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INTRODUCTION 

This manual explores the use of linear programming 
(LP) in the aluminum alloying industry. It discusses 
the nature of the industry, the decisions involved in 
producing an alloy, the mechanics of alloying, and 
the techniques and advantages of applying LP to the 
industry. Particular emphasis is placed on explaining 
how linear programming can be used to: 
• Optimize furnace scheduling 
• Minimize the cost of an alloy blend 
• Minimize off-compositions 
• Maximize the use of low-cost scrap 
• Reduce scrap holding 
• Provide a more accurate scrap inventory 
• Influence purchasing decisions 

Linear programming is not new, nor are its 
economic benefits strange to many business and 
industrial areas. As a proven mathematical tech
nique for allocating resources to minimize cost or 
maximize profit, it is today an indispensable 
decision-making tool in many companies. 

Perhaps the oldest and most extensive user is 
the petroleum industry, where LP routinely aids in 
such areas as refinery scheduling, gasoline blending, 
and refinery expansion studies. There are few, if 
any, refineries which do not rely in some way upon 
linear programming problem solutions. 

In other areas, LP is used to determine optimal 
feed mixes, chemical compositions, food mixes, 
transportation routes, steel compositions, etc. 

It is significant to note that the problems solved 
by LP in several of these areas closely parallel the 
basic problem of aluminum alloy blending: how to 
produce at least cost a product of known composition 
using available raw materials and physical resources. 

Despite a growing and more diverse use of LP, 

and the often astounding economical advantages it 
imparts, the technique as an everyday management 
aid remains in its infancy. There are two reasons 
for this. 

First, there has been both ignorance and fear 
regarding the mathematical aspects of LP problem 
formulation. Many people have felt that a staff of 
highly trained specialists in LP problem formu
lation is a necessary bridge between those operating 
personnel who know the problem and the use of 
linear programming for decision-making. Ordinarily, 
the user does not need to know a great deal about how 
the computer finds the optimal solution or how it 
arrives at the effect of changes. He does, however, 
need to know the elements of these methods in order 
to formulate his problem most effectively and to 
interpret the results intelligently. Actually, the 
basic mathematics involved in expressing a problem 
as an LP model is readily learned and easily used. 
The main ingredient of successful LP application is 
a firm grasp of the problem to be solved, and not 
mathematical dexterity. 

Second, the solution of an LP problem of any 
practical size requires a computer and an associated 
LP code. In the past, computers were far more 
abundant than codes. Thus, to make use of the LP 
method, a computer user frequently resorted to 
building his own LP code - rather costly practice. 

However, LP codes are now available as appli
cation programming packages for IBM computing 
systems. They offer another unique opportunity to 
expand the application of IBM computers for better 
day-to-day management and decision-making in the 
aluminum industry. 
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PROBLEM PROFILE 

The alloy blending problem can be expressed as 
deciding how to satisfy the requirements of an 
alloy specification most economically. 

PROBLEM ECONOMICS 

The economics of the problem are manifested in 
many areas of company operation and vary from 
company to company - an overhead expense in one 
company might be a line production cost in another; 
a company which produces its own raw materials 
may have a different concept of costs than a firm 
that purchases these materials. 

Similarly, a company that produces and sells 
scrap and pure metals, as well as consuming them 
internally, must often weigh the profits of sale against 
the cost of internal consumption and the profit from 
the sale of product alloy. Also, there is the need 
to consider the ayailability and cost of purchased 
materials. 

The complexity of the most economical blending 
of an alloy is readily apparent, e\'en when viewed 
only in terms of how to determine the costs of 
raw materials. 

For purposes of this discussion, it will be as
sumed that raw materials can be accurately priced 
and that the prices encompass the following costs: 

1. Purchase price or manufacturing cost 
2. Transportation cost 
3. Handling cost 
4. Furnace cost 
5. Inventory cost 
6. Sales /purchasing costs 
For the moment, the problem is narrowed to 

deciding how to make the most economical use of 
raw materials of known cost and availability in 
computing a furnace charge. This, of course, is 
the heart of the solutions to be derived from the 
linear programming technique. The technique can 
also contribute substantially to arriving at more 
precise raw materials costs, raw materials inven
tory, and selling price of the manufactured alloy 
or purchase price of raw materials. 

HISTORICAL CONDITIONS 

Historically, the implements for calculating furnace 
charges have been desk calculators, the alloy speci
fications, an often outdated raw materials inventory, 
experience, and intuition. 

Since an alloy specification usually provides 
minimum and maximum bounds on the amounts of 
each metallic element to be used, it is not an 
extremely difficult task to compute a workable 
furnace charge. 
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Although economic conditions are always taken 
into account, it simply is not possible to explore 
all or even a large part of the possible charges and 
their comparative benefits by manual methods. 

Problem Complexity 

Assume, for example, the need to produce 1000 
pounds of alloy 7000, whose specification calls for 
elements 1 and 2 in the following proportions: 

Alloy 7000 (1000 pounds) 

Ingredients Requirements (pounds) 

Element 1 minimum 
Element 1 maximum 
Element 2 minimum 
Element 2 maximum 

150 
200 

30 
50 

Other elements minimum 750 
Other elements maximum 820 

Assume also the following availability of two 
scraps having a relatively high.content of elements 
1 and 2: 

Scrap 1 Scrap 2 

Element 1 30% 50% 
Element 2 5% 10% 
Availability 500 pounds 300 pounds 
Cost .30/pound .75/pound 

A natural impulse would be to use all 500 pounds 
of the cheaper scrap 1 since the minimum require
ments for element 1 would be immediately satisfied 
(500 X 30% = 150 pounds). This would, however, not 
satisfy the element 2 requirements since 500 X 5% = 
25 pounds, which is five pounds short of the minimum 
requirement of 30 pounds. 

There are several alternatives to be considered 
at this point: 

1. Use all of scrap 1 as originally planned, and 
add five pounds of pure element 2. The cost would 
be $150 plus the cost of the pure metal. 

2. Use all of scrap 2, which will satisfy the 
requirements for both element 1 and element 2, 
but at a cost of $225. 

3. Use all of scrap 1 and ten pounds of scrap 2, 
or some other combination of the two scraps that 
satisfies the alloy specification. 

Taking into account only elements 1 and 2, either 
alternative 1 or 3 would probably prove economically 
attractive. But if there were several additional 
elements to be considered and ten to 20 available 
grades of scrap, as is usually the case, the number 
of alternative solutions would increase tremendously. 

The problem becomes even more complex because 



of at least two other factors which often enter into 
the computations: (1) the frequent need to control 
the amount of one element used in proportion to the 
amounts of other elements, and (2) the desirability 
of using raw materials in units of ingots rather 
than pounds. 

The Manual Approach 

Almost the only practical means of manually arriving 
at a furnace charge is to first select the raw material 
that comes closest to matching the alloy specifi
cation requirements, then add pure metals and/or 
scrap to satisfy one or more additional requirements 
without disrupting those satisfied earlier (that is, 
without exceeding the maximum of an ingredient 
whose minimum has been equaled or exceeded). 

Once a charge has been formulated for an alloy 
specification, it is used as the basis for specifying 
charges for similar alloys; ingredients are added 
or removed to compensate for the specification 
differences, and, of course, amounts are adjusted 
as required. 

