
--- ------ - ---- ---- - ---- - - ----------_.- Personal Computer
Computer Language
Series

CP/M_86™
Operating System

First Edition (March 1982)

Changes are periodically made to the information herein; these changes
will be incorporated in new editions of this publication.

Products are not stocked at the address below. Requests for copies of
this product and for technical information about the system should be
made to your authorized IBM Personal Computer Dealer.

A Product Comment Form is provided at the back of this publication. If
this form has been removed, address comment to IBM Corp., Personal
Computer, P.O. Box 1328-C, Boca Raton, Florida 33432. IBM may use
or distribute any of the information you supply in any way it believes
appropriate without incurring any obligations whatever.

Portions of this material are licensed from Digital Research, Inc.

©Copyright International Business Machines Corporation 1982
©Copyright Digital Research, Inc. 1982

CONTENTS

Preface .. x
What CP/M-86 does for you x
What you need to run CP/M-86 x
How this book is organized. xi

Chapter 1. Introduction .. 1-1
How to get CP/M-86 started 1-3
A sample command 1-4
CP/M-86 line editing control characters. 1-6
Why you should back up your files 1-7
How to make a copy of

your CP/M-86 diskette. 1-8
If you only have one drive. 1-11

Chapter 2. Files, Diskettes, Drives and Devices 2-1
What is a file? .. 2-3
How are files created? 2-3
Naming files-what's in a name? 2-4
Accessing files-do you have the correct drive? 2-5
Accessing more than one file. 2-6
How can I organize and protect my files? 2-7
How are files stored on a diskette? 2-8
Changing diskettes. 2-9
Changing the default drive. 2-10
More CP/M-86 drive features. 2-11
Other CP/M-86 Devices 2-12

Chapter 3. CP/M-86 Command Concepts 3-1
Two Types of Commands 3-3
Built-in Commands. 3-3
Transient Utility Commands 3-4
How CP/M-86 Searches for Commands 3-5
Control Character and

Function Key commands 3-7

Chapter 4. Command Summary 4-1
Let's get past the formalities. 4-3
How commands are described. 4-5
The ASM86 (Assembler) Command 4-8

111

tv

The ASSIGN Command 4-11
The COPYDISK Command , 4-15
The DDT86 Command , 4-17
The DIR Command. 4-19
The ED Command , 4-22
The ERA Command , 4-27
The FUNCTION Command. 4-29
The GENCMD Command , 4-32
The HELP Command , 4-34
The NEWDISK Command , 4-36
The PIP Command 4-38

Single File Copy 4-38
Multiple File Copy 4-41
Combining Files 4-42
Copy Files to and from

Auxiliary Devices. 4-43
Multiple Command Mode 4-45
Using Options With PIP 4-46

The PROTOCOL Command 4-51
The REN Command. 4-54
The SPEED Command 4-56
The STAT Command 4-58

Set a Drive to Read-Only Mode 4-58
Free Space on Disk , 4-59
Files-Display Space Used and

Access Mode 4-60
Set File Access Modes (Attributes) ... , 4-63
Display Disk Status , 4-64
Display User Numbers

With Active Files 4-65
The SUBMIT Command , 4-66
The TOD Command 4-69
The TYPE Command 4-72
The USER Command. 4-73

Chapter 5. ED, the CP/M-86 Context Editor 5-1
Starting ED .. 5-3
ED Operation. .. 5-5

Appending Text into the Buffer 5-7
The V (Verify Line Numbers)
Command. 5 -7
The A (Append) Command. 5-8

ED Exit 5-8
The W (Write) Command 5-8
The E (Exit) CQmmand 5-9

Basic Editing Commands 5-10
Moving the Character Pointer 5-12

The B (Beginning/Bottom)
Command 5-12

The C (Character) Command 5-12
The L (Line) Command 5-13
The n (Number) Command 5-13

Displaying Memory Buffer Contents .. 5-14
The T (Type) Command 5-14

Deleting Characters. 5-15
The D (Delete) Command. 5 - 15
The K (Kill) Command. 5-16

Inserting Characters into the Memory
Buffer 5-17

The I (Insert) Command 5-17
The Istring-Z (Insert String)

Command 5-18
Replacing Characters. 5-19

The S (Substitute) Command ... 5-19
Combining ED Commands 5-20

Moving the Character Pointer 5-20
Displaying Text. 5-21
Editing .. 5-22

Advanced ED Commands. 5-23
Moving the CP and Displaying Text ..

The P (Page) Command
The n: (Line Number) Command
The :n (Through Line Number)

Command
Finding and Replacing Character

Strings
The F (Find) Command
The N Command
The J (Juxtapose) Command
The M (Macro) Command
The Z (Sleep) Command

Moving Text Blocks
The X (Transfer) Command
The R (Read) Command

Saving or Abandoning Changes:
ED Exit

The H (Head of File) Command
The 0 (Original) Command
The Q (Quit) Command

ED Error Messages

5-23
5-23
5-23

5-24

5-24
5-25
5-26
5-26
5-28
5-29
5-29
5-29
5-30

5-31
5-31
5-32
5-32
5-33

v

VI

Chapter 6. Introduction to ASM-86 6-1
Assembler Operation 6-3
Optional Run-time Parameters. 6-5
Ending ASM -86 .. 6-7

Chapter 7. Elements of ASM-86 Assembly Language 7-1
ASM -86 Character Set 7 -3
Tokens and Separators 7-3
Delimiters .. 7-3
Constants. .. 7-5

Numeric Constants 7-5
Character Strings 7 -6

Identifiers. .. 7 -7
Keywords 7 -8
Symbols and Their Attributes 7-10

Operators .. 7 - 12
Operator Examples 7-15
Operator Precedence 7-18

Expressions. .. 7 - 19
Statements .. 7-20

Chapter 8. Assembler Directives 8-1
Assembler Directives 8-3
Segment Start Directives 8-3

The CSEG Directive 8-4
The DSEG Directive 8-5
The SSEG Directive. 8-5
The ESEG Directive. 8-6

The ORG Directive 8-6
The IF and ENDIF Directives. 8-7
The INCLUDE Directive. 8-7
The END Directive 8-8
The EQU Directive. 8-8
The DB Directive. .. 8-9
The DW Directive. 8-10
The DD Directive 8-10
The RS Directive .. 8-11
The RB Directive. 8-11
The R W Directive 8-11
The TITLE Directive 8-12
The PAGE SIZE Directive. 8-12
The PAGE WIDTH Directive 8-12
The EJECT Directive. 8-12
The SIMFORM Directive. 8-13
The NOLIST and LIST Directives 8-13
The IFLIST and NOIFLIST Directives 8-13

Chapter 9. The ASM-86 Instruction Set 9-1
ASM-86 Instruction Set Summary 9-3
Data Transfer Instructions 9-8
Arithmetic, Logic, and Shift Instructions. .. 9-11
String Instructions 9-18
Control Transfer Instructions. 9-20
Processor Control Instructions 9-25
Mnemonic Differences 9-27

Chapter 10. ASM -86 Error Messages 10-1
ASM-86 Fatal Error Messages. 10-3
ASM-86 Diagnostic Error Messages 10-4

Chapter 11. DDT -86
DDT-86 Operation

Invoking DDT-86
DDT -86 Command Conventions
Specifying a 20-Bit Address
Terminating DDT-86
DDT-86 Operation With Interrupts ..

DDT-86 Commands
The A (Assemble) Command
The B (Block Compare) Command
The D (Display) Command
The E (Load for Execution) Command
The F (Fill) Command
The G (Go) Command
The H (Hexadecimal Math)

Command
The I (Input Command Tail)

Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The V (Value) Command
The W (Write) Command
The X (Examine CPU State)

Command
Default Segment Values
Assembly Language Syntax for

A and L Commands
DDT -86 Sample Session

11-1
11-3
11-3
11-3
11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-8
11-9
11-9

11-10

11-11
11-11
11-12
11-12
11-13
11-14
11-15
11-15
11-16

11-16
11-18

11-20
11-23

vii

viii

Appendix A. Messages , A-I
Status Line Messages , A-3

Diskette/Drive Error
Status Line Messages A-4

Printer Error Status Line Messages , A-6
CP/M-86 Command Error Messages A-7

Appendix B. Command Setup and Execution Under
CP/M-86 B-1

Transient Program Execution Models , B-3
The 8080 Memory Model B-4
The Small Memory Model. B-6
The Compact Memory Model B-7

Base Page Initialization " B-I0
Transient Program Load and Exit B-12

Appendix C. Command (CMD) File Generation. C-l
Intel 8086 Hex File Format " C-3
Operation ofGENCMD C-5
Command(CMD) File Format C-8

Appendix D. Basic Disk Operating System
(BDOS) Functions D-I

BDOS Parameters and Function Codes , D-3
Simple BDOS Calls. D-5
BDOS File Operations '" D-ll
BDOS Memory Management and Load D-33

Appendix E. Sample Random Access Program. E-I

Appendix F. Light Pen and Escape Code Sequences.. F-l
Light Pen F-3
Escape Code Sequences F-4

ESC a-Set Console Mode. F-5
ESC b-Set Foreground Color " F-5
ESC c-Set Background Color. F-6
ESC d, e, f, g, h-I/O Redirection F-7
ESC i-Enable/Disable

Transparent Mode F-8
ESC j-Save Cursor Position " F-8
ESC k-Restore Cursor Position F-8
ESC I-Enable/Disable Console

Status Mode F-8
ESC A-Cursor Up F-9
ESC B-Cursor Down F-9
ESC C-Cursor Forward F-9
ESC D-Cursor Backward F-9

ESC E-Clear Screen (and Home Cursor) F-9
ESC H-Home Cursor F-9
ESC K-Clear to End of Line. F-IO
ESC Y -Position Cursor. F-IO
ESC I-Set Color Palette. F-IO
ESC ?-Get Time, Date,

Background Message F-IO
ESC :-Program Function Keys F-ll

Index X-I

IX

Preface

Welcome to the world of microcomputers opened to you by
your IBM Personal Computer. Welcome also to the world of
application software accessible through Digital Research
CP/M_86™. Digital Research designed this version of
CP/M -86 especially for the Intel ™ 8088 microprocessor that is
the heart of your IBM Personal Computer.

What CP/M -86 does for you

CP/M-86 manages information stored magnetically on your
diskettes by grouping this information into files of programs
and data. CP/M-86 can copy files from a diskette to the IBM
Personal Computer's memory, or to a peripheral device such as a
printer. CP/M-86 performs these and other tasks by executing
various programs according to commands you enter at your
keyboard.

Once in memory, a program runs through a set of steps that
instruct your computer to perform a certain task. The advantage
of using CP/M-86 on your IBM Personal Computer is that you
can create your own CP/M-86 programs to entertain, educate,
or solve your own commercial or scientific problems.

What you need to run CP/M -86
on the IBM Personal Computer

x

The minimum IBM Personal Computer consists of a System
Unit with 16K of memory, a keyboard and a screen device.
However, CP/M-86 needs some additional features to operate
properly.

To start, CP/M-86 needs at least one diskette drive. You'll find
a second drive particularly handy for making quick copies of
your own programs and data. CP/M-86 can support up to four
logical diskette drives. You'll also need at least 32K of memory.
To run DDT -86 you must have 48K, and to run ASM-86 and
many of the application programs that run under CP/M-86 you
must have 64K.

If you expand your system beyond these minimums, you will
appreciate that CP/M-86 supports many other features you can
add to your IBM Personal Computer. For example, CP/M-86
can support the maximum amount of memory you can install.
CP/M-86 supports both low and high resolution, color and
monochrome displays. CP/M-86 can also accept input from a
light pen.

How this book is organized

This book introduces you to CP/M-86 and tells you how to use
it. The book assumes you have read the Guide to Operations that
accompanied your IBM Personal Computer, and are familiar
with the parts of your computer, how to set it up and turn it on,
and how to handle, insert and store diskettes. However, it does
not assume you have had a great deal of experience with
computers. It starts with the basics, then gradually advances to

more technical detail.

Chapter 1 tells how to start CP/M-86, enter a command and
make a back-up diskette. Chapter 2 discusses diskettes and
files. Chapter 3 develops the CP/M-86 command concepts you
need to understand the command summary in Chapter 4. The
command summary describes every command and program
supplied with CP/M-86. Because some of these programs are
too complex to be adequately described in a few pages, they are
singled out for complete discussion in later chapters.

Chapter 5 tells you how to use ED, the CP/M-86 file editor.
With ED you can create and edit program, text and data files.

Chapters 6 through If) describe ASM-86, the CP/M-86
assembler for your IBM Personal Computer. You won't need
ASM-86 until you decide to write assembly language programs
and become more familiar with your IBM Personal Computer's
8088 microprocessor instruction set. When you do, you'll find
that ASM-86 simplifies writing 8088 microprocessor
programs.

Chapter 11 gives you the operating details for DDT -86, the
CP/M-86 debugging program. You can use DDT -86 to find
errors in programs wri tten in high level languages as well as in
ASM-86.

Xl

xii

Appendix A lists the messages CP/M -86 displays when it
encounters special conditions. If the condition requires
correction, Appendix A can also tell you what actions you
should take before you proceed.

Appendixes B through F provide you with details not required
for day-to-day operation ofCP/M-86. Appendix B tells how
application programs are loaded for operation with CP/M-86,
while Appendix C shows you how to create new CP/M-86
commands.

Appendix D tells how a program can call on CP/M-86 to
perform tasks like reading or wri ting to diskettes. You'll need
to read this appendix when you write your own programs that
use CP/M-86 facilities. A sample program is included in
AppendixE.

Finally, Appendix F shows you how~to use a color monitor and
light pen when you connect them to your IBM Personal
Computer.

If you are new to computers, you may find these last topics a bit
confusing, right? But half the fun of an IBM Personal Computer
is learning more about how to use it in your home, business,
research, or school. It's the purpose of this book to proceed
step-by-step so you can readily understand each CP/M-86
operation.

CHAPTER 1. INTRODUCTION

Contents

How to get CP/M-86 started. 1-3
A sample command. .. 1-4
CP/M-86 line editing control characters 1-6
Why you should back up your files 1-7
How to make a copy of your CP/M-86 diskette. . .. 1-8
If you only have one drive 1-11

1-1

1-2

Introduction

This chapter discusses the fundamentals of your IBM Personal
Computer and CP/M-86. It starts by describing CP/M-86
start-up procedures and initial messages. Then it shows how to
enter a CP/M-86 command and make a back-up copy of your
CP/M-86 distribution diskette.

How to get CP/M-86 started

Starting or loading CP/M-86 means reading a copy ofCP/M-86
from your CP/M-86 system diskette into your computer's
memory. You can start CP/M-86 in one of two ways, depending
on whether your computer is powered on or off.

If power is off, insert your CP/M-86 system diskette with the
label facing upward into drive A, the built-in drive on the left
side of the System Unit. Close the drive door. When you turn
the power on, your IBM Personal Computer automatically loads
CP/M-86 into memory after a few moments of self-testing. (If
you've just powered off but want to use your computer again,
you must count slowly to five between turning the power off and
then back on.)

If power is on and you want to restart CP/M-86, first make sure
your CP/M-86 system diskette is in drive A and then hold down
the Crrl and Alt keys and press the Del key. Release all three
keys. This sequence is called System Reset.

In either start sequence, the light on drive A goes on and the
drive clicks and whirs as CP/M-86 is loaded into memory. The
first thing CP/M-86 does after it is loaded into memory is
display the following message on your screen:

CP/M-86 for the IBM Personal Computer Version V.V
Copyright (c) 1982 Digital Research Inc.

The version number, represented above by V. V, tells you the
major and minor revision level of the CP/M-86 version that you
own. After displaying this message, CP/M-86 takes inventory
of your computer to find out some of its components and reports
what it finds. For example, if your computer has two disk
drives, a printer, a serial communications card (Asynchronous
Communications Adapter) and 64K of memory, CP/M-86
writes the message:

1-3

Hardware supported:

Diskette(s): 2
Printer(s): 1

Serial Port(s): 1
Memory (Kb): 64

Then CP/M-86 writes a "status line" at the bottom line of your
screen. The status line has space for a status message, written by
CP/M-86, followed by the current user number and actual or
elapsed time and date. The initialstatus message is blank and
the initial time is all zeros. The first date displayed is the date
your version of CP/M -86 was created. However, you can use the
TOD command described in Chapter 4 to set the date and time
fields to the current date and time. Otherwise, CP/M-86 keeps
track of the time elapsed from the instant CP/M -86 begins
operation.

Finally, you'll get the two character message:

A>

This "system prompt" tells you CP/M-86 is ready to read a
command from your keyboard. It also tells you that drive A is
your "default" drive. That means that until you tell CP/M-86 to

do otherwise, it looks for program and data files on the diskette
in drive A.

A sample command

1-4

CP/M-86 performs certain tasks according to specific
commands that you type at your keyboard. A CP/M-86
command line is composed of a command keyword, an optional
command tail, and an "Enter" keystroke. The command
keyword identifies a command (program) to be executed. The
command tail can contain extra information for the command
such as a filename or parameter. To end the command line, you
must press the Enter key (~).

As you type characters at the keyboard, they appear on your
screen and the cursor moves to the right. If you make a mistake
in typing, push the Backspace key (+-') to move the cursor to
the left and correct the error.

You can type the keyword and command tail in any
combination of upper-case and lower-case letters. CP/M-86
treats all letters in the command line as upper case.

Generally, you type a command line directly after the system
prompt. However, CP/M-86 does allow spaces between the
prompt and the command keyword.

A command keyword identifies one of two different types of
commands: Built-in commands and Transient Utility
commands. Built-in commands reside in memory as a part of
CP/M-86 and can be executed immediately. Transient Utility
commands are stored on diskette as program files. They must be
loaded into memory to perform their task. You can recognize
Transient Utility program files in a diskette's directory because
their filenames end with CMD.

For Transient Utilities, CP/M-86 checks only the command
keyword. If you include a command tail, CP/M-86 passes it to
the utility without checking it because many utilities require
unique command tails.

Let's use one Built-in command to demonstrate how CP/M-86
reads command lines. The DIR command tells CP/M-86 to
display the names of diskette files on your screen. Type the DIR
keyword after the system prompt, omit the command tail, and
press Enter.

A>DlR

CP/M-86 responds to this command by writing the names of all
the files you have stored on the diskette in drive A. For example,
if you have your CP/M-86 system diskette in drive A, these
filenames, among others, appear on your screen:

COPYDISK CMD
PROTOCOL CMD
NEWDISK CMD

CP/M-86 recognizes only correctly spelled command keywords.
If you make a typing error and press Enter before correcting
your mistake, CP/M-86 echoes the command line with a
question mark at the end. For example, if you accidentally
mistype the DIR command, CP/M-86 responds

A>DJR
DJR?

1-5

to tell you that it does not understand the command keyword.

DIR accepts a filename as a command tail. You can use D IR
with a filename to see if a specific file is on the disk. For
example, to check that the Transient Utility program
COPYDISK.CMD is on your system diskette, type:

A> DlR COPVDlSK.CM 0

CP/M-86 performs this task by writing either the name of the
file you specified or the message NO FILE.

Be sure to type at least one space after DIR to separate the
command keyword from the command tail. If you don't,
CP/M-86 responds as shown below.

A> DlRCOPVDlSK.CM 0
DlRCOPVDlSK.CMD?

Some of the utility programs display messages requiring a
response. When you type in your answer you must press the
Enter key to send the response to the program.

CP/M -86 line editing control characters

1-6

You can correct simple typing mistakes with the Backspace
(~) key. However, CP/M-86 supports the following control
character commands to help you edit more efficiently. You can
use these these control characters to edit command lines or
input lines to most programs. To type a control character, hold
down the Ctrl key and press the required letter key. Release
both keys.

Ctrl-E

Ctrl-H

Ctrl-I

moves the cursor to the beginning of the following
line without erasing your previous input.

moves the cursor left one character posi tion and
deletes the character-the same as the backspace
(~) key.

moves the cursor to the next tab stop, where tab
stops are automatically placed at each eighth
column-same as the (-'?) key.

Ctrl-J

Ctrl-M

Ctrl-R

Ctrl-U

Ctrl-X

moves the cursor to the left of the current line and
sends the command line to CP/M-86-same as an
Enter (+-l) keystroke.

moves the cursor to the left of the current line and
sends the command line to CP/M-86-same as an
Enter (+-l) keystroke.

types a # at the current cursor location, moves the
cursor to the next line and retypes any partial
command you have typed so far.

discards all the characters in the command line
that you've typed so far, types a # at the current
cursor position and moves the cursor to the next
command line.

discards all the characters in the command line
that you've typed so far and moves the cursor back
to the beginning of the current line.

You probably noticed that some control characters have the
same meaning. For example, the Ctrl-J and Ctrl-M keystrokes
have the same effect as pressing the Enter key: all three send the
command line to CP/M-86 for processing. Also, Ctrl-H has the
same effect as pressing the backspace (+-) key.

Why you should back up your files

Humans have faults, and so do computers. Human or computer
errors sometimes destroy valuable programs or data files. By
mistyping a command, for example, you could accidentally
erase a program that you just created. A similar disaster could
result from an electronic component failure.

Data processing professionals avoid losing programs and data by
making copies of valuable files. Always make a working copy of
any new program you purchase and save the original. If the
program is accidentally erased from the working copy, you can
easily restore it from the original.

Professionals also make frequent copies of new programs or data
files during the time they are being developed. The frequency of
making copies varies with each programmer, but as a general
rule, make a copy at the point where it takes ten to twenty times
longer to reenter the information than it takes to make the copy.

1-7

You can make back-ups in two ways. You can back up files one
at a time, or you can make a complete copy of the entire
diskette. The choice is usually made based on the number of
files on the diskette that need to be backed up. It takes less than
a minute to make a copy of one file, but it takes only two or three
minutes to copy an entire diskette.

So far, we haven't discussed any commands that change
information recorded on a CP/M-86 system diskette. Before we
do, let's make a few working copies of your original CP/M-86
diskette.

How to make a copy of your CP/M -86 diskette

1-8

CP/M-86 supports two kinds of drives for your IBM Personal
Computer: single-sided or double-sided. Before copying your
CP/M-86 system diskette, you need to know whether your
computer has single-sided or double-sided drives. If your
system has single-sided drives, you need to prepare your
back-up diskette with a single-sided format so CP/M-86 can
write to it properly. If your system has double-sided drives, you
can prepare your back-up diskette with a single-sided or a
double-sided format. If you prepare the diskette with a
double-sided format, be sure to use the procedure for
double-sided diskettes described below. CP/M-86 is
distributed on single-sided diskettes only.

To back up your CP/M-86 diskette, you will use one or more
diskettes for the back-ups, the NEWDISK and COPYDISK or
PIP Transient Utility programs, and of course your CP/M-86
diskette. The back-up diskettes may be factory-fresh or used. If
the diskettes are factory-fresh, you must format them with the
NEWDISK transient utility program. If the diskettes are used,
make sure they do not contain any information you may need
again! COPYDISK copies everything from a source diskette to a
destination diskette-including blank space-and writes over
any information that may already be stored on the destination
diskette.

This section shows how to use NEWDISK and COPYDISK or
PIP on an IBM Personal Computer with two diskette drives.
The next section describes the differences involved if you are
working with one drive. Whether you have one drive or two,
you may need to use NEWDISK to format a factory-fresh
diskette for your back-up. Before starting NEWDISK, make
sure your CP/M-86 diskette is in drive A and the factory-fresh

disk is in drive B. Then type the following command line and
press the Enter key.

A>newdisk b: $n

Note: If you are preparing double-sided diskettes you must use
the form

A>newdisk b: $ds

to tell CP/M-86 to format the disk on both sides. In response to
either of the command lines shown above, CP/M -86 loads
NEWDISK into memory and runs it. NEWDISK sends the
following display to the screen:

NEWDISK vn 1.0 mm/dd/yy

Disk B will be formatted.

ALL DATA WILL BE ERASED FROM THE DISK.

Is this what you want (yin)?

If you press n, NEWDISK returns control to CP/M-86 and the
system prompt reappears. If you press y, NEWDISK continues
and displays the message:

Disk format in progress.
000

NEWDISK tells you which track of the diskette it is
formatting by "counting" from 0 to 39 (or 79 for double':'sided
diskettes). When NEWDISK is finished, the following
message is displayed:

Format Complete.
Press Control-C to exit, or
ENTER to format another disk.

Press the Enter key if you have more factory-fresh diskettes to
format. Press Ctrl-C to return to the CP/M-86 system prompt.
See the description of NEW DISK in Chapter 4 for a complete
discussion of NEW DISK's capabilities.

1-9

1-10

To make a copy of your single-sided CP 1M -86 diskette, use the
COPYDISK utility described below. To make a double-sided
CP/M-86 system diskette, use the PIP utility described
afterwards.

First make sure that your system diskette is in drive A and a
single-sided formatted diskette is inserted in drive B.

Note: In general, when using COPYDISK both diskettes
must have the same format. You must use two single-sided or
two double-sided diskettes. In this case, because your
CP/M-86 system diskette is single-sided, you must use two
single-sided diskettes.

Enter the following command to the system prompt:

A>copydisk

CP/M-86 loads COPYDISK into memory and runs it.
COPYDISK displays the following messages on your screen and
prompts you for the source and destination drive names, then
verifies that you do indeed want to make the copy:

CP/M-U6 Full Disk Copy Utility
Version 1.0

Enter Source Disk Drive (A-D)? A

Destination Disk Drive (A-D)? B

Copying disk A: to disk B:
Is this what you want to do (YIN)? Y
Copy started

Reading track nn
Writing track nn
Verifying track nn
Copy completed.

Copy another disk (YIN)? N
Copy program exiting

(after read, new text appears)
(after write, next message is)

To make a copy of your CP/M-86 system on a double-sided
diskette, use the PIP utility. First make sure that your CP/M-86
diskette is inserted in drive A and a diskette formatted by
NEWDISK to double-sided is in drive B. Enter the following
command to the system prompt or press the F6 function key,
and then press Enter.

A>PIP B: =A:*.*[VJ

CP/M-86 loads PIP into memory and runs it. PIP displays the
prompt "COPYING -" on your sreen, followed by the name of
each diskette file as it is copied to the back-up diskette. When
PIP finishes copying all of the files from the source diskette to
the back-up diskette, it displays the CP/M-86 system prompt.

Now you have an exact copy of the original CP/M-86 diskette in
drive B. Remove the original from drive A and store it in a safe
place. If your original remains safe and unchanged, you can
easily restore your CP/M-86 program files if something happens
to your working copy.

Remove the copy from drive B and insert it in drive A. Press
Ctrl-C. Use the copy as your CP/M-86 system diskette to make
more back-ups, to try the examples shown in the rest of this
book, and to start CP/M-86 the next time you power up your
IBM Personal Computer.

f you only have one drive

Perhaps you purchased only one diskette drive and plan to add
another later. If so, you must shuffle diskettes in and out of your
single drive to copy programs or data from one diskette to
another. However, CP/M-86 simplifies this task by acting like a
two-drive system. It keeps track of your source and destination
diskettes and tells you when to take out one and insert the other.
To keep things clear, CP/M-86 refers to the diskette that would
reside in drive A as Diskette A, and the diskette that would
reside in drive B as Diskette B. You may wish to label your
diskettes A and B to help you keep track during a long copy
operation.

As an example, let's make a back-up copy of your original
CP/M-86 diskette. Assume your drive is single-sided. To
begin, enter the same command you would if you had two
drives.

1-11

1-12

A>copydisk

CP/M-86 loads and executes COPYDISK, which at first
displays its normal messages. However, after it has read a track
from the source diskette into memory, it beeps and displays the
following message in the status line:

Put Disk B in A; ENTER to continue

This message tells you to insert the destination diskette into
your only drive, drive A. After you insert the diskette, push
Enter to tell COPYDISK to write the information from
memory to the diskette. When COPYDISK finishes writing,
it sounds a beep and types the following message on the status
line:

Put Disk A in A; ENTER to continue

Return the source diskette to the drive and press Enter to
continue. Switch diskettes as COPYDISK requests until the
copy is complete.

The CP/M-86 utilities that copy information from one diskette
to another, such as PIP and COPYDISK, or perform other
diskette functions, such as NEWDISK, simulate multiple
drives in this way. They display the same messages in the status
line when it is time for you to changediskettes. See the
descriptions in Chapter 4 for a detailed disc~ssion of how each
command and utility works on a single-drive system.

CHAPTER 2. FILES, DISKETTES,
DRIVES AND DEVICES

Contents

What is a file? .. 2-3
How are files created? .. 2-3
Naming files-what's in a name? 2-4
Accessing files-do you have the correct drive? 2-5
Accessing more than one file 2-6
How can I organize and protect my files? 2-7
How are files stored on a diskette? 2-8
Changing diskettes 2-9
Changing the default drive 2-10
More CP/M-86 drive features 2-11
Other CP/M-86 Devices 2-12

2-1

2-2

~iles, Diskettes, Drives and Devices

CP/M-86's most important task is to access and maintain files
on your diskettes. It can create, read, write, and erase program
and data files. This chapter tells you what a file is, how to create,
name and access a file, and how files are stored on your diskettes.
It also tells how to indicate to CP/M-86 that you've changed
diskettes or that you want to change your default drive.

~hat is a file?

A CP/M-86 file is a collection of related information stored on a
diskette. Every file must have a unique name because that name
is used to access that file. A directory is also stored on each
diskette. The directory contains a list of the filenames stored on
that diskette and the locations of each file on the diskette.

In general, there are two kinds of files: program files and data
files. A program file is an executable file, a series of instructions
the computer can follow step by step. A data fil,e is usually a
collection of information: a list of names and addresses, the
inventory of a store, the accounting records of a business, the
text of a document, or similar related information. For
example, your computer cannot "execute" names and addresses,
but it can execute a program that prints names and addresses on
mailing labels.

A data file may contain the source code for a program.
Generally, a program source file must be processed by an
assembler or compiler before it becomes an executable program
file. In most cases, an executing program processes a data file.
However, there are times when an executing program processes
an executable program file. For example, DDT -86 can both edi t
and execute a command file.

:-low are files created?

There are many ways to create a file. You can create a file by
copying an existing file to a new location, perhaps renaming it
in the process. Under CP/M-86, you can use the Transient
Utili ty PIP to copy and rename files. The second way to create a
file is to use a text editor. The CP/M-86 text editor ED can
create a file and assign it the name you specify. Finally, some

2-3

programs such as ASM -86 create output files as they process
input files.

Naming files-what's in a name?

2-4

CP/M-86 identifies every file by its unique file specification. A
file specification can have three parts: a drive specification, a
filename and a filetype. We recommend that you create file
specifications made up ofletters and numbers. Because the
CP/M-86 command processor recognizes the following special
characters as delimiters, they must not be a part of a file
specification:

< > * [

A file specification can be simply a one- to eight-character
filename, such as:

MYFILE2

When you make up a filename, try to let the name tell you
something about what the file contains. For example, if you
have a list of customer names for your business, you could name
the file

CUSTOMER

so that the name is eight or fewer characters and also gives you
some idea of what's in the file.

As you begin to use your IBM Personal Computer with
CP/M-86, you'll find that files fall naturally into families. To
keep file families separated, CP/M-86 allows you to add a family
name, called a filetype, to the filename. For example, you could
add the following filetype to the file that contains a list of
customer names:

CUSTOMER.NAM

The executable program files that CP/M-86 loads into memory
from a diskette have different filenames, but are in the fami! y of
8088 programs that run with CP/M-86. The filetype CMD
identifies this family of executable programs.

A filetype may be up to three characters long. Try to use three
letters that tell something about the file's family. When you
type a file specification for CP/M-86 to read, separate the
filetype from the filename with a period. When CP/M-86 lists
file specifications for you to read in response to a DIR
command, it separates the filename from the filetype with
blanks so that you can compare file types quickly.

CP/M-86 has already established several file families. Here's a
list of their filetypes with a short description of each family:

CMD

LST

$$$

A86

H86

SUB

8088 Machine Language Program

Printable output from ASM-86

Temporary

ASM -86 Source Program

Assembled ASM-86 Program in hexadecimal
format

List of commands to be executed by SUBMIT

A.ccessing files-do you have the correct drive?

When you type a file specification in a command tail, the
Built-in or Transient Utility looks for the file on the diskette in
the drive named by the system prompt. For example, if you type
the command

A>dir copydisk.cmd

CP/M-86 looks in the directory of the diskette in drive A for
COPYDISK.CMD. But if you have another drive, B for
example, you need a way to tell CP/M-86 to access the diskette
in drive B instead. For this reason, CP/M-86 lets you to precede
a filename with a drive specification, which is the drive letter
followed by a colon. For example, in response to the command

A>dir. b:myfile2.lib

CP/M-86 looks for the file MYFILE2.LIB in the directory of the
diskette in drive B.

2-5

You can also precede an executable program filename with a dis~
specification, even if you are using the program filename as a
command keyword. For example, if you type the command

A>b:pip

CP/M-86 looks in the directory of the diskette in the B drive for
the file PIP.CMD. IfCP/M-86 finds PIP on drive B, it loads
PIP into memory and executes it.

Unlike the filename and filetype which are stored in the diskette
directory, the drive specification for a file changes as you move
the diskette from one drive to another. Therefore a file has a
different file specification when you change its diskette from one
drive to another.

Accessing more than one file

2-6

Certain CP/M-86 Built-in and Transient Utilities can select and
process several files when special "wildcard" characters are
included in the filename or filetype. A file specification
containing wildcards can refer to more than one file because it
gives CP/M-86 a pattern to match: CP/M-86 searches the
diskette directory and selects any file whose filename or filetype
matches the pattern.

The two wildcard characters are?, which matches any single
letter in the same position, and *, which matches any character
at that position, and any other characters remaining in the
filename or filetype. The rules for using wildcards are listed
below.

A ? matches any character in a name, including a space
character.

A * must be the last, or only, character in the filename or
filetype. CP/M-86 internally replaces a * with? characters to
the end of the filename or filetype.

When the filename to match is shorter than eight characters,
CP/M-86 treats the name as if it ends with spaces.

When the filetype to match is shorter than three characters,
CP/M-86 treats the filetype as if it ends with spaces.

Suppose, for example, you have a diskette with six files named
A.CMD, AA.CMD, AAA.CMD, B.CMD, A.A86, and
B.A86.

Several cases are listed below where a name with wildcards
matches all, or a portion of, these files:

* *

???????????

*.CMD

???????? .CMD

?CMD

? *

????

A?CMD

A*.CMD

A?? ???? ? . CMD

is treated as ???????? ???

matches all six names

is treated as ???????? CMD

matches the first four names

matches A.CMD and B.CMD

is treated as ? ???

matches A.CMD, B.CMD, A.A86, and
B.A86

matches A.CMD and AA.CMD

is treated as A??????? .CMD

matchesA.CMD, AA.CMD, and
AAA.CMD

Remember that CP/M-86 uses wildcard patterns only while
searching a diskette directory, and therefore wildcards are valid
only in filenames and filetypes. You cannot use a wildcard in a
drive specification.

low can I organize and protect my files?

Under CP/M-86 you can organize your files into groups, protect
your files from accidental change, and specify how your files are
displayed in response to a DIR command. CP/M-86 supports
these features by assigning user numbers and attributes to files
and recording them in the diskette's directory.

You can use user numbers to separate your files into 16 file
groups. All files are identified by a user number which ranges
from 0 to 15. CP/M-86 assigns a user number to a file when the
file is created. Generally, the file is assigned the current user

2-7

number, the one displayed in the Status Line at the bottom of
your screen. You can change the current user number with the
Built-in USER command described in Chapter 4.

Most commands can access only those files that have the current
user number. For example, if the current user number is 7, a
DIR command displays only the files that were created under
user number 7. The exception to this is the PIP command. PIP
can copy a file with one user number and give the copy another
user number. See the discussion of PIP in Chapter 4.

File attributes control how a file can be accessed. There are two
kinds of file attributes. The first attribute can be either DIR
(Directory) or SYS (System). When you create a file, it is
automatically marked with the DIR attribute. You can display
the name of a file marked with the DIR attribute only if the file
has the current user number. If you give a file the SYS attribute,
it is not displayed in response to a DIR command; you must use
DIRS as described in Chapter 4.

If you give a file with user number 0 the SYS attribute, you can
read and execute that file from any user number on the same
drive. This feature gives you a convenient way to make your
commonly used programs available under any user number.
However, note that a user 0 SYS file does not appear in response
to a DIRS command unless 0 is the current user number.

The second file attri bute can be set to either RIW (Read W ri te)
or RIO (Read Only). If a file is marked RIO, any attempt to
write data to that file produces a Read-Only error message.
Therefore you can use the RIO attribute to protect important
files. A file with the RIW attribute can be read or written to at
any time unless there is a tab over the write-protect notch on the
diskette, or the drive containing the diskette is set to Read
Only. You can use the STAT Transient Utility program to
assign attributes to a file.

How are files stored on a diskette?

2-8

CP/M-86 stores files on a single-sided or double-sided diskette
in the same manner. CP/M-86 records the filename, filetype,
user number and attributes of each file in a special area of the
diskette called the directory. In the directory, CP 1M -86
records which diskette sectors belong to which file. Whether

the diskette is single-sided or double-sided, the directory is
large enough to store this data for up to sixty-four files.

CP/M-86 allocates directory and storage space for a file only as
the file grows. When you erase a file, CP/M-86 reclaims storage
in two ways: it makes the file's directory space available to
catalog a different file, and frees the file's storage space for later
use. It's this "dynamic allocation" feature that makes CP/M-86
powerful. You don't have to tell CP/M-86 how big your file will
become because CP/M-86 automatically allocates more storage
for a file as it is needed, and releases the storage for reallocation
when the file is erased.

Changing diskettes

CP/M-86 cannot, of course, do anything to a file unless the
diskette that holds the file is inserted into a drive and the drive
door is closed. When a diskette is in adrive, it is "on-line" and
CP/M-86 can access its directory.

At some time, you'll have to take a diskette out of a drive and
insert another that contains different files. You can replace an
on-line diskette whenever you see the system prompt at your
console. However, you must tell CP/M-86 that you have
changed a diskette by typing Ctrl-C directly after the system
prompt. In response, CP/M-86 "logs in" the new diskette.

If you forget to type Ctrl-C after you change a diskette,
CP/M-86 automatically protects the new diskette by setting it
to Read-Only (RIO). You can run a text editor or copying
program and try to write to the new diskette, but when you do,
CP/M-86 notices that the original diskette is no longer in the
drive and writes the message:

Bdos err on d: RIO

where d: is the drive specification of the new diskette. If you get
this message, you must type one Ctrl-C to return to the system
prompt and another Ctrl-C to log in the new diskette.

2-9

Note: After changing between single-sided and double-sided
diskettes, you must type a Ctrl-C immediately following the
system prompt for CP/M-86 to read or write to the changed
diskette properly. To distinguish between a single-sided and a
double-sided diskette, refer to the STAT DSK: command
described in Chapter 4.

There are times when it is appropriate to load a command
program into memory and then change a diskette while the
program in memory has paused for the change. At these times,
the new diskette that you insert in the drive MUST be in the
same format as the diskette you have removed from the drive.
If it is not of the same format, CP/M-86 cannot read it
properly. It is not possible to use the Ctrl-C to properly log in
the new diskette because the Ctrl-C causes the program to stop
executing and return to the operating system prompt.

To sum up, there are two things to note when changing a
diskette after loading a program into memory:

• You must replace the diskette you removed with a diskette
in the same format, either single-sided or double-sided.

CP/M-86 can read from the changed diskette but cannot
write to a diskette unless it has been logged in at system
start-up or with a Ctrl-C following the system prompt.

Recall that CP/M-86 protects a diskette that you have changed
and forgotten to log in by setting it to Read-Only status. This
prevents data meant for one diskette from being written on the
wrong diskette.

Changing the default drive

2-10

At any given time during operation ofCP/M-86, there is one
drive called the default drive. Unless you put a drive
specification in your command line, CP/M-86 and the utilities
look in the directory of the diskette in the default drive for all
program and data files. You can tell the default drive from the
CP/M-86 system prompt. For example, the message

A>

tells you that the A drive is the default drive. When you give
commands to CP/M-86, you should remember which diskette
is the default drive. Then you will know which files an

application program can access if you do not add a drive
specification.

Drive A is the default drive when you start CP/M-86. If you
have more than one drive, you may want to change the default
drive. Do this by typing the drive specification of the desired
default drive next to the system prompt and pressing the Enter
key.

A>B:

This command, for example, changes the default drive to B.
Unless you change the default drive again, all system prompt
messages appear as:

B>

The system prompt now indicates that CP/M-86 and its
utilities will check in the directory of the diskette in drive B for
any file that does not have a drive specification included in the
file specification.

More CP/M -86 drive features

Under CP/M-86, drives can be marked RIO just as files can be
given the RIO attribute. The default state of a drive is RlW, but
CP/M -86 marks a drive RIO whenever you change the diskette
in the drive. To return the drive to RlW you must rype a
Ctrl-C to the system prompt or a Ctrl-Break. You can give a
drive the RIO attribute by using the STAT Transient Utility
described in Chapter 4.

As mentioned in the Preface, CP/M-86 can support up to four
logical diskette drives. This means you can use the drive
specifications C: and D: in CP/M-86 command lines even when
you have only one or two drives. If you do, CP/M-86 keeps track
of three or four diskettes. It displays messages similar to those it
uses when you specify B: in a single drive system. That is, it asks
you to insert Diskette C or D when it would normally be
accessing drive C or D. For example, during a copy operation,
CP/M-86 prints the following message in the status line when it
is time to swap diskettes:

Put Diskette C in A; ENTER to continue

2-11

Other CP 1M -86 Devices

2-12

CP/M-86 manages all the peripheral devices attached to your
IBM Personal Computer. Peripheral devices are actual physical
pieces of hardware such as disk drives, input devices such as
keyboards, light pens or serial devices, and output devices such
as' printers, serial devices, and screens.

A "logical device" is a name that CP/i\1-86 uses to keep track of
input and output. The table below shows CP/M-86 logical
device names and indicates whether the device is input or
output.

CON: Console input and output

AXI: Auxiliary input

AXO: Auxiliary output

LST: List output

The user communicates with the physical devices attached to

the computer through CP/M-86 logical devices. The ASSIGN
command allows the user to assign the physical devices to the
CP/M-86 logical device names. For example, the default
console input device is the keyboard and the default console
output device is the screen. If you want CP/M-86 to manage an
optional peripheral, you must use the ASSIGN command to

assign an alternate peripheral to the logical device name. For
example, an ASSIGN command can change the console input
device from the keyboard to other serial devices.

A logical input device can be assigned only one physical device,
but you can assign several peripherals to a logical output device.
For example, you can send list output to the screen, to the serial
ports, and to up to three printers. See the description of the
ASSIGN command in Chapter 4 for more detail.

CHAPTER 3. CP/M -86
COMMAND CONCEPTS

Contents

Two Types of Commands 3-3
Built-in Commands. .. 3-3
Transient Utility Commands " 3-4
How CP/M-86 Searches for Commands 3-5
Control Character and Function Key commands ... 3-7

3-1

3-2

CP/M -86 Command Concepts

As we discussed in Chapter 1, a CP/M-86 command line
consists of a command keyword, an optional command tail, and
an Enter keystroke. This chapter describes the two different
kinds of programs the command keyword can identify, and tells
how CP/M-86 searches for command files on a diskette. It also
introduces the control characters and function keys that direct
CP/M-86 to perform various tasks.

Two Types of Commands

A command keyword identifies a program that resides either in
memory as part ofCP/M-86 , or on a diskette as a program file. If
a command keyword identifies a program in memory, it is
called a Built-in command. If a command keyword identifies a
program file on a diskette, it is called a Transient Utility or
simply a utility.

Six Built-in commands and fifteen Transient Utilities are
included with CP/M-86. If you are an experienced programmer,
you can also write your own utilities that operate with
CP/M-86.

Built-in Commands

Built-in commands are part ofCP/M-86 and are always
available for your use regardless of which diskettes you have in
which drives. Built-in commands reside in memory as a part of
CP/M-86 and therefore execute more quickly than the utilities.
Chapter 4 gives you the operating details for the Built-in
commands listed below:

DIR

DIRS

ERA

displays a list of filenames from a diskette
directory.

displays a filename list of those files marked
with the SYS attribute.

erases a filename from a diskette directory
and releases the storage occupied by the
file.

3-3

REN

TYPE

USER

lets you rename a file.

writes the content of a character file to
your console output device.

lets you change from one user number to
another.

Transient Utility Commands

3-4

A program that performs a Transient Utility command comes
into memory only when you request it. Chapter 4 gives you
operating details for the standard CP/M-86 Utilities listed
below:

ASM86

ASSIGN

COPYDISK

DDT86

ED

FUNCTION

GENCMD

HELP

NEWDISK

translates 8086 assembly language
programs into machine code form.

lets you direct input and output to the
peripheral devices attached to your
computer.

creates a copy of a diskette that may contain
CP/M-86, program files, and data files.

helps you check out your programs and
interactively correct "bugs" and
programming errors.

lets you create and alter character files for
access by various commands and
application programs.

programs the Function Keys and the
Numeric Keypad on your keyboard.

uses the output of ASM86 to produce an
executable command file.

displays information on how to use
CP/M-86 commands.

formats a factory-fresh diskette for use with
CP/M-86.

PIP

PROTOCOL

combines and copies files.

establishes the "handshaking protocols"
used by the serial interfaces.

SPEED sets up your computer's asynchronous
communications adaptor to communicate
with other machines.

STAT

SUBMIT

TOD

lets you examine and alter file status.

sends a file of commands to CP 1M -86 for
execution.

sets the date and time displayed in the
status line at the bottom of your display.

How CP/M-86 Searches for Commands

If a command keyword does not identify a Built-in command,
CP/M-86 looks on the default or specified disk for a program
file. It looks for a filename equal to the keyword and a file type of
CMD. For example, suppose you type the command line:

A>ED MVPROG.TXT

CP/M-86 goes through these steps to execute the command:

1. CP/M-86 first finds that the keyword ED does not identify
one of the Built-in commands.

2. CP/M-86 searches for the utility program file ED.CMD in
the directory of the default drive. If it does not find the file
under the current user number, it looks under user number
o for ED.CMD with the SYS attribute.

3. When CP/M-86 locates ED.CMD, it copies the program
to memory and passes control to ED.

4. ED runs in memory until you enter a command to exit ED.

5. CP/M-86 types the system prompt and waits for you to
type another command line.

3-5

3-6

If CP/M-86 cannot find either a Built-in or a Transient
Utility, it reports a keyword error by repeating the command
line you typed on your screen, followed by a question mark.
This tells you that:

• The keyword is not a Built-in command and

• No corresponding .CMD file appears under the current user
number or with the SYS attribute under user 0 on the default
or specified drive.

For example, suppose your default diskette contains only
standard CP/M-86 utilities and you type the command line:

A> EDIT MVPROG.A86

Here are the steps that CP/M-86 goes through to report the
error:

1. CP/M-86 first examines the keyword EDIT and finds that
it is not one of the Built-in commands.

2. CP 1M -86 then searches the directory of the default
diskette, first under the current user number for
EDIT.CMD and then under user 0 for EDIT.CMD with
the SYS attribute.

3. When the file cannot be found, CP/M-86 writes the
message

EDIT?

at the screen to tell you that the command cannot be
executed.

4. CP/M-86 displays the system prompt and waits for you to
type another command line.

Control Character and Function Key Commands

You can direct CP/M-86 to perform certain functions just by
striking a special key. Using the Control Character commands,
you can tell CP/M-86 to start and stop screen scrolling, suspend
current operations, or echo the screen display at the printer. The
table below summarizes Control Character commands.

Ctrl-C

Ctrl-P

Ctrl-S

Ctrl-Break

Ctrl-numlock

lJPrntsc

ends the currently operating program, or, if
typed after the system prompt, initializes
the system and default drives and sets all
drives to RlW status.

tells CP/M-86 to send screen output
characters to the printer too, or, if the
printer is already echoing the screen, tells
CP/M-86 to stop sending screen output
characters to the printer.

toggles screen scrolling. If a display at your
screen rolls by too quickly for you to read it,
press Ctrl-S. Press any key or Ctrl-S again
to continue the display.

exits the current program, initializes all the
drives and sets them to RlW, and clears
printer echo ifCtrl-P has been pressed.
Also interrupts and terminates a list of
commands being executed by SUBMIT.

suspends current operation, similar to
Ctrl-S. Press any key to continue.

lists the contents of the screen at the
printer.

When you start CP/M-86, the Function Keys at the left of your
keyboard are programmed with the commands shown in the
table below. In most cases you can simply press one key to
execute a complete CP/M-86 command. However, because F6
can damage data, you must press the Enter key to complete the
command. In the table below, the Enter keystroke is
represented by the symbol <CR> . You can reprogram these
keys using the FUNCTION utility.

3-7

3-8

FI dir<CR>
F2 dir b: <CR>
F3 stat<CR>
F4 stat b:<CR>
F5 pip<CR>
F6 pipb:=a:*.*[v]
F7 stat*.*<CR>
F8 stat b:*. *<CR>

When you press the N umlock key, you can use numeric keypad
keys as special function keys. Listed below are the default
functions of these keys. Note that a few of the keys, PgUp,
PgDn and Ins, are unprogrammed. You can program them and
change the functions of the other keys with the FUNCTION
utility.

Home <ESC>H
t <ESC>A
PgUp
<- <ESC>D
-> <ESC>C
End END
t <ESC>B
PgDn
Ins
Del

CHAPTER 4. COMMAND SUMMARY

Contents

Let's get past the formalities 4-3
How commands are described 4-5
The ASM86 (Assembler) Command. 4-8
The ASSIGN Command 4-11
The COPYDISK Command 4-15
The DDT86 Command 4-17
The DIR Command .. 4-19
The ED Command 4-22
The ERA Command .. 4-27
The FUNCTION Command 4-29
The GENCMD Command 4-32
The HELP Command. 4-34
The NEWDISK Command 4-36
The PIP Command. .. 4-38

Single File Copy. .. 4-38
Multiple File Copy 4-41
Combining Files 4-42
Copy Files to and from Auxiliary Devices. .. 4-42
Multiple Command Mode 4-45
Using Options With PIP 4-46

The PROTOCOL Command 4-51
The REN Command. .. 4-54
The SPEED Command. 4-56
The STAT Command. 4-58

Set a Drive to Read-Only Mode 4-58
Free Space on Disk 4-59
Files-Display Space Used and Access Mode 4-60
Set File Access Modes (Attributes) 4-63
Display Disk Status 4-64
Display User Numbers With Active Files. .. 4-65

The SUBMIT Command 4-66
The TOD Command. .. 4-69
The TYPE Command. 4-72
The USER Command. 4-73

4-1

4-2

ommand Summary

This chapter describes how we show the parts of a file
specification in a command line. It also describes the notation
used to indicate optional parts of a command line and other
format notation. The remainder of the chapter provides a
handy reference for all standard CP/M-86 commands.

Built-in and Transient Utility commands are intermixed in
alphabetical order. Each command is listed, followed by a
short explanation of its operation with examples. More
complicat~d commands are described later in detail in separate
chapters.

et's get past the formalities

You can see that there are several parts in a file specification
that we must distinguish. To avoid confusion, we give each
part a formal name that is used when we discuss command
lines.

The three parts of a file specification are:

drive
specifier

filename

filetype

the optional diskette drive, A, B, C, or D that
contains the file or group of files to which you
are referring. If a drive specification is included
in your command line, it must be followed by a
colon.

the one to eight character first name of a file or
group of files.

the optional one to three character family name
of a file or group of files. If the filetype is
present, it must be separated from the filename
by a period.

We use the following form to write the general form of a file
specification:

d:filename. typ

4-3

4-4

In the above form, "d:" represents the optional drive
specification, "filename" represents the one to eight character
filename, and ". typ" represents the optional one to
three character filetype. Valid combinations of the elements of
a CP/M-86 file specification are shown below.

• filename
• d:filename
• filename. typ
• d:filename. typ

If you do not include a drive specification, CP/M-86
automatically supplies the default drive. If you omit the period
and the filetype, CP/M-86 again automatically includes a
filetype of three blanks.

We call this general form a "file specification." A file
specification names a particular file or group of files in the
directory of the on-line diskette given by the drive specifier.
For example,

B:MYFILE.A86

is a file specification that indicates drive "B:", filename
"MYFILE", and filetype "A86". We abbreviate "file
specification" as simply

filespec

in the command format statements.

