
PROCEEDINGS

THE ANNIVERSARY MEETING

COMMON

JUNG HOTEL

NEW ORLEANS, LOUISIANA

NOVEMBER 28, 29, 30, 1966

c

o

o

•

!I! trm'tnt rrt# at d . titHe tt U! II!

ii

PREFACE

This volume records in part the technical material presented at
the COMMON Meeting held in New Orleans, November 28, 29 and 30, 1966.
A number of committee reports and discussion session summaries are also
included. No attempt has been made to include all discussions dealing
with the reorganization of C()1MON since this topic will be included in
subsequent issues of the Secretary's Report.

A real and permanent contribution to this COMMON Meeting is the
technical material contained in this volume. Credit for this must go
to the authors and the various session chairmen.

Special acknowledgment is due the Local Arrangements chairman,
Mr. Earl Dobbs, and his entire team.

I would also like to thank Mrs. Linda Bower, who typed the many
iterations of the agenda and assembled this proceedings.

Wiltz P.o Champagne, Jr.
Program Chairman
C~~N - New Orleans, 1966

Preface • • • • • . .
I. Agenda. • • • • • • •

Table of Contents

• • • • • • • • • . . . • • • • • •

. . · . . • • • • • • • • • • • • •

• • •

• • •

iii

Page
ii

1

II. Monday Session

General Session • • • •
Chai rman , D. A. Jardine

• • • • • • • • • • • • • • • • • • •

Divisional Meetings

Minutes of Systems Division
Chairman, James Stansbury

• • • • • • • • • • • • • • • •

Minutes of Applications Division. • • • • • • • • • • • • •
Chairman, Frank Maskiell

Minutes of Administration Division. • • • • • • • • • • • •
Chairman, Laura B. Austin

Minutes of Installation ~~nagement Division • • • • • • • •
Chainnan, Paul A. Bickford

1800 TSX Committee. •
Chairman, C. Pearson

.
1800 Systems Project I ••••••••••••••••••••
Chairman, ~

1800 Systems Project II • • • • • • • • • • • .. • • • • • ••
Chainnan, ~

1130 Systems Papers
Chairman, Peter J. Woodrow

"1130 Monitor" - Gene Lester •• • • • • • • • • • • • • • •

"1130 Compiler" - DionJohnson. • • • • • • • • • .. • • • •

"1130 Disk and Card Programming Techniques" - Krauf

1620 Systems Papers
Chairman, James Stansbury

• • • •

*

*

*

14

*

18

59

*

61

*
*

"SYMTRAN: The Addition of Formal Algebraic Manipulative
Capabilities to FORTRAN \~ith Fonnat" - Mary Cl0 Carey. •• 62

"A Processor for both SPS and FORTRA\J" - .. James R. Oliver and
Guy George • • • • • • • •• • • • • • • • .. • • • • • •• 73

c

o

o

•

"University of Mississippi Test Scoring Program" -
Richard D. Ross • • • • • • • • • • • • • • • • • •

"A Computer Plotting Language" - James R. Oliver and

• • • •

iv

Page

84

John McMahon. •• 111

Applications Division. •
Chairman, Frank Maskiell

360 Systems Project. •
Chainnan, Richard Pratt

Installation Management and Personnel Training • • • • • • • •
Chainnan, Paul A. Bickford

1620 Systems Project •
Chainnan, James Stansbury

Minutes of S. S. P. Application Division •••••••••••
Chairman, Frank Maskiell

1620 Application Papers
Chairman, Guy George

"Relocatable Data-Conversion Subroutines for 1620 SPS II" -

*

*

*

*

*

W. Norris Tuttle. • • • • • • •• • • • • • • • • • • • •• 128

"Teletype Input to the 1620 on an Interrupt Basis While
Operating Under Monitor I" - Prof. Don Box, James H. Hughes
and Hugh B. Kerr. •

"General Card to Printer Program" - Janet Allen. • • • • • •

"General Format Conversion Program" - Robert B. Balder • • •

III. Tuesday Session

Utilities Project. • • ••
Chairman. E. J. Orth, Jr.

• • • • • • • • • • • • • • • • • •

1800 Systems Director-Advanced. Tutorial
Chairman, C. Pearson

134

149

161

*

"Systems Director" - V. Boyer. • • • • • • • • • • • • • •• 189

1800 Papers
Chai man. C. Pearson

"Hybrid Canputer Simulates Stell Process" - EVerett L. Keener 236

1130 Systems
Chainnan. Peter J. Woodrow

v

Page
"Commercial Subroutine Package (FORCCl\1)" -

R. L. Louden • 253

Languages Project • • • • •
Chainnan, .James Stansbury

University Education Papers
Chainnan, Marv Goldberg

• • • • • • • • • • * • • • • • • • • •

"Computer Requirements for the Undergraduate College" -
Robert C. Bushnell • 259

"Computerized Library Circulation" - Guy George • • • • • • • • 265

"USL Student Scheduling" - Jack D. Testerman and Earl K. Turner 272

360 Systems Papers
Chairman, Richard Pratt

"Scientific Computing at an Astronomical Observatory, FORTRAN
Language Timings on 360/30, 360/40 and 360/50" - Robert L.
Shutt. •• • • • • • • • 276

"FORTRAN Debugging on the IBM 360" - .James S. Taylor. * • • • • •

"1620-360 Simulation" - H. Klysen • • • • • • • • • • • • • • • 282

Installation ~~nagement Division
Chairman, Paul Bickford

"1800 Education Plans" - G. Wolf. • • • • • • • • • • • • • • • 283

"1800 Available RPQ's and Special Systems" - F. Schneider

1130 Systems Papers

• • •

Chainnan. Peter J. Woodrow

"Small University Accounting Systems" - Peter Rhodes. • • •

"1130 User Experience Panel" ••

1620 Information Retrieval Papers
Chainnan, James R. Oliver

• • • • '. .
• •

• •

"A Diagnostic Case Presentation Program" - Roger Gudobba • .James

*

*
*

L. Grisell and Peter Beckett • • • • • • • • • • • • • • • • • 287

"An Information Storage and Retrieval System for Radiological
Surveillance Data" - Nancy A. Paquin and Claudette Thompson •• 295

c

"RAGE - An Infonnation Retrieval Language" - Jack D. Testerman
and Joseph B. Tinker • • • • • • • • • • • .'. • • • • • • • • 318 ()

o

o

•

University Education Project
Chairman, Marv Goldberg

• • • • • • • • • • • • • • • • • •

360 Systems Proj ect •
Chainnan, Richard Pratt

1800 TSX Committee
Chainnan, C. Pearson

"1800 I/O - Advanced Tutorial" - B. Landeck. • • • • • • •

1800 Systems Paper
Chai man. 2l?!!!.

• •

"1800 Prospro" - H. Bass • • • • • • • • • • • • • • • • • • •

1130 Papers
Chairman, Peter J. Woodrow

"On-Line Debugging on the IBM 1130" - Peter J. Woodrow • • • •

vi

Page
Ie

Ie

325

Ie

*
"1130 Data Presentation System, Graphic Plotting Language" -
Richard E. Weber. • • • . II • • • • • • • • • • • • • • • • •• Ie

1620 Math & Statistics Papers
Chairman, Jack Testennan

"A Disk-Oriented Cross Tabulation Program" - Donald L. Wright. 357

"Sampling with Unequal Probabilities and without Replacement"
Ronald G. Kleibrink •• 378

"Estimation of Power of F Test by Patnaik's Approximation" -
Sudhir N. Dalal • 393

"Reliability Predictions Using an IBM 1620 Canputer" - M. J.
Olnniffe and W. H. Bleuel • • • • • • • • • • • • • • • • •• *

General Interest Papers
Chainnan, Greg Payne

"Computer Assisted Painting" - James R. Oliver • • • • • •

"Computational Linguistics Program" - James R. Oliver and
Sam Baty. •

• • 401

• • 406

"Useful Hints for Writing High-Speed Compilers" - R. S. Milner 426

Panel on T/S vs. Stand Alone
Chairman, D. A. Jardine

• • • • • • • • • • • • • • • • • •

1800 Absolute Coding Examples.
Chai man. C. Pearson

• • • • • • • • • • • • • • • • •

*

*

M t t'i"··

1130 Continuous System Modeling Program
Chainnan, Peter J. Woodrow

"Continuous System Simulation" - Robert D. Brennan • • • • • •

Open Board Meeting •
chai man • D. A. .1 ardine

Engineering Papers
Chainnan. Guy George

"Three-Dimensional Plotting Using the IBM 1620 and CALC(}.1P
564 Plotter" - R. G. Nelson • • • • • • • • • • • • • • • • •

"DRAFT" - J. R. Birdwell •• • • • • • • • • • • • • • • • • •

1620 Data Processing Papers
Chairman, Mrs. Carol Hall

"The 1620 as a Data Collector" - Robert L. Shutt • • • • • • •

"An Alumni Records System for the 1620" - William L. Paxton. •

"Student Record Keeping by Canputer" - James R. Oliver,
Russell Schouest and Ronald DeKer1egand • • • • • • • •

IV. Wednesday Session

IBM 1500 Instructional System
Chairman, Frank Maskiell

• • •

vii

Page

433

*

436

*

457

*

458

"1500 Computed Assisted Instruction (CAl)" - Dr. J. L. Stone. 466

1800 Systems Proj ect • • • • • • • • • • • • •
Olainnan, C. Pearson

• • • • • • • • •

contributed Program Library
Chainnan, Laura B. Austin

"Contributed Program Library" - F. A. Merks. • • • •

Conversion Project (Systems) • • • •
Chainnan, James Stansbury

• • • • • • • • • • • •

1620 Application Papers-Operation Research
Chairman, James R. Oliver

"Network Analysis in Health Program Management" - Noman L.

• •

• •

*

*
*

Dunfee. • • •• 473

"The Analysis and Design of a Standarized Program for
Continuous Forest Inventory" - John F. Jewell • • • • • • • • 489

o

o

0'

c

o

tit t 1 WwlWruw'W!!fflil!"WIIN"S!i! sy.ywm" nrr""",,',!!!' :t! , tl1l!'f.'I'r· : 1 'W'l'tw IWWW ','ntl
), "i t WnW,'!fdNW'W'f.'IU!!!lw"i1!RI"""'Mu""w!I un

II t t $+' tH

"Proj ect Management - Status Simulator" - Ernest R.
Jolmson •

Engineering Papers
Chainnan. John Meriwether

• • • •

viii

Page

504

"A Subroutine Set for Autanation of Logic Circuit Design"
Peter Sclmeider • • • • • • • • • • • • •.• • • • • • • • •• 528

"Engineering Algorithm Decoder" - John R. Ruckstuhl, Mervin C.
Budge and Larry J., LeBlanc. • • • • • • • • • • • • • • • • • 543

University Education Pr~ject • • • • • • • • • •
Chainnan, . Maxv Goldberg

Impact of Standards on Computer Users
Chainnan, Paul Bickford

• • • • • • • • *

"Impact of Standards of Computer Users" - J. Farley. • • • •• 556

General Interest Papers
Olai man. Mrs. Caro I Hall

"Gennan-English Translation on the IBM' 1620 Computer" - James A.
Lawler and Mrs. Mary C. Kerr. • • • • • • • • • • • • • • • • 562

"A Self-Organizing Program" - James R. Oliver. • • • • • • •• 593

"A New Type of Randan Number Generator" - R. G. Fryer. • • •• 597

1620 Applications Papers
Chainnan, Greg Payne

"Canputer Programs for Material and Process Selection" -
Donald J. King. • • • • • • • • • • • • • '. • • • • .• •

''Management Simulation Games" - Dr. R. L. Jensen • •

Civil Engineering Papers
Chainnan, ~

• •

"Canputer Analysis of Pipe Stress" - T. E. Bridge ••••

• • •

• • •

• • •

"On the Efficient Solution of Large Structures" - Norris L.
Hickerson •

Systems Division • • • • • • • • •• • • • • • • • • • • • • • •
Chainnan, James Stansbury

Applications Division.. •
Chainnan, Frank Maskiell

608

615

624

656

*

*

_ r=m

Administrative Division •
Chainnan. Laura B. Austin

•

Installation Management Division. • • • • • • • • • • • • • • • •
Chainnan. Paul Bickford'

* This report or paper was not available at time 9£ printing.

ix

Page
*

*

c

· ___ IIMioI,,,,

o

o

•

New Orleans

Headquarters
IBM 1130

Room 261
Room 263

7:00 - 10:00 p. m.

7:00 - 8:30 a. m.

7:30 - 8:30 a. m.

8:30 - 10:00 a. m.

10:00 - 10:30 a. m.

10:00 - 11:00 a. m.

10:30 - 12:00 a. m.

12:00 - 1:30 p. m.

COMMON Anniversary Meeting

AGENDA

Sunday. November 27. 1966

Registration - Upper Mezzanine

MondaY. November 28. 1966

Registration - Upper Mezzanine

New Member Breakfast, Dutch Treat

Session M-l
M-l.l General Session

Chairman, D. A. Jardine
Presidential Salon, Lower Mezzanine

Coffee - Imperial Salon, Lower Mezzanine

Ladies Hospitality Coffee - Pavilion Roam,
First Floor

Session M-2
Divisional Meetings

M-2.1 Systems Division
Chairman, James Stansbury
Presidential Salon, Lower Mezzanine

M-2.2 Applications Division
Chairman, Frank Maskiell
Terrace Suite #1 & 2, Sixth Floor

M-2.3 Administration Division
Chairman, Laura B. Austin
Terrace Suite # 4. Sixth Floor

M-2.4 Installation Management Division
Chairman, Paul A. Bickford
Meeting Room # 10, Second Floor

Luncheon, included in Registration
Tulane Room, Lower Me zzanine

1

1:30 - 3:CO p. m.

3:00 - 3:30 p. m.

3:30 - 5:00 p. m.

Session M-3

M-3.1 1800 TSX Committee, By Invitation Only,
Chairman, C. Pearson
Meeting Room # 3, Second Floor

M-3.2 1800 Systems Project I
Chairman, Open
Meeting Ro-o~m~#~4-,~S-e-c-o-nd~=F~lo-o-r--

M-3.3 1800 Systems Project II
Chairman, Op€n
Meet ing ROOl:1-'-t#......"5-,--"S-e-c-o-n.....,,d~F--1-o-o-r-

M-3.4 1130 Systems Papers
Chairman, Peter J. Woodrow
Meeting Room # 2, Second Floor

See below fop list

M-3.5 1620 Systems Papers
Chairman, James Stansbury
Terrace Suite # 1 & 2, Sixth Floor

See below fop list

M-3.6 Applications Division
Chairman, Frank Maskie11
Meeting Room # 10, Second Floor

M·~3. 7 360 Systems Project
Chairman, Richard Pratt
'errace Suite # 4, Sixth Floor

M-3.8 Installation Management and Personnel
Training

ChairrF1D, Fa,ul A. B:i.ckford
Meeting Roo~ # 9, ~~~oud -r-Io-o-r--

Coffee - Imperial Salon, Lower Mezzanine

Session M-4

M-4.1 1800 TSX Committee, By Invitation Only
Session M-3.1 Gontinu.ed
Meeting Room # 3, Second Floor

M-4.2 1800 Systems Project I
Session l1-3.2 Continued
Meeting Room # 4, Second Floor

M-4.3 1800 Systems Project II
Session M-3.2 Continued
Meeting Room # 5, Second Floor

2

c

c

0
3:30 - 5:00 p. m.

Continued

6:00 - 7:00 p. m.

o
8:30 - 10:00 a. m.

•

M-4.4 1130 Systems Papers
Session M-3.4 Continued
Meeting Room # 2, Second Floor

See be~ fop list

M-4.5 1620 Systems Project
Chairman, James Stansbury
Terrace Suite # 1 & 2, Sixth Floor

M-4.6 S. S. P. Application Division
Chairman, Frank Maskiell
Meeting Room # 10, Second Floor

M-4.7 360 Systems Project
Session M-3.7 Continued
Terrace Suite # 4, Sixth Floor

M-4.8 1620 Application Papers
Chairman, Guy George
Presidential Salon, Lower Mezzanine

See beZo~ fop list

Cocktail Hour, Royal Salon

Tuesday, November 29, 1966

Session T-l

T-l.1 Utilities Project
Chairman, E. J. Orth, Jr.
Meeting Room # 2, Second Floor

T-1.2 1800 Systems Director-Advanced, Tutorial
v. Boyer, IBM

Chairman, c. Pearson
Meeting Room # ~, Second Floor

T-l.3 1800 Papers
Chairman, C. Pearson
Meeting Room # 5, Second Floor
Session Starts at 8:45 a. m.

See beZo~ fop list

T-l.4 Commercial Subroutine Package (FORCOM)
1130 Systems, R. K. Louden, IBM
Chairman, Peter J. Woodrow
Meeting Room # 3, Second Floor

- T-l.5 Languages Project
Chairman, James Stansbury
Meeting Room # 9, Second Floor

3

8:30 - 10:00 a. m.
Continued

10:00 - 10:30 a. m.

10:00 - 11:00 a. m.

10:30 - 12:00 a. m.

12:00 - 1:30 p. m.

T-1.6 University Education Papers
Cha.irman, Marv Go1dbert
Meeting Room # 10, Second Floor

See beZow for Zist

T-l.7 360 Papers Systems
Chairman. Richard Pratt
Terrace Suite #4, Sixth Floor

See beZow for tist

Coffee - Imperial Salon, Lower Mezzanine

Ladies Hospitality Coffee - Pavilion Room,
First Floor

Session T-2

T-2.1 Utilities Project
Session T-1.1 Continued
Meeting Room # 2, Second Floor

T-2.2 1800 Systems Director
Session T-l.2 Continued
Meeting Room # 4, Second Floor

T-2.3 1. 1800 Education Plans, G. Wolf, IBM

4

o

2. 1800 Available RPQ's and Special Systems,
F. Schneider

Chairman, Paul Bickford C
Meeting Room # 5, Second Floor

T-2.4 1. Small University Accounting Systems,
Peter Rhodes, IBM

2. 1130 User Experience Panel
Chairman, Peter J. Woodrow
Meeting Room # 3. Second Floor.

T-2.5 1620 Information Retreival Papers
Chairman. James R. Oliver
Terrace Suite # 1 & 2. Sixth Floor

See beLow for tist

T-2.6 University Education Project
Cha.irman, Marv Goldbers
Meeting Room # 10, Second Floor

T-2.7 360 Systems Project
Chairman, Richard Pratt
Terrace Suite #4. Sixth Floor

Lunch

o

It'

1:30 - 3:00 p. m.

o

o

3:00 - 3:30 p. m.

3:30 - 5:00 p. m.

o

Session T-3

T-3.1 Utilities Project
Session T-l.l Continued
Meeting Room # 2, Second Floor

T-3.2 1800 I/O-Advanced Tutorial, B. Landeck, IBM
Chairman, C. Pearson
Meeting Room # 4, Second Floor

T-3.3 1800 Prospro, H. Bass,~~BM
Chairman, Open
Meeting Ro-o~m~#~5-,-S~e-c-o-n~d~F~1-o-o-r-

T-3.4 1130 Papers
Chairman, Peter J. Woodrow
Meeting Room # 3, Second Floor

See beZo~ fop list

T-3.S 1620 Math & Statistics Papers
Chairman, Jack Testerman
Terrace Suite # 1 & 2, Sixth Floor

See beZo~ for li8t

T-3.6 General Interest 1620 Papers
Chairman, Greg Payne
Terrace Suite # 4, Sixth Floor

See beZo~ fop Zist

T-3.7 Panel on T/S vs. Stand Alone
Chairman, D. A. Jardine
Meeting Room # 10, Second Floor

Coffee - Imperial Salon, Lower Mezzanine

Session T-4
T-4.1 Utilities Project

Session T-l.l Continued
Meeting Room # 2, Second Floor

T-4.2 1800 I/O-Advanced Tutorial
Session T-3.2 Continued
Meeting Room # 4, Second Floor

T-4.3 1800 Absolute Coding Examples
Chairman, C. Pearson
Meet ing Room n, Se-c-o-n-:d;----::r=l-o-or-

T-4.4 1130 Continuous System Modeling Program,
20 minutes, Robert D. Brennan, IBM

Chairman, Peter J. Woodrow
Meeting Room # 3, Second Floor
Demonstration after talk in Room 263

5

3:30 - 5:00 p. m.
Continued

T-4.5 Open Board Meeting
Chairman, D. A. Jardine
Terrace Suite j 1 & 2, Sixth Floor

T-4.6 Engineering Papers
Chairman, ~uy George
Meeting Room # 10) Second Floor

See be~ for tist

T-4.7 1620 Data Processing Papers
Chairman, Mrs. Carol Hall
Terrace Suite # 4, Sixth Floor

See be~ fop tist

--------------------------------_. __ ..•.. _--

8:30 - 10:00 a. m.

10~~0 - 10:30 a. m.

10:00 -°11:00 a. m.

