the DOSNFS
TSR failed for the reason specified in message. See
the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: auth: missing hostname

Module: NFS

Explanation: An attempt to execute the AUTH
command failed, because no host name was specified.

User Response: Reissue the command and include the
host name.

IBMNFS: error: auth: unknown host: hostname

Module: NFS

Explanation: An attempt to execute the AUTH
command failed, because hostname cannot be resolved
into an internet address.

User Response: Reissue the command and include a
resolvable host name.

IBM NFS: error: Authentication is required

Module: NFS

Explanation: An attempt to mount a remote file system
or print device failed, because authentication is
required.

User Response: Use the auth command to obtain
authentication and reissue the command.

IBMNFS: error: bad or missing hostname

Module: NFS

Explanation: An attempt to mount an NFS drive failed,
because the host name did not follow the path@ specifi­
cation.

User Response: Reissue the command and include the
host name after the path@ specification.

IBM NFS: error: bad or missing path

Module: NFS

Explanation: An attempt to mount an NFS drive failed,
because the path did not follow the hostname: specifica­
tion.

User Response: Reissue the command and include the
host name after the hostname: specification.

IBMNFS: error: bad or missing server name

Module: NFS

Explanation: An attempt to attach the specified print
device failed, because the specified server name was
either bad or missing.

User Response: Reissue the command specifying a
valid server.

Appendix K. Messages and Codes 303

IBMNFS: error: bad or missing service

Module: NFS

Explanation: An attempt to attach the specified print
device failed, because the specified service was either
bad or missing.

User Response: Reissue the command specifying a
valid service.

IBMNFS: error: cannot open file: file

Module: NFS

Explanation: An attempt to open file failed.

User Response: Reissue the command specifying the
name of the file containing NFS commands.

IBMNFS: error: disk drive detach failed: message

Module: NFS

Explanation: An attempt to detach disk drive failed for
the specified reason. See the explanation for message
contained in the appropriate IBM DOS technical refer­
ence book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: dosnfsd ping failed: message

Module: NFS

Explanation: An attempt to ping the DOSNFSD daemon
failed for the reason specified in message. See the
explanation for message contained in the appropriate
IBM DOS technical reference book for more informa­
tion.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS:error: drop failed: message

Module: NFS

Explanation: An attempt to unmount all the NFS drives
from the specified host failed for the reason specified in
message. See the explanation for message contained
in the appropriate IBM DOS technical reference book
for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is

304 TCP/IP Version 2.0 for DOS: Programmer's Reference

insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: error while attaching: message

Module: NFS

Explanation: An attempt to attach a print device failed
for the reason specified in message. See the explana­
tion for message contained in the appropriate IBM DOS
technical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: error while detaching: message

Module: NFS

Explanation: An attempt to detach a print device failed
for the reason specified in message. See the explana­
tion for message contained in the appropriate IBM DOS
technical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: error while fl us hi ng: message

Module: NFS

Explanation: An attempt to close a print device failed
for the reason specified in message. See the explana­
tion for message contained in the appropriate IBM DOS
technical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: export list failed: message

Module: NFS

Explanation: An attempt to list all the mountable file
systems or all the currently mounted file systems for
the specified host failed for the specified reason. See
the explanation for

message contained in the appropriate IBM DOS tech­
nical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBM NFS: error: i 11 ega l server or path name: server
path name

Module: NFS

Explanation: An attempt to mount an NFS drive failed,
because the server path name was missing or was
incorrect.

User Response: Reissue the command and include the
NFS server and path in either the form mount attach
server :path or in the form mount attach path@server.

IBM NFS: error: i 11 ega l server or service name:
server I service

Module: NFS

Explanation: An attempt to attach the specified print
device failed, because no server or service was speci­
fied.

User Response: Reissue the command specifying both
a server and service.

IBM NFS: error: invalid error setting: setting

Module: NFS

Explanation: An attempt to assign the error resolution
failed, because setting was invalid. Valid settings are
hard and soft.

User Response: Reissue the command specifying a
valid setting.

IBMNFS: error: invalid or unknown host: hostname

Module: NFS

Explanation: An attempt to mount or unmount an NFS
drive, list the mountable file systems, or attach a print
device failed, because hostname could not be resolved
into an internet address.

User Response: Reissue the command and include a
resolvable host name.

IBMNFS: error: invalid scroll setting: setting

Module: NFS

Explanation: An attempt to assign the scroll setting
failed, because setting was invalid. Valid settings are
on and off.

User Response: Reissue the command specifying a
valid setting.

IBMNFS: error: maximum file nesting level exceeded

Module: NFS

Explanation: An attempt to execute a script file failed
the maximum number of nested script files was
exceeded. The maximum is 100.

User Response: Reissue the command and limit the
number of nested script files to under 100.

IBMNFS: error: Maximum number of arguments
exceeded

Module: NFS

Explanation: More than 100 execute files were nested.

User Response: Reissue the command nesting no
more than a total of 100 executable files.

IBMNFS: error: messages: invalid message value:
value

Module: NFS

Explanation: An attempt to set the message level to
value failed, because value was invalid.

User Response: Consult the for the available values
and reissue specifying a valid value.

IBMNFS: error: missing device name

Module: NFS

Explanation: An attempt to attach, detach, or close a
print device failed, because no print device was speci­
fied.

User Response: Reissue the command specifying the
print device you wish.

IBMNFS: error: missing filename

Module: NFS

Explanation: An attempt to use the execute command
failed, because no command file was specified.

User Response: Reissue the command specifying a
command file.

IBMNFS: error: missing hostname

Module: NFS

Explanation: An attempt to list mountable file systems,
unmount NFS drives, or perform an NFS ping failed,
because no host was specified.

User Response: Reissue the command specifying the
host for which you wish to list mountable directories or
to drop all associated drives.

IBMNFS: error: missing or invalid drive letter

Module: NFS

Explanation: An attempt to mount an NFS drive failed,
because the specified drive letter was missing or
invalid.

User Response: Reissue the command and include a
valid drive letter followed immediately by a colon.

Appendix K. Messages and Codes 305

IBMNFS: error: missing quote

Module: NFS

Explanation: An attempt to execute the specified
command failed, because the quotation marks (" ")
were not balanced.

User Response: Reissue the command making sure
that all quotes are balanced.

IBMNFS: error: missing umask

Module: NFS

Explanation: An attempt to specify the umask failed,
because no value was specified.

User Response: Reissue the command specifying a
um ask.

IBMNFS: error: mount failed: message

Module: NFS

Explanatlon: An attempt to mount a NFS drive failed
for the reason specified in message. See the explana­
tion for message contained in the appropriate IBM DOS
technical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: mount ping failed: message

Module: NFS

Explanation: An attempt to ping the mounted daemon
failed for the reason specified in message. See the
explanation for message contained in the appropriate
IBM DOS technical reference book for more informa­
tion.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: nfs ping failed: message

Explanation: An attempt to ping the NFSD daemon
failed for the reason specified in message. See the
explanation for message contained in the appropriate
IBM DOS technical reference book for more informa­
tion.

User Response: The action you take depends on the
message displayed. If the explanation for message is

306 TCP/IP Version 2.0 for DOS: Programmer's Reference

insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: rpc connection failed: message

Module: NFS

Explanation: The rpc connection failed or was broken
for the reason specified in message. See the explana­
tion for message contained in the appropriate IBM DOS
technical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: subcommand: illegal bufsiz: value

Module: NFS

Explanation: An attempt to assign the bufsiz on the
indicated subcommand failed, because the bufsiz was
out of the allowable range (512 - 8192 bytes).

User Response: Reissue the command specifying a
bufsize within the range.

IBMNFS: error: subcommand: i 11 egal cache mark:
value

Module: NFS

Explanation: An attempt to assign the cache size on
the subcommand failed, because value was out of the
allowable range (O- 8192 bytes).

User Response: Reissue the command specifying a
cache size within the range.

IBMNFS: error: subcommand: illegal failure
timeout: value

Module: NFS

Explanation: An attempt to assign the failure time-out
value in subcommand failed, because it was an illegal
value.

User Response: Reissue the command specifying a
legal failure time-out value.

IBMNFS: error: subcommand: illegal retry
timeout: value

Module: NFS

Explanation: An attempt to assign the retry time-out
value in subcommand failed, because it was an illegal
value.

User Response: Reissue the command specifying a
positive integer as a retry timeout.

/

IBMNFS: error: subcommand: missing bufsiz

Module: NFS

Explanation: An attempt to assign the bufsiz for sub­
command failed, because none was specified.

User Response: Reissue the command specifying a
bufsiz.

IBM NFS: error: subcommand : missing cache mark
text

Module: NFS

Explanation: An attempt to assign the cache size on
the indicated command failed, because none was spec­
ified.

User Response: Reissue the command specifying a
cache size.

IBMNFS: error: subcommand: missing failure
timeout

Module: NFS

Explanation: An attempt to assign the failure time-out
on the indicated command failed, because none was
specified.

User Response: Reissue the command specifying a
failure timeout.

IBM NFS: error: subcommand: missing queuename

Module: NFS

Explanation: An attempt to assign a queue name on
the indicated subcommand failed, because none was
specified.