Some CP/M-86 command keywords accept wildcards in the
filename and filetype parts of the command tail. For example,

B:MY*.A??

is a file specification with drive-name "B:", filename "MY*",
and filetype "A??". This file specification may match several
files in the directory.

You now understand command keywords, command tails,
control characters, default drives, on-line drives, and
wildcards. You also see how we use the formal names filespec,
drive specification, filename, and filetype. These concepts give
you the background necessary to compose complete command
lines on your own. We devote the next section to introducing
the various command line forms.

How commands are described

Chapter 4 lists the Built-in and Transient Utility commands
in alphabetical order. Each command description is given in a
specific form.

The description begins with the command keyword in
upper-case.

When appropriate, an English phrase that is more descriptive
of the command's purpose follows the keyword, in
parentheses.

The "Format" section gives you one or more general forms to
follow when you compose the command line.

The "Type" section tells you if the keyword is a Built-in or
Transient Utility command. Built-in commands are always
available for your use, while Transient Utility commands must
be present on an on-line diskette as a CMD program file.

The "Purpose" section defines the general use of the command
keyword.

The "Remarks" section points out exceptions and special cases.

The "Examples" section lists a number of valid command lines
that use the command keyword.

The notation in the format lines describes the general
command form using these rules:

Words in capital letters must be typed by you and spelled as
shown, but you may use any combination of upper- or
lower-case letters.

A lower-case word has a general meaning that is defined
further in the text for that command. When you see the word
"option", for example, you may choose from a given list of
options.

You can substitute a number for "n."

The symbolic notation "d:", "filename", ". typ" and "filespec"
has the general meanings described in the previous section.

4-5

4-6

You must include one or more space characters where a space is
shown, unless otherwise specified. For example, the PIP
options do not need to be separated by spaces.

Items enclosed within curly braces { } are optional. You can
enter a command without the optional items. The optional
items add effects to your command line.

An ellipsis (...) tells you that the previous item can be
repeated any number of times.

When you can enter one or more alternative items in the
format line, a vertical bar, I, separates the alternatives. Think
of this vertical bar as the "or" bar.

All other punctuation must be included in the command line.

Let's look at some examples of format notation. The CP/M-86
Transient Utility command STAT (status) displays the amount
of free space in kilobytes for all on-line drives. It also displays
the amount of space in kilobytes used by individual files.
STAT can also assign the Read-Only (RIO) or Read-Write
(RlW) and the System (SYS) or Directory (DIR) attributes to a
file.

The Format section of the STAT command shows how the
command line format notation is used:

I
optional

This tells you that the command tail following the command
keyword STAT is optional. STAT alone is a valid command,
but you can include a file specification in the command line.
Therefore, STAT filespec is a valid command. Furthermore,
the file specification can be followed by another optional value
selected from one of:

$RlO $RlW $DIR $SYS

Therefore,

STAT filespec $R/O

is a valid command.

Recall that in Chapter 3 you learned about wildcards in
filenames and filetypes. The STAT command accepts wildcards
in the file specification.

Using this format, we can construct several valid command
lines:

STAT
STATX.AS6
STAT X.AS6 $R/O
STAT X.AS6 $SYS
STAT *.AS6
STAT *.* $RIW
STAT X.* $OIR

The CP/M-86 command PIP (Peripheral Interchange
Program) is the file copy program. PIP can copy information
from your screen to the disk or printer. PIP can combine two
or more files into one longer file. PIP can also rename files after
copying them. Let's look at one of the formats of the PIP
command line for another example of how to use command
line notation.

Format: PIP dest-filespec = source-filespec{, filespec ... }

For this example, "dest-filespec" is further defined as a
destination file specification or peripheral device (printer, for
example) that receives data. Similarly, "source-filespec" is a
file specification or peripheral device (keyboard, for example)
that transmits data. PIP accepts wildcards in the filename and
filetype. (See the PIP command summary for details regarding
other capabilities of PIP.) There are, of course, many valid
command lines that come from this format. Some of them are
shown below.

PIP NEWFILE.OAT = OLOFILE.OAT
PIP B: = A:THISFILE.OAT
PIP B :X.TXT = V.TXT, Z.TXT
PIP X.TXT = A.TXT, B.TXT, C.TXT
PIP B: = A:*.BAK
PIP B: = A:*.*

4-7

The ASM86 (Assembler) Command

Format:

Type:

Purpose:

Remarks:

4-8

ASM86 filespec { $parameter-list }

Transient Utility

The ASM86 Utility converts 8088 and 8086 assembly
language source statements into machine code form.

The operation of the ASM86 assembler is described in detail in
Chapters 6 through 10.

The filespec names the character file that contains an 8086
assembly language program to translate. If you omit the
filetype, a filetype of A86 is assumed. The assembler uses the
drive specification portion of the filespec as the destination
drive for output files unless you include a parameter in the
command tail to override this default.

The three output files produced by the assembler are given the
file types listed below.

LST contains the annotated source listing.

H86 contains the 8086 machine code in "hex" format.

SYM contains all programmer-defined symbols with
their program relative addresses.

The assembler assigns the same filename as the source filename
to the LST, H86 and SYM files.

You control the assembly process by including optional
parameters in the parameter-list. Each parameter is a single
parameter letter followed by a single letter device name. The
parameters can be separated by blanks, but each parameter
letter must be followed immediately by the device name.

The parameter letters are A, H, P, S, and F. The device names
are the letters A, B, C, and D, corresponding to the four drive
letters. The letters X, Y, and Z have special meaning when
used as device names:

X is the Screen.

Y is the Printer.

Z is zero output.

Use the A parameter letter to override the default drive
specification to obtain the source file. The valid parameters are
AA through AD.

Use the H parameter letter to override the default drive
specification to receive the H86 file. Valid parameters are HA
through HD, and HX, HY, and HZ.

Use the P parameter letter to override the default drive
specification to receive the LST file. Valid parameters are P A
through PD, PX, PY, and PZ.

Use the S parameter letter to override the default drive
specification to receive the SYMfile. Valid parameters are SA
through SD, SX, SY, and SZ.

Use the F parameter letter to select the format of the "hex"
output file. Valid parameters are FI and FD. The FI parameter
selects Intel format "hex" file output. The FD parameter
selects Digital Research format "hex" file output. FD is
assumed if neither FI nor FD appear as a parameter. Use FI
when the program is going to be combined with a program
generated by an Intel compiler or assembler.

When conflicting parameters appear on the command line, the
rightmost parameter prevails.

Examples: A>ASM86 X

The ASM86.CMD file must be on drive A. The source file
X.A86 is read from drive A, and X.1ST, X.H86, and X.SYM
are written to drive A.

B>ASM86 X.A86 $PX

The ASM86.CMD file must be on drive B. The source file
X.A86 is read from drive B. The listing is written to the
screen, and the X.H86 and X.SYM files are placed on drive B.

4-9

4-10

A>ASM86 B:MYPROG spy He

The source file MYPROG.A86 is read from drive B, the
listing is sent to the printer, the file MYPROG.H86 is written
to drive C, and file MYPROG.SYM is placed on drive B.

A>B:ASM86 X $SZ

The ASM86.CMD file must be on drive B. The X.A86 file is
read from drive A. The X.LST and X.H86 files are written to
drive A. No X.SYM file is generated.

Format:

Type:

Purpose:

The ASSIGN (Assign Physical to
Logical Device) Command

ASSIGN logical-device type {physical-device}

Transient Utility

The ASSIGN Utility lets you assign a CP/M-86 logical device
to one or more physical devices. For example, if you want a
printout of the messages currently on your screen, you can use
ASSIGN to send the messages to the printer as well as the
screen. Specify a logical device and a type in the command tail
when you want ASSIGN to display the current assignments for
logical devices.

CP/M-86 supports four logical devices. The table below shows
the CP/M-86 logical device names, followed by the formal
name ASSIGN recognizes for each logical device. The last
column lists the possible types (input and/or output) for each
device.

CON:
AXI:
AXO:
LST:

CONSOLE
AUXILIARY
AUXILIARY
LIST

(INPUT and OUTPUT)
(INPUT)
(OUTPUT)
(OUTPUT)

CP/M-86 for the IBM Personal Computersupports eight
physical devices. The table below lists each physical device
with the formal name that ASSIGN recognizes as the name of
each device. Then it shows the type (input or output) oflogical
device to which each physical device can be assigned.

Keyboard
Screen
Serial Porr #0
Serial Porr # 1
Printer #0
Printer # 1
Printer #2
Dummy Device

KEYBOARD
SCREEN
SERIAL-O
SERIAL-l
PRINTER-O
PRINTER-l
PRINTER-2
DUMMY

(INPUT)
(OUTPUT)
(INPUT and OUTPUT)
(INPUT and OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)
(OUTPUT)

4-11

Remarks:

4-12

Normally, you assign the IBM Personal Computer keyboard tc
CONSOLE INPUT and you assign the screen to CONSOLE
OUTPUT. One purpose of the ASSIGN command might be
to help you connect a remote console to your IBM Personal
Computer through a telephone line and one of the serial ports.
Use an ASSIGN command to assign CONSOLE INPUT and
CONSOLE OUTPUT to SERIAL-O or -l. If you do this, the (
remote operator takes full control of your IBM Personal
Computer. However, if you assign only CONSOLE OUTPUT
to the serial port, the remote operator can only monitor what
you do with your IBM Personal Computer.

A logical device can accept input from only one source, so you
can assign only one physical device to a logical input device.
However, you can direct the output of any logical device to
anyone or all of the physical output devices.

When processing a command tail, ASSIGN reads only the first
character of the logical device, the first character of the type,
and the first and last characters of the physical device.
Therefore, you may abbreviate logical devices, types and
physical devices as follows:

C CONSOLE
A AUXILIARY
L LIST
I INPUT
0 OUTPUT
KD KEYBOARD
SN SCREEN
SO SERIAL-O
SI SERIAL-l
PO PRINTER-O
PI PRINTER-l
P2 PRINTER-2
DY DUMMY

If you do not specify a physical device in the command tail,
ASSIGN displays the name of the physical device currently
assigned to the logical device and type you did specify.

Use DUMMY as an OUTPUT device whenever you need to

test a program but do not want to use its output. This can
speed up program testing; for example, if a program normally
sends output to the printer, you can eliminate the time
required to print the output by assigning LIST OUTPUT to

DUMMY.

:xamples: A>ASSIGN CONSOLE INPUT KEYBOARD
A>ASSIGN CONSOLE INPUT SERIAL-O
A>ASSIGN C I KD
A>ASSIGN C I SO

Use the first command when you want CP/M-86 to take its
console input from the keyboard, or the second command to
take it from Serial Port #0. The third and fourth commands
are abbreviations of the first and second.

A>ASSIGN CONSOLE OUTPUT SCREEN
A>ASSIGN CONSOLE OUTPUT SCREEN

SERIAl-O PRINTER-1
A>ASSIGN C 0 SN
A>ASSIGN C 0 SN SO P1

Use these commands to change the console output device
assignment. Whenever an ASSIGN command specifies logical
output, you can assign multiple physical devices as in the
second command. After the second command is executed,
whatever CP/M-86 sends to the console will also be sent to
every device you specified. The third and fourth commands are
abbreviations of the first and second.

A>ASSIGN LIST OUTPUT PRINTER-O
A>ASSIGN LIST OUTPUT SCREEN SERIAL-1 PRINTER-2
A>ASSIGN L 0 PO
A>ASSIGN L 0 SN S1 P2

Use these commands to change the physical device CP/M-86
uses for printouts. Because the type of the logical device is
output, you can specify more than one output device. The
third and fourth commands are abbreviations of the first and
second.

A>ASSIGN CONSOLE INPUT
A>ASSIGN C I

4-13

4-14

The first command checks the current assignment of the
CONSOLE INPUT logical device. In response to this
command, ASSIGN sends a message similar to the following
to your screen:

ASSIGN vn. 1.0 mm/dd/yy

Console Input assigned to Keyboard

The second command is an abbreviation of the first.

The COPYDISK (Copy Diskette) Command

ormat:

'ype:

'urpose:

temarks:

COPYDISK

Transient Utility

The COPYDISK Utility copies all the information on one
diskette to another diskette, including the CP/M-86 system
tracks if they are present on the source diskette.

Before copying to a brand-new diskette, you must first prepare
it with the NEWDISK utility. If you copy to a used diskette,
COPYDISK writes all the information from the source
diskette over the information on the destination diskette.

Note: When using the COPYDISK Utility, both diskettes
must be formatted to the same type. They must both be
single-sided or double-sided diskettes.

To display instructions on how to use COPYDISK, enter the
keyword HELP with the command tail COPYDISK.

To successfully copy from one disk to another, you must make
sure that your destination diskette is not write-protected.
Check that there is no foil tab covering the write protect notch
on the edge of your diskette before inserting the diskette into
the destination drive.

If your IBM Personal Computer has only one diskette drive,
COPYDISK keeps track of whether the source or the
destination diskette should be in the drive. COPYDISK sends
messages to the screen when it needs you to remove one
diskette and insert the other.

COPYDISK is an exact track-for-track, sector-for-sector copy
utility, and is the fastest way to copy an entire diskette.
However, if many files have been created and erased on the
source diskette, the records belonging to a particular file may
be randomly placed on the diskette. In this case, it may be
more efficient (although slower) to use PIP to copy the files and
thus to put all the records in sequential order on the new
diskette.

4-15

Examples: A>COPYDISK

4-16

Invoke COPYDISK and it prompts you for the source and
destination disk. Use this form even if you have a single drive
system and do not have drive B:. In this case, you should think
of A: and B: as diskette names rather than as drive names.
COPYDISK gives you instructions in the status line on your
screen when it is time to change diskettes. In our example
below, COPYDISK copies from your master diskette (diskette
A:) to the new diskette (diskette B:). When invoked,
COPYDISK displays the information in the first line of our
example:

CP/M-86 Full Disk Copy Utility
Version 1.0

Enter Source Disk Drive (A-D) ? A

Destination Disk Drive (A-D) ? B

Copying disk A: to disk B:
Is this what you want to do (YIN) ? Y
Copy started
Reading track nn (After read, new text appears)
Writing track nn (After write, next message is)
Verifying track nn
Copy completed.

Copy another disk (YIN) ? N
Copy program exiting

A>

The DDT86 (Dynamic Debugging Tool)
Command

Format:

Type:

Purpose:

DDT86 { filespec}

Transient Utility

The DDT-86 Utility allows you to monitor and test programs
developed for the 8086 and the 8088 processors.

DDT -86 responds to several single letter commands:

A (Assemble) Enter Assembly Language Statements

B (Block Cmp) Compare Blocks of Memory

D (Display) Display Memory in Hexadecimal and
ASCII

E (Execution) Load Program for Execution

F (Fill) Fill Memory Block

G (Go) Begin Execution

H (Hex) Hexadecimal Sum and Difference

I (Input) Set Up Input Command Line

L (List) List Memory in Mnemonic Form

M (Move) Move Memory Block

R (Read) Read Disk File to Memory

S (Set) Set Memory Values

T (Trace) Trace Program Execution

U (Untrace) Monitor Execution without Trace

4-17

Remarks:

v (Verify)

W (Write)

X (Examine)

Show Memory Layout after Disk Read

Write Content of Memory Block to

Disk

Examine and Modify CPU Registers

The overall operation ofDDT-86, along with each single letter ~
command, is described in detail in Chapter 11.

If the file specification is not included, DDT -86 is loaded into
User Memory without a test program. You must not use the
DDT -86 commands G, T, or U until you have first loaded a
test program. The test program is usually loaded using E
command.

If the file specification is included, both DDT -86 and the test
program file specified by filespec are loaded into User Memory.
Use G, T, or U to begin execution of the test program under
supervision ofDDT-86.

If the filetype is omitted from the file specification, a filetype of
CMD is assumed. (

DDT -86 cannot directly load test programs in hexadecimal
(H86) format. You must first convert to command file form
(CMD) using the GENCMD Utility.

To exit from DDT-86, press Ctrl-C.

Examples: A>DDT86

4-18

The DDT-86 Utility is loaded from drive A to User Memory.
DDT-86 displays the "-" prompt when it is ready to accept
commands.

A>B:DDT86 TEST.eMD

The DDT-86 Utility is loaded from drive B to User Memory.
The program file TEST. CMD is then loaded to User Memory
from drive A. DDT -86 displays the address at which the file
was loaded and the "-" prompt.

Format:

Type:

Purpose:

Remarks:

DIR {d:}
DIR {filespec}

DIRS
DIRS

Built-in

{d:}
{filespec}

The DIR (Directory)
Built-in Command

The DIR and DIRS Built-in commands display the names of
files cataloged in the directory of an on-line diskette. The DIR
Built-in lists the names of files in the current user number that
have the Directory (DIR) attribute. DIR accepts wildcards in
the file specification.

The DIRS command displays the names of files with the
current user number that have the System (SYS) attribute.
Therefore, even though you can access System (SYS) files that
are stored in user 0 from any other user number on the same
drive, DIRS only displays those user 0 files if the current user
number is O. DIRS accepts wildcards in the file specification.

If the drive and file specifications are omitted, the DIR
command displays the names of all files with the DIR attribute
on the diskette in the default drive and current user number.
Similarly, DIRS displays the SYS files.

If the drive specification is included, but the filename and
filetype are omitted, the DIR command displays the names of
all DIR files in the current user on the diskette in the specified
drive. DIRS displays the SYS files.

If the file specification contains wildcard characters, all file
names that satisfy the match are displayed on the screen.

If no filenames match the file specification, or if no files are
cataloged in the directory of the diskette in the named
drive,the DIR command displays the message:

NO FILE
4-19

If system (SYS) files reside on the specified drive, DIR displays
the message:

SYSTEM FILE(S) EXIST

If non-system (DIR) files reside on the specified drive, DIRS
displays the message:

NON-SYSTEM FILE(S) EXIST

You cannot use a wildcard character in a drive specification.

Examples: A>DlR

4-20

All DIR files cataloged in the current user number in the
directory of the diskette mounted in drive A are displayed on
the screen.

A>DlR B:

All DIR files in the current user number on the diskette in
drive B are displayed on the screen.

A>DlR B:X.A86

If the file X.A86 is present on the diskette in drive B, the DIR
command displays the name X.A86 on the screen.

A>DlR *.A86

All DIR files with filetype A86 in the current user number on
the diskette in drive A are displayed on the screen.

B>DlR A:X*.C?D

All DIR files in the current user number on the diskette in
drive A whose filename begins with the letter X, and whose
three character filetype contains the first character C and last
character D are displayed on the screen.

A>DlRS

Displays all files in the current user number on drive A that
have the system (SYS) attribute.

A>DlRS *.CMD

Displays all files with the current user number on drive A with
a filetype ofCMD that have the system (SYS) attribute.

4-21

The ED (Character File Editor) Command

Format:

Type:

Purpose:

4-22

ED input-filespec {d: I output-filespec}

Transient Utility

The ED Utility lets you create and edit a diskette file.

The ED Utility is a "line-oriented" and "context" editor. This
means that you create and change character files line-by-line,
or by referencing individual characters within a line.

The ED Utility lets you create or alter the file named in the file
specification.

The ED Utility uses a portion of your User Memory as the
active text "Buffer" where you add, delete, or alter the
characters in the file . You use the A command to read all or a
portion of the file into the Buffer. You use the W or E
command to write all or a portion of the characters from the
Buffer back to the file.

An imaginary "character pointer," called CP, is at the
beginning of the Buffer, between two characters in the Buffer,
or at the end of the Buffer.

You interact with the ED Utility in either "command" or
"insert" mode. ED displays the ,,*" prompt on the screen
when ED is in command mode. When the "*" appears, you
can enter the single letter command that reads text from the
Buffer, moves the CP, or changes the ED mode of operation.

a (Append)

b (Begin/Bottom)

c (Character)

d (Delete)

e (End)

Load lines of text to the buffer.

Move CP to beginning or bottom of the
buffer.

Move CP to right or left by characters.

Delete characters to the right or left of
the CP.

End edit session and write buffer.

f (Find)

h (Head)

(Insert)

(Juxtapose)

k (Kill Lines)

I (Move Lines)

m (Macro)

n (Next)

o (Original)

p (Page)

q (Quit)

r (Read)

s (Substitute)

t (Type)

u (Upper Case)

v (Verify)

w (Write)

x (Transfer)

z (Sleep)

Move CP to a character sequence.

Write buffer, move to beginning of the
file.

Change from command to insert mode.

Place characters next to each other.

Remove full lines above or below the
CP

Move CP up or down by full lines.

Repetitive evaluation of a command
group.

Find next occurrence, automatic buffer
fill.

Discard current edit, restart with
original.

Move CP up or down by 23 full lines.

Discard current edit, no changes to the
file.

Read LIB or transferred text.

Substitute one character sequence for
another.

Type full lines on the display.

Translate all input to upper case.

Set line number mode, or show buffer
space.

Write lines of text from the buffer.

Transfer lines to or from a temporary
file.

Delay command execution.

4-23

Remarks:

4-24

Chapter 5 gives a detailed description of the overall operation
of the ED Utility and the use of each command.

Include the second file specification only if the file named by
the first file specification is already present and you do not
want the original file replaced. The file named by the second
file specification receives the altered text from the first file,
which remains unchanged.

If the second file specification contains only the drive
specification, the second filename and filetype become the
same as the first filename and filetype.

If the file given by the first file specification is not present, the
ED Utility creates the file and writes the message:

NEW FILE

If the second filespec is omitted, the original file is preserved
by renaming its file type to BAK before it is replaced. If you
issue an ED command line that contains a filespec with filetype
BAK, ED creates and saves your new edited version of the
BAK file, but ED deletes your source file, leaving no back-up.
If you want to save the original BAK file, use the REN
command first to change the filetype from BAK, so that ED
can rename it to BAK.

If you include the optional second filespec and give it the same
name as the first filespec, ED again creates and saves your new
edited version of the output filespec, but has to delete the
original input filespec because it has the same name as the
output file. You cannot, of course, have two files with the same
name in the same user number on the same drive.

If the file given by the first filespec is already present, you must
issue the A command to read portions of the file to the Buffer.
If the size of the file does not exceed the size of the Buffer, the
command:

#a

reads the entire file to the Buffer.

The i (Insert) command places the ED Utility in insert mode.
In this mode, any characters you type are stored in sequence in
the Buffer starting at the current CP.

Any single letter commands typed in insert mode are not
interpreted as commands, but are simply stored in the Buffer.
You return from insert mode to command mode by typing
Ctrl-Z.

The single letter commands are normally typed in lower-case.
The commands that must be followed by a character sequence
end with Ctrl-Z if they are to be followed by another command
letter.

Any single letter command typed in upper-case tells ED to
internally translate to upper-case all characters up to the
Ctrl-Z that ends the command.

When enabled, line numbers that appear on the left of the
screen take the form:

nnnnn:

where nnnnn is a number in the range 1 through 65535. Line
numbers are displayed for your reference and are not contained
in either the Buffer or the character file. The screen line starts
with

when the CP is at the beginning or end of the Buffer.

Examples: A>ED MVPROG.A86

If not already present, this command line creates the file
MYPROG.A86 on drive A. The command prompt

.*

appears on the screen. This tells you that the CP is at the
beginning of the Buffer. If the file is already present, issue the
command

:*#a

4-25

4-26

to fill the Buffer. Then type the command

:*Op

to fill the screen with the first 23 lines of the Buffer. Type the
command

:*e

to stop the ED Utility when you are finished changing the
character file. The ED Utility leaves the original file
unchanged as MYPROG. BAK and the altered file as
MYPROG.A86.

A>ED MVPROG.A86 B:NEWPROG.A86

The original file is MYPROG.A86 on the default drive A. The
original file remains unchanged when the ED Utility finishes,
with the altered file stored as NEWPROG.A86 on drive B.

A>B:ED MVPROG.A86 B:

The ED.CMD file must be on drive B. The original file is
MYPROG.A86 located on Drive A. It remains unchanged,
with the altered program stored on drive B as MYPROC.A86.

Format:

Type:

Purpose:

Remarks:

The ERA (Erase) Built-in Command

ERA filespec

Built-In

The ERA Built-in removes one or more files from the directory
of a diskette. Wildcard characters are accepted in the
command tail. Directory and data space are automatically
reclaimed for later use by another file.

Use the ERA command with care since all files that satisfy the
file specification are removed from the diskette directory.

Command lines that take the form

ERA {d:}* *

require your acknowledgment since they reclaim all file space.
You'll see the message:

All (YIN)?

Respond with "y" if you want to remove all files, and "n" if
you want to avoid erasing any files.

You will see the message

NO FILE

on the screen if no files match the file specification.

Examples: A>ERA X.A86

This command removes the file X.A86 from the diskette in
drive A.

A>ERA *.PRN

All files with the filetype PRN are removed from the diskette
in drive A.

4-27

4-28

B> ERA A:MY *.*

Each file on drive A with a filename that begins with MY is
removed from the diskette.

A>ERA B:*.*

All files on drive B are removed from the diskette. To
complete the operation, you must respond with a "y" when th
ERA command displays the message:

All (YIN)?

The FUNCTION (User-Assigned Function
Keys) Command

Format:

Type:

Purpose:

Remarks:

FUNCTION

Function key?: key
-> command line {Ctrl-G} <cr>

Transient Utility

The FUNCTION Utility lets you assign any function you
want to any of your IBM Personal Computer function and
numeric keypad keys. For example, if you want the Function
Key labelled F2 to display the directory for drive B when you
press F2, then you must assign the directory command to the
F2 key using the FUNCTION Utility. When invoked,
FUNCTION first displays a list of all the function keys and
any current function key assignments. It then displays the
prompt "Function key?:". You must press the function key
you wish to program or reprogram. Next, FUNCTION
displays an - > prompt. You must enter the exact command
you want the specified function key to reproduce. Press Enter
to finish programming the key. The screen changes to show
the new function key setting, and FUNCTION displays
"Function key?:" again and waits for you to press another
function key. Use Ctrl-C after the "Function key?:" or->
prompt to exit the FUNCTION program.

To include a carriage return into your actual command, type a
Ctrl-G before pressing the Enter key.

To include a line feed into your command, type a Ctrl-L before
pressing the Enter key.

The specified command cannot include dollar signs ($).

Use CP/M-86 editing characters to correct mistakes in the
command line.

The specified command for function keys one through ten can
be up to eighteen characters long.

4-29

The specified commands for the numeric keypad can be up to
four characters long.

In the FUNCTION screen display, a <CR> means there is a
carriage return embedded in the command, put there by a
Ctrl-G.

If you press a key other than a function key in response to the
prompt, FUNCTION displays the following message:

Not a programmable key-try again.

To erase a function key assignment, press ENTER in response
to the -> prompt.

Examples: A>Function <cr>

4-30

FUNCTION utility, v 1.0 mm/dd/yy
F1:dir <CR>
F2:dir b:<CR>
F3:stat<CR>
F4:stat b:<CR>
F5:pip<CR>
F6:pip b: = a:*.*[v]
F7:stat *.* <CR>
F8:stat b:*.*<CR>
F9:

F10:

Home: <ESC>H
i: <ESC>A

PgUp:
<-: <ESC>D
->:
End: END

J: <ESC>B
PgDn:

Ins:
Del: B

Function key?: F7
->STAT *.* Ctrl-G +-l

Function key?: Ctrl-C
A>

In response to the FUNCTION command, FUNCTION
displayed the existing function key assignments on the screen,
followed by the "Function key?" prompt for a new function
key assignment. The user entered the F7 key. FUNCTION
then displayed the - > , prompting for the command string
for the F7 key to represent. The user typed "STAT * . *
Ctrl-G" and +--l. FUNCTION then displayed the new
assignment on the screen. The new assignment for the F7 key
is STAT *. * <CR>. Note that before completing the
function key assignment by pressing the Enter key, the user
typed a Ctrl-G to cause a carriage return to be included in the
STAT *. * command.

4-31

The GENCMD (Generate CMD File)
Command

Format:

Type:

Purpose:

4-32

GENCMD filespec {8080 CODE[An,Bn,Mn,Xn]
DATA[An:, Bn,Mn,Xn] STACK[An,Bn,Mn, Xn]
EXTRA[An,Bn,Mn,Xn]}

Transient Utility

The GENCMD Utility produces an executable CMD file that
can be used as a Transient Utility command. The input to

GENCMD is an H86 file produced by ASM86 or the Intel
OH86 Utility. The operation of GENCMD is described in
detail in the Appendixes. Included in the CMD file is a header
containing information used at load time to determine
memory requirements and segment register initialization.

An optional parameter list follows the file specification. In the
parameter list, n represents a hexadecimal value up to four
digits long.

The parameter list consists of up to five keywords with their
corresponding list of values. The keywords are:

8080 CODE DATA STACK EXTRA

The keyword 8080 identifies the CMD file as an "8080
Memory Model" where segment registers are initialized to the
same value. The remaining keywords define segment groups
which have specific memory requirements. The values that
define the memory requirements are separated by commas and
enclosed in square brackets ([J) following each keyword. The
bracketed keywords and related values must be separated from
other keywords by at least one blank.

The values included in brackets are defined below, where n
represents a hexadecimal constant of from one to four digits.
The value n represents a "paragraph" value where each
paragraph is 16 bytes long. The paragraph value corresponds
to the byte value n * 16, or hhhhO in hexadecimal.

Remarks:

An Load group at absolute location n.
Bn Begin group at address n in the hexadecimal file.
Mn The group requires a minimum of n * 16 bytes.
Xn The group can address up to n * 16 bytes.

Use the 8080 keyword for programs from 8-bit
microprocessors that are a direct conversion to CP/M-86 so
that the program loads into an area with overlapping code and
data segments. The code segment in the program must begin
at location 100H.

Use An for any group that must be loaded at an absolute
location in memory. D'on't use an A value in the command tail
unless you know that the requested absolute area will be
available when the program runs.

Use Bn when your input Hex file does not contain information
that identifies the segment groups. This value is not necessary
when your H86 file is the output from the Digital Research
ASM-86 assembler, unless the ASM-86 parameter FI was
included.

Use the Mn value when you include a data segment that has an
uninitialized data area at the end of the segment.

Use Xn when your program can use a larger data area, if
available, than the minimum given by Mn.

Examples: A>GENCMO MYFILE

The file MYPROG.H86 is read from drive A. The output file
MYPROG.CMD is written back to drive A. The input H86
file includes information that marks the program as operating
with a particular memory model.

B>GENCMO MYFILE COOE[A40]OATA[MJO,XFFF]

The file MYFILE.H86 is read from drive B. The
MYFILE.CMD output file is written to drive B. The code
group must be loaded at location 400 hexadecimal. The data
group requires a minimum of 300 hexadecimal bytes, but if
available, the program can use up to FFFO bytes.

4-33

The HELP (Help) Command

Format:

Type:

Purpose:

Remarks:

HELP {topic} {subtopicl subtopic2 ... subtopic8}{[PJ}

Transient Utility

The HELP command provides summarized information for all
of the CP/M-86 commands described in this manual. HELP
with no command tail displays a list of all the available topics.
HELP with a topic in the command tail displays information
about that topic, followed by any available additional
subtopics. HELP with a topic and a subtopic displays
information about the specific subtopic.

After HELP displays the information for your specified topic,
it displays the special prompt HELP> on your screen. You can
continue to specify topics for additional information, or simply
press the Enter key to return to the CP/M-86 system prompt.

You can abbreviate the names of topics and subtopics. Usually
one or two letters is enough to specifically identify the topics.

HELP with the [pJ option prevents the screen display from
stopping every 23 lines.

Examples: A>HElP

4-34

The above command displays a list of topics for which help is
available.

A>HElP STAT

The above command displays general information about the
STAT command. It also displays any available subtopics.

A>HElP STAT OPTIONS

The above command includes the subtopic "options". In
response, HELP displays information about options associated
with the STAT command.

A>HELP ED

The above command displays general information about the
ED Utility.

HELP>ED

The above example shows how to enter a topic and subtopic
following the program's internal prompt, HELP>

Note: You must type the topic AND the subtopic; otherwise
the HELP program cannot know which main topic you are
referencing.

4-35

The NEWDISK (Create New Diskette)
Command

Format:

Type:

Purpose:

Remarks:

4-36

NEWDISK d: $S I $DS
NEWDISK d: $N I $DN

Transient Utility

The NEWDISK Utility prepares a new diskette for use in your
IBM Personal Computer. NEWDISK initializes the new
diskette by writing a known pattern of information on every
sector of the diskette and tests diskette surface usability before
you try to store data on it.

If you enter the $S parameter, NEWDISK creates a new
system diskette on the drive named in the command by
copying the CP/M-86 operating system onto the new diskette.
NEWDISK assumes that CP/M-86 is on the disk in drive A.
Therefore, to create a new system diskette, NEWDISK
requires that the diskette in drive A: be an existing system
diskette and that the new diskette be on a different drive. Even
if you have a single drive, enter the command: NEWDISK B:
$S. NEWDISK prompts you to change diskettes when
necessary. When you change disks, NEWDISK treats the
second disk as if it were in drive B. In this case, it is useful to
think of the diskettes as diskette A and diskette B.

Enter the $N parameter if you want to create a normal or
non-system diskette.

Use $DN to format a double-sided diskette without the
CP/M-86 operating system. Use $DS to create a double-sided
diskette with the CP/M-86 operating system on it.

Note: After changing between single-sided and double-sided
diskettes, be sure to type a Ctrl-C immediately following the
system prompt for CP/M-86 to read the changed diskette
properly.

To display information on how to use NEWDISK, enter the
keyword HELP with NEWDISK as the command tail.

If you run NEWDISK on a used diskette, NEWDISK destroys
all information previously written on the diskette.

Examples: A>NEWDISK B: $S

In response to this command, NEWDISK displays the
following messages as it formats the diskette in drive Band
copies the CP/M-86 operating system from drive A to drive B.
You must enter a "y" to start formatting. As NEWDISK
formats the diskette, it displays each track number,
represented by 039 in the messages below.

NEWDISK vn 1.0 mmlddlyy

Disk B will be formatted.

ALL DATA WILL BE ERASED FROM THE DISK.

Is this what you want (yIn)? y

Disk format in progress.
039

Format complete.
Press Control-C to exit, or
ENTER to format another disk.

If you have a single drive system, NEWDISK sends a message
to the screen when it is time to change diskettes. The message
appears on the Status Line and looks like this:

Put Disk B in A; ENTER to continue

A>NEWDISK B: $DS

The command shown above formats a double-sided diskette on
drive B and puts the CP/M-86 operating system on the
formatted diskette. As NEWDISK formats the diskette, it
displays each track number, terminating with a 079.

4-37

The PIP (Peripheral Interchange
Program-Copy File) Command

Format:

Type:

Purpose:

PIP dest-file{[Gn]} I dev= src-file{[options]} I dev{[options]}

Transient Utility

The PIP Utility copies one or more files from one disk and/or
user number to another. PIP can rename a file after copying it.
PIP can combine two or more files into one file. PIP can also
copy a character file from disk to the printer or other auxiliary
logical output device. PIP can create a file on disk from input
from the console or other logical input device. PIP can transfer
data from a logical input device to a logical output device.
Hence the name Peripheral Interchange Program.

Note: PIP can copy from a single-sided diskette to a
double-sided diskette or vice versa. However, before
attempting to read or write to a diskette of a different format,
you must log in the new diskette with a Ctrl-C immediately
following the system prompt. If you forget to log in the
diskette, PIP reads from the source diskette improperly.

Single File Copy

Format:

Purpose:

4-38

PIP d:{[Gn]} = source-filespec{[options]}

PIP dest-filespec{[Gn]} = d:{[options]}

PIP dest-filespec{[Gn]} = source-filespec{[options]}

The first form shows the simplest way to copy a file. PIP looks
for the file named by source-filespec on the default or
optionally specified drive. PIP copies the file to the drive
specified by d: and gives it the same name as source-filespec. If
you want, you can use the [Gn] option to place your
destination file (dest-filespec) in the user number specified by
n. The only option recognized for the destination file is [Gn].
Several options can be combined together for the source file
specification (source-filespec). See the section on PIP options.

lemarks:

The second form is a variation of the first. PIP looks for the file
named by dest-filespec on the drive specified by d:, copies it to
the default or optionally specified drive, and gives it the same
name as dest-filespec.

The third form shows how to rename the file after you copy it.
You can copy it to the same drive and user number, or to a
different drive andlor user number. Rules for options are the
same. PIP looks for the file specified by source-filespec, copies
it to the location specified in dest-filespec, and gives it the
name indicated by dest-filespec.

Before you start PIP, be sure that you have enough free space
in kilobytes on your destination diskette to hold the entire file
or files that you are copying. Even if you are replacing an old
copy on the destination diskette with a new copy, PIP still
needs enough room for the new copy before it deletes the old
copy. (See the STAT Utility.)

Data is first copied to a temporary file to ensure that the entire
data file can be constructed within the space available on the
diskette. PIP gives the temporary file the filename specified for
the destination, with the filetype $$$. If the copy operation is
successful, PIP changes the temporary filetype $$$ to the
file type specified in the destination.

If the copy operation succeeds and a file with the same name as
the destination file already exists, the old file with the same
name is erased before renaming the temporary file.

File attributes (SYS,DIR,R/W ,RIO) are transferred with the
files.

If the existing destination file is set to Read-Only (RIO), PIP
asks you if you want to delete it. Answer Y or N. Use the W
option to write over Read-Only files.

4-39

Examples:

4-40

You can include PIP options following each source name (see
the section on PIP Options). There is one valid option
([GnJ-go to user number n) for the destination file
specification. Options are enclosed in square brackets. Several
options can be included for the source files. They can be
packed together or separated by spaces. Options can verify that
a file was copied correctly, allow PIP to read a file with the
system (SYS) attribute, cause PIP to write over Read-Only
files, cause PIP to put a file into or copy it from a specified user
number, transfer from lower to upper case, and much more.

A>PIP B: =A:oldfile.dat

A>PIP B:oldfile.dat = A:

Both forms of this command cause PIP to read the file
oldfile.dat from drive A and put an exact copy of it onto drive
B. This is called the short form of PIP, because the source or
destination names only a drive and does not include a filename.
When using this form you cannot copy a file from one drive
and user number to the same drive and user number. You must
put the destination file on a different drive or in a different user
number. See the section on PIP options, and the section on the i
USER Utility. The second short form produces exactly the
same result as the first one. PIP simply looks for the file
oldfile.dat on drive A, the drive specified as the source.

A>PIP B:newfile.dat = A:oldfile.dat

This command copies the file oldfile.dat from drive A to drive
B and renames it to newfile. dat. The file remains as oldfile . dat
on drive A. This is the long form of the PIP command,
because it names a file on both sides of the command line.

A>PIP newfile.dat = oldfile.dat

Using this long form of PIP, you can copy a file from one drive
and user number (usually user 0 because CP/M-86
automatically starts out in user O-the default user number) to
the same drive and user number. This effectively gives you two
copies of the same file on one drive and user number, each with
a different name.

A>PIP B:PROGRAM.BAK = A:PROGRAM.DAT[G1]

The command above copies the file PROGRAM.DAT from
user 1 on drive A to the currently selected user number on
drive B (usually user 0), and renames the filetype on drive B to
BAK.

B>PIP program2.dat = A:program1.dat[E V G3]

In this command, PIP copies the file named program l.dat on
drive A and echoes [E] the transfer to the console, verifies [V]
that the two copies are exactly the same, and gets [G3] the file
program l.dat from user 3 on drive A. Because there is no drive
specified for the destination, PIP automatically copies the file
to the default drive and user number, in this case drive B.

Multiple File Copy

~ormat: PIP d:{[Gn]} = {d:}wildcard-filespec{[options]}

?urpose: When you use a wildcard in the source specification, PIP
copies qualifying files one-by-one to the destination drive,
retaining the original name of each file. PIP displays the
message "COPYING" followed by each file name as the copy
operation proceeds. PIP issues an error message and stops the
copy operation if the destination drive and user number are the
same as those specified in the source.

~xamples: A>PIP B: =A:*.CMD

This command causes PIP to copy all the files on drive A with
the filetype CMD to drive B.

A>PIP B: =A:*.*

This command causes PIP to copy all the files on drive A to
drive B. You can use this command to make a back-up copy of
your distribution disk. Note, however, that this command
does not copy the CP/M-86 system from the system tracks.
COPYDISK copies the system for you.

4-41

A>PIP B: =A:PROG????*

The above command causes PIP to copy all files beginning
with PROG and having any filetype at all from drive A to
drive B.

A>PIP B:[G1] = A:*.BAK

This command causes PIP to copy all the files with a filetype of
BAK on drive A in the default user number (user 0 unless
you have changed the user number with the USER command)
to drive B in user number 1. Remember that the DIR, TYPE,
ERA and other commands only access files in the same user
number from which they were invoked. (See the USER
Utility.)

Combining Files

Format:

Purpose:

Remarks:

4-42

PIP dest-file{[Gn]} = src-file{[opt]}, file{[opt]}{,file{[opt]} ... }

This form of the PIP command lets you specify two or more
files in the source. PIP copies the files specified in _the source
from left to right and combines them into one file with the
name indicated by the destination file specification. This
procedure is called file concatenation. You can use the [Gn]
option after the destination file to place it in the user number
specified by n. You can specify one or more options for each
source file.

Most of the options force PIP to copy files character by
character. In these cases PIP looks for a Ctrl-Z character to
determine where the end of the file is. All of the PIP options
force a character transfer except the following:

Gn,O,R,V, and W.

Copying data to or from logical devices also forces a character
transfer.

During character transfers, you can terminate a file
concatenation operation by striking any key on your keyboard.

When concatenating files, PIP searches only the last record of a
file for the Ctrl-Z end-of-file character. However, if PIP is
doing a character transfer, it stops when it encounters a Ctrl-Z
character.

Use the [0] option if you are concatenating machine code files.
The [0] option causes PIP to ignore embedded Ctrl-Z
(end-of-file) characters, normally used to indicate the end of
character files.

ixamples: A>PIP NEWFILE = FILE1,FILE2,FILE3

The three files named FILE 1, FILE2, and FILE3 are joined
from left to right and copied to NEWFILE.$$$.
NEWFILE.$$$ is renamed to NEWFILE upon successful
completion of the copy operation. All source and destination
files are on the diskette in the default drive A.

A>PIP B:X.A86 = V.A86, B:Z.A86

The file Y.A86 on drive A is joined with Z.A86 from drive B
and placed in the temporary file X.$$$ on drive B. The file
X.$$$ is renamed to X.A86 on drive B when PIP runs to
successful completion.

::::opy Files to and from Auxiliary Devices

~ormat:

Purpose:

PIP dest-filespec {[Gn]} = source-filespec {[options]}
AXO: AXI: {[options]}
CON: CON: {[options]}
PRN: NUL:
LST: EOF:

This form is a special case of the PIP command line that lets
you copy a file from a disk to a device, from a device to a disk
or from one device to another. The files must contain printable
characters. Each peripheral device has a "logical" name that
identifies a source device that can transmit data or a
destination device that can receive data. A colon (:) follows
each logical device name so it cannot be confused with a
filename. Strike any key to stop a copy operation that uses a
logical device in the source or destination.

4-43

The logical device names are:

CON:

AXI:

AXO:

LST:

Console: the physical device assigned to CON:.
When used as a source, usually the keyboard;
when used as a destination, usually the screen.

Auxiliary Input Device

Auxiliary Output Device

The destination device assigned to LST:
usually the printer.

There are three device names that have special meaning:

NUL:

EOF:

PRN:

A source device that produces 40 hexadecimal
zeros.

A source device that produces a single Ctrl-Z (the
CP/M end-of-file mark).

The printer device with tab expansion to every
eighth column, line numbers, and page ejects
every 60th line.

Examples: B>PIP PRN: = CON:,MYDATA.DAT

4-44

Characters are first read from the console input device,
generally the keyboard, and sent directly to your printer
device. You type a Ctrl-Z character to tell PIP that keyboard
input is complete. At that time, PIP continues by reading
character data from the file MYDATA.DAT on drive B. Since
PRN: is the destination device, tabs are expanded, line
numbers are added, and page ejects occur every 60 lines.

A>PIP B:FUNFILE.SUE = CON:

If CON: is assigned to input, whatever you type at the console
is written to the file FUNFILE.SUE on drive B. End the
keyboard input by typing a Ctrl-Z.

A>PIP LST: = CON:

If CON: is assigned as input, whatever you type at the
keyboard is written to the list device, generally the printer.
Terminate input with a Ctrl-Z.

A>PIP LST: = B:DRAFT.TXT[T8]

The file DRAFT. TXT on drive B is written to the printer
device. Any tab characters are expanded to the nearest column
that is a multiple of 8.

A>PIP PRN: = B:DRAFT.TXT

The command above causes PIP to write the file DRAFT. TXT to the
list device. It automatically expands the tabs, adds line numbers,
and ejects pages after sixty lines.

Vlultiple Command Mode

Pormat:

Purpose:

Remarks:

PIP

This form of the PIP command starts the PIP Utility and lets
you type multiple command lines while PIP remains in User
Memory.

PIP writes an asterisk (*) on your screen when ready to accept
input command lines.

You can type any valid command line described under previous
PIP formats following the asterisk prompt.

Terminate PIP by pushing only the Enter key following the
asterisk prompt. The empty command line tells PIP to

discontinue operation and return to the CP/M-86 system
prompt.

Note: This form of PIP lets you change SOURCE diskettes of
the SAME FORMAT between commands. You cannot,
however, change from a single-sided to a double-sided source
diskette, or vice versa. If you do, PIP reads the source file
improperly. You cannot change the destination diskette at all.
If you do, CP/M-86 displays a Read-Only error message.

4-45

Examples: A>PIP
*NEWFILE = FILE1 ,FILE2,FILE3
*APROG.CMD = BPROG.CMD
*A: = B:X.A86
8: =.*
*

This command loads the PIP program. The PIP command input
prompt (*) tells you that PIP is ready to accept commands. The
effects of this sequence of commands are the same as shown in the
previous examples, where the command line is included in the
command tail. PIP is not loaded into memory for each command.

Using Options With PIP

Purpose:

4-46

Options enable you to process your source file in special ways.
You can expand tab characters, translate from upper- to

lower-case, extract portions of your text, verify that the copy is
correct, and much more.

The PIP options are listed below, using "n" to represent a
number and "s" to represent a sequence of characters
terminated by a Ctrl-Z. An option must immediately follow
the file or device it affects. The option must be enclosed in
square brackets []. For those options that require a numeric
value, no blanks can occur between the letter and the value.

You can include the [Gn] option after a destination file
specification. You can include a list of options after a source file
or source device. An option list is a sequence of single letters
and numeric values that are optionally separated by blanks and
enclosed in square brackets [].

Dn Delete any characters past column n. This parameter
follows a source file that contains lines too long to be
handled by the destination device; for example, an
80-character printer or narrow console. The number n
should be the maximum column width of the destination
device.

E Echo transfer at console. When this parameter follows a
source name, PIP displays the source data at the console
as the copy is taking place. The source must contain
character data.

F Filter form-feeds. When this parameter follows a source
name, PIP removes all form-feeds embedded in the
source data. To change form-feeds set for one page length
in the source file to another page length in the
destination file, use the F command to delete the old
form-feeds and a P command to simultaneously add new
form-feeds to the destination file.

Gn Get source from or Go to user number n. When this
parameter follows a source name, PIP searches the
directory of user number n for the source file. When it
follows the destination name, PIP places the destination
file in the user number specified by n. The number must
be in the range 0 to 15.

H Hex data transfer. PIP checks all data for proper Intel
hexadecimal file format. The console displays error
messages when errors occur.

I Ignore :00 records in the transfer of Intel hexadecimal
format file. The I option automatically sets the H
option.

L Translate upper-case alphabetics in the source file to
lower-case in the destination file. This parameter follows
the source device or filename.

N Add line numbers to the destination file. When this
parameter follows the source filename, PIP adds a line
number to each line copied, starting with 1 and
incrementing by one. A colon follows the line number. If
N2 is specified, PIP adds leading zeroes to the line
number and inserts a tab after the number. If the T
parameter is also set, PIP expands the tab.

a Object file transfer for machine code (non-character and
therefore non-printable) files. PIP ignores any Ctrl-Z
ends-of-file during concatenation and transfer. Use this
option if you are combining object code files.

4-47

4-48

Pn Set page length. n specifies the number of lines per page.
When this parameter modifies a source file, PIP includes
a page eject at the beginning of the destination file and at
every n lines. If n = 1 or is not specified, PIP inserts
page ejects every 60 lines. When you also specify the F
option, PIP ignores form-feeds in the source data and
inserts new form-feeds in the destination data at the page
length specified by n. I

Qs Quit copying from the source device after the string s.
When used with the S parameter, this parameter can
extract a portion of a source file. The string argument
must be terminated by Ctrl-Z.

R Read system (SYS) files. Normally, PIP ignores files
marked with the system attribute in the disk directory.
But when this parameter follows a source filename, PIP
copies system files, including their attributes, to the
destination.

Ss Start copying from the source device at the string s. The
string argument must be terminated by Ctrl-Z. When
used with the Q parameter, this parameter can extract a
portion of a source file. Both start and quit strings are
included in the destination file.

Tn Expand tabs. When this parameter follows a source
filename, PIP expands tab (Ctrl-I) characters in the
destination file. PIP replaces each Ctrl-I with enough
spaces to position the next character in a column
divisible by n.

U Translate lower-case alphabetic characters in the source
file to upper-case in the destination file. This parameter
follows the source device or filename.

V Verify that data has been copied correctly. PIP compares
the destination to the source data to ensure that the data
has been written correctly. The destination must be a
disk file.

W Write over files with RIO (Read-Only) attribute.
Normally, if a PIP command tail includes an existing
RIO file as a destination, PIP sends a query to the
console to make sure you want to write over the existing
file. When this parameter follows a source name, PIP
overwrites the RIO file without a console exchange. If
the command tail contains multiple source files, this
parameter need follow only the last file in the list.

Z Zero the parity bit. When this parameter follows a
source name, PIP sets the parity bit of each data byte in
the destination file to zero. The source must contain
character data.

~xamples: A>PIP NEWPROG.AB6 = COOE.AB6[L], OATA.AB6[U]

This command constructs the file NEWPROG. AS6 on drive
A by joining the two files CODE.AS6 and DATA.AS6 from
drive A. During the copy operation, CODE.AS6 is translated
to lower-case, while DATA.AS6 is translated to upper-case.

A> PIP CON: = WIDEFILE.AB6[OBO]

This command writes the character file WIDEFILE.AS6 from
drive A to the console device, but deletes all characters
following the SOth column position.

A>PIP B: = LETTER.TXT[E]

The file LETTER. TXT from drive A is copied to

LETTER. TXT on drive B. The LETTER. TXT file is also
written to the screen as the copy operation proceeds.

A>PIP LST: = B:LONGPAGE.TXT[FP65]

This command writes the file LONGPAGE.TXT from drive B
to the printer device. As the file is written, form-feed
characters are removed and reinserted at the beginning and
every 65th line thereafter.

4-49

4-50

B>PIP LST: = PROGRAM.AB6[NTBU]

This command writes the file PROGRAM.A86 from drive B
to the printer device. The N parameter tells PIP to number
each line. The T8 parameter expands tabs to every eighth
column. The U parameter translates lower-case letters to

upper-case as the file is printed.

A>PIP PORTION.TXT = LETTER.TXT[SDear Si(Z QSincerelfZ]

This command abstracts a portion of the LETTER. TXT file
from drive A by searching for the character sequence "Dear
Sir" before starting the copy operation. When found, the
characters are copied to PORTION. TXT on drive A until the
sequence "Sincerely" is found in the source file.

B>PIP B: =A:*.CMD[V WR]

This command copies all files with filetype CMD from drive A
to drive B. The V parameter tells PIP to read the destination
files to ensure that data were correctly transferred. The W
parameter lets PIP overwrite any destination files that are
marked as RIO (Read-Only). The R parameter tells PIP to

read files from drive A that are marked with the SYS (System)
attribute.

)rmat:

ype:

The PROTOCOL (Set Communications
Protocol) Command

PROTOCOL SERIAL-x protocol [message-length]

Transient Utility

urpose: The PROTOCOL Utility lets you change the communications
protocol for the serial ports of your computer. For example, if
you have a slow printer connected to one of your computer's
serial ports, you can prevent CP/M-86 from sending data to
the printer faster than the printer can handle the data.

To use PROTOCOL, replace x in the format line above with 0
or 1. Use Serial-O to change the communications protocol for
Serial Port o. Use Serial-1 to change the communications
protocol for Serial Port 1. Then specify one of the three
protocols described below: XON, ETX or NONE.