While this is a most practical approach, it 
perpetuates the use of pure metals and popular 
scrap - to the exclusion of the off-specification, 
low-cost grades of scrap. The result is that scrap 
not easily used is accumulated in inventory, while 
pure metals and on-specification scrap are purchased. 

Linear programming provides a means of ex
amining all existing possible combinations and 
quickly arriving at the most economical furnace 
charge. It is also possible to force the use of 
ingots, low-cost scrap, or any scrap in large 
supply while at the same time minimizing the cost 
of the charge. 

LP MODEL FORMULATION 

A linear programming model for aluminum alloy 
blending is a mathematical representation of all 
known and estimated factors which influence the 
calculation of furnace charges. A single-furnace 
model encompasses one alloy and one furnace; multi
furnace models may represent an entire alloying 
shop and several different alloy types. 

The following discussion deals with (1) the types 
and sources of data that must go into an LP model, 
and (2) procedures for formulating single-furnace 
and multifurnace problems. 

INPUT DATA REQUIREMENTS 

The basic information required to formulate the LP 
model includes the following: 

1. Alloy specifications showing the composition 
of each alloy to be blended 

2. The inventory level of all raw materials that 
might be used in the production of one or more alloys 

3. The composition of the raw materials 
4. The per-pound cost of raw materials 
5. The state of the raw materials, that is, ingot 

form or loose scrap 
6. Furnace capacities 
7. The number of pounds of each alloy to be 

produced 
Most of this information is readily available 

from purchasing, cost accounting, inventory ac
counting. or other sources and is probably used in 
existing systems for computing furnace charges. 
Where exact information cannot be readily obtained, 
estimates should be made since it is an easy matter 
to change the input data and re-solve the problem 
once an optimal solution has been obtained. Indeed, 
the easy calculation of the effect of changes in the 
input is a prime advantage of the linear programming 
approach. 

SINGLE-FURNACE PROBLEM 

Figure 1 states the specifications for an alloy, which 
will be called alloy 7000. Note that each ingredient 
has a minimum and maximum limit - pounds of 
element in the product alloy - and that provision 
is made for general impurities. 

In order to blend 10,000 pounds of alloy 7000, 
the required composition is 550 to 590 pounds of zinc, 
140 to 190 pounds of copper, 245 to 275 pounds of 
magnesium, and so on for each of the listed ingredi
ent metals. 

Element Minimum (lbs.) ---
Zinc (Zn) 555.0 

Copper (Cu) 140.0 

Magnesium (Mg) 245.0 

Chromium (Cr) 19.0 

Bel)'llium (Be) 2.0 

Iron (Fe) 0.0 

Silicon (Si) 0.0 

Manganese (Mn) 0.0 

N.ickel (Ni) 0.0 

Titanium (Ti) 0.0 

Lead (Pb) 0.0 

Tin (Sn) 0.0 

Bismuth (Bi) 0.0 

Aluminum (AI) 8867.0 

General Impurities 0.0 

Figure 1. Specifications for alloy 7000 

Maximum (lbs. ) 

590.0 
190.0 

275.0 

22.0 

4.0 

15.0 

10.0 

3.0 

2.0 

2.0 

2.0 

2.0 

8.0 

9049.0 

8.0 
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Available raw materials, each of which contains 
some percentage of one or more of the required 
ingredients, are as follows: 

1. Four different grades of aluminum, ALI 
through AL4, ranging in cost from 23<;: to 28<;: 
per pound 

2. Pure copper at 31 <;: per pound, pure magnesium 
at 38<;: per pound, and pure" zinc at 22<;: 

3. A chromium-aluminum alloy at 27<;: per pound 
and a beryllium-aluminum alloy at $3. 60 per pound 

4. Eleven scrap aluminum alloys, SCI through 
SCII, at either 20<;: per pound or 21<;: per pound 

This provides a total of 20 different sources for 
the metals required by alloy 7000. It will be as
sumed that the supply of only one raw material, 
SCI, is limited (to 900 pounds); an unlimited supply 
of all other materials is available for allocation. 
It will also be assumed that the state of the raw 
materials (either ingot or loose form), is not a 
problem factor. 

An LP matrix would be formulated as shown in 
Figure 2 for the problem as stated. Each of the 
available raw materials is expressed as a matrix 
column, or activity; the information from the alloy 
specification forms the row names and the elements 
of the right-hand-side (RHS) column. The coef
ficients of the row inequations, rows ZN through 
GX, express the proportion of each metal contained 
in one pound of each raw material. 

The cost row coefficients are the per-pound costs 
of each raw material; the last two rows in the model 
constrain the amount of SCI which may be used and 
the total amount of alloy to be produced (furnace 
load). The significance and derivation of each 
matrix component will be discussed in detail in the 
following paragraphs. All data in the model is ex
pressed in terms of pounds. 

Although the recording of all data in pounds 
requires considerable conversion of the problem 
data and necessitates the use of rather large frac
tional values, it assures a uniformly scaled matrix 
- a basic requirement of any LP system. It also 
means that the problem solution will be expressed 
in terms of pounds. 

Activities (Matrix Columns) 

The sources of the various alloy elements are 
expressed as matrix columns, or problem activities. 
The mechanics of preparing the matrix columns are 
relatively simple. Once the constraint rows have 
been established and listed, each raw material is 
listed and its composition is recorded vertically 
according to row. 

The problem activities are invariably the most 
critical parts of the model because they offer the 
widest margin for error. Where the problem rows 
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contain known values as dictated by the alloy speci
fication, furnace capacity, inventory level, etc., 
raw materials composition cannot be as closely 
ascertained. 

There are exceptions, as is the case with pure 
and near-pure metals and standard alloy scrap. 
However, in many cases the composition of a scrap 
alloy is derived from estimates based on experience 
or blending records. Although the accuracy of 
these estimates does not affect the computation of 
a problem solution, it does affect its validity. The 
validity of computed charges is measured by the 
number of off-compositions that occur quring the 
actual blending operations. 

Constraints (Matrix Rows) 

Problem constraints (rows) appear in the matrix 
as a set of simultaneous linear equations or in
equations. In the problem shown in Figure 2, there 
are the following types of constraint rows: 

1. Cost constraint 
2. Element specifications or restrictions (ma-

terial balances) 
3. Raw materials availability constraints 
4. Physical constraints (furnace load) 

An LP model invariably contains at least one of 
each constraint row type. It may contain others 
which place special restrictions on the problem 
solution. (This is discussed later. ) 

Cost Constraint 

The cost row contains the per-pound costs of each 
raw material and constrains the solution to that 
combination of activities which satisfies all other 
constraints at the minimum possible cost. 

The cost of any feasible solution can be determined 
by solving the cost equation using selected activity 
levels. For example, if 9, 000 pounds of A4, 600 
pounds of SCI, and 400 pounds of SCII represented 
a feasible solution, its cost (see Figure 2) would be 
computed as follows: 

A4 SC1 SCll RHS - - -- --
COST .23(9000) ... 21(600) + .21(400) = $2, 280.00 

For each feasible problem solution, the LP 
system performs essentially the same basic arith
metic to determine which of the solutions minimizes 
the cost of the alloy. 