User Response: Reissue the command specifying a
queue name.

IBMNFS: error: subcommand: missing retry timeout

Module: NFS

Explanation: An attempt to assign a retry time-out on
the indicated subcommand failed, because none was
specified.

User Response: Reissue the command specifying a
retry timeout.

IBMNFS: error: subcommand: missing user name

Module: NFS

Explanation: An attempt to assign a user name on the
indicated subcommand failed as none was specified.

User Response: Reissue the command specifying the
user name.

IBMNFS: error: subcommand: missing volume id

Module: NFS

Explanation: An attempt to assign a volume id failed
as none was specified.

User Response: Reissue the command specifying the
volume ID.

IBM NFS: error: subcommand: option expected

Module: NFS

Explanation: An attempt to execute subcommand
failed, because it requires an option. To find the avail­
able options, see IBM TCP/IP Version 2.0 for DOS:
User's Guide.

User Response: Reissue the command supplying
correct options.

IBM NFS: error: subcommand: unknown option -
option

Module: NFS

Explanation: An attempt to execute subcommand
failed, because option does not exist for this command.
To find the available options, see IBM TCP/IP Version
2.0 for DOS: User's Guide.

User Response: Reissue the command supplying
correct options.

IBMNFS: error: shutdown: name: could not be
downed: message

Module: NFS

Explanation: An attempt to down the name TSR failed
for the specified reason. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: shutdown: name: could not be
removed: message

Module: NFS

Explanation: An attempt to remove the name TSR
failed for the specified reason. See the explanation for
message contained in "Generic Text Messages" on
page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

Appendix K. Messages and Codes 307

IBMNFS: error: TCP/IP networking has not been
activated

Module: NFS

Explanation: An attempt to execute a command failed,
because networking services have not been activated.
This occurs when the UTIL TSR is down even when the
up command has been given with kstart.

User Response: Activate network services and reissue
the command.

IBM NFS: error: Unab 1 e to 1 oad secondary conmand
processor: message

Module: NFS

Explanation: An attempt to load a secondary command
processor failed for the reason specified in message.
See the explanation for message contained in "Generic
Text Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: unknown command: command

Module: NFS

Explanation: An attempt to execute command failed,
because it was not recognized.

User Response: See IBM TCP/IP Version 2.0 for DOS:
User's Guide for the available commands and reissue
specifying a valid command.

IBMNFS: error: unknown device: device

Module: NFS

Explanation: An attempt to attach, detach, or close the
print device device failed, because it does not exist.
Legal print devices are PAN, LPT1, LPT2, and LPT3.

User Response: Reissue the command specifying a
legal print device.

IBMNFS: error: unknown host: hostname

Module: NFS

Explanation: An attempt to perform an NFS ping failed,
because hostname could not be resolved into an
internet address.

User Response: Reissue the command and include a
resolvable host name.

308 TCP/IP Version 2.0 for DOS: Programmer's Reference

IBMNFS: error: unmount failed: message

Module: NFS

Explanation: An attempt to unmount an NFS drive
failed for the reason specified in message. See the
explanation for message contained in the appropriate
IBM DOS technical reference book for more informa­
tion.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: error: verification failed: message

Module: NFS

Explanation: An attempt to execute the auth command
failed for the specified reason. See the explanation for
message contained in the appropriate IBM DOS tech­
nical reference book for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: initialization: message

Module: NFS

Explanation: An attempt to initiate network initializa­
tion failed for the reason specified in message. See the
explanation for message contained in "Generic Text
Messages" on page 291 for more information.

User Response: The action you take depends on the
message displayed. If the explanation for message is
insufficient to resolve the problem, contact your
network administrator.

IBMNFS: kstart has not been run

Module: NFS

Explanation: An attempt to execute NFS has failed,
because background network services were not opera­
tional.

User Response: Execute KST ART with the up option
and reissue NFS

IBMNFS: shutdown: a DOSNFS tsr has not been loaded

Module: NFS

Explanation: An attempt to remove the DOSNFS TSR
failed as none has been loaded.

User Response: No response is necessary.

\

IBMNFS: shutdown: DOSNFS tsr is not last in memory

Module: NFS

Explanation: An attempt to remove the DOSNFS TSR
failed, because it is not last in memory. This message
can also occur if KSTART had been executed after
DOSNFS was loaded.

User Response: Remove any resident programs from
memory that had been loaded after DOSNFS and

reissue the command. If KSTART had been executed
after DOSNFS was loaded, execute ks tart down and
then reissue the command.

IBM NFS: TSR could not find open file #value

Module: NFS

Explanation: While attempting to remove the DOSNFS
TSR the open file #value could not be found to close.

User Response: No response is necessary.

\ Appendix K. Messages and Codes 309

TSR Errors

The following error messages can appear in the
TSR modules.

module: Error encountered reading NETCUST

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: The module could not properly read the
NETCUST structure.

User Response: Make sure that the NETDEV.SYS is
installed in your CONFIG.SYS.

module: Ins ta 11 aborted, wi 11 leave too little
memory (<64k) for DOS

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: The install aborted, because loading the
TSR would cause less than the minimum memory
requirement (64K) to be left for DOS.

User Response: Do not load this TSR or unload some
RAM-resident software before loading this new TSR.

module: Invalid characters in specified name, only
[A-Z, 0-9, _] allowed
Usage: module [- ?] [name]

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: A name was specified for a module with
invalid characters.

User Response: Only use the characters [A-Z, 0-9,
underscore UJ if a module name.

module: Invalid option specified
Usage: module [- ?] [name]

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: The specified option is not valid with the
module used.

User Response: Specify the proper options for the
module you are using or use a module which under­
stands the option you want to use.

module: More than one adapter found.

Module: 3C523 UB2

Explanation: More than one network interface adapter
was found.

User Response: Specify which adapter to use, or
remove one from your system. Use your reference
diskette to view your configuration and determine
which adapter to specify.

310 TCP/IP Version 2.0 for DOS: Programmer's Reference

module: Multiple names not supported
Usage: module [-?] [name]

Module: ASI 3C5013C5033C523 INET DOSNFS UB
UB2 UTIL

Explanation: Two or more names were specified to
install a module.

User Response: Use only one name when installing a
module.

module: No adapter found in given channel.

Module: 3C523 UB2

Explanation: No module adapter was found in the
specified channel.

User Response: Use your reference diskette to view
your configuration and reissue the command specifying
the correct channel.

module: No room: too many servants

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: An attempt was made to load too many
services.

User Response: Do not load the new TSR or unload
one of the old ones before loading the new one.

module: Specified name already in use, select a
different name
Usage: module [- ?] [name]

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: A module is already in use with the name
you specified, or with the default name if you did not
specify one.

User Response: Specify a different name for the
module.

module: Specified name too long, eight character
maximum
Usage: module[-?] [name]

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: A name was specified for the module
longer than eight characters.

User Response: Reissue the command using a name
of eight characters or less for the module.

/

(

_

(

module: This adapter is not supported on a micro
channel machine
Usage: module [- ?] [name]

Module: 3C523 UB2

Explanation: The module ~dapter specified is not sup­
ported on a Micro Channel machine and your system
is a Micro Channel machine.

User Response: Use an adapter that is supported on a
Micro Channel machine.

module: This adapter is only supported on a micro
channel machine
Usage: module [- ?] [name]

Module: 3C523 UB2

Explanation: The module adapter specified is only
supported on a Micro Channel machine and your
system is not a Micro Channel machine.

User Response: Use an adapter that is supported on
other than Micro Channel machines.

module: type-of-service: TSR service al ready exists

Module: ASI 3C501 3C503 3C523 INET DOSNFS UB
UB2 UTIL

Explanation: Only one Utility TSR, one NFS TSR, and
one Internet Protocol on DOS TSR service can be
loaded at a time. You have tried to load two of the
specified type-of-service.

User Response: Do not load the new TSR of that type
or unload the old TSR of that type before loading the
new one.

UB2: INIT - Time Out.
** ** Explanation: The Ungermann-Bass NICps/2

adapter could not be initialized within the prescribed
amount of time. This usually means that there is a
program conflict.

User Response: Reboot your system without loading
any programs that conflict with the adapter's use.

UB2: No adapter found.

Explanation: No Ungermann-Bass NICps/2 adapter
was found in your system.

User Response: Use your reference diskette to view
your configuration and determine what type of adapter
(if any) is in your system.

3C523: No enabled adapter found.

Explanation: There was no enabled 3C523 adapter
found within your system.

User Response: Use your reference diskette to view
your configuration and determine which adapter to
specify.

3C523: specified board is disabled

Explanation: The 3C523 adapter specified was disa­
bled.

User Response: Either enable the desired 3C523
adapter, or use a different 3C523 adapter.

3C523: warning: found disabled board

Explanation: A disabled 3C523 adapter was found
within your system.

User Response: Either enable the 3C523 adapter, or
specify another adapter that is enabled.