Wednesday, November 30, 1966

Session W-1

W-l.1 1500 Computed Assisted Instruction (CAl),
Dr. J. L. Stone

Chairman, Frank Maskiell
Meeting Room # 3~ Seco-n-d--r-l-o-o-r-

W-l.2 1800 Systems Project
Chairman, C. Pearson
Meeting Room # 4 & 5, Second Floor

W-l.3 Contributed Program Library, F. A. Merks, IBM
Chairman, Laura Austin
Meeting Room 1# 9) Second Floor

W-l.4 Conversion Project (Systems)
Chairman, James Stansbury
Meeting Room # 2, Second Floor

W-1.5 1620 Application Papers-Operation Researcn
Chairman, James R. Oliver
Terrace Suite # 1 & 2, Sixth Floor

See be tOb] for list

W-l.6 Engineering Papers
Chairman, John Meriwether
Meeting Room N 10, Second Floor

See be l.ObJ for 'Li8t

Coffee - Imperial Salon, Lower Mezzanine

Ladies Hospitality Coffee - Pavilion Room,
First Floor

6

o

7

10:30 - 12:00 a. m. Session W-2

0 W-2.1 University Education Project
Chairman, Marv Goldberg
Meeting Room # 9, Second Floor

W-2.2 1800 Systems Project
Session W-l.2 Continued
Meeting Room # 4 & 5, Second Floor

W-2.3 Impact of Standards on Computer Users,
J. Farley, IBM

Chairman, Paul Bickford
Meeting Room # 3, Second Flo(ltr

W-2.4 General Interest Papers
Chairman, Mrs. Carol Hall
Meeting Room # 2, Second Floor

See below fo~ list

W-2.S 1620 Applications Papers
Chairman, Greg Payne
Terrace Suites # 1 ~ 2, Sixth Floor

See beZorP fo~ 'List,

W-2.6 Civil Engineering Papers
Chairman, 02en

~ Meeting Room # 10, Second Floor ,II

See below fo~ list

12:00 - 1:30 p. m. Lunch

1:30 - 3:00 p. m. Session W-3

W-3.l Systems Division
Chairman, James Stansbury
Terrace Suites # 1 & 2, Sixth Floor

W-3.2 Applications Division
Chairman, Frank Maskiell
Presidential Salon, Lower Mezzanine

W-3.3 Administrative Division
Chairman, Laura Austin
Meeting Room # 10, Second Floor

W-3.4 Installation Management Division
Chairman, Paul Bickford
Meeting Room # 2, Second Floor

3:00 - 3:30 p. m. Coffee - Imperial Salon, Lower Mezzanine

0

3:30 - 5:00 p. m. Answers to Sound Off Held During General Session
M-l

Chairamn, D. A. Jardine
Presidential Salon, Lower Mezzanine

8

C· ",
, ,J'

c

o
I

I"

o Section

M-3.4

M-3.5

c'

M-4.4-

M-4.8

o

USER & IBM CONTRIBUTED ?APERS

Title and Author

1. "llSe ~'1onitortl - Gene Lester - IBM - 60 min.

2. "1130 Compiler" - Dion Johnson - IBM - 30 min.

1. "SYMTRAN: The Addition of Formal Algebraic
Manipulative Capabilities to FORTRAN with Format" -
Mary Clo Carey - University of Southwestern
Louisiana - Elementary - 25 min.

2. "A Processor for both SPS and FORTRAN" - James
R. Oliver and Guy George - University of
Southwestern Louisiana - Intermediate - 20 min.

3. "University of Mississippi Floating Point
Subroutines" - Richard D. Ross - University of
Mississippi - Elementary - 25 min.

4. "A Computer Plotting Language" - James R. Oliver
and John McMahon - University of Southwestern
Louisiana - Intermediate - 20 min.

1. "1130 Compiler", continued for M-3.4 - Dion
Johnson - IBM - 30 min.

2. "1130 Disk and Card Programming Techniques" -
Krauf - IBM - 60 min.

1. "Relocatable Data-Conversion Subroutines for
1620 SPS II" - W. Norris Tuttle - General Radio
Company - Intermediate - 20 min.

2. 1~eletype Input to the 1620 on an Interrupt Basis
While Operating Under Monitor I" - Prof. Don Box~
James H. Hughes and Hugh B. Kerr - Tennessee
Technological Unive~sity - Intermediate - 20 min.

9

Section

M-4.8, contd.

T-l.3

T-l.6

T-l.7

T-2.5

Title and Author

3. "General Format Conversion Program" -
Robert B. Balder - Rockville, Maryland -
Intermediate - 25 minutes

4. "General Card to Printer Program" - Janet
Allen - PIONEER Computing Department -
Elementary "- 2 5 -minutes

1. "Hybrid Computer Simulates Stell Process l1
-

. Everett L. Keener - Applied Research
Laboratory, U. S. Steel - Elementary - 30 minutes

1. "Computer Requirements for the Undergraduate
College tl

- Robert C. Bushnell - Oberlin
College - Elementary - 30 minutes

10

2. "Computerized Library Circulation" - Guy George '''~J
University of Southwestern Louisiana - Inter-
mediate - 20 minutes

3. "USL Student Scheduling" - Jack D. Testerman
and Earl K. Turner, Jr. - University Of
Southwestern Louisiana - Inrermediate - 30 minutes

1.. "Scientific Computing at an Astronomical
Observatory, FORTRAN Language Timings on
360/30, 360/40 and 360/50n - Robert L. Shutt -
National Center for Atmospheric Research -
Elementary - 15 minutes

2. "FORTRAN Debugging on the IBM 360'i - James
S. Taylor - Systems Analysis Department -
Intermediate - 45 minutes

3. "1620-360 Simulation" - H. Klissen - IBM -
30 minutes

1. ltA Diagnostic Case Pl"'esentation Program" -
Roger Gudobba, James L. Grisell, and Peter
Beckett - De-troit, 'Mi,~hlgan - Intel'med iate -
30 minutes

Section

o
T-2.5 Contd.

T-3.4

o T-3.5

T-3.6

o

Title and Author

.. _------- .---
2. '~An Information Storage and Retrieval System

for Radiological Surveillance Data i
" - Nancy

A. Paquin and Claudette Thompson - Rockville"
Maryland - Element~ry. - 30 minutes

3. !RAGE - An Inforamtion Retrieval Language~f -
Jack D. Testerman and Joseph B. Tinker -
University of Southwestern Louisiana -
Intermediate - 30 minutes

1. dOn-Line Debugging on the IBM 1130'; - Peter
J. Woodrow - Princeton, New Jersey - Inter
mediate - 45 minutes

2. "1130 Data Presentation System, Graphic
Plotting Language" - Richard E. Weber -
IBM Manufacturing Industry Development -
Advanced - 45 minutes

1. "A Disk-Oriented Cross Tabulation Program" -
Donald L. Wright - Georgetown University -
Intermediate - 30 minutes

2. ;'Sampling with Unequal Probabilities and Without
Replacement" - Ronald G. Kleibrink - University
of Texas, Medical Branch - Intermediate -
15 minutes

3. :IEstimation of Power of F Test by Patnaik t s
Approximation 11 - Sudhir N. Dalal - University
of Texas, Medical Branch - Intermediate -
15 minutes

4. 1iReliability Predictions Using an IBM 1620
Computer" - M. J. Cunniffe and W. H. Bleuel -
Rochester, New York - Intermediate - 30 minutes

1. tIComputer Assisted PaintingH - James R. Oliver -
University of Southwestern Louisiana -
Elementary - 20 minutes

2. !~Computational Linguistics Program" - James
R. Oliver and Sam Baty - University of
Southwestern Louisiana - Elementary - 20 minutes

11

T-3.6:1 Contd.

T-4.6

T-4.7

W-l.5

W-l.6

Title and Author

3. IlUseful Hints for Writing High-Speed
Compilers" - R. S. Milner - University
of the West Indies - Intermediate -
45 minutes

1. "Three-Dimensional Plotting Using the
IBM 1620 and CALCOrvIP 564 Plotter ll

-

R. G. Nelson - Bell Telephone Laboratories
Intermediate - 30 minutes

2. liDRAFT" - J. R. Birdwell - Dow Chemic.§l
Company - Elementary - 45 minutes

1. f!The 1620 as a Data Collector!! -
Robert L. Shutt - Sacramento Peak
Observatory - Intermediate - 30 minutes

2. \; An Alumni Records System for the 1620:1
-

William L. Paxton - Bucknell University -
Intermediate - 30 minutes

3. IIStudent Record Keeping by ComputerH -
3~~~. Oliver, Russell Schouest,
and Ronald DeKerlegand - University
of Southwestern Louiaiana - 20 minutes

1. HNetwork Analysis in Health Program
Management" - Norman L. Dunfee -
Rockville, Maryland - Intermediate -
30 minutes

2. "The Analysis and Design 0:- a Standarized
Program for Continuous Forest Inventory!! -
John F. Jewell - Michigan Technological
University - Intermediate - 30 minutes

3. "Project Hanagement - Status Simulator" -
Ernest R. Johnson - General Motors
Institute - Intermediate - 20 minutes

1. ':A Subroutine Set for Automation of Logic
Circui t Design;"· - Peter Schneider -
Watson Research Lab, IBM - Intermediate -
50 minutes

12

c

c)

I,

Section

o
W-l.6 Contd.

W-2.4

o W-2.5

W-2.6

o

Title and Author

2. "Engineering Algorithm Decoder!1 -
John R. Ruckstuhl, ~1ervin C. Budge,
and Larry J. LeBlanc - University of
Southwestern Louisiana - Intermediate
50 minutes

1. ',iGerman-English Translation on the IBM
1620 Computer:' - James A. Lawler and
Mrs. Mary C. Kerr - The Tennessee
Technological University - Intermediate -
40 minutes

2. itA Self-Organizing Program" - James R.
Oliver - University. of Southwestern
Louisiana - Intermediate - 20 minutes

3. "A New Type of Random Number Generator" -
R. G. Fryer - Sylvania Electronic Systems
Williamsv~lle, New York, 14221 -
Elementary - 30 minutes

1. IIComputer Programs for Material and
Process Selection i

: - Donald J. King -
Flint, Michigan - Intermediate -
45 minutes

2. ;'Management Simulation Games I , - Dr. R. L.
Jensen - Emory University - 30 minutes

1. HComputer Analysis of Pipe Stress'i -
T. E. Bridge - Philadelphia, Pennsylvania
Technical - 45 minutes

2. i~On the Efficient Solution of Large
Structures" - Norris L. Hickerson -
Tennessee Technological University -
Elementary - 20 minutes

13

Administration Division
November 28, 1966

The Administration Division held an organizational meeting at which the
objectives and scope of the Division and projects were discussed. There
were 18 people in attendance.

By direction of the Executive Vice-President under the full Executive
Board, the Administration Division will have broad responsibilities for
all activities which are necessary to operate COMMON as an organization.
The Division will carry out these responsibilities thlDugh projects under
the following categories:

Program Library
Reference Manual
Meeting Plans
Communications

Each project is further defined below.

A. Program Library - Scope and Objectives.

1. Act as a steering committee in all matters pertaining to program
information distribution from the IBM Distribution Center with
the following guidelines:

a. Determine program and documentation standards for customer
contributed programs.

b. Maintain clear channels with IBM for customers to obtain
contributed programs directly.

c. Establish procedures for review of contributed programs and
their subsequent certification or deeertifica.tion.

2. Scope will cover program information distribution for 1620, 1130,
1800, and 360. COMMON members from the 360 area will work with
representatives from GUIDE and SHARE and IBM in a joint effort.
The representatives for the other machines will work with IBM
Progrrua Information Department representatives.

B. Reference Manual - Scope and Objectives.

1. Present to all member installations the information necessary to
understand the organizational structure, the obligations and
advantages of membership, and the standards set forth by COMMON.

2. Scope of the Reference Manual will cover:

a. By-Laws.

b. Lists of officers and Executive Board members.

-1-

14

o

c

o

c. Membership list.

d. List of current projects and their di~ectors and the
latest progress reports of project activity.

C. Meeting Plans - Scope and Objectives.

1. To coordinate the planning of all COMMON meetings with the ob
jective of presenting a unified program of interest to all meln
bers and fostering the c~ntinuation of existing projects and
initiation of new projects.

2. This project will guide the individual Program and Arrangements
chairmen and assist them in every way possible.

D. Communications - Scope and Objectives.

1. The scope of this project is twofold, communications with members
and inter-user group communications.

2. For communications with members the project shall be responsible
for distributing through the International Secretary all corres
pondence, project reports, and submitted articles or items deemed
to be of interest to the general membership. This will also
include announcements from the Executive Board, ballots, and infor
mation from other users groups.

3. Inter-user group comrr4unications will be handled by a member of
the Executive Board and will include receiving and giving of
information pertinent to other users groups in our relations with
IBM and professional groups such as ACM and the American Standards
Association. Information deemed to be pertinent to the membership
will be forwarded by this project to the International secretary
for inclusion in the Secretaryt s distribution.

The following Pro tern chairmen were selected for this Division:

Contributed Program Library - PREP Forms
Miss Gaye Baber (1454)
Research Division
National Education Association
1201 16th Street, N.W.
Washington, D. C. 202 223-9400

Reference Manual
B. Roswell Russell (3363)
College of Wooster
Wooster, Ohio 44691

-2-

15

Inter Users Group Communications

J.U.G. Inter Library Exchange

Vial ter A. De Legall
Schering Corporation
Bloomfield, N. J.

-3-

l6

c

;r'
;'-,-~,7

o

0 "',
I

o

Attendees

Meeting
Administration Division

November 28, 1966

Charles E. Maudlin, Jr. Indiana State University, Terre Haute,
Indiana

Gaye M. Baber

Robert B. Balder

Norman L. Dunfee

Walter A. DeLegall

Maxwell Marks

Robert H. Wilkin

J.A.N. Lee

B. Roswell Russell

P. Lonergan

Arthur F. Hall81n

Fred Caprez

Carol A. H. Hall

James R. Oliver

John F. Keller

Joyce E. stout

Stanley G. Knight

Ro bert C. Allen

National Education Assoc., Washington, D.C.

U. S. Public Health Service, Div. of
Radiological Health, RockVille, Md

U. S. Public Health Service, Div. of
Radiological Health, Rockville, Md

Schering Corporation, Bloomfield, N.J.

IBM Corporation, White Plains, N.Y.

Hooker Chemical, Niagara Falls, N.Y.

University of Mass., Amherst, Mass.

College of Wooster, Wooster, Ohio

IBM Corporation, ~{hite Plains, N.Y.

Firestone Tire and Rubber, Akron, Ohio

Tacoma City Light

Louisiana State Univ., Baton Rouge, La.

Univ. of Southwestern La., Lafayette, La.

Loyola Univ., Ne"\-T Orleans, La.

Dow Chemical, Midland, Michigan

Trunkline Gas, Houston, Texas

University of Victoria, Victoria, B.C.,
Canada

17

-----"~-~-------------------, ... -"---~--- .. ,-,-",,'.-,,---~---,-" .. -.. ----,-,','-'''-.-",'''''--.... -.. " '''' ... -.-.. , •... --,,-.~~-~------,

PRELIMINARY REPORT OF THE
TSX REVIEW COMMITTEE

Presented at:
COMMON Meeting

New Orleans, Louisiana

November 30, 1966.

Members:

Wayne Barnes

Dick Edsall

Cliff Foerster

Max Felix

Charla Pearson

Sterling Weaver

Gio Wiederhold

18

c

(:~
SHARE

IBM

IBM

COMMON

COMMON

IBM

SHARE

"""",,,,;!1:!'. !f!!!!W"",,

o

o

, (1. tMtt' trt

INTRODUCTION

This is a preliminary report of the Time-Shared Executive
System for the IBM 1800 Data Acquisition and Control System
by the joint TSX Review Committee (TSXRC). COMMON, IBM
and SHARE participated in this review. GUIDE was invited
to participate but did not elect to do so. The report has
been reviewed by IBM for accuracy.

The reader should be aware that the comments in the following
sections, for the most part, are concerned with functional
aspects of the system rather than performance characteristics.
The report is critical in tone since the Committee felt its
job was to discover and report potential deficiences in TSX
rather than iterate and praise the desirable features, of
which there are many.

-2-

19

lIP

20

c
TABLE OF CONTENTS

Page

Introduction 2

Philosophy 4

1800 TSX System Generation 5

1800 TSX System Director 8

1800 TSX Nonprocess Monitor Supervisor 13

1800 TSX Disk Utility Program (DUP) 16

1800 TSX Assembler Language 19

1800 TSX FORTRAN 21

1800 TSX Core Load Builder 25 ~)
1800 TSX Subroutine Library 26

1800 TSX Simulator 29

1800 TSX Diagnostics 34

1800 TSX Languages 37

1800 TSX Manuals 39

-3-
III
I

o

o

o

21

PHILOSOPHY

Early in the Commit-Gee' s investigation of TSX, three important
subjects were discus2:::d~ These three subjects continually r:e
appeared. The Committee believes that they have a major impact
on the design of an operating system. As such, the Committee
strongly recommends thHt Users Groups provide definite input on
these areas.

The first involves the trade-off between Multiprogramming and
Core Exchange methods. The TSX Committee agrees that multi
programming, as a design objective, is necessary for some
applications and extremely desirable for the user who is
willing to buy a 32K multi-disk drive system. The Committee's
definition of multiprogramming is:

Several independent programs residing concurrently within a
single main computer storage that makes maximum use of all
available machine cycles by transferring control between programs
based on some form of priority and the availability of both
process and system I/O devices.

For systems with 8K or 16K memory, the core exchange method,
such as TSX, is adequate for many applications and utilizes core
more efficiently. However, this is generally at the expense of
throughput due to the problem of overlapping I/O.

Secondly, there is the distinction between process and non
process jobs. The Committee agrees there are installations
where it is difficult to make a distinction between process and
non-process jobs and also there are times when non-process jobs
may have higher priorities than process jobs. However, other
installations require a more rigorous discipline and distinction
in the area.

The manner in which Time-Sharing is utilized in a'particular
installation determines, to a great extent, whether a distinction
between process or non-process should be made.

The third subject involves the type of installation and/or
applications, of which there are many. For example:

1 Dedicated installations
2 Integrated installations
3 Mature applications
4 Research oriented applications
5 Laboratory data acquisition.

The type of application for which the system is intended controls
many of the design considerations. The Committee feels that
system modularity is the key concept involved here, but questions
whether it is the answer to all problems of this type.

-4-

--.----.,~".-,-....• --~~~~~~~~~~----------

22

The TSX Review Committee recognizes the need to establish a more
effective relationship between User Groups and IBM so that a match
between user requirements and future operating systems can be C-~
achieved.

1800 TSX SYSTEM GENERATION

INTRODUCTION

This report is based on a review of Phase I TSX Systems Generation.
Any changes in generation of TSX Phase II are anticipated to be
minor.

System Generation is a process, or series of steps, that
generate the TSX system for the 1800. The main purpose is to
process certain routines and build the various components which
comprise the TSX system and construct the system on the resident
disk file. Ideally the only role that the user should have to
perform in System Generation would be to define his physical
system parameters and assign interrupt levels. The actual
building or generation of the TSX system should be handled
through the 1800 by a series of system programs that require
little or no intervention by the user.

METHOD

The method used in generation of 1800 TSX is to provide the user
with a set of detailed procedures that will provide step-by-step
instructions from card box to on-line processor. There are (:,;
approximately 80 (at last count) of these detailed steps that -
must be performed by the user. In addition, the procedures
involve much card manipulation, hand filing of cards, and also
involve settings of data, sense, and program switches. The
format of the relocatable object decks used for constructing TSX
is identical to the format of object decks derived from the TSX
FORTRAN and Assembler.

PREPARATION

It is advisable to thoroughly review the entire written procedure
before attempting System Generation. The step-by-step
instructions, dictionary of all error messages, as well as the
formats for all control cards, are presented in the 1800 Operating
Procedures, c26-3754. Since the control cards define the entire
system to TSX, including interrupt levels, considerable care
should be exercised in the planning and preparation of these cards~

REQUIREMENTS

Machine

Time

8192 words of core, 2310 disk, 1442 card read
punch, 1053 or 1443 or 1816 printer.

System Generation time varies considerably
based on individual specifications. Initial
system generation requires a minimum of
approximately 3 hours:

-5-
:1

o

o

•

c)

1/2 hour system load time.
1-1/2 hours Task Assembly (including

1443 output).
1 hour System Director assembly.

Subsequent skeleton builds involve the time
required for the recompiling or assembling of
user subroutines on line and approximat~ly a
5 minute off-line time to perform the actual
skeleton build function prior to new process
cold start.

23

RESTRICTIONS

Skeleton Modification

While relocatable programs can be deleted and replaced on
line by the Disk Utility Program (DUP) there is no known
method of modifying any features of the TSX skeleton on
line. Changes in the skeleton area (including user
written skeleton interrupt routines) will require an off
line skeleton build.

System Area Modification

Any modifications (including IBM distributed modifications)
of the following system areas must be done off-line using
the system loader.

FORTRAN
Assembler
Disk Utility Prog.
Simulator

Core Load Builder
Error Detection Prog.
Supervisor
Cold Start Prog.

However, modifications to the subroutine libr~ry may be
performed on-line through the Disk Utility Program.

Logical Unit Number

The logical unit numbers (LUN) associated with FORTRAN I/O
statements must be assigned during System Generation.
There is no way of reassigning the LUN at program execution
time.

CONCLUSION

1. Initial System Generation involves many manual procedures
that the user must perform. The more manual intervention
required the greater the chance of error.

2. Modification to the skeleton area and many of the system
programs requires the user to go off-line. This will present
a major problem to some totally on-line users (off-line means
not controlling process) •

-6-

3· Logical unit numbers (LUN) cannot be assigned at program
execution time. This restriction should be remoVed to
facilitate exchange of programs between users.

RECOMMENDATIONS

24

1. Possible development of an IBM System Program for multi
drive users that would build a user 1800 TSX system from an
IBM supplied TSX Nucleus and user defined system parameters.

2. Modification and rebuilding of the TSX system should be
possible on line under control of TSX.

3. A control card method should be developed to assign logical
unit numbers at program execution time.

-7-

O· i

o

o

o

C"
,Ii J

o

25

1800 TSX SYSTEM DIRECTOR

INTRODUCTION

The system director directs the handling of interrupts, mainline
process programs and error routines and makes the system available
to the non-process monitor.

METHOD

The system director resides in core at all times as part of the
skeleton. It is read from disk only during a cold start or EAC
re-load operation. Primary entry is from internal and external
hardware interrupts and calls from the user's programs. The
principle components are (see also Figure 1):

A.

a MIC Master Interrupt Control
b PSC Program Sequence Control
c TSC Time Sharing Control
d ITC Interval Timer Control
e EAC Error Alert Control
f Mainline Core Load Queue Table
g Level Work Areas

The MIC (Master Interrupt Control) is a re-entrant routine.
It directs all hardware interrupts (internal, I/O and
external) and programmed interrupts to the desired
routines. Control returns to MIC as long as unserviced
interrupts exist.