Element Specifications 

Constraints on the amount of each ingredient metal 
that may be charged are repre sented in the model 
(Figure 2) by rows ZN through GX. The coefficients 



Column 
Na mes 

Ro 
Na ~ 

Zinc 
Minimum ZN 

Zinc 
Maximum ZX 
Copper 
Minimum CN 

Copper 
Maximum CX 

Magnesium 
Minimum MN 

Magnesium 
Maximum MX 

Chromium 
Minimum CHN 

Chromium 
Maximum CHX 

Beryllium 
Minimum BN 

Beryllium 
Maximum BX 

Iron 
Maximum IX 

Silicon 
Maximum SX 

Manganese 
Maximum MGX 

Nickel 
Maximum NX 

Titanium 
Maximum TX 

Lead 
Maximum LX 

Tin 
Maximum TNX 

Bismuth 
Maximum BIX 

General 
Impurities GX 

Scrap 1 
Limit SCX 

Furnace 
Load FL 

A1 A2 A3 A4 

.. 28 .26 .25 .23 

0004 .0006 .0011 .0026 

0005 .0006 .0007 .0012 

1.0 1.0 1.0 1.0 

Figure 2. Alloy 7000 matrix model 

C M BIA Z CiA SC1 SC2 SC3 

.31 .38 3.60 .22 .27 .21 .20 .21 

.95 .0009 .0012 .0568 

.95 .0009 .0012 • 0568 

1.00 .0444 .0026 .0152 

1.00 .0444 .0026 .0152 

1.00 .0042 .0060 .0248 

1.00 .0042 .0060 .0248 

.0300 .0001 .0018 .0020 

.0300 .0001 .0018 .0020 

.0600 

.0600 

.0024 .0026 .0016 

.0101 .0106 .0013 

.0079 .0003 .0005 

.0001 .0002 

.0004 .0004 .0004 

.0001 .0001 .0003 

.0001 .0001 .0003 

.0001 .0002 

1.00 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

SC4 SC5 SC6 SC7 SC8 SC9 SC10 SCll RIIS 

.20 .21 .20 .21 .20 .21 .20 .21 = Min $ 

.0563 .0460 .0455 .0009 .0006 .C009 .0008 .0675 ~ 
555. 1 bs 

.0563 .0460 .0455 .0009 .0006 .0009 .0008 .0675 ;a 590 . 1 bs 

140. G 1 bs 
.0149 .0071 .0071 .0447 .0623 .0034 .0003 .0195 ~ 

.0149 .0071 .0071 .0447 .0623 .0034 .0003 .0195 ~ 190. G 1 bs 

.0238 .0343 .0343 .0143 .0093 .0249 .0265 ~ 245. C 1 bs 

.0238 .0343 .0343 .0143 .0093 .0249 .0265 ~ 275. C 1 bs 

.0019 .0013 .0019 .0016 .0020 ?: 19. Cl bs 

0019 .0013 .0019 .0016 .0020 ~ 22. C 1 bs 

~ 2. Cl bs 

;a 4. C 1 bs 

0019 .0017 .0016 .0026 .0017 .0030 .0015 .0014 ~ 15. C 1 bs 

0011 .0013 .0011 .0013 .0010 0062 .0011 .0008 ;a 10. ( 1 bs 

0004 .0018 .0017 .0052 .0025 0002 .0002 .0002 ~ 3. Cl bs 

~ 2. Cl bs 

.0004 .0002 .0002 .0003 .0005 .0003 ;a 2. Cl bs 

.0003 .0002 .0002 .0001 .0001 ~ 2. Cl bs 

.0003 .0002 .0002 .0001 .0001 ~ 2. (1 bs 

.0005 ~ 8. (l bs 

.0025 ;a 8. Cl bs 

~ 900. a Ibs 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ~ 0000.1 bs 
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in each row are the amounts of the element (repre
sented by the row) in one pound of each activity. 
The unknowns are the various activity levels, or 
the number of pounds of each activity to be included 
in the charge. 

Using only the Z, SC1, SC2, and SC3 activities in 
the matrix, the constraint for ZX (zinc maximum) 
can be written explicitly as the inequality: 

Z SC 1 SC2 SC3 RHS 

ZX . 9s(Z) + . 0009(SC1) + • 0012(SC2) + • 0568(SC3) ~ 590. 0 

This states that the aggregate optimal levels of 
these activites (number of pounds to be charged) 
must not exceed 590 pounds. 

Using 500 pounds of Z, 1,500 pounds of SC3, and 
none of SC1 or SC2, this constraint (ZX S 590. 0) 
could be satisfied as follows: 

Z SC1 SC2 SC3 RHS - -zx .95(500) + .0009(0) + .0012(0) + .0568(1500) = 560. 2 

The same activity levels would also satisfy the 
constraint ZN ~ 555.0, but would fall considerably 
short of satisfying the next constraint in the matrix, 
CN ~ 140. 0 (copper minimum), and possibly many 
of the other constraints on the problem, as illustrated 
below: 

Z SC1 SC2 SC3 RHS - - - - -
ZN .95(500) + .0009(0) + .0012(0) + .0568(1500) = 560.2 

ZX .95(500) + .0009(0) + .0012(0) + .0568(1500) = 560.2 

CN .00(500) + .0444(0) + .0026(0) + .0152(1500) = 22.8 

From the mathematics used, we learn that there 
will never be more nonzero activities in an optimal 
solution than there are constraints; there may be 
fewer. This means, for instance, that in a problem 
with two constraints and ten possible activities, at 
least eight of the possible activities will be at the 
zero level in the optimal solution. And, further, 
the activity levels of these activities must satisfy 
simultaneously all the problem constraints. 

It should be noted that only 14 of the 15 elements 
in the alloy 7000 specification (see Figure 1) are 
represented in the model. The missing element, 
aluminum, need not be controlled directly since it 
will comprise the difference between the 10, 000 
pounds of the product alloy and the total amount of 
the 14 other controlled elements. 

It should also be noted that it is not necessary to 
include minimum constraint rows for elements whose 
minimum content·in the product alloy may equal 
zero. The reason for this is that linear programming 
systems will not allocate negative amounts of any 
ingredient (since it is not possible to take away an 
element which was never allocated to begin with). 
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Raw Materials Availability Constraints 

Constraints on the permissible level may be in
cluded for any or all activities in the problem. These 
are conventionally placed at the bottom of the matrix 
following the last ingredient row. 

Constraints of this type consist of a coefficient of 
1 in the appropriate activity column and the maximum 
or minimum permissible level in the right-hand-
side vector. 

The matrix for alloy 7000 contains only one such 
constraint row, SCX, which limits the total allo
cation of SC1 to less than or equal to 900 pounds 
(see Figure 2). USing the same simple technique, 
constraints on any raw material may be imposed 
according to current inventory levels or general 
availability of the raw material. For example: 

••• SC1 SC2 SC3 SC4 SC5 ••• RHS ---
1 ~ 900.0 

S 500.0 

5 900.0 

S 50.0 

S 1500.0 

Similarly, the same type of constraint may also 
be used to indicate a desired minimum allocation 
of any activity. For example, if the supply of SC2 
were abnormally large, it might be desirable to 
attempt to force the allocation of a specified minimum 
number of pounds (SC2N): 

SCX 

SC2N 

SC1 SC2 •.• RHS 

1 S 900.0 

~ 1800.0 

Such a constraint does not guarantee that any of 
SC2 will be allocated (methods of forcing allocation 
are discussed later), but it does guarantee that if 
SC2 is allocated, no less than 1,800 pounds will be 
used. 

