
--- ------ - ---- ---- - ---- - - ------------- - . -
Personal Computer
Programming Family

DOS Technical
Reference

6138536 Preliminary

First Edition (February 1985)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent ~ith local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES TIllS PUBLICATION "AS IS" wrrnom WARRANTY
OF ANY KIND, EmlER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, 1HE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not
apply to you.

lbis publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and! or changes in the
product(s) and/or the program(s) described in this pUblication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer, IBM Product Center, or your IBM Marketing
Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed.
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the information you supply in
any way it believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1984, 1985

rreununary

About This Book

Read This First

This book contains technical information pertaining to
DOS versions 2.10, 3.00, and 3.10. Some information
is specific to a version of DOS and does not apply to all
versions.

This book covers topics for the experienced DOS user,
system programmer, and application developer. It is
assumed that you are familiar with the 8088
architecture.

Version Specific Information

Chapters that contain information that is specific to a
version of DOS, contain a section called "Version
Specific Information." This section identifies the
information in the chapter that is for use with a
particular version of DOS. Chapters that do not
contain this section contain information that applies to
DOS versions 2.10, 3.00, and 3.10.

iii

Preliminary

How This Book is Organized

iv

This book has 11 chapters.

Chapter 1 contains general technical information about
DOS.

Chapter 2 contains detailed information about device
drivers.

Chapter 3 contains detailed information about using
extended screen and keyboard functions to control
cursor positioning and to redefine keyboard keys.

Chapter 4 contains notes and considerations for proper
file management.

Chapter 5 describes allocation of space on a disk.

Chapter 6 describes the system interrupts and function
calls.

Chapter 7 describes control blocks and work areas,
including a memory map, program segment prefix, and
file control block.

Chapter 8 explains how to execute commands from
within an application.

Chapter 9 contains technical information about DOS
support of fixed disks.

Chapter 10 contains detailed information about .EXE
file structure.

Chapter 11 contains information about DOS memory
management.

rreununary

Contents

Chapter 1. DOS Technical Information •••••.•.• 1-1
Introduction 1-3
Version Specific Information 1-3
DOS Structure '.. 1-4

The Boot Record 1-4
Read Only Memory (ROM) BIOS

Interface 1-4
The DOS Program File 1-5
The Command Processor 1-5

DOS Initialization 1-7
Available DOS Functions 1-8
The Disk Transfer Area (DT A) 1-9
Error Trapping 1-10

Chapter 2. Installable Device Drivers •••••••..•• 2-1
Introduction 2-3
Version Specific Information 2-3
Device Driver Format 2-4
Types of Devices 2-5

Character Devices 2-5
Block Devices 2-5

Device Header 2-6
Pointer to Next Device Header Field .. 2-6
Attribute Field 2-7
Pointer to Strategy and Interrupt

Routines 2-9
Name/Unit Field 2-9

Creating a Device Driver 2-10
Installing Device Drivers 2-11

Installing Character Devices 2-12
Installing Block Devices 2-12

Request Header 2-14
Unit Code Field 2-14
Command Code Field 2-15
Status Field 2-16

Device Driver Functions 2-18
!NIT 2-19

v

vi

Preliminary

MEDIA CHECK 2-21
Media Descriptor Byte 2-23
BUlLD BPB (BIOS Parameter Block) 2-26
INPUf or OUfPUf 2-29
NONDESTRUCTIVE INPUT NO
WAIT 2-31

STAJUS 2-32
Fl.USH 2-33
OPEN or CLOSE (DOS 3.00 and 3.10) 2-34
REMOVABLE :MEDIA (nOS 3.00 and
3.10) 2-35

The CLOCKS Device 2-36
Sample Device Driver ~ 2-36

Chapter 3. Using Extended Screen and Keyboard
Control .• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 •• 0 e 0 0 0 3-1

Introduction 3-3
Control Sequences 3-3
Control Sequence Syntax 3-4
Cursor Control Sequences 3-6

Cursor Position 3-6
Cursor Up 3-7
Cursor Down 3-7
Cursor Forward 3-8
Cursor Backward 3-8
Horizontal and Vertical Position 3-9
Cursor Position Report 3-10
Device Status Report 3-10
Save Cursor Position 3-12
Restore Cursor Position 3-12

Erasing 3-13
Erase in Display 3-13
Erase in Line 3-13

Mode of Operation 3-14
Keyboard Key Reassignment 3-17

Chapter 4. File Management Notes •••••••••••. 4-1
Introduction 4-3
Version Specific Information 4-3
File Management Functions 4-3
FCB Function Calls 4-5
Handle Function Calls 4-6
Special File Handles 4-8

Preliminary

ASCn and Binary Mooe 4-9
File IIO in Binary Mooe 4-10
File IIO in ASCn Mooe 4-11

Number of Open Files Allowed 4-12
Restrictions on FCB Usage 4-12
Restrictions on Handle Usage 4-13
Allocating Space to a File 4-14

Chapter 5. DOS Disk Allocation •••.....•••... 5-1
Introduction 5-3
Version Specific Information 5-3
The DOS Area 5-4
The Boot Record 5-4
DOS File Allocation Table (FAT) 5-5

How to Use the File Allocation Table for
12-Bit FAT Entries 5-8

How to Use the File Allocation Table for
16-Bit FAT Entries 5-9

DOS Disk Directory 5-10
Directory Entries 5-10

The Data Area 5-14

Chapter 6. DOS Interrupts and Function Calls •••. 6-1
Introduction 6-7
Version Specific Information 6-7
DOS Registers 6-9
Extended ASCn Codes 6-11
Interrupts 6-12

20H Program Terminate 6-12
21H Function Request 6-13
22H Tenninate Address 6-13
23H Ctrl-Break Exit Address 6-13
24H Critical Error Handler Vector ... 6-14
25H Absolute Disk Read 6-22
26H Absolute Disk Write 6-23
27H Tenninate but Stay Resident 6-24
28H-2EH Reserved for DOS 6-25
2FH Multiplex Interrupt 6-26
30H-3FH Reserved for DOS 6-31

Function Calls 6-32
Listing of Function Calls 6-33
DOS Internal Stack 6-36
Error Return Information 6-36

vii

Preliminary

ASCnz Strings 6-44
Network Paths 6-45
Network Access Rights 6-45
File Handles 6-46
Using DOS Functions 6-47

OOH Program Terminate 6-49
01H Keyboard Input 6-50
02H Display Output 6-51
03H Auxiliary Input 6-52
04H Auxiliary Output 6-53
05H Printer Output 6-54
06H Direct ConsoleI/O 6-55
07H Direct Console Input Without Echo .. 6-56
08H Console Input Without Echo 6-57
09H Print String 6-58
OAH Buffered Keyboard Input 6-59
OBH Check Standard Input Status 6-60
OCH Clear Keyboard Buffer and Invoke a
Keyboard Function 6-61
ODH Disk Reset 6-62
OEH Select Disk 6-63
OFH Open File 6-64
10H Close File 6-65
11H Search for First Entry 6-66
12H Search for Next Entry 6-68
13H Delete File 6-69
14H Sequential Read 6-70
15H Sequential Write 6-71
16H Create File 6-72
17H Rename File 6-73
19H Current Disk '. 6-74
lAH Set Disk Transfer Address 6-75
IBH Allocation Table Information 6-76
1 CH Allocation Table Information for
Specific Device 6-77
21H Random Read 6-78
22H Random Write 6-79
23H File Size 6-80
24H Set Relative Record Field 6-81
25H Set Interrupt Vector 6-82
26H Create New Program Segment 6-83
27H Random Block Read 6-84
28H Random Block Write 6-85

viii

Preliminary

29H Parse Filename 6-86
2AH Get Date 6-88

. 2BH Set Date 6-89
2CH Get Time 6-90

. 2DH Set Time 6-91
2EH Set/Reset Verify Switch 6-92
2FH Get Disk Transfer Address (DTA) ... 6-93
30H Get DOS Version Number 6-94
31H Terminate Process and Remain Resident 6-95
33H Ctrl-Break Check 6-96
35H Get Vector 6-97
36H Get Disk Free Space 6-98
38H (DOS 2.10) Return Country Dependent
Information 6-99
38H (DOS 3.00 and 3.10) Get or Set
Country Dependent Information 6-101
39H Create Subdirectory (MKDIR) 6-106
3AH Remove Subdirectory (RMDIR) ... 6-107
3BH Change the Current Directory
(CHDlR) 6-108
3CH Create a File (CREAT) 6-109
3DH (DOS 2.10) Open a File 6-110
3DH (DOS 3.00 and 3.10) Open a File .. 6-112
3EH Close a File Handle 6-122
3FH Read from a File or Device 6-123
40H Write to a File or Device 6-125
41H Delete a File from a Specified
~ectory(~~) 6-127
42H Move File Read Write Pointer
(LSEEK) 6-128
43H Change File Mode (CHMOD) 6-130
44H JfO Control for Devices (IOCTL) .. 6-132
45H Duplicate a File Handle (DUP) 6-139
46H Force a Duplicate of a Handle
(FORCDUP) 6-140
47H Get Current Directory 6-141
48H Allocate Memory 6-142
49H Free Allocated Memory 6-143
4AH Modify Allocated Memory Blocks
(SETBLOCK) 6-144
4BR Load or Execute a Program (EXEC) 6-145
4CH Terminate a Process (EXIT) 6-150
4 DR Get Return Code of a Subprocess

ix

x

Preliminary

(WAIT) 6-151
4 EH Find First Matching File (FIND
FmST) 6-152
4FH Find Next Matching File (FIND
NEXT) 6-154
54H Get Verify Setting 6-155
56H Rename a File 6-156
57H Get/Set a File's Date and Time 6-158
59H (DOS 3.00 and 3.10) Get Extended
Error 6-160
5AH (DOS 3.00 and 3.10) Create Unique
File 6-162
5BH (DOS 3.00 and 3.10) Create New File 6-164
5CH (DOS 3.00 and 3.10) LocIlUnlock
File Access 6-165
5EOOH (DOS 3.10) Get Machine Name .. 6-168
5E02H (DOS 3.10) Set Printer Setup 6-169
5E03H (DOS 3.10) Get Printer Setup ... 6-170
SF02H (DOS 3.10) Get Redirection List
Entry 6-171
SF03H (DOS 3.10) Redirect Device 6-173
5F04H (DOS 3.10) Cancel Redirection .. 6-176
62H (DOS 3.00 and 3.10) Get Program
Segment Prefix Address (PSP) 6-178

Chapter 7. DOS Control Blocks and Work Areas • 7-1
Introduction 7-3
DOS Memory Map 7-4
DOS Program Segment 7-6
Program Segment Prefix 7-10
File Control Block 7-12

Standard File Control Block 7-13
Extended File Control Block 7-16

Chapter 8. Executing Commands From Within an
Applica.tion 8-1

Introduction 8-3
Invoking a Command Processor 8-3

Chapter 9. Fixed Disk Information ••••••••••••• 9 ... 1
Introduction 9-3
Fixed Disk Architecture 9-3
System Initialization 9-4

Preliminary

Boot/Record Partition Table 9-6
Fixed Disk Technical Information 9-8
Determining Fixed Disk Allocation 9-11

Chapter 10. EXE File Structure and Loading •••• 10-1
Introduction 10-3
.EXE File Structure 10-3
The Relocation Table 10-5

Chapter 11. DOS Memory Management .•.•••. 11-1
Introduction 11-3
Control Block 11-3

Index•.......•...••...... Index-l

xi

Preliminary

xii

Preliminary

Chapter 1. DOS Technical Information

Contents

Introduction • . . • • .. 1-3

Version Specific Information .•••.•.••..•.•••• 1-3

DOS Structure ..••••••••••••••.•••..••.•. 1-4
The Boot Record 1-4
Read Only Memory (ROM) BIOS Interface .. 1-4
The DO S Program File 1-5
The Command Processor 1-5

DOS Initialization ...•.••.••••...•.•••.•••• 1-7

AvatJable DOS Functions ••••••••••••.•.••••• 1-8

The Disk Transfer Area (DTA) .•.....•....•.. 1-9

Error Trapping •.•.•••••••..•••••.•.•.•••• 1-10

1-1

Preliminary

1-2

Preliminary

Introduction

This chapter tells you about:

• DOS structure

• DOS initialization

• DOS functions

• Disk transfer area

• Error trapping

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

The Command Processor: For DOS 2.10, the
transient portion of the command processor contains
the EXEC routine that loads and executes external
commands. For DOS versions 3.00 and 3.10, the
resident portion of the command processor contains the
EXEC routine.

1-3

Preliminary

DOS Structure

DOS consists of four components:

• The Boot Record
• The Read Only Memory BIOS Interface
• The DOS Program File (IBMDOS. COM)
• The command processor (COMMAND. COM)

The Boot Record

The boot record begins on track 0, sector 1, side 0 of
every diskette formatted by the DOS FORMAT
command. The boot record is placed on diskettes to
produce an error message if you try to start up the
system with a non system diskette in drive A. For fixed
disks, the boot record resides on the first sector of the
DOS partition. All media supported by DOS use one
sector for the boot record.

Read Only Memory (ROM) BIOS Interface

1-4

The file lBMBIO.COM is the interface module to the
Read Only Memory (ROM) BIOS. IBMBIO.COM
provides a low-level interface to the ROM BIOS device
routines.

Preliminary

The DOS Program File
The DOS program is file mMDOS.COM. It provides a
high-level interface for user programs. mMDOS.COM
consists of file management routines, data
blocking/deblocking for the disk routines, and a variety
of built-in functions easily accessible by user programs.

When a user program calls these function routines, they
accept high-level information by way of register and
control block contents. For device operations, the
functions translate the requirement into one or more
calls to lBMBIO.COM to complete the request.

The Command Processor
The command processor, COMMAND. COM, consists
of these parts:

1. A resident portion resides in memory immediately
following mMDOS.COM and its data area. This
portion contains routines to process interrupts 22H
(Terminate Address), 23H (Ctrl-Break Handler),
and 24H (Critical Error Handling), as well as a
routine to reload the transient portion if needed.
For DOS 3.00 and 3.10, this portion also contains
a routine to load and execute external commands,
such as files with extensions of . COM or .EXE.

Note: When a program terminates, a
checksum methodology determines if the
program has caused the transient portion to be
overlaid. If the transient portion is overlaid, it
is reloaded.

All standard DOS error handling is done within
this portion of COMMAND. COM. This includes
displaying error messages and interpreting the
replies of Abort, Retry, or Ignore. See the message
"Disk error reading drive x" in Appendix A of the
DOS Reference.

1-5

1-6

Preliminary

2. An initialization portion follows the resident
portion and is given control during start-up. This
portion contains the AUTOEXEC.BAT file
processor setup routine. The initialization portion
determines the segment address at which programs
can be loaded. The initialization portion is overlaid
by the first program COM1vtAND.COM loads
because it's no longer needed.

3. A transient portion is loaded at the high end of
memory. This is the command processor itself,
containing all of the internal command processors
and the batch-file processor. For DOS 2.10, this
portion also contains a routine to load and execute
external commands, such as files with extensions
of .COM or .EXE.

This portion of COMMAND. COM also produces
the DOS prompt (such as A>), reads the command
from the keyboard (or batch file), and executes the
command. For external commands, it builds a
command line and issues an EXEC function call to
load and transfer control to the program.

Chapter 6 contains detailed information describing the
conditions in effect when a program is given control by
EXEC.

Prelmunary

DOS Initialization

The system is initialized either by a system reset or by a
poWer on. ROM BIOS first looks for the boot record
on drive A. If the boot record is not found, ROM BIOS
searches the active partition of the fixed disk. If it is
not found there, ROM BIOS calls ROM BASIC. The
following actions occur after a system initialization:

1. The boot record is read into memory and given
control.

2. The boot record then checks the root directory to
assure that the first two files are m:tvmIO.COM
and IB:MDOS.COM. These two files must be the
first two files, and they must be in that order
(IB:tvmIO.COM first, with its sectors in contiguous
order).

3. The boot record loads mMBIO.COM into
memory.

4. The initialization code in IBMBIO.COM loads
IB:MDOS. COM, determines equipment status,
resets the disk system, initializes the attached
devices, loads the installable device drivers, sets
the low-numbered interrupt vectors, relocates
IBMDOS.COM downward, and calls the first byte
of DOS.

5. DOS initializes its internal working tables,
initializes the interrupt vectors for interrupts 20H
through 27H, and builds a Program Segment Prefix
for COMMAND. COM at the lowest available
segment. For DOS version 3.10, DOS initializes
interrupt vectors for interrupts OFI-I through 3FH.

6. IBMBIO.COM uses the EXEC function call to
load and start the torr-level command processor.
The default command processor is
COMMAND. COM.

1-7

Preliminary

Available DOS Functions

1-8

DOS provides a significant number of functions to user
programs, all available through issuance of a set of
interrupt and function calls. There are routines for
keyboard input (with and without echo and Ctrl-Break
detection), console and printer output, constructing filf
control blocks, memory management, date and time
functions, and a variety of disk, directory, and file
handling functions.

DOS provides two types of function calls that can be
used for file management functions. They are:

• File control block (FCB) function calls

• Extended (Handle) function calls

See Chapter 4, "File Management Notes" for a
description of FCB and Handle function calls. See
Chapter 6, "DOS Interrupts and Function Calls" for
detailed information on each individual call.

t'rehmmary

The Disk Transfer Area (DTA)

DOS uses an area in memory to contain the data for all
file reads and writes that are performed with FCB
function calls. This area in memory is called the disk
transfer area. The disk transfer area (DTA) can also be
called a buffer. This area can be at any location within
the data area of your application program and should be
set by your program.

Only one DTA can be in effect at a time, so your
program must tell DOS what memory location to use
before using any disk read or write functions. Use
function call1AH (Set Disk Transfer Address) to set
the disk transfer address. Use function ca1l2FH (Get
Disk Transfer Address) to get the disk transfer address.
Refer to Chapter 6, "DOS Interrupts and Function
Calls," for more information on these function calls.
Once set, DOS continues to use that area for all disk
operations until another function call1AH is issued to
define a new DT A. When a program is given control
by CO:M:MAND.COM, a default DTA large enough to
hold 128 bytes is established at 80H into the program's
Program Segment Prefix.

Fm:l.jJ~}·eadsJ!nd_.writes that.-anq)erlonned.with.th~ ...
_~Kt~n(:i.~JWJcJiQn~lls~Jhere is no need_1Q.~L<:!J2IA.
address. Instead, specify a buffer-address when you
issue the read or write call.

1-9

Preliminary

Error Trapping

1-10

DOS provides a method by which a program can
receive control whenever a disk or device read/write
error occurs or when a bad memory image of the file
allocation table is detected. When these errors occur,
DOS executes an interrupt 24H (Critical Error Handler
Vector), to pass control to the error handler. The
default error handler resides in COMMAND. COM, but
any program can establish its own by setting the
interrupt 24 H vector to point to the new error handler.
DOS provides error information by using the registers
and provides Abort, Retry, or Ignore support by using
return codes. See "Error Return Information" in
Chapter 6, "DOS Interrupts and Function Calls," for
more information on error codes.

Preliminary

Chapter 2. Installable Device Drivers

Contents

Introduction • • . • • • • • . • • • • • • • • . • • • • . • • • . •• 2-3

Version Specific Information ••.••••••..•••••• 2-3

l)evice Driver Format .••••••. • • • • • • . • . • • • •• 2-4

Types of I>evices ••••••••••••..• .;.......... 2-5
Character Devices 2-5
Block Devices 2-5

l)evice Header •••••••••••••••••••••.•••••• 2-6
Pointer to Next Device Header Field 2-6
Attribute Field 2-7

Bit 15 2-7
Bit 14 2-7
Bit 13 2-8
Bit 11 2-8
Bit 3 2-8
Bit 2 2-9
Bits 0 and 1 2-9

Pointer to Strategy and Interrupt Routines ... 2-9
Name/Unit Field 2-9

Creating a Device Driver ••••••••••••••••••• 2-10

Installing l)evice Drivers ••••••••••••• • • • • •• 2-11
Installing Character Devices 2-12
Installing Block Devices 2-12

Request Header ••••••••••••••••••••.••••• 2-14
Unit Code Field 2-14
Command Code Field 2-15
Status Field 2-16

2-1

Preliminary

Ilevice Driver Functions ••••.••••••••••••••• 2-18
INIT 2-19
MEDIA CHECK 2-21
Media Descriptor Byte 2-23
BUll..D BPB (BIOS Parameter Block) 2-26
INPUT or OUTPUT 2-29
NONDESTRUCTIVEINPUTNOWAIT .. 2-31
STATUS 2-32
FI...USH 2-33
OPEN or CLOSE (DOS 3.00 and 3.10) 2-34
REMOVABLE MEDIA (DOS 3.00 and 3.10) 2-35

The CLOCKS Device 2-36

Sample Device Driver 2-36

2-2

Preliminary

Introduction

This chapter tells you how to:

• Format a device driver

• Create a device driver

• Install a device driver

This chapter also provides information on the types of
device drivers, the request header, and the CLOCK$
device.

The DOS device interface links the device drivers
together in a chain. This allows you to add new device
drivers for optional devices to DOS.

Version Specific Information

The following :nformation in this chapter is specific to a
version of DOS:

Attribute Field: Bit 11 (removable media) is for use
with DOS versions 3.00 and 3.10.

Command Code Field: Command codes field values
13, 14, and 15 are for use with DOS versions 3.00 and
3.10.

Status Word Field: Error codes ODH, OEH, and OFH
are only returned when using DOS versions 3.00 and
3.10.

2-3

Preliminary

Device Driver Functions:

• DOS versions 3.00 and 3.10 support removable
media.

• The Media Check device driver function returns
"Error" as a possibility if you are using DOS
versions 3.00 and 3.10. Also for DOS 3.00 and
3.10, Media Check returns a DWORD pointer to
the volume ID if a disk change has occurred.

• Media descriptor byte F9H for 5 1/4 inch, 15
sector media is supported by DOS versions 3.00
and 3.10.

• For DOS 3.00 and 3.10, the Input or Output
device driver function returns a DWORD pointer
to the volume identification if an invalid disk
change has occurred.

• The Open or Close device driver function is for use
with DOS versions 3.00 and 3.10.

• The Removable Media device driver function is for
use with DOS 3.00 and 3.10.

Device Driver Format

2-4

A device driver is a memory image file or an .EXE file
that contains all of the code needed to implement the
device. It has a special header at the front of it that
identifies the file as a device driver, defines the strategy
and interrupt entry points, and defines various
attributes of the device.

Note: For device drivers, the memory image file
must not use the ORG 100H. Because it does not
use the program segment prefix, the device driver
is simply loaded. Therefore, the memory image file
must have an origin of 0 (ORG 0 or no ORG
statement).

Preliminary

Types of Devices

There are two basic types of devices:

• Character devices

• Block devices

Character Devices

Character devices are designed to do character IIO in a
serial manner like CON, Aux., and PRN. These
devices have names like CON, AUX~ CLOCKS, and
you can open channels (handles or FCBs) to do input
and output to them. Because character devices have
only one name, they can support only one device.

Block Devices

Block devices are the "fixed disk or diskette drives" on
the system. They can do random IIO in pieces called
blocks, which are usually the physical sector size of the
disk. These devices are not named as the character
devices are, and cannot be opened directly. Instead they
are mapped by using the drive letters A, B, C, and so
forth. Block devices can have units within them. In
this way, a single block driver can be responsible for
one or more disk or diskette drives. For example, the
first block device driver can be responsible for drives A,
B, C, and D. This means that it has four units defined
and therefore takes up four drive letters. The position
of the driver in the chain of all drivers determines the
way the drive units and drive letters correspond. For
example, if the device driver is the first block driver in
the device chain, and it defines four units, then those
units are A, B, C, and D. If the second block driver
defines three units, then those units are E, F, and G.
The limit is 26 devices with the letters A through Z
assigned to the drives.

2-5

Preliminary

Device Header

A device driver requires a device header at the
beginning of the file. Here is what the device header .
contains:

Field Length

Pointer to next header DWORD

Attribute WORD

Pointer to device strategy routine WORD

Pointer to device interrupt routine WORD

Name/unit field 8 BYTES

Pointer to Next Device Header Field

2-6

The device header field is a pointer to the device header
of the next device driver. It is a double-word field that
is set by DOS at the time the device driver is loaded.
The first word is an offset and the second word is the
segment.

If you are loading only one device driver, set the device
header field to -1 before loading the device. If you are
loading more than one device driver, set the first word
of the device header field to the offset of the next
device driver's header. Set the device header field of
the last device driver to -1.

Preliminary

Attribute Field
The attribute field is a word field that describes the
attributes of the device driver to the system. The
attributes are:

bit 15

bit 14

bit 13

bit 11

= 1 character device
o block device

= 1 supports IOC'lL
o doesn't support IOC1L

= 1 non-IBM format (block only)
o IBM format

= 1 supports removable media
o doesn't support removable media

bits 10-4 = 0 these bits must be off because they are
reserved by DOS

bit 3

bit 2

bit 1

bit 0

Bit 15

= 1 current clock device
o not current clock device

= 1 current NUL device
o not current NUL device

= 1 current standard output device
o not current standard output device

= 1 current standard input device
o not current standard input device

Bit 15 is the device type bit. Use bit 15 to tell the
system if the device driver is a block or character
device.

Bit 14

Bit 14 is the IOC'lL bit. It is used for both character
and block devices. Use bit 14 to tell DOS whether the
device driver can handle control strings through the
IOC1L function call (44H).

If a device driver cannot process control strings, it
should set bit 14 to O. This way DOS can return an
error if an attempt is made through the IOC1L function

2-7

2-8

Preliminary

call to send or receive control strings to the device. If a
device can process control strings, it should set bit 14 to
1. TItis way, DOS makes the calls to the IOC'lL input
and output device function to send and receive IOCTL
strings.

The IOCTL functions allow data to be sent to and from
the device without actually doing a normal read or
write. In this way, the device driver can use the data
for its own use (for example, setting a baud rate or stop
bits, changing form lengths, and so forth). It is up to
the device to interpret the information that is passed to
it, but the information must not be treated as a normal
I/O request.

Bit 13

Bit 13 is the non-illM format bit. It is used for block
devices only. It effects the operation of the the Get
BPB (BIOS Parameter Block) device call.

Bit 11

Bit 11 is the open/close removable media bit. Use bit
11 to tell DOS if the device driver can handle
removable media.

Bit 3

Bit 3 is the clock device bit. It is used for character
devices only. Use bit 3 to tell DOS if your character
device driver is the new CLOCK$ device.

Preliminary

Bit 2

Bit 2 is the NUL attribute bit. It is used for character
devices only. Use bit 2 to tell DOS if your character
device driver is a NUL device. Although there is a
NUL device attribute bit, you cannot reassign the NUL
device. This is an attribute that exists for DOS so that
DOS can tell if the NUL device is being used.

Bits 0 and 1

Bits 0 and 1 are the standard input/ standard output
bits. They are used for character devices only. Use
these bits to tell DOS if your character device driver is
the new standard input or standard output device.

Pointer to Strategy and Interrupt Routines
These two fields are the pointers to the entry points of
the strategy and interrupt routines. They are word
values, so they must be in the same segment as the
device header.

Name/Unit Field
This is an 8-byte field that contains the name of a
character device or the unit of a block device. For
character devices, the name is left-justified and the
space is filled to 8 bytes. For block devices, the
number of units can be placed in the first byte. This is
optional because DOS fills in this location with the
value returned by the driver's !NIT code.

2-9

PreJiminary

Creating a Device Driver

2-10

To create a device driver that DOS can install, perform
the following:

•

•

•

•

•

•

Create a memory image file or an .EXE file with a
device header at the start of the file.

Originate the code (including the device header) at
0, not at IOOH.

Set the next device header field. Refer to "Pointer
to Next Device Header Field" for more
information.

Set the attribute field of the device header. Refer
to "Attribute Field" for more information.

Set the entry points for the interrupt and strategy
routines.

Fill in the name/unit field with the name of the
character device, or the unit number of the block
device.

DOS always processes installable character device
drivers before handling the default devices. So to
install a new CON device, simply name the device
CON. Be sure to set the standard input device and
standard output device bits in the attribute field on a
new CON device. The scan of the device list stops on
the first match so the installable device driver takes
precedence.

Note: Because DOS can install the driver
anywhere in memorj, care must be taken in any
FAR memory references. You should not expect
that your driver will always be loaded at the same
place every time.

Installing Device Drivers

DOS installs new device drivers dynamically at boot
time by reading and processing the DEVICE command
in the CONFIG.SYS file. For example, if you have
written a device driver called DRIVER 1 , to install it put
this command in the CONFIG.SYS file:

devi ce=dri verI

DOS calls a device driver at its strategy entry point
first, passing in a request header the information
describing what DOS wants the device driver to do.

The strategy routine does not perform the request but
rather queues the request or saves a pointer to the
request header. The second entry point is the interrupt
routine and is called by DOS immediately after the
strategy routine returns. The interrupt routine is called
with no parameters. Its function is to perform the
operation based on the queued request and set up any
return information.

DOS passes the pointer to the request header in ES:BX.
This structure consists of a fixed length header
(Request Header) followed by data pertinent to the
operation to be performed.

Note: It is the responsibility of the device driver to
preserve the machine state. For example, save all
registers on entry, and restore them on exit.

The stack used by DOS has enough room on it to save
all of the registers. If more stack space is needed, it is
the device driver's responsibility to allocate and
maintain another stack.

All calls to device drivers are FAR calls. FAR returns
should be executed to return to DOS.

2-11

Preliminary

Installing Character Devices
One of the functions defined for each device is INIT.
This routine is called only once when the device is
installed and never again. The !NIT routine returns the
following:

• A location to the first free byte of memory after
the device driver, like a terminate and stay resident
that is stored in the ending address field. This way,
the initialization code can be used once and thrown
away to save space.

• Mter setting the ending address field, a character
device driver can set the status word and return.

Installing Block Devices

2-12

Block devices are installed in the same way character
devices are. The difference is that block devices return
additional information. Block devices must also return:

• The number of units for the blo~k device. This
number determines the logical names that the
devices will have. For example, if the current
maximum logical device letter is F at the time of
the install call, and the block device driver INIT
routine returns three logical units, the logical
names of the devices are G, H, and I. The
mapping is determined by the position of the driver
in the device list and the number of units on the
device. The number of units returned by !NIT
overrides the value in the name/unit field of the
device header.

• A pointer to a BPB (BIOS parameter block)
pointer array. This is a pointer to an array of n
word pointers where n is the number of units
defined. These word pointers point to BPB's. This
way, if all of the units are the same, the entire
array can point to the same BPB to save space.

The BPB contains information pertinent to the
devices such as the sector size, the number of
sectors per allocation unit, and so forth. The
sector size in the BPB cannot be greater than the
maximum allotted size set at DOS initialization
time.

Note: This array must be protected below the
free pointer set by the return.

• The media descriptor byte. This byte is passed to
devices so that they know what parameters DOS is
currently using for a particular drive unit.

Block devices can take several approaches. They can
be dumb or smart. A dumb device would define a unit
(and therefore a BPB) for each possible media drive
combination. Unit 0 = drive 0; single side, unit 1 =
drive 0; double side, etc. For this approach, media
descriptor bytes would mean nothing. A smart device
would allow multiple media per unit. In this case, the
BPB table returned at INIT must define space large
enough to accommodate the largest possible media
supported (sector size in BPB must be as large as
maximum sector size that DOS is currently using).
Smart drivers will use the "media byte" to pass
information about what medium is currently in a unit.

2-13

Preliminary

Request Header

The request header passes the information describing
what DOS wants the device driver to do.

Field Length

Length in bytes of the request BYIE
header plus any data at the end of
the request header.

Unit code. The subunit the BYTE
operation is for (minor device).
Has no meaning for character
devices.

