
~ ...
-~

"' .. ~

"

HLS (HIGHER LEVEL SYSTEM)

INTERIM REPORT

FEB. 26, 1970

, .

The Machine Organization Concepts Study Group
John G. McPherson, Chairman

IBM, CHQ., Armonk, New York

c

HLS -~ HIGHER LEVEL SYSTEM

Interim Report

of the
\

MACHINE:ORGANIZATION CONCEPTS STUDY GROUP

Table of Contents

o. Summary

1. Converging evidence

2. Instructions are inadequate for future needs

2.1 A critique of instructions

3. Architecture highlights of HLS

3.1 Statement orientation
3.2 Self-describing information '
3.3 Processing of arrays and structured data;
3.4 Descriptor processing
3.5 Automatic storage hierarchy
3.6 Semantic features of major procedural language
3.7 Structured control
3.8 Decimal arithmetic
3.9 Other languages

4. Consequences of the HLS architecture

4.1 HLS and the user
4.2 Communicability
4.3 RAS and security
4.4 HLS efficiency and large machines
4.5 HLS efficiency and small machines
4.6 Programming system implications
4.7 Why not as software architecture

5. Appendix: The Machine Organization Concepts Study Group

5.1 What we have done
5.2 Resolution

~BM 'CONFIDENTIAL,~ "

o. Summary of Report

The Study Group recommends that a Higher Level System of the
character described in this report be developed to sustain
IBM growth in the years ahead and extend the use of computers
to more people. We have reached the limit of the Von Neuman
single-operator machine as the form of computer to meet the
expanding needs of electronic data processing and must have
a more powerful ,and simpler approach.

The HLS moves the man-machine interface upward from the present
machine-oriented instruction language level to the level of
today's PL/I and COBOL at which people communicate more easily.

The language uses statements whose operators process variables
identified by name rather than address. Variables are not
limited to single values. Instead, arrays and structures can
be processed as single units. .

The HLS handles the execution of program statements interpre
tively with the help of descriptors stored with the data which
dynamically define the data object--its type, size, precision,
and its current location.

The HLS is a good design for the wide-scale application of LSI
to both storage and logic functions. Functional memory can be
of great value in a number of applications: associative tables,
complex scanning, and control logic. There are indications of
a tenfold increase in performance in these areas from its use.

The system design fits in with the use of a storage hierarchy
and gives full advantage of the extra storage space to the
user without change of concepts or limitation of generality.
A variable at any level is still controlled and located by its
descriptor and the convenience of a single level store is main
tained for a multi-level hierarchy.

The user and IBM should benefit substantially from the condensed
statement of programs and the easier coding and debugging of
programs. We expect that the size and cost of programs will be
reduced to a'small fraction of their present figures. This
improvement should be of special significance to IBM in the
System Control Program area and in the 'programming product'
area

The cost of Field Engineering will be markedly reduced in main
taining both software and hardware. The simpler programs will
be easier to maintain. Self describirig data will allow errors
to be detected earlier and a simple error will' less often grow
into massive confusion. Regardless of the complexity of a
crash, the information lying around afterward will be more easily
and quickly identified.

System control will be accomplished more efficiently by a com
mand language which is simply a facet of the high level language
of the system. HLS will thus extend to the full range of pro
blems and to background as well as foreground control, the kind
of unified control that was successfully pioneered in the JOSS
sys.tem at RAND Corporat:i,.on. . '

'IBM CONFIDENTIAL

c

Transition from the current product line will be aided by three
measures. HLS will be able to emulate System/360. It will hope
fully be able to execute jobs partly by direct execution and
partly by emulation, shifting back and forth dynamically.
PL/I, FORTRAN, COBOL, APL, and RPG will be treated almost like
high level machine language and require such minimal processing
as to not deserve to be called compilation. HLS will accept and
process System/360 data sets.

The new system will form a sound base for growth and we can
. foresee that the higher level interface with the user will lead
to new methods of programming. In particular, there will be
greater use of macro-instructions (i.e., building blocks of
program) selected or modified to meet the needs of particular
fields, industries or kinds of application. Users will more
easily be able to create a variety of specialized languages
extending the basic system language.

The following statement was unanimously endorsed by the Study
Group on February 25, 1970:

"The Machine Organization Concepts Study Group has
studied the question of feasibility and advisability
of a higher level system and concludes that such a
change of direction is both feasible and necessary
and very advantageous to the company's expansion,
both to new fields of application and to larger
numbers of users. It offers q way for consolidating
the advances in the knowledge in use of machines in
the past 25 years and forms a firm base for future
development and will use to advantage new technologies."

I, " , ,.

1. Converging Evidence for Need of NeW Machine Architecture
in the 1970s

. There is now increasing concern that we are nearing the limit
of exploitation of the instruction concept in computer system
design. The evidence derives from several sources:

a) In the marketplace, if LSI is used in the obvious way to
reduce CpU logic costs, it cannot reduce user costs by more
than a few percent. The only reasonable way to maintain
the profitable growth of the Corporation and to leapfrog
the competition, is to adapt the new flexibility of future
hardware to human users' environment. By serving the user
better and reducing the user installation overhead, a
larger fraction of the users costs will be channeled into
IBM revenue.

b) Human-machine mismatch. The majority of human users will
use procedural languages or use application packages based
on the procedural languages. The current machine system
either compiles procedural code into instructions, which

c)

,consumes a costly extra pass and produces imperfect emula
tion (hex dump), or interprets the procedural code ineffi
ciently with loss of memory capacity. The unmistakable
trend is towards interpretation with or without the short
comings.

New software systems. Large software systems will be
vir.tually undebuggable and unmanageable unless a level of
systematicity is enforced from the start. This can be
supplied by the interpretive handling of resources.

d) Communicability. The future systems will interface with a
slgnlficantly larger portion of the human community and
will handle complex communications among man, program,
software, and hardware. These communications must be
meaning-preserving in nature, and featureless bits without
self-description would be woefully inadequate.

e)

f)

Languagefunnelling. There will continue to be new lang
uages. There is a real need to provide a high-level concise
language which adequately interprets the richness of user
languages and still be machine-efficient in procedure execu
tion. This language should be a programming language in its
own right, but is ~ the present machine instruction set.

Hardware evidence. Very large machines favor the cause-and
effect delineation of procedural languages. Array handling
allowing the efficient deployment of pipe lined resources
will be very efficient. The implied system management of
all storage r~sources in higher languages is a welc?me
extension of the "common data bus", "storage bufferlng",
look ahead-look aside" features. Very small machines have
enough micro-code flexibility to interpret procedure state
ments directly, without the intermediary of an instruction
set.

II'BMCONFIDENTIAL

g)

c

Hardware will be inexpensive and memory-like. This pro
motes "variable-field length" data handling. in general.
Associative techniques (such as FM) will be a powerful
assist in adapting machines to procedural computation.

New hardware/software complexes. The data-base systems
oadly need codifiablemeaning-preserving interpretive
actions. Large shared systems, to average out peak loads
of many medium users, will become rewarding if the system
has meaningful RAS, security, and automatic storage
hierar.chy.

All these point to the need for a directly executable pro
cedural language using self-describing information as a
tool for generalized interpretation. The language-oriented
machine system shall be tentatively called HLS (Higher
Level System). The key characteristics are:

1. statement orientation
2. meaning preservation
3. interpretive prowess
4. storage independence
5. user/program/hardware/software efficiency

On current architecture items, (1-3) are obtainable at high
cost, to the detriment of the last two requirements. We
are of the opinion that a major de·J?artu:re in architecture
is necessary to achieve global eff1ciency. With it comput
ing will be put on a completely ·new ba·sis.

I. •

2.

C:

; -

Instructions'are Tn'adequate 'for 'Future' 'Needs

Instructions were devised 25 years ago. The original computing
environment can be contrasted with the present.

a) Memory size was small, circuitry was slow, both were
expensive

(now both are fast, inexpensive, small in size, numerous)

b) Activities outside the CPU were infrequent

(now CPU usage is low mainly because of "I/O")

c) Computing was mainly numerical

(now numerical work is only a small part of computing;
even numerical problems have a large data processing
load)

d) Machine time was the most precious item

e)

f)

(now cost of human time more important)

Users were willing, able to conform to machine rigidity

(now few users are willing or able to perform this
contortion)

'Programming was mainly done in absolute binary (octal)

(now use of procedure languages is widespread)

By far the greatest unanticipated change was the spectacular
growth of programming systems serving as a cushion between
man and machine. This cushion is sufficiently human-attuned
that users will tend to 'insist on procedure language program
ming, and as control of the system. It must be said that this
cushion rests on the weakest features of the machine. There is
hardly any use of "floating multiply" in as, for instance.

The user will continue with procedure languages and expect the
machine to be a procedure interpreter or a virtual machine.
He is frustrated whenever the system fails to behave as a proper
emulator of his virtual machine. The poor emulation is prac
tically axiomatic with instructions, as context is deformed in
the mapping into machine language. As a result, compiling cannot
promise source language debugging, even with a large processing
overhead (500 executions to provide one compiled instruction).
Interpreters try to maintain the original context but are slow.
The expected future growth towards interpretation means that
machines should Ca) try to handle procedure code more directly',
and, Cb) generalized interpretive mechanisms should be built in.