There is another consideration in the use of 
minimum allocation constraints: the minimum 
amount specified (RHS value) must be feasible. In 
the problem as stated, the constraint on SC2 of 
1, 800 pounds is completely infeasible because of the 
constraint on silicon and the silicon content of SC2. 
By inspecting the sample matrix (Figure 2), it will 
be noted that one pound of SC2 contains. 0106 pounds 
of silicon and, further, the total amount of silicon 
in alloy 7000 cannot exceed ten pounds (see specifi
cation in Figure 1). Since. 0106 X 1800 = 19. 08 
pounds of silicon (exceeding the minimum limit), none 
of SC2 would be allocated. Infeasibilities of this sort 
can usually be discovered by visual inspection of 
the matrix. 



Physical Constraints 

A model must contain a constraint which specifies 
the amount of alloy to be blended, which is often 
equal to !he capacity of the furnace to be charged. 

In the matrix for alloy 7000 (see Figure 2), this 
constraint is imposed t.y' the furnace load (FL) row. 
Its form is a coefficient of 1 in each column and the 
weight of the desired charge in the RHS column. 

Summary 

Construction of the basic LP model entails little more 
than organizing, in a special format, the data his
torically used in calculating furnace charges. Once 
constructed initially and converted to an input media 
for computer processing, the model becomes a 
master record. It will be updated regularly to 
account for new conditions such as the addition or 
deletion of activities, new inventory constraints or 
changes tl.. existing ones, new costs, etc. 

In addition to meeting the requirements of the 
LP system, the matrix format offers an excellent 
graphic display of the problem. In fact, with ex
per; ~nce, it will become possible to visually inspect 
matrices and predict which materials will most 
likely be used and, in some cases, the amounts 
that will be used. It may be often desirable to make 
changes based on these observations before the prob
lem is solved. 

1Al.. 1SC1 ••• 1SCll 2A1.. 2SC1 ••• 2SCll 3Al,. 3SC1.. 3SCll RHS 

.28 ••• 33 •••••• 26 28 ••. 33 •••••• 26 28 •.. 33 ••••. 26 COST 

MULTIFURNACE MODEL 

A multifurnace model contains data for computing 
more than one furnace charge during the same 
computer run. Depending upon its contents, the 
model may be used for computing consecutive charges 
for one furnace, or charges for several furnaces to 
be charged simultaneously. In addition, the charges 
may be for the same alloy or for several different 
alloys. 

Figure 3 is an outline of a multifurnace model 
that contains the data for alloy 7000 and two other 
alloys, 6000 and 5000, which are to be blended in 
different furnaces. 

Note that the matrix is divided into three sub
matrices, each of which contains the material 
balance constraints for one of the alloys. At the 
bottom of the submatrices are the constraints for 
furnace loads and inventory availability (these might 
just as well have been placed at the bottom of the 
appropriate submatrices). A common cost row is 
at the top of the matrix. 

The objective is to allocate the same raw materials 
in the production of three different alloys. Note that 
the activities are the same for each submatrix, but 
are prefixed by either 1, 2, or 3 to identify them ' 
with one of the furnaces. For example, lSC1, 2SC1, 
and 3SC1 are the same scrap alloy (SCI in the single
furnace model shown in Figure 2). The solution 
might possibly call for 100 pounds of lSC1, 200 

Alloy 7000 Alloy 7000 

Element 

S pe cifications 

Furnace 1 
(Material balance 

----------- ~0.E~tr~iE~'_ _____ 

Alloy 6000 Alloy 6000 

Element 

Furnace 2 Specifications 

- - - - - - - - - - --
Alloy 5000 Alloy 5000 

Element 

Furnace 3 Specifications 

I I 
I I Furnace Loads 
I I 
I I I 
I I Inventory 
I I 
I I Availability 
I I 

Constraints I : 
Figure 3. Outline of a multifurnace model 
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pounds of 2SC1, and 700 pounds of 3SC1 for a total 
allocation of 1, 000 pounds of SCI. 

Availability constraints on SCI could limit the 
amount of this scrap available for use in each fur
nace. For example: 

1SC1 $ 400 pounds 
2SC1 $ 400 pounds 
3SC1 $ 400 pounds 

These constraints ensure that no more than 400 
pounds of SC1 could be used in each furnace. 

It is not necessary to preallocate limited-supply 
scrap in this fashion. In fact, it is probably more 
desirable to allow the computer to determine the 
most economical division of the scrap between the 
furnaces while obtaining the linear programming 
solution. This is done simply by limiting the total 
amount of SC1 available to the three furnaces. The 
same activities are not necessarily associated with 
each submatrix. There may be activities common 
to all submatrices and others peculiar to only one 
or two submatrices. 

Hence, the formulation techniques used in build
ing multifurnace models are the same as for single
furnace models. The major difference is that there 
are several sets of activities, material balance 
constraints, furnace load constraints, and activity 
level constraints. 

There is, however, a considerable difference in 
the corlcept of applying multifurnace models. The 
biggest advantage, of course, is the simultaneous 
computation of several furnace charges which opti
mize the consumption of raw materials. Using this 
concept, it becomes possible to allocate all raw 
materials to all furnaces in the most advantageous 
manner. 

SPECIAL CONSTRAINTS AND FORMULATIONS 

In addition to the usual problem constraints discussed 
in the single-furnace problem, it is often necessary 
to express (1) complex process or technological 
constraints, or (2) special material balances in the 
model. Examples of two such constraints are dis
cussed to illustrate the formulation techniques 
involved. 

The first can be classified as an equivalence 
constraint where relationships are to be established 
between the elements. The equivalence example 
illustrates the formulation of constraints to control 
the allocation ratio between elements. Such con
straints are needed in several situations, for example, 
to ensure the solubility of certain elements or to 
ensure a required conductivity in the alloy. 

The second can be classified as a substitution 
constraint, and it illustrates how to allocate groups 
of lower cost elements in place of all or part of a 
more expensive element, while ensuring that the 
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alloy produced still retains the required special 
properties readily achieved by the more expensive 
element alone. 

The formulation techniques that follow relate to 
the basic matrix in Figure 4. which shows only part 
of an LP model matrix. For simplification, in the 
following examples EI will represent the accumulative 
amounts of the element E1 contained in materials Al 
through SC13, as depicted by row 1 in the basic 
matrix (see Figure 4). Similarly, E2, E3, and E4 
will represent the respective elements depicted by 
rows 2, 3, and 4 in Figure 4. For example, E3 
represents. 0001 A1 + .... + .1060 SC12 + .0002 SCI3. 

Al SC13 RHS 
Cost .23 .35 = Min. 
(1) ~ 4 
(2) . .0160 ~ 6 
(3) .0002 ~ 16 
(4) .0150 ~ 20 

Figure 4. Basic matrix 

Example 1 - Equivalence 

Equivalence constraints often involve controlling 
the allocation ratio of one element to another. This 
is quite common in aluminum alloy blending with the 
use of the two elements iron and silicon. 

In linear programming, the amount of an element 
(constraint row) contained in a solution is expressed 
in terms of the variables (columns) available. In 
order to expr-ess a direct relationship between 
elements, variables must be added to the matrix that 
will represent the element. 