XON This protocol uses two special characters in the ASCII
character set, XON and XOFF, as signals for
"Transmission On" and "Transmission Off." Before
each character is output from the computer to the
peripheral device, the computer checks to see whether
there is any incoming data from the peripheral. If the
incoming character is XOFF, the computer suspends
all further output until it receives an XON from the
device, indicating that the device is again ready to
receive more data.

ETX This protocol uses two other ASCII characters, ETX
and ACK, which stand for "End of Transmission" and
"Acknowledge." With this protocol you can define a
message length as the last item in the command line.
Use a value that is half the peripheral's buffer size (the
default message length is 127 decimal). When the
ETX/ACK protocol is in force, CP/M-86 sends the
number of characters defined by message-length
followed by an ETX character. CP/M-86 then waits
for an ACK to be sent back from the peripheral before
sending any further data.

4-51

NONE This option eliminates all protocols. CP/M-86 sends
data to the device whether or not the device is ready tc
receive it.

Remarks: You can use abbreviations and either upper- or lower-case in
the above format. Use SO or Sl for the serial device, and the
beginning character X, E, or N for the protocol.

Examples:

4-52

Enter PROTOCOL followed by Serial-O or Serial-1 to display
the current protocol setting for the specified port.

Enter HELP PROTOCOL to display information about the
PROTOCOL Utility.

A> PROTOCOL Serial-O XON

The above command assigns XON/XOFF protocol to Serial
Port O.

A>PROTOCOL Serial-1 ElX 2048

The above command assigns ETX/ ACK protocol with a
message length of 2048 to Serial Port 1.

A>PROTOCOL Serial-1 NONE

The above command eliminates all protocols from Serial Port
1.

A>PROTOCOL Serial-O ETX 200

A>PROTOCOL SO E 200

The two commands shown above set Serial Port 0 to
ETX/ ACK protocol, with a message length of 200 characters.
The command may be abbreviated as shown in the second form
of the command.

A>PROTOCOL Serial-1

Serial-1 set to Xon/Xoff Protocol

A>PROTOCOL S1

Serial-1 set to Xon/Xoff Protocol

Use the PROTOCOL command without any specified
attributes to display the current protocol for a particular port.
The two examples above show how to display the current
assignment for Serial Port 1. The second form of the command
line is an abbreviation of the first form.

4-53

The REN (Rename) Built-in Command

Format:

Type:

Purpose:

Remarks:

REN {d: }newname{. typ} = oldname{. typ}

Built-in

The REN Built-in lets you change the name of a file that is
cataloged in the directory of a diskette.

The filename oldname identifies an existing file on the
diskette. The filename newname is not in the directory of the
diskette. The REN command changes the file named by
oldname to the name given as newname.

REN does not make a copy of the file. REN changes only the
name of the file.

If you omit the drive specifier, REN assumes the file to rename
is on the default drive.

You can include a drive specification as a part of the newname.
Ifboth file specifications name a drive, it must be the same
drive.

If the file given by oldname does not exist, REN displays the
following message on the screen:

NO FILE

If the file given by newname is already present in the directory,
REN displays the following message on the screen:

FILE EXISTS

Examples: A>REN NEWASM.A86 = OLDFILE.A86

4-54

The file OLDFILE.A86 changes to NEW ASM.A86 on drive
A.

B>REN A:X.PAS = Y.PLI

The file Y.PLI changes to X.PAS on drive A.

A>REN B:NEWlIST= B:OLDLIST

The file OLDLIST changes to NEWLIST on drive B. Since the
second drive name, B: is implied by the first one, it is
unnecessary in this example. The command line above has the
same effect as the following:

A>REN B:NEWlIST= OLDLIST

4-55

The SPEED (Set Serial Port Attributes)
Command

Format:

Type:

Purpose:

4-56

SPEED SERIAL-x {attribute-l attribute-2 ... }

Transient Utility

The SPEED Utility sets the attributes of a serial port.
Normally you would use a serial port to set up communication
between your IBM Personal Computer and some other
equipment; for example, a remote terminal. Use a SPEED
command to make sure that CP/M-86 sends and receives data
the way the external equipment expects. You must know the
external equipmef.lt's requirements for baud rate, parity,
number of data bits and number of stop bits before you can
effectively use the SPEED Utility.

The command tail for a speed command specifies the serial
port number (Serial-O or Serial-I) and zero or more attributes.
To specify a serial port, replace x in the format line above with
o for Serial Port 0 or 1 for Serial Port 1. If you do not specify
an attribute, SPEED displays the current attributes for the
specified port.

To specify a BAUD (Bits Per Second) RATE, enter one of the
following baud rate values as an attribute:

9600
4800
1200
600
300
150
110

To specify PARITY, enter one of the following as an attribute:

PARITY-NONE
PARITY-EVEN
PARITY-ODD

To specify the number of STOP BITS, enter one of the
following as an attribute:

STOP-l
STOP-2

To specify the number of DATA BITS, enter one of the
following as an attribute:

BITS-7
BITS-8

Examples: A>SPEED SERIAL-O 1200 PARITY-ODD

The command line shown above sets the baud rate for Serial
Port 0 to 1200, the parity to odd, and does not set stop bits or
data bits.

A>SPEED SERIAL-1150 STOP-1 BITS-7

The above example shows how to set the stop bits to 1, the
data bits to 7, and the baud rate to 150 for Serial Port 1.

A>SPEED SERIAL-1

Serial-1 set to 9600 Parity-None
1 Stop Bits, 8 Data Bits

When you do not specify any attributes, SPEED displays the
current attributes of the specified serial port, as shown above.
The baud rate is set to 9600, the pari ty is set to none, the stop
bi ts are set to 1, and the data bi ts are set to 8.

4-57

The STAT (Status) Command

Format:

Type:

Purpose:

Remarks:

STATd:=R/O
STAT {filespec {$R/O I R/W I SYS I DIR I SIZE}}
STAT {d:}DSK: I USR:

Transient Utility

The various forms of the STAT Utility command give you
information about the disk drives and files associated with your
IBM Personal Computer. STAT also lets you change the
attributes of files and drives.

The notation "R/W" tells you the drive is in a Read-Write
state so that data can be both read from and written to the
diskette.

The notation "RIO" tells you the drive is in a Read-Only state
so that data can only be read from, but not written to, the
diskette.

Drives are in a Read-Write state by default, and become
Read-Only when you set the drive to RIO or when you change
a diskette and forget to type a Ctrl-C.

Note that the STAT options following filespec can be preceded
by a square bracket [, no delimiter or a dollar sign $ as shown
above. Note also that the slash I can be omitted from RO and
RW.

Set a Drive to Read-Only Mode

Format:

Purpose:

4-58

STAT d: = RIO

You may use this form of the STAT command to set the drive
to Read-Only mode. Use Ctrl-C to reset a drive to
Read-Write.

Example: STAT B: = RIO

The command line shown above sets drive B to Read-Only
mode.

Free Space on Disk

Format:

Purpose:

Remarks:

STAT {d:}

STAT with no command tail reports the amount of free storage
space that is available on all on-line diskettes. This form of the
STAT command reports free space for only those diskettes that
have been accessed since CP/M-86 was last started or reloaded.
You can find the amount of free space on a particular diskette
by including the drive specification in the command tail.

If the drive specifier names a drive that is not on-line,
CP/M-86 places the drive in an on-line status.

This form of the STAT command displays mformation on your
screen in the following form:

d: R W, Free Space: nnK

where d is the drive specifier, and n is the number of kilobytes
of storage remaining on the diskette in the drive specified by
d.

Examples: Suppose you have two disk drives containing active diskettes.
Suppose also that drive A has 16K (16,384) bytes of free space,
while drive B has 32K (32,768) bytes of free space. Assume
that drive A is marked R/W, and drive B is marked RIO. A
STAT command displays the following messages on your
screen:

A> STAT
A: RW, Free Space: 16K
B: RO, Free Space: 32K

4-59

Suppose drive B is set to Read-Only and has 98 kilobytes of
storage that is free for program and data storage. A STAT
command displays the following message is displayed on your
screen:

A>STATB:
B: RO, Free Space: 98K

Files-Display Space Used and Access Mode

Format:

Purpose:

4-60

STAT filespec {$SIZE}

This form of the STAT command displays the amount of space
in kilobytes used by the specified file. It also displays the
Access Mode of the file . STAT accepts wildcards in the
filename and filetype part of the command tail. When you
include a wildcard in your file specification, the STAT
command displays a list of qualifying files from the defaul t or
specified drive, with their file characteristics, in alphabetical
order.

CP/M-86 supports four file Access Modes:

RIO The file has the Read-Only attribute that allows data
to come from the file, but the file cannot be altered.

R/W The file has the Read-Write attribute that allows data
to move either to or from the file.

SYS The file has the "system" attribute. System files do
not appear in DIR (directory) displays. Use DIRS to
show System (SYS) files. Use the STAT command to
display all files including those with the System
attribute. The STAT command shows System files in
parentheses.

DIR The file has the "directory" attribute and appears in
DIR (directory) displays.

A file has either the RIO or R/W attribute, and either the SYS
or DIR attribute. By default, and unless changed by the STAT
command, a file has the R/W and DIR attributes.

This format for the STAT command produces a list of file
characteristics under five headings.

Remarks:

The first column displays the number of records used by the
file, where each record is 128 bytes in length. This value is
listed on your screen under the column marked "Recs."

The second column displays the number of kilobytes used by
the file, where each kilobyte contains 1,024 bytes. This value
is listed under "Bytes."

The third column displays the number of directory entries
used by the file. This value appears under the "FCBs" column.
FCB (File Control Block) is another name for a directory entry.

The Access Modes are displayed under the "Attributes"
column.

The file specification, consisting of the drive specification,
filename, and filetype of the file appears under "Name" on
your screen.

If the drive specifier is included, and the corresponding drive is
not active, CP/M-86 places the drive in an active status.

Use $SIZE to tell STAT to compute the "virtual file size" of
each file. The virtual and real file size are identical for
sequential files, but can differ for files written in random
mode. When you use $SIZE, the additional column, marked
"Size", is displayed on the screen. The value in this column
represents the number of filled and unfilled records allotted to
the file.

When you enter the command STAT * . *, STAT performs a
directory verification to ensure that two files do not share the
same disk space allocation. This means that the indicated file
shares a portion of the disk with another file in the directory. If
STAT finds a duplicate space allocation, it displays the
following message:

Bad Directory on d:
Space Allocation Conflict:
d:filename.typ

STAT prints the name of the file containing doubly allocated
space. More than one file can be listed. The recommended
solution is to erase the listed files.

4-61

STAT does a complete directory verification whenever a
wildcard character appears in the command tail.

Examples: A>STAT MY*.*

4-62

This command tells STAT to display the characteristics of all
files that begin with the letters MY, with any filetype at all.
Assume that the following three files satisfy the file
specification. The screen could display the following:

Recs
16
8

32

Total:

Bytes
2K
1K

18K

21K

B: RW, Free Space: 90K

A>STAT MY*.* SSIZE

FCBs Attributes
1 Dir RW
1 Dir RO
2 Sys RO

4

Name
B:MYPROG.A86
B:MYTEST.DAT
B:MYTRAN.CMD

This command causes the same action as the previous
command, but includes the "Size" column in the display.
Assume that MYTEST.DAT was written using random access
from record numbers 8 through 15, leaving the first eight
records empty. The virtual file size is 16 records, although the
file only consumes only eight records. The screen appears as
follows:

Size Recs Bytes
16 16 2K
16 8 1K
32 32 18K

Total: 21K

B: RW, Free Space: 90K

FCBs Attributes
1 Dir RW
1 Dir RO
2 Sys RO

4

Name
B:MYPROG.A86
B:MYTEST.DAT
B:MYTRAN.CMD

Set File Access Modes (Attributes)

Format:

Purpose:

Remarks:

STAT filespec $R/O I $R/W I $SYS I $DIR

This form of the STAT command lets you set the Access Mode
for one or more files. The four Access Modes, described above,
are:

RIO R/W SYS DIR

If the drive named in the file specification corresponds to an
inactive drive, CP/M-86 first places the drive in an on-line
state.

A file can have either the RIO or R/W Access Mode, but not
both. Similarly, a file can have either the SYS or DIR Access
Mode, but not both.

Examples: A>STAT LETTER.TXT $R/O

This command sets the Access Mode for the file LETTER. TXT
on the default drive to RIO. The following message appears on
your screen if the file is present:

LETTER. TXT set to RIO

B>STAT A:*.CMD $SYS

This command sets the Access Mode for all files on drive A,
with filetype CMD, to SYS. Given that the three command
files PIP, ED, and ASM86 are present on drive A, the
following message appears on your screen:

PIP.CMD setto SYS
ED.CMD set to SYS
ASM86.CMD set to SYS

4-63

Display Disk Status

Format:

Purpose:

STAT {d:}DSK:

This form of the STAT command displays internal information
about your disk system for all on-line diskettes.

If a drive is specified, it is placed in an on-line status.

The information provided by this command is useful for more
advanced programming, and is not necessary for your everyday
use ofCP/M-86.

Remarks: The third entry in the display, "Kilobyte Drive Capacity,"
shows the total amount of storage in kilobytes available on the
specified diskette. After logging in a new diskette with a
Ctrl-C following the system prompt, you can use this
command to determine whether the diskette is single-sided or
double-sided. Single-sided diskettes have a total of 156
kilobytes of disk storage. Double-sided diskettes have a total
of 316 kilobytes of storage.

Examples: A>STAT DSK:

4-64

This STAT command displays information about drive A in
the following form. STAT supplies numbers for n.

A: Drive Characteristics
nnnn: 128 Byte Record Capacity
nnnn: Kilobyte Drive Capacity
nnnn: 32 Byte Directory Entries
nnnn: Checked Directory Entries
nnnn: 128 Byte Records/Directory Entry
nnnn: 128 Byte Records/Block
nnnn: 128 Byte RecordslTrack
nnnn: Reserved Tracks

A>STAT B:DSK:

This command produces the information shown in the
previous example for drive B.

Display User Numbers With Active Files

Format: STAT {d:}USR:

Purpose: CP/M-86 assigns the current user number to files created
under it. Except when using the [GnJ option with a PIP
command, or accessing a file in user 0 that has been set to SYS
with the STAT command, you can access only that file from
the user number under which it was created. This form of the
STAT command displays the current user number and the user
numbers containing files on the diskette in the default or
specified drive.

Examples: A>STAT USR:

A: Active User:
A: Active Files:

o
015

The STAT USR: command with no drive specification displays
information for the default drive. This command displays the
current user number and the user numbers that contain files in
the form shown above. The display begins with the default or
specified drive. STAT displays the current user number
following "Active User." In this case it is user o. The user
numbers containing files are displayed following "Active
Files." In the example above user 0 and user 15 contain files.

4-65

The SUBMIT (Batch Processing) Command

Format:

Type:

Purpose:

4-66

SUBMIT filespec { parameters ... }

Transient Utility

The SUBMIT Utility lets you group a set of commands
together for automatic processing by CP/M-86.

Normally, you enter commands one line at a time. If you must
enter the same sequence of commands several times, you'll find
it easier to "batch" the commands together using the SUBMIT
Utility. To do this, create a file and list your commands in this
file. The file is identified by the filename, and must have a
filetype of SUB. When you issue the SUBMIT command,
SUBMIT reads the file named by filespec and prepares it for
interpretation by CP/M-86.

The file of type SUB can contain any valid CP/M-86
commands. A command line cannot exceed 125 characters.
The file of type SUB can contain a maximum of 128 command
lines. The SUBMIT buffer allows up to 2048 characters in the
input file.

If you want, you can include SUBMIT parameters within the
SUB file that are filled in by values that you include in the
command tail.

SUBMIT parameters take the form of a dollar sign ($),
followed by a number in the range 0 through 9:

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

You can put these parameters anywhere in the command lines
in your file of type SUB.

The SUBMIT Utility reads the command line following
SUBMIT filespec and substitutes the items you type in the
command tail for the parameters that you included in the file
of type SUB. When the substitutions are complete, SUBMIT
sends the file to CP/M-86 line by line as if you were typing
each command.

Remarks: Each item in the command tail is a sequence of alphabetic,
numeric, and/or special characters. The items are separated by
one or more blanks.

The first word in the command tail takes the place of $1 in the
SUB file, the second word replaces $2, and so forth, through
the last item in the command tail. The filename of the SUB file
replaces any $0 parameters in the SUB file.

SUBMIT creates a file named $$$.SUB that contains the
command lines resulting from the substitutions.

If you type fewer items in the command tail than parameters in
the SUB file, remaining parameters are not included in the
temporary file.

If you type more items in the command tail than parameters in
the SUB file, the items remaining in the command tail are
ignored.

Batch command processing stops after reading the last line of
the $$$.SUB file. Ctrl-Break stops the SUBMIT process. You
can also stop batch processing before reaching the end of the
SUB file by pressing any key after CP/M-86 issues the
command input prompt, A>.

The file $$$.SUB is automatically removed when CP/M-86
stops reading the batched commands.

SUB files cannot contain nested SUBMIT commands.
However, the last command in a SUB file can be a SUBMIT
command that "chains" to another SUB file.

To include an actual dollar sign ($) in your file of type SUB,
type two dollar signs ($$). The SUBMIT Utility replaces them
with a single dollar sign when it substitutes a command tail
item for a $ parameter in the SUB file.

Examples: A>SUBMIT SUBFILE

Assume the file SUBFILE.SUB is on the diskette in drive A,
and that it contains the lines shown below.

DlR *.COM
ASM86 XSSSB
PIP LST: = X.PRN[T8D80j

4-67

4-68

The SUBMIT command shown above sends the sequence of
commands contained in SUBFILE.SUB to CP/M-86 for
processing. CP/M-86 first performs the DIR command and
then assembles X.A86. When ASM-86 finishes, the PIP
command line is executed.

A>SUBMIT B:ASMCOM X 8 080 SZ <- these command
tail items

$1 $2 $3 $4 <-are assigned
to these SUB
file $n
parameters

Assume that ASMCOM.SUB is present on drive B and that it
contains the commands:

ERA $1.BAK
ASM86 $1 $$4

PIP LST: = $1.PRN[T$2 $3 $5]

The SUBMIT Utility reads this file and substitutes the items
in the command tail for the parameters in the SUB file as
follows:

ERAX.BAK
ASM86X $SZ
PIP LST: = X.PRN[T8 080]

These commands are executed from top to bottom by
CP/M-86.

The TOD (Display and Set Time of Day)
Command

Format:

Type:

Purpose:

TaD {time-specification I p}

Transient Utility

The TaD Utility lets you examine and set the time of day.

The bottom line of your screen, called the Status Line,
provides you with continuous date and time information.
When you start CP/M-86, the date and time are set to the
creation date of the system. Use TaD to change this initial
value, at your option, to the current date and actual time.

A date is represented as a month value in the range 1 to 12, a
day value in the range 1 to 31, depending upon the month,
and a two-digit year value relative to 1900.

Time is represented as a twenty-four hour clock, with hour
values from 00 to 11 for the morning, and 12 to 23 for the
afternoon.

Use the command

TOO

to obtain the current date and time in the format:

weekday month/day/year hour:minute:second

For example, the screen might appear as

12/06/81 09:15:37

in response to the TaD command.

4-69

Remarks:

Use the command form

TaD time-specification

to set the date and time, where the time-specification takes the
form:

month/day/year hour:minute:second

A command line in this form is:

TO 0 02/09/81 10:30:00

To let you accurately set the time, the TaD Utility writes the
message:

Press any key to set time

When the time that you give in the command tail occurs,
press any key. TaD begins timing from that instant, and
responds with a display in the form:

02/09/81 10:30:00

Use the command form

TOOP

to continuously print the date and time on the screen. This
display appears in the status line also. However, you can assign
the screen to another logical device on which you might want
to display the date and time.

You can stop the continuous display by pressing any key.

TaD checks to ensure that the time-specification represents a
valid date and time.

You need not set the time-of-day for proper operation of
CP/M-86.

Examples: A> TOO

This command writes the current date and time on the screen.

4-70

A> TOD 12/31182 23:59:59

This command sets the current date and time to the last second
of 1982.

4-71

The TYPE (Display File) Built-in Command

Format:

Type:

Purpose:

Remarks:

TYPE filespec

Built-in

The TYPE Built-in displays the content of a character file on
your screen.

Tab characters occurring in the file named by filespec are
expanded to every eighth column position of your screen.

Press any key on your keyboard to discontinue the TYPE
command.

Make sure the file specification identifies a file containing
character data.

If the file named by filespec is not present on an on-line
diskette, TYPE displays the following message on your screen:

NO FILE

To list the file at the printer as well as on the screen, type a
Ctrl-P before entering the TYPE command line. To stop
echoing keyboard input at the printer, type a second Ctrl-P.

Examples: A> TYPE MYPROG.A86

4-72

This command displays the content of the file MYPROG. A86
on your screen.

A> TYPE B:THISFILE

This command displays the content of the file THISFILE from
drive B on your screen.

~

The USER (Display and Set User Number)
Built-in Command

Format:

Type:

Purpose:

Remarks:

USER {number}

Built-in

The USER Built-in command displays and changes the current
User Number. The diskette directory can be divided into
distinct areas according to a "User Number."

The default User Number is o. When CP/M-86 starts, it
assumes that 0 is the current User Number. Your IBM
Personal Computer displays the current User Number in the
status line, in the form

U=number

where "number" is a number in the range 0 through 15. Any
files you create under this User Number are not accessible
under any other User Number except through the PIP
command. (See the G parameter of the PIP Utility.)

Use the command

USER

to display the current User Number.

Use the command form

USER number

where "number" is a number in the range 0 through 15, to

change the current User Number.

See the command form

STAT USR:

to get a list of user numbers that have files associated with
them.

4-73

Examples: A>USER
o

This command displays the current User Number.

A>USER 3

This command changes the current User Number to 3.

4-74

CHAPTER 5. ED, THE CP/M-86
CONTEXT EDITOR

Contents

Starting ED. .. 5-3
ED Operation 5-5

Appending Text into the Buffer. 5-7
The V (Verify Line Numbers) Command 5-7
The A (Append) Command 5-8

ED Exit 5-8
The W (Write) Command 5-8
The E (Exit) Command 5-9

Basic Editing Commands 5-10
Moving the Character Pointer 5-12

The B (Beginning/Bottom) Command 5 -12
The C (Character) Command 5-12
The L (Line) Command 5-13
The n (Number) Command. 5-13

Displaying Memory Buffer Contents. 5-14
The T (Type) Command 5-14

Deleting Characters 5-15
The D (Delete) Command 5-15
The K (Kill) Command. 5-16

Inserting Characters into the Memory Buffer 5-17
The I (Insert) Command 5-17
The Istring"Z (Insert String) Command 5-18

Replacing Characters 5-19
The S (Substitute) Command. 5-19

Combining ED Commands. 5-20
Moving the Character Pointer 5-20
Displaying Text. .. 5-21
Editing. .. 5-22

Advanced ED Commands. 5-23
Moving the CP and Displaying Text. 5-23

The P (Page) Command. 5-23
The n: (Line Number) Command 5-23
The :n (Through Line Number)

Command 5-24

5-1

5-2

Finding and Replacing Character Strings ... 5-24
The F (Find) Command. 5-25
The N Command. 5-26
The] (Juxtapose) Command 5-26
The M (Macro) Command. 5-28
The Z (Sleep) Command 5-29

Moving Text Blocks. 5-29
The X (Transfer) Command. 5-29
The R (Read) Command 5-30

Saving or Abandoning Changes: ED Exit . .. 5-31
The H (Head of File) Command 5-31
The 0 (Original) Command. 5-32
The Q (Quit) Command 5-32

ED Error Messages 5-33

ED, the CP/M-86 Context Editor

To do almost anything with a computer you need some way to
enter data, some way to gi've the computer the information you
want it to process. The programs most commonly used for this
task are called "editors." They transfer your keystrokes at the
keyboard to a disk file. CP/M-86's editor is named ED. Using
ED, you can easily create and alter CP/M-86 text files.

The correct command format for invoking the CP/M-86 editor
is given in the first section, "Starting ED." After starting ED,
you issue commands that transfer text from a disk file to
memory for editing. "ED Operation" details this operation
and describes the basic text transfer commands that allow you
to easily enter and exit the editor.

"Basic Editing Commands" details the commands that edit a
file. "Combining ED Commands" describes how to combine
the basic commands to edit more efficiently. Although you can
edit any file with the basic ED commands, ED provides several
more commands that perform more complicated editing
functions, as described in "Advanced ED Commands."

During an editing session, ED may return two types of error
messages. "ED Error Messages" lists these messages and
provides examples that indicate how to recover from common
editing error conditions.

Starting ED

Format: ED input-filespec {d: I output-filespec}

To start ED, enter its name after the CP/M-86 prompt. The
command ED must be followed by a file specification, one that
contains no wildcard characters, such as:

A>ED MYFILE.TEX

5-3

5-4

The file specification, MYFILE. TEX in the above example,
specifies a file to be edited or created. The file specification can
be preceded by a drive specification, but a drive specification is
unnecessary if the file to be edited is on your default drive.
Optionally, the file specification can be followed by a drive
specification, as shown in the example below.

A>ED MYFILE.TEX B:

In response to this command, ED opens the file to be edited,
MYFILE.TEX, on drive A, but sends all the edited material to
a file on drive B.

Optionally, you can send the edited material to a file with a
different filename, as shown in the example below.

A> ED MYFILE.TEX YOURFILE.TEX

The file with the different filename cannot already exist or ED
prints the following message and terminates.

Output File Exists, Erase It

The ED prompt, *, appears at the screen when ED is ready to
accept a command, as shown below.

A>ED MYFILE.TEX
.*

If no previous version of the file exists on the current disk, ED
automatically creates a new file and displays the following
message:

NEW FILE
.*

Note: before starting an editing session, use the STAT
command to check the amount of free space on your disk.
Make sure that the unused portion of your disk is at least as
large as the file you are editing-larger if you plan to add
characters to the file. When ED finds a disk or directory full,
ED has only limited recovery mechanisms. These are explained
in "ED Error Messages."

ED Operation

With ED, you change portions of a file that pass through a
memory buffer. When you start ED with one of the commands
just described, this memory buffer is empty. At your
command, ED reads segments of the source file, for example
MYFILE. TEX, into the memory buffer for you to edit. If the
file is new, you must insert text into the file before you can
edit. During the edit, ED writes the edited text onto a
temporary work file, MYFILE.$$$.

When you end the edit, ED writes the memory buffer contents
to the temporary file, followed by any remaining text in the
source file. ED then changes the name of the source file from
MYFILE.TEX to MYFILE.BAK, so you can reclaim this
original material from the back-up file if necessary. ED then
renames the temporary file, MYFILE. $$$, to MYFILE. TEX,
the new edited file. The following figure illustrates the
relationship between the source file, the temporary work file,
and the new file.

Note: When you invoke ED with two filespecs, an input file
and an output file, ED does not rename the input file to type
BAK; therefore, the input file can be Read-Only or on a
write-protected disk if the output file is written to another
disk.

5-5

5-6

I
After I (E)
Edit I

+

Overall ED Operation

Memory Buffer

Insertl
(I) !Type

(T)