I,
I

... 1!8'M:· CONFIDENTJ,~L-
" ,., . ' ": '.

c

o

It turns out that the facilities in as are format driven,
hence are also interpretive in nature. This means inter
pretie penalties often pile up exponentially, and further
tie up the CPU, the latter having to do most of the inter
pretations alone.

A critique of instructions

a)

b)

c)

Information in the machine does not have a priori meaning.
The concept of a "floating point number" for instance,
does not exist, except ~s the operand of a floating-
point arithmetical operation. The same quantity, if
referred to as the target of a branch instruction, behaves
like an instruction. The total freedom to treat the same
quantity as entirely different things in different occa
sions had been, at one time, a necessity when explicit
address modification was the only means to program a loop.
The same freedom has now been identified as a major source
of programming bugs, and is conscientiouslY avoided by
programmers. Therefore, the modern machine. should prevent
unintentional misuse of information, by explicitly attach
ing meaning to information.

A characteristic of most procedural languages is indeed
this attachment of meaning to data, yet the machine still
persists in attaching meaning to actions. So to speak,
the machine favors the use of adverbs (modifiers on verbs)
yet the procedure languages (and human users) favor .the
use of adjectives (characterizers of data). This dichotomy
runs deep, and is the main reason for the current lack of
communication between man and machine.

The machine maintains the fiction of an address
repeated mapp1ngs. he comp1 er maps t e user s symbo 1C
names into addresses, then the relocation loader, the
dynamic storage allocation mechanism, and the high speed
memory buffer each map from one address to the other,
treating the prior address as a name. The last mapping,
by the memory buffer, is not even-llnique, yet is the most
useful. Thus true physical address assignments can best
be 'left to real-time hardware.

Linearly addressed memory, of limited size
The total CpU memory is lim1ted, and the addresses form
a vector of sequential integers. Thus a unit of data is
hemmed in by the left and right neighbors and insertion
(say to produce a longer vector) is virtually impossible.
In practice the users .tend to claim "enough territory" so
that insertions are rare, at the cost of poor memory
usage. The inflated claims, in turn, make multiprogram
ming unrewarding.

I, "
" ..

·TB.M~CONFIDENTIAL

j
I

to
i

1

d) Unnatural register assignments

e)

f)

The compiler management of registers apparently is not
a perfected art. In 8/360, the distinction among XR/
BR/GPR is not clean, and the separation of GPR from
FLR, on hindsight, is too drastic. Because of operand
lengths, several XRs often are needed for the same notion
(say seven: seven bytes, seven half-words, seven words,
seven double words are four distinct things each calling
for an index register for equivalent action.)

For GPR and FLR, the Model 91 (now 195) experience shows
that pipe lined machines would prefer not having to specify
intermediate registers (which adds more bottlenecks to
the processing and increases interruption restore burden),
bur rather to execute the procedural language statement
directly.

Registers are just one more form of storage, whose manage
ment is most meaningful when done by hardware during com
puting real time. There is no need to limit the number
of registers, as seldom-used ones can be placed in large
memory.

information. The instructions have
n-c-o-n~t-e-x~t~~r-e--e~d-o-m~~1~n--t~a-t~-e~a~c forms a distinct unit of
machine processing. The causal chain, as contained in
procedure language statements, is broken up, with each
piece now capable of being a branch target. The follower
of a piece of machine code may, with difficulty and some
luck, divine the execution sequence starting from a
certain instruction (say A); but he 'c'anh'ot decide, short
of reading the entire program from top to bottom, all
;et'edecessors of A.

, Also as a consequence of the "context freedom", every
instruction, is a potential branoh point or interruption
point, until proven otherwise. Large machines often have ,
to expend hardware for such wild goose hunts. The M9l
(M 195 too) also takes the pains to re'constructcausa1ity"
literally undoing the compiling process and revert1ng to
the procedural code.

Most Instruction Sets do not haVe 'arrayoper'ations,
yet an array is a well-defined unit of informat10n to the
user, and capable of being so in a machine, too. Pipe
lining in large machines needs array operations, and small
machines can take advantage of the reduced decoding overhead.

The 8/360 instruction set does have a few "vector-like"
instructions, such as the VFL class, decimal arithmetic,
and load and store multiplies. In these cases the length
of the vector has to be explicitly stated (not even indexed),
a very confining requirement indeed.

I,
I

. :':'f,~M~'· CONFIDENTIAL
~ :

g) T1\ild~Cl\1a~y of i.nntl"'uct.i.onn. '1'ho ilbooncc of <"U'l'flY
Tiw [ructions h.w boon noted. rrhere are other important
operations, rather easy to achieve by new hardware, but
absent in current sets, their emulation in terms of c,ur
rent sets tending to be clumsy: these include multiple
sum, associative search for match, and even exponential
and logarithm.

In sum, instructions and the complete freedom to perform de
tailed modifications, while perfectly adequate in bygone years,
are beginning to be inadequate in dealing with the complexities
we have today. There is a genuine fear that instruction based
programs 'beyond a certain size may become undebuggable. The
procedure languages form a more adequate basis for coding complex
applications problems, and soon will also be adopted by systems
programming. However, the mismatch between the adverb-oriented
machine world on the one hand, and the adjective-oriented
human/procedural language world on the other means inefficiency
and misunderstanding will continue to. exist, '';InTes's' 'the 'adjec
tivaT wO'I'ld b'e'c'ome's' 'the' ba's'i's' 'o'f' ma'ch~'n'ea:r'ch~ te'cture • It seems
very l~kely,that then, and only,then,'can we be prepared to
tackle the next order of complexity, such as 'the large data-base
system. '

r
I,
I
I
!
l
I
:
i

f

3.

3.1

Architecture Highlights of HLS

The basic theme in HLS (the Higher Level System) is information
with personality. The aim is to:

Raise the system to user's level

Enhance system performance

Exploit technology advantages

Establish man/program/machine system communicability

Form a new system basis for the 1970s and beyond

Highlights of HLS are as follows:

a) Statement orientation (not instructions);

b) Referencing by name (not addresses);

c)

Self-description of information (not featureless bits);

Dynamic attribute examination (not op code proliferation
and over sp.ecialization);

Processing of arrays and structured data (not looping
element by element);

d) Processing of descriptors (not code modification);

e) Automatic storage hierarchy (not explicit addressing,
pre-planned overlays, hardware/software I/O);

f) Semantic (not necessarily syntactic) features of
major procedural languages: FORTRAN, PL/I, COBOL,
RPG, APL (not incoherent complexity); system to
interpret procedure language faithfully (not hex
dumps, hex patches, delphic error messages);

g) Structured control (not disunity);

h) Decimal arithmetic emphasis (not conversion errors,
uncertainties).

Statement Orientation

The unit of machine procedure will be a multi-operator state-
ment; e.g. A = B + C +D * E. The statement is concise
and comprehensible, has well-defined causality meaning. As a
machine procedure it avoids the designation of registers for
redundant intermediate storage, and gives the system more
freedom to optimize. The occurrence of stores, conditional
branch, interruption can all be localized. Interruptions,
when performed before storing into At will be fully recoverable.

JBM· CONFI

Because of nelf-dl~flcribed data (See S(~ction 3.2), the oper'ator'B
in d. Gtdtemcnt will be free of "action-modifiers", and will
be fewer and more general.

C 3.2 Self-describing Information

Information will be referred to by names, or machine constructed
alter-names. The properties of the information are summarized
in descriptors which either contain, or point ~o, thei information.

The descriptor typically contains descriptions of:

type (e.g., floating hex)

structure (e.g., 3 x 15 matrix)

constraints (e.g., read only), etc.

The size of descriptors varies, with a large upper limit. The
encoding is such that the most common types of information have
short descriptors. There is an "escape hatch" encoding of the
short descriptors, which "points to" the longer descriptors.
The design is expected roughly to correspond to Huffman encoding.

Operation details are based on the descriptors of the operands.
Typically in a dyadic operation the descriptions of the two
operands are examined for compatibility before the operands are
pr6cessed. The result is given a descriptor appropriate for the
computation. Enforcement of security, as well as error checking,
can be done together with the attribute examination.

The descriptors can be manipulated by qualified users for an
extra degree of handling.

The self-described information includes programs, procedures,
subprograms, even hardware features and possibly branch targets.
The immediate consequence is data independence. Information
transmittal will include the movement of descriptors, and will
be a meaning-preserving operation. The implications on asyn
chronous process1ng are profound, and the adjectival attachment
of descriptors to data may be the only r'ational basis tor a
data-base system.

Descriptors also serve a self-documentation purpose, without the
conscious effort by the users.

During computation the following may vary:

the number of data entries

space requirement of each entry

the structure of the information

the number of descriptors

the contents of descriptors

IBM CONFID L

c

Due to the presence of descriptors, a variety of formats can
coexist, with unlimited extensibility. Therefore descriptors
not only allow meaning to be preserved during co~nunications,
but accommodates diversity. A natural next step is to combine
diversely created programming material in a meaningul way for
a unified purpose. This would mean the reconciling of formats,
and subprogram conventions, and may invoke massive software
support. But HLS has the framework needed to achieve this
combinability.

Non-numbers can be accommodated using descriptors, without
expending storage otherwise. Important ones are Unull" (important
for vector concatenation), "undefined tl (important for debugging) .