Interrupts are directed by fixed words in lower core (addr.
11 and up) to the individual Level Work Areas in the
skeleton (104 words - one area for each interrupt level)
where indicators are set and the index registers are saved.
Control is then transferred to MIC which first saves, the
accumulator and the status word for the interrupt level
already in process. The ILSW for the interrupt level to
be serviced is sensed. A branch is made via the Level
Work Area through the Interrupt Branch Table (IBT) residing
within each core load in transient core. From theIBT I/O
interrupts are directed to the required routine. For
Process interrupts, MIC is re-entered to sense the PISW. A
skeleton resident Interrupt Core Load Table (ICLT) is
associated with each PISW. The ICLT indicates for each bit
in the PISW one of the four possible methods for servicing
the interrupt and it contains the required addresses.

In-core-with-skeleton
Out-of-core interrupt core load
In-core-with mainline
Record

Methods 3) and 4) may require different information in the

-8-

26
IeLT from one core load to another. The Program Sequence
Control PSC makes the necessary changes to the ICLT when C')

the core load is read into core. It obtains the
information from the Interrupt Status Table (1ST) which
resides with each process mainline.

The number of interrupt levels to be serviced must be defined
at system generation. Not all the levels defined must be
used. The user can, and in fact should, make allowance for
future expansion. Should it be necessary in the future to
change the number of defined interrupt levels, all core loads
without exception will have to be reassembled. This is
because the Interrupt Branch Table (IBT) and the Interrupt
Status Table (IST) which reside with the core loads have to
be amended accordingly. If the ICLT contains no specific
information, the interrupt is recorded by default.

Recorded interrupts can be interrogated and reset by the
QIFON call in any user written routine, interrupt or mainline.
They can also be reset by the execution of a CALL CLEAR.

Whenever an out-of-core interrupt core load is being
processed, TSX will mask all other interrupt levels for
which out-of-core servicing has been specified. There is
no software queueing facility for out-of-core interrupt core
loads. The core exchange operations wait pending completion
of all I/O operations which depend on parameters or data
areas in trans ient core. ~\.

B. The PSC (Program Sequence Control) is responsible for the
orderly transfer of control from one core load to the next.
A core load may also temporarily be saved on disk pending
the processing of another core load (CALL SPECL, CALL BACK).
All PSC functions are restricted to process mainline core
loads.

The next core load to be executed is indicated to PSC by the
execution of CALL CHAIN or CALL SPECL statements or by the
VIAQ subroutine.

Though the queue table itself is part of the System Director
the qu~eue statements QUEUE, UNQ, QIFON AND VIAQ are designed
as subroutiqeswhich can be kept in skeleton or with the main
line at the user1s discretion. Processing of mainline is
not suspended as a result of queuing a higher prior-ity main
line.

C. Multiprogramming was not part of the objectives of TSX.
Some degree of time sharing is achieved by the core exchange
method under TSC (Time Sharing Control) which is entered from
the execution of a CALL SHARE. This statement may be part
of the user I s process program intended for spec ial
applications where time sharing is desired without the use of 0 ...
the queueing technique. The VIAQ also contains this state-
ment for execution when the queue table is empty. As a
result, the process core load which is in progress or has

-9-

o

o

o

D.

just been completed, is saved on disk and control is
transferred to the nonprocess monitor or the nonprocess
core load if one has been previously interrupted and

27

stored on disk. The computer remains in the nonprocess
mode for a user specified time unless a CALL ENDTS is
executed by an interrupt routine. As a result, a complete
core exchange again is made and the process program is
pursued at the instruction following the CALL SHARE.
When located in the VIAQ subroutine, it may simply result
in a loop back to CALL SHARE, if the queue is still empty,
followed by another core exchange. All waits are performed
in the nonprocess mode.

The programmer of the nonprocess core load has no control
over the occurrence of a core exchange during the execution
of his program.

The ITC (Interval Timer Control) services all interrupts
involving the three machine timers A, Band C, the nine
programmed timers and the programmed real time clock. The
programmed timers and the real time clock are based on timer
C. It is reset by subtraction rather than by loading of a
fixed value. Accurate time is therefore kept even when
the response to the timer interrupt itself may be delayed.
Timer C also services the "no-response routine" for the
1053/1816 Printers in the skeleton I/O. As an option it
services the Operation Monitor during nonprocess execution.
Periodic interrupts are available from interval timers
rather than from a real time clock. The programmed timers
interro,gate the ICLT, but only skeleton count subroutines
are entered into. If there is no such routine the
condition is recorded.

E. The EAC (Error Alert Control) program is called to process
all error conditions. The user has the option at system
generation time to specify that core be saved under certain
error conditions. A user written error subroutine can be
included with each process core load. This subroutine is
entered before EAC's error decision subroutine. The latter
analyses the error, prints an error message and indicates
one of the four possible recovery procedures:

Continue through the I/O routine
Reload the System Skeleton and Cold Start Program
Call the User Specified Restart Core Load
Continue Through the Interrupt Level.

PROBLEMS AND SUGGESTIONS

1. The Interrupt Branch Tables (IBT) incorporated in each
individual core load (non process, process, interrupt and
combination) play vital roles in the servicing of all
interrupts. Being located in variable core, they cannot

-9a-

28

be storage protected and thus 'are vulnerabJe to destruction 0
by programming bugs. The fact that the IBT's depend on the
number of interrupt levels ,defined at system generation time
requires the user to plan ahead by defining levels to the
system which will not be used initially but possibly at a
later date.

A new system generation is required for the definition of
additional levels and all core loads have to be rebuilt.
The user may thus be required to remain off-line until the
required core loads are again available. It has been
suggested to include a basic Interrupt Branch Table IBT in
the skeleton with all branches to in-skeleton routines
storage protected. Branches to interrupt routines residing
with mainline may be filled in at core load time and reset
on exit from that core load. Their format should be
compatible with changes in the number of defined interrupt
levels.

2. The Interrupt Status Tables (1ST) which reside with all
process mainline, and combination core loads depend also
on the number of interrupt levels defined.

3· QIFON is the only means offered by TSX to interrogate
recorded interrupts. The desired decision may not always
be the queueing of a core load. It is suggested to add a
routine to test the recorded interrupt and execute a branch
if on.

4. A suggested additional function to TSX is to have in
skeleton "load-on-call" servicing of disk resident interrupt
routines. A read-in area in the skeleton should be
provided for each level of interrupt for which this type of
servicing is desired.

5. Some users feel that they are restricted by TSX offering
only one level of core exchange for interrupt handling.
The reasons for only one level were considerations of disk
storage requirements and exchange time.

6. The core load queue is restricted to one entry for each
individual core load with the same priority.

7. The VIAQ routine calls SHARE if the QUEUE is empty. When
ever the time period, specified for SHARE by the user at
system generation, is up a core exchange takes place before
TSX checks whether any core loads have been queued. There
is a delay in the attention to newly queued core loads even
after execution of the ENDTS routine until the program
timers are updated.

G

It is suggested to provide a more efficient method for time 0,1
sharing than SHARE when queueing,techniques are used, which
avoids unnecessary core exchanges and give immediate

-10-

o

o

o

8.

9·

29

attention to core loads entered into an empty queue.

It is realized that the distinction between process and non
process work cannot always be clearly made. The programmers
should therefore be provided with some option to prevent
suspension of "nonprocess core loads" during critical phases.

Consider the following types of core loads:

a) Core loads of very short duration, which must be
executed within a matter of seconds at random or
periodic intervals.

b) Core loads of several seconds duration at random or
periodic intervals of one minute or longer, which
must be executed within their interval.

c) Core loads of several minutes duration at low
frequencies.

d) Nonprocess monitor jobs.

e) Background process core loads of lower priority than
monitor jobs.

On-line core loads (a) whose repeat frequency period or
permissive time delay is considerably shorter than the
execution time of core loads (b) must be able to suspend
servicing the latter.

A similar requirement exists for core loads (b) to suspend
(c) .

However, TSX permits servlclng of on-line core loads at
two distinct levels only, namely INTERRUPT and PROCESS
core loads. The servicing of "background" process core
loads has not been part of the objectives for TSX.

As such, TSX does not have the ability to service all of the
above core loads as core loads in a true priority fashion.
In order to handle the situation, the user must make core
loads (a) skeleton interrupt subroutines. To obtain true
priority execution, the user must include in skeleton all
interrupting programs except one (i.e. one level of
interrupt core-load is provided).

To alleviate the problem, some users feel multi-level
exchange is required while other users want a multiprogramming
capability or even a combination of the two.

10. It is suggested that the Interval Timer Control (ITC)

-11-

11.

12.

,:
I

30

provide as an optional routine a job scheduler. This should ~
be able to queue core loads at fixed times or at periodic
intervals with a specified offset to the full hour or the
full minute. Specifications to be accepted from control
cards and able to be modified when the system is on-line.

Similarly, a calendar routine would be useful for some
users.

When the EAC initiates a skeleton reload the ICLT and the
printer message table are saved and restored. The same
philosophy is not maintained in respect to INSKEL COMMON
and the queue table. To let the system continue on-line
may depend on the availability of meaningful data from
INSKEL COMMON and the regular execution of queued core
loads. It should be studied how TSX could insure this.

A method should be investigated to provide job accounting
routines.

-12-

o

o

o
Figure 1.

TSC 1 PSC I MICI

HSHAREj HCHAINj HINTEXI

HNDTst HSPECLI HLEvEL1

LELEARl
-(PAusUt WBACK f

L-iEXIT I

* Not Always in Skeleton

SYSTEM
DIRECTOR

QUEUE
Table

o

~ QUEUE*I

'VIAQ*J

UNQ*l

QIFON*'

I

EAC

U EAC I
in-core

. Error
Decision

Sub-
,Routines

Error
Disk
Program r EAG EXIT I

ITC)

IIcOUNT* I

CLOCK*

.1ETCLt

I
TABLES

evel workl
areas l

o

Y bG;mTmunt::a:::.ns
Table

I
HEAC Woik }.':'3a j

-{Save Area 7~~~

~.L!-=

Interr'1J.pt :.c-l~}
Work. Area:;

W
f-J

32

1800 TSX NONPROCESS MONITOR SUPERVISOR

INTRODUCTION

The Nonprocess Monitor (NPM) Supervisor directs the execution of
all nonprocess core loads either IBM supplied as part of the TSX
package (FORTRAN, Assembler, Core Load Builder, Disk Utilities '
and Simulator) or user written. It normally operates under the
System Director's Time Sharing Control. It can also be run as
a dedicated Monitor under TASK.

The functions of the NPM Supervisor are to analyze monitor
control record cards; call and transfer control to the requested
core load; perform the JOB initialization, PAUS and END OF ALL
JOBS functions. It also analyzes control record cards following
the *STORECI and *SIMULCI for the core load builder.

METHOD

The NPM Supervisor, including all monitor programs, must reside
on logical disk drive zero where it occupies 21 sectors. The
first 168 words of sector zero on this disk contains the Non
process Communications Area which provides the logical links
between the monitor programs and the users programs. It resides

o

in the 1 8 words at the high end of core. This area slso 0
contains the loader-for the monitor programs. There are some .
unused words in which the sector address and word count for
additional system programs could be located.

Entry to the NPM Supervisor occurs through Console Interrupt,
from the system director's SHARE routine or from the Disk Utility
program.

Analysis of monitor control record cards extends over columns one
to five only except for the JOB card. All control records are
printed on both the system and the list printers. Invalid
control records result in an error message and cause an abort.
Blank cards are bypassed and not stacker selected. The card
read routine in the Skeleton is used if present and is designed
to recognize cards with a / in column one which turns control
over to the NPM Supervisor.

The JOB card resets the abort indicator and the effective address
for the!nonprocess working storage on disk. It can also specify
which of logical disk drives 1 and 2 are expected to be running
and checks the labels on their disk packs when indicated.

The END card directs the NPM Supervisor into a wait state.

Manual intervention is possible by:

1. Depressing the 1800 CONSOLE IN~ERRUPT with PROGRAM SWITCH 7
ON to:

-13-

o

"

o

o

o

Enter the monitor initially (Open the Card file)
Abort a job in progress prematurely and search
for the next JOB card.

2. Depressing the 1800 START to continue after a //PAUS card.

33

This still results in the desired continuation of the nonprocess
function even though the computer may be in the process
or interrupt mode.

3. Stop and restart the 1442 card reader if a job is in
progress.

The NPM Supervisor operates in several phases. The largest one
occupies 3692 words of core. Analysis is performed at card read
speed for most control cards.

RESTRICTIONS AND PROBLEMS

1. The NPM Supervisor, as well as all programs in the monitor
package, (FORTRAN, Assembler, Disk Utility, Core Load
Builder and Simulator) are limited to the use of the one
1442 Card reader with the lower logical unit number.
However, this restriction does not apply to the user's

2.

programs.

Control records can be entered from cards only. It is
agreed that this may be satisfactory to the majority of
TSX users.

3. There is no END OF FILE control record. The user must
devise his own ways to determine the end of data input.

4. Because the high end of core is overwritten by the Non
process Communications Area, the FORTRAN COMMON ~rea
cannot be passed from one monitor function to another
except by the use of fixed files. NPM core loads can
pass COMMON to another one by the CALL LINK.

5. TSX does not provide a way to split the NPM Supervisor and
Disk Utilities from the Assembler, FORTRAN and Simulator.
In multidisk installations it may be desirable to keep the
latter group on a separate (off-line) disk pack to conserve
space on the on-line system disk.

6. Individual programs or phases of the monitor package can
be reloaded separately, but only when the system is off-

7·

line.

The absence of utilities for cards, paper tape and magnetic
tape has been noted. Of these, the lack of routines to list
and reproduce cards will be most severely felt. The
monitor package also offers no routine for the loading of

-14-

card resident core image programs directly into core
without going through disk. '!here is no facility for
spooling card I/O to disk for unattended operation of
time consuming nonprocess programs.

8. When voltage process interrupt is dis conli3cted or turned
off, interrupts may occur because of the zero voltage
level. Since nonprocess programs cannot CALL MASK, the
continuous voltage interrupt cannot be masked out when
using the stand alone nanprocess system.

9. Message stored previously by an aborted job are not
cleared from the message buffer.

10. There is no provision for source input from magnetic tape
or disk for ASM and FORTRAN.

CONCLUSIONS

A considerable part of the NPM Supervisor is dedicated to the
analysis of control records for the core load builder. All
supervisor functions are relatively simple and executed
efficiently.

The restrictions should be carefully reviewed.

Consideration should be given to the complete separation of
the FORTRAN Assembler and S:i.mulator programs from the NPM
Supervisor. They could be subjected to the same TSX functions
like the user's nonprocess programs.

~15-

34

o

o

o 1800 TSX DISK UTILITY PROGRAM (DUP)

INTRODUCTION

35

The DUP is a group of routines for the m.aintenance of data and
programs on disk packs while the TSX system is on-line. A few
functions, however, can only be executed when the system is off
line. One option provides a listing of the contents on the
disk packs.

METHOD

DUP is immediately linked to the Nonprocess Monitor (NPM) Super
visor. Like the latter, it must reside on logical disk drive
zero where it occupies 68 sectors. It is kept on disk in
"wrap-around" address format and operates in about 18 different
phases. 'TIle largest phase occupies 3692 words of core storage,
always at the high end of core. 'TIle mode of operation remains
the same for all core sizes. Principal entry to DUP is from
the NPM Supervisor. Other entries can occur from Assembler
and FORTRAN to perform the temporary store of the newly compiled
program and to complete the program header informat.ion.

DUP uses the card I/O routines in the skeleton if present. Blank
cards are skipped and stacker selected When searching for control
cards. Other non-DUP or non-monitor cards result ~n an error
message. All DUP control records and messages are printed on

t:) both the system and list printer.

•

Control cards use a column oriented fixed format which, as far
as possible, is identical to the IBM 1130 system.

Pre-requisites for most DUP functions to communicate with a disk
pack are:

d)

Sector Addresses.
Numeric Lable in Word 0 of Sector O.
Disk Communication Area (balance of Sector 0).
'TIlis gives information on the size and location of work
storage areas and on the Location Equivalence Tables
for the relocatable program area (LET) and for the
fixed area (FLET) containing core loads and data.
Valid entries in LET/FLET.

DUP assumes exclusive responsibility for spotting and deleting
programs, core loads and data areas on disk packs and for making
corresponding entries in LET/FLET. 'TIle disk area for relocat
able programs and LET can be packed to eliminate unused spaces
Which have resulted from deletions. No packing is possible in
the fixed disk area for core loads and data (FLET). Unused
spaces in this area are used for storage of new core loads or
data, provided the space is sufficient. FLET is searched for
this purpose and the first space large enough is chosen. 'TIle
search is not extended to find the smallest possible space.
Adjacent void areas are combined into one. No consideration
is applied to disk cylinder boundaries.

-16-

RESTRICTIONS AND PROBLEMS

1. Practical guide lines for estimating the requirements for
the LET/FLET areas are lacking in the reference manuals.
Once defined, the allocated space cannot be altered with
out loss of all data on the disk pack.

36

2. The *DEFINE CONFG function is a System Generation function
and must be done off-line.

3. Some users desire the means by which they can specify the
location or re-define the size of core loads or data areas
in the fixed area on the disk with appropriate entry in
FLET.

o

Leaving this responsibility as it is, to DUP, may be
satisfactory for fairly dedicated applications where few
changes and additions to the initial set of core loads and
data areas are anticipated. In applications where frequent
changes and additions are made, it will lead to eventual
fragmentation of the fixed disk areas. In other wordS,
core loads and data areas will be interspersed by small
blocks of unused disk sectors which are too small to store
programs. Core loads and data areas may unnecessarily be
spread over cylinder boundaries. Increased access times
may result. The implementatiGn of packing techniques for
the core load area is very difficult. ~

4. There is a very real danger of destroying valuable information
on a disk by the *DLABL function if the pack label was left
off on the preceding job card.

5. It has been suggested that TSX provide a default routine
which causes a Simple abort if the user does not specify a
re-start core load.

6. The printer output from the *DUMP and *DUMPDATA options
lacks addresses. It is restricted to hexadecimal format.
To enhance the value of these options, absolute disk
addresses and relative addresses should be provided on the
margin. Fixed point decimal and floating point data
output format are desirable.

7. The printer output from the *DUMPLET routine is only
legible to the trained eye. There are no headings.
Improvements to the format and the addition of a version
with output (LET * FLET combined) in alphabetical order

8.

from one or more disks would help to make it a very valuable
tool.

Once an interrupt core load has been assigned to an
interrupt level and bit, the user cannot get rid of it.
He is required to maintain a dummy core load for this
purpose. Deletion of a mainline may cause similar
problems.

-17-

o

o 9·

37

To many users the *STOREDATA control card ~ails to imply
the true functions of this routine which is not restricted
to data. It can be used for core image programs as well
as for allocating data space. Storing of actual data or
programs is practically limited to re-loading of cards
obtained by the *DUMPDATA option. It would help the users
if the dump would also punch a ready-made *8TOREDATA card
complete with all parameters. It has been suggested that
these functions be identified by unique control card names
which describe the funct-ions more clearly.

10. The following routines are absent· from DUP:.

a)

b)

DUMP and LOAD routines with parameters in terms of
disk blocks. .
COpy routine for all or part of a disk~

11. With the ex!ception of all system relocatable subroutines'"
TSX system programs are not accessible to·DUP f;unctions although
FORTRAN J Assembler and Simulator can be removed :;once .the
syste~ has "been built.

12. Just as it is possible to speci~y at core load build time
(*STORECI) that the core load is to be executed as an
interrupt core load when the specified interrupt occurs,
it should be possible to specify automatic priority queueing
of a mainline core load. The QIFON routine is inadequate o for that purpose and depends on high frequency interrogation.

•

13. The maximum size of fixed data files is 65K words on the
*STOREDATA card •

-18-

38

1800 TSX ASSEMBLER LANGUAGE

INTRODUCTION

There has been considerable discussion over the past years in
regard to desired assembler functions. Many committees have
made recommendations outlining the desired approach in the
development of assemblers. There have been several highly
sophisticated assemblers developed which operate efficiently in
a relatively small amount of core.

The purpose of this review however, is not to discuss assembler
criteria but to evaluate the current 1800 Assembler as specified
in the IBM Manual C2(-5882.

The purpose of the 1800 Assembler as defined in the manual
is to generate binary instruction code from mnemonic symbols and
use labels for other fields of an instruction. The conversion
is one for one; i.e. one machine language instruction is
produced for each symbolic instruction. While this approach
may be inadequate for an effective assembler, it nevertheless
defines what the 1800 Assembler accomplishes. It should be
pointed out at this time that the 1800 Assembler was designed to
operate in a 4K core environment.

METHOD

The Assembler Program resides only on logical drive zero and (;
occupies, approximately 7 cylinders. The, source program is read
and processed, one statement at a time, twice during'each
assembly. During the second pass, the statements are read
either from the disk or the card reader. If the second pass is
read from disk, the assembly is said to be in a one pass mode
which is the normal mode for TSX assemblies. If 'the second pass
is read from th'ecard reader, the assembly is said to be in a two
.pass mode. The Assembler consists of 15 phases which use core
based on an overlay method. The phases are loaded'and processed
automatically and require no manual intervention.

The Assembler uses an 80 word I/O buffer (SAREA) for all I/O
functions. The contents are right justified one character per
word and the card image format is converted to EBCDIC code one
column per character and replaced in the buffer. The time
required to perform an assembly seems to be dependent on the
speed of the I/O devices used.

RESTRICTIONS

1. The Assembler Program can reside only on logical drive zero.

2.

3·

Input to Assembler must be from cards.
magnetic tape input is not supported.

Paper tape and

Only one 16 bit word is generated for each DC constant.
This increases the size of the source deck thereby increas
ing read time.

-19-

£)

•

tH

39

4. There is no automatic relationship provided with INSKEL
COMMON. The only way in which this relationship can be
established is through a reference to 2 words in the fixed
area which contain the high core address and size of INSKEL
COMMON.