Appendix K. Messages and Codes 311

312 TCP/IP Version 2.0 for DOS: Programmer's Reference

(

'_

Appendix L. Related Protocol Specifications

© Copyright IBM Corp. 1991

IBM is committed to industry standards. The internet protocol suite is still evolving
through Requests for Comments (RFC). New protocols are being designed and
implemented by researchers, and are brought to the attention of the Internet com­
munity in the form of RFCs. Some of these are so useful that they become a recom­
mended protocol. That is, all future implementations for TCP/IP are recommended
to implement this particular function or protocol. These become the de facto stand­
ards, on which the TCP/IP protocol suite is built.

Many features of TCP/IP for DOS are based on the following RFCs:

• User Datagram Protocol, RFC 768, J.B. Postel

• Trivial File Transfer Protocol, (Revision 2) RFC 783, K.R. Sollins

• Internet Protocol, RFC 791, J.B. Postel

• Internet Control Message Protocol, RFC 792, J.B. Postel

• Transmission Control Protocol, RFC 793, J.B. Postel

• Simple Mail Transfer Protocol, RFC 821, J.B. Postel

• Standard for the Format of ARPA Internet Text Messages, RFC 822, D. Crocker

• DARPA Internet Gateway, RFC 823, R.M. Hinden, A. Sheltzer

• Ethernet Address Resolution Protocol: or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet Hardware,
RFC 826, D.C. Plummer

• Telnet Protocol Specification, RFC 854, J.B. Postel, J.K. Reynolds

• Telnet Binary Transmission, RFC 856, J.B. Postel, J.K. Reynolds

• Telnet Echo Option, RFC 857, J.B. Postel, J.K. Reynolds

• Quote of the Day Protocol, RFC 865, J.B. Postel

• Time Protocol, RFC 868, J.B. Postel, K. Harrenstien

• Standard for the Transmission of IP Datagrams over Public Data Networks, RFC
877, J.T. Korb

• Telnet End of Record Option, RFC 885, J.B. Postel

• Broadcasting Internet Datagrams, RFC 919, J.C. Mogul

• Broadcasting Internet Datagrams in the Presence of Subnets, RFC 922, J.C.
Mogul

• Post Office Protocol-Version 2, RFC 937, M. Butler, J.B. Postel, D. Chase, J.
Goldberger, J.K. Reynolds

• Internet Standard Subnetting Procedure, RFC 950, J.C. Mogul, J.B. Postel

• DoD Internet Host Table Specification, RFC 952, K. Harrenstien, M.K. Stahl, E.J.
Feinler

• NICNAMEIWHOIS, RFC 954, K. Harrenstien, M.K. Stahl, E.J. Feinler

• File Transfer Protocol, RFC 959, J.B. Postel, J.K. Reynolds

• Mail Routing And The Domain Name System, RFC 974, C. Partridge

• XDR: External Data Representation Standard, RFC 1014, Sun Microsystems
Incorporated

313

• Domain Names-Concepts and Facilities, RFC 1034, P.V. Mockapetris

• Domain Names-Implementation and Specification, RFC 1035, P.V. Mockapetris

• RPG: Remote Procedure Call Protocol Version 2 Specification, RFC 1057, Sun
Microsystems Incorporated

• Routing Information Protocol, RFC 1058, C.L. Hedrick

• Assigned Numbers, RFC 1060, J.K. Reynolds, J.B. Postel

• Telnet Terminal-Type Option, RFC 1091, J. VanBokkelen

• NFS: Network File System Protocol Specification, RFC 1094, Sun Microsystems
Incorporated

• Hitchhikers Guide to the Internet, RFC 1118, E. Krol

• Requirements for Internet Hosts-Communication Layers, RFC 1122, R.T. Braden,
editor

• Requirements for Internet Hosts-Application and Support, RFC 1123, R.T.
Braden, editor

• Line Printer Daemon Protocol, RFC 1179, The Wollongong Group, L. McLaughlin
Ill, editor

• TCP/IP Tutorial, RFC 1180, T.J. Socolofsky, C.J. Kale

• Finger User Information Protocol RFC 1196, D.P. Zimmerman

• /AB Official Protocol Standards, RFC 1200, Defense Advance Research Projects
Agency, Internet Activities Board

• FYI on Questions and Answers: Answers to Commonly Asked "New Internet
User" Questions, RFC 1206, G.S. Malkin, A.N. Marine

• FYI on Questions and Answers: Answers to Commonly Asked "Experienced
Internet User" Questions, RFC 1207, G.S. Malkin, A.N. Marine, J.K. Reynolds

• Glossary of Networking Terms, RFC 1208, O.J. Jacobsen, D.C. Lynch.

These documents can be obtained from:

SRI International
Network Information Systems Center
Room EJ291
333 Ravenswood Avenue
Menlo Park, CA. 94025

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or on a subscription basis. Online copies are available
using FTP from the NIC at nic.ddn.mil. Use FTP to download the files, using the
following format:

RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:

nnnn
TXT
PS

Is the RFC number.
Is the text format.

** Is the Postscript format.

314 TCP/IP Version 2.0 for DOS: Programmer's Reference

/
I

~

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of RFC nnnn
for text versions or a subject line of RFC nnnn.PS for Postscript versions. To request
a copy of the RFC index, send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil.

Appendix L. Related Protocol Specifications 315

316 TCP/IP Version 2.0 for DOS: Programmer's Reference

/

."'

©Copyright IBM Corp. 1991

Glossary, Bibliography, and Index

Glossary

Bibliography
TCP/IP for DOS Publications
Other TCP/IP Publications
Other Related Publications ...

Index

319

327
327
327
328

331

317

TCP/IP Version 2.0 for DOS: Programmer's Reference

\

Glossary

This glossary describes the most common terms asso­
ciated with TCP/IP communication in an internet envi­
ronment, as used in this book.

If you do not find the term you are looking for, see IBM
Dictionary of Computing, SC20-1699.

This glossary includes some terms from IBM Dictionary
of Computing.

For abbreviations, the definition usually consists only of
the words represented by the letters; for complete defi­
nitions, see the entries for the words.

A
ABEND. The abnormal termination of a program or
task.

accelerator key. A key or combination of keys that
invokes an application-defined function. Also known as
a function key.

action bar. The highlighted area at the top of a panel
that contains the choices currently available in the
application program that a user is running.

active open. The state of a connection that is actively
seeking a service. Contrast with passive open.

adapter. (1) A piece of hardware that connects a com­
puter and an external device. (2) An auxiliary device
or unit used to extend the operation of another system.

address. The unique code assigned to each device or
workstation connected to a network. A standard
internet address is a 32-bit address field. This field can
be broken into two parts. The first part contains the
network address; the second part contains the host
number.

Address Resolution Protocol (ARP). A protocol used to
dynamically bind an Internet address to a hardware
address. ARP is implemented on a single physical
network and is limited to networks that support broad­
cast addressing.

American National Standard Code for Information Inter­
change (ASCII). (1) The standard code, using a coded
character set consisting of 7-bit coded characters (8
bits including parity check), used for information inter­
change among data processing systems, data commu­
nication systems, and associated equipment. The
ASCII set consists of control characters and graphic
characters. (2) The default file transfer type for FTP,
used to transfer files that contain ASCII text characters.

© Copyright IBM Corp. 1991

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the proce­
dures by which accredited organizations create and
maintain voluntary industry standards in the United
States.

ANSI. American National Standards Institute.

application. The use to which an information proc­
essing system is put, for example, a payroll applica­
tion, an airline reservation application, a network
application.

argument. A parameter passed between a calling
program and a called program.

API. application program interface.

application program interface. The formally-defined
program language interface, which is between an IBM
system control program or a licensed program and the
user of the program.

ARP. Address Resolution Protocol.

ASCII. American National Standard Code for Informa­
tion Interchange.

asynchronous. Without regular time relationship;
unexpected or unpredictable with respect to the exe­
cution of program instruction. See synchronous.

attribute. A characteristic or property. For example,
the color of a line, or the length of a data field.

authorization. The right granted to a user to communi­
cate with, or to make use of, a computer system or
service.

AUTOEXEC.BAT. A batch file that resides in the root
directory of drive C. AUTOEXEC.BAT contains com­
mands that DOS executes every time you boot a PC.

B
backbone. (1) In a local area network multiple-bridge
ring configuration, a high-speed link to which rings are
connected by means of bridges. A backbone can be
configured as a bus or as a ring. (2) In a wide area
network, a high-speed link to which nodes or data
switching exchanges (DSES) are connected.

background task. A task with which the user is not cur­
rently interacting, but continues to run.

Basic Input/Output System (BIOS). A set of routines
that permanently resides in read-only memory (ROM)

319

in a PC. The BIOS performs the most basic tasks, such
as sending a character to the printer, booting the com­
puter, and reading the keyboard.

batch. (1) An accumulation of data to be processed.
(2) A group of records or data processing jobs brought
together for processing or transmission. (3) Pertaining
to activity involving little or no user action. See inter­
active.

