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PREFACE 

The purpose of this manual is to describe linear 
programming, to show what can be accomplished 
with it, and to prepare the reader to make intelli
gent use of a linear programming system on a com
puter. The presentation covers the entire scope of 
a linear programming application: problem formu
lation, computer operations, interpretation of 
results, and additional information that can be ob
tained through the use of a complete linear pro
gramming system for a computer. There is no 
attempt at mathematical rigor. Some of the mathe
matical techniques are presented briefly to indicate 
what is involved in the computer solution of a 
problem, but no mathematical background beyond 
high school algebra is assumed. 

The glossary, however, is intended as a 
comprehensive list of technical terms associated 
with the solving of linear programming problems, 
rather than as a list of only those terms used in 
this manual. Furthermore, the definitions are 
written in a technical manner for the benefit of 
those readers who are studying linear programming 
on a deeper level than that of this introductory manual. 

Copies of this and other mM publications can be obtained through mM Branch 
Offices. Address comments concerning the contents of this publication 
mM, Teclmical Publications Department, 112 East Post Road, White Plains, N. Y. 10601 
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CHAPTER 1: CONCEPTS AND EXAMPLES 

Linear programming is a mathematical technique 
for determining the optimum allocation of resources 
(such as capital, raw materials, manpower, plant 
or other facilities) to obtain a particular objective 
(such as minimum cost or maximum profit) when 
there are alternative uses for the resources. Linear 
programming can also be used to analyze the eco
nomics of alternate availability of resources, alter
nate objectives, and so on. 

A few brief examples may serve to indicate more 
concretely what can be achieved with linear pro
gramming: 

1. A manufacturer makes a number of different 
products. Each product uses certain production re
sources, each of which is available in a limited 
amount. The manufacturer knows how much profit 
he makes from each product. How much of each 
product should he produce in order to make the 
maximum total profit? 

2. A producer of livestock feed is required to 
provide certain amounts of various nutritional ele
ments in each sack of feed. He can obtain the vari
ous elements from different grains and supplements, 
and he knows the cost of each. What combination of 
grains and supplements should he use to meet the 
requirements at least cost? 

3. The manager of an oil refinery is considering 
expanding the production of his plant by adding 
capacity at some point in the refining process. Of 
the many different processes involved in refining, 
which one should have its capacity increased so as to 
bring the greatest return on the capital expenditure? 

4. Another manufacturer uses a large number of 
raw materials in the production of a line of products. 
The prices of his raw materials are subject to mar
ket fluctuations, and in some cases there are signif
icant price breaks for large orders. He has a 
choice of which raw materials to use. One of the 
materials he is not using at the moment might prof
itably be used if the price were lower. How much 
would the price have to drop before he could make a 
greater profit by using it instead of something else? 

5. This same manufacturer is faced with another 
problem: one of the raw materials he is now using 
will be unavailable for a while because of a fire at 
the plant of one of his suppliers. Of the various al
ternative raw materials that he could use to replace 
it, which one will cause the least decrease in profit, 
considering that the introduction of a different mate
rial may charge the mixture of other materials he 
uses? 

These examples emphasize the importance of 
linear programming. When a large number of in
terrelated choices exist, the best choice may be far 
from obvious. An intuitive solution may never un
cover the best approach, and there is seldom any 
guarantee that what appears to be a fairly good pol
icy is really the best. 

Such problems often involve large amounts of 
money. A rational approach to the problems re
quires: 

• A systematic way to represent the goal, or 
objective, of the system under stUdy. 

• A systematic way to describe the limitations, 
or constraints, under which the system must oper
ate -- for instance, the limited amount of production 
resources in the first example given, and the mini
mum nutritional requirements in the second example. 

• Some way to arrive at one policy out of the 
many possibilities, and to be sure that it is the best. 

• Some way to explore the ramifications of 
changes in the stated problem (assuming, of course, 
that the best, or optimum, policy for the original 
objective and the original constraints has been de
termined). 

In the third example, the refinery manager 
needed to know which capacity limitation could most 
profitably be relaxed. In the fourth example, the 
manufacturer needed to know the effect on his best 
policy of a change in the costs of materials. In the 
fifth example, the manufacturer needed to know how 
the nonavailability of one raw material would affect 
his profit and how to choose a new policy that would 
minimize this effect. 

"Linear program ming", as the term is used 
today, includes the formulation of the problem, the 
solution (finding the optimum policy), and the ex
ploration of the effects of changes. Such large
scale work almost always involves a computer, for 
any problem small enough to be done "by hand" 
could probably be solved without resorting to linear 
programming. Because computers are so important 
for large-scale work, speCial application systems 
have been developed to assist in the practical use of 
linear programming methods. Thus the user is not 
required to write the complex program of instruc
tions needed to tell the computer how to solve linear 
programming problems. The user is required, 
however, to formulate his problem in the proper 
form for a linear programming solution and to pre
pare the necessary input data for the computer. The 
solution (best policy) is then found by the computer. 
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Most systems also contain at least some features to 
allow investigation of the effects of problem changes 
of various sorts. The user must also know enough 
about linear programming to interpret the results 
printed by the computer, and to decide what changes 
should be explored. 

Ordinarily, the user does not need to know a 
great deal about how the computer finds the optimum 
policy or how it arrives at the effect of changes. 
He does, however, need to know the elements of 
these methods in order to formulate his problem 
most effectively and to interpret the results intel
ligently. 

The three examples that follow are designed to 
serve four essential purposes for the user who wants 
to employ linear programming intelligently but who 
needs only a minimum knowledge of the methods of 
solution. 

1. The examples introduce the characteristics 
of a problem that can be handled with linear pro
gramming. The technique is not the universal 
remedy for all management problems; it is impor
tant to know not only what can be done with linear 
programming, but also what cannot. 

2. They introduce the idea of problem formula
tion. Linear programming requires that the prob
lem be stated in a specific manner (in terms of the 
objective and the constraints mentioned earlier). 
There is usually a certain amount of work involved 
in transforming a problem, as initially stated, into 
the form required for linear programming solution. 

3. They indicate the method of computation of 
the optimum policy. 

4. They reveal some of the information that can 
be derived from the solution to a linear program
ming problem, and they aid in interpreting the 
results. 

Following these examples, Chapter 2 will discuss 
the types of changes in the problem that can be ex
plored. In Chapter 3 a representative problem is 
carried from formulation, through preparation of 
the computer input, interpretation of initial results, 
and the change information presented by the com
puter system. For the reader who wishes to know 
more about solution methods, Chapter 4 is an intro
duction to the simplex method, which is the basis of 
most linear programming systems on computers. 

1. 1: EXAMPLE OF PRODUCTION CAPACITY 
ALLOCATION 

We can get an idea of the characteristics of a prob
lem that can be attacked effectively with linear pro
gramming by considering a simplified example. The 
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illustration is realistic to the extent that business
men do face such problems, hut the problem pre
sented is much smaller than the linear programming 
problems that are handled with computer systems. 

A small machine shop manufactures two models, 
standard and deluxe, of an unspecified product. 
Each standard model requires four hours of grinding 
and two hours of polishing; each deluxe model re
quires two hours of grinding and five hours of pol
ishing. The manufacturer has two grinders and 
three polishers; in his 40-hour week, therefore, he 
has 80 hours of grinding capacity and 120 hours of 
polishing capacity. He makes a profit of $3 on each 
standard model and $4 on each deluxe model. He 
can sell all he can make of both. 

How should the manufacturer allocate his produc
tion capacity to standard and deluxe models; that is, 
how many of each model should he make in order to 
maximize his profit? 

Let us begin by converting this problem state
ment into a mathematical form. Assign the symbol 
S to the number of standard models manufactured in 
a week, and the symbol D to the number of deluxe 
models. The profit from making S standard models 
and D deluxe models in a week, then, is 

3S + 4D dollars 

For instance, if five standard models (S = 5) and 
seven deluxe models (D = 7) are built in a week, the 
profit is (3 x 5) + (4 x 7) = $43; if the manufacturer 
could make 25 standard models and 20 deluxe 
models, the profit would be $155. 

How can we express the restrictions on machine 
capacity? The manufacture of each standard uses 
four hours of grinding. Making S standard models 
therefore uses 4S hours. Similarly, the manufac
ture of D deluxe models uses 2D hours of grinding 
time, since the manufacture of one deluxe uses two 
hours. The total number of hours of grindingcapac
ity used in a week, therefore, is 

4S + 2D 

We said previously that 80 hours of grinding time 
was available, so we might be tempted to write 

4S + 2D = 80 

This would not be correct, however, because at this 
point we have no assurance that the greatest profit 
lies in using all the grinding time. All we know is 
that the total hours of grinding time must not exceed 



80. "Must not exceed" can also be expressed as 
"must be less than or equal to", a more convenient 
expression. The mathematical symbol for "less 
than or equal to" is S. The correct formula for the 
restriction on grinding capacity would be 

48 + 2D :5 80 hours 

In the same manner, we arrive at the limitation on 
polisher capacity: 

28 + 5D :5 120 hours 

In view of the higher profit on the deluxe models, 
one might suggest that the optimum policy would be 
to make as many deluxe models as possible and for
get the standard models. Let us calculate how many 
deluxe models alone could be made, and record the 
corresponding profit for future reference. The 
limitation on grinder time provides that two times 
the number of deluxe models must not exceed 80, 
and the limitation on polisher time provides that five 
times the number of deluxe models must not exceed 
120. Grinder capacity permits 40 deluxe models to 
be made; polisher capacity permits no more than 24 
to be made. Therefore, 24 is the maximum number 
of deluxe models that could be made, even though 
this policy would consume only 48 hours of grinder 
time out of the 80 available. The profit with this 
policy is $96, since there is a $4 profit on each of 
the 24 deluxe models. 

Let us now explore what the constraints (restric
tions, or limitations) on machine time mean in geo
metrical terms. We shall draw a graph on which 
the vertical axis represents 8 (the number of stand
ard models made in a week) and on which the hori
zontal axis represents D (the number of deluxe 
models). Now remember the first constraint that on 
grinder capacity 48 + 2D :5 80 hours. Let us con
sider only the "equal" part of the symbol for the 
moment, and rearrange the statement of the con
straint: 

48 + 2D = 80 

so 2D = 80 - 48 

and D = 40 - 28 

This equation lets us draw up a table of a few values 
of 8 and the corresponding values of D: 

8 

o 

5 

D 

40 

30 

10 20 

15 

20 

10 

o 

If we plot these points on a graph, the results would 
be those shown in Figure 1. 
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Figure 1. Five points that satisfy the equation 4S + 2D :::; 80 

These five points lie on a line. We say that the 
equation 48 + 2D = 80 is linear. In geometrical 
terms, this means that all points that satisfy the 
equation lie on a straight line. In algebraic terms, 
it means that 8 and D both appear in the equation 
multiplied only by a constant coefficient; that is, 
they are not squared, multiplied together, and so on. 

Reviewing what the graph of our equation means, 
we have a straight line which "represents" the equa
tion in the sense that any point on the line corre
sponds to some specific combination of values of 8 
and D, and these values satisfy the equation. With 
this meaning in mind, we can plot the equation of the 
constraint under consideration simply as a line, 
without identifying any of the specific points, as in 
Figure 2. 

But our constraint is not an equation; it is an in
equality: 48 + 2D :5 80 hours. Graphically, this 
means that the inequality is represented in the 
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Figure 2. Graph of the equation 4S + 2D = 80 

picture by any point on the line or below it. We can 
make this explicit by shading in the region that is 
covered by the inequality (see Figure 3). 
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Figure 3. Graphical representation of the inequality 4S + 2D ~ 80. 

Any point on the line or in the shaded region satisfies 

the inequality. 

It is important to realize that any point on the 
line or below it still represents some specific com
bination of a value of S and a value of D; points be
low the line will be the "less than" part of the "less 
than or equal to" symbol. 

In Figure 4 we also plot the constraint on the 
polishing capacity (2S + 5D~ 120), but we now have 
shaded only the part of the graph that is ''below'' 
both lines. 
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Figure 4. Graphical representation of both constraints. The 

small shaded region violates neither constraint and 

is called the feasible region. 

In Figure 4 the shaded region reflects the effect 
of both constraints. The parts of the graph within 
the triangles violate one or the other of the con
straints; the part outside both lines violates both; 
the shaded region violates neither, and is therefore 
called feasible. This means tbat any point in the 
feasible region represents a combination of so many 
standard models and so many deluxe models, the 
combination being possible (feasible) with due re
gard for the amount of machine time available • 
From now on, we shall display only the feasible 
region on such graphs, since this area is all that 
really interests us. 

How would we take into account the profit? We 
already know that the profit is 3S + 4D dollars; in 
other words, any point anywhere on the graph rep
resents some specific profit. Some of these points 
will, of course, lie outside the feasible region and 
therefore will not represent possibilities for the 
best policy. What we are looking for is the point in 
the feasible region that represents the policy with 
the greatest profit. (In fact, the essence of the 
linear programming computation is the search for 
this point.) In a computer the location of the 
optimum point is reached by algebraic methods, 
rather than by graphical ones. We shall sketch 
these methods in section 1. 3 of this chapter, using 



the third example, "Investment Policy", and in 
Chapter 4 on the simplex method. 

Here, we will see what can be done by graphical 
methods. We know that the profit for any particular 
point is 38 + 4D dollars. What would happen if we 
set this expression equal to some specific profit 
level, say $60? The answer is that we would have a 
linear equation, which we could plot as the broken 
line in figure 5. This line includes such points as 
20 standard and zero deluxe models, 16 standard 
and three deluxe models, 12 standard and six deluxe 
models, eight standard and nine deluxe models, or 
zero standard and 15 deluxe models. 
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Figure 5. Graph of the constraints, the feasible region, and the 

profit line for $60: 3S + 4D 2 60 

All points on this profit line are feasible; there is 
no violation of either machine capacity constraint 
anywhere on this line. Any point on this line thus 
represents a feasible policy, and all such points 
would return a $60 profit. 

This policy, however, is not the best one. If, for 
instance, we try plotting the profit line 38+4D=$96, 
we find proof that there is a better policy (see 
Figure 6). 

Not all points on this profit line are feasible. We 
cannot make 36 standard models and zero deluxe 
models, even though this point is on the line, be
cause there is not enough grinder capacity to permit 
it. Some points on the line are feasible, however; 
for instance, the combination of twelve standard 
models and 15 deluxe models violates neither con
straint and is therefore a feasible combination. 

At $60, all points on the profit line were feasible; 
at $96 some points are feasible. The question that 
interests us now is the extent to which we can go and 
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Figure 6. The constraints and the $60 and $96 profit lines 

still have at least one feasible point on the profit 
line. This point represents the optimum policy. 
To find it is the fundamental goal of linear program
ming' and we shall see that there are ways of 
working with algebra to arrive at it. 

Staying with the graphical approach for now, we 
notice in Figure 6 that the two profit lines are paral
lel, an observation that can be proved mathe
matically. Furthermore, all profit lines will be 
parallel for the problem as stated. This suggests 
a method of attack; look for the line parallel to the 
ones we have already drawn that goes as "far out" 
as possible but that still keeps one point in the 
feasible region. This will be the line that goes 
through the "corner" of the feasible region where 
the two constraint lines meet. It is shown in Figure 
7. This is the profit line for $110, made from 10 
standard models and 20 deluxe models. 

It should be clear from Figure 7 that striving for 
any profit greater than $110 would involve a profit 
line with all points outside the feasible region. We 
have therefore established that $110 is the best 
profit that can be made under the original objective 
and constraints. 

We see that getting the maximum profit possible 
does require manufacture of some of the less profit
able standard models, because that policy makes the 
best use of machine capacity. Thus one of the most 
important things this example shows is that maxi
mizing profit may require a tradeoff between ex
clusive manufacture of the most profitable item and 
the full use of facilities. In other words, the manu
facturer's most profitable policy was determined not 
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Figure 7. The constraints and the $60, $96 and $110 profit lines 

only by his unit profit on each product, but also by 
the constraints on his production capacity. 

The problem of maximizing profit is representa
tive of a large class of problems that can be solved 
by linear programming. Such problems are charac
terized by the allocation of limited resources to 
products of different profitability. 

It need not always happen, however, that the 
most profitable policy will require a combination of 
products. Suppose that the profit on each standard 
model was still $3, but that each deluxe model 
brought in $9 profit. When we search for the line 
with the greatest profit that still has at least one 
feasible point, we get the situation shown in 
Figure 8. 

Here the profit line for the greatest profit that 
contains one feasible point still intersects the 
feasible region at one of its vertices (corners), but 
now it is a vertex formed of one of the constraint 
lines and one of the axes. This means that it is in
deed most profitable to make all deluxe models (24 
in this instance) and zero standard models, even 
though this policy will leave 32 hours of grinder 
time unused. 

It will be instructive to explore what the best 
policy would be if each standard model brought in 
$6 profit and each deluxe model brought in $3 profit. 
When we seek the greatest profit line that contains a 
feasible point, we get a profit line that coincides 
with one of the constraint lines, as in Figure 9. 

The manufacturer has several choices of the best 
policy. He can make 20 standard and zero deluxe 
models, 15 standard and ten deluxe models, ten 
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Figure 8. The constraints and the $216 profit line when the 

profit on a standard model is $3 and the profit on a 
deluxe model is $9 

:II: 
1&1 
~ 40 

cr: 
1&1 
Q. 

!:i 
:5 
III 

(I) 
-l 
1&1 
0 
0 
~ 

0 
20 cr: 

C( 
0 
z 
i! 
(I) 

II. 
0 

cr: 
1&1 
III 
:I 
::I 
Z 

(I) 

~ ~GRINDER CAPACITY 

~ CONSTRAINT 

20 

POLISHER CAPACITY 
CONSTRAINT 

40 

D: NUMBER OF DELUXE MODELS BUILT PER WEEK 

Figure 9 The constraints and the best profit line when the profit 

on each standard model is $6 and the profit on each 

deluxe model is $3 

standard and 20 deluxe models, since each combi
nation brings in the same profit of $120. Any of 
these combinations can be taken as the "best II policy; 
they are all equally good. This type of solution 
occasionally appears in practical applications. 

In each of the preceding examples, we have taken 
it for granted that Sand D are either zero or 
positive; there is no way to make a negative quantity 
of anything. We reject such quantities without 
thinking; however, when we discuss the algebraic 
method of finding the maximum profit line subject to 
constraints, we will have to include an explicit re
quirement that no variable be negative, because 



ordinary algebraic methods do permit negative 
numbers. This nonnegativity requirement becomes 
an integral part of the algebraic approach, but a 
person using a computer program based on such an 
algebraic method does not have to go to any extra 
effort because of the requirement. 

We are now in a position to state the original 
example in the standard form for a problem that can 
be handled with linear programming. 

(1) Maximize 

(2) Subject to 

3S + 4D the objective 
function (profit) 

4S + 2D::; 80 the problem 
2S + 5D ::; 120 constraints 

(3) And subject to S ~ 0, D ~ 0 the nonnegativity 
constraints 

We shall refer frequently to the parts of the 
mathematical statement of a problem for linear 
programming solution. Figure 10 shows the termi
nology that will be used in this manuaL Note that 
the objective function has been set equal to Z as a 
convenience in later operations. Observe that a ~ 
refers to one constraint or to the objective function; 
one column refers to one activity or to the right
hand side. The values of the variables are called 
activity levels. 

COLUMNS 

J: :J. ...... -E--OBJECT"E 

RowsE 
3S + FUNCTION 

45 + 2 D ~ 

BOJ 
CONSTRAINTS 

2S + " 120 

• RIGHT 
HAND 

ACTIVITIES SlOE 

Figure 10. The terminology used in describing the normal 

formulation of a linear programming problem 

We shall see that the standard form of a problem 
suitable for linear programming is characteristic, 
although there are important variations: we often 
want to minimize a cost rather than maximize a 

profit, and we often have constraints that state a 
"greater than or equal to" condition rather than a 
"less than or equal to" condition. 

1.2: EXAMPLE OF FEED BLENDING 

A poultry farmer needs to supplement the vitamins 
in the feed he buys. He is considering two products, 
each of which contains the four vitamins required, 
but in differing amounts. Naturally, he wants to 
meet (or exceed) the minimum vitamin requirements 
at least cost. Should he buy one product or the 
other, or should he mix the two? The facts are 
summarized in the table below. 

Product 1 Product 2 

Cost per ounce 3 cents 4 cents 

Vitamin 1 per ounce 5 units 25 units 

Vitamin 2 per ounce 25 units 10 units 

Vitamin 3 per ounce 10 units 10 units 

Vitamin 4 per ounce 35 units 20 units 

The farmer must provide, per hundred 
pounds of feed, at least 50 units of vitamin 1; 100 
units of vitamin 2; 60 units of vitamin 3; and 180 
units of vitamin 4. 

Let us state the problem in the standard form 
described near the end of the previous example. 

The objective in this case is to minimize the cost 
of obtaining the required vitamins. Let PI repre
sent the number of ounces of product 1 purchased, 
and let P2 represent the number of ounces of 
product 2. Then the objective is to minimize 

3P1 + 4P2 

The constraints this time are the minimum re
quirements. Each of the four vitamins can be ob
tained in varying amounts from either product. 
Whatever combination of products is bought, the 
sum of the units of a given vitamin in the two must 
equal or exceed the minimum requirement for that 
vitamin. We thus get the following four "greater 
than or equal to" constraints: 
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5P1 + 25P2 ~ 50 

25P1 + 10P2 ~ 100 

10P1 + 10P2 ~ 60 

35P1 + 20P2 ~ 180 

As always, we have the nonnegativity requirement 
on the variables, in this case the number of ounces 
of P1 and of P2 bought. 

How does this problem compare with the earlier 
one? Before, we were trying to maximize profit; 
now we want to minimize cost. Before, we had two 
activities (manufacture of standard and deluxe 
models); now, we also have two activities (buying of 
two types of product). Before, there were two con
straints; now there are four. The nonnegativity 
requirement on each activity level never changes. 

The situation is graphed in Figure 11. 

Pi ' NUMBER OF OUNCES OF PRODUCT 1 BOUGHT 

Figure 11. Graph of the constraints in the feed additive problem 

The feasible region in this case is on the right-hand 
side of the lines, since the constraints are all 
"greater than or equal to "; there is no restriction 
on the amount by which the minimum can be ex
ceeded. The feasible region consists of all combi
nations of products that do not violate any of the 
constraints. 
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In Figure 12 we have shown only that part of each 
constraint line that is on the border of the feasible 
region, and we have plotted four total-cost lines. 

12 

10 

10 

Pt, NUMBER OF OUNCES OF PRODUCT t BOUGHT 

Figure 12. Graph of the feed additive constraints and the total 

cost lines for 12¢, 19¢, 30¢ and 4O¢ 

We see that the 129 line is not feasible anywhere 
and that the 409 line is feasible everywhere. Since 
the 199 line is the lowest-cost line that touches the 
feasible region, there is no possibility of getting the 
required vitamin content for less than 199. This 
corresponds to five ounces of PI and one ounce of 
P2, which minimizes the cost and still satisfies all 
four constraints. 

One of the most valuable features of the methods 
used to solve general linear programming problems 
is that the methods guarantee that the optimum 
solution is the best. We have, of course, not proved 
this fact by the graphical demonstrations here, but 
the procedures used in linear programming guar
antee optimality. 

It might be interesting to see what the cost would 
be if the poultry farmer bought only one type of 
product. These numbers can be derived rather 
simply from the graph: they are the number of 
ounces at the points where the feasible region inter
sects the PI and P2 axes. It happens, by coinci
dence, that it would take ten ounces either way. 
Ten ounces of PI would satisfy exactly the require
ment for the first vitamin and would exceed the 



requirements for the others in varying amounts; the 
cost would be 30¢. Ten ounces of P2 would satisfy 
exactly the requirement for the second vitamin and 
would cost 40¢. 

Note that once again the optimum occurred at a 
vertex of the feasible region. 

10 3: EXAMPLE OF INVESTMENT POLICY 

Let us now turn to a rather different type of prob
lem. Because there are six activities, in this 
example, graphing (which is limited to two dimen
sions and therefore to two activities) cannot be 
employed. By deliberate choice, the optimum 
policy is rather obvious; the point of this example is 
to demonstrate an algebraic technique that will 
guarantee finding the optimum, even when the first 
guess at the optimum is far from accurate. 

A man has $1,000 to invest. He has chosen to 
invest his money in some combination of municipal 
bonds, preferred stock, and common stock; for 
each, there are two candidates, making a total of 
six activities. The following table shows the yields 
and the symbols for the amount to be invested in 
each of the six possible activities. 

Type: Bonds Preferred Common 

Yield: 3% 3-1/2% 4% 4-1/2% 5% 5-1/2% 

Symbol for Bl B2 PI P2 Cl C2 
amount invested: 

After consultation with his financial advisers, the 
investor decided upon the following restrictions on 
his investment policy: at least $400 must be in
vested in bonds; no more than $350 must be invested 
in preferred stock; and no more than $350 must be 
invested in common stock. To make the problem 
statement concrete, his policy would permit placing 
$350 in the 5% common stock, or $350 in the 5-1/2% 
common stock, or any combination of the two that 
added to no more than $350. 

Now we begin to convert the problem to the 
standard form of a linear programming problem 
statement. Converting the percentages to decimal 
fractions, the objective is to maximize 

0.03 Bl + 0.035 B2 + 0.04 PI + 0.045 P2 
+ O. 05 C 1 + O. 055 C 2 = Z 

As noted near the end of section 1.1, we have given 
the objective function the symbol Z so that we can 
use it easily in writing equations. 

The constraints this time are a mixture of 
equalities, "less than ", and "greater than" condi
tions. We begin with an ordinary equation, which 
states that the sum of the amounts invested must be 
exactly $1,000: 

Bl + B2 + PI + P2 + Cl + C2 = 1,000 

Next we have the "greater than or equal to" re
striction of at least $400 in either or both of the two 
types of bonds: 

Bl + B2 ~ 400 

Finally, we have two "less than or ,equal to" con
straints on the maximum that may be invested in 
preferred or common stocks: 

PI + P2 ~ 350 

Cl + C2 ~ 350 

Because we are able to work more easily with 
equations than with inequalities, we therefore con
vert the three inequalities into equations by a simple 
technique. 

Consider the second inequality, PI + P2 :s;; 350. 
Let us introduce a slack variable, which we call S2, 
as follows: 

PI + P2 + S2 = 350 

What do "slack" and "variable" imply? Suppose that 
the optimum policy is to invest $250 in P2 and 
nothing in PI. Then the slack between the amount 
actually invested in the preferred stock and the 
maximum that is permitted would be $100. As we 
proceed through the calculations, the value of S2 
may change before we arrive at the optimum; it is 
not fixed at any unchangeable value. In other words, 
it is truly a variable. 