Command code. BYIE

Status. WORD

Area reserved for DOS. 8-BYrE

Data appropriate to the operation. Variable

Unit Code Field

2-14

The unit code field identifies which unit in a block
device driver the request is for. For example, if a block
device driver has three units defined~ then the possible
values of the unit code field would be 0, 1~ and 2.

rrewrunary

Command Code Field
The command code field in the request header can have
the following values:

Code Function
o INIT
1 MEDIA CHECK (Block only, NOP for

character)
2 BUILD BPB (Block only, NOP for character)
3 IOCTL input (only called if IOCTL bit is 1)
4 INPUT (read)
5 NONDESTRUCTIVE INPUT NO WAIT

(Character devices only)
6 INPUT STATUS (Character devices only)
7 INPUT FLUSH (Character devices only)
8 OUTPUT (write)
9 OUTPUT (write) with verify
10 OUTPUT STATUS (Character devices only)
11 OUTPUT FLUSH (Character devices only)
12 IOCTL output (only called if IOCTL bit is 1)
13 DEVICE OPEN (only called if

OPEN/CLOSE/RM bit is set)
14 DEVICE CLOSE (only called if

OPEN/CLOSE/RM bit is set)
15 REMOVABLE MEDIA (only called if

OPEN/CLOSE/RM bit is set and device type
is block)

Note: Command codes 13, 14, and 15 are for use
with DOS versions 3.00 and 3.10.

2-15

PreJ.iminary

Status Field

2-16

The status field in the request header contains:

15 14-10 9 8 7-0
E RESERVED B D ERROR
R U 0 CODE (bit
R S N 15 on)
0 y E
R

The status word field is zero on entry and is set by the
driver interrupt routine on return.

Bit 15 is the error bit. If this bit is set, the low 8 bits of
the status word (7-0) indicate the error code.

Bits 14 - 10 are reserved.

Bit 9 is the busy bit. It is only set by status calls and
the removable media call. See "STATUS" and
"REMOVABLE MEDIA" in this chapter for more
information about the calls.

Bit 8 is the done bit. If it is set, it means the operation
is complete. The driver sets the done bit to 1 when it
exits.

Preliminary

Bits 7-0 are the low 8 bits of the status word. If bit 15
is set, bits 7-0 contain the error code. The error codes
and errors are:

Error Description
Codes

00 Write protect violation

01 Unknown unit

02 Device not ready

03 Unknown command

04 eRe error

05 Bad drive request structure length

06 Seek error

07 Unknown media

08 Sector not found

09 Printer out of paper

OA Write fault

OB Read fault

oe General failure

OD Reserved

OE Reserved

OF Invalid disk change

2-17

Preliminary

Device Driver Functions

2-18

All strategy routines are called with ES:BX pointing to
the request header. The interrupt routines get the
pointers to the request header from the queue the
strategy routines store them in. The command code in
the request header tells the driver which function to
perform.

Note: All DWORD pointers are stored offset first,
then segment.

The following function call parameters are described:

• !NIT

• 1vIEDIA CHECK

• B~D BPB (BIOS Parameter Block)

• MEDIA DESCRIPTOR BYTE

• INPUT or OUfPUT

• NONDESTRUCTIVE INPUT NO WAIT

• STATUS

• FLUSH

• OPEN or CLOSE

• REMOVABLE 1vIEDIA

INIT
Preliminary

Command code=O

ES:BX

Field Length

Request header 13-BYrE

Number of units (not set by BYrE
character devices)

Ending address of resident DWORD
program code

Pointer to BPB array (not set by DWORD
character devices) / pointer to
remainder of arguments

For DOS version 3.10, this field BYrE
contains the drive number

The driver must do the following:

• Set the number of units (block devices only).

• Set up the pointer to the BPB array (block devices
only).

• Perform any initialization code (to modems,
printers, etc.).

• Set the ending address of the resident program
code.

• Set the status word in the request header.

2-19

2-20

Preliminary

To obtain infonnation passed from CONFIG.SYS to a
device driver at INIT time, the BPB pointer field points
to a buffer containing the information passed in
CONFIG.SYS following the =. The buffer that DOS
passes to the driver at INIT after the file specification
contains an ASCII string for the file OPEN. The
ASCII string (ending in OR) is terminated by a carriage
return (ODH) and linefeed (OAR). If there is no
parameter infonnation after the file specification, the
file specification is immediately followed by a linefeed
(OAR). This infonnation is read-only and only system
calls o 1 H-O CH and 30H can be issued by the INIT
code of the driver.

The last byte parameter contains the drive letter for the
first unit of a block driver. For example, O=A, l=B
etc.

If an !NIT routine determines that it cannot set up the
device and wants to abort without using any memory,
follow this procedure.

• Set the number of units to O.

• Set the ending address offset to O.

• Set the ending address segment to the code
segment (CS).

Note: If there are multiple device drivers in a
single memory image file, the ending address
returned by the last !NIT called is the one DOS
uses. It is recommended that all device drivers in a
single memory image file return the same ending
address.

Preliminary

\1EDIA CHECK

Command code = 1

ES:BX

Field Length

Request header 13-BYfE

Media descriptor from DOS BYrE

Return BYrE

If you are using DOS 3.00 or 3.10, DWORD
this call returns a pointer to the
previous volume ID (if bit 11 = 1
and disk change is returned)

When the command code field is 1, DOS calls MEDIA
CHECK for a drive unit and passes its current Media
Descriptor byte. See "Media Descriptor Byte" later in
this chapter for more information about the byte.
MEDIA CHECK returns one of the following:

• Media Not Changed
• Media Changed
• Not Sure
• Error code

2-21

2-22

Preliminary

The driver mu~t perform the following:

• Set the status word in the request header.

• Set the return byte:

-1 Media has been changed

o Don't know if media has been changed

1 Media has not been changed

DOS 3.00 and 3.10: If the driver has set the
removable media bit 11 of the device header attribute
word to 1 and the driver returns -1 (media changed),
the driver must set the DWORD pointer to the previous
volume identification field. If DOS determines that the
media changed is an error, DOS generates an error OFH
(Invalid Disk Change) on behalf of the device. If the
driver does not implement volume identification
support, but has bit 11 set to 1, the driver should set a
pointer to the string "NO NAME ", O.

Preliminary

Media Descriptor Byte

Currently the media descriptor byte has been defined
for a few media types. This byte should be identical to
the media byte if the device has the non-ruM format
bit off. These predefined values are:

Media descriptor

byte--> Ir1------1--------X---x--x~1

7 6 5 4 321 0

Bit Meaning

o 1=2 sided
1 1=8 sector
2 1 = removable

3-7 must be set to 1

O=not 2 sided
O=not 8 sector
O=not removable

2-23

2-24

Preliminary

Examples of current DOS media descriptor bytes:

Disk Type # # Media
Sides Sectors/ Descriptor

Track

Fixed disk -- -- F8R

51/4-in. 2 15 F9R

51/4-in. 1 9 FeR

51/4-in. 2 9 FDR

51/4-in. 1 8 FER

51/4-in. 2 8 FFH
8-in. 1 26 FER

8-in. 2 26 FDR

8-in. 2 8 FER

Note: The two :MEDIA descriptor bytes that are
the same for 8-in. diskettes (FER) is not a
misprint. To determine whether you are using a
single sided or a double sided diskette, attempt to
read the second side, and if an error occurs you
can assume the diskette is single sided.

Preliminary

For 8-inch diskettes:

FER (IBM 3740 Format). Single sided, single
density, 128 bytes per sector, soft sectored, 4

. sectors per allocation unit, 1 reserved sector, 2
FATs, 68 directory entries, 77*26 sectors.

FDR (IBM 3740 Format). Double sided, single
density, 128 bytes per sector, soft sectored, 4
sectors per allocation unit, 4 reserved sectors, 2
FATs, 68 directory entries, 77*26*2 sectors.

FER Double sided, double density, 1024 bytes per
sector, soft sectored, 1 sector per allocation unit, 1
reserved sector, 2 FATs, 192 directory entries,
77*8*2 sectors.

2-25

Preliminary

BUILD BPB (BIOS Parameter Block)

2-26

Command code=2

ES:BX

Field Length

Request header 13-BYfE

Media descriptor from DOS BYTE

Transfer address (buffer address) DWORD

Pointer to BPB table DWORD

DOS calls BUILD BPB under the following two
conditions:

• If "Media Changed" is returned.

• If "Not Sure" is returned, there are no used
buffers. Used buffers are buffers with changed
data that has not yet been written to the disk.

The driver must perform the following:

• Set the pointer to the BPB.

• Set the status word in the request header.

neununary

The driver must determine the correct media that is
currently in the unit to return the pointer to the BPB
table. The way the buffer is used (pointer passed by
DOS) is determined by the non-mM fodnat bit in the
attribute field of the device header. If bit 13 = 0
(device is mM format compatible), the buffer contains
the first sector of the FAT (most importantly the FAT
ID byte). The driver must not alter this buffer in this
case. If bit 13 = 1, the buffer is a one sector scratch
area that can be used for anything. .

For drivers that support volume identification and disk
change, this call should cause a new volume
identification to be read off the disk. This call indicates
that the disk has legally changed.

If the device is mM format compatible, it must be true
that the first sector of the first FAT is located at the
same sector for all possible media. This is because the
FAT sector is read before the media is actually
determined.

The information relating to the BPB for a particular
media is kept in the boot sector for the media. In
particular, the format of the boot sector is:

2-27

2-28

Preliminary

For DOS 2.10,3 BYTE near JUMP (E9H) or for
DOS 3.00 and 3.10,2 BYTE short JUMP (EBH)
foll~wed by a NOP (90H)

8 BYrES OEM name and version

WORD bytes per sector

BYTE sectors per allocation unit (must be a power
of 2)

WORD reserved sectors (starting at logical sector
0)

BYTE number of FATs

WORD number of root dir entries (maximum
allowed)

WORD number of sectors in logical image (total
sectors in media, including boot sector, directories,
etc.)

r

BYTE media descriptor

WORD number of sectors occupied by a single
FAT

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

The three words at the end are intended to help the
device driver understand the media. The number of
heads is useful for supporting different multihead drives
that have the same storage capacity but a different
number of surfaces. The number of hidden sectors is
useful for supporting drive partitioning schemes.

rrellmmary

INPUT or OUTPUT
Command codes=3,4,8,9, and 12

ES:BX

Field Length

Req uest header 13-BYTE

Media descriptor byte BYTE

Transfer address (buffer address) DWORD

Byte/ sector count WORD

Starting sector number (no WORD
meaning on character devices)

For DOS 3.00 and 3.10, pointer to DWORD
the volume identification if error
code OFH is returned

The driver must perform the following:

• Set the status word in the request header.

• Perform the requested function.

• Set the actual number of sectors (or bytes)
transferred.

Note:' No error checking is performed on an
IOCTL I/O call. However, the driver must set the
return sector (byte) count to the actual number of
bytes transferred.

2-29

2-30

Preliminary

The following applies to block device drivers: Under
certain circumstances the device driver maybe asked tl
do a write operation of 64K bytes that seems to be a
wrap around of the transfer address in the device driver
request packet. This arises due to an optimization
added to the write code in DOS. It will only happen on
WRITEs that are within a sector size of 64K bytes on
files that are being extended past the current end of file.
It is allowable for the device driver to ignore the
balance of the WRITE that wraps around, if it so
chooses. For example, a WRITE of 10000H bytes
worth of sectors with a transfer address of XXXX:l,
ignores the last two bytes.

Remember: A program that uses DOS function calls
can never request an input or output operation of more
than FFFFH bytes; therefore, a wrap around in the
transfer (buffer) segment cannot occur. It is for this
reason that you can ignore bytes that would have
wrapped around in the transfer segment.

If the driver returns an error code of OFH (Invalid Disk
Change), it must put a DWORD pointer to an ASCIIZ
string which is the correct volume identification to ask
the user to reinsert the disk.

DOS 3.00 and 3.10: The reference count of open
files on the disk (maintained by OPEN and CLOSE
calls) allows the driver to determine when to return
error OPR. If there are no open files (reference
count=O) and the disk has been changed, the I/O is all
right, and error OPR is not returned. If there are open
files (reference count> 0) and the disk has been
changed, an error OFH situation may exist.

NONDESTRUCTIVE INPUT NO WAIT
Command code = 5

ES:BX

Field Length

Request header 13-BYfE

Read from device BYfE

The driver must perform the following:

• Return a byte from the device.

• Set the status word in the request header.

If the character device returns busy bit = 0 (characters
in buffer), then the next character that would be read is
returned. This character is not removed from the input
buffer (hence the term nondestructive input). This call
allows DOS to look ahead one input character.

2-31

Preliminary

STATUS

2-32

Command codes=6 and 10

ES:BX

I Field I ~ngth
13-BYfE

The driver must perform the following:

• Perform the requested function.

• Set the busy bit.

• Set the status word in the request header.

The busy bit is set as follows:

For output on character devices- if the busy bit is 1 on
return, a write request would wait for completion of a
current request. If the busy bit is 0, there is no current
request. Therefore, a write request would start
immediately.

For input on character devices with a buffer- if the busy
bit is 1 on return, a read request goes to the physical
device. If the busy bit is 0, there are characters in the
device buffer and a read returns quickly. It also
indicates that the user has typed something. DOS
assumes that all character devices have a type-ahead
input buffer. Devices that do not have this buffer
should always return busy = 0 so that DOS does not
hang waiting for information to be put in a buffer that
does not exist.

Preliminary

FLUSH

Command codes = 7 and 11

ES:BX

I Field I ~ngth

This call tells the driver to flush (terminate) all pending
requests that it has knowledge of. Its primary use is to
flush the input queue on character devices.

The driver must:

Set status word in the Request Header upon return.

2-33

Preliminary

OPEN or CLOSE (DOS 3.00 and 3.10)

2-34

Command codes = 13 and 14

ES:BX

I Field
Static request header

These calls are designed to give the device information
about current file activity on the device if bit 11 of the
attribute word is set. On block devices, these calls can
be used to manage local buffering. The device can keep
a reference count. Every OPEN causes the device to
increment the reference count. Every CLOSE causes
the device to decrement the reference count. When the
reference count is 0, it means there are no open files on
the device. Therefore, the device should flush buffers
inside the device that it has written to because now the
user can change the media on a removable media drive.
If the media has been changed, it is advisable to reset
the reference count to ° without flushing the buffers.
This can be thought of as "last close causes flush."
These calls are more useful on character devices. The
OPEN call can be used to send a device initialization
string. On a printer, this could cause a string to be sent
that would set the the font, the page size, etc., so that
the printer would always be in a known state at the
start of an I/O stream. Similarly the CLOSE call can
be used to send a post string (like a form feed) at the
end of an I/O stream. Using IOCTL to set these pre
and post strings provides a flexible mechanism of serial
I/O device stream control.

Note: Since all processes have access to SIDIN,
STDOUT, SIDERR, SIDAUX, and SIDPRN
(handles 0,1,2,3,4), the CON, AUX, and PRN
devices are always open.

Preliminary

REMOVABLE MEDIA (DOS 3.00 and 3.10)

Command code= 15

ES:BX

I Field

To use this call, set bit 11 of the attribute field to l.
Block devices can only use this call through a
subfunction of the IOCTL function call (44H). This
call is useful because it allows a utility to know whether
it is dealing with a nonremovable media drive or with a
removable media drive. For example, the FORMAT
utility needs to know whether a drive is removable or
nonremovable because it prints different versions of
some prompts.

The information is returned in the BUSY bit of the
status word. If the busy bit is 1 f the media is
nonremovable. If the busy bit is 0, the media is
removable.

Note: No error bit checking is performed. It is
assumed that this call always succeeds.

2-35

Preliminary

The CLOCK$ Device

A popular feature is a "Real Time Clock" board. To
allow this board to be integrated into the system for
TIME and DA ffi, there is a special device (determined
by the attribute word) which is the CLOCK$ device.
This device defines and performs functions like any
other character device (most functions will be set done
bit, reset error bit, return). When a read or write to this
device occurs, exactly 6 bytes are transferred. The first
2 bytes are a word, which is the count of days since
1-1-80. The third byte is minutes; the fourth is hours;
the fifth 1/100 is seconds; and the sixth is seconds.
Reading the CLOCK$ device gets the date and time,
writing to it sets the date and time.

Sample Device Driver

2-36

The DOS 3.00 and 3.10 Supplemental diskettes contain
a sample device driver listing called VDISK.LST. Use
the PRINT command to print a copy of the listing for
reference.

Preliminary

Chapter 3. Using Extended Screen and
Keyboard Control

Contents

Introduction 3-3

Control Sequences •.•.•.••••••.•.••...•.... 3-3

Control Sequence Syntax •••••••••••••••••••• 3-4

Cursor Control Sequences ...•..........••... 3-6
Cursor Position 3-6
Cursor Up 3-7
Cursor Down 3-7
Cursor Forward 3-8
Cursor Backward 3-8
Horizontal and Vertical Position 3-9
Cursor Position Report 3-10
Device Status Report 3-10
Save Cursor Position 3-12
Restore Cursor Position 3-12

Erasing •••..••• • . • • . . • • • • . • • • • • • • •• 3-13
Erase in Display 3-13
Erase in Line 3-13

Mode of Operation •.•••.•.••• ~ • • • . . • • . • .. 3-14

Keyboard Key Reassignment ••••••••••..••.• 3-17

3-1

Preliminary

3-2

Preliminary

Introduction

This chapter explains how you can issue special control
character sequences to:

• Control the position of the cursor

• Erase text from the screen

• Set the mode of operation

• Redefine the meaning of keyboard keys

Control Sequences

The control sequences are valid if you issue them
through DOS function calls that use standard input,
standard output, or standard error output devices.
These are the function calls OlH, 02H, 06H, 07H, 09H,
OAH and 40H.

The extended screen and keyboard control device
driver ANSI.SYS must be installed by placing the
following statement in the configuration file
CONFIG.SYS:

device = [d:] [path]ansL sys

The size of DOS in memory increases by the size of
ANSI.SYS.

3-3

Preliminary

Control Sequence Syntax

Each of the cursor control sequences is in the format:

ESC [parameters COMr\1AND

ESC The I-byte ASCII code for ESC
(IBH). It is not the three
characters ESC.

[The character [.

parameters The numeric values you specify for
#. The # represents a numeric
parameter. A numeric parameter
is an integer value specified with
ASCII characters. If you do not
specify a parameter value, or if
you specify a value of 0, the
default value for the parameter is
used.

CO:M:MAND An alphabetic string that
represents the command. It is case
specific.

3-4

Preliminary

For example:

ESC [2;10H

could be created using BASIC as follows:

The IBM Personal Computer Basic
Version 3.00 Copyright IBM Corp. 1981, 1982, 1983, 1984
xxxxx Bytes free

Ok
open IIsample" for output as 1
Ok
print #1, CHR$(27};"[2;10H II ;" x row 2 col 10"
Ok
close #1
Ok

Notice that "CHR.$(27)" is ESC.

3-5

Preliminary

Cursor Control Sequences

The following tables contain the cursor control
sequences you can use to control cursor positioning.

Cursor Position

Cursor Position Function

ESC [#;#H Moves the cursor to the position

3-6

specified by the parameters. The
first parameter specifies the row
number and the second
parameter specifies the column
number. The default value is 1.
If no parameter is given, the
cursor is moved to the home
position.

This example copies the file SAMPLE from the
previous example, to CON, which places the cursor on
row 2 column 10 of the screen:

type sample

rrellIlllnary

Cursor Up

Cursor Up Function

ESC[#A Moves the cursor up one or more
rows without changing the .
column position. The value of #
determines the number of lines
moved. The default value for # is
1. This sequence is ignored if the
cursor is already on the top line.

Cursor Down

Cursor Down Function
ESC [#B Moves the cursor down one or

more rows without changing the
column position. The value of #
determines the number of lines
moved. The default value for # is
1. The sequence is ignored if the
cursor is already on the bottom
line.

3-7

Preliminary

Cursor Forward

Cursor Forward Function

ESC[#C Moves the cursor forward one or
more columns without changing
the row position. The value of #
determines the number of
columns moved. The default
value for # is 1. This sequence is
ignored if the cursor is already in
the rightmost column.

Cursor Backward

Cursor Backward Function

ESC[#D Moves the cursor back one or
more columns without changing
the row position. The value of #
determines the number of
columns moved. The default
value for # is 1. This sequence is
ignored if the cursor is already in
the leftmost column.

3-8

rrewrunary

Horizontal and Vertical Position

Horizontal and Vertical Function
Position

ESC [#;#f Moves the cursor to the position
specified by the parameters. The
first parameter specifies the line
number and the second
parameter specifies the column
number. The default value is 1.
If no parameter is given, the
cursor is moved to the home
position.

3-9

Preliminary

Cursor Position Report

Cursor Position Report Function

ESC [#;#R The cursor sequence report
reports the current cursor
position through the standard
input device. The first parameter
specifies the current line and the
second parameter specifies the
current column.

Device Status Report

Device Status Report Function

ESC [6n The console driver outputs a
cursor position report sequence
on receipt of device status report.

3-10

rrewrunary

This example tells ANSLSYS to put the current cursor
position (row and column) in the keyboard buffer.
Then ANSLSYS reads it from the keyboard buffer and
displays it on the screen.

PROGRAM dsr(INPUT,OUTPUT);

VAR
f:FILE OF CHAR;
key:CHAR;

FUNCTION inkey:CHAR;
VAR

ch:CHAR;
BEGIN

READ(f,ch);
inkey:=ch

END;

BEGIN
ASSIGN(f,luserl);
RESET(f);

WRITE(CHR(27),1[6n l);
key:=inkey;
key:=inkey;
key:=inkey;

END.

WRITE(l row l,inkey,inkey,1
key:=inkey;
WRITE(inkeY,inkey)

{ read character }
{ from the
{ keyboard buffer

{ issue a DSR }
{ read up to }
{ first digit }
{ of the row }

col umn I);
{ skip to column}
{ write column }

3-11

Preliminary

Save Cursor Position

Save Cursor Position Function

ESC[s The current cursor position is
saved. This cursor position can be
restored with the restore cursor
position sequence (see below).

Restore Cursor Position

Restore Cursor Position Function

ESC[u Restores the cursor to the value
it had when the console driver
received the save cursor position
sequence.

3-12

Preliminary

Erasing

The following tables contain the control sequences you
can use to erase text from the screen.

Erase in Display

Erase in Display Function
ESC [21 Erases all of the screen and the

cursor goes to the home position.

Erase in Line

Erase in Line Function
ESC[K Erases from the cursor to the end

of the line and includes the cursor
position.

3-13

Preliminary

Mode of Operation

3-14

The following tables contain the control sequences you
can use to set the mode of operation.

They are:

• Set Graphics Rendition (SGR)

• Set Mode (SM)

• Reset Mode (RM)

Preliminary

Set Graphics Rendition (SGR)

SGR Function

ESC [#; ... ;#m Sets the character attribute specified
by the parameters. All following
characters have the attribute
according to the parameters until the
next occurrence of SGR.

Parameter Meaning
0 All attributes off (normal

white on black)
1 Bold on (high intensity)
4 Underscore on (IBM

Monochrome Display
only)

5 Blink on
7 Reverse video on
8 Canceled on (invisible)

30 Black foreground
31 Red foreground
32 Green foreground
33 Yellow foreground
34 Blue foreground
35 Magenta foreground
36 Cyan foreground
37 White foreground
40 Black background
41 Red background
42 Green background
43 Yellow background
44 Blue background
45 Magenta background
46 Cyan background
47 White background

3-15

Preliminary

Set Mode (8M)

SM Function
ESC [=#h Invokes the screen width or type

or ESC [=h specified by the parameter.
or ESC [=Oh
or ESC [?7h Parameter Meaning

0 40x25 black and
white

1 40x25 color
2 80x25 black and

white
3 80x25 color
4 320x200 color
5 320x200 black and

white
6 640x200 black and

white
7 Wrap at end of line.

(Typing past
end-of-line results in
new line.)

I Reset Mode (RM)

Jt.'\1 Function
ESC [=#1 Parameters are the same as SM

or ESC [=1 (Set Mode) except that
or ESC [=01 parameter 7 resets wrap at -
or ESC [?71 end-of -line mode (characters

past end-of-line are thrown
away).

3-16

Preliminary

Keyboard Key Reassignment

The following table contains the control sequences you
can use to redefine the meaning of keyboard keys.

The control sequence is: Function

ESC [#;#; ... #p The first ASCII code in the
or ESC ["string"p control sequence defines
or ESC [#;"string";#; which code is being

#;"string";#p mapped. The remaining
or any other combination of numbers define the

strings and decimal sequence of ASCII codes
numbers generated when this key is

intercepted. However, if
the first code in the
sequence is 0 (NULL) the
first and second code make
up an extended ASCII
redefinition (see Chapter 6
for a list of extended ASCn
codes).

3-17

3-18

Preliminary

Here are some examples:

To execute these examples, you can either:

• Create a file that contains the following statements
and then use the TYPE command to display the
file that contains the statement.

• Execute the command at the DOS prompt.

1. Reassign the Q and q key to the A and a (and the
other way as well):

Creating a File:

ESC [65;81p
ESC [97;113p
ESC [81;65p
ESC [113 ;97p

A becomes Q
a becomes q
Q becomes A
q becomes a

At the DOS Prompt:

prompt $e[65;81p
prompt $eC97;113p
prompt $e[81;65p
prompt $e[113;97p

A becomes Q
a becomes q
Q becomes A
q becomes a

2. Reassign the FlO key to a DlR command followed
by a carriage return:

Creating a File:

ESC [O;68;lIdir";13p

At the DOS Prompt:

prompt $eCO;68;lIdir";13p

The $e is the prompt command characters for
ESC. The 0;68 is the extended ASCII code for the
FlO key; 13 decimal is a carriage return.

CSEG

ENTPT:
STRING
STRSIZ
HANDLE

START

START

CSEG

Preliminary

3. The following example sets the prompt to display
the current directory on the top of the screen and
the current drive on the current line.

'prompt $e[s$e[};30f$e[K$p$e[u$n$g

If the current directory is C: \FILES, and the
current drive is C, this example would display:

C: \FILES

C>

4. The following assembly language program
reassigns the FlO key to a DlR B: command
followed by a carriage return.

TITLE SET ANSI.ASM - SET F 1 a TO STRING FOR ANSI,SYS
SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CSEG,DS:CSEG

ORG loaH
JMP SHORT START
DB 27, '[O;68;"DIR B:";13p' ;REDEFINE Fl a KEY
EQU $-STRING ;LENGTH OF ABOVE MESSAGE
EQU ;PRE-DEFINED FILE

;HANDLE FOR STANDARD OUTPUT

PROC NEAR
MOV BX,HANDLE ;STANDARD OUTPUT DEVICE
MOV CX,STRSIZ ;GET SIZE OF TEXT TO BE SENT
MOV DX,OFFSET STRING ;PASS OFFSET OF STRING

;TO BE SENT
MOV AHAOH ;FUNCTION="WRITE TO DEVICE"
INT 21H ;CALL DOS
RET ;RETURN TO DOS
ENDP

ENDS
END ENTPT

3-19

Preliminary

3-20

Preliminary

Chapter 4. File Management Notes

Contents

futroduction •• • • • . • • • • • • • • • • • • • • • • . • • • • •• 4-3

Version Specific fuf ormation ••••.••••..•••••• 4-3

File Management Functions •••••.••.•••••.••. 4-3

FCB Function Calls •••••••••••••••••.•••••• 4-5

Handle Function Calls •••••••••••••••••••••• 4-6

Special File lIandles •• •• 4-8

AScn and Binary l\1:ode •••••.•••• • • • • • • • • •• 4-9
File I/O in Binary Mode 4-10
File I/O in ASCII Mode 4-11

Number of Open Files Allowed ••• • • • • • • • • • •• 4-12

Restrictions on FCB Usage ••.• • • • • • • • • • • • •• 4-12

Restrictions on Handle Usage .. • • • • . • • • • • . • •• 4-13

Allocating Space to a File ••••••••••••••••••• 4-14

4-1

Preliminary

4-2

Introduction

This chapter tells you how to:

• Use file management functions (FCB function calls
and Handle function calls)

• Do file 110 in ASClI mode and Binary mode

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

Restrictions on FCB Usage: For DOS 3.00 and 3.10,
the number of files opened using FCBs is limited if
SHARE is loaded and if the FCBS command is
specified.

File Management Functions

Use DOS function calls to create, open, close, read,
write, rename, find, and erase files. There are two sets
of function calls that DOS provides for support of file
management. They are:

• File Control Block function calls (FCB function
calls OFH - 24H)

• Extended function calls (Handle function calls
39H- 62H)

4-3

4-4

Preliminary

Handle function calls are easier to use and more
powerful than FCB function calls. The following table
compares the use of FCB function calls to Handle
function calls.

. FeB Calls Handle Calls

Addresses files that are Addresses files in any
only in the current directory.
directory.

Requires that the Does not require
application program maintenance of an
maintain a file control FCB. Requires a
block to open, create, string that contains the
rename, or delete a drive, path, and
file. For I/O requests, filename to open,
the application create, rename, or
program also needs an delete a file. For file
FCB. I/O requests, the

application program
only has to maintain a
16-bit word (file
handle) that is supplied
by DOS.

The only reason an application should use FCB
function calls is to maintain the ability to run under
DOS version 1.10. To do this, a program can only use
function calls supplied by DOS 1.10 (OOH - 2EH).

rreununary

FCB Function Calls

FCB function calls require the use of one file control
block per open file, which is maintained by the
application program and DOS. The application
program supplies a pointer to the FCB and fills in the
appropriate fields required by the specific function call.
An FCB function call can perform file management on
any valid drive on the system, but only in the cUrrent
directory of the specified drive. By using the current
block, current record, and record length fields of the
FCB, you can perform sequential I/O by using the
sequential read or write function calls. Random I/O
can be performed by filling in the random record and
record length fields. See "File Control Block" on page
7-12 for information on the FCB structure.

Several possible uses of FCB type calls are considered
programming errors and should not be done under any
circumstances. This is to avoid problems with file
sharing and compatibility. One such error occurs when
a program uses the same FCB structure to access more
than one open file. By opening a file using an FCB,
doing I/O, and then replacing the filename field in the
file control block with a new filename, a program can
then open a second file using the same FCB. This is
invalid because DOS writes control information about
the file into the reserved fields of the FCB. This
information is changed when the second file is opened
using the same FCB. If the program then replaces the
filename field with the original filename and then tries
to perform I/O to this file, DOS may become confused
because the control information has been changed. An
FCB should never be used to open a second file without
closing the file that is currently open. If more than one
file is to be open concurrently, separate FCBs should be
used.

4-5

Preliminary

A program should also never tamper with the DOS
reserved fields in the FCB, as the contents and
structure of these fields change in different versions of
DOS. It is also good programming practice to close all
files after all I/O to a file is done. This avoids potential
file sharing problems that require a limit on the number
of files concurrently open using FCB function calls. A
delete or a rename on a file that is currently open is also
considered an error and should not be attempted by an
application program.

Handle Function Calls

4-6

The recommended method of file management is by
using the extended "handle" set of function calls.
These calls are not restricted to files in the current
directory. Also, the handle set of file management calls
allow the application program to define the type of
access that other processes can have concurrently with
the same file if file sharing is loaded.

To create or open a file, the application supplies a
pointer to an ASCnz string giving the name and
location of the file. An ASCnz string contains an
optional drive letter, optional path and mandatory file
specification, terminated by a byte of DOH. The
following is an example of an ASCnz string:

DB lI a :\path\filename.ext",O

If the file is being created, the application program also
supplies the attribute of the file. This is a set of values
that defines if the file is read only, hidden, system,
directory, or volume label. See "DOS Disk Directory"
on page 5-10 for infonnation on file attributes.

Preliminary

If the file is being opened, the program can define the
sharing and access modes that the file is opened in. The
access mode informs DOS what operations your
program will perform on this file (read-only, write-only
or read/write). The sharing mode controls the type of
operations other processes may perform concurrently
on the file. A program can also control if a child
process inherits the open files of the parent. The
sharing mode field has meaning only if file sharing is
loaded when the file is opened. -

To rename or delete a file, the application program
simply needs to provide a pointer to the ASCIIZ string
containing the name and location of the file and
another string with the new name if the file is being
renamed.

The open or create function calls return a 16-bit value
referred to as the file handle. To do any I/O to a file,
the program uses this handle to reference the file. Once
a file is opened, a program no longer needs to maintain
the ASCIIZ string pointing to the file, nor is there any
requirement to stay in the same directory. DOS keeps
track of the location of the file regardless of what
directory is current.

Sequential I/O can be performed using the handle read
(3FH) or write (40H) function calls. The offset in the
file that I/O is performed to is automatically moved to
the end of what was just read or written. If random
I/O is desired, the LSEEK (42H) function call can be
used to set the offset into the file that the I/O is
performed at.