One method of showing thi s relationship is to add 
slack variables representing the amount of an element 
in a solution that is greater than the minimum amount. 
required, or the amount that is less than the maxi
mum amount required. 

Referring to the basic matrix in Figure 4, such 
variables can be added in the following manner: 

Given: 
EI ~ 4 

So: 
E1 - Sl = 4 

Where: 
E1 is the accumulative amounts of the element 
E1 in the solution contained in material A1 
through SC13. 
Sl is the slack variable representing the 
amount of E1 in the solution that exceeds the 
minimum required. 
4 is the minimum amount of E1 required in 
the solution. 



In a similar fashion, slack variables are establish
ed for the other elements. The addition of the slack 
variables changes the constraint rows from ine
qualities to equalities as shown in Figure 5. 

If the alloy is to contain equal amounts of element 
E1 and element E2, this can be expressed 'as E1 = E2, 
or E1 - E2 = O. 

With the addition of slack variables in Figure 5, 
the following relationships can be noted: 

E1 - S1 = 4 or, E1 = 4 + S1 
E2 - S2 = 6 or, E2 = 6 + S2 
E3 - S3 = 16 or, E3 = 16 + S3 
E4 - S4 = 20 or, E4 = 20 + S4 
Now it is possible to express equal allocation of 

the elements E1 and E2 in terms of the slack variables: 
E1 = E2 

4 + S1 = 6 + S2 
S1 - S2 = 6 - 4 

so S1 - S2 = 2 
This equation ensures that E1 = E2, and, as it 

can be expressed in terms of the slack variables, it 
can now be added to the matrix (Figure 5) as shown 
in Figure 6 by the row labeled EQ1. 

Other allocation ratios can be expressed in a 
similar fashion. For example, referring to the 
matrix in Figure 5, the ratio 2E2 = E3 can be 
formulated as follows: 

2E2 = E3 
2 (6 + S2) = 16 + S3 
12 + 2S2 = 16 + S3 
2S2 - S3 = 16 - 12 

or 2S2 - S3 = 4 
This equivalence equation can now be added to the 

matrix (Figure 6) as shown in Figure 7 by the row 
labeled EQ2. 

Instead of adding slack variables that represent 
the amount of an element in a solution over the 
minimum requirement or under the maximum re
quirement, another method is to add variables 
(columns) to the basic matrix to represent the actual 
amounts of elements used in the solution. 

The addition of such variables will leave the 
original constraint row unconstrained, and the 
constraint is transferred to an additional row in the 
matrix. In the new row the constraint is applied 
against the variable representing the actual amount 
of the element used in the solution. 

Al 

COST .23 

(1 ) 

(2) 

(3) 
(4) 

SC12 SC13 Sl S2 S3 S4 

.25 .35 

.0160 

.0002 

.0150 

.00 .00 .00 .00 
-1 

-1 

-1 

-1 

Figure 5. Adding slack variables 

Al 

COST .23 

(1) 

(2) 

(3) . 

(4) 

SC12 SC13 Sl S2 S3 S4 

• 25 • 35 • 00 • 00 • 00 • 00 
.0802 -1 
.0600 .0160 -1 
• 1060 .0002 -1 

.0150 -1 

RHS 

Min. 

4 
6 

16 
20 

RHS 

Min. 

4 
6 

16 
20 

~1 J~l -1 :J 
~------

Figure 6. Adding equivalence constraint EQl 

Al 

COST .23 

(1) .0002 

(2) 

(3) .0001 
(4) 

SC12 SC13 

.25 .35 

.0802 

.0600 .0160 

.1060 .0002 
.0150 

Sl S2 S3 S4 

.00 .00 .00 .00 
-1 

-1 

-1 
-1 

RHS 

Min. 

4 

6 
16 
20 

EQl 
EQ2 8_-1 J 

--------
Figure 7. Adding equivalence constraint EQ2 
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Referring to the basic matrix in Figure 4, 
equations would be formulated in the following manner: 

Given: 
EI ~ 4 

Let: 
E1 = AE1 

Therefore: 
EI - AE1 = 0 

And: 
AE1 ~ 4 

where: 
EI still represents the accumulative amount 
of the element EI in the solution contained in 
materials Al through SC12. 
AE1 represents the actual amount of the element 
EI used in the solution. 
4 is the minimum amount of element EI re
quired in the solution. 

In a similar fashion, equations are formulated 
for the other elements, and columns and rows are 
added, resulting in the matrix shown in Figure 8. 

One advantage of this method is that any change 
to the RHS value of a constraint row can be readily 
handled without going through the arithmetic pro
cedures that are necessary when using slack variables. 

Another advantage is the ease of expressing ratios 
between elements. For example, if the alloy is to 
contain equal amounts of element EI and E2, an 
equivalence equation depicting the relationship is 
easily formulated. 

Given: 
EI = E2 

Also: 
E1 = AE1, and E2 = AE2 

Therefore: 
AEI = AE2 

Or: AEI - AE2 = 0 
Similarly, the ratio 2E2 = E3 can be readily 

formulated as follows: 
Given: 

2E2 = E3 
Also: 

E2 = AE2, and E3 = AE3 
Therefore: 

2(AE2)= AE3 
Or: 

2AE2 - AE3 = 0 
These two equivalence equations are shown as 

rows EQI and EQ2, respectively, in Figure 9. 
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The advantages of adding variables that represent 
the actual amount of an element used instead of 
slack variables that represent the excess over or 
under the constraint value are not as apparent in 
the simple examples illustrated as they would be in 
a more complex situation. 

To control the (proportional) allocation of a 
group of elements to achieve a desired conductivity, 
consider a conductivity equation of the form: 

b = al EI + a2E2 + a3E3 + a4E4 

Where b is the desired conductivity level, and 
the a's are metallurgical coefficients reflecting the 
conductivity of the 4 elements EI, E2, E3, and E4. 
This equation can be incorporated into the LP matrix 
in the same manner as the previous allocation ratio 
constraint. 

Al SC12 SC13 AEl AE2 AE3 AE4 RHS ---- ----
COST .23 .25 .35 .00 .00 .00 .00 Min. 

(1) .0002 .0802 -1 0 
(2) .0600 .0160 -1 0 

(3) .0002 -1 0 
(4) .0150 -1 0 

+1 ~ 4 
+1 ~ 6 

+1 ~ 16 
+1 ~ 20 

Figure 8. Transferring constraints to columns that represent actual 
amounts of the elements used 

Al SC13 AEl AE2 AE3 AE4 RHS ----
COST .23 .35 .00 .00 .00 .00 Min. 

(1) -1 0 

(2) .0160 -1 0 

(3) .0002 -1 0 
(4) .0150 -1 0 

(5) +1 ~ 
(6) +1 ~ 
(7) +1 ~ 
(8) +1 ~ 

~ ~ 
+1 -1 JJ +2 -1 

Figure 9. Depicting the a\ldition of equivalence constraints 



Example 2 - Substitution 

The practice of exchanging or substituting for all or 
a portion of a higher-cost alloying element with 
specified groups of lower-cost elements is becoming 
quite widespread. This can be an important factor 
in the overall alloy cost. 