Note that with the introduction of a slack variable 
the result is equivalent to the original inequality. 
Like any other variable in a linear programming 
problem, slack variables are required to be zero or 
positive. Suppose that S2 were zero; then we would 
have PI + P2 = 350, which is the "equal to" part of 
"less than or equal to". On the other hand, if S2 
were $100, then PI + P2 would be less than $350. 
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In other words, since 82 can vary, Pl + P2 can in
deed be less than or equal to $350. But the sum of 
Pl and P2 cannot be greater than $350, for that 
would require 82 to be negative, a condition which 
is not permitted. 

In the case of the third inequality, introduction 
of the slack variable 83 leads to the equation: 

C1 + C2 + 83 = 350 

We suspect, of course, that the man will invest 
everything he can in this type; in other words, 83 
will probably turn out to be zero, a value which 
is permitted. 

In the case of the first inequality, which is of the 
"greater than or equal to" type, we must subtract 
the slack in order to represent the fact that he is 
permitted to invest more than $400 in the low-yield 
bonds--although he will not decide to do so. In 
other words, 81 will also eventually be zero. 

Bl + B2 - 81 = 400 

The minus sign here indicates subtraction, not 
that 81 is negative. As we have stated, the slack 
variables must be nonnegative, which means that 
they must be zero or positive. We are thus able to 
proceed with algebraic methods that depend on never 
having a negative variable--slack or otherwise. 

Let us rewrite the four constraints as equations 
with slack variables where necessary. The equa
tions have been numbered for later reference. 

(1) Bl + B2 + Pl + P2 + Cl + C2 = 1000 

(2) Bl + B2 -81 400 

(3) Pl + P2 +82 350 

(4) Cl + C2 +83 = 350 

Here we have four equations in nine unknowns. 
There is no one single solution to such a system; 
there are many sets of positive values of the nine 
unknowns that will satisfy the equations. Our 
approach will be to pick five of the variables to be 
zero, and find values for the other four that satisfy 
the four equations. We shall then proceed in a sys
tematic way to see whether there are other ways to 
assign values that will improve the total yield. 

The discussion of this process will be made 
somewhat easier if we first introduce some new 
terminology. (This terminology will also be useful 
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to the reader in any further study of linear program
ming methods. ) 

A solution with just as many variables permitted 
to be nonzero as there are equations, with all other 
variables being forced to be zero, is called a basic 
solution. The variables that are permitted to "'i:ie 
nonzero are called basic variables, and the col
lection of them is called a basis. Thus there must 
be exactly as many variables in a basis as there are 
problem constraint equations. If the values picked 
for the basic variables satisfy the constraints and 
are nonnegative, they represent a point in the 
feasible region, and we have a basic feasible 
solution. 

Can we find a basic feasible solution for this ex
ample? There are many ways to do so. Here is 
one: let B2 = $400, P1 = $350, C2 = $250, and 
83 = $100, and all others equal zero. Checking with 
equations (1) to (4), we see that these values satisfy 
the constraints. This is by no means the only basic 
feasible solution. Actually, this one was chosen 
simply to demonstrate that the algebraic technique 
we wish to explore does lead to an optimum solution. 

Having found any basic feasible solUtion, we seek 
to improve the basis; that is, we seek another basic 
feasible solution which is closely related to the first 
one but which gives a greater value to the objective 
function. If the basis can be improved still further, 
we repeat the process. Eventually, we shall find a 
basic feasible solution that cannot be improved, and 
we shall have arrived at the optimum solution. 

Let us now use this process of improvement in 
the algebraic approach. First, express the ob
jective function entirely in terms of nonbasic 
variables; this will give a good clue as to where to 
seek improvement in the basis. This is easily 
enough done by finding expressions for the basic 
variables in terms of nonbasic ones, and by sub
stituting in the objective function. 

We begin by solving the four equations (1) to (4) 
for the basic variables in terms of nonbasic vari
ables only. First we solve equation (2) for B2: 

B2 = 400 + 81 - Bl 

Next, solve equation (3) for Pl: 

PI = 350 - P2 - 82 

Finding an expression for C2 will be more difficult, 
since all equations involving C2 also involve another 
basic variable. There are completely general 



methods for doing this; in this example we shall take 
advantage of the characteristics of the system of 
equations to do it simply. First, subtract equation 
(2) from equation (1): 

PI + P2 + Cl + C2 + SI = 600 

Now subtract equation (3) from the above: 

Cl + C2 + SI - S2 = 250 

Now transfer everything except C2 to the right-hand 
side to get an expression for C2: 

C2 = 250 - Cl - SI + S2 

A similar scheme leads to an expression for S3. 
Subtract the original equations (2), (3) and (4) from 
equation (1) in turn, and rearrange: 

S3 = 100 + SI - S2 

Now we can substitute these results into the ob
jective function: 

0.03 Bl + 0.035 (400 + SI - Bl) + 0.04 (350 - P2 
- S2) + 0.045 P2 + 0.05 Cl + 0.055 (250 - Cl 
- SI + S2) = Z 

By multiplying and rearranging, we get a trans
formed objective function: 

$41. 75 - 00005 Bl + 0.005 P2 - 0.005 Cl 
- 0.02 SI + 0.015 S2 = Z 

Observe that the objective function is now expressed 
entirely in terms of nonbasic variables. Where did 
the $41. 75 come from? That is the profit from the 
policy as it now stands, with the stated levels of the 
basic variables. We can demonstrate this another 
way, as in the following table. 

Basic Activity Yield 
Variable Level Rate Yield 

B2 400 0.035 $14.00 

PI 350 0.04 14.00 

C2 250 0.055 13.75 

S3 100 0.0 0.00 

$41. 75 

Thus the transformed objective function, now ex
pressed in terms of nonbasic (zero level) variables, 
states what would happen to the value of Z if any of 
the nonbasic variables were given nonzero values. 
This will be important in the next step of the 
optimization process. 

In the preceding process, the problem con
straints were expressed in terms of equations by 
introducing slack variables into the three in
equalities. We picked four of the nine variables and 
gave them values that satisfied the equations (and 
therefore satisfied the original inequalities as well). 
The four nonzero variables are then called basic 
variables and constitute a basic feasible solution. 
All other variables are zero. We next solved the 
four equations for the four basic variables and sub
stituted the results into the objective function. 

(5) 

(6) 

By using these procedures, we have: 

$41. 75 - 0.005 Bl + 0.005 P2 - 0.005 Cl 
- 0.02 SI + 0.015 S2 = Z 

B2 = 400 + SI - Bl 

(7) PI = 350 - P2 - S2 

(8) C2 = 250 - Cl - SI + S2 

(9) S3 = 100 + SI - S2 

It is important to remember that all variables 
now on the right-hand sides of these equations (6-9) 
and in the objective function (5) are nonbasic vari
ables and are therefore zero. Thus the profit from 
this choice of investments is $41.75. 

Can this policy be improved? We know intui
tively that it can, but what tells us so mathe
matically? The answer is the existence of positive 
terms in the objective function. All variables in the 
objective function are now zero, but what would 
happen if we were to give some positive value to one 
of the variables multiplied by a positive coefficient 
(P2 or S2)? The profit, of course, would be in
creased. 

The next question is, Which of these two present 
zero (nonbasic) variables should be given a nonzero 
value. So far, no simple rule has been found for 
selecting the new variable that will give the greatest 
improvement in the objective function. It seems 
entirely reasonable, however, to pick the one that 
has the largest positive coefficient (multiplier) in 
the objective function, in this case S2. (And if we 
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should pick the "wrong" variable, in the sense that 
it is not the one that gives greatest improvement in 
the objective function, it means at worst some extra 
computation. We will eventually arrive at the 
optimum, no matter which variable is chosen.) 

If S2 is brought into the basis, which variable 
will leave? This question is answered by searching 
for the equation that permits S2 to be given the 
largest possible value without forcing any other 
variable into the negative. Equation (6) provides no 
information: S2 does not appear there. Equation 
(7) shows that S2 could be 'as large as 350, which 
would force PI to zero and thus out of the basis; we 
keep this value in mind. Equation (8) does not limit 
the size of S2. Since it appears there with a plus 
sign, it could be given any positive value without 
forcing C2 to become negative. Equation (9) shows 
that S2 can be no larger than 100 without forcing S3 
to become negative. This, then, is the equation 
that specifies the variable to leave the basis, since 
it is this equation that limits the value of the 
entering variable. 

We now solve equation (9) for S2: 

S2 = 100 + SI - S3 

The variable S3 thus leaves the basis. Substi
tuting this result into equations (5) through (9) and 
rearranging, we get: 

(10) $43.25 - 0.005 Bl + 0.005 P2 - 0.005 Cl 
- 0.005 SI - 0.015 S3 = Z 

(11) B2 = 400 + SI - Bl 

(12) P1 = 250 - P2 - SI + S3 

(13) C2 = 350 - Cl - S3 

(14) S2 = 100 + Sl - S3 

We see that removing S3 from the basis and re
placing it with S2 has improved the basis: the profit 
from the new policy is $1. 50 greater than before. 

The basis can be improved still further, since 
there is still one variable with a positive coefficient 
in the objective function. Let us therefore bring 
this variable, P2, into the basis, and once again 
inspect our equations to see which variable should 
leave. Scanning down equations (11) through (14), 
we see that P2 appears only in equation (12), so P1 
is the variable to leave the basis. Sol ving this 
equation for P2 we get: 
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P2 = 250 - PI - SI + S3 

As before, we substitute this result wherever P2 
appears in equations (10) through (14), arriving at 
the following result: 

(15) $44.50 - 0.005 B1 - 0.005 P1 - 0.005 C1 
- 0.01 Sl - 0.01 S3 = Z 

(16) B2 = 400 + Sl - B1 

(17) P2 = 250 - PI - SI + S3 

(18) C2 = 350 - Cl - S3 

(19) S2 = 100 + Sl - S3 

Now that all the coefficients in the objective 
function are negative, no further improvement could 
be made by making any of these nonbasic variables 
nonzero. The maximum possible profit is $44.50. 

This reasoning is sound. The obvious course 
was to invest the minimum permissible ($400) in the 
3-1/2% bonds, the maximum possible in the highest 
yield 5-1/2% common stock, and the rest in the 
higher yield of the two preferred stocks. Multi
plying $400 times 3-1/2%, plus $250 times 4-1/2%, 
plus $350 times 5-1/2% gives the same profit figure 
of $44.50; this should come as no surprise, but it is 
nevertheless reassuring to see that the algebra did 
arrive at the right answer. 

More important, we have demonstrated that the 
algebraic approach does not depend on intuition. 
We have of course not proved that this method will 
always work; that belongs to mathematical texts. 
We have shown, for this example, that the algebraic 
approach resulted in the same answer as was 
obvious, and we further demonstrated that there 
could not possibly be any better policy. Assurance 
that there is nothing better is of great importance in 
practical applications, since, if we could see the 
best policy by looking at the problem, we would 
have no need for linear programming. 

The method used in this example is essentially 
the simplex method, which is the basis for computer 
solutions of linear programming problems and which 
will be discussed in more detail in Chapter 4. For 
systematic hand calculation, the work is ordinarily 
done differently; in a computer program a number 
of things are done differently to conserve time and 
storage space, but the essential ideas are the same. 



1. 4: CHARACTERISTICS OF A LINEAR PRO
GRAMMING APPLICATION 

Linear programming is a powerful tool of scientific 
management, but it is not a cure-all. It does have 
limitations in terms of the kinds of problems that 
can be solved and in the way the problems must be 
formulated. A listing of a problem's requirements 
will be both a necessary statement of the method's 
limitations and a good review of the basic ideas. 

1. A problem for solution by linear program
ming methods must have a definite, identified, 
numerical goal. It is not adequate to say "Waste 
must be reduced", or "Somehow we have to improve 
customer service". The goal (objective function) 
has to be stated as the sum of a series of terms, 
each consisting of the product of the activity level 
and a constant multiplier which is the cost or profit 
per unit of that activity. The goal can only be to 
maximize the total profit or minimize the total cost, 
whichever is appropriate. ("Profit" and "cost" are 
generic terms, however. "Profit" includes total 
yield from a process, the total income including 
expenses, and so on; "cost" includes waste, amount 
of material used, total inventory, and so on. ) 

2. There must be separate and identifiable 
activities, and the level of each activity must be 
measurable in numerical terms. Examples of 
activities in this chapter have included the amount 
of a product to be manufactured, the amount of a 
vitamin supplement to be purchased, and the amount 
of money to be invested in a type of security. Iden
tification of the activities that affect the objective is 
often one of the major parts of formulating a linear 
programming applic a tion. 

3. The activities must be interrelated. In the 
investment example of section 1.3, for instance, it 
would not be possible to set an objective that would 
maximize profit and at the same time minimize 
risk -- unless the investor could state in numerical 
terms how much more risky a high-yield security 
is than a low-yield one. 

4. The restrictions must be identified and stated 
in numerical terms. It is not enough to say, "The 
bottleneck in this process is the stamping mill. " 
We must know just how many hours per day or week 
are available. If this availability can be altered by 
priority orders, or if it is necessary to include 
setup time, these factors must be included in the 
formulation. Failure to state all the constraints 
will generally lead to misleading results. 

5. All activities must appear only in linear 
combinations, both in the constraints and in the 

objective function. This means that the only way a 
constraint may ever be written is as a sum of 
products, each product consisting of a constant 
multiplier and a single variable. It is not permis
sible, for example, for two variables to be multi
plied together, for a variable to be squared, or for 
the square root of a variable to be taken. The same 
restrictions apply to the objective function. 

Frequently, some of these limitations can be 
overcome. For instance, consider a petroleum 
pipeline application. The flow rate is not a linear 
function of pressure, because a small increase in 
pressure for high pressures would not produce the 
same increase in flow rate that the same small in
crease would produce at a lower pressure. In some 
cases of this kind it is possible to break the graph 
of flow versus pressure into a series of straight
line segments that approximate the true curve 
accurately enough. Therefore, even when a function 
is nonlinear (such as the above), it can often be 
represented satisfactorily in linear programming 
formulations. What is necessary is the skill to 
break the function into line segments or linear 
approximations. This technique, while not mathe
matically exact, is often useful and valid. 

1. 5: TYPICAL LINEAR PROGRAMMING 
APPLICA TIONS 

The examples presented in this chapter have neces
sarily been small and simple. Before going on to 
an exploration of the additional types of information 
that can be gained from linear programming 
methods, let us describe some application areas of 
more realistic size and see what power linear pro
gramming provides in each of them. 

Refinery Scheduling 

An oil refinery involves, among other things, the 
blending of some combination of materials to pro
duce one or more different products. The goal can 
be either maximum profit per barrel, or maximum 
profit for the total operation (the two do not always 
lead to the same policy). The constraints describe 
the maximum supplies of available materials and 
several performance requirements on the different 
outputs, such as octane number and vapor pressure. 
If, as usual, the blending process includes chemical 
operations to convert some of the available 
materials into different compounds before blending, 
the constraints would also include the capacities of 
these intermediate processes. 
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A realistic problem would involve 400 to 600 
activities and perhaps 200 constraints. With such a 
complex problem, we cannot accurately find an 
optimum unless linear programming methods are 
used. Naturally, oil refineries were in operation 
before linear programming came into wide use in 
the 1950s, and refinery managers have been making 
decisions on these matters for many years. The 
value of linear programming in such work lies in the 
large financial effect of small improvements. The 
manager's decision, reached by previous methods, 
may have been quite close to the optimum; but a few 
cents of profit per barrel is a great deal of money 
when multiplied by production rates in the tens of 
thousands of barrels per day. In fact, the petroleum 
industry is presently the largest user of linear pro
gramming. We shall explore a refinery scheduling 
problem in some detail in Chapter 3. 

Paper Trimming 

A common problem in the paper industry is deciding 
how to fill a group of orders so as to waste as little 
paper in trimming as possible. The manufacturer 
has roll stock in a variety of widths; his orders call 
for rolls differing in width and length. There may 
easily be hundreds of ways to cut the orders from 
the stock; each of these ways becomes one activity 
in a linear programming solution. The constraints 
are the widths of the stock rolls. (Length is not a 
constraint, assuming there is enough stock on hand 
to fill the orders.) The goal is to fill the orders 
with as little trim loss as possible. 

Formulating this problem for linear programming 
is both easy and difficult. It is easy in the sense 
that unquestionably it can be done, and the mathe
matics involved is simple enough (although we will 
not go through it). It is difficult in the sense that 
every possible way of cutting the rolls is an activity, 
and it can take a long time simply to write down all 
the constraints. This latter problem can be greatly 
reduced with the aid of the computer itself, letting 
the computer enumerate the possibilities. This is 
just one example of a fairly common technique: let 
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the computer help in preparing the input data, which 
is often voluminous. 

Although the use of linear programming in the 
paper industry is not so extensive as in oil refining, 
the economic gains are significant. Trim losses can 
be held to approximately 1%, whereas without linear 
programming they are typically 5%. In an industry 
in which orders are expressed in tons, this can 
mean a great deal of money. 

Production Allocation 

In its general outline, the example in section 1.1 
(standard and deluxe models) is quite typical-
except, of course, for size. Even in that small 
problem, the optimum policy was not obvious from 
the problem statement, and naturally many problems 
are more complex than that one. There would ordi
narily be more products, more manufacturing 
operations, and other types of restrictions. Ex
amples of the last-mentioned would be limits on men 
and machines independently, when not all machines 
are used full-time; limits on storage of parts or 
final products; and different scrap percentages for 
different activities. 

Many other examples could be cited, since linear 
programming can be utilized in any situation that 
meets the general requirements stated in the pre
vious section, and in which there is sufficient 
potential economic payoff to offset the study and 
solution costs. Such applications have appeared in 
almost every segment of industry and the military, 
and the list is continually expanding. 

One of the major reasons for the rapid growth of 
the use of linear programming is the fact that the 
technique can do a great deal more than simply 
provide the optimum policy for one objective and one 
set of constraints. Actually, it is possible to ex
plore the effects of a number of different types of 
changes in the conditions underlying the problem 
formulation. Additional studies are often more 
valuable than the bare statement of an optimum 
policy. We shall consider these additional kinds of 
information in the following chapter. 



CHAPTER 2: DERIVING ADDITIONAL 
INFORMATION ABOUT A SOLUTION 

In the previous chapter we learned something about 
the general characteristics of a problem that can be 
solved with linear programming; we saw some of 
the mathematical methods by which the optimum 
solution can be found; and we received an indication 
of the economic value of the technique. We also 
saw some ways in which it might be desirable to 
investigate a problem beyond the finding of one 
solution to the original problem statement. 

One of the most powerful concepts of scientific 
management is the investigation of several possible 
alternatives, using a method such as linear pro
gramming, before making a final decision. For 
example, before deciding to add new capital equip
ment, we would like to study the return on capital 
in several possible places in the production process 
where new equipment could be added. Before de
ciding where to place new sales emphasis, we would 
like to know which mix of products offers the 
largest profit potential. Before deciding where to 
put the most effort into improved contracts for the 
purchase of raw material, we would like to know 
which group of materials has the most influence on 
profit. Before deciding on an efficiency campaign, 
we would like to know which operations in the manu
facturing process are the best candidates for re
ducing overall costs, considering that some kinds 
of changes may suggest entirely new approaches to 
the process. 

In other words, the one "answer" giving the 
single best policy for the problem as stated is often 
only the beginning of obtaining the information 
needed about the system under study. It is often 
equally important to know how that policy would be 
changed if the problem statement changed; would 
the profit increase or decrease, and would there be 
a different set of activities in the optimum policy? 

This information can be gained by appropriately 
changing the mathematical statement of the prob
lem and then by rerunning it. This may take con
siderable computer time, which we would like to 
save if possible. Fortunately, methods have been 
developed to investigate the effects of changes with
out re-solving the whole problem. In this chapter 
we shall investigate some of these matters, con
centrating on the value of the information derived 

rather than on the mathematical methods used. The 
mathematical techniques are not extremely diffi
cult, but it would take considerable effort to learn 
them. Furthermore, it is practical to gain the 
benefit of most of these techniques without a de
tailed understanding of the intricacies of the math
ematics. 

2. 1: THE FUNDAMENTAL "ANSWER" 

We begin any linear programming problem with a 
set of constraints that describe either limitations 
on resources or minimum requirements that must 
be satisfied. We also have an obj ective function 
that describes either the total profit to be obtained 
from the set of activities or the total cost of the set 
of activities. The goal is to maximize or minimize 
(whichever is appropriate) the value of the objec
tive function, subject to the constraints. 

The fundamental "answer" states the level of 
each activity for a maximum profit (or least cost) 
and gives the value of that maximum profit. This 
answer is found by some form of the simplex 
method. 

From the mathematics used, we learn that there 
will never be more nonzero activities in an optimum 
policy than there are constraints; there may be 
fewer. This means, for instance, that in a prob
lem with two constraints and ten possible activities, 
at least eight of the possible activities will be at 
the zero level in the optimum policy. This would 
happen in Example 1 of section 1. 1 if there were 
other products besides standard and deluxe mod
els, but the only constraints were the grinder and 
polisher capacity. An optimum policy would never
theless contain only two products. If this proves 
to be meaningless in a practical problem, it indi
cates that constraints were omitted in the problem 
formulation. In Example 1, for instance, we care
fully stated the assumption that the manufacturer 
could sell all he could make of either the standard 
or deluxe model. In most realistic situations there 
would be limits on marketability that would require 
other constraints to be included in the formulation. 

A basis consists of as many variables as there 
are constraints. A basic variable is usually 
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nonzero, but is permitted to be zero; a nonbasic 
variable must be zero. 

Constraints are most commonly expressed as 
inequalities: "less than or equal to" or "greater 
than or equal to". An inequality is converted into 
an equation by the introduction of a slack variable. 
A slack variable, like all variables in a linear 
programming problem, must be zero or positive. 
Any constraint that is not "tight" in an optimum 
solution (that is, some capacity is not fully utilized) 
will result in aln optimum basis that includes a slack 
variable. The value of such a slack variable gives 
the amount by which the corresponding availability 
is underutilized, or by which a minimum specifi
cation is exceeded. 

Let us restate the fundamental ideas in terms of 
an example, which will be used to illustrate all 
further developments in this chapter. 

A manufacturer can make hex nuts, screws and 
bolts. Each pound of hex nuts requires four man
hours of labor and one hour of lathe time. Each 
pound of screws requires two man-hours of labor 
and one hour of grinder time. Each pound of bolts 
requires two man-hours of labor, one hour of lathe 
time, and three hours of grinder time. The manu
facturer makes $3 profit on each pound of hex nuts, 
$2 on each pound of screws, and $2.50 on each 
pound of bolts; he can sell all he can make of each. 
How many pounds of each product should he make 
for maximum profit, and what is the profit? 

The manufacturer produces other items, but he 
has decided that for the hex nuts, screws, and bolts 
he can allow twelve man-hours, two lathe-hours, 
and four grinder-hours each day. 

Let H stand for the number of pounds of hex nuts, 
S for the pounds of screws, and B for the pounds of 
bolts. Then we can restate the problem in the usual 
mathematical form as: 

Maximize 3H + 2S + 2.5B 

&1bject to 4H + 2S + 2B ~ 12 man-hours 

IH + IB ~ 2 lathe-hours 

IS + 3B ~ 4 grinder-hours 

We have here three activities (production of hex 
nuts, screws and bolts) and thr(~ constraints 
(availability of man-hours, lathe-hours and 
grinder-hours). 
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The optimum policy can be found by application 
of the ideas presented in the previous chapter. 
Since we wish to concentrate now on results rather 
than on mathematical methods, we shall not go 
through the algebra, but shall simply state the 
result. The optimum policy is to produce one pound 
of hex nuts, four pounds of screws, and no bolts. 
One hour of lathe time will not be used. The 
maximum profit is $11. 

The basis consists of the following variables: 
pounds of hex nuts, pounds of screws, and hours of 
unused lathe time. Thus there is a slack variable 
in the optimum basis. 

A glance at the original problem statement will 
make this inclusion of a slack in the optimum basis 
seem plausible. Bolts were forced out because each 
pound of bolts requires three hours of grinder time, 
leaving little time for screws. If the manufacturer 
made a pound of bolts, grinder capacity would limit 
him to only one pound of screws instead of the 
optimum four pounds; and four pounds of screws 
clearly bring in more profit than one pound of bolts. 

This justification of the plausibility of the answer 
is given to assure the reader that the answer is 
correct, not to suggest that such a justification is 
ordinarily possible. In most practical applications 
the problem is much too complex to see at a glance 
why the answer came out the way it did. If this were 
possible, there would probably be no need to use 
linear programming. 

2.2: CHANGING LIMITS: RIGHT-HAND SIDE 
RANGES AND MARGINAL VALUES 

Knowing that the optimum policy is to make one 
pound of hex nuts and four pounds of screws, and 
that this policy brings $11 profit, we will probably 
want to know the answers to questions such as the 
following. How would the profit be affected if 
another man-hour of labor were made available? 
How would it be affected if two more man-hours 
were made available? How many man-hours could 
be added before the optimum policy would be to 
make some combination of products other than nuts 
and screws? 

The same types of questions might arise in 
another way. What if there were uncertainties in 
the estimates of the hours available? How much 
would profit be affected if only eleven man-hours 
were available, or if thirteen man-hours could be 
used? 



Mathematically, all these questions relate to 
changes in the values on the right-hand sides of 
constraints. The term for the effect on profit of a 
change in a right-hand side is marginal value. This 
is defined as the change in the value of the objective 
function caused by a unit change (a change of one in 
the value of the right-hand side of some constraint). 

Computing the marginal values of the right-hand 
sides takes little extra effort, once the optimum has 
been found (although we shall not take the time to 
investigate the method). The values for the sample 
problem are: 

Man-hours 

Lathe-hours 

Grinder-hours 

$0.75 

0.00 

0.50 

Taking man-hours first, one additional man-hour 
will raise the profit by 75~; two will raise it by 
$1. 50; an added half hour will raise it by 37-1/2~. 
It also means that removing man-hours will decrease 
the profit by 75 ¢ per man-hour removed. If the 
manufacturer has any other activity on which his 
profit on a man-hour is greater than 75¢, this 
marginal value would tell him immediately that he 
can make more money by shifting effort away from 
nuts and screws. It is precisely this type of infor
mation that is often of the most value in a linear 
programming application. 

The zero marginal value of lathe-hours means 
that additional lathe-hours do not lead to any in
crease in profit. Since the manufacturer was not 
using all his lathe-hours initially, he could not 
make any additional profit by providing more 
capacity. 

An additional hour of grinder time adds 50¢ to 
the profit. This may not seem reasonable, for how 
is it possible to increase grinder-hours without 
increasing man-hours, since a grinder presumably 
requires an operator? The answer is that it is not 
entirely reasonable; what the manufacturer might 
want to do is to investigate the effect of increaSing 
man-hours and grinder-hours Simultaneously. This 
is precisely the type of thing that is made possible 
by parametric linear programming, which will be 
discussed in section 2.6. For now, however, we 
must emphasize that marginal values here refer to 
changing one thing at a time, with all others held at 

their original values. We cannot, for example, 
legitimately add the marginal values of man-hours 
and grinder-hours and say that the effect of adding 
one unit of each would be $1.25. 