4-7

Preliminary

Special File Handles

4-8

DOS sets up five special file handles for use by
application programs. These handles are:

OOOOR Standard input device (Stdin)

OOOIR Standard output device (Stdout)

0002R Standard error device (Stderr)

0003R Standard auxiliary device (Stdaux)

0004R Standard printer device (Stdpm)

These handles are predefined by DOS and can be used
by an application program. They do not need to be
opened by the program, although a program can close
these handles. Stdin should be treated as a read-only
file, and Stdout and Stderr should be treated as write
only handles. Stdin and Stdout can be redirected. All
handles inherited by a process can be redirected, but
not at the command line.

These handles are very useful for doing 110 to and
from the console device. For example, you could read
input from the keyboard using the read (3FH) function
call and file handle OOOOR (Stdin), and write output to
the console screen with the write function call (40H)
and file handle OOOIR (Stdout). If you wanted an
output that could not be redirected, you could output it
using file handle 0002R (Stderr). This is very useful
for error messages or prompts that a user must see in
order to act upon them.

File handles 0003H (Stdaux) and 0004H (Stdpm) can
both be read from and written to. Stdaux is typically a
serial device and stdpm is usually a parallel device.

Preliminary

ASCII and Binary Mode

I/O to files is done in binary made. This means that
the data is read to or written from a file without
modification. However, DOS can also read or write to
devices in ASCII made. In ASCn made, DOS does
some string processing and modification to the
characters read or written. The predefined handles are
in ASCII mode when initialized by DOS. All other file
handles that don't refer to devices are in binary mode.
A program can use the IOC'lL (44H) function call to
set the mode that I/O is done to a device. The
predefined file handles are all devices, so the mode can
be changed from ASCII to binary via IOC'lL. Regular
file handles that are not devices are always in binary
mode, and they cannot be changed to ASCII mode.

The predefined handles Stdin (OOODR), Stdout
(ODOIR), and Stderr (DOD2H) are all duplicate handles.
If the IOC'lLJunction call is used to change the mode
of any of these three handles, the mode of all three
handles is changed. For example, if IOC'lL was used
to change Stdout to binary mode, then Stdin and Stderr
would also be changed to binary mode.

4-9

Preliminary

File I/O in Binary Mode

4-10

When a file is read in binary mode:

• The characters "S (Scroll lock), "P (Print
Screen), "C (Control Break) are not checked for
during the read. Therefore, no printer echo occurs
if "S or "P are read.

• There is no echo to Stdout (ODOIH).

• Reads the number of specified bytes and returns
immediately when the last byte is received or the
end of file is reached.

• Allows no editing of the line input using the
function keys if the input is from Stdin (DOOOH).

When a file is written in binary mode:

• The characters "S,"P,"C are not checked for
during the write operation. Therefore there is no
printer echo.

• Tnere is no echo to Stdout (ODOIH).

• The exact number of bytes specified are written.

• Does not caret control characters. For example,
control D is sent out as byte 04H instead of the
two bytes " and D.

• Does not expand tabs into spaces.

Preliminary

File I/O in ASCII Mode

When a file is read in ASCII mode:

• Checks for the characters AC,AS, and AP.

• Returns as many characters as there are in the
device input buffer, or the number of characters
requested, whichever is less. If the number of
characters requested was less than the number of
characters in the device input buffer, then the next
read will address the remaining characters in the
buffer.

• If there are no more bytes remaining in the device
input buffer, read a line (terminated with AM) into
the buffer. This line may be edited with the
function keys. The characters returned terminate
with a sequence of ODH,OAH (AM, AJ) if the
number of characters requested is sufficient to
include them. For example, if 5 characters were
requested, and only 3 were entered before the
carriage return (ODH or AM) was presented to
DOS from the console device, the 3 characters
entered and ODH, and OAH would be returned.
However, if 5 characters were requested and 7
were entered before the carriage return, only the
first 5 characters would be returned. No
ODH,OAH sequence would be returned in this
case. H less than the number of characters
requested are entered when the carriage return is
received, the characters received and the
ODH,OAH would be returned. The reason the
OAH (line feed or AJ) byte is added to the
returned characters is to make devices look like
text files.

• If a lAH (AZ) is found, the input is terminated at
that point. No ODH,OAH sequence is added to the
string.

• Echoing is performed.

4-11

Preliminary

• Tabs are expanded into spaces on echo. They are
left as a tab byte (09H) in the input buffer.

When a file is written in ASCn mode:

• The characters AS,AP, and AC are checked for
during the write operation.

• Expands tabs to 8-character boundaries and fills
with spaces (20H).

• Carets control characters. For example, AD is
written as two bytes, A and D.

• Bytes are output until the the number specified is
output or until a AZ is found. The number actually
output is returned to the user.

Number of Open Files Allowed

The number of files that can be open concurrently is
restricted by DOS. This number is determined by how
the file is opened or created (FCB or handle function
call) and the number specified by the FCBS and FILES
commands in the CONFIG.SYS file. The number of
files allowed open by FCB function calls and the
number of files that can be opened by handle type calls
are independent of one another.

Restrictions on FeB Usage

4-12

If file sharing is not loaded using the SHARE
command, there are no restrictions on the number of
files concurrently open using FCB function calls.
However, when file sharing is loaded, the maximum
number of FCB opened files is limited by the value set
by the FCBS command in the CONFIG .SYS
configuration file. For information on the FCBS

Preliminary

command, refer to Chapter 4 of the DOS Reference for
versions 3.00 and 3.10. The FCBS command has two
values that you can specify m, n. The value for m
specifies the total number of files that can be opened by
FCBs, and the value for n specifies the number of files
opened by FCBS that are protected from being closed.

When the maximum number of FCB opens is exceeded,
DOS automatically closes the least recently used file.
Any attem.pt to access this file results in an interrupt
24H critical error message, "FCB not available." If
this occurs while an application program is running, the
value specified for m in the PCBS command should be
increased.

When DOS determines the least recently used file to
close, it does not include the first n files opened,
therefore the first n are protected from being closed.

Restrictions on Handle LTsage

The number of file handles that can be open at one time
by all processes is determined by the Fll...ES command
in the CONFIG.SYS file (for more information see the
Fll...ES command in the DOS Reference). The number
of files a single process can open depends on the value
specified for FILES command. If FILES is greater than
or equal to 20, a single process can open 20 files. If the
value specified for Fll...ES is less than 20, a single
process can open less than 20 files. This value includes
three predefined handles. One handle is for standard
input/output/error, one for standard auxiliary, and one
for standard printer. This means a single process can
open a maximum of 17 additional handles (20 minus 3).

4-13

Preliminary

Allocating Space to a File

4-14

Files are not necessarily written sequentially on a disk.
Space is allocated as it is needed and the next location
available on the disk is allocated as the next location for
a file being written. Therefore, if considerable file
creation and erasure activity has taken place, newly
created files may not be written in sequential sectors.
However, due to the mapping (chaining) of file space
via the File Allocation Table (FAT), and the function
calls available, any file can be used in either a
sequential or random manner.

Space is allocated in increments called clusters. Cluster
size varies from a low of one sector of disk space per
cluster on a single-sided diskette to a higher number of
sectors/cluster on other disk formats. The cluster size
of a fixed disk is based on the size of the DOS partition,
and is determined when the fixed disk is formatted with
the FORMAT command. For example, for a 10M byte
fixed disk that is totally dedicated to one DOS partition,
the cluster size is equal to 8 sectors.

An application program should not concern itself with
the way that DOS allocates disk space to a file. The
size of a cluster is only important in that it determines
the smallest amount of space allocated to a file at one
time. For example, a diskette with 2 sectors per cluster
and a sector size of 512 bytes would allocate diskette
space to a file in 1024 byte blocks. Therefore, even if a
file was less than one cluster long, a cluster's worth of
disk space would be allocated to the file. If more disk
space is needed, additional clusters are allocated to the
file. A disk is considered full when all the available
clusters have been allocated to files.

Preliminary

Chapter 5. DOS Disk Allocation

Contents

Introduction • • . . •• 5-3

Version Specific Information ••••••••.•••••.•• 5-3

The DOS Area•...........•.. 5-4

The Boot Record ••.•...••.•••••••..•••••.. 5-4

DOS File Allocation Table (FAn••••.•. 5-5
How to Use the File Allocation Table for
12-Bit FAT Entries 5-8
How to Use the File Allocation Table for
16-Bit FAT Entries 5-9

DOS Disk Directory ...••....•...........• 5-10
~ectoryEntries 5-10

Bytes 0-7 5-10
Bytes 8-10 5-11
Byte 11 5-11
Bytes 12-21 5-12
Bytes 22-23 5-12
Bytes 24-25 5-13
Bytes 26-27 5-13
Bytes 28-31 5-13

The Data Area •....••••....••..•••...•••. 5-14

5-1

Preliminary

5-2

Preliminary

Introduction

This chapter contains the following information about
DOS:

• The boot record

• The DOS file allocation table (FAT) for 12-bit
and 16-bit FATs

• The DOS disk directory

• The data area

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

DOS File Allocation Table (FAT):

• 12-bit FATs are for use with DOS versions 2.10,
3.00, and 3.10.

• 16-bit FATs are for use with DOS versions 3.00
and 3.10.

Also, for DOS versions 3.00 and 3.10, the File
Allocation Table indicator F9H is used to identify 15
sector-per-track diskettes.

5-3

Preliminary

The DOS Area

All disks and diskettes formatted by DOS are created
with a sector size of 512 bytes. The DOS area (entire
diskette for diskettes, DOS partition for fixed disks) is
formatted as follows:

Boot record - 1 sector

First copy of file allocation table
(FAT) - variable size

Second copy of file allocation table
- same size as first copy of FAT

Root directory - variable size

Data area

The following sections describe each of the allocated
areas.

The Boot Record

5-4

The boot record resides on track 0, sector 1, side 0 of
every diskette formatted by the DOS FORMAT
command. It is put on all disks to produce an error
message if you try to start up the system with a~
nonsystem diskette in drive A. For fixed disks, the
boot record resides on the first sector of the DOS
partition.

DOS File Allocation Table (FAT)

This section explains how DOS uses the file allocation
table (FAT) to convert the clusters of a file to logical
sector numbers. We recommend that system utilities
use the DOS handle function calls rather than
interpreting the FAT.

The FAT is used by DOS to allocate disk space"for a
file, one cluster at a time.

The FAT consists of a 12-bit entry (1.5 bytes) for each
cluster on the disk or a 16-bit entry (2 bytes) when a
fixed disk has more than 20740 sectors as is the case
for fixed disks larger than 10M bytes.

The first two FAT entries map a portion of the
directory; these FAT entries contain indicators of the
size and format of the disk. The FAT can be in a
12-bit or a 16-bit format. DOS determines whether a
disk has a 12- or 16-bit FAT by looking at the total
number of allocation units on the disk. For all diskettes
and fixed disks with DOS partitions less than 20740
sectors, the FAT uses a 12-bit value to map a cluster.
For larger partitions, DOS uses a 16-bit value.

5-5

5-6

Preliminary

The second, third, and fourth (if applicable for 16-bit
FATs) bytes always contain FFFFH. The first byte is
used as follows:

Hex Value

FF

FE

FD

FC

F9

F8

Meaning

Dual sided, 8 sector-per-track diskette.

Single sided, 8 sector-per-track
diskette.

Dual sided, 9 sector-per-track diskette.

Single ~ided, 9 sector-per-track
diskette.

Dual sided, 15 sector-per-track
diskette.

Fixed disk.

The third FAT entry begins the mapping of the data
area (cluster 002).

Note: These values are provided as a reference.
Therefore, programs should not-make use of these
values.

Pre1iminary

Each entry contains 3 hexadecimal characters, (or 4 for
16-bit FATs). () indicates the high-order four bit
value in the case of the 16-bit FAT entries. They can
be either:

Hex Value

(0)000

Meaning

if the cluster is unused and available,
or

(F)FF8--(F)FFF to indicate the last cluster of a file,
or

(X) XXX any other hexadecimal characters
that are the cluster number of the
next cluster in the file. The cluster
number of the first cluster in the file
is kept in the file's directory entry.

The values (F)FFO-(F)FF7 are used to indicate
reserved clusters. (F)FF7 indicates a bad cluster if it is
not part of an allocation chain. (F)FF8-(F)FFF are
used as end-of-file marks.

The file allocation table always occupies the sector or
sectors immediately following the boot record. If the
FAT is larger than 1 sector, the sectors occupy
consecutive sector numbers. Two copies of the FAT
are written, one following the other, for integrity. The
FAT is read into one of the DOS buffers whenever
needed (open, allocate more space, etc.).

5-7

Preliminary

How to Use the File Allocation Table for
12-Bit FAT Entries

5-8

Obtain the starting cluster of the file from the directory
entry.

Now, to locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each
FAT entry is 1.5 bytes long).

2. The whole part of the product is an offset into the
FAT, pointing to the entry that maps the cluster
just used. That entry contains the cluster number
of the next cluster of the file.

3. Use a MOV instruction to move the word at the
calculated FAT offset into a register.

4. If the last cluster used was an even number, keep
the low-order 12 bits of the register; otherwise,
keep the high -order 12 bits.

5. If the resultant 12 bits are (FF8-FFF)H, no more
clusters are in the file. Othenvise, the 12 bits
contain the cluster number of the next cluster in
the file.

To convert the cluster to a logical sector number
(relative sector, such as that used by INf 25H and 26H
and by DEBUG):

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors per
cluster.

3. Add the logical sector number of the beginning of
the data area.

Preliminary

How to Use the File Allocation Table for
16-Bit FAT Entries

Obtain the starting cluster of the file from the directory
entry. Now to locate each subsequent cluster of the
file:

1. Multiply the cluster number used by 2 (each FAT
entry is 2 bytes long).

2. Use MOV word instruction to move the word at
the calculated FAT offset into a register.

3. If the resultant 16 bits are (FFF8-FFFF)H, no
more clusters are L, the file. Otherwise, the 16 bits
contain the cluster number of the next cluster in
the file.

5-9

Preliminary

DOS Disk Directory

The FORMAT command initially builds the root
directory for all disks. Its location (logical sector
number) and the maximum number of entries are
available through the device driver interfaces.

Directory Entries

5-10

Since directories other than the root directory are
actually files, there is no limit to the number of entries
they may contain.

All directory entries are 32 bytes long, and are in the
following format (byte offsets are in decimal). The
following paragraphs describe the directory entry bytes:

Bytes 0-7

Bytes 0 through 7 represent the filename. The first
byte of the filename indicates the status of the
filename. The status of a filename can contain the
following values:

OOH Filename never used. This is used to limit the
length of directory searches, for performance
reasons.

05H Indicates that the first character of the filename
actually has an E5H character.

E5H Filename was used, but the file has been erased.

2EH The entry is for a directory. If the second byte is
also 2EH, the cluster field contains the cluster
number of this directory's parent directory
(OOOOH if the parent directory is the root
directory) .

Any other character is the first character of a filename.

Preliminary

Bytes 8-10

These bytes indicate the filename extension.

Byte 11

This byte indicates the file's attribute. The attribute
byte is mapped as follows (values are in hexadecimal):

Note: Attributes 08H and IOH cannot be changed
using function call43H (CHMOD).

The system files (m:MBIO.COM and
IBMDOS.COM) are marked as read-only, hidden,
and system files. Files can be marked hidden when
they are created. Also, the read -only, hidden,
system, and archive attributes may be changed
through the CHMOD function call.

OIH Indicates that the file is marked read-only. An
attempt to open the file for output using
function call3DH results in an error code being
returned. This value can be used with other
values below.

02H Indicates a hidden file. The file is excluded from
normal directory searches.

04H Indicates a system file. The file is excluded from
normal directory searches.

08H Indicates that the entry contains the volume
label in the first 11 bytes. The entry contains no
other usable information and may exist only in
the root directory.

10H Indicates that the entry defines a subdirectory
and is excluded from normal directory searches.

201-I Indicates an archive bit. The bit is set on
whenever the file has been written to and closed.
It is used by the BACKUP and RESTORE

5-11

5-12

Preliminary

commands for determining whether the file was
changed since it was last backed up. This bit can
be used along with other attribute bits.

All other bits are reserved, and must be O.

Bytes 12-21

This is a reserved area by DOS.

Bytes 22-23

These bytes contain the time when the file was created
or last updated. The time is mapped in the bits as
follows:

< 23 > < 22 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h m m m m m m x x x x x

Where:

hh is the binary number of hours (0-23)
mm is the binary number of minutes (0-59)
xx is the binary number of two-second increments

Note: The time is stored with the least significant
byte first.

Preliminary

Bytes 24-25

This area contains the date when the file was created or
last updated. The mm/ dd/ yy are mapped in the bits as
follows:

< 25 > < 24 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Y Y Y Y Y Y y m m m m d d d d d

Where:

mm is 1-12
dd is 1-31
yy isO-119 (1980-2099)

Note: The date is stored with the least significant
byte first.

Bytes 26-27

This area contains the starting cluster number of the
first cluster in the file. The first cluster for data space
on all fixed disks and diskettes is always cluster 002.
The cluster number is stored with the least significant
byte first.

Note: System programmers, see "DOS File
Allocation Table (FAT)" for details about
converting cluster numbers to logical sector
numbers.

Bytes 28-31

This area contains the file size in bytes. The first word
contains the low-order part of the size. Both words are
stored with the least significant byte first.

5-13

Preliminary

The Data Area

5-14

Allocation of space for a file (in the data area) is done
only when needed (it is not preallocated). The space is
allocated one cluster (unit of allocation) at a time. A
cluster is always one or more consecutive sector
numbers, and all of the clusters for a file are "chained"
together in the File Allocation Table.

The clusters are arranged on disk to minimize head
movement for multisided media. All of the space on a
track (or cylinder) is allocated before moving on to the
next track. This is accomplished by using the sequential
sector numbers on the lowest-numbered head, then all
the sector numbers on the next head, and so on until all
sectors on all heads of the track are used. Then, the
next sector to be used will be sector 1 on head 0 of the
next track.

For fixed disk, the size of the file allocation table and
directory are determined when FORMAT initializes it,
and are based on the size of the DOS partition.

Sides

1
2
1

2
2

Preliminary

F or diskettes, the following table can be used:

Sectors/ FAT DIR DIR Sectors/
Track Size Sectors Entries Cluster

Sectors

8 1 4 64 1

8 1 7 112 2
9 2 4 64 1
9 2 7 112 2
15 7 14 224 1

Files in the data area are not necessarily written
sequentially on the disk. The data area space is
allocated one cluster at a time, skipping over clusters
already allocated. The first free cluster found is the
next cluster allocated, regardless of its physical location
on the disk. This permits the most efficient utilization
of disk space because clusters' made available by erasing
files can be allocated for new files. Refer back to the
description of the DOS File Allocation Table in this
chapter for more information.

5-15

Preliminary

5-16

Preliminary

Chapter 6. DOS Interrupts and Function
Calls

Contents

Introouction • . • • • • • . . . • . •. 6-7

Version Specific Information ..••.•.•......... 6-7

DOS Registers•.......••••..••• 6-9

Extended ASCII Codes •.•.•••.•••.•••••••• 6-11

Interrupts•.••••.•..••••.••• '. • • • •• 6-12
20H Program Terminate 6-12
21H Function Request 6-13
22H Terminate Address 6-13
23H Ctrl-Break Exit Address 6-13
24 H Critical Error Handler Vector 6-14

Disk Errors :... 6-18
Handling of Invalid Responses (DOS 3.00
and 3.10) 6-18
Other Errors 6-19

25H Absolute Disk Read 6-22
26H Absolute Disk Write 6-23
27H Terminate but Stay Resident 6-24
28H-2EH Reserved for DOS 6-25
2FH Multiplex Interrupt 6-26

Function Ccxies 6-27
2FH Error Ccxies 6-27
Example 2FH Handler 6-30
Installing the Handler 6-31

30H-3FH Reserved for DOS 6-31

Function Calls ••••.•.......••••.••.•••••. 6-32
Listing of Function Calls 6-33
DOS Internal Stack 6-36
Error Return Information 6-36

6-1

6-2

Preliminary

DOS 2.10 Error Codes 6-37
Get Extended Error (DOS 3.00 and 3.10) 6-38

ASCnz Strings 6-44
Network Paths 6-45
Network Access Rights ~ 6-45
File Handles 6-46
Using DOS Functions 6-47

OOH Program Terminate ••••••••..••••••.•• 6-49

OlH Keyboard Input .•.••..•...••••••••••• 6-50

02H Display Output .••••••.•.••••.•••••••. 6-51

03H Auxiliary Input ..•.••.••...••••..•••.. 6-52

04H Auxiliary Output .••••.••..••••..••••• 6-53

05H Printer Output ..•.•...•.••••••••••.•• 6-54

06H Direct Console I/o 6-55

07H Direct Console Input Without Echo .••.•.• 6-56

OSH Console Input Without Echo •.•..••••••• 6-57

09H Print String ••••••••.•••••••••••••••• 6-58

OAll Buffered Keyboard Input •••.•••.•.••••• 6-59

OBH Check Standard Input Status ..•.••..•••• 6-60

OCH Clear Keyboard Buffer and Invoke a
Keyboard Function •••••••.••..••••.••••••• 6-61

ODH Disk Reset 6-62

OEH Select Disk 6-63

OFH Open File 6-64

10H Close File 6-65

Preliminary

11H Search for First Entry 6-66

12H Search for Next Entry 6-68

13H Delete File••......•....•. 6-69

14H Sequential Read•.•....••... 6-70

15H Sequential Write•••........•.. 6-71

16H Create File • 6-72

17H Rename File 6-73

19H Current Disk 6-74

1AH Set Disk Transfer Address ••.....•...... 6-75

1BH Allocation Table Information 6-76

1CH Allocation Table Information for Specific
l)e,vice ••••••••••••••••••••••••••••••••• 6-77

21H Random Read

22H Random Write 6-79

23H File Size •• 6-80

24H Set Relative Record Field •..•• • • • . • . • .. 6-81

25H Set Interrupt Vector ••..••..•..•••••.• 6-82

26H Create New Program Segment ••.•.•••••• 6-83

27H Random Block Read 6-84

28H Random Block Write 6-85

29H Parse Filename ..•.••.•.••••....• • • •• 6-86

2AH Get Date •..••.•..•••••••.•..••••.•. 6-88

6-3

6-4

Preliminary

2BH Set Date 6-89

2CH Get Time • . . • • • . . • . • • • . . . • • • • • • • . •• 6-90

2DH Set Time ••••••..•••.••.••• 0......... 6-91

2EH Set/Reset Verify Switch ...•• • • • • • • • • •• 6-92

2FH Get Disk Transfer Address (DTA) •••.•..• 6-93

30H Get DOS Version Number •.•.••••..•••• 6-94

31H Terminate Process and Remain Resident ••• 6-95

33H Ctrl-Break Check ...•••••••••••..•••. 6-96

35H Get Vector .• • • • • • • • • • . . • •• 6-97

36H Get Disk Free Space ••••.••..•••.••.•. 6-98

38H (DOS 2.10) Return Country Dependent
mforntation ••••.•..••••...•..••••....••• 6-99

38H (DOS 3.00 and 3.10) Get or Set Country
Dependent mformation •...••••••..•••••.. 6-101

39H Create Subdirectory (MKDIR) .•....••• 6-106

3AH Remove Subdirectory (R.J.\1DIR) •.••.••. 6-107

3BH Change the Current Directory (CHDIR) •. 6-108

3CH Create a File (CREAn ••..••.••.••••. 6-109

3DH(DOS2.10)OpenaFile •....••••.•.•• 6-110

3DH (DOS 3.00 and 3.10) Open a File ••••••. 6-112

3EH Close a File Handle ••.....•••••.•.••• 6-122

3FH Read from a File or Device ..•.....••.• 6-123

40H Write to a File or Device •••.•..••••••. 6-125

rreununary

41H Delete a File from a Specified Directory
(UNLIN'K) 6-127

42H Move File Read Write Pointer (LSEEK) .. 6-128

43H Change File Mode (CHMOD) ..•...•... 6-130

44H I/o Control for Devices (IOCTL) .•..••• 6-132

45H Duplicate a File Handle (DUP) .••...... 6-139

46H Force a Duplicate of a Handle (FORCDUP) 6-140

47H Get Current Directory •....•.......... 6-141

48H Allocate Memory ••.•......••.....•.. 6-142

49H Free Allocated Memory •.•.•.......... 6-143

4AH Modify Allocated Memory Blocks
(SETBLOCK) ••..•••..•..••••.....•...• 6-144

4BH Load or Execute a Program (EXEC)• 6-145

4CH Terminate a Process (EXIT) ••••••••••• 6-150

4DH Get Return Code of a Subprocess (WAIT) 6-151

4EH Find First Matching File (FIND FIRST) 6-152

4FH Find Next Matching File (FIND NEXT) 6-154

54H Get Verify Setting ••.••••.•••••.....• 6-155

56HRenameaFile ..••..•...••...•..•••• 6-156

57H Get/set a File's Date and Time•.••. 6-158

59H (DOS 3.00 and 3.10) Get Extended Error. 6-160

5AH (DOS 3.00 and 3.10) Create Unique FIle • 6-162

5BH (DOS 3.00 and 3.10) Create New File ••• 6-164

6-5

6-6

Preliminary

5CH (DOS 3.00 and 3.10) LocI<junJock File
Access 6-165

5EOOH (DOS 3.10) Get Machine Name •••••• 6-168

5E02H (DOS 3.10) Set Printer Setup ••...••• 6-169

5E03H (DOS 3.10) Get Printer Setup • • . . . •• 6-170

5F02H (DOS 3.10) Get Redirection List Entry. 6-171

5F03H (DOS 3.10) Redirect Device •.•..•••• 6-173

5F04H (DOS 3.10) Cancel Redirection •....•. 6-176

62H (DOS 3.00 and 3.10) Get Program Segment
Prefix Address (PSP) . • • • • • • • . • • . . • • • • . .• 6-178

Introduction

This chapter contains:

• A list of the registers used by DOS.

• A list of the extended ASCII cooes.

• A detailed description of all the interrupts and
function calls.

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

Interrupts:

DOS version 2.10 supports interrupts 20R to 27H.

DOS version 3.00 supports interrupts 20R to 2FH.

DOS version 3.10 supports interrupts 20R to 2FH.

6-7

6-8

Preliminary

Function Calls:

DOS version 2.10 supports function calls OOH to 57H.

DOS version 3.00 supports function calls OOH to 5CH
and 62H, which includes the following new and
changed function calls for DOS 3.00:

• 3DH Open File; supports file sharing
• 59H Get Extended Error
• 5AH Create Temporary File
• 5BH Create New File
• 5CH Lock/Un1ock File Access
• 62H Get Program Segment Prefix Address

DOS version 3.10 supports function calls OOH to 62H,
which includes the following new function calls for
DOS 3.10:

• 5EOOH Get Machine Name
• 5E02H Set Printer Setup
• 5E03H Get Printer Setup
• 5F02H Get Redirection List Entry
• SF03H Redirect Device
• 5F04 H Cancel Redirection

For DOS 3.00 and 3.10, interrupt 24H (Critical Error
Handler Vector), bits 3-5 of AH indicate which
responses from an error are valid. Also, DOS 3.00 and
3.10 handles invalid responses differently than DOS
2.10. Refer to "Handling of Invalid Responses" in this
chapter for more information.

Preliminary

DOS Registers

DOS uses the following registers, pointers, and flags
when it executes interrupts and function calls.

General Registers

Register Definition

AX Accumulator (16-bit)
AH Accumulator high-order byte (8-bit)
AL Accumulator low-order byte (8-bit)

BX Base (16-bit)
BH Base high-order byte (8-bit)
BL Base low-order byte (8-bit)

CX Count (16-bit)
CH Count high-order byte (8-bit)
CL Count low-order byte (8-bit)

DX Data (16-bit)
DH Data high-order (8-bit)
DL Data low-order (8-bit)

Flags OF,DF JF ,TF ,SF,zF,AF ,PF,CF

6-9

Preliminary

Pointers

Register Definition

SP Stack pointer (16-bit)

BP Base pointer (16-bit)

IP Instruction pointer (16-bit)

Segment Registers

Register Definition

CS Code segment (16-bit)

DS Data segment (16-bit)

SS Stack segment (16-bit)

ES Extra segment (16-bit)

Index Registers

Register Definition

DI Destination index (16-bit)

SI Stack index (16-bit)

6-10

Preliminary

Extended ASCII Codes

For certain keys or key combinations that cannot be
represented in standard ASCrr code, an extended
ASCrr code is returned. The extended ASCrr ccx:ie is
returned as the second byte of a 2 byte string.
Therefore, if the ASCrr value returned is zero, examine
the second byte to obtain the ~xtended ASCrr ccx:ie.

The following table lists the extended ASCrr ccx:ies and
their meanings.

Extended Meaning
ASCII
Code

3 NUL (null character)

15 Shift tab

16-25 Alt- Q, W, E, R, T, Y, U, I, 0, P

30-38 Alt-Z,X,C,V,B,M,N

59-68 Function keys F1 through FlO

71 Home

72 Cursor up

73 Page up

75 Cursor left

77 Cursor right

79 End

80 Cursor down

81 Page down

82 Insert

83 Delete

84-93 F11-F20 (Shift F1-F10)

94-103 F21-F30 (CtrI F1-F10)

6 ... 11

Preliminary

Interrupts

We recommend that a program wishing to examine or
set the contents of any interrupt vector use the DOS
function calls (35H and 25H) provided for those
purposes, and avoid referencing the interrupt vector
locations directly.

DOS reserves interrupt types 20H to 3FH for its use.
This means absolute memory locations 80H to FFH are
reserved by DOS. The defined interrupts are as follows
with all values in hexadecimal.

20H Program Terminate

6-12

Issue interrupt 20H to exit from a program. This vector
transfers to the logic in DOS to restore the terminate
address, the Ctrl-Break address, and the critical error
exit address to the values they had on entry to the
program. All file buffers are flushed and all handles are
closed. You should close all files changed in length (see
function call1OH and 3EH) before issuing this
interrupt. If the changed file is not closed, its length,
date, and time are not recorded correctly in the
directory.

For a program to pass a completion code or an error
code when terminating, it must use either function call
4CH (Terminate a Process) or 31H (Terminate Process
and Stay Resident). These two methods are preferred
over using interrupt 20H, and the codes returned by
them can be interrogated in batch processing. See
function call4CH for information on the
ERRORLEVEL subcommand of batch processing.

Important: Before you issue interrupt 20H, your
program must ensure that the CS register contains the
segment address of its program segment prefix.

Preliminary

21H Function Request

Refer to "Function Calls" on page 6-32.

22H Terminate Address

Control transfers to the address at this interrupt
location when the program terminates. This address is
copied into the program's Program Segment Prefix at
the time the segment is created. Do not issue this
interrupt directly, the EXEC function call does this for
you.

23H Ctrl-Break Exit Address

If the user enters Ctrl-Break during standard input,
standard output, standard printer, or asynchronous
communications adapter operations, an interrupt 23H is
executed. H BREAK is on, the interrupt 23H is
checked on most function calls (except calls 06H and
07H). If the user written Ctrl-Break routine saves all
registers, it may end with a return-from-interrupt
instruction (IRET) to continue program execution. If
the user-written interrupt program returns with a long
return, the carry flag is used to determine whether the
program will be aborted or not. If the carry flag is set,
the program is aborted, otherwise execution continues
(as with a return by IRET). If the user-written
Ctrl-Break interrupt uses functions calls 09H or OAH,
then "C, carriage-return and linefeed are output. If
execution is continued with an IRET, I/O continues
from the start of the line. When the interrupt occurs,
all registers are set to the value they had when the
original function call to DOS was made. There are no
restrictions on what the Ctrl-Break handler is allowed
to do, including DOS function calls, as long as the
registers are unchanged if IRET is used.

6-13

Preliminary

If the program creates a new segment and loads in a
second program, which itself changes the Ctrl-Break
address, the termination of the second program and
return to the first causes the Ctrl-Break address to be
restored to the value it had before execution of the
second program. It is restored from the second
program's Program Segment Prefix. Do not issue this
interrupt directly.