BIOS. Basic Input/Output System.

block. A string of data elements recorded, processed,
or transmitted as a unit. The elements can be charac­
ters, words, or physical records.

bridge. A router that connects two or more networks
and forwards packets among them. The operations
carried out by a bridge are done at the physical layer
and are transparent to TCP/IP and TCP/IP routing.

broadcast. The simultaneous transmission of data
packets to all nodes on a network or subnetwork.

broadcast address. An address that is common to all
nodes on a network.

bus topology. A network configuration in which only
one path is maintained between stations. Any data
transmitted by a station is concurrently available to all
other stations on the link.

button. (1) A mechanism on a pointing device, such as
a mouse, used to request or initiate an action. (2) A
rounded-corner rectangle with text inside, used in
graphics applications for actions that occur when the
pushbutton is selected.

c
case-sensitive. A condition in which entries for an
entry field must conform to a specific lower-, upper -,
or mixed-case format in order to be valid.

checksum. The sum of a group of data associated with
the group and used for checking purposes.

Class A network. An internet network in which the
high-order bit of the address is 0. The host number
occupies the three low-order octets.

Class B network. An internet network in which the
high-order bit of the address is 1 and the next
high-order bit is 0. The host number occupies the two
low-order octets.

Class C network. An internet network in which the two
high-order bits of the address are 1 and the next
high-order bit is 0. The .host number occupies the
low-order octet.

320 TCP/IP Version 2.0 for DOS: Programmer's Reference

click. To press and release the select button on a
mouse.

client. A function that requests services from a server,
and makes them available to the user.

client-server relationship. A device that provides
resources or services to other devices on a network is
a server. A device that employs the resources pro­
vided by a server is a client.

clipboard. A temporary storage area used for copying
and storing data.

CMS. Conversational Monitor System.

command. The name and any parameters associated
with an action that can be performed by a program.
The command is entered by the user; the computer per­
forms the action requested by the command name.

command prompt. A displayed symbol, such as [C:\]
that requests input from a user.

compile. (1) To translate a program written in a
high-level language into a machine language program.
(2) The computer actions required to transform a
source file into an executable object file.

compiler. A program that translates a source program
into an executable program (an object program).

CONFIG.SYS. A file that contains the configuration
options for a DOS personal computer.

configuration file. For the base operating system, the
CONFIG.SYS file that describes the devices, system
parameters, and resource options of a personal com­
puter.

connection. (1) An association established between
functional units for conveying information. (2) The path
between two protocol modules that provides reliable
stream delivery service. In an internet, a connection
extends from a TCP module on one machine to a TCP
module on the other.

conversational monitor system (CMS). A virtual
machine operating system that provides general inter­
active time sharing, problem solving, and program
development capabilities, and operates only under
control of the VM/370 VM control program.

D
daemon. A background process usually started at
system initialization that runs continuously and per­
forms a function required by other processes.

datagram. The basic unit of information that is passed
across the internet, it consists of one or more data
packets.

(
I

__

data set. The major unit of data storage and retrieval
in MVS, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access.
Synonymous with file in VM and DOS.

default. A value, attribute or option that is assumed
when none is explicitly specified.

destination node. The node to which a request or data
is sent.

dialog box. A movable window, fixed in size, which
provides information that is required by an application
to continue your request.

directory. A named grouping of files in a file system.

diskette. (1) A small magnetic disk enclosed in a
jacket. (2) A thin, flexible magnetic disk and a
semi-rigid or hard plastic protective jacket, in which the
disk is permanently enclosed.

DNS. Domain Name System.

domain. In an internet, a part of the naming hierarchy.
Syntactically, a domain name consists of a sequence of
names (labels) separated by periods (dots).

Domain Name System. A system in which a resolver
queries name servers for resource records about a
host.

domain naming. A hierarchical system for naming
network resources.

DOS. Disk Operating System.

dotted-decimal notation. The syntactic representation
for a 32-bit integer that consists of four 8-bit numbers,
written in base 10 and separated by periods (dots).
Many internet application programs accept dotted
decimal notations in place of destination machine
names.

dragging. Moving an object on the display screen as if
it were attached to the pointer, or mouse; performed by
holding the select button and moving the pointer.

drive. The device used to read and write data on disks
or diskettes.

E
EBCDIC. Extended binary-coded decimal interchange
code.

encapsulation. A process used by layered protocols in
which a lower level protocol accepts a message from a
higher level protocol and places it in the data portion of
the low level frame.

enhanced keyboard. A 101-key keyboard, such as the
keyboards that come with PS/2 computers.

entry field. A panel element, usually highlighted in
some manner and usually with its boundaries indi­
cated, where users type in information.

Ethernet. The name given to a local area
packet-switched network technology invented in the
early 1970s by Xerox Incorporated. Ethernet uses a
Carrier Sense Multiple Access/Collision Detection
(CSMA/CD) mechanism to send packets.

extended binary-coded decimal interchange code
(EBCDIC). A coded character set consisting of 8-bit
coded characters.

external Data Representation (XOR). A standard
developed by SUN Microsystems Incorporated for
representing data in machine-independent format.

F
file. In DOS, OS/2, and VM, a named set of records
stored or processed as a unit. Synonymous with data
set in MVS.

File Transfer Protocol (FTP). A TCP/IP protocol used
for transferring files to and from foreign hosts. FTP
also provides the capability to access directories.
Password protection is provided as part of the protocol.

fixed disk. A rigid magnetic disk, such as the internal
disks used in the system units of IBM personal com­
puters and in external hard disk drives.

foreground task. The task with which the user is inter­
acting.

foreign host. Any host on the network including the
local host.

foreign network. In an internet, any other network
interconnected to the local network by one or more
intermediate gateways or routers.

foreign node. See foreign host.

FTP. File Transfer Protocol.

G
gateway. (1) A functional unit that interconnects a
local data network with another network having dif­
ferent protocols. (2) A host that connects a TCP/IP
network to a non-TCP/IP network at the application
layer. See also router.

Glossary 321

H
handle. A temporary data representation that identi­
fies a file.

header file. A file that contains constant declarations,
type declarations, and variable declarations and
assignments. Header files are supplied with all pro­
gramming interfaces.

hop count. The number of hosts through which a
packet passes on its way to its destination.

host. A computer connected to a network, which pro­
vides an access method to that network. A host pro­
vides end-user services.

hot key. A combination of keys that causes a program
to perform some action.

ICMP. Internet Control Message Protocol.

IEEE. Institute of Electrical and Electronic Engineers.

include file. A file that contains preprocessor text,
which is called by a program, using a standard pro­
gramming call. Synonymous with header file.

installation. The process of placing one or more DOS
components on a personal computer's fixed disk.

Institute of Electrical and Electronic Engineers (IEEE).
An electronics industry organization.

Integrated Services Digital Network (ISDN). A digital
end-to-end telecommunication network that supports
multiple services including, but not limited to, voice
and data.

interactive. Pertaining to a program or a system that
alternately accepts input and then responds. An inter­
active system is conversational, that is, a continuous
dialog exists between user and system. See batch.

International Organization for Standardization (ISO).
An organization of national standards bodies from
various countries established to promote development
of standards to facilitate international exchange of
goods and services, and develop cooperation in intel­
lectual, scientific, technological, and economic activity.

internet or internetwork. A collection of packet
switching networks interconnected by gateways,
routers, bridges, and hosts to function as a single,
coordinated, virtual network.

internet address. The unique 32-bit address identifying
each node in an internet. See also address.

322 TCP/IP Version 2.0 for DOS: Programmer's Reference

Internet Control Message Protocol (ICMP). The part of
the Internet Protocol layer that handles error messages
and control messages.

Internet Protocol (IP). The TCP/IP layer between the
higher level host-to-host protocol and the local network
protocols. IP uses local area network protocols to
carry packets, in the form of datagrams, to the next
gateway, router, or destination host.

interoperability. The capability of different hardware
and software by different vendors to effectively commu­
nicate together.

interrupt number. One of eight lines available on a PC
that is used to send a signal from an installed hardware
board to the CPU requesting attention. Different hard­
ware boards should use different interrupt numbers.

IP. Internet Protocol.

ISDN. Integrated Services Digital Network.

ISO. International Organization for Standardization.

KB. Kilobyte; 1024 bytes.

L
LAN. Local area network.

Line printer daemon (LPD). The remote printer server
that allows other hosts to print on a printer local to your
host.

local area network (LAN). A data network located on
the user's premises in which serial transmission is
used for direct data communication among data
stations.

local host. In an internet, the computer to which a
user's terminal is directly connected without using the
internet.

local network. The portion of a network that is phys­
ically connected to the host without intermediate gate­
ways or routers.

Logical ANDing. When the Boolean operator AND is
applied to two bits, the result is one when both bits are
one; otherwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately; there is
no connection from one bit position to another.

LPD. Line printer daemon.

LPR. A client command that allows the local host to
submit a file to be printed on a remote print server.

M
MAC. Media access control.

mapping. The process of relating internet addresses
to physical addresses in the network.

MARK. A Windows function that marks a section of
text to be copied or cut.

mask. (1) A pattern of characters used to control
retention or elimination of portions of another pattern of
characters. (2) To use a pattern of characters to
control retention or elimination of another pattern of
characters. (3) A pattern of characters that controls
the keeping, deleting, or testing of portions of another
pattern of characters.

MB. Megabyte; 1 048 576 bytes or 1024 KB.