3.3. The Processing of Arrays and Structured Data

Just like the user, HLS views an aggregate (i.e., a data collec
tion) as a unit of information, and automatically processes it
according to their descriptors.

The system should permit operations involving entire arrays, or
at least entire vectors in arrays. The standard array element
may be a bit, a character, or a number. Nonstandard elements
could be arrays, pointers, "null" or "undefined".

A minir,mm of array operation may consist of the following:

a) Extend the use of standard arithmetic operators (defined
for scalars) to standard vectors. If A ~ (aI' a2' ...),
B = (bl' b2, ...), c is a scalar, and P, Q are respectively
monadic and dyadic operators then PA = (Pal' Pa2' •.•) I

BQA = (blQal,b2 Qa2 , ...). cQA = (cQa l cQa2 , ...)
AQc = (alQc, a 2 Qc, ...).

b) Permit concatenation, contraction and expansion of vectors.
Incidentally concatenation is among the top five most fre
quently invoked operators in APL, yet it cannot even be stated
in instruction form, because of the varying memory demands.

c) Conversion between vectors and multidimensional arrays

d) Extract properties of a named array

e) Extract subsets (notably vectors) of an array

f) Generation of named arrays by arithmetic

Users should be free of the burden of detailed space allotment
or dimensional information of arrays. The operation will be
descriptor-drive~1 and all else should be automatic, including
the alteration of the result descriptors.

o

Due to the presence of descriptors, a variety of formats can
coexist, with unlimi Jced ex·tensibili ty. Therefore descriptors
not only allow meaning to be preserved during cOTIUnunications,
but accommodates diversity. A natural next step is to combine
diversely created progra~~ing material in a meaningul way for
a unified purpose. This would mean the reconciling of formats,
and subprogram conventions, and may invoke massive software
support. But HLS has the framework needed to achieve this
combinability.

Non-numbers can be accommodated using descriptors, without
expending storage otherwise. Important ones are II null" (important
for vector concatenation), "undefined" (important for debugging) •

3.3. The Processing of Arrays and Structured Data

Just like the user, HLS views an aggregate (i.e., a data collec
tion) as a unit of information, and automatically processes it
according to their descriptors.

The system should permit operations involving entire arrays, or
at least entire vectors in arrays. The standard array element
may be a bit, a character, or a number. Nonstandard elements
could be arrays, pointers, "nUll" or "undefined".

A minimum of array operation may consist of the following:

a) Extend the use of standard arithmetic operators (defined
for scalars) to standard vectors. If A = (aI' a21 ...),
B = (bl' b21 ...), c is a spalar, and P, Q are respectively
monadic and dyadic operators then PA = (Pal' Pa2' ..•) I

BQA = (blQal,b2 Qa2 , ...). cQA = (cQa l cQa2 , .•.)
AQc = (aIQc, a 2 Qc, ...).

b) Permit concatenation, contraction and expansion of vectors.
Incidentally concatenation is among the top five most fre
quently invoked operators in APL, yet it cannot even be stated
in instruction form, because of the varying memory demands.

c) Conversion between vectors and multidimensional arrays

d) Extract properties of a named array

e) Extract subsets (notably vectors) of an array

f) Generation of named arrays by arithmetic

Users should be free of the burden of detailed space allotment
or dimensional information of arrays. The operation will be
descriptor-driven j and all else should be automatic, including
the alteration of the result descriptors.

•

3.4

A structure (as in PL/I) is an array of possibly dissimilar
elements, each of which could also be a structure. Thus a
payroll is a structure (character strings mixed with numeric
data) and a tree is a structure. Typical operations would be,
to construct a structure from a table or a pointer list, and
vice versa; to obtain substructures from a structure; and to
graft a structure onto another.

Descriptor Processing

There are many kinds of descriptor processing:

a) During computation, the descriptor of the result operand
is changed to reflect the new structure requirement.

b) Users have the right to inquire about the descriptor
contents (e.g., what is the size of matrix DOG?).

c) Privileged users (e.g., the Supervisor) can read, alter,
create, and destroy descriptors.

d) ·A descriptor may point to another descriptor.
this is the "escape hatch" mechanism to obtain
extensible descriptor sets. Mostly it is done
purpose of indirection.

Sometimes
arbitrarily
for the

Several descriptors may point to the same object, in
principle, to achieve synonymy.

A descriptor can be displaced from one place to another,
say to become an element of an aggregate.

f) Typically, we "talk about the weather without doing
anything to it". Similarly in data-base systems we tend
to read and process descriptors for a long while before
accessing the data object. Large systems in the past
have often created internal descriptors to enhance the
processing. In Dr. Philip Abrahams' "APL Machine" a
"dragalong" principle is used for performance optimiza
tion. This principle postpones the actual data process
ing and manipulates descriptors as far as possib~e, often
reducing huge computations to trivia.

3.5 Automatic Storage Hierarchy

The concept of storage should be clearly separated from that
of ultimate (or source-sink) 1/0. The latter is strongly
format oriented, and the former should be more concerned with
efficiency, RAS, security and capacity.

To preserve the meaning of information, the name/descriptor
approach should extend to the entire storage hierarchy, includ
ing the deep recesses of archives. Incidentally, in the large
machines, the fast cache, registers, lookahead/lookaside,
branch anticipation, and internal forwarding mechanisms are

F "

('
/

3.6

storage resources also, though the descriptor encoding
and detailed sequencing may be different. A systematic
point of view for the handling of all storage resources
can now be applied, based on the Huffman principle:

best service for most frequently encountered
requirements

lower quality service for rare occurrences

almost open-ended spectrum of service

Format, location and access methods should not be the
main concern, but are automatic system functions. So
far as the user is concerned, the system always uses
his '''external format".

Different members of the storage hierarchy probably
will be serviced by powerful yet noncostly controllers.
Because of self-description, data movement becomes a
meaning-preserving activity. It thus becomes entirely
possible to perform simple processing far from the CPU,
avoiding the staging penalty.

Another technique is to process the descriptors, indicat
ing the nature of minor changes to be made on he object
data.

Still another technique is data compression. If the mean
ing of the data object is known, excellent reversible com
pression techniques can be applied. An example would be
the recoding of triplets of decimal digits (12 bits) into
10 bits.

Semantic Features of Major Procedural Languages

The HLS language will contain essences of FORTRAN, COBOL,
PL/I,Lang. APL in a "semantic cross-section".

These languages were chosen partly because of their current
importance in the computing community, and also partly because
of their inherent diversity. It is not a "semantic union" which
may be large and unmanageable, but a crisp language into which
the four can be mapped with little information loss, and (with
the help of tables) with full recoverability.

The HLS language will be a good programming language in its
own right, and will be a powerful base to construct new lang
uages. It should be easily decodable and efficiently executable
by machine.

It would be nice if one of the current languages would fill the
need. Unfortunately we have found none. This is partly due to
the other HLS characteristics we demand, but most importantly
because control specification has not been included in proced
ural languages in any sign~ficant way.

118M CONFfD

c

3.7

()

o

--.. -.-~ . .,.., .. -

Nevertheless, we are of the opinion that the correct language
can be designed, and this is a subject of the highest urgency.
Although we aim mainly at the above languages (and control),
other languages naturally fallout. Significant examples
are: LISP and ALGOL.

HLS as a machine system is to be a faithful procedure interpreter
of the above languages. The user who submits programs J.n those
languages can expect debug messages, dump and error fixups in
source language terms. This, incidentally, means that the source
language formats will be honored which is possible only because
of data descriptor flexibility.

A simple consequence of the mUltilingual nature of HLS is that
programs in different languages can be linked and executed to
gether when format inconsistencies are resolved. This mechanism
will be provided, though not necessarily completely in hardware.

A pertinent question is, beyond the interpretation of certain
languages, what are-the real capabilities of HLS? Weare of the
opinion that we have an excellent apparatus for generalized
interpretation. Large programming systems, largely format driven
or interpretation oriented, will probably run efficiently in the
HLS system, especially if the storage hierarchy functions ade
quately.

'.

Structured Control

The aim is to devise HLS language for both procedure and
control. This has been done successfully in simple language
systems and should be extended to this general context. Every
(or nearly every) statement. should be usable as a part of a
procedure specification .or as,a command.

User-defined functions should have the same syntax and'execution
environments as built-in arithmetic operators. Special functions
may demand a special environment, and language features should
be found to permit this, leaving little trace of the host environ- t

ment,and yet retaining the capability to monitor the process.

The language should include editing statements to control source
text, and system control statements such as suspending orre
starting program execution, breakpoint control, and control of
system response to user action.

The language should specify clean interfaces for the start,
monitoring, termination of asynchronous functions.

Hardware units have the behavior of asynchronous functions, and
should be handled on the same basis and betiaJIieable. Their
descriptors can furnish information about the hardware function,
and this way we can achieve self-declared processing units.

The activity known as SYSGEN, which esta:blishes the correlation
between OS and the machine configuration, in he-past has taken
hours to complete. With self-declared units, SYSGEN will be,
trivial and dynamic' reconfiguration of the system becomes
possible.

The task handling (TASKING) will be system-controlled,
rather than hardware-unrelated.

<: The system is expected to be a generalized interpreter appa
ratus for asynchronous decentralized control. We believe this
to be possible because of the environment interface handling,
and because of the preservation of meaning and the ability to
transmit entire pieces of self-defined work."