The cost of an element is thought of as an in
direct evaluation of the element, implied by the cost 
of the input materials in which the element occurs. 
For example, in the LP model matrix illustrated 
in Figure 2, the element zinc is available in a pure 
form (95% Z at 22~ per pound, as well as in small 
percentages (. 06% - 5.68%) in the scrap materials. 
However: chromium occurs in much smaller pro
portions in the scrap (. 01 % - . 2%) and the chl~omium 
aluminum alloy material contains only 3% chromium; 
at 27~ a pound it is more expensive than zinc. 
Under these conditions, it is less expensive to have 
zinc in an alloy than it is to have chromium. 

Consider the problem where an equally allocated 
amount of three elements (E1 + E2 + E3) is allowed 
to be allocated in place of an equal amount of a fourth 
element, E4. The element E4 has a minimum speci
fication, as do the three elements E1, E2, and E3 
(refer to Figure 4). 

Once again, the only way direct relationship s 
between elements can be expressed in linear pro
gramming is to add variables to the matrix that 
will represent the elements. This example illustrates 
the advantage of adding variables to represent the 
actual amount of elements used and the transferring 
of the constraint value to these added variables. 

. In the example, the problem is to allocate to the 
elements E1, E2, and E3, where E1 = E2 = E3,· all 
or part of the amount of element E4 required in 
the solution. 

Starting with the basic matrix as shown in Figure 4, 
variables are added to represent the amount of 
each element used in the solution, and rows are 
added to permit the transferring of the constraint 
values to the new variables, leaving the original 
rows unconstrained. 

The formulation of the equations is as follows: 
Given: 

E1 ~ 4 
Let: 

E1 = UE1 + SE1 
Therefore: 

E1 - UE1 - SE1 = 0 
And: 

UE1 + SE1 ~ 4 
Where: 

E1 represents the accumulative amount of the 
element E1 in the solution contained in materials 
A1 through SC13. 
UE1 represents the actual amount of element 
E1 used, excluding the amount substituted 
for E4. 
SE1 represents the actual amount of element E1 
used to substitute for element E4. 
4 is the minimum amount of element El required 
in the solution. 

In a similar fashion, equations are formulated 
for elements E2 and E3. In the case of element E4, 
the equations are formulated as follows: 

Given: 
E4 ~ 20 

Let: 
E4 = AE4 + SE4 

Therefore: 
E4 - AE4 - SE4 = 0 

And: 
AE4 + SE4 ~ 20 

Where: 
E4 represents the accumulative amount of the 
element E4 in the solution contained in materials 
A1 through SC13. 
AE4 represents the actual amount of the element 
E4 used in the solution. 
SE4 represents the accumulative amounts of 
elements E1, E2 and E3 which have been 
substituted for element E4. 
20 is the minimum (actual or substituted for) 
elf~ment E4 required in the solution. 
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These equations are shown in the matrix in 
Figure 10. 

To ensure that the amounts of the elements E1, 
E2 and E3 being substituted for E4 are equal, the 
respective substitute amounts must be aligned in 
one column. Referring to Figure 10, this is ac
complished by merging the columns SE1, SE2 and 
SE3 into one column SEQ. To reflect the fact that 
SE1 + SE2 + SE3 = SE4, or 3SEQ = SE4, the coef
ficient + 3 is added to the SEQ column in row 8, 
which is the constraint row for element E4. 

This completes the constraints and ensures that 
the amount of elements E1, E2 and E3 are equal 

~ SC12 SC13 UEl UE2 UE3 

.23 .25 .35 .00 .00 .00 

.0002 .0802 -1 

.0600 .0160 -1 

.1060 .0002 -1 

.0150 

(5) +1 
(6) +1 
(7) +1 
(8) 

AE4 

.00 

-1 

+1 

and, that all four elements have met their minimum 
requirements. These constraints now complete the 
model matrix as shown in Figure 11. 

Elements will often have maximum constraints 
alone or in addition to minimum constraints. These 
are incorporated through a simple extension of the 
model. 

Element substitution constraints will possibly 
be more complicated than the one just modeled. 
The substitution example culminating in Figure 11 
should serve as an adequate basis for other substi
tution constraints. 

SEl SE2 SE3 SE4 RHS 

.00 • 00 .00 .00 Min • 

-1 0 

-1 0 

-1 0 

0 

+1 

+1 6 

+1 16 

+1 ,20 

Figure 10. Adding variables for used and substituted values as well as transferring constraints to new rows 

SC13 UE1 UE2 UE3 AE4 SEQ RHS --
.35 .00 .00 .00 .00 • 00 = Min • 

-1 -1 0 

.0160 -1 -1 0 

.0002 -1 -1 0 

.0150 

+1 +1 ~ 4 

+1 +1 ~ 6 
+1 +1 ~ 16 

+1 +3 ~ 20 

Figure 11. Completed matrix model 
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PROBLEM ANSWERS 

The answers produced by an LP system provide 
information to be acted upon or analyzed in many 
different company operating areas. This information 
ranges from the physical problem answers - the 
amounts of each raw material to be charged into the 
furnace - to the economic data for analyzing the 
criticality of raw materials costs and demand. 

OPTIMAL SOLUTION 

The solution to the problem previously formulated 
in Figure 2 is presented and discussed to illustrate 
the information available in the optimal solution of 
a blending model. The optimal solution output using 
the IBM 1620/1311 Linear Programming System is 
shown in Figure 12. 

NAME ACTIVITY LEVEL 
C 66.561 
M 19.959 
BIA 33.333 
Z 404.793 
CIA 111 .724 
SC4 2476.077 
sc8 274.808 
SC10 5704.371 
SC 11 908.374 

Figure 12. Optimal output solution - BASIS VARBLS 

In the optimal solution output labeled BASIS 
VARBLS (Figure 12), the names of all raw materials 
that are to go into the furnace charge are listed 
under the NAME column. These are the optimal 
activities. Under the ACTIVITY LEVEL column are 
listed the optimal level of each optimal activity or 
the number of pounds of each raw material to be 
charged. 

Assuming the solution is to be implemented with
out change, this information can be immediately 
disseminated to two operating centers: inventory 
accounting and the alloying shop. 

In the inventory accounting department, the 
solution serves as a record of raw materials con
sumed in producing the alloy and may be used directly 
to update inventory records. In the blending shop, 
it serves as a sort of work order to be followed in 
charging the furnace. 

Other Optimal Output 

The slack variables for each constraint row and the 
cost of the solution - that is, the minimum cost of 
producing the furnace load required - are listed 
in Figure 13. 

NAME ACTIVITY LEVEL SIMPLEX MULT. 
COST 2149.248 
ZN 35.000 
ZX .006 
CN .084-
CX 50.000 
MN .154-
MX 30.000 
CHN 1 .462-
CHX 3.000 
BN 56.231-
BX 2.000 
IX 2.599 
SX 25.771 
MGX .473 
NX 2.000 
TX .872 
LX 1 .230 
TNX 1 .230 
SIX 8.000 
GX 7 . 31 3 
SCX 900.000 
FL .000 .226-

Figure 13. Other output solution - SLACKS 

Under the column heading NAME are listed the 
names of the slack variables formed to make 
equalities from inequalities. The linear programming 
system has given these variables the names of the 
inequalities with which they are associated. For 
example, ZN is the slack variable associated with 
the minimum zinc requirement, ZX is the slack 
associated with the maximum zinc constraint. Under 
the column heading ACTIVITY LEVEL are listed the 
actual slack activity levels computed. (These levels 
indicate how the solution differs from the maximum 
or minimum levels given in the constraints.) For 
example, ZN = 35.0 means that the total zinc in the 
alloy mix exceeds the minimum zinc constraint by 
35 pounds. ZX is blank which indicates that the 
total zinc in the mix is equal to the maximum con
straint (590. 0 Ibs). 