D
I ~1II1111111111111H1 Ftl'9 I
~~~~g§§~§gg~~~ 

D = memory buffer 

o = disk file 

I 
After I (E) 
Edit I 

+ 

In the figure above, the memory buffer is logically between the 
source file and the temporary work file. ED supports several 
commands that transfer lines of text between the source file, 
the memory buffer and the temporary, and eventually final, 
file. The following table lists the three basic text transfer 
commands that allow you to easily enter the editor, write text 
to the temporary file, and exit the editor. 



Text Transfer Commands 

Command Result 

nA Append the next n unprocessed source lines from 
the source file to the end of the memory buffer. 

n W W rite the first n lines of the memory buffer to the 
temporary file free space. 

E End the edit. Copy all buffered text to the 
temporary file, and copy all unprocessed source 
lines to the temporary file. Rename files. 

Appending Text into the Buffer 

When you start ED and the memory buffer is empty, you can 
use the A (Append) command to add text to the memory 
buffer. 

Note: ED can number lines of text to help you keep track of 
data in the memory buffer. The colon that appears when you 
start ED indicates that line numbering is turned on. Type-V 
after the ED prompt to turn the line number display off. Line 
numbers appear on the screen but never become a part of the 
output file. 

The V (Verify Line Numbers) Command 

The V command turns the line number display in front of each 
line of text on or off. The V command also displays the free 
bytes and total size of the memory buffer. The forms of the V 
command are: 

V, -V, OV 

Initially, the line number display is on. Use - V to turn it off. 
If the memory buffer is empty, or if the current line is at the 
end of the memory buffer, ED represents the line number as 
five blanks. 

The OV command prints the memory buffer statistics in the 
form: 

free/total 
5-7 



5-8 

where "free" is the number of free bytes in the memory buffer, 
and "total" is the size of the memory buffer. For example, if 
you have a total of 48,253 bytes in the memory buffer and 
46,652 of them are free, the OV command displays this 
information as shown below. 

46652/48253 

The A (Append) Command 

The A command appends (copies) lines from an existing source 
file into the memory buffer. The form of the A command is: 

nA 

where n is the number of unprocessed source lines to append 
into the memory buffer. If a pound sign, #, is given in place 
of n, then the integer 65535 is assumed. Because the memory 
buffer can contain most reasonably sized source files, it is often 
possible to issue the command #A at the beginning of the edit 
to read the entire source file into memory. 

When n is 0, ED appends the unprocessed source lines into the 
memory buffer until the buffer is approximately half full. If 
you do not specify n, ED appends one line from the source file 
into the memory buffer. 

ED Exit 

You can use the W (Write) command and the E (Exit) 
command to save your editing changes. The W command 
writes lines from the memory buffer to the new file without 
ending the ED session. An E command saves the contents of 
the buffer and any unprocessed material from the source file 
and exits ED. 

The W (Write) Command 

The W command wri tes lines from the buffer to the new file. 
The form of the W command is: 

nW 



where n is the number oflines to be written from the 
beginning of the buffer to the end of the new file. If n is 
greater than 0, ED writes n lines from the beginning of the 
buffer to the 'end of the new file. If n is 0, ED writes lines until 
the buffer is half empty. The OW command is a convenient 
way of making room in the memory buffer for more lines from 
the source file. If the buffer is full, you can use the OW 
command to write half the contents of the memory buffer to 

the new file. You can use the #W command to write the entire 
contents of the buffer to the new file. Then you can use the OA 
command to read in more lines from the source file. 

Note: After a W command is executed, you must enter the H 
command to reedit the saved lines during the current editing 
seSSIOn. 

The E (Exit) Command 

An E command performs a normal exit from ED. The form of 
the E command is: 

E 

followed by a carriage return. 

When you enter an E command, ED first writes all data lines 
from the buffer and the original source file to the. $$$ file. If a 
.BAK file exists, ED deletes it, then renames the original file 
with the .BAK filetype. Finally, ED renames the .$$$ file 
from filename.$$$ to the original filetype and returns control 
to CP/M-86. 

The operation of the E command makes it unwise to edit a 
back-up file. When you edit a .BAK file and exit with an E 
command, ED erases your original file because it has a BAK 
filetype. To avoid this, always rename a back-up file to some 
other filetype before editing it with ED. 

Note: Any command that terminates an ED session must be 
the onl y command on the line. 

5-9 



Basic Editing Commands 

5-10 

The text transfer commands discussed above allow you to 
easily enter and exit the editor. This section discusses the basic 
commands that edit a file. 

ED treats a file as a long chain of characters grouped together 
in lines. ED displays and edits characters and lines in relation 
to an imaginary device called the character pointer (CP). 
During an edit session, you must mentally picture the CP's 
location in the memory buffer and issue commands to move 
the CP and edit the file. 

The following commands move the character pointer or 
display text in the vicinity of the CP. These ED commands 
consist of a numeric argument and a single command letter 
and must be followed by a carriage return. The numeric 
argument, n, determines the number of times ED executes a 
command; however, there are four special cases to consider in 
regard to the numeric argument: 

• 

If the numeric argument is omitted, ED assumes an 
argument of 1. 

Use a negative number if the command is to be executed 
backwards through the memory buffer. (The B command is 
an exception.) 

If you enter a pound sign, #, in place of a number, ED uses 
the value 65535 as the argument. A pound sign argument 
can be preceded by a minus sign, - # to cause the 
command to execute backwards through the memory 
buffer. 

ED accepts 0 as a numeric argument only in certain 
commands. In some cases, 0 causes the command to be 
executed approximately half the possible number of times, 
while in other cases it prevents the movement of the CP. 

The following table alphabetically summarizes the basic 
editing commands and their valid arguments. 



Command 

B, -B 

nC, -nC 

nD, -nD 

IstringAZ 

nK, -nK 

nL, -nL 

nT, -nT 

n, -n 

Basic Editing Commands 

Action 

Move CP to the beginning (B) or end (-B) of 
the memory buffer. 

Move CP n characters forward (nC) or 
backward (-nC) through the memory buffer. 

Delete n characters before (-nD) or after (nD) 
the CPo 

Enter insert mode. 

Insert a string of characters. 

Delete (kill) n lines before the CP (-nK) or 
after the CP (nK). 

Move the CP n lines forward (nL) or 
backward (-nL) through the memory buffer. 

Type n lines before the CP (-nT) or after the 
CP (nT). 

Move the CP n lines before the CP (-n) or 
after the CP (n) and display the destination 
line. 

The following sections discuss ED's basic editing commands in 
more detail. The examples in these sections illustrate how the 
commands affect the position of the character pointer in the 
memory buffer. Later examples in "Combining ED 
Commands" illustrate how the commands appear at the 
screen. For these sections, however, the symbol "/' in 
examples represents the character pointer, which you must 
imagine in the memory buffer. 

5-11 



5-12 

Moving the Character Pointer 

This section describes commands that move the character 
pointer in useful increments but do not display the destination 
line. Although ED is used primarily to create and edit 
program source files, the following sections present a simple 
text as an example to make ED easier to learn and understand. 

The B ( Beginning/Bottom) Command 

The B command moves the CP to the beginning or bottom of 
the memory buffer. The forms of the B command are: 

B, -B 

-B moves the CP to the end or bottom of the memory buffer; B 
moves the CP to the beginning of the buffer. 

The C (Character) Command 

The C command moves the CP forward or backward the 
specified number of characters. The forms of the C command 
are: 

nC, -nC 

where n is the number of characters the CP is to be moved. A 
positive number moves the CP towards the end of the line and 
the bottom of the buffer. A negative number moves the CP 
towards the beginning of the line and the top of the buffer. 
You can enter an n large enough to move the CP to a different 
line. However, each line is separated from the next by two 
invisible characters: a carriage-return and a line-feed 
represented by <cr><lf>. You must compensate for their 
presence. For example, if the CP is pointing to the beginning 
of the buffer, the command 30C moves the CP to the next line: 

Emily Dickinson said, <cr><lf> 
"1 fin"d ecstasy in living - <cr><lf> 



The L (Line) Command 

The 1 command moves the CP the specified number of lines. 
After an 1 command, the CP always points to the beginning of 
a line. The forms of the 1 command are: 

nl, - nl 

where n is the number of lines the CP is to be moved. A 
positive number moves the CP towards the end of the buffer. 
A negative number moves the CP back toward the beginning 
of the buffer. The command 2l moves the CP two lines 
forward through the memory buffer and positions the character 
pointer at the beginning of the line. 

"I find ecstasy in living - <cr><lf> 
the mere sense of living<cr > <If> 
"is joy enough."<cr><lf> 

The command -l moves the CP to the beginning of the 
previous line, even if the CP originally points to a character in 
the middle of the line. Use the special character 0 to move the 
CP to the beginning of the current line. 

The n (Number) Command 

The n command moves the CP and displays the destination 
line. The forms of the n command are: 

n, -n 

where n is the number of lines the CP is to be moved. In 
response to this command, ED moves the CP forward or 
backward the number of lines specified, then prints only the 
destination line. For example, the command - 2 moves the 
CP back two lines. 

Emily Dickinson said, <cr > <If> 
,,"I find ecstasy in living - <cr><lf> 
the mere sense ofliving<cr> <If> 
is joy enough."<cr><lf> 

5-13 



5-14 

A further abbreviation of this command is to enter no number 
at all. In response to a carriage return without a preceding 
command, ED assumes an n command of 1 and moves the CP 
down to the next line and prints it, as shown below. 

Emily Dickinson said, <cr><lf> 
"I find ecstasy in living - <cr><lf> 
"the mere sense ofliving<cr> <If> 

Also, a minus sign, -, without a number moves the CP back 
one line. 

Displaying Memory Buffer Contents 

ED does not display the contents of the memory buffer until 
you specify which part of the text you want to see. The T 
command displays text without moving the CP. 

The T (Type) Command 

The T command types a specified number of lines from the CP 
at the screen. The forms of the T command are: 

nT, -nT 

where n specifies the number of lines to be displayed. If a 
negative number is entered, ED displays n lines before the CP. 
A positive number displays n lines after the CP. If no number 
is specified, ED types from the character pointer to the end of 
the line. The CP remains in its original position no matter 
how many lines are typed. For example, if the character 
pointer is at the beginning ot the memory buffer, and you 
instruct ED to type four lines (4T), four lines are displayed at 
the screen, but the CP stays at the beginning of line 1. 

"Emily Dickinson said, <cr><lf> 
"I find ecstasy in living - <cr><lf> 
the mere sense of living - <cr><lf> 
is joy enough." - <cr><lf> 



If the CP is between two characters in the middle of the line, a 
T command with no number specified types only the 
characters between the CP and the end of the line, but the 
character pointer stays in the same position, as shown in the 
memory buffer example below. 

"I find eC"stasy in living -

Whenever ED is displaying text with the T command, you can 
enter a Ctrl-S to stop the display, then press any key when 
you're ready to continue scrolling. Enter a Ctrl-C to abort long 
type-outs. 

Deleting Characters 

The D (Delete) Command 

The D command deletes a specified number of characters and 
has the forms: 

nD, -nD 

where n is the number of characters to be deleted. If no 
number is specified, ED deletes the character to the right of 
the CP. A positive number deletes multiple characters to the 
right of the CP, towards the bottom of the file. A negative 
number deletes characters to the left of the CP, towards the 
top of the file. If the character pointer is positioned in the 
memory buffer as shown below, 

Emily Dickinson said, <cr><lf> 
"I find ecstasy in living - <cr><lf> 
the mere sense of living<cr > <If> 
is joy "enough. "<cr><lf> 

the command 6D deletes the six characters after the CP, and 
the resulting memory buffer looks like this: 

Emily Dickinson said, <cr><lf> 
"I find ecstasy in living - <cr><lf> 
the mere sense of living<cr > <If> 
is joy "."<cr><lf> 

You can also use a D command to delete the <cr><lf> 
between two lines to join them together .. Remember that the 
<cr> and <If> are two characters. 

5-15 



5-16 

The K (Kill) Command 

The K command "kills" or deletes whole lines from the 
memory buffer and takes the forms: 

nK, -nK 

where n is the number of lines to be deleted. A positive 
number kills lines after the CP. A negative number kills lines 
before the CP. When no number is specified, ED kills the 
current line. If the character pointer is at the beginning of the 
second line (as shown below), 

Emily Dickinson said, <cr><lf> 
A"I find ecstasy in living - <cr><lf> 
the mere sense ofliving<cr><lf> 
is joy enough. "<cr><lf> 

then the command -K deletes the previous line and the 
memory buffer changes: 

A"I find ecstasy in living - <cr><lf> 
the mere sense of living<cr > <If> 
is joy enough." - <cr><lf> 

If the CP is in the middle of a line, a K command kills only the 
characters from the CP to the end of the line and concatenates 
the characters before the CP with the next line. A - K 
command deletes all the characters between the beginning of 
the previous line and the CP. A OK command deletes the 
characters on the line up to the CP. 

You can use the special # character to delete all the text from 
the CP to the beginning or end of the buffer. Be careful when 
using # K because you cannot reclaim lines after they are 
removed from the memory buffer. 



Inserting Characters into the Memory Buffer 

The I (Insert) Command 

To insert characters into the memory buffer from the screen, 
use the I command. If you enter the command in upper-case, 
ED automatically converts the string to upper-case. The I 
command takes the forms: 

Istring"Z 

When you type the first command, ED enters insert mode. In 
this mode, all keystrokes are added directly to the memory 
buffer. ED enters characters in lines and does not start a new 
line until you press the Enter key. 

A>ED B:QUOTE.TEX 

NEW FILE 
*i 

1: Emily Dickinson said, 
2: "1 find ecstasy in living-
3: the mere sense of living 
4: is joy enough." 
5: ~Z 

* 

Note: To exit from insert mode, you must press Ctrl-Z or 
Esc. When the ED prompt, *, appears on the screen, ED is 
not in insert mode. 

In insert or command mode, you can use CP/M-86 line editing 
control characters to edit your input. Note, however, that you 
cannot use Ctrl-E in insert mode. The table below lists these 
control characters. 

5-17 



5-18 

Command 

Ctrl-E 

Ctrl-H 

Ctrl-U 

Ctrl-X 

Backspace 

CP/M-86 Line Editing Controls 

Result 

Return carriage for long lines without 
transmitting command line to the buffer. 

Delete the last character typed on the current 
line. 

Delete the entire line currently being typed. 

Delete the entire line currently being typed. 
Same as Ctrl-U. 

Remove the last character. 

When entering a combination of numbers and letters, you 
might find it inconvenient to press a caps-lock key if your 
terminal translates the "upper-case" of numbers to special 
characters. ED provides two ways to translate your alphabetic 
input to upper-case without affecting numbers. The first is to 
enter the insert command letter in upper-case: 1. All 
alphabetics entered during the course of the capitalized 
command, either in insert mode or as a string, are translated to 
upper-case. (If you enter the insert command letter in 
lower-case, all alphabetics are inserted as typed.) The second 
method is to enter a U command before inserting text. 
Upper-case translation remains in effect until you enter a - U 
command. 

The Istring''Z (Insert String) Command 

The second form of the I command does not enter insert mode. 
It inserts the character string into the memory buffer and 
returns immediately to the ED prompt. You can use 
CP/M-86's line editing control characters to edit the command 
string. 



To insert a string, first use one of the commands that position 
the CPo You must move the CP to the place where you want to 
insert a string. For example, if you want to insert a string at 
the beginning of the first line, use a B command to move the 
CP to the beginning of the buffer. With the CP positioned 
correctly, enter an insert string, as shown below: 

iln 1870, AZ 

This inserts the phrase "In 1870," at the beginning of the first 
line, and returns immediately to the ED prompt. In the 
memory buffer, the CP appears after the inserted string, as 
shown below: 

In 1870, "Emily Dickinson said, <cr><lf> 

Replacing Characters 

The S (Substitute) Command 

The S command searches the memory buffer for the specified 
string, but when it finds it, automatically substitutes a new 
string for the search string. Whenever you enter a command in 
upper-case, ED automatically converts the string to 
upper-case. The S command takes the form: 

nSsearch string"Znew string 

where n is the number of substitutions to make. If no number 
is specified, ED searches for the next occurrence of the search 
string in the memory buffer. For example, the command 

sEmily DickinsonAZThe poet 

searches for the first occurrence of "Emily Dickinson" and 
substitutes "The poet." In the memory buffer, the CP appears 
after the substituted phrase, as shown below: 

The poet" said, <cr><lf> 

If upper-case translation is enabled by a capital S command 
letter, ED looks for a capitalized search suing and inserts a 
capitalized insert string. Note that if you combine this 
command with other commands, you must terminate the new 
string with a Ctrl-Z. 

5-19 



Combining ED Commands 

5-20 

It saves keystrokes and editing time to combine the editing 
and display commands. You can type any number of ED 
commands on the same line. ED executes the command string 
only after you press the Enter key. Use CP/M-86's line editing 
controls to manipulate ED command strings. 

When you combine several commands on a line, ED executes 
them in the same order they are entered, from left to right on 
the command line. There are four restrictions to combining 
ED commands: 

The combined-command line must not exceed CP/M-86's 
128-character maximum. 

If the combined-command line contains a character string, 
the line must not exceed 100 characters. 

Commands to terminate an editing session must not appear 
in a combined-command line. 

Commands, such as the I, S, J, X and R commands, that 
require character strings or filespecs must be either the last 
command on a line or must be terminated with a Ctrl-Z or 
Esc character, even if no character string or filespec is 
gIven. 

While the examples in the previous secti::m show the memory 
buffer and the position of the character pointer, the examples 
in this section show how the screen looks during an editing 
session. Remember that the character pointer is imaginary, 
but you must picture its location because ED's commands 
display and edit text in relation to the character pointer. 

Moving the Character Pointer 

To move the CP to the end of a line without calculating the 
number of characters, combine an L command with a C 
command, L-2C. This command string accounts for the 
<cr> <If> sequence at the end of the line. 



Change the C command in this command string to move the 
CP further to the left. You can use this command string if you 
must make a change at the end of the line and you don't want 
to calculate the number of characters before the change, as in 
the following example. 

said, 

1:*T 
1: Emily Dickinson said, 
1: *L-7CT 

1:* 

Displaying Text 

A T command types from the CP to the end of the line. To see 
the entire line, you can combine an L command and a T 
command. Type Olt to move the CP from the middle to the 
beginning of the line and then display the entire line. In the 
exam pIe below, the CP is in the middle of the line. OL moves 
the CP to the beginning of the line. T types from the CP to the 
end of the line, allowing you to see the entire line. 

3: *T 
sense of living 

3: *OLT 
3: the mere sense of living 
3: * 

The command OTT displays the entire line without moving 
the CP. 

To verify that an ED command moves the CP correctly, 
combine the command with the T command to display the 
line. The following example combines a C command and a T 
command. 

2: *8CT 
ecstasy in living -

2: * 

4: *8#T 
1: Emily Dickinson said, 
2: "I find ecstasy in living-
3: the mere sense of living 
4: is joy enough." 
1:* 

5-21 



5-22 

Editing 

To edit text and verify corrections quickly, combine the edit 
commands with other ED commands that move the CP and 
display text. Command strings like the one below move the 
CP, delete specified characters, and verify changes quickly. 

1: *15C5DOLT 
1: Emily Dickinson, 
1:* 

Combine the edit command K with other ED commands to 

delete entire lines and verify the correction quickly, as shown 
below. 

1: *2L2KB#T 
1: Emily Dickinson said, 
2: "I find ecstasy in living-
1: * 

The abbreviated form of the I (insert) command makes simple 
textual changes. To make and verify these changes, combine 
the I command string with the C command and the OLT 
command string as shown below. Remember that the insert 
string must be terminated by a Ctrl-Z. 

1: *20Ci to a friendAZOLT 
1: Emily Dickinson said to a friend, 
1: * 



~dvanced ED Commands 

The basic editing commands discussed above allow you to use 
ED for all your editing. The following ED commands, 
however, enhance ED's usefulness. 

Moving the CP and Displaying Text 

The P (Page) Command 

Although you can display any amount of text at the screen with 
a T command, it is sometimes more convenient to "page" 
through the buffer, viewing whole screens of data and moving 
the CP to the top of each new screen at the same time. To do 
this, use ED's P command. The P command takes the 
following forms: 

nP, -nP 

where n is the number of pages to be displayed. If you do not 
specify n, ED types the 23 lines following the CP and then 
moves the CP forward 23 lines. This leaves the CP pointing to 
the first character on the screen. 

To display the current page without moving the CP, enter OP. 
The special character 0 prevents the movement of the CP. If 
you specify a negative number for n, P pages backwards 
towards the top of the file. 

The n: (Line Number) Command 

When line numbers are being displayed, ED accepts a line 
number as a command to specify a destination for the CP. The 
form for the line number command is: 

n: 

where n is the number of the destination line. This command 
places the CP at the beginning of the specified line. For 
example, the command 4: moves the CP to the beginning of 
the fourth line. 

5-23 



5-24 

Remember that ED dynamically renumbers text lines in the 
buffer each time a line is added or deleted. Therefore, the 
number of the destination line you have in mind can change 
during editing. 

The :n (Through Line Number) Command 

The inverse of the line number command specifies that a 
command should be executed through a certain line number. 
You can use this command with only three ED commands: the 
T (type) command, the L (line) command, and the K (kill) 
command. The :n command takes the following form: 

:ncommand 

where n is the line number through which the command is to 

be executed. The :n part of the command does not move the 
CP, but the command that follows it might. 

You can combine n: with :n to specify a range of lines through 
which a command should be executed. For example, the 
command 2::4T types the second, third, and fourth lines, as 
shown below. 

1: *2::4T 
2: "I find ecstasy in living-
3: the mere sense of living 
4: is joy enough." 
2:* 

Finding and Replacing Character Strings 

ED supports a "FIND" command, F, that searches through the 
memory buffer and places the CP after the word or phrase you 
want. The N command allows ED to search through the entire 
source file instead of just the buffer. The J command searches 
for and then juxtaposes character strings. 



The F (Find) Command 

The F command performs the simplest find function. Its form 
is: 

nFstring 

where n is the occurrence of the string to be found. Any 
number you enter must be positive because ED can search only 
from the CP to the bottom of the buffer. If you enter no 
number, ED finds the next occurrence of the string in the file. 
In the following example, the second occurrence of the word 
"living" is found. 

1 : *2fliving 
3:* 

The character pointer moves to the beginning of the third line 
where the second occurrence of the word "living" is located. To 
display the line, combine the f command with a t command. 
Note that if you follow an F command with another ED 
command on the same line, you must terminate the string with 
a Ctrl-Z, as shown below. 

1: *2flivingAZOIt 
3: *the mere sense of living 

It makes a difference whether you enter the F command in 
upper- or lower-case. If you enter F, ED internally translates 
the argument string to upper-case. If you specify f, ED looks 
for an exact match. For example, FCp/m-86 searches for 
CP/M-86 but fCp/m-86 searches for Cp/m-86, and cannot find 
CP/M-86 or cp/m-86. 

If ED does not find a match for the string in the memory buffer, 
it issues the message: 

BREAK "#" AT 

where the symbol # indicates that the search failed during the 
execution of an F command. 

5-25 



5-26 

The N Command 

The N command extends the search function beyond the 
memory buffer to include the source file. If the search is 
successful, it leaves the CP pointing to the first character after 
the search string. The form of the N command is: 

nNstring 

where n is the occurrence of the string to be found. If no 
number is entered, ED looks for the next occurrence of the 
string in the file. The case of the N command has the same 
effect on an N command as it does on an F command. Note that 
if you follow an N command with another ED command, you 
must terminate the string with a Ctrl-Z. 

When an N command is executed, ED searches the memory 
buffer for the specified string, but if ED doesn't find the string, 
it doesn't issue an error message. Instead, ED automatically 
writes the searched data from the buffer into the new file. Then 
ED performs a OA command to fill the buffer with unsearched 
data from the source file. ED continues to search the buffer, 
write out data and append new data until it either finds the 
string or reaches the end of the source file. If ED reaches the end 
of the source file, ED issues the following message: 

BREAK"#" AT 

Because ED writes the searched data to the new file before 
looking for more data in the source file, ED usually writes the 
contents of the buffer to the new file before finding the end of 
the source file and issuing the error message. 

Note: You must use the H command to continue an edit 
session after the source file is exhausted and the memory buffer 
is emptied. 

The J (Juxtapose) Command 

The J command inserts a string after the search string, then 
deletes any characters between the end of the inserted string to 
the beginning of the a third "delete-to" string. This juxtaposes 
the string between the search and delete-to strings with the 
insert string. The form of the J command is: 



nJsearch string"Zinsert string"Zdelete-to string 

where n is the occurrence of the search string. If no number is 
specified, ED searches for the next occurrence of the search 
string in the memory buffer. In the following example, ED 
searches for the word "Dickinson" and inserts the phrase "told a 
friend" after it and then deletes everything up to the comma. 

1: *4T 
1: Emily Dickinson said, 
2: "I find ecstasy in living-
3: the mere sense of living 
4: is joy enough." 
1: *jDickinsonAZ told a friendAZ, 
1: *Olt 
1: Emily Dickinson told a friend, 
1: * 

If you combine this command with other commands, you 
must terminate the delete-to string with a Ctrl-Z or Esc. (This 
is shown in the following example.) If an upper-case J 
command letter is specified, ED looks for upper-case search 
and delete-to strings and inserts an upper-case insert string. 

The J command is especially useful when revising comments 
in assembly language source code, as shown below. 

236: LXI H, SW ;ADDRESS TOGGLE SWITCH 
236: *j;AZADDRESS SWITCH TOGGLEAZALAZOLT 
236: LXI H, SW ;ADDRESS SWITCH TOGGLE 
236: * 

In this example, ED searches for the first semicolon and inserts 
ADDRESS SWITCH TOGGLE after the mark and then 
deletes to the <cr><lf> sequence, represented by Ctrl-L. (In 
any search string, you can use Ctrl-L to repre~ent a 
<cr><lf> when your desired phrase extends across a line 
break. You can also use a Ctrl-I in a search string to represent a 
tab.) 

Note: If long strings make your command longer than your 
screen line length, enter a Ctrl-E to cause a physical carriage 
return at the screen. A Ctrl-E returns the cursor to the left edge 
of the screen, but does not send the command line to ED. 
Remember that no ED command line containing strings can 
exceed 100 characters. When you finish your command, press 
the carriage-return key to send the command to ED. 

5-27 



5-28 

The M (Macro) Command 

An ED macro command, M, can increase the usefulness of a 
string of commands. The M command allows you to group ED 
commands together for repeated execution. The form of the M 
command is: 

nMcommand string 

where n is the number of times the command string is to be 
executed. A negative number is not a valid argument for an M 
command. If no number is specifed, the special character # is 
assumed, and ED executes the command string until it reaches 
the end of data in the buffer or the end of the source file, 
depending on the commands specified in the string. In the 
following example, ED executes the four commands 
repetitively until it reaches the end of the memory buffer. 

1: *mflivingAZ-6diLivingAZOIt 
2: "I find ecstasy in Living-
3: the mere sense of Living 

BREAK "#" ATAZ 
3:* 

The terminator for an M command is a carriage return; 
therefore, an M command must be the last command on the 
line. Also, all character strings that appear in a macro must be 
terminated by Ctrl-Z or Esc. If a character string ends the 
combined-command string, it must be terminated by Ctrl-Z, 
then followed by a <cr> to end the M command. 

The execution of a macro command always ends in a BREAK 
"#" message, even when you have limited the number of times 
the macro is to be performed, and ED does not reach the end of 
the buffer or source file. Usually the command letter displayed 
in the message is one of the commands from the string and not 
M. 

To stop a macro command, strike a Ctrl-C at the keyboard. 



The Z (Sleep) Command 

Use the Z command to make the editor pause between 
operations. The pauses give you a chance to review what you 
have done. The form of the Z command is: 

nZ 

where n is the number of seconds to wait before proceeding to 
the next instruction. 

Generally, the Z command has no real effect unless you use it 
with a macro command. The example below shows you how 
you can use the Z command to cause a ten-second pause each 
time ED finds the word "text" in a file. 

1: zmfliving
A

ZOtt10z 

Moving Text Blocks 

To move a group of lines from one area of your data to another, 
use an X command to write the text block into a temporary 
. LIB file, then a K command to remove these lines from their 
original location, and finally an R command to read the block 
into its new location. 

The X (Transfer) Command 

The X command takes the forms: 

nX 
nX filespec"Z 

where n is the number of lines from the CP towards the 
bottom of the buffer that are to be transferred to a file. 
Therefore, n must always be a positive number. The nX 
command with no file specified creates a temporary file named 
X$$$$$$$.LIB. This file is erased when you terminate the 
edit session. The nX command with a file specified creates a 
file of the specified name. If the X command is not the last 
command on the line, the command must be terminated by a 
Ctrl-Z or Esc. In the following example, just one line is 
transferred to the temporary file. 

5-29 



5-30 

1:*X 
1: *t 
1: *Emily Dickinson said, 
1: *kt 
1: *"1 find ecstasy in living-
1: * 

If no library file is specified, ED looks for a file named 
X$$$$$$$.LIB. If the file does not exist, ED creates it. If a 
previous X command already created the library file, ED 
appends the specified lines to the end of the existing file. 

Use the special character 0 as the n argument in an X 
command to delete any file from within ED. 

The R (Read) Command 

The X command transfers the next n lines from the current 
line to a library file. The R command can retrieve the 
transferred lines. The R command takes the forms: 

R 
Rfilepsec 

If no filename is specified, X$$$$$$$ is assumed. If no filetype 
is specified, .LIB is assumed. R inserts the library file in front 
of the CP; therefore, after the file is added to the memory 
buffer, the CP points to the same character it did before the 
read, although the character is on a new line number. If you 
combine an R command with other commands, you must 
separate the filename from subsequent command letters with a 
Ctrl-Z as in the following example where ED types the entire 
file to verify the read. 

1: *41 
: *R~ZB#T 

1: "I find ecstasy in living-
2: the mere sense of living 
3: is joy enough." 
4: Emily Dickinson said, 
1:* 



Saving or Abandoning Changes: ED Exit 

You can save or abandon editing changes with the following 
three commands: H, 0, and Q. 

The H (Head o/Pile) Command 

An H command saves the contents of the memory buffer 
without ending the ED session, but it returns to the "head" of 
the file. It saves the current changes and lets you reedit the file 
without exiting ED. The form of the H command is: 

H 

followed by a carriage return. 

To execute an H command, ED first finalizes the new file, 
transferring all lines remaining in the buffer and the source file 
to the new file. Then ED closes the new file, erases any . BAK 
file that has the same file specification as the original source 
file, and renames the original source file filename.BAK. ED 
then renames the new file, which has had the filetype . $$$, 
with the original file specification. Finally, ED opens the 
newly renamed file as the new source file for a new edit, and 
opens a new. $$$ file. When ED returns the :iF prompt, the CP 
is at the beginning of an empty memory buffer. 

If you want to send the edited material to a file other than the 
original file, use a command of the following form: 

A> ED filespec different-filespec 

If you then restart the edit with the H command, ED renames 
the file different-filename. $$$ to different-filename.BAK and 
creates a new file of different-filespec when you finish editing. 

5-31 



5-32 

The 0 (Original) Command 

An 0 command abandolils changes made since the beginning 
of the edit and allows you to return to the original source file 
and begin reediting without ending the ED session. The form 
of the 0 command is: 

o 

followed by a carriage return. When you enter an 0 command, 
ED confirms that you want to abandon your changes by 
asking: 

o (YIN)? 

You must respond with either a Y or an N; if you press any 
other key, ED repeats the question. When you enter Y, ED 
erases the temporary file and the contents of the memory 
buffer. When the * prompt returns, the character pointer is 
pointing to the beginning of an empty memory buffer, just as 
it is when you start ED. 

The Q (Quit) Command 

A Q command abandons changes made since the beginning of 
the ED session and exits ED. The form of the Q command is: 

Q 

followed by a carriage return. 

When you enter a Q command, ED verifies that you want to 

abandon the changes by asking: 

n (YIN)? 

You must respond with either a Y or an N; if you press any 
other key, ED repeats the question. When you enter Y, ED 
erases the temporary file, closes the source file, and returns 
control to CP/M-86. 

Note: You can enter a Ctrl-Break or a Ctrl-C to immediately 
return control to CP/M-86. This does not give ED a chance to 
close the source or new files, but it prevents ED from deleting 
any temporary files. 



ED Error Messages 

ED returns one of two types of error messages: an ED error 
message if ED cannot execute an edit command, or a CP/M-86 
error message if ED cannot read or write to the specified file. 

The form of an ED error message is: 

BREAK "x" ATc 

where x is one of the symbols defined in the following table 
and c is the command letter where the error occurred. 

Symbol 

# 

?c 

o 

> 

E 

F 

ED Error Symbols 

Meaning 

Search failure. ED cannot find the string 
specified in an F, S, or N command. 

Unrecognized command letter c. ED does not 
recognize the indicated command letter; or an 
E, H, Q, or 0 command is not alone on its 
command line. 

No . LIB file. ED did not find the. LIB file 
specified in an R command. 

Buffer full. ED cannot put any more characters 
in the memory buffer, or string specified in an 
F, N, or S command is too long. 

Command aborted. A keystroke at the keyboard 
aborted command execution. 

File error. Followed by either DISK FULL or 
DIRECTORY FULL. 

The following examples show how to recover from common 
editing error conditions. For example: 

BREAK ">" AT A 

5-33 



5-34 

means that ED filled the memory buffer before completing the 
execution of an A command. When this occurs, the character 
pointer is at the end of the buffer and no editing is possible. 
Use the OW command to write out half the buffer or use an 0 
or H command and reedit the file. 

BREAK "#" AT F 

means that ED reached the end of the memory buffer without 
matching the string in an F command. At this point, the 
character pointer is at the end of the buffer. Move the CP with 
a B or n: line number command to resume editing. 

BREAK "F" AT F DISK FUll 

Use the OX command to erase an unnecessary file on the disk 
or a B#Xd:buffer.sav command to write the contents of the 
memory buffer onto another disk. 

BREAK "F" AT n DIRECTORY FULL 

Use the same commands described in the previous message to 
recover from this file error. 

The following table defines the disk file error messages ED 
returns when it cannot read or write a file. 

ED Disk File Error Messages 

Message Meaning 

BOOS ERR ON d: RIO 

Disk d: has read-only attribute. This occurs if a 
different disk has been inserted in the drive 
since the last cold or warm boot. 

** FILE IS READ ONLY ** 

The file specified in the command to invoke ED 
has the RIO attribute. ED can read the file so 
that the user can examine it, but ED cannot 
change a Read-Only file. 



CHAPTER 6. INTRODUCTION 
TO ASM-86 

Contents 

Assembler Operation ............................. 6-3 
Optional Run-time Parameters ..... . . . . . . . . . . . . . .. 6-5 
Ending ASM-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-7 

6-1 



6-2 



\.ssembler Operation 

ASM-86 processes an 8086 or 8088 assembly language source 
file in three passes and produces three output files, including 
an 8086/8088 machine language file in hexadecimal format. 
This object file can be in either Intel or Digital Research hex 
format. These formats are described in Appendix C. ASM-86 
is designed to run under CP/M-86 on an Intel 8086 or 8088 
based system. ASM-86 typically produces three output files 
from one input file as shown in the figure below. 

B~B-+--~B 

filename.A86 
filename. LST 
filename.H86 

filename. SYM 

contains source 
contains listing 

SYMBOL FILE 

contains assembled program 
in hexadecimal format 
contains all user-defined symbols 

ASM-86 Source and Object Files 

The figure above also lists ASM-86 filetypes. ASM-86 accepts 
a source file with any three-letter filetype, but if the type is 
omitted from the invoking command, it looks for the specified 
filename with the filetype .A86 in the directory. If the file has 
a type other than .A86 or has no type at all, ASM-86 returns 
an error message. 

The other filetypes listed in the figure identify ASM-86 output 
files. The .LST file contains the assembly language listing with 
any error messages. The .H86 file contains the machine 
language program in either Digital Research or Intel 
hexadecimal format. The .SYM file lists any user-defined 
symbols. 

6-3 



6-4 

Start ASM -86 by entering a command of the following form: 

ASM86 source filespec { $ optional parameters} 

Specify the source file in the following form: 

{d: }filename{. typ} 

where 

d; is a valid drive letter specifying the source 
file's location. Not needed if source is on 
current drive. 

filename is a valid CP/M -86 filename of 1 to 8 
characters. 

filetype is a valid filetype of 1 to 3 characters, usually 
.A86. 

Some examples of valid ASM-86 commands are: 

A>ASM86 B:BIOS88 

A>ASM86 BIOS88.A86 $FI AA HB PB SB 

A>ASM86 D:TEST 

Note that if you assemble an empty source file, ASM-86 
produces three empty output files. 

Once invoked, ASM-86 responds with the message: 

CP/M-86 8086 ASSEMBLER VER X.x 

where X.x is the ASM-86 version number. ASM-86 then 
attempts to open the source file. If the file does not exist on the 
designated drive, or does not have the correct filetype as 
described above, the assembler displays the message: 

NO FILE 

If an invalid parameter is given in the optional parameter list, 
ASM-86 displays the message: 

PARAMETER ERROR 



After opening the source, the assembler creates the output 
files. Usually these are placed on the default diskette drive, but 
they can be redirected by optional parameters, or by a drive 
specifier in the source file specification. In the latter case, 
ASM-86 directs the output files to the drive specified in the 
source file specification. 

During assembly, ASM-86 terminates if an error condition 
such as diskette full or symbol table overflow is detected. 
When ASM-86 detects an error in the source file, it places an 
error message line in the listing file in front of the line 
containing the error. Each error message has a number and 
gives a brief explanation of the error. See Appendix A for a list 
of ASM-86 error messages. Also in the list file, the value of the 
absolute address generated by relative instructions, such as 
calls, jumps and loops, appears in a field to the left of the 
source line. When the assembly is complete, ASM-86 displays 
the message: 

END OF ASSEMBLY. NUMBER OF ERRORS: n. USE FACTOR: 
pp% 

The use factor indicates how much of the available symbol 
table space was actually used during the assembly; pp is a 
decimal percentage ranging from 0 to 99. 

)ptional Run-time Parameters 

The dollar-sign character, $, flags an optional string of 
run-time parameters. A parameter is a single letter followed by 
a single letter device name specification. The parameters are 
shown in the table below. 

Run-time Parameter Summary 

Parameter To Specify 

A source file device 
H hex output file device 
P list file device 
S symbol file device 
F format of hex output file 

Valid Arguments 

A,B,C,D 
A,B,C,D,X,Y,Z 
A,B,C,D,X,Y,Z 
A,B,C,D,X,Y,Z 
I, D 

6-5 



6-6 

All parameters are optional, and can be entered in the 
command line in any order. Enter the dollar sign only once at 
the beginning of the parameter string. Spaces may separate 
parameters, but are not required. No space is permitted, 
however, between a parameter and its device name. 

A device name must follow parameters A, H, P and S. The 
devices are labeled: 

A, B, C, DorX, Y, Z 

Device names A through D, respectively, specify disk drives A 
through D. X specifies the screen, Y specifies the printer, and 
Z suppresses output. 

If output is directed to the screen, it can be temporarily 
stopped at any time by typing a Ctrl-S. Restart the output by 
typing a second Ctrl-S or any other character. 

The F parameter requires either an lor a D argument. When I 
is specified, ASM-86 produces an object file in Intel hex 
format. A D argument requests Digital Research hex format. 
Appendix C discusses these formats in detail. If the F 
parameter is not entered in the command line, ASM-86 
produces Digital Research hex format. 



Run-time Parameter Examples 

Command Line 

ASM86IO 

ASM86 IO.ASM $ AD S2 

ASM86 10 $ PY SX 

ASM86 10 $ FD 

ASM86 10 $ FI 

:nding ASM-86 

Result 

Assemble file IO.A86, 
produce IO.H86, IO.LST 
and IO.SYM, all on the 
default drive. 

Assemble file IO.ASM on 
drive D, produce IO.LST 
and IO.H86, no symbol 
file. 

Assemble file IO.A86, 
produce IO.H86, route 
listing directly to printer, 
output symbols on screen. 

Produce Digital Research 
hex format. 

Produce Intel hex format. 

You can end ASM-86 execution at any time by hitting any key 
on the keyboard. When you press a key, ASM-86 responds 
with the question: 

USER BREAK. OK(V/N)? 

A Y response ends the assembly and returns to the operating 
system. An N response continues the assembly. 

6-7 



6-8 



CHAPTER 7. ELEMENTS OF ASM-86 
ASSEMBLY LANGUAGE 

Contents 

ASM-86 Character Set ...................... , 7-3 
Tokens and Separators. . . . . . . . . . . . . . . . . . . . . .. 7-3 
Delimi ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 -3 
Constants ............................... , 7-5 

Numeric Constants .................... , 7-5 
Character Strings . . . . . . . . . . . . . . . . . . . . .. 7-6 

Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 -7 
Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 -8 
Symbols and Their Attributes. . . . . . . . . . .. 7-10 

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 -12 
Operator Examples .................... 7-15 
Operator Precedence. . . . . . . . . . . . . . . . . .. 7-18 

Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-19 
Statements .............................. 7-20 

7-1 



7-2 



A~M -~6 Character Set 

ASM -86 recognizes a subset of the ASCII character set. The 
valid characters are the alphanumerics, special characters, and 
non-printing characters shown below: 

AB CDE FGHIJ KLMN 0 PQRSTUVWXYZ 
abcdefghij klmnopqrstuvwxyz 
0123456789 

+ * / 
@ $ 

space, tab, carriage-return, and line-feed 

Lower-case letters are treated as upper-case except within 
strings. Only alphanumerics, special characters, and spaces 
may appear within a string. 

Tokens and Separators 

A token is the smallest meaningful unit of an ASM-86 source 
program, much as a word is the smallest meaningful unit of an 
English composition. Adjacent tokens are commonly separated 
by a blank character or space. Any sequence of spaces may 
appear wherever a single space is allowed. ASM-86 recognizes 
horizontal tabs as separators and interprets them as spaces. 
Tabs are expanded to spaces in the list file. The tab stops are at 
each eighth column. 

Delimiters 

Delimiters mark the end of a token and add special meaning to 
the instruction, as opposed to separators, which merely mark 
the end of a token. When a delimiter is present, separators 
need not be used. However, separators after delimi ters can 
make your program easier to read. 

The table below describes ASM-86 separators and delimiters. 
Some delimiters are also operators and are explained in greater 
detail in the section "Operators." 

7-3 



Separators and Delimiters 

Character Name Use 

20H space separator 

09H tab legal in source files, expanded 
in list files 

CR carriage terminates source lines 
return 

LF line feed legal after CR; if within source 
lines, it is interpreted as a 
space 

semicolon starts comment field 

colon identifies a label, used in 
segment override specification 

period forms variables from numbers 

$ dollar sign notation for "present value of 
location pointer " 

+ plus arithmetic operator for addition 

minus arithmetic operator for 
subtraction 

* asterisk arithmetic operator for 
multiplication 

/ slash arithmetic operator for division 

@ "at" sign legal in identifiers 

underscore legal in identifiers 

exclamation logically terminates a 
point statement, thus allowing 

multiple statements on a single 
source line 

apostrophe delimits string constants 

7-4 



:onstants 

A constant is a value known at assembly time that does not 
change while the assembled program is executed. A constant 
may be either an integer or a character string. 

Numeric Constants 

A numeric constant is a 16-bit value in one of several bases. 
The base, called the radix of the constant, is denoted by a 
trailing radix indicator. The radix indicators are shown in the 
table below. 

Radix Indicators for Constants 

Indicator Constant Type Base 

B binary 2 
o octal 8 
Q octal 8 
D decimal 10 
H hexadecimal 16 

ASM-86 assumes that any numeric constant not terminated 
with a radix indicator is a decimal constant. Radix indicators 
may be upper- or lower-case. 

A constant is thus a sequence of digits followed by an optional 
radix indicator, where the digits are in the range for the radix. 
Binary constants must be composed ofO's and 1's. Octal digits 
range from 0 to 7; decimal digits range from 0 to 9. Hexa
decimal constants contain decimal digits as well as the 
hexadecimal digits A (lOD), B (lID), C (l2D), D (l3D), E 
(14D), and F (15D). Note that the leading character of a 
hexadecimal constant must be a decimal digit so that ASM-86 
cannot confuse a hex constant with an identifier. The following 
are valid numeric constants: 

1234 
1234H 
33770 

1234D 
OFFEH 
OFE3H 

1100B 
33770 
1234d 

1111000011110000B 
13772Q 
OFFFFH 

7-5 



7-6 

Character Strings 

ASM-86 treats an ASCII character string delimited by 
apostrophes as a string constant. All instructions accept only 
one- or two-character constants as valid arguments. 
Instructions treat a one-character string as an 8-bit number. A 
two-character string is treated as a 16-bit number with the 
value of the second character in the low-order byte, and the 
value of the first character in the high-order byte. 

The numeric value of a character is its ASCII code. Both 
upper- and lower-case letters can be used because ASM -86 does 
not translate case within character strings. Note that only 
alphanumerics, special characters, and spaces are allowed 
within strings. 

A DB assembler directive is the only ASM-86 statement that 
may contain strings longer than two characters. The string 
may not exceed 255 bytes. Include any apostrophe to be 
printed within the string by entering it twice. ASM-86 
interprets the two keystrokes (") as a single apostrophe. The 
examples below show valid strings and how they appear after 
processing. 

'a'-> a 
'Ab"Cd'-> Ab'Cd 

""->' 

'ONLY UPPER CASE' - > ONLY UPPER CASE 
'only lower case' -> only lower case 



Identifiers 

Identifiers are character sequences which have a special, 
symbolic meaning to the assembler. All identifiers in ASM-86 
must obey the following rules: 

1. The first character must be alphabetic (A, ... Z, a, ... z). 

2. Any subsequent characters can be either alphabetical or a 
numeral (0, 1, ..... 9). ASM-86 ignores the special 
characters @ and _, but they are still legal. For 
example, a_b becomes abo 

3. Identifiers may be of any length up to the limit of the 
physical line . 

Identifiers are of two types. The first are keywords, which have 
predefined meanings to the assembler. The second are 
symbols, which are defined by the user. The following are all 
valid identifiers: 

NOLIST 
WORD 
AH 
Third_street 
How_are_you_today 
variable@number@1234567890 

7-7 



7-8 

BYTE 

EQ 
NE 
PTR 
LAST 

DB 
RS 
CSEG 
SSEG 
NOLIST 

Keywords 

A keyword is an identifier that has a predefined meaning to the 
assembler. Keywords are reserved; the user cannot define an 
identifier identical to a keyword. The following table gives a 
complete list of reserved words. 

Reserved Words 

Predefined Numbers 

WORD DWORD 

Operators 

GE GT LE LT 
OR AND MOD NOT 
SEG SHL SHR XOR 
TYPE LENGTH OFFSET 

Assembler Directives 

DD DW IF RB 
RW END EQU ORG 
DSEG ENDM ESEG LIST 
EJECT ENDIF TITLE IFLIST 
INCLUDE SIMFORM NOIFLIST PAGE SIZE 

CODEMACRO PAGEWIDTH 

Code-macro directives 

DB DD DW DBIT RELB 
RELW MODRM SEGFIX NOSEGFIX 

8086 Registers 

AH AL AX BH BL 
BP BX CH CL Cs. 
CX DH DI DL DS 
DX ES SI SP SS 



ASM-86 recognizes five types of keywords: instructions, 
directives, operators, registers and predefined numbers. 8086 
instruction mnemonic keywords and the actions they initiate 
are defined in Chapter 9. Directives are discussed in Chapter 8. 

Three keywords are predefined numbers: BYTE, WORD, and 
DWORD. The values of these numbers are 1, 2 and 4, 
respectively. In addition, a Type attribute is associated with 
each of these numbers. The keyword's Type attribute is equal 
to the keyword's numeric value. See the section "Symbols and 
Their Attributes" for a complete discussion of Type attributes. 
The following table gives a complete list of register keywords. 

Register Keywords 

Register Numeric 
Symbol Size Value Meaning 

AH 1 byte 100 B Accumulator-High-Byte 
BH 1 byte 111 B Base-Register-High-Byte 
CH 1 byte 101 B Count-Register-High-Byte 
DH 1 byte 110 B Data-Register-High-Byte 

AL 1 byte OOOB Accumulator-Low-Byte 
BL 1 byte 011 B Base-Register-Low-Byte 
CL 1 byte 001 B Count-Register-Low-Byte 
DL 1 byte 010 B Data-Register-Low-Byte 

AX 2 bytes OOOB Accumulator (full word) 
BX 2 bytes 011 B Base-Register (full word) 
CX 2 bytes 001 B Count-Register (full word) 
DX 2 bytes 010 B Data-Register (full word) 

BP 2 bytes 101 B Base Pointer 
SP 2 bytes 100 B Stack Pointer 

SI 2 bytes 110 B Source Index 
DI 2 bytes 111 B Destination Index 

CS 2 bytes 01B Code-Segment -Register 
DS 2 bytes 11 B Data-Segment-Register 
SS 2 bytes 10 B Stack -Segment-Register 
ES 2 bytes OOB Extra-Segment-Register 

7-9 



7-10 

Symbols and Their Attributes 

A symbol is a user-defined identifier that has attributes which 
specify what kind of information the symbol represents. 
Symbols fall into three categories: 

variables 
labels 
numbers 

Variables identify data stored at a particular location in 
memory. All variables have the following three attributes: 

Segment-tells which segment was being assembled when 
the variable was defined. 

Offset-tells how many bytes there are between the 
beginning of the segment and the location of this variable. 

Type-tells how many bytes of data are manipulated when 
this variable is referenced. 

A Segment may be a code-segment, a data-segment, a 
stack-segment or an extra-segment depending on its contents 
and the register that contains its starting address (see 
"Segment Start Directives" in Chapter 8). A segment may 
start at any address divisible by 16. ASM-86 uses this 
boundary value as the Segment portion of the variable's 
definition. 

The Offset of a variable may be any number between 0 and 
OFFFFH or 65535D. A variable must have one of the 
following Type attributes: 

BYTE 
WORD 
DWORD 

BYTE specifies a one-byte variable, WORD a two-byte 
variable and DWORD a four-byte variable. The DB, DW, 
and DD directives, respectively, define variables as these three 
types. For example, a variable is defined when it appears as the 
name for a storage directive: 

VARIABLE DB 0 



A variable may also be defined as the name for an EQU 
directive referencing another variable, as shown below: 

VARIABLE EQU ANOTHER_VARIABLE 

Labels identify locations in memory that contain instruction 
statements. They are referenced with jumps or calls. All labels 
have two attributes: 

• 
• 

Segment 
Offset 

Label segment and offset attributes are essentially the same as 
variable segment and offset attributes. Generally, a label is 
defined when it precedes an instruction. A colon, :, separates 
the label from instruction; for example: 

LABEL: ADD AX,BX 

A label may also appear as the name for an EQU directive 
referencing another label; for example: 

LABEL EQU ANOTHER_LABEL 

Numbers may also be defined as symbols. A number symbol is 
treated as if you had explicitly coded the number it represents. 
For example: 

Number_five EQU 5 
MOV AL,Number _five 

is equivalent to: 

MOV AL,5 

The following section describes operators and their effects on 
numbers and number symbols. 

7-11 



Operators 

ASM-86 operators fall into the following categories: 
arithmetic, logical, and relational operators, segment 
override, variable manipulators and creators. The following 
table defines ASM-86 operators. In this table, a and b 
represent two elements of the expression. The validity column ~ 
defines the type of operands the operator can manipulate, 
using the "or" bar character, I, to separate alternatives. 

ASM -86 Operators 

Syntax Result Validity 

logical Operators 

aXORb bit-by-bit logical a, b = number 
EXCLUSIVE OR of a 
and b. 

aORb bit-by-bit logical OR of 
a and b. a, b = number 

aANDb bit-by-bit logical AND a, b = number 
of a and b. 

NOTa logical inverse of a: all a = 16-bit number 
O's become l's, l's 
become O's. 

aEQb returns OFFFFH if a = a, b = unsigned 
b, otherwise o. number 

alTb returns OFFFFH if a < a, b = unsigned 
b, otherwise o. number 

alE b returns OFFFFH if a a, b = unsigned 
< = b, otherwise o. number 

aGTb returns OFFFFH if a> a, b = unsigned 
b, otherwise o. number 

aGE b returns OFFFFH if a a, b = unsigned 
> = b, otherwise o. number 

aNE b returns OFFFFH if a a, b = unsigned 
<> b, otherwise o. number 

7-12 



ASM -86 Operators (continued) 

Syntax Result Validity 

Arithmetic Operators 

a+b arithmetic sum of a and a = variable, 
b. label or number 

b = number 

a-b arithmetic difference of a = variable, 
a and b. label or number 

b = number 

a*b does unsigned a, b = number 
multiplication of a and 
b. 

alb does unsigned division a, b = number 
of a'and b. 

aMODb returns remainder of a, b = number 
alb. 

aSHLb returns the value which a, b = number 
results from shifting a 
to the left by an amount 
b. 

aSHRb returns the value which a, b = number 
results from shifting a to 
the right by an amount 
b. 

+a gives a. a = number 

-a gives 0 -a. a = number 

Segment Override 

<seg reg>: overrides assembler's <seg reg> = CS, DS, 
<addr choice of segment SS or ES 