3.8 Decimal Arithmetic

3.9

In the past quarter century we needed to get people to use
numbers to the base 2 , n = 1 for binary and 4 for hexadecimal.

This attempt has not proved successful. Practically all pro
cedural languages now permit decimal input and output. Some
languages (like COBOL) also demand decimal arithmetic intern
ally; most, however, allow the use of an internal 2 radix.
The conversion between two radices creates errors (liS is
exact in decimal, but not in 2 radices), which become
"apparent bugs" in the user's program. (The users' tolerance
of these apparent bugs, on the other hand, may leave genuine
bugs uncovered.)

The reason for choosing 2 radix was once efficiency, now it is
mainly compatibility.

Arithmetic units in most machines today are but a small fraction
of the total system, and their performance is seldom the bottle
neck to computation. The choice of radix is thus not a basic
economic or system efficiency issue.

Indeed the inplementation of decimal arithmetic or binary
circuitry can be faster than 2 -radix and more LSI adapted,
by going to redundant arithmetic, using the extra code-points
in each digit. In HLS the loss of capacity in decimal can be
redressed by mapping into a base 1000 system for archival
storage. This mapping is entirely reversible, the result
comes to within 2.4% of binary efficiency. This mapping is
possible because the data descriptor can indicate the format
change (indeed, with data descriptors data compression is
seen in a co.mpletely new light.)

Therefore in the HLS system "decimal arithmetic" will be em
phasized. For compatibility reasons, 2 -radix arithmetic will
be provided also, as a major option.

OTHER LANGUAGES

There are many languages other than the six specially favored
by HLS (the HLS language itself, PLII, FORTRAN, COBOL, RPG,
and APL). These languages, like ALGOL, JOVIAL, SNOBOL, LISP,
etc., have their special purposes, their enthusiasts, and
usually a body of existing debugged programs which the authors
are not about to abandon. These will be accommodated, in most

cases, by compilers and, in some cases, by interpreters.
In either case the language problem is similar and has two
parts: (1) The processor must be written in HLS language
and (2) The processor must translate from the source language
to HLS language.

The first problem is the easier. A very successful PL/I
compiler has been written in PL/I and since successful compilers
for smaller languages have been written in APL, it is clear
that since HLS language will have the semantic features of PL/I
and APL it will be suitable to write compilers.

The second problem may be more difficult. Much experience has
shown several problems when compiling from one high level lang
uage to another when the two languages allow one to say the same
things at the same level but with statements that package ideas
differently. This problem will be much less severe and perhaps
almost non-existent because the self-describing data of HLS
will allow efficient translation. The problems left will be
met by compiling, when necessary, to a subset of the full high
level language of the machine.

The favored languages must be compiled because among other
problems name compression is essential. However, the compilers
for these languages are small, operate fast, and do not make
the object code incomprehensible to a person' thinking in source
language.

"IBMGONFfD

(j

4. Consequences of the HLS Architecture

4.1 HLS and the User

4.2

A major reason for HLS is to allow the system manufacturer to
reduce the user's cost of programming and reap an appropriate
reward beyond the standard 30% of the user's total dollar
outlay.

As a res~lt of the expected intensive competition, price cut
ting due to LSI, deeper integration of the computer into the \
human society, and explosive growth of interactive computing,
the 1970' s will be the decade of the 'users.

There will be ma~y, many more users, whose average computer
training will be low. There being a variety of equipment to
choose from,. all reasonably priced, the user will tend to
choose the system'clos'e'stt'o his way of life. HLS, based
firmly on procedural language computing, will tend to win in
such a contest. The tedium of hex debugging, and memory
overlay, will vaniSh, so the user can concentrate on his prob
lem. Interactive programming will expecially be enhanced.
Graphic processing tends to be based on list processing; it
will be efficient here, too.

As the computer system takes over increasingly involved
clerical tasks, in our increasingly complex society, the need
for communicability will increase; so will the need for more
meaningful RAS and security. The ensuing sections will show
that HLS is a major step forward in these directions.

HLS should alleviate the problem that there are not going'to
be enough trained programmers to realize the full market
potential. Assembly language programming is hard to learn,
but a previous necessity. This training phase can now be com
pletely bypassed.

Because of the expected execution efficiency, turnaround in
interactive programming will be greatly improved. Making use
of the storage hierarchy, smaller machines may now be in a
position to handle large problems interpretively. New lan
guages based on HLS will be easier to construct, and programs
in different languages can be combined and run. The user's
procedures will not be dependent on' 'fo'rmats, since the latter
information is contained in data descriptors. It, therefore,
is entirely possible for the user to rerun his program with
altered precision, even with rational or complex arithmetic.

Communicability

A nagging worry in planning for the 'future is, how can the
computer system handle the complex transactions typical in

, the human society?

C·,··I
".,)

h # 'r

4.3

. In HLS we recognize that information has meaning in its own
right, and data transmittal should be a meanin,-preserving
process. In this way the man/program/hardware software com
munication is put on a new basis.

For man-to-man and man-to-~rogram communication, HSL offers
comprehens~ble code, self- ocumented data, meaningful debug
features, and data-meaningful security enforced through
descriptors.

For program-to-program communication, HLS offerscombinabflity
without enforcing a unique language convention.

For program-to-machine communication, HLS offers faithful
interpret~ve execut~on, and reruns with altered formats.

For man-machine interface, HLS has better turnaround for inter
active computing, descriptor-based inquires, and 1:?etter oppor
tunity to use list processing on graphic material.

For machine-machine interface, HLS will try to have generalized
interpretive control of asynchronous processes, local autonomy
through self-described data, format remapping for data compac
tion or teleprocessing.

RAS and Security

In HLS, each piece of named information can be individually pro
tected for security and checked for accuracy. There is the new
opportunity to replicate the material for checking and note this
fact on the descriptor, without altering the machine code. The
protection, checking and redundancy can be redefined dynamically.
It is also possible to lock a descriptor so that only the user
with proper key-word can use the material.

If the data A is an array of size 3 x 4, then A(l), A(4,3),
A(l,2,3) elements do no'tex'ist. A (or its subsets) is 'not a
s~itable branch target, and (A+B) is not meaningful unless B is
also an array of size 3x 4. Such meaning-dependent checks are
trivial with data descriptors, and the user's debugging will
become vastly simpler.

A critical resource in the coming decade will be field engineering
personnel. To be viable, a system should (a) reduce the need
for FE calls (b) make each FE call more effective and (c) simplify
FE training.

HLS achieves these aims as follows:

a.

b.

c.

Meaningful localization of error (self-checking via
descriptors).
Meaningful duplication of important material via
descriptors. ,
Automatic storage control allows avoidance of a~eas
of known error occurrences.

'8M 'CONFlOENTIAC

I
1 c.·· .. ·,'

I
i

I

d.

e.

f.

g.

h.

Dynamic reconfiguration means that entire hardware
boxes can be installed or disconnected at a moments
notice and the workload will be equitably shared
by the parts of the reconfigured system.
FE education is simplified by the new language inter
face especially when the control language is an
integral part of the HLS language.
The diagnostic programming and programmed remedies
(especially when hardware units are addressable by
name) will be easier to accomplish. The drudgery of
using assembly-language hardware debugging will be
bypassed.
Interactive FE programming allows the machine to
describe its own failures using the user's languag~.
HLS tends to create fewer machine error catastrophes.
A machine error on branching, for instance, will
usually lead to an error halt, rather than further,
meaningless executions, compounding the trouble.

4.4 HLS efficiency and large machines

Compared with interpretation using instructions, the direct use
of HLS or the interpreting of procedural languages on HLS should
naturally be more efficient. There is reason to believe that to
the very large machines, instructions are really unneeded under
structures; their removal would lead to greater efficiency.

A very large machine often devotes part of itself to manage the
resources at hand, to achieve self-o'ptirriiza'tion. This is very
difficult for instruction-oriented machines, but is much easier
for HLS.

There will be no artificial intermediate result register assign
ments in the procedure, and the entire storage hierarchy,
including registers, can be brought under system control. Full
pipelining becomes a more common OCcurrence. Array processing
allows the system to reserve equipment in advance to exploit
repetitions efficiently. For large arrays, memory requirements
are not based on access, but bandwidth. It is entirely reasonable
to put most of the arrays on a slow but wide memory, which can
deliver a "line" of many consecutive words at the same time,
with excellent useful bandwidth when all or most of the lines
are needed.

The descriptor handling can take place concurrently with arith
metic, without slowing down the latter. Lookahead/lookaside
mechanisms permit the bypassing of the pointer mechanisms for'
often-used information, or often-invoked procedures.

The human-oriented causality chain contained in statements
removes bottlenecks due, to the need to examine every instruction
for ,conditional branch or interruption. Interruptions will be
fUllh recoverable if testing for interrupts precedes the storing
of t e results.

IIBM CONF\ntNT1A,C

C~'

- '

There are new possibilities for HLS efficiency. It is possible
to "crack tokens" in a procedural code at the rate of one token
per CPU cycle or better, using memory chips and associative

,techniques. Also there is a new way to do multiple adds at 4
words/CPU cycle or better. These actions are hard to specify
using instructions.

The user of HLS need no longer lay claim to large tracts of
memory for fear of data insertion; ,he simply gets what he needs,'
Thus memory hierarchy is more efficiently used, and multipro
gramming on a large scale becomes meaningful.