The marginal values nevertheless supply much 
useful information. Suppose that our goal were to 
provide a rational basis for deciding whether to buy 
a new lathe or a new grinder: the marginal values 
would indicate at once that for this part of the 
factory, at least, there would be no point at all in 
buying another lathe. Furthermore, the 50~ mar
ginal value of grinder time supplies information for 
computing the rate of return on a proposed capital 
expenditure for a new grinder. 

The values given for the marginal values apply 
only as long as the optimum policy remains the 
making of hex nuts and screws and the leaving of 
some lathe-hours unused. Mathematically, we say 
that the marginal value s are valid only as long as 
the right-hand sides are not changed enough to re
quire a change of basis. (Recall that the optimum 
basis consists of hex nuts, screws, and unused 
lathe-hours.) If the number of man-hours is re
duced by one, we will make fewer hex nuts (as it 
happens), but we will still make some of them. We 
will still make screws, and there will still be some 
unused lathe-hours. In other words, a reduction of 
one man-hour does not change the basis, although it 
does change the value of one of the variables in the 
basis, and it does change the.total profit. 

There is clearly going to be some limit on the 
amount by which the right-hand sides can be changed 
without requiring a change of basis. If we had only 
two man-hours, for instance, the optimum policy 
would be to make one pound of bolts, leaving unused 
lathe-hours and grinder-hours. The question is: 
What is the range of values for the right-hand sides, 
taken one at a time, that does not change the basiS, 
and over which range the stated marginal values are 
valid? 

Information about the range of the right-hand 
sides can be provided with little extra computation 
once the optimum has been found. The results for 
this example are: 

Lower Original Upper 
Constraint Limit Value Limit 

Man-hours 8 12 16 
Lathe-hours 1 2 00 (infinity) 
Grinder-hours 2 4 6 
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The table shows, for instance, that the number of 
man-hours available can range between eight and 
sixteen hours, with the other right-hand sides at 
their original values, and the optimum policy will 
still be to make hex nuts and screws, with some 
lathe-hours unused. The number of pounds and the 
profit will change, but the optimum policy will still 
be to make those two products. Furthermore, 
within this range, the effect on the profit of a change 
in the number of man-hours will be to add 759 profit 
for each man-hour added. In other words, the 
marginal value given earlier is valid throughout this 
range. 

What does it mean that although lathe-hours 
cannot be reduced below one without changing the 
basis, lathe- hours can be increased indefinitely 
without any such change? It. simply means that 
since we are not using all the lathe-hours available, 
our policy can never be affected by adding more. 

What we are calling the marginal value is also 
called by other names, depending on the nature of 
the problem and on the writer: incremental cost, 
raw stock cost, break even price, simplex multi
plier, and shadow price. Shadow price is perhaps 
the most common alternative name; we prefer to 
avoid it because the same term is also sometimes 
applied to variation of the coefficients in the objec
tive function, leading to confusion as to the intended 
meaning. 

2.3: CHANGING OBJECTIVE FUNCTION 
COEFFICIENTS: PROFIT RANGES 

Just as we were interested in what would happen if 
the right-hand sides were changed, it is often 
valuable to have similar information about the values 
in the objective function. 

For any activity that is in the optimal basis, the 
concept of marginal value is the same as with the 
right-hand sides. What is the effect on the optimum 
profit when there is a unit change in the profit co
efficient for an activity? This information is 
generally not printed by the computer program, 
since it can be found by inspection of the objective 
function and from the levels of the optimum basic 
variables. For instance, if the profit on a pound of 
screws were $3 instead of $2, the profit would be 
increased by $4 since the optimum policy is to make 
four pounds of screws (and still one pound of hex 
nuts). For a nonbasic variable, changing the unit 
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profit has no effect on the total maximum profit. 
Since any nonbasic variable is zero, increasing its 
profit cannot raise the total profit. (That is, it 
cannot do so unless the unit profit change is great 
enough to cause a change of basis. We are assum
ing throughout this section that the basis doe s not 
change. ) 

Since the marginal values of the objective function 
are so easy to find, they are not printed; in fact, we 
do not ordinarily use the term "marginal value" in 
connection with the objective function. When we say 
"marginal value", it is understood that right-hand 
sides are intended. 

Just as with the right-hand sides, however, there 
will be a limit on the range over which objective 
function variations do not cause a change in basis. 
Since the ranges of validity are not obvious from the 
objective function and the optimum basiS, they can 
be printed by the computer. They are called profit 
ranges (or cost ranges, where appropriate), arur
they give the range of variation for each profit term, 
taken one at a time, over which the basis does not 
change. The results for our example are: 

Lower Original Upper 
Constraint Limit Value Limit 

Hex Nuts $0.00 $3.00 $3.50 

Screws 1. 83 2.00 00 

Bolts -00 2.50 3.00 

In the case of hex nuts, this means that as long 
as there is any profit in them, we shall make some 
of them; if, however, the profit for a pound of hex 
nuts were greater than $3.50, we would change the 
basis. For example, if the profit per pound of hex 
nuts were $4, the optimum policy would be 1. 5 
pounds of hex nuts, 2.5 pounds of screws, and 0.5 
pounds of bolts. There would be no unused capacity. 
Comparing with the optimum basis for the problem 
as stated, the activity of making bolts has entered 
the basis and lathe slack has left it. 

The range on the making of screws indicates that 
if the profit per pound dropped below $1. 83 (from 
the original $2), the optimum policy would involve a 
different basis, but no amount of increased profit on 
screws would make us change the basis. For bolts, 
we see that no matter how low the profit dropped, 
we would not make any. This is no surprise, since 



it was not profitable to make them anyway. If the 
profit for a pound of bolts rose above $3, however, 
the optimum basis would include some bolts. 

This ranging information is useful management 
data in at least two ways: (1) to determine whether 
to change policy if the profit changes, by a market 
price variation or by a change in the cost of materials 
or production, and (2) to determine how sensitive the 
choice of policy is to uncertainty in the objective 
function coefficients. These profit figures for each 
activity naturally involve some prior calculations: 
what are the costs of materials, labor and overhead 
for each product? There is inevitably some esti
mating involved in determining these coefficients; 
would the optimum policy be greatly different if it 
were discovered that some of the figures were a bit 
inaccurate? A glance at the profit ranges shows 
that the profit on hex nuts and bolts would have to be 
more than 50¢ higher before the optimum policy 
would change, but if the profit on a pound of screws 
dropped by more than about 17 ¢ (a percentage change 
of only about 9%), the best policy would be different. 
If the profit on screws dropped by more than that 
much, or if there is more than that much uncertainty 
in the profit estimate, then the "optimum" policy is 
in some doubt. This kind of information can clearly 
be of great value in evaluating a policy suggested by 
a linear programming solution. 

It is sometimes of interest to know what it would 
cost if we deliberately introduced some amount of 
an activity that is not in the optimum basis, in an 
amount that does not force any optimum basis vari
able out of the basis. The value of this number 
is that it tells us how much the profit on such a 
nonbasic variable would have to be increased before 
it would become profitable to introduce the variable 
into the basis. In our problem, this would reason
ably be called the reduced profit, but since the concept 
first arose in connection with cost minimization 
problems, it is usually called the reduced cost. 

The only nonslack activity not in the basis for the 
problem as stated is the manufacture of bolts, so 
this is the only variable that has reduced cost; the 
figure is 50¢ per pound. We cannot force more 
than half a pound of bolts without using up the lathe 
slack--which would be a change of basis. When a 
half pound of bolts is made, other variables have 

changed values. What is the total effect on the 
profit? The reduced profit is 50¢ per pound, so the 
reduced profit for half a pound is half of 50¢, or 
25¢, making the new total profit $10.75. 

The reduced cost is one example of added infor
mation that can be derived from a linear program
ming solution with little extra effort. It is at least 
useful secondary information; in some situations it 
becomes almost as important as the statement of 
the optimum policy. 

2.4: TRADEOFFS: RATES OF SUBSTITUTION 

We have so far seen two ways of asking questions 
about how the optimum policy would be changed if 
the data in the problem statement were modified. 
The marginal value of a right-hand side gives the 
effect on the profit of a unit change in the value of a 
restriction. The reduced cost gives the effect on 
the profit of the introduction of one unit of some 
activity not in the optimal basis. For both right
hand-side variations and for profit variations, 
ranging information tells the extent of each change 
that can be made without requiring a change of 
basis--that is, a shift to a different policy. These 
variations are all considered independently; only 
one thing is allowed to vary at a time. The only 
information given in either case is the effect on the 
profit. Although the basis will not change (we will 
still make the same products), the values of the 
variables in the basis and of the total profit will 
change. 

This section somewhat generalizes these con
cepts. We will still consider only one change at a 
time, but now we can get a statement of the effect of 
the change on all the basic variables, as well as 
the effect on the profit. For example, if the number 
of man-hours available is reduced by one, what effect 
will this have on profit, on the pounds of hex 
nuts made, the pounds of screws made, and the 
number of lathe-hours used? The answer is 
given in terms of substitution rates, which are not 
limited to just one unit of change, but apply for any 
value within the range of validity of the substitution. 
The following table gives the substitution rates for 
the problem statement. 
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Man-hours Grinde r-hours Bolts 

Profit -0.75 -0.50 -0.50 

Pounds of hex -1/4 1/2 1 
nuts 

Lathe-ho~rs 1/4 -1/2 2 
used 

Pounds of 0 -1 -3 
screws 

Extent of this 4 2 1/2 
substitution 

From the se entrie s we see that a reduction of one 
man-hour (which is equivalent to changing the right
hand side of the first constraint to eleven) reduces 
profit by $0.75, reduces the number of pounds of 
hex nuts in the optimum policy by 1/4, increases 
the number of lathe-hours by 1/4, and has no effect 
on the pounds of screws produced. The increase in 
the number of lathe-hours is due to the reallocation 
of resources made necessary by the change in man
hours. If the number of man-hours were increased 
by one, profit would rise by $0.75; pounds of hex 
nuts would rise by 1/4; lathe-hours would drop by 
1/4; and there would still be no effect on the pounds 
of screws. This substitution may be carried out to 
an increase of four hours. 

For grinder-hours, a reduction of one would 
decrease profit by $0.50, increase hex nuts by 1/2 
pound- (again due to reallocation), reduce lathe hours 
by 1/2, and reduce the screws by one pound. 

The pounds of bolts cannot be reduced (since we 
are making none), but they can be increased up to 
1/2. If this is done, profit will be reduced by $0.50 
per pound of bolts; half a pound will reduce profit 
by $0.25. The increase of 1/2 pounds of bolts will 
increase the pounds of hex nuts at a rate of one for 
one, giving an actual increase of 1/2. Lathe hours 
increase at a rate of two for one, leading to an extra 
hour. Screws go down three times as fast as bolts 
go up, leading to a decrease of 1-1/2. 

2.5: SENSITIVITY TO TECHNOLOGY 

Now we turn to a rather different type of investiga
tion. So far we have assumed that the coefficients 
in the constraints (the left-hand side s) have not 
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varied. For instance, none of the changes con
sidered so far have altered the fact that it takes four 
man-hours to produce a pound of hex nuts. 

This question can obviously be of considerable 
interest for the same two major reasons that the 
other items are of interest: because of possible 
changes in these figures, and because of possible 
uncertainty in the data. 

This time we are asking for the sensitivity of the 
profit to a small change in a coefficient of a con
straint. The following table gives this effect for all 
the coefficients. 

Man-hours 

Lathe-hours 

Grinder-hours 

Hex Nuts 

-3/4 

o 

-1/2 

Screws 

-3 

o 
-2 

Bolts 

o 
o 

o 

The table shows, for instance, that total profit 
decreases 3/4 as fast as the number of man-hours 
")er pound of hex nut increases; it decreases three 
times as fast as the number of man-hours per pound 
of screws increases. Since we are making no bolts 
in the optimum policy, any changes in the hours for 
making bolts will have no effect on profit. 

Since we are not using all the lathe-hours avail
able, a small increase there will have no effect on 
the profit either. This probably seems unreasonable, 
for if the lathe-hO'J.rs requj red to make a pound of 
hex nuts were increased, surely the lathe operator 
would have to work longer. The answer to this 
apparent contradiction is that nothing in the system 
of constraints states that there is any relationship 
between lathe-hours and ma"'1-hours. 

It will be instructive to make a change in one of 
the system coefficients and see if the entries in the 
preceding table are applicable. Let us see what 
happens to the profit if the number of grinder- hours 
per pound of screws is increased from one to two. 
Solving the problem, we find that the optimum pol
icy now is to make two pounds of hex nuts and two 
pounds of screws, leading to a profit of $10. This 
is a reduction of only $1, whereas the table said to 
expect a reduction of $2. What happened? 

Let us now see what happens if the grinder hours 
per pound were increased by 1/2 instead of one. 
Now the optimum is to make 1-7/9 pounds of hex 
nuts and 2-2/9 pounds of screws; the profit is 10-1/3 
dollars. The profit was reduced 2/3 dollars by the 
increase of 1/2 hour of grinder time; the profit loss 
is now greater than the time increase, but still not 
twice as great. 



Still, the ratio is greater than what we had for an 
increase of one. Let us now try a quite small 
change of 0.1 hour. This time, the optimum policy 
is to make 1.1818 pounds of hex nuts and 3.6364 
pounds of screws; the profit is $10.82. Thus for 
0.1 hour increase in time we got $0.18 drop in 
profit, which is getting closer to the 2:1 ratio the 
table predicts. 

The answer to all this is that the table gives the 
rate of change of profit for coefficient values very 
close to the original values. For large increases, 
the rate is not the same. The relationship is said 
to be nonlinear. If it is important to know the effect 
of a large change, such as the 100% time increase 
we tried first, some other technique must be used. 

Nevertheless, it should be clear that sometimes 
such small change s are all that we would want to 
investigate. As a matter of fact, the effects of such 
changes are occasionally the main purpose of a 
linear programming study. 

2.6: CHANGING SEVERAL THINGS AT ONCE: 
PARAMETRIC PROGRAMMING 

Everything we have discussed so far has involved 
two fundamental assumptions: 

1. One thing is changed at a time. The level of 
a number of other variables may change as a result, 
but the cause of all the changes is the variation of the 
one. 

2. The changes are not so great as to cause a 
change in the basis. 

We have already seen situations in which we would 
like to go beyond such techniques. In connection 
with varying the availability of lathe-hours or 
grinder-hours, for instance, it is natural to want 
to vary man-hours simultaneously, since the ma
chine operator must work as long as the machine is 
in operation. More generally, we might want to 
study the effect of an overall increase in capacity-
for example, by working longer hours or by adding 
a few of all types of machines. Or we might want to 
study the effect of increasing one capacity and, at 
the same time, decreasing another. 

When such sweeping changes are under study, it 
is unduly restrictive to consider only the one opti
mum policy--that is, to be limited to no change of 
basis. When a major management decision is under 
study, it is reasonable to expect that large changes 
in the structure of the system may make a different 
policy much more attractive than the one that is "
optimum under the initial conditions. 

Parametric linear programming allows the 
freedom we need for this kind of study, since sev
eral factors can be varied simultaneously with no 
limit on the amount of basis-changing that may be 
required. The technique is most commonly applied 
to the right-hand sides of the constraints and to the 
objective function, but in principle it can be used 
with any row or column of the entire system. 

Let us again consider the illustrative problem 
and investigate the effect of increasing man-hours 
and grinder-hours at the same rate, and decreasing 
lathe-hours at 1/3 that rate. How do the allocations 
change? What is the effect on the profit? When do 
changes of basis occur? How far can the variations 
be continued? 

Keep in mind that we now want to increase the 
right-hand sides continuously--that is, to consider 
all new values, rather than selected and isolated 
ones. To describe this kind of variation we will 
assign for each right-hand side a rate of change, 
which may be positive, negative or zero. Then we 
will establish a parameter that increases smoothly 
and indefinitely from zero. For anyone constraint, 
this can be written as: 

New right-hand side = Old right-hand side 
+ (parameter X rate of change) 

We have such a relation for every constraint; the 
rate of change can vary with each new constraint, 
but the parameter is the samra in all. As the f / 
parameter increases, it describes the simultaneous 
variation of all the right-hand sides. 

In the example, the rates for man-hours and 
grinder-hours are both one, and the rate for lathe
hours is -1/3. As the parameter increases smoothly 
from zero to one, for instance, we are in effect 
asking what happens to the solution if instead of 
twelve man-hours we had 13; instead of two lathe
hours we had 1-2/3; and instead of four grinder
hours we had five. When the parameter increases 
to two, we have fourteen, 1-1/3, and six hours 
respectively. The parameter continues to increase; 
at some point a variable in the original basis would 
become negative if the parameter were increased 
further. If this happened, the solution would no 
longer be feasible, and thus would require a change 
of basis. At this point a parametric linear pro
gramming program in the computer would print the 
names of the changed basis variables and perhaps 
their levels at the point of change. It might also 
print the marginal values of all constraint right- hand 
sides, and then look for the next change of basis. 
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When that change is found, the new basis is printed, 
and so on. 

The computer program does not actually do all 
this by experimentation. There are mathematical 
techniques that state exactly when a change of basis 
is required, in terms of the parameter. All the 
computer program actually does is compute this 
value of the parameter, print the appropriate data, 
and then go through some manipulations that deter
mine what the new basis is. 

Eventually, one of two things will happen. Either 
a point will be reached beyond which the parameter 
cannot be increased any further and still maintain 
feasibility, or a point will be reached beyond which 
the parameter can be increased indefinitely without 
ever requiring a change of basis. In the latter case 
the right-hand sides are said to be open. 

In the illustrative problem, the first change of 
basis occurs when the parameter reaches four, 
which corresponds to sixteen man-hours, 2/3 lathe
hours, and eight grinder-hours. At that point, we 
are making eight pounds of screws and no nuts or 
bolts; the profit is $16. As the parameter increases 
further, it becomes profitable to begin making bolts 
instead of hex nuts; there is still slack in the lathes. 
After the parameter reaches 5-1/7, the lathes are 
"tight" (no slack), but there is slack in the grinders. 
(This reallocation of slacks is a change in basis. 
The basis consists of whatever variables have non
zero values.) As the parameter now increases 
further, we start cutting down on the pounds of 
bolts. When the parameter reaches six, we are 
again making no bolts--but we are not making hex 
nuts either. From here on, indefinitely, we make 
nothing but screws; there is slack in both lathe
hours and grinder-hours. 

Through the use of parametric linear program
ming, a computer would print out the values of the 
right-hand sides at which basis changes occur, the 
new basis at each change, the levels of all basis 
variables at each change, and the rates of change of 
all basis variables from there to the next basis 
change. With this information in hand, the effect of 
the variation on profit and the basis variables can 
be plotted, as in Figure 13. 

The graph, of course, does not show all that can 
be done with parametric linear programming. The 
rates of change for the constraints, for instance, 
may be zero. Suppose that we wanted to investigate 
the effect of increasing lathe-hours, with each 
additional lathe-hour requiring an additional man
hour. We would set the rate of change for man
hours at one, the rate for lathe-hours also at one, 
and the rate for grinder-holirs at zero. Or suppose 
that we wanted to study the effect of increasing lathe-
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hours and simultaneously decreasing grinder-hours, 
with grinder-hours decreasing twice as fast as 
lathe-hours increase. We would make 0 the 
rate of change for man-hours; 1 the rate for lathe
hours; and -2 the rate for ginder-hours. 

10 

~ 9 

~ 8 

.: 7 
iL 

~ 6 

HEX NUTS 

o 
3 

PARAMETER 

BOLTS BOLTS 

4 

Figure 13. Graph of the effect on profit, pounds of screws, 

pounds of hex nuts, and pounds of bolts, of a 

simultaneous increase in the right-hand sides. 

One unit on the parameter scale corresponds to 

one unit in man-hours, lathe-hours and grinder-hours. 

The possibilities are almost unlimited. Once the 
optimum solution to a problem has been found, 
getting the parametric programming results takes 
comparatively little extra time. It is therefore 
economically practical to run many parametric 
programming variations, leading in many cases to 
an extremely valuable analysis of the various 
alternatives open to management. 

We have discussed only variation of the right
hand Sides. Precisely the same things can be done 
with simultaneous variation of the coefficients in 
the objective function. This can be valuable, for 
instance, in determining the effects of possible 
simultaneous price changes, or in establishing what 
the price would have to be to make a potential 
course of action profitable. 

Parametric programming is perhaps the best 
current example of the expanding usefulness of 
linear programming to management. As research 
goes on and as new features are incorporated into 
the computer systems for linear programming, 
management will find it even more helpful. 

I 
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CHAPTER 3: A LARGER EXAMPLE -- OIL 
REFINERY SCHEDULING 

We have now seen a number of examples of small 
problems that can be approached with the methods 
of linear programming. In this chapter a somewhat 
larger problem is discussed. We shall explore 
the physical situation in which the problem arises, 
the formulation of the linear programming model, 
the preparation of computer input, the presenta
tions of results by the computer program, and 
some variations. * 

3. 1: THE PHYSICAL SITUATION 

The basic material for an oil refinery is called 
~ oil, or simply crude. It is a liquid mixture 
of a large number of chemical compounds ranging 
from low-boiling-point ("light") components such 
as gasoline, to high-boiling-point ("heavy") com
ponents such as asphalt and re sidual fuel. A 
refinery normally has to process many different 
types of crude, with the types differing in the pro
portions of their constituent compounds and in 
price. The price is expressed in dollars per 
barrel ($/bbl). The refinery in this example is 
able to process two different types of crudes: 
crude 1 and crude 2. 

A refinery consists of a number of process 
units for separating, changing or combining crude
oil components. (The crude- oil components are 
usually called fractions, since each represents a 
"fraction" of the crude.) A refinery also has a 
large amount of storage space for raw materials, 
intermediate products and final products. In our 
simplified example, the refinery has only two 
process units -- a pipe still and a catalytic crack
ing unit -- in addition to its storage tanks. 
-A pipe still is a device in which crude oil· is 
distilled to separate it into fractions according to 
boiling point. The highest boiling fraction is called 
light naphtha; the middle boiling fraction is called 
iri'edirun distillate; and the lowest boiling fraction 
is called heavy residuum. In short, a pipe still 
takes crude oil as its input, heats it, and produces 
the three fractions as its outputs; each fraction 
appears at a separate pipe. The relative propor
tions of the three outputs depend both on the 
physical characteristics of the crude input and on 
the operation of the pipe still. In this problem the 
pipe still can be operated to produce either a high 
proportion of fuel (the heavy residuum) or a high 
proportion of medium distillate. 

* The material in Chapter 3 is based upon the paper "Linear 

Programming Applied to Refinery Scheduling" (IPT-PR-0199), by 

David Smith, copyright 1963 C-E-I-R, Inc., and is used with their 

permission. 

A catalytic cracking unit ("cat cracker") oper
ates on the medium distillate fraction from the 
pipe still. Through a series of chemical reactions, 
it changes the medium distillate into three outputs 
called catalytic naphtha ("cat naphtha"), light cycle 
stock, and heavy cycle stock. Part of the cyc~ 
stock output can be returned to the input of the unit, 
in an operation called recycling. 

The essence of the cat cracker's operation is 
the "cracking" of the heavy molecules of the medirun 
distillate into lighter and smaller molecules. The 
weight of the outputs cannot exceed the weight of 
the input, but since the small molecules take up 
more space than the large ones, the volume of the 
outputs exceeds that of the input. 

From these two processes we obtain seven com
ponents that may be combined in various ways to 
produce four products. The seven components 
are: 

1. The light naphtha from the pipe still produced 
while proceSSing crude 1. Since the light naphtha 
is not run through the cat cracker or otherwise 
processed after leaving the pipe still, it is called 
virgin naphtha. 
--2-.- The light naphtha from the pipe still produced 
while processing crude 2. These two components 
are chemically the same, but they are stored 
separately and must therefore be accounted for 
separately. 

3. The medium distillate from the pipe still, 
produced from either crude 1 or crude 2. (The 
distillate is not stored separately according to 
which crude is being processed.) Most of the 
medium distillate goes to the cat cracker, but 
some of it is used directly in blending final prod
ucts. Once again, since this component is not 
further processed after leaving the pipe still, it is 
called virgin distillate. 

4. The residurun from the pipe still. Some of 
this goes to the cat cracker, but the bulk of it is 
used in blending one of the final products. 

5. Cat naphtha from the cat cracker. 
6. Light cycle stock from the cat cracker. 
7. Heavy cycle stock from the cat cracker. 
These seven components are blended to make 

four products. The constituents of each product 
are the following: 

1. Regular gasoline: virgin naphtha from crude 
1, virgin naphtha from crude 2, and cat naphtha. 
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Name 

CR1F 
CRlD 
CR2F 
CR2D 
CATVD 
CATLC 
CATHC 
RSFUL 
HCFUL 
LCFUL 
VDFUL 
VNAPD 
VDISD 
LCCYD 
VNlR 
VN2R 
CNPR 
VN1P 
VN2P 
CNPP 

Description 

VARIABLES 

Crude 1 run to fuel, MB/D 
Crude 1 run to distillate, MB/D 
Crude 2 run to fuel, MB/D 
Crude 2 run to distillate, MB/D 
Cat feed virgin distillate, MB/D 
Cat feed light cycle, MB/D 
Cat feed heavy cycle, MB/D 
Residuum to fuel, MB/D 
Heavy cycle to fuel, MB/D 
Light cycle to fuel, MB/D 
Virgin distillate to fuel, MB/D 
Virgin naphtha to distillate (heating oil), MB/D 
Virgin distillate to distillate (heating oil), MB/D 
Light cycle to distillate (heating oil), MB/D 
Virgin naphtha (crude 1) to regular gasoline, MB/D 
Virgin naphtha (crude 2) to regular gasoline, MB/D 
Catalytic naphtha (crude 1) to regular gasoline, MB/D 
Virgin naphtha (crude 1) to premium gasoline, MB/D 
Virgin naphtha (crude 2) to premimum gasoline, MB/D 
Catalytic naphtha to premium gasoline, MB/D 

TABLE 1. Symbols used in Figure 14 and in text 

CRIF 

CRIO 

CR2F 

CR20 

Pipe 
Still 

PSCAP 

CRBAL 

NOTE: Nanes in boxes are constraints (rows). 
Nanes at arrowheads are variables (cols). 
Dots. are variable ratios. 
Circles(!)are fixed ratios. 