MBUF. Memory buffer.

media access control (MAC). The method used by
network adapters to determine which adapter has
access to the physical network at a given time.

memory buffer. A location in memory where incoming
and outgoing packets are stored.

menu. A type of panel that consists of one or more
selection fields.

menu item. A selection item on a pull-down menu.

mouse. A device that is used to move a pointer on the
screen and select items.

modem (modulator/demodulator). A device that con­
verts digital data from a computer to an analog signal
that can be transmitted on a telecommunication line,
and converts the analog signal received to data for the
computer.

multitasking. A mode of operation that provides for the
concurrent performance execution of two or more
tasks.

N
name server. The server that stores resource records
about hosts.

NDIS. Network Driver Interface Specification.

network. An arrangement of nodes and connecting
branches. Connections are made between data
stations.

network adapter. A physical device, and its associated
software, that enables a processor or controller to be
connected to a network.

network administrator. The person responsible for the
installation, management, control, and configuration of
a network.

Network Driver Interface Specification (NDIS). An
industry-standard specification used by applications as
an interface with network adapter device drivers.

Network File System (NFS). The NFS protocol, which
was developed by Sun Microsystems Incorporated,
allows computers in a network to access each other's
file systems. Once accessed, the file system appears
to reside on the local host.

NFS. Network File System.

node. (1) In a network, a point at which one or more
functional units connect channels or data circuits.
(2) In a network topology, the point at an end of a
branch.

0
octet. A byte composed of eight binary elements.

open system. A system with specified standards and
that therefore can be readily connected to other
systems that comply with the same standards.

Open Systems Interconnection (OSI). (1) The intercon­
nection of open systems in accordance with specific
ISO standards. (2) The use of standardized procedures
to enable the interconnection of data processing
systems.

OSI. Open Systems Interconnection.

p

packet. A sequence of binary digits, including data
and control signals, that is transmitted and switched as
a composite whole.

parameter. A variable that is given a constant value
for a specified application.

parse. To analyze the operands entered with a
command.

passive open. The state of a connection that is pre­
pared to provide a service on demand. Contrast with
active open.

path. The course or route of drives and subdirectories
leading from the root directory and drive of an oper­
ating system to where files or data information are
stored.

PC. Personal computer.

PC Network. A low-cost broadband network that
allows attached IBM personal computers, such as IBM

Glossary 323

5150 Personal Computers, IBM Computer ATs, IBM
PC/XTs, and IBM Portable Personal Computers to com­
municate and to share resources.

POU. Protocol Data Units.

peer-to-peer. In network architecture, any functional
unit that resides in the same layer as another entity.

PING. The command that sends an ICMP Echo
Request packet to a gateway, router, or host with the
expectation of receiving a reply.

poolsize. The amount of memory that TCP/IP for DOS
sets aside for memory buffers.

port. (1) An endpoint for communication between
devices, generally referring to a logical connection.
(2) A 16-bit number identifying a particular Trans­
mission Control Protocol or User Datagram Protocol
resource within a given TCP/IP node.

PORTMAP. Synonymous with Portmapper.

Portmapper. A program that maps client programs to
the port numbers of server programs. Portmapper is
used with Remote Procedure Call (RPC) programs.

process. (1) A unique, finite course of events defined
by its purpose or by its effect, achieved under defined
conditions. (2) Any operation or combination of oper­
ations on data. (3) A function being performed or
waiting to be performed. (4) A program in operation;
for example, a daemon is a system process that is
always running on the system.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication. Protocols can determine low-level
details of machine-to-machine interfaces, such as the
order in which bits from a byte are sent; they can also
determine high-level exchanges between application
programs, such as file transfer.

protocol suite. A set of protocols that cooperate to
handle the transmission tasks for a data communi­
cation system.

pull-down. An extension of the action bar that displays
a list of choices that are available for a selected action
bar choice.

R
radix. (1) The positive integer by which the weight of
the digit place is multiplied to obtain the weight of the
digit place with the next higher weight; for example, in
the decimal numeration system the radix of each digit
place is 10, in a biquinary code the radix of each fives
place is 2. (2) Deprecated term for base.

RAM. Random Access Memory.

324 TCP/IP Version 2.0 for DOS: Programmer's Reference

Random Access Memory (RAM). A memory device
into which data is entered and from which data is
retrieved in a nonsequential manner.

RARP. Reverse Address Resolution Protocol.

recursive. Pertaining to a process in which each step
makes use of the results of earlier steps.

Remote Execution Protocol (REXEC). A protocol that
allows the execution of a command or program on a
foreign host. The local host receives the results of the
command execution. This protocol uses the REXEC
command.

remote host. Any foreign host, not including the local
host.

remote logon. The process by which a terminal user
establishes a terminal session with a remote host.

Remote Procedure Call (RPC). A facility that a client
uses to request the execution of a procedure call from
a server. This facility includes a library of procedures
and an external data representation.

Request For Comments (RFC). A series of documents
that covers a broad range of topics affecting internet­
work communication. Some RFCs are established as
internet standards.

resolver. A program or subroutine that obtains infor­
mation from a name server or local table for use by the
calling program.

resource records. Individual records of data used by
the Domain Name System. Examples of resource
records include the following: a host's Internet Protocol
addresses, preferred mail addresses, and aliases.

return code. (1) A code used to influence the exe­
cution of succeeding instructions. (2) A value returned
to a program to indicate the results of an operation
requested by that program.

Reverse Address Resolution Protocol (RARP). A pro­
tocol that maintains a database of mappings between
physical hardware addresses and IP addresses.

REXEC. Remote Execution Protocol.

RFC. Request For Comments.

RIP. Routing Information Protocol.

route. A specific path used to send packets to another
computer.

router. A device that connects networks at the ISO
Network Layer. A router is protocol-dependent and
connects only networks operating the same protocol.
Routers do more than transmit data; they also select

the best transmission paths and optimum sizes for
packets. In TCP/IP, routers operate at the Internetwork
layer. See also gateway.

Routing Information Protocol (RIP). The protocol that
maintains routing table entries for gateways, routers,
and hosts.

routing table. A list of network numbers and the infor­
mation needed to route packets to each.

RPC. Remote Procedure Call.

s
scan code. A code that the keyboard generates when
you press a key. Every key on a keyboard has a unique
scan code associated with it.

serial line. A network media that is a de facto
standard, not an international standard, commonly
used for point-to-point TCP/IP connections. Generally,
a serial line consists of an RS-232 connection into a
modem and over a telephone line.

server. A function that provides services for users. A
machine can run client and server processes at the
same time.

Simple Mail Transfer Protocol (SMTP). A TCP/IP appli­
cation protocol used to transfer mail between users on
different systems. SMTP specifies how mail systems
interact and the format of control messages they use to
transfer mai I.

SMTP. Simple Mail Transfer Protocol.

socket. (1) An endpoint for communication between
processes or applications. (2) A pair consisting of TCP
port and IP address, or UDP port and IP address.

socket interface. An application interface that allows
users to write their own applications to supplement
those supplied by TCP/IP.

stream. A continuous sequence of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.

subdirectory. A directory contained within another
directory in a file system hierarchy.

subnet. A networking scheme that divides a single
logical network into smaller physical networks to sim­
plify routing.

subnet address. The portion of the host address that
identifies a subnetwork.

subnet mask. A mask used in the IP protocol layer to
separate the subnet address from the host portion of
the address.

subnetwork. Synonymous with subnet.

synchronous. (1) Pertaining to two or more processes
that depend on the occurrences of a specific event such
as common timing signal. (2) Occurring with a regular
or predictable time relationship. See asynchronous.

T
task. A part of a program that performs some opera­
tion. Every program has at least one task, and could
have many.

task switch. A switch occurs when the tasker tempo­
rarily suspends one task in order to execute another
task.

tasker. The part of TCP/IP for DOS that manages
tasks. Periodically the tasker suspends the task cur­
rently executing and switches to another task.

tasking interval. The number of ticks per second that
the tasker allocates to DOS and non-TCP/IP applica­
tions. Any remaining ticks for that second are allo­
cated to TCP/IP background tasks.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet Pro­
tocol.

Telnet. The Terminal Emulation Protocol, a TCP/IP
application protocol for remote connection service.
Telnet allows a user at one site to gain access to a
foreign host as if the user's terminal were connected
directly to that foreign host.

terminal emulator. A program that imitates the func­
tion of a particular kind of terminal.

terminate and stay resident (TSR) program. A TSR is a
program that installs part of itself as an extension of
DOS when it is executed.

TFTP. Trivial File Transfer Protocol.

tick. A tick equals 1/18 second. Therefore, there are
18 ticks per second.

token. In a local network, the symbol of authority
passed among data stations to indicate the station tem­
porarily in control of the transmission medium.

token-ring network. A ring network that allows
unidirectional data transmission between data stations
by a token-passing procedure over one transmission
medium, so that the transmitted data returns to the
transmitting station.

Transmission Control Protocol (TCP). The TCP/IP
layer that provides reliable process-to-process data
stream delivery between nodes in interconnected com-

Glossary 325

puter networks. TCP assumes that IP (Internet
Protocol) is the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of protocols designed to allow com­
munication between networks regardless of the tech­
nologies implemented in each network.