24H Critical Error Handler Vector

6-14

When a critical error occurs within DOS, control is
transferred with an interrupt 24H. On entry to the
error handler, AlI will have its bit 7 =0 (high-order bit)
if the error was a disk error (probably the most
common occurrence), bit 7 = 1 if not.

BP:SI contains the address of a Device Header Control
Block from which additional information can be
retrieved (see below).

Preliminary

The registers are set up for a retry operation, and an
error code is in the lower half of the DI register with
the upper half undefined. These are the error codes:

Error Error Name
Code

0 Attempt to write.on write-protected
diskette

1 Unknown unit

2 Drive not ready

3 Unknown command

4 Data error (eRC)

5 Bad request structure length

6 Seek error

7 Unknown media type

8 Sector not found

9 Printer out of paper

A Write fault

B Read fault

C General failure

6-15

6-16

Preliminary

The user stack is in effect and contains the following
from top to bottom:

IP
es
FLAGS
AX
BX
ex
DX
SI
DI
BP
DS
ES
IP
es
FLAGS

DOS registers from issuing !NT 24 H

User registers at time of original
INf 21H request

From the original interrupt 21H
from the user to DOS

The registers are set such that if an IRET is executed,
DOS responds according to CAL) as follows:

CAL) =0 ignore the error.
= 1 retry the operation.
=2 terminate the program

through interrupt 23H.
=3 fail the system call

that is in progress.

Note: Be careful when choosing ignore as a
response because this causes DOS to believe that
an operation has completed successfully when
actually it may not have.

Preliminary

To return control from the critical error handler to a
user error routine, the following should be true:

Before an !NT 24H occurs:

1. The user application initialization code should save
the !NT 24H vector and replace the vector with
one pointing to the user error routine.

When the !NT 24 H occurs:

2. When the user error routine receives control, it
should push the flag register onto the stack, and
then execute a CALL FAR to the original INf
24 H vector saved in step 1.

3. DOS gives the appropriate prompt, and waits for
the user input (Abort, Retry, or Ignore). After the
user input, DOS returns control to the user error
routine at the instruction following the CALL
FAR.

4. The user error routine can now do any tasks
necessary. To return to the original application at
the point the error occurred, the error routine
needs to execute an IRET instruction. Otherwise,
the user error routine should remove the IF, CS,
and Flag registers from the stack. Control can
then be passed to the desired point.

6-17

6-18

Preliminary

Disk Errors

If it is a hard error on disk (AR bit 7 =0), register AL
contains the failing drive number (0 = drive A, etc.).
AH bits 0-2 indicate the affected disk area and whether
it was a read or write operation, as follows:

Bit 0=0 if read operation,
1 if write operation

Bits 2-1 (affected disk area)
00 DOS area
o 1 file allocation table
1 0 directory
11 data area

AH bits 3-5 indicate which responses are valid. They
are:

Bit 3 =0 if F.Aa is not allowed
= 1 if FAIL is allowed

Bit 4=0 if RETRY is not allowed
= 1 if RETRY is allowed

Bit 5=0 if IGNORE is not allowed
= 1 if IGNORE is allowed

Handling of Invalid Responses (DOS 3.00
and 3.10)

If IGNORE is specified (AL=O) and IGNORE is not
allowed (bit 5=0), make the response FArr. (AL=3).

If RETRY is specified (AL=l) and RETRY is not
allowed (bit 4=0), make the response FArr. (AL=3).

If FAIL is specified (AL=3) and FAIL is not allowed
(bit 3=0), make the response ABORT (AL=2).

Preliminary

Other Errors

If AH bit 7 = 1, the error occurred on a character
device, or was the result of a bad memory image of the
FAT. The device header passed in BP:SI can be
examined to determine which case exists. If the
attribute byte high-order bit indicates a block device,
then the error was a bad FAT. Otherwise, the error is
on a character device.

If a character device is involved, the contents of AL are
unpredictable, the error code is in DI as above.

Notes:

1. Before giving this routine control for disk errors,
DOS performs three retries.

2. For disk errors, this exit is taken only for errors
occurring during an interrupt 21H function call. It
is not used for errors during an interrupt 2SH or
26H.

3. This routine is entered in a disabled state.

4. All registers must be preserved.

5. This interrupt handler should refrain from using
DOS function calls. If necessary, it may use calls
OIH though 12H. Use of any other call destroys
the DOS stack and leaves DOS in an unpredictable
state.

6. The interrupt handler must not change the contents
of the device header.

7. If the interrupt handler handles errors itself rather
than returning to DOS, it should restore the
application program's registers from the stack,
remove all but the last three words on the stack,
then issue an lRET. This will return to the
program immediately after the INf 21H that
experienced the error. Note that if this is done,

6-19

6-20

Preliminary

DOS will be in an unstable state until a function
call higher than 12H is issued, therefore not
recommended.

8. For DOS 3.00 and 3.10, IGNORE requests
(AL=O) are converted to FAIL for critical errors
that occur on FAT or DIR sectors.

9. Refer to "Error Return Information" on page 6-36
and "Extended Error Codes" on page 6-40 for
information on how to obtain additional error
information.

10. For DOS 3.10, IGNORE requests (AL=O) are
converted to FAll.. requests for network critical
errors (50-79).

Preliminary

The device header pointed to by BP:SI is formatted as
follows:

DWORD Pointer to next device (FFFFH if last
device)

WORD Attributes:
Bit 15 = 1 if character device.

= 0 if block device
If bit 15 is 1:

Bit 0 = 1 if current standard
input

Bit 1 = 1 if current standard
output

Bit 2 = 1 if current NULL
device

Bit 3 = 1 if current CLOCK
device

Bit 14 is the IOClL bit

WORD pointer to device driver strategy entry
point

WORD pointer to device driver interrupt entry
point

8-BYfE character device named field for block
devices. The first byte is the number of units.

To tell if the error occurred on a block or character
device, look at bit 15 in the attribute field (WORD at
BP:SI+4).

If the name of the character device is desired, look at
the eight bytes starting at BP:SI+ 10.

6-21

Preliminary

25H Absolute Disk Read

6-22

This transfers control directly to the device driver. On
return, the original flags are still on the stack (put there
by the INf instruction). This is necessary because
return infonnation is passed back in the current flags.
Be sure to pop the stack to prevent uncontrolled
growth. The request is as follows:

(AL) Drive number (for example,
O=Aor l=B)

(eX) Number of sectors to read
(DX) Beginning logical sector number
(DS:BX) Transfer address

The number of sectors specified is transferred between
the given drive and the transfer address. Logical sector
numbers are obtained by numbering each sector
sequentially starting from track 0, head 0, sector 1
(logical sector 0) and continuing along the same head,
then to the next head until the last sector on the last
head of the track is counted. Thus, logical sector 1 is
track 0, head 0, sector 2; logical sector 2 is track 0,
head 0, sector 3; and so on. Numbering then continues
with sector 1 on head ° of the next track. Note that
although the sectors are sequentially numbered (for
example, sectors 2 and 3 on track 0 in the example
above), they may not be physically adjacent on disk,
due to interleaving. Note that the mapping is different
from that used by DOS version 1.10 for dual-sided
diskettes.

Preliminary

All registers except the segment registers are destroyed
by this call. If the transfer was successful, the carry
flag (CF) is zero. If the transfer was not successful
CF=l and (AX) indicate the error as follows. (AL) is
the DOS error code that is the same as the error code
returned in the low byte of DI when an interrupt 24H is
issued, and (AlI) contains:

80H Attachment failed to respond
40H SEEK operation failed
08H Bad CRC on diskette read
04H Requested sector not found
03H Write attempt on write-

protected diskette
02H Error other than types listed above

26H Absolute Disk Write

This vector is the counterpart of interrupt 25H above.
Except that this is a write, the description above
applies.

6-23

Preliminary

27H Terminate but Stay Resident

6-24

This vector is used by programs that are to remain
resident when COMMAND. COM regains control.

DOS function call 3tH is the preferred methcxl to cause
a program to remain resident, because this allows return
information to be passed, and allows a program larger
than 64K to remain resident. After initializing itself,
the program must set DX to its last address plus one
relative to the program's initial DS or ES value (the
offset at which other programs can be loaded), then
execute an interrupt 27H. DOS then considers the
program as an extension of DOS, so the program is not
overlaid when other programs are executed. This
concept is very useful for loading programs such as
user-written interrupt handlers that must remain
resident.

Notes:

1. This interrupt must not be used by .EXE programs
that are loaded into the high end of memory.

2. This interrupt restores the interrupt 22H, 23H, and
24H vectors in the same manner as interrupt 20H.
Therefore, it cannot be used to install permanently
resident Ctrl-Break or critical error handler
routines.

3. The maximum size of memory that can be made
resident by this method is 64 K.

4. Memory can be more efficiently used if the block
containing a copy of the environment is
deallocated before terminating. This can be done
by loading ES with the segment contained in 2C of
the PSP, and issuing function ca1l49H (Free
Allocated Memory).

Preliminary

5. DOS function ca1l4CH allows the terminating
program to pass a completion (or error) code to
DOS, which can be interpreted within batch
processing (see function call 31H).

6. Terminate but stay resident programs do not close
files.

28H-2EH Reserved for DOS
These interrupts are reserved for DOS use.

6-25

Preliminary

2FH Multiplex Interrupt

6-26

Interrupt 2FH is the multiplex interrupt. A general
interface is defined between two processes. It is up to
the specific application using interrupt 2FH to define
specific functions and parameters.

Every multiplex interrupt handler is assigned a specific
multiplex number. The multiplex number is specified in
the AH register. The specific function that the handler
is to perform is specified in the AL register. Other
parameters are placed in the other registers, as needed.
The handlers are chained into the interrupt 2FH
interrupt vector and the multiplex number is checked to
see if any other application is using the same multiplex
number. TIiere is no predefined method for assigning a
multiplex number to a handler. You must just pick one.
To avoid a conflict if two applications choose the same
multiplex number, the multiplex numbers used by an
application should be patchable.

The multiplex numbers AH=O through AH= 7FH are
reserved for DOS. Applications should use multiplex
numbers 80H through FFH.

Note: When in the chain for interrupt 2FH, if your
code calls DOS or if you execute with interrupts
enabled, your code must be reentrant/recursive.

Preliminary

Function Codes

The following table contains the function codes that
you can specify in AL to perform a specific function.

Function Codes Description

0 Get installed state

1 Submit file

2 Cancel file

4 Status

5 End of status

2FH Error Codes

The following table contains the error codes that are
returned from interrupt 2FH.

Error Codes Description

1 Invalid function

2 File not found

3 Path not found

4 Too many open files

5 Access denied

8 Queue full

9 Busy

12 Name too long

15 Invalid drive

6-27

6-28

Preliminary

All = 1 is the resident part of PRINT. It has the
following functions:

AL=O Get Installed State

This call must be defined by all interrupt 2FH handlers.
It is used by the caller of the handler to determine if the
handler is present. On entry, AL=O. On return, AL
contains the installed state as follows:

AL=O Not installed, O.K. to install

AL=l Not installed, not O.K. to install

AL=FF Installed

AL= 1 Submit File

On entry, AL=l, AH=l, and DS:DX points to the
submit packet. A submit packet contains the level
(BYIE) and a pointer to the ASCnz string (DWORD
in offset segment form). The ASCnz string must
contain the drive, path, and filename of the file you
want to print. The filename cannot contain global
filename characters.

AL=2 Cancel File

On entry, AL=2, and DS:DX points to the ASCnz
string for the print file you want to cancel. Global
filename characters are allowed in the filename.

AL= 3 Cancel all Files

On entry, AL=3 and All = 1.

Preliminary

AL=4 Status

This call holds the jobs in the print queue so that you
can scan the queue. Issuing any other code releases the
jobs. On entry, AL=4. On return, DX contains the
error count. DS:SI points to the print queue. The print
queue consists of a series of filename entries. Each
entry is 64 bytes long. The first entry in the queue is
the file currently being printed. The end of the queue is
marked by a queue entry having a null as the first
character.

AL=5 End of Status

Issue this call to release the queue from call 4. On
entry, AL=5 and AH=l. On return, AX contains the
error codes. For information on the error codes
returned, refer to "2FH Error Codes" on page 6-27.

AL=F8-FF Reserved by DOS

6-29

Example 2FH Handler

MYNUM

I NT_2 F_NEXT
INT _2F:

EQU

DD

x

?

Preliminary

; x = The specific AH
multiplex number.

; Chain location

ASSUME DS:NOTHING,ES:NOTHING,SS:NOTHING

CMP
JE
JMP

MINE:

CMP
JB
IRET

DO_FUNC:

OR
JNE
MOV
IRET

AH,MYNUM
MINE
I NT_2 F_N EXT

AL,AL
NON_INSTALL
AL,OFFH

NON_INSTALL:

6-30

; Chain to next 2FH Handler

IRET on reserved functions

; Non Get Installed State rec
; Say 11m here
; All done

Installing the Handler

MOV
XOR
INT
OR
JZ

AH,MYNUM
AL,AL
2FH
AL,AL
OK INSTALL

BAD INSTALL:

MOV AL ,2FH

Preliminary

MOV AH,GET_INTERRUPT VECTOR

; Ask if already installed

; Handler already installed

Install my handler

INT 21H ;Get multiplex vector
MOV WORD PTR INT_2F NEXT+2,ES
MOV WORD PTR INT_2F_NEXT,BX
MOV DX,OFFSET INT_2F
MOV AL ,2FH
MOV AH,SET_INTERRUPT_VECTOR
INT 21H ;Set multiplex vector

30H-3FH Reserved for DOS
These interrupts are reserved for DOS use.

6-31

Preliminary

Function Calls

6-32

DOS provides a wide variety of function calls for
character device I/O, file management, memory
management, date and time functions, execution of
other programs, and others. They are grouped as
follows (call numbers are in hexadecimal):

Hex Values Meaning

o Program terminate

l-C Traditional character device I/O

D-24 Traditional file management

25-26 Traditional nondevice functions

27-29 Traditional file management

2A-2E Traditional nondevice functions

2F-38 Extended function group

39-3B Directory group

3C-46 Extended file management group

47 Directory group

48-4B Extended memory management group

4C-4F Extended function group

54-57 Extended function group

59-5C Extended function group

5E-5F Network function group

62 Extended function gr-Oup

Preliminary

Listing of Function Calls

OOH Program terminate
OIH Keyboard input
02H Display output
03H Auxiliary input
04H Auxiliary output
OSH Printer output
06H Direct console I/O
07H Direct console input Without echo
OSH Console input without echo
09H Print string
OAH Buffered keyboard input
OBH Check standard input status
OCH Clear keyboard buffer, invoke a keyboard

function
ODH Disk reset
OEH Select disk
OFH Open file
IOH Close file
IIH Search for first entry
12H Search for next entry
13H Delete file
14H Sequential read
ISH Sequential write
16H Create file
17H Rename file
ISH Reserved by DOS
19H Current disk
IAH Set disk transfer address
IBH Allocation table information
I CH Allocation table information for specific device
IDH Reserved by DOS
IEH Reserved by DOS
IFH Reserved by DOS
20H Reserved by DOS
2lH Random read
22H Random write
23H File size
24H Set relative record field
2SH Set interrupt vector
26H Create new program segment
27H Random block read

6-33

6-34

Preliminary

28H Random block write
29H Parse filename
2AH Get date
2BH Set date
2CH Get time
2DH Set time
2EH Set/ reset verify switch
2FH Get disk transfer address
30H Get DOS version number
3tH Terminate process and remain resident
32H Reserved by DOS
33H Ctrl-Break check
34H Reserved by DOS
3SH Get vector
36H Get disk free space
37H Reserved by DOS
38H Set or get country dependent information
39H Create subdirectory (MKDIR)
3AH Remove subdirectory (IUvIDIR)
3BH Change current directory (CfIDIR)
3CH Create a file (CREAT)
3DH Open a file
3EH Close a file handle
3FH Read from a file or device
40H Write to a file or device
4tH Delete a file from a specified directory

(UNLINK)
42H Move file read/write pointer (LSEEK)
43H Change file mode (CHMOD)
44H I/O control for devices (IDC1L)
4SH Duplicate a file handle (DUP)
46H Force a duplicate of a file handle (FORCDUP)
47H Get current directory
48H Allocate memory
49H Free allocated memory
4AH Modify allocated memory blocks

(SETBLOCK)
4BH Load or execute a program (EXEC)
4CH Terminate a process (EXIT)
4DH Get return code of a subprocess (WAIT)
4EH Find first matching file (FIND FIRST)
4FH Find next matching file
SOH Reserved by DOS

Preliminary

5tH Reserved by DOS
52H Reserved by DOS
53H Reserved by DOS
54H Get verify setting
55H Reserved by DOS
56H Rename a file
57H Get/set a file's date and time
58H Used internally by DOS
59H Get extended error
5AH Create temporary file
5BH Create new file
5CH Lock/ unlock file access
5DH Reserved by DOS
5EOOH Get machine name
5E02H Set printer setup
5E03H Get printer setup
5F02H Get redirection list entry
5F03H Redirect device
5F04H Cancel redirection
60H Reserved by DOS
6tH Reserved by DOS
62H Get PSP address

6-35

Preliminary

DOS Internal Stack
When DOS takes control, it switches to an internal
stack. User registers are preserved unless information
is passed back to the requester as indicated in the
specific requests. The user stack needs to be sufficient
to accommodate the interrupt system. It is
recommended that the user stack be 80H in addition to
the user needs.

Error Return Information

6-36

Many of the function calls return the carry flag clear if
the operation was successful. If an error condition was
encountered, the carry flag is set.

If you are using DOS version 2.10, check the error code
returned. For a list of error codes returned by function
calls when you are using DOS 2.10, refer to "DOS 2.10
Error Codes" in this chapter.

If you are using DOS 3.00 or 3.10, use the Get
Ext.ended Error function call to return additional
information about the error code. For more
information, refer to "Get Extended Error" in this
chapter.

DOS 2.10 Error Codes

If you are using function calls 38H-57H with DOS
version 2.10, to check if an error has occurred, check
for the following error cooes in the AX register.

Function Error Function Error
Call Codes Call Codes
Number Number

38H 2 44H 1,3,5,6

39H 3,5 45H 4,6

3AH 3,5,15 46H 4,6

3BH 3· 47H 15

3CH 3,4,5 48H 7,8

3DH 2,3,4,5,12 49H 7,9

3EH 6 4AH 7,8,9

3FH 5,6 4BH 1,2,3,5,8,10,11

401-1 5,6 4EH 2,3,18

41H 2,3,5 4FH 18

42H 1,6 56H 2,3,5,17

43H 1,2,3,5 57H 1,6

6-37

6-38

Preliminary

Get Extended Error (DOS 3.00 and 3.10)

The Get Extended Error function call (59H) is
intended to provide a common set of error codes and to
supply more extensive information about the error to
the application. The information returned from
function call 59H, in addition to the error code, is the
error class, the locus, and the recommended action.
The error class provides information about the error
type (hardware, internal, system, etc.). The locus
provides information about the area involved in the
failure (serial device, block device, network, or
memory). The recommended action provides a default
action for programs that do not understand the specific
error code.

Programs written from now on are expected to use the
extended error support both from interrupt 24 H hard
error handlers and after any interrupt 21H function
calls.

FCB function calls report an error by returning FFH in
AL. Handle function calls report an error by setting
the carry flag and returning the error code in AX.
Interrupt 21H handle function calls for DOS 2.00 and
2.10 continue to return the error codes 1-18. Interrupt
24 H handle function calls continue to return error
codes 0-12. But the application can obtain any of the
error codes listed in the extended error codes table by
issuing function call 59H. Handle function calls for
DOS 3.00 and 3.10 can return any of the error codes.
However, it is recommended that the function call is
followed by function ca1159H to obtain the error class,
the locus, and the recommended action.

l~ehnUnary

In order to create a common error table, error codes
0-12 from interrupt 24 H correspond to error codes
19-31 in the extended error codes table. When a FAIL
option is specified in the interrupt 24H error handler,
issuing function call 59H returns error code 83 (FAIL
on interrupt 24H).

The Extended Error Codes are grouped as follows:

o
01-18

19-31

32-88

No error
Error mappings for DOS 2.00/2.10 !NT 21H
errors
Error mappings for DOS 2.00/2.10 !NT 24H
errors
Errors for DOS 3.00/3.10

Note: Do not code to specific error codes. H you
encounter an extended error code you do not
recognize, perform the recommended action.
Refer to "Actions" in this chapter for more
information.

6-39

6-40

Preliminary

Extended Error Codes

Many of the function calls return the carry flag clear if
the operation was successful. If an error condition was
encountered, the carry flag is set. To obtain
information about the error, such as the error class,
locus, and recommended action, issue the Get Extended
Error function call 59H.

Code Meaning
1 Invalid function number
2 File not found
3 Path not found
4 Too many open files (no handles left)
5 Access denied
6 Invalid handle
7 Memory control blocks destroyed
8 Insufficient memory
9 Invalid memory block address
10 Invalid environment
11 Invalid format
12 Invalid access code
13 Invalid data
14 Reserved
15 Invalid drive was specified
16 Attempt to remove the current directory
17 Not same device
18 No more files
19 Attempt to write on write-protected diskette
20 Unknown unit
21 Drive not ready
22 Unknown command
23 Data error (CR C)
24 Bad request structure length
25 Seek error
26 Unknown media type
27 Sector not found
28 Printer out of paper
29 Write fault
30 Read fault
31 General failure
32 Sharing violation
33 Lock violation

34
35
36
37-49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73-79
80
81
82
83
84
85
86
87
88

Preliminary

Invalid disk change
FCB unavailable
Sharing buffer overflow
Reserved
Network request not supported
Remote computer not listening
Duplicate name on network
Network name not found
Network busy
Network device no longer exists
Net BIOS command limit exceeded
Network adapter hardware error
Incorrect response from network
Unexpected network error
Incompatible remote adapter
Print queue full
Not enough space for print file
Print file was deleted
Network name was deleted
Access denied
Network device type incorrect
Network name not found
Network name limit exceeded
Net BIOS session limit exceeded
Temporarily paused
Network request not accepted
Print or disk redirection is paused
Reserved
File exists
Reserved
Cannot make directory entry
Fail on !NT 24
Too many redirections
Duplicate redirection
Invalid password
Invalid parameter
Network device fault

6-41

6-42

Preliminary

Error Gasses

This value provides information about the type of error.

Value Description
1 Out of Resource: Out of space, channels, etc.
2 Temporary Situation: Something that is

expected to "go away" with time. Note that
this is not an error condition, but a "situation"
such as file locked, etc.

3 Authorization: Permission problem.
4 Internal: Internal error in system software. A

situation judged to be a system software bug
rather than a user or system failure.

S Hardware Failure: A serious problem not the
fault of user program.

6 System Failure: Serious failure of system
software. Not directly the fault of the user.
For example, configuration files missing or
wrong.

7 Application Program Error: Inconsistent
requests, etc.

8 Not F~und: File/item not found.
9 Bad Format: File/item of invalid format, type,

or otherwise invalid or unsuitable.
10 Locked: File/item interlocked.
11 Media: Media failure (wrong disk, CRC

error ...). Wrong disk in drive, bad spot on
media, etc.

12 Already Exists: Collision with existing item,
such as trying to declare a machine name that
alread y exists.

13 Unknown: Classification doesn't exist or is
inappropriate.

Preliminary

Actions

Note that these are recommended actions. In the most
critical cases, the application will analyze the error
codes and take specific action. These defa ul ts are for
programs that do not understand the specific error
code.

Value
1

2

3

4

5

6
7

Description
Retry: Retry a few times, then prompt user to
determine if the program should continue or
be aborted.
Delay Retry: Retry after pause (a few times),
then prompt user to determine if the program
should continue or be aborted.
User: Ask user to reenter input. Typically, a
bad drive letter or bad filename was presented
in the system call. Naturally, if the value was
"built into" the program and not directly
keyed in by the user, then the program would
not, in fact, "ask the user to reenter input."
This action means that if the data came from a
user, the best action is to tell him to try again.
Abort: Abort application with cleanup. The
application cannot proceed, but the system is
sufficiently healthy that the application should
try an orderly shutdown.
Immediate Exit: Abort application
immediately, skip cleanup. We do not
recommend that the application try to close
files, update indexes, but that it exit as soon as
possible.
Ignore: Ignore.
Retry After User Intervention: The user needs
to perform some action (like taking out a
diskette and putting in a different one); then
the operation should be retried.

6-43

Preliminary

Locus

This value provides additional information to help
locate the area involved in the failure.

Value
1
2

3
4
5

Description
Unknown: Nonspecific. Not appropriate.
Block Device: Related to random access mass
storage (disk).
Net: Related to the network.
Serial Device: Related to serial devices.
Memory: Related to random access memory.

ASCIIZ Strings

6-44

Several of the function calls accept an ASCIIZ string as
input. This consists of an ASCII string containing an
optional drive specifier, followed by a directory path
and in some cases a filename. The string is terminated
by a byte of binary zeros. For example:

B: \LEVELl \LEVEL2 \ FILEl

followed by a byte of zeros.

The maximum size of an ASCIIZ string is 128 bytes,
including the drive, colon, and null terminator.

Note: All function calls that accept path names
accept a forward slash or a backslash as a path
separator character.

Preliminary

Network Paths

For DOS 3.10, several of the function calls accept a
network path as input if the IBM PC Network is
loaded. A network path consists of an ASCII string
containing a computer name, followed by a directory
path, and in some cases a filename. The string cannot
contain a drive specifier. The string is terminated by a
byte of binary zeros. For e~ample,

\ \SERVERl \LEVELI \LEVEL2\FILEI

All function calls that accept an ASCIIZ path as input,
also accept a network path as input. Two function calls
that do not accept a network path as input are Change
Current Directory (3BH) and Find First Matching File
(4EH).

Network Access Rights

The explanation of some function calls contains a
section under remarks called "Network Access Rights."
Any information under "Network Access Rights" tells
you the access requirements for a directory that a
computer on the network needs to be able to execute
the function call when using DOS 3.10. For example,
suppose you want to execute function call SBH (Create
New File). You must have Read/Write/Create or
Write/Create access to the directory to be able to
create a file. If you have Read Only or Write Only
access (no Create access), you cannot create a file in
the directory.

6-45

Preliminary

File Handles

6-46

The extended function calls (3CH-62H) that
supporting files or devices use an identifier known as a
"handle." When you create or open a file or device
with these calls, a 16-bit binary value is returned in AX
This is the handle (sometimes known as a token) that
you will use in referring to the file after it's been
opened.

The following handles are predefined by DOS and can
be used by your program. You do not need to open
them before using them:

Hex Value Meaning

0000 Standard input device. Input can be
redirected.

0001 Standard output device. Output can be
redirected.

0002 Standard error output device. Output
cannot be redirected.

0003 Standard auxiliary device.

0004 Standard printer device.

Preliminary

Using DOS Functions

Most of the function calls require input to be passed to
them in registers. After setting the proper register
values, the function may be used in one of these ways:

1. Place the function number in AH and execute a
long call to offset SOH in your program segment
prefix.

2. Place the function number in AH and issue
interrupt type 21H. This is the preferred method
of using DOS function calls.

3. There is an additional mechanism provided for
preexisting programs that were written with
different calling conventions. This method should
be avoided for all new programs. The function
num ber is placed in the CL register and other
registers are set according to the function
specification. Then an intra segment call is made to
location S in the current code segment. That
location contains a long call to the DOS function
dispa tcher . Register AX is al wa ys destroyed if this
mechanism is used; otherwise, it is the same as
normal function calls. This method is valid only for
function calls (OOH-24H).

6-47

6-48

Preliminary

Notes:

1. All FCB function calls do not,allow invalid
characters (ODH-29H).

2. Device names cannot end in a colon (:).

3. The contents of the AX register may be altered by
any of the function calls. Even if no error code is
returned in AX, the user cannot be guaranteed that
AX is unchanged.

4. Function calls 01H through OCH use the standard
devices listed in the "File Handles" section. Refer
to "File Handles" on page 6-46 for more
information.

Preliminary

OOH
Program Terminate

Purpose: Terminates the execution of a program.

On Register Contents
Entry

AH DOH

CS Points to PSP

On Register Contents
Return

NONE

Remarks: The terminate, Ctrl-Break, and critical error exit
addresses are restored to the values they had on
entry to the terminating program, from the values
saved in the program segment prefix. All file buffers
are flushed and the handles opened by the process
are closed. Any files that have changed in length and
not closed are not recorded properly in the directory.
Control transfers to the terminate address. This call
performs exactly the same function as interrupt 20H.
It is the program's responsibility to ensure that the
CS register contains the segment address of its
program segment prefix control block before calling
this function.

6-49

Preliminary

OlH
Keyboard Input

Purpose: Waits for a character to be read at the standard input
device (unless one is ready), then echoes the
character to the standard output device and returns
the character in AL.

On Register Contents
Entry

AH OIH

On Register Contents
Return

AL Character from the standard input
device

Remarks: The character is checked for a Ctrl-Break. If
Ctrl-Break is detected, an interrupt 23H is executed.

6-50

Note: For function call OlH, extended ASCII
codes require two function calls. The first call
returns OOH as an indicator that the next call
will return an extended code. Refer to
"Extended ASCII Codes" in the beginning of
this chapter for a table of Extended ASCII
codes.

Preliminary

02H
Display Output

Purpose: Outputs the character in DL to the standard output
device.

On Register Contents
Entry

AH 02H

DL Character

On Register Contents
Return

NONE

Remarks: If the character in DL is a backspace (08), the cursor
is moved left on position (nondestructive). If a
Ctrl-Break is detected after the output, an interrupt
23H is executed.

6-51

Preliminary

03H
Auxiliary Input

Purpose: Waits for a character from the standard auxiliary
device, then returns that character in AL.

On Register Contents
Entry

AH 03H

On Register Contents
Return

AL Character from the auxiliary
device

Remarks: Auxiliary (AUX, COM1, COM2) support is
unbuffered and noninterrupt driven.

6-52

At startup, DOS initializes the first auxiliary port to
2400 baud, no parity, one stop bit, and 8-bit word.

The auxiliary function calls (03H and 04H) do not
return status or error codes. For greater control, it is
recommended that you use the ROM BIOS routine
(interrupt 14H) or write an AUX device drivers and
use IOCTL.

rreummary

04H
Auxiliary Output

Purpose: Outputs the character in DL to the standard auxiliary
device.

On Register Contents
Entry

AH 04H

DL Character

On Register Contents
Return

NONE

6-53

Preliminary

05H
Printer Output

Purpose: Outputs the character in DL to the standard printer
device.

On Register Contents
Entry

AH OSH

DL Character

On Register Contents
Return

NONE

6-54

.Prelimmary

06H
Direct Console I/o

Purpose: Waits for a character from the standard input device
if one is ready.

On Register Contents
Entry

AH 06H

DL FFH, for console input
OOH-FEH, for console output

On Register Contents
Return

AL See description below

Remarks: If DL is FFH, AL returns with the zero flag clear
and an input character from the standard input
device if one is ready. If a character is not ready, the
zero flag will be set.

If DL is not FFH, DL is assumed to have a valid
character that is output to the standard output
device. This function does not check for CtrI-Break,
or CtrI-PrtSc.

Note: For function call 06H, extended ASCII
codes require two function calls. The first call
returns OOH as an indicator that the next call
will return an extended code. Refer to
"Extended ASCII Codes" in the beginning of
this chapter for a table of Extended ASCII
codes.

6-55

Preliminary

07H
Direct Console Input Without Echo

Purpose: Waits for a character to be read at the standard inpu1
device (unless one is ready), then returns the
character in AL.

On Register Contents
Entry

AH 07H

On Register Contents
Return

AL Character from standard input
device

Remarks: As with function call 06H, no checks are made on
the character.

6-56

Preliminary

08H
Console Input Without Echo

Purpose: Waits for a character to be read at the standard input
device (unless one is ready) and returns the character
inAL.

On Register Contents
Entry

AH 08H

On Register Contents
Return

AL Character from standard input
device

Remarks: The character is checked for Ctrl-Break. If
Ctrl-Break is detected, an interrupt 23H is executed.

Note: For function call 08H, extended ASCII
codes require two function calls. The first call
returns OOH as an indicator that the next call
will return an extended code. Refer to
"Extended ASCII Codes" in the beginning of
this chapter for a table of Extended ASCII
codes.