Figure 14. Refinery flowchart 

24 

CATVO 

CATLC 

CATHC 

CPRRR 
PROFT 
VNAPI 
VNAP2 
vms 
RESID 
CATN 
LCCY 
HCCY 
CRBAL 
PSCAP 
CR2AV 
TFCAT 
FREQ 
DREQ 
DSPEC 
RREQ 
RSPEC 
PREQ 
PSPEC 

where 

RELATIONS 

Change premium gasoline price row, $M/D 
Profit, $M/D 
Virgin naphtha 1, material balance, MB/D 
Virgin naphtha 2, material balance, MB/D 
Virgin distillate, material balance, MB/D 
Residuum, material balance, MB/D 
Catalytic naphtha, material balance, MB/D 
Light cat cycle oil, material balance, MB/D 
Heavy cat cycle oil, material balance, MB/D 
Crude balance (crude 1 = 1/3 total), MB/D of crude 1 
Pipe-still capacity, MB/D 
Crude 2 availability, MB/D 
Total feed cat capacity, MB/D 
Fuel oil volume requirement, MB/D 
Distillate (heating oil) volume requirement, MB/D 
Distillate (heating oil) specification, M CON. B/D better than spec. 
Regular gasoline volume requirement, MB/D 
Regular gasoline specification, M OCT. B/D better than spec. 
Premium gasoline volume requirement, MB/D 
Premium gasoline specification, M OCT. B/D better than spec. 

MB/D = thousands of barrels per day 
$M/D = thousands of dollars per day 
M CON. B = thousand contamination number of bbls. 
M OCT. B = thousand octane number bbls. 

~ 

Z 
> 

Regular 
Gasoline 

~ a: N 
Z Z 
> U 

Premium 
Gasoline 

Q.. Q.. Q.. 

Z N a. 
Z Z 

> > u 

VNAPO 

VDISO 

Distillate 
(Heating Oil) 

Cat Cracker 

OREQ 
OSPEC 

TFCAT 

LCCYO 

VOFUL 

LCFUL 

HCFUL 

FREQ 

RSFUL 

Fuel 
Oil 



2. Premium gasoline: same components as 
regular gasoline, but in different proportions to 
meet different product specifications. 

3. Heating oil: virgin naphtha from crude 1, 
virgin distillate, and light cycle stock. 

4. Fuel oil: virgin distillate, residuum, light 
cycle stock, and heavy cycle stock. 

The flow of materials and intermediate products 
to form final products is shown in Figure 14, which 
should be read with Table 1. This diagram is not 
difficult to understand if it is studied with the pre
ceding explanations. 

Two conventions are employed in Figure 14. 
Names at the arrowheads are variables, which 
will correspond to columns in the linear program
ming formulation; names in boxes relate to con
straints, which will correspond to rows. 
Rectangular boxes indicate processing or blending; 
boxes with peaked roofs indicate a point at which 
a material flow must balance -- that is, the sum 
of the input flow must equal the sum of the output 
flow. For instance, the box labeled VNAP1 
refers to virgin naphtha from crude 1; the material 
flowing into this point must equal the material 
flowing out to the two type s of gasoline. One of 
the constraints to be discussed later will express 
this material balance mathematically. 

3.2: THE OPERATING DATA 

Now that we have some idea of how an oil refinery 
works, let us investigate the factors that determine 
whether or not a scheme of operation is profitable. 
This will involve the costs of raw materials, the 
costs of operation, the characteristics of the 
various processes, and the prices of the final 
products. Many of the ways of running the refinery 
can be varied: choice of crudes, operating char
acteristics of the pipe still and the cat cracker, 
the proportions of components used in blending the 
final products, and "mix" of final products. The 
goal, of course, is to operate the refinery for 
maximum profit. 

The remainder of this section presents the basic 
data and other information necessary to develop the 
mathematical statement of the problem. 

C rude Supply 

Crude 1 costs $2.75 per barrel delivered at the 
refinery gate. Because of quality problems, crude 
1 can make up no more than one-third of the total 

crude input. Crude 2 costs $2.85 per barrel; its 
maximum availability is 75,000 barrels per day 
(75 MB/D). 

Pipe-Still Operations 

Each crude can be run either for maximum fuel or 
for maximum distillate. The pipe- still capacity is 
the same (100 MB/D) either way. The pipe still 
costs $.25 per barrel to operate, above the cost of 
the small amount of input crude that is burned to 
heat the still. This latter amount has been 
deducted from the yields in Table 2. The table 
shows the fractional yield from each crude, on 
each type of operation (maximum fuel or maximum 
distillate). The table indicates, for instance, that 
if one barrel of crude 1 is run for maximum fuel, 
the yield will be .10 barrel of virgin naphtha, .25 
barrel of virgin distillate, and . 60 barrel of 
residuum. 

The sum of these fractions is less than one 
barrel because of the amount of crude used to heat 
the still. When crude 1 is run for maximum distil
late, there is a higher proportion of virgin naphtha 
and virgin distillate, and a lower proportion of 
residuum. (It is primarily the residuum that goes 
into fuel.) Crude 2 costs more and produces 
higher percentages of the virgin naphtha, which is 
one of the components of the higher-priced 
gasoline. 

crude 1 crude 2 

fuel distillate fuel distillate 

virgin naphtha .10 .15 .20 .25 

virgin distillate .25 .40 .20 .35 

residuum .60 .40 .50 .30 

TABLE 2. Fractional yields for both crudes, 
operating the pipe still for maximum fuel or 

maximum distillate 

Catalytic -Cracker Operation 

Table 3 gives the operating characteristics of the 
cat cracker. The three columns correspond to the 
three inputs. The primary input is the virgin 
distillate from the pipe still, but we must also con
sider that part of both the light-cycle stock and 
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heavy-cycle stock outputs can be returned for 
recycling as input. 

The first line of Table 3 gives the variable 
operating cost per barrel. The second line shows 
that the virgin distillate is contaminated with a 
little residuum; the light-cycle and heavy-cycle 
stocks are not. The third line refers to an internal 
recycle: part of each input is recycled within the 
cat cracker, in addition to the external recycle 
shown in the diagram of Figure 14. The last three 
lines give the fractions of output. 

The table can best be understood by studying 
the entries in one column. One barrel of virgin 
distillate costs $.10 to process; it is contaminated 
with. 1 barrel of residuum; and. 6 barrel of this 
input is recycled within the cat cracker. If this 
were the only input, the output would be . 7 barrel 
of cat naphtha, . 3 barrel of light- cycle stock, and 
.5 barrel of heavy-cycle stock. The outputs add 
up to more than the input because the large mole
cules of the input are chemically broken down into 
smaller molecules of the outputs, with an increase 
in volume. 

virgin light heavy 
distillate cycle cycle 

variable operating 
cost, $/bbl. .1 .15 .16 

direct feed 1.1 1.0 1.0 

internal recycle, bbl. .6 .2 .1 

cat naphtha, bbl. .7 .6 .3 

light cycle, bbl. . 3 - .7 

heavy cycle, bbl. .5 .5 -

TABLE 3. Catalytic-cracker operating character
istics: cost and yield 

Gasoline Blending 

Two grades of gasoline are blended: premium, 
which can be sold for $5 per barrel, and regular, 
which can be sold for $4.50 per barrel. An octane 
specification states that the three components of 
the premium gasoline must be blended so that they 
give an octane number of at least 89; the octane 
number of the regular gasoline must be at least 85. 

\ 
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A volume specification states that there must be at 
least 25 MB/D of premium gasoline and no more than 
10 MB/D of regular gasoline. 

Table 4 gives the octane number of each of the 
gasoline components and summarizes the specifi
cations that must be met. 

octane 
number volume 

virgin naphtha crude 1 85 

virgin naphtha crude 2 84 

catalytic naphtha 92 

premium specification 89 at least 25 MB/D 

regular specification 85 at most 10 MB/D 

TABLE 4. Octane numbers of gasoline 
components and gasoline- blending requirements 

Distillate (Heating Oil) Blending 

Home heating oil can be sold for $4 per barrel. It 
is subject to a specification on the maximum 
allowable contamination number, a quality of heat
ing oils that is related to the amount of certain 
undesirable chemicals. There is the additional 
requirement to produce at least 30 MB/D. fu this 
particular example there is the final specification 
that the virgin distillate from this day's operation 
will be supplemented by 11,000 barrels (11 MB) 
from storage, and that 11 MB of the day's produc
tion of light-cycle stock will be placed in storage. 
All of this is summarized in Table 5 . 

contamination 
number volume 

virgin distillate 54 as produced plus 
11 MB/D from 
storage 

virgin naphtha 2 50 as produced 

light-cycle stock 65 as produced less 
11 MB/D to 
storage 

specification 55 at least 30 MB/D 

TABLE 5. Distillate (heating oil) blending 
characteristic s 
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Fuel Blending 

The only requirement on fuel blending is that the 
total production must not exceed 50 MB/D. It can 
be sold for $2~ 50 per barrel. 

3.3: THE OBJECTIVE FUNCTION AND 
CONSTRAINTS 

We now have all the necessary data, but it is not in 
a systematic form suitable for input to the com
puter. The next step is to write the objective 
function and the constraints (see Figure 15). 

Objective Function 

The objective function in this example includes not 
only profits, as expected, but also the variable and 
fixed costs. The objective function is the first row 
in the system, as displayed in Figure 15. The 
name PROFT has been given to the row. The 
objective function has been set up so that costs are 
positive and profits are negative. 

The $3 under CRIF represents the cost of a 
barrel of crude 1 to fuel: $2.75 for the crude 
itself, and $.25 for its processing in the pipe still. 
The cost of a barrel of crude 1 to distillate is also 
$3. Crude 2, for either purpose, costs a total of 
$3.10: $2.85 for the crude, and $.25 for its 
processing in the pipe still. The costs under 
CATVD, CATLC, and CATHC are the variable 
processing costs for the three cat-cracker outputs, 
as given by Table 3. The remaining objective
function coefficients are sales prices per barrel 
for the four products: $2.50 per barrel for fuel, 
$4 per barrel for distillate, $4.50 per barrel for 
regular gasoline, and $5 per barrel for premium 
gasoline. 

Material-Balance Constraints 

The row VNAPI is the material balance equation 
for virgin naphtha from crude 1. Plus signs are 
used with outputs, and minus signs are used with 
inputs. (This use is arbitrary; the reverse would 
be just as good.) The equation thus states that the 
virgin naphtha from crude 1 while running for 
maximum fuel (.1 barrel), plus the virgin naphtha 
from crude 1 while running for maximum distillate 
(. 15 barrel), must equal the amount of virgin 
naphtha going to regular gasoline plus the amount 
of virgin naphtha going to premium gasoline. The 

row VNAP2 gives a similar equation for virgin 
naphtha from crude 2. 

VDIS is a material-balance equation for virgin 
distillate. Its sources are given negative coeffi
cients corresponding to the entries in Table 2. 
The three destinations are shown as Is under the 
columns for input to the cat cracker, heating oil 
and fuel. (The validity of these relations should be 
checked against Figure 14, which shows the flow 
paths.) The 11 on the right-hand side reflects the 
11, 000 barrels per day of virgin distillate from 
storage. The rows RESID, CATN, LCCY, HCCY 
and CR2A V are similar material-balance equations 
for other points in the process. 

Pipe -Still Constraints 

CRBAL states the requirement that crude 1 be no 
more than one-third of the total crude. The logic 
here is that two times the amount of crude 1 must 
be less than or equal to the amount of crude 2. 
This can also be stated as a requirement that the 
amount of crude 1 cannot be more than half the 
amount of crude 2, which is what has been done 
here. PSCAP is the limitation on pipe-still capac
ity: the sum of the crudes, for both purposes, 
must not exceed 100, 000 barrels per day. 

Cat-Cracker Constraint 

TFCAT is the constraint on total cat-cracker 
capacity. Because of the internal recycling, this 
is slightly different from the other capacity limita
tions. For each barrel of virgin distillate input, 
. 6 barrel of the output is recycled internally. 
Therefore the input quantity (CATVD) must be 
multiplied by 1. 6 to give the total flow through the 
cracker. Similar requirements apply to the 
amounts of light-cycle and heavy-cycle stock. 

Fuel Oil-Blending Constraint 

FREQ gives the total production requirement for 
fuel oil, which is the only constraint on this product: 
no more than 50 MB/D. 

Heating Oil-Blending Constraints 

Heating oil is subject to two restrictions. DREQ 
states that there must be at least 30 MB/D of heat
ing oil produced. DSPEC states that the contamina
tion number of the heating oil must be no greater 
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Column Name 

Cat- Fuel-
Pipe-still cracker blending 
activities activities activities 

a ~ u 
=> ..... a j:: :J: => ::::> LI.. a ~ N ...... ...... LI.. LI.. LI.. c;: c;: a.: < < < II') u u Row Name U U U U U U U a.: :J: ..... 

Objective PROFT 3.0 3.0 3.1 3.1 .1 .15 .16 -2.5 -2.5 -2.5 
function 

VNAPI -.1 -.15 

VNAP2 -.2 -.25 

Material- VOIS -.25 -.4 -.2 -.351 

balance RESIO -.6 -.4 -.5 -.3 .1 .9 

constraints CATN -.7 -.6 -.3 

LCCY -.3 1 -.7 

HCCY -.5 -.5 1 .1 

CR2AV 1 1 

Pipe-still CRBAL 1 1 -.5 -.5 

constraints PSCAP 1 1 1 1 

Cat-cracker 
TFCAT 1.6 1.2 1.1 constraint 

FueT':'blending 
FREQ 1 

constraint 

Heating oil- OREQ 
blending 
constraints OSPEC 

RegUlar 
RREQ gasoline-

blending 
RSPEC c"nstrllints 

Premium PREQ 
gosoline-
blending PSPEC 
constraints 

Figure 15. The oil refinery objective flUlction and constraints 

than 55 (as shown previously in Table 5) or that 
the maximum contamination must be less than 
55 (VNAPD + VDISD + LCCYD). The variables in 
the parentheses constitute the allowed components. 
The contamination number of each component is: 

50 for VNAPD 
54 for VDISD 
65 for LCCYD 

where one unit of VNAPD would contribute 50 con
tamination units, and so forth. 

This constraint can then be written: 50 VNAPD 
+ 54 VDISD + 65 LCCYD ~ 55 (VNAPD + VDISD + 
LCCYD). Rewriting this constraint to move all 
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1 

1 

1 1 

Regular Premium 
Heating oil- gasoline- gasoline-
blending blending blending 
activities activities activities 

=> 
a a a Q,. >- a.: a.: a.: Q,. Q,. Q,. 

LI.. < II') u Z N Q,. 

Z N Q,. 
II') Z 0 a u Z Z Z Z :J: > > > ..... > > U > > U a.: 

-2.5 -4 -4 -4 -4.5 -4.5 -4.5 -5 -5 -5 = -70 

1 1 = 0 

1 1 1 = 0 

1 1 = 11 

= 0 

1 1 = 0 

1 = -11 

= 0 

s 75 

s 0 

'S 100 

s 46 

1 s 50 

1 1 1 ~ 30 

-5 -1 10 s 0 

1 1 1 'S 10 

0 1 -7 s 0 

1 1 1 ~ 25 

4 5 -3 :s 0 

variables to the left of the ~ sign, we have: 
50 VNAPD - 55 VNAPD + 54 VDISD - 55 VDISD 
+ 65 LCCYD - 55 LCCYD :5 0 which-reduces to 
-5 VNAPD - 1 VDISD + 10 LCCYD ~ O. This is 
what is given in Figure 15. 

Gasoline-Blending Constraints 

The last four lines state the capacity and 
octane requirements for regular and premium 
gasoline, with the octane requirements being 
derived by a method similar to that for the con
tamination number. The only difference is that 
with octane number the requirement must be met 
or exceeded; thus the signs are different. 
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3.4: COMPUTER INPUT 

A linear programming system for a computer 
includes facilities for the entry of the problem 
data -- that is, the objective-function coefficients, 
the coefficients of the constraints, and the right
hand sides. Figure 16 shows typical input for one 
linear programming system, with some of the data 
for this example. 

The first line states the name of the problem. 
The second line is a signal to the computer pro
gram that the names of the rows follow 0 The 
names themselves are written two to a line. Each 
name is preceded by either a zero, a plus sign, 
or a minus sign. The signs indicate, respectively, 
whether the restriction is an equality, a less-than 

ANNOUNCEMENT COLUMN NAME ROW NAME VALUE 

I 6 7 12131 18 " Rtj,x SA MPLE RE F I III E R Y MAT 
ROW I D · 

condition, or a greater-than condition. 
The word MATRIX signals that the constraint 

coefficients follow. Each is identified as to its 
row and column, and the system is designed to 
assume that if no coefficient is entered for a posi
tion, that value is zero. 

FIRST B signals that the right-hand sides follow. 
The EOF signals the end of the input deck. 

3.5: THE SOLUTION 

The information provided by the computer falls into 
a number of categories, beginning with the state
ment of the optimum policy and continuing with a 
wide variety of data on changes in the system. 
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2 0 CPRRR 0 PRoFT 
2 0 VNAPl 0 vNAP2. 
Z 0 VDIS 0 ~E 51 D 

2 0 CATN 0 Lcev 
Z 0 .... ccy + CReA.L 

z + PSCAP + C~2AV 
Z + TFCAT + F

f
l2EQ 

10 Z - DREQ .,: DSPEC 
11 Z + ~~EQ + RSPEC 
12 2 - PREQ + PSPEC 
13 ~AT~I X · 
14 C~ 1 F PROFT 3. 

IS CRIF VtJ,APl- · 1 

16 CR 1 F VDIS - · 25 
17 C~lF RES! D- • b 
18 CR1F CR13AL 1 • 
l' CR:~F PSCAP 1 • I I I I I 

20 .I · 
21 ~ · 
22 I. · 
23 CNP,P PROFT - t; • 

24 Ct-JPP CP ~R~ 1 • 
2S CNPP CAT.., 1 • 

2. CNPP PREQ 1 • 
27 C~PP PSPEC - 3 • 

28 FI r:zST B · 
2' PROFT- 70. 

30 VOIS 11. 

II LCCY - 11 • 

32 PSCAP 100. 

31 L • 
314 J · 
3S EOF • 

Figure 16. A portion of an input form for the data of the refinery 

example 
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~UMt:RltAL EXAMPLE PASS 2 

TOTAL NO. HA ROW C;UkRE~T tHOlt" VftTA KHS t/V tURRENT DIJ 
HERS EUS AEC JoE~T • VALlif <itt tOR Rf"VO iIO. NO. THETAIPHI OPTiMAL PRIMA-DUAL 

111 15 0 PROFI 4.69162·)8 1 

JIIII BElAIHI 1tQII111 1'1111 Bill 
o 00000 2'1.43525l80- C;PKMfIt 
o 00000 4.69162384 PRuFf 1.00000000 10.00000000-

CRiO 33.HHHH VNAPi ... 50000000 
VNAPD 3.85131894 VIIIAP2 ".31500000 
CUVO 2).15861596 VOl S 4.31500000 ,1.00000000 
IISFUL }It. 46 385148 Ilfilll l.U411oU6 
CIIIPP 18.39103231 CAl III 1.31500000 
LCCYD 1.64063035 Lt{.Y 4.31500000 H.OOOOOOOO-
V01S0 l4.50805070 rtcty '.17708119 
CRlO 66.6666661> 1 tRIlAL .09498458 
V~111 5.00000000 PSCAI' .29992292 100.00000000 

• tR2AV 8.331333H tll2AV 15.00000000 
CATHt 8.13292223 TFlAT 1.2162898) 46.00000000 

• FR~Q .1,.,3614252 FR~U 
: 37500000-

50.00000000 
C~PM .25387547 OREIol 30.00000000 

• OSI'Et 21.3,834190 OSI'EC 
• RREQ 2.9689'11>2) Il.R(Q 10.00000000 

VIII2R 1.17112830 RSPEC .12500000 
- PREO 4.43525180 I'R[U Z5.00000000 

VIII2P 11.0)821942 PSI'EC .12500000 

Figure 17. Computer output giving the optimum policy and marginal values 

~UMEIlICAl EXAMPLE PASS 2 

eRn 
.047571'14 
.39629625 

1.00000000 
.16942446-
.01130524-
• 22096608-
.02913246-
.008119lL 
.16130524 

~5000000 

.011>44399 

.22096608 

.026151'19 

.1670U925-

.26401593-

.18126394 

.04751l94-

.01183948-

~UMER leAL 

VNII' 

1.00000000 

-

.12~00000-

.81,00000-

.87500000 

tK2F 
.01>0011'14 
.39004625 

.169"2446-

.01130524-

.a096608-

.03154496-

.00811922 

.16130524 
1.00000000 

.CJ1644399 

.22096608 

.03456449 

.16100925-

.21651593-

.24145144 

.06001194-

.()1~'lb.8-

EXAMPLE PAS~ 2 

+ CRIIAl 
.03669065-
.0949845~ 

.66666667 

.0268585 I-

.00316841 

.OB655J6 

.02293165 

.u0270641-

.029564'12 

.66666667-

.10000000 

.66666667 

.00548133-

.01365,jo-· 

.02193816-

.07166h8-

.01550531 

.153561l~-

.03669065 

.013151i"'C. 

CULt 
.19112230 

1.1 7100 "9 

.17302158-

.80935252 

.08992806-

.12320144-
1.18237410 
.809H252-

.08633094-

.08992806 

.06384892 
14.49820144-

.51079137-

.44694245 

.19711730-

.u t j .. £~86-

. PStAP 
.11654676 
.29992292 
.33133333 
.33429251-
.u1884201 
.36821681 
.07284173-
.01153203-
.34182460 
.66666667 
.05000000 
.66666667-
.02740665-
.36821681-
.07180918 

1.18831792-
.61247345-
• 54466421 
.11654616-
.u437050 .. -

BASI S 10 HCFUL 
0 00000 .45323141 
o 00000 .67708119 

tRIO 
IIIIIAPO .87410072-
CAlVO .50813581-
RSFUl .05652621 
tNPP .28321338-
LCCYO .36536485 
IIOISO .50813581 
LRZU 
V~IR · CRUV 
tAlHt .73991945 · FREQ .94341379 
C~PR .14915211 · OSPEt 1.515 .. u.Z4-· RREQ 1.19321686-
VNZR 1. 0 1t1t1lM 15 

- PREQ .45323741-
~N2P .169"6 .. 0'-

8AS1S 10 . TFtAI 
o 00000 .13021583-
o 00000 1.21628983 

tR1D 
V~APO .15821338 
CATVO .462't8115 
RSFUL .05138146-
t~PP ."5638489 
LetYD .30421377 
VOISO .46248115-
tR2u 
VN1R 

• lR2AV 
CATHt .23638232 · FREQ .05138146 
tNPR .06112919-· OSPEt 2.71325796-

• RRED .49383350 
VN2R .43110432-

- PREU .13021583 
VN2P .27383094 

LCFUL VDFUL 
.25000000 .25000000 

1.87500000 1.87500000 

1.00000000- 1.00000000-

.15625000- .15625000-
1.00000000 

1.00000000 

1.00000000 1.00000000 
• I S61~ . ,0 .15625000 

15.00UliouoO- ... 0\1000000-
1.25000000- 1.25000000-
1.0fln~---T:09T1500o-

.250000nn- .2'i000000-

.09315000-

- OREO 
.25000000 
.31500000 

1.00000000-

.15625000 
~. ((0000000-
1 .25000000-
1.09,,5000 

.25000000-

.09375000-

.u9375000-

--+RSPEC-
.25000000-
.12500000 

.15625000-

.25000000 

.09315000-

.25000000 

.09375000 

Figure 18. Computer output giving the reallocations caused by forcing one unit of activities that are at the zero level in the optimum policy 

NUMERICAL EXAM~lE PASS ~ 

CRIF .39629625 CillO GR2F .39004625 GR20 

CAlVO tAlLt 1.17100119 CATHC RSFUL 

HI,;f-UL .67708119 LCFUL 1.81500000 YOFUL 1.815000~0 VIIIAPO 

VOl SO LCCYO VN1R VIII2R 

CNPR V~lP VN2P GNPP 

• CR8AL .09498458 • PSCAP .29992292 CII2AV • TFCAr 1.21c.21!9!} 

+ FRED - DRED .31500000 DSl'eC • RRH! 

+ II.SI'EC .12500000 - PREQ • PSPEC .12500000 

Figure 19. The reduced costs 
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The Optimum Policy 

Figure 17 shows how the results might be printed 
by a linear programming system for a computer. 
We concentrate on the columns headed J(H) and 
BETA(H), which give, respectively, the variable 
names (activities) and their optimum values. 
Any variables not listed have optimum values of 
zero. We see, for instance, that CRID (crude 1 
to distillate) has an optimum value of 33.3 MB/D, 
and that CR2D (crude 2 to distillate) has a value 
of 66.7MB/D. CRIF and CR2F (crude 1 to fuel 
and crude 2 to fuel) do not appear: the optimum 
policy is not to run the pipe still for fuel at all. 

The maximum profit for this policy ($4, 692 per 
day) is given at the top of Figure 17. 

Changes in Allocation 

Should it be desirable to force a unit of some zero
level activity into the solution, other activity levels 
will change; we would like to decrease the profit 
as little as possible. The changes in allocation 
are shown in Figure 18. For example, forcing 
1 MB/D of crude 1 to be run for fuel will cause, 
among other things, a decrease in crude 1 to dis
tillate of 1 MB/D. This causes, in turn, a 
decrease in regular gasoline production of .264 
MB/D, or 264 barrels per day. Heating oil 
production is maintained; fuel production goes up 
by 221 barrels per day; and premium gasoline is 
increased by 48 barrels per day. 

Marginal Values 

The marginal value of each restriction is computed; 
these are listed under the heading PI (I) in Figure 
17. They are the changes in CURRENT VALUE 
(profit) per unit increase in the right-hand side 
constant of the corresponding constraint. The 
initial values of the right-hand sides are shown 
under B(I). For example, the pipe-still capacity 
(PSCAP) is initially 100 MB/D. If this were 
increased by 1 MB/D, the overall profit would be 
$.300 M/D, or $300, greater. 

Reduced Costs 

The reduced cost of alternative allocations is given 
in Figure 19 and is also a part of Figure 18. These 
values are the net cost of the exchanges required 
to satisfy all constraints when introducing a unit of 
an activity that is at the zero level in the optimum 
policy. For instance, the net effect of all the 
changes required to force 1 MB/D of crude 1 to 
be run for fuel is to increase overall costs (and 
therefore decrease profits) by $.396 M/D (.396 
thousand dollars per day). These reduced costs can 
also be interpreted as the amount by which the cost 
of an activity would have to be reduced to make the 
introduction of that activity break even. 
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NUMER ICAL EXAMPLE PAS~ 2 

I;IUU CRZU """'IU '''U~p::~ .... ,H .. RSfUL VIIAPD 

)).3))33)))- 66:66666661- 23.15861596- PROF' 8.1)292221- H.~6)851~1- ).851J1I9~-
150.00000000-

~6666nbT-
VNAPI 
ViIIIAPl 16.8~9520)1-

"'5.8}))))H- 291.106666661- 101.HII9~~8~- VOU 
80,"""6"'~"'1- 161.6'1""04'- '6ol'~UIIH- ~:;~D U.566"~85-

1210."1756081- 1tl.11"1t5101-
1(,1. j'''''''~b .. - LCCY l!>.51l5)"17-
H.H6I0322- HttY 25.UI9!H27- 109."9"U)'o1-

J.166I>219- 6. ))2J05~8- • CR8AL 
9.9'1'tJ06)- 1'.99" 861l5- • PSCAP 

28.16158896- : ~~~:~ '.89199056-
• FREu 
- ORE!! 1.4442~~60 
• oSP~C 
• RllEu f • R~"tC 
- PREQ 
• PSPEc; 

NUMERICAL EXAMPLE PASS 2 1 
'IUIloU [eeyo vNlA IROW 101 VNlR tNPR VN2,. 