Trivial File Transfer Protocol (TFTP). A TCP/IP appli­
cation primarily used to transfer files among personal
computers. TFTP allows files to be sent and received,
but does not provide any password protection or direc­
tory capability.

TSR. Terminate and stay resident. TSR usually refers
to a terminate and stay resident program.

u
UDP. User Datagram Protocol.

user. A function that utilizes the services provided by
a server. A host can be a user and a server at the
same time. See client.

User Datagram Protocol (UDP). A packet-level pro­
tocol built directly on the IP layer. UDP is used for
application to application programs between TCP/IP
hosts.

virtual machine. (1) A virtual data processing system
that appears to be at the exclusive disposal of a partic­
ular user, but whose functions are accomplished by
sharing the resources of a real data processing system.
(2) A functional simulation of a computer and its asso­
ciated devices. Each virtual machine is controlled by a

326 TCP/IP Version 2.0 for DOS: Programmer's Reference

suitable operating system, such as conversational
monitor system (CMS).

VM. Virtual Machine.

w
WAN. Wide area network.

well-known port. A port number that has been preas­
signed for specific use by a specific protocol or applica­
tion. Clients and servers using the same protocol
communicate over the same well-known port.

wide area network (WAN). A network that provides
communication services to a geographic area larger
than that served by a local area network.

window. An area of the screen with visible boundaries
through which a panel or portion of a panel is dis­
played.

working directory. The directory in which an applica­
tion program is found. The working directory becomes
the current directory when the application is started.

x
XOR. external Data Representation.

Numerics
3270. The designation for the standard terminal that is
used to connect to IBM mainframes.

Bibliography

TCP/IP for DOS Publications

The following are books associated with TCP/IP
Version 2.0 for DOS.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for DOS: Installation and Maintenance,
SC31-6154.

This book provides system programmers, network
administrators, and PC users responsible for installing
TCP/IP for DOS with the information required to plan
and implement the instal.lation of TCP/IP for DOS. The
topics include hardware and software requirements,
pre-installation system performance considerations,
instructions for installing TCP/IP for DOS, instructions
for customizing the TCP/IP for DOS environment and
installation examples.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for DOS: Programmer's Reference,
SC31-6153.

This book is written for application and system pro­
grammers to aid them in writing application programs
that use TCP/IP for DOS on a PC. Application program­
mers should know the DOS operating system, and have
knowledge of multitasking operating system concepts.
Application programmers should be knowledgeable in
the C programming language.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for DOS: User's Guide, SC31-6152.

This book is written for people who use a PC with
TCP/IP for DOS, such as end users and system pro­
grammers. The people who use this book should be
familiar with DOS and the PC, and also understand DOS
operating system concepts.

Other TCP/IP Publications

The following are other TCP/IP publications.

General Publications

The following list shows selected TCP/IP publications.

Introducing IBM's Transmission Control
Protocol/Internet Protocol Products for OS/2, VM, and
MVS, GC31-6080.

© Copyright IBM Corp. 1991

This book introduces managers, system designers, pro­
grammers, and other data processing personnel to the
basic concepts of IBM's TCP/IP products for OS/2, VM,
and MVS. This book also describes the relationship
between IBM's TCP/IP implementations and other IBM
products, including those based on SNA.

lnternetworking With TCP/IP Volume I: Principles, Pro­
tocols, and Architecture, Douglas E. Comer, Prentice
Hall, Englewood Cliffs, New Jersey, 1991.

lnternetworking With TCP/IP Volume II: Implementation
and Internals, Douglas E. Comer, Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

MVS Publications

The following list shows the MVS publications con­
tained in the TCP/IP for MVS library.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for MVS: Installation and Maintenance,
SC31-6085.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for MVS: Programmer's Reference,
SC31-6087.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for MVS: User's Guide, SC31-6088.

MVSIDFP Version 3 Release 3: Using the Network File
System Server, SC26-4732.

05/2 Publications

The following list shows the OS/2 publications con­
tained in the TCP/IP for OS/2 library.

IBM Transmission Control Protocol/Internet Protocol
Version 1.2 for OS/2: Installation and Maintenance,
SC31-6075.

IBM Transmission Control Protocol/Internet Protocol
Version 1.2 for OS/2: Programmer's Reference,
SC31-6077.

IBM Transmission Control Protocol/Internet Protocol
Version 1.2 for OS/2: Quick Reference Guide,
SX75-0070.

IBM Transmission Control Protocol/Internet Protocol
Version 1.2 for OS/2: User's Guide, SC31-6076.

327

VM Publications

The following list shows the VM publications contained
in the TCP/IP for VM library.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for VM: Installation and Maintenance,
SC31-6082.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for VM: Programmer's Reference,
SC31-6084.

IBM Transmission Control Protocol/Internet Protocol
Version 2.0 for VM: User's Guide, SC31-6081.

Other Related Publications

The following are other related publications.

BIOS Technical Publications

The following list shows selected BIOS technical publi­
cations.

IBM Personal System/2 and Personal Computer BIOS
Interface Technical Reference, S68X-2341.

System BIOS for IBM PC/ XTI AT Computers and
Compatibles: The Complete Guide to ROM-Based
System Software, Phoenix Technologies Ltd.,
Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1989, ISBN 0-201-51806-6.

DOS Publications

The following list shows selected DOS publications.

Disk Operating System Version 3.30 Reference,
Z628-0224.

Disk Operating System Version 3.30 User's Guide,
Z628-0224.

Using Disk Operating System Version 4.00, Z628-0258.

Getting Started with Disk Operating System Version
4.00, Z628-0258.

Using Disk Operating System Version 5.00, Z84F-9779.

Getting Started with Disk Operating System Version
5.00, Z84F-9779.

328 TCP/IP Version 2.0 for DOS: Programmer's Reference

DOS Technical Publications

The following list shows selected DOS technical publi­
cations.

IBM Disk Operating System Version 3.30 Technical Ref­
erence, S628-0059.

IBM Disk Operating System Version 4.00 Technical Ref­
erence, S628-0254.

The MS-DOS Encyclopedia, Microsoft Press, Redmond,
Washington, 1988. ISBN 1-55615-049-0.

MS-DOS Developer's Guide, J. Angermeyer, K. Jaeger,
Howard W. Sams & Co., Indianapolis, Indiana, 1986,
ISBN 0-672-22409-7.

COMPUTE!'s Mapping the IBM PC and PCjr, R. Davies,
COMPUTE! Publications, Inc., Greensboro, North
Carolina, 1985, ISBN 0-942386-92-2.

Advanced MS-DOS Programming, R. Duncan, Microsoft
Press, Redmond, Washington, 1988, ISBN
1-55615-157-8.

The Peter Norton Programmer's Guide to the IBM PC,
P. Norton, Microsoft Press, Redmond, Washington,
1985, ISBN 0-914845-46-2.

Programming Publications

The following list shows selected programming publica­
tions.

IBM AIX Operating System Version 1.2.1 Technical Ref­
erence Volume 1, SC23-2300.

IBM AIX Operating System Version 1.2.1 Technical Ref­
erence Volume 2, SC23-2301.

IBM AIX Version 3 for RISC/6000 Communication Con­
cepts and Procedures Volume 1, GC23-2203.

IBM AIX Version 3 for RISC/6000 Communication Con­
cepts and Procedures Volume 2, GC23-2203.

IBM AIX Version 3 for RISC/6000 Communications Pro­
gramming Concepts, SC23-2198.

Networking on the Sun Workstation: Remote Procedure
Call Programming Guide (800-1324-03), Sun Microsys­
tems, Inc.

Network Programming, 800-1779-10, Sun Microsystems,
Inc.

'" --

UNIX Network Programming, W. Richard Stevens,
Prentice Hall, Englewood Cliffs, New Jersey, 1990, ISBN
0-13-949876-1.

UNIX Programmer's Reference Manual (4.3 Berkeley
Software Distribution, Virtual VAX-11 Version). Depart­
ment of Electrical Engineering and Computer Science.
University of California, Berkeley, 1988.