6-57

Preliminary

09H
Print String

Purpose: Outputs the characters in the print string to the
standard output device.

On Register Contents
Entry

AH 09H
DS:DX Pointer to the character string

On Register Contents
Return

NONE

Remarks: The character string in memory must be terminated
by a $ (24H). Each character in the string is output
to the standard output device in the same form as
function call 02H.

6-58

Preliminary

OAH
Buffered Keyboard Input

Purpose: Reads characters from the standard input device and
places them in the buffer beginning at the third byte.

On Register Contents
Entry

AH OAH

DS:DX Pointer to an input buffer

On Register Contents
Return

NONE

Remarks: The first byte of the input buffer specifies the
number of characters the buffer can hold. This value
cannot be zero. Reading the standard input device
and filling the buffer continues until Enter is read. If
the buffer fills to one less than the maximum number
of characters it can hold, each additional character
read is ignored and causes the bell to ring, until Enter
is read. The second byte of the buffer is set to the
number of characters received, excluding the carriage
return (ODH), which is always the last character.

6-59

Preliminary

OBH
Check Standard Input Status

Purpose: Checks if there is a character available from the
standard input device.

On Register Contents
Entry

AH OBH

On Register Contents
Return

AL FFH If the character is available
from the standard input
device

OOH If no character is available
from the standard input
device

Remarks: If a character is available from the standard input
device, AL is FFH. Otherwise, AL is OOH. If a
Ctrl-Break is detected, an interrupt 23H is executed.

6-60

Preliminary

OCH
Clear Keyboard Buffer and Invoke a

Keyboard Function

Purpose: Clears the standard input buffer of any pre typed
characters, then executes the function call number in
AL (only OlHJ 06H, 07H, 08H, and OAH are
allowed).

On Register Contents
Entry

AH OCH

AL Function number

On Register Contents
Return

NONE

Remarks: This forces the system to wait until a character is
typed.

6-61

Preliminary

ODH
Disk Reset

Purpose: Flushes all file buffers.

On Register Contents
Entry

AH ODH

On Register Contents
Return

NONE

Remarks: Files changed in size but not closed are not properly
recorded in the disk directory.

6-62

Preliminary

OEH
Select Disk

Purpose: Selects the drive specified in DL (O=A, 1 =B, etc.)
(if valid) as the default drive.

On Register Contents
Entry

AH OEH

DL Drive number (O=A, 1 =B, etc.)

On Register Contents
Return

AL Total number of drives

Remarks: The number of drives (total of diskette and fixed
disk drives) is returned in AL.- For DOS 3.00 and
3.10, the minimum value returned in AL is 5. If the
system has only one diskette drive, it is counted as
two to be consistent with the philosophy of thinking
of the system as having logical drives A and B.

6-63

Preliminary

OFH
Open File

Purpose: Searches the current directory for the named file and
AL returns FFH if it is not found. If it is found, AL
returns OOH and the FCB is filled as described
below.

On Register Contents
Entry

AH OFH

DS:DX Pointer to an unopened FCB

On Register Contents
Return

AL OOH If file opened
FFH If file not opened

Remarks: If the drive code was 0 (default drive), it is changed
to the actual drive used (l=A, 2=B, etc.). This
allows changing the default drive without interfering
with subsequent operations on this file. The current
block field (FCB bytes C-D) is set to zero. The size
of the record to be worked with (FCB bytes E-F) is
set to the system default of 80H. The size of the file
and the date are set in the FCB from information
obtained from the directory. You can change the
default value for the record size (FCB bytes E-F) or
set the random record size and/or current record
field. Perform these actions after the open but
before any disk operations.

6-64

The file is opened in compatibility mode. For
information on compatibility mode, refer to function
ca1l3DH in this chapter.

Preliminary

lOH
Close File

Purpose: Closes a file after a file write.

On Register Contents
Entry

AH lOH

DS:DX Pointer to an opened FCB

On Register Contents
Return

AL DOH If the file is found
FFH If the file is not found in

the current directory

Remarks: This function call must be done on open files that are
no longer needed, and after file writes to ensure all
directory information is updated. If the file is not
found in its correct position in the current directory,
it is assumed the diskette was changed and AL
returns FFH. Otherwise, the directory is updated to
reflect the status in the FCB, the buffers for that file
are flushed, and AL returns DOH.

6-65

Preliminary

IlH
Search for First Entry

Purpose: Searches for the first matching filename.

On Register Contents
Entry

AH 11H

DS:DX Pointer to an unopened FCB

On Register Contents
Return

AL DOH If matching filename found
FFH If matching filename was

not found

Remarks: The current disk directory is searched for the first
matching filename. If none are found, AL returns
FFH. For DOS 2.10, ?s are allowed in the filename.
For DOS 3.00 and 3.10, global filename characters
are allowed. If a matching filename is found, AL
returns OOH and the locations at the disk transfer
address are set as follows:

6-66

• If the FCB provided for searching was an
extended FCB, then the first byte at the disk
transfer address is set to FFH followed by 5
bytes of zeros, then the attribute byte from the
search FCB, then the drive number used (1 =A,
2=B, etc.), then the 32 bytes of the directory
entry. Thus, the disk transfer address contains a
valid unopened extended FCB with the same
search attributes as the search FCB.

Preliminary

IlH
Search for First Entry

• If the FCB provided for searching was a
standard FCB, then the first byte is set to the
drive number used (1 =A, 2=B), and the next
32 bytes contain the matching directory entry.
Thus, the disk transfer address contains a valid
unopened normal FCB.

Notes: If an extended FCB is used, the following
search pattern is used:

1. If the FCB attribute byte is zero, only normal
file entries are found. Entries for volume label,
sub-directories, hidden and system files, are not
returned.

2. If the attribute field is set for hidden or system
files, or directory entries, it is to be considered
as an inclusive search. All normal file entries
plus all entries matching the specified attributes
are returned. To look at all directory entries
except the volume label, the attribute byte may
be set to hidden + system + directory (all 3 bits
on).

3. If the attribute field is' set for the volume label,
it is considered an exclusive search, and on{y the
volume label entry is returned.

The attribute bits are defined in "DOS Disk
Directory" on page 5-10.

6-67

Preliminary

12H
Search for Next Entry

Purpose: Searches the current directory for the next matching
filename.

On Register Contents
Entry

AH 12H

DS:DX Pointer to an the unopened FCB
specified from the previous Search
First (11H) or Search Next (12H).

On Register Contents
Return

AL OOH If matching filename found
FFH If matching filename not

found

Remarks: After a matching filename has been found using
function call IlH, function 12H may be called to
find the next match to an ambiguous request. For
DOS 2.10, ?s are allowed in the filename. For DOS
3.00 and 3.10, global filename characters are
allowed.

6-68

The DTA contains information from the previous
Search First or Search Next. All of the FCB except
for the namel extension field is used to keep
information necessary for continuing the search, so
no disk operations may be performed with this FCB
between a previous function I1H or 12H call and
this one.

Preliminary

13H
Delete File

[>urpose: Deletes all current directory entries that match the
specified filename. The specified filename cannot be
read-only. .

On Register Contents
Entry

AH 13H

DS:DX Pointer to an unopened FCB

On Register Contents
Return

AL OOH File deleted
FFH If directory entry match

was not found

~emarks: All matching current directory entries are deleted.
The global filename character "?" is allowed in the
filename. If no directory entries match, AL returns
FFH; otherwise AI.. returns OOH.

If the file is specified in read-only mode, the file is
not deleted.

Note: Close open files before deleting them.

Network Access Rights: Requires Create access
rights.

6-69

Preliminary

14H
Sequential Read

Purpose: Loads the record addressed by the current block
(FCB bytes C-D) and the current record (FCB byte
IF) at the disk transfer address (DTA) , then the
record address is incremented.

On Register .Contents
Entry

AH I4H

DS:DX Pointer to an opened FCB

On Register Contents
Return

AL OOH If read was successfully
completed

OIH If EOF (no data read)
02H If DTA too small (read

canceled)
03H If EOF (a partial record

was read and filled out with
zeros

Remarks: The length of the record is determined by the FCB
record size field.

6-70

Network Access Rights: Requires Read access
rights.

Preliminary

1SH
Sequential Write

Purpose: Writes the record addressed by the current block and
record fields (size determined by the FCB record
size field) from the disk transfer address. If records
are less than the sector size, the record is buffered
for an eventual write when a sector's worth of data is
accumulated. Then the record address is
incremented.

On Register Contents
Entry

AH ISH
DS:DX Pointer to an opened FCB

On Register Contents
Return

AL OOH If write was successfully
completed

OIH If diskette is full (write
canceled)

02H If DTA too small (write
canceled)

Remarks: If the file is specified in read-only mode, the
sequential write is not performed.

Network Access Rights: Requires Write access
rights.

6-71

Preliminary

16H
Create File

Purpose: Searches the current directory of the specified drive
for a matching entry.

On Register Contents
Entry

AH 16H

DS:DX Pointer to an unopened FCB

On Register Contents
Return

AL OOH If file created (matching
entry found or empty entry
found)

FFIf If file not created (full
directory or disk and no
matching directory entry)

Remarks: If a matching entry is found it is reused. If no match
is found, the directory is searched for an empty
entry. If a match is found, the entry is initialized to a
zero-length file, the file is opened (see function call
OFH), and AL returns OOH.

6-72

The file may be marked hidden during its creation by
using an extended FCB containing the appropriate
attribute byte.

Network Access Rights: Requires Create access
rights.

Preliminary

17H
Rename File

Purpose: Changes every matching occurrence of the first
filename in the current directory of the specified
drive to the second (with the restriction that two files
cannot have the same name and extension.)

On Register Contents
Entry

AH 17H

DS:DX Pointer to a modified FCB

On Register Contents
Return

AL OOH H file renamed (matching
filename found)

FFH H no matching filename
found or if an attempt to
rename an existing filename

Remarks: The modified FCB has a drive code and filename in
the usual position, and a second filename starting 6
bytes after the first (DS:DX + IlH) in what is
normally a reserved area. H "1"s appear in the
second name, then the corresponding positions in the
original name are unchanged.

H the file is specified in read-only mode, the file is
not renamed.

Network Access Rights: Requires Create access
rights.

6-73

Preliminary

19H
Current Disk

Purpose: Determines the current default drive.

On Register Contents
Entry

AH 19H

On Register Contents
Return

AL Current default drive (O=A, 1 =B,
etc.)

Remarks: AL returns with the cooe of the current default drive
(O=A, l=B, etc.).

6-74

Preliminary

1 All
Set Disk Transfer Address

~urpose: Sets the disk transfer address to DS:DX.

On Register Contents
Entry

AH lAR

DS:DX Disk transfer address

On Register Contents
Return

NONE

lemarks: DOS does not allow disk transfers to wrap around
within the segment, or overflow into the next
segment. If you do not set the DTA, the default
DTA is offset 80H in the program segment prefix.

Note: You can get the DTA using function call
2FH.

6-75

IBH
Allocation Table Infonnation

Purpose: Returns information about the allocation table for
the default drive.

On Register Contents
Entry

AH IBH

On Register Contents
Return

DS:BX Pointer to the media descriptor
byte for the default drive

DX Number of allocation units

AL Number of sectors/allocation unit

ex Size of the physical sector

Remarks: For more information on DOS disk allocation, refer
to "DOS Disk Directory" on page 5-10. Also, refer
to function call36H (Get Disk Free Space).

6-76

Preliminary

lCH
Allocation Table Information for

Specific Device

~urpose: Returns allocation table information for a specific
device.

On Register Contents
Entry

AlI lCH
.. -

DL Drive number

On Register Contents
Return

DS:BX Points to the media descriptor byte
of the drive specified in DL

AL Number of sectors/allocation unit

DX Number of allocation units

CX Size of the physical sector

Remarks: This call is identical to call1BH except that, on
entry, DL contains the number of the drive that
contains the needed information (0 = default, 1 =
A, etc.). For more information on DOS disk
allocation, refer to "DOS Disk Directory" on page
5-10. Also, refer to function call36H (Get Disk
Free Space).

6-77

Preliminary

21H
Random Read

Purpose: Reads the record addressed by the current block and
current record fields into memory at the current disk
transfer address.

On Register Contents
Entry

AH 2IH

DS:DX Pointer to an opened FCB

On Register Contents
Return

AL OOH If read was successfully
completed

OIH If ·EOP (no data read)
02H If DTA too small (read

canceled)
03H If BOP (a partial record

was read and filled out with
zeros)

Remarks: The current block arid current record fields are set to
agree with the random record field. Then the record
addressed by these fields is read into memory at the
current disk transfer address.

6-78

Network Access Rights: Requires Read access
rights.

Preliminary

22H
Random Write

~urpose: Writes the record addressed by the current block and
current record fields from the current disk transfer
address.

On Register Contents
Entry

AH 22H

DS:DX Pointer to an opened FCB

On Register Contents
Return

AL OOH If write was successfully
completed

OtH If diskette is full (write
canceled)

02H If DTA too small (write
canceled)

~emarks: The current block and current record fields are set to
agree with the random record field. Then the record
addressed by these fields is written (or in the case of
records not the same as sector sizes - buffered)
from the disk transfer address.

If the fil':! is STX _Lfied in read-only mode, the random
write is not r>;;;:fcrmed.

Network Access Rights: Requires Write access
rights.

6-79

238
File Size

Preliminary

Purpose: Searches the diskette directory for an entry that
matches the specified file and sets the FCBs random
record field to the number of records in the file.

On Register Contents
Entry

AH 23H

DS:DX Pointer to an unopened FCB

On Register Contents
Return

AL DOH If the directory entry is
found

FFH If tht:. dirp.ctory entry not
found

Remarks: The diskette directory is searched for the matching
entry. IT a matching entry is found, the random
record field is set to the number of records in the file
(in terms of the record size field rounded up). IT no
matching entry is found, AL returns FFH.

6-80

Note: IT you do not set the FCB record size
field before using this function, incorrect
information is returned.

Preliminary

24H
Set Relative Record Field

»urpose: Sets the random record field to the same file address
as the current block and record fields.

On Register Contents
Entry

AH 24H

DS:DX Pointer to an opened FCB

On Register Contents
Return

NONE

lemarks: You must call this function before you perform
random read and writes, and random block read and
writes.

6-81

Preliminary

25H
Set Interrupt Vector

Purpose: Sets the interrupt vector table for the interrupt
number.

On Register Contents
Entry

AH 25H

DS:DX Address. of interrupt handling
routine

AL Interrupt number

On Register Contents
Return

NONE

Remarks: The interrupt vector table for the interrupt number
specified in AL is set to address contained in
DS:DX. Use function call35H (Get Vector) to
obtain the contents of the interrupt vector.

6-82

Preliminary

26H
Create New Program Segment

)urpose: Creates a new program segment.

On Register Contents
Entry

AH 26H

DX Segment number for the new
program segment

On Register Contents
Return

NONE

l.emarks: The entire lOOH area at location 0 in the current
program .,egment is copied into ... ocation 0 in t1:. new
program segment. The memory size information at
location 6 in the new segment is l. 'pdated and the
ClL. {ent termination, Ctrl-Break ~rit and c...ritieal error
addresses from interrupt vector taole entries f ~r
interrupts ~2H, 23H, and 24H are saved in the new
prO~1.m segment starting at OAR. They are ,:estored
from ~his area when the prr:>grqm teimina' s.

Note:" lU should avoid us!.. ,~ tltb call. We
J.·ecomnJ.~nd that you use tLe EXL': function
call4PH instead.

6-83

Preliminary

27H
Random Block Read

Purpose: Reads the specified number of records (in terms of
the record size field) from the file address specified
by the random record field into the disk transfer
address.

On Register Contents
Entry

AH 27H

DS:DX Pointer to an opened FCB

ex Number of records to 00 read

On Register Contents
Return

AL OOH If rt;ad was successfully
completed

OlH If EOF (no data read)
02H If DT A too small (read

canceled)
03H If EOF (a partial record

was read and filled out with
zeros)

ex Actual number of records read

Remarks: The random record field and the current

6-84

block/ record fields are set to address the next record
(the first record not read).

Network Access Rights: Requires Read access
rights.

rrellmmary

28H
Random Block Write

Purpose: Writes the specified number of records from the file
address specified by the random record field into the
disk transfer address.

On Register Contents
Entry

AH 28R

DS:DX Pointer to an opened FCB

CX Number of records to be written

On Register Contents
Return

AL OOR If write was successfully
completed

0IR If diskette is full (write
canceled)

02R If DTA too small (write
canceled)

CX Actual number of records written

Remarks: If there is insufficient space on the disk, AL returns
0IR and no records are written. If CX is zero upon
entry, no records are written, but the file is set to the
length specified by the random record field, whether
longer or shorter than the current file size.
(Allocation units are released or allocated as
appropriate.)

Network Access Rights: Requires Write access
rights.

6-85

Preliminary

29H
Parse Filename

Purpose: Parses the specified filename.

On Register Contents
Entry

AlI 29H

DS:SI Pointer to a command line to parse

ES:DI Pointer to a portion of memory
that will be filled with an
unopened FCB

AL Bit value controls parsing

On Register Contents
Return

AL OOH If no global filename
characters in command line

01H If global filename
characters used in
command line

FFH If drive specifier invalid

DS:SI Points to the first character after
the parsed filename

ES:DI Points to the first byte of the
formatted FCB

Remarks: The contents of AI.. are used to determine the action
to take, as shown below:

<must =0>
bit: 7 6 5 4 3 2 1 0

6-86

Preliminary

29H
Parse Filename

If bit 0 = 1, then leading separators are scanned off
the command line at DS:SI. Otherwise, no scan-off
of leading separators takes place.

If bit 1 = 1, then the drive ill byte in the result FCB
will be set (changed) only if a drive was specified in
the command line being parsed.

If bit 2 = 1, then the filename in the FCB will be
changed only if the command line contains a
filename.

If bit 3 = 1, then the filename extension in the FCB
will be changed only if the command line contains a
filename extension.

Filename separators include the following characters
:.;, = + plus TAB and SPACE. Filename
terminators include all of these characters plus, <,
>, :, /, ", [,], and any control characters.

The command line is parsed for a filename of the
form d:/ilename.ext, and if found, a corresponding
unopened FCB is created at ES:DI. If no drive
specifier is present, it is assumed to be all blanks. If
the character >I< appears in the filename or extension,
then it and all remaining characters in the name or
extension are set to ?

If either? or >I< appear in the filename or extension,
AL returns 01H; if the drive specifier in AL retruns
FFH; otherwise OOH.

DS:SI returns pointing to the first character after the
filename and ES:DI points to the first byte of the
formatted FCB. If no valid filename is present,
ES:DI + 1 contains a blank.

6-87

Preliminary

2AH
Get Date

Purpose: Returns the day of the week, year, month and date.

On Register Contents
Entry

AH 2AH

On Register Contents
Return

AL Day of the week (O=SUN
6= SAT)

ex Year (1980 - 2099)

DR Month (1 - 12)

DL Day (1- 31)

Remarks: If the time-of-day clock rolls over to the next day,
the date is adjusted accordingly, taking into account
the number of days in each month and leap years.
Unless you are using the IBM ROM which ignores
date roll overs past the first.

6-88

Purpose: Sets the date.

On Register Contents
Entry

AH 2BH

ex Year (1980 - 2099)

DH Month (1 - 12)

DL Day (1- 31)

On Register Contents
Return

AL OOH, if the date was valid
FFH, if the date not valid

Preliminary

2BH
Set Date

Remarks: On entry, eX:DX must have a valid date in the same
format as returned by function call 2AH.

On return, AL returns OOH if the date is valid and
the set operation is successful. AL returns FFH if
the date is not valid.

6-89

Preliminary

2CH
Get Time

Purpose: Returns the time; hours, minutes, seconds and
hundredths of seconds.

On Register Contents
Entry

AH 2CH

On Register Contents
Return

CH Hour (0 -23)

CL Minutes (0 - 59)

DH Seconds (0 - 59)

DL Hundredths (0 - 99)

Remarks: On entry, AlI contains 2CH. On return, CX:DX
contains the time-of-day. Time is actually
represented as four 8-bit binary quantities as follows.
CH has the hours (0-23), CL has minutes (0-59),
DH has seconds (0-59), DL has 1/100 seconds

6-90

. (0-99). This format is readily converted to a
printable form yet can also be used for calculations,
such as subtracting one time value from another.

Purpose: Sets the time.

On Register Contents
Entry

AH 2DH

CH Hour (0 -23)

DH Seconds (0 - 59)

CL Minutes (0 - 59)

DL Hundredths (0 - 99)

On Register Contents
Return

AL DOH, if the time was valid
FFH, if the time not valid

Preliminary

2DH
Set Time

Remarks: On entry, CX:DX has time in the same format as
returned by function 2CH. On return, if any
component of the time is not valid, the set operation
is aborted and AL returns FFH. If the time is valid,
AL returns DOH.

6-91

Preliminary

2EH
Set/Reset Verify Switch

Purpose: Sets the verify switch.

On Register Contents
Entry

AH 2EH

AL OOH, to set verify off
o IH, to set verify on

On Register Contents
Return

NONE

Remarks: On entry, AL must contain OIH to tum verify on, or
OOH to tum verify off. When verify is on, DOS
performs a verify operation each time it performs a
disk write to assure proper data recording. Although
disk recording errors are very rare, this function has
been provided for applications in which you may
wish to verify the proper recording of critical data.
You can obtain the current setting of the verify
switch through function call 54 H.

6-92

Note: Verification is not supported on data
written to a network disk.

Preliminary

2FH
Get Disk Transfer Address (DTA)

Purpose: Returns the current disk transfer address.

On Register Contents
Entry

AH 2FH

On Register Contents
Return
ES:BX The current DTA

Remarks: On entry, AH contains 2FH. On return, ES:BX
contains the current Disk Transfer Address. You
can set the DTA using function call1AH.

6-93

Preliminary

30H
Get DOS Version Number

Purpose: Returns the DOS version number.

On Register Contents
Entry

AH 30H

On Register Contents
Return

BX OOOOH

ex OOOOH

AL Major version number

AH Minor version number

Remarks: On entry, AH contains 30H. On return, BX and ex
are set to O. AL contains the major version number.
AH contains the minor version number. For
example, for DOS 3.10, the major version number is
03H and the minor version number is OAH.

6-94

Note: If AL returns a major version number of
zero, then it can be assumed that the DOS
version is pre-DOS 2.00.

Preliminary

3tH
Terminate Process and Remain Resident

Purpose: Terminates the current process and attempts to set
the initial allocation block to the memory size in
paragraphs. .

On Register Contents
Entry

AH 31H

AL Return code

DX Memory size in paragraphs

On Register Contents
Return

NONE

Remarks: On entry, AL contains a binary return code. DX
contains the memory size value in paragraphs. This
function call does not free up any other allocation
blocks belonging to that process. Files opened by
the process are not closed when the call is executed.
The return code passed in AL is retrievable by the
parent through Wait (function call 4DH) and can be
tested through the ERRORLEVEL batch
subcommands.

Note: Memory can be more efficiently used if
the block containing a copy of the environment
is deallocated before terminating. This can be
done by loading ES with the segment contained
in 2C of the PSP, and issuing function call 49H
(Free Allocated Memory).

6-95

Preliminary

33H
CtrI-Break Check

Purpose: Set or get the state of BREAK (Ctrl-Break
checking).

On Register Contents
Entry

AH 33H

AL OOH, to request current state
OlH, to set the current state

DL OOH, to set current state OFF
OlH, to set current state ON

On Register Contents
Return

DL The current state (OOH=OFF,
OlH=ON)

Remarks: On entry, AL contains OOH to request the current
state of Ctrl-Break checking, OIH to set the state. If
setting the state, DL must contain OOH for OFF or
OlH for ON. On return, if requesting the current
state, DL contains the current state (OOH = OFF,
OlH = ON).

6-96

Preliminary

35H
Get Vector

Purpose: Points to the interrupt handling routine.

On Register Contents
Entry

AH 35H

AL Interrupt number

On Register Contents
Return

ES:BX Pointer to the interrupt handling
routine.

Remarks: On entry, AH contains 35H. AL contains a
hexadecimal interrupt number. On return, ES:BX
contains the CS:IP interrupt vector for the specified
interrupt. Use function call 25H (Set Interrupt
Vector) to set the interrupt vectors.

6-97

Preliminary

36H
Get Disk Free Space

Purpose: Returns the disk free space (available clusters,
clusters/drive, bytes/sector).

On Register Contents
Entry

AH 36H

DL Drive (O=default, 1 =A)

On Register Contents
Return

BX Available clusters

DX Clusters/ drive

ex Bytes/ sector

AX FFFFH if the drive in DL is
invalid, otherwise the number of
sectors per cluster

Remarks: If the drive number in DL was valid, BX contains the
number of available allocation units (clusters), DX
contains the total number of clusters on the drive,
ex contains the number of bytes per sector, and AX
contains the number of sectors per cluster.

6-98

Note: This call returns the same information in
the same registers (except for the FAT pointer)
as the get FAT pointer call (lBH).

Preliminary

38H (DOS 2.10)
Return Country Dependent Information

Purpose: Returns country dependent information.

On Register Contents
Entry

AH 38H

DS:DX Pointer to the 32-byte memory
area

AL Equals the function code

On Register Contents
Return

AX Error code if carry flag set

DS:DX Country data if carry flag not set

Remarks: On entry, DS:DX points to a 32-byte block of
memory in which returned information is passed and
AL contains a function code. In DOS 2.10, this
function code must be o. The following information
is pertinent to international applications:

WORD date/time format

BYTE ASCIIZ string currency symbol
followed by byte of zeros

BYTE ASCIIZ string thousands
separator followed by byte of zeros

BYTE ASCIIZ string decimal separator
followed by byte of zeros

24 bytes Reserved

6-99

Preliminary

38H (DOS 2.10)
Return Country Dependent Information

6-100

The time and date format has the following values
and meaning:

o = USA standard h:m:s mldly

1 = Europe standard h:m:s dimly

2 = Japan standard h:m:s d:m:y

Preliminary

389 (DOS 3.00 and 3.10)
Get or Set Country Dependent

Information

Purpose: Returns country dependent information.

Get Current Country

On Register Contents
Entry

AH 38H

DS:DX Pointer to the memory buffer
where the data will be returned

AL OOH ; to get current country
information

Country code; to get inf orma tion
for countries with a code <255

FFH ; to get country information
for countries with a code ~255

BX 16 bit country code; if AL=FFH

On Register Contents
Return

AX Error code if carry flag set

DS:DX Filled with the country
information (described below)

BX Country code

6-101

Preliminary

38H (DOS 3.00 and 3.10)
Get or Set Country Dependent
Inf orma tion

Set Current Country

On Register Contents
Entry

AH 38H

DX FFFFH

AL Country code for countries with a
code <255

FFH for countries with a code
~255

BX 16-bit country code; if AL=FFH

On Register Contents
Return

AX Error code if carry flag set

6-102

Preliminary

38H (DOS 3.00 and 3.10)
Get or Set Country Dependent

Information
Country Information

WORD Date format

5 BYTE currency symbol null terminated

2 BYTE thousands separator null terminated

2 BYTE decimal separator null terminated

2 BYTE date separator null terminated

2 BYTE time separator null terminated

1 BYTE bit field currency format
Bit 0 = 0 if the currency symbol

precedes the value
= 1 if the currency symbol

is after the value
Bit 1 = number of spaces between

the value and the currency
symbol (0 or 1)

1 BYTE number of significant decimal digits in
currency

1 BYTE time format
Bit 0 = 0 if 12-hour clock
Bit 0 = 1 if 24-hour clock

2 WORDS
Case map call address

2 BYTES Data list separator null terminated

5 WORDS Reserved

6-103

Preliminary

38H (DOS 3.00 and 3.10)
Get or Set Country Dependent
Information

6-104

Case Map Call Address: The register contents for
the case map call are:

On Register Contents
Entry

AL ASCII code of character to be
converted to uppercase

On Register Contents
Return

AL ASCII code of the uppercase input
character

The case map call address is in a form sui ta ble for a
FAR call indirect.

The date format has the following values and
meaning:

Code Date

O=USA mdy

l=Europe dmy

2=Japan ymd

Preliminary

38H (DOS 3.00 and 3.10)
Get or Set COllntry Dependent

Information
Remarks: Error codes are returned in AX. Issue function call

59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

When an alternate keyboard handler is invoked, the
keyboard routine is loaded into user memory starting
at the lowest portion of available user memory. The
BIOS interrupt vector that services the keyboard is
changed by the routine to redirect the CPU to the
section of user memory where the new keyboard
routine now resides. Each keyboard routine takes up
approximately 1.6K bytes of read/write memory,
and has lookup tables that return ASCII values
unique to each language. Refer to the KEYBxx
command in the DOS Reference.

Once the keyboard interrupt vector is changed by the
DOS keyboard routine, the interrupt is always
serviced by the routine in read/write memory.
Return to the U.S. English keyboard format is
available by holding the Ctrl and Alt keys and
pressing FI at the same time. This does not change
the interrrupt vector back to the BIOS location. In
this case, the interrupt is still processed by the
read/write routine, but the lookup to convert scan
codes to ASCII codes is done in the ROM locations.
However, CtrI-Alt-FI does not return you to a U.S.
keyboard if you are using a computer with ROM
keyboard support. Similarly, holding the Ctrl and
Alt keys and pressing F2 causes a return to the
read/write lookup tables.

6-105

Preliminary

39H
Create Subdirectory (MKDIR)

Purpose: Creates the specified directory.

On Register Contents
Entry

AH 39H

DS:DX Pointer to an ASCIIZ string

On Register Contents
Return

AX Error codes if carry flag is set

Remarks: On entry, DS:DX contains the address of an ASCIIZ
string with drive and directory path names. If any
member of the directory path does not exist, then the
directory path is not created. On return, a new
directory is created at the end of the specified path.

6-106

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Create access
rights.

Preliminary

3AH
Remove Subdirectory (RMDIR)

>urpose: Removes the specified directory.

On Register Contents
Entry

AR 3AR

DS:DX Pointer to an ASCnz string

On Register Contents
Return

AX Error codes if carry flag is set

~emarks: On entry, DS:DX contains the address of an ASCnz
string with the drive and directory path names. The
specified directory is removed from the structure.
The current directory cannot be removed.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Create access
rights.

6-107

Preliminary

3BH
Change the Current Directory (CHDIR)

Purpose: Changes the current directory to the specified
directory.

On Register Contents
Entry

AH 3BH

DS:DX Pointer to an ASCIIZ string

On Register Contents
Return

AX Error codes if carry flag is set

Remarks: On entry, DS:DX contains the address of an ASCnz
string with drive and directory path names. The
string is limited to 64 characters and cannot contain
a network path. If any member of the directory path
does not exist, then the directory path is not

6-108

changed •. Otherwise, the current directory is set to
the ASCIIZ string.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

3CH
Create a File (CREAT)

Purpose: Creates a new file or truncates an old file to zero
length in preparation for writing.

On Register Contents
Entry

AH 3CH

DS:DX Pointer to an ASCIIZ string

CX Attribute of the file

On Register Contents
Return

AX Error codes if carry flag is set
16-bit handle if carry flag not set

Remarks: If the file did not exist, then the file is created in the
appropriate directory and the file is given the
read/ write access code. The file is opened for
read/write, and the handle is returned in AX. Note
that the change mode function call (43H) can later
be used to change the file's attribute.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Create access
rights.

6-109

Preliminary

3DH (DOS 2.10)
Open a File

Purpose: Opens the specified file.

On Register Contents
Entry

AH 3DH

DS:DX Pointer to an ASCIIZ path name

AL Access Code

On Register Contents
Return

AX Error codes if carry flag is set
16-bit file handle if carry flag not
set

Remarks: lbis call opens any normal or hidden file whose
name matches the name specified. Files that end
with a colon are not opened.

6-110

The read/write pointer is set at the first byte of the
file and the record size of the file is 1 byte (the
read/write pointer can be changed through function
call 42H). The returned file handle must be used for
subsequent input and output to the file. The file's
date and time can be obtained or set through call
57H, and its attribute can be obtained through call
43H.

Preliminary

3DH (DOS 2.10)
Open a File

Access Codes

AL = 0 File is opened for reading

AL = 1 File is opened for writing

AL = 2 File is opened for both reading and writing

6-111

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

Purpose: Opens the specified file.