For large machines self-autonomy of major units is the key to
performance. With self-described information, the parcelling
of workload to sub-processors will be more well-defined, less
risky, and far more efficient.

4.5 HLS efficiency and small machines

,At the opposite end of the scale, a smaller machine views the
S/360 instructions as an unneeded superstructure. Direct inter
pretation of procedural language code in microcode "cuts out
the middle man" so to speak, and enables a high degree of
efficiency. Why emulate S/360 which ultimately emulates a
virtual procedure-interpreting machine?

Microinstructions, dependent heavily on machine details, are
not the adequate basis for an architecture. But rather than
normalizing at the instruction level probably paying a normal
izing cost for every instruction, it should be far more rewarding
to use the HLS procedure language level as architecture defini
tion, and "normalize" at statement bOUndaries only.

Small machines often ,have narrow data paths (8, 16 bits), which
lend themselves very naturally to character string processing
as is typical in procedure languages, especially with the assis
tance of new LSI hardware. The use of functional memory for
"token cracking" at the rate of one character per CPU cycle is
an instance.

In small machines the decoding cost is often nontrivial. With
array processing, one decoding can allow many arithmetic opera
tions to be performed.

Memory is in critically short supply in a small machine. We
expect HLS codes in general to occupy les~_space than S/360
codes. It is especially pertinent that the users are not
encouraged to overclaim territory; dynamic array handling gives
the user just the amount he needs in real time. Storage hier
archy allows larger problems to run, at least, and multiprogram
ming on a small scale can be achieved.

The small machine user of the past had been resigned to slow
processing of small jobs. Using mainly compile-go techniques,

IBM CONFIDENT\AL

c
4.6

c

most small jobs have been compile-time limited. With HLS the
"compiling" cost will be revised, sharply downward, and the
guality of computing improves because of the interpretive
nature of the system.

Programming System Implications

HLS will help combat the ever rising cost of creation, reV1Slon
and maintenance of programming systems in several ways.

Complex operating systems are required by the present market
place, and the outlook is for another quantum jump in complexity
during the 1970's. With present methods, the complexity of our
operating systems tax the intellectual resources and human
endurance we can bring to bear on them. Experience within and
outside IBM indicates the likelihood that if done in the same
old way, data base and large shared systems will be beyond
human capabilities.

The key to surmounting the difficulties consists of thorough
incorporation of systematic formal and architectural discipline.
Only in this manner can we define precisely how an operating
system functions establish properties required of each component
to insure global well-behavior, and prove that system components
posses these required properties. Although our limited knowledge
may enable us to only partially attain this goal, HLS provides
a better base and more promising opportunities than we have had
in the past.

The aptness of HLS architecture for language processes is evi
dent. What is not obvious is that the scheme of interpretive
operation via descriptors also embraces operating systems in a
natural way. Operating systems and language interpreters have
much in common. In both cases practice has evolved rather
simple methods to complex interpretive schemes employing des
criptor-like objects. For languages the objects are called
symbol table entries, or dictionary entries. These descriptors

. contain the name and all attributes of simple or structured
language variables. For operating systems the objects are called
control blocks, and they describe the states and inter-relation
ships of system variables (logical resources, physical resources,
units of control, etc.). In both cases ·the processes may be
characterized as interpretive operation employing descriptors.

With ihisapproach the following simplifications can be achieved:

a. Operating system descriptors and operations can be
classified, organized, and implemented directly in
microcode or hardware. This will provide extremely
efficient primitive:pperations for operating system
construction, within'a consistent framework.

b. Uniform symbolic addressing within a storage hier
archy will entirely eliminate many current SCP
functions. It will also relieve the user of concern

IBM' CONFIDENTIAL·

c

Another basic concept of HLS is that the user must be able to
program in high level language and not be forced to think in
machine language. With System/360 the high level programmer
is confronted with the need to understand memory dumps that he
gets in hex, diagnostic messages that involve lower language
levels, and if he is good he is expected to understand the
translation of his program to machine language. It seem to be
inevitable that the machine language will creep out to where
it doesn't belong,andthe only way to keep it .from reducing
programmer productivity is to move tea high language level.

IBM CONFIDENTIAL'

!

i
1

1
1
i ,

1
I

'C

o

10
I
.~

i
.~
,

In respense to. an inquiry frem Mr. B. O. Evans, the Machine
Organizatien Cencepts Study Greup was cenvened starting
Nevember 25, 1969, meeting reughly en a bi-weekly basis. The
latest meeting eccurred February 25, 1970.

The cempesitien ef the cemmittee was as follows:

John C. McPherson (CHQ, Armonk), Chairman

Tien Chi Chen (Research San Jose~

'Carl J. Conti (Poughkeepsie) .

Claud M. Davis (Poughkeepsie~

Albin D. Kelwicz (Boulder)

Jehn C. Laffan (Peughkeepsie)'

Albert A. Magdall (Endicett),

Anthony Peaceck (Poughkeepsie) ,

Antheny Preudman (Hursley-Peugnkeepsie)

Nathaniel Rechester (Beston)·

David Sayre (Research Yerktewn)

Ralph F. Schauer (CD Peughkeepsie)

William S. Werley, Jr. (Time-Life)

5 • 1 What 'We have 'de'ne

('

a) We have identified the need fer HLS as a new architecture
basis

b) We have examined the majer precedural languages as candi
dates fer the HLS language, and feund them all deficient
in seme respects, especially regarding' 'c'e'n't'rol.

c) ,We have agreed that a ceherent HLS language and architec
ture can be develeped. We have listed highlights ef this'
language, and supplied much detail.

d) We have become cenvinced ef the feasibility and basic
seundness ef cencept.

e) We have left open some impertant detailed cheices, as·
de.eper studies with simulation verification is clearly
required.

'.

'0

f) We recommend exploratory implementation for small and
large systems.

g) We note that the full exploitation of this type of
machine, which is the largest departure thus far from
von Neumann principles, will not take place automatical
ly. Research and development on a rather broad scale
will ultimately be needed, if full value is to be quickly
extracted from the concept. Thought should be given
during the exploratory implementation as to how other
IBM divisions can assist in this process.

5.2 Resolution

The Machine Organization Concepts Study Group has studied
the question of feasibility and advisability of a higher
level system and concludes that such a change of direction
is both feasible and necessary and very advantageous to the
company's expansion, both to new fields of application and
to larger numbers of users. It offers a way for consolidat
ing the advances in the knowledge in use of machines in the
past 25 years and forms a firm base for future development
and will use to advantage new technologies."

"

'IBM 'GON L

-·~-"'~·''''''-----#''''·.IiMr 1II1II. ______ -

c

'! •• . IBM CONFIDENTIAL - 320-3271
January 1970

. ~ .
,
' ..

,,~. ..~

A PROCEDURE-ORIENTED MACHIl1E LANGUAGE - PART I " f' '.

'!. I . • ',' ~. : . "

. 1 . . . I
" .

/.'

.: A. Hassitt. . •.. , i './ '.:
. ! , . I . , " . . I : ~.:!.

... - :. ~~ -' .. ~ ... J. w. Lagesch~te .. ~~,~ .. - ~:,,:;.~~.:~:: ;~.i':">"'~'::·"::'
. ' 1. . t ". ~. ",

. B. F. Smith· .' , ... :
i
I.

: i ,
\ ' . '. : .. ' .',

. .' ~

;'. "

'.'::).: ;, .. : .. \:: .. : '. :.. . ." , ,
. .l \' .:.. "'; ': ':'1

. , .~

. '.

01"

'Of
:

.'

,0 , _ _; - .. -~ -, .. , -.. : ~., '. :.~'. ','" ;.,• : ,:.~, : ~ >t·;· ... " .. -, ... " . , ._, .l

" .'
ABSt.RACT

,1

, .
"

It is convenient and inefficient to program in a procedure-oriented

language on existing computers. It is ·.inconvenient and not always
. .

efficient to code in machine language. We discuss the requirement for:
:! ••

. a convenient and effiCient ~achine language and we claim that APL

fills these requirements. We .have implemented an APL machine, in

'. microcode using the hardware· of an IBM 360 Model 25. We describe

, -; the implementation Qnd compare its performance with'the petfonnonce.

of the IBM 360. . .' :.
: I·

'~.. . , .
{ r

, ~ .. .,: .

. . t : '. " .. , ,_ '~'. .' .' . .
/.

J' Index Terms for IBMSublect Index :·~·,"·'·~····;·~·:"~:-"~:\'-".'·,-"~·r·"·::--r7~'·:···"-'.' t .'

,:-, . '!\... , ... '; '.,: ,':: "\.::, :':'. t ,~"'J:. /:·i· •.
; Microprogramming. . . .'. ' ';....< ,.:.,' .. ' ~p'

'.
i

~Machine Language. ,'; :: .• :: . ." . '(.,' ~. !;', ... ' .. '

:: Compilers ': ',. .:: .. :; . . .'. ":.' "'~' : '.; i".< ...
I '. •...•• . ". ,",

• ~ 4 t_ APL " ,_.. ..~~:.,~;..: ;'~. ', ~ "., ~~ .. ,:... ..:r.._.:..;~ .• :,.,._:: ;"';I.".~I::......t,~ .,o, ~ \ :~ _,., , ~ ... , _,

Performance. ,> .:,/,.:,::/.i:.i:'··'~·;:··'').' '; <.' .~~ ,··· .. ·/,':.i··' '~": ". '> .:
i IBM System· 360-2S.·:···.:·<~. " :'" ',' .,' . '; ":' .. '~: ' ...
; 07 - Computers',·. '1.:". ,.' ~;·: ... I··,· '.';.' ,I '>, ..