Bibliography 329

330 TCP/IP Version 2.0 for DOS: Programmer's Reference

Index

A
accept() 36
address families

AF_INET 22
PF _INET 22

Address Resolution Protocol
See ARP

address, internet
broadcast address format 14
described 4
local address 12, 13
network address format

Class A 13
Class B 13, 14
Class C 13
Class D 13

network number 12
subnetwork address format 14

applications, functions, and protocols
Domain Name System (DNS) 9
File Transfer Protocol (FTP) 8, 21
Finger Protocol (FINGER) 11
Network File System (NFS) 10, 21
NICNAME/WHOIS Protocol 11
Post Office Protocol (POP2) 11
Quote of the Day Protocol (COOKIE) 11
Remote Execution Protocol (REXEC) 11
Remote Printing (LPR) 10
Remote Procedure Call (RPC) 11
RouteD 10
Simple Mail Transfer Protocol (SMTP) 9
Socket Interfaces 12, 21
Telnet Protocol 8
Time Protocol (TIME) 11
Trivial File Transfer Protocol (TFTP) 8

architecture
application layer 5, 8
internetwork layer 5, 6
network layer 5
transport layer 5, 7

ARP 7
authnone_create() 110
authunix_create() 111
authunix_create_default() 112
auth_destroy() 109

B
bind() 38
bridge 4
broadcast address format 14

© Copyright IBM Corp. 1991

c
callrpc() 113
client 4
clnttcp_create() 122
clntudp_create() 123
clnt_broadcast() 114
clnt_call() 115
cl nt_ destroy() 116
clnt_freeres() 117
clnt_geterr() 118
cl nt_pcreateerror() 119
clnt_perrno() 120
clnt_perror() 121
compiling and linking

FTP API 189
RPC 107
Sockets 34

computer network
described 3
LAN 3
WAN 3

connect() 41
COOKIE 11

D
datagram 4
datagram sockets 21
Domain Name System 9
dosip_init() 44

E
endhostent() 45
endnetent() 46
endprotoent() 47
endservent() 48
error messages 270
external Data Representation and Remote Procedure

Calls
authnone_create() 110
authunix_create() 111
authunix_create_default() 112
auth_destroy() 109
callrpc() 113
clnttcp_create() 122
clntudp_create() 123
clnt_broadcast() 114
clnt_call() 115
clnt_destroy() 116
clnt_freeres() 117
clnt_geterr() 118
clnt_pcreateerror() 119
clnt_perrno() 120

331

external Data Representation and Remote Procedure
Calls (continued)

clnt_perror() 121
get_myaddress() 124
pmap_getmaps() 125
pmap_getport() 126
pmap_rmtcall() 127
pmap_set() 128
pmap_unset() 129
registerrpc() 130
rpc_createerr 131
svcerr _auth() 142
svcerr_decode() 143
svcerr_noproc() 144
svcerr_noprog() 145
svcerr _progvers() 146
svcerr _ systemerr() 14 7
svcerr_weakauth() 148
svctcp_create() 149
svcudp_create() 150
svc_destroy() 132
svc_freeargs() 133, 134
svc_getargs() 135
svc_getcaller() 136
svc_getreq() 137
svc_register() 138
svc_run() 139
svc_sendreply() 140
svc_unregister() 141
xdrmem_create() 179
xdrrec_create() 180
xdrrec_endofrecord() 181
xdrrec_eof() 182
xdrrec_skiprecord() 183
xdrstdio_create() 184
xdr_accepted_reply() 151
xdr_array() 152
xdr_authunix_parms() 153
xdr_bool() 154
xdr_bytes() 155
xdr_callhdr() 156
xdr_callmsg() 157
xdr_double() 158
xdr_enum() 159
xdr_float() 160
xdr_inline() 161
xdr_int() 162
xdr_long() 163
xdr_opaque() 164
xdr_opaque_auth() 165
xdr_pmaplist() 167
xdr_pmap() 166
xdr _reference() 168
xdr_rejected_reply() 169
xdr_replymsg() 170
xdr_short() 171
xdr_string() 172
xdr_union() 176

332 TCP/IP Version 2.0 for DOS: Programmer's Reference

external Data Representation and Remote Procedure
Calls (continued)

F

xdr _u_int() 173
xdr_u_long() 174
xdr_u_short() 175
xdr_void() 177
xdr_wrapstring() 178
xprt_register() 185
xprt_unregister() 186

File Transfer Protocol
See FTP

File Transfer Protocol Application Programming Inter­
face

See FTP API
FINGER 11
Finger Protocol

See FINGER
FTP 8, 21
FTP API

compiling and linking 189
library 189
return values (ftperrno) 190

FTP API calls
ftpappend() 191
ftpcd() 192
ftpdelete() 193
ftpdir() 194
ftpget() 195
ftplogoff() 196
ftpls() 197
ftpmkd() 198
ftpping() 199
ftpproxy() 200
ftpputunique() 203
ftpput() 202
ftppwd() 201
ftpquote() 204
ftprename() 205
ftprmd() 206
ftpsite() 207
ftpsys() 208
ping() 209

ftpappend() 191
ftpcd() 192
ftpdelete() 193
ftpdir() 194
ftperrno 190
ftpget() 195
ftplogoff() 196
ftpls() 197
ftpmkd() 198
ftpping() 199
ftpproxy() 200
ftpputunique() 203

ftpput() 202
ftppwd() 201
ftpquote() 204
ftprename() 205
ftprmd() 206
ftpsite() 207
ftpsys() 208

G
gateway 4
generic text messages 291
gethostbyaddr() 49
gethostbyname() 50
gethostent() 51
gethostid() 52
getnetbyaddr() 53
getnetbyname() 54
getnetent() 55
getpeername() 56
getprotobyname() 57
getprotobynumber() 58
getprotoent() 59
getservbyname() 60
getservbyport() 61
getservent() 62
getsockname() 63
getsockopt() 64
get_myaddress() 124

H
Header Files

File Transfer Protocol Application Programming
Interface (FTP API) 18

Remote Procedure Calls (RPCs) 18, 107
sockets 17

host
foreign host 4
local host 4
remote host 4

htonl() 67
htons() 68

I
ICMP 6
IFCONFIG 221
IFCONFIG errors 296
included and marked variables for removal flag 221
inet_addr() 69
inet_lnaof() 70
inet_makeaddr() 71
i net_netof() 72
inet_network() 73
inet_ntoa() 74
Integrated Services Digital Network

See ISDN

internal error messages 286
International Standards Organization

See ISO
internet address

broadcast address format 14
described 4
local address 12, 13
network address format

Class A 13
Class B 13, 14
Class C 13
Class D 13

network number 12
subnetwork address format 14

Internet Control Message Protocol
See ICMP

Internet Protocol
See IP

internetwork protocols
Address Resolution Protocol (ARP) 7
Internet Control Message Protocol (ICMP) 6
Internet Protocol (IP) 6
Routing Information Protocol (RIP) 7

internet, described 3
IP 6
ISDN 3
ISO 22

L
LAN 3
library files 18
listen() 75
local address 12
local area network

See LAN
logical network 4
LPR 10

M
mapping 4
messages

N

error 270
generic text 291
IFCONFIG error 296
internal error 286
name server error 302
NFS error 303
TSR error 310
warning 287

name server error messages 302
NETDB.H 17
NETINET\IN.H 17

Index 333

network
logical 4
physical 4

network address format
Class A 13
Class B 13, 14
Class C 13
Class D 13

network byte order 23, 33
Network File System

See NFS
network number 12
network protocol

described 4, 6
SLIP 6

NETWORKS File Structure 267
NFS

described 10
error messages 303

NICNAME/WHOIS Protocol 11
nodes 3
ntohl() 76
ntohs() 77

0
Open Systems Interconnect

See OSI
OSI 3, 22

p
packet 4
physical network 4
PIO 221
ping() 209
pmap_getmaps() 125
pmap_getport() 126
pmap_rmtcall() 127
pmap_set() 128
pmap_unset() 129
POP2 11
port 4
port numbers 105
porting

RPC 107
sockets 34

porting considerations 18
Post Office Protocol

See POP2
Process IDentification number

See PIO
protocols

Address Resolution Protocol (ARP) 7
described 4
File Transfer Protocol (FTP) 8
Finger Protocol (FINGER) 11
Internet Control Message Protocol (ICMP) 6, 21

334 TCP/IP Version 2.0 for DOS: Programmer's Reference

protocols (continued)

Q

Internet Protocol (IP) 6, 21
Post Office Protocol (POP2) 11
Quote of the Day Protocol (COOKIE) 11
Remote Execution Protocol (REXEC) 11
Remote Printing (LPR) 10
Remote Procedure Call (RPC) 11
Routing Information Protocol (RIP) 7
Serial Line Internet Protocol (SLIP) 6
Simple Mail Transfer Protocol (SMTP) 9
Telnet Protocol 8
Time Protocol (TIME) 11
Transmission Control P.rotocol (TCP) 7, 21, 22
Trivial File Transfer Protocol (TFTP) 8
User Datagram Protocol (UDP) 7, 21, 22
Versatile Message Transfer Protocol (VMTP) 21
Whois Protocol (NICNAME) 11

Quote of the Day Protocol
See COOKIE

R
recvfrom() 79
recv() 78
registerrpc() 130
Remote Execution Protocol

See REXEC
Remote Printing 10
Remote Procedure and external Data Representation

Calls
authnone _create() 110
authunix_create() 111
authunix_create_default() 112
auth _destroy() 109
callrpc() 113
clnttcp_create() 122
clntudp_create() 123
clnt_broadcast() 114
clnt_call() 115
clnt_destroy() 116
clnt_freeres() 117
clnt_geterr() 118
clnt_pcreateerror() 119
clnt_perrno() 120
clnt_perror() 121
get_myaddress() 124
pmap_getmaps() 125
pmap_getport() 126
pmap_rmtcall() 127
pmap_set() 128
pmap_unset() 129
registerrpc() 130
rpc_createerr 131
svcerr_auth() 142
svcerr_decode() 143