5· If an END card-is not present in the input stream, pass 2 of
the assembly is not executed and results are not obtained~

6. The END card remains inside the 1442 until the first card is
punched at the end of pass 2. A separate card feed should
be issued at the end of pass 1 so that the entire source deck
is available to the operator insuring against the misplac~ment
of the END card.

7. Blank cards encountered in the input stream cause an
illegal op code diagnostic during pass 2. It should be
possible to ignore and stacker select blank cards prior to
the END card.

8. Use of a period to indicate EBCDIC coding in DC statements
causes confusion since in other languages this indicates a
constant with a decimal point.

9· All transfer vector LIBF subroutine calls generate a short
BSI instruction tagged by index register 3(XR3). If the
assembly language programmer utilizes XR3 within his program,
it becomes his responsibility to restore XR3 to point to the
transfer vector (TV) prior to issuing a LIBF. This is
accomplished by an (LDX I3 103).

10. The EPR statement does not change library subroutine calls
to extended prevision format nor does it change floating
point constants to extended precision.

11. The operation of MDX and BSC instructions perform a multi
tude of functions. No mnemonics are provided to help
identify each function.

12. There is no cross reference listing of symbols indicating
the various places in the program where the symbols are
referenced.

CONCLUSION

In general~ the 1800 TSX assembly processor appe~rs to be quick
and reasonably efficient. The language itself could use more
mnemonics to clarify statements; e.g. MDX and BSC, but also
important is the need for MACRO instructions. IBM supplied
MACRO's e.g. I/O routines and internal record movement are
essential for an effective assem~ly language. Perhaps even
more critical however, is the need to provide the programmer
the facility to c'onstruct his own MACRO's • Without MACRO

-20-

capabilities, the Assembler is reduced to the simple role of
mnemonic translator.

RECOMMENDATIONS

Solutions to the restrictions presented in this report should
be reviewed for possible early implementation into the
Assembler. This is especially urgent in the case of MACRO's
and providing additional mnemonics.

-21-

40

,0

c

o

o

•

I.

1800 TSX FORTRAN

INTRODUCTION

The 1800 FORTRAN compiler was evaluated in comparison with
currently existing FORTRAN compilers, specifically on IBM
1620, 7090 and 360 equipment.

The sections following summarize the external and internal
aspects of the 1800 TSX implementation.

41

II LANGUAGE

The language is substantially like the

ASA BASIC FORTRAN as described in reference (3).

General

The language, although still basically BASIC, has been
enriched in several useful respects. Certain features of
the implementation for process usage introduce incompatib
ilities.

The following items should be noted when using TSX FORTRAN
to compile decks used on other FORTRAN systems:

1) //FOR control cards have to precede every routine
in the deck to be compiled.

2) FORTRAN COMMENT cards may not appear before continuation
cards nor after END cards.

3) Requirements on the placement of DIMENSION, COMMON,
EQUIVALENCE statements. The requirements are not
unreasonable, but have to be checked when converting
existing programs. See also Section III(l).

4) It is possible to equivalence a one word integer
array with two and three word integer arrays. Care
should be exercised when doing this.

5) Additional disk input/output statements such as FIND
are included and will prove to be very useful in
reducing overhead. These instructions do not exist
in the smaller 360 FORTRAN compilers.

6) Arrays may be 3-dimensional.

7)

8)

DATA statements are included.

Hollerith fields may be specified in quotes, thus
avoiding many counting errors •

-22-

9) REREAD, that is: "'Ihe ability to read a card,
analyze its type, and then reread it with an
appropriate format" is absent here as it is
from all of IBM's FORTRAN compilers. 'Ihis
feature, however, is very des~rable. See reference
5·

10) Alternate FORTRAN I/O subroutines for free field input
would be useful in some environments.

11) Integers, although assigned two or three words for
reasons of proper equivalencing, use only one word
and are therefore limited in size to +32767. This
is sufficient for subscripting and counting use,
but not generally for integer computations (payroll,
integer linear programming, etc.). It would be
desirable to include two~word integer arithmetic.

12) Due to the 2's complement machine logic there is no
integer representation for minus O. 'Ihis feature
has been frequently used in statistical programs on
7000 series machines to indicate missing data, rather
than 0 value data. The same problem exists in the
System/360.

13) One special COMMON block:/INSKEL/ is defined to
communicate with skeleton data areas. 'Ihis feature
follows the syntax of full FORTRAN.

14) STOP, CALL EXIT and CALL LINK-are only to be used in
nonprocess'programs, whereas process programs for
similar functions have to issue CALL VIAQ and CALL
CHAIN. This complicates the change of program status
from non-process to process and vice versa. This is
confusing and not necessary.

15) EXTERNAL statement is included.

III PRODUCED OBJECT CODE .fuW OTHER OUTPUT

The' compiler produces code with man;y subroutine references
for the basic operations which limits speed of execution
somewhat, but is probably by far the best compromise in
the core size versus speed argument.

l) When non-process compiling is done to process programs
that are to be run as process the ONE WORD INTEGERS
control card should be used to avoid incompatibilities
between the two modes. Without this precaution the
:m,UIVALENCE mechanism is altered and DATA entries may
be changed when recompiling.

-23-

42

o

o.

o

2)

3)

4)

Individual declarations by variable name (see FORTRAN
360-H level) would be desirable to enable the
specification of one word FORTRAN integers used in
process control and leaving all other integer sizes
compatible with real variables of either regular or
extended precision.

43

The code is unique in that in order to provide soft
ware - memory - protection all subscripted store and
read statements are compared with the limits of
variable core (not with the dimension declaration) to
protect process-routines and the system. The error
messages given by the System director (see chapter on
Diagnostics) are unfortunately not helpful in locating
the source of the error. An expanded error message
would be a major help in debugging.

A side effect is that repetetive store operations of
a subscripted variable may, in order to save some
execution time, be better carried out using a
temporary variable. The relative speed gain is not
much though since all operations, even stores, are
executed through subroutines; also more core storage
may be required. Example: Summing the columns of a
matrix S into an array A:

DO 11 = 1, 10
TEMP = O.
DO 10 J = 1, 10 rather than

10 TEMP- TEMP + S (I,J)
11 A(I) = TEMP

DO 10 1 = 1, 10
A (I) .=)
DO 10 J= 1, 10

10 A (I) = A(I) + S (I,J)

An adequate listing of variables and their relative
locations is produced. There is no means, however,
of obtaining a symbolic or even hexadecimal listing
of the compiled code. This will make the deter
mination of clobber-type errors considerably more
difficult.

The compile time diagnostic capabilities are non
mnemonic (See Diagnostic report).

IV IMPLEMENTATION

The method of compiling is described in the Program Logic
Manual.

Essentially the entire deck is read into a core memory area
in squeezed form and then the 28 sequentially phases of the
compiler transform the text in a more and more coded
representation while on the other side of this core area a
symbol table is built up. Eventually the symbol table
information can be written out as a MAP and then the
transformed source program has become the object program

-24-

and is written out. A large amount of handling of the
source information and its transformation takes place
since the source string waxes and wanes throughout this
process. However, since in this machine the processor
is so much faster than input-output this approach leads

lt4

to fairly fast compile times. The program size is limited
by the size of the core memory area, namely to about 120
cards for an 8K system. An 8K system, however, will not
normally be able to lead useful programs of this size, so
that this limitation is then valid only when execution on
a larger machine is desired.

V. STORAGE REQUIREMENT AND TIMING

Core Storage: Minimum 3692 at the high end of core.
Disk Storage: 103 sectors.
Speed for 150 statement program:

Without Punching:. 47 statements per minute.
With Punching: (50 cards) 38 statements per minute.

VI REFERENCES

IBM 1800 FORTRAN Language C26-5905-3
IBM 1800 TSX System, Program Logic

Manual Y26-3702-0
Communications of the ACM Volume 7 #10 Page 591

ABA Standards for FORTRAN
ABA Standards for Basic FORTRAN

OS/360 FORTRAN-H Level Programmers Guide
SHARE Secretary Distribution 157 c-4462:

ENCODE/DECODE facilities for memory
to memory data conversion and transmission
in 360 FORTRAN

-25-

o

o

o

•

45

1800 TSX CORE LOAD BUILDER

INTRODUCTION

The Core Load Builder (CLB) builds all core loads that are to be
loaded and executed in variable core. These core loads may be
under control of the System Director or the Non-process Monitor.
The basic purpose of the CLB is to combine a relocatable program
with all called relocatable subroutines into an executable core
load. This includes establishing all subroutine linkages,
hardware interrupt servicing linkages, and creates all
communication areas that are required.

METHOD

CLB uses a 2 pass method each consisting of various phases.
Both passes are processed under control of the Master Control
Routine (MC). Pass 1 contains the initialization and scan
phases. The initialization phase sets up loading tables for
use in subsequent phases and also creates entries in the loading
tables based on information contained in the Control Record
Entry Table" (CRENT). The scan phase determines subroutine
entry points, load addresses, and core storage requirements.
Pass 2 contains the adjustment phase and load phase which are
necessary to finalize the communication area and complete the
building of the core load.

RESTRICTIONS

Subroutine names that appear in a calling sequence, e.g. CALL
TIMER (SUB,I,J) must be defined in an EXTERNAL statement. There
is no check made by CLB to insure that the subroutine name was
defined in an EXTERNAL statement for system subroutine of this type.
Under these conditions, an improper core load will be built and
executed with unpredictable results.

CONCLUSION

In general, the CLB appears to perform all of its required
functions in a satisfactory manner. The CLB is essentially
I/O bound and the elapsed time for building core loads varies
from a few seconds to approximately 2 minutes depending upon
the size of the core load, the number of disk drives utilized
by the system, and the number of core loads in the system .

-26-

I.

46

1800 TSX SUBROUTINE LIBRARY

INTRODUCTION

The arithmetic and input/output libraries are discussed in
the following sections. No tes ts have' been run to verify
accuracy, timing, etc., by the TSX Review Committee.

II. ARIlliMETle LIBRARY

The Arithmetic Library contains both the routines visible to
the FORTRAN programmer as well as the many routines that are
used by the FORTRAN generated object code and that may be
used by the ASM programmer.

The Function - Evaluating routines use polynominal approx
imations to avoid the slow divide procedure, and call many
of the invisible routines. Square root is evaluated by
iteration. Arithmetic is symmetrically truncated to follow
the rules for the machine logic. An indication of time
required is given in Section V. The times required are
significantly increased over those of other 1800 routines
due to the requirement for re-entrant coding which enables
these routines to be used from many levels concurrently.
All calls are of the standard format, but all have entry
points also to allow argument communication via the
accumulator. The checking for variable core limits is to
be done outside of the routines.

An additional, and very useful feature exists that allows
testing of error indicators set by the functional routines
through a FORTRAN call. This feature is lacking in all
other FORTRAN systems and would be even more useful if
standardized and made available in the other systems.

Among the routines invisible to FORTRAN programmers is a
double word fixed point-fraction multiply and divide
routine which could be useful to ASM programmers that are
willing to do their own scaling.

III. INPUT/OUTPUT LIBRARY

The library routines support the data processing I/O in a
straight forward manner. There is no central IOCS so
that all error checking is done per I/O call. This leads
to the fact that there is no system overlap of computing
and I/O during DPI/O operations with the exceptions of the
1053 and 1443; however, the assembler user can overlap
I/O with computing. Certain features of the 1442 are not
describable by FORTRAN statements. This led to the fact
that its stacker select feature and its last card indicator
is not usable from FORTRAN. The disk routines use the
disk in such a way that no rotational delay occurs if (__ "
there is no interference from higher priority level programs .,:,

"'"'

-27-

Q

All the I/O routines follow standard linkage conventions.
Most of them save in addition, the A register to
facilitate the interrupt coding.

47

There is also a 420 eord routine FBTD/FDTB to convert from
standard and extended floating point to EBC (1800 EBCDIC)
which is not used by FORTRAN I/O but can be used by ASM
programmers to save memory space by avoiding the FORTRAN
I/O routines. If there are any FORTRAN I/O statements,
however, it would be advisable for the ASM programmer to
use.FORTRAN type I/O calls.

IV. PROCESS INPUT/OUTPUT LIBRARY

The process input/output library allows FORTRAN control over
all process input/output operation, a facility that has not
been previously present within FORTRAN systems. A fair
knowledge of the machine and of FORTRAN is required to make
effective use of the routines.

It is yet too early to evaluate fully the usefulness of
these routines. Experienced process engineers may prefer
to use assembly language input/output because of the
straight-forwardness from an engineer's standpoint, but may
find that the interrupt structure of the 1800 is such that
the much greater ease using these subroutines will become
an over-riding consideration. The processing of an I/O
interrupt takes approximately 100 microseconds on a 2 micro
second machine, which compares favorably with the approximately
60 microseconds achievable by hand cOding.

Recommendations

1) Re-entrant Code

It would be desirable to have a separate set of non
re-entrant subroutines for batch processing use and
single-level on-line use for maximum throughput.

2) Input/Output Subroutines

It would be desirable for IBM I/O subroutine to notify
the user of operation complete. This can be
established through the inclusion of a subroutine
name in an I/O calling sequence. This would allow
the user to overlap I/O operations, thus avoiding
I/O busy testing.

-28-

48

V. TIMING (2 microsecC?nd memory)

These are approximate indications only.

Time Time
Function Name Standard Precision Ext. Precision

sine and cosine FSIN, FSINE IE • •• 3.2ms 5.2ms
FCOS I FCOSIN IE ••

arctangent FATAN ,FATN,E ••• 5.1 9.2
square root FSQRT, FSQR, E 0 0 • 5.2 11.8
logarithm FALOG,FLN,E ••• 4.6 4.5
x

FEXP ,FXPN,E ••• 1.9 4.2 e
xi FAX!, FAXIX,Eo •• 2.5 3.7

x
x FAXB,FSBXB,E •• 7.9 14.9
hyperb. tang. FTANH,FTNH,E ••• 4.2 8.0
+X FADD,FADDX,E ••• .49 .51
-x FSUB, FSUBX, Eo •• .49 .51 \0 - (••• -x) FSBR, FSBRX, E .80 .82 \

* FMPY, FMPYX, E • 0 .46 1.06
I FDIV ,FPIVX,E ••• .75 2.10
I (.. . /x) FDVR,FDVRX .78 t:.34
fetch FLD , FLDX, E •• .27 .32
= FSTO, FSTOX, E ••• .27 .33
float FLOAT .70
fix FIXI,FIXIX .49

I x I FABS,FAVL,E o •• .28 .29
bin to dec FBTD 12.0
dec to bc FDTB 23.0

-29- o

o

o

o

1800 TSX SIMULATOR

INTRODUCTION.
The simulator is a major advance in debugging tools for the on-line
programmer and will be highly useful to most installations,
whether on-line, or off-line. It operates under control of the
TSX Nonprocess Monitor, and allows the programmer to check out
or test a program without interfering with or endangering the
regular operations of the on-line system.

Because so little information has been generally available about
the simulator, the TSX Review Committee felt it advisable to go
into somewhat more depth in this section than in most others.
METHOD
'l'he slmulator can be used to debug process and non-process
programs alike. It checks all core references, especially
stores and branches. Simulated COMMON can be dumped on cards
so that a run can be executed in several different parts.

There are options for:

Branch trace
Snapshots
Dumps.

In addition, the branch and arithmetic trace provided by the
compiler can be operative in the simulator mode, but there is no
full trace in the simulator.

Process input values may be read from cards or obtained from a
random number generator. However, it may not be read from the
1816, directly from the process inputs, or calculated by user
defined functio~ routines.

If a program were being simulated under control of an off-line
system, it would take about 120 times as long to execute under
simulation as under direct execution. However, when under the
control of the system director, it could take much longer due to
the demands of the on-line process. There is no output option
to show how much time a program would have required in real time.

SUBROUTINE SIMULATION

If the simulator knows (by a set of internal tables) that an
IBM subroutine does not use I/O, then it is executed at machine
speed; however, the simulator uses its own copy of the sub
routine. IBM routines which use I/O are functionally
simulated rather than being simulated step by step. User
written utility routines could be added to these lists by the
following methods; there are three cases:

50

a) Skeleton routines to be executed (non-I/O). There are two
.tables in the Initialize 2 (INIT2)-section which must be 0
modified. SXT contains data about skeleton subroutines to be ex- . F

ecuted, and NAIl contains the EBC names of all subroutines in

b)

c)

SXT. These tables can be modified by ordering the simulator
in source form through IBM branch office procedures (however,
this is about 20,000 cards and requires special assembly
procedures). The user can add the entries to these two
tables and then assemble the simulator.

I/O routines to be functionally simulated. Again, there are
two tables which must be modified, NAIl and either FST or TRT
which are similar to SXT in that they contain data about the rou
tines. The difference between FST and TRT is explained in the
diBcussion of calls which terminate simulation. I/O routines
w~ich are functionally simulated must have consistent linkage
format with those produced by the TSX compiler.

Any other programs - IBM recommends very strongly against
executing or functionally simulating any programs other than
those discussed in (a) and (b).

CALLS WHICH TERMINATE SIMULATION

Simulation terminates with the execution of calls to:

BACK
CHAIN C'
VIAQ
SPECL
INTEX
DPART
STOP
PAUSE

The simulator tests one program at a time. There is a way for the
user to modify the simulator so that anyone or more of these calls will
never be terminated. The TRT table contains entries for all the
calls which terminate simulation. By moving the entry for a given
call from the TRT table to the FST table and adjusting the NAIl
table to correspond, that call will no longer cause termination.
However, if termination is removed for other than CALL PAUSE, the
user must evaluate the consequences very carefully. A rewrite of
the whole simulator could be involved.

SIMULATOR SECTIONS AND EXECUTION PHASES

There are nine sections of the simulator executed in five phases
as in the following phase transition diagram:

-31- o

o

•

NPM CLB

NPM = Non-Process Monitor
CLB = Core Load Builder

Phases-~·~ 1 2

~ -~

-
Core

,~

3 4

f ,Ir

Sections

1 Executive Monitor
2 Resident 1
3 Initialize 1
4 Initialize 2
5 Resident 2
6 Subroutine Monitor
7 Instruction Interpreter
8 Subroutine Processor
9 Termination

CONCEPTIONS AND MISCONCEPTIONS

3 4 5

.....
1 -

2 --
5 -- -

® >< ~ ,~

G) ®

The simulator is not meant to .simulate a process o~ any other

51

random, parallel, asynchronous event. Since it is not aware of time,
it is not aware of parallelism as such. Thus, it cannot be used as
a system scheduler and resource allocation for an operating system
as some users have suggested. Nor can the simulator be used to
simulate the user's process as in a general system simulator or
digital differential analyzer. Once the user accepts these facts,
he will find that it is a rather good diagnostic and debugging
tool. 'The program might be renamed to eliminate this confusion.
It perhaps could be called the Diagnostic Interpreter since it in
treprets 1800 instructions on the 1800 for diagnostic purposes.

-32-

52

RESTRICTIONS & RECOMMENDATIONS
1) Options to allow reading of data from the 1816, or direct- 0,

ly from process inputs should be considered. Reading
directly from the process inputs would require a special
system parameter to denote whether reading analog input
directly from the simulator is legal or not since in
certain instances this could interfere with the normal
on-line functions of the system. Simulations of the
I/O test feature would have to b~ changed if access
to actual process inputs were allowed.

2) There is no output to show how much execution time a
program would have required, assuming no on-line inter
ference. An instruction count in the snapshot information
could be added. The user could multiply this by an average
instruction time for the instruction mix being executed
to tell how much time would have been required.

3) The requirement for punching leading zero's in control
cards is a minor inconvenience,. It was done to make the
coding shorter in a program for which space was limited.

4) The DISKN simulation routine will write only into the non
process work area. If a process program being simulated
tries to write in the process work area, it will print
the first and last 8 words on the list printer and
does not write anything into the process work area. This
would present problems if the program is attempting to
write into the process work area and then read it back,
but is necessary to protect the process.

5) The following restrictions and recommendations concern the
data input facilities of the simulation:

a. Simulator does not provide specification for multi
plexer address on card input. The problem of read
ing random multiplexer addresses from a sequential
card hopper could be solved by reading all data
cards to disk and setting up a separate file for
each multiplexer address. The simulator could call
each input by referring to the proper file based on
~the multiplexer address of the point to be read.

b. A multiplier option for data cards that would act
across repeats for AlP and act across addresses
for AIR would be useful.

c. There should be an option to specify random number
generation on individual data cards when CARD has
been specified on the control card.

-33-

o

6)

o
7)

8)

9)

o

The ability to take simulated core and disk off-line
as in a checkpoint and restart from the same simulated
core or just get further diagnostics should be con
sidered for multiple drive systems.

The XIO and WAIT control cards should be changed to NO
XIO and NO WAIT for functional clarification.

CALL PAUSE should be simulated rather than causing
termination.

It should be pOinted out that there is one discrepancy
between the actual operation of the comparator feature
and the way it is simulated.

In actual operation, the ADC reads one analog point at
a time and the comparator checks for a limit violation
in parallel. The reading and comparing proceed independ
ently of each other. If a violation occurs, the I/O
routine exits to a user subroutine. This subroutine
returns control to the I/O routine. When the next point
is read, the system may either take the check routine
again or continue reading points as the data dictates.
In any case, the end-of-table interrupt routine is always
executed whether a limit violation occurred or not.

The comparator is simulated by first reading all the data
for one analog read and then starting a programmed compare
sequence. If no compare violation exists, control is
transferred to the end-of-table interrupt routine. How
ever, if there are one or more limit violations, the first
limit violation causes an exit to the check routine.
The check routine returns control to the program mainline

53

at the first instruction following the analog read in
struction instead of back to the simulator compare sequence.
The end-of-table interrupt routine will not be processed,
and if there are more than one limit violations, only the
first one will be detected and checked.

-34-

1800 TSX DIAGNOSTICS

I. INTRODUCTION

The diagnostics from the various segments of the system are
summarized below. A separate section is devoted to the
implementation of the memory protection facility of the 1800.
The utility of diagnostic messages is increased if the time
to take corrective action is minimized. In order to achieve
this, diagnostics should be:

Addressed to the person capable of taking corrective
action
Clear
Complete.