On Register Contents
Entry

AH 3DH

DS:DX Pointer to an ASCIIZ path name

AL Open mode

On Register Contents
Return

AX Error codes if carry flag is set
16-bit file handle if carry flag not
set

Remarks: The read/write pointer is set at the first byte of the
file and the record size of the file is 1 byte (the
read/write pointer can be changed through function
call 42H). The returned file handle must be used for
subsequent input and output to the file. The file's
date and time can be obtained or set through call
57H, and its attribute can be obtained through call
43H.

6-112

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

Network Access Rights: If the Access field (A) of
the Open mode field (AL) is equal to:

000 Requires Read access rights

001 Requires Write access rights

010 Requires Read/Write access rights

Notes:

1. TItis call opens any normal or hidden file whose
name matches the name specified. Files that
end with a colon are not opened.

2. When a file is closed, any sharing restrictions
placed on it by the open are canceled.

3: F51e sharing must be loaded for the sharing
modes to function. Refer to the SHARE
command in Chapter 7 "DOS Commands" of
the DOS Reference.

4. The file read-only attribute can be set when
creating the file using extended PCBs or
specifying the appropriate attribute in CX for
the handle creates by using the CHMOD
interrupt 21 function call or the DOS ATIRIB
command.

5. If the file is inherited by the child process, all
sharing and access restrictions are also inherited.

6. If an open file handle is duplicated by either of
the DUP function calls, all sharing and access
restrictions are also duplicated.

6-113

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

6-114

Open Mode

The open mode is defined in AL and consists of four
bit-oriented fields. They are the:

• Inheritance flag

• Sharing mode field

• Reserved field

• Access field

The inheritance flag specifies if the opened file will
be inherited by a child process. The access field
defines what operations this process may perform on
the file. The sharing mode field defines what
operations other processes may perform on the file.

Bit Fields

The bit fields are mapped as follows:

<I> < S > <R> < A >
Open Mode bits 7 6 5 4 3 2 1 0

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

I Inheritance flag
If I = 0; File is inherited by child processes
If I = 1; File is private to the current process

S Sharing Mode

The file is opened as follows:
If S = 000; Compatibility mode
If S = 001; Deny Read/Write mode (Exclusive)
If S = 010; Deny Write mooe
If S = 011; Deny Read mode
If S = 100; Deny None mode

Any other combinations are invalid.

When opening a file, it is important to
inform DOS what operations other
processes may perform on this file
(sharing mode). The default
(compatibility mode) denies all other
processes access to the file. Perhaps it is
all right for other processes to continue to
read this file while your process is
operating on the file. In this case, you
should specify Deny/Write, which inhibits
writing by other processes, but allows
reading by them.

6-115

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

6-116

Similarly, it is important to specify what
operations you process will perform
(access mode). The default access mode
(Read/Write) causes the open request to
fail if another process has the file opened
with any sharing mode other than deny
none. ,If however, all you intended to do is
read from the file, your open will succeed
unless all other processes have specified
deny none or deny write (therefore
increasing access to the file). File sharing
requires cooperation of both sharing
processes. This cooperation is
communicated through the sharing and
access mode.

R Reserved (set third bit field to 0).

A Access

The file access is assigned as follows:
If A = 000; Read access
If A = 001; Write access
If A = 010; Read/Write access

Any other combinations are invalid.

Prelirninary !~

3DH (DOS 3.00 and 3.10)
Open a File

Sharing Modes

Compatibility Mode

A file is considered to be in compatibility mode if the
file is opened by:

• Any of the CREA 1E function calls

• An FCB function call

• A handle function call with compatibility mooe
specified

A file can be opened any number of times in
compatibility mode by a single process, provided that
the file is not currently open under one of the other
four sharing modes. If the file is marked read-only,
and is currently open in Deny Write sharing mode
with Rt",ad Access, the file may be opened in
Compatibility Mode with Read Access. If the file
was successfully opened in one of the other sharing
modes and an attempt is made to open the file again
in Compatibility Mode, an interrupt 24H is
generated to signal this error. The base interrupt
24H error will indicate Drive not ready, and the
extended error will indicate that there was a Sharing
violation.

The sharing modes for a file opened in compatibility
mode are changed by DOS depending on the
read-only attribute of the file. This is to allow
sharing of read-only files.

6-117

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

Read-Only

File Opened By Access

FCB Read Only

Handle Read Read Only

Handle Write Error

Handle Error
Read/Write

Not Read-Only

File Opened By Access

FCB Read/Write

Handle Read Read

Handle Write Write

Handle Read/Write
Read/Write

6-118

Sharing Mode

Deny Write

Deny Write

Sharing Mode

Compatibility

Compatibility

Compatibility

Compatibility

Prelimlitary

3DH (DOS 3.00 and 3.10)
Open a File

Deny Read/Write Mode (Exclusive)

If a file is successfully opened in Deny Read/Write
mode, access to the file is exclusive. A file currently
open in this mode cannot be opened again in any
sharing mode by any process (including the current
process) until the file is closed.

Deny Write Mode

A file successfully opened in Deny Write sharing
mode, prevents any other write access opens to the
file (A = 00 1 or a 1 0) until the file is closed. An
attempt to open a file in Deny Write mode is
unsuccessful if the file is currently open with a write
access.

Deny Read Mode

A file successfully opened in Deny Read sharing
mode, prevents any other read sharing access opens
to the file (A = 000 or 010) until the file is closed.
An attempt to open a file in Deny Read sharing
mode is unsuccessful if the file is currently open in
Compatibility mode or with a read access.

6-119

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

6-120

Deny None Mode

A file successfully opened in Deny None mode,
places no restrictions on the read/write accessibility
of the file. An attempt to open a file in Deny None
mode is unsuccessful if the file is currently open in
Compatibility mode.

Note: When accessing files that reside on a network
disk, no local buffering is done when when files are
opened in any of the following sharing modes:

• Deny Read
• Deny None
• Open for Read/Write access and Deny Write
• Open for Write only and Deny Write

Therefore, in a network environment, Deny
Read/Write sharing mode, Compatibility sharing
mode, and Input Deny Write opens are buffered
locally.

The following sharing matrix shows the results of
opening, and subsequently attempting to reopen the
same file using all combinations of aCcess and
sharing modes. .

1
S
T

o
P
E
N

Preliminary

3DH (DOS 3.00 and 3.10)
Open a File

2ND. 3RD. '" OPEN

DRW OW DR ALL

I 10 0 I 10 0 I 10 0 I 10 0

I N N N N N N N N 'N N N N
0
R 10 N N N N N N N N N N N N
W

0 N N N N N N N N N N N N

I N N N Y N N N N N Y N N

0 10 N N N N N N N N N Y N N
W

0 N N N N N N Y N N Y N N

I N N N N N Y N N N N N Y

0 10 N N N N N N N N N N N Y
R -

0 N N N N N N N N Y N N Y

I N N N Y Y Y N N N Y Y Y
A
L 10 N N N N N N N N N Y Y Y
L

0 N N N N N N Y Y Y Y Y Y

Y :2nd,3rd, ... open is allowed
N :2nd,3rd, ... open is denied
DRW :Deny Read/Write Mode (Exclusive)
DW :Deny Write Mode
DR :Deny Read Mode
RW :Read/Write Mode
I :Read Only Access
o :Write Only Access
I/O :Read/Write Access

6-121

Preliminary

3EH
Close a File Handle

Purpose: Closes the specified file handle.

On Register Contents
Entry

AlI. 3EH

BX File handle returned by open or
create

On Register Contents
Return

AX Error codes if carry flag set
NONE if carry flag not set

Remarks: On entry, BX contains the file handle that was
returned by "open" or "create." On return, the file is
closed, the directory is updated, and all internal
buffers for that file are flushed.

6-122

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

3FH
Read from a File or Device

Purpose: Transfers the specified number of bytes from a file
into a buffer location.

On Register Contents
Entry

AH 3FH

BX File handle

DS:DX Buffer address

ex Number of bytes to be read

On Register Contents
Return

AX Number of bytes read
Error codes if carry flag set

Remarks: On entry, BX contains the file handle. ex contains
the number of bytes to read. DS:DX contains the
buffer address. On return, AX contains the number
of bytes read.

This function call attempts to transfer (eX) bytes
from a file into a buffer location. It is not
guaranteed that all bytes will be read. For example,
reading from the keyboard reads at most one line of
text. If this read is performed from the standard
input device, the input can be redirected. See
"Redirection of Standard Input and Output" in the
DOS Reference. If the value in AX is 0, then the
program has tried to read from the end of file.

6-123

Preliminary

3FH
Read from a File or Device

6-124

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Read access
rights.

Preliminary

40H
Write to a File or Device

)urpose: Transfers the specified number of bytes from a
buffer into a specified file.

On Register Contents
Entry

AH 40H

BX File handle

DS:DX Address of the data to write

ex Number of bytes to write

On Register Contents
Return

AX Number of.bytes written
Error codes if carry flag set

lemarks: On entry, BX contains the file handle. ex contains
the number of bytes to write. DS:DX contains the
address of the data to write.

This function call attempts to transfer (eX) bytes
from a buffer into a file. AX returns the number of
bytes actually written. If this value is not the same
as the number requested, it should be considered an
error (no error code is returned, but your program
can compare these values). The usual reason for this
is a full disk. If this write is performed to the
standard output device, the output can be redirected.
See "Redirection of Standard Input and Output" in
the DOS Reference.

6-125

Preliminary

40H
Write to a File or Device

6-126

To truncate a file at the current position of the file
pointer, set the number of bytes (CX) to zero before
issuing the interrupt 21H. The file pointer can be
moved to the desired position by reading, writing,
and performing function call42H (Move File
Read/Write Pointer).

If the file is read-only, the write to the file or device
is not performed.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Write access
rights.

Preliminary

41H
Delete a File from a Specified Directory

(UNliNK)

Purpose: Removes a directory entry associated with a
filename.

On Register Contents
Entry

AlI 41H

DS:DX Address of an ASCIIZ string

On Register Contents
Return

AX Error codes if carry flag set
NONE if carry flag not set

Remarks: Global filename characters are not allowed in any
part of the ASCIIZ string. Read-only files cannot be
deleted by this call. To delete a read-only file, you

. can first use call43H to change the file's read-only
attribute to 0, then delete the file.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Create access
rights.

6-127

Preliminary

42H
Move File Read Write Pointer (LSEEK)

Purpose: Moves the read/write pointer according to the
method specified.

On Register Contents
Entry

AH 42H

eX:DX Distance (offset) to move in bytes

AL Method of moving (0, 1,2)

BX File handle

On Register Contents
Return

AX Error codes if carry flag set

DX:AX New pointer location if carry flag
not set

Remarks: On entry, AL contains a method value. BX contains
the file handle. CX:DX contains the desired offset
in bytes (eX contains the most significant part). On
return, DX:AX contains the new location of the
pointer (DX contains the most significant part).

6-128

Error codes are returned in AX. Issue function call
59H "Get Extended Errorn for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codesn on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

42H
Move File Read Write Pointer (LSEEK)

This function call moves the read/write pointer
according to the following methods:

AL Description

0

1

2

The pointer is moved CX:DX
bytes (offset) from the beginning
of the file.

The pointer is moved to the
current location plus offset.

The pointer is moved to the
end-of-file plus offset. This
method can be used to determine
file's size.

Note: If an LSEEK operation is performed on a
file that resides on a network disk that is open in
either Deny Read or Deny Write sharing mode,
the read/write pointer information is a adjusted
on the computer where the file actually exists.
If the file is opened in any other sharing mode,
the read/write pointer information is kept on
the remote computer.

6-129

Preliminary

43H
Change File Mode (CHMOD)

Purpose: Changes the file mode of the specified mode.

On Register Contents
Entry

AH 43H

DS:DX Pointer to an ASCnz path name

CX Attribute

AL Function code

On Register Contents
Return

AX Error codes if carry flag set

CX The file's current attribute; if carry
flag not set and getting the
attribute

Remarks: On entry, AL contains a function code, and DS:DX
contains the address of an ASCnz string with the
drive, path, and filename.

6-130

If AL contains 01H then the file's attribute will be
set to the attribute in CX. See "DOS Disk
Directory" on page 5-10 for the attribute byte
description. If AL is OOH then the file's current
attribute is returned in ex.

Preliminary

43H
Change File Mode (CHMOD)

Error ccxles are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Ccxlesu on page
6-40 for more information on the codes returned
from function call 59H.

Note: Attributes 08H and 10H cannot be
changed using eHMOn. If they are used to
change a file's mode, an error code is returned.

Network Access Rights: To change the archive bit
(AL=20H), no access rights are required. To
change any other bit, Create access rights are
required.

6-131

Preliminary

44H
I/o Control for Devices (IOCTL)

Purpose: Sets or gets device information associated with open
device handles, or send/receive control strings to the
device handle.

On Register Contents
Entry

AH 44H

DS:DX Data or buffer

ex Number of bytes to read or write

BX File handle

BL Drive number (O=default, 1 =A,
etc.)

AL Function value

On Register Contents
Return

AX Number of bytes transferred
if carry flag not set

Error codes if carry flag set or
if AX =OFFH

Remarks: On entry, AL contains the function value. BX
contains the file handle. On return, AX contains the
number of bytes transferred for functions 2, 3, 4,
and 5 or status (OOH = not ready, FFH = ready) for
functions 6 and 7, or an error code.

6-132

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,

Preliminary

44H
I/o Control for Devices (IOCTL)
and locus. Refer to "Error Return Information'~ on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

The following function values are allowed in AL:

AL = OOH Get device information (returned in DX).

AL = 01H Set device information (determined by
DX). Currently, DR must be zero for this
call.

AL = 02H Read CX number of bytes into DS:DX
from device control channel.

AL = 03H Write CX number of bytes from DS:DX
to device control channel.

AL = 04H Same as 2~ but use drive number in BL (0
= default, 1 = A, etc.)

AL = 05H Same as 3, but use drive number in BL (0
= default, 1 = A, etc.).

AL = 06H Get input status.

AL = 07H Get output status.

AL = 08H Is a particular block device changeable?

AL = 09H Is a logical device local or remote?

AL = OAH Is a handle local or remote? .

AL = OBH Change sharing retry count.

IOCTI... can be used to get information about device
channels. You can make calls on regular files, but

6-133

Preliminary

44H
I/o Control for Devices (IOCTL)

only function values 0, 6, and 7 are defined in that
case. All other calls return an "Invalid Function"
error.

Function values OOH to 08H are not supported on
network devices. Function value OBH requires the
file sharing command to be loaded (SHARE).

Calls AL=OOH and AL=OlH.

BIT 'The bits of DX are defined as follows:

6-134

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

R
E
s

I 1 I I I
IW I I I I I

C I E B R I I I I i
I

T t: S 0 I E S S s SI
R T Reserved 0 F N S C N C C
l W E A l U 0 I

c V R K L T N
R y

I 1<." I I I
I I I I I

ISDEV = 1 if this channel is a device.

= 0 if this channel is a disk file (bits 8-15
= 0 in this case).

IfISDEV = 1

BOF = 0 if end-of-file on input.

BIN = 1 if operating in binary mode
(no checks for Ctrl-Z).

= 0 if operating in ASCn mode
(checking for Ctrl-Z as end-of -file).

ISCLK = 1 if this device is the clock
device.

Preliminary

44H
I/O Control for Devices (IOCTL)

IfISDEV = 0

ISNUL = 1 if this device is the null
device.

ISCOT = 1 if this device is the
console output.

ISCIN = 1 if this device is the
console input.

C1RL = 0 if this device cannot
process control strings via calls
AL=02H, AL=03H, AL=04H, and
AL=05H.

C1RL = 1 if this device can process
control strings via calls AL=02H and
AL=03H. Note that this bit cannot
be set by function call 44 H.

EOF = 0 if channel has been written. Bits
0-5 are the block device number for the
channel (0 = A, 1 = B, ...). Bits 15, 8-13,
4 are reserved and should not be altered.

Note: DH must be zero for call AL=OlH.

6-135

Preliminary

44H
I/O Control for Devices (IOCTL)

6-136

Calls AL=02H, AL=03H, AL=04H, AL=05H

These four calls allow arbitrary control strings to be
sent or received from a device. The Call syntax is
the same as the Read and Write calls, except for calls
4 and 5, which accept a drive number in BL instead
of a handle in BX. An "Invalid Function" erior is
returned if the CTRL bit is zero. An
"Access-Denied" code is returned by calls 04 H and
OSH if the drive is invalid.

Calls AL=06H and AL=07H

These calls allow you to check if a file handle is
ready for input or output. If used for a file, AL
always returns FFH until end-of-file is reached,
then always returns OOH unless the current file
position is changed through call 42H. When used for
a device, AL returns FFH for ready or zero for not
ready.

CallAL=08H (DOS 3.00 and 3.10)

This call allows you to determine if a device can
support removable media. If the value returned in
AX is 0, then the device is removable. If the value is
1, then the device is fixed. The .drive number should
be placed in BL. If the value in BL is invalid, then
error code OFH is returned. For network devices,
the error Invalid function is returned.

Preliminary

44H
I/O Control for Devices (IOCTL)
Call AL=09H (DOS 3.10)

This call allows you to determine if a logical device is
associated with a network directory. On entry, BL
contains the drive number of the block device you
want to check (O=default, I=A, 2=B, and so forth).
The value returned in DX on local devices is the
attribute word from the device header. On remote
devices, bit 12 (lOOOH) is set. The other bits in DX
are reserved. If disk redirection is paused, the
function returns the attribute word for the local
device and bit 12 is not set.

IMPORTANT: Do not write code that tests bit 12.
Applications should be written so they are
independent of the location (local or remote) of
block devices.

Call AL=OAH (3.10)

This call allows you to determine if a handle is for a
local device or a remote device across the network.
The value returned in DX is the attribute word from
the device header. For remote devices, it is bit 15
(8000H). The handle should be placed in BX.

IMPORTANT: Do not write code that tests bit 15.
Applications should be written so they are
independent of the location (local or remote)
handles.

6-137

Preliminary

44H
I/o Control for Devices (IOCTL)

6-138

Call AL=OBH (DOS 3.00 and 3.10) All sharing and
lock conflicts are automatically retried a number of
times before they are returned as a DOS error or
critical error. You can select the number of retries
and the delay time between retries. On input, ex
contains the number of times to execute a delay loop,
and DX contains the number of retries. The delay
loop consists of the following sequence:

XOR
LOOP

CX,CX
$;spin 64K times

If this call is never issued, DOS uses delay = 1 and
retries=3 as the defaults for ex and DX. If you
expect your application to cause sharing or lock
conficts on locks that are in effect for a short period
of time, you may want to increase the values for ex
and DX to minimize the number of errors actually
returned to your application.

Preliminary

45H
Duplicate a File Handle (DUP)

Purpose: Returns a new file handle for an open file that refers
to the same file at the same position.

On Register Contents
Entry

AH 45H

EX File handle

On Register Contents
Return

AX New file handle if carry flag not set
Error codes if carry flag set

Remarks: On entry, EX contains the file handle. On r'!turn,
AX contains the returned file handle.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Note: If you move the read/write pointer of
either handle by a read, write, or LSEEK
function call, the pointer for the other handle is
also changed.

6-139

Preliminary

46H
Force a Duplicate of a Handle
(FORCDUP)

Purpose: Forces the handle in CX to refer to the same file at
the same position as the handle in BX.

On Register Contents
Entry

AH 46H

BX Existing file handle
:

d

CX Second file handle (t'i" .. !J'i

On Register Contents
Return

AX Error codes if carry flag set
None if carry flag not set

Remarks: On entry, EX contains the file handle. ex contains
a second file handle. On return, the CX file handle
.refers to the same file at the same position as the BX
file handle. If the CX file handle was an open file,
then it is closed first. If you move the read/write
pointer of either handle, the pointer for the other
handle is also changed.

6-140

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
'and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

47H
Get Current Directory

Purpose: Places the full path name (starting from the root
directory) of the current directory for the specified
drive in the area pointed to·by DS:SI.

On Register Contents
Entry

AH 47H

DS:SI Pointer to a 64 byte user memory
area

DL Drive number (O=default, 1 =A,
etc.)

On Register Contents
Return

DS:SI Filled out with full path name
from the root if carry is not set

AX Error codes if carry flag is set

Remarks: The drive letter is not part of the returned string.
The string does not begin with a backslash and is
terminated by a byte containing DOH.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

6-141

Preliminary

48H
Allocate Memory

Purpose: Allocates the requested number of paragraphs of
memory.

On Register Contents
Entry

AlI 48H

BX Number of paragraphs of memory
requested

On Register Contents
Return

AX:O Points to the allocated memory
block

AX Error codes if carry set

BX Size of the largest block of
memory available (in paragraphs)
if the allocation fails

Remarks: On entry, BX contains the number of paragraphs
requested. On return, AX:O points to the allocated
memory block. If the allocation fails, BX returns the
size of the largest block of memory available in
paragraphs.

6-142

Error codes are returned in 'AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

49H
Free Allocated Memory

Purpose: Frees the specified allocated memory.

On Register Contents
Entry

AH 49H

ES Segment of the block to be
returned

On Register Contents
Return

AX Error codes if carry flag set
NONE if carry flag not set

Remarks: On entry, ES contains the segment of the block to be
returned to the system pool. On return, the block of
memory is returned to the system pool.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

6-143

Preliminary

4AH
Modify Allocated Memory Blocks
(SETBLOCK)

Purpose: Modifies allocated memory blocks to contain the
new specified block size.

On Register Contents
Entry

AH 4AH

ES Segment of the block

BX Contains the new requested block
size in paragraphs

On Register Contents
Return

AX Error codes if carry flag set
None if carry flag not set

BX Maximum poolsize possible if the
call fails on a "grow request" if
carry flag is set

Remarks: DOS attempts to "grow" or "shrink" the specified
block.

6-144

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

4BH
Load or Execute a Program (EXEC)

Purpose: Allows a program to load another program into
memory and optionally begins execution of it.

On Register Contents
Entry

AH 4BH

DS:DX Points to the ASCIIZ string with
the drive, path, and filename to be
loaded

ES:BX Points to a parameter block for the
load

AL Function value (see description)

On Register Contents
Return

AX Error codes if carry flag set
NONE if carry flag not set

~emarks: Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

6-145

Preliminary

4BH
Load or Execute a Program (EXEC)

The following function values are allowed in AL:

Function Description
Value

OOH Load and execute the program. A program
segment prefix is established for the program;
and the terminate and control-break addresses
are set to the instruction after the EXEC
system call.

Note: When control is returned, all
registers are changed, including the stack.
You must restore SS, SP, and any other
required registers before ,proceeding.

03H Load, do not create the progra.m segment
prefix, and do not begin execution. This is
useful in loading program overlays.

6-146

Preliminary

4BH
Load or Execute a Program (EXEC)

For each of these values, the block pointed to by
ES:BX has the following format:

AL = OOH Load/execute program

WORD segment address of
environment string to be passed

DWORD pointer to command line
to be placed at PSP+80H

DWORD points to default FCB to
be passed at PSP+5CH

DWORD pointer to default FCB
to be passed at PSP+6CH

Note: The DWORD pointers are in offset
segment form.

AL = 03H Load overlay

WORD segment address where
file will be loaded

WORD relocation factor to be
applied to the image

6-147

Preliminary

4BH
Load or Execute a Program (EXEC)

6-148

All open files of a process are duplicated in the
newly created process after an EXEC, except if the
file was opened with the inheritance bit set to l.
This means that the parent process has control over
the meanings of standard input, output, auxiliary,
and printer devices. The parent could, for example,
write a series of records to a file, open the file as
standard input, open a listing file as standard output,
and then execute a sort program that takes its input
from standard input and writes to standard output.

Also inherited (or copied from the parent) is an
"environment." This is a block of text strings (less
than 32K bytes total) that convey various
configuration parameters. The following is the
format of the environment (always on a paragraph
boundary):

Byte ASCIIZ string 1

Byte ASCIIZ string 2

Byte ASCIIZ string n

Byte of zero

Typically the environment strings have the form:

parameter= value

Following the byte of zero in the environment, is a
WORD that indicates the number of other strings
following. Following this is a copy of the DS:DX
filename passed to the child process. For example,
the string VERIFY =ON could be passed. A zero
value of the environment address causes the newly
created process to inherit the parenes environment

Preliminary

4BH
Load or Execute a Program (EXEC)

unchanged. The segment address of the environment
is placed at offset 2CH of the program segment
prefix for the program being invoked.

Errors codes are returned in AX. Refer to "Error
Return Information" on page 6-36 and "Extended
Error Codes" on page 6-40 for more information on
the codes returned.

Notes:

1. When your program received control, all
available memory was allocated to it. You must
free some memory (see ca1l4AH) before EXEC
can load the program you are invoking.
Normally, you would shrink down to the
minimum amount of memory you need, and free
the rest.

2. The EXEC call uses the loader portion of
COMMAND. COM to perform the loading.

6-149

Preliminary

4CH
Terminate a Process (EXIT)

Purpose: Terminates the current process and transfers control
to the invoking process.

On Register Contents
Entry

AH 4CR

AL Retumcode

On Register Contents
Return

NONE

Remarks: In addition, a return code can be sent. The return
cooe can be interrogated by the batch sUOcorunands
IF and ERRORLEVEL and by the wait function call
4 DR. All files opened by this process are closed.

6-150

Preliminary

4DH
Get Return Code of a Subprocess

(WAIT)

Purpose: Gets the return code specified by another process
either through function call 4CH or function call
3tH. It returns the Exit code only once.

On Register Contents
Entry

AH 4DH

On Register Contents
Return

AX Return code

Remarks: The low byte of the exit code contains the
information sent by the exiting routine. The high
byte of the exit code can contain:

• OOH - for normal termination

• OtH - for termination by CtrI-break

• 02H - for termination as a result of a critical
device error

• 03H - for termination by call 3tH

6-151

Preliminary

4EH
Find First Matching File (FIND FIRST)

Purpose: Finds the first filename that matches the specified
file specification.

On Register Contents
Entry

AH 4EH

DS:DX Pointer to an ASCnz string
containing the drive, path, and
filename of the file to be found

CX Attribute used in searching for the
file

On Register Contents
Return

AX Error codes if carry flag set

Remarks: The filename in DS:DX can contain global filename
characters. The ASCIIZ string cannot contain a
network path. See function call1lH for a
description of how the attribute bits are used for
searches.

6-152

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes~' on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

4EH
Find First Matching File (FIND FIRST)

If a file is found that matches the specified drive,
path, and filename and attribute, the current DT A is
filled in as follows:

21 bytes - reserved for DOS use on subsequent
find next calls

1 byte - file's attribute

2 bytes - file's time

2 bytes - file's date

2 bytes - low word of file size

2 bytes - high word of file size

13 bytes - name and extension of file found,
followed by a byte of zeros. All blanks are
removed from the name and extension, and if an
extension is present, it is preceded by a period.
Thus, the name returned appears just as you
would enter it as a command parameter, such as
TREE. COM followed by a byte of zeros.

6-153

Preliminary

4FH
Find Next Matching File (FIND NEXT)

Purpose: Finds the next directory entry matching the name
that was specified on the previous Find First or Find
Next function call.

On Register Contents
Entry

AH 4FH

DTA Contains the information from a
previous Find First or Find Next
call (4EH, 4FH)

On Register Contents
Return

AX Error codes if carry flag set

Remarks: If a matching file is found, the DTA is set as
described in ca1l4EH. If no more matching files are
found, an error code is returned.

6-154

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

54H
Get Verify Setting

Purpose: Returns the value of the verify flag.

On Register Contents
Entry

AH 54H

On Register Contents
Return

AL Current verify flag value
OOH, if verify is off
OIH, if verify is on

Remarks: On return, AL returns OOH if verify is OFF, OlH if
verify is ON. Note that the verify switch can be set
through call 2EH.

6-155

Preliminary

56H
Rename a File

Purpose: Renames the specified file.

On Register Contents
Entry

AH 56H

DS:DX Pointer to an ASCIIZ string
containing the drive, path, and
filename of the file to be renamed

ES:DI Pointer to an ASCIIZ string
containing the new path and
filename

On Register Contents
Return

AX Error codes if carry flag set
NONE if carry flag not set

Remarks: H a drive is used in the ASCnz string, it must be the
same as the drive specified or implied in the first
string. The directory paths need not be the same,
allowing a file to be moved to another directory and
renamed in the process. Global filename characters
are not allowed in the filename.

6-156

Preliminary

56H
Rename a File

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Create access
rights.

6-157

Preliminary

57H
Get/set a File's Date and Time

Purpose: Gets or sets a file's date and time.

On Register Contents
Entry

AH 57H

AL OOH, get date and time
OtH, set date and time

EX File handle

CX Time to be set if AL = OtH

DX Date to be set if AL = OtH

On Register Contents I Return

AX Error codes if carry flag set

DX If getting date, date from the
handle's internal table

CX If getting time, time from the
handle's internal table

Remarks: The date and time formats are the same as those for
the directory entry described in Chapter 5 of this
book, except that when passed in registers, the bytes
are reversed (that is, DH contains the low order
portion of the date, etc.).

6-158

Prclimi.n:\ry

57H
Get Set a File's Date and Time

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

6-159

Preliminary

59H (DOS 3.00 and 3.10)
Get Extended Error

Purpose: Returns additional error information, such as the
error class, locus, and recommended action.

On Register Contents
Entry

AH 59H

BX OOOOH (version, 0 for 3.00 and
3.10)

On Register Contents
Return

AX Extended error

BH Error class

BL Suggested action

CH Locus

Remarks: This function call returns the error class, locus, and
recommended action, in addition to the return code.
Use this function call from:

6-160

• Interrupt 24 H error handlers

• Interrupt 21H function calls that return an error
in the carry bit

• FCB function calls that return FFH

On return, the registers contents of DX, SI, DI, ES,
CL, and DS are destroyed.

Preliminary

59H (DOS 3.00 and 3.10)
Get Extended Error

Error Return in Carry Bit

For function calls that indicate an error by setting
the carry flag, the correct method for performing
function ca1l59H is:

1. Load up registers.

2. Issue interrupt 21H.

3. Continue operation, if carry not set.

4. Disregard the error code and issue function call
59H to obtain additional information.

5. Use the value in BL to determine the suggested
action to take.

Error Status in AL

For function calls that indicate an error by setting
AL to FFH, the correct method for performing
function call 59H is:

1. Load up registers.

2. Issue interrupt 21H.

3. Continue operation, if error is not reported in
AL.

4. Disregard the error code and issue function call
59H to obtain additional information.

5. Use the action in BL to determine the suggested
action to take.

6-161

Preliminary

5AH (DOS 3.00 and 3.10)
Create Unique File

Purpose: Generates a unique filename, and creates that file in
the specified directory.

On Register Contents
Entry

AI-I SAH

DS:DX Pointer to ASCIIZ path ending
with a backslash (\)

CX Attribute

On Register Contents
Return

AX Error codes if carry flag is set

DS:DX ASCIIZ path with the filename of
the new file appended

Remarks: On entry, AI-I contains SAI-I. If no error has
occurred, then the file is opened in compatibility
mode with Read/Write access, and AX contains the
file handle and the filename is appended to the path
specified in DS:DX.

6-162

This function call generates a unique name and
attempts to create a new file in the specified
directory. If the file already exists in the directory,
then another unique name is generated and the
process is repeated. Programs that need temporary
files should use this function call to generate unique
filenames.

Prel.imirt.ary

5AH (DOS 3.00 and 3.10)
Create Unique File

Error cooes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Cooes" on page
6-40 for more information on the codes returned
from function call 59H.

Note: The file cr~ted using this function call is
not automatically deleted at program
termination.

Network Access Rights: Requires Create access
rights.

6-163

Preliminary

5BH (DOS 3.00 and 3.10)
Create New File

Purpose: Creates a new file.

On Register Contents
Entry

AH 5BH

DS:DX Pointer an ASCIIZ path name

CX File attributes

On Register Contents
Return

AX Error codes if carry flag set
Handle if carry flag not set

Remarks: This function call is identical to function call 3CH
(Create) with the exception that it will fail if the
filename already exists. The file is created in
compatibility mode for reading and writing.

6-164

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Network Access Rights: Requires Create access
rights.