24: 508OS07C.- L:640UOl:O-
CPRRR 

5.00000000- PROFf 1.71112110- .,l))815~1- 11.0)121942-
22.50000000- VNAPI 

VNAP2 7.7149)6)0- "1.29220"1-
101.22272182- VDU 

~~;~U I. )6451066-
101771511'- LttY 

HttY 
+ CRIAL 
• PStAP 
• .. " .... V 
+ 'Ft" 
+ FREQ 

9.1.051901 .6152)6)8 - DREQ 
• OSPEt 
• RAEQ 
• "51'1I:t .""''''14IU4- .o)lJ)~~J-

- PREu 
+ psprc 1.)191714]-

~ --............. .......... 

Figure 20, Sensitivity of profit to changes in constraint coefficients 

NUMERltAL EXAMPLE PASS 2 

COS, RANGES 

IIASIS COS, IN 1 NCOMI NG VEt rOR 
VEe; TOR BE TA VALut PROHLE" LIM I LIMIT 2 AT LIM I AI LIM 2 

ClUO H.3)3333 3.0000000 3.1"2"16' UNBOUNDED + tRBAL 
VNAPO 3.8513189 -4.0000000 -4.H~0000 3.6841lt02 - ORE!! • HCAr 
CATVO 23.1 ~8616 .10000000 -1.230'091 1.546B444 HCFUL tATLt 
I<SFUL 34.4b3857 -2.5000000 -4.265181.0 -1.6856047 tR2F + PSCAt> 
LN~P 18.397032 -5.0000000 -7.3902041 -5.0000000 HtFUL VNII' 
LCI-YO 1.640630) -4.0000000 -26.1631124 -3.00'61)6 · PStAP tULt 
\01 su 14.508051 -".0000000 -5."468""" -).137711' CArtt + PStAP 
CRlO b6.b66666 J.IOOOOOO 2.9575231 3."'00"62 • CR8AL CR2F 
VNIR 4.9999'199 -".5000000 -".5000000 UNBOUNDED VNIP 

• ('R2AV 8.H33)32 -.""988"38 .H2" 7688 • PS('AP + tRBAL 
('ATHC 8.1329221 .16000000 -IO.7B31t37 1.07~0000 + PSt.AP HtFUL 

+ FRE" 15.5361"2 -.BlH9535 .11 7610705 + PS(.AP HtFUL 
CNPR .h18"1tf -".5000000 -".5000000 -2.1000000 VN1P - OREu 

+ OSPEC 27. 3583ltl -.07500000 - OREQ UNBOUNDED 
+ RREU 2 .\lb~9962 -. )0000000 .50000001.1 - DREQ + RSPEt 

VN2R 1.7771283 -4.5000000 -".5000000 -".1571429 VNIP - OREII 
- PRtU "."H2>18 -1."93877~ • 50000000 HCFUL + RSPEC, 

VN2P 11.038219 -!>.OOOOOOO -8.9836135 -5.0000000 HCFUL VNlP 

~ 
Figure 21. Cost ranges of variables in the optimum policy 
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Sensitivity of Profit to Constraint Coefficients 

Figure 20 gives the effect on profit of changes in 
the constraint coefficients. Look first at the row 
for PROFT: this is simply the effect on profit of 
a unit increase in costs. For instance, we see in 
Figure 17 that the optimum policy is to run 33.3 
MB/D of crude 1 to distillate. If the cost of crude 
1 were increased by one unit ($1 per barrel), the 
increase in cost would be $33.3 M/D (33.3 thousand 
dollars per day). 

The reduction in profit would be the same 
amount. The number in Figure 20 appears with a 
minus sign, indicating a decrease in profit. Now 
consider the result given for the sensitivity of 
profit to the yield of residuum from crude when 
running for maximum distillate. The value of the 
coefficient (from Table 2) is O. 4, which appears 
with a minus sign in Figure 16 as the first entry 
in the row named RESID. Now consider Figure 
20: looking at the column headed CRID and the row 
named RESID, we see a sensitivity of -80.8. This 
means that the profit is reduced at the rate of 
80.8 M/D per unit of increase in the constraint 
coefficient. This rate (as we saw in section 2.5) 
applies only to small increases. Suppose the yield 
of residuum from the crude 1 run for maximum 

distillate were increased by 1%; in that case, the 
profit would be increased by 1% of 80.8 M/D, or 
$808. 

Ranges of Optimum-Policy Variables 

The ranges of validity of the values for the variables 
in the optimum policy are shown in Figure 21. This 
exhibit shows, for each variable in the optimum 
policy, its name, the optimum value (BETA 
VALUE), the original cost, the lower limit (LIM 1) 
and the upper limit (LIM 2) of validity of this cost, 
the variable that would come into the basis if the 
cost of this one went below the lower limit (INCOM
ING VECTOR AT LIM 1), and the variable that 
would enter the basis if the cost of this one went 
above the upper limit (INCOMING VECTOR AT 
LIM 2). 

For example, the cost of cracking virgin distillate 
(CATVD) was originally $0.10 per barrel. Figure 
21 states that it could vary between -1. 23 and 1. 55 
without changing the optimum policy. The policy is 
thus quite insensitive to the cost of this process. 
On the other hand, the policy is rather sensitive to. 
the cost of virgin distillate sent to heating oil. In 
some cases, there is no lower or no upper limit to 
the range of validity; these cases are indicated 
appropriately in Figure 21. 
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Marginal Value Ranges 

Figure 22 shows the ranges of validity of the mar
ginal values of the right-hand sides (which were 
given in Figure 17). The column headed PI VALUE 
repeats the marginal value of each right-hand side 
for the row named; it then gives the MINIMUM 
VALUE and the MAXIMUM VALUE of the range of 
validity. It also lists the variables that would leave 
the basis if these ranges were exceeded. 

For example, the amount of light-cycle stock sent 
to storage (LCCY) could vary from 9,176 BID to 
12, 624 BID without requiring a change in the 
solution to maintain feasibility. At the upper value, 
there is no more virgin naphtha 2 available to blend 
to regular gasoline; beyond the lower value, the 
contamination specification on heating oil would be 
violated. 

3.6: PARAMETRIC PROGRAMMING 

The final aspect of this example is a parametric 
programming run to determine the effect of a 
variation in the market price of premium gasoline. 
As we saw in section 2. 6, this means that we let the 
price vary continuously, regardless of basis changes, 
to see how the optimum policy would change. 

Calling for such a computer run requires filling 
out some appropriate forms, which we will not 
display since they vary for different computer 
systems. The computer output consists of a printout 
at each basis change. The printout lists the variables 
in the basis and their (new) optimum values, together 
with the right-hand sides and their (new) marginal 
values. 

Thus far, parametric programming has been 
discussed primarily in terms of simultaneous 
variation of several right-hand sides. In fact, it 

NUMEIIICAL EXAMPLE PASS 2 

RIGHT HAND SIDE RANGES 

110. CUI(REI'H PI MINIMUM MAXIMUM OUTGOING VEe TOR 
NAME RHS VAL VALUE VALUE VALU~ U MIN AT MAX 

VNAPI ".5000000 -5.0000000 2.968'1962 VNIR · hEO 
VNAPi ".3750000 -1.1>2"8030 01.37>1970 VN2R • RREO 
VOIS 11.00000 ".3750000 9.375191>9 13.315197 VNZR + RREO 
RHIO 2."Z"'1>8' -22.39"057 H.01>2011> • RItEO · FREQ 
eATN ~. 31"999'1 -2.5l1t"2'l1> 1..7080050 - PREO eNPR 
lec Y -11.00000 4.H50000 -12.1>2"803 -9.171> 1I0~ VN2R • OSPEC -Hc:C;V---- 3.1770812 -1.702IZ"1> 2."882285 VN2R • RREII 

• CRIIAL .0'1"98"58 -12.500000 11.572321 • CRZAV CNPR · PSCAI' 100.0000 .Z'l'l921'12 'l1>.Ol<!O" CNPR • RREO 
• CRiAV 75.00000 1>1>.1>1>1>1>1>1> • CR2AV 
• TFCAT 41>.00000 I. ZI628'18 "0.601>'182 LCCYD CNPR 
• FREQ )0.00000 H.41>3851 • FREQ 

\I 30.00000 - · • USI't:C -n.3~8)1,Z UNIIDUNDED • DSPEC 
• Rltf:Q 10.uOOoo 7.0,10038 UNBOUNDEO • RREQ 
• RSI'EC .12500000 -1I.875'l6~ 1.6248030 • RREO CNPR 
- PRtQ 25.00000 UN80UNOED Z'l.H5252 - PREO 
• PSPEC .12500000 -1l.815'lSi 8.12"0150 • RRE(j CNPR 

Figure 22. Ranges of validity of right-hand sides 
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may be used either for the right-hand sides or for 
the objective function, and it is entirely possible to 
vary only one thing at a time. In this example we 
wish to vary just one of the coefficients in the 
objective function: the price of premium gasoline. 
With one parametric programming run we can 
investigate the influence of a drop in price; with 
another, the influence of a rise. The results of 
such runs can be summarized as follows: 

When the price of premium gasoline is reduced, 
there is no change in the solution until it reaches 
$4.50 per barrel, the same as the price of regular 
gasoline. At this point, 2,969 barrels per day are 
shifted from premium to regular, which fills the 
market demand for regular. A further reduction in 
premium price to $4 per barrel, the same as heating 
oil, causes premium volume to drop to the minimum 
allowable--25 MB/D. No further change in the policy 
occurs if the price drops below $4 per barrel. On 
the other hand, an increase in premium price to 
$6.49 per barrel brings out 772 barrels per day of 
added premium gasoline. At $6.50 per barrel, 
premium production goes to a maximum value of 
31,805 barrels per day. No further changes occur 
in the solution, no matter how high the price goes. 

Figures 23 through 26 are the computer printouts 
at the various points of solution change. Figure 27 
is a plot of the premium volume and the marginal 
values of several variables as a function of premium 
price. 

A parametric programming run can be produced 
by the computer in a small percentage of the time 
required for the original solution. Considering the 
value to management in investigating a wide variety 
of possible changes in the operating system, it is 
not uncommon for many hundreds of parametric 
programming runs to be made. 
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NUMERICAL EXAMPLE PASS 2 

CURRENT O/J TOUL NO. HA ROW CURRENT CHOSEN VECTR 
--rJllis E US R~t IoENT. VALUE VEC fOR REMVO 

RHS tlV 
NO. NO. 

1 
TtiETA/PH..---soLUfiONPiTIiT------ ------

19 16 0 .. ROFT -10.026002 + RS .. EC + RREQ .50000000 

JIHI IEfAIHI ROWllI PlIlI 8111 
o 00000 .l6."662S551- tPKRR .50000000 

o g~~go-----')r~:~~~~T~J~I!~~T~2rj--~:~~~~~:rr-----~!~:~gigg~~~g~g~ggr-_____ 7~0~.~00~0~0~0~00~0~-________________ _ 

IINAPO 3.85lJI89" VNAP2 ".50000000 
CUVO 1l.15861596 VDIS ".50000000 11.00000000 
RSFUL 3"."6311,1"8 liES 10 2. )99!o8890 
CN.... 16.5"1"09H CATN ".50000000 

~~H~ -- 2!: ;O~~:g~%--~k;:C~~~;-'-----O;;':':T.:g~~r.~~g0i19g~g;-__ -'1,~1.!,;.0~0~0~0~00~0'_"0_-_________ --------

CRlU 66.6661010661 + CRIIAL .076010)926 
"Nl11 5.0()OUUOOO' PSCAI' .U.19UO 100.00000000 

+ CR2AV 1I.333H333 + tR2AV 75.00000000 
CUHC 8.13292223' fFeAT • 851111191 ~60.00000000 

-'~~v:Eml'~i------:~~~~-M--; ~--------':::""5"'0""00"'0"'0"'00><:-::-----;;gggggggg 
• OSI'E(' 21.3583"190. OSPtC 
+ :~~:C r-__ ~II~.~8~1~5~~8~"~9J~~'~K~R~~Q~ ______ ~ __________ ~1~0~.~00~0~0~OO~O~O ______________________________ ~~ ________ , 

- PREll 
IIH2P -~ 

NU~RICAL EXAMPLE PASS 2 

TOTAL NO. ETA RO. CUIIRENT CHOSEN 
"ERS ETAS REC IUENT. VALUE VEC fOR 

20 11 0 PROFT -23.259129 - OREQ 

JIHI 
o 00000 
000000 

tRIO 
IINAPD 
",TVO 
IISFUL 
CN .... 
LC(;YD 
vblsb 
CR20 
IIN1R 

+ CRlAV 
CATHC 

+ FR[O 
CNPk 

+ OSPE(' 
• AS"PE' 

VN2R 
- DREi) 

8ETAIHI 
25.00000000-

1.7"0117016 
33.33333333 

5.311511t51 
lJ.l,81>1596 
3"."63I1H"8 
15.62500000 
1.6"063035 

2".50801)010 
66.66666661 

5.00000000 
8.33333333 
8.13292223 
15.~361"2~2 

j.02590185 
3".6896191" 
19.2072U16 

1.97"09215 

ROWIII 
CPRRR 
PROFf 
VNAPI 
VMAP2 
VOl S 
IIESIO 
CATN 
lCI.Y 
HtCY 

+ CRIIAL 
+ "SCA .. 
+ CR2AV 
+ rFCAT 
+ FRt:O 
- OREQ 
+ DSPEC 
+ kltEO 
+ RSPEC 

VECTR 
REMVO 

- PREQ 

PIIlI 

RHS tlV 
NO. NO. 

1 

1.00000000 
1.00000000 
".00000000 
".00000000 
".00000000 
2.""069887 
".00000000 
".00000000 
1.01311011 

.0960U59 

.08023296 

.73299015 

:50000000 

NUMERICAL EXAMPLE PASS 2 

CURRENT O/J 
THETA/PHI SOLUTION .. RINT 
1.0000000 

Bill 

70.00000000-

11.00000000 

11.00000000-

100.00000000 
15.00000000 
"6.00000000 
50.00000000 
10.00000000 

10.00000000 

~ --TI?'nOi:ri~~E ~n~Cis--;~i-i~;?~'-ri1 ~~~"'~Tf '.--'=;C~"':rr~7i-~ Ni-/'--,-iii~~i'ig;..j:~&:ii'--iin~~ii!.i<S--ii:1i'g~"--ii~;;;6V.:.... -=Cii~~rn:~~"i::T.h"'~i7f~J 'S"'O"l"'ufnt"'O"'N'piliR'" N"'T.------------ ---, ---
19 15 0 PROFT "8. 661t285 HCFUl CNPR 1 1."938115 

JIHI 
o 00000 
o 00000 

CRIO 
VNAPO 
CAlVO 
RSFUL 
VN2P 
lCCVO 
volSO 
CRlO 
VNllf 

+ CR2AV 
"O:rH""C 

+ FRED 
VfW( 

+ OSI'EC 
+ U£O 

HCFUL 
- PREO 

CNPP 

~ 

BETAIHI ROWIII 
30.20-671&35 CPIIRR 
3.H91"728 PROFf 

B.3BHBl VNAPI 
,.339 ... 129 VNAP2 

L".Ol"!>" 780 VOl S 
3It.36161t28" RESID 
1l.327!)1938 CATN 

1.01813385 LCCV 
n.6"ZU886 HttV 
66.66666667 CRBAL 

5.00000000 PSCAP 
8.33333333 CR2AV 
6.81338501 TFCAT 

13.93023256 FRED 
bREO, 

"0.150516BO OSI'EC 
5.000()0000 RRcQ 
1.70212"61 RSPEC 

PIIII 
1."93B1155 
1.00000000 
It. SooooooO 
".00153061 
".001531l61 
2.!)0000000 
7.9B928511 
".00153061 
2.5QOOOOOO 

.1"979592 

.12581633 

2.3071"286 

.00153061-

."98"6939 

Bill 

70.00000000-

11.00000000 

11.00000000-

100.00000000 
75.00000000 
"6.00000000 
50.00000000 
10.00000000 

10.00000000 

NUMERICAL EXAMPLE PASS 2 

TOTAL NO. ETA 
II US E lAS kEt 

21 

JIHI 
o 00000 
o 00000 

eklo 
VNAPO 
CATVO 
RSFUl 
VN21' 
IIN1P 
vOlsb 
CRlO 

- OREO 
+ CR2AV 

'A'HC 
+ FRE\! 

V,.2k 
+ OSPEC 
+ KR'ED 

HCFUL 
- PREQ 

CNPP 

17 0 
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Figures 23, 24, 25, 26. Parametric programming run printouts 

35 



9.00 32 

8.00 30 Premium Volume 

0 
~ 
~ 

CD 
E 

7.00 ' 28 :J 

~ 
::a E 

:J 
£0 'E 
~ ~ ... 
~ 

0... 

u 6.00 26 .2 
VI 

~ 
~ 

CD 
:J 

0 
> 5.00 24 
'0 
c: 
.~ 

0 

~ 

4.00 

3.00 

: I 

2.00 
I 

3.50 4.00 4.50 5.00 5.50 
Premium Gasoline Price, $/Bbl 

Figure 27. Graphic display showing some results of a parametric 

programming analysis of the effect of changes in the 

price of premium gasoline 

36 

6.00 

• 

I 

6.50 



CHAPTER 4; THE SIMPLEX METHOD 

We have by now seen quite a bit about the useful
ness of linear programming, and know something 
about how to apply the technique. In this chapter 
we shall investigate a little more closely how a 
linear programming problem can actually be solved 
by systematic algebraic methods. 

The mathematics here will not be any more com
plicated than that used previously, namely, high 
school algebra. The reader who has a serious 
interest in linear programming will find a study of 
this chapter worth his effort, in that it will help 
develop a deeper insight into what the computer is 
doing in getting the kinds of results we have 
displayed previously. 

Linear programming codes for computers do not 
do precisely what we shall show; short cuts and 
improvements are employed frequently. The 
fundamental ideas are the same, however. 

4.1: GEOMETRICAL BACKGROUND 

The techniques of the simplex method will be illus
trated through a hypothetical two-activity, four
constraint problem. We make no attempt to show 
a particular business problem to which it might 
correspond; it should be clear by this point that the 
mathematical statement is representative of realis
tic problems that can arise in practice. 

The problem: 
1. Maximize xl + 2x2 = Z 
2. &tbject to these constraints: 

2x + x < 10 
1 2-

xl + x < 2 - 6 

-Xl + x < 2- 2 

-2x 
1 

+ x < 2 - 1 

3. And to the implied constraints: xl ~ 0, x
2 
~ o. 

It will be useful to draw the graph of the con
straints, because the fundamental approach to 
the solution can be nicely visualized thereby. (See 
Figure 28.) 

The vertices in Figure 28 have been identified by 
letters, for comparison with some later algebraic 
results. 

The first step is to convert the inequalities into 
equations by the introduction of slack variables. In 
prior examples, we called these slack variables 
sl' s2' etc.; as long as the meaning is clear, there 
is no reason not to use the same letter for slack 

4 

3 

1 B 
o 
"'I 
,)( 
A 

3 4 

Figure 28. Graph of constraints for simplex example 

variables as for the problem variables, using 
different subscripts. 
Objective Function: 

Xl + 2x2 = Z 

Constraints: 

(1) 2x
1 

+ x
2 

+x 
3 

10 

(2) Xl +x 
2 

+x 
4 

6 

(3) -Xl + x 
2 + x5 2 

(4) -2x 
1 

+ x 
2 

+x 
6 

1 

With four equations, a basis will consist of four 
variables that are permitted to be nonzero; the other 
two variables will be forced to be zero. Let us now 
perform an exercise that will in effect reveal the 
whole idea of the simplex method. 
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Table 6 is a list of the 15 possible ways to assign 
two variables to be zero and solve for the other four. 

Solution Variables 
Number ~ 

x
2 x3 x

4 x5 x6 Vertex 

1 0 0 10 6 2 1 A 

2 0 10 0 -4 -8 -9 

3 0 6 4 0 -2 -3 

4 0 2 8 4 0 -1 

5 0 1 9 5 1 0 B 

6 5 0 0 1 7 11 F 

7 6 0 -2 0 8 13 

8 -2 0 14 8 0 -3 

9 -1/2 0 11 13/2 3/2 0 

10 4 2 0 0 4 7 E 

11 8/3 14/3 0 -4/3 0 5/3 

12 9/4 11/2 0 -7/4 -5/4 0 

13 2 4 2 0 0 1 D 

14 5/3 13/3 7/3 0 -5/3 0 

15 1 3 5 2 0 0 C 

Table 6. The 15 results of assigning two variables 
to be zero and solving for the other four. The 

letters under "Vertex" correspond to 
vertices in Figure 28. 

Nine of the 15 solutions contain negative values 
of the variables and are therefore not feasible. The 
other six are not only feasible, but correspond 
exactly with the six vertices in Figure 28, and have 
been labeled accordingly. 

Let us review. The six lettered lines in Table 6 
are basic solutions: two variables were set equal 
to zero and the equations solved for the other four. 
They are also feasible solutions, since they satisfy 
the equations and involve only nonnegative values. 
Looking at the values of xl and x2, which are plotted 
in Figure 28 (x3 to x6 are slacks), we see that basic 
feasible solutions correspond to vertices. This is 
equally true for problems with more than two 
activities, which we cannot graph in two dimensions. 
Naturally, in that case we must introduce an 
extended definition of what a vertex is, but this can 
be done. 

Let us rearrange the basic solutions in Table 6 
into order, from A to F, as in Table 7. 
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Variables 
Vertex xl x

2 x3 x
4 x5 x6 

A 0 0 10 6 2 1 

B 0 1 9 5 1 0 

C 1 3 5 2 0 0 

D 2 4 2 0 0 1 

E 4 2 0 0 4 7 

F 5 0 0 1 7 11 

Table 7. The basic solutions of the illustrative 
problem 

Inspect Table 7 carefully. Each pair of adjacent 
lines represents two adjacent vertices; how do the 
variables that constitute the basis in one vertex 
compare with those that constitute the basis in an 
adjacent vertex? The two "adjacent" bases have all 
but one variable in common. The basis for point A, 
for instance, is composed of x3' x4' x5 and x6; the 
basis for point B also contains x3' x4 and x5' with 
x6 in point A replaced by x2 in point B. 

4. 2: ALGEBRAIC DEMONSTRATION 

With this geometrical background, we can now 
state rather simply the broad outline of the simplex 
method. 

1. Pick an initial feasible basis. If all the con
straints are "less than or equal" types with positive 
right-hand sides, the slack variables immediately 
constitute such a basis; we shall see in section 4. 3 
what to do if this is not possible. 

2. If necessary, perform some algebraic 
operations that will express the obj ective function 
entirely in terms of nonbasic variables. The 
variables that remain in the obj ective function after 
these operations will then all have the value zero, 
and the value of the objective function as trans
formed will therefore be constant. 

3. Inspect the objective function to find the term 
with the largest positive coefficient. Giving this 
variable some positive value will increase the value 
of the obj ective function; this variable is to be 
introduced into the basis. 

4. By a simple test that we shall see in a 
moment, determine which variable is to go out of 
the basis. Effecting the removal is a matter of 
some algebraic manipulations that constitute the 
bulk of the computational effort. These operations 
will modify the coefficients in the objective function, 



so as once again to express it in terms of nonbasic 
variables only. 

5. Inspect the objective function. If there are 
no terms with positive coefficients, there is no 
possible way to increase the value of the obj ective 
function by giving any nonbasic variable a positive 
value. The optimum has therefore been reached. If 
there are positive terms, repeat steps 3, 4 and 5. 

This process is the algebraic equivalent of 
moving from vertex to vertex in such a way as to 
guarantee improvement at every step. Since there 
is a finite number of vertices, the process must 
terminate after a finite number of repetitions. Since 
improvement is guaranteed at every step, when 
finally there are no more positive terms in the 
obj ective function, the value of the obj ective function 
must be the largest it can possibly be. There can 
never be any question whether the result found by 
this method really is the best that could be 
determined. 

Let us follow the process through in detail, in 
terms of the system of equations on page 37. 

1. An initial feasible basis is provided by the 
slacks x3' x4, x5 and x6. Allowing them to have 
nonzero values and forcing Xl and x2 to be zero does 
satisfy the constraints. We have a basic solution 
(four nonzero and two zero variables) and it is 
feasible (the constraints are satisfied). 

2. The obj ective function is then already ex
pressed in terms of nonbasic variables. Its value 
is accordingly zero. 

3. In the objective function, x2 has the largest 
(positive) coefficient, so it is the variable that will 
be introduced into the basis to start improving it. 

4. Making x2 a basis variable is going to require 
transforming the system so that x2 appears in only 
one equation. In doing so, with the system as it now 
stands, we will have to subtract some one equation 
from all of the others. But in this process we must 
not make the right-hand side of any equation go 
negative. The question is: Which equation could we 
subtract without making any right-hand side 
negative? Clearly, it will have to be the fourth 
equation, since it has the smallest right-hand side. 

(As we shall see the next time around, things 
would be a trifle different if X2 had different coef
ficients in the different equations. ) 

Again let us review. We are going to subtract 
equation (4) from equations (1), (2) and (3). Mter 
we have done so, x2 will appear only in equation (4), 
but now x6 will appear in all four equations. This 
transformation corresponds to introducing x2 into 
the basis and .removing x6 from it. 

We must also remove X2 from the objective 
function. This is easily done by subtracting two 
times equation (4) from the objective function. 

The result of all this is as follows: 

(OF) 5x
l 

+ 2x 
6 

Z - 2 

(5) 4xl + x3 x6 9 

(6) 3x
l 

+ x
4 x6 5 

(7) Xl + x5 x6 1 

(8) -2x + x
2 

+ x6 1 
1 

Since everything on the left-hand side of the 
obj ective function is zero (nonbasic variables only), 
we have 0 = Z-2, or Z = 2. The value of the objec
tive function has been increased from zero to 2 by 
this change of basis. The basis is now x2 = 1, 
x3 = 9, x4 = 5, x5 = 1. Since Xl is still zero, on 
the graph of Figure 28 we are at the point Xl = 0, 
x2 = 1, which is point B. 

Looking for further improvement, we have in the 
objective function only one choice, since there is 
only one term with a positive coefficient: Xl. 