exp> register. 

7-13 



ASM-86 Operators (continued) 

Syntax Result Validity 

Variable Manipulators, Creators 

SEGa creates a number whose a = label I variable ~ 
value is the segment 
value of the variable or 
label a. The variable or 
label a must be declared 
in an absolute segment 
(i.e. CSEG 1234H); 
otherwise the SEG 
operator is undefined. 

OFFSET a creates a number whose a = label I variable 
value is the offset value 
of the variable or label 
a. 

TYPE a creates a number. If the a = label I variable 
variable a is of type 
BYTE, WORD or 
DWORD, the value of 
the number will be 1, 2 
or 4, respectively. 

creates a number whose a = label I variable 
LENGTH a value is the LENGTH 

attribute of the variable 
a. The length attribute 
is the number of bytes 
associated with the 
variable. 

LAST a if LENGTH a > 0, a = label I variable 
then LAST a = 
LENGTH a-I; if 
LENGTH a = 0, then 
LAST a = 0. 

creates virtual variable a = BYTE I WORD, I 
aPTRb or label with type of a DWORD 

and attributes of b b = <addr exp> 

7-14 



Syntax 

.a 

$ 

ASM-86 Operators (continued) 

Result Validity 

Variable Manipulators, Creators 

creates variable with an a = number 
offset attribute of a. 
Segment attribute is 
current segment. 

creates label with offset no argument 
equal to current value of 
location counter; 
segment attribute is 
current segment. 

Operator Examples 

Logical operators accept only numbers as operands. They 
perform the boolean logic operations AND, OR, XOR, and 
NOT. For example: 

OOFC 
0080 

0000 B180 
0002 B003 

MASK 
SIGNBIT 

EOU 
EOU 
MOV 
MOV 

OFCH 
BOH 
CL,MASK AND SIGNBIT 
AL,NOT MASK 

Relational operators treat all operands as unsigned numbers. 
The relational operators are EQ (equal), LT (less than), LE (less 
than or equal), GT (greater than), GE (greater than or equal), 
and NE (not equal). Each operator compares two operands and 
returns all ones (OFFFFH) if the specified relation is true and 
all zeros if it is not. For example: 

000 A 
0019 

0004 B8FFFF 
0007 B80000 

LlMIT1 
LlMIT2 

EOU 
EOU 

MOV 
MOV 

10 
25 

AX,LlMIT1 LT LlMIT2 
AX,LlMIT1 GT LlMIT2 

7-15 



7-16 

Addition and subtraction operators compute the arithmetic 
sum and difference of two operands. The first operand may be a 
variable, label, or number, but the second operand must be a 
number. When a number is added to a variable or label, the 
result is a variable or label whose offset is the numeric value of 
the second operand plus the offset of the first operand. 
Subtraction from a variable or label returns a variable or label 
whose offset is that of first operand decremented by the 
number specified in the second operand. For example: 

0002 
0005 
OOOA FF 

oooB 2EAOOBOO 
oooF 2E8AOEOFOO 
00014 B303 

COUNT EQU 2 
DlSPl EQU 5 
FLAG DB OFFH 

MOY Al,FLAG + 1 
MOY Cl,FLAG + 0lSP1 
MOY Bl,DlSP1-COUNT 

The multiplication and division operators *, I, MOD, SHL, 
and SHR accept only numbers as operands. * and 1 treat all 
operators as unsigned numbers. For example: 

0016 BE5500 
0019 B310 
0050 
oo1888AOOO 

MOY 
MOY 
BUFFERSIZE 
MOY 

SI,256/3 
Bl,64/4 
EQU 80 
AX,BUFFERSIZE * 2 

U nary operators accept both signed and unsigned operators as 
shown below: 

oolE 8123 
00208007 
0022 82F4 

MOY 
MOY 
MOY 

Cl,+35 
Al,2-5 
Dl,-12 

When manipulating variables, the assembler decides which 
segment register to use. You may override the assembler's 
choice by specifying a different register with the segment 
override operator. The syntax for the override operator is 
segment-register: address-expression where the 
segment-register is CS, DS, SS, or ES. For example: 

0024 36884720 
0028 26880E5800 

MOY 
MOY 

AX,SS:WORDBUFFER[BX] 
CX,ES :ARRAY 



A variable manipulator creates a number equal to ~)fie attribute 
of its variable operand. SEG extracts the variable's segment 
value, OFFSET its offset value, TYPE its type value (1, 2, or 
4), and LENGTH the number of bytes associated with the 
variable. LAST compares the variable's LENGTH with 0 and 
if greater, then decrements LENGTH by one. If LENGTH 
equals 0, LAST leaves it unchanged. Variable manipulators 
accept only variables as operators. For example: 

1234 
002D 000000000000 
0033 0102030405 

0038 B80500 
003B B80400 
003E B80100 
0041 B80200 
0044 B83412 

WORD BUFFER 
BUFFER 

DSEG1234H 
DW 0,0,0 
DB 1,2,3,4,5 

MOV 
MOV 
MOV 
MOV 
MOV 

AX,lENGTH BUFFER 
AX,lAST BUFFER 
AX,TYPE BUFFER 
AX,TYPE WORDBUFFER 
AX,SEG BUFFER 

The PTR operator creates a virtual variable or label, one valid 
only during the execution of the instruction. It makes no 
changes to either of its operands. The temporary symbol has 
the same Type attribute as the left operator, and all other 
attributes of the right operator as shown below. 

0044 C60705 
00478A07 
0049 FF04 

MOV 
MOV 
INC 

BYTE PTR [BX], 5 
Al,BYTE PTR [BX] 
WORD PTR [SI] 

The Period operator, ., creates a variable in the current data 
segment. The new variable has a segment attribute equal to 
the current data segment and an offset attribute equal to its 
operand. Its operand must be a number. For example: 

004B A10000 
004E 268B1E0040 

MOV 
MOV 

AX,.O 
BX, ES: .4000H 

The dollar-sign operator, $, creates a label with an offset 
attribute equal to the current value of the location counter. 
The label's segment value is the same as the current segment. 
This operator takes no operand. For example: 

0053 E9FDFF 
0056 EBFE 
0058 E9FD2F 

JMP 
JMPS 
JMP 

$ 
$ 
$+3000H 

7-17 



7-18 

Operator Precedence 

Expressions combine variables, labels or numbers with 
operators. ASM-86 allows several kinds of expressions which 
are discussed in the section "Expressions." However, this 
section defines the order in which operations are executed, 
should more than one operator appear in an expression. 

In general, ASM-86 evaluates expressions left to right, but 
operators with higher precedence are evaluated before 
operators with lower precedence. When two operators have 
equal precedence, the left-most is evaluated first. The table 
below presents ASM-86 operators in order of increasing 
precedence. 

Parentheses can override normal rules of precedence. The part 
of an expression enclosed in parentheses is evaluated first. If 
parentheses are nested, the innermost expressions are evaluated 
first. Only five levels of nested parentheses are legal. For 
example: 

15/3 + 18/9 = 5 + 2 = 7 
15/(3 + 18/9) = 15/(3 + 2) = 15/5 3 

Precedence of Operations in ASM -86 

Order Operator Type Operators 

1 Logical XOR,OR 

2 LogiGal AND 

3 Logical NOT 

4 Relational EQ, LT, LE, GT, 
GE,NE 

5 Addi tion/ subtraction + -, 

6 Multiplication/division *, /, MOD, 
SHL, SHR 

7 Unary +,-

8 Segment override <segment override>: 



Precedence of Operations in ASM-86 (continued) 

Order Operator Type Operators 

9 Variable manipulators, SEG, OFFSET, PTR, 
creators TYPE, LENGTH, 

LAST 

10 Parentheses/brackets ( ), [ ] 

11 Period and Dollar ., $ 

Expressions 

ASM-86 allows address, numeric, and bracketed expressions. 
An address expression evaluates to a memory address and has 
three components: 

A segment value 
An offset value 
A type 

Both variables and labels are address expressions. An address 
expression is not a number, but its components are. Numbers 
may be combined with operators such as PTR to make an 
address expression. 

A numeric expression evaluates to a number. It does not 
contain any variables or labels, only numbers and operands. 

Bracketed expressions specify base- and index-addressing 
modes. The base registers are BX and BP, and the index 
registers are DI and SI. A bracketed expression may consist of a 
base register, an index register, or a base register and an index 
register. Use the + operator between a base register and an 
index register to specify both base- and index-register 
addressing. For example: 

MOV variable[bx],O 
MOV AX,[BX + 01] 
MOV AX,[SI] 

7-19 



Statements 

7-20 

Just as "tokens" in this assembly language correspond to words 
in English, so are statements analogous to sentences. A 
statement tells ASM-86 what action to perform. Statements 
are of two types: instructions and directives. Instructions are 
translated by the assembler into 8086 machine language ~ 
instructions. Directives are not translated into machine code 
but instead direct the assembler to perform certain clerical 
functions. 

Terminate each assembly language statement with a carriage 
return (CR) and line-feed (LF), or with an exclamation point, 
!, which ASM-86 treats as an end-of-line. Multiple assembly 
language statements can be written on the same physical line if 
separated by exclamation points. 

The ASM-86 instruction set is defined in Chapter 9. The 
syntax for an instruction statement is: 

[label:] [prefix] mnemonic [ operand(s)] Lcomment] 

where the fields are defined as: 

label: 

prefix 

A symbol followed by ":" defines a label at the current 
value of the location counter in the current segment. 
This field is optional. 

Certain machine instructions such as LOCK and REP 
may prefix other instructions. This field is optional. 

mnemonic 

A symbol defined as a machine instruction, either by the 
assembler or by an EQU directive. This field is optional 
unless preceded by a prefix instruction. If it is omitted, 
no operands may be present, although the other fields 
may appear. ASM-86 mnemonics are defined in Chapter 
9. 



operand(s) 

An instruction mnemonic may require other symbols to 

represent operands to the instruction. Instructions may 
have zero, one or two operands. 

comment 

Any semicolon (;) appearing outside a character string 
begins a comment, which is ended by a carriage return. 
Comments improve the readability of programs. This 
field is optional. 

ASM-86 directives are described in Chapter 8. The syntax for a 
directive statement is: 

[name] directive operand(s) [;comment] 

where the fields are defined as: 

name 

Unlike the label field of an instruction, the name field of 
a directive is never terminated with a colon. Directive 
names are legal for only DB, DW, DD, RS and EQU. 
For DB, DW, DD and RS the name is optional; for EQU 
it is req uired. 

directive 

One of the directive keywords defined in Chapter 8. 

operand(s) 

Analogous to the operands of the instruction 
mnemonics. Some directives, such as DB, DW, and 
DD, allow any operand while others have special 
requirements. 

comment 

Exactly as defined for instruction statements. 

7-21 



7-22 



CHAPTER 8. ASSEMBLER DIRECTIVES 

Contents 

Assembler Directives. . . . . . . . . . . . . . . . . . . . . . .. 8-3 
Segment Start Directives ..................... 8-3 

The CSEG Directive. . . . . . . . . . . . . . . . . . .. 8-4 
The DSEG Directive. . . . . . . . . . . . . . . . . . .. 8-5 
The SSEG Directive . . . . . . . . . . . . . . . . . . .. 8-5 
The ESEG Directive. . . . . . . . . . . . . . . . . . .. 8-6 

The ORG Directive. . . . . . . . . . . . . . . . . . . . . . . .. 8-6 
The IF and ENDIF Directives. . . . . . . . . . . . . . . .. 8-7 
The INCLUDE Directive .................... 8-7 
The END Directive. . . . . . . . . . . . . . . . . . . . . . . .. 8-8 
The EQU Directive. . . . . . . . . . . . . . . . . . . . . . . .. 8-8 
The DB Directive .......................... 8-9 
The DW Directive ........................ 8-10 
The DD Directive ...................... , .. 8-10 
The RS Directive. . . . . . . . . . . . . . . . . . . . . . . . .. 8-11 
The RB Directive . . . . . . . . . . . . . . . . . . . . . . . .. 8-11 
The R W Directive ......... , . . . . . . . . . . . . . .. 8-11 
The TITLE Directive ....................... 8-12 
The P AGESIZE Directive. . . . . . . . . . . . . . . . . .. 8-12 
The PAGEWIDTH Directive. . . . . . . . . . . . . . .. 8-12 
The EJECT Directive ...................... 8-12 
The SIMFORM Directive. . . . . . . . . . . . . . . . . .. 8-13 
The NOLIST and LIST Directives ............. 8-13 
The IFLIST and NOIFLIST Directives. . . . . . . . .. 8-13 

8-1 



8-2 



Assembler Directives 

Directive statements cause ASM-86 to perform housekeeping 
functions such as assigning portions of code to logical 
segments, requesting conditional assembly, defining data 
items, and specifying listing file format. General syntax for 
directive statements appears in the preceding chapter. 

In the sections that follow, the specific syntax for each 
directive statement is given under the heading and before the 
explanation. These syntax lines use special symbols to 

represent possible arguments and other alternatives. Braces, 
{}, enclose optional arguments. User-supplied arguments are 
described in lower-case, hyphenated phrases. Do not include 
these symbols or phrases when coding a directive. 

Segment Start Directives 

At run-time, every 8086 memory reference must have a 16-bit 
segment base value and a 16-bit offset value. These are 
combined to produce the 20-bit effective addtess needed by 
the CPU to physically address the location. The 16-bit 
segment base value or boundary is contained in one of the 
segment registers CS, DS, SS, or ES. The offset value gives the 
offset of the memory reference from the segment boundary. A 
16-byte physical segment is the smallest relocatable unit of 
memory. 

ASM-86 predefines four logical segments: the Code Segment, 
Data Segment, Stack Segment, and Extra Segment, which are 
respectively addressed by the CS, DS, SS, and ES registers. All 
ASM-86 statements must be assigned to one of the four 
segments so that they can be referenced by the CPU. A 
segment directive statement, CSEG, DSEG, SSEG, or ESEG, 
specifies that the statements following it belong to a specific 
segment. The statements are then addressed by the 
corresponding segment register. ASM-86 assigns statements 
to the specified segment until it encounters another segment 
directive. 

8-3 



8-4 

Instruction statements must be assigned to the Code Segment. 
Directive statements may be assigned to any segment. 
ASM -86 uses these assignments to change from one segment 
register to another. For example, when an instruction accesses 
a memory variable, ASM-86 must know which segment 
contains the variable so it can generate a segment override 
prefix byte if necessary. 

The CSEG Directive 

. . 
CSEG 
CSEG 
CSEG 

numenc-expreSSlOn 

$ 

This directive tells the assembler that the following statements 
belong in the Code Segment. All instruction statements must 
be assigned to the Code Segment. All directive statements are 
legal within the Code Segment. 

Use the first form when the location of the segment is known 
at assembly time; the code generated is not relocatable. Use 
the second form when the segment location is not known at 
assembly time; the code generated is relocatable. Use the third 
form to continue the Code Segment after it has been 
interrupted by a DSEG, SSEG, or ESEG directive. The 
continuing Code Segment starts with the same attributes, such 
as location and instruction pointer, as the previous Code 
Segment. 



The DSEG Directive 

DSEG 
DSEG 
DSEG 

numeric -expression 

$ 

This directive specifies that the following statements belong to 
the Data Segment. The Data Segment primarily contains the 
data allocation directives DB, DW, DD and RS, but all other 
directive statements are also legal. Instruction statements are 
illegal in the Data Segment. 

Use the first form when the location of the segment is known 
at assembly time; the code generated is not relocatable. Use 
the second form when the segment location is not known at 
assembly time; the code generated is relocatable. Use the third 
form to continue the Data Segment after it has been 
interrupted by a CSEG, SSEG, or ESEG directive. The 
continuing Data Segment starts with the same attributes as the 
previous Data Segment. 

The SSEG Directive 

SSEG 
SSEG 
SSEG 

numeric-expression 

$ 

The SSEG directive indicates the beginning of source lines for 
the Stack Segment. Use the Stack Segment for all stack 
operations. All directive statements are legal in the Stack 
Segment, but instruction statements are illegal. 

Use the first form when the location of the segment is known 
at assembly time; the code generated is not relocatable. Use 
the second form when the segment location is not known at 
assembly time; the code generated is relocatable. Use the third 
form to continue the Stack Segment after it has been 
interrupted by a CSEG, DSEG, or ESEG directive. The 
continuing Stack Segment starts with the same attributes as 
the previous Stack Segment. Refer to the stack segment 
initialization example in Appendix B. 

8-5 



The ESEG Directive 

. . 
ESEG 
ESEG 
ESEG 

numenc-expreSSlon 

$ 

This directive initiates the Extra Segment. Instruction 
statements are not legal in this segment, but all directive 
statements are. 

Use the first form when the location of the segment is known 
at assembly time; the code generated is not relocatable. Use 
the second form when the segment location is not known at 
assembly time; the code generated is relocatable. Use the third 
form to continue the Extra Segment after it has been 
interrupted by a DSEG, SSEG, or CSEG directive. The 
continuing Extra Segment starts with the same attributes as 
the previous Extra Segment. 

The ORG Directive 

8-6 

ORG 
. . 

numenc-expreSSlon 

The ORG directive sets the offset of the location counter in the 
current segment to the value specified in the numeric 
expression. Define all elements of the expression before the 
ORG directive because forward references may be ambiguous. 

In most segments, an ORG directive is unnecessary. If no 
ORG is included before the first instruction or data byte in a 
segment, assembly begins at location zero relative to the 
beginning of the segment. A segment can have any number of 
ORG directives. 



The IF and ENDIF Directives 

IF 

ENDIF 

numeric-expression 
source-line-l 
source-line-2 

source-line-n 

The IF and ENDIF directives allow a group of source lines to 

be included or excluded from the assembly. Use conditional 
directives to assemble several different versions of a single 
source program. 

When the assembler finds an IF directive, it evaluates the 
numeric expression following the IF keyword. If the expression 
evaluates to a non-zero' value, then source-line-l through 
source-line-n are assembled. If the expression evaluates to zero, 
the lines are not assembled, but are listed unless a NOIFLIST 
directive is active. All elements in the numeric expression 
must be defined before they appear in the IF directive. IF 
directives may be nested to a maximum depth of five levels. 

The INCLUDE Directive 

INCLUDE filespec 

This directive includes another ASM-86 file in the source text. 
For example: 

INCLUDE EQUALS.AS6 

Use INCLUDE when the source program resides in several 
different files. INCLUDE directives may not be nested; a 
source file called by an INCLUDE directive may not contain 
another INCLUDE statement. If file specification does not 
contain a filetype, the filetype is assumed to be .A86. If the file 
specification does not include a drive specification, ASM-86 
assumes the file resides on the drive containing the source file. 

8-7 



~l'he END Directive 

END 

An END directive marks the end of a source file. Any 
subsequent lines are ignored by the assembler. END is 
optional. If not present, ASM-86 processes the source until it 
finds an End-Of-File character (lAH). ~ 

The EQU Directive 

8-8 

symbol EQU numeric-expression 
symbol EQU address-expression 
symbol EQU register 
symbol EQU instruction -mnemonic 

The EQU (equate) directive assigns values and attributes to 
user-defined symbols. The required symbol name may not be 
terminated with a colon. The symbol cannot be redefined by a 
subsequent EQU or another directive. Any elements used in 
numeric or address expressions must be defined before the 
EQU directive appears. 

The first form assigns a numeric value to the symbol, the 
second a memory address. The third form assigns a new name 
to an 8086 register. The fourth form defines a new instruction 
(sub)set. The following are examples of these four forms: 

0005 
0033 
0001 

0050 SBe3 

FIVE 
NEXT 
COUNTER 
MOVVV 

EQU 
EQU 
EOU 
EQU 

2*2+1 
BUFFER 
ex 
MOV 

MOVW AX,BX 



The DB Directive 

{symbol} DB 
numeric-expression{, numeric-expression .. } 
{symbol} DB string-constant{,string-constant ... } 

The DB directive defines initialized storage areas in byte 
format. Numeric expressions are evaluated to 8-bit values and 
sequentially placed in the hex output file. String constants are 
placed in the output file according to the rules defined in the 
section "Constants" in Chapter 7. A DB directive is the only 
ASM-86 statement that accepts a string constant longer than 
two bytes. There is no translation from lower- to upper-case 
within strings. Multiple expressions or constants, separated by 
commas, may be added to the definition, but may not exceed 
the physical line length. 

Use an optional symbol to reference the defined data area 
throughout the program. The symbol has four attributes: the 
Segment and Offset attributes determine the symbol's memory 
reference, the Type attribute specifies single bytes, and Length 
tells the number of bytes (allocation units) reserved. 

The following statements show DB directives with symbols: 

005F 

006B 
006C 

0071 

43502F402073 
797374656000 
E1 
0102030405 

B90COO 

TEXT 

AA 
X 

DB 

DB 
DB 

'CP/M system',O 

'a' + BOH 
1,2,3,4,5 

MOV CX,LENGTH TEXT 

8-9 



The DW Directive 

{symbol}DW 
numeric -expression{, numeric -expression .. } 
{symbol} DW string-constant{,string-constant ... } 

The DW directive initializes two-byte words of storage. String ~ 
constants longer than two characters are illegal. Otherwise, ~ 

DW uses the same procedure to initialize storage as DB. The 
following are examples of DW statements: 

0074 
0076 
007C 

0000 
63C166C169C1 
010002000300 
040005000600 

CNTR DW 
JMPTAB DW 

DW 

o 
SUBR1,SUBR2,SUBR3 
1,2,3,4,5,6 

The DD Directive 

8-10 

{symbol} DD 
numeric-expression{, numeric-expression .. } 

The DD directive initializes four bytes of storage. The Offset 
attribute of the address expression is stored in the two lower 
bytes, the Segment attribute in the two upper bytes. 
Otherwise, DD follows the same procedure as DB. For 
example: 

1234 

0000 

0008 

CSEG 1234H 

6CC134126FC1 LONG_JMPTAB 
3412 
72C1341275C1 
3412 

DD 

DD 

ROUT1,ROUT2 

ROUT3,ROUT4 



The RS Directive 

{symbol} RS numeric-expression 

The RS directive allocates storage in memory but does not 
initialize it. The numeric expression gives the number of bytes 
to be reserved. An RS statement does not give a byte attribute 
to the optional symbol. For example: 

0010 
0060 
4060 

BUF RS 
RS 
RS 

80 
4000H 

If an RS statement is the last statement in a segment, you 
must follow it with a DB statement in order for GENCMD to 
allocate the memory space. 

The RB Directive 

{symbol} RB numeric-expression 

The RB directive allocates byte storage in memory without 
any initialization. This directive is identical to the RS 
directive except that it does give the byte attribute. 

The RW Directive 

{symbol} RW 
. . 

numerIC -expreSSlOn 

The R W directive allocates two-byte word storage in memory 
but does not initialize it. The numeric expression gives the 
number of words to be reserved. For example: 

4061 
4161 
C161 

BUF RW 
RW 
RW 

128 
4000H 

8-11 



The TITLE Directive 

TITLE string-constant 

ASM-86 prints the string constant defined by a TITLE 
directive statement at the top of each printout page in the 
listing file. The title character string should not exceed 30 
characters. For example: 

TITLE 'CP/M-86 monitor' 

If the title is too long, the ASM-86 page number overwrites 
the title. 

The P AGESIZE Directive 

P AGE SIZE numeric-expression 

The P AGE SIZE directive defines the number of lines to be 
included on each printout page. The default pagesize is 66. 

The P AGEWIDTH Directive 

P AGEWIDTH numeric-expression 

The P AGEWIDTH directive defines the number of columns 
printed across the page when the listing file is output. The 
default pagewidth is 120 unless the listing is routed directly to 
the terminal; then the default pagewidth is 79. 

The EJECT Directive 

EJECT 

8-12 

The EJECT directive performs a page eject during printout. 
The EJECT directive itself is printed on the first line of the 
next page. 



The SIMFORM Directive 

SIMFORM 

The SIMFORM directive replaces a form-feed (FF) character in 
the print file with the correct number of line-feeds (LF). Use 
this directive when printing out on a printer unable to 
interpret the form-feed character. 

The NOLIST and LIST Directives 

NOLIST 
LIST 

The NOLIST directive blocks the printout of the following 
lines. Restart the listing with a LIST directive. 

The IFLIST and NOIFLIST Directives 

IFLIST 
NOIFLIST 

The NOIFLIST directive suppresses the printout of the 
contents of IF-ENDIF blocks that are not assembled. The 
IFLIST directive resumes printout of IF-END IF blocks. 

8-13 



8-14 



CHAPTER 9. THE ASM-86 
INSTRUCTION SET 

Contents 

ASM-86 Instruction Set Summary .............. 9-3 
Data Transfer Instructions. . . . . . . . . . . . . . . . . . .. 9-8 
Arithmetic, Logic, and Shift Instructions ....... 9-11 
String Instructions . . . . . . . . . . . . . . . . . . . . . . .. 9-18 
Control Transfer Instructions ................. 9-20 
Processor Control Instructions ................ 9-25 
Mnemonic Differences. . . . . . . . . . . . . . . . . . . . .. 9-27 

9-1 



9-2 



ASM -86 Instruction Set Summary 

The ASM-86 instruction set includes all 8086 machine 
instructions. The general syntax for instruction statements is 
given at the end of Chapter 7. The following table lists all 
ASM-86 instructions alphabetically. 

ASM-86 Instruction Summary 

Mnemonic 

AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
CAll 
CAllF 
CBW 
ClC 
ClD 
ClI 
CMC 
CMP 
CMPS 
CMPSB 
CMPSW 
CWD 
DAA 
DAS 
DEC 
DIV 
ESC 
HlT 
IDIV 
IMUl 
IN 
INC 
INT 
INTO 
IRET 
JA 
JAE 

Description 

ASCII Adjust for Addition 
ASCII Adjust for Division 
ASCII Adjust for Multiplication 
ASCII Adjust for Subtraction 
Add with Carry 
Add 
And 
Call (intra segment) 
Call (inter segment) 
Convert Byte to Word 
Clear Carry 
Clear Direction 
Clear Interrupt 
Complement Carry 
Compare 
Compare Byte or Word (of string) 
Compare Byte (of string) 
Compare Word (of -string) 
Convert Word to Double Word 
Decimal Adjust for Addition 
Decimal Adjust for Subtraction 
Decrement 
Divide 
Escape 
Halt 
Integer Divide 
Integer Multiply 
Input Byte or Word 
Increment 
Interrupt 
Interrupt on Overflow 
Interrupt Return 
Jump on Above 
Jump on Above or Equal 

9-3 



9-4 

ASM-86 Instruction Summary (continued) 

Mnemonic 

JB 
JBE 
JC 
JCXZ 
JE 
JG 
JGE 
JL 
JLE 
JMP 
JMPF 
JMPS 
JNA 
JNAE 
JNB 
JNBE 
JNC 
JNE 
JNG 
JNGE 
JNL 
JNLE 
JNO 
JNP 
JNS 
JNZ 
JO 
JP 
JPE 
JPO 
JS 
JZ 
LAHF 
LDS 
LEA 
LES 
LOCK 
LaDS 
LODSB 
LODSW 
LOOP 
LOOPE 
LOOPNE 

Description 

Jump on Below 
Jump on Below or Equal 
Jump on Carry 
Jump on CX Zero 
Jump on Equal 
Jump on Greater 
Jump on Greater or Equal 
Jump on Less 
Jump on Less or Equal 
Jump (intra segment) 
Jump (inter segment) 
Jump (8-bit displacement) 
Jump on Not Above 
Jump on Not Above or Equal 
Jump on Not Below 
Jump on Not Below or Equal 
Jump on Not Carry 
Jump on Not Equal 
Jump on Not Greater 
Jump on Not Greater or Equal 
Jump on Not Less 
Jump on Not Less or Equal 
Jump on Not Overflow 
Jump on Not Parity 
Jump on Not Sign 
Jump on Not Zero 
Jump on Overflow 
Jump on Parity 
Jump on Parity Even 
Jump on Parity Odd 
Jump on Sign 
Jump on Zero 
Load AH with Flags 
Load Pointer into DS 
Load Effective Address 
Load Pointer into ES 
Lock Bus 
Load Byte or Word (of string) 
Load Byte (of string) 
Load Word (of string) 
Loop 
Loop while Equal 
Loop while Not Equal 



ASM-86 Instruction Summary (continued) 

Mnemonic 

LOOPNZ 
LOOPZ 
MOV 
MOVS 
MOVSB 
MOVSW 
MUL 
NEG 
NOT 
OR 
OUT 
POP 
POPF 
PUSH 
PUSHF 
RCL 
RCR 
REP 
REPE 
REPNE 
REPNZ 
REPZ 
RET 
RETF 
ROL 
ROR 
SAHF 
SAL 
SAR 
SBB 
SCAS 
SCASB 
SCASW 
SHL 
SHR 
STC 
STD 
STI 
STOS 
STOSB 
STOSW 
SUB 
TEST 

Description 

Loop while Not Zero 
Loop while Zero 
Move 
Move Byte or Word (of string) 
Move Byte (of string) 
Move Word (of string) 
Multiply 
Negate 
Not 
Or 
Output Byte or Word 
Pop 
Pop Flags 
Push 
Push Flags 
Rotate through Carry Left 
Rotate through Carry Right 
Repeat 
Repeat while Equal 
Repeat while Not Equal 
Repeat while Not Zero 
Repeat while Zero 
Return (intra segment) 
Return (inter segment) 
Rotate Left 
Rotate Right 
Store AH into Flags 
Shift Arithmetic Left 
Shift Arithmetic Right 
Subtract with Borrow 
Scan Byte or Word (of string) 
Scan Byte (of string) 
Scan Word (of string) 
Shift Left 
Shift Right 
Set Carry 
Set Direction 
Set Interrupt 
Store Byte or Word (of string) 
Store Byte (of string) 
Store Word (of string) 
Subtract 
Test 

9-5 



9-6 

ASM -86 Instruction Summary (continued) 

Mnemonic 

WAIT 
XCHG 
XLAT 
XOR 

Description 

Wait 
Exchange 
Translate 
Exclusive Or 

The following sections define the specific syntax and required 
operand types for each instruction, without reference to labels 
or comments. The instruction definitions are presented in 
tables for easy reference. For a more detailed description of 
each instruction, see Intel's MCS-86 Assembly Language 
Reference Manual. For descriptions of the instruction bit 
patterns and operations, see Intel's MCS-86 User's Manual. 

The instruction-definition tables present ASM-86 instruction 
statements as combinations of mnemonics and operands. A 
mnemonic is a symbolic representation for an instruction, and 
its operands are its required parameters. Instructions can take 
zero, one or two operands. When two operands are specified, 
the left operand is the instruction's destination operand, and 
the two operands are separated by a comma. 

The instruction-definition tables organize ASM-86 
instructions into functional groups. Within each table, the 
instructions are listed alphabetically. The table below shows 
the symbols used in the instruction-definition tables to define 
operand types. 



Symbol 

numb 

numb8 

acc 

Operand Type Symbols 

Operand Type 

any NUMERIC expression 

any NUMERIC expression which evaluates to 

an 8-bit number 

accumulator register, AX or Ai 

reg any general purpose register, not segment register 

reg16 

segreg 

a 16-bit general purpose register, not segment 
register 

any segment register: CS, DS, SS, or ES 

mem any ADDRESS expression, with or without base
and/or index-addressing modes, such as: 

variable 
variable + 3 
variable[bx] 
variable[ SI] 
variable[BX + SI] 
[BX] 
[BP+DI] 

slmpmem any ADDRESS expression WITHOUT base
and index-addressing modes, such as: 

memlreg 

variable 
variable +4 

any expression symbolized by "reg" or "mem" 

memlreg16 any expression symbolized by "memlreg", 
but must be 16 bits 

label any ADDRESS expression which evaluates to 

a label 

lab8 any "label" which is within ± 128 bytes distance 
from the instruction 

9-7 



The 8086 CPU has nine single-bit Flag registers which reflect 
the state of the CPU. The user cannot access these registers 
directly, but can test them to determine the effects of an 
executed instruction upon an operand or register. The effects 
of instructions on Flag registers are also described in the 
instruction-definition tables, using the symbols shown in the 
table below to represent the nine Flag registers. 

Flag Register Symbols 

AF Auxiliary-Carry-Flag 
CF Carry-Flag 
DF Direction-Flag 
IF Interrupt-Enable-Flag 
OF Overflow-Flag 
PF Parity-Flag 
SF Sign-Flag 
TF Trap-Flag 
ZF Zero-Flag 

Data Transfer Instructions 

IN 

IN 

LAHF 

9-8 

There are four classes of data transfer operations: general 
purpose, accumulator specific, address-object, and flag. Only 
SAHF and POPF affect flag settings. Note in the following 
table that if acc = AL, a byte is transferred, but if acc = AX, 
a word is transferred. 

Data Transfer Instructions 

Syntax Result 

acc,numb8 Transfer data from input port 
given by numbS (0-255) to 
accumulator. 

acc,DX Transfer data from input port 
given by DX register 
(O-OFFFFH) to accumulator. 

Transfer flags to the AH 
register. 



Data Transfer Instructions (continued) 

Syntax Result 

LDS reg 16,mem Transfer the segment part of 
the memory address (DWORD 
variable) to the DS segment 
register; transfer the offset part 
to a general purpose 16-bit 
register. 

LEA reg16,mem Transfer the offset of the 
memory address to a (16-bit) 
register. 

LES reg16,mem Transfer the segment part of 
the memory address to the ES 
segment register; transfer offset 
part to a 16-bit general 
purpose register. 

MOV reg,memlreg Move memory or register to 
register. 

MOV meml reg, reg Move register to memory or 
register. 

MOV memlreg,numb Move immediate data to 
memory or register. 

MOV segreg, meml reg 16 Move memory or register to 
segment register. 

MOV memlreg 16,segreg Move segment register to 
memory or register. 

OUT numb8,acc Transfer data from accumulator 
to output port (0-255) given 
by numb8. 

OUT DX,acc Transfer ,data from accumulator 
to output port (O-OFFFFH) 
given by DX register. 

POP memlreg16 Move top stack element to 
memory or register. 

9-9 



Data Transfer Instructions (continued) 

Syntax Result 

POP segreg Move top stack element to 
. segment register; note that CS 
segment register not allowed. ~ 

~ 

POPF Transfer top stack element to 
flags. 

PUSH memlreg16 Move memory or register to 
top stack element. 

PUSH segreg Move segment register to top 
stack element. 

PUSHF Transfer flags to top stack 
element. 

SAHF Transfer the AH register to 
flags. 

XCHG reg,memlreg Exchange register and memory 
or register . 

XCHG . memlreg,reg Exchange memory or register 
and register. 

XLAT memlreg Perform table lookup 
translation, table given by 
"memlreg", which is always 
BX. Replaces AL with AL 
offset from BX. 

9-10 



Arithmetic, Logic, and Shift Instructions 

The 8086 CPU performs the four basic mathematical 
operations in several different ways. It supports both 8- and 
16-bit operations and also signed and unsigned arithmetic. 

Six of the nine flag bits are set or cleared by most arithmetic 
operations to reflect the result of the operation. The following 
table summarizes the effects of arithmetic instructions on flag 
bits. Subsequent tables define arithmetic instructions and 
logical and shift instructions. 

Effects of Arithmetic Instructions on Flags 

CF is set if the operation resulted in a carry out of (from 
addition) or a borrow into (from subtraction) the 
high-order bit of the result; otherwise CF is cleared. 

AF is set if the operation resulted in a carry out of (from 
addition) or a borrow into (from subtraction) the 
low-order four bits of the result; otherwise AF is cleared. 

ZF is set if the result of the operation is zero; otherwise ZF is 
cleared. 

SF is set if the result is negative. 

PF is set if the modulo 2 sum of the low-order eight bits of 
the result of the operation is 0 (even parity); otherwise 
PF is cleared (odd parity). 

OF is set if the operation resulted in an overflow; the size of 
the result exceeded the capacity of its destination. 

9-11 



Arithmetic Instructions 

Syntax Result 

AAA adjust unpacked BCD (ASCII) 
for addition-adjusts AL 

AAD adjust unpacked BCD (ASCII) 
for division-adjusts AL 

AAM adjust unpacked BCD (ASCII) 
for multiplication-adjusts AX 

AAS adjust unpacked [CD (ASCII) 
for subtraction-adjusts AL 

ADC reg,memireg add (with carry) memory or 
register to register 

ADC memireg,reg add (with carry) register to 

memory or register 

ADC memireg, numb add (with carry) immediate 
data to memory or register 

ADD reg,memireg add memory or register to 

register 

ADD memireg,reg add register to memory or 
register 

ADD memireg,numb add immediate data to memory 
or register 

CBW convert byte in AL to word in 
AH by sign extension 

CWD convert word in AX to double 
word in DX/ AX by sign 
extension 

CMP reg,memireg compare register with memory 
or register 

CMP memireg,reg compare memory or register 
with register 

9-12 



Arithmetic Instructions (continued) 

Syntax Result 

CMP memlreg ,numb compare data constant with 
memory or register 

DAA decimal adjust for addition, 
adjusts AL 

DAS decimal adjust for subtraction, 
adjusts AL 

DEC memlreg subtract 1 from memory or 
register 

INC memlreg add 1 to memory or register 

DIV memlreg divide (unsigned) accumulator 
(AX or AL) by memory or 
register: if byte results, AL = 
quotient, AH = remainder, if 
word results, AX = quotient, 
DX = remainder 

IDIV memlreg divide (signed) accumulator 
(AX or AL) by memory or 
register-quotient and 
remainder stored as in DIV 

IMUL memlreg multiply (signed) memory or 
register by accumulator (AX or 
AL)-if byte, results in AH, 
AL; if word, results in DX, 
AX 

MUL memlreg multiply (unsigned) memory 
or register by accumulator (AX 
or AL)-results stored as in 
IMUL 

NEG memlreg two's complement memory or 
register 

SBB reg,memlreg subtract (with borrow) memory 
or register from register 

9-13 



Arithmetic Instructions (continued) 

Syntax Result 

SBB meml reg ,reg subtract (with borrow) register 
from memory or register 

SBB memlreg, numb subtract (with borrow) 
immediate data from memory 
or register 

SUB reg,memlreg subtract memory or register 
from register 

SUB memlreg,reg subtract register from memory 
or register 

SUB memlreg,numb subtract data constant from 
memory or register 

Logic and Shift Instructions 

Syntax Result 

AND reg,memlreg perform bitwise logical "and" 
of a register and memory 
register 

AND memlreg,reg perform bitwise logical "and" 
of memory register and register 

AND memlreg,numb perform bitwise logical "and" 
of memory register and data 
constant 

NOT memlreg form one's complement of 
memory or register 

OR reg,memlreg perform bitwise logical "or" of 
a register and memory register 

OR memlreg,reg perform bitwise logical "or" of 
memory register and register 

9-14 



Logic and Shift Instructions (continued) 

Syntax Result 

OR memlreg,numb perform bitwise logical "or" of 
memory register and data 
constant 

RCL memlreg,l rotate memory or register 1 bit 
left through carry flag 

RCL memlreg,CL rotate memory or register left 
through carry flag, number of 
bits given by CL register 

RCR memlreg,l rotate memory or register 1 bit 
right through carry flag 

RCR memlreg,CL rotate memory or register right 
through carry flag, number of 
bits given by CL register 

ROL memlreg,l rotate memory or register 1 bit 
left 

ROL memlreg,CL rotate memory or register left, 
number of bits given by CL 
register 

ROR memlreg,l rotate memory or register 1 bit 
right 

ROR memlreg,CL rotate memory or register 
right, number of bits given by 
CL register 

SAL memlreg,l shift memory or register 1 bit 
left, shift in low-order zero bits 

SAL memlreg,CL shift memory or register left, 
number of bits given by CL 
register, shift in low-order zero 
bits 

9-15 



Logic and Shift Instructions (continued) 

Syntax Result 

SAR memlreg,1 shift memory or register 1 bit 
right, shift in high-order bits 
equal to the original 
high-order bit 

SAR memlreg,CL shift memory or register right, 
number of bits given by CL 
register, shift in high-order 
bits equal to the original 
high-order bit 

SHL memlreg,1 shift memory or register 1 bit 
left, shift in low-order zero bits 
-note that SHL is a different 
mnemonic for SAL 

SHL memlreg,CL shift memory or register left, 
number of bits given by CL 
register, shift in low-order zero 
bits-note that SHL is a 
different mnemonic for SAL 

SHL memlreg,1 shift memory or register 1 bit 
right, shift in high-order zero 
bits 

SHR memlreg,CL shift memory or register right, 
number of bits given by CL 
register, shift in high-order 
zero bits 

TEST reg, meml reg perform bitwise logical "and" 
of a register and memory or 
register-set condition flags but 
do not change destination 

TEST memlreg,reg perform bitwise logical "and" 
of memory register and 
register-set condition flags but 
do not change destination 

9-16 



Logic and Shift Instructions (continued) 

Syntax Result 

TEST memlreg,numb perform bitwise logical 
"and"-test of memory register 
and data constant-set 
condition flags but do not 
change destination 

XOR reg,memlreg perform bitwise logical 
"exclusive OR" of a register 
and memory or register 

XOR memlreg,reg perform bitwise logical 
"exclusive OR" of memory 
register and register 

XOR memlreg,numb perform bitwise ·logical 
"exclusive OR" of memory 
register and data constant 

9-17 



String Instructions 

CMPS 

CMPSB 

CMPSW 

LODS 

LODSB 

LODSW 

MOVS 

MOVSB 

9-18 

String instructions take zero, one or two operands. The 
operands specify only the operand type, determining whether 
operation is on bytes or words. If there are two operands, the 
source operand is addressed by the SI register and the 
destination operand is addressed by the DI register. The DI 
and SI registers are always used for addressing. Note that for 
string operations, destination operands addressed by DI must 
always reside in the Extra Segment (ES). 

String Instructions 

Syntax Result 

memlreg ,memlreg subtract source from 
destination, affect flags, but do 
not return result 

an alternate mnemonics for 
CMPS which assumes a byte 
operand 

an alternate mnemonics for 
CMPS which assumes a word 
operand 

memlreg transfer a byte or word from 
the source operand to the 
accumulator 

an alternate mnemonic for 
LODS which assumes a byte 
operand 

an alternate mnemonic for 
LODS which assumes a word 
operand 

memlreg,memireg move 1 byte (or word) from 
source to destination 

an alternate mnemonic for 
MOVS which assumes a byte 
operand 



String Instructions (continued) 

Syntax Result 

MOVSW an alternate mnemonic for 
MOVS which assumes a word 
operand 

SCAS memlreg subtract destination operand 
from accumulator (AX or AL), 
affect flags, but do not return 
result 

SCASB an alternate mnemonic for 

! 

SCAS which assumes a byte 
operand 

SCASW an alternate mnemonic for 
SCAS which assumes a word 
operand 

STOS memlreg transfer a byte or word from 
accumulator to the destination 
operand 

STOSB an alternate mnemonic for 
STOS which assumes a byte 
operand 

STOSW an alternate mnemonic for 
STOS which assumes a word 
operand 

9-19 



The following table defines prefixes for string instructions. A 
prefix repeats its string instruction the number of times 
contained in the CX register, which is decremented by 1 for 
each iteration. Prefix mnemonics precede the string 
instruction mnemonic in the statement I ine as shown in 
"Statements in Chapter 7." 

Syntax 

REP 

REPZ 

REPE 

REPNZ 

REPNE 

Prefix Instructions 

Result 

repeat until·CX register is zero 

repeat until CX register is zero and zero flag 
(ZF) is not zero 

equal to "REPZ" 

repeat until CX register is zero and zero flag 
(ZF) is zero 

equal to "REPNZ" 

Control Transfer Instructions 

9-20 

There are four classes of control transfer instructions: 

• 
• 

calls, jumps, and returns 
conditional jumps 
iterational control 
interrupts 

All control transfer instructions cause program execution to 

continue at some new location in memory, possibly in a new 
code segment. The transfer may be absolute or depend upon a 
certain condition. The following table defines control transfer 
instructions. In the definitions of conditional jumps, "above" 
and "below" refer to the relationship between unsigned values, 
and "greater than" and "less than" refer to the relationship 
between signed values. 



Control Transfer Instructions 

Syntax Result 

CALL label push the offset address of the 
next instruction on the stack, 
jump to the target label 

CALL memlreg16 push the offset address of the 
next instruction on the stack, 
jump to location indicated by 
contents of specified memory 
or register 

CALLF label push CS segment register on 
the stack, push the offset 
address of the next instruction 
on the stack (after CS), jump to 
the target label 

CALLF mem push CS register on the stack, 
push the offset address of the 
next instruction on the stack, 
jump to location indicated by 
contents of specified double 
word in memory 

INT numb8 push the flag registers (as in 
PUSHF), clear TF and IF flags, 
transfer control with an 
indirect call through anyone of 
the 256 interrupt-vector 
elements-uses three levels of 
stack 

INTO if OF (the overflow flag) is set, 
push the flag registers (as in 
PUSHF), clear TF and IF flags, 
transfer control with an 
indirect call through 
interrupt-vector element 4 
(location lOH)-if the OF flag 
is cleared, no operation takes 
place 

9-21 



Control Transfer Instructions (continued) 

Syntax Result 

IRET transfer control to the return 
address saved by a previous 
interrupt operation, restore 
saved flag registers, as well as 
CS and IP-pops three levels of 
stack 

JA labS jump if "not below or equal" or 
"above" ( (CF or ZF) = 0 ) 

JAE labS jump if "not below" or "above 
or equal" ( CF = 0 ) 

JB labS jump if "below" or "not above 
or equal" ( CF = 1 ) 

JBE labS jump if "below or equal" or 
"not above" «CF or ZF) = 1 ) 

JC labS same as "JB" 

JCXZ labS jump to target label if CX 
register is zero 

JE labS jump if "equal" or "zero" 
(ZF = 1) 

JG labS jump if "not less or equal" or 
"greater" «(SF xor OF) or 
ZF)= 0) 

JGE labS jump if "not less" or "greater 
or equal" «SF xor OF) = 0) 

JL labS jump if "less" or "not greater 
or equal" «SF xor OF) = 1 ) 

JLE labS jump if "less or equal" or "not 
greater" «(SF xor OF) or 
ZF) = 1 ) 

JMP label jump to the target label 

9-22 



Control Transfer Instructions (continued) 

Syntax Result 

JMP memlreg16 jump to location indicated by 
contents of specified memory 
or register 

JMPF label jump to the target label 
possibly in another code 
segment 

JMPS lab8 jump to the target label within 
± 128 bytes from instruction 

JNA lab8 same as "JBE" 

JNAE lab8 same as "JB" 

JNB lab8 same as "JAE" 

JNBE lab8 same as "JA" 

JNC lab8 same as "JNB" 

JNE lab8 jump if "not equal" or "not 
zero" ( ZF = 0 ) 

JNG lab8 same as "JiE" 

JNGE lab8 same as "Ji" 

JNL lab8 same as "JGE" 

JNiE lab8 same as "JG" 

JNO lab8 jump if "not overflow" 
(OF = 0) 

JNP lab8 jump if "not parity" or "parity 
odd" 

JNS lab8 jump if "not sign" 

JNZ lab8 same as "JNE" 

9-23 



Control Transfer Instructions (continued) 

Syntax Result 

JO labS jump if "overflow" (OF = 1 ) 

JP labS jump if "parity" or "parity 
even" ( PF = 1 ) 

JPE labS same as "JP" 

JPO labS same as "JNP" 

JS labS jump if "sign" ( SF = 1 ) 

JZ labS same as "JE" 

LOOP labS decrement CX register by one, 
jump to target label if CX is 
not zero 

LOOPE labS decrement CX register by one, 
jump to target label if CX is 
not zero and the ZF flag is 
set-"loop while zero" or "loop 
while equal" 

LOOPNE labS decrement CX register by one, 
jump to target label if CX is 
not zero and ZF flag is 
cleared-"loop while not zero" 
or "loop while not equal" 

LOOPNZ labS same as "LOOPNE" 

LOOPZ labS same as "LOOPE" 

RET return to the return address 
pushed by a previous CALL 
instruction, increment stack 
pointer by 2 

RET numb return to the address pushed by 
a previous CALL, increment 
stack pointer by 2 + numb 

9-24 



I 

Control Transfer Instructions (continued) 

Syntax Result 

RETF return to the address pushed by 
a previous CALLF instruction, 
increment stack pointer by 4 

RETF numb return to the address pushed by 
a previous CALLF instruction, 
increment stack pointer by 
4+numb 

Processor Control Instructions 

CLC 

CLD 

CLI 

CMC 

ESC 

Processor control instructions manipulate the flag registers. 
Moreover, some of these instructions Can synchronize the 8086 
CPU with external hardware. 

Processor Control Instructions 

Syntax 

numb8,memlreg 

Results 

clear CF flag 

clear DF flag, causing string 
instructions to auto-increment 
the operand pointers 

clear IF flag, disabling 
maskable external interrupts 

complement CF flag 

do no operation other than 
compute the effective address 
and place it on the address bus 
(ESC is used by the 8087 
numeric co-processor), 
"numb8" must be in the range 
o to 63 

9-25 



Processor Control Instructions (continued) 

Syntax Results 

HLT cause 8086 processor to enter 
halt state until an interrupt is 
recognized 

LOCK PREFIX instruction, cause the 
8086 processor to assert the 
"bus-lock" signal for the 
duration of the operation 
caused by the following 
instruction-the LOCK prefix 
instruction may precede any 
other instruction-buslock 
prevents co-processors from 
gaining the bus; this is useful 
for shared-resource semaphores 

Nap no operation is performed 

STC set CF flag 

STD set DF flag, causing string 
instructions to auto-decrement 
the operand pointers 

STI set IF flag, enabling maskable 
external interrupts 

WAIT cause the 8086 processor to 
enter a "wait" state if the 
signal on its "TEST" pin is not 
asserted 

9-26 



Mnemonic Differences 

The CP/M-86 8086 assembler uses the same instruction 
mnemonics as the INTEL 8086 assembler except for explicitly 
specifying far and short jumps, calls and returns. The following 
table shows the four differences: 

Mnemonic Differences 

Mnemonic Function 

Intra segment short jump: 
Inter segment jump: 
Inter segment return: 
Inter segment call: 

CP/M-86 

)MPS 
)MPF 
RETF 
CALLF 

Intel 

)MP 
)MP 
RET 
CALL 



9-28 



CHAPTER 10. ASM-86 ERROR MESSAGES 

Contents 

ASM-86 Fatal Error Messages. . . . . . . . . . . . . . .. 10-3 
ASM-86 Diagnostic Error Messages .... " ........ 10-4 

10-1 



10-2 



ASM-86 Fatal Error Messages 

There are two types of error messages produced by ASM-86: 
fatal errors and diagnostic errors. Fatal errors occur when 
ASM-86 is unable to continue assembling. Diagnostic error 
messages report problems with the syntax and semantics of the 
program being assembled. The following messages indicate 
fatal errors encountered by ASM-86 during assembly: 

NO FILE 

The indicated source or include file could not be found on the 
indicated drive. 

DISK FULL 

There is not enough disk space for the output files (LST, H86 
and SYM). You should either erase some unnecessary files or 
get another diskette with more room and run ASM-86 again. 

DIRECTORY FULL 

There is not enough directory space for the output files. You 
should either erase some unnecessary files or get another 
diskette with more directory room and run ASM-86 again. 

DISK READ ERROR-{filespec} 

A source or include file could not be read properly. This is 
usually the result of an unexpected end of file. Correct the 
problem in your source file. 

CANNOT CLOSE 

An output file cannot be closed. This is a fatal error that 
terminates ASM-86 execution. The user should take 
appropriate action after checking to see if the correct diskette 
is in the drive and that the diskette is not write-protected. 

10-3 



SYMBOL TABLE OVERFLOW 

There is not enough memory for the symbol table. Either 
reduce the length and/or number of symbols, or reassemble on 
a system with more memory available. 

PARAMETER ERROR 

A parameter in the command tail of the ASM-86 command 
was specified incorrectly. Example: 

ASM86 TEST $S; 

ASM-86 Diagnostic Error Messages 

10-4 

ASM-86 reports semantic and syntax errors by placing a 
numbered message in front of the erroneous source line. If 
there is more than one error in the line, only the first one is 
reported. The following messages indicate diagnostic errors 
encountered by ASM-86. 

** ERROR NO: 0 ILLEGAL FIRST ITEM 

The first item on a source line is not a valid identifier, directive 
or mnemonic. Example: 

1234H 

** ERROR NO: MISSING PSEUDO INSTRUCTION 

The first item on a source line is a valid identifier and the 
second item is not a valid directive which may be preceded by 
an identifier. Example: 

THIS IS A MISTAKE 



** ERROR NO: 2 ILLEGAL PSEUDO INSTRUCTION 

Either a required identifier in front of a pseudo instruction is 
missing, or an identifier appears before a pseudo instruction 
which doesn't allow an identifier. 

** ERROR NO: 3 DOUBLE DEFINED VARIABLE 

An identifier used as the name of a variable is used elsewhere in 
the program as the name of a variable or label. Example: 

X DB 5 

X DB 123H 

** ERROR NO: 4 DOUBLE DEFINED LABEL 

An identifier used as a label is used elsewhere in the program as 
a label or variable name. Example: 

LAB3: MOV BX,5 

LAB3: CALL MOVE 

** ERROR NO: 5 UNDEFINED INSTRUCTION 

The item following a label on a source line is not a valid 
instruction. Example: 

DONE: BAD INSTR 

** ERROR NO: 6 GARBAGE AT END OF LINE-IGNORED 

Additional items were encountered on a line when ASM-86 
was expecting an end of line. Examples: 

NOLIST 4 
MOV AX,4RET 

10-5 



10-6 

** ERROR NO: 7 OPERAND(S) MISMATCH INSTRUCTION 

Either an instruction has the wrong number of operands, or 
the types of the operands don't match. Examples: 

MOV CX,I,2 
X DB 0 

MOV AX,X 

** ERROR NO: 8 ILLEGAL INSTRUCTION OPERANDS 

An instruction operand is improperly formed. Examples: 

MOV [BP+SP],1234 
CALL Bxll 

** ERROR NO: 9 MISSING INSTRUCTION 

A prefix on a source line is not followed by an instruction. 
Example: 

REPNZ 

** ERROR NO: 10 UNDEFINED ELEMENT OFEXPRESSION 

An identifier used as an operand is not defined or has been 
illegally forward referenced. Examples: 

JMP X 
A EQU B 
B EQU 5 

MOV AL,B 

** ERROR NO: 11 ILLEGAL PSEUDO OPERAND 

The operand in a directive is invalid. Examples: 

X EQU OAGH 
TITLE UNQUOTED STRING 



** ERROR NO: 12 NESTED "IF" ILLEGAL-"IF" IGNORED 

The maximum nesting level for IF statements has been 
exceeded. 

** ERROR NO: 13 ILLEGAL "IF" OPERAND-"IF" IGNORED 

Either the expression in an IF statement is not numeric, or it 
contains a forward reference. 

** ERROR NO: 14 NO MATCHING "IF" FOR "ENDlF" 

An ENDIF statement was encountered without a matching IF 
statement. 

** ERROR NO: 15 SYMBOL ILLEGALLY FORWARD 
REFERENCED - NEGLECTED 

The indicated symbol was illegally forward referenced in an 
ORG, RS, EQU or IF statement. 

** ERROR NO: 16 DOUBLE DEFINED SYMBOL-TREATED AS 
UNDEFINED 

The identifier used as the name of an EQU directive is used as a 
name elsewhere in the program. 

** ERROR NO: 17 INSTRUCTION NOT IN CODE SEGMENT 

An instruction appears in a segment other than a CSEG. 

** ERROR NO: 18 FILE NAME SYNTAX ERROR 

The filename in an INCLUDE directive is improperly formed. 
Example: 

INCLUDE FILE.A86X 

10-7 



10-8 

** ERROR NO: 19 NESTED INCLUDE NOT ALLOWED 

An INCLUDE directive was encountered within a file already 
being included. 

** ERROR NO: 20 ILLEGAL EXPRESSION ELEMENT 

An expression is improperly formed. Examples: 

X DB 12X 
DW (4"") 

** ERROR NO: 21 MISSING TYPE INFORMATION IN 
OPERAND(S) 

Neither instruction operand contains sufficient type 
information. Example: 

MOV [BX],10 

** ERROR NO: 22 LABEL OUT OF RANGE 

The label referred to in a call, jump or loop instruction is out 
of range. The label may be defined in a segment other than the 
segment containing the instruction. In the case of short 
instructions OMPS, conditional jumps and loops), the label is 
more than 128 bytes from the location of the following 
instruction. 



** ERROR NO: 23 MISSING SEGMENT INFORMATION IN 
OPERAND 

The operand in a CALLF or ]MPF instruction (or an expression 
in a DD directive) does not contain segment information. The 
required segment information can be supplied by including a 
numeric field in the segment directive as shown: 

X: 
CSEG 1000H 

]MPF X 
DD X 

** ERROR NO: 24 ERROR IN CODEMACRO BUILDING 

Either a codemacro contains invalid statements, or a 
codemacro directive was encountered outside a codemacro. 

10-9 



10-10 



CHAPTER 11. DDT-86 

Contents 

DDT-86 Operation ........................ 11-3 
Invoking DDT-86 .................... 11-3 
DDT-86 Command Conventions ......... 11-3 
Specifying a 20-Bit Address. . . . . . . . . . . .. 11-4 
Terminating DDT-86 ................. 11-5 
DDT-86 Operation With Interrupts ....... 11-5 

DDT-86 Commands ....................... 11-6 
The A (Assemble) Command ............ 11-6 
The B (Block Compare) Command. . . . . . .. 11-6 
The D (Display) Command .............. 11-7 
The E (Load for Execution) Command. . . . .. 11-8 
The F (Fill) Command ................. 11-9 
The G (Go) Command ................. 11-9 
The H (Hexadecimal Math) Command. . .. 11-10 
The I (Input Command Tail) Command. .. 11-11 
The L (List) Command. . . . . . . . . . . . . . .. 11-11 
The M (Move) Command. . . . . . . . . . . . .. 11-12 
The R (Read) Command. . . . . . . . . . . . . .. 11-12 
The S (Set) Command. . . . . . . . . . . . . . . .. 11-13 
The T (Trace) Command. . . . . . . . . . . . . .. 11,r 14 
The U (Untrace) Command ............ 11-15 
The V (Value) Command . . . . . . . . . . . . .. 11-15 
The W (Write) Command ............. 11-16 
The X (Examine CPU State) Command ... 11-16 

Default Segment Values. . . . . . . . . . . . . . . . . . .. 11-18 
Assembly Language Syntax for 

A and L Commands ..................... 11-20 
DDT-86 Sample Session ................... 11-23 

11-1 



11-2 



DDT -86 Operation 

The DDT -86 program allows the user to test and debug 
programs interactively in a CP/M-86 environment. You 
should be familiar with the 8088 processor, ASM-86 and the 
CP/M-86 operating system before using DDT-86. 

Invoking DDT -86 

Invoke DDT -86 by entering one of the following commands: 

00T86 
00T86 filespec 

The first command simply loads and executes DDT-86. After 
displaying its sign-on message and prompt character, "-", 
DDT -86 is ready to accept operator commands. The second 
command is similar to the first, except that after DDT -86 is 
loaded, it loads the file specified by file specification. If the 
filetype is omitted from file specification, .CMD is assumed. 
Note that DDT -86 cannot load a file of type . H86. The file 
must be in the CMD file format produced by the GENCMD 
utility. The second form of the invoking command is 
equivalent to the sequence: 

A>00T86 
00T86x.x 
-Efilespec 

At this point, the program that was loaded is ready for 
execution. 

DDT -86 Command Conventions 

When DDT -86 is ready to accept a command, it prompts the 
operator with a hyphen, "_". In response, the operator can type 
a command line or a Ctrl-C to end the debugging session. A 
command line can have up to 64 characters, and must be 
terminated with a carriage return. While entering the 
command, use standard CP/M-86 line-editing functions 
(Ctrl-X, Ctrl-H, Ctrl-R, etc.) to correct typing errors. 
DDT -86 does not process the command line until a carriage 
return is entered. 

11-3 



11-4 

The first character of each command line determines the 
command action. The table below summarizes DDT -86 
commands. DDT -86 commands are defined individually in 
the following sections. 

A enter assembly language statements 
B compare blocks of memory 
D display memory in hexadecimal and ASCII 
E load program for execution 
F fill memory block with a constant 
G begin execution with optional breakpoints 
H hexadecimal arithmetic 
I set up file control block and command tail 
L list memory using 8086 mnemonics 
M move memory block 
R read disk file into memory 
S set memory to new values 
T trace program execution 