In addition, errors affecting on-line use of 1800 system
should require special care.

II. METHODS

The following list covers the TSX system areas with some
remarks on their diagnostic methods:

il TASK :codes for user lookup
System Loader :codes for user lookup
Cold start :codes for user lookup
Skeleton Builder :codes and 'very abbreviated messages.

The above four areas are such that most errors are caused
by incorrect deck set up by the programmer. During the
above tasks one can assume that a responsible and knowledge
able person is either present or available.

5) System Director :codes with additional information.
There are both messages that are routinely operator-oriented,
and others that can be caused by the programmer, and some
of these are of the type that may occu:~ in checked out
production type problems.
The 23 codes prefixed by 9 or I are generally operator
oriented. The remaining 24 codes prefixed F, M, P, Q,
or X are program oriented. With these messages time,
device, program and location are given. The last two, if
available, are not necessarily linked directly to the source
of the error. Certain of these errors are machine errors
and have therefore the priority level O. More than one of
these in succession forces a reload act.ion. Some of these
23 codes may require operator action to continue the process
program operation.

-35-

54

o

o

o

o

Supervisor
DUP

:codes and abbreviated messages
:codes and small messages

55

In the two systems above, many of the messages are programmer
directed. Some, however, indicate operative problems. It
seems doubtful that an operator will be able to sift through
these quickly.

8) The Assembler :codes with messages, or flags on

9)

error lines.
The error flags follow established practi~e and
specify sufficiently the error cause to the programmer.

FORTRAN :codes only of form Cxx.

General

The first four parts of the system, used during system
generation, have different format, conventions, content
and location of their error indications; however, all
on-line messages have a basic error format.

Where the system is operated by non-programmers, difficulty
may be experienced in training operators to sift the system
output for information relevant to them. A lack of messages,
or excessive abbreviations, may be felt as an annoyance in
many practical situations.

III. RECOMMENDATIONS

1) Special indications for errors that may be operator
correctable

2) Mnemonical diagnostic codes for FORTRAN, with an
indication of column or text item causing the
diagnostic.

Currently a message: "C27" which becomes after lookup
in the operations manual (they are not listed in
the FORTRAN manual) "SYNTAX ERROR IN FORMAT STATEMENT"
is not as helpful as a diagnostic should be.

3) The system director messages for internal errors should
include the contents of the Instruction and Index
Registers, Accumulator and Extension to facilitate
trouble shooting.

IV. HARDWARE DIAGNOSTICS

Some CE hardware diagnostics can be run in the 1800 system
through special hardware facilities without disturbing other
programs and operations, during the running of the TSX
system. These routines can exercise minimally the I/O devices.
The full CE diagnostics monitor cannot run under TSX.

-36-

~.I

'I 56

v. STORAGE PROTECTION

The storage protection feature is used by TSX as follows: 0
The system-director code is protected from destruction.
This is accomplished by the cold-start routine which assigns
a storage protect bit to every non-zero word. Zero words
are assumed to be non-changeable programs and to be storage
protected except where they appear in a cold-start exception
table.

Code generated by FORTRAN follows the above rule, and of
course, ASM generated code can be written by the programmer
to satisfy this rule too, so that this storage protection
scheme could be expanded by the user in a very useful way.
Input/Output routines, however, have tables containing non
zero words which are modified by execution of input-output
instructions and therefore cannot have storage protection.
An expansion of this scheme would require specifications to
except these tables.

If extended use of storage protection is desired, the above
scheme might be a basis for a COMMON standard. It is very
probable that such an extension will become desirable in the
future.

Assembly programs can alter protection bits only if a hard-
ware key is set appropriately. ·FORTRAN programs do not C ... ~;
have access directly to storage protection bits.

The current use of this feature by TSX is limited but probably
sufficient in conjunction with the FORTRAN software mechanism
to protect the system during careful operation. It does not
do much to protect the users' programs themselves. The
mechanism is definitely not foolproof.

-37-

o

()

o

1800 TSX LANGUAGES

INTRODUCTION

There has been a considerable amount of discussion and develop
ment work on languages for process control over the past few
years. However, the purpose of this report is not to discuss
language criteria but to list those languages supported by TSX.

LANGUAGES CONTAINED IN TSX SYSTEM

1. TSX Assembler Language

57

See separate section on Assembler Language for the Committee's
evaluation. NOTE: Machine language is not a subset of the
TSX Assembler Language. It is only possible for the programmer
to write in machine language by special manipulation. The
Committee feels that this is a good decision.

2. TSX FORTRAN
See separate section on FORTRAN for the Committee's evaluation.

The Committee has discussed the desirability of separating both
FORTRAN and TSX assembler language from the TSX system and treat
ing all languages uniformly as user programs; but it has reached
no definite conclusion on this matter.

LANGUAGES WHICH ARE NOT CONTAINED IN THE TSX SYSTEM

There are several additional languages that will run as application
programs under TSX

1. PROSPRO/1800

PROSPRO stands for 1800 Process Supervisory Programming
System and is a generator language for writing process
programs. It will be distributed as a Type II program.
The announcement letter states that PRQSPRO is fully
compatible with TSX.

2. COP/1800

3·

COP stands for 1800 Control Optimization Programming System.
As with PROSPRO, this is an applications development rather
than a systems development language.

DDC (Direct Digital Control)

There is no information available about TSX support for
DDC, although the Committee knows of several installations
which are involved in this application. The number of
questions would indicate wide interest in this topic and
if this is so, a special discussion session will be arranged
at a COMMON meeting.

-38-

-~------~------------------.--.. - --~------. ----_._-------------_. __ ._._------_. __ . __ ., ... __ .,----.-. __ ._-,._._."-,-,,--_. __ .. _-_. __ ._,, .. _._ ... __ __ ._ •. -.. _._-_._._ --.-,,-.------.--~---

CONCLUSIONS

The Committee received inquiries regarding various languages
which have not been developed for the 1800. Those which re
ceived considerable interest were:

1 PL/l
2 List Processors
3 Decision Tables Languages
4 Report Generators and Data Handlers
5 Sort/Merge
6 Process Control Language

The Committee did not evaluate which of these are desirable
and which are not, in an on-line operating system for data
acquisition, teleprocessing and control. We would like to
hear more discussion on this point by all the installations
using 1800 TSX.

We urge that a project committee work to define a process
control language.

-39-

58

c

()

o

o

1800 Process Syatema Committee Report

An organizational meeting was held Monday, Noftmber 28, 1966.
Arter lengthy discus.ion, two 8ubcemmittees were agreed. upon,
reallzing that they could not be mutually excluai va and
requiring considerable interaction.

A. Hardware Subcommittee responaibilitie" I

1. l800 system hardware
2. Real time am process interface equipment
3. RPQ devices relative to process systems

Cha1man: David (ruts, 1001 Bedford Ave. J

North Kansas City, Missouri

B. Software Subcommittee responsibilities:

1. IBM supplied software
2. General interest user written routines
3. Cooperation with Process Applicatlon Comm1 t tee

Olairman: Jay Ganatra, 6&J South Blvd.,
Pontiac, Michigan

Initially, this committee plana to act as a collection or clear
ing area for recommended major revisions or addi tiona to IBM 1600
systems. It is anticipated that suggestions nll be collected
and reviewed between COMMON _etinp, that these and other ideas
will be discuased by the 1800 Proceas Systems Committee in open
sessions, and appropriate reco.t1lm8ndatlone made through the proper
channels to IBM.

For smaller problema, ve will begin aBsemblying a directory of
ProceU8 Control 1800 configurations so users, through this
office, can contaot similar installations.

As more 1800' 8 are installed mutual problem areas will become
apparent. The time spent at this C<JOlON meeting will give U8
the structure to handle these probl_.

59

Post O.ffice Box 3621

Dec~~ber 6, 1966

'To: Current or future users or 1800 8'9 stema

At the CIlMMOI meeting in New Orleans I an 1800 Pro·oess rystema
Committee within the ~.tems DiVision 1800 project was formed.
We want to let, the .following inforrrt.a.tion frorll you in order to
make future recommenda.tions to IBM for i\rture modifications
to hardware and software systems:

A. lnatalla1;1on date

B. neecript10n ot the installation

1. Contipratlon
2. Primary applications

c. Comment. OIl the TSX Preliminuy Report

D. Mq' otber C'ot\'JIl8nts

Plea •• return four COlD*lnts 'tG me by January 31 so they !fk~y
be revi....-ed u.d. organised batore the March meet.ing.

60

c

01

o

0 ,
'I

o

lanuary 4, 1967
San lose
Process Control & Small Scientific Systems
464/062
4062

COMMON Meeting 1n New Orleans

Mr. G. v,r. Lohr

S1nce my presentation was a tutorial on subjects covered in the
Reference Manual and Program Logic Manual for the 1130 Disk
Monitor System, those publieatlons can serve not only as an abstract
of my talk, but also as detaUed information.

~~
Gene Lester

GL/an

00: Mr. W. P. Champ1q1le~

61

SYSTEMS DIVISION

SYMTRAN: The Addition of Algebraic Manipulative
Capabilities to FORTRAN'with Format

Mary C10 Carey

University of Southwestern Louisiana

Current address:
IBM Corporation
District 21 Test Center
2640 Canal Street
New Orleans, Louisiana 70122

529-5256 (area code 504)

Monday, November 28, 1966
1:30 - 3:00 P.M.
Session M-3.5

7 pages of text
3 pages of graph-lcs

62

o

'0 I

o

o·

o

In the history of computers, numerous advances have
been made in the field of numeric calculations. Problems
which once required weeks, -or even months, of human effort
can now be solved in a matter of milliseconds. However,
not all problems require a strictly numerical result.
Many calculations cannot be performed until tedious
algebraic operations have been completed; in some cases,
the algebraic result is the end in itself. Production of
this formal algebraic entity may require numerous inval
uable, or even unavailable, man-years.

Since the computer can perform any conceivab~e
numeric operation which can be rigorously delineated,
why could the computer not perform purely algebraic
opera~~ons? As early as 1954, ventures into the realm of
algebraic manipulation and its related field, symbol
manipulation, were begun. Numerous routines and systems
were developed. These routines were specialized programs
designed to perform one particular operation, or were
subroutines to be called bya mainline program. All of
the routines and systems developed were for large-scale
digital computers.

Thus the decision was made to develop an algebraic
manipulative system for a medium-size oomputer, the IBM
1620. The ability to formally manipulate algebraic
expressions was to be included as an integral part of
the new system. In the development of the system, five
factors we~e taken into consideration:

1. the system should provide a tool to ease the
burden of cumbersome ~lgebraic manipulation;

2. the system should provide for execution of a
variety of operations rather than being
limited to the execution of a single
operation;

3. the system should be adaptable to numeric as well
as to algebraic problems;

4. the system should be ea.sily learned; and
5. the system should be capable of extension.

Closer examination of the objectives revealed that four
of the five objectives were already embodied in FORTRAN
with Format. Because of the number of persons who have
had some knowledge of FORTRAN programming, the decision
was made to extend the FORTRAN with Format programming
system.

SYATRAN is thus a proper extension of the FORTRAN
with Format programming system. All of the capabilities
of FORTRAN with Format have been retained. The ability
to formally manipulate algebraic expressions has been
added. The algebraic expression may be any combination
of variables,· constants, and operation symbols which

63

-.---.-.... -"-....... " ... "." ..•. "-.-.,-~~ .•. ~~~~---~----------------

adheres to certain rules. The .sYMT&~N system provides
for:

1. addition of algebraic expressions,
2. subtraction of one algebraic expression from

another,
3. multiplication of one algebraic expression by

another,
4. division of one algebraic expression by another,

and
5. exponentiation of an expression to a positive

fixed point power.

To accomplish the definition of the algebraic
expressions and their formal manipulation, the SYl1TRAN
system c.onsists of three main elements: (1) the SYI~ITRAN
language, (2) the SY~,'ITRAN compiler, and (3) the SYiviTRAN
subroutines. The system is strictly disk-oriented; disk
storage is utilized for permanent storage of the compiler
and the subroutines and for temporary storage of the
compiled object program and the algebraic expressions.

The SYI,ITRAN language includes all valid FORTRAN wi th
Format statements. In addition, formal algebraic
expressions may be defined wi thi:'1 the SYI;lTRAN language.
Each formal algebraic expression is defined by being
equated to a variable name, or more correctly an
expression name, by which it can later be referenced. A
definition statement takes the form,

e.g. @ONE = TWO + THREE

The n@" signifies that the statement is a formal defini
tion. The entire expression to the right of the equal
sign is the formal expression; the variable to the left
of the equal sign (excluding tt@tt) is the name of the
expression.

Certain rules must be adhered to in the for~ation
of formal algebraic expressions. Constants may be any
valid fixed point or floating point numbers. Variables
may be any combina~ioh of letters and numbers not to
exceed five characters in length and must begin with a
letter. Operation symbols allowable are +, -, *, I, and
** . All exponents ~ust be constants. No parentheses
may appear in an expression which is being formally
defined~ The restriction afainst parentheses eliminates
the use of functions, subscripting, and divisors \,lhich
are expressions. Mixed mode is allowed within a formal
definition. The algebraic expression being defined must
not exceed the per~issible length of a FORTHAN with
Format source statement, i.e. t 72 charact~rs.

64

o

c

o

:0

,/ 10,'

o

All variables appearing wi thin a formal expressi'on
definition are assumed to be basic, or atomic, variables.
This restriction was motivated by four factors.

1. The expression be1ng defined is to be stored in
disk storage at compile time.

2. Variables which are to assume a numerical value
do not have this value assiened until
execution time.

3.' Variables which are the names of expressions may
in turn contain variables which are the names
of expressions ••.• The chaining could
continue indefinitely.

4. A variable which is the na~e of an expression
may refer to an expression which contains
the expression name, such as X = X + 5.
Recursion \,Tould res,ul t and a basic variable
could never be obtained.

Manipulation of the algebraic expressions defined
is accomplished by the use of the usual FCRTRAN arithmetic
statements. Expressions may be combl'ned by t'fle operations
of +, -, *, or I. The arithmetic statement may consist
of any combination of variables, constants, and operation
symbols subject to the FORTRAN regulations for formation
of such statements. The variables may refer to a
previously defined numeric value, may refer to an algebraic
expression, or may be basic variables. If a variable is
basic, i.e., it has not been assigned a value, it is
treated as an expression consisting of a single element.

It is possible to test the result of operations on
algebraic expressions for equality to zero, i.e., the
resultant expression consisting of only the constant zero.
To obtain such a test, the variable name assighed to the
resultant expression must be a fixed point variable.

There are some restrictions on the use of expression
names. No variable may appear more than once as the name
of an algebraic expression that is being defined. In
general it may be stated that a variable which names an
expression may not be substituted for a variable whose
numeric value is required. In particular, a name of an
expression may not appear as (1) the argument; of a func
tional subroutine, (2) the parameter of a DO loop, (3)
the variable of a Computed GO TO, or (4) the power of any
constant, variable, or expression. The results which
would take place will vary in the different cases.

The SYMTRAN compiler, in addition to recognizing and
compiling all valid FORTRAN w1t'1 Format statements, must
recognize and operate upon the formal expression def1ni
tions. All program statements are analyzed by the compiler
program. If the statement is not determined to be an

65

arithmetic statement, the appropriate object coding is
generated and compilation continues with the next source
statement. A further discusaion of the object coding will
appear later.

Once an arithmetic statement is located, a. cneck is
made for "@tf as the first character of the statement. If
the "@" is not present, compilation proceede as usual.
If the "@" is present, it is deleted from the statement,
the variable on the left side of the equal sign is
collected and placed in the symbol table if necessary;
the expression on the right side of the equal sign is
compressed to remove any internal blanks. The expression
is then ready to be stored onto disk storage.

A check is made of the Available Space List (AVSPLS)
"to determine where to store the expression. The AVSPLS is
active from the beginning of compilation through the
execution o.r the object pr0gram. At compile time, the
AVSPLS contains the address of the next available sector
within the five cylinders reserved for storage of expressions.
The first check dete.rmines whether any sectors are available;
if not, an error message is typed,the expression 1s not
stored, and compilation continues with the next source
statement. If there are available sectors, the expression
is stored on the disk occupying one or two sectors. If the
expression requires two sectors, a tag field is placed in
the last six digits of the first sector giving the address
of the second sector. Following the storage of the expression,
the AVSPLS is tipdated to point to the next available sector
for expression storag~.

As each expression is recognized and stored, another
important table 1s generated. This is the Table of Expression
Names and Disk Storage Addresses(TEXm~). Each expression
name and the sector address of its first sector are placed
into the table. At the end of com:p1lation the disk addresses
are placed into the symbol table 'for use by the obj ect
program.

During the compilation of most source statements
object coding is generated. This object code uses the same
format as FORTRAN with Format. The object program card images
are stored in consecutive sectors on the disk. While th1sis
not the most efficient utilization of disk storage, it was
felt that a modification of' the object program format'should
be postponed until a later date. Once the object program has
been compiled and stored on the disk, the program loader is
called to bring the program from disk and load it into core
along with the symbol table and the subroutines. At load
time, the symbol table is completed; constants are stored)
branches to numbered statem&nts are completed, and sector

66
I'~
I

I

c·

c'

o

o

o

addresses are substituted for expression names.

During the execution of a FORTI~N obj ect program,
the majority of the operations are performed through
subroutines. The same 1s true of the S~1TRAN system. The
majority of the modifications and additions required to
implement SY:~TRAN are in the SYHTRAN subroutines. The
SYMTRAN subroutines include the entirety of the FORTRAN
with Format subroutines plus eleven additional subroutines
to perform algebraic manipulations. The subroutines unique
to the STI~TRAN system are:

,. SY1vlADD to add algebraic expressions,
2. SYlvlSUB to subtract one ale.-ebraic expression from

another,
3. 'SI»iPFY to simplify algebraic expressions,
4. SYI~lULTto multiply ale.-ebraic expressions,
5. S~~DIVto divide one algebraic expression by

another,
6. SSTOR to store an expression on the disk,
7. SFIND to retrieve an expression from disk

storage,
8. SYMIN to input-an expression during execution

of the object program,
9. SYMOUT to output an expression,

10. EXPAND to convert input form to internal
representation, and

11. SYMSUP to interrogate operands and branch to
the appropriate subroutine •

.-
The five subrout1nes which perform the actual

algebraic operations on the expressions adhere to the
rules of algebra.

e.g. A + 2*A will yield 3*A as a result
X*X**3 will yield X**4 as a result

For these subroutines to operate upon the expressions, it
was deemed necessary to have all expressions adhere to a
fixed format. Before any algebraic operations are performed
a check is made to determine if the expression is in the
internal represent.ation. If not, the expression is converted
by the EXPAND routine. The basic unit of the expression is
taken to be the term. The expression is divided into terms.
Each term is then converted to the form: coefficient,
variab1e-1, exponent." variab1e-2, exponent-2, .••• All
Coefficients and exponents are represented as floating point
numbers, coefficients and exponents of one being inserted
where necessary; variable names are represented a.s five
character(10 digit) alphameric fields, left-justified;
following the term is a record mark. Following the last term
of the expression 1s an additional record mark.

e.g. ORIGINAL EXPRESSION
5*X + 18*Y**3/X - Y

--- ------.. -.. -----.-,,-.-~.

68

INPUT FO&\i 0
751467107178'46814147321672068~

IN'rERNAL REPRESENTATION

500000000167000000001000000001~1800000002

6800000000300000000167000000001000000001~

100000000168000000001000000001¢~

Note: Variables which are divisors are represented with
negative ~~4:e!:&:Rt-&, .. e.xfClt(~eY!..-r$.

The results of all algebraic subroutines are stored
onto the disk 'in internal representation. The SSTOR
subroutine utilizes·the symbol table to locate the name
assigned to the resultant expression. If the name already
designates an algebraic expression, the previous expression
will be deleted from the disk and the addresses of the
sectors occupied by the expression restored to the AVSPLS.
SSTCR then determines the first available sector from
AVSPLS, stores the first 94 digits of the expression into
that sector, and inserts the sector address into the
location in the symbol table designated for the variable
name. In the event that an exp:!'ession exceeds 94 digi ts in
length, the last six digits of the sector are used as a
tag to point to the next sector occupied by the expression.
After deletions and additions in the storage area on the
disk, adjacent sectors may not be available, thus the need
for the tag field. The tag field for the last sector of an
expression consists of six zeros.

Input and output of algeb.raic expressions present
unique diffinulties in comparison with input and output of
numeric values. Because of the innumerable variations in
len[th and complexity of expressions, it was determined that
input and, more particularly, output should follow a free
format. A FO~4AT' statement should not be essential in this
case. However to preserve consistency and avoid confusion,
every input-output statement referencing an algebraic
expression must have an associated Fom~T statement. The
FOR.'1AT statement may be a dummy statement. Algebraic
expression. names and numeric variable names may not be mixed
in an input-output list. Expression input follows the same
regulations as the formation of formal expressions in the
source language. Expression output will follow an output
form determined by the SYM:TRAN system. The SYlv10UT routine
will convert the expression, which will be in internal
representation to output form. All coefficients and exponents
having a value of 1 (except a constant 1) are eliminated 0,

o

o

o

from the output; exponents of zero cause the associated
variables to be eliminated; coefficients of zero cause the
associated terms to be eliminated. All remaining coefficients
and exponents are output in F format if the exponent is in
the range -8 to +8, else the output is in E format. Operation
symbols are inserted where required. If an expression exceeds
one output record in length, successive records are utilized
until output is co~plete. There is no limit to the length of
an output expression.

The STI4TRAN system as it exists today is by no means
complete. Further extension of the STI~TRANsystem is always
possible. Some of the possible extensions are:

1. utilization of more than one disk drive to allow for
more expression storage;

2. modification of the system to support more input
output devices, such as a 1443 printer;

3. modification of the arithmetic subroutines,
particularly EXPAND, to allow for greater
complexity of formal expressions;

4. addition of functional subroutines to operate on
algebraic expressions; and

5. additio~ of routines to perform such functions as
differentiation and integration of formal
expressions.