Preliminary

5CH (DOS 3.00 and 3.10)
LockJunlock File Access

Purpose: Locks or unlocks a range of bytes in an opened file.

On Register Contents
Entry

AH SCH
AL DOH, to lock

OlH, to unlock

BX File handle

CX Offset high

DX Offset low

SI Length high

DI Length low

On Register Contents
Return

AX Error codes if carry flag is set

Remarks: The Lock/Unlock function calls should only be used
when a file is opened using the Deny Read or Deny
None sharing modes, or when the file is opened for
read/write or write only access and Deny Write
sharing mode. These modes do no local buffering of
data when accessing files on a network disk.

6-165

Preliminary

5CH (DOS 3.00 and 3.10)
LocI4Unlock File Access

AL = OOH Lock

6-166

Provides a simple mechanism for excluding other
processes read/write access to regions of the file. If
another process attempts to read or write in such a
region, its system call is retried the number of times
specified with the system retry count set by IOCU.
li after those retries no success occurs, a general
failure error is generated signaling the condition.
The number of retries, as well as the length of time
between retries, can be changed using function call
440BH (IDCU Change Sharing Retry Count). The
recommended action is to issue function call 59H to
get the error code in addition to the error class,
locus, and recommended action. The locked regions
can be anywhere in the logical file. Locking beyond
end-of-file is not an error. It is expected that the
time in which regions are locked will be short.
Duplicating the handle duplicates access to the
locked regions. Access to the locked regions is not
duplicated across the EXEC system call. Exiting
with a file open and having issued locks on that file
has undefined results. Programs that may be aborted
using INf 23H or !NT 24H should trap these and
release the locks before exiting. The proper method
for using locks is not to rely on being denied read or
write access, but attempting to lock the region
desired and examining the error code.

AL = 01H Unlock

Unlock releases the lock issued in the lock system
call. The region specified must be exactly the same
as the region specified in the previous lock. Closing
a file with locks still in force has undefined results.
Exiting with a file open and having issued locks on
that file has undefine4 results. Programs that may be
aborted using !NT 23H or INf 24 H should trap
these and release the lock before exiting. The proper

Preliminary

5CH (DOS 3.00 and 3.10)
LocI4Unlock File Access

method for using locks is not to rely on being denied
read or write access, but attempting to lock the
region desired and examining the error code.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from fl!Ilction call 59H.

6-167

Preliminary

5EOOH (DOS 3.10)
Get Machine Name

Purpose: Returns the character identifier of the local
computer.

On Register Contents
Entry

AX 5EOOH

DS:DX Pointer to the memory buffer
where the ASCnz computer name
is returned

On Register Contents
Return

DS:DX Filled with the ASCIIZ computer
name

CH Name/number indicator flag
O=name not defined

not O=name/number defined

CL NETBIOS name number for the
name

AX Error codes if carry flag is set

Remarks: Get Machine Name returns the text of the current
computer name to the caller. The computer name is
a 15-character byte string padded with spaces and
followed by a OOH byte. If the computer name was
never set, register CH is returned with OOH and the
value in the CL register is invalid. The IBM PC
Network Program must be loaded for the function
call to execute properly.

6-168

Preliminary

5E02H (DOS 3.10)
Set Printer Setup

Purpose: Specifies an initial string for printer files.

On Register Contents
Entry

AX 5E02H

BX Redirection list index

CX Length of setup string (maximum
length is 64 bytes)

DS:SI Pointer to printer setup buffer

On Register Contents
Return

AX Error codes if carry flag is set

Remarks: The string specified is put in front of all files destined
for a particular network printer. Printer Setup allows
multiple users of a single printer to specify their own
mode of operation for the printer. BX is set to the
same index that is used in function ca1l5F02H (Get
Redirection List Entry). An error code is returned if
print redirection is paused or if the IBM PC Network
Program is not loaded.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

6-169

Preliminary

5E03H (DOS 3.10)
Get Printer Setup

Purpose: Returns the printer setup string for printer files.

On Register Contents
Entry

AX 5E03H

BX Redirection list index

ES:DI Pointer to printer setup buffer
(maximum length is 64 bytes)

On Register Contents
Return

AX Error codes if carry flag is set

CX Length of data returned

ES:DI Filled with the printer setup string

Remarks: This function call returns the printer setup string
which was specified using the function call5E02H
(Set Printer Setup). The setup string is attached to
all files destined for a particular printer. The value in
BX is set to the same index that is used in function
call5F02H ((Jet Redirection List Entry). Error code
1 (Invalid function number) is returned if the mM
PC Network is not loaded.

6-170

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

5F02H (DOS 3.10)
Get Redirection List Entry

Purpose: Returns nonlocal network assignments.

On Register Contents
Entry

AX 5F02H

BX Redirection index (zero-based)

DS:DI Pointer to a 128-byte buffer
address of the local device name

ES:DI Pointer to a 128-byte buffer
address of network name

On Register Contents
Return

AX Error codes if carry flag is set

BH Device status flag
Bit 0=0 if device is valid

0= 1 if device is not valid
Bits 1-7 are reserved

BL Device type

ex Stored parm value

DX Destroyed

BP Destroyed

DS:SI Asenz local device name

ES:DI Asenz network name

6-171

Preliminary

5F02H (DOS ,3. 10)
Get Redirection List Entry
Remarks: The Get Redirection List Entry function call returns

the list of network redirections that were created
through function call 5F03H (Redirect Device).
Each call returns one redirection, so BX should be
incremented by 1 each time to step through the list.
The contents of the list may change between calls.
The end-of-list is detected by error code 18 (no more
files). Error code 1 (Invalid function number) is
returned if the mM PC Network Program is not
loaded.

6-172

If either disk or print redirection is paused, the
function is not affected.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

Preliminary

5F03H (DOS 3.10)
Redirect Device

Purpose: Causes a Redirector/Server connection to be made.

On Register Contents
Entry

AX SF03H

BL Device type

03 Printer device
04 File device

CX Value to save for caller

DS:SI Source ASCIIZ device name

ES:DI Destination ASCnz network path
with password

On Register Contents
Return

AX Error codes if carry flag is set

Remarks: This call is the interface that defines the current
directories for the network and defines redirection of
network printers.

• If BL = 03, the source specifies a printer, the
destination specifies a network path, and the
CX register has a word that DOS maintains for
the programmer. For compatibility with the
IDM PC Network Program, ex should be set to
O. Values other than 0 are reserved for the IDM
PC Network Program. This word may be
retrieved through function call 5 F02H (Get
Redirection List). All output destined for the

6-173

Preliminary

5F03H (DOS 3.10)
Redirect Device

6-174

specified printer is buffered and sent to the
remote printer spool for that device. The
printers are redirected at the INT 17H level.

The source string must be PRN ,LPTl, LPT2,
or LPT3, each ended with a OOH. The
destination string must point to a network name
string of the following form:

[\ \ computername\ {shortname Iprintdevice}]

The destination string must be ended with a
OOH.

The ASCIIZ password (0 to 8 characters) for
access to the remote device should immediately
follow the network string. The password must
end with a OOH. A null (zero length) password
is considered to be no password.

• If BL = 4, the source specifies a drive letter and
colon ended with OOH, the destination slY"~ifies
a network path ended with OOH, and the CX
register has a word that DOS maintains for the
programmer. For compatibility with the IBM
PC Network Program, CX should be set to OOH.
Values other than OOH are reserved for the IBM
PC Network Program. The value may be
retrieved through function call 5F02H (Get
Redirection List). If the source was a drive
letter, the association is made between the drive
letter and the network path. All subsequent
references to the drive letter are translated to
references to the network path. If the source is
an empty string, the system attempts to grant
access to the destination with the specified
password without redirecting any device.

Preliminary

5F03H (DOS 3.10)
Redirect Device

The ASCIIZ password for access to the remote
path should immediately follow the network
string. A null (zero length) password ended
with OOH is considered to be no password.

Error codes are returned in AX. Issue function
call 59H "Get Extended Error" for additional
information about the error class, suggested
action, and locus. Refer to "Error Return
Information" on page 6-36 and "Extended
Error Codes" on page 6-40 for more
information on the codes returned from function
call 59H.

Notes:

1. Devices redirected through this function call are
not displayed by the NET USE command.

2. An error is returned if you try to redirect a file
device while disk redirection is paused, or if you
try to redirect a printer while print redirection is
paused.

6-175

Preliminary

5F04H (DOS 3.10)
Cancel Redirection

Purpose: Cancels a previous redirection.

On Register Contents
Entry

AX SF04H

DS:SI ASCnz device name or path

On Register Contents
Return

AX Error ccxles if carry flag is set

Remarks: The redirection created by the Redirect Device
function call (SF03H) is removed through the

6-176

Cancel Redirection call. If the buffer points to a
drive letter and the drive is associated with a network
name, the association is terminated and the drive is
restored to its physical meaning. If the buffer points
to PRN, LPT1, LPT2, or LPT3, and the device has
an association with a network device, the association
is terminated and the device is restored to its physical
meaning. If the buffer points to a network path
ended with OOH and a password ended with OOH,
then the association between the local machine and
the network directory is terminated.

An error is returned if you try to cancel a redirected
file device while disk redirection is paused, or if you
try to cancel a redirected printer while print
redirection is paused. Error ccxle 1 (Invalid function
number) is returned if the IBM PC Network
Program is not loaded.

5F04H (DOS 3.10)
Cancel Redirection

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-36 and "Extended Error Codes" on page
6-40 for more information on the codes returned
from function call 59H.

6-177

Preliminary

62H (DOS 3.00 and 3.10)
Get ProgralD Segment Prefix Address
(PSP)

Purpose: Returns the program prefix address.

On Register Contents
Entry

AH 62H

On Register Contents
Return

BX Segment address of the currently
executing process

Remarks: The internal PSP address for the currently executing
process is returned in EX.

6-178

Preliminary

Chapter 7. DOS Control Blocks and
Work Areas

Contents

Introduction • • • . . . • • . . . • • . . • • • • • • • • . . • • •• 7-3

DOS Memory Map •••••.••••••••••••..•••• 7 -4

DOS Program Segment •...•...•••.•..•..•.. 7-6

Program Segment Prefix •.••••••.••••••.••• 7-10

File Control Block •.••...•••..••••.••.•••• 7-12
Standard File Control Block 7-13
Extended File Control Block 7-16

7-1

Preliminary

7-2

Introduction

This chapter contains:

• A description of the locations and usage of the
DOS memory map.

• A detailed description and diagram of the program
segment prefix.

• A detailed description and diagram of the file .
control block (standard and extended).

7-3

Pre1iminMy

DOS Menlory Map

Location Usage

0000:0000 Interrupt vector table

0040:0000 ROM commUnication area

0050:0000 DOS communication area

xxxx:oooo IBMBIO.COM - DOS interface to ROM
110 routines

xxxx:oooo IBMDOS. COM - DOS interrupt handlers,
service routines (INf 21 functions)

DOS buffers, control areas, and installed
device drivers

XXXX:OOOO Resident portion of CO~ND.COM-
Interrupt handlers for interrupts 22H
(terminate), 23H (Ctrl-Break), 24H (critical
error), and code to reload the transient
portion

XXXX:OOOO External command or utility - (.COM or
.EXEfile)

XXXX:OOOO User stack for .COM files (256 bytes)

XXXX:OOOO Transient portion of COMMAND. COM

7-4

Preliminary

Notes:

1. Memory map addresses are in segment:offset
format. For example, 0070:0000 is absolute
address 0700H.

2. The DOS Communication Area is used as follows:

0050:0000 Print screen status flag store

o Print screen not active or
successful print screen
operation

1 Print screen in progress

255 Error encountered during
print screen operation

0050:0001 Used by BASIC

0050:0004 Single-drive mode status byte

o Diskette for drive A was last
used

1 Diskette for drive B was last
used

0050:0010-0021 Used by BASIC

0050:0022-002F Used by DOS for diskette
initialization

0050:0030-0033 Used by MODE command

All other locations within the 256 bytes beginning
at 0050:0000 are reserved for DOS use.

3. User memory is allocated from the lowest end of
available memory that will satisfy the request for
memory.

7-5

Preliminary

DOS Program Segment

7-6

When you enter an external command, or call a
program through the EXEC function call, DOS
determines the lowest available address to use as the
start of available memory for the program being
started. This area is called the Program Segment.

At offset 0 within the Program Segment, DOS builds
the Program Segment Prefix control block. EXEC
loads the program at offset IOOH and gives it control.

The program returns from EXEC by a jump to offset 0
in the Program Segment Prefix, by issuing an INT 20H,
by issuing an !NT 2IH with register AH=OOH or 4CH,
or by calling location SOH in the Program Segment
Prefix with AH=OOH or 4CH.

Note: It is the responsibility of all programs to
ensure that the CS register contains the segment
address of the Program Segment Prefix when
terminating using any of these methods except call
4CH.

All of these methods result in returning to the program
that issued the EXEC. During this returning process,
interrupt vectors 22H, 23H, and 24 H (terminate,
Ctrl-Break, and critical error exit addresses) are
restored from the values saved in the Program Segment
Prefix of the terminating program. Control is then
given to the terminate address.

Preliminary

When a program receives control, the following
conditions are in effect:

For all programs:

• The segment address of the passed environment is
contained at offset 2CH in the Program Segment
Prefix.

The environment is a series of ASCn strings
(totaling less than 32K bytes) in the form:

NAAf E =parameter

Each string is terminated by a byte of zeros, and
the entire set of strings is terminated by another
byte of zeros. Following the byte of zeros that
terminates the set of environment strings is a set of
initial arguments passed to a program that contains
a word count followed by an ASCnz string. The
ASCnz string contains the drive, path, and
Ji/enamel.ext] of the executable program.
Programs may use this area to determine where the
program was loaded from. The environment built
by the command processor (and passed to all
programs it invokes) contains a COMSPEC=
string at a minimum (the parameter on COMSPEC
is the path used by DOS to locate
CO~ND.COM on disk). The last PATH and
PROMPT commands issued will also be in the
environment, along with any environment strings
entered through the SET command. See Chapter 7
of the DOS ReJerencefor more information.

The environment that you are passed is actually a
copy of the invoking process environment. If your
application uses a "terminate and stay resident"
concept, you should be aware that the copy of the
environment passed to you is static. That is, it will
not change even if subsequent SET, PATH, or
PROMPT commands are issued.

7-7

7-8

Preliminary

• Offset 50H in the Program Segment Prefix
contains code to invoke the DOS function
dispatcher. Thus, by placing the desired function
number in AR, a program can issue a long call to
PSP+50H to invoke a DOS function, rather than
issuing an interrupt type 21H.

• Disk transfer address (DTA) is set to 80H (default
DTA in the Program Segment Prefix).

• File control blocks at 5CH and 6CH are formatted
from the first two parameters entered when the
command was invoked. Note that if either
parameter contained a path name, then the
corresponding FCB will contain only a valid drive
number. The filename field will not be valid.

• An unformatted parameter area at 81R contains all
the characters entered after the command name
(including leading and imbedded delimiters), with
80H set to the number of characters. If the <, >,
or : parameters were entered on the command
line, they (and the filenames associated with them)
will not appear in this area, because redirection of
standard input and output is transparent to
applications.

• For .COM files, offset 6 (one word) contains the
number of bytes available in the segment.

• Register AX reflects the validity of drive specifiers
entered with the first two parameters as follows:

AL=FFH if the first parameter contained an
invalid drive specifier (otherwise AL=OOH)

AH=FFH if the second parameter contained
an invalid drive specifier (otherwise
AR=OOH)

Preliminary

For .EXE programs:

• DS and ES registers are set to point to the Program
Segment Prefix.

• CS, IP, SS, and SP registers are set to the values
passed by the Linker.

For. COM programs:

• All four segment registers contain the segment
address of the initial allocation block, that starts
with the Program Segment Prefix control block.

• All of user memory is allocated to the program. If
the program wishes to invoke another program
through the EXEC function call, it must first free
some memory through the Setblock (4AH)
function call, to provide space for the program
being invoked.

• The Instruction Pointer (IP) is set to 1 DOH.

• SP register is set to the end of the pros;ram's
segment. The segment size at offset 6 is rounded
down to the paragraph size.

• A word of zeros is placed on the top of the stack.

The Program Segment Prefix (with offsets in
hexadecimal) is formatted as follows.

7-9

Preliminary

Program Segnlent Prefix

7-10

5Z ~ 'I, 6A r.;r2.. ~r;j' 5E ~';::

Re-serve cl · ...• t)~:~d~r:.~~=-~
h~Gl_~ 9. {; 3 /1 {-.5. {J ~:... '"7

",5 +(A V\ d. O .. X' d... F=" C. P./i , (CL; r-.-\- ')
t-----------'--.-... -.- .. -.. ' .. --... -,- ----

t,;c 6 Tt:::. :J~ ;:;;~~Q\~r-.-0F
Fer?;z. .

7[; 7/ 7;2 -:)"=< 1:..1 is J~ -i-:
S-to.. n d.ct l" d. ;:.-C. 8;J.. (tovrt")

1'=l -::q 7A 71::; 7C 70 '"1E ,:;:

~+o..ndarci. F2.B~ (c.c·"r-\--'>.

Preliminary

1. First segment of available memory is in segment
(paragraph) form (for example, 1000H would
represent 64 K).

2. The word at offset 6 contains the number of bytes
available in the segment.

3. Offset 2CH contains the segment address of the
environment.

4. Programs must not alter any part of the PSP below
offset SCH. .

7-11

-....I
I

""" N
-7r---~---

I hex FF I Zeros

-----,----
I Attribute

O~i-------------+----------~--~---------~
Drive Filename (8 bytes) or Reserved device name

8~1 ________ ~ ______________________ ,-______________ ~ ____________ ~

Filename extension Current block Record size

16L1 ----~-----.-----------_t------~~~~~~~;]
24

32

Current
record

Random record
number (low part)

Random record
number (high part)

(Offsets are in decimal)

Un shaded areas must be filled in by the using program.

Shaded areas are filled in by DOS and must not be modified.

FCB
extension

Standard
FCB

~
~.
~

(j
o
= ~
I-"l o
t= o
~
~

~
§:

1

Preliminary

Standard File Control Block
The standard file control block (FCB) is defined as
follows, with the offsets in decimal:

Byte Function

o Drive number. For example,

Before open: o -default drive

1- drive A

2 - drive B

etc.

After open: 0- drive A

1- drive A

2 - drive B

etc.

o is replaced by the actual drive number
during open.

1-8 Filename, left-justified with trailing blanks. If
a reserved device name is placed here (such as
LPT1), do not include the optional colon.

9-11 Filename extension, left-justified with trailing
blanks (can be all blanks).

12-13 Current block number relative to the
beginning of the file, starting with 0 (set to 0
by the open function call). A block consists
of 128 records, each of the size specified in
the logical record size field. The current block
number is used with the current record field
(below) f~r sequential reads and writes.

7-13

7-14

Preliminary

14-15 Logical record size in bytes. Set to 80H by
the open function call. If this is not correct,
you must set the value because DOS uses it to
determine the proper locations in the file for
all disk reads and writes.

16-19 File size in bytes. In this 2-word field, the
first word is the low-order part of the size.

20-21 Date the file was created or last updated. The
mm/dd/yyare mapped in the bits as follows:

< 21 > < 20 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Y Y Y Y y y y m m m m d d d d d

where:

mm is 1-12
dd is 1-31
yy is 0-119 (1980-2099)

22-31 Reserved for system use.

32 Current relative record number (0-127) within
the current block. (See above.) You must set
this field before doing sequential read/write
operations to the diskette. This field is not
initialized by the open function call.

33-36 Relative record number relative to the
beginning of the file, starting with O. You must
set this field before doing random read/write
operations to the diskette. This field is not
initialized by the open function call.

If the record size is less than 64 bytes, both
words are used. Otherwise, only the first 3
bytes are used. Note that if you uSe the File
Control Block at 5CH in the program segment,
the last byte of the FCB overlaps the first byte
of the unformatted parameter area.

Preliminary

Notes:

1. An unopened FCB consists of the FCB prefix (if
used), drive number, and filename/extensions
properly filled in. An open FCB is one in which
the remaining fields have been filled in by the
Create or Open function calls.

2. Bytes 0-15 and 32-36 must be set by the user
program. Bytes 16-31 are set by DOS and must
not be changed by user programs.

3. All word fields are stored with the least significant
byte first. For example, a record length of 128 is
stored as 80H at offset 14, and OOH at offset 15.

7-15

Preliminary

Extended File Control Block

7-16

The extended File Control Block is used to create or
search for files in the disk directory that have special
attributes.

It adds a 7-byte prefix to the FCB, formatted as
follows:

Byte Function

FCB-7 Flag byte containing FFH to
indicate an extended FCB.

FCB-6 to FCB-2 Reserved.

FCB-l Attribute byte. See "DOS Disk
Directory" on page 5-10 of this
book for the attribute bit
definitions. Also refer to function
call IlH (search first) for details
on using the attribute bits during
directory searches. This function
is present to allow applications to
define their own files as hidden
(and thereby exclude them from
directory searches), and to allow
selective directory searches.

Any reference in the DOS Function Calls (refer to
Chapter 6 of the this book) to an FCB, whether opened
or unopened, may use either a normal or extended
FCB. If you are using an extended FCB, the
appropriate register should be set to the first byte of the
prefix, rather than the drive-number field.

Preliminary

Chapter 8. Executing Commands From
Within an Application

Contents

Introouction •• 8-3

Invoking a Command Processor ••••••••••••••• 8-3

8-1

Preliminary

8-2

Preliminary

Introduction

Application programs may invoke a secondary copy of
the command processor. Your program may pass a
DOS command as a parameter that the secondary
command processor will execute as though it had been
entered from the standard input device.

Invoking a Command Processor

The procedure is:

1. Assure that adequate free memory (17K bytes for
DOS version 2.10 and 3.00; and 23K bytes for
DOS version 3.10) exists to contain the second
copy of the command processor and the command
it is to execute. This is accomplished by executing
function ca1l4AH to shrink memory allocated to
that of your current requirements. Next, execute
function ca1l48H with BX=FFFFH. This returns
with the amount of memory available.

2. Build a parameter string for the secondary
command processor in the form:

1 byte = length of parameter string
xx byte = parameter string
1 byte = ODH (carriage return)

For example, the assembly statement below would
build the string to cause execution of a
DISK COpy command:

DB 19, "/C C:DISKCOPY A: B:" , 13

8-3

8-4

Preliminary

3. Use the EXEC function call (4BH, function value
0) to cause execution of the secondary copy of the
command processor (the drive, directory, and
name of the conunand processor can be gotten
from the COMSPEC = parameter in the
environment passed to you at PSP+2CH).
Remember to set offset 2 of the EXEC control
block to point to the string built above.

Preliminary

Chapter 9. Fixed Disk Infonnation

Contents

Introouction . • . • • • • •.• . . . • . • . • . . • . • .• 9-3

Fixed Disk Architecture .••..•....•.•.•...... 9-3

System Initialization •••••.•.••.•.••..•.••.•• 9-4

Boot RecordjPartition Table .•..••........... 9-6

Fixed Disk Technical Information ••.•.•••••..• 9-8

Determining Fixed Disk Allocation ..•••.••..•• 9-11

9-1

Prdimin;rry

9-2

Preliminary

Introduction

The IDM Personal Computer Fixed Disk Support
Architecture has been designed to meet the following
objectives:

• Allow multiple operating systems to utilize the
fixed disk without the need to backup/restore
when changing operating systems.

• Allow a user-selected operating system to be
started from the fixed disk.

Fixed Disk Architecture

The architecture is defined as follows:

• In order to share the fixed disk among operating
systems, the disk may be logically divided into 1 to
4 partitions. The space within a given partition is
contiguous, and can be dedicated to a specific
operating system. Each operating system lnay
"own" only one partition. The number and siz..es
of the partitions is user-selectable through a fixed
disk utility program. The DOS utility is
FDISK.COM. The partition information is kept in
a partition table that is imbedded in the master
fixed disk boot record on the first sector of the
disk.

• Any operating system must consider its partition to
be an entire disk, and must ensure that its
functions and utilities do not access other
partitions on the disk.

9-3

Pre1inunary

• Each partition can contain a boot recdrd bn 1tsfirst
sector, and any other programs or data that you
choose-including a copy of an o~rating system.
For example, the DOS FORMAT command may
be used to format (arid place a copy of DOS in)
the DOS partition, in the same manner that a
diskette is formatted. With the FDISK utility, you
may designate a partitiohas "boatable"
(active)-the master fixed disk boot record causes
that partition's boot record to receive control when
the system is started or restarted.

System Initialization

9-4

The System initi3li711tion (or system boot) se4uence is
as follows:

1. System initialization first attempts to load an
operating system from diskette driveA. If the
drive is not ready or a read error occurs, it then
attempts to read a master fixed disk boot record
from the first sector of the first fixed disk on the
system. If unsuccessful, or if no fixed disk is
present, it invokes ROM BASIC.

2. If successful, the master fixed disk boot record is
given control and it examines the partition table
imbedded within it. If one of the entries indicates
a "boatable" (active) partition, its boot record is
read (from the partition's first sector) and given
control.

3. If none of the partitions is bootable, ROM BASIC
is invoked.

Preliminary

4. If any of the boot indicators are invalid, or if more
than one indicator is marked as bootable, the
message Invalid partition table is displayed and the
system enters an enabled loop. You may then
insert a system diskette in drive A and use system
reset to restart from diskette.

5. If the partition's boot record cannot be
successfully read within five retries due to read
errors, the message Error loading operating system
appears and the system enters an enabled loop.

6. If the partition's boot record does not contain a
valid "signature," the message Missing operating
system appears, and the system enters an enabled
loop. See "Boot Record Partition Table" on page
9-6 for complete information about the boot
record.

Note: When changing the size or location of any
partition, you must ensure that all existing data on
the disk has been backed up (the partitioning
process will "lose track" of the previous partition
boundaries.)

9-5

Preliminary

BootRecord{Partition Table

9-6

A fixed disk boot record must be written on the first
sector of all fixed disks, and contains:

1. Code to load and give control to the boot record
for one of four possible operating systems.

2. A partition table at the end of the boot record.
Each table entry is 16 bytes long, and contains the
starting and ending cylinder, sector, and head for
each of four possible partitions, as well as the
number of sectors preceding the partition and the
number of sectors occupied by the partition. The
"boot indicator" byte is used by the hoot record to
determine if one of the partitions contains a
loadable operating system. :f<"TIISK initialization
utilities mark a user-selected partition as
"bootable" by placing a value of 80H in the
corresponding partition's boot indicator (setting all
other partitions' indicators to 0 at the same time).
The presence of the 80H tells the standard boot
routine to load the sector whose location is
contained in the following 3 bytes. Thai sector is
the actual boot record for the selected operating
system, and it is responsible for the remainder of
the system's loading process (as it is from
diskette). All boot records are loaded at absolute
address O:7COO.

Prelimjnary

The partition table with its offsets into the boot record
is:

Offs Purpose Head Sector Cylinder

1 BE Partition 1 begin boot ind H S CYL

1 C2 Partition 1 end syst ind H S CYL

1 C6 Partition 1 rei sect Low word High word
.-.----~-

1 CA Partition 1 :# sects Low word High word

I CE Partition 2 begin boot ind H S I CYL

I 02 Partition 2 end syst ind H S CYL

I 06 Partition 2 rei sect Low word High word

I OA Partition 2 :# sects Low word High word

-DE Partition 3 begin boot ind H S CYL

E2 Partition 3 end syst ind H S CYL

E6 Partition 3 rei sect Low word High word

EA Partition 3 :# sects Low word High word

EE Partition 4 begin boot ind H S CYL

F2 Partition 4 end syst ind H S CYL

F6 Partition 4 rei sect Low word High word

FA Partition 4 # sects Low word High word

FE Signature hex 55 hex AA

9-7

Preliminary

Fixed Disk Technical Infornlation

9-8

Boot Indicator (Boot Ind): The boot indicator byte
must contain 0 for a non-bootable partition, or 80H for
a boatable partition. Only one partition can be marked
boatable.

System Indicator (Sys Ind): Ine "syst ind" field
contains an indicator of the operating system that
"owns" the partition.

The system indicators are:

OOH - unknown (unspecified)

01H - DOS 12-bit FAT

04H - DOS 16-bit FAT

Cylinder (CYL) and Sector (S): The I-byte fields
labelled CYL contain the low-order 8 bits of the
cylinder number-the high order 2 bits are in the high
order 2 bits of the S (sector) field. This corresponds
with ROM BIOS interrupt l3H (Disk I/O)
requirements, to allow for a lO-bit cylinder number.

The fields are ordered in such a manner that only two
MOV instructions are required to properly set up the
DX and CX registers for a ROM BIOS call to load the
appropriate boot record (fixed disk booting is only
possible from the first fixed disk on a system, whose
BIOS drive number (80H) corresponds to the boot
indicator byte).

All partitions are allocated in cylinder multiples and
begin on sector 1, head O.

EXCEPTION: The partition that is allocated at the
beginning of the disk starts at sector 2, to account for
the disk's master boot record.

Preliminary

Relative Sector (ReI Sect): The number of sectors
preceding each partition on the disk is kept in the
4-byte field labelled "reI sect." This value is obtained
by counting the sectors beginning with cylinder 0,
sector 1, head 0 of the disk, and incrementing the
sector, head, and then track values up to the beginning
of the partition. Thus, if the disk has 17 sectors per
track and 4 heads, and the second partition begins at
cylinder 1, sector 1, head 0, the partition's starting
relative sector is 68 (decimal)-there were 17 sectors
on each of 4 heads on 1 track allocated ahead of it.
The field is stored with the least significant word first.

Number of Sectors (# Sects): The number of sectors
allocated to the partition is kept in the "# of sects"
field. This is a 4-byte field stored least significant word
first.

Signature: The last 2 bytes of the boot record
(55AAH) are used as a signature to identify a valid
boot record. Both this record and the partition boot
records are required to contain the signature at offset
lFEH.

9-9

9-10

Preliminary

The master disk boot record invokes ROM BASIC if no
indicator byte reflects a "bootable" system.

When a partition's boot record is given control, it is
passed its partition table entry address in the DS:SI
registers.

System programmers designing a utility to
initialize/ manage a fixed disk must provide the
following functions at a minimum:

1. Write the master disk boot record/partition table
to the disk's first sector to initialize it.

2. Perform partitioning of the disk-that is, create or
update partition table information (all fields for the
partition) when the user wishes to create a
partition. TItis may be limited to creating a
partition for only one type of operating system, but
must allow repartitioning the entire disk, or adding
a partition without interfering with existing
partitions (user's choice).

3. Provide a means for marking a user-specified
partition as bootable, and resetting the bootable
indicator bytes for all other partitions at the same
time.

4.' Such utilities should not change or move any
partition information that belongs to another
operating system.

Preliminary

etennining Fixed .Disk Alloca tion

DOS determines disk allocation using the followillg
formuIa:

o * GPO
TS - RS -

BPS
SPF

BPS * SPC
CF +

BPC
The parameters arc:

TS The count of the total sectors on the disk.
RS The number of sectors at the beginning of the

disk that are reserved for the boot record. DOS
reserves 1 sector.

D The number of directory entries in the root
directory. Refer to "DOS Disk Directory" on
page 5-10 for more information.

BPD The number of bytes per directory entry. BPB is
always 32.

BPS The number of bytes per logical sector.
Typically, BPS is 512, but you can specify a
different value using VDISK.

CF The number of FATs per disk. For most disks
CF is 2. For VDISK CF is 1.

SPF The number of sectors per FAT. The maximum
value for SPF is is 64.

SPC The number of sectors per allocation unit.
BPC The number of bytes per FAT entry. BPC is 1.5

for 12-bit FATs and 2 for 16-bit FATS.

9-11

Preliminary

9-12

Preliminary

:hapter 10. EXE File Structure and
.. oading

Contents

Introduction • • • . • . • • • . . . • • • • . • • • • • • • • • •• 10-3

.EXE File Structure••.....••.•....••.. 10-3

The Relocation Table .••••..•••••.••••••••. 10-5

10·1

Preliminary

10-2

Preliminary

Introduction

This chapter contains information on:

• The .EXE file structure

• The relocation table

.EXE File Structure

The .EXE files produced by the Linker program consist
of two parts:

• Control and relocation information

• The load module itself

The control and relocation information, which is
described below, is at the beginning of the file in an
area known as the header. The load module
immediately follows the header. The load mcxlule
begins in the memory image of the module constructed
by the Linker.