.,.; 21 - Programming " '::". : .. :,:: ' ;,
i." , •. :. • I, ·'1' .

........ • . ', ... t.~ •..•• ,... • ••.• "', ... ·H·' •• f,.: ; ,.:, "',: •• , ,- •• •• ' , ,. .. _. ;._ .•.• _. . ••. _. _ .. "':"' , ''': .. M,' ' "' .' ."':' .. .' ,',;' ' -. _-_ .. ;-

'1

I •

"

I

10
.;, . '.

.> " ...
" .'

i-lf
.' .

'IBM CONFIDENTIAL .' .. ' ,." " .. ,

I.
. . " .

.. /-
, ".

.. ,

o.

'"

"
.,

i

-I

...

I I · ,

,:, i

~ i o.
l,

· !
I

: > I

.l: .1

!. I, , .j':
',. ! . ~ ,t,

.. I
. I

'. :

..

\

;

.1 ,.

,

j
.1

I
r
1

I
, !

i
i;

" . Ii
I· '

. "!
i

'. I
I

:j

: f

i '. ,. , ~

'.'

· .

,.,
I

•

" C'·'

c

o

\ . .
IBM CONFIDENTIAL

~j
" ., ~, t

, 'I' .
"

...... ~.~ ,_ .. ~ .. ~:i . ; ,

Introduction
\

'i . ,
; ,

, ,

\' 1. The complex computing system's of today have evolved from the r
,I

simple machines of the first generation. Machines have become big- :.,
.~ ... 1

'j ger and faster: new features such as floating point arithmetic and ;, .. , .

, interrupt schemes have been added." Despite this evolution the~e is an' : ,

I increasing dichotomy between the way in which programmers' should
:

"', .

wish to use the machine; and the way in which the machine actuallYl . , '"

works. The higher level languages such as PI/I represent the way in .. ~ "

\

. ,
" .','

which programmers should be writing programs. The low-level lan

guage, namely assembly language, represents the way the machine

"
"

i 1 . : . works. The com pi er is a method of bridging the gap between the high-.
i. '

: level and low-level languages. Although compilers have been widely ;

i~and successfully used,. it is obvious that they are not the comp~~te

answer. The fact is that machines and programmers qre'working 'iIi .' .
opposite directions and the result is an inefficient u7se of both .

'. machines and people. Compilers use a large amount of machine time;

.. . '

they usually generate code which is inefficient in space and time.

What is needed is a machine language, which facilitates the use ,of

high-level languages •. Even when the compiler produces effiCient

,
'I
!

machine language code, this does not necessarily give the best use of 1.

,~ ,

; the hardware; the machine language 1s sometimes a poor interface ,~ . , "
: \ , '

, between the computing algorithm and the hardware. What 1s needed is
! .

,i a machine language which facilitates the efficient use of the hardware.;
: ., ' 'i

,
, , ,
t:,

2.

Requirements for a' Machine Language
)

" '

'j •

i

.j

• , .' • ,t
With existing .technology it is quite possible to build very com- ;

.' \ "

\

I r

" ti
H
.' ;~
!!
I'
i1
II

, i1
;i

. II . u
'. r . n

: '.j Ii
I . .Jl

n
:\
:i
ij i

I·
ii

',11 . ~
!I .j

. . ~I

~1
il
I:
~
Ii
~
'1
~

,'j
,\ ", .:\

.~
.1

~
;,

'l
~

. plex machines. and it is obviously f~asible to build, a maohine.which .,' ";.:"---'-"-"'- '~
. ~

). '.

\ ,

'/' .
"

", t,'

i, ,'.:

t·',

. .

. '
,' .• ','

"1'
, , , '

" , .

!;
f

i
.1 ;1

1BM~CPNFiDENT\AL . ! .
. t

~~-----________ .. _","',7 __ G. ._ _ : ___ ""Tl\l~o,,<l~¥"'T-~~""-:,",-::.:-~T~";_~-7"~-'="'="'")",-:""-,,!:;::=n!-->.-,,-._,

• · .
I , , '

IBM CONFIDENTIAL

i

I
I

, I
C'.·····;- would directly execute the statements of a high-level language. There'!'~ ... -.~-.-,,- I

: i '" , !
t is no reason to believe that such a machine would be too expensive:

\': let us consider two examples of such a machine. First consider a

small or intermediate size machine. The IBM/360 model 2S is a good
! .,:.. I"

': . I, ! .
• example of a modem machine of this class. The model 25 has hard

ware which is very fast and very simple. This hardware does not and
· .

-f,

cannot execute 360 instructions. There is a microcode control progra~.; ,

which drives the hardware in such a way that it emulates the behavior ,~

of a .360; each 360 instruction requires from ten to a thousand micro-;:

code' instructions. Writing microprograms for the model 25 is in many
'I. "

ways like writing conventional programs for a small simple machine. '

. Any program which is written for a conventional computer could be

written in microcode on the model 25; it would probably take two or

three times longer to write the microcode, but it certainly could be . :

(:~ done. Using these techniques it is possible to write a fORTRAN emu- ';

lator, or a PL/I emulator, or an emulator for any pigh-Ievellanguage.

, i It might be contested that an emulator 1s not hardware; in rep~y we

would point out.that the model 25 is considered to be an "IBM 360

machine" even though it consists of hardware plus an emulator. A

. "FORTRAN machine" would consist of some hardware plus a FORTRAN

emulator. As we have pointed out, microprogramming the model 25 is
•

· .not too difficult. Microprogramming larger machines (for example the ,i

model 50) is difficult: however, we believe that in the future there will"
. i

be a trend towards faster circuits and simpler microcodes in the larger
" ~

ma'chines. Let us now consider the problem of building a very fast
. , , . .

machine. The IBM/360 mo~(;)l 195 is a recent example of such a

machine. In order to achieve rapid execution speeds, the'I9S consists

. ~

",~ !
. i

I
;'.1 . '.'~ I

.,' /;'!
• It, ~ ~

I
I

...
,1

(

l
~ , ,

I .,
: ,

:!
,j

:1
II

1

, .,
I

.... __ , of hardware which execute. 360' instructions plus .. ~o.me v.~ complex .., __ .. ____ .. __ .. !

o . ;., .. '", t.

2
I

'IBM ':CO'NFIDENTIAL ,I

:1

i
I .. ,

C'"
, " ,

, "
"

"

. . .
I

:1
'.!:, '.~,i IBM CONFIDENTIAL I ' , • , f ~ 1

l .' :' '. ~ l .
"", ,:j i .. _,.,~ ______ ,. __ .' . ,I

hardware which analyzes and manipulates the instruction stream." ,: "1!
~ I "-, • . d

This analysis is very involved and i~'our view is no more difficult than: ' ",' ,.:. ~

" the,analysis required in the execution of a high-level language. '.f ~:,;.',:' ~

.. 3. Although it would be possible to build a FORTRAN machine or a . .i'-.: . , '," " ; t.J
. !.' ,..." "

I '. ~
PL/I machine, this would not necessarily be a good thing to do. What.. " ' :1

, ,~ !I

we need is a machine which satisfies both the programmers and the

engineers. , On the one hand, it should be easy and foolproof to pro'"

. .' . . ~ ;,
I i.; " 'II

, ~ , " 'j

1 ;', : : /:.11
, ! ':/1 • ~

gram and it should mak.e compiling easier. ' On the other h~nd it should,

be possible to build it with an economical amount of hardware. To be ",:

..... fl
" II

~ " .::
:.~

;~

j i:
, .' .. r~

. !}

. ,. ti
:, preCise, we need a machine languag.e with the following properties: .

I, . ' .. I!
i;
i: ,- -- ----,.- The language should be both powerful and complete.

.-... .• -:-:~ I

a)

FORTRAN will not suffice. ' FO~+RAN is powerful but not complete: ' .~' , " 'l
~

'il '
, . t
. ~.

'I • II
III
I. ,:!
!, ,II

I • ;1
, ~
~, city we can use either the number of instructions in a program which ' .. , ;!

. . Ii '
'; simulates the language, or the number of microcode instructions in an ' , ,:j

: 'I
'; emulator or the number of components ina hardware implementation. t\ ~

- .. __ __ ,). -.. .. _.~~_ ... _w
; consider the difficulty of writing a compiler or assembler or loader in"

,1,: I ,,<.,.
I FORTRAN.

b) The language should be simple'. As a measure of simpli-

,; The size of the current PL/I compiler suggests that PL/I is too complex~ ~

i'There is a proposal by Sugimoto (1969) for a PL/I-l1ke machine but""; .', "'. ' " ,', ~
" I " . / : ~

, : , , ': 'I

, " :; ,:' I
The language should be concise and should, not ask. the ". ",

i ,', ~

t '"
, there is no information on its implementation.

c)
I, ,

r programmer to state the same thing repeatedly. ,On the IBM/3GO (and t
; ; , :' . , :' ~

'1 almos~ all pther machines). every time you wish to add two floating , ',I
.0 . '. , J . i . f ~

; point numbers you have to repeat that it's floating 'point addition. In I', .: .J
•• " fO" ." ,..., _ ,.-1

.', ,_~ ... _~L ~ higher.le'Ve~ ~~qu'~~~'.,,~,~,YC?U need say l~ .. ',!.~ .. s~~e.,~~.c:o~p1ler"can: -""~--~,~~.-.~-~,'i
~ , • , • ' " '. '.. '. • ',' 1
t. ..; '\ 1

.~'. : " ~ o· ~i' ', .. :, " i' ..."':: i " , " , • ':-',',-

, " ' , ' ,': I
< •• , 3' • '1

'. " ,i 'I,
I.