Deciding which variable to remove from the basis 
is a little more complicated this time. Remember 
that we are going to have to eliminate Xl from all 
equations except one. Equation (8) is not a candidate 
for the one to be left, since Xl would then have an 
illegal negative value. In general, we ignore any 
equations in which the coefficient of the new basis 
variable is negative. 

To see how we determine the variable to be 
eliminated from the basis, suppose that we divide 
each equation by the coefficient of Xl in that 
equation: 4 in equation (5), 3 in (6), and 1 in (7). 
This means to divide every coefficient and the right
hand side in equation (5) by 4, etc. Having done 
this, all of the new coefficients of Xl will be 1. Now 
we ask: Which right-hand side is the smallest? 
This is now the same question we asked the first 
time around, in order to determine which equation 
could be subtracted from all others without making 
any right-hand side negative. 

The selection rule for the variable to be removed 
from the basis is usually stated in terms of these 
ratios. More formally: form the ratios of the 
right-hand sides to the coefficients of the variable 
to be introduced, not considering any negative 
coefficients. Eliminate the variable for which the 
ratio is the smallest. 

In our case, equation (1) gives the smallest 
positive value, so the variable that is currently 
basic in that equation, x5' will be removed. In 
terms of equations (5) to (8) before dividing by the 
coefficients of xl' this means to multiply (7) by 4 
and subtract from (5), multiply (1) by 3 and subtract 
from (6), multiply (1) by 2 and add to (8), and multi
ply (1) by 5 and subtract from the obj ective function. 
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The result is as follows: 

(OF) 5x
5 

+ 3x Z - 7 
6 

(9) x 4x5 + 3x 5 
3 6 

(10) x
4 

3x
5 

+ 2x 
6 

2 

(11) xl + x - x6 1 
5 

(12) x
2 

+ 2x 
5 x6 3 

The basis is now xl = 1, x2 = 3, x3 = 5, x4 = 2. 
The value of the objective function has been 
increased to 7. We are at point C in Figure 28, and 
are evidently doing just what we said: approaching 
the optimum by a systematic process of moving 
from one vertex to an adjacent one, with guaranteed 
improvement at each step. 

For the next improvement we shall add x6 to the 
basis and remove x4. (We had previously removed 
x6 from the basis and now we are putting it back-
but that is acceptable.) The result of the usual 
operations is as follows: 

(OF) 

(13) 

(14) 

(15) 

(16) 

3 
- 2x4 

3 
x3 - OZx4 

I 
2x4 

+ l.x 
2 4 

+ .Ix 
2 4 

Z - 10 

2 

1 

2 

4 

We are now at point D on the graph, the optimum. 
The objective function now also tells us that this is 
the optimum: there are no positive terms, so that 
there is no variable we could introduce that would 
increase the objective function from its present 
value, 10. (Incidentally, the original objective 
function was xl + 2x2: the present values of xl = 2, 
x2 = 4 give this same value of 10, which checks.) 

4. 3: SUMMARY 

This brief glimpse of the simplex method may 
be closed with a few indications of some practical 
computational aspects of the method. 

We assumed in the exposition above that it was 
possible to pick an initial feasible basis by inspec
tion, and suggested that the slacks would supply 
such a basis. This, of course, is true only if all 
the constraints are of the "less than or equal" type 
with nonnegative right-hand sides. If there are any 
actual equations (in practice, this is uncommon), 
there will naturally be..!!2. slack variable for that 
constraint. If, as occasionally happens, there are 
"greater than or equal" constraints, then the slacks 
are subtracted. Such a slack cannot be used as a 
basis variable because it would have a negative 
value. 

The solution to this impasse is to assign addi
tional variables to any ~onstraint that does not 
already have a slack with a positive coefficient, 
this new variable being called an artificial variable. 
It is called artificial because the first step, in a 
preliminary phase called the feasibility solution, 
will be to eliminate such variables from the basis. 
This can be done easily enough by giving the arti
ficial variables very large "costs" in the objective 
function. This will force them out of the basis, 
leading to some other basis that will be feasible. 
With the artificial variables out of the basis (their 
values are zero) and with the large costs keeping 
them out permanently, we have essentially the same 
problem we started with, except that now we have 
computed a feasible basis. From this point on we 
can ignore the artificial variables and carry on with 
the normal simplex procedures. 

The computational techniques we have outlined in 
this chapter are not necessarily precisely those 
used in computer programs for linear programming. 
The simplex method, as we have shown it, is some
what inefficient from a computing point of view: 
there are operations that can be eliminated, and 
there are ways to reduce the amount of computer 
storage required. Finally, the procedure as it has 
been revised for these reasons also turns out to be 
much more convenient when it comes to providing 
the kinds of additional information about a solution 
that were described in Chapter 2. 

*************************************************************************** 

The reader who has digested the material in this 
manual, even if not quite completely, has gained a 
fairly thorough understanding of the power and 
methods of linear programming •. With the guidance 
of manuals on particular computer programs for 
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linear programming, he is ready to try applying 
linear programming to his own problems. 

The reader who wants more discussion of appli
cation areas or of the mathematical techniques may 
find some of the references listed in the bibliography 
useful. 



GLOSSARY 

Activity. --A structural variable whose level is to be 
computed in a programming problem. 

Activity level. --The value taken by a structural 
variable in an intermediate or final solution to a 
programming problem. 

Agenda. --The set of control language statements 
used to prescribe a solution path or run procedure; 
an ordered list of the maj or operations constituting 
a procedure for solution or computer run. (This 
usage corresponds roughly to the ordinary "agenda" 
for a meeting. ) 

Agendum. The body of code called for execution by 
a control language statement (agendum call card). 

Agendum call card. --A single agendum name and 
its parameters punched on one card in a stylized 
form; one item of the agenda --a control language 
statement calling for the execution of the named 
agendum. A set of agendum call cards is used to 
control a linear programming system, thus forming 
an agenda. 

Algorithm. --A mathematical procedure whose rou
tine application (iteratively or recursively) yields 
the solution to a particular class of problem. 

Alpha (a). --Notation used to express a tableau or 
portion of it in terms of the current (as opposed to 
original) basis. 

Alternate optima. --Distinct solutions to the same 
optimization problem. 

A - matrix. --Notat.ion used to denote the original co
efficient matrix, [ aj ] or r aij J, possibly extended 
by some or all of the logical vectors. The functional 
row is usually included, as in the modified simplex 
array. 

Artificial variables. --Auxiliary or logical variable 
restricted or bounded to zero for equation con
straints, and unrestricted as to sign for objective 
function or other null constraints. The logical 
variables, artificials and slacks provide the 
"identity" basis needed for the start of the simplex 
algorithm. Artificial vectors may appear physi-

cally in the problem statement and/or machine 
representation, but are more often only a logical 
construction (device). Once the zero-valued arti
ficial variables have been driven out of the basic set, 
or have achieved a zero value by simplex pivot steps, 
the simplex procedure assures that they will not be
come nonzero in subsequent iterations. 

Artificial vector (primal). --The logical column 
vector associated with a primal artificial variable. 
It is a unit vector, with +1 in the row associated 
with the artificial variable, and zero elsewhere; 
hence, a logical vector as opposed to structural, 
and it may not be physically present in the computer 
matrix. 

Assignment problem. --The problem of placing n 
elements into n cells, one element to a cell, at 
minimum cost, where the individual cost of putting 
element i in cell j is a given constant Cij. The 
problem can be stated as a linear programming 
problem, or a transportation problem, and so solved. 
However, a much more efficient special-purpose 
algorithm exists for this problem, in which opera
tions on the cost matrix (cij) lead to an increasing 
series of partial assignments. This algorithm, 
called the Hungarian method, terminates at the first 
complete assignment which is optimal. 

Augmented matrix. --The coefficient matrix aug
mented by the column of right-hand-side constants; 
the same as the constraint matrix. 

Balance equations. --Those constraints on a produc
tion process which express the equality of inflows 
and outflows of one sort of material at one point in 
the system. Theyare usually in the form of equa
tions with a right-hand side of zero. 

Basic feasible solution (primal). --A basic solution 
to the constraint equations in which the nonzero 
values of the primal variables (both structural and 
logical) meet all the variable-type and bound restric
tions. The lowest-cost basic feasible solution is the 
optimum. See also "feasible solution". 

Basic solution (primal). --A solution to the row con
straint equations in which the number of nonzero 
primal variable values (both structural and logical) 
is at most equal to the number of equations. The 
row constraint equations include bounds, and for 
modified or Kuhn-Tucker simplex arrays, costs. 
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Basic variables (primal). --Those m primal vari
ables, in an m-constraint linear programming 
problem, which are permitted to be nonzero and 
nonbounded at an iterative stage in the solution. 
The remaining variables (nonbasic variables) are 
fixed at zero. In a bounded variable code some 
variables may be fixed at their bounds. 

Basis (dual). --A square submatrix (nonsingular) of 
the structural coefficient matrix extended vertically 
by an n x n identity matrix (which provides a logical 
unit row for each primal structural variable) whose 
rows are the row vectors associated with the cur
rent set of dual basis variables. The logical unit 
rows are seldom carried explicitly in the computer. 
In common usage only the structural rows are im
plied in reference to "dual basis". 

Basis (primal). --A square submatrix (nonsingular) 
of the coefficient matrix, of maximum size, whose 
columns are the column vectors associated with the 
current set of basic variables. A presumed basis 
may be singular. Some codes substitute logical 
vectors for the dependent columns. 

Basis headings list (primal). --The names or indexes 
of the vectors in the current basis in the same order 
as the activity levels (beta values); used to identify 
the levels with their corresponding variables. 

Basis inverse. --The inverse of the basis matrix. 

Basis matrix. --Same as "basis". 

Basis row. --A row of the coefficient matrix cor
responding to a potentially nonzero structural vari
able in the current dual solution. 

Basis variables. --Same as "basic variables". 

Basis vector. --A column of the coefficient matrix 
corresponding to a potentially nonzero variable 
(either structural or logical) in the current primal 
solution. 

Beta value. --The level of a basis primal variable; 
same as "activity level". 

Beta vector. --A notation for the B-vector in terms 
of the current basis--for example, the basic or 
potentially nonzero portion of the solution only. 
Variables at their bounds are usually excluded. 

Bounded variable. --A primal variable Xj in a linear 
programming problem which is required to satisfy a 
constraint of the form 
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o ~ x. ::; b, or -b::; x. ::; 0, or b
I

::; x. ~ b
2 J J J 

where b is some positive constant and b~ ~ b
2 

is 
implied. Some linear programming codes can 
handle bounded variables directly; others require 
that these column-bound restrictions be explicitly 
stated as constraint rows of the matrix. Dual vari
abIes are not ordinarily bounded directly. However, 
note that a non-negative structural variable, consisting 
of a minus one in a "less than or equal" row i and 
a plus bi in ~he cost row, effectively' bounds the dual 
variable, 1T 1, for that row as 0 :s: 1T 1 :s:bi. 

Break-even price. --Same as "marginal value" 
(q. v.), but usually only applied to balance equations. 

B-vector. --Notation often used for the right-
hand side (constant column) in a linear programming 
matrix. 

Capacity. --The right-hand side of some constraint 
of the form 

where the constraint applies to a measure of the 
capacity of a process unit. 

Change row. --A row vector, Q, specifying the pro
portionate changes in the cost-row vector in para
metric programming on the obj ective function. If C 
is the original cost row, and t is the parameter, the 
moving value of the cost row is expressed as C + tQ. 

Change vector. --A column vector, C, specifying the 
proportionate changes in the right-hand side (B
vector) in parametric programming. If B is the 
original column and t is the parameter, the moving 
value of the column is expressed as B + tC. 

Code. --A set of computer instructions which carry 
out a particular calculation. A computer program. 

Coefficient. --A constant multiplying a variable, as 
the "3" in 3x. 

Coefficient matrix. --The matrix of left-hand-side 
coefficients in a system of linear equations. It is to 
be distinguished from the matrix obtained by append
ing the right-hand side, which is called the "aug
mented matrix" of the system. It may be thought of 
as including a full set of logical vectors to convert 
inequality constraints to equations, and in the case of 
the modified simplex array it also contains the 
objective function coefficients. 



Col ID. --Generally, a name, index or mark to 
distinguish a particular column of a matrix. 

Column. --All the elements of a single vertical line 
of a matrix, taken in given order. An m x 1 sub
matrix of an m x n matrix. 

Column error. --The numerical value of 

or in the modified simplex array 

where 

is the vector of simplex multipliers, a
k 

is the 
column for the basic variable xk' and ck is the co
efficient of xk in the obj ective function; in the 
modified array, 7r' is the scale factor and ak is 
extended by the objective row entry, ck. With no 
rounding error, the above expressions would have 
a value of zero. 

Column index. --A numerical equivalent of the 
column identification, assigned by the computer for 
the purpose of saving space and making tests easier. 

Column relation. --A relation that is equal, less 
than or equal, greater than or equal, or null for 
each constraint (matrix column) of the dual problem. 
The column relations correspond one-to-one with 
the complementary primal variable-type restric
tions as follows: 

i ~ ~ 0 L: 7r . a. = c. (equal) ~x. < 
i 1 J J J 

L: 7r i at ~ Cj (less than or equal) ~ x. ~ 0 
i J 

(nonpositive) 

L 7r • a~ ::;; c· (greater than or equal) ~ x. ~ 0 
i 1 J J J 

(non -negative) 

~ i> L.J 7r. a.;( c. (null) 
i 1 J J 

¢<==~;> x. = FL (fixed) 
J 

where 

7r. is a dual variable 
1 

i 
a. is the coefficient matrix 

J 

c. is the row of objective coefficients 
J 

x. is a primal variable 
J 

FL fixed level 

Column slack. --The amount by which the dual re
striction is exceeded--for example, dual slack. 
This is also the evaluator of this column in the 
primal problem--that is, the reduced cost, dj , etc. 

Column vector. --One column of a matrix or a 
matrix consisting of a single column. The elements 
of the column are interpreted as the components of 
the vector. 

Complementary relation. --See complementary 
variable. 

Complementary slack. --See complementary variable. 

Complementary variable. --A relation (row) of the 
primal problem has an associated primal logical 
variable (slack or artificial). This primal relation 
or slack is said to be complementary to the structural 
dual variable for this row, or its type restriction. 
Similarly, a relation (column) of the dual problem has 
an associated dual logical variable (slack). The dual 
relation (or its slack) is said to be complementary to 
the structural primal variable for this column. 
(See "column relation". ) 

Composite algorithms. --When neither the basic 
solution nor the dual solution generated by its sim
plex multipliers remains feasible, the correspond
ing algorithm is called composite. (Dantzig) 

Concave function. -- (1) Geometrically, a function 
whose graph is never below the chords joining any 
two points on the graph. (2) A concave constraint (with 
respect to the obj ective function) is one where the 
functional value on the constraint is never "better" 
than the value on the chord joining two points on the 
constraint. Thus, only the end points of a piece
wise linear approximation will be in the basis no 
matter how many subdivisions there are between 
them. (The efficiency of separable programming 
for this case provides the prime justification for 
that method. ) 
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(3) A function f such that 

in the convex domain of definition of f. (4) The 
negative of a convex function. 

Condition of a matrix. --A convenient measure is the 
absolute ratio of the largest to smallest nonzero 
element--the larger the ratio, the less well
conditioned the matrix. An ill-conditioned matrix 
may behave digitally as if it were singular. Math
ematically, a matrix is said to be ill-conditioned, or 
badly scaled if the absolute value ratio of the largest 
to smallest eigenvalue is large. 

Constant vector. --The right-hand sides of the set of 
linear inequalities; the B-vector. By convention the 
linear relations of an LP problem are so arranged 
that all variables and their coefficients appear on 
the left, and the column of constants appears on the 
right. 

Constraint. --An equation or inequality relating the 
variables in an optimization problem. A feasible 
(primal) solution must satisfy all the constraints 
including column-type restrictions (bounds, non
negativity, etc). 

Constraint matrix. --In linear programming, the 
augmented matrix of the constraint equations. It is 
the matrix formed by the coefficient columns, or 
left-hand Sides, and the column of constants. 

Control language. --The language used to prescribe 
the course of a linear programming run on a com
puter. The language consists mainly of verbs 
(agendum names), which call in a body of code 
(program or subroutine) embodying the desired 
algorithm for execution. 

Convergence of an algorithm. --An algorithm is said 
to converge if it is certain to yield its solution in a 
finite number of steps. It is a much stronger re
quirement than the mathematical convergence of the 
sequence of obtained function values. 

Convex function. -- (1) Geometrically, a function whose 
graph is never above the chords i oining two points 
on the graph. (2) A convex constraint with respect to 
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the objective function is one where the value on the 
constraint is never "worse" than the value on the 
chord. Thus, any degree of accuracy can be ob
tained by making a sufficiently fine piecewise linear 
approximation. (Note that some functions are neither 
concave nor convex.) (3) A function f such that 

in the convex domain of definitions of f. (4) The 
negative of a concave function. 

Convex programming. --Optimization of a convex 
function over a convex region (set). Linear pro
gramming and quadratic programming are special 
cases of convex programming. 

Convex set. --Geometrically, a set of points (region) 
, that contains all the points on the line segment join

ing any two points of the set. A point which does not 
lie on any line segment joining two other points of the 
set is called an extreme point or vertex of the set. 

Cost function. --The objective function of a cost 
minimization program. 

Cost range. --The objective function interval of a 
basic solution variable in which the basis is opti
mum. A change in the objective function of the 
variable which is outside that range would force a 
change in the basi$ to preserve optimality. 

Cost row. --The row of objective function coeffi
cients (the cost of a unit of activity) of a cost 
minimization linear program matrix. 

Coupling equations. --When some of the constraints 
involve only the variables {X} and some others 
involve only the variables {Y}, the remaining 
equations involving both {X} and {y} are called 
coupling equations. The master problem would be 
composed of coupling equations in Dantzig-Wolfe 
decomposition. 

Curtain. --A method to give preferential treatment 
to a selected group of vectors which are thought to 
comprise an advanced or optimal basis. The 
selected group of vectors lies within "curtains. " 
Curtains are usually activated by a control card. 



Cycling. --A degenerate situation can arise (but is 
very rare) in an application of the simplex algo
rithm. The computations proceed endlessly 
through a cycle of values with the same level of 
obj ectiv e function. 

dj. -- Notation occasionally used for an evaluator or 
Ilreduced cost" (q. v. ) as contrasted with Cj' which 
represents the actual cost. When feasible and when 
using the modified or Kuhn-Tucker simplex array 

d. = Ct.! where F is the functional row and Ct.
J
! is the 

J J 
functional row of coefficients in terms of the cur
rent basis. The d. 's are also the values of the 
slack variables of lhe dual problem. Note that the 
d. of a primal logical vector is ± the 11' - value of its 
a~sociated row. 

Decomposition. --A means of increasing the capac
ityand at times the efficiency of computers for 
certain types of linear programs. Two main 
schemes of decomposition have been developed: 

Dantz ig-Wolfe Beale 

M J S1 

S1 S2 

S2 S 
L 

3 

S3 
S 

S4 4 

~ --- EJ 
where Si stands for the ith subprogram, M stands 
for the master problem consisting of the equations 
coupling the subproblems, and L stands for the 
"linking matrix" of variables linking the subprob
lems. Thus, linear programs which qualify for 
decomposition are those in which subprograms 
can be split off from the main body of constraints 
or variables, with each subprogram involving only 
some of the variables and with no variables common 
to any two subprograms. At each step of the algo
rithm each subprogram is solved as an individual 
linear program, relative to a suitably chosen 

objective function, or RHS. These solutions are 
averaged or "blended" into a solution for the total 
program. The overall solution is tested for 
feasibility and optimality, and if nonfeasible or 
nonoptimal, a new stage is developed with improved 
feasibility or lower cost. 

Degeneracy. --A special or limiting state or con
dition, usually produced by a zero value for some 
parameter or combination of parameters. In an 
m -constraint linear programming problem, the 
term is reserved for the case where a basic solu
tion has fewer than m nonzero components. Such 
degeneracy arises directly from a tied situation in 
the previous iteration, in which the chosen entering 
variable has caused the value of two basic variables 
to reach zero simultaneously, although only one 
would leave the basis. 

Degenerate solution. --In linear programming, a 
basic solution in which at least one basic variable 
has zero activity. 

Delta. -- The "Kronecker delta" (q. v. ) -- the Rth 
row or column of a unit matrix. 

Density of a matrix. --The proportion of nonzero 
elements in the matrix. In an m x n matrix (aij ), 
the formula is 

count of nonzero aij'S Density = ____ -:::::-:=--_____ _ 
mn 

Structural density accounts for the structural 
matrix only, whereas gross density adds the non
zero elements of the logical vectors and divides by 
m(m +n). 

Departing variable. --The basic variable that be
comes nonbasic in the LP iteration; also called 
"leaving vector", or "vector out". It is the vector 
that corresponds to the pivot row position in the 
basis. 

Dickson-Frederick pricing criterion. --A proce
dure for choosing the pivot column in the perform
ance of the simplex method. It eliminates the 
effects of scaling of the problem data by choosing 
that column j, (dj , ex ij' ... , ex mj) where dj is the 
reduced cost and exij the corresponding transformed 
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entries, for which dj is negative and df IF (a i;)2 

is maximal, where (aij) denotes the "posi-
tive part" of a if 

Digital error. --Rounding, or truncation, error in a 
digital computer which becomes especially serious 
with ill-conditioned matrices. 

Direct problem. --The primal linear programming 
problem as originally stated, as contrasted with 
its dual. 

Double iteration~ --A stage in a multiple-pricing 
algorithm when two vectors enter the basis with 
but a single pass through the matrix. 

Double pricing. --An algorithm which chooses two 
candidates to enter the basis on a single pass 
through the matrix. 

Duality theorems for linear programming.--
1. Main theorem: If both the primal and dual 

problems have a finite optimum, then the optimum 
values are equal. 

2. Corollary: If either problem has a feasible 
finite optimum, then so does the other, and the 
optimum values are equal. 

3. Corollary: A feasible but unbounded solu
tion to one problem implies no feasible solution 
for the other. 

4. Corollary: No feasible solution to one prob
lem implies that the other is either unbounded or 
infeasible. 

5. Weak theorem of the alternative: A variable 
and its complementary slack are not both nonzero. 

6. Strong theorem of the alternative: Among 
all alternate optima, at least one solution exists 
in which a variable and its complementary slack 
are not both zero, and the one of the pair that is 
zero in this solution is zero in all alternate 
solutions. 

Dual problem. --Let the original or direct linear 
programming problem be that of determining non
negative values of Xl' x2' •.. , xn so that 

z = c1 Xl + . .. + cn~is minimized subject to 

n " 
2: a~ Xj ;;;::bI 

(i = 1,2, ... ,m) 
j=l J 
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The dual problem is defined to be that of determin
ing values of wI, w2, ••. , wm , so that 

11m m" "" d b" t t z = b w + .•. +b w IS maxImIze su Jec 0 

m 
2: af wi ~ Cj (j = 1,2, ... , n) 
i=1 

Dual simplex algorithm.--Starting with a dual
feasible solution, the algorithm selects the most 
infeasible vector to leave the basis and then com
putes which vector must enter to maintain dual 
feasibility. As a consequence of this change of 
basis, other variables may become primal infeas
ible, but since the objective value changes mono
tonically toward optimum, the algorithm is finitely 
convergent. It is exactly the primal algorithm 
applied to the dual problem. 

Dual slack. --The level of the slack variables of 
the dual problem is given by the primal evaluators 
(reduced costs, dj ' s). 

Dual solution. --The optimal solution to the dual 
problem (which is necessarily obtained in solving 
the primal problem, but which may not be printed 
out). Dual solution may be interpreted as the 
optimum set of marginal values and reduced costs 
(dj) for the primal problem. 

Dual variables. --The variables of the dual prob
lem. Their coefficients are the rows of the 
primal problem. The optimum values of the 
structural dual variables and the column relation 
slacks are made up, in the language of the direct 
problem, of the marginal values and the reduced 
costs, respectively. 

Dual variable-type restriction. --A type of re
striction-- free, non-negative, nonpositive, fixed-
on each variable (matrix row) of the dual problem. 
The dual variable-type restrictions correspond 
one-to-one with the row relations as follows: 

i> ~"ii i 
1(" < 0 (free) ~ L..Jaj x = b (equal) 

1(" i ~ 0 (non-negative) ~ L:a; xi ~ b i 

(less than or equal) 

1(" i ~ 0 (nonpositive) <==> L: a; xi ~ bi 

(greater than or equal) 

" F ". " 
1(" 1 = S (fixed) ~ L: a; ~ ~ b 

1 
(null) 



Dynamic programming. --A method for optimizing 
a set of decisions which must be made sequentially. 
Characteristically, each decision must be made in 
the light of the information embodied in a small 
number of observables called state variables. 
The incurred cost for each period is a mathe
matical function of the current state and decision 
variables, while future states are functions of 
these variables. The aim of the decision policy 
is to minimize the total incurred cost, or equiv
alently the average cost per period. The mathe
matical treatment of such decision problems 
involves the theory of functional equations, and 
usually requires a digital computer for imple
mentation. 

Econometrics. --The application of mathematical 
estimation and inference techniques to economic 
data, in order to set the levels of economic 
parameters and to verify or disprove economic 
theorems. 

Element. --(1) A member of a population or set; 
(2) an individual coefficient, such as all or a27 , in 
a matrix. 

Elementary matrix. --A unit or identity matrix ex
cept for one unique column or row. The inverse of 
a nonsingular elementary matrix is also an elemen
tary matrix. This inverse is often called a "trans
formation matrix" (q. v.). 

Entering variable. --The nonbasic variable chosen 
to become basic in the iteration. Its associated 
vector, when expressed in terms of the current 
basis, is the pivot column. 

Epsilon (E). --(1) Notation for a tolerance or appro
priately small number; (2) notation for a change in 
a matrix element, as in certain degeneracy
correcting procedures. 

Epsilon perturbation. --A technique for avoiding 
cycling (in a degenerate problem). 

Equality relation. --A constraint relation of either 
the primal or dual problem which is an equality. 
The logical (artificial) variable associated with the 
relation has an element of one in the row (primal) 
or column (dual). The logical (artificial) variable 
is fixed at zero level. The complementary variable 
of a primal logical variable is a free (may take on 
any positive, zero or negative value) dual variable. 
Conversely, the complementary variable of a dual 
logical vector is a free primal vector. 

Equation (equality). --A proposition (or relation) that 
a given mathematical function shall be equal to 
another function (often a constant). The process of 
identifying the values of the variables (functional 
arguments) which make the proposition true is 
called solving the equation. 

Equivalent equations. --Two equations or equation 
systems in the same unknowns which have the same 
set of solutions. 

Essential zero. --A"tolerance" (q. v.) about zero such 
that all numbers within that tolerance are set equal 
to zero. 

Eta record. --A physical record consisting of eta 
vectors; usually packed to eliminate zero elements. 