U untraced program monitoring 
V show memory layout of disk file read 
W write contents of memory block to disk 
X examine and modify CPU state 

The command character may be followed by one or more 
arguments, which may be hexadecimal values, file 
specifications or other information, depending on the 
command. Arguments are separated from each other by 
commas or spaces. No spaces are allowed between the 
command character and the first argument. Note that if the 
first character of a DDT -86 command line is a semicolon, ;, 
the entire line is treated as a comment and is ignored. 

Specifying a 20-Bit Address 

Most DDT -86 commands require one or more addresses as 
operands. Because the 8088 can address up to 1 megabyte of 
memory, addresses must be 20-bit values. Enter a 20-bit 
address as follows: 

ssss:oooo 



where ssss represents an optional 16-bit segment number and 
0000 is a 16-bit offset. DDT -86 combines these values to 

produce a 20-bit effective address as follows: 

ssssO 
+ 0000 

eeeee 

The optional value ssss may be a 16-bit hexadecimal value or 
the name of a segment register. If a segment register name is 
specified, the value of ssss is the contents of that register in the 
user's CPU state, as displayed by the X command. If omitted, 
a default value appropriate to the command being executed is 
used as described in the following section. 

Terminating DDT -86 

Terminate DDT -86 by typing a Ctrl-C in response to the 
hyphen prompt. This returns control to CP/M-86. If you use 
DDT-86 to patch a file, write the file to disk using the W 
command before exiting DDT-86. 

DDT -86 Operation With Interrupts 

DDT -86 operates with interrupts enabled or disabled, and 
preserves the interrupt state of the program being executed 
under DDT-86. When DDT-86 has control of the CPU, 
either when it is initially invoked or when it regains control 
from the program being tested, the condition of the interrupt 
flag is the same as it was when DDT-86 was invoked. While 
the program being tested has control of the CPU as the result 
of a G command, the user's CPU state determines the state of 
the interrupt flag. When the program is being traced using T 
or U commands, interrupts are always disabled during the 
execution of the traced instruction. This allows normal tracing 
of programs in systems where interrupts occur frequently; for 
example, from a timer. 

11-5 



DDT-86 Commands 

11-6 

This section defines DDT-86 commands and their arguments. 
DDT -86 commands give the user control of program 
execution and allow the user to display and modify system 
memory and the CPU state. 

The A (Assemble) Command 

The A command assembles 8086 mnemonics directly into 
memory. The form is: 

As 

where s is the 20-bit address where assembly is to start. 
DDT -86 responds to the A command by displaying the 
address of the memory location where assembly is to begin. At 
this point the operator enters assembly language statements as 
described in "Assembly Language Syntax." When a statement 
is entered, DDT -86 converts it to machine code, places the 
value(s) in memory, and displays the address of the next 
available memory location. This process continues until the 
user enters a blank line or a line containing only a period. 

DDT -86 responds to invalid statements by displaying a 
question mark, ?, and redisplaying the current assembly 
address. 

The B (Block Compare) Command 

The B command compares two blocks of memory and displays 
any differences on the screen. The form is: 

Bsl,fl,s2 

where s 1 is the 20-bit address of the start of the first block; fl 
is the offset of the final byte of the first block, and s2 is the 
20-bit address of the start of the second block. If the segment 
is not specified in s2, the same value is used that was used for 
sl. 



Any differences in the two blocks are displayed at the screen in 
the following form: 

sl:ol bl s2:02 b2 

where sl:ol and s2:02 are the addresses in the blocks; bl and 
b2 are the values at the indicated addresses. If no differences 
are displayed, the blocks are identical. 

The D (Display) Command 

The D command displays the contents of memory as 8-bit or 
16-bit hexadecimal values and in ASCII. The forms are: 

D 
Ds 
Ds,f 
DW 
DWs 
DWs,f 

where s is the 20-bit address where the display is to start, and f 
is the 16-bit offset within the segment specified in s where the 
display is to finish. 

Memory is displayed on one or more display lines. Each 
display line shows the values of up to 16 memory locations. 
For the first three forms, the display line appears as follows: 

ssss:oooo bb bb ... bb cc ... c 

where ssss is the segment being displayed and 0000 is the offset 
within segment ssss. The bb's represent the contents of the 
memory locations in hexadecimal, and the c's represent the 
contents of memory in ASCII. Any non-graphic ASCII 
characters are represented by periods. 

11-7 



11-8 

In response to the first form shown above, DDT -86 displays 
memory from the current display address for 12 display lines. 
The response to the second form is similar to the first, except 
that the display address is first set to the 20-bit address s. The 
third form displays the memory block between locations sand 
f. The next three forms are analogous to the first three, except 
that the contents of memory are displayed as 16-bit values, 
rather than 8-bit values, as shown below: 

ssss:oooo wwww wwww ... wwwwcccc ... cc 

During a long display, you can terminate the D command by 
typing any character at the keyboard. 

The E (Load for Execution) Command 

The E command loads a file generated by the GENCMD 
utility into memory so that a subsequent G, T or U command 
can begin program execution. The E command takes the form: 

E filespec 

where filespec is the name of the file to be loaded. If no filetype 
is specified, . CMD is assumed. The contents of the user 
segment registers and IP register are altered according to the 
information in the header of the file loaded. 

An E command releases any blocks of memory allocated by any 
previous E or R commands or by programs executed under 
DDT-86. Thus only one file at a time can be loaded for 
execution. 

When the load is complete, DDT-86 displays the start and 
end addresses of each segment in the file loaded. Use the.V 
command to redisplay this information at a later time. 

If the file does not exist or cannot be successfully loaded in the 
available memory, DDT-86 issues an error message. 



The F (Fill) Command 

The F command fills an area of memory with a byte or word 
constant. The forms are: 

Fs,f,b 
FWs,f,w 

where s is a 20-bit starting address of the block to be filled, 
and f is a I6-bit offset of the final byte of the block within the 
segment specified in s. 

In response to the first form, DDT -86 stores the 8-bit value b 
in locations s through f. In the second form, the I6-bit value w 
is stored in locations s through f in standard form, low 8 bits 
first followed by high 8 bits. 

If s is greater than f or the value b is greater than 255, 
DDT -86 responds with a question mark. DDT -86 issues an 
error message if the 'value stored in memory cannot be read 
back successfully, indicating faulty or non-existent RAM at 
the location indicated. 

The G (Go) Command 

The G command transfers control to the program being tested, 
and optionally sets one or two breakpoints. The forms are: 

G 
G,bl 
G,bl,b2 
Gs 
Gs,bl 
Gs,bl,b2 

where s is a 20-bit address where program execution is to start, 
and bl and b2 are 20-bit addresses of breakpoints. If no 
segment value is supplied for any of these three addresses, the 
segment value defaults to the contents of the CS register. 

11-9 



11-10 

In the first three forms, no starting address is specified, so 
DDT-86 derives the 20-bit address from the user's CS and IP 
registers. The first form transfers control to the user's program 
without setting any breakpoints. The next two forms set one 
and two breakpoints, respectively, before passing control to 

the user's program. The next three forms are analogous to the 
first three, except that the user's CS and IP registers are first set 
to s. 

Once control has been transferred to the program under test, it 
executes in real time until a breakpoint is encountered. At this 
point, DDT -86 regains control, clears all breakpoints, and 
indicates the address at which execution of the program under 
test was interrupted as follows: 

*ssss:oooo 

where ssss corresponds to the CS and 0000 corresponds to the 
IP where the break occurred. When a breakpoint returns 
control to DDT -86, the instruction at the breakpoint address 
has not yet been executed. 

The H (Hexadecimal Math) Command 

The H command computes the sum and difference of two 
16-bit values. The form is: 

Ha,b 

where a and b are the values whose sum and difference are to be 
computed. DDT -86 displays the sum (ssss) and the difference 
(dddd) truncated to 16 bits on the next line as shown below: 

ssss dddd 



The I (Input Command Tail) Command 

The I command prepares a file control block and command tail 
buffer in DDT-86's base page, and copies this information into 
the base page of the last file loaded with the E command. The 
form is: 

I command tail 

where command tail is a character string which usually 
contains one or more file specifications. The first file 
specification is parsed into the default file control block at 
005CH. The optional second file specification (if specified) is 
parsed into the second part of the default file control block 
beginning at 006CH. The characters in the command tail are 
also copied into the default command buffer at 0080H. The 
length of the command tail is stored at 0080H, followed by 
the character string terminated with a binary zero. 

If a file has been loaded with the E command, DDT -86 copies 
the file control block and command buffer from the base page 
ofDDT-86 to the base page of the program loaded. The 
location of DDT-86's base page can be obtained from the SS 
register in the user's CPU state when DDT-86 is invoked. The 
location of the base page of a program loaded with the E 
command is the value displayed for DS upon completion of the 
program load. 

The L (List) Command 

The L command lists the contents of memory in assembly 
language. The forms are: 

L 
Ls 
Ls,f 

where s is a 20-bit address where the list is to start, and f is a 
16-bit offset within the segment specified in s where the list is 
to finish. 

11-11 



11-12 

The first form lists twelve lines of disassembled machine code 
from the current list address. The second form sets the list 
address to s and then lists twelve lines of code. The last form 
lists disassembled code from s through f. In all three cases, the 
list address is set to the next unlisted location in preparation 
for a subsequent L command. When DDT -86 regains control 
from a program being tested (see G, T and U commands), the 
list address is set to the current value of the CS and IP 
registers. 

Terminate displays by typing any key during the list process. 
Or, enter Ctrl-S to halt the display temporarily. 

The section "Assembly Language Syntax" discusses the syntax 
of statements produced by the L command .. 

The M (Move) Command 

The M command moves a block of data values from one area of 
memory to another. The form is: 

Ms,f,d 

where s is the 20-bit starting address of the block to be moved; 
f is the offset of the final byte to be moved within the segment 
described by s, and d is the 20-bit address of the first byte of 
the area to receive the data. If the segment is not specified in d, 
the same value is used that was used for s. Note that if dis 
between sand f, part of the block being moved is overwritten 
before it is moved, because data is transferred starting from 
location s. 

The R (Read) Command 

The R command reads a file into a contiguous block of 
memory. The form is: 

R filespec 

where filespec is the name and type of the file to be read. 



DDT -86 reads the file into memory and displays the start and 
end addresses of the block of memory occupied by the file. A 
V command can redisplay this information at a later time. The 
default display pointer (for subsequent D commands) is set to 
the start of the block occupied by the file. 

The R command does not free any memory previously 
allocated by another R or E command. Thus a number of files 
can be read into memory without overlapping. The number of 
files that can be loaded is limited to seven, which is the 
number of memory allocations allowed by the BDOS, minus 
one for DDT -86 itself. 

If the file does not exist or there is not enough memory to load 
the file, DDT -86 issues an error message. 

The S (Set) Command 

The S command can change the contents of bytes or words of 
memory. The forms are: 

Ss 
SWs 

where s is the 20-bit address where the change is to occur. 

DDT -86 displays the memory address and its current contents 
on the following line. In response to the first form, the display 
format is: 

ssss:oooo bb 

and in response to the second form: 

ssss:oooo wwww 

where bb and wwww are the contents of memory in byte and 
word formats, respectively. 

11-13 



Li-14 

In response to one of the above displays, you can choose to alter 
the memory location or to leave it unchanged. If a valid 
hexadecimal value is entered, the contents of the byte (or 
word) in memory is replaced with the value. If no value is 
entered, the contents of memory are unaffected and the 
contents of the next address are displayed. In either case, 
DDT -86 continues to display successive memory addresses and 
values until either a period or an invalid value is entered. 

DDT -86 issues an error message if the value stored in memory 
cannot be read back successfully, indicating faulty or 
non-existent RAM at the location indicated. 

The T (Trace) Command 

The T command traces program execution for 1 to OFFFFH 
program steps. The forms are: 

T 
Tn 
TS 
TSn 

where n is the number of instructions to execute before 
returning control to the screen. 

Before DDT -86 traces an instruction, it displays the current 
CPU state and the disassembled instruction. In the first two 
forms, the segment registers are not displayed, which allows 
the entire CPU state to be displayed on one line. The next two 
forms are analogous to the first two, except that all the 
registers are displayed, which forces the disassembled 
instruction to be displayed on the next line as in the X 
command. 

In all of the forms, control transfers to the program under test 
at the address indicated by the CS and IP registers. If n is not 
specified, one instruction is executed. Otherwise DDT -86 
executes n instructions, displaying the CPU state before each 
step. A long trace can be terminated before n steps have been 
executed by typing any character at the keyboard. 

After a T command, the list address used in the L command is 
set to the address of the next instruction to be executed. 



Note that DDT-86 does not trace through a system 
instruction, since DDT -86 itself makes operating system calls 
and the operating system is not reentrant. Instead, the entire 
sequence of instructions from the system interrupt through the 
return from the operating system is treated as one traced 
instruction. 

The U (Untrace) Command 

The U command is identical to the T command except that the 
CPU state is displayed only before the first instruction is 
executed, rather than before every step. The forms are: 

U 
Un 
US 
USn 

where n is the number of instructions to execute before 
returning control to the screen. Terminate the U command by 
striking any key at the keyboard. 

The V (Value) Command 

The V command displays information about the last file loaded 
with the E or R commands. The form is: 

v 

If the last file was loaded with the E command, the V 
command displays the start and end addresses of each of the 
segments contained in the file. If the last file was read with the 
R command, the V command displays the start and end 
addresses of the block of memory where the file was read .. If 
neither the R nor E commands have been used, DDT-86 
responds to the V command with a question mark, ? 

11-15 



11-16 

The W (Write) Command 

The W command writes the contents of a contiguous block of 
memory to disk. The forms are: 

W filespec 
W filespec,s,f 

where filespec is the filename and filetype of the disk file to 

receive the data, and sand f are the 20-bit first and last 
addresses of the block to be written. If the segment is not 
specified in f, DDT -86 uses the same value that was used for s. 

If the first form is used, DDT -86 assumes the sand f values 
from the last file read with an R command. If no file was read 
with an R command, DDT -86 responds with a question mark, 
? This first form is useful for writing out files after patches 
have been installed, assuming the overall length of the file is 
unchanged. 

In the second form where sand f are specified as 20-bit 
addresses, the low four bits of s are ignored. Thus the block 
being written must always start on a paragraph boundary. 

If a file by the name specified in the W command already 
exists, DDT-86 deletes it before writing a new file. 

The X (Examine CPU State) Command 

The X command allows you to examine and alter the CPU 
state of the program under test. The forms are: 

X 
Xr 
Xf 

where r is the name of one of the 8086 CPU registers and f is 
the abbreviation of one of the CPU flags. The first form 
displays the CPU state in the format: 

AX BX CX SS ES IP 
--------- xxxx xxxx xxxx xxxx xxxx xxxx 
instruction 



The nine hyphens at the beginning of the line indicate the 
state of the nine CPU flags. Each position may be either a 
hyphen, indicating that the corresponding flag is not set (0), 
or a one-character abbreviation of the flag name, indicating 
that the flag is set (1). The abbreviations of the flag names are 
shown in the table below. The instruction is the disassembled 
instruction at the next location to be executed, which is 
indicated by the CS and IP registers. 

0 Overflow 
D Direction 
I Interrupt Enable 
T Trap 
S Sign 
Z Zero 
A Auxiliary Carry 
P Parity 
C Carry 

The second form allows you to alter the registers in the CPU 
state of the program being tested. The r following the X is the 
name of one of the 16-bit CPU registers. DDT -86 responds by 
displaying the name of the register followed by its current 
value. If a carriage return is typed, the value of the register is 
not changed. If a valid value is typed, the contents of the 
register are changed to that value. In either case, the next 
register is then displayed. This process continues until a period 
or an invalid value is entered, or the last register is displayed. 

The third form allows the operator to alter one of the flags in 
the CPU state of the program being tested. DDT -86 responds 
by displaying the name of the flag followed by its current 
state. If a carriage return is typed, the state of the flag is not 
changed. If a valid value is typed, the state of the flag is 
changed to that value. Only one flag may be examined or 
altered with each Xf command. Set or reset flags by entering a 
value of 1 or o. 

11-17 



Default Segment Values 

11-18 

DDT -86 internally keeps track of the current segment value, 
making segment specification an optional part of a DDT -86 
command. DDT -86 divides the command set into two types of 
commands, according to which segment a command defaults if 
no segment value is specified in the command line. 

The first type of command pertains to the code segment: A 
(Assemble), L (List Mnemonics) and W (Write). These 
commands use the internal type-I segment value if no segment 
value is specified in the command. 

When invoked, DDT-86 sets the type-I segment value to 0, 
and changes it when one of the following actions is taken: 

• 

• 

• 

• 

• 

When a file is loaded by an E command, DDT -86 sets the 
type-I segment value to the value of the CS register. 

When a file is read by an R command, DDT-86 sets the 
type-I·segment value to the base segment where the file 
was read. 

When an X command changes the value of the CS register, 
DDT-86 changes the type-I segment value to the new 
value of the CS register. 

When DDT -86 regains control from a user program after a 
G, Tor U command, it sets the type-I segment value to 
the value of the CS register. 

When a segment value is specified explicitly in an A or L 
command, DDT -86 sets the type-I segment value to the 
segment value specified. 

The second type of command pertains to the data segment: B 
(Block Compare), D (Display), F (Fill), M (Move) and S (Set). 
These commands use the internal type-2 segment value if no 
segment value is specified in the command. 

When invoked, DDT -86 sets the type-2 segment value to 0, 
and changes it when one of the following actions is taken: 

• When a file is loaded by an E command, DDT -86 sets the 
type-2 segment value to the value of the DS register. 



• 

• 

• 

When a file is read by an R command, DDT -86 sets the 
type-2 segment value to the base segment where the file 
was read. 

When an X command changes the value of the DS register, 
DDT -86 changes the type-2 segment value to the new 
value of the DS register. 

When DDT -86 regains control from a user program after a 
G, Tor U command, it sets the type-2 segment value to 
the value of the DS register. 

When a segment value is specified explicitly in a B, D, F, 
M or S command, DDT-86 sets the type-2 segment value 
to the segment value specified. 

When evaluating programs that use identical values in the CS 
and DS registers, all DDT-86 commands default to the same 
segment value unless explicitly overridden. 

Note that the G (Go) command does not fall into either group, 
since it defaults to the CS register. 

11-19 



The table below summarizes DDT -86's default segment 
values. 

Command type-l type-2 

A x 
B x 
D x 
E u u 
F x 
G u u 
H 
I 
L x 
M x 
R u u 
S x 
T u u 
U u u 
V 
W x 
X u u 

x - use this segment default if none specified; change default 
if specified explicitly 

u - update this segment default 

Assembly Language Syntax for A and L Commands 

11-20 

In general, the syntax of the assembly language statements 
used in the A and L commands is standard 8086/8088 
assembly language. Several minor exceptions are listed below. 

• DDT -86 assumes that all numeric values entered are 
hexadecimal. 

• Up to three prefixes (LOCK, repeat, segment override) may 
appear in one statement, but they all must precede the 
opcode of the statement. Alternately, a prefix may be 
entered on a line by itself. 



• The distinction between byte and word string instructions 
is made as follows: 

byte word 

LODSB LODSW 
STOSB STOSW 
SCASB SCASW 
MOVSB MOVSW 
CMPSB CMPSW 

• The mnemonics for near and far control transfer 
instructions are as follows: 

short 

]MPS 

normal 

]MP 
CALL 
RET 

far 

]MPF 
CALLF 
RETF 

• If the operand of a CALLF or ]MPF instruction is a 20-bit 
absolute address, it is entered in the form: 

ssss:oooo 

where ssss is the segment and 0000 is the offset of the 
address. 

• Operands that could refer to either a byte or word are 
ambiguous, and must be preceded either by the prefix 
"BYTE" or "WORD". These prefixes may be abbreviated 
to "BY" and "WO". For example: 

INC 
NOT 

BYTE [BP] 
WORD [1234] 

Failure to supply a prefix when needed results in an error 
message. 

• Operands which address memory directly are enclosed in 
square brackets to distinguish them from immediate 
values. For example: 

ADD 
ADD 

AX,5 
AX,[5] 

;add 5 to register AX 
;add the contents of 5 to AX 

11-21 



11-22 

• The forms of register indirect memory operands are: 

[pointer register] 
[index register] 
[pointer register + index register] 

where the pointer registers are BX and BP, and the index 
registers are SI and DI. Any of these forms may be preceded 
by a numeric offset. For example: 

ADD 
ADD 
ADD 

BX,[BP+SI] 
BX,3[BP+SI] 
BX,ID47[BP+SI] 



I-' 
I-' 

I 
tv 
\,J..I 

DDT-86 Sample Session 

In the following sample session, the user interactively debugs a 
simple sort program. Comments in square brackets explain the 
steps involved. 

[Source file of program to test.] 

A>type sort.aS6 

simple sort program 

sort: 
moy si,O ;initialize index 
moy bx,offset nlist ;bx = base of list 
moy sw,O ;clear switch flag 

comp: 
moy al,[bx+si] ;get byte from list 
cmp al,1 [bx + si] ;compare with next byte 
jna inci ; don't switch if in order 
xchg al,1[bx + si] ;do first part of switch 
moy [bx+si],al ;do second part 
moy sw,1 ;set switch flag 

inci: 
inc si ;increment index 
cmp si,count ;end of list? 
jnz comp ;no, keep going 

98-laa 



~ 

~ 
I 

N 
~ 

test sw,1 
inz sort 

done: 
imp done 

dseg 
org 100h 

nlist db 3,8,4,6,31,6,4,1 
count equ offset $ - offset nlist 
sw db 0 

end 

[Assemble program.] 

A>asm86 sort 

CP/M 8086 ASSEMBLER VER 1.1 
END OF PASS 1 
END OF PASS 2 

;done - any switches? 
;yes, sort some more 

;get here when list ordered 

; leave space for base page 

END OF ASSEMBLY. NUMBER OF ERRORS: 0 

[Type listing file generated by ASM-86.] 

A>type sort.lst 



CP/M ASM861.1 SOURCE: SORT.AS6 

simple sort program 

sort: 
0000 BEOOOO mov si,O ;initialize index 
0003 BBOO01 mov bx,offset nlist ;bx = base of list 
0006 C606080100 mov sw,O ;clear switch flag 

comp: 
OOOB 8AOO mov al,[bx + si] ;get byte from list 
0000 3A4001 cmp al,1[bx+si] ;compare with next byte 
0010 760A jna inci ; don't switch if in order 
0012 864001 xchg al,1[bx+si] ;do first part of switch 
0015 8800 mov [bx + si],al ;do second part 
0017 C606080101 mov sw,1 ;set switch flag 

inci: 
001C 46 inc si ;increment index 
0010 83FE08 cmp si,count ;end of list? 
0020 75E9 jnz comp ;no, keep going 
0022 F606080101 test sw,1 ;done-any switches? 
0027 7507 jnz sort ;yes, sort some more 

done: 
0029 E9FoFF jmp done ;get here when list ordered 

I-' dseg I-' 
I 

100h ; leave space for base page N org 
Vl 

98-~aa 



--I N 
0\ 

0100 030804061F06 nlist db 3,8,4,6,31,6,4,1 
0401 

0008 count equ offset $-offset nlist 
0108 00 sw db 0 

end 

END OF ASSEMBLY. NUMBER OF ERRORS: 0 

[Type symbol table file generated by ASM-86.J 

A>type sort.sym 
0000 VARIABLES 
0100 NLiST 0108 SW 

0000 NUMBERS 
0008 COUNT 

0000 LABELS 
OOOB COMP 0029 DONE 001C INCI 

[Type hex file generated by ASM-86.J 

A>type sort.h86 
:0400000300000000F9 

0000 SORT 

: 1 B000081 B EOOOOB B0001 C6060801 008A003A4001760A8640018800C60608016C 
:11001B81014683FE0875E9F60608010175D7E9FDFFEE 
:09010082030804061 F060401 0035 



..... ..... 
I 

N 
-.....J 

:00000001FF 

[Generate CMD file from . H86 file.] 

A> gencmd sort 

BYTES READ 0039 
RECORDS WRIITEN 04 

[Invoke DDT-86 and load SORT.CMD.] 

A>ddt86 sort 
00T861.0 

START END 
CS 0470:0000 047o:002F 
OS 0480:0000 0480:010F 

[Display initial register values.] 

-x 
AX BX CX OX SP BP SI 01 CS OS SS ES IP 

--------- 0000 0000 0000 0000 119E 0000 0000 0000 0470 0480 0491 0480 0000 
MOV SI, 0000 

[Disassemble the beginning of the code segment.] 

98-..100 



--~ 0470:0000 MOV 
-I 
SI,OOOO 
BX,0100 0470:0003 MOV 

0470:0006 MOV 
0470:000B MOV 
0470:0000 CMP 
0470:0010 JBE 
0470:0012 XCHG 
0470:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
0470:0020 JNZ 

BYTE [0108J,00 
AL,[BX+SIJ 
AL,Ol [BX + SIJ 
001e 
AL,Ol [BX + SIJ 
[BX+SIJ,AL 
BYTE [0108J,01 
SI 
SI,0008 
OOOB 

[Display the start of the data segment. ] 

-dl 00,1 Of 
0480:0100 03 08 04 06 1 F 06 04 01 00 00 00 00 00 00 00 00 .............. .. 

[Disassemble the rest of the code. ] 

0470 :0022 TEST 
0470:0027 JNZ 
0470:0029 JMP 
0470:002C AOO 

-I 
BYTE [0108J,01 
0000 
0029 
[BX+SIJ,AL 



-I 
N 
\.0 

0470:002E ADD 
0470 :0030 OAS 
0470:0031 ADD 
0470:003311= 
0470:0034 POP 
047D:0035 ADD 
0470:0037 ADD 
047D:0039?? = 

[BX+SI],Al 

[BX+SI],Al 
6C 
ES 
[BX],CL 
[BX+SI],AX 
SF 

[Execute program from IP (= 0) setting breakpoint at 29H.] 

-g,29 

[Breakpoint encountered.] 

*0470:0029 

[Display sorted list.] 

-d100,10f 
0480:0100 00000000000000000000000000000000 ............... . 

[Doesn't look good; reload file.] 

-esort 
START END 

CS 0470 :0000 0470 :002F 

98-.100 



--I '..jJ 

o 

OS 0480:0000 0480:010F 

[Trace 3 instructions.] 

-t3 

-----z-P-
-----Z-P-
---- -Z-P-
*0470:000B 

AX ,ax cx ox SP BP SI DI IP 
0000 0100 0000 0000 119E 0000 0008 0000 0000 MOV SI,OOOO 
0000 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX,0100 
0000 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE [0108J,00 

[Trace some more.] 

-t3 

-----z-P-
-----Z-P-
----S-A-C 
*0470:001C 

AX BX CX OX SP BP SI DI IP 
0000 0100 0000 0000 119E 0000 0000 0000 OOOB MOV AL,[BX + SIJ 
0003 0100 0000 0000 119E 0000 0000 0000 0000 CMP AL,01[BX + SIJ 
0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C 

[Display unsorted list.] 

-d100,1Of 
0480:0100 03 08 04 06 1 F 06 04 01 00 00 00 00 00 00 00 00 ............... . 

[Display next instructions to be executed.] 



..... 

..... 
I 

I.,j.J 

-I 

0470:001C INC 
0470:001D CMP 
0470 :0020 JNZ 
0470:0022 TEST 
0470 :0027 JNZ 
0470 :0029 JMP 
0470 :002C ADD 
0470:002E ADD 
0470:00300AS 
0470:0031 ADD 
0470:0033?? = 
0470:0034 POP 

SI 
SI,0008 
OOOB 
BYTE [0108],01 
0000 
0029 
[BX + SI],AL 
[BX+SI],AL 

[BX+SI],AL 
6C 
ES 

[Trace some more.] 

-t3 

----S-A-C 
--------C 
----S-APC 
*0470:000B 

AX BX ex ox SP BP SI DI IP 
0003 0100 0000 0000 119E 0000 0000 0000 001C INC SI 
0003 0100 0000 0000 119E 0000 0001 0000 0010 CMP SI,0008 
0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB 

[Display instructions from current IP.] 

-I 
0470:0008 MOV AL,[BX+SI] 

98-..100 



"""" """" I 
VJ 
N 

0470:0000 CMP 
0470:0010 JBE 
0470:0012 XCHG 
0470:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
0470:0020 JNZ 
0470: 0022 TEST 
0470 :0027 JNZ 
0470:0029 JMP 

-tJ 

AL,01 [BX + SI] 
001C 
AL,01 [BX + SI] 
[BX+SI],AL 
BYTE [0108],01 
SI 
SI,0008 
OOOB 
BYTE [0108],01 
0000 
0029 

AX BX CX OX SP BP SI DI IP 
----S-APC 
----S-APC 

0003 0100 0000 0000 119E 0000 0001 0000 0008 MOV AL,[BX + SI] 
0008 0100 0000 0000 119E 0000 0001 0000 0000 CMP AL,01[BX + SI] 
0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 001C 

*0470:0012 

-I 
0470:0012 XCHG 
0470:0015 MOV 
0470 :0017 MOV 
0470 :001 C INC 
0470:0010 CMP 
0470:0020 JNZ 
0470:0022 TEST 

AL,01[BX + SI] 
[BX+SI],AL 
BYTE [0108],01 
SI 
SI,0008 
OOOB 
BYTE [0108],01 



,..... 
,..... 

I 
t.j.J 
t.j.J 

UII/U:UU.lI IN£ 

0470:0029 JMP 
0470:002C ADD 
0470:002E ADD 
0470 :0030 OAS 

UUUU 

0029 
[BX+SI],AL 
[BX+SI],AL 

[Go until switch has been performed.] 

-g,20 
*0470:0020 

[Display list.] 

-d100,1Of 
0480:0100 03 04 08 06 1 F 06 04 01 01 00 00 00 00 00 00 00 ............... . 

[Looks like 4 and 8 were switched okay. (And toggle is true.)] 

-t 

----S-APC 
*0470:0008 

AX BX ex ox SP BP SI DI IP 
0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 

[Display next instructions.] 

-I 
0470:000B MOV AL,[BX+SI] 

98-..100 

OOOB 



--I Vol 
~ 

0470:0000 CMP 
0470:0010 JBE 
0470:0012 XCHG 
0470:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
0470:0020 JNZ 
0470:0022 TEST 
0470:0027 JNZ 
0470:0029 JMP 

AL,01 [BX + SIJ 
001C 
AL,01 [BX + SIJ 
[BX+SIJ,AL 
BYTE [0108J,01 
SI 
SI,0008 
OOOB 
BYTE [0108J,01 
0000 
0029 

[Since switch worked, let's reload and check boundary conditions.] 

-esort 
START END 

CS 0470 :0000 0470 :002F 
OS 0480:0000 0480:010F 

[Make it quicker by setting list length to 3. (Could also have used s47d: Ie = 3 to patch.)] 

-a1d 
0470:0010 cmp si,l 

[Display unsorted list.] 



--I VJ 
VI 

-d100 
0480:0100 
0480:0110 
0480:0120 

03 08 04 06 1 F 06 04 01 00 00 00 00 00 00 00 00 .............. .. 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 
00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20 ............ . 

[Set breakpoint when first 3 elements of list should be sorted.] 

-g,29 
*0470:0029 

[See if list is sorted.] 

-d100,10f 
0480:0100 03 04 06 08 1F 06 04 01 00 00 00 00 00 00 00 00 .............. .. 

[Interesting, the fourth element seems to have been sorted in.] 

-esort 
START END 

CS 0470 :0000 0470 :002F 
OS 0480:0000 0480:010F 

[Let's try again with some tracing.] 

-a1d 
0470:0010 cmp si,3 
0470:0020. 

98-.1aa 



.... .... 
I 

VJ 
0\ 

-19 
AX BX CX OX 8P BP 81 DI IP 

-----Z-P-
-----Z-P-

0006 0100 0000 0000 119E 0000 0003 0000 0000 MOY 81,0000 
0006 0100 0000 0000 119E 0000 0000 0000 0003 MOY BX,0100 

-----Z-P-
-----Z-P-
-----Z-P-
----8-A-C 

0006 0100 0000 0000 119E 0000 0000 0000 0006 MOY BYTE [0108],00 
0006 0100 0000 0000 119E 0000 0000 0000 OOOB MOY AL,[BX + 81] 
0003 0100 0000 0000 119E 0000 0000 0000 DODD CMP AL,01[BX + 81] 
0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C 

----8-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001C INC 81 
--------C 
----8-A-C 

0003 0100 0000 0000 119E 0000 0001 0000 001 D CMP 81,0003 
0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB 

*0470:000B 

-I 
0470:000B MOY 
0470 :0000 CMP 
0470:0010 JBE 
0470:0012 XCHG 
0470:0015 MOY 
0470:0017 MOY 
0470:001C INC 
0470:0010 CMP 
0470:0020 JNZ 
0470:0022 TE8T 
0470:0027 JNZ 
0470:0029 JMP 

AL,[BX+81] 
AL,01 [BX + 81] 
001C 
AL,01 [BX + 81] 
[BX+81],AL 
BYTE [0108],01 
81 
81,0003 
OOOB 
BYTE [0108],01 
0000 
0029 



...... 

...... 

-t3 
AX BX CX OX SP BP SI DI IP 

----S-A-C 
----S-A-C 

0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV AL,[BX + SIJ 
0008 0100 0000 0000 119E 0000 0001 0000 0000 CMP AL,Ol[BX + SIJ 
0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 001C 

*0470:0012 

-I 
0470:0012 XCHG 
0470:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
0470 :0020 JNZ 
0470:0022 TEST 

-t3 

AL,Ol [BX + SIJ 
[BX + SI[J,AL 
BYTE [0108J,01 
SI 
SI,0003 
OOOB 
BYTE [0108J,01 

AX BX CX OX SP BP SI DI IP 
0008 0100 0000 0000 119E 0000 0001 0000 0012 XCHGAL,Ol[BX + SIJ 
0004 0100 0000 0000 119E 0000 0001 0000 0015 MOV [BX + SIJ,AL 
0004 0100 0000 0000 119E 0000 0001 0000 0017 MOV BYTE [0108J,01 

*0470:001C 

-dl00,10f 
0480:0100 03 04 08 06 1 F 06 04 01 01 00 00 00 00 00 00 00 ............... . 

~ [So far, so good.] 

98-.100 



~ 

~ 
I 

UoJ 
~ 

-t3 
AX BX CX OX SP BP SI DI IP 

0004 0100 0000 0000 119E 0000 0001 0000 OOH: INC SI 
0004 0100 0000 0000 119E 0000 0002 0000 001D CMP SI,0003 

----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB 
*0410:000B 

-I 
0410 :OOOB MOY 
0410 :0000 CMP 
0410:0010 JBE 
0410:0012 XCHG 
0410:0015 MOY 
0410:0011 MOY 
0410:001C INC 
0410:0010 CMP 
0410 :0020 JNZ 
0410:0022 TEST 
0470:0021 JNZ 
0410:0029 JMP 

-t3 

AL,[BX+SI] 
AL,01 [BX + SI] 
001C 
AL,01 [BX + SI] 
[BX+SI],AL 
BYTE [0108],01 
SI 
SI,0003 
OOOB 
BYTE [0108],01 
0000 
0029 

AX BX CX OX SP BP SI DI IP 
----S-APC 
----S-APC 

0004 0100 0000 0000 119E 0000 0002 0000 OOOB MOY AL,[BX + SI] 
0008 0100 0000 0000 119E 0000 0002 0000 0000 CMP AL,01[BX + SI] 
0008 01 00 0000 0000 119E 0000 0002 0000 0010 J B E 001 C 

*0410:0012 



[Sure enough, it's comparing the third and fourth elements of the list. Reload program.] 

-esort 
START 

CS 0470:0000 
OS 0480: 0000 

-I 
0470:0000 MOV 
0470:0003 MOV 
0470:0006 MOV 
0470 :OOOB MOV 
0470:0000 CMP 
0470:0010 JBE 
0470:0012 XCHG 
0470:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
0470:0020 JNZ 

ENO 
0470:002F 
0480:010F 

SI,OOOO 
BX,0100 
BYTE [0108],00 
AL,[BX+SI] 
AL,01 [BX + SI] 
001C 
AL,01 [BX + SI] 
[BX+SI],AL 
BYTE [0108],01 
SI 
SI,0008 
OOOB 

[Patch length.] 

-a1d 
0470:0010 

:;: 0470:0020 
cmp si,7 

\.j.J 

\D 

98-..1aa 



"""" 
"""" I 
~ o 

[Try it out.] 

-g,29 
*0470:0029 

[See if list is sorted.] 

-d100,1Of 
0480:0100 01 03 04 04 06 06 08 1 F 00 00 00 00 00 00 00 00 ............... . 

[Looks better; let's install patch in disk file. To do this, we must read CMD file including header, so we use R 
command.] 

-rsort.cmd 
START 

2000:0000 
END 

2000:01FF 

[First 80h bytes contain header, so code starts at 80h.] 

-180 
2000:0080 MOV 
2000:0083 MOV 
2000:0086 MOV 
2000:008B MOV 
2000:0080 CMP 
2000:0090 JBE 
2000:0092 XCHG 

SI,OOOO 
BX,0100 
BYTE [0108],00 
AL,[BX+SI] 
AL,01 [BX + SI] 
009C 
AL,01[8X + SI] 



>-' 
I 

~ 
>-' 

2000:0095 MOV 
2000:0097 MOV 
2000:009C INC 
2000:0090 CMP 
2000:00AO JNZ 

[8X+SI],AL 
BYTE [0108],01 
SI 
SI,0008 
0088 

[Install patch.] 

-a9d 
2000:0090 cmp si,7 

[Write file back to disk. (Length of file assumed to be unchanged since no length specified.)] 

-wsort.cmd 

[Reload file.] 

-esort 

START END 
CS 0470:0000 0470:002F 
OS 0480:0000 0480:010F 

[Verify that patch was installed.] 
-I 
0470 :0000 MOV 
0470:0003 MOV 

98-l00 

SI,OOOO 
8X,0100 



..... ..... 
I 
~ 
t-...l 

0470:0006 MOV 
0470:000B MOV 
0470:0000 CMP 
0470:0010 JBE 
0470:0012 XCHG 
0470:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
0470:0020 JNZ 

BYTE [0108J,00 
AL,[BX+SIJ 
AL,01 [BX + SIJ 
001C 
AL,01[BX + SIJ 
[BX+SIJ,AL 
BYTE [0108J,01 
SI 
SI,0007 
OOOB 

[Run it.] 

-g,29 
*0470:0029 

[Still looks good. Ship it!] 

-d100,1Of 
0480:0100 
_AC 

A> 

01 03 04 04 06 06 08 1 F 00 00 00 00 00 00 00 00 ............... . 



APPENDIX A. MESSAGES 

Contents 

Status Line Messages ........................ A-3 
Diskette/Drive Error Status Line Messages ... A-4 
Printer Error Status Line Messages . . . . . . . .. A-6 

CP/M-86 Command Error Messages ............ A-7 

A-I 



A-2 



A.ppendix A. Messages 

CP/M-86 communicates with you through messages displayed 
on your screen. CP/M-86 keeps you informed of the date, 
time, and status of your IBM Personal Computer by 
maintaining a "Status Line" on the last line of your screen. 
CP/M-86 responds to a mistyped command or other error by 
displaying a message directly beneath the command line that 
contained or caused the error. This Appendix describes Status 
Line Messages and CP/M-86 Error Messages. 

Status Line Messages 

CP/M-86 maintains a Status Line at the bottom of your screen. 
Normally the Status Line looks like this: 

[IU = 101 mm/dd/yy 1 05:42:271] 

The part of the screen to the left of the Status Line display is 
generally blank. The second field of the Status Line shows the 
current user number. In the example above, the user number is 
10. When you first bring CP/M-86 into memory, the second 
field tells the date your CP/M-86 system was created and the 
third field shows the time elapsed since CP/M-86 was 
initiated. You can set either of these fields to the current date 
and time with a TOD command. 

Sometimes CP/M-86 replaces the normal message!, in the 
Status Line with information about light pen input, 
diskette/drive errors and printer errors. 

When a program requires that you make a selection from the 
screen with the light pen, the Status Line displays the 
message, "Waiting for Light Pen Input" until you depress the 
tip of the pen against the screen's surface. When the program 
receives your input, the Status Line returns to its normal state. 

A-3 



A-4 

Diskette/Drive Error Status Line Messages 

If CP/M-86 detects an error while operating on a diskette or 
drive, it retries the operation five times before sending a 
diskette/drive error message to the Status Line and ringing the 
bell. A diskette/drive error message has the following format: 

Disk d: message RlI/C/D? 

In an actual error message, CP/M-86 replaces d: with the drive 
specification of the drive where the error occurred, and 
message with one of the messages listed below. When you 
receive this error message, CP/M-86 asks you to type a 
character and thereby select one of four options. The character 
you type is not echoed at the screen. To retry the operation 
that caused the error, type R. To ignore the error, type 1. To 
cancel and return to the operating system, type C. To display 
details of the error, type D. The detail message, which appears 
in the Status Line if you press D, has the following format: 

Operation Trk 00 Sec 00 R/I/C/D? 

In an actual detail message, CP/M-86 replaces Operation with 
the name of the operation it was performing when the error 
took place, and also inserts the track and sector numbers where 
the error occurred. The following list defines the operation 
names that can appear in a detail message. 

Status error occurred while trying to obtain diskette 
status 

Read error occurred while trying to read from 
diskette 

Write error occurred while trying to write to 
diskette 

Verify error occurred while comparing data on 
diskette with data stored in memory 

Unknown Op error occurred during an unknown operation 

The following messages can appear in the diskette/drive error 
Status Line. These messages can indicate problems with 
hardware. If the error persists contact your point of sale. 



ADDRESS MARK MISSING 

Diskette is worn or improperly formatted. Reformat diskette 
with NEWDISK or retry with new diskette. 

BAD DISK COMMAND 

This could be a hardware problem, or could indicate that the 
part of memory in which CP/M-86 resides has been violated. 
Try starting CP/M-86 from another system disk. 

CONTROLLER FAILED 

This is a hardware problem; retry. 

DATA ERROR 

Check detail message. If the error occurred during a read 
operation, you could ignore the error and read what you can 
from the disk. If the error occurred during a write operation, 
you should retry with a fresh diskette. 

DMA ADDRESS ERROR 

A program has instructed the DMA chip to read data into a 
memory area that straddles a 64K boundary. Take careful note 
of the situation that caused the error. If the running program 
was an application program you have written then you must 
correct your error in attempting to instruct the DMA chip to 
read data into a memory area that straddles a 64K boundary. If 
a standard utility program was executing at the time of the 
error, it may indicate a hardware problem. Retry the 
operation. 

DMA CHIP FAILURE 

This is a hardware problem; retry the operation. 

A-5 



A-6 

FAILED TO RESPOND 

There is no diskette in the drive, the diskette is improperly 
inserted, or the drive latch is not closed. Correct the problem 
and press R for retry. 

SECTOR NOT FOUND 

Diskette is worn or improperly formatted. Reformat the 
diskette with NEWDISK or try a new diskette. 

SEEK FAILED 

This could be a hardware problem or a symptom of a worn 
diskette. Retry the operation with a new diskette. 

WRITE-PROTECTED 

Diskette has a foil tab over the write-protect notch. Check that 
you have the correct diskette. If you want to write on the 
diskette, remove the foil tab and retry. 

Printer Error Status Line Messages 

If you have an IBM 80 cps Matrix Printer added to your IBM 
Personal Computer, CP/M-86 displays printer error messages 
in the Status Line in the format shown below: 

BUSY 

Check cabling and retry. 

NOT ONLINE 

Check that the green light next to Online is illuminated. If 
not, press Online switch and retry. If the light is illuminated, 
check cabling and retry. 



INPUTIOUTPUT ERROR 

There is no power to the printer. Apply power to the printer 
and retry. Check cabling. 

OUT OF PAPER 

Your printer has a tiny switch that is depressed when 
continuous-feed paper is threaded through the printer 
correctly. This error message appears when the printer is out of 
paper or the paper is incorrectly threaded. Correct the problem 
and retry. 

PRINTER #: MESSAGE Rille? 

In an actual printer error message, CP/M-86 replaces # with 
the printer number (0, lor 2), and message with one of the 
messages defined below. 

STATUS = 0000 0000 

This message shows the printer error status byte in binary as 
two groups of four digits. The Status Code is displayed for 
diagnostic purposes; note the code value and the circumstances 
that caused the error. 

CP/M-86 Command Error Messages 

CP/M-86 command error messages can occur when you type a 
program name at the console. The program can be one 
supplied with the CP/M-86 system diskette or it can be from 
other software designed to run under the CP/M-86 system. Of 
course, this list does not include all the error messages that can 
occur when running other software, but it is a good idea to 

check the list if you think the error message might have 
originated from CP/M-86. IfCP/M-86 cannot find the 
program you typed 2 it simply repeats what you typed followed 
by a question mark. You can easily tell if you made a typing 
error. If not, you might have the wrong diskette inserted in 
the drive. 

A-7 



A-8 

Command error messages are not displayed on the Status Line. 
They are printed on the line below the current cursor position. 
In this Appendix the error messages are organized 
alphabetically. 

COMMAND NAME? 

IfCP/M-86 cannot find the command you specified, it returns 
the command name you entered followed by a question mark. 
Check that you have typed the command name correctly. 
Check that the command you requested exists as a .CMD file 
with the current user number on the default or specified. 
diskette. 

GENCMD. An invalid GENCMD command line was 
entered. If the command was mistyped then try again; 
otherwise, review GENCMD operation (Appendix C). 

ALL DATA WILL BE ERASED FROM THE DISK. 
IS THIS WHAT YOU WANT? YIN 

NEWDISK. This message is displayed by NEWDISK to 
verify that the operator understands that the program erases all 
the data from the disk in the process of formatting it. 

AMBIGUOUS OPERAND 

DDT-86. An attempt was made to assemble a command with 
an ambiguous operand. Precede the operand with the prefix 
"BYTE" or "WORD". 

ATTRIBUTE INCORRECTLY SPECIFIED 

SPEED. You have made an error in specifying an attribute. 
Refer to the description of the SPEED command to correct 
your error. 



BAD DIRECTORY ON 0: 
SPACE ALLOCATION CONFLICT 

STAT. This message is followed by a list of one or more 
filenames. The files listed contain data blocks that are already 
allocated to another file on the diskette. The error can be 
caused by a hardware or software failure. The error can be 
corrected by erasing the file(s) displayed and rebooting 
CP/M-86. Note that ifCP/M-86 is not rebooted after erasing 
the files, the problem will reappear. 

BAD PARAMETER 

PIP. An illegal parameter has been entered in a PIP 
command. Retype the entry correctly. 

BOOS ERR ON d: 

CP/M-86 replaces d: with the drive specification of the drive 
where the error occurred. 

BOOS ERR ON d: BAD SECTOR 

This could indicate a hardware problem or a worn or 
improperly formatted diskette. Press Ctrl-C to terminate the 
program and return to CP/M-86, or press the Enter key to 
ignore the error. 

BOOS ERR ON d: FILE RIO 

An erase, rename or set file attributes operation was 
attempted on a Read-Only file. The file should first be set 
to Read-Write (RlW) with the command: "STAT filespec 
$RlW". 

BOOS ERR ON d: SELECT 

CP/M-86 has received a request specifying a non-existent 
drive, or diskette in drive is improperly formatted. CP/M-86 
terminates the current program as soon as you press any key. 

A-9 



A-lO 

BOOS ERR ON d: RIO 

Drive has been assigned Read-Only status with a STAT 
command, or the diskette in the drive has been changed 
without being initialized with a Ctrl-C. CP/M-86 terminates 
the current program as soon as you press any key. 

BREAK "x" AT c 

EO. "x" is one of the symbols described below and c is the 
command letter being executed when the error occurred. 

# Search failure. ED cannot find the string specified 
in an F, S, or N command. 

Unrecognized command letter c. ED does not 
recognize the indicated command letter, or an E, 
H, Q, or 0 command is not alone on its command 
line. 

o The file specified in an R command could not be 
found. 

> Buffer full. ED cannot put any more characters in 
the memory buffer, or the string specified in an F, 
N, or S command is too long. 

E Command terminated. A keystroke at the console 
terminated command execution. 

F Disk or directory full. This error is followed by 
ei ther the disk or directory full message. Refer to 
the recovery procedures listed under these 
messages. 

CANNOT CLOSE 
CANNOT CLOSE FILE 

DDT-86. The disk file written by a W command cannot be 
closed. This is a fatal error that terminates DDT -86 execution. 
The user should take appropriate action after checking to see if 
the correct diskette is in the drive and that the diskette is not 
write-protected. 



GENCMD. The CMD file written by GENCMD cannot be 
closed. Thisjs a fatal error that terminates GENCMD 
execution. The user should take appropriate action after 
checking to see if the correct diskette is in the drive and that 
the diskette is not write-protected. 

CANNOT CLOSE, READ/ONLY? 

SUBMIT. The $$$.SUB file could not be closed. Check to 
see if the correct system diskette is in the "A" drive and that 
the diskette is not write-protected. The SUBMIT job can be 
restarted after rebooting CP/M-86. 

CANNOT OPEN SOURCE 

GENCMD. The hex file specified in the GENCMD 
command line could not be found. The hex file must have the 
filetype " . H86". Check to see that the correct diskette was 
specified and try again. 

CHECKSUM ERROR 

GENCMD. A hex record checksum error was encountered. 
The hex record that produced the error must be corrected, 
probably by recreating the hex file. 

CLOSE FILE - {filespec} 

PIP. An output file cannot be closed. The user should take 
appropriate action after checking to see if the correct diskette 
is in the drive arid that the diskette is not write-protected. 

COMMAND BUFFER OVERFLOW 

SUBMIT. The SUBMIT buffer allows up to 2048 characters 
in the input file. 

A-II 



A-12 

COMMAND TOO LONG 

SUBMIT. A command in the SUBMIT file cannot exceed 
125 characters. 

DEFECTIVE DISKETTE 

NEWDISK. The diskette could not be formatted. The 
diskette should be discarded and a new one tried. If the 
problem persists, the diskettes may be the wrong type or the 
drive may need servicing. 

DESTINATION IS RIO, DELETE (YIN)? 

PIP. The destination file specified in a PIP command already 
exists and it is Read-Only. If you type "Y" the destination file 
will be deleted before the file copy is done. 

DEVICE IS NOT ON-LINE 

ASSIGN, PROTOCOL & SPEED. The ASSIGN, 
PROTOCOL or SPEED command that you have entered 
specifies a device that is not currently on-line on your 
computer. If you do have the device on-line, the message can 
indicate that the device has failed. If the error persists, you 
should contact your point of sale. 

DIRECTORY FULL 

ED. There is not enough directory space for the file being 
written. You can use the "OXfilespec" command to erase any 
unnecessary files on the diskette without leaving the editor. 
Alternatively, you can save the contents of the memory buffer 
on another diskette with the command "B#Xfilespec", where 
filespec is a file on a different drive. You can then quit the edit. 
If you reedit the file the output should be placed on a different 
drive with the command "ED filespec d:", where d: is a valid 
drive name other than the drive containing the source file. You 
can read the file saved with the "Rfilespec" command. 
Caution: Part of the file may not be in the memory buffer when 
you save it (if you have not appended the whole file or if you 
have issued any "W" commands). 



SUBMIT. There is not enough directory space to write the 
$$$.SUB file used for processing SUBMITS. Erase some files 
or select a new disk, and retry. 

DISK DRIVE DOES NOT EXIST ON THIS SYSTEM 

NEWDISK. You have specified a drive which does not exist 
on your system. Try again with a correct drive specification. 

DISK FORMAT IN PROGRESS 

NEWDISK. The NEWDISK program is currently 
formatting a diskette. Wait until it is complete before taking 
any further action. 

DISK FULL 

ED. There is not enough disk space for the output file. This 
error may occur on the W, E, H, or X commands. If it occurs 
with the X command you can repeat the command prefixing 
the filename with a different drive. Otherwise you can try the 
recovery methods described under the Directory Full error. 

DISK READ ERROR 
DISK READ - {filespec} 

DDT-86. The disk file specified in an R command could not 
be read properly. This is usually the result of an unexpected 
end of file. Correct the problem in your file. 

GENCMD. The specified hex file could not be read 
properly. This is usually the result of an unexpected end of file. 
Correct the problem by regenerating the H86 file. 

PIP. The input disk file specified in a PIP command could 
not be read properly. This is usually the result of an 
unexpected end of file. Correct the problem in your file. 

A-13 



A-14 

DISK WRITE ERROR 
DISK WRITE - {filespec} 

DDT -86. A disk write operation could not be successfully 
performed during a W command, probably due to a full disk. 
You should either erase some unnecessary files or get another 
diskette with more room. 

PIP. A disk write operation could not be successfully 
performed during a PIP command, probably due to a full disk. 
You should either erase some unnecessary files or get another 
diskette with more room and run PIP again. 

SUBMIT. The SUBMIT program could not write the 
$$$.SUB file to the disk. Erase some files or select a new disk; 
retry. 

DIVISION BY ZERO TRAP 
** PROGRAM ABORTED ** 

CP/M-86 prints this message when the user program executes 
a DIV or IDIV instruction and the CPU generates a divide 
error interrupt. 

ERROR: error message 

Refer to the error message following the word "ERROR:". 

PIP. All of the messages generated by the PIP program are 
displayed in the format shown above. 

ERROR ON LINE nnn MESSAGE 

SUBMIT. The SUBMIT program displays its messages in 
the format shown above, where nnn represents the line number 
of the SUBMIT file. Refer to the message following the line 
number. 



ERROR READING HELP.HLP INDEX 

HELP. The HELP. HLP file used by the HELP command is 
invalid. This may be caused by an unexpected end of file. The 
distributed HELP. HLP file should be copied to the diskette 
from the CP/M-86 system diskette. 

FILE EXISTS 

REN. You have tried to rename a file to a name already 
assigned to another file. Either delete the existing file or 
rename the file. 

FILE IS READ/ONLY 

ED. A Read-Only file cannot be edited with the ED 
command "ED filespec". The command "ED inputfilespec 
outputfilespec" should be used instead. 

FILE NOT FOUND 
FILE NOT FOUND - {filespec} 

ED. ED could not find the specified file. Check that you 
have entered the correct drive specification or that you have the 
correct diskette in the drive. 

PIP. An input file which you have specified does not exist. 

STAT. STAT could not find the specified file; check to see if 
the correct diskette is in the drive. 

FILENAME REQUIRED 

ED. The ED command was typed without a filename. 
Reenter the ED command followed by the name of the file you 
wish to edit or create. 

HEX RECORD CHECKSUM - {filespec} 

PIP. A hex record checksum error was encountered during 
the transfer of a hex file. The hex file with the checksum error 
should be corrected, probably by recreating the hex file. 

A-I5 



A-16 

HELP.HLP READ ERROR 

HELP. An error occurred in reading the HELP. HLP help 
file. Usually this error is caused by an unexpected end of file. A 
new copy of the HELP. HLP file should be copied from the 
CP/M-86 system diskette. 

ILLEGAL DISK NAME 
ILLEGAL DISKETTE DRIVE 

NEWDISK. The drive must be A:, B:, C: or D:. Reenter 
the command correctly. 

COPYDISK. An invalid or non-existent drive was specified. 

ILLEGAL TYPE COMBINATION 

ASSIGN. You have probably specified an output device as an 
input device, or an input device as an output device. Re-enter 
the ASSIGN command correctly. 

ILLEGAL TYPE SPECIFIED 

NEWDISK. Only type specifications of $S, $N, $DS or 
$DN are allowed. 

INCORRECT LOGICAL DEVICE SPECifiCATION 

ASSIGN. You have specified a logical device that is 
incorrect. 

INCORRECT PHYSICAL DEVICE SPECIFICATION 

ASSIGN. You have specified a physical device that is 
incorrect. 

INCORRECT TYPE DELIMITER 

NEWDISK. A "$" must be used to delimit the type ($S, 
$N, $DS, or $DN). An example of a valid command is 
"NEWDISKB: $S". 



INPUT CANNOT BE ASSIGNED TO MORE THAN ONE DEVICE AT 
ATIME 

ASSIGN. Specify only one device for input. 

IS THIS WHAT YOU WANT TO DO (YIN)? 

COPYDISK. If the displayed COPYDISK function is what 
you want performed, then type "Y". 

INSUFFICIENT MEMORY 

DDT-86. There is not enough memory to load the file 
specified in an R or E command. 

INSUFFICIENT MEMORY AVAILABLE FOR COpy 

COPYDISK. There is not enough memory available to copy 
a track from the specified diskette. 

INSUFFICIENT MEMORY TO CREATE CMD FILE 

GENCMD. There is not enough memory to create a CMD 
file from the H86 file specified. 

INVALID ASSIGNMENT 

STAT. An invalid drive or file assignment was attempted. 
This error message may be followed by a list of the valid file 
assignments which can follow a filename. If an invalid drive 
assignment was attempted, the message "Use: d: = RO" is 
displayed showing the proper syntax for drive assignments. 

INVALID CONTROL CHARACTER 

SUBMIT. The only valid control characters in the 
SUBMIT files of type SUB are" A through "Z. Note that in 
a SUBMIT file, the control character is represented by 
typing the circumflex, ", not by depressing the Control 
Key. 

A-I7 



A-18 

INVALID DESTINATION 

PIP. The destination specified in your PIP command is 
illegal. You have probably specified an input device as a 
destination. 

INVALID FORMAT 

PIP. The format of your PIP command is illegal. See the 
description of the PIP command. 

INVALID HEX DIGIT 
INVALID HEX DIGIT - {filespec} 

GENCMD &- PIP. An invalid hex digit has been 
encountered while reading a hex file. The hex file with the 
invalid hex digit should be corrected, probably by recreating 
the hex file. 

INVALID SEPARATOR 

PIP . You have placed an invalid character for a separator 
between two input filenames. 

INVALID SOURCE 

PIP. The source specified in your PIP command is illegal. 
You have probably specified an output device as a source. 

INVALID USER NUMBER 

PIP. You have specified a user number greater than 15. User 
numbers are in the range 0 to 15. 

MEMORY REQUEST DENIED 

DDT-86. A request for memory during an R command 
could not be fulfilled. Up to eight blocks of memory can be 
allocated at a given time. 



MEMORY NOT AVAILABLE 

CP/M-86. There is not enough memory available for loading 
the program specified. 

MESSAGE LENGTH INCORRECTLY SPECIFIED 

PROTOCOL. Enter a correct message length. 

NO DEVICES SPECIFIED 

ASSIGN. Devices must be specified in an ASSIGN 
command. 

NO DIRECTORY SPACE - {filespec} 

PIP. There is not enough directory space for the output file. 
You should either erase some unnecessary files or get another 
diskette wi th more directory room and run PIP again. 

NO DISK NAME OR TYPE SPECIFIED 

NEWDISK. Enter a correct disk name or type. For example, 
to format a new double-sided system diskette on the B 
drive, you use the command "NEWDISK B: $DS". 

NO FILE 

DIR, ERA & REN. CP/M-86 could not find the specified 
file, or no files exist. 

DDT-86. The file specified in an R or E command could not 
be found on the disk. 

NO .HLP FilE ON THE DEFAULT DRIVE 

HELP. The HELP. HLP file was not found on the default 
drive. It should be copied from the CP/M-86 system diskette. 

A-19 



A-20 

NO MORE DIRECTORY SPACE 

GENCMD. There is insufficient directory space for creating 
the output file. A new diskette should be selected or 
unnecessary files erased. 