·lBM,':'CdNFIDENTIAl ; . ' ,

, ,

,
i

. ! . !

------~ ____ '""-__ ... =."""',~C'C'""'"..."""".~=~~--'~,,3,,=,!..,.,~--=, .. ,,,",".,, ... ,, ~. ~~-~ ==~}~

, 'i !! i'; J; r.i; I'. t' , ,I,

, ~. of . . ; •

I:'. I
· .! . . .j ," :
. L IBM CONFIDENTIAL .!

C·.·. i " '! -- -.-----~+ "--.-.. ~-~,,- ,.:.,.... .' ~ .. -:.;" .. ----
; easUy discover the type of arithmetic tp use. l :'.: : ..
I I .! " '.
I .J:. :, .

. ,\ -, . :.,) i . .

I.. d) The ~achi~~.~hould check for errors at the place where.:.;: __ Y,;f~':
'. ~ they are likely to; occur.· The statements 'J.; ' ..
f' /\ .• ' i ! <.. DIMENSION A(lOO) . , .' .'
;' i

. "l A(lOl) = 9.25 ;':l
I ,'. ., J

.,' r should produce a subscript range error. With most compilers on most ~"-'!. . .' .. , ,~
. ! computers the execution of these statements w~ll not cause an imme- .. ! '.' .' .:~ ~\.:·il
I diate"error, but it will usually gen~rate' some catastrophe at a later i :. ' :.~
.,' I,' ·n ~ : ; time. By the time the error is detected, all trace of the original I Ii
! . "'''1 . i'

· ~ cause is lost. Some compilers (for example, PL/I level F) have an . I .~ .
: option to produce code which checks for errors, but· the cost, in terms! .. ', . ;;
~. , '. '" " ~~
; of program space and execution. time is so high that many progr~mme~~_J 'i .' '. '.:.' ij

i'willnot use these checks.' ','.' ,I .: . ii
.! ! r II

('" \) .
/

I I ' '\ ;- .. ______ !. e) The ~achine shou~d recogniz~ ~at programmers use sU~_-"_.:...i ' /;'-'.11

;· .. ··_--....:.··'7 routines and that procedure-oriented languages use statements. It j i . :1
· t " ·,,-_:., ".. i:

.. ,: should therefore keep track of subroutine names and statement num- i ,ii
" I I ~

. ~ bers; this can 'be done by compiler-generated code but it is easier,!' \ il·
1 faster, and:foolproof if the machine does it~ ! ':1 · :.' ;;

, ~ 1 ! ~
:-. I '" .----{ 1I

__ .,,--_ 1. .. __ ,,_ .. f) ~_ "T~e machin_e~ho~ld" ;not .fox:c~. ~.~ 2f~gI.:~~.~~.~!._c~~p~~_~r:" _ ! __ ..;,..............,...,.--,._. t;
" ~

.;. to throwaway useful information. To take a simple'example,;if Band , ;':1
- -... - -"'-~1-' ,.- .. _.,. -.. - _. __ _ , _.- -- .. -.~ . - -,'''-_ ;'" r- ... '" .. --'-':"-··-··.;, ... -.. '~-~·· ;;

... i.e are matrices then the APL statement j " . ~
" I 'A Be'" ... , . .' !'- .::.. ..•• ,. +. '''' . --_. . -""'--1 .' t' t.

" '. . . .'. i \ '. . .' . '.. j'j

I::::::~::=::~: Band q ~ pu~, th~ ~sulf~+:',~'. 'I, " }
· ;. I',' I ', '. i'" .I

.. _ .. __ L. __ _ .. _~_' .~ .. _.;~:" ... f>9 ~~~_l!'_ .. !!.:.~ __ ..;L .. _~~~~~.: .~ .. ~. __ ._ .. ~t. ____ _

O· " .. ; *.... ' .. , ! .i
,';. . ,i • ,

•• ~. " '. 1 : '.' .: " I ;,.

{

! .t' · : :.. . . :. :1
.. : ! '.M 4._~.... i.• ' ,,' I

! I

\
.. \

I '8M' : CONFIDENTIAL ------. :..,' ~OC,--=-_ ... ¥ _P , ___ """"""'¥.'17'.:~ .. ~,.,-~~~~_~ ... "',".~" =_~~_

-.

Jill I'.

. '

, I
" IBM CONFIDENTIAL

DO 100 I = 1, N

100 A{I,J} = B(I,J) ,+ C(I,I)

, . .

.'
,i

r, I

" ,} ~

' .. ~"

,.' loses the fact that we want all the elements of Band C and we are not' " I .1

;' really interested in I and J. The IBM/3GO model 195 is forced to use' ..;,'. ;!/~ ';. ", /01-
, its elaborate hardware to try and detect this type of loop and to orga-, .;"

';
. i nize the calculation more efficiently. . ,

.
i

g) ,. Programmers, particularly when working in high-level

languages, use memory in a dynamic way.' The machine should sup

port the dynamic use of memory •

l'
'; 4. It would be possible to design a language with the above proper-

, .
ties. However, there is an existing language, namely APL, which we

'; believe has most of these properties. It is easy to see that APL h~s

; the virtues of a high-level lClllguage'. What is perhaps surprising is
i •

, that APL has the 'Virtues of a machine language, namely, APL can be

implemented in a reasonably small number ·of microcode instructions

a user's point of view and' then we will look at the underlying struc

ture. Finally we will discuss the size, effort, and problems of

'implementation and we Will 'compare performance of the APL machine

, ,'with the IBM/360.

;

, ..

" '

',',I

~

I
! , i

!
/ !

I ,-1

,! .4

:1

I:
, I,

~-."---- •• -.--. <- •

_.~ _,";' --~._.~. __ .. , ___ ."'.; ll. . .'._-.

" ,

t

.' , , ,

"

IBM':CONFIDENTIAL

" i

,

, > ~

, "

. ,
, ,
, ,

I

. '

c

("'I j

PERTINENT REFERENCES

CARPENTER, P. F., IBM Hursley, "Functional Memory Programming
Studies - PL/I Incremental Compiler/Interpreter", January 16, 1970

DIJKSTRA, Edsger W., "The Multiprogramming System", Communica
tions of the ACM, Vol. 11, #5, May 1968

HASSITT, A., Lageschule, J. W., Smith, H. F., "A Procedure Oriented
Machine Language-Part I", TR 320-3271, IBM Confidential, Abstract
and Introduction

ILIFFE, J. K., "Basic Machine Principles"

IRONS, Edgar T., "Experience with an Extensible Language", Communica
tions of the ACM, Vol. 13, No.1, January 1970

KILBURN, T.,· Morris, D., Rohl, J. S., Sumner, F. H., "A System
DeSign Proposal", 1968 IFIP Proceedings

MC DONNELL, E. E., "A Formal Description ·of JCL"

MC KEEMAN, W. M., "Language Directed Computer DeSign", Fall Joint
Computer Conference 1967

MORGAN, Howard L., "Spelling Correction in Systems Programs",
Communications of the ACM, Vol. 13, No.2, February 1970

WIRTH, Niklaus, "On Multiprcqramming Machine Coding, md Computer
Organization", Communications of the ACM, Vol. 12, No.9,
September 1969

1000 Westchester Avenue, White Plains, N.Y. 10604

Office of the President

Systems Development Division
May 7, 1970

Mr. R. B. Talmadge
IBM United Kingdom
Laboratories Limited
Hursley House, Hursley Park
Winchester, Hants, England

Dick, John is fighting back and that's healthy, at least to a point.

Thought you would be particularly interested in Markstein' s letter.

BOE:dm
Attachment

B. O. Evans

April 28, 1970

MEMORANDUM TO: Mr. B. O. Evans

·t·~'J.
;/ft. ~ i)l,>l4'
J ,cf(t:. ~
fli t)! -r, 11 Jt(~,

~~ " .
/p' 1./'0
l-~ I /t~ /,,(. ..jet, If rf ! ; t 'If l 1/ . '

;I'll Ir.! •
/' ~ () 04/;.-1-/:

Afte~ rereading the attache.d l~tte~ from Peter M~rkstein after t~ir:g' I) {L . l
to DICk Talmadge, I am brlngmg It to your attention because I think It ,1JV't I.
fairly states the case for the opposition to our study group proposal U h w~"" 7
from our most expert programmers. They are today's conservatives /It';, I , J .
who fear change and are more comfortable with the original machine ,~W
instruction base for their work.. /w ," " L ' I

I~ 1fI11f/

There is one anomaly in this situation. The powerful interpreter need-';p,t/~I
ed to "interpret" HLS may not be very large. As Lathwell's memo /clftv- } .
pointed out tha PL/I compiler is approximately 500,000 bytes, the "/
APL/360 interpreter is 60,000 bytes, and a Model 25 APL emulater
is 7, 000 bytes.
~

Please note that Peter's pOSition as stated in the final paragraph, that
an "effort should be set up immediately to build a prototype andprove
that HLS can work" is almost identical to the study group's position.