Eta (77 )-vector. --The "product form" (q. v. ) of the 
basis inverse consists of a product of elementary 
column matrices. Columns of these matrices which 
are not unit vectors are called 11 -vectors. The 
successive 11 -vectors and a notation of their position 
are all that is required by the computer to maintain 
the inverse information since the rest of the matrix 
is an identity matrix. When dealing with sparse 
matrices, the product form usually contains fewer 
nonzero elements than the explicit form. Further
more, since the inverse itself is almost never 
desired, but only the product of the inverse and a 
vector, it is more efficient to recompute the required 
data than to maintain an explicit inverse. 

Evaluator. --A number associated with a nonbasic 
variable at an iterative stage in the simplex method 
of linear programming. Numerically, the evaluator 
6 k is the change in the objective function which 
results when the variable xk is increased from 0 to 
1 and the basic variables are shifted in value so as 
to maintain functional equality. Note that not all 
constraints will necessarily remain satisfied with 
Xk at the 1. 0 level and no change of basis. If all the 
evaluators are non-negative, the current basic 
solution is optimal (yields a true minimum). Also 
called reduced cost, dj , simplex evaluator, dual 
slack, etc. 

Expanded tableau. --The linear programming matrix 
as it appears after the introduction of logical (both 
slack and artifiCial) vectors. It is to be compared 
with the original matrix, which includes the struc
tural vectors only. The expanded matrix has the 
same length (vertical dimension) as the original 
matrix, but its width (horizontal dimension) is 
increased by the number of logical vectors (one per 
row). 
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Explicit tableau. --A tableau with a specific numeri
cal value listed for every element (as opposed to a 
function for computing'the values of the tableau, 
such as the product form of the inverse or the 
explicit inverse). A tableau is always in terms of a 
basis; the current basis is understood unless other
wise stated. 

Extreme pOint. --A point of a convex set which does 
not lie on a line segment joining any other two points 
of the set; also called a "vertex". 

Feasible basis. --A basis such that postmultiplying 
the inverse of such a basis by the constant column 
yields a solution which satisfies the constraints. 
This usually requires that structural and slack var
iables be non-negative and that artificial variables 
(other than objective row artificials) be zero. 

Feasible solution. --A solution to the constraint 
equations in which all variables satisfy their sign 
restrictions (see "feasible basis"). A feasible 
solution which corresponds to a feasible basis is a 
basic feasible solution. 

Feasibility vector. --A row vector for premultiplying 
a tableau so that feasibility evaluators (in the com
posite algorithm) are weighted to choose vectors 
which will reduce the sum of the absolute values of 
the infeasibilities when brought into the basis. 

File. --A group of stored data on a tape, disk, etc., 
usually contiguous. 

Fixed variable. --(1) A variable in the problem 
(logical, structural, primal, or dual) fixed at zero 
level for feasibility; (2) a variable to be bounded 
away from zero is sometimes "fixed" at its bound 
in a bounded variable algorithm, so that the trans
formed variable associated with it is then feasible 
at zero level, thus permitting arbitrary upper and 
lower bounds. 

Forced entry. --The deliberate introduction of a 
nonbasic variable into an optimum basis (displacing 
one of the optimal basis variables), which yields the 
activity level of the forced variable and the change in 
total optimum functional value. 

Ford-Fulkerson problem. -=-The "maximum network 
flow problem" (q. v. ). 
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Formulation of a problem. --The translation of a 
physical problem (for example, how to schedule a 
refinery) into a mathematical problem (maximize 
this function subject to these constraints). It in
cludes the identification of all the variables, the 
synthesis of the objective function, and the discovery 
of all pertinent constraints, but not necessarily the 
assignment of numerical values to the coefficients 
and other parameters. However, the relationships 
of variables to constraints is usually established, 
indicating the presence or absence of a nonzero co
efficient for each matrix position. 

Fractional programming. --A class of mathematical 
programming problems in which the objective function 
is the quotient of linear functions. (Clearly a non
linear programming problem.) 

Free variable. --A primal or dual variable whose 
feasible values have no restriction as to sign. 

Function. --A dependent variable related to inde
pendent variables such that for some sets of given 
values of the independent variables, values of the 
dependent variables correspond. See also "linear 
function" and" quadratic function". 

Functional. --(1) Generally, a function whose argument 
is another function. (2) In linear programming, the 
cost function or profit function or, more generally, 
the objective function. 

Game theory. --The theory of games is a branch of 
mathematics that aims to analyze various problems 
of conflict by abstracting common strategic features 
for study in theoretical "models"--termed "games" 
because they are patterned on actual games such as 
bridge and poker. By stressing strategic aspects-
that is, aspects controlled by the participants--it 
goes beyond the classical theory of probability, in 
which the treatment of games is limited to aspects 
of pure chance. Zero-sum, two-person games can 
be solved by linear programming methods. 

Gamma ("Y). -- The updated negative of a change vector 
for parametric programming on the right-hand side. 



Gaussian elimination. --A reduction method for sys
tems of simultaneous linear equations, in which one 
of the equations is solved for one of the variables in 
terms of the remaining variables. When these ex
pressions for the solved variable are substituted 
into the remaining equations, the result is an equiv
alent system with one less equation and one less 
variable. A Gaussian elimination step is exactly 
equivalent to a pivot step. It is a single change of 
basis and can be expressed functionally as premul
tip lying by the inverse of an appropriate elementary 
column matrix. Sufficient repetition of this proce
dure can yield the numerical solution in case of a 
nonsingular square system, and a solution of para
metric form (a linear function of a subset of the 
variables) if the number of variables exceeds the 
number of equations. 

Geometric solution. --A graphic method of solving a 
linear programming problem, by plotting the half
planes determined by the constraints and the lines of 
constant value for the functional. Its use is re
stricted to problems with, at most, two structural 
variables. 

Global optimum. --A feasible solution which gives a 
value to the objective function at least as optimal as 
any other in the feasible region. It is contrasted 
with a local optimum, which yields the best objective 
function value of all points in its subset of the feasible 
region. In linear programming a local optimum is a 
global optimum. 

Gradient of a function. --A vector at a point, whose 
direction is the direction of most rapid change of 
some function f, and whose magnitude is the rate of 
change of f in that direction. 

Graphic solution. --A solution obtained with graphs 
or other pictorial devices, as contrasted with solu
tions obtained by the manipulation of numbers. 

Hyperplane. --An (n-l)-space in n-space; the set of 
all points (Xl ... xn) in n-space whose coordinates 
satisfy some linear equation alxl + ••• + au~ = b. 
For example, a plane is a hyperplane in three- space; 
a line is a hyperplane in two- space; a point is a 
hyperplane in one-space. 

Identity matrix. --(1) A square matrix with diagonal 
elements all unity and all other elements zero. The 
identity matrix (which is frequently denoted by the 
symbol I) plays the same role in matrix algebra that 
unity does in the algebra of real numbers--that is, 
AI = IA = A for any (conforming) square matrix A; 
also, it is the element with respect to which matrix 

inverses are defined--for example, A-I A = AA-l = 1. 
(2) Colloquial: In linear programming, a square 
matrix with diagonal elements all plus or minus one, 
with all other elements zero. 

Implicit prices. --Same as marginal values, shadow 
prices, dual variable levels, etc. --that is, numbers 
giving the incremental worth of a relaxation of one 
unit in the right-hand side of a constraint. 

Increased profit. --The analog of "reduced cost" 
(q. v. ) in a situation where the objective function is 
expressed in terms of profit. Numerically, it is the 
evaluator associated with a nonbasic variable at 
optimality. It is the amount by which the corre
sponding unit profit would have to be increased before 
this variable could profitably be introduced into this 
basis. 

Incremental cost. --(1) Variable cost (as contrasted 
with fixed costs). It is the increase in total cost 
due to adding, buying, or making one additional unit. 
(2) Applies only to constraints originally stated as 
(2) inequalities. It is the increase in the optimal 
(maximal) value of the objective function which would 
be produced by a decrease of one in the right-hand 
side. It is the negative of the corresponding "mar
ginal value" (q. v. ). 

Independent equations. --A set of equations none of 
which can be expressed as a linear combination of 
the others. With linear equations, the condition for 
independence is that the matrix (coefficient columns) 
shall be nonsingular or, equivalently, have rank 
equal to the number of equations. 

Inequality. --A proposition (or relation) which relates 
the magnitudes of two mathematical expressions or 
functions A and B. Inequalities are of four types; 
A is greater than B (A>B); A is less than B (A<B); 
A is greater than or equal to B (A2B); A is less than 
or equal to B (A~B). The first two types are called 
"strict" and the last two "relaxed" or "weak". The 
process of identifying a functional argument or range 
of arguments which makes the proposition true is 
called solving the inequality, or obtaining a feasible 
solution to the inequality. 

Inequality relation. --A constraint relation of either 
the primal or dual problem which is an inequality. 
The associated logical variable (of the same problem) 
having its one in the row or column of an inequality 
relation is non-negative if the relation is ~ and non
positive if the relation is ~. (Note that in some 
codes, with explicit slack vectors in the A-matrix, 
the negative of the logical unit vector is generated.) 
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These logical vectors are often called slacks, as 
contrasted with artificials. A slack level has the 
interpretation: amount of unused capacity, amount 
by which a specification is exceeded, etc. 

Inequation. --Colloquial for "inequality". 

Infeasible basis. --A basis corresponding to an in
feasible solution. Postmultiplying the inverse of 
such a basis by the constant column, one obtains a 
solution in which at least one variable value is out
side its prescribed range. 

Initial basis. --The set of column vectors associated 
with the basic variables for which a starting solution 
will be obtained in linear programming. It is often 
an identity matrix or a matrix with plus and minus 
ones on the diagonal, zeros elsewhere, consisting 
only of logical vectors. 

Initial feasible basis. --The set of column vectors 
associated with the basic variables of the first 
feasible solution to a linear programming problem. 

Initial solution. --The first trial solution used at the 
beginning of an iterative-type solution to an optimi
zation problem. 

Instability. --See "numerical instability". 

Integer programming. --A class of optimization 
problems in which the values of all of the variables 
are restricted to be integers. Normally, the opti
mization problem without this integer restriction 
is a linear program; additional adjectives indicate 
variations--for example, integer quadratic program
ming. 

Inverse of a matrix. --An inverse of the square 
matrix A is another matrix B of the same dimension 
such that AB = BA = I, where I is the identity 
matrix. A matrix has at most one inverse. It has 
exactly one inverse if it is square with a nonzero 
determinant. The inverse of A may be obtained by 
extending A by an identity matrix and performing 
pivot steps on A to reduce it to an identity matrix. 
If the same operations were applied to the extension, 
it would end up as the inverse of A. See "product 
form of inverse" . 

Inversion. --(1) An operation on a matrix yielding 
the matrix's inverse. The inversion operation is 
usually denoted by a superscript -1. (2) In linear 
programming, the inversion of a specified basis 
matrix. 

Iteration. --A single cycle of operations in a solution 
algorithm made up of a number of such cycles. 
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J (H). --Notation for the basis headings list. 

Kronecker delta (OR). --A row or column vector of the 
unit matrix where the (+1) element occupies the Rth 
position in the vector. 

Kuhn-Tucker simplex array. --As in the modified 
simplex array, the objective function is changed to 
an equation and added to the rows of the matrix. 
The right-hand side is also brought into the matrix 
as a variable whose level will be fixed at exactly 
minus one. This array has the virtue of symmetry 
and is convenient from a computing standpoint since 
every row and column is treated alike. However, 
row and column relations must be made explicitly 
available; these relations are equivalent to the sign 
restrictions on the corresponding dual and primal 
variables. 

Lagrange multipliers. --Auxiliary variables A!, 
A2 ••• , A h used in optimizing an objective 
function f(X1, x2, .•. , ~) subject to h constraints 

<I> 1 = 0, <I> 2 = 0, ... , <I> h = 0 on the Xi. The pro
cedure is to construct an auxiliary objective 
function 

obtain the first partial derivatives with respect to 
each ~ and also with respect to each Ai' and set 
these partial derivatives all equal to zero. The 
result will be a set of (n + h) equations in the 
(n + h) variables (Xl' ... , xn ' A1' ... , Ah) 
which, when solved, will include the optimal co
ordinates of the Xj subject to the given restrictions. 
In linear programming, this procedure does not 
directly yield the solution, basically because the 
full set of restrictions for an LP problem includes 
some inequalities (in particular, the common re
striction that all va2'iables be non-negative). But 
by substituting (Wj) for {Xj subject to x. ~ 0 } a 
new problem in W 2 can be stated in whi6h all re
strictions are equalities. This problem can be 
solved by Lagrangian methods, and the values of 
wl will be the optimum values of Xj and the values 
of A i will be the optimum solution to the dual 
problem. 

Left-hand side. --The mathematical expression to 
the left of the equality or inequality sign in an 
equation or inequality. In linear programming, 
by conventio!l, the left-hand side of each constraint 
is the complete linear function, while the right-hand 
side is the constant term. 



Length of a vector. --The square root of the sum of 
the squares of the vector coefficients; also called 
the Euclidean norm of the vector. 

Lexicographic ordering. --Dictionary ordering; may 
be used in place of epsilon perturbations to insure 
that cycling does not occur when a vector choice is 
degenerate; not ordinarily incorporated in linear 
programming codes since practical evidence of 
cycling is very rare. 

Limitation. --A constraint or restriction on a var
iable or set of variables. 

Linear combination. --An expression of the form 

where the ai are coefficients and the zi are symbols, 
such as variables or vectors, which can be multi
plied by numbers. 

Linear dependence. --The state or condition of a set 
of n vectors ZI, Z2, ••• , zn which are related by 
an equation of the form 

Where 0 is a vector consisting of all zero coefficients, 
and the ai are a set of coefficients not all zero. 

Linear equation. --An equation whose left-hand side 
and right-hand side are both linear functions of the 
variables. Such an equation can always be put in 
the form f(x, y, z, .•• ) = c, where f is a linear 
function and c is a constant. 

Linear function. --A function of the form 
Ao + Al XI + A2X2 + •• 0 AnXn' where Ai'S are 
coefficients not all zero and X its are variables. 
The graphic representation of a linear function is a 
straight line, plane, or hyperplane. 

Linear independence. --The state or condition of a 
set of n vectors zl' z2' 0 •• , zn for which all linear 
combinations (except for the trivial combination 
with all coefficients zero) are vectors of nonzero 
length; that is, the resultant vector has at least 
one nonzero coefficient. No linear combination of 
a subset of the vectors will yield a vector of the set 
which is not in the subset. 

Linear inequality. --An inequality whose left-hand 
side and right-hand side are both linear functions of 
the variables. By transposition, such an inequality 
can always be thrown in the form L(x, y, z, ••• ) R c, 
where L is a linear function, c is a constant, and R 
is the given inequality relation. An inequality can 
always be converted to an equality by the addition or 
subtraction of a non-negative "slack" variable. 

Linear program. --See "linear programming 
problem". 

Linear programming. --A technique for finding the 
best solution from among all solutions of a system of 
linear inequalities. The variables are usually proc
essing or scheduling variables in some physical 
situation; the inequalities are obtained from the 
physical constraints on these variables; and the 
criterion for "best solution" is the value of some 
given linear function of all the variableso As the 
term is used today, linear programming includes 
the formulation of the problem in linear programming 
terms, algorithms for finding the best solution, and 
the analysis of the effect of changes in the values of 
problem parameters. When a solution fails to exist, 
the system is said to be infeasible or to have no 
feasible solution. When the best solution is 
infinite in one or more variables, the system is 
said to be unbounded. 

Linear programming problem. --The mathematical 
problem of minimizing or maximizing a linear func
tion of n variables, subject to n independent restric
tions, such as requirements that each variable be 
non-negative, and also subject to a finite number of 
other linear constraints. The latter are either 
equalities or weak inequalities (~or ~); strict in
equalities of the form<or>are not admissible. An 
exact solution or other termination to this problem 
is furnished by the simplex method or one of its 
variants. 

Linking variables. --In a situation where certain 
subsets of the variables have nonzero coefficients 
only in corresponding distinct subsets of rows, the 
remaining variables having coefficients in more 
than one subset of rows are called linking variables. 
These variables comprise the linking matrix in 
Beale decomposition. 
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Local optimum. --A feasible solution which gives a 
value to the objective function at least as low (or 
high) as any of its immediate neighbors in the feasible 
region. It is contrasted with a global optimum, which 
gives the lowest (or highest) value obtainable in the 
feasible region. 

Logical vector. --A unit vector used to extend an LP 
tableau to provide an "identity" matrix. Unit vectors 
in ~ rows are positive slacks. Unit vectors in ~ 
rows are negative slacks (either a unit positive 
vector restricted to nonpositive values, or a unit 
negative vector restricted to non-negative values). 
Unit vectors in = rows are artificial zero-level 
variables. Unit vectors in functional or other non
constraint rows are free (artificial) variables. 

Lower bound (of a set of numbers). --Let A = (a) be 
a set of real numbers. Then the real number c is a 
lower bound for a, provided c ~ a for every a in A. 

Lower bound (of a variable value). --To be feasible, 
the value of the variable must be greater than or 
equal to its lower bound. In linear programming, 
variables are normally lower-bounded at zero--that 
is,Xi~O. 

Machine loading. --Given a set of jobs (i), i = 1, 2, 
... , n; where job i consists of a set of operations 
(i, j), j = 1, 2, ... , ni. Also, given a set of machines 
(k), k = 1, 2, ••• , N; as well as the information 
that operation (i, j) can be performed on a subset n 
(i, j) of these N machines at a rate of rij. The 
machine loading for this set of jobs is the selection 
of a particular machine (k) from the relevant subset 
(U) for each operation (i, j). The machine-loading 
problem is to select that particular machine loading 
which satisfies all constraints on the system at least 
cost. The "transportation problem" (q. v. ) is a subset 
of this problem. In transportation problems, the 
rij = 1 for all i, j; and the sum of demands is usually 
constrained to equal the sum of supplies. 

Marginal. --The economists' term for the deriva
tives, or rate of change of a function with respect to 
quantity. "Incremental" and "variable" are often 
used in an exactly synonymous sense. Thus, the 
composite terms: "marginal cost" (of production), 
"marginal revenue" (from sales), "marginal value" 
(of a capacity, of sales, of supplies, etc.). The 
coefficients of a linear programming model are 
themselves all marginal figures; for example: the 
cost coefficient of an activity is the marginal cost of 
performing the activity; the coefficient in a material
balance row is the marginal consumption or produc
tion of the material. 
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Marginal cost. --The rate of change of cost as a 
function of quantity. If C(x) denotes the total cost of 
x units bought or produced, the marginal cost is 
another function c(x) equal to C(x+l)-C(x). 

Marginal revenue. --The rate of change of income as 
a function of quantity. If R(x) denotes the income 
from the sale of x units, the marginal revenue is 
another function r(x) equal to R(x+l)-R(x). 

Marginal value. --The dual solution to a linear pro
gramming problem can be interpreted, in the 
economic sense, as a set of marginal values since a 
dual-solution value is the change in the objective 
function per unit increase in the corresponding 
right-hand-side constant, assuming that a change of 
basis is not required to maintain feasibility. The 
economic interpretation is complicated by alternate 
optimum solutions (corresponding to different bases) 
which may yield different values for the dual var
iables. Thus, there may be two or more marginal 
values for the same constraint; such multiple values 
must be interpreted in terms of the operating pro
cedure indicated by the corresponding basis; that is, 
the basis determines how the relaxation of the con
straint would be utilized. Unfortunately, a change of 
basis (to an alternate optimum) may be required to 
change an RHS constant in a given direction even 
infinitesimally, and aside from parametric program
ming on the right-hand side, there is no convenient 
way to assure that the basis at hand is one which will 
permit the desired change. (The right-hand-side 
ranging algorithm will only indicate the amount and 
direction of RHS change possible before needing an 
alternate basis. ) 

Mathematical programming. --Techniques of finding 
an optimum value of a function of many variables 
when these variables are subject to restrictions in 
the form of equations or inequalities. The term is 
usually restricted to problems so complex that they 
require a digital computer for their solution. 
Special types of programming are linear program
ming, quadratic programming, and nonlinear pro
gramming, all discussed separately in this glossary. 



Matrix. --A rectangular array for the compact dis
play of the mn numbers. 

a .. (i=l ••. m; j=l ••• n) 
1] 

The typical element aij is placed in the ith row and 
the jth column. Another notation for an element is 
aj, which is useful in that the position of the index 
can indicate an element of a row or column and can 
distinguish rows or columns--for example, bi is an 
entry in a column; 1l'i is an entry in a row; etc. 

Matrix element. --One of the mn numbers, symbols, 
or other objects which have been arrayed in the form 
of a matrix. 

Matrix generator. --A computer code whose input is 
other stored information and whose output is a set of 
mn numbers (~j)' so indexed, or whose output is 
only the nonzero element values located or positioned 
by column identification and row identification. 

Maximize. --Find values of the arguments which 
give the largest possible value to a function. 

Maximum network flow problem. --Given a capac
itated network with one node distinguished as the 
source, and another node distinguished as the sink. 
To find a maximal flow from source to sink, subject 
to the following conditions: (1) the flow in each arc 
must be in some preassigned direction and cannot 
exceed the arc's capacity; (2) the flow into a node 
may not exceed its capacity; and (3) the sum of the 
flows into any intermediate node (not source or sink) 
must equal all the flows out of it. 

Minimize. --Find values of the arguments which 
will give the smallest possible value to a function. 

Mixed-integer programming. --Integer programs in 
which some, but not all, of the variables are 
restricted to integral values. 

Model. --A synthetic system which is patterned after 
an actual system but which is easier to manipulate. 
The synthetic system is designed to resemble the 
actual system in ways considered important, so 
that its manipulation can provide useful information. 

Modified simplex array. --A computing array for 
the simplex procedure in which the objective 
function plus an artificial variable is set equal to 
a constant (usually zero) and appended to the rows of 
the matrix. This artificial variable is unrestricted 
as to sign, and in a cost minimization problem, its 
value is to be maximized. This array also permits 
simultaneous evaluation of a number of functionals 
while optimizing one of them, or a prescribed linear 
combination of them. When using this array for 
computation, the sign of the objective function 
coefficients is frequently changed before data input 
so that the sign of the value of the corresponding 
free (artificial) variable as printed out will cor
respond to the true functional. 

Network flow problem. --See "maximum network 
flow problem". 

Node. --One of the defining points of a network. 

Nonbasic variable. --A variable in a linear program
ming iterative stage whose value is fixed at zero, or 
is bound, and whose column vector therefore does 
not appear in the current basis. 

Nondegenerate solution. --A basic solution in which 
all of the basic variables are nonzero valued. 

Nonlinear equation. --An equation at least one of 
whose terms is a nonlinear function of the variables. 

Nonlinear function. --A function defined as some
thing other than a sum of terms consisting of a 
constant times a single variable ~lus a final 
constant. For example, ax + bx + c (where x is 
a variable and a, b and c are constants) is a non
line ar func tion. 

Nonlinear programming. --An inclusive term 
covering all types of constrained optimization 
problems except those where the objective function 
and the constraints are all linear. Special types of 
nonlinear programming for which some theory has 
been developed are convex programming, concave 
programming, and quadratic programming. 
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Non-negativity restriction. --A restriction that a 
value or a set of numbers must be positive or zero, 
but in no instance negative. 

Nonsingular matrix. --A square matrix whose 
determinant is not zero, and thus whose rank 
(number of linearly independent columns) is equal 
to its dimension (number of rows). Any non
singular matrix has an inverse. 

Null constraint. --A row of the primal problem 
which is not a constraint--that is, symbolically 
A 5. B. The objective function, cost-change rows 
for parametric programming on the cost row, and 
alternate objective functions are all null constraints. 
In addition, it may be desirable to include some 
other functions to determine the activity level of the 
free (artificial) variable of that row. 

Numerical instability. --A characteristic of com
putations or computational methods in which small 
deviations in initial input data tend to produce large 
deviations in the results. nl-conditioned matrices 
are numerically unstable. 

Objective function. --That function of the independent 
variables whose maximum or minimum is sought in 
an optimization problem. 

Objective function coefficient range. --See "cost 
range" • 

Objective function element. --One of the coefficients 
in the objective function row of a linear program
ming matrix. 

Objective value. --The value of the objective function 
at a particular solution. 

Operations research. --"The attack of modern 
science on problems of likelihood (accepting mis
chance) which arise in the management and control 
of men and machines, material and money in their 
natural environment. Its special technique is to 
invent a strategy of control by measuring, com
paring, and predicting probable behavior through a 
scientific model of a situation." (Stafford Beer) 

Opportunity cost. --The money or other value sacri
ficed by choosing a nonoptimal course of action. 

Opportunity loss. --Same as "opportunity cost". 

Optimize. --Maximize or minimize, as the case 
may be. 
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Optimum. --A set of values of the variables which 
optimizes (gives the most favorable value to) the 
objective function. 

Original simplex array. --An array for computation 
by the simplex method in which both the objective 
function and RHS are kept separate and handled 
differently from the coefficients in the matrix, as 
distinguished from such variants as the modified, 
or Kuhn-Tucker, arrays. 

Original simplex method (computing form). --Using 
an original simplex array, the functional row Cj is 
stored separately from the matrix and is never 
updated. The evaluators are calculated as 

d. 
J 

" i i c - L-C a 
j j 

where Ci are the cost coefficients of the vectors in 
the basis, and Q'~ is the matrix tableau expressed in 
terms of the cur1-ent basis. This is in contrast to 
standard simplex method. 

Packing. --Condensed storage of sparse vectors or 
matrices, accomplished by storing only nonzero 
elements and their identifications or indexes. In 
certain cases, it is more efficient to store zeros but 
not infinity; this would be termed infinity packing as 
distinguished from (zero) packing. It is also oc
casionally possible to pack out certain coefficients 
equal to one. 

Parameter. --A secondary variable in an application. 
For example, the analytic geometry description of 
a line, y = ax + b, can be replaced by the paramet
ric representation 

{ 
y = at + b} 
x = t 

where t is regarded as a parameter. The constants, 
a and b, and the dependent variables, x and y, are 
not considered as parameters. 

Parametric programming. --A method for inves
tigating the effect on an optimal linear programming 
solution of a sequence of proportionate changes in 
the elements of a single row or column of the matrix. 
Most commonly, the method is applied to either the 
objective function row or the right-hand- side column. 
If it is applied to the latter, for example, the 



original right-hand vector B is replaced by a new 
vector B + Qt, where Q is a constant vector and t is 
a parameter. A parametric programming program 
may print out any or all of the following: the values 
of t at which basis changes occur, the new basic set 
at each change, the optimal levels of the basic 
primal and dual variables at each change, and the 
rate of change of each basic variable (with respect 
to t) between the current t and its value at the next 
basis change. 

Partition. --To separate a linear program into 
related subprograms. 

PHI. --The notation used for the parameter in the 
objective function parameterization or the critical 
price ratio in the dual algorithm and its variants. 