NO SERIAL PORT SPECIFIED 

PROTOCOL. Enter a correct serial port. 

SPEED. Enter a correct serial port. 

NO SPACE 

DDT-86. There is no space in the directory for the file being 
written by a W command. 

NO SUB FILE PRESENT 

SUBMIT. For SUBMIT to operate properly, you must create 
a file with a filetype of SUB. The SUB file contains normal 
CP/M-86 commands. Use one command per line. 

NO TYPE SPECIFIED 

NEWDISK. Enter a NEWDISK command with a type 
specified. Valid types are system ($S or $DS), or normal 
($N or $DN). System means that the diskette is formatted 
and the CP/M-86 system is copied from the system 
diskette. Normal means that the diskette is formatted for 
data only. 

NOT A PROGRAMMABLE KEY - TRY AGAIN 

FUNCTION. If you are trying to set up a programmable 
key, you should try again. If you are trying to exit the 
FUNCTION program by entering a carriage return, you 
should press Ctrl-Break. 



OUTPUT FILE EXISTS, ERASE IT 

ED. The destination filename already exists when you are 
placing the destination file on a different diskette than the 
source. It should be erased or another diskette selected to 
receive the output file. 

PARAMETER ERROR 

SUBMIT. Within the SUBMIT file of type SUB, valid 
parameters are $0 through $9. 

PERMANENT ERROR ON TRACK n 
PERMANENT ERROR, SECTOR n 

COPYDISK. n is the track or sector number. A bad sector 
exists on the source diskette if the error occurred during a track 
read. Otherwise, the bad sector is on the destination diskette. 
If the destination diskette has the error it can be reformatted 
with NEWDISK; if the error persists it should be discarded. 

** PROGRAM ABORTED ** 

The program has been terminated due to one of the following 
conditions: a Ctrl-Break has been entered, the C option has 
been selected after a disk error message, or a division by zero 
trap has occurred. 

PROTOCOL INCORRECTLY SPECIFIED 

PROTOCOL. Your PROTOCOL command is incorrect; 
refer to the description of the PROTOCOL command. 

QUIT NOT FOUND 

PIP. The string argument to a Q parameter was not found in 
your input file. 

A-21 



A-22 

READ ERROR 

TYPE. An error occurred when reading the file specified in 
the TYPE command. Check the diskette and try again. The 
"STAT filespec" command can be helpful in diagnosing 
trouble. 

SERIAL PORT INCORRECTLY SPECIFIED 

PROTOCOL. Enter a correct serial port. 

SPEED. Enter a correct serial port. 

SOURCE AND DESTINATION CANNOT BE THE SAME 

COPYDISK. The source and destination drives must be 
different, although drives A, B, C and D can all be mapped to 

the same physical drive. The system will prompt for you to 

change diskettes when the drive changes. 

SOURCE AND DESTINATION DISKS MUST BE THE SAME TYPE 

COPYDISK. Both the source and destination diskettes must 
have the same characteristics. (The "STAT DSK:" command 
displays the disk characteristics.) 

START NOT FOUND 

PIP. The string argument to an S parameter could not be 
found in the source file. 

** SUBMIT FILE ABORTED ** 

The SUBMIT program has been terminated due to one of the 
following conditions: a Ctrl-Break has been entered, the C 
option has been selected after a disk error message, or a 
division by zero trap has occurred. 



TOO MANY FILES 
TOO MANY ENTRIES IN INDEX TABLE 

HELP. There is not enough memory available to run the 
HELP utility. 

STAT. There is not enough memory for STAT to sort the 
files specified or more than 512 files were specified. 

TOPIC NOT FOUND 

HELP. The topic requested does not exist in the HELP. HLP 
file. A topic should be selected from the menu displayed. 

UNABLE TO FIND FILE HELP.HLP 

HELP. The HELP. HLP file could not be found on the 
default drive. Copy it to the default drive from the CP/M-86 
system diskette. 

UNEXPECTED END OF HEX FILE - {filespec} 

PIP. An end of file was encountered prior to a termination 
hex record. The hex file without a termination record should 
be corrected, probably by recreating the hex file. 

UNKNOWN ID 

FUNCTION. The internal code for this key is not known. 
This key cannot be programmed. 

USER ABORTED 

PIP. The user has terminated a PIP operation by pressing a 
key. 

A-23 



A-24 

VERIFY - {filespec} 

PIP. When copying with the V option, PIP found a 
difference when rereading the data just written and comparing 
it to the data in its memory buffer. Usually this indicates a 
failure of either the destination diskette or drive. 

VERIFY ERROR ATs:o 

DDT-86. The value placed in memory by a Fill, Set, Move, 
or Assemble command could not be read back correctly, 
indicating bad user memory or attempting to write to ROM or 
non-existent memory at the indicated location. 



~PPENDIX B. COMMAND SETUP AND 
!XECUTION UNDER CP/M-86 

Contents 

Transient Program Execution Models . . . . . . . . . .. B-3 
The 8080 Memory Model. . . . . . . . . . . . . . .. B-4 
The Small Memory Model . . . . . . . . . . . . . .. B-6 
The Compact Memory Model. . . . . . . . . . . .. B-7 

Base Page Initialization ................... " B-10 
Transient Program Load and Exit. . . . . . . . . . . .. B-12 

B-1 



B-2 



Command Setup and Execution Under 
CP/M-86 

The 8086 microprocessor uses segment registers to reference 
memory. CP/M-86 provides three different memory 
organizations in which programs may execute. Each memory 
organization is called a memory model. CP/M-86 uses a 
256-byte area of memory as a base page to store information 
about the program being executed. This area is also used by a 
program to communicate with CP/M-86. 

Transient Program Execution Models 

The initial values of the segment registers are determined by 
one of three "memory models" used by the transient program, 
and described in the CMD file header. The three memory 
models are summarized in the table below. 

Model 

8080 Model 

Small Model 

Compact Model 

CP/M-86 Memory Models 

Group Relationships 

Code and Data Groups Overlap 

Independent Code and Data Groups 

Three or More Independent Groups 

The 8080 Model supports programs which are directly 
translated from CP/M-80 when code and data areas are 
intermixed. The 8080 Model consists of one group which 
contains all the code, data, and stack areas. Segment registers 
are initialized to the starting address of the region containing 
this group. The segment registers can, however, be managed 
by the application program during execution so that multiple 
segments within the group can be addressed. 

The Small Model is similar to that defined by Intel, where the 
program consists of an independent code group and a data 
group. The Small Model is suitable for use by programs where 
code and data is easily separated. Note again that the code and 
data groups often consist of, but are not restricted to, 64K 
byte segments. 

B-3 



B-4 

The Compact Model occurs when any of the extra, stack, or 
auxiliary groups are present in programs. Each group may 
consist of one or more segments, but if any group exceeds 64K 
in size, or if auxiliary groups are present, then the application 
program must manage its own segment registers during 
execution in order to address all code and data areas. 

The three models differ primarily in the manner in which 
segment registers are initialized upon transient program 
loading. The operating system program load function 
determines the memory model used by a transient program by 
examining the program group usage, as described in the 
following sections. 

The 8080 Memory Model 

The simplest memory model is the 8080 model. The name is 
derived from the similarity to the 8080 microprocessor 
memory organization. It provides only 64K for all the 
program's code and data. In this case, the CS, DS, and ES 
registers are initialized to the beginning of the code group, 
while the SS and SP registers remain set to a 96-byte stack area 
in the CCP. The Instruction Pointer Register (IP) is set to 
100H to allow base page values at the beginning of the code 
group. Following program load, the 8080 Model appears as 
shown in the figure below where low addresses are shown at 
the top of the diagram: 



SS: 

SS + SP: 

CS DS ES: 
DS+OOOOH: 

CS+OIOOH: 

CCP 

CCP Stack 

base 
page 

IP = OlOOH 
code 

data 

1-1 
~ 

CP /M -86 8080 Memory Model 

The intermixed code and data regions are indistinguishable. 
The "base page" values, described in the "Base Page 
Initialization" section, are similar to CP/M-80, allowing 
translation from 8080, 8085, or Z80 code into the 8086 and 
8088 environment. The following ASM-86 example shows 
how to code an 8080 model transient program. 

cseg 
org 100h 

(code) 
endcs equ $ 

dseg 
org offset endcs 

(data) 
endds equ $ 

cseg 
org offset endds 
end 

B-5 



B-6 

The Small Memory Model 

The Small Model is assumed when the transient program 
contains both a code and data group. (In ASM-86, all code is 
generated following a CSEG directive, while data is defined 
following a DSEG directive with the origin of the data 
segment independent of the code segment.) In this model, CS 
is set to the beginning of the code group, the DS and ES are set 
to the start of the data group, and the SS and SP registers 
remain in the CCP's stack area as shown in the figure below. 

SS: 

SS + SP: 

CS: 

DSES: 

DS+OIOOH: 

CCP 

CCP Stack 

IP = OOOOH 
code 

base 
page 

data. 

CP 1M -86 Small Memory Model 

The machine code begins at CS + OOOOH, the "base page" 
values begin at DS + OOOOH, and the data area starts at 
DS + OIOOH. The following ASM-86 example shows how to 

code a small model transient program. 

cseg 

(code) 
dseg 
org IOOh 

(data) 
end 



The Compact Memory Model 

The Compact Model is assumed when code and data groups are 
present, along with one or more of the remaining stack, extra, 
or auxiliary groups. In this case, the CS, DS, and ES registers 
are set to the base addresses of their respective areas. The figure 
below shows the initial configuration of segment registers in 
the Compact Model. The values of the various segment 
registers can be programmatically changed during execution 
by loading from the initial values placed in base page by the 
CCP, thus allowing access to the entire memory space. 

If the transient program intends to use the stack group as a 
stack area, the SS and SP registers must be set upon entry. The 
SS and SP registers remain in the CCP area, even if a stack 
group is defined. Although it may appear that the SS and SP 
registers should be set to address the stack group, there are two 
contradictions. First, the transient program may be using the 
stack group as a data area. In that case, the Far Call instruction 
used by the CCP to transfer control to the transient program 
could overwrite data in the stack area. Second, the SS register 
would logically be set to the base of the group, while the SP 
would be set to the offset of the end of the group. However, if 
the stack group exceeds 64K the address range from the base to 
the end of the group exceeds a 16-bit offset value. 

CP/M-86 Compact Memory Model 
B-7 



B-8 

The following ASM-86 example shows how to code a compact 
model transient program. 

cseg 

(code) 
dseg 
org lOOh 

(data) 
eseg 

(more data) 
sseg 

(stack area) 
end 

The following example shows how to initialize the stack 
segment register from the values contained in the base page. 



00009c 
00015B 
0002 FA 
00038E161500 
0007 BC4000 
OOOA 53 
OOOB 9D 

0015 
0017 

010000 

0000 
004000 

Sst: 

Ssp age 

End_Data_Area 

StackSeg 
Stackbase 

End 

Cseg 

Pushf 
Pop Bx 
Cli 
Mov Ss, SSpage 
Mov Sp, Offset Stackbase 
Push Bx 
Popf 

Dseg 
Org 015H 

Rw 1 
Rs 100H - (15H + word) 

Db 0 

Sseg 
Rs 40H 
Db 0 

~ END OF ASSEMBLY. NUMBER OF ERRORS: O. USE FACTOR: 0% 

;save flags in Bx 

;Location of the stack 
;segment in the base page 

; Reserve this area for 
;base page values 
; For Gencmd to determine 
; length of group 

;Stack Area 
; For Gencmd to determining 
; length of group 

SlXrGNlddV 



Base Page Initialization 

B-IO 

Similar to CP/M-80, the CP/M-86 base page contains 
default values and locations initialized by the CCP and used 
by the transient program. The base page occupies a region 
of user memory from offset OOOOH through OOFFH relative 
to the DS register. The values stored in the base page are as 
follows: 



os + 0000: 

os + 0003: 

os + 0006: 

os + 0009: 

os + OOOC: 

os + OOOF: 

os + 0012: 

os + 0015: 

os + 0018: 

os + 001B: 

os + 001E: 

os + 0021: 

os + 0024: 

os + 0027: 

os + 002A: 

os + 0020: 

os + 0030: 

os + 005B: 

os + 005C: 

os + 0080: 

os + 0100: 

LCD 

BCD 

LOO 

BOO 

LEO 

BED 

LSO 

BSO 

LXO 

BXO 

LXO 

BXO 

LXO 

BXO 

LXO 

BXO 

LC1 

BC1 

L01 

B01 

LE1 

BE1 

LS1 

BS1 

LX1 

BX1 

LX1 

BX1 

LX1 

BX1 

LX1 

BX1 

Not 
Currently 

Used 

Default FCB 

Default Buffer 

Begin User Data 

CP/M-86 Base Page Values 

LC2 

M80 

L02 

xxx 

LE2 

xxx 

LS2 

xxx 

LX2 

xxx 

LX2 

xxx 

LX2 

xxx 

LX2 

xxx 

B-ll 



Each byte is indexed by 0, 1, and 2, corresponding to the 
standard Intel storage convention of low, middle, and 
high-order (most significant) byte. "xxx" in the figure above 
marks unused bytes. LC is the last code group location 
(24-bits, where the 4 high-order bits equal zero). 

BC is the base paragraph address of the code group (16-bits). 
LD and BD provide the last position and paragraph base of the 
data group. The last position is one byte less than the group 
length. The M80 byte is equal to 1 when the 8080 Memory 
Model is in use. LE and BE provide the length and paragraph 
base of the optional extra group, while LS and BS give the 
optional stack group length and base. The bytes marked LX 
and BX correspond to a set of four optional independent 
groups which may be required for programs which execute 
using the Compact Memory Model. The initial values for these 
descri ptors are derived from the header record in the memory 
image file, described in Appendix C. 

Transient Program Load and Exit 

B-12 

The CCP parses up to two filenames following the command 
and places the properly formatted FCB's at locations OOSCH 
and 006CH in the base page relative to the DS register. 
Therefore, the default DMA base is initialized to the value of 
DS, and the default DMA offset is initialized to 0080H. 
CP/M-86 assumes the default DMA buffer occupies the second 
half of the base page. 

The CCP transfers control to the transient program through an 
8086 "Far Call." The transient program may choose to use the 
96-byte CCP stack and return directly to the CCP upon 
program termination by executing a "Far Return." 
Optionally, the user may set his/her own stack using the 
example of stack segment initialization shown in the previous 
section on the CP/M-86 Compact Memory Model. The 
program will also terminate when BDOS function zero is 
executed. The operator may terminate program execution by 
typing a single Ctrl-C during line edited input. This has the 
same effect as executing BDOS function zero. 



APPENDIX C. COMMAND (CMD) FILE 
GENERATION 

Contents 

Intel 8086 Hex File Format ................... C-3 
Operation ofGENCMD ..................... C-5 
Command (CMD) File Format ................ C-8 

C-l 



C-2 



Command (CMD) File Generation 

As mentioned previously, a utility program is provided with 
CP/M-86, called GENCMD, which is used to produce CMD 
memory image files suitable for execution under CP/M-86. 
GENCMD accepts Intel 8086 "hex" format files as input. 
GENCMD is used to process output from the Digital Research 
ASM-86 assembler or Intel's OH86 utility. 

Intel 8086 Hex File Format 

GENCMD input is in Intel "hex" format produced by both 
the Digital Research ASM-86 assembler and the standard Intel 
OH86 utility program (see Intel document #9800639-03 
entitled "CS-86 Software Development Utilities Operating 
Instructionsfor ISIS-II Users"). The CMD file produced by 
GENCMD contains a header record which defines the memory 
model and memory size requirements for loading and 
executing the CMD file. 

An Intel "hex" file consists of the traditional sequence of 
ASCII records in the following format: 

:11 a a a a t t d d d ... dec 

where the beginning of the record is marked by an ASCII 
colon, and each subsequent digit position contains an ASCII 
hexadecimal digit in the range 0-9 or A-F. The fields are 
defined below. 

Field 

11 

aaaa 

tt 

Intel Hex Field Definitions 

Contents 

Record Length OO-FF (0-255 in decimal) 

Load Address 

Record Type: 

Record Types Generated When $FI 
Switch Is Used With ASM86: 

C-3 



C-4 

Field 

dd ... d 

cc 

Intel Hex Field Definitions (continued) 

Contents 

00 data record, loaded starting at offset aaaa 
from current base paragraph 

o 1 end of file 
02 extended address, aaaa is paragraph base for 

subsequent data records 
03 start address is aaaa (ignored, IP set 

according to memory model in use) 

Record Types Generated When $FD 
Switch (Default) Is Used With ASM-86: 

o 1 end of file 
81H data belongs to code segment 
82H data belongs to data segment 
83H data belongs to stack segment 
84H data belongs to extra segment 
85H paragraph address for absolute code 

segment 
86H paragraph address for absolute data 

segment 
87H paragraph address for absolute stack 

segment 
88H paragraph address for absolute extra 

segment 

Data Byte 

Check Sum (OO-Sum of Previous Digits) 

All characters preceding the colon for each record are ignored. 
(Additional hex file format information is included in Chapter 
11, and in Intel's document #9800821A entitled MCS-86 
Absolute Object File Formats. ) 



Operation of GENCMD 

The GENCMD utility is invoked at the command level by 
typing 

GENCMD filename parameter-list 

where the filename corresponds to the hex input file with an 
assumed (and unspecified) file type ofH86. GENCMD accepts 
optional parameters to specifically identify the 8080 Memory 
Model and to describe memory requirements of each segment 
group. The GENCMD parameters are listed following the 
filename, as shown in the command line above where the 
parameter-list consists of a sequence of keywords and values 
separated by commas or blanks. The keywords are: 

8080 CODE DATA EXTRA STACK 

The 8080 keyword forces a single code group so that the 
BDOS load function sets up the 8080 Memory Model for 
execution, thus allowing intermixed code and data within a 
single segment. The form of this command is 

GENCMD filename 8080 

The remaining keywords follow the filename or the 8080 
option and define specific memory requirements for each 
segment group, corresponding one-to-one with the segment 
groups defined in the previous section. In each case, the values 
corresponding to each group are-enclosed in square brackets 
and separated by commas. Each value is a hexadecimal number 
representing a paragraph address or segment length in 
paragraph units denoted by hhhh, prefixed by a single letter 
which defines the meaning of each value: 

Ahhhh 
Bhhhh 
Mhhhh 
Xhhhh 

Load the group at absolute location hhhh 
The group starts at hhhh in the hex file 
The group requires a minimumofhhhh * 16 bytes 
The group can address a maximum of hhhh * 16 
bytes 

Generally, the CMD file header values are derived directly 
from the hex file and the parameters shown above need not be 
included. The following situations, l:lOwever, require the use 
ofGENCMD parameters. 

C-5 



C-6 

• 8080 Keyword-The 8080 keyword is included whenever 
ASM-86 is used in the conversion of 8080 programs to the 
8086/8088 environment when code and data are 

• 

• 

intermixed within a single segment, regardless of the use of 
CSEG and DSEG directives in the source program. 

Absolute Address-An absolute address (A value) must be 
given for any group which must be located at an absolute 
location. Normally, this value is not specified since 
CP/M-86 cannot generally ensure that the required 
memory region is available, in which case the CMD file 
cannot be loaded. 

Beginning Address of Groups-The B value is used when 
GENCMD processes a hex file produced by Intel's OH86, 
or similar utility program that contains more than one 
group. The output from OH86 consists of a sequence of 
data records with no information to identify code, data, 
extra, stack, or auxiliary groups. In this case, the B value 
marks the beginning address of the group named by the 
keyword, causing GENCMD to load data following this 
address to the named group (see the examples below). 
Thus, the B value is normally used to mark the boundary 
between code and data segments when no segment 
information is included in the hex file. Files produced by 
ASM-86 do not require the use of the B value since 
segment information is included in the hex file. 

Minimum Memory Value-The M value (minimum 
memory value) is included only when the hex records do 
not define the minimum memory requirements for the 
named group. Generally, the code group size is determined 
precisely by the data records loaded into the area. That is, 
the total space required for the group is defined by the 
range between the lowest and highest data byte addresses. 
The data group , however, may contain uninitialized 
storage at the end of the group and thus no data records are 
present in the hex file which define the highest referenced 
data item. The highest address in the data group can be 
defined within the source program by including a "DB 0" 
as the last data item. Alternatively, the M value can be 
included to allocate the additional space at the end of the 
group. Similarly, the stack, extra, and auxiliary group sizes 
must be defined using the M value unless the highest 
addresses within the groups are implicitly defined by data 
records in the hex file. 



• Maximum Memory Size-The maximum memory size, 
given by the X value, is generally used when additional free 
memory may be needed for such purposes as I/O buffers or 
symbol tables. If the data area size is fixed, then the X 
parameter need not be included. In this case, the X value is 
assumed to be the same as the M value. The value XFFFF 
allocates the largest memory region available but, if used, 
the transient program must be aware that a three-byte 
length field is produced in the base page for this group 
where the high-order byte may be non-zero. Programs 
converted directly from CP/M-SO or programs that use a 
2-byte pointer to address buffers should restrict this value 
to XFFF or less, producing a maximum allocation length of 
OFFFOH bytes. 

The following GENCMD command line transforms the file 
X.HS6 into the file X.CMD with the proper header record: 

gencmd x code[ a40] data[ m30,xfff] 

In this case, the code group is forced to paragraph address 
40H, or equivalently, byte address 400H. The data group 
requires a minimum of 300H bytes, but can use up to OFFFOH 
bytes, if available. 

Assuming a file Y. HS6 exists on drive B containing Intel hex 
records with no interspersed segment information, the 
command 

gencmd b:y data[b30,m20] extra[b50] stack[m40] 

produces the file Y.CMD on drive B by selecting records 
beginning at address OOOOH for the code segment, with 
records starting at 300H allocated to the data segment. The 
extra segment is filled from records beginning at 500H, while 
the stack segment is an uninitialized area requiring a 
minimum of 400H bytes. In this example, the data area 
requires a minimum of 200H bytes. Note again, that the B 
value need not be included if the Digital Research ASM-S6 
assembler is used. 

C-7 



Command (CMD) File Format 

C-8 

The CMD file produced by GENCMD consists of the 128-byte 
header record followed immediately by the memory image. 
Under normal circumstances, the format of the header record 
is of no consequence to a programmer. For completeness, 
however, the various fields of this record are shown below. 

<---- 128 Bytes ----> 

GD#l GD#2 GD#3 GD#4 
Code, 

Data, 
Extra, 

Stack 

CMD File Header Format 

In the figure above, GD#l through GD#4 represent "Group 
Descriptors." Each Group Descriptor corresponds to an 
independently loaded program unit and has the following 
fields: 

8-bit 16-bit 16-bit 
G-Form G-Length A-Base 

16-bit 
G-Min 

16-bit 
G-Max 

where G-Form describes the group format, or has the value 
zero if no more descriptors follow. IfG-Form is non-zero, then 
the 8-bit value is parsed as two fields: 

G-Form: 
4-bit 4-bit 

x x x x G-Type 



The G-Type field determines the Group Descriptor type. The 
valid Group Descriptors have a G-Type in the range 1 through 
4, as shown in the table below. 

Group Descriptors 

G-Type 

1 
2 
3 
4 

5-14 

Group Type 

Code Group 
Data Group 
Extra Group 
Stack Group 
Unused,but Reserved 

All remaining values in the Group Descriptor are given in 
increments of 16-byte paragraph units with an assumed 
low-order 0 nibble to complete the 20-bit address. G-Length 
gives the number of paragraphs in the group. Given a 
G-Length of0080H, for example, the size of the group is 
00800H = 2048D bytes. A-Base defines the base paragraph 
address for a non-relocatable group while G-Min and G-Max 
define the minimum and maximum size of the memory area to 
allocate to the group. 

The memory model described by a header record is impliCitly 
determined by the Group Descriptors. The 8080 Memory 
Model is assumed when only a code group is present, since no 
independent data group is named. The Small Model is implied 
when both a code and data group are present, but no 
additional Group Descriptors occur. Otherwise, the Compact 
Model is assumed when the CMD file is loaded. 

C-9 



C-10 



APPENDIX D. BASIC DISK OPERATING 
SYSTEM (BDOS) FUNCTIONS 

BDOS Parameters and Function Codes. . . . . . . . .. D-3 
Simple BDOS Calls .................... D-5 
BDOS File Operations ................. D-ll 
BDOS Memory Management and Load .... D-33 

D-l 



D-2 



Basic Disk Operating System (BDOS) 
Functions 

This section presents the interface conventions which allow 
transient program access to CP/M-86 BDOS and BIOS 
functions. The BDOS calls correspond closely to CP/M-80 
Version 2 in order to simplify translation of existing CP/M-80 
programs for operation under CP/M-86. BDOS entry and exit 
conditions are described first, followed by a presentation of the 
individual BDOS function calls. 

BDOS Parameters and Function Codes 

Entry to the BDOS is accomplished through the 8086 software 
interrupt #224, which is reserved by Intel Corporation for use 
by CP/M-86. The function code is passed in register CL with 
byte parameters in DL and word parameters in DX. Single 
byte values are returned in AL, word values in both AX and 
BX, and double word values in ES and BX. All segment 
registers, except ES, are saved upon entry and restored upon 
exit from the BDOS (corresponding to PLlM-86 conventions). 
The table below summarizes input and output parameter 
passing. 

BDOS Parameter Summary 

BDOS Entry Registers 

CL Function Code 
DL Byte Parameter 
DX Word Parameter 
DS Data Segment 

BDOS Return Registers 

Byte value returned in AL 
Word value returned in both AX 

andBX 
Double-word value returned with 

offset in BX and segment in ES 

Note that the CP/M-80 BDOS requires an "information 
address" as input to various functions. This address usually 
provides buffer or File Control Block information used in the 
system call. In CP/M-86, however, the information address is 
derived from the current DS register combined with the offset 
given in the DX register. That is, the DX register in CP/M-86 
performs the same function as the DE pair in CP/M-80, with 
the assumption that DS is properly set. This poses no 

D-3 



D-4 

particular problem for programs which use only a single data 
segment (as is the case for programs converted from CP/M-80), 
but when the data group exceeds a single segment, you must 
ensure that the DS register is set to the segment containing the 
data area related to the call. It should also be noted that zero 
values are returned for function calls which are out-of-range. 

A list ofCP/M-86 calls is given below with an asterisk 
following functions which differ from or are added to the set of 
CP/M-80 Version 2 functions. 

CP/M-86 BDOS Functions 

F# Result F# Result 

0* System Reset 24 Return Login Vector 
1 Console Input 25 Return Current Disk 
2 Console Output 26 Set DMA Address 
3 Reader Input 27* Get Addr(Alloc) 
4 Punch Output 28 Write Protect Disk 
5 List Output 29 Get Addr(R/O Vector) 
6* Direct Console I/O 30 Set File Attributes 
7 Get I/O Byte 31 * Get Addr(Disk Parms) 
8 Set I/O Byte 32 Set/Get User Code 
9 Print String 33 Read Random 

10 Read Console Buffer 34 W ri te Random 
11 Get Console Status 35 Compute File Size 
12 Return Version 36 Set Random Record 

Number 37* Reset Drive 
13 Reset Disk System 40 Write Random With Zero Fill 
14 Select Disk 50* Direct BIOS Call 
15 Open File 5 1 * Set DMA Segment Base 
16 Close File 52* Get DMA Segment Base 
17 Search for First 53* Get Max Memory Available 
18 Search for Next 54 * Get Max Mem at Abs Location 
19 Delete File 55* Get Memory Region 
20 Read Sequential 56* Get Absolute Memory Region 
21 Write Sequential 57* Free Memory Region 
22 Make File 58* Free All Memory 
23 Rename File 59* Program Load 

The individual BDOS functions are described below in three 
sections which cover the simple functions, file operations, and 
extended operations for memory management and program 
loading. 



Simple BDOS Calls 

The first set ofBDOS functions cover the range 0 through 12, 
and perform simple functions such as system reset and single 
character I/O. 

Function 0: System Reset 

Entry Return 

CL: OOH (none) 

DL: Abort 
Code 

The System Reset Function returns control to the CP/M 
operating system at the CCP command level. The abort code 
in DL has two possible values: ifDL = OOH then the currently 
active program is terminated and control is returned to the 
CCP; ifDL is a 01H, the program remains in memory and the 
memory allocation state remains unchanged. 

Function 1: Console Input 

Entry Return 

CL: OlH AL: ASCII Character 

The Console Input function reads the next character from the 
logical console device (CONSOLE) to register AL. Graphic 
characters, along with carriage return, line-feed, and 
backspace (Ctrl-H) are echoed to the console. Tab characters 
(Ctrl-I) are expanded in columns of eight characters. The 
BDOS does not return to the calling program until a character 
has been typed, thus suspending execution if a character is not 
ready. 

D-5 



D-6 

Function 2: Console Output 

Entry Return 

CL: 02H (none) 

DL: ASCII 
Character 

The ASCII character from DL is sent to the logical console. 
Tab characters expand in columns of eight characters. In 
addition, a check is made for start/stop scroll (Ctrl-S). 

Function 3: AXI: Input 

Entry Return 

CL: 03H AL: ASCII Character 

The AXI: Input function reads the next character from the 
logical AXI: device into register Ai. Control does not return 
until the character has been read. 

Function 4: AXO: Output 

Entry Return 

CL: 04H (none) 

DL: ASCII 
Character 

The AXO: Output function sends the character from register 
DL to the logical AXO: device. 



Function 5: List Output 

Entry Return 

CL: 05H (none) 

DL: ASCII 
Character 

The List Output function sends the ASCII character in register 
DL to the logical list device (LIST). 

Function 6: Direct Console 110 

Entry Return 

CL: 06H AL: char or status 

DL: OFFH (input/status) (no value) 
or 

OFEH (status) 
or 

char (output) 

Direct Console I/O is supported under CP/M-86 for those 
specialized applications where unadorned console input and 
output is required. Use of this function should, in general, be 
avoided since it bypasses all of CP/M-86's normal control 
character functions (e.g., Ctrl-S and Ctrl-P). Programs which 
perform direct I/O through the BIOS under previous releases 
of CP/M-80, however, should be changed to use direct I/O 
under the BDOS so that they can be fully supported under 
future releases of CP/M. 

Upon entry to Function 6, register DL either contains (1) a 
hexadecimal FF, denoting a CONSOLE input/status request, 
or (2) a hexadecimal FE, denoting a CONSOLE status request, 
or (3) an ASCII character to be output to CONSOLE where 
CONSOLE is the logical console device. If the input value is 
FF, then Function 6 checks to see if a character is ready. If a 
character is ready, Function 6 with FF returns the character; 
otherwise it returns a zero. You cannot use Function 6 with FF 
or FE in combination with Function 1 or Function 11. 
Function 6 must be used independently. 

D-7 



D-8 

The next console input character is returned in AL. If the 
input value is FE, then Function 6 returns Ai = 00 if no 
character is ready and Ai = FF otherwise. If the input value 
in Di is not FE or FF, then Function 6 assumes that Di 
contains a valid ASCII character which is sent to the console. 

Function 7: Get 110 Byte 

Entry Return 

CL: 07H Ai: I/O Byte Value 

The Get I/O Byte function returns the current value of 
IOBYTE in register AL. The IOBYTE contains the current 
assignments for the logical devices CONSOLE, READER. 
PUNCH, and LIST, provided the IOBYTE facility is 
implemented in the BIOS. 

Function 8: Set 110 Byte 

Entry Return 

CL: OSH (none) 

DL: I/O Byte 
Value 

The Set I/O Byte function changes the system IOBYTE value 
to that given in register DL. This function allows transient 
program access to the IOBYTE in order to modify the current 
assignments for the logical devices CONSOLE, READER, 
PUNCH, and LIST. 

Function 9: Print String 

Entry Return 

CL: 09H (none) 

DX: String 
Offset 



The Print String function sends the character string stored in 
memory at the location given by DX to the logical console 
device (CONSOLE), until a "$" is encountered in the string. 
Tabs are expanded as in Function 2, and checks are made for 
start/stop scroll and printer echo. 

Function 10: Read Console Buffer 

Entry Return 

CL: OAH Console Characters 

DX: Buffer in Buffer 
Offset 

The Read Buffer function reads a line of edited console input 
into a buffer addressed by register DX from the logical console 
device (CONSOLE). Console input is terminated when either 
the input buffer is filled or when a return (Ctrl-M) or a 
line-feed (Ctrl-J) character is entered. The input buffer 
addressed by DX takes the form: 

DX: +0+1+2+3+4+5+6+7+8 +n 
mx nc c 1 c2 c3 c4 c5 c6 c7 ?? 

where "mx" is the maximum number of characters which the 
buffer will hold, and "nc" is the number of characters placed in 
the buffer. 

The characters entered by the operator follow the "nc" value. 
The value "mx" must be set prior to making a Function lO call 
and may range in value from 1 to 255. Setting mx to zero is 
equivalent to setting mx to one. The value "nc" is returned to 
the user and may range from 0 to mx. If nc < mx, then 
uninitialized positions follow the last character, denoted by 
"??" in the above figure. Note that a terminating return or 
line-feed character is not placed in the buffer and not included 
in the count "nc". 

D-9 



D-10 

A number of editing control functions are supported during 
console input under Function 10. These are summarized in the 
table below. 

Keystroke 

Ctrl-C 
Ctrl-E 
Ctrl-H 
Ctrl-J 
Ctrl-M 
Ctrl-R 
Ctrl-U 
Ctrl-X 

Line Editing Controls 

Result 

reboots when at the beginning of line 
causes physical end of line 
backspaces one character position 
(line-feed) terminates input line 
(return) terminates input line 
retypes the current line after new line 
removes current line after new line 
backspaces to beginning of current line 

Certain functions which return the carriage to the leftmost 
position (e.g., CtrI-X) do so only to the column position 
where the prompt ended. This convention makes operator data 
input and line correction more legible. 

Function 11: Get Console Status 

Entry Return 

CL: OBH AL: Console Status 

The Console Status function checks to see if a character has 
been typed at the logical console device (CONSOLE). If a 
character is ready, the value 01H is returned in register Ai. 
Otherwise a OOH value is returned. 

Function 12: Return Version Number 

Entry Return 

CL: OCH BX: Version Number 



Function 12 provides information which allows version 
independent programming. A two-byte value is returned, 
with BH = 00 designating the CP/M release and BL = 00 for 
all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 
20 in register BL, with subsequent Version 2 releases in the 
hexadecimal range 21,22, through 2F. To provide version 
number compatibility, the initial release of CP/M-86 returns a 
2.2. 

BDOS File Operations 

Functions 12 through 52 are related to disk file operations 
under CP/M-86. In many of these operations, DX provides the 
DS-relative offset to a file control block (FCB). The File 
Control Block (FCB) data area consists of a sequence of 33 
bytes for sequential access, or a sequence of 36 bytes in the case 
that the file is accessed randomly. The default file control 
block normally located at offset 005CH from the DS register 
can be used for random access files, since bytes 007DH, 
007EH, and 007FH are available for this purpose. Here is the 
FCB format, followed by definitions of each of its fields: 

dr fl f2 / / f8 tl t2 t3 ex s 1 s2 rc dO /I dn cr rO rl r2 
0001 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35 

where 

dr 

f1. .. f8 

tl,t2,t3 

drive code (0-16) 
0-> use default drive for file 
1 - > auto disk select drive A, 
2 -> auto disk select drive B, 

16-> auto disk select drive P. (Note that 
CP/M-86 on the IBM Personal Computer 
supports drives 0-4, corresponding to A-D.) 

contain the file name in ASCII upper case, with 
high bit = 0 

contain the file type in ASCII 
upper-case, with high-bit = 0 
tl', t2', and t3' denote the high
bit of these positions, 
tl' = 1 - > Read/Only file, 
t2' = 1 - > SYS file, no DIR list 

D-l1 



D-12 

ex 

sl 

s2 

rc 

dO ... dn 

cr 

rO,rl,r2 

contains the current extent number, normally 
set to 00 by the user, but in range 0-31 during 
file I/O 

reserved for internal system use 

reserved for internal system use, set to zero on 
call to OPEN, MAKE, SEARCH 

record count for extent "ex," takes on values 
from 0-128 

filled-in by CP/M, reserved for system use 

current record to read or write in a sequential 
file operation, normally set to zero by user 

optional random record number in the range 
0-65535, with overflow to r2, rO,rl constitute 
a 16-bit value with low byte rO, and high byte 
rl 

For users of earlier versions of CP/M, it should be noted that 
both CP/M Version 2 and CP/M-86 perform directory 
operations in a reserved area of memory that does not affect 
write buffer content, except in the case of Search and Search 
Next where the directory record is copied to the current DMA 
address. 

There are three error situations that the BDOS may encounter 
during file processing, initiated as a result of a BDOS File I/O 
function call. When one of these conditions is detected, the 
BDOS issues a message of the following form: 

BDOS ERR ON x: error 

where x is the drive name of the drive selected when the error 
condition is detected, and "error" is one of the three messages: 

BAD SECTOR SELECT R/O 

These error situations are trapped by the BDOS, and thus the 
executing transient program is temporarily halted when the 
error is detected. No indication of the error situation is 
returned to the transient program. 



The "BAD SECTOR" error is issued as the result of an error 
condition returned to the BOOS from the BIOS module. The 
BOOS makes BIOS sector read and write commands as part of 
the execution of BOOS file-related system calls. If the BIOS 
read or write routine detects a hardware error, it returns an 
error code to the BOOS resulting in this error message. The 
operator may respond to this error in two ways: a Ctrl-C 
terminates the executing program. 

The "SELECT" error is also issued as the result of an error 
condition returned to the BOOS from the BIOS module. The 
BOOS makes a BIOS disk select call prior to issuing any BIOS 
read or write to a particular drive. If the selected drive is not 
supported in the BIOS module, it returns an error code to the 
BOOS resulting in this error message. CP/M-86 terminates 
the currently running program and returns to the command 
level of the CCP following any input from the console. 

The "RIO" message occurs when the BOOS receives a 
command to write to a drive that is in Read-Only status. 
Drives may be placed in Read-Only status explicitly as the 
result of a STAT command or BOOS function call, or 
implicitly if the BOOS detects that a diskette has been 
changed without performing a "warm start." The ability to 
detect changed media is optionally included in the BIOS, and 
exists only if a checksum vector is included for the selected 
drive. Upon entry of any character at the keyboard, the 
transient program is terminated, and control returns to the 
CCP. 

Function 13: Reset Disk System 

Entry Return 

CL: OOH (none) 

The Reset ~isk function is used to programmatically restore 
the file system to a reset state where all disks are set to 
ReadlWrite (see functions 28 and 29); only disk drive A is 
selected. This function can be used, for example, by an 
application program which requires disk changes during 
operation. Function 37 (Reset Drive) can also be used for this 
purpose. 

D-13 



D-14 

Function 14: Select Disk 

Entry Return 

CL: OEH (none) 

DL: Selected 
Disk 

The Select Disk function designates the disk drive named in 
register DL as the default disk for subsequent file operations, 
with DL = 0 for drive A, 1 for drive B, and so forth through 
15 corresponding to drive P in a full 16-drive system. In 
addition, the designated drive is logged-in if it is currently in 
the reset state. Logging-in a drive places it in "on-line" status 
which activates the drive's directory until the next cold start, 
warm start, disk system reset, or drive reset operation. FCB's 
that specify drive code zero (dr = OOH) automatically 
reference the currently selected default drive. Drive code 
values between 1 and 16, however, ignore the selected default 
drive and directly reference drives A through P. 

Function 15: Open File 

Entry Return 

CL: OFH AL: Return Code 

DX: FCB 
Offset 

The Open File function is used to activate an FCB specifying a 
file which currently exists in the disk directory for the 
currently active user number. The BDOS scans the disk 
directory of the drive specified by byte 0 of the FCB referenced 
by DX for a match in positions 1 through 12 of the referenced 
FCB, where positions 1-8 specify the filename, positions 9-11 
specify the filetype, and position 12 specifies the extent. 
Normally, the extent byte is set to zero. 



If a directory element is matched, the relevant directory 
information is copied into bytes dO through dn of the FCB, 
thus allowing access to the files through subsequent read and 
write operations. Note that an existing file must not be 
accessed until a successful open operation is completed. 
Further, an FCB not activated by either an open or make 
function must not be used in BDOS read or write commands. 
Upon return, the open function returns a "directory code" 
with the value 0 through 3 if the open was successful, or OFFH 
(255 decimal) if the file cannot be found. With the exception 
of the BDOS search functions, Directory Code values (0-3) 
have no significance other than to indicate a successful result. 
However, for the search functions, a successful Directory Code 
identifies the relative starting position of the directory element 
in the calling process's current DMA buffer. Note that the 
current record ("cr") must be zeroed by the program if the file 
is to be accessed sequentially from the first record. 

Function 16: Close File 

Entry Return 

CL: 10H AL: Return Code 

DX: FCB 
Offset 

The Close File function performs the inverse of the Open File 
function. Given that the FCB addressed by DX has been 
previously activated through an Open or Make function (see 
functions 15 and 22), the Close function permanently records 
the new FCB in the referenced disk directory. The FCB 
matching process for the close is identical to the Open 
function. The directory code returned for a successful close 
operation is 0, 1,2, or 3, while a OFFH (255 decimal) is 
returned if the file name cannot be found in the directory. A 
file need not be closed if only read operations have taken place. 
If write operations have occurred, however, the close operation 
is necessary to permanently record the new directory 
information. 

D-15 



D-16 

Function 17: Search For First 

Entry Return 

CL: IlH AL: Directory 

DX: FCB 
Offset 

Code 

Search for First scans the directory for a match with the file 
given by the FCB addressed by DX. The value 255 
(hexadecimal FF) is returned if the file is not found, otherwise 
0, 1, 2, or 3 is returned indicating the file is present. In the 
case that the file is found, the buffer at the current DMA 
address is filled with the record containing the directory entry, 
and its relative starting position is AL * 32 (i.e., rotate the AL 
register left 5 bits). Although not normally required for 
application programs, the directory information can be 
extracted from the buffer at this position. 

An ASCII question mark (63 decimal, 3F hexadecimal) in any 
position from "£1" through "ex" matches the corresponding 
field of any directory entry on the default or auto-selected disk 
drive. If the "dr" field contains an ASCII question mark, then 
the auto disk select function is disabled, the default disk is 
searched, with the search function returning any matched 
entry, allocated or free, belonging to any user number. This 
latter function is not normally used by application programs, 
but does allow complete flexibility to scan all current directory 
values. If the "dr" field is not a question mark, the "s2" byte is 
automatically zeroed. 



Function 18: Search For Next 

Entry Return 

CL: 12H AL: Directory 
Code 

The Search for Next function is similar to the Search for First 
function, except that the directory scan continues from the last 
matched entry. Similar to Function 17, Function 18 returns 
the decimal value 255 in A when no more directory items 
match. In terms of execution sequence, a Function 18 call 
must follow either a Function 17 or Function 18 call with no 
other intervening BDOS disk-related function calls. 

Function 19: Delete File 

Entry Return 

CL: 13 H AL: Return Code 

DX: FCB 
Offset 

The Delete File function removes files which match the FCB 
addressed by DX. The filename and type may contain 
ambiguous references (i.e., question marks in various 
positions), but the drive select code cannot be ambiguous, as 
in the Search for First and Search for Next functions. Function 
19 returns a OFFH (decimal 255) if the referenced file or files 
cannot be found, otherwise a value of zero is returned. 

Function 20: Read Sequential 

Entry Return 

CL: 14H AL: Return Code 

DX: FCB 
Offset 

Given that the FCB addressed by DX has been activated 
through an open or make function (numbers 15 and 22), the 
Read Sequential function reads the next 128-byte record from 
the file into memory at the current DMA address. The record 

D-17 



D-18 

is read from position "cr" of the extent, and the "cr" field is 
automatically incremented to the next record position. If the 
"cr" field overflows then the next logical extent is 
automatically opened and the "cr" field is reset to zero in 
preparation for the next read operation. The "cr" field must be 
set to zero following the open call by the user if the intent is to 
read sequentially from the beginning of the file. The value 
OOH is returned in the AL register if the read operation was 
successful, while a value of 0 IH is returned if no data exists at 
the next record position of the file. Normally, the no data 
situation is encountered at the end of a file. However, it can 
also occur if an attempt is made to read a data block which has 
not been previously written, or an extent which has not been 
created. These situations are usually restricted to files created 
or appended by use of the BDOS Write Random commmand 
(Function 34). 

Function 21 : Write Sequential 

Entry Return 

CL: 15 H AL: Return Code 

DX: FCB 
Offset 

Given that the FCB addressed by DX has been activated 
through an open or make function (numbers 15 and 22), the 
Write Sequential function writes the 128-byte data record at 
the current DMA address to the file named by the FCB. The 
record is placed at position "cr" of the file, and the "cr" field is 
automatically incremented to the next record position. If the 
"cr" field overflows then the next logical extent is 
automatically opened and the "cr" field is reset to zero in 
preparation for the next write operation. Write operations can 
take place into an existing file, in which case newly written 
records overlay those which already exist in the file. The "cr" 
field must be set to zero following an open or make call by the 
user if the intent is to write sequentially from the beginning of 
the file. Register AL = OOH upon return from a successful 
write operation, while a non-zero value indicates an 
unsuccessful write due to one of the following conditions: 



01 No available directory space-This condition occurs when 
the write command attempts to create a new extent that 
requires a new directory entry and no available directory 
entries exist on the selected disk drive. 

02 No available data block-This condition is encountered 
when the write command attempts to allocate a new data 
block to the file and no unallocated data blocks exist on 
the selected disk drive. 

Function 22: Make File 

Entry Return 

CL: 16H AL: Return Code 

DX: FCB 
Offset 

The Make File operation is similar to the Open File operation 
except that the FCB must name a file which does not exist in 
the currently referenced disk directory (i.e., the one named 
explicitly by a non-zero "dr" code, or the default disk if"dr" is 
zero). The BDOS creates the file and initializes both the 
directory and main memory value to an empty file. The 
programmer must ensure that no duplicate filenames occur, 
and a preceding delete operation is sufficient if there is any 
possibility of duplication. Upon return, register A = 0, 1, 2, 
or 3 if the operation was successful and OFFH (255 decimal) if 
no more directory space is available. The Make function has 
the side-effect of activating the FCB and thus a subsequent 
open is not necessary. 

0-19 



D-20 

Function 23: Rename File 

Entry Return 

CL: I7H AL: Return Code 

ox: FCB 
Offset 

The Rename File function uses the FCB addressed by OX to 
change all directory entries of the file specified by the filename 
in the first 16 bytes of the FCB to the filename in the second 16 
bytes. It is the user's responsibility to ensure that the filenames 
specified are valid CP/M unambiguous filenames. The drive 
code "dr" at position 0 is used to select the drive, while the 
drive code for the new filename at position 16 of the FCB is 
ignored. Upon return, register AL is set to a value of zero if the 
rename was successful, and OFFH (255 decimal) if the first 
filename could not be found in the directory scan. 

Function 24: Return Login Vector 

Entry Return 

(none) BX: Login Vector 

The login vector value returned by CP/M-86 is a I6-bit value 
in BX, where the least significant bit corresponds to the first 
drive A, and the high-order bit corresponds to the sixteenth 
drive, labelled P. A "0" bit indicates that the drive is not 
on-line, while a "1" bit marks a drive that is actively on-line 
due to an explicit disk drive selection, or an implicit drive 
select caused by a file operation which specified a non-zero "dr" 
field. 

Function 25: Return Current Disk 

Entry Return 

CL: I9H AL: Current ~isk 

Function 25 returns the currently selected default disk number 
;n register Ai. The disk numbers range from 0 through 15 
corresponding to drives A through P. 



Function 26: Set DMA Address 

Entry Return 

CL: 1AH (none) 

DX: DMA 
Offset 

"DMA" is an abbreviation for Direct Memory Address, which 
is often used in connection with disk controllers which directly 
access the memory of the mainframe computer to transfer data 
to and from the disk subsystem. Although many computer 
systems use non-DMA access (i.e., the data is transferred 
through programmed I/O operations), the DMA address has, 
in CP/M, come to mean the address at which the 128-byte 
data record resides before a disk write and after a disk read. In 
the CP/M-86 environment, the Set DMA function is used to 
specify the offset of the read or write buffer from the current 
DMA base. Therefore, to specify the DMA address, both a 
Function 26 call and a Function 51 call are required. Thus, the 
DMA address becomes the value specified by DX plus the 
DMA base value until it is changed by a subsequent Set DMA 
or Set DMA base function. 

Function 27: Get ADDR (ALLOC) 

Entry Return 

CL: 1BH BX: ALLOC Offset 

ES: Segment Base 

An "allocation vector" is maintained in main memory for each 
on-line disk drive. Various system programs use the 
information provided by the allocation vector to determine the 
amount of remaining storage (see the STAT program). 
Function 27 returns the segment base and the offset address of 
the allocation vector for the currently selected disk drive. The 
allocation information may, however, be invalid if the selected 
disk has been marked Read/Only. 

D-21 



D-22 

Function 28: Write Protect Disk 

Entry Return 

CL: lCH (none) 

The Write Protect Disk function provides temporary write 
protection for the currently selected disk. Any attempt to 
write to the disk, before the next cold start, warm start, disk 
system reset, or drive reset operation produces a message of the 
following form: 

Bdos Err on d: R/O 

Function 29: Get Read/Only Vector 

Entry Return 

CL: IDH BX: R/O Vector Value 

Function 29 returns a bit vector in register BX which indicates 
drives which have the temporary read/only bit set. Similar to 
Function 24, the least significant bit corresponds to drive A, 
while the most significant bit corresponds to drive P. The R/O 
bit is set either by an explicit call to Function 28, or by the 
automatic software mechanisms within CP/M-86 which detect 
changed disks. 

Function 30: Set File Attributes 

Entry Return 

CL: lEH AL: Return Code 

DX: FCB 
Offset 

The Set File Attributes function allows programmatic 
manipulation of permanent indicators attached to files. In 
particular, the R/O, System and Archive attributes (tl', t2', 
and t3') can be set or reset. The DX pair addresses an FCB 
containing a filename with the appropriate attributes set or 
reset. It is the user's responsibility to ensure that an 
ambiguous filename is not specified. Function 30 searches the 
default disk drive directory area for directory entries that 



belong to the current user number and that match the FCB 
specified name and type fields. All matching directory entries 
are updated to contain the selected indicators. Indicators fl' 
through f4' are not presently used, but may be useful for 
applications programs, since they are not involved in the 
matching process during file open and close operations. 
Indicators f5' through f8' are reserved for future system 
expansion. The currently assigned attributes are defined as 
follows: 

t 1': The RIO attribute indicates if set that the file is in 
ReadlOnly status. BDOS will not allow write commands 
to be issued to files in RIO status. 

t2': The System attribute is referenced by the CPIM DIR 
utility. If set, DIR will not display the file in a directory 
display. 

t3': The Archive attribute is reserved but not actually used by 
CP/M-86. If set it indicates that the file has been written 
to back up storage by a user-written archive program. To 
implement this facility, the archive program sets this 
attribute when it copies a file to back up storage; any 
programs updating or creating files reset this attribute. 
Further, the archive program backs up only those files that 
have the Archive attribute reset. Thus, an automatic 
back-up facility restricted to modified files can be easily 
implemented. 

Function 30 returns with register Ai set to OFFH (255 
decimal) if the referenced file cannot be found, otherwise a 
value of zero is returned. 

Function 31: Get ADDR (Disk Parms) 

Entry Return 

Cl: IFH BX: DPB Offset 

ES: Segment Base 

The offset and the segment base of the BIOS resident disk 
parameter block of the currently selected drive are returned in 
BX and ES as a result of this function call. This control block 
can be used for either of two purposes. First, the disk 
parameter values can be extracted for display and space 

D-23 



D-24 

computation purposes, or transient programs can dynamically 
change the values of current disk parameters when the disk 
environment changes, if required. A disk parameter block has 
r!l.e following form: 

SPT ! BSH!BLM\EXM! DSM DRM I ALO I AL 1\ CKS OFF 

I6b 8b 8b 8b I6b 16b 8b 8b 16b 16b 

The disk parameter block fields are defined in the table below. 

Field 

SPT 
BSH 
BLM 
EXM 
DSM 
DRM 
ALD, ALI 
CKS 
OFF 

Disk Parameter Block Fields 

Description 

is the total number of sectors per track 
determines data block allocation size 
mask used by operating system 
mask used by operating system 
total storage capacity of disk drive 
total number of directory entries 
reserved directory allocation blocks 
size of directory check vectors 
is the number of reserved tracks at the beginning of 
the logical disk 

Normally, application programs will not require this facility. 

Function 32: SetlGet User Code 

Entry Return 

CL: 20H AL: Current Code 

DL: OFFH(get) 
or 
User Code (set) 

or no value 



An application program can change or interrogate the 
currently active user number by calling Function 32. If 
register DL = OFFH, then the value of the current user 
number is returned in register AL, where the value is in the 
range 0 to 15. If register DL is not OFFH, then the current 
user number is changed to the value of DL (modulo 16). 

Function 33: Read Random 

Entry Return 

CL: 21H AL: Return Code 

DX: FCB 
Offset 

The Read Random function is similar to the sequential file 
read operation of previous releases, except that the read 
operation takes place at a particular record number, selected by 
the 24-bit value constructed from the three-byte field 
following the FCB (byte positions rO at 33, rl at 34, and r2 at 
35). Note that the sequence of 24 bits is stored with least 
significant byte first (rO), middle byte next (rl), and high byte 
last (r2). CP/M does not reference byte r2, except in 
computing the size of a file (Function :3 5). Byte r2 must be 
zero, however, since a non-zero value indicates overflow past 
the end of file. 

Thus, the rO,rl byte pair is treated as a double-byte, or 
"word" value, which contains the record to read. This value 
ranges from 0 to 65535, providing access to any particular 
record of any size file. In order to access a file using the Read 
Random function, the base extent (extent 0) must first be 
opened. Although the base extent mayor may not contain any 
allocated data, this ensures that the FCB is properly initialized 
for subsequent random access operations. The selected record 