In reconsidering the original factors taken into
consideration in the development of the system, it will be
realized that the primary objectives in the development of
the STI4TRAN system have been attained.

Although the SYMTRAN system is not complete, it does
represent. one ventur~ into the realm of algebraic
manipulation on a medium-size computer. But more significant
is the integrity of S~~TRAN. STI~TRAN is not a collection
or processors or various routines each modi~ying the
original input for future operations; rather Sy}1TRAN is a
complete system.

'II
I

DELETE @

SYMTRAN CO~-1P I LER

ARITHMETIC STATEMENT
DECOfv1POS I T ION

DECOMPOSE @
ARITHMETIC Io--~' A
STATEMENT d

INSERT VARI J
ABLE NAME r
TEXNM

INSERT SECT
OR ADDRESS
IN TEXNM
FROM AVAIL
ABLE SPACE

STORE
,ALGEBRA! C
EXPRESSION
ON DISK

UPDATE
AVA LLABLE
SPACE LIST

70

153

T E X N ~·1 :' T AS:'" C 0 F
Ii EXPRESS I ON NAr,~ES

AND DISK STORAGE
ADDRESSES o

o

o

1620 SYMTRAN SYSTEM, MAY 1966

ENTER SOURCE PROGRAM, PUSH START
27000 C SYMTRAN TEST PROGRAM
27000 Z = A*B+C
27048 @A = X+Y
27048 @B =X-Y
27048 @C= 2*X**2+3*Y-2
27048 TYPE 999,Z
27072 10 STOP
27120 999 FORMAT(E15.3)
27142 END

PROG SW1 ON FOR SYMBOL TABLE, PUSH START
39879 Z
39869 A
19859 §
398L~9 000
39839 C
39829 0999
39819 0999
39809 0010

PROCESS ING COMPLETE .
3.00 X**2.00 -Y**2.00 +3.00 Y-2.00
STOP

71

145

. ~
: ~

,

1620 SYMTRAN SYSTEM, MAY 1966

;'NTER SOURCE PROGRAM, PUSH START·
27000 C SYMTRAN TEST PROGRAM
27000 Z=A*B*C+A*B-C
27108 @A = X+Y
27108 @B =X-Y
27108 @C= 2*X**2+3*Y-2
27108 7777 TYPE 999,Z
27132 ~ 999 FORMAT(1131HSUCCESS, NOW TRY SOHETHING ELSE)
27228 10 STOP
27276 END

PROG SWl ON FeR SYMBOL TABLE, PUSH START
39879 Z
~9869 A
39859 B
39849 'ODD
39839 C
J9829 001
39819 7777
39809 0999
J9799 0999
39789 0010

PROCESS ING COMPLETE

SUCCESS, NOlI TRY SOMETH If'.tG ELSE

147

3 0 00 X**2 0 00 +Y**2.00 +2 0 00 X**4.00 -2.00 Y**2.00 X**2.00
+3.00 Y*X**2.00

3 0 00 Y**3.00 +3 0 00 Y-2.00
STOP

72

o

0,

o

o

•

COMMON

New Orleans, Louisiana

1620 Systems Papers

A Processor For Both SPS And FORTRAN

Guy George Jr.
University of Southwestern Louisiana

Box 382 U.S.L.
Lafayette, louisiana 70501

M3.5
Monday

November 28,1966
1:30-3:00 P.M.

Text 5
Graphics 5

73

AUSYM
An Automatic Programming Language With Symbolic Capabilities

For The IBM 1620

Introduction A professional programmer encounters problems which vary
in complexity and subject matter. Each type of artifical programming
language has a set of attributes which make it desirable or undesirable
for a given problem. Often the programmer is required to sacrafice
some of the favorable attributes of one language in order to utilize
another language in the solution of the problem. It would be advantageous
to have languages which possess the favorable characteristics of
several of these artifical languages.

Two major forms of artificial programming languages are automatic
languages and symbolic languages. Automatic programming languages such
as FORTRAN with FORMAT for the IBM 1620 remove the necessity for the
programmer to be aware of the basic operations being performed by a
particular computer. The programmer does not have to manually assign
and account for variable storage or instruction addresses. Not only is
he not required to perform many tasks necessary in a·symbolic programming
language such as SPS for the IBM 1620, he cannot perform the tasks
if he wishes to. This is of little consequence to the nonprofessional
programmer, but it does remove the flexibility of SPS available to a
professional programmer.

Although there exists a multitude of languages and language subsets,
few possess the abilities of an automatic language and yet retain access
to a flexible machine oriented symbolic language. There seems to be no
such flexible system available for the IBM 1620. Therefore~ the problem
stated in simple terms is that a sufficient number of applications
are in need of such a flexible system.

74

Available Capabilities The only integration of FORTRAN and SPS for the
1620 now in use is the ability of a FORTRAN language to accept a subroutine
written in symbolic coding. This subroutine can then be called by the
mainline FORTRAN program in various manners. Assembly of the SPS
statements is completely external to the FORTRAN statement translation.
The machine language coding generated by the SPS statements will not be
mixed in with the coding generated by the FORTRAN compiler. The FORTRAN
symbol table is not available to the SPS written routine; and to share
any data, extensive use of the COMMON statement must be employed.

The Proposed System It would be convenient to have a fully integrated
system of FORTRAN and SPS. The integrated system could have a single
symbol table. With one symbol table, it would not be necessary' to
declare a FORTRAN variable to be the same as a variable in SPS. Transfers
of contro! between differently coded segments could be done without

c

restriction to the type of transfer. The system should not have interruptions 0/ .
in the coding between the different segments of the program, but should

1

o

•

flow continuously from one section to another. The system should be fast
and economical enough in the use of core to allow a symbol table and
object program of reasonable size.

AUSYM for an AUtomatic programming language with SYMbolic
capabilities is such a system. AUSYM is FORTRAN oriented and on the

75

level of FORTRAN ~ith FORMAT for the IBM 1620 with additional capabilities.
Since the system is FORTRAN oriented, variables are declared in the
FORTRAN manner by mentioning them in the source program. Without a need
to declare available storage locations, the SPS capabilities consist
of imperative type statements only. The coding forms are unchanged
to preserve familiarity, and the system is written to be included on
the Monitor I system for ease of operation.

Machine Requirements Once a language has been defined it is necessary
to be concerned with a machine in any considerations of implementation.
The machine requirements for AUSYM are as follows: an IBM 1620 CPU
with at least one 1311 disc drive, a 1622 card read and punch unit,
a Monitor I system, indirect addressing, and the divide command. The
system can also make use of the 1443 printer, 1621 paper tape read and
punch; and since the programmer has direct control in symbolic portions,
the 1627 plotter can be employed through programming. The machine must
have at least 40K memory and may have 60K memory without modifications.

Source Program Division As in most variations of FORTRAN, AUSYM requires
a specific order in the order in the appearance of certain statements.
The order requirements divide an AUSYM source program into two distinct
segments. The first segment of an AUSYM source program must contain,
in any order, all FORMAT and DIMENSION statements. Comment cards may
be contained in this segment of a source program. This segment is er!ded
with the first card which contains an S or an F in column one.

The second segment of an AUSYM source program, signaled by the use
of an S or an F in column one, is the mainline program. In this segment
it is possible to change from a FORTRAN type coding to an SPS type
coding and vice versa.

Changing Program Languages In the second part of an AUSYM program it is
possible to change at will between FORTRAN coding and SPS coding. When
an S or an F appears in column one it indicates that it and any
following cards with a blank or a C in column one will require the same
type translation procedure. An S or an F controls the type of processing
until another F or S appears in column one.

Construction of Variable Names and Labels Variable names and labels have
identical restrictions for their construction. They may be no longer
than five characters and must start with an element of the alphabet.
The other four digits may come from the alphabet or the ten decimal digits.
After the first letter the characters can be arranged in any order
desired. Imbedded blanks are not permitted in labels or statement
numbers, but will be allowed at any other time without effecting the
compilation.

2

Symbolic Capabilities A symbolic language source statement is either
a macro or a regular source statement depending on the number of object
instructions generated by the source statement. The regular symbolic
statement is the reason for the flexibility of SPS. One SPS statement
generates a single machine language instruction.

The e~tire command repetoire of the 1620 is available in SPS
statements of this type, which are generally referred to as imperative
statements. The imperative statement structure for AUSYM is identical
to that of an SPS statement. Each imperative statement may contain a
label, must contain an operation mnemonic, and mayor may not contain
a P operand, Q operand, flag operand, or comment operand. An entire
list of the imperatives available in AUSYM is given below. Also included,
is a list of the macros available in AUSYM. They utilize the capabilities
of the FORTRAN subroutines.

An operand may contain a subscripted variable of either one or
two ~imensions. The only restriction is that the subscripts are
constants. If variable subscripts were allowed, it would be necessary
to generate more than one machine language instruction per AUSYM
symbolic statement.

Automatic Capabilities The FORTRAN capabilities for the AUSYM system
are given below. The range for fixed and floating point values is the
same as the range for FORTRAN with FORMAT for the 1620. Variable names
are limited as described above. The major differences can be noted in
the listing of capabilities. The I/O commands are similar to those
available in FORTRAN IV. There is a PAUSE V and EXIT command. An
important variation from FORTRAN with FORMAT is the use of the address
variable. This is set up with an ASSIGN statement. Except for the
statement number used with a DO statement, any statement number in a
FORTRAN type statement may be an address variable. The exception is
because AUSYM requires a matching CONTINUE statement for each DO
statement. The rules governing statement construction in FORTRAN
with FORMAT are applicable to AUSYM.

Branching Between Codings If the system is to realize any significant
flexibility it must be capable of transferring control from a section
coded in AUSYM automatic to a section coded in AUSYM symbolic and vice
versa. At first this appears to be a simple matter. However, it is
important that the programmer realize the manner in which branches are
effected between codings.

When branching from automatic into symbolic coding the programmer
must make use of an SPS label used as an address variable. When the
symbol table is arranged for object time~ labels in SPS will be
initialized to contain the object time address of the statement the
label refers to. This is what is set up when an ASSIGN statement is used
to define an address variable. There is no extra action on the part of
the programmer. It is as though the label was a statement number.

In considering branches in the symbolic language, the position

3

o

o

o

o

•

branched to may be an actual, symbolic or asterisk address. When a
branch is needed into an automatic language section, no label is available
since the statements are distinguised with statement numbers. If a
statement number is used as the label to branch to, the compiler has
no way of distinguishing the statement number from an absolute address.
For this reason, to branch from symbolic to automatic AUSYM coding
requires some action on the programmer's part. The branch should be
to an address variable used as an indirect address.

Syst'em Constituents Viewed as a whole, there are three parts to the AUSYM
system which must be placed on Monitor I. First, there are the in-core
subroutines, which are an integral part of any object program produced
by the compiler. Secondly, there are the relocatable subroutines, a~y
one of which is added to the object program only if it is called upon.
Finally, there is the AUSYM compiler whose job is to generate an object
code from the various input source statements.

Subro~tines--In Core and Relocatable The i.n-core subroutines used by
an AUSYM object program-are the same a~t'he subroutines provided with
IBM's FORTRAN with FORMAT for the 1620. Four very short routines
have been added which provide AUSYM with capabilities not available in
FORTRAN with FORMAT. These are for the operation of the PAUSE to type
up to a five digit word, for the EXIT to return control to the Monitor,
and for the reread (D=O for READ) to resean an input record.

The relocatable subroutines differ from those provided by FORTRAN
with FORMAT in two ways. First, the arguments address is sent to the
subroutine instead of sending the address to the symbol table. Secondly,
to allow for relocatability by AUSYM all statements were made to generate
object instructions of uniform length. The reason for this is the
method for relocating and loading the relocatable subroutines.

The Compiler With the source program divided as previously mentioned,
it is not necessary to retain the entire compiler in memory. Once the
FORMAT infn:rmation has been processed there is no need for this portion.
In a simi _-__ 1.'_~ fashion, once the mainline program has been translated , its
translator is no longer needed in memory. Continuing in this fashion,
the compiler is written in definite segements which are overlayed
once their functions are completed. The various segments of the compiler
are referred to as phases and each phase has a number of tasks to fulfill.

The design of the phases was such to insure the use of as little
core as possible during anyone phase. Using this approach, there is
a maximum amount of space allotted to the symbol table. With the system
on disc the time for overlaying is at a minimum.

Brief Bescription of Phases. Phase one d~fines consta~ts to be used
throughout the compilation process as well as sIuall routines to be used
repeatedly. Some of the routines included are: PRINT, to take care
of listings; ERROR, to give error messages; SMOT, to bread a symbol
-from a certain loc~tion; etc. Once the size of memory has been
determined, local control cards are processed. The symbol table is
initialized and processing begins. This 'phase continues until the first

4

77

----~-----,--~----"'--,-,----.- ... -,-.. '" "-~~~~~-~~~~~. ---~----""""---------------'.""'"'''-'--'''''''''''''''''

S or F is sensed in column one of a card. All FORMAT and DIMENSION
statements must be translated in phase one. Prior to exit, the initial
order of the symbol table is established ,with a sort.

Phase two is the major phase ,of the entire compiler. The symbol
table search and subscript determination routines are entered with phase
two. If an SPS statement is encountered, pass" one is conducted to reserve
space in the object program and to enter labels into the symbol table.
The statements are recorded for complete "translation in phase three.
FORTRAN statements are analyzed for category and are either translated
as arithmetic statements or as category two statements.

Phase three is designed to conclude the production of an object
program. This is pass two SPS processing. The records are read in
blocks ,'and special routines are used to locate ~he storage location on
the disc for the object code generated by a statement. If any new
variables are encountered, they are entered into the symbol table. Prior
to exit, the compile time symbol table is written onto disc and error
indicators are checked to determine whether to proceed or not. A
vector is constructed to indicate which relocatable subroutines, if any,
are required.

Phase four actually consists of several ,overlaying program segments.
If relocatable subroutines are required, they are all placed in memory;
and as a subroutine's relocation is compieted, ~he subroutine is added
to the object code on disc. Information to the operator, such as
object starting location and symbol table starting location, is typed.
The FORMAT information and the object program are read into memory.
Then, the compile time symb~l table is expanded into memory. Symbol
table listings are produced. The only remaining item,ne~ded for
execut ion is the in-core subroutines. These are, loaded, 'and control is
transferred to the object program.

Conclusion Included below is an example program which demonstrates most
of the capabilities of the AUSYM system. In a thesis by the author, a
description of the internal workings of the program phases is given.
This is done in a fashion to aid a reader in fol+owing the source listing.
Topics lncluded are: Storing Format Information, The Symbol Table,
The Symbol Table Search, Subscripted Arrays, Pass I Symbolic Processing,
etc. The thesis also includes appendices for source listings, program
compilation, and sample runs.

5

----~----------~--,-~~-- ---~-~-~

78

o

o

79

AR I THMET ICS
A AM S SM M MM LD

0 LOM 0 OM C C~1

I NTERNAL DATA TRANSM'I 55 I ON
TO TDM TF TFt'1 TR MF -:~S

TNF

BRANCHING INSTRUCT IONS
B 8NF BNR BD BT BTM BB
BI BCl BC2 BC3 BCl.} BL BH
BP BE BZ 8NL 8NN BV BXV
BNI BNCl BNC2 BNC 3 8NC't BNH BNP

BNE BNZ BL BN 8NV BNXV BA
BNA

INPUT-OUTPUT
RN RNTY RNPT RNCD WN WNTY WNPT
WNCO ON ONTY DNPT DNCO RATY RA
RAPT RACD WA WAry WAPT WACO PRN
PRNS PRA PRAS PRO PRDS SK RON
WON CON ROGN WDGN COGN RTN WTN
CTN RTGN WTGN CTGN

OJ M I SCE LLANE OUS
K RCTY TOTY SPTY BKTY SKI P SF
CF H NOP

MACRO INSTRUCTIONS
FA FS FM FO FLT FiX FSQR
FSIN Feos FATN FEX FLN

Symbol ie Capabil ities

o
6

.. -... ~-.--.~-•... -.,." .. , .. ''' .• ''''''.'''.,,'''.''''' .. ''.''''''._._, .. _-,-_._------_., -~-~~~~~~-~~~~~~~~~--'--"---

Au~omatic Capabi I ities

DIHENSION VI (Nl),V2(N2),V3(N3) ••••.•

ASSIGN (N) TO (V)

GO TO .N

IF (SENSE SWITCH N) Nl,N2

IF (EXP) Nl,N2,N3

N CONT INUE

PAUSE V

EXIT

END

READ (DDN),Vl,V2,V3, ••• ** 0=0 REREAD
0=1 READ FROM TYPEWRITER
')-2 READ A CARD
0= 3 READ FRD.t..1 P"PER TAPE

W RITE (:), tn, V 1 , V 2 , V 3, •••
** D=O PR INT

0=1 PUNCH CARD
0=2 TY PE
D::a 3 PUNCH PAPER TAPE

N .FORMAT (SPECIFICATION)

7

80

o

0,

o

PHASE 1

PHASE 2

PHASE 3

o
PHASE 4

o

Camp i I er Phas~s.:; ...

PROCESS FORMAT
AND 0 IMENS I ON

PASS 1 SPS
AR I THME TIC STATEMENTS

NON AR I THtv£ TIC STATEMENTS

PASS 2 SPS
WR I TE COMP I LE TIME SYMBOL

TABLE ~TO DISK

L OA[~t':A T 'NFORMA r 10:-4
FR\"'.~ L: 6SK

8

81

~-,.,-, -",---,---.. --~--,~----~-,-----~-

C AUSYM SAMPLE PROGRAM TO SORT 500 VALUES USING
C A BUBBLE SORT. THE INPUT VALUES MAY BE IN ONE
C OF TWO LOCATIONS ON A CARD

o IMENS ION X (500)
100 FORMA T (12)
101 FORMAT(10X,Fl0.3)
102 FORMAT(20X,Fl0.3)
103 FORMAT(16H ORDERED NUMBERS)
104 FORMAT (lX,Fl0.3)
105 FORMAT(13)

F ASSIGN (l)TO (LOOP)
ASSIGN (8) TO (SOTEM)
READ (2,105) MAX
MAX=MAX-l
DO 1 I=O,MAX

5 READ (2, 100) IND
IF (IND-2)2,3,4

2 READ (0,101) V
GO TO FVAL

3 READ (0,102) V
GO TO FVAL

C IF THE INDICATOR IS GREATER THAN 2, IT IS ILLEGAL
4 PAUSE I LGA L

GO TO 5
S FVAL Nap *+60

TOM *-11 ,9
C THE FIRST READ IS MOVED INTO POSITION

TF X(500),V
TF X(500)-2,V-2
BLOOP, ,6

F M=500-1
C THE BUBBLE SORT IS 5 TARTED

DO 7 J=M,500
IF(X(J)-V)6,6,7

7 CONT INUE
6 J=J-1

5 SM M,l,a
C J,M
BE B DTEM, ,6
MM J, 1 0
AM 99,X(1)-10

C SAVE CONTAINS THE DIGIT REPLACED WITH A,RECORD MARK
TO SAVE,99.11
TO 99,400,6
SM 99,10
SF 95

9

82

o

o

o

o

•

C SAVE-l CONTAINS THE ADDRESS OF THE LOCATION THAT THE
C RECORD MARK WILL BE IN AFTER THE TRANSMIT RECORD

TF SAVE -1 ,99
MM M,lO
AM 99., X (1) -1 9
SF 95
TF *+30,99
AM 99,10

C THE MOVE DOV.fN TO MAKE ROOM FOR THE IN COMING ELEMENT IS
C ACCOMPLISHED WITH A TRANSMIT RECORD 00

TR ,99 J 11
TO SAVE-l,SAVE,6

F 8 X(J)=Y
1 CONT INUE

\11 RITE (0, 1 03)
M=500-MAX

C THE VALUES ARE \AIR I TTEN I N AN ORDERE D FASH ION
DO 1 2 J=M,500
VIR I TE (0, 1 04) X (J)

1 2 CONTINUE
PAUSE END
EXIT
END

10

83

PROGRAM ABSTRACT

TITLE: University of Mississippi Test Scoring Program
Revised (UMTS-R)

SUBJECT CLASSIFICATION: 13.0.031

AUTHOR: Richard D. Ross

DIRECT INQUIRIES TO: Richard D. Ross, Director
Computer Center, Carrier 103
University of Mississippi
University, Mississippi
Phone: area code 601-232-8368

DESCRIPTION: UMTS-R is a flexible means of scoring objective
exams taken on mark sense cards. It features a card input
and card output or 1443 printer output if printer is available.
A numerical grade for each student is published along with a
grade distribution (with mean and standard deviation) and
an exam ana1ysis--indicating how many choices per question.
UMTS-R has the following additional features:

(1)A11ows multiplicity of correct answers.
(2)A11ows each answer to be weighted with a weight

value from 1 to 5.
**(3)A11ows omitted question numbers to be punched

following the student's grade card.
**(4)A11ows question numbers incorrectly answered to be

punched following the student's grade card.
**(5)Al1ows weight factor to be punched beside each

question number on exam analysis output.
**(6)Allows identification to be punched in columns

76-80 of student's grade card,
(7)Allows additional identification to be punched in

columns 01-30 of first header card.
(8)Al1ows blank cards to be read at any time.
(9)Allows all key cards, alternate key cards, and

weight cards to be read in random ordpr.
(lO)Allows student answer cards to be read in random

order.
(11)A1lows batch processing.

**(12)Allows blank card to be punched following student's
grade card.

**(13)Permits I. D. number to be replaced by sequence
number.

*(14)Permits grading of a test without a card number.
*(15)Permits grading of a test without a name.
*(16)Permits grading of a test without a section number.
*(17)Permits grading of a test without a course number.