Piecewise linear approximation. --The division of 
the domain of definition of a function into subregions, 
and the replacement of the function by some close
fitting linear function in each subregion. 

PI values. --Notation often used for the simplex 
multipliers. 

Pivot column. --The column of the matrix containing 
the pivot element. In a linear programming itera
tion, it is the column associated with the entering 
variable (nonbasic variable picked to become basic). 

Pivot element. --The pivot-row element of the pivot 
column. 

Pivot rejection. --Rejection of the entering variable 
turned up by the pricing criterion, because the cor
responding pivot element would be too close to zero. 
In such a case, the next best nonbasic variable is 
examined, and so on. 

Pivot row. --The row of the matrix containing the 
pivot element. In a linear programming iteration, 
it is the row associated with the departing variable 
(basic variable picked to become nonbasic). 

Pivot step. --A step consisting of a single trans
formation of the matrix in a pivotal method of 
reduction of a set of linear equations. 

Pivotal method. --The most common of the many 
methods used in the solution of sets of linear 

equations. A particular equation (pivot row) is 
solved for a particular (pivot) variable. The pivot 
coeIficient plays a dominant role in the elimination 
or condensation to zero of all other coefficients for 
the chosen vector (by substitution in the other 
equations). 

Postmultiply. --To multiply a matrix A by some 
conforming matrix B--that is, by a matrix with as 
many rows as the given matrix has columns, A x B. 

Postoptimum analysis. --Development of the right
hand-side ranges, cost or profit ranges, trade-offs 
between pairs of basic variables, and/or parametric 
programming. 

Precision. --The number of words, or storage posi
tions, used to denote a number in a computer. 
Single-precision arithmetic is the use of one word 
per number; double-precision, two words per 
number, and so on. For variable word-length 
computers, precision is the number of digits used 
to denote a number. The higher the precision, 
the greater the number of decimal places that can 
be carried. 

Pre multiply . --To multiply a matrix B by some 
conforming matrix A--that is, by a matrix with as 
many columns as the given matrix has rows, A x B. 

Pricing. -- The choice of a nonbasic variable to 
enter the basis using an appropriate pricing 
criterion. 

PriCing criterion. --The criterion for choosing an 
entering variable. The most common (though 
perhaps not the best) criterion in the primal algo
rithm is to choose that entering variable whose 
evaluator is most negative. 

Pricing vector. --(1) In modified simplex this refers 
to the updated cost row. (2) In revised simplex this 
refers to the" simplex evaluators" or "PI values". 

Primal simplex algorithm. --Refers to a type of 
linear programming algorithm in which a basic 
feasible solution to the expanded primal (direct) 
problem is maintained at each step of the iterative 
process, with a feasible solution to the dual problem 
appearing only at optimality. This is in contrast to 
a "dual simplex" method (q. v. ). 
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Primal solution. --( 1) The basis of the primal var
iables (both logical and structural) at optimum; 
(2) the activity levels of these variables. 

Primal variable-type restriction. --A type restric
tion, free, non-negative, nonpositive, or fixed, on 
each variable (whose coefficients are a matrix 
column) of the primal problem. The primal var
iable-type restrictions correspond one-to-one with 
the column relations as follows: 

> ~ ~ i 
x. < 0 (free) 'r----/ L-7r. a

J
. = c

J
. (equal) 

J i 1 

Xj ~ 0 (non-negative) ~ ~i i 
a. ~ c. (greater 
J J than or 

equal) 

~ Dr· 
i 
~ c. (less than Xj ~ 0 (nonpositive) a. 

. 1 J J or equal) 1 

x. = FL (fixed) ¢::::> L7r. a~ < (null) 5 c . 
J i 1 J J 

Problem formulation. --See "formulation of a 
problem". 

Product form of inverse (computing form). --A 
computationally efficient (for sparse matrices) way 
of updating only the required portion of the inverse; 
often used in "revised simplex" (q. v. ) codes due to 
its calculation and input-output characteristics. 
The inverse 7r of the basis at stage t is carried as 
the product of elementary transformation matrices, 
one for each pivot step, rather than being computed 
and carried explicitly. 

where Et is an identity matrix except for one column 
(see "eta-vector"); otherwise, the computing form 
is the same as the revised simplex. The subscripts 
on E are an index on pivots. The product form is 
used recursively to compute an updated row or 
column of the tableau as follows: 

a i = 
S 

d
J
. = 17 9 a~ 

1 J 

17 F,t is the Rth row of the basis inverse. 
E{ is the tth "transformation matrix" (q. v. ). 

a.~ is the Jth column of the LP matrix. 

a~ is the sth column of the LP matrix expressed in 
terms of the current basis. 
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Profit range.--The interval (c -AI' c +A 2) where 
c is a profit coefficient in the objective function, and 
the two endpoints are points where a change of basis 
must first occur to maintain optimality. See also 
"cost range". 

Programming. --Arranging or furnishing a program 
of or for (Webster's Dictionary). In computer usage, 
it usually refers to computer programming, which is 
a stylized technique for making a computer carry out 
a particular calculation. To avoid semantic diffi
culty when speaking in context of mathematical 
program'ming, computer programming (or programs) 
is termed "coding" or "codes". Compound terms 
such as linear programming, quadratic program
ming, and dynamic programming are subsumed under 
the general heading of mathematical programming -
the optimization of a given function subject to given 
restrictions on the variables. 

Quadratic function. --A function which contains second
degree terms in the variables, e. g., a + bx + cx2. 

Quadratic programming. --Maximization, subject to 
linear constraints, of an objective function which is 
a quadratic function. This is one of the few convex 
programming problems, aside from linear program
ming' which have solution algorithms that terminate 
in a finite number of steps. 

Rank of a matrix. -- The maximum number of 
linearly independent rows of the matrix. Equiva
lently, the maximum number of linearly independent 
columns, or the size of the largest square sub
matrix with an inverse. 

Raw-stock value. --Marginal value, in a situation 
where the right-hand-side element is a capacity for 
a stock-balance equation. 

Reduced cost. --The evaluator associated with a non
basic variable at optimality. It is the amount by 
which the corresponding unit cost would have to be 
reduced before this variable could profitably be 
introduced into the basis. 

Redundant equations. --A set of equations, one of 
which may be expressed as a linear combination of 
the others. Such an equation can be omitted from 
the system without affecting the solution. With the 
inclusion of a full set of logical vectors in an LP 
matrix, there are no redundant equations in the 
strict sense of the term; however, very much the 
same situation applies when one relation or con
straint dominates another; for example, the con
straint equation Xl = 0 dominates the constraint 
Xl ? 0 so that the latter constraint could be 
removed without affecting the solution. 



Regularization. --A technique for augmenting a 
matrix with (1) a row that constrains the sum of 
absolute values of the structural variables to be!:= R, 
where R is large enough not to affect the solution if 
not otherwise unbounded; and (2) pseudo-artificial 
vectors (unit vectors with a large penalty cost M) 
for each non-null row relation, where M is large 
enough so that the pseudo artificials will not be 
used unless the problem is otherwise infeasible. A 
regularized problem, then, always has an optimum 
feasible solution. 

Reinversion. --A means of avoiding the buildup of 
round-off errors in an explicit tableau or inverse, 
or in a product-form inverse. However, in product 
form the most important effect of reinversion is to 
reduce the number of eta-vectors required to 
express the inverse, and hence the number of non
zeros in the eta records. Reinversion may be called 
for when digital error is suspected, at a presumed 
optimum, every K iterations (usually 30~· K ~ 75), 
or in product form by clock or nonzero cqntrol to 
minimize the total time required Ifor solution. 
Unlike the normal iterating agenda where the pivot 
elements are taken in the order prescribed by 
vector in-and-out choices, the reinversion algorithm 
can, and usually does, make a special selection of 
pivots to maintain digital accuracy, and in product 
form to also preserve sparseness. 

Report generator. --A computer code whose input 
is data, operating instructions and format infor
mation. Linear programming report-generator 
data may include solution activity levels, input 
coefficients, etc. Linear programming report
generator instructions may include vector multipli
cations, additions, etc. The output of a report 
generator may include instructions to a printing unit 
as well as output information. 

Requirement. --The right-hand side of a constraint 
of the form 

Xl + x2 + ••• + ~ = b, or ~ b 

where Xi are interpreted as inflows to some sink; 
also used for" constraint" (q. v. ) and "restriction" 
(q. v.). 

Resource. --The right-hand side of a constraint of 
the form 

where x. are interpreted as outflows from some 
1 

source. 

Restriction. --An equation or inequality limiting the 
feasible range of variation of a variable. Also used 
for constraint (q. v.). 

Revised simplex method (computing form). --A var
iant of the simplex method, especially suitable for 
LP problems in which the number of variables is 
much larger than the number of equations. The 
method employs (1) an implicit inverse, "product form 
of the inverse" (q. v.), or (2) an explicit inverse of 
the current basis t (often without zero packing) to 
compute an updated row or column of the tableau as 
required. 

7r 
T 

where: 
R is the functional row. 
ET is the transformation matrix of iteration T. 
'" T is the basis inverse at iteration T. 

'"t is the current basis inverse. 

The simplex multipliers comprise the profit row of 
the inverse; they are used to test for optimality and 
to select a new entering variable, if needed. 

RHS. --Notation for the right-hand side. 

Right-hand side. --The mathematical expression to 
the right of the equality or inequality sign in an 
equation or inequality. In linear programming, by 
convention, the right-hand side of each constraint is 
merely the constant term, with the complete linear 
function as the left-hand side. Same as B-vector, 
column of constraints, etc. 

Right-hand-side element. --An element of the 
column vector comprising the right-hand sides of 
the constraints. 

Right-hand-side range. --The interval (b- 61' b +..12) 
where b is the original value of the right-hand-side 
element and the two endpoints are the first pOints 
where a change of basis must occur to maintain 
feasibility. Within this interval, the optimal 
objective value is a linear function of the right-hand
side element, with rate of change equal to the 
marginal value of its row. 

Rounding error. --The error in the final result of a 
calculation which is ascribed to the rounding used 
for input factors and intermediate results. In a 
computer, rounding error can be reduced almost to 
any desired extent, but only at the expense of 
speed, memory capacity, and program complexity. 
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"Round-off error. --Same as "rounding error". 

Row. --All the elements of a single horizontal line of 
aiiiatrix, taken in the given order. A (1 x n) 
submatrix of an (m x n) matrix. 

Row error. --The numerical value of 

where (xV x2' ••• , ~) are the levels of the vari
ables in the current solution; (ail ••• ~n) is the 
left-hand side of row i; and bi is its right-hand side. 
With no rounding error, the above expression would 
have a value of zero. 

Row ID. --The same as "row identification". The 
Row ID list (or the Row ID's) refers to the set of all 
row identifications to be used in a particular 
problem. 

Row identification. --Generally, a name or mark to 
distinguish a particular row of a matrix; specifi
cally, a six-character identification of a row in the 
SHARE standard input format. 

Row index. --A numerical equivalent of the row 
identification, assigned by the computer for the 
purpose of saving space. 

Row operations. --One of the following operations 
on a matrix: (1) interchanging any two of its rows; 
(2) multiplying a row by a nonzero constant; 
(3) adding a multiple of a row to some other row. 
Operation (1) is equivalent to premultiplying by an 
identity matrix with two columns permuted. 
Operations (2) and (3) combined are equivalent to 
premultiplying by an elementary column matrix. A 
succession of row operations will invert a non
singular matrix. 

Row relation. --A relation that is equal, less than 
or equal, greater than or equal, or null for each 
constraint (matrix row) of the primal problem. 
The row relations correspond one-to-one with the 
complementary dual variable-type restrictions as 
follows: 

L:a~ x. = b
i 

(equal) ¢;> 1("i ~ 0 (free) 
J J 

i < i ~ i> ~a. x.- b (less than or equal)~ 1(" - 0 
J J (non-negative) 

. . .< 
L:a~ X.~bl (greater than or equal)~ 1("1-0 

J J (nonpositive) 

58 

i<i ~i F. 
L:a.x.5b (null)~ 1(" =S (fIXed) 

J J 

where 1(" i is a dual variable 

i 
a. is the coefficient matrix 

J 

b i is the column of RHS coefficients 

x. is a primal variable 
J 

SF is a fixed scale factor. 

Row vector. --A matrix conSisting of a single row. 
A given row of a matrix. The elements of the row 
are interpreted as the components of the vector. 

Scaling of a matrix. --Multiplication of each row 
and each column of the matrix by different 
factors chosen to improve the computational 
properties (condition) of the matrix. By judicious 
scaling, the precision and efficiency of linear pro
gramming computations can be increased greatly, 
without changing in any material way the definition 
of the problem. A frequently used scaling algo
rithm is to divide each row by the largest absolute 
element in it, and then divide each resulting 
column by the largest absolute element in it. 
This ensures that the largest absolute value in the 
matrix is 1. 0 and that each column and row has at 
least one 1. 0 in it. 

Scheduling. --(1) The placement of a given set of 
objects (A, B, C, D, ••• ) on the time axis, as 
opposed to sequencing, which is merely ranking 
them in temporal order. Sometimes the sequencing 
result is assumed before the scheduling problem is 
given. (2) Scheduling of a continuous process 
manufacturing facility, such as an oil refinery, 
usually means the allocation of streams to units 
and the setting of processing conditions, since 
the flows are assumed to be constant during the 
scheduling period. 

Sensitivity. The responsiveness of a solution to 
changes in the numerical values of the coefficients. 



Separable programming. --A class of nonlinear 
programming problems in which each function 
appearing may be expressed as the sum of sepa
rate functions of single variables. For example, 
the function 

f(x
l

, ... , x n) is separable if 

n 

f(x
l

, ... , x n) = L: 
i=1 

f. (x.), 
1 1 

for appropriate functions f .• 
1 

When all the functions have been separated, it is 
possible to make a piecewise linear approxima
tion to each one. For convex constraints, this is 
all that is required, since the LP algorithm will 
always choose the two nearest points surrounding 
the desired value, giving accuracy dependent only 
on the fineness of the approximation. For concave 
constraints, however, the ordinary LP algorithms 
will choose from the two most widely separated 
points, ignoring those in between and giving 
generally a most unsatisfactory accuracy. How
ever, the separable programming (LP) algorithm 
assures that the points chosen are contiguous, and 
thus accurate. Of course, only a local optimum 
solution is assured. 

Set. --A collection or family of objects of some 
kind. These objects are called "elements, " or 
"members" of the set. 

Shadow price. --Same as "marginal value" (q. v.); 
also used incorrectly for "reduced cost" (q. v. ). 

SHARE. --A user's group for IBM large-scale 
scientific computers (comprising in 1963 the 704, 
709, 7090, 7094, 7094-II, 7040, 7044 equipments). 

SHARE standard input format. --A format for the 
input card, specifying a single element of the 
matrix. In this format, columns 1-6 are blank, 
reserved for control information; columns 7-12 
identify the matrix column in which the element 
appears; columns 13-18 give the row; column 19 
gives the sign of the element; and columns 20-30 
give its numerical value, with decimal point in 
column 24. 

SigmaL.--Notation for the change row in para
metric programming on the objective row. 

Simplex. --A convex polyhedron in a Euclidean 
space of dimensions equal to or greater than the 
number of linearly independent vertices. Sim
plexes in the plane are points and line segments; 
simplexes in three-space are points, line 
segments, and triangles; and so on. 

Simplex evaluators. --See "evaluator". 

Simplex method. --A computational routine for 
obtaining the optimal solution to a linear program
ming problem. It is an iterative elimination 
procedure at each stage yielding a basic solution, 
and it rests primarily on the following two 
principles: 

1. Elementary row operations on the con
straint matrix leave the set of feasible solutions 
unchanged. 

2. The number of nonzero values in an optimal 
solution is never more than the number of con
straint equations. The following steps comprise 
one iterative stage: 

a. A test of whether the current solution 
is optimal and/or feasible. 

b. If not both optimal and feasible, a 
choice of an entering variable and a departing 
variable. 

c. A pivot step so as to read off the new 
solution; then back to a. 

An inversion algorithm is sometimes provided to 
express the problem in terms of a given initial 
basis. The problem may be formulated in any of 
three arrays (original, modified, or Kuhn-Tucker) 
and may be solved by a number of computing 
forms (original, standard, revised explicit inverse, 
revised product form of inverse), each of which can 
employ a variety of choice criteria for the entering 
and departing variables--that is, primal, composite, 
Dickson- Frederick, dual, suboptimization, symmetric, 
etc. Any simplex method is contrasted with approxi
mate techniques, such as logarithmic gradient, 
relaxation, etc., which do not yield a basic solution. 

Simplex method, original. --See "original simplex 
method (computing form). " 

Simplex method, revised. --See "revised simplex 
method (computing form). II 
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Simplex multipliers. A set of numbers (Ill' Il2, 
... , lIm), one for each row of a linear programming 
problem. 'Their values are given by the vector 
equation: 
Original array 

(II
1

, ••• ,II ) = -(c .••• c. ) B-
1 

m \ 1m 

modified or Kuhn-Tucker array 

where B is the current basis, Ci is the objective 
R 

function element of the Rth basic variable, and 
il •. 0 im are the subscripts of the basic variables. 

7r~ is the Rth (profit) row of the inverse. 

~ ~ is a unit row vector with 1 in position Rand 
zeros elsewhere. 

7r is the inverse of the basis (including the cost 
row). 

The main application of these numbers is in com
puting evaluators for the nonbasic variables. 

Singular matrix. --A square matrix whose rank is 
less than its dimension. A singular matrix has no 
inverse. 

Sink. --That single node in a capacitated network at 
which all flow is assumed to terminate. It can be 
recognized, on a directed graph, as that node at 
which all flows are directed inward. 

Slack. --The difference between the left and right 
members of an inequality. If u $ v, the slack s is 
defined as u + s = v or s = v - u; such slacks are 
restricted to be non-negative. If u ~ v, the slack 
may be defined as u + s = v or s = v - u in which 
case it is restricted to be nonpositive, or it can be 
defined as u- s = v or s = u - v (note the -1 coeffi
cient of s in u - s = v), in which case it is restricted 
to be non-negative. 

Slack level. --The current value of a slack variable. 

Slack variable. --An auxiliary variable introduced 
to convert an inequality constraint to an equation. 

Slack vector. --The column vector associated with 
a slack variable. It is a unit vector with +1 or -1 
in the row in which the slack appears, and zeros 
elsewhere. 
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Solution. --A set of values of the variables which 
satisfy the given constraints. Solutions may be 
classified as basic or nonbasic, feasible or infeas
ible, optimal or non optimal. These qualifiers are 
all defined under their appropriate alphabetical 
headings. 

Solution level. --The set of values taken by the 
variables in a solution. 

Source. --That single node in a capacitated network 
from which all flow is assumed to originate. It 
can be recognized, on a directed graph, as that 
node from which all flows are directed outward. 

Sparse vector or matrix. --A vector or matrix 
whose elements are mostly zeros. 

Standard simplex method (computing form).-
Using the modified simplex array (where the 
objective function has been incorporated in the 
matrix as a null constraint), the entire explicit 
tableau is kept up-to-date at each iteration. This 
method is particularly efficient for computing 
ranges, or when the structural matrix is dense. 
The only computation required at a pivot step is 

ex T = ET ex T-l 

where ET is an elementary matrix (q. v.). Since 
the complete tableau is available at all times, 
more complicated pricing criteria (such as 
Dickson- Frederick or maximum change in 
objective) are feasible. 

Starting basis. --The set of column vectors associ
ated with the basic variables of a starting solution 
in linear programming. 

Starting solution. --The first trial solution used at 
the beginning of an iterative-type solution to an 
optimization problem. The means for providing 
this initial solution is sometimes an algorithm in 
its own right. 

Steppingstone method. --A name for a special form 
of the simplex method used for solving the trans
portation problem. Given a feasible solution, the 
algorithm tells how to improve this solution by 
introducing a new source-destination allocation 
and reallocating among existing allocations so that 
the constraints remain satisfied. Those existing 
allocations whose values are modified in this way 
are called steppingstones. If no such reallocation 
can improve the solution, the current solution is 
optimal. 



Stipulations. --The right-hand sides and row 
relations. 

Stochastic programming. --A generalization of 
linear programming in which any of the unit costs, 
the coefficients in the constraint equations, and 
the right-hand sides are random variables subject 
to known distributions. The aim of such program
ming is to choose levels for the variables which 
will minimize the expected (rather than the actual) 
cost. 

Structural vector. --A column of a linear program
ming matrix corresponding to a physical variable 
in the original problem. 

Submatrix summary. --The partial sum of left-hand
side terms evaluated at the current solution for 
p (~ n) variables and q (~ m) constraints. It takes 
the form of a column vector with q elements. 

Suboptimal. --(1) Not yet optimal. (2) Optimal over 
a subregion of the feasible region. 

Suboptimization. --When using a multiple-pricing 
algorithm, suboptimization enters that variable 
first into the basis which gives by itself the greatest 
improvement in objective; the next variable entered 
gives the greatest additional improvement, and so 
on. This technique tends to prevent the first enter
ing variable from being removed by the second, 
etc. 

Substitution rate. --The change in the basic vari
ables (both logical and structural) required to 
maintain equality as a nonbasic variable is in
creased from 0 to 1. 0 in value. The feasibility 
restrictions may be violated if the new variable 
were actually set at the 1.0 level; the extent of 
the substitution is the largest (absolute) value the 
new variable can take on without causing an 
infeasibility. 

Sum of infeasibilities. --The (usually negative) 
sum of the absolute amounts by which the primal 
variables are outside their type restrictions. 
When the sum of infeasibilities reaches zero, the 
corresponding solution becomes feasible. The 
"Phase I" of certain linear programming codes 
was simply a derived linear programming 
problem -- that of maximizing the negative sum 
of infeasibilities to zero. 

Symmetric parametric programming. --The simul
taneous parameterization of the right-hand side 
and the objective function. This is useful in 
economic studies when both costs and require-

ments change a linear function of a single para
meter -- for example, time. Another use is as a 
sort of primal-dual algorithm to go from a 
pseudo RHS and objective function (for which the 
starting basis is optimal and feasible) to true 
values of the RHS and objective function. In some 
problems, this approach requires far fewer 
iterations than a more conventional algorithm. 

Tableau. --The current matrix, with auxiliary 
rows and/or columns, as it appears at an 
iterative stage in the standard simplex method 
computing form of solution. 

Technology matrix. --Loosely, the coefficient 
matrix, or (aij)' as distinguished from the cost 
coefficients (Cj) and the right-hand sides (bj). 

Theta (e). --Notation often used for the new value 
of the entering variable in the updated basic set 
(in the primal algorithm this is equal to the 
critical right-hand-side ratio), or for the parameter 
in right-hand-side parameterization. 

Tolerance. --The half-width of a band of numbers 
centered at zero, all of which are taken as 
equivalent to zero for decision purposes. Some 
form of tolerance is required in digital computer 
applications because of rounding error. Linear 
programming codes generally have several 
different zero tolerances for different purposes. 

Transformation matrix. --An elementary matrix 
representing a single change of basis. It is the 
inverse of a matrix formed from an identity 
matrix (which is the present basis in terms of 
itself) by replacing one unit vector (representing 
the departing variable) with another vector 
(representing the entering vector). The entering 
variable is expressed in terms of the present (old) 
basis. 

Transformation of a matrix. --A change in the 
appearance of a matrix which leaves the solutions 
of the corresponding set of linear equations 
unchanged; a change of basis. 

Transportation problem. --A linear programming 
problem of considerable historical and practical 
interest, for which very efficient solution 
algorithms are available. In this problem, there 
are m origins (with origin i possessing ai items) 
and n destinations (with destination j requiring bj 
items), and with sum of the ai equal to the sum 
of the bj. We are given the mn costs associated 
with shipping a single item from any origin to any 
destination, and are asked to empty the origins 
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· and fill the destinations in such a way that the total 
cost is minimized. The problem can be stated as 
a linear programming problem whose variables 
are the mn individual allocations, with the summed 
cost as the objective function and with m +n-l 
independent constraints, and so solved. However, 
much more efficient special-purpose algorithms 
are available; these are called transportation 
algorithms or codes, in which the special struc
ture of this problem is exploited. A special case 
of the "machine loading" problem (q. v. ). 

Traveling-salesman problem. --A special type of 
assignment problem. A traveling salesman 
wishes to start in one city, visit each of n other 
cities, and return to the start in such a way that 
the total distance traveled is minimized. This 
can be regarded as an assignment problem in 
which each city is assigned a successor city, but 
with the added restriction that the journey from 
city one back to city one be continuous. The 
traveling-salesman problem is much more 
difficult in solution than the corresponding 
unrestricted-assignment problem, even though 
there are fewer feasible solutions to consider. 
A nUlnber of solution algorithms have been 
brought forward, most of them based on integer 
linear programming or on dynamic programming 
techniques. However, none as yet are regarded 
as generally satisfactory: the efficient methods 
are only approximate, and the exact methods 
require too much computer time 0 

Unbounded set of numbers. --A set A = (a) of real 
numbers which has no lower bound and/or no 
upper bound. That is, if A has no lower bound, 
for any real number x, it is possible to find a 
number (a) in A such that a < x. If A has no 
upper bound, for any real number x, it is possible 
to find a number (a) in A such that a > x. 

Unbounded solution. --An optimal solution with 
some infinite or unbounded values, and therefore 
with an infinite optimum for the objective function. 

Unique. --One and only one (in mathematics). 

Unique solution. --The optimal solution, in a 
problem which has one and only one optimal 
solution. 
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Unit negative vector ("UN"). --A unit (positive) 
vector except that the sign of the 1. 0 is minus. 

Unit vector.--The term is used in two senses, one 
more special than the other. (1) A vector of unit 
length with one coefficient (+1) and the other 
coefficients all zero. (2) A vector of unit length. 
In the context of linear programming, meaning (2) 
is never used. 

Upper bound (of a set ofnumbers).--Let A=(a) be 
a set of real numbers. Then the real number c is 
an upper bound for A, provided that c ~ (a) for 
every (a) in A. 

Update.--To change a matrix, vector, etc., from 
stage n into a form suitable for stage n + 1, usually 
by routine operations on the former. 

Variable. --A symbol which can stand for any 
member of a given set, as distinguished from a 
constant, which is a symbol standing for only one 
such member. An argument of a function whose 
value is to be established. 

Variable cost. --Marginal cost--that is, includes 
no fixed charges. 

Vector.--An ordered set or array of quantities, 
usually n real numbers (xl' x2' ••• , xn). A 
vector arrayed horizontally is called a row 
vector; one arrayed vertically is called a column 
vector. For example, the rows of a matrix are 
row vectors, the columns of a matrix are column 
vectors. 

Vector in. --Entering variable's associated vector. 

Vector out. --Departing variable's associated 
vector. 

Vertex. --A point of a convex set which does not lie 
on a line segment joining any other two points of 
the set; also called extreme point. 
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