(

\

Remote Procedure and external Data Representation
Calls (continued)

svcerr_noproc() 144
svcerr_noprog() 145
svcerr _progvers() 146
svcerr _systemerr() 147
svcerr _ weakauth() 148
svctcp_create() 149
svcudp_create() 150
svc_destroy() 132
svc _freeargs() 133, 134
svc_getargs() 135
svc _getcal ler() 136
svc_getreq() 137
svc_register() 138
svc_run() 139
svc_sendreply() 140
svc_unregister() 141
xdrmem_create() 179
xdrrec_create() 180
xdrrec_endofrecord() 181
xdrrec_eof() 182
xdrrec_skiprecord() 183
xdrstdio_create() 184
xdr_accepted_reply() 151
xdr_array() 152
xdr_authunix_parms() 153
xdr_bool() 154
xdr_bytes() 155
xdr_callhdr() 156
xdr_callmsg() 157
xdr_double() 158
xdr_enum() 159
xdr_float() 160
xdr_inline() 161
xdr_int() 162
xdr_long() 163
xdr_opaque() 164
xdr_opaque_auth() 165
xdr_pmaplist() 167
xdr_pmap() 166
xdr_reference() 168
xdr _rejected _reply() 169
xdr_replymsg() 170
xdr_short() 171
xdr_string() 172
xdr_union() 176
xdr_u_int() 173
xdr_u_long() 174
xdr_u_short() 175
xdr_void() 177
xdr_wrapstring() 178
xprt_register() 185
xprt_ unregister() 186

Remote Procedure Call
See RPG

Remote Procedure Call Quick Reference 257

REXEC 11
RIP 7
RouteD 10
router 4
routing

direct 12
indirect 12

Routing Information Protocol
See RIP

RPG
compiling and linking 107
described 11
enum clnt_stat Structure 106
Interface 101
library 107
Porting 107
Portmapper

Contacting Portmapper 105
Target Assistance 105

rpc_createerr 131

s
Sample RPG Programs

RPG Client 247
RPC Server 248

Sample Socket Programs
Socket TCP Client 243
Socket TCP Server 245
Socket UDP Client 239
Socket UDP Server 241

Sample Tasking Program 251
select() 80
sendto() 83
send() 82
Serial Line Internet Protocol

See SLIP
server 4
sethostent() 84
setnetent() 85
setprotoent() 86
setservent() 87
setsockopt() 88
shutdown() 90
Simple Mail Transfer Protocol

See SMTP
SLIP 6
SMTP 9
SNA 3
Socket Calls

accept() 36
bind() 38
connect() 41
dosip_init() 44
endhostent() 32, 45
endnetent() 46
endprotoent() 32, 47
endservent() 48

Index 335

Socket Calls (continued)
gethostbyaddr() 32, 49
gethostbyname() 32, 50
gethostent() 32, 51
gethostid() 52
getnetbyaddr() 53
getnetbyname() 54
getnetent() 55
getpeername() 56
getprotobyname() 32, 57
getprotobynumber() 32, 58
getprotoent() 32, 59
getservbyname() 60
getservbyport() 61
getservent() 62
getsockname() 63
getsockopt() 64
htonl() 67
htons() 68
inet_addr() 69
inet_lnaof() 70
inet_makeaddr() 71
inet_netof() 72
inet_network() 73
inet_ntoa() 74
listen() 75
ntohl() 76
ntohs() 77
recvfrom() 79
recv() 78
select() 80
sendto() 83
send() 82
sethostent() 32, 84
setnetent() 85
setprotoent() 32, 86
setservent() 87
setsockopt() 88
shutdown() 90
Socket TCP client programs 243
Socket TCP server programs 245
Socket UDP client programs 239
Socket UDP server programs 241
socket() 92
sock_init() 91, 221
so_close() 95
so_flush() 96
so_read() 97
so_write() 98

Socket Quick Reference 255
Sockets

address families
AF_INET 22
PF_INET 22

addresses 22
application header files

NETDB.H 17, 34
NETINET\IN.H 17, 34
SYS\SOCKET.H 17, 34

336 TCP/IP Version 2.0 for DOS: Programmer's Reference

Sockets (continued)
application header files (continued)

SYS\TIME.H 17, 34
TCPERRNO.H 17, 34
TYPES.H 17, 34

compiling and linking 34
described 21
guidelines for using 22
internet addresses 23
library 34
main socket calls

network utility routines 32
TCP socket sessions 28
UDP socket sessions 28

network byte order 23, 33
porting 34
ports 23
types

datagram 21, 24
stream 21, 24

socket() 92
SOCK_DGRAM 21
sock_init() 91
SOCK_STREAM 21
so_close() 95
so_flush() 96
so_read() 97
so_write() 98
stream sockets 21
subnetwork address format 14
svcerr_auth() 142
svcerr_decode() 143
svcerr_noproc() 144
svcerr_noprog() 145
svcerr_progvers() 146
svcerr_systemerr() 147
svcerr_weakauth() 148
svctcp_create() 149
svcudp_create() 150
svc_destroy() 132
svc_freeargs() 133, 134
svc_getargs() 135
svc_getcaller() 136
svc_getreq() 137
svc_register() 138
svc_run() 139
svc_sendreply() 140
svc_unregister() 141
SYS\SOCKET.H 17
SYS\TIME.H 17

T
task state vectors 221
task status 221
task wake counter 222
tasking and the scheduler 221

Tasking program sample
Tasking Quick Reference
tasking ring 221
tasking routines

tk_block() 227
tk_cont() 224
tk_exit() 230
tk_fork() 223
tk_kill() 231
tk_shell() 229
tk_sleep() 228
tk_wake() 226
tk_yield() 225

TCP 7,22
TCPERRNO.H 17
Telnet Protocol 8
TFTP 8
TIME 11
Time Protocol

See TIME
Timer Quick Reference
Timer Routines

tm_alloc() 214
tm_clear() 217
tm_free() 218
tm_mset() 215
tm_remset() 216
tm_reset() 216
tm_retset() 216
tm_set() 215
tm_tset() 215

timer task 213
tk_block() 227
tk_cont() 224
tk_exit() 230
tk_fork() 223
tk_kill() 231
tk_shell() 229
tk_sleep() 228
tk _wake() 226
tk_yield() 225
tm_alloc() 214
tm_clear() 217
tm_free() 218
tm_mset() 215
tm_remset() 216
tm_reset() 216
tm_retset() 216
tm_set() 215
tm_tset() 215

251
265

263

Transmission Control Protocol
See TCP

transport protocols
Transmission Control Protocol (TCP) 7
User Datagram Protocol (UDP) 7

Trivial File Transfer Protocol
See TFTP

TSR error messages 310
TYPES.H 17

u
UDP 7, 22
User Datagram Protocol

See UDP

v
Versatile Message Transfer Protocol (VMTP) 21

w
Wake Counter 222
WAN 3
warning messages 287
Well-Known Port Assignments

TCP 235
UDP 237

WHOIS Protocol
See NICNAME/WHOIS Protocol

wide area network
See WAN

x
xdrmem_create() 179
xdrrec_create() 180
xdrrec_endofrecord() 181
xdrrec_eof() 182
xdrrec_skiprecord() 183
xdrstdio_create() 184
xdr_accepted_reply() 151
xdr_array() 152
xdr_authunix_parms() 153
xdr_bool() 154
xdr_bytes() 155
xdr_callhdr() 156
xdr_callmsg() 157
xdr_double() 158
xdr_enum() 159
xdr_float() 160
xdr_inline() 161
xdr _int() 162
xdr_long() 163
xdr_opaque() 164
xdr_opaque_auth() 165
xdr_pmaplist() 167
xdr_pmap() 166
xdr_reference() 168
xdr _rejected_reply() 169
xdr_replymsg() 170
xdr_short() 171
xdr_string() 172
xdr_union() 176
xdr_u_int() 173

Index 337

xdr_u_long() 174
xdr _u_short() 175
xdr_void() 177
xdr_wrapstring() 178
xprt_register() 185
xprt_unregister() 186

338 TCP/IP Version 2.0 for DOS: ·Programmer's·Reference

Readers' Comments

IBM Transmission Control Protocol/
Internet Protocol Version 2.0 for DOS:
Programmer's Reference

Publication No. SC31-6153-0

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to
express your opinion about it (such as organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM pro­
ducts or systems, you should talk to your IBM representative or to your IBM authorized remarketer. This
form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in
any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply. If we have questions about your
comment, may we call you? If so, please include your phone number.

Name Address

Company or Organization

Phone No.

Readers' Comments
SC31-6153-0

--------- ----- - -- - ---- -------------·-®

Fold and Tape Please do not staple Fold and Tape

:
j Cut or fol1
: Along Lim

'

---- --- ---- --- -- -- --- -- --- -- -- -- ---- ----- -- --------- ------- -- -------- --------- ---- -·::· ~=:~~=~-- ----· 1

NECESSARY

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department E15
PO BOX 12195
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709-9990

1 •• 1.11 ••• 11 ••• 111 ••• 1.1 •• 1.1 •• 1.1 •• 1.1 •• 11 ••• 1 •• 1.1

IF MAILED IN THE
UNITED STATES

·--..,
Fold and Tape Please do not staple Fold and Tape

'

SC31-6153-0
Cut or Fold
Along Line

--------- - - --- --- - ---- - - ----------- ·-
®

File Number: S370/4300/30XX-50
Program Number: 02G7088

Printed in USA

SC31-6153-0

1111111111111111111111111111