The marginal costs of introducing nonoptimal 
slacks into the solution are listed under the heading 
SIMPLEX MULT. The marginal cost is the cost of 
introducing one unit of the slack into the solution 
and, at the same time reducing some other variable(s) 
from the solution so that the constraint corresponding 
to the slack does not exactly meet its bound (maxi
mum or minimum). An example is the simplex 
multiplier. 006 associated with ZX. 

This means that if the zinc maximum was 589 
pounds (one pound less than its current 590-pound 
level), the resulting total alloy cost would increase 
. 6~. 
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The next simplex multiplier, -.084, is associated 
with CN, the copper minimum level. This indicates 
that the cost of the alloy would decrease by 8. 4~ if 
the copper minimum was lowered by one pound. 

This data provides an indication of the cost of 
raising or lowering RHS values and shows how 
relaxed alloy specifications can raise or lower the 
end metal cost. 

POST-OPTIMAL OUTPUT 

DO. D/J 

The data output in the DO. D/ J report (see Figure 
14) indicates the amounts by which costs of nonbasis 
variables would have to be reduced, before these 
variables would tie for entry into the optimum so
lution basis. For example, if the cost of Al (the 
first high-grade aluminum input in the matrix) was 
reduced by more than 6. 8~ to less than 21. 2~ per 
pound, this activity would then be included in the 
furnace charge. The levels of one or more optimal 
activities would be adjusted to account for the usage 
of this aluminum. One activity would also leave 
the solution at this stage and would no longer be in 
the optimal furnace charge. 

The problem would have to be resolved in order 
to determine which activity leaves the solution and 
in order to find the new activity levels of the other 
variables which changed in the solution. 

Inactive Materials Analysis 

The DO. D/ J report (Figure 14) contains the names 
and prices of raw materials that were not used in 
the alloy charge. This information, when combined 
with the other data in the report, makes it possible 
to determine why these activities were not included 
in the solution. It is also possible to evaluate the 
increased costs to be incurred, should it become 
necessary to replace an optimal material with one 
that is nonoptimal. 

From a long-range viewpoint, however, this 
list becomes even more significant. Over a period 
of time, it becomes possible to determine which raw 
materials remain largely unused in charges for many 
different alloys. Trends and statistics for each scrap 
can be developed and then put to use in achieving 
more economical operation in many areas. First, 
such information informs the purchasing department 
that these slow-moving materials should be purchased 
carefully, if at all. Second, decisions regarding 
the sale of these materials can be made authoritatively 
according to in-house utilization rates, costs, and 
inventory level. Third, it allows the inventory 
level of these materials to be reduced to an optimal 
level. 
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All the above can be readily evaluated in dollar 
savings. A quicker turn of profit, however, can 
come from building a heat around off-specification 
scrap. Using linear programming, experimenting 
with such scraps in the production of various alloys 
can become an everyday practice - and the savings 
can amount to many thousands of dollars per year 
in reduced raw materials costs. 

COST. R 

The COST. R output report (see Figure 15) indicates 
the cost range over which the costs of the variables 
in the current solution can be varied without changing 
the optimal charge. For example, the cost of C 
(pure copper) can be varied from its present level 
of 31 ~ per pound to as high as 43. 996~ or as low as 
28. 564~ per pound without this variable (pure copper) 
being excluded from the optimal charge (solution). 

This report also indicates which activities would 
enter the solution (optimal charge) if these cost 
bounds were to be exceeded. For example, if scrap 
10 (SCI0) was to be raised above 20. 231~ per pound 
(its current level being 20~) then scrap 10 would no 
longer help· form a least-cost charge and scrap 6 
(SC6) would enter the charge. 

However, the costs of the optimal activities can 
be varied between their upper and lower limits 
without affecting the allocation levels of any of the 
optimal activities. 

The affect on the optimal solution by violating 
the cost range can sometimes be manually computed; 
normally, however, it is necessary to make the 
desired cost change and resolve the problem. 

In addition to providing information for experi
mentation or manual adjustments of the solution, 
the cost ranges guide the purchasing department in 
buying or selling raw materials. They provide a 
reference for evaluating a vendor's quotations, 
and to ensure that raw materials costs will not 
raise the product alloy production costs. More
over, the same information indicates where lower 
materials costs can contribute most to production 
savings. 

APPLYING THE PROBLEM ANSWERS 

The answers produced by the LP method pervade 
virtually every major operation related to the 
blending of an alloy. The actual furnace charges 
and much of the supporting analytical data are 
directly applicable to current shop operations and 
can be put to immediate use. 

This data can become the basis for integrating 
and improving systems for purchasing, inventory 
control, quality control, pricing, cost analysis, 
and furnace scheduling. 



NAME CURRENT COST REDUCED COST BASIS VALUE' 
Al .280 .068 .21 2 
A2 .260 .051 .209 
A3 .250 .045 .205 
A4 .230 .042 .188 
SCl .210 .250 .040-
SC 2 .200 .476 .276-
SC3 .210 .014 .196 
SC5 .210 .015 .195 
SC6 .200 .002 .198 
SC7 .210 .021 .189 
SC9 .210 .147 .063 

Figure 14. Postoptimal output - DO. D/J 

NAME CURRENT COST HIGHEST COST HI -VAR LO-VAR LOWEST COST 
C .31000 .43996 ZX 
M .38000 .41619 MGX 
BIA 3.60000 INFINITY 
Z .22000 .22556 ZX 
CIA .27000 .28443 MGX 
SC4 .20000 .20145 IX 
SC8 .2000 .20105 MGX 
SC10 .2000 . 20231 sc6 
SC 11 .2100 .21232 IX 

Figure 1S. Postoptimal output - COST. R 

Suggestions of how LP answers can be used in 
several areas were made in the preceding descriptions 
of the output reports. The following summarizes 
these ideas and amplifies them as they apply to each 
operating center. 

FURNACE CHARGES 

The furnace charges computed through the use of 
LP are optimum - based on the content of the alloy 
model, there is no other combination of raw 
materials or proportional allocation of these 
materials that will allow the desired alloy to be 
produced at less cost. 

Multifurnace solutions or series of Single-furnace 
solutions can be used to effectively schedule daily 
production within an entire blending shop. The 
solutions can be grouped so that alloys that are 
metallurgically similar are charged through the 
same furnace. The lists of raw materials by furnace 
for each charge not only speed the movement of 

MGX .28564 
MN .23175 
BN · 22615 
IX .20582 
CHN .22941 
MGX .19518 
IX · 18560 
IX · 19893 
MGX .20869 

materials from inventory to the blending shop but 
reduce materials handling within the shop. 