-3-

84

o

o

o

o

o

85

*(18)Allows variable length I. D. numbers (02 to 11 columns),
*(19)Allows variable length name (01 to 20 columns)~
*(20)Allows variable length section numbers (01 to 03 columns).
*(2l)Allows variable length course numbers (01 to 06 columns).
,; (22) Replaces invalid characters wi th blanks, thus

eliminating check stops.
*(23)All double punched columns may be considered as

omitted questions.

*Specified by "$DEFINE" card
**Specified by "$" Control Card

Another important feature of UMTS-R is the speed of
grading each student's exam. Given below is the speed of
grading:

Number of Questions
50

100
150
200
300
400
500

Time in Seconds
.93

1.20
1.55
1.90
2.60
3.30
4.00

RESTRICTIONS/RANGE: No special instructions are required
although TNF and/or Direct Divide can be used on computers
that have these capabilities.

EQUIPMENT SPECIFICATIONS: Memory 20K, 1622. No special
instructions are required but indirect addressing is required.
Memory 40K can be used if available and also the 1443 printer
can be used if available.

ADDITIONAL REMARKS: SPS, language processed by AFIT SPS
(Program Number 01.1.023). Fixed point and non-relocatable.
Running time is 1 1/2 seconds for 150 questions and 4 seconds
for 500 questions. This program is written to handle 25 mark
sense columns and split them in half putting questions 1-25
in the 9 to 5 positions and questions 26-50 in the 4 to 0
positions.. Each answer must be punched in a separate column
for the computer So that a half-after-four time pick up
was added to the mark sense punch to piCk up coselectors and
punch each question in a separate column. However, this is
variable and may be defined by the $DEFINE card.

-4-

DESCRIPTION OF PROGRAM

RESULTS AND METJlODS: UMTS-R is designed to grade objective
examinations for a maximum of 150 5-choice questions for 20K
machines and 500 5-choice questions for 40K machines for 999
to 99999 students per exam depending upon the specification
of the $DEFINE card. The program sets up a 10-digit constant
for each question to be graded. This 10-digit constant is
initialized to flag zeros (0 0 0 0 0 0 0 0 0 0) to represent
the answers (EDCBAEDCBA). The only possible answer for any
question is a 0,1,2, ••• 8 or 9. Hence, this constant can be
set up to grade any question on any test.

To illustrate how this constant can be uSed, we will
assume that we are on question I and there is a possibility
of.two answers that will be correct (A and C) and this ques
tion has a weight of 4 on the test. The 10-digit constant
!o~ gu~s1iQn_numEer 1 will then have the form
o 0 0 0 0 0 0 4 0 4. Initially the weight of each question
is assumed to be 1 and at any time a weight card is read
in the card number determines which questions are to pe
weighted and if question number I was given a weight of 4,
the computer would check all positions of the IO-digit constant
for question I and change all non-flagged digits to the proper
weight. If a question is to be left blank, the computer will
fill i~ for the lO-digit constant 10 flagged record marks.

The address of the first position of each 10-digit
constant has the address of XXXXO. Hence, by transmitting
a digit to the zero position of the address, the computer
can readily determine if the answer is correct, incorrect,
or to be omittedo This check is determined by anon-flagged
digit, flagged digit, or a record mark respectively.

All cards are read alphabetically and the first position
of each alphabetic answer is checked for a digit to determine
if the student has omitted the question. The program will
accept double-punched columns for answers only if they are
specified by $DEFINE card.

As each studentVs questions are graded, an exam analysis
table is up-dated, and as the studentYs score card is punched,
a grade distribution table is up-dated. The output that is
obtained from this program is the student's score card, the
grade distribution with accumulative frequencies and per
centiles along with the number of tests given, mean, and
standard deviation. This is followed by the table of choices
made for each question which includes an asterisk beside the
correct choice or choices for each question. For multiple
section exams or multiple-course exams, the above information
may be punched for each section~ each course, and all courses
totalled together.

-5-

86

! .!

o

0

o

The answer cards have appropriate header cards included
so that they may be printed with an 80-80 407 board. A 9-
punch is placed in column 1 of a single card for each group
to permit skipping to a new page for each group (wiring
first reading column 1 through correct coselectors to carriage
skip on a 9, and also to non-print). If the 1443 printer is
specified then each line is printed accordingly.

$DEFINE CARD~ The $DEFINE card is used to completely define
a 1620 computer system and a test card layout form. The $DEFINE
card is the first card read following the object deck and
given below is the format of the card.

COLUMNS

01-10

11-15

16

17-19

20-21

22-23

25-34

DATA

$DEFINEbbb

Memory Size (20000, 40000, or 60000)

HO" or blank for card output, "1" for
1443 printer output

Maximum number of questions to be
graded (SIZE)

Maximum number of cards. needed for "SIZE"
number of questions (NCARD)

Number of digits for all totals (03, 04,
or 05). If 03, then only 999 students may
be graded at one time, if 04 then 9999, and
if 05 then 99999 students may be graded. (LT)

These ten columns are used to define what
punches represent the answers A, B, C, D,

87

and Eo In some cases an "A" can be represented
by a H9 H punch or a "4" punch, a "B" by an

35

v78H and H3 Yf punch,---, "E" by a "5" and "0"
punch. Then the ten columns would contain

~ 9876543210
to represent ABCDEABCDE
If HAH is represented only by a "5" punch,
"B" by a "4" punch,---, and "E" by a "1" punch,
then the constant would be

5432154321
to represent ABCDEABCDE

"IH to change weight factor output on exam
analysis from B, C> D, and E to 2, 3, 4,
and 50 Otherwise a "0" or blank.

-6-

-~ .. --_ __ ... _- .,~~---~--~-------------

36-37

38-39

{a)40-41

{a)42-43

{b)44-45

(b)46-47

(c)48-49

(c) 50-51

(d) 52-53

(d) 54-55

56-57

58-59

61-70

73

74

Beginning column for I. D. number

Ending column for 10 D. number

Beginning column for name

Ending co1111mn for name

Beginning column for section number

Ending col~mn for section number

Beginning columns for course number

Ending column for course number

Beginning column for card number

Ending column for card number

Beginning column for answers to test

Ending column for answers to test. Total
number of questions (NQ) is determined by
the beginning and ending columns of answers
to test.

These ten columns are used to define legal
double punched columns (0,1,2,00.9). The
first digit of each alphanumeric test answ~r
is checked and normally only answers of the
form 7X are used 9 otherwise the answer is
considered as being omitted. In this case
columns 61-70 would contain

0000000100
to represent 0123456789
Suppose that forms 5X, 6X, and 7X were to
be considered valid 9 then columns 61-70
wOil.llld contain

0000011100
to represent 0123456789 where
0123456789 represents the first digit
of each alphanumeric answer. If columns
61-70 are blank then form 7X will be assumed.

\YOH or blank if Direct Divide is available,
otherwise, a HIH

Hon or blank if TNF instruction is available,
otherwise, a 19 1 H

-7-

88

o

o

C

0

75

76

77

78

80

(a) May be
(b) May be
(c) May be
(d) May be

"0" or blank if name is available, otherwise
a "1"

"0" or blank if section number is available,
otherwise a "In

"0" or blank if course number is available,
otherwise a Vryl('7

"OY, if card numbers are on all test cards or
"1" if test cards have no card number. If
no card number is available then alternate
keys and weight cards will not be accepted.

"1" to skip typing of message
XXXXX UNlJSED CODE

Otherwise a HOH or blank

left blank if HI" specified in column 75
left blank if HIVY specified in column 76
left blank if HIH specified in column 77
left blank if HI" specified in column 78

No error messages will be typed if there is not enough
memory, but the computer will type the number of unused core
positions in the form XXXXX UNUSED CORE. A negative number
indicates overlap of memory.

There is a limit when specifying card columns for the
following:

ITEM Minimum and· Maximum Lengths
I. Do Number 02 to 11 columns

Name 01 to 20 columns

Section 01 to 03 columns

Course 01 to 06 columns

Card Number 01 to 01 columns

Test Answers 01 to 75 columns

The I. Do number and/or course number and/or section
number and/or name may occupy the same columns on the card,
but they must not overlap. The card columns for the I. D.
number, name, etc~, may be anywhere on a card, for example

I. D. could be in colu.mns 07-14
Name could be in columns 02-06
Section could be in columns 20-21
Course could be in columns 15·-19
Card Number could be in columns 01-01

and Test Answers could be in columns 25-80

depending on a particular test card format.

-8-

89

To determine the number of core positions used by UMTS-R,
the following formula may be used

where

CORE = 13059 + SIZE (lO+5*L'r*2) +3 + I05*LT*2+2+NCARD*NQ*2

SIZE
LT
NCARD
NQ

= M~ .. xinlum number of ques t ions
N~mber of digits in all total constants
Maximum number of cards
Number of questions per card

-9-

90

c

o

0
1. Program Deck

2 .. $DEFINE Card

3. Control Card

Card Columns

01

02

03-05

06-08

09

10

o
11

12

13

14

15

16

o

91
INPUT

Data

All control cards contain a $ in column "1".

Number of cards per student. If the:ce·
are ten (10) cards per student then
column 2 will contain a "0".

Number of questions on the exam.

Number of questions not to be graded
(this includes only those questions
properly left blank).

"0" or blank if the grade distribution
and exam analysiS by section is desired ..
Otherwise, a "lH. -

"1" if the grade distribution by section
is to be omittedo Otherwise, a "0"
or blank o

"1 V9 if the exam analys is by section is
to be deleted. Otherwise, a "0" or blank.

VVIH if the grade distribution and exam
analysis by course is desiredo Otherwise
a zero or blank ..

HlH if the grade distribution by course
is to be deletedo Otherwise, a "0"
or blank o

"IH if the exam analysiS by course is to
be deleted.. Otherwise, a no" or blank.

H19~ if the grade distribution and exam
analysis is desired on last card indicator.
Otherwise~ a "0" or blanko

"1" of grade distribution on last card
indicator is to be deleted. Otherwise,
a HO" or blank ..

-10-

17

18

19

20-24

25

26

27

28

29

30

31-60

tvl" if exam analysis on last card indi
cator is to be deletedo Otherwise, a
9YOH or blank.

HI" if name is to be omitted from outputo
Otherwise'J a '10" or blank.

?VI" if sequence number is to replace I. D.
number 0 Otherwise.9 a "0" or blank.

Any data in columns 20-24 of header card
will be punched in columns .76-80 of each
studentVs output card. This could be used
to give the percent of the final grade ~hat
this test will be and the test number or
any other identification that is needed.
Another possible use for this Qutput is to
put the instructorVs initials, or in some
cases, their last name 0 If left blank,
nothing will be punched 0

HI" if blank card is desired between
student answer cards. Otherwise, a
"OH or blank.

H19~ if omitted question numbers are not
to be punched following the student's
answer card." Otherwise, a "0" or blank.

991 99 if weight value is not to be punched
following the question number on exam
analysis cards 0 Otherwise, a "0" or blank.

HOYV or blank if questions anSwered incorrectly
are to be omittedo Otherwise, a "1".

"IVV to omit studentVs grade card output.
Otherwise 9 a V90 tv or blank.

"IVY to punch studentVs graa.e card. Other
wise, a HO'IV or blank. This is for 1443
printer version where information is
printed, not punched 0 If u.$... ed in card
version, two grade cards will be punched.

Any information punched in columns 31-60
of the control card will be punched in
columns 1-30 of the first header card.
This can be used for course identification.

-11-

c

o

o

o

o

'3 • Keys For The Exam

The key cards for the exam are the same as the student
answer cards. They are of three types~ major keys, secondary
keys, and weight cards.

A. MAJOR KEYS - Required
Contain the instructor~s first choice of correct
answers. It mll.llst contain an answer for each question
to be gradedo~estions not to be graded must be
left blank.
I. D. columns specified by $DEFIN~ card have a 99---99.

B. SECONDARY KEYS - Optional
Contain alternate answers to those given on the
major keyso If a question on a secondary key card
is left blank, no alternate answer is assumed. There
can be 4 or less secondary key cards for each major
key. I. D. columns specified by $DEFINE card, have a
99---98 for first alternate key, 99---97 for second,
and 99---96 for third, and 99---95 for the fourth
alternate key.

c. WEIGHT KEYS - Optional
If used~ the weight key will have a weight for each
question answered on the major keyo An answer A on
the weight key assigns that question a weight of 1;
a B, a weight of 2; a C, a weight of 3,; D~ a weight
of 4; and E, a weight of 50 If a question is left
blank, the weight is assumed to be 1.

93

10 Do ~olumns specified by $DEFlNE card are numbered 99---94.

Card Column specified by $DEFINE card of ALL the
key cards contain~

1, if the card pertains to the first set of questions
2, if the card pertains to the second set of questions
3, if the card pertains to the third set of questions

and so OD 9 until
9, if the card pertains to the ninth set of questions
0, if the card pertains to the tenth set of questions

Only one answer per question is allowed, but by using
the alternate key cards, if the st'ilJldent answers anyone of
the correct answers he will get credit for that question.
Let it be stressed that one and only one answer 'is to be
~arked E!! questiono --- --- ---- --- --.----

If any of the alternate key cards or weight cards are
not marked, they do not have to be read in, but if they are
read in they are ignored 0

The order by which the key cards are read in after the
control card is of no consequence 0

-12-

4. Student 9s Answer Card

The student answer cards are completely defined by the
$DEFINE card. The student answer cards do not have to be in
any particular order and the only requirement is that all
cards for one student be read in together.

1. StudentVs Grade Card.

Card Column

Right justified to
column 03

Right ju.stified to
column 09

Left justified to
column 15

Right justified to
column 43

49-51

57-59

65-67

72-74

76-80

OUTPUT

Data

Section number (length specified
by $DEFINE card)

Course number (length specified
by $DEFINE card)

StudentVs name (length specified
by $DEFINE card)

Student I. Do number or sequence numbe~.
(length specified by $DEFINE card)

Number of correct answers

Number of incorrect answers

Number of questions omitted

Score

Any data in columns 20-24 of the
control card.

2. St~dent9s question numbers "ANSWERED INCORRECTLY" card.

Card Column Data

18-36 Comment V?ANSWERED INCORRECTLY"

45-47 First question number answered incorrectly

49-51 Second question number answered incorrectly

77-79 Ninth question number answered incorrectly
If more than nine questions were answered incorrectly, they

will be punched on the following card~ etc.

-13-

o

G I

-0.
I

o

•
i

I

3. StudentVs "QUESTIONS OMITTEDVI card has the same format
as the "ANSWERED INCORRECTLYVY card with the exception of
the comment in columns 18-36 which will be

"QUESTIONS OMITTEDu

4. Grade distribution cards.

Card Columns Data

Right justified to Section number (length specified
column 03 by $DEFINE card)

Right justified to Course number (length specified
column 09 by $DEFINE card)

14-16 Question number

18 Weight of questions

23-26 Number of A answers

32-35 Number of B answers

41-44 Number of C answers

50-53 Number of D answers

59-62 Number of E answers

68-71 Number of omissions

78-80 Percent of correct answers to this
question

-14-

95

AAlau::a::mulixasm , ; I IU9·

.$1.050003. 1- 1 UUlSS 1 1 PSYC.OL.OGY 201 SEC 01 + 02
99999MASTeR KEY CARD 02 2011-/877888788cH:l7377e77 778772233323 ~, 3232~;2~::)r.!332::)::jr~
G$9Q4WE.XGHT CAPCEY 01.. 20119o.g0gSaSSe771'77aBaSe~QOo<J ';;:;;3 3~ 1'111100(,00
99997 AL TERNA TE I<EY 01 201187E.le
.gGQ,~SA1.: ,TERbiAIE. "EY 01 20 1.1999~ 79 771'77 2222222

56223WILKINSON CAMILLE 01 2011
.,iS377HASeS .JOHN D..JR 01 20117877u888e888787768877GC8e22:::i~22::"::; 3::J323·22~':;232~;33222

60243SINGLETON WILLIAM 01 201177788G7778778078a7777787922333~3223%3~~332J33322~3
5-2a2QAA1J F-V PH'YJ.1IP .JASOl .2.0.1.17a778S88D8C8787GC77777e773233~2~;2~~2::~332322=':::2.:::3:;3~':
59~e9SHADDING~R MARYE JOl 20117B778886888S787777777707823333233~232323222233333~
54373E.MBR YJAb! ICE. PHIl-l..O·l 20117877(387 a87687 [:377G77 87777 82',,3::;323~j ~':'2::~ ;::~2? :;'j2 3::)2 ::;3~! ~':;;j:::
56120TOWNSFND JOHN HE,R NO 1 20117f,788 77t;37GG71:HS G77777n7a223 32~:j3;-~ :;"~:'~'~~:;~~;J. %;'l :;;:~:~j;'~

5.62t;)\'~E'lL S STEVE c.. 01 201177788887878878778777778772 232 ~ ~.::;:3 223223::;23233322·22
55541LAFOLLE'TTE LO IS B 01 20117 f77[-j87788777eS7E37C)8137Ct-:-D22333232 :;:.::::; 13232;:~23~)333::;%
.5.41 ~~CRA\rJFC'~O SURS'N R .01 2047..77.7.70873.77877778777778.7732.233'::'3332333232232232222
5AQSSR AY SUS AN G ILBER T 01 2011-' [: 2,786 87 D 777 7~3 77 G77~~32J;;:;3 ::;32 3'.32 ;::;.2:3 :=;~;::;::j;!

S62 8SFR AZ IER BaEND.A MARDl 2011 77788887688828787778778 77333332::'2323332332c2:::':;32 =:;.::2
55344GRIMES F ANITA 01 20117E78883788e8BG78777S77B7723332333~2 23332~33333332
55 1 47C11RT IS M.Af,ty MO 1 201_1 7877088787787877877777877233332;:;;3323322::;3::;22333232
~4691PASH JOHN 01 2011787878888887787G777~778772333323322332232333322232
S6.1.36UZZl~ ROBERT B 0..1 .. 2.01178-7788888.8(377G728777773372333222322232233323333232
47551CHAMPION ~OHN POWEOl 201177777877877878777777787772232322322222232222322322
S91..23SL. Aa Cl::fERYL GAY 01 2011 787888888788707772087 [:j883S33332233 3233:'';;2::~32::~::;3322 33
52850FVFE CH AR LE S VI ATI< 101 2011 7778 88·c~7 8.;:;7328 77 (~~ 77877 rj 7~:~2223322 3 ::;2:-1232 3233:33::j3;~ 3;~
577aOAl..E>f A~DEg STACY r.·i .04. 2011 7378888888837 877877777 8772:;::";3::;2~,3 32:::;322::)323;2333::32
55497JONES SANDRA L 01 20117E78886778787877S77777G772233323322332232232333222
6!'.D82BA6?NfS CLAIR. CDRIL01 2011787 88878 8G7[J77G77e87C87J2;;::;32~2223223~:3~232~):32:;32
59232TAYLOR DIANNA TEENOI 2011777888878G8S7S7877777737722333233?2322232%:3333~22

55225EDWARDS HAROLD ~

..5.5257E INCH J.O CAROL.
57767ABRAHAM GLADYS K
~5659MAGEE R06ERT N

JOl ~01177787878S8787878 78777[;7723323233:233223~322333~32

01 2011787888078782787787787738G2~3333232333333232~'333332
01 20117778788777887888V778877G723332233~2222233233333232
01 20117777787888872a77877777S77223333~222332232233232232

57140LITTON PEGGY SCOTTO! 20117778888778887877868777t78233~323S3J3233322333323~2
545J)5l'lHIT TEI':l t.] PH Y At-.:N 01 2011 7778<:382.78(:;83887 8G7C777 bD 72 ::;2332 J.3 ::23;;223322323322::)~~
47513CALVIN JOHN HENRY 01 20117f78888788887l17G77G8872772~~33233~2333233233333333
5A6S.o..GUNhl \LIRGINl-f:\ C 01 2011 72788888887778788 777778i:17c2 ~-::::<;2233 223;~323?;222333232
54383REA ~lLLIAM L 02 20117[788787888378778778878772233323332322233332333232
52D4JHARRLS CAROLYt'l AN N02 20117877888788687877['::7777787722333223:::; 3223:;22::;2332232
55584LOGAN FREDERICK M 02 20117f78888788888877877 878782332333 ~ 33323 233332 32
5_0037BEAVER SONDRA KATH02 2011767788878878787777G 77877222::;322 3 22223 2::;:::;:-;32232
55262FLAGG CAROLYN B 0220117f78788788887877877 778782233323 _ 323232232332232
561 16TI Br,FITS RD.SERT N O~;?OI17777()887887_a7e7q(g7 77877222::;332 33222322:::3333232
58867NECAIS~ JEANNE KAY02 20117[77888788887877877 778772233323 _ 323232223332232
55064CARVER .cANDACE.AN NO_~ 201177777887f378'87$77778 7787032::::33323 2 3222:::~222:::333232
55983SHARPE SUSAN MANN 02 ~0117777788778777877778 778782233323 ~

-5.3308R I CE LED 'ED 1:1 AR D 02 20 11 7 D 77 [;. 8 8 7 <3 G 8 C' 7 e 78877 77 [3 7722:;;::3 323 3
56959DOUGHERTY PATRICIA02 20117277888888887888887 7787C2333233 2

223232232323232
3 33;~ ::; 2::) 3 2,':, 3 3·2 ::12

::; 33 ~:~;: 222 3333c:32

c

55 -31 1 GFOR..G.E_.ERED ANTHON02 2011737788782.07'77 8778G7 7888722::;:;;323 .:.J 3332::,22323222.32
57123LAUGHLIN JAMES RIC02 20117£77886778837877877 776772333323 2 332232233332232
5512BCOX ALVIN C JR 02 20117887687787877887378 7772a22~33~3 ~ 332232323233233
53526WEBB THOMAS LYTLE 02 20117778788887867877787 778773333323 2 323332233333232
5£.571i,lUE_ TRW'JAN 02. 20117(:37778778878£;877777 7737332.222,23 .;; 3323::;c~222332232
58248FELLO\'JSDONALDI<. J02 20117f:.77.888787887877e77777877222332::; ,. 3222-32;::-::; 332222 Gl