number is then stored into the random record field (rO'rl)' and 
the BDOS is called to read the record. Upon return from the 
call, register AL either contains an error code, as listed below, 
or the value 00 indicating the operation was successful. In the 
latter case, the buffer at the current DMA address contains the 
randomly accessed record. Note that contrary to the sequential 
read operation, the record number is not advanced. Thus, 
subsequent random read operations continue to read the same 
record. 

D-25 



D-26 

Dpon each random read operation, the logical extent and 
current record values are automatically set. Thus, the file can 
be sequentially read or written, starting from the current 
randomly accessed position. Note, however, that in this case, 
the last randomly read record will be reread as you switch from 
random mode to sequential read, and the last record will be 
rewritten as you switch to a sequential write operation. You 
can, of course, simply advance the random record position 
following each random read or write to obtain the effect of a 
sequential I/O operation. 

Error codes returned in register Ai following a random read 
are lIsted in the table below. 

Function 33-Read Random Error Codes 

Code Meaning 

01 Reading unwritten data-This error code is returned 
when a random read operation accesses a data block 
which has not been previously written. 

02 (not returned by the Random Read command) 

03 Cannot close current extent-This error code is 
returned when BDOS cannot close the current extent 
prior to moving to the new extent containing the 
record specified by bytes rO,r1 of the FCB. This error 
can be caused by an overwritten FeB or a read random 
operation on an FCB that has not been opened. 

04 Seek to unwritten extent-This error code is returned 
when a random read operation accesses an extent that 
has not been created. This error situation is equivalent 
to error 01. 

05 (not returned by the Random Read command) 

06 Random record number out of range-This error code 
is returned whenever byte r2 of the FeB is non-zero. 

Normally, non-zero return codes can be treated as missing 
data, with zero return codes indicating operation complete. 



Function 34: Write Random 

Entry Return 

CL: 22H AL: Return Code 

DX: FCB 
Offset 

The Write Random operation is initiated similar to the Read 
Random call, except that data is written to the disk from the 
current DMA address. Further, if the disk extent or data block 
which is the target of the write has not yet been allocated, the 
allocation is performed before the write operation continues. 
As in the Read Random operation, the random record number 
is not changed as a result of the write. The logical extent 
number and current record positions of the file control block 
are set to correspond to the random record which is being 
written. Sequential read or write operations can commence 
following a random write, with the note that the currently 
addressed record is either read or rewritten again as the 
sequential operation begins. You can also simply advance the 
random record position following each write to get the effect of 
a sequential write operation. In particular, reading or writing 
the last record of an extent in random mode does not cause an 
automatic extent switch as it does in sequential mode. 

In order to access a file using the Write Random function, the 
base extent (extent 0) must first be opened. As in the Read 
Random function, this ensures that the FCB is properly 
initialized for subsequent random access operations. If the file 
is empty, a Make File function must be issued for the base 
extent. Although the base extent mayor may not contain any 
allocated data, this ensures that the file is properly recorded in 
the directory, and is visible in DIR requests. 

Upon return from a Write Random call, register AL either 
contains an error code, as listed below, or the value 00 
indicating the operation was successful. 

D-27 



D-28 

Function 34-Write Random Error Codes 

Code Meaning 

01 (not returned by the Random Write command) 

02 No available data block-This condition is 
encountered when the Write Random command 
attempts to allocate a new data block to the file and no 
unallocated data blocks exist on the selected disk 
drive. 

03 Cannot close current extent-This error code is 
returned when BDOS cannot close the current extent 
prior to moving to the new extent containing the 
record specified by bytes rO, r 1 of the FCB. This error 
can be caused by an overwritten FCB or a write 
random operation on an FCB that has not been 
opened. 

04 (not returned by the Random Write command) 

05 No available directory space-This condition occurs 
when the write command attempts to create a new 
extent that requires a new directory entry and no 
available directory entries exist on the selected disk 
drive. 

06 Random record number out of range-This error code 
is returned whenever byte r2 of the FCB is non-zero. 

Function 35: Compute File Size 

Entry Return 

CL: 23 H Random Record 
Field Set 

DX: FCB 
Offset 

When computing the size of a file, the DX register addresses 
an FCB in random mode format (bytes rO, rl, and r2 are 
present). The FCB contains an unambiguous filename which is 
used in the directory scan. Upon return, the random record 
bytes contain the "virtual" file size which is, in effect, the 
record address of the record following the end of the file. If, 



following a call to Function 35, the high record byte r2 is 01, 
then the file contains the maximum record count 65536. 
Otherwise, bytes rO and rl constitute a 16-bit value (rO is the 
least significant byte, as before) which is the file size. 

Data can be appended to the end of an existing file by simply 
calling Function 35 to set the random record position to the 
end of file, then performing a sequence of random writes 
starting at the preset record address. 

The virtual size of a file corresponds to the physical size when 
the file is·written sequentially. If, instead, the file was created 
in random mode and "holes" exist in the allocation, then the 
file may in fact contain fewer records than the size indicates. If, 
for example, a single record with record number 65535 
(CP/M's maximum record number) is written to a file using 
the Write Random function, then the virtual size of the file is 
65536 records, although only one block of data is actually 
allocated. 

Function 36: Set Random Record 

Entry Return 

CL: 24H Random Record 
Field Set 

DX: FCB 
Offset 

The Set Random Record function causes the BDOS to 
automatically produce the random record position of the next 
record to be accessed from a file which has been read or written 
sequentially to a particular point. The function can be useful 
in two ways. 

First, it is often necessary to initially read and scan a sequential 
file to extract the positions of various "key" fields. As each key 
is encountered, Function 36 is called to compute the random 
record position for the data corresponding to this key. If the 
data unit size is 128 bytes, the resulting record position minus 
one is placed into a table with the key for later retrieval. After 
scanning the entire file and tabularizing the keys and their 
record numbers, you can move instantly to a particular keyed 
record by performing a random read using the corresponding 
random record number which was saved earlier. The scheme is 
easily generalized when variable record lengths are involved 

D-29 



D-30 

since the program need only store the buffer-relative byte 
position along with the key and record number in order to find 
the exact starting position of the keyed data at a later time. 

Second, you can use Function 36 to switch from a sequential 
read or write over to random read or write. A file is 
sequentially accessed to a particular point in the file, Func"tion 
36 is called which sets the record number, and subsequent 
random read and write operations continue from the next 
record in the file. 

Function 37: Reset Drive 

Entry Return 

CL: 25H AL: OOH 
DX: Drive 

Vector 

The Reset Drive function is used to programmatically restore 
specified drives to the reset state (a reset drive is not logged-in 
and is in read/write status). The passed parameter in register 
DX is a 16-bit vector of drives to be reset, where the least 
significant bit corresponds to the first drive, A, and the 
high-order bit corresponds to the sixteenth drive, labelled P. 
Bit values of ''1'' indicate that the specified drive is to be reset. 
CP/M returns a zero value for this function. 

Function 40: Write Random With Zero Fill 

Entry Return 

CL: 28H AL: Return Code 

DX: FCB 
Offset 



The Write Random With Zero Fill function is similar to the 
Write Random function (Function 34) with the exception that 
a previously unallocated data block is initialized to records 
filled with zeros before the record is written. If this function 
has been used to create a file, records accessed by a read random 
operation that contain all zeros identify unwritten random 
record numbers. Unwritten random records in allocated data 
blocks of files created using the Write Random function 
contain uninitialized data. 

Function 50: Direct BIOS Call 

Entry Return 

CL: 32H (none) 

DX: BIOS 
Descriptor 

Function 50 provides a direct BIOS call and transfers control 
through the BDOS to the BIOS. The DX register addresses a 
five-byte memory area containing the BIOS call pararneters: 

8-bit 16-bit 16-bit 
Func value(CX) value(DX) 

where Func is a BIOS function number (see the table below), 
and value (CX) and value (DX) are the 16-bit values which 
would normally be passed directly in the CX and DX registers 
with the BIOS call. The CX and DX values are loaded into the 
8086 registers before the BIOS call is initiated. 

D-31 



BIOS Jump Vector 

Offset from 
Suggested BIOS Beginning Description 

of BIOS 
Instruction F# 

2500H ]MP INIT 0 Arrive Here from Cold 
Boot 

2503H ]MPWBOOT 1 Arrive Here for Warm 
Start 

2506H ]MPCONST 2 Check for Console 
Character Ready 

2509H ]MPCONIN 3 Read Console Character 
In 

250CH ]MPCONOUT 4 W rite Console Character 
Out 

250FH ]MPLIST 5 W ri te Listing Character 
Out 

2512H ]MPPUNCH 6 Write Char to Punch 
Device 

2515H ]MPREADER 7 Read Reader Device 
2518H ]MPHOME 8 Move to Track 00 
251BH ]MPSELDSK 9 Select Disk Drive 
251EH ]MPSETTRK 10 Set Track Number 
2521H ]MPSETSEC II Set Sector Number 
2524H ]MPSETDMA 12 Set DMA Offset Address 
2527H ]MPREAD 13 Read Selected Sector 
252AH ]MPWRITE 14 W rite Selected Sector 
252DH ]MPLISTST 15 Return List Status 
2530H ]MPSECTRAN 16 Sector Translate 
2533H ]MPSETDMAB 17 Set DMA Segment 

Address 
2536H ]MPGETSEGB 18 Get MEM DESC Table 

Offset 
2539H ]MPGETIOB 19 Get I/O Mapping Byte 
253CH ]MPSETIOB 20 Set I/O Mapping Byte 

D-32 



Function 51: Set DMA Base 

Entry Return 

CL: 33H (none) 

ox: Base Address 

Function 51 sets the base register for subsequent OMA 
transfers. The word parameter in OX is a paragraph address 
and is used with the OMA offset to specify the address of a 
128-byte buffer area to be used in the disk read and write 
functions. Note that upon initial program loading, the default 
OMA base is set to the address of the user's data segment (the 
initial value of OS) and the OMA offset is set to 0080H, which 
provides access to the default buffer in the base page. 

Function 52: Get DMA Base 

Entry Return 

CL: 34H BX: OMA Offset 

ES: OMA Segment 

Function 52 returns the current OMA Base Segment address in 
ES, with the current OMA Offset in OX. 

BDOS Memory Management and Load 

Memory is allocated in two distinct ways under CP/M-86. The 
first is through a static allocation map, located within the 
BIOS, that defines the physical memory which is available on 
the host system. In this way, it is possible to operate CP/M-86 
in a memory configuration which is a mixture of up to eight 
non-contiguous areas of RAM or ROM, along with reserved, 
missing, or faulty memory regions. In a simple RAM-based 
system with contiguous memory, the static map defines a 
single region, usually starting at the end of the BIOS and 
extending up to the end of available memory. 

D-33 



D-34 

Once memory is physically mapped in this manner, CP/M-86 
performs the second level of dynamic allocation to support 
transient program loading and execution. CP/M-86 allows 
dynamic allocation of memory into, again, eight regions. A 
request for allocation takes place either implicitly, through a 
program load operation, or explicitly through the BDOS calls 
given in this section. Programs themselves are loaded in two 
ways: through a command entered at the CCP level, or 
through the BDOS Program Load operation (Function 59). 
Multiple programs can be loaded at the CCP level, as long as 
each program executes a System Reset (Function 0) and 
remains in memory (DL = OlH). Multiple programs of this 
type receive control only by intercepting interrupts, and thus 
under normal circumstances there is only one transient 
program in memory at any given time. If, however, multiple 
programs are present in memory, then Ctrl-C characters 
entered by the operator delete these programs in the opposite 
order in which they were loaded no matter which program is 
actively reading the console. 

Any given program loaded through a CCP command can, 
itself, load additional programs and allocate data areas. 
Suppose four regions of memory are allocated in the following 
order: A, B, C, and D. A program is loaded at the CCP level 
through an operator command. The CMD file header is read, 
and the entire memory image consisting of the program and its 
data is loaded into region A, and execution begins. This 
program, in turn, calls the BDOS Program Load function (59) 
to load another program into region B, and transfers control to 
the loaded program. The region B program then allocates an 
additional region C, followed by a region D. The order of 
allocation is shown in the figure below: 

Region A 

Region B 

Region C 

Region D 

Example Memory Allocation 



There is a hierarchical ownership of these regions: the program 
in A controls all memory from A through D. The program in 
B also controls regions B through D. The program in A can 
release regions B through D, if desired, and reload yet another 
program. DDT-86, for example, operates in this manner by 
executing the Free Memory call (Function 57) to release the 
memory used by the current program before loading another 
test program. Further, the program in B can release regions C 
and D if required by the application. It must be noted, 
however, that if either A or B terminates by a System Reset 
(BDOS Function 0 with DL = OOH) then all four regions A 
through D are released. 

A transient program may release a portion of a region, 
allowing the released portion to be assigned on the next 
allocation request. The released portion must, however, be at 
the beginning or end of the region. Suppose, for example, the 
program in region B above receives 800H paragraphs at 
paragraph location lOOl-! fOllowi"ng its first allocation request. 
The result is as shown in the figure below. 

lOOOH: 

Length = 
8000H Region C 

Example Memory Region 

Suppose further that region D is then allocated. The last 200H 
paragraphs in region C can be returned without affecting 
region D by releasing the 200H paragraphs beginning at 
paragraph base 700H, resulting in the memory arrangement 
shown in the figure below. 

lOOOH: 
Length = 
6000H Region C 

Length = 7000H: 11111111111 
2000H 11111111111 

Example Memory Regions 

D-35 



D-36 

The region beginning at paragraph address 7000H is now 
available for allocation in the next request. Note that a 
memory request will fail if eight memory regions have already 
been allocated. Normally, if all program units can reside in a 
contiguous region, the system allocates only one region. 

Memory management functions beginning at 53 reference a 
Memory Control Block (MCB), defined in the calling 
program, which takes the form: 

MCB: 
16-bit 

M-Base 
16-bit 

M-Length 
8-bit 

M-Ext 

where M-Base and M-Length are either input or output values 
expressed in 16-byte paragraph units, and M-Ext is a returned 
byte value, as defined specifically with each function code. An 
error condition is normally flagged with a OFFH returned 
value in order to match the file error conventions of CP/M. 

Function 53: Get MAX MEM 

Entry Return 

CL: 35 H AL: Return Code 

DX: Offset 
ofMCB 

Function 53 finds the largest available memory region which is 
less than or equal to M-Length paragraphs. If successful, 
M -Base is set to the base paragraph address of the available 
area, and M-Length to the paragraph length. AL has the value 
OFFH upon return if no memory is available, and OOH if the 
request was successful. M-Ext is set to 1 if there is additional 
memory for allocation, and 0 if no additional memory is 
available. 



Function 54: Get ABS MAX 

Entry Return 

CL: 36H AL: Return Code 

DX: Offset 
ofMCB 

Function 54 is used to find the largest possible region at the 
absolute paragraph boundary given by M-Base, for a 
maximum ofM-Length paragraphs. M-Length is set to the 
actual length if successful. AL has the value OFFH upon return 
if no memory is available at the absolute address, and OOH if 
the request was successful. 

Function 55: ALLOC MEM 

Entry Return 

CL: 37H AL: Return Code 

DX: Offset 
ofMCB 

The Allocate Memory function allocates a memory area 
according to the MCB addressed by DX. The allocation 
request size is obtained from M-Length. Function 55 returns 
in the user's MCB the base paragraph address of the allocated 
region. Register AL contains a OOH if the request was 
successful and a OFFH if the memory could not be allocated. 

D-37 



D-38 

Function 56: ALLOC ABS MEM 

Entry Return 

CL: 38H AL: Return Code 

DX: Offset 
ofMCB 

The Allocate Absolute Memory function allocates a memory 
area according to the MCB addressed by DX. The allocation 
request size is obtained from M-Length and the absolute base 
address from M-Base. Register AL contains a OOH if the 
request was successful and a OFFH if the memory could not be 
allocated. 

Function 57: Free MEM 

Entry Return 

CL: 39H (none) 

DX: Offset 
ofMCB 

Function 57 is used to release memory areas allocated to the 
program. The value of the M-Ext field controls the operation 
of this function: if M-Ext = OFFH then all memory areas 
allocated by the calling program are released. Otherwise, the 
memory area of length M-Length at location M-Base given in 
the MCB addressed by DX is released (the M-Ext field should 
be set to OOH in this case). As described above, either an entire 
allocated region must be released, or the end of a region must 
be released; the middle section cannot be returned under 
CP/M-86. 

Function 58: Free All MEM 

Entry Return 

CL: 3AH (none) 

Function 58 is used to release all memory in the CP/M-86 
environment (normally used only by the CCP upon 
initialization). 



Function 59: 

Entry 

CL: 3BH 

DX: Offset 
ofFCB 

Program Load 

Return 

AX: Return Code/ 
Base Page Addr 

BX: Base Page Addr 

Function 59 loads a CMD file. Upon entry, register DX 
contains the DS relative offset of a successfully opened FCB 
which names the input CMD file. AX has the value OFFFFH if 
the program load was unsuccessful. Otherwise, AX and BX 
both contain the paragraph address of the base page belonging 
to the loaded program. The base address and segment length 
of each segment are stored in the base page. Note that upon 
program load at the CCP level, the DMA base address is 
initialized to the base page of the loaded program, and the 
DMA offset address is initialized to 0080H. However, this is a 
function of the CCP, and a Function 59 does not establish a 
default DMA address. It is the responsibility of the program 
which executes Function 59 to execute Function 51 to set the 
DMA base and Function 26 to set the DMA offset before 
passing control to the loaded program. 

D-39 



D-40 



Appendix E. Sample Random Access 
Program 

This appendix contains an extensive and complete example of 
random access operation. The program listed here performs the 
simple function of reading or writing random records upon 
command from the terminal. Given that the program has been 
created, assembled, and placed into a file labelled 
RANDOM.CMD, the command: 

RANDOM X.DAT 

starts the test program. The program looks for a file by the 
name X.DAT (in this particular case) and, if found, proceeds 
to prompt the console for input. If not found, the file is created 
before the prompt is given. Each prompt takes the form 

next command? 

and is followed by operator input, terminated by a carriage 
return. The input commands take the form 

nW nR Q 

where n is an integer value in the range 0 to 65535, and W, 
R, and Q are simple command characters corresponding to 
random write, random read, and quit processing, respectively. 
If the W command is issued, the RANDOM program issues 
the prompt 

type data: 

The operator then responds by typing up to 127 characters, 
followed by a carriage return. RANDOM then writes the 
character string into the X. DAT file at record n. If the R 
command is issued, RANDOM reads record number nand 
displays the string value at the console. If the Q command is 
issued, the X.DAT file is closed, and the program returns to 
the console command processor. The only error message is 

error, try again 

E-1 



E-2 

The program begins with an initialization section where the 
input file is opened or created, followed by a continuous loop 
at the label "ready" where the individual commands are 
interpreted. The default file control block at offset 005CH and 
the default buffer at offset 0080H are used in all disk 
operations. The utility subroutines then follow, which contain 
the principal input line processor, called "readc." This 
particular program shows the elements of random access 
processing, and can be used as the basis for further program 
development. In fact, with some work, this program could 
evolve into a simple data base management system. 

One could, for example, assume a standard record size of 128 
bytes, consisting of arbitrary fields within the record. A 
program, called GETKEY, could be developed which first 
reads a sequential file and extracts a specific field defined by the 
operator. For example, the command 

GETKEY NAMES.DAT LASTNAME 1020 

would cause GETKEY to read the data base file NAMES.DAT 
and extract the LASTNAME field from each record, starting at 
position 10 and ending at character 20. GET KEY builds a 
table in memory consisting of each particular LASTNAME 
field, along with its 16-bit record number location within the 
file. The GETKEY program then sorts this list, and writes a 
new file, called LASTNAME.KEY, which is an alphabetical 
list of LAST NAME fields with their corresponding record 
numbers. (This list is called an "inverted index" in 
information retrieval par lance. ) 

Rename the program shown above as QUERY, and enhance it 
a bit so that it reads a sorted key file into memory. The 
command line might appear as: 

QUERY NAMES. OAT LASTNAME.KEY 

Instead of reading a number, the QUERY program reads an 
alphanumeric string which is a particular key to find in the 
NAMES.DAT data base. Since the LASTNAME.KEY list is 
sorted, you can find a particular entry quite rapidly by 
performing a "binary search," similar to looking up a name in 
the telephone book. That is, starting at both ends of the list, 
you examine the entry halfway in between and, if not 
matched, split either the upper half or the lower half for the 
next search. You'll quickly reach the item you're looking for 
(in log2(n) steps) where you'll find the corresponding record 



number. Fetch and display this record at the console, just as 
we have done in the program shown above. 

At this point you're just getting started. With a little more 
work, you can allow a fixed grouping size which differs from 
the 128-byte record shown above. This is accomplished by 
keeping track of the record number as well as the byte offset 
within the record. Knowing the group size, you randomly 
access the record containing the proper group, offset to the 
beginning of the group within the record read sequentially 
until the group size has been exhausted. 

Finally, you can improve QUERY considerably by allowing 
boolean expressions which compute the set of records which 
satisfy several relationships, such as a LAST NAME between 
HARDY and LAUREL, and an AGE less than 45. Display all 
the records which fit this description. Finally, if your lists are 
getting too big to fit into memory, randomly access your key 
files from the disk as well. 

E-3 



tr'j 
I 

~ 

1- . · , 
2· .**************************************************************************************** · , 
3· .* * · , 
4: ;* Sample Random Access Program for CP/M-86 * 
5· .* · , * 
6· .**************************************************************************************** · , 
7· . · , 
8: ; BDOS Functions 
9· . · , 

10: coninp 
11: conout 
12: pstring 
13: rstring 
14: version 
15: openf 
16: closef 
17: makef 
18: readr 
19: writer 
20: ; 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

1 
2 
9 
10 
12 
15 
16 
22 
33 
34 

21: ; Equates for non graphic characters 
22: cr 
23: If 
24: ; 
25: ; 
26: ; 
27: ; 

equ Odh 
equ Oah 

load SP, ready file for random access 

;console input function 
;console output function 
;print string until '$' 
;read console buffer 
; return version number 
;file open function 
;close function 
;make file function 
; read random 
;write random 

;carriage return 
;Iine feed 



28: cseg 
29: pushf ;push flags in CCP stack 
30: pop ax ;save flags in AX 
31: cli ;disable interrupts 
32: mov bx,ds ;set SS register to base 
33: mov ss,bx ;set SS, SP with interrupt 
34: mov sp,offset stack for 8088 
35: push ax ; restore the flags 
36: popf 
37: ; 
38: ; CP/M-86 initial release returns the file 
39: ; system version number of 2.2: check is 
40: ; shown below for illustration purposes. 
41: ; 
42: mov cl,version 
43: call bdos 
44: cmp al,20h ;version 2.0 or later? 
45: jnb versok 
46: bad version, message and go back 
47: mov dx,offset badver 
48: call print 
49: imp abort 
50: ; 
51: versok: 
52: ; correct version for random access 
53: mov cl,openf ;open default fct 

tTl 
54: dx,offset fcb I mov VI 

S:;JxrON:;JddV 



tTj 55: call bdos 
I 

Cl\ 56: inc al ; err 255 becomes zero 
57: jnz ready 
58: ; 
59: ; cannot open file, so create it 
60: mov cl,makef 
61: mov dx,offset fcb 
62: call bdos 
63: inc al ; err 255 becomes zero 
64: jnz ready 
65: ; 
66: ; cannot create file, directory full 
67: mov dx,offset nospace 
68: call print 
69: jmp abort ;back to ccp 
70: ; 
71: ; loop back to "ready" after each command 
72: ; 
73: ready: 
74: ; file is ready for processing 
75: ; 
76: call readcom ; read next command 
77: mov ranrec,dx ;store input record# 
78: mov ranovf,Oh ;clear high byte if set 
79: cmp al,'O' ;quit? 
80: jnz notq 
81: ; 



rrl 
I 

-.....J 

82: ; 
83: 
84: 
85: 
86: 
87: 
88: 
89: ; 

quit processing, close file 
mov cl,closef 
mov dX,offset fcb 
call bdos 
inc 
jz 
jmps 

al 
error 
abort 

;err 255 becomes 0 
;error message, retry 
;back to ccp 

90: ; 
91: ; 
92: ; 
93: ; 

end of quit command, process write 

94: notq: 
95: ; 
96: 
97: 
98: ; 
99: ; 

100: 
101 : 
102: 
103: 
104: rloop: 
105: 
106: 
107: 
108: 

not the quit command, random write? 
cmp al,'W' 
jnz notw 

this is a random write, fill buffer until cr 
mov dx,offset datmsg 
call print 
mov cx,127 
mov bx,offset buff 
; read next character to buff 
push cx 
push bx 
call getchr 
pop bx 

;data prompt 
;up to 127 characters 
;destination 

;save loop control 
;next destination 
; character to AL 
;restore destination 

SlXION3:ddV 



~ 109: 
00 110: 

111: 
112: ; 
113: 
114: 
115: 
116: erloop: 
117: ; 
118: 
119: ; 
120: ; 
121 : 
122: 
123: 
124: 
125: 
126: 
127: ; 
128: ; 
129: ; 
130: ; 
131: ; 
132: ; 
133: notw: 
134: ; 
135: 

pop cx 
cmp al,cr 
jz erloop 
not end, store character 
mov byte ptr [bx],al 
inc bx 
loop rloop 

end of read loop, store 00 
mov byte ptr [bx],Oh 

; restore counter 
;end of line? 

;nextto fill 
;decrement cx .. loop if 

write the record to selected record number 
mov cl,writer 
mov dx,offset fcb 
call bdos 
or al,al ;error code zero? 
jz ready ;for another recor 
jmps error ;message if not 

end of write command, process read 

not a write command, read record? 
cmp al,'R' 



136: jz ranread 
137: jmps error ;skip if not 
138: ; 
139: ; read random record 
140: ranread: 
141 : mov cl,readr 
142: mov dx,offset fcb 
143: call bdos 
144: or al,al ;return code OO? 
145: jz readok 
146: imps error 
147: ; 
148: ; read was successful, write to console 
149: readok: 
150: call crlf ;new line 
151 : mov cx,128 ;max 128 characters 
152: mov si,offset buff ;next to get 
153: wloop: 
154: lods al ; next character 
155: and al,07fh ;mask parity 
156: inz wloop1 
157: jmp ready ;for another command if 
158: wloop1: 
159: push cx ;save counter 
160: push si ;save next to get 
161 : cmp al; , ;graphic? 

~ 162: jb skipw ;skip output if not graphic ~ 

SlXIONlddV 



tr1 
I 

163: call putchr ;output character 
,.... 

164: skipw: 0 
165: pop si 
166: pop cx 
167: loop wloop ;decrement CX and check 
168: jmp ready 
169: ; 
170: ; 
171: ; end of read command, all errors end-up here 
172: ; 
173: ; 
174: error: 
175: mov dx,offset errmsg 
176: call print 
177: imp ready 
178: ; 
179: ; BOOS entry subroutine 
180: bdos: 
181 : int 224 ; entry to BOOS if by INT 
182: ret 
183: ; 
184: abort: ; return to CCP 
185: mov cl,O 
186: call bdos ; use function 0 to end e 
187: ; 
188: ; utility subroutines for console i/o 
189: ; 



~ 
I 

I-' 
I-' 

190: getchr: 
191: 
192: 
193: 
194: 
195: ; 
196: putchr: 
197: 
198: 
199: 
200: 
201: 
202: ; 
203: crlf: 
204: 
205: 
206: 
207: 
208: 
209: 
210: ; 
211: print: 
212: 
213: 
214: 
215: 
216: 

;read next console character to a 
mov cl,coninp 
call bdos 
ret 

;write character from a to console 
mov cl,conout 
mov dl,al 
call bdos 
ret 

;send carriage return line feed 
mov al,cr 
call putchr 
mov al,lf 
call putchr 
ret 

;character to send 
;send character 

;carriage return 

;Iine feed 

;print the buffer addressed by dx until $ 
push dx 
call crlf 
pop dx ;new line 
mov cl,pstring 

S3:XIQN3:ddV 



tT1 217: call bdos ;print the string 
I 

I-' 218: ret tv 

219: ; 
220: readcom: 
221: ;read the next command line to the conbuf 
222: mov dx,offset prompt 
223: call print ;command? 
224: mov cl,rstring 
225: mov dx,offset conbuf 
226: call bdos ;read command line 
227: ; ;command line is present, scan it 
228: mov ax,O ; start with 0000 
229: mov bx,offset conlin 
230: readc: mov dl,[bx] ; next command character 
231: inc bx ;to next command position 
232: mov dh,O ;zero high byte for add 
233: or dl,dl ;check for end of command 
234: jnz getnum 
235: ret 
236: ; not zero, numeric? 
237: getnum: 
238: sub dl,'O' 
239: cmp dl,10 ;carry if numeric 
240: jnb endrd 
241: mov cl,10 
242: mul cl ;multiply accumulator by 
243: add ax,dx ; +digit 



m 
I 

....... 
\j.J 

244: jmps readc ;Tor anomer cnar 
245: endrd: 
246: ; end of read, restore value in a and return value 
247: mov dx,ax ; return value in DX 
248: mov al,-1[bx] 
249: cmp al,'a' 
250: jnb transl 
251: 
252: transl: 
253: 
254: ; 
255: ; 

ret 
and 
ret 

al,5fH 

256: ; Template for Page 0 of Data Group 
257: ; Contains default FCB and DMA buffer 
258: ; 
259: 
260: 
261: fcb 

dseg 
org 
rb 

05ch 
33 

~2:rnnrec rw 1 
263: ranovf rb 1 
264: buff rb 128 
265: ; 
266: ; string data area for console messages 
267: badver db 
268:nospace db 
269: datmsg db 
270: errmsg db 

;check for lower case 

;translate to upper case 

;default file control block 
; random record position 
;high order (overflow) b 
;default DMA buffer 

'sorry, you need cp/m version 2$' 
'no directory spaceS' 
'type data: $' 
'error, try again.$' 

S~XlaN~dd 



tTl 271: prompt db 'next command? $' 
I ...... 272: ; ~ 

273: ; 
274: ; fixed and variable data area 
275: ; 
276: conbuf db coni en ;Iength of console buffer 
277: consiz rs 1 ;resulting size after read 
278: conlin rs 32 ; length 32 buffer 
279: conlen equ offset $-offset consiz 
280: ; 
281: rs 31 ;16 level stack 
282: stack rb 1 
283: db 0 ;end byte for GENCMD 
284: end 



APPENDIX F. LIGHT PEN AND ESCAPE 
CODE SEQUENCES 

Light Pen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. F-3 
Escape Code Sequences . . . . . . . . . . . . . . . . . . . . .. F-4 

ESC a-Set Console Mode . . . . . . . . . . . . . . .. F-5 
ESC b-Set Foreground Color . . . . . . . . . . . .. F-5 
ESC c-Set Background Color . . . . . . . . . . . .. F-6 
ESC d, e, f, g, h-110 Redirection. . . . . . . . .. F-7 
ESC i-Enable/Disable Transparent Mode. . .. F-8 
ESC j-Save Cursor Position .............. F-8 
ESC k-Restore Cursor Position ............ F-8 
ESC I-Enable/Disable Console Status Mode .. F-8 
ESC A-Cursor Up . . . . . . . . . . . . . . . . . . . .. F-9 
ESC B-Cursor Down . . . . . . . . . . . . . . . . . .. F-9 
ESC C-Cursor Forward. . . . . . . . . . . . . . . . .. F-9 
ESC D-Cursor Backward ................ F-9 
ESC E-Clear Screen (and Home Cursor) ..... F-9 
ESC H-Home Cursor. . . . . . . . . . . . . . . . . .. F-9 
ESC K-Clear to End of Line . . . . . . . . . . . .. F-IO 
ESCY-PositionCursor ................. F-IO 
ESC I-Set Color Palette . . . . . . . . . . . . . . .. F-IO 
ESC ?-Get Time, Date, Background 

Message ........................... F-IO 
ESC :-Program Function Keys ........... F-ll 

F-l 



F-2 



.,ight Pen and Escape Code Sequences 

jght Pen 

This appendix describes the operation of the light pen and the 
format of the data it sends to an application program. This 
appendix also describes the escape code sequences you can use 
in a program to control the cursor, change colors on your 
display, and assign logical device input and output. 

If a program requests input from the Light Pen and there is no 
data waiting, CP/M-86 displays a status line message: 
"Waiting for Light Pen Input". When CP/M-86 obtains a 
data set from the Pen, it resets the status line and places the 
data into the console status stream. 

The Light Pen sends data to the console input (or auxiliary 
input) stream in the following format: 

Byte 1- Character Row + 20H 
Byte 2 - Character Column + 20H 
Byte 3 - Dot Row + 20H 
Byte 4 - Most Significant 6 bits of Dot Column + 20H 
Byte 5 - Least Significant 6 bits of Dot Column + 20H 
Byte 6 - Terminator, always 00 (ASCII NUL) 

To avoid misinterpreting characters, the driver converts all 
binary values to graphic ASCII characters by adding 20H (32 
decimal) to each byte. The character row, column and the 
raster s':an line values can be obtained by simply subtracting 
20H fom the respective Light Pen input bytes. The dot 
column is more difficult to obtain because it is actually a 
12-bit binary value which has been broken into two bytes. The 
first byte contains the most significant 6 bits of the dot 
column, offset by adding 20H as in the case of the first three 
bytes from the Light Pen. The second byte contains the least 
significant 6 bits of the dot column, also offset by adding 
20H. The dot column can be obtained from these two bytes in 
the following manner: first, subtract 20H from the most 
significant byte and then shift the result left six places forming 
a 16-bit value; and second, subtract 20H from the least 
significant byte and add it to the 16-bit value from the first 
step. This technique will reconstruct the dot column value 
from the input bytes. 

F-3 



Escape Code Sequences 

F-4 

You can use Escape codes to control the cursor, change display 
colors, redirect logical input and output, and program the 
Function keys and Cursor keypad keys. An ASCII Escape 
character (hex IB) triggers Escape sequence processing. The 
Escape character can be followed by one or more characters 
depending on the function required. The character 
immediately following the Escape character indicates which 
function is to be performed. You must send Escape character 
sequences directly to the operating system, for example, 
through an assembly language routine. When Escape 
sequences are read from the input stream, it is necessary to 
read two characters for each Escape sequence. You cannot send 
the Escape character sequence through the Console Command 
Processor (CCP). The following table summarizes the Escape 
codes and their functions. 

ESC a 
ESCb 
ESCc 
ESCd 
ESCe 
ESCf 
ESCg 
ESCh 
ESC i 
ESCj 
ESCk 
ESC 1 
ESC A 
ESCB 
ESCC 
ESCD 
ESCE 
ESCH 
ESCK 
ESCY 
ESC/ 
ESC? 
ESC: 
ESC ESC 

Set Console Mode 
Set Foreground Color 
Set Background Color 
Redirect Console Input 
Redirect Console Output 
Redirect Auxiliary Input 
Redirect Auxiliary Output 
Redirect List Output 
Enable/Disable Transp~rent Mode 
Save Cursor Position 
Restore Cursor Position 
Enable/Disable Console Status Mode 
Cursor Up 
Cursor Down 
Cursor Forward 
Cursor Backward (non-destructive) 
Clear Screen (and Home Cursor) 
Home Cursor 
Clear to End of Line 
Position Cursor 
Set Color Palette 
Get Time, Date, Background Message 
Program Function/Cursor Keys 
Display Escape Graphics Character 



ESC a-Set Console Mode 

The console mode selects the number of rows and columns on 
the CRT screen, as well as Color or Monochrome display. 
Escape-a must be followed by a number from 0 to 7. This 
number selects a mode according to the table below: 

0-40 X 25 Black & White on the Color Board 
1 - 40 X 25 Color 
2 - 80 X 25 Black & White on the Color Board 
3 - 80 X 25 Color 
4 - 320 X 200 Color Graphics 
5 - 320 X 200 Monochrome Graphics 
6 - 640 X 200 Monochrome Graphics 
7 - 80 X 25 Monochrome (IBM Monochrome Display) 

Only the least significant three bits of the mode number are 
used. 

ESC b-Set Foreground Color 

The Foreground Color displays the character. Associated with 
the foreground color is an intensity selection bit, although 
many color monitors do not support high and low intensity 
characters. 

Escape-b must be followed by a color selection character. Only 
the four least significant bits of the color character are used, 
with the individual bits having the following significance: 

Bit Pattern of Control Byte: 

7 6 5 4 3 2 0 

IlJ~ue 
Red 

Hi-intensity 

F-5 



F-6 

Here are some examples of color selection: 

Sample Byte Values for Various Colors: 

0- Black (Used with Non-black Backgrounds) 
1- Blue 
2 - Green 
3 - Blue + Green (Cyan) 
4-Red 
5 - Red + Blue (Magenta) 
6 - Red + Green (Yellow) 
7 - Red + Green + Blue (White) 

ESC c-Set Background Color 

This function selects Background Color, the color of the screen 
"behind" the characters. In addition, this function can make 
individual characters blink on and off. 

Escape-c must be followed by a color selection character. Only 
the four least significant bits of the color character are used, 
with the individual bits having the following significance: 

Bit Pattern of Control Byte.: 

7 6 5 4 3 2 1 0 

1 
I Le 
Green 

Red 
Blink 

The background color selection characters are the same as for 
foreground. Note that White Background combined with 
Black Foreground is effectively Inverse Video. 

To combine color selection with blink, use the following 
characters: 

h Black m Red + Blue'(Magenta) 
Blue n - Red + Green (Yellow) 

j Green a Red + Green + Blue 
k Blue + Green (Cyan) (White) 

Red 



ESC d,e,f,g,h-I/O Redirection 

These Escape Sequences can redirect input and output between 
logical and physical devices. The function letter (d, e, f, g, or 
h) must be followed by two bytes. CP/M-86 uses the most 
significant seven bits of each byte. Therefore, you should set 
the most significant bit to 1 so that CP/M-86 never mistakes 
the values you are outputting for carriage return or tab 
characters. 

To understand how the I/O redirection works you must view 
the two bytes as a set of bits. Each bit is associated with a 
physical device driver. When you are specifying Input Source 
(such as Console Input-ESC d) you can specify only a single 
physical device. Output Destinations (such as Console 
Output-ESC e) can have several output devices. 

The bit values for each of the physical devices are shown 
below. Note that Byte 1 is output after the selection letter; 
Byte 2 follows Byte 1. 

Byte 1 Byte 2 Physical Device 

Binary Hex Binary Hex 

10000001 81H 10000000 80H Keyboard 
10000010 82H 10000000 80H Screen 
10000100 84H 10000000 80H Serial Port #0 
10001000 88H 10000000 80H Serial Port # 1 
10010000 90H 10000000 80H Printer #0 
10100000 AOH 10000000 80H Printer # 1 
11000000 COH 10000000 80H Printer #2 

10000000 80H 10000001 81H Light Pen 
10000000 80H 10000010 82H Reserved for Cassette I/O 
10000000 80H 10000100 84H Reserved for Game Card I/O 
10000000 80H 10001000 88H Dummy Device 

The function selection letters are: 

d - Console Input 
e - Console Output 
f - Auxiliary Input 
g - Auxiliary Output 
h - List Output 

F-7 



F-8 

ESC i-Enable/Disable Transparent Mode 

When transparent mode is enabled, the following characters 
are output to the screen without special processing: 

Carriage Return 
Line Feed 
Backspace 
Bell 

When transparent mode is disabled (which is the default 
state), these characters cause their appropriate function to 
occur. Enable transparent mode when you want the special 
symbols assigned to these characters to appear on the screen. 

The least signficant bit of the character following the "i" 
enables or disables transparent mode. The recommended 
values are: 

o - Disable transparent mode 
1 - Enable transparent mode 

ESC j-Save Cursor Position 

This sequence preserves the current cursor position. You can 
restore the cursor to the previously saved position with 
Escape-k. 

ESC k-Restore Cursor Position 

This sequence restores the cursor to a previously saved 
position. If you use this sequence without having previously 
saved the cursor position, then the cursor is moved "home" to 

the top left-hand corner of the screen. 

ESC I-Enable/Disable Console Status Mode 

This sequence enables or disables the special feature in the 
console status routine that alters whether CaNST reports any 
keyboard characters waiting. When the console status mode is 
enabled, CaNST reports only that logical input is waiting for 
physical keyboard input. When disabled, CaNST reports not 
only keyboard input, but also input from internal character
strings such as function keys or the light pen. 



Programs that poll the console to check for incoming data 
characters simply do not work if you have enabled console 
status mode. 

ESC A -Cursor Up 

This moves the cursor up one line. If the cursor is already on 
the top line of the screen, this Escape sequence has no effect. 

ESC B-Cursor Down 

This moves the cursor down one line. If the cursor is already on 
the last line of the screen, that is, the one above the status line, 
then this Escape sequence has no effect. 

ESC C-Cursor Forward 

This moves the cursor one position to the right. If this 
function would move the cursor off the screen, this Escape 
sequence has no effect. 

ESC D-Cursor Backward 

This moves the cursor one position to the left. This is a 
"non-destructive" move because the character over which the 
cursor now rests is not replaced by a blank. If the cursor is 
already in column 0, this Escape sequence has no effect. 

ESC E-Clear Screen (and Home Cursor) 

This moves the cursor to column 0, row ° (the top left-hand 
corner of the screen), and clears all characters from the screen. 

ESC H-Home Cursor 

This moves the cursor to'column 0, row 0. The screen is NOT 
cleared. 

F-9 



F-10 

ESC K -Clear to End of Line 

This clears the line from the current cursor position to the end 
of the line. 

ESC Y - Position Cursor 

The two characters that follow the "Y" specify the row and 
column to which the cursor is to be moved. The first character 
specifies the row, the second specifies the column. Rows 
number from ° to 23 (24 being the status line), column 
numbers from ° to 79. 

To avoid confusing row and column values with control 
characters, row and column values have 20H (32 decimal) 
added to them. For example, to move the cursor to the home 
position (0,0), the two characters following the "Y" would be 
ASCII spaces (20H). 

ESC I-Set Color Palette 

The character following the "I" sets the color palette for the 
display. CP/M-86 uses the least significant 7 bits of this 
character. 

ESC ?-Get Time, Date, Background Message 

This Escape sequence causes a string of characters to be 
injected into the console input stream. The exact character 
sequence is shown below: 

MM/DD/YY,HH:MM:SS, ... blanks ... 

The character string is exactly as shown above; the commas 
and carriage return are included in the data stream. 

Note: The interrupt handler in the ROM BIOS provides 
approximately 18.2 timer interrupts per second. CP/M-86 has 
reprogrammed the 8253 timer to provide approximately 19 
ticks per second. 



ESC: -Program Function Keys 

This sequence programs the function keys, Fl to FlO, and the 
cursor control keys on the number pad. The overall format of 
this escape sequence is: 

ESC: kid string OOH 

"kid" is a key indentifier and tells CP/M-86 which function 
key/cursor control key you want to program. "string" is an 
arbitrary string of characters; for function keys this can be up 
to 18 characters long. For cursor control keys this can be up to 
4 characters. "OOH" is a byte of hexadecimal 0 and terminates 
the string. 

The valid key identifiers and their default string settings are 
shown below. Note that the symbol "<cr>" represents the 
Enter key. 

; - Fl 
< -F2 
= - F3 
> -F4 
? - F5 

@ -F6 
A -F7 
B -F8 
C -F9 
D - FlO 
G - Home 
H - UpArrow 
I - Page Up 
K - Left Arrow 
M - Right Arrow 
o -End 
P - Down Arrow 
Q - Page Down 
R - Ins 
S - Del 

dir<cr> 
dir b:<cr> 
stat<cr> 
stat b:<cr> 
pip<cr> 
pip b: = a: * . *[ v ] 
stat *. *<cr> 
stat b:*. *<cr> 
(not programmed) 
(not programmed) 
ESC H (Home) 
ESC A (Cursor Up) 
(not programmed) 
ESC D (Cursor Left) 
ESC C (Cursor Right) 
'END' 
ESC B (Cursor Down) 
(not programmed) 
(not programmed) 
DEL (ASCII delete) 

F-ll 



F-12 



INDEX 

A 

. A86 filetype 6-3 
absolute address C-6 
access mode 4-60, 4-63 
addition operators 7-16 
address conventions in ASM-86 8-3 
address expressions 7 -19 
Allocate Absolute Memory 

function D-38 
Allocate Memory function D-3 7 
allocation vector D-2 1 
archive attribute D-23 
arithmetic instructions 9-12 to 

9-14 
arithmetic operators 7-13 
ASM-86 3-4,4-8 
ASM -86 errors 10-1 
ASM-86 filetypes 6-3 
ASM-86 output files 4-8, 6-3 
assembler 4-8 
assembler directive 7-6 
ASSIGN 2-12, 3-4, 4-11, 4-12 
attributes 2-7 
AXI 2-12,4-11,4-44 
AXO 2-12, 4-11, 4-44 

B 

back-space key (+-) 1-6, 1-7 
backing-up CP/M-86 diskette 1-8 
backing-up diskettes 1-7 
back-up diskettes 1-8 
back-up file 5-9 
BAD SECTOR error D-13 
base extent D-25, D-27 
base page B-I0 
base page values B-5 

basic editing commands 5-10, 5-11 
basic processing 4-66 
batch processing 4-66 
baud rate 4-56 
BDOS entry registers D-3 
BDOS error messages A-9, D-12 
BDOS functions-':see under 

individual function names and in 
AppendixD 

BDOS return registers D-3 
beginning address of groups C-6 
bracketed expressions 7 -19 
buffer 4-22 
built-in commands 1-5,3-3 
BYTE 7-10 
byte string instructions 11-21 

c 
changing diskettes 2-9 
character pointer 4-22, 5-10, 5-12, 

5-20 
changing the default drive 2-10 
Close File function D-15 
CMD file header format C-8 
CMD file header values C-5 
CMD filetype 2-4 
code segment 7-10, 8-3 
combined-command line 5-20 
combining files 4-42 
command error messages A -7 
command keyword 1-4, 1-5, 3-3, 

3-5 
command line 1-4, 3-3 
command line notation 4-5 
command mode 4-22, 5-17 
command tail 1-4, 1-5 
command types 1-5 
comment 7-20 

X-I 



compact memory model B-3, B-4 
Compute File Size function D-28 
CON 2-12,4-11,4-44 
concatenation 4-42 
Console Input function D-5 
Console Output function D-6 
Console Status function D-I0 
context editor 4-22 
control characters 1-6 
COPYDISK 1-8, 1-10, 3-4, 4-15 
correcting simple typing mistakes 

1-6 
CPU flags 11-16 
current user number 2-9,2-10, 

4-73 

D 

data bits 4-57 
data file 2-3 
data segment 7-10,8-5 
data transfer instructions 9-9 
DDT-86 3-4,4-17 
DDT-86 arguments 11-4 
DDT-86 command line 11-3, 11-4 
DDT-86 commands 4-17,4-18, 

11-4 
DDT-86's default segment values 

11-20 
defaultdrive 1-4,2-10,2-11,4-4 
default user number 4-41, 4-73 
Delete File function D-17 
delimiters 2-4 
dest-filespec 4-7 
detail message A-4 
device names 6-6 
DIR 3-3, 4-19 
DIR attribute 2-8,4-19, 4-60 
DIRS 4-60 
Direct BIOS Call function D-31 
Direct Console I/O function D-7 
Direct Memory Address (DMA) 

D-21 
directives 7-20 
directive statements 8-3 
directory 2-3,2-7,2-8,4-73 
X-2 

directory code D- 15 
directory space 2-9 
directory v,erification 4-62 
DIRS 3-3, 4-19 
disk file operations D-ll 
disk parameter block D-24 
disk parameter block fields D-24 
disk space allocation 4-61 
diskette/drive error message format 

A-4 
diskette/drive error messages A-4 
diskette sectors 2-9 
display user numbers 4-65 
division operators 7-16 
DMA (Direct Memory Access) 

D-21 
dollar-sign operator 7 -17 
double-sided diskettes 2-10 
double-sided drives 1-8 
double-sided format 1-8 
drive specification 2-4, 2-5, 2-6, 

4-3, 4-4 
drive specifier 4-3 
DWORD 7-10 
dynamic allocation 2-9, D-34 

E 

ED 3-4,4-22 
ED commands 4-22,4-23, 5-10 
ED disk file error messages 5-34 
ED error symbols 5-33 
ED prompt 5-4 
ED text transfer commands 5 -5 
editors 5-3 
effects of arithmetic instructions on 

flags 9-11 
8080 keyword C-6 
8080 model B-3 
8080 memory model 4-32, C-5 
end of file (EOF) 4-44 
ending ASM-86 6-7 
Enter key (~) 3-7 
EOF (end of file) 4-44 
ERA 3-3, 4-27 



error messages-see Chapter 5, 10 
and Appendix A 

error reporting 3-6 
ESC sequences F-4 
ETX protocol 4-5 1 
extra segment 8-6, 9-18, 7-10 

F 

far call B-12 
FCB (File Control Block) 4-61, 

D-11 
file 2-3, 5-10 
file attributes 2-7, 2-8, 4-39 
file concatenation 4-42 
File Control Block (FCB) 4-61, 

D-11 
file families 2-4, 2-5 
filename 2-4, 4-3 
file specification 2-4, 2-6, 4-3, 4-4 
file type 2-4, 2-5, 4-3 
filetype . $$$ 4-39 
flag registers 9-8, 9-25 
flag register symbols 9-8 
Free All MEM function D-38 
Free MEM function D-38 
free storage space 4-59 
FUNCTION 3-4,4-29 
Functions-see under individual 

function names and in Appendix D 
function key assignments 4-29 
function keys 3-7, 3-8 

G 

GENCMD 3-4, 4-32, C-3 
GENCMD parameters C-5 
Get ABS MAX function D-3 7 
Get ADDR function D-21 
Get DMA Base function D-33 
Get I/O Byte function D-8 
Get MAX MEM function D-36 
Get Read/Only Vector function 

D-22 
group descriptors C-8 

H 

.H86 file 6-3 
HELP 3-4, 4-15, 4-34 

I 

information address D-3 
insert mode 4-22,4-25,5-17,5-18 
instructions 7-20 
Intel hex field definitions C-3 
Intel hex file C-3 
Intel storage convention B-12 
Intel 8086 hex format files C-3 
I/O BYTE D-8 
inverse video F-6 

L 

labels 7-10,7-11,7-20 
library file 5-30 
Light Pen F-3 
line editing command characters 

5-18 
line editing controls D-10 
line numbers 4-25, 5-7 
line-oriented 4-22 
List Output function D-7 
loading CP/M-86 1-3 
logged-in D-14 
logic and shift instructions 9-15 to 

9-17 
logical device 2 -12, 4-11 
logical drives 2-11 
logical device names 4-44 
logical operators 7 -12 
long form of PIP 4-40 
.LST 2-12,4-11,4-44 
.LST file 6-3 

X-3 



M 

Make File function D-19 
maximum memory size C-7 
memory D-33 
memory buffer 5 -5, 5 -7 
memory control block D-36 
memory model, compact B-3 
memory model, 8080 B-3 
memory model, small B-3 
minimum memory value C-6 
mnemonic 7-20,9-6 
multiple command mode 4-45 
multiple file copy 4-41 
multiplication operators 7 -16 

N 
NEWDISK 1-8,3-4,4-15,4-36 
NUL 4-44 
numbers 7-10,7-11 
numeric expressions 7-19 
numeric keypad 4-29 
numeric keypad keys 3-8 
N umlock key 3-8 

o 
offset 7-10, 7-11 
offset value 8-3 
one drive support 1-11, 4-15 
on-line 2-9, D-14 
on-line diskette 2-9 
Open File function D'-14 
operand type symbols 9-7 
operands 7-20,9-6,9-18,11-21 
override operator 7-16 

p 

parity 4-56 
period operator 7 - 17 
peripheral devices 2-12 
X-4 

physical file size D-29 
physical devices 2-12, 4-11 
PIP 1-11,2-8,4-7,4-38,4-40, 

4-42,4-46 
PIP, input prompt 4-46 
PIP, long form 4-40 
PIP options 4-40, 4-42, 4-46 
PIP, short form 4-40 
prefix 7-20 
prefix instructions 9-20 
Print String function D-8 
printers 4-11, 4-51, 4-56 
printer error messages A-6 
PRN 4-44 
program file 2-3, 2-4 
Program Load function D-39 
PROTOCOL 3-5,4-51 
PTR operator 7 -17 
Punch Output function D-6 

R 

random access operation E-l 
Read Buffer function D-9 
Read-Only (RIO) 2-8 
Read-Only (RIO) attribute 4-58, 

4-60, D-23 
Read-Only (RIO) drive 2-11 
Read-Only (RIO) message D-13 
Read Random error codes D-26 
Read Random function D-25 
Read Sequential function D-17 
Read-Write (R/W) 2-8 
Read -W ri te (R/W) attribute 2 -8, 

4-58,4-60 
Read-Write (R/W) drive 2-11 
Reader Input function D-6 
real file size 4-62 
Rename File function D-20 
recovering from common editing 

errors 5-32 
register indirect memory operands 

11-22 
relational operators 7 -15 
REN 3-4,4-54 



repeated execution of editing 
commands 5-28 

reserved words 7 -8 
Reset Disk function D-13 
Reset Drive function D-30 
Return Current Disk function 

D-20 
Return Login Vector function D-20 
Return Version Number function 

D-I0 
run-time parameters 6-5, 6-6, 6-7 

s 
saving your editing changes 5-8 
Search for First function D-16 
Search for Next function D-17 
segment 7-10, 7-11 
segment base value 8-3 
segment override 7-13 
segment registers B-3 
Select Disk function D-14 
select error D- 13 
serial port 4-11, 4-51, 4-56 
serial port attributes 4-51, 4-56 
Set DMA Address function D-21 
Set DMA Base function D-33 
Set File Attributes function D-22 
Set/Get User Code function D-24 
Set I/O Byte function D-8 
Set Random Record function D-29 
Setting drives to RIO 4-58 
setting the time of day 4-69 
short form of PIP 4-40 
single-sided diskettes 2-10 
single-sided drives 1-8 
single.,sided format 1-8 
single file copy 4-38 
small memory model B-3 
source-filespec 4-7 
SPEED 3-5,4-56 
stack segment 8-5 
STAT 3-5,4-60 
static allocation map D-3 3 
status line 1-4, 4-69, 4-73, A-4 
stop bits 4-57 

storage space 2-9 
string constant 7 -6 
SUB file 4-66, 4-67 
SUBMIT 3-5, 4-66 
SUBMIT parameters 4-66, 4-67, 

4-68 
subtraction operators 7-16 
. SYM file 6-3 
SYS attributes 2-8, 4-19, 4-60, . 

D-23 
system prompt 1-4, 2-10 
system reset 1-3 
System Reset function D-5 

T 

temporary file 4-39 
terminating assembly language 

statements 7 -20 
TaD (Time of Day) 3-5,4-69 
tokens 7-20 
transient utility 3-3 
transient utility commands 1-5, 

3-4 
TYPE 3-4,4-72 
Type 7-10 
type-l segment value 11-18 
type-2 segment value 11-18 

u 
unary operators 7-16 
upper-case translation 4-25, 5-18, 

5-25 
user numbers 2-7, 4-73 
USER 3-4,4-73 
user memory 4-22 

X-5 



v 
variable 7-10, 7-11 
variable manipulator 7 -17 
variable manipulators, creators 

7-14 
version number 1-3 
virtual file size 4-61, 4-62, D-28 

w 
wildcard character 4-41 
wildcard characters 2-6, 2-7 
wildcards 4-4 
WORD 7-10 
word string instructions 11-21 
Write Protect Disk function D-22 
write-protect notch 2-8, 4-15 
Write Random error codes D-28 
Write Random function D-27 
Write Random with Zero Fill 

function D-30 
Write Sequential function D-18 

x 
XON/XOFF protocol 4-51 

X-6 



Product Comment Form 

Personal Computer 
Computer Language Series 

6936616 

Your comments assist us in improving our products. IBM 
may use and distribute any of the information you supply in 
anyway it believes appropriate without incurring any 
obligation whatever. You may, of course, continue to use the 
information you supply. 

Comments: 

If you wish a reply, provide your name and address in this 
space. 

~ame ________________________________________ _ 

Address __________________ _ 

City ___________________ State ________ _ 

Zip Code ________________ _ 



111111 

BUSINESS REPLY MAIL 
~ FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM PERSONAL COMPUTER 
SALES & SERVICE 
P.O. BOX 1328-C 
BOCA RATON, FLORIDA 33432 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

) .............................................................................. . 
9J94 PIO:::! 



Continued from inside front cover 

SOME STATES DO NOT ALLOW THE 
EXCLUSION OF IMPLIED 
WARRANTIES, SO THE ABOVE 
EXCLUSION MAY NOT APPLY TO 
YOU. THIS WARRANTY GIVES YOU 
SPECIFIC LEGAL RIGHTS AND YOU 
MA Y ALSO HAVE OTHER RIGHTS 
WHICH V AR Y FROM STATE TO 
STATE. 

IBM does not warrant that the functions 
contained in the program will meet your 
requirements or that the operation of the 
program will be uninterrupted or error 
free. 

However, IBM warrants the diskette(s) or 
cassette(s) on which the program is fur
nished, to be free from defects in materials 
and workmanship under normal use for a 
period of ninety (90) days from the date of 
delivery to you as evidenced by a copy of 
your receipl. 

LIMITATIONS OF REMEDIES 

IBM's entire liability and your exclusive 
remedy shall be: 

1. the replacement of any diskette(s) or 
casseue(s) not meeting IBM's "Limited 
Warranty" and which is returned to 
IBM or an authorized IBM PERSO N AL 
COMPUTER dealer with a copy of your 
receipt, or 

2. if IBM or the dealer is unable to deliver a 
replacement diskette(s) or cassette(s) 
which is free of defects in materials or 
workmanship, you may terminate this 
Agreement by returning the program 
and your money will be refunded. 

IN NO EVENT WILL IBM BE LIABLE 
TO YOU FOR ANY DAMAGES, 
INCLUDING ANY LOST PROFITS, 
LOST SAVINGS OR OTHER 
INCIDENTi\L OR CONSEQUENTIAL 

DAMAGES ARISING OUT OF THE 
USE OR INABILITY TO USE SUCH 
PROGRAM EVEN IF IBM OR AN 
AUTHORIZED IBM PERSONAL 
COMPUTER DEALER HAS BEEN 
ADVISED OF THE POSSIBLITY OF 
SUCH DAMAGES, OR FOR ANY 
CLAIM BY ANY OTHER PARTY. 

SOME STATES DO NOT ALLOW THE 
LIMITATION OR EXCLUSION OF 
LIABILITY FOR INCIDENTAL OR 
CONSEQUENTIAL DAMAGES SO 
THE ABOVE LIMIT A TION OR 
EXCLUSION MAY NOT APPLY TO 
YOU. 

GENERAL 

You may not subticense, assign or 
transfer the license or the program 
except as expressly provided in this 
Agreement. Any attempt otherwise to 
sublicense, assign or transfer any of the 
rights, duties or obligations hereunder is 
void. 

This Agreement will be governed by the 
laws of the State of Florida. 

Should you have any questions 
concerning this Agreement, you may 
contact IBM by writing to IBM Personal 
Computer, Sales and Service, P.O. Box 
1328-W, Boca Raton, Florida 33432. 

YOU ACKNOWLEDGE THAT YOU 
HA VE READ THIS AGREEMENT, 
UNDERSTAND IT AND 'AGREE TO 
BE BOUND BY ITS TERMS AND 
CONDITIONS. YOU FURTHER 
AGREE THAT IT IS THE COMPLETE 
AND EXCLUSIVE STATEMENT OF 
THE AGREEMENT BETWEEN US 
WHICH SUPERSEDES ANY 
PROPOSAL OR PRIOR AGREEMENT, 
ORAL OR WRITTEN, AND ANY 
OTHER COMMUNICATIONS 
BETWEEN US RELATING TO THE 
SUBJECT MATTER OF THIS 
AGREEMENT. 



--- ------ - ---- ---- - ---- - - ---
==-=~=® 

International Business Machines Corporation 

P.O. Box 1328-W 
Boca Raton, Florida 33432 

6936616 

Printed in United States of America 