, {JrL
JOhnr C. McPherson

JCM:gp

att.

Ji4UZ.t.4iAZW2i 4 ; . I 7, - a . __ x.., i.~ __ ._S..,-..,." .. J;&%iF,i,_$tf4lfGt:;}4Ai,q,¥._.,

. .
. !,ub)osl: HI.S (Higher Leve~ System) Proposal

k/,'f",ence:Pt'acocl\~C()nti.Presentations of Febru:l.ry 2G and 27, lD70 .

I

. . . 1

The ll1ajor theme of the HLS l'roposal is 4;0 break away from the von~elUllann .
a).'chiteci:urc, since the undedying 'a~sHmptioils behin,.} today's arcl1itooturearei
held by the proposal to beinvulid; !'~;'~': ... ! .

. . ." .!. '

, ''1'he H~S system operates on statements (consider an APL statemenfJs alleXallil)l,,,)
. '.' .', . ." I . '.' .' '
. l'athe'j~ then on instructions I l~ ro,~~rcnces objects by na1'11e rathcr t.bRnlby n1;l.ehi?le .

. address, the ohJect.s al.·es~lf~·oe~;~l'Jbing, its operators are validoverlwidc'"
. classes of objects, its operators li~;tcrl~inc tho nal:m'e of thcir operands .
dYl13.l.·.n i CallY .. > and it. UlltO ... maticui1~; marlages lt8 stol'nge hie.I.'archY, thusII giving
thehnpl'csslon of (1, unu?rmly referenced sLora~o mcdh.l.l'n. '

. I
f

I

'rhe!~on.ls of this proposal arel;Jl.dable. Benefits claimed include easfel.'
.i:tnplc!!1cntation of appUcations nrld Bystcms, g;ooJ c;.q)loltation or LSI technology •

. 'a~ciinlproved l'nan-macl1inc interrace. A'~'ealth of ot.her bencfi,ls are ~Jai.med
but these do not seem to depend as. strongly. on the radical architectural,chnnge
as do ti)0 above. .' .. ~

Tbe p:rii1cJpnldepart.m·I;),of course, is to have the C()1'l,lputcr offel' tQthen8(;~ali
tt,e lowest 1e\'010f langl1age, the equivalent vi \Vh3.t is (lonsinered to hea higher
level 1 an g"ua ge today_ 'there are SO:D'lC exa.mplc.s of simila.r app:l'oaChci;I. 'fhe
most notabl('; ofthe5e lsthe Burroughs 5500 type machine. Thisserias w~s
intfHtded to be programm.ed in Algol at the lowest 'user level,and the hardware
was strongly ini1uenced by this objecj.ive. Vlhile the basicmachinc is stilLofthe
VOlll\'cuIIl~H1n type, it has been dcsiuned to make the compilation of Algol
partinularlyei'fjctlJnt, a.hd indeed. users do not generally have au assembly
language mndo available to them by Burroughs. HLS goes further by eliminating
assembly language altogether. . .

Since HIJS "interprets" a ni.ore ambitious in~tl'uction set tJllln does System/360,
itrc.l ies on apowcriul1nterprct.el." b1.lilt \\' Hll or. .intcn'pret.cd by LSLcompol1CntB •..
My reservation herQ is the following: \~ih~ would b(.~· b1.lildini~ inhardware,. an
" I, , •• .. • • ; ,

'---'.,.' . .
• •

., ~

.. . .
. .

1£4!!'- ¥ ,j _ 4 .

;. I~~ "f')
: "/'rIM

,
I·
I
111~~jD .

" . ~
.

.. .
..J.¥. -*

(
r,:_~i ..
'i ,- ,.

t ." ...
i_.~··
!--', ~ct
1· •
! '.,

~-:~;
!' •
I'"
't •••

~ .~~
, ,

:~ .

, , . . ' .. ~
,.' °1 •

'
; .,' '.

.. ,

~ -,>iO,

;' ~:;:
~ ..

~., .
i' .
I .. ·.

t,:' :'
~" :
i • ~,~

I ••

I • . , . '
: .,t.
, '
; : ;'
h"
I ." ,
I' ~

r. ' '
1 '
~ .. : ...
~ . -.. ~
! ..

1 .. " :
I ~' ,'

; .. '
~ '.,

...
\ r .
? •

. .
\ .'

t: •
. '"

H. G. Cohall
March 11, 1970'
Page 2

I
I

I
I

+

!
interpreter of a language with which we have had il1BUfficientexperienc~', l1nlYtely, n

· ..• h.lg.h•. er levell ... ang.uage which is sufficiently pow.erfUl arid. rich to Cl.lin. inj.to the .. U5er I S
. need. to lapse into a lower level language. I venture to say that the fir1t attempts .

. to implement this language in. software will not be error free, and that Isevcrnl rounds
" of debugging and perhaps even redesign would be necessary. The prod~ction of

software, unfortunately is not Yflt very systematized. Yet the hardwar6 which such
a language requires is merely physical embodiment of such a softwareiintcrpreter.

. Thus, the methodology for producing the hardware may be set back to the methodology
used for producing software. My fear is that at this time. hardware b~sed on an
interpreter will be su1)ject to all the difficulties that software (experiences today_
'rhe ease with which System/360 hardware was pr(}dll.c~d relative to the soft"Nare,
. . '.' J

makes it unattractive to put the next hardware design on the same metllodological
footing as today's software. j.

, " I .'

. A second item which would be moved out of software is the control of t~e storage
hierar~hy. Again. this control of a hierarchy ofwidc]y varyirlg performance by any
technique is not a completely solved problem. Automatic control of tll~ cache ill
the Models 85 and 195 is successful, but the two storage media involved only differ
ill performance by one order of magnitude. In cases where the dif(erence is more
l?ronouneed (e. g., paging systems as run 011 the Model 67), the best means of
l'l:lunaglng tra.nsfer of information between levols of stol'age is fa1'· from! beIng a.
closed question.

To be sure, the atu()lllatic paging and t.he higher level language interpr¥ter will not
be built dil'ectlyin hard\vare, but will be implemented in micro-code. I Writable·
cOl1trolstores will make reworking of these cornponents easier than repairing a
microprogl'amming error today. But firmware ehanges with the frequ(mcyof
softwal'e changes would cause customers great an...·'dety. since they should view
firm\vare as an extellSion of the hal'dware.

~lsbort, the goals of IlLS are 110bie, but the need to move into. hardware. functions
which ate traditionally done by software {but not well understooa)compr<1tniScs t.he
stability of the hardware. Rather than shoot for making lILS the FSs~i·ics. an ad tech
effort should beset up imnlediatelytobuUd a prototypealldprovethat }ILS can work.
Then. for the next llileafter FS. the Company can baseitsdecisioIJ. .about an HLS
architecture. 011 hard evidence. ,

ce: D. N. Streetc?-., I ,

C",: J. Me. pbets.n 'td';/7»j
..

.44 , ,,_ ¢# 4.

SDD POUGHKEEPSIE
Dept. B58 - Bldg. 931
Extension 59900
April 22, 1970

Mem.orandum. for Dr. R. B. Ta1m.adge

Subject: High Level System. Interim. Report

Reference: Your m.em.o to Mr. B. O. Evans of March 26, 1970

I would be very interested in receiving a copy of your detailed
critique when it is available. Thank you very m.uch.

R. P. Case

RPC:m.w

MelTIorandulTI to:

SUbject:

Reference:

Dr. R. B. TallTIadge

SDD - HARRISON
April 16, 1970

High Level SystelTI InterilTI Report

Your lTIelTIorandulTI of March 26, 1970.

I hate to keep troubling you but alTI very lTIuch interested in a detailed
critique frolTI you on the High Level SystelTI InterilTI Report and do want
you to personally stay close to progralTIlTIing and advanced systelTIs plans.
Therefore, at your earliest convenience, please send lTIe the detailed
critique.

Thanks.

B. O. Evans
BOE:lTIr

Mr. B.O. EVGDI,
Hatttson

....... : YOfIIletter of 5th Match 1970

26th March 1970

'·.haw read the d,eet repcri wIth In __ and to ·"'Y.thatl con
find very IIttte In It with whIch to agree. It appean to me to be nelve
where· 1. II not erroneous, both In the justificatIon atgumentt advonced
and the conel_on drown ..

I amlewlng tomorrow Oft holIday ,reh.In'. the middle of AprIl. I shall
'-glad to pr (I detailed crlttque at that time, If It wlllM of any
use to you.

B. O. Evans
1000 Westchester Avenue, White Plains,N.Y-10604

March 5, 1970

Dear Dick,

You may have heard that we had a small task force
studying the pos sibility of a higher level language system.
John McPherson has led this effort which now reports
enthusiastically about the potential of such an approach.
I am forwarding my copy of the report for your study and
consideration, and am very much interested in your
conclusions and recommendations.

Dr. R. P. Talmadge
IBM United Kingdom Lab., Ltd.
Hursley House, Hursley Park
W inche ster, Hampshire,
England

Sincerely,