QUALITY CONTROL 

The accuracy of the charges computed with linear 
programming techniques should contribute sub
stantially to reducing the number of off-composition 
heats. The loss of certain elements during blending 
of certain alloys is apparent to the experienced 
observer. By simply modifying the constraints for 
these elements, the probability of off-composition 
can be reduced even more. When off-composition 
does occur, remedial action can be quickly de
termined through re-solution of the problem after 
the required adjustments have been made to the model. 

The question of "what price for quality" can be 
answered hypothetically by tightening the minimum 
and maximum constraints for an alloy and obtaining 
solutions for each change. 
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INVENTORY 

Reports produced by LP show exactly how much of 
each raw material is consumed in a furnace charge. 
This information can be fed into the inventory system, 
either manually or mechanically, to update the on
hand figures. The updated inventory then serves 
as the basis for replenishing inventory through 
purchase or internal production and for updating the 
LP model master records to reflect the changes in 
raw materials availability. 

The same information can be used for inventory 
leveling studies. Normal demand rates can be 
established for all materials carried in inventory. 
For popular materials, most economical order 
quantities can be determined to reduce the frequency 
and related cost of purchase; the level of rarely 
used materials can be reduced to reasonable amounts 
through sale or forced allocations. This not only 
converts unneeded inventory to cash but also re
duces the costs of inventory maintenance. 

PURCHASING AND COST ANALYSIS 

The cost ranges for each material used in an optimal 
furnace charge can easily become the most widely 
used data produced by LP. Either directly or in
directly, they provide answers to these typical 
questions: 

1. How much can the cost of zinc fluctuate with
out affecting the cost of the alloy? 

2. What is the price at which any individual ma
terial must be purchased in order to possibly reduce 
alloy production cost? 

3. What metals are most sensitive to cost change 
(smallest cost ranges)? Which are least sensitive 
(widest cost ranges)? 

4. How much will it cost to substitute a non
optimal metal for an optimal one? 

These and other questions arise many times in 
actual day-to-day operations. Timely and accurate 
LP solutions provide many answers which aid in 
deciding the best action. The same questions can 
be asked and answered experimentally to study the 
affect of a variety of possible conditions on the costs 
of producing an alloy or alloys. 
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PRODUCT RESEARCH AND PRICING 

As noted before in the discussion of quality controls, 
the weight restrictions (RHS) for an alloy blend can 
be relaxed or tightened to study the cost of quality. 
Similarly, substitutions of a variety of equivalent 
metals for a standard metal can be studied for cost, 
feasibility, and pricing. 

The "LP technique also provides an accurate means 
of pricing the standard alloys and the infrequently 
blended special alloys. Costing and pricing an 
alloy that has never before been blended can be an 
elusive task. However, by building a model for the 
unusual blend and solving it, the pricing problem is 
made considerably more manageable. 

MANAGEMENT STUDIES 

Linear programming is as applicable to hypothetical 
situations as it is to real ones. Indeed, the use of 
the technique to test the affect of proposed changes 
on current operations is one of its most powerful 
advantages. 

Use of LP in this manner amounts to playing the 
"what if" game: What if one material becomes 
unavailable? What if we purchase certain raw ma
terials instead of making them? What if we make 
instead of purchase? What effect on inventory 
levels and costs would be felt if furnace capacity 
were increased or decreased by 50%? What if a 
1-0% reduction were made in the selling price of 
alloy 7000? How could it be most readily recouped 
through lower production costs? 

By building experimental models or modifying 
existing ones, many different courses of action for 
many different situations can be studied before a 
change is actually made. 

SUMMARY 

It is clear that the computation and recomputation 
of optimal furnace charges based on available raw 
materials is the heart of linear programming appli
cation. But the savings through better furnace 
scheduling, increased capacity, higher product 
quality, and more accurate inventory and purchasing 
information can amount to many thousands of dollars. 



POSTOPTIMAL OPERATIONS AND 
GENERAL PROCEDURES 

A simple diagram of the LP processing cycle is 
shown in Figure 16. Operations connected by solid 
lines are basic to any run; those indicated by dotted 
lines mayor may not be required, depending upon 
existing conditions. 
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Figure 16. Processing cycle 

OPERATING MODES 

Actual production runs may be made under either of 
two modes. First, constraints on inventory availa
bility and inventory state (ingot or loose form) can 
be omitted from the matrices. Secondly, these 
constraints can be imposed upon the problem before 
an initial solution is obtained. 

The advantages of one mode over the other depend 
upon the existing situation. Generally, however, an 
initial assumption of unlimited available resources 
and no ingot restrictions would seem more beneficial 
for the following reasons: 

1. The LP code is given conSiderably more 
freedom in determining the least expensive raw 
materials mix. 

2. There is an opportunity, through study of the 
initial solution, to determine whether such constraints 
are actually required. 

3. If constraints are desirable, the initial so
lution pinpoints the applicable raw materials and 
the magnitudes of the over-inventory allocations. 

4. There are indications where "tradeoffs" 
among raw materials can best be attempted to achieve 
the desired ingot allocations or to balance allocations 
to known inventory levels. 

5. The cost of such constraints becomes immedi
ately apparent by comparing initial and secondary 
solutions. 

6. Re-solution of a problem once it has been 
solved initially can be done very economically. 

Under the unlimited mode, then, the approach is 
to begin with an initial optimal solution and work 
backwards to one which is best for the additional 
constraints. 

The following describes how inventory and ingot 
constraints might be obtained on the basis of an 
initial optimal solution. 

Ingot Constraints 

By referring to the initial optimal solution, activities 
whose optimal levels are to be rounded to ingot 
weights can be quickly determined. Assume that 
the level of SC4 in the solution illustrated below is 
to be increased to 500 pounds, or five ingots. 

NAME 

SC4 
sc6 

ACTIVITY LEVEL 

450.0000 
150.0000 

A first step would be to add the constraint equation 
below to the problem: 

SC4 RHS 

Ingot Bal. 1 500 

If it is desired to reduce or limit the allocation 
of SC6 to 100 pounds, another constraint could also 
be added. In fact, this might contribute heavily to 
achieving the 500-pound allocation of SC4: 

Ingot Bal 
Level 

SC4 SC6 
1 

1 
500 
100 
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It should be noted that such constraints will not 
guarantee the desired results. In many cases, it 
may become necessary to obtain several solutions, 
changing the constraints according to the results of 
the previous solution. However, this approach to 
controlling ingot allocations has proved highly ef
fective in actual application. 

Inventory Constraints 

The techniques for writing these constraints were 
explained earlier under LP Model Formulation. 

FREQUENCY OF SOLUTION 

The frequency with which charges are computed will 
be a function of the arrival of new information. For 
correcting off-compositions, data feedback may 
occur every few minutes. New inventory data will 
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be entered as frequently as materials are received, 
or as a by-product of the daily charges. 

CONTINUOUS POURING 

During the course of developing the techniques for 
aluminum alloy blending, it was conjectured that it 
may someday be possible to further apply the system 
to achieve continuous pouring. Under such a system, 
several small furnaces are linked with one large 
furnace. Each of the smaller furnaces are continu
ously charged. These in turn continuously charge 
the larger furnace from which the finished alloy is 
poured. 

It is beyond the scope of this paper to treat the 
subject of continuous pouring in detail. Suffice it 
to say that the possible advantages are many - re
duced setup cost, a higher rate of production, small 
fluctuation in alloy quality, and tight, uniform furnace 
scheduling. 