The header is formatted as follows:

10-3

Preliminary

Hex Offset Contents

00-01 4DH, 5AH-This is the Link program's
signature to mark the file as a valid .EXE
file.

02-03 Length of image mod 512 (remainder after
dividing the load module image size by
512).

04-05 Size of the file in 512-byte increments
(pages), including the header.

06-07 Number of relocation table items.

08-09 Size of the header in 16-byte increments
(paragraphs). This is used to locate the
beginning of the load module in the file.

OA-OB Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

OC-OD Maximum number of 16-byte paragraphs
required above the end of the loaded
program.

OE-OF Displacement in paragraphs of stack
segment within load module.

10-11 Offset to be in the SP register when the
module is given control.

12-13 Word checksum-negative sum of all the
words in the file, ignoring overflow.

14-15 Offset to be in the IF register when the
module is given control.

16-17 Displacement in paragraphs of code
segment within load module.

18-19 Displacement in bytes of the first
relocation item within the file.

1A-IB Overlay number (0 for resident part of the
program).

Note: Use the value at hex offset 18-19 to located
the first entry in the relocation table.

10-4

Preliminary

The Relocation Table

The word at 18H locates the first entry in the relocation
table. The relocation table is made up of a variable
number of relocation items. The number of items is
contained at offset 06-07. The relocation item contains
two fields-a 2-byte offset value, followed by a 2-byte
segment value. These two fields represent the
displacement into the load module of a word which
requires modification before the module is given
control. TIlis process is called relocation and is
accomplished as follows:

1. A program segment prefix is built following the
resident portion of the program that is performing
the load operation.

2. The formatted part of the header is read into
memory (it's size is at offset 08-09).

3. The load module size is determined by subtracting
the header size from the file size. Offsets 04-05
and 08-09 can be used for this calculation. The
actual size is downward adjusted based on the
contents of offsets 02-03. Note that all files
created by Link programs prior tb version 1.10
always placed a value of 4 at that location,
regardless of actual program size. Therefore, we
recommend that this field be ignored if it contains
a value of 4. Based on the setting of the high/low
loader switch, an appropriate segment is
determined at which to load the load module. This
segment is called the start segment.

4. The load module is read into memory beginning at
the start segment.

10-5

10-6

Preliminary

Note: The relocation table is an unordered list
of relocation items. The first relocation item
is the one that has the lowest offset in the file.

5. The relocation table items are read into a work
area (one or more at a time).

6. Each relocation table item segment value is added
to the start segment value. This calculated
segment, in conjunction with the relocation item
offset value, points to a word in the load mcxlule to
which is added the start segment value. The result
is placed back into the word in the load mcxlule.

7. Once all relocation items have been processed, the
SS and SP registers are set from the values in the
header and the start segment value is added to SS.
The ES and DS registers are set to the segment
address of the program segment prefix. The start
segment value is added to the header CS register
value. The result, along with the header IP value,
is used to give the mcxlule control.

Preliminary

Chapter 11. DOS Memory Management

Contents

Introouction •• . • . • • • • • . . . • • • . • . • • • .• 11-3

Control Bl()Ck •••••••••••••••••.••••••••• 11-3

11-1

Preliminary

11-2

Preliminary

Introdllction

DOS keeps track of allocated and available memory
blocks, and provides three function calls for application
programs to communicate their memory needs to DOS.
These calls are 48H to allocate a memory block, 49H to
free a previously allocated memory block, and 4AH
(SETBLOCK) to change the size of an allocated
memory block.

Control Block

DOS manages memory as follows:

DOS builds a control block for each block of memory,
whether free or allocated. For example, if a program
issues an "allocate," DOS locates a block of free
memory that satisfies the request, and will "carve" the
requested memory out of that block. The requesting
program is passed the location of the first byte of the
block that was allocated for it-a memory management
control block, describing the allocated block, has been
built for the allocated block and a second memory
management control block describes the amount of
space left in the original free block of memory. When
you do a setblock to shrink an allocated block, DOS
builds a memory management control block for the area
being freed, and adds it to the chain of control blocks.
Thus, any program that changes memory that is not
allocated to it, stands a chance of destroying a DOS
memory management control block. This causes
unpredictable results that don't show up until an
activity is performed where DOS uses its chain of
control blocks (the normal result is a memory allocation
error, for which the only corrective action is to restart
the system).

When a program (command or application program) is
to be loaded, DOS uses the EXEC function call (4 BH)

11-3

11-4

Preliminary

to perform the loading. This is the same function call
that is available to application programs for loading
other programs. This function call has 2 options,

• Function 0, to load and execute a program (this is
what the command processor uses to load and
execute external commands).

• Function 3, to load an overlay (program) without
executing it.

Although both functions perform their loading in the
same way (relocation is performed for .EXE files),
their handling of memory management is different.

Function 0: For function 0 to load and execute a
program, EXEC first allocates the largest available
block of memory (the new program's PSP will be at
offset 0 in that memory block). Then EXEC loads the
program. Thus, in most cases, the new program
"owns" all of the memory from its PSP to the highest
end of memory, including the memory occupied by the
transient part of COM:MAND.COM. If the program
were to issue its own EXEC function call to load and
execute another program, the request would fail
because no available memory exists to load the new
program into.

Note: For .EXE programs, the amount of memory
allocated is the size of the program's memory
image plus the value in the MAX ALLOC field of
the file's header (offset OCH, if that much memory
is available. If not, EXEC allocates the size of the
program's memory image plus the value in the MIN
ALLOC field in the header (offset OAH). These
fields are set by the Linker.

A well-behaved program uses the SETBLOCK
function call when it receives control, to shrink its
allocated memory block down to the size it really needs.
A . COM program should remember to set up its own
stack before doing the SETBLOCK, since it is likely
that the default stack supplied by DOS lies in the area

Preliminary

of memory being freed. This frees unneeded memory,
which can then be used for loading subsequent
programs.

If the program requires additional memory during
processing, it can obtain the memory using the allocate
function call and later free it using the free memory
function call.

When a program loaded using EXEC function 0 exits,
its initial allocation block (the block beginning with its
PSP) is automatically freed before the calling program
regains control. It is the responsibility of all programs
to free any memory they allocate, before exiting to the
calling program.

Function 3: For function 3, to load an overlay, no PSP
is built, and EXEC assumes the calling program has
already allocated memory to load the new program
into-it will not allocate memory for it. Thus, the
calling program should either allow for the loading of
overlays when it determines the amount of memory to
keep when issuing the SETBLOCK call, or should
initially free as much memory as possible. The calling
program should then allocate a block (based on the size
of the program to be loaded) to hold the program that
will be loaded using the "load overlay" call. Note that
"load overlay" does not check to see if the calling
program actually owns the memory block it has been
instructed to load into-it assumes the calling program
has followed the rules. If the calling program does not
own the memory into which the overlay is being loaded,
there is a chance that the program being loaded will
overlay one of the control blocks that DOS uses to keep
track of memory blocks.

Programs loaded using function 3 should not issue any
SETBLOCK calls, since they don't own the memory
they are operating in (the memory is owned by the
calling program).

11-5

11-6

Preliminary

Because programs loaded using function 3 are given
control directly by (and return control directly to) the
calling program with no DOS intervention, no memory
is automatically freed when the called program exits-it
is up to the calling program to determine the disposition
of the memory that had been occupied by the exiting
program. Note that if the exiting program had itself
allocated any memory, it is responsible for freeing that
memory before exiting.

Preliminary

Index

Special Characters

. COM filename extension 1-6,
1-7

.COM programs 7-9

.EXE file structure 10-3

.EXE filename extension 1-6,
1-7, 7-6

.EXE files, load 10-3

.EXE programs 7-9
/S option 5-13

l bort program 1-10
Lbsolute disk, interrupt

read 6-22
write 6-23

lbsolute track/sector,
calculate 5-13
lcceSS rights, network 6-45
lctions, error recovery 6-43
.ddress ternrlnate
interrupt 6-13
.ddress, program segment
prefix 6-178
ill register 6-32
llocate memory 6-142
llocated memory blocks,
mooify 6-144
llocated memory, free 6-143

allocating diskette space 5-5
allocating file space 4-14
allocation table
information 6-76

allocation table information,
specific device 6-77

allocation, diskette 5-4
application, executing
commands within your 8-3

area for DOS 5-4
ASClI cooes, extended 6-11
ASClI mode 4-9
ASClI mode, file I/O 4-11
ASCIIZ string 6-44
attribute byte 7-16
attribute field 2-7
attribute field bits

clock device 2-8
device type 2-7
format 2-8
IOCTL 2-7
NUL 2-9
removable media 2-8
standard input 2-9
standard output 2-9

attribute, file 5-11
AUTOEXEC file 1-5
Auxiliary Asynchronous

Communications
Adapter 6-52

auxiliary input 6-52
auxiliary output 6-52, 6-53
available functions, DOS 1-8
AX register 6-16,6-47

Index-l

Prelminary

B

base pointer 6-10
base register 6-9
batch file processor 1-6
binary mode 4-9
binary mode, file I/O 4-10
BIOS 6-22
BIOS interface module 1-4
BIOS parameter block 2-26
bit fields 6-114 .
block devices 2-5
block devices, installing 2-12
block number, current 7-13
block read, random 6-78
block write, random 6-79,
6-85

blocking/ de-blocking,
data 1-5

boot record 1-4,5-4
boot sector format 2-28
BP register 6-16
BPB, BIOS parameter
block 2-12

buffer 1-9
buffered standard input 6-59
buffers, file 6 ... 12
BUILD BPB function call

parameter 2-26
built-in functions 1-4
busy bit 2-16
BX register 6-16
byte, attribute 7-16
byte, flag 7-16

c

calculate absolute cluster 5-8
calculate absolute

Index-2

track/ sector 5-13
calls, function 6-32
cancel redirection 6-176
change current directory 6-108
change file mode 6-130
character devices 2-5
character devices,
installing 2-12

check keyboard status 6-60
check, ctrl-break 6-96
checksum methodology 1-5
CL register 6-47
clear keyboard buffer 6-61
clock device bit 2-8
CLOCK$ device 2-36
close a file handle 6-122
close file 6-65
CLOSE function call
parameter 2-34

cluster number, relative 5-13
cluster, calculate 5-8
cluster, locate next 5-7, 5-8
cluster, starting 5-13
clusters 5-15
code segment 6-10
COMMAND.COM 5-13,7-6
command code 2-15
command processor 1-5
command processor portions

initialization 1-5
resident 1-5
transient 1-6

communications adapter,
auxiliary asynchronous 6-52

compatibility mode 6-117
components of DOS 1-4
console I/O, direct 6-55

Preliminary

console input without
echo 6-57

console/keyboard routines 1-8
control blocks 7-3
control screen cursor 3-3
control sequences 3-3
control, for device I/O 6-132
count register 6-9
country dependent
information 6-99,6-101

create a file 6-109
create file 6-72
create subdirectory 6-106
~reate unique file 6-162
~reating a device driver 2-10
~ritical error handler 1-5
;ritical error handler
vector 6-14
:S register 6-12,6-16, 7-6,
7-9
~trI-break check 6-96
:trI-Break handler 1-5
:trI-Break exit address
interrupt 6-13
:urrent block number 7-13
:urrent directory,
change 6-108
:urrent directory, get 6-141
urrent disk 6-74
urrent relative record
number 7-14
ursor backward 3-8
ursor control 3-6
ursor control sequences

cursor backward 3-8
cursor down 3-7
cursor forward 3-8
cursor position 3-6
cursor position report 3-10
cursor up 3-7
device status report 3-10
erase in display 3-13
erase in line 3-13

horizontal position 3-9
keyboard key
reassignment 3-17

reset mode 3-16
restore cursor
position 3-12

save cursor position 3-12
set graphics rendition 3-15
set mooe 3-16
vertical position 3-9

cursor up 3-7
CX register 6-16

D

data area 5-14
data blocking/de-blocking 1-5
data register 6-9
data segment 6-10
date

get 6-88
set 6-89

date file created or
updated 7-14

de-blocking/blocking,
data 1-5

defective tracks 5-13
delete a file from a
directory 6-127

delete file 6-69
deny none mooe 6-120
deny read mode 6-119
deny read/write mode 6-119
destination index 6-10
device driver functions

BUILD BPB 2-26
CLOSE 2-34
FLUSH 2-33
!NIT 2-19
INPUT 2-29

Index-3

Preliminary

MEDIA CHECK 2-21
MEDIA
DESCRIPTOR 2-23

NONDESTRUCTIVE
INPUT 2-31

OPEN 2-34
OUTPUT 2-29
REMOVABLE
MEDIA 2-35

STATUS 2-32
device driver, creating 2-10.
device driver, sample
listing 2-36

device drivers, DOS
clock$ device 2-36
creating 2-10.
device header 2-6
format 2-4
installing 2-11
request header 2-14
sample listing 2-36
status word 2-16
types 2-5

device drivers, installing 2-11
device field, next 2-6
device header 2-6
device header fields

attribute 2-7
interrupt routine 2-9
name/unit 2-9
next device header 2-6
strategy routine 2-9

device status report 3-10.
device type bit 2-7
device, I/O control 6-132
device, read from 6-123
device, write to 6-125
devices, types of 2-5
DI register 6-15, 6-16
direct console I/O 6-55
direct console input without
echo 6-56

directory entries

Index-4

file attribute 5-11
file creation date 5-13
file creation time 5-12
file extension 5-11
file size 5-13
filename 5-10.

directory searches 5-11
directory, change 6-10.8
directory, get current 6-141
disk

current 6-74
error handling 1-5
errors 6-18
free space 6-98
read, absolute 6-22
reset 6-62
select 6-63
write, absolute 6-23

disk transfer address 7-7
disk transfer address, set 6-75
disk transfer area (DTA) 1-9
diskette

allocating space 5-5
allocation 5-3
defective tracks 5-13
directory 5-10
handling routines 1-8

display output 6-13,6-51
done bit 2-16
DOS

area 5-4
available functions 1-8
control blocks 7-3
data area 5-14
disk allocation 5-3
diskette directory 5-10.
flags 6-9
function calls 6-32
general registers 6-9
index registers 6-10
initialization 1-7
interrupts 6-12
memory map 7-3

Preliminary

pointer 6-10
program segment 7-6
registers 6-9
segment registers 6-10
structure 1-4
technical information 1-3
work areas 7-3

DOS components
boot record 1-4
command processor 1-5
DOS program file 1-5
read only memory 1-4

)OS environment 7-7
)OS function calls, see
function calls also
)OS interrupts, see interrupts

function request 6-13
)OS program file 1-5
)OS registers 6-9
)OS registers, see registers,
DOS
)S register 6-16,7-9
)TA (disk transfer area) 1-9
.uplicate a file handle 6-139
)X register 6-16

ld-of-file mark 5-7
ltries, search for 6-66
lvironment, DOS 7-7
~ase control sequences

erase in display 3-13
erase in line 3-13

'ase in display control
;equence 3-13
'ase in line control
;equence 3-13
'asing control sequences 3-13
ror bit 2-16

error classes 6-42
error codes

interrupt 24H 6-14
error codes, interrupt
2FH 6-27

error codes, status word 2-17
error handler 1-10
error handling

critical 1-5
disk 1-5

error return information 6-36
error trapping 1-10
errors, disk 6-18
ES register 6-16,7-9
EXEC, load or execute a
program 6-145

execute a program,
EXEC 6-145

executing commands within an
application 8-3 '

EXIT, terminate a
process 6-150

extended Ascn codes 6-11
extended error codes 6-40
extended file control
block 7-16

extended function calls 4-3
extended,59H 6-40
extension

.COM 1-6,1-7

.EXE 1-6,1-7,7-6
external commands 1-6
extra segment 6-10

F

FAT (see File Allocation
Table)

FCB 7-15
FCB function calls 4-3,4-5

Index-5

Preliminary

FCB restrictions 4-12
field name 2-9
field, attribute 2-7
file

attribute 5-11
change mode 6-130
close 6-65
create 6-72,6-109
date created or
updated 7-14

delete 6-69
find first matching
file 6-152

find next matching
file 6-154

hidden 5-10,6-72,7-16
move read/write

pointer 6-128
open 6-64,6-110,6-112
rename 6-73
size 6-80
system 7-16

file access, lock/ unlock 6-165
File Allocation Table

(FAT) 5-5
file allocation table, how to

use 5-8
file buffers 6-12
File Control Block

(FCB) 7-12
file control block function
calls 4-3

file control block,
extended 7-16

file handle 4-7, 6-46
file handle, closing 6-122
file handle, duplicate 6-139
file handles 6-46

standard auxiliary
device 4-8

standard error device 4-8
standard input device 4-8
standard output device 4-8

Index-6

standard printer device 4-8
file I/O

ASCII mode 4-11
binary mode 4-10

file management functions 4-3
file sectors
file size 7-14
file structure, .EXE 10-3
file, allocating space 4-14
file, read from 6-123
file, write to 6-125
filename

in directory 5-11
in file control block 7-13

filename extension
.COM 1-6,1-7
.EXE 1-6, 1-7, 7-6
in directory 5-11
in file control block 7 -13
separators 6-87
ternninators 6-87

filename,parse 6-86
find first matching file 6-152
FIND FIRST, find first
matching file 6-152

find next matching file 6-154
FIND NEXT, find next
matching file 6-154

flag byte 7-16
flags 6-9
FLUSH function call

parameter 2-33
format bit 2-8
FORMAT command 5-10
format, device drivers 2-4
free allocated memory 6-143
function ca1l31H 6-24
function calls
function calls, INT21

allocate memory 6-142
allocation table

information 6-76

allocation table information
for specific device 6-77

auxiliary input 6-52
auxiliary output 6-53
buffered keyboard
input 6-59

cancel redirection 6-176
change current

directory 6-108
change file mode 6-130
check standard input

status 6-60
clear keyboard buffer and

invoke a keyboard
function 6-61

close a file handle 6-122
close file 6-65
console input without
echo 6-57

create a file 6-109
create file 6-72
create new file 6-164
create new program

segment 6-83
create subdirectory 6-106
create unique file 6-162
ctrl-break check 6-96
current disk 6-74
delete a file from a
directory 6-127

delete file 6-69
direct console I/O 6-55
direct console input without

echo 6-56
disk reset 6-62
display output 6-51
duplicate a file
handle 6-139

FCB function calls 4-5
file size 6-80
find first matching
file 6-152

find next matching
file 6-154

force a duplicate
handle 6-140

free allocated
memory 6-143

get a return cooe of a
subprocess 6-151

get current directory 6-141
get date 6-88
get disk free space 6-98
get disk transfer
address 6-93

get DOS version
number 6-94

get extended error 6-160
get machine name 6-168
get or set country
dependent
information 6-101

get printer setup 6-170
get program segment prefix
address 6-178

get redirection list
entry 6-171

get time 6-90
get vector 6-97
get verify setting 6-155
get/set file's date and

time 6-158
handle function calls 4-6
I/O control for
devices 6-132

keyboard input 6-50
load or execute a
program 6-145

lock/unlock file
access 6-165

modify allocated memory
blocks 6-144

move file read/write
pointer 6-128

open a file 6-110, 6-112

Index-7

Pr~

open file 6-64
parse filename 6-86
print string 6-58
printer output 6-54
program tenninate 6-49
random block read 6-84
random blOCk write 6-85
random read 6-78
random write 6-79
read from a file or

device 6-123
redirect device 6-173
remove subdirectory 6-107
rename a file 6-156
rename file 6-73
return country dependent

information 6-99
search for first entry 6-66
search for next entry 6 .. 68
select disk 6-63
sequential read 6-70
sequential write 6-71
set date 6-89
set disk transfer

address 6-75
set interrupt vector 6-82
set printer setup 6-169
set relative record

field 6-81
set time 6-91
set/reset verify

switch 6-92
tenninate a process 6-150
tenninate process and

remain resident 6-95
write to a file or

device 6-125·
function codes, interrupt
2FH 6-27

function request interrupt 6-13
functions, available DOS 1-8
functions, built:-in 1-4
functions, device drivers 2-18

Index-8

G

generalregjsters 6-9
get .

country dependent
information 6-101

current directory 6-141
date 6-88
disk free space 6-98
disk transfer address 6-93
DOS version number 6-94
get machine name 6-168
printer setup 6-170
program segment prefix
address 6-178

redirection list entry 6-171
time 6-90
vector 6-97
verify setting 6-155

get a file's date and time 6-158
get extended error, function
call 6-160

get or set country (DOS 3.00
and 3.10) 6-101

H

handle
duplicate 6-139
file 6-46
force a duplicate 6-140
function calls 4-3
restrictions on usage 4-13
standard 4-8

handle function calls 4-6

Preliminary

handle, file 6-46
handle, force a duplicate 6-140
header 10-3
hidden files 5-10,6-72, 7-16
high memory 1-6
high/low loader switch 10-5
horizontal position 3-9

I

[/0 control for devices 6-132
[BMBIO.COM 1-7,5-13
[BMDOS.COM 1-7,5-13
lndex register 6-10
[NIT function call
parameter 2-19

lnitialization portion of
command processor 1-5

lnitializing DOS 1-7
rNPUT function call
parameter 2-29
nput,a~ary 6-52
nstalling block devices 2-12
nstalling character
devices 2-12
nstalling device drivers 2-11
nstruction pointer 6-10
Nf24H 1-10
nterface module,
IB}yffiIO.COM 1-4
ntemal command
processors 1-6
nterrupt routines 2-9
nterrupt vectors 1-7
nterrupt,set 6-82
nterrupts, DOS

absolute disk read 6-22
absolute disk write 6-23
critical error handler
vector 6-15

ctrl-break exit address 6-13
function request 6-13
multiplex 6-26
programtenrrrinate 6-12
terminate address 6-13
terminate but stay
resident 6-24

INT21, function calls 6-32
invoke keyboard function 6-61
invoking DOS functions 6-47
IOCTL 6-132
IOCTL bit 2-7
IP register 6-16, 7-9
IRET 6-13 .

K

keyboard function,
invoke 6-61

keyboard input 6-50
keyboard input, buffered 6-59
keyboard reassignment 3-17
keyboard status, check 6-60
keys, reassign 3-17

L

linefeed 6-13
load a program, EXEC 6-145
loading .EXE files 10-3
locate next cluster 5-7, 5-8
lock file access 6-165
logical record size 7-14
logical sector numbers 6-22

Index-9

Preliminary

M

MEDIA CHECK function call
parameter 2-21

media descriptor byte 2-23
memory

allocating 6-142
freeing allocated 6-143
high 1-6
image file 2-4
map,DOS 7-3
modify blocks 6-144

memory map
mode of operation control
sequences

reset mode 3-16
set graphics rendition 3-15
set mode 3-16

modify allocated memory
blocks 6-144

MOV instruction 5-8
move file read/write
pointer 6-128

mulitplex interrupt 6-26

N

name/unit field 2-9
network access rights 6-45
new file, creating 6-164
next device 2-6
next entryt search 6-68
nondestructive input function
call parameter 2-31

NUL bit 2-9

Index-lO

o
open a file using
handles 6-110,6-112

open file using FCBs 6-64
OPEN function call
parameter 2-34

open mode 6-114
output

auxiliary 6-53
display 6-51
printer 6-54
routines 1-8

OUTPUT function call
parameter 2-29

output, display 6-13

p

parse filename 6-86
pointers 6-10
predefined handles 6-46
print string 6-58
printer output 6-54
printer output routines 1-8
printer setup 6-169, 6-170
program segment

create new 6-83
DOS 7-6

Program Segment Prefix 1-9,
7-9, 7-10

programtenrrlinate 6-49
program terminate
interrupt 6-12

R

random block read 6-84
random block write 6-85
random read 6-78
random record field, set 6-81
random write 6-79
read from a file or
device 6-123

read only 1-4
read only memory (ROM)
interface 1-4

read, random 6-78
read, random block 6-84
read, sequential 6-70
reassign keys 3-17
record number, relative 7-14
record size, logical 7-14
redirect device 6-173
redirection list entry 6-171
registers, DOS

AH 6-9
AL 6-9
AX 6-9
base 6-9
base pointer 6-10
BH 6-9
BL 6-9
BX 6-9
CH 6-9
CL 6-9
code segment 6-10
count 6-9
CX 6-9
data 6-9
data segment 6-10
destination index 6-10
DH 6-9
DL 6-9
DX 6-9
extra segment 6-10
general registers 6~9

Preliminary

index 6-10
instruction pointer 6-10
pointers 6-10
segment register 6-10
stack index 6-10
stack pointer 6-10
stack segment 6-10

relative cluster number 5-13
relative record number 7-14
relocation 10-5
removable media bit 2-8
removable media function call

parameter 2-35
remove subdirectory 6-107
rename a file 6-156
rename file 6-73
request header 2-14

command code 2-15
status word" 2-16
unit code 2-14

reset mode, control
sequence 3-16

reset, disk 6-62
reset, system 1-7
resident portion of command
processor 1-5

restore cursor position 3-12
restriction on FCB usage 4-12
restriction on handle
usage 4-13

return country dependent
information 6-99

ROM (read only memory) 1-4
ROM BIOS interface

module 1-4
ROM BIOS routine 6-52
routines

console/keyboard 1-8
device 1-4
diskette handling 1-8
keyboard input 1-8
output 1-8
printer output 1-8

Index-II

Preliminary

ROM BIOS 6-52
time function 1-8

routines,
strategy/interrupt 2-9

s

sample device driver
listing 2-36

save area, parameter 7-8
save cursor position 3-12
screen cursor ~ontrol 3-6
search for entries 6-66
search, next entry 6-68
sector numbers, logical 6-22
segment address 7-7
segment register 6-10
segment, create new
program 6-83

segment, start 10-5
select di~k 6-63
separators,filename 6-87
sequential read 6-70
sequential write 6-71
set

country dependent
information 6-101

date 6-89
interrupt 6-82
printer setup 6-169
random record field 6-81
time 6-91
verify switch 6-92

set a file's date and time 6-158
set disk transfer address 6-75
set graphics rendition, control

sequence 3-15

Index-12

set mode, control
sequence 3-16

setup, printer 6-169,6-170
sharing modes 6-117
Sl register 6-16
single-drive system 6-63
sUre,file 6-80,7-14
SP register 7-9
space allocation 5-3
specific device allocation table
information 6-77

SS register 7-9
stack index 6-10
stack pointer 6-10
stack segment 6-10
stack space 1-7
stack, user 6-16
standard file handles 4-8
standard input bit 2-9
standard output bit 2-9
start segment 10-5
starting cluster 5-13
static environment 7-7
STATUS function call
parameter 2-32

status word 2-16
status word bits

busy 2-16
done 2-16
error 2-16
error code 2-17

strategy routines 2-9
strings, ASCnz 6-44
structure, DOS 1-4
subdirectory, create 6-106
subdirectory,remove 6-107
switch, high/low loader 10-5
system file 7 -16
system prompt 1-6
system reset 1-7

T

technical information ,
DOS 1-3

terminate a process 6-150
terminate address
interrupt 6-13

terminate but stay
resident 1-5,6-95

terminate but stay resident
interrupt 6-24

terminate process and stay
resident 6-95

terminate program 6-49
terminate program
interrupt 6-13

terminators, filename 6-87
time

get 6-90
set 6-91

time function routines 1-8
track/ sector, calculate
absolute 5-13

tracks, defective 5-13
transfer address, disk 7-7
transient portion 1-6
:ypes of devices

u

block 2-5
character 2-5

mique file, create 6-162
mit code 2-14
mlock file access 6-165
lser stack 6-16
lSing DOS functions 6-47

Preliminary

V

verify switch 6-92
version specific information iii
vertical position 3-9

w

W AIr, get a return code of a
subprocess 6-151

return code of a
subprocess 6-151

work areas 7-3
wrap around 2-30
write to a file or device 6-125
write, random 6-79
write, random block 6-85
write, sequential 6-71

Numerals

OAR Buffered Keyboard
Input 6-59

OBH Check Standard Input
Status 6-60

OCH Clear Keyboard Buffer
and Invoke a Keyboard
Function 6-61

ODH Disk Reset 6-62
OEH Select Disk 6-63
OFH Open File 6-64

Index-13

Preliminary

OOH Program Terminate 6-49
01H Keyboard Input 6-50
02H Display Output 6-51
03H Auxiliary Input 6-52
04H Auxiliary Output 6-53
05H Printer Output 6-54
06H Direct Console I/o 6-55
07H Direct Console Input
Without Echo 6-56

08H Console Input Without
Echo 6-57

09H Print String 6-58
lAH Set Disk Transfer
Address 6-75

lBH Allocation Table
Infonnation 6-76

1 CH Allocation Table
Infonnation for Specific
Device 6-77

10H Close File 6-65
llH Search for First
Entry 6-66

12H Search for Next
Entry 6-68

13H Delete File 6-69
14H Sequential Read 6-70
15H Sequential Write 6-71
16H Create File 6-72
17H Rename File 6-73
19H Current Disk 6-74
2AH Get Date 6-88
2BH Set Date 6-89
2CH Get Time 6-90
2DH Set Time 6-91
2EH Set/Reset Verify

Switch 6-92
2FH Get Disk Transfer

Address (DTA) 6-93
2FH multiplex interrupt

error codes 6-27
function codes 6-27

21H Random Read 6-78
22H Random Write 6-79

Index-14

23H File Size 6-80
24H Set Relative Record
Field 6-81

25H Set Interrupt Vector 6-82
26H Create New Program

Segment 6-83
27H Random Block Read 6-84
28H Random Block
Write 6-85

29H Parse Filename 6-86
3AH Remove Subdirectory

(RMDIR) 6-107
3BH Change the Current
Directory (CHDIR) 6-108

3CH Create a File
(CREAT) 6-109

3DH (DOS 2.10) Open a
File 6-110

3DH (DOS 3.00 and 3.10)
Open a File 6-112

3EH Close a File
Handle 6-122

3FH Read from a File or
Device 6-123

30H Get DOS Version
Number 6-94

31H Terminate Process and
Remain Resident 6-95

33H Ctrl-Break Check 6-96
35H Get Vector 6-97
36H Get Disk Free Space 6-98
38H (DOS 2.10) Return

Country Dependent
Information 6-99

38H (DOS 3.00 and 3.10) Get
or Set Country Dependent
Information 6-101

39H Create Subdirectory
CMKDIR) 6-106

4AH Modify Allocated
Memory Blocks
(SETBLOCK) 6-144

Preliminary

4BH Load or Execute a
Program (EXEC) 6-145

4CH Terminate a Process
(EXIT) 6-150

4DH Get Return Code of a
Subprocess(VV~) 6-151

4 EH Find First Matching File
(FIND FlRST) 6-152

4FH Find Next Matching File
(FIND NEXT) 6-154

40H VVrite to a File or
Device 6-125

41H Delete a File from a
Specified Directory
(~IN1C) 6-127

42H Move File Read VVrite
Pointer (LSEEK) 6-128

43H Change File Mode
(CHMOD) 6-130

44H ItJ Control for Devices
(IOClL) 6-132

45H Duplicate a File Handle
(DUP) 6-139

46H Force a Duplicate of a
Handle (FORCDUP) 6-140

47H Get Current
Directory 6-141

48H Allocate Memory 6-142
49H Free Allocated
Memory 6-143

5AI1 (DOS 3.00 and 3.10)
Create Unique File 6-162

5BH (DOS 3.00 and 3.10)
Create New File 6-164

5CH (DOS 3.00 and 3.10)
LockJunIock File
Access 6-165

5EOOH (DOS 3.10) Get
Machine Name 6-168

5E02H (DOS 3.10) Set Printer
Setup 6-169

5E03H (DOS 3.10) Get Printer
Setup 6-170

5F02H (DOS 3.10) Get
Redirection List Entry 6-171

5F03H (DOS 3.10) Redirect
Device 6-173

5F04H (DOS 3.10) Cancel
Redirection 6:-176

54H Get Verify Setting 6-155
56H Rename a File 6-156
57H Get/Set a File's Date and
Time 6-158

59H (DOS 3.00 and 3.10) Get
Extended Error 6-160

62H (DOS 3.00 and 3.10) Get
Program Segment Prefix
Address (PSP) 6-178

Index-15

Preliminary

Index-16