...5..82.QSE-DD-S£ JDtJATHAi'l E D1'102 201178738837[3777737 88 77777~3732:3333232::'232;~::j3322.::i333::;;32
50208CHURCH CLARENCE H 02 20117778888878878677877 878872233333 2 322233~32333222

o

o

o

97

) :.J - l· 'J

II»SYCQL,OGY 201 SEC 01 + 02 I. D. NUMBER NUM8ER NUMBER
•• C CCJ\MSE NAMe: NUMBER RIGHT WRONG OMITTED SCORE IDEN

01 201

01 2.01

01 201

01 201

01 201

01 201

0.1 201

01 201

01 201

01 201

01 201

01 201

01 201

01 201

01 201

01 201

WILKINSON CAMILLE 00001
ANSWERED INCORRECTLY
QUESTIONS OMITTED

HABES JOHN D JR
ANSWERED INCORRECTLY

00002

SINGLETON WILLIAM 00003
ANSWERED INCORRECTLY

BAILEY PHILLIP JAS
ANSWERED INCORRECTLY

00004

SHADDINGER MARYE J 00005
ANSW ERED I NCORR ECTL Y

EMBRY JANICE PHILL 00006
ANSWERED INCORRECTLY

TOWNSEND JOHN HERN 00007
ANSW ERED I NCORR ECTL Y

35 9 3 70 ROSS
5 8 17 :'i7 42 43 45 47 4t-)

123

36 11 72 ROSS
8 1 8 1 9 22 24 25 :3 0 4 1 47

48 49

35 12 66 ROSS
7 9 13 16 25 37 39 41 {~4

48 49 50

40 7 84 ROSS
8 16 26 34 37 44 47

41 6 86 ROSS
8 17 25 27 43 47

41 6 88 ROSS
7 8 10 23 25 42

33 8 6 65 ROSS
7 10 15 25 34 37 47 48

QUESTIONS OMITTED 6 16 29 38 43 46

WELLS STEVE C 00008 38 9 75 ROSS
AN SW ER E DIN COR R E C T L Y 1 0 2 9 3 1 34 39 4 2 4 4 48 49

LAFOLLETTE LOIS B 00009
ANSWERED INCORRECTLY

CR AWFORD BUREN R 00010
ANSWERED INCORRECTLY

RAY S U SA N G I LB ER TOO 01 1
ANSW ERED I NCORR ECTLY
QUESTIONS OMITTED

37 10 77 ROSS
7 15 19 21 24 25 37 43 44

47

39 8 83 ROSS
5 10 26 28 31 37 48 49

30 6 11 63 ROSS
7 8 17 27 37 47
3 4 5 10 11 18 31 39 42

44 45

FRAZIER BRENDA MAR 00012 38 9 79 ROSS
ANSWERED INCORRECTLY 13 16 17 26 27 37 41 43 44

GR 1M ES FAN ITA
ANSW ERE D I NCORR ECTL Y
QUESTIONS OMITTED

00013

CU R TI S MAR Y MOO 01 4
ANSWERED INCORRECTLY

PASH JOHN 00015
ANSWERED INCORRECTLY

U~ZLE ROBERT H 00016
ANSWERED INCORRECTLY

37 9 79 ROSS
13 16 17 27 30 31 3.9 44 47
36

39
10 27

37
5 8

48

33
8 16

42 43

8 75 ROSS
37 41 42 43 47 48

1.0 74 ROSS
16 17 27 37 42 44 46

24
44

14
27 30 32
4.7 48

63 ROSS
34 37 41

98

C'
01 201 CHAMPION JOHN 'powe 00017 35 12 73 ROSS

ANSWERED I NCORR ECTLY 5 7 10 17 22 ~3 29 32 34
43 46 49

01 201 SLACK CHERYL GAY 00018 30 17 65 ROSS
ANSWERED I NCORR ECTL Y 8 10 17 18 19 21 22 24 2!5

26 27 30 37 41 44 48 50

01 20·1 FYFE CHARLES WATKI 00019 39 8 76 ROSS
ANSWERED I NCORR ECTL Y 13 25 28 32 42 44 47 48

01 201 ALEXANDER STACY M 00020 42 "" ,) 88 ROSS
ANSW ERED INCORRECTLY 8 27 37 41 47

01 201 JONES SANDR A L 00021 42 5 B6 ROSS
ANSWERED I NCORR ECTL Y 9 3.!~ 37 47 4~

01 201 BARNES CLAIR CORTL 00022 39 6 2 8e ROSS
ANSWERED I NCORR ECTL Y 21 24 26 34 39 41
QUESTIONS OMITTED 4 10

01 201 TAYLOR OIANNA TEEN 00023 42 5 B3 ROSS
ANSWERED I NCORR ECTL Y 16 If 44 47 49

01 201 EDWARDS HAROLD M J 00024 34 12 70 ROSS
ANSWERED I NCORR ECTL Y 5 7 8 16 19 27 29 37 41 ,~C

I

42 43 47
QUESTIONS OMITTED 17

01 201 FINCH JO CAROL 00025 36 11 74 ROSS
ANSWERED I NCORR ECTL Y 10 24 25 31 34 37 39 42 ll·3

44 47

01 201 ABR AHAM GLADYS K 00026 32 15 67 ROSS
ANSW ERED I NCORR ECTL Y 5 9 10 15 16 21 23 24 27

30 37 41 44 47 48

01 201 MAGEE ROBERT ~1 00027 37 1 0 75 ROSS
ANSW ERED I NCORR ECTL Y 5 7 8 13 31 34 37 4A 45

48

01 201 LJTTON PEGGY SCOTT 00028 40 7 88 ROSS
ANSWERED I NCORR ECTLY 9 18 19 25 27 39 44

01 201 WHITTEN MARY ANN o C029 39 8 85 ROSS
ANSWERED I NCORR ECTL Y 13 16 19 24 27 2R 39 4::3

01 201 CALVIN JOHN HENRY 00030 37 10 74 ROSS
ANSW ERED INCORRECTLY 16 17 19 21 27 37 41 4l~ 47

50

01 201 GU NN VIR GIN I A C 00031 40 7 84 ROSS
ANSWERED INC OR R E C T L Y 8 16 24 30 34 43 47

0

trY_ r t PM

99

0 SEC COUR SE SCORE FREOUENCY CUM. FREQ. p E r~ C [-: t,1 TIL I

01 201 63 2. 2 ()

01 201 65 2 4 13
01 201 66 5 1 6
01 201 67 6 19
OJ 201 70 2 8 :?6
01 201 72 1 9 29
01 201 73 1 1 0 32
01 2 0·1 74 3 13 42
01 201 75 3 16 ~.::i 2
01 201 76 17 55
01 201 77 18 58
01 201 79 2 20 6 &.-,)

01 201 83 2 22 71
01 201 84 2 24 77
01 201 85 1 2!::) 81
01 201 86 2 27 87
01 201 88 4 31 1 0 ()

NUMBER OF TEST = 31 MEAN = 77 STANDARD DEVIATION = 7

o

~--""---~"-""""-.""""""""""""-.""~-"--~----"--------

QUESTION
SEC COUR IE HUMBER

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
0.1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

201
201
201
201
20i
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
20 t
GO.1

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

~01

201

1
p

3
4
5
6 8
7 8
8 8
9 8

10 8
11 C
12 C
13 C
14 C
15 C
16 8
17 B
18 8
19 8
20
21
22
23
24
25
26
27
28
29
30
31 B
32 B
33
34 B
35
36
37
38
39
40
41 D
42 D
43 D
44 D

45 D
46 E
47 E
48 E
49 E
50 E

100

EXAM "ANALYS IS
A B C 0 E

PERCENT
O~H T CORRECT

*
*
*
*
*
*

* 18*

*
19 *
23*
30*
23*
13
2 "7)',c

20*
21*
25*

6
30*

3
12
20>.'<

30*
12*
29*
10>.'<

7
:!c

8
18*

4
9
9*
6)',c

25*
1 ::'

28*
18*
10

1

2
2
1

2

1

3 27* 1
7 24>.'<

THIS QUESTION OMITTED AT THE REQUEST OF,THE INSTRUCTOR

1

5
3

28*
9

9
5

26':C
28*

3
22)~

21 y,c

26*
14 17::c

28* 3
27* 3
25~c 6

5 25':'
28* 3

THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
21* 10

THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
26*
18

13*
7

31 ~c
1 1

9
20*
16

28*
28*
19

16*
25*

3

4::,'<
12 ~c
1 7~c
23*

:!c

20*
21*
10
14*

2
2

12*
15

6
28~c

1
1

1

1
1

1

97
97
94
9 /4-

74
97
74
58
87
65
97

1 00
81

100
90
58
65
87
77

8 /4-

90
90
71
68
84
55
90
87
81
81
90

68

97
39
97
74

100
65
68
65
45
90
90
39
52
81
90

AS TER I SK (*) I NO I CATES COR RECT ANSWER

o

o

1 !Ii ! r:'_!!Ir !,?!!!!,,," II.!!! tllll"11"'" Iz ,= t
_'1 _ pm .. r, rd

o

•

102

C
QUESTIONS OMITTED 4 l l·

02 201 FOOSE JONATHAN EDW 00049 39 e HI ROSS

ANSWERED I NCORR ECTL Y 10 16 25 27 39 41 44 1+ 7

02 201 CHLRCH CLARENCE H 00050 36 1 1 69 ROSS

ANSWERED I NCORR ECTL Y 8 9 13 21 24 31 34 1+ 1 47
48 lj.q

o

103

0 SEC COUR SE SCORE FREQUENCY CUM. FREQ. PERClNTILE:.
02 201 54 1 C;:'

,) 02 201 66 1 2 1 1 02 201 69 1 3 Ie, 02 201
7~ 4 21 02 201 73 5 ?-6 02 201 76 2 7 37 02 201 78 1 8 42 02 201 81 3, 11 58 02 201 82 2 13 68 02 201 84 2 15 79 02 201 86 1 16 84 02 201 88 1 17 89 02 201 93 1 18 95 02 201 94 1 19 100

NUMBER OF TEST = 19 MEAN = 79 STANDARD DEVIATION = 9

o

•

104

QUESTION EXAM ANALYSIS
SEC COURSE NUMBER B C D E

PERCENT
OM I T COr~FH"_CT

02
02
02
02
02
02
02
02
02
02
u2
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

02
02
02
02
02
02

201
201
201
201
I! 01
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

4::: 01

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

1
2
3
4
5
6 B

7 B
8 B
9 B

10 B
11 C
12 C
13 C
14 C
15 C
16 B
17 B
18 B
19 B
20
21
22
23
24
25
26
27
28
29
30
31 B
32 B
33
34 B
35
36
37
38
39
40
41 D
42 D
43 D

44 D
45 D
46 E
47 E

48 E
49 E
50 E

*
*
*
*
*
*

* 14*
1*
6*

14*
18*
16*

4

16*
14*
13*
14*

3
19*

2
4

13*
4

19*
5*

18*
13::<

5

6
1 5)~

4 15>,'<

THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
3 16>:(

18*
18>:< 1

3
8
2

16*
11 ::~
1 7)~

6 13*
15* 4
17* 2
18* 1

6 13):<
17:,'c 2

THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
12>,'< 7

THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
17* 2>:'

7 12::'

8* J 1 >:'
4 15':'

19*
3
3

14::(
10
18>,'<
17*
10

2*
17)'f.

1

* 14*
16::<

5

8::'
1
2

2

1

ASTER I SK (*) I NDI CATES crn RECT ANSWER

1 00
ioo
100
100
74

100
84
79
84
74

1 00
100
84

100
89
79
68
79
79

84
95
95
84
58
89
68
79
89
95
68

89

63

100
63

100

79
100
74
84
74
42

95
89
47
11
89
95

o

o

105

0
TOTAL FOR ALL SECTIONS

COURse SCORE FREQUENCY CUM. FRE::O. PERCENTILE::

201 54- 1 1 2
201 63 2 :3 6

201 65 2 5 10

201 66 2 7 14

201 67 1 8 16

201 69 1 9 18

201 70 2 11 22

201, 72 2 13 26

201 73 2 15 30

201 74- 3 18 36

201 75 3 21 42

201 76 3 24 48

201 77 25 50

201 78 ~6 52

201 79 2 ,28 56

201 81 3 31 62

201 82 2 :;~ 66

201 83 2 35 70

201 84 4 39 78

201 85 1 40 80

201 86 3 43 86

201 88 5 48 96

201 93 1 49 98

201 94 1 50 100

0 NUMBER OF TEST = 50 MEAN = 78 STANDARD DEVIATION = 8

106

0
TOTAL. FOR A.L.L SECTIONS

QUESTION EXAM ANALYSIS PI::RCENT COUPSE NUMBER A B C D E OMIT CORRECT
201 1 * * 49~(1 98 201 2 * 32* 17* 98 201 3 * 1 ~, 4 7~:; 2 96 201 4 * 25):C 23)!c 2 96 201 5 ~, 37::' 12 1 74 2.01 6 B 48':' 1 ':' 98 201 7 B * 39 ::' 1 1

7e 201 8 B 17 33::' 66 201 9 B 43):' 7 86 201 10 B 34~:C 14 2 68 201 11 C 34::' 15.':< 9B 201 12 C 39~' 1 1):' 100 201 13 C 9 41 ::' 82 201 14 C 49~:' 1 ::.:
100 201 15 C 5 4 5~:< 90 2'01 16 B 16 33::' 66 201 17 B 33;:< 16 66 201 18 B -1 42':< 84 201 19 B 11 39';< . 78 201 20 THI S aUESTION Ot.H TTED AT THE REQUEST OF THE INSTR UCTOR 201 21 8 42':' 84 201 22 l~ 46':' 92 201 23 46::' 4 92

C 201 24 12 38:;' 76 201 25 17 32':' 64 201 26 7 43':' 86 201 27 20 3 o~:,
60 201 28 43):' 7 86 201 29 44~:' 5 88 201 30 43':C 7 86 201 31 B 1 1 3·8:::: 76 201 32 B 45~:' 5 90 201 33 THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR

201 34 B 33~:' 17 66 201 35 THIS QUESTION OMtTTED AT THE REQUEST OF THE INSTRUCTOR
201 36 43':' 6':' 1 98 201 37 25 24~:' 48 201 38 2 1 ~:, 28::< 1 98 201 3,9 11 38':' 76 201 40 50~:' -'- 100 -,-
201 41 D 14 34':' 2 68 201 42 D 12 37':' 1 74 201 43 D 34':' 15 1 68 201 44 D 26 22':; 2 44 201 45 D 46* 3 92 201 46 E 45* 4 90 201 47 E 29 21 ':c 42 201 48 E 18':' 31 36 201 49 E 42* 8 84 201 50 E 4 46* 92 ASTERISK (*) INDICATES crn RECT ANSWER

0

o

UNIV OF MISS TEST SCORING REVISED (UMTS-R)

ZZZZZZ 13559

READCK 00408
DECSRR 10540

AON 09403
APA 08172
AQUES 12138
ASEC 12108
BFF 02716
BN2 03076
("HECK 0494-4-

CNA2 00735
CT Oe4e!7

DECAX 04044
DIV 11046

DIVV 11324

ERRA 03892
ERR5 09985
FREQT 01695

HCAA 03988
HOLD2 02451
H322 05960
H822 05912
L 12227
LOOP 04832

MEAN 08419
NINE 11921
NQDT 03797

PLLA 05620

PSB 07040
PUNCH 11524

RCON 11029
READ2 00570

RPUN 08928

SC 03727
SFLAG 00638
STAT 00784

TAB1 00807
TCNT 07159
THRUF 04976

WRON 02271
XCOUR 12331

XTOT 12337

ZRE 01636

ZRP 02096
Z 18 11939

Z I>L 17370
Z B8 13719

Z ERR 15061

Z H5 14223
Z PRTT 17766
Z ROSS 14109

Z R22 18030
Z TM 17130

THRUUA 04292

R EADBB 00444
CHECKK 13420

ADR 09400
APB 08184
ARN102140
AST 09413
BL 12307
BN3 03112

CID 10208
CONA 1331'19
DAD 0934 f

DECL 10669
DIVA 11507

DOUT 10696

ERRAA 0392E
ERR6 06077
GRA 12277

HCT 04056
HP20 04700
H44 1317Q

J 12207

LA1 058R 0
LOOPA 04164

MEN 09527
NMM 12309
NOMI 04136

PLLAA 06672
PSEA 06432
QC 0648~

RCONX 09395
RED 03692
RR 13510

SOC 12297
SID 1234~-i

STATX 09100

TABIL 00963
TESTA 03327
THRUU 05080
WRONG 04047
XNAME 12343

Y 13189

ZRF 01988
ZRR 02960
Z7 11928

Z ALL 14083
Z CC 13741

Z HDHD 14351

Z H6 14239
Z PR1 1376f'
Z RRC 13877

Z R3 1537F
Z TNF 13645

TAB2Ll 01035

PUNCHl 11706
CHECKA 04220

AID 12088
APC 08208
ARN 11 02164
ATDt:: 09541
BLANK 11923
BN6 03376

CIDC 10230
CONS 13411

DADO 09361

DECS 10364
Drv!:) 11517
DIX 11475

E RRF 09368
ERR6H 06119
GRB 12287

HD 12855
HP24 0364£'

H488 06252
JA 04 1135

LA2 05892
L T 00721

t'\~i 12257
NN 12267
NQTT 03505

PLLI'> 06684
PSEC 06464
00 12359

RDEC 10432
RIGHT 13367
R RC 13554

Sr·C 10302
S I Zl: 00685
STRT (j9204

TAB2 (·0999
TESTI::. 03471
TNF 07231
WT 13566

XP82 11919

ZERO 12081

ZI-IG 02036

ZRRX 02996
Z8 11929

Z AN 17406
Z CHECK 13641
Z Hl 14379

Z J 14042
Z PR3 13780
Z R RCC 13854

Z R33 18066
Z X 14555

SYMBOL TABLE

TAB1Ll 00975

PUNCHH 11656
ABEGIN 00401

ALRL 01096
APCC 07916
ARN3 01904
A14 10256
BLC 03809
BNOt.> 03460
CKA 13439
COUR 1 0~20
DBN 11368

DF:CSFI 1 0~96
DIVC Cl4042
D2X 11480

ERR1 09£:>93
ERR7 04663
HA 12369

HE 1~~017

HP36 0171:'.8

H4888 06160
J 10 10?'t;2

LA3 05936
LT5 00719

N 12247
NUCK 05104
NOT2 0:0761

POUT 07340
PSFCS 06::'6<>
OUI-:S 12304

READ 00760
RM 12174

RRCC 10186

SECC 10308
SNOM 12::'65
STT 02560

TAB2L 01023
THR 05044
TOUT Ub564
V-!TT 13440

XSAVE; 12::,23

ZllA

ZRJ
ZRZ

Z A

Z AT

ZeONA
Z H2

Z LT
Z PR4
Z RT

Z R'+
Z XA

1091fl

02:;'32

01480
13810

13655
14066
14443

14U79
137CJ2
17910

15.02
15102

STARTX 09120

FREOTL 01811
AAA 10723

ANM·,F 12091:'·
APD OH240
ARN4 0191(,

A71 118a9
BNF 02660
Eli-lAN 09144
CI{H 13459

cnURC 10332
DDA O~353

DECX Oa60!:)
DIVD 0723(.1
D3t-: 11440

f'RR2 09761
EXTRA 12357
H8 12~31

HG2
HX
H52:-:
JY')C
LA4
L T '5T 1

r-!CAHD

t-'w·'IT
NUI,IT

PPfll

PSEF.

f< .. ~r.

PFArA
NOS'"
RRCP

SI-:TUP
SQf~S

STUll

TALl21

THi~"

TTN

W\','

XSFC
ZfH.\

ZRM

1235~;

10S7!:;

059.-14
10274
0~g72

00747

C 0611;~
1 :~~)69
()9'~'.13

1 1101->~;
() 3~i ~)(J
Cl3776

004l'b
0>.167;>

13':>30

0432il
10760
05028

01095
042",6
078RO

12,361
12::;2~

01552

031R4

ZSS 028E:.6
Z AA 13575

Z Al 1697'~

Z CfJRf 14071
7 H22 14!j33

Z NCARI! 14077
Z RCON 18170
Z R1 15131:.

Z SIZE' 14075
Z ZERO 1403·7

NUVtMH~N IH, IYh6

SOI<SUU 10724
FI'<E()MT (J:'>'~:35"

ACN 1.?l?f>

I'd,S
APDD
ARN6
A(.~

f!NFF

CARD

CN
C[1lJl->~

DDACK
lJECI
DIVJ
D3X

1:::1<1<3
FREO
HC

HOLI.l
tl<?
FIScH'"

JIOCC
LA!'>
I:.

,',COI-'Y
r'in~·'1 l.
I)'.' IT
!-'P{,2

r .. ·S5S
h'Ai;.2'J.

t' F..I'.iJl.

~'f.IUT

rH~

SF
SO~T

TAHZ

13~d)U

0112 !'I 8
023'~'1

10171
O?6Q(-"

1 :>.,01
("72!,'='
1 Cl.·;44

(A3',7
1')660
111 OR

114 f:'.7

n9".~3~

()1 ::/03

1?693

0221-'-3
10.141
O!,HOP

I02ClF;,

O~.18~)R

122~7

009.'1Q

Cll <.lOu

Ot'1.39
11!'<),:
0/- ('~·H:'1

p~: 776

(\()'~ 7 (J

Ci'71 to
13<;<;9

00674
I PRlr"

12153

TAS 100Q S
H-.RLJ 0"_;c)3~

\-iET 02272

X 11727
XSf:CA 1 ;~327

Z~C 10990

ZRN

Z10
l. A[:!

Z A14

03172
11931
13fo!;7

13839
Z DCK 1471·5

Z H4 142 o~

Z PRINe 1"4072
7 RDR 14080
Z Rl1 17994

Z START 14736

·107

NIGHTT 0500fl

FREOl..I (.ot;,>?7
,~COUI'J 121lFl

"1-1:'.2 1'3351
flPNX 0174 /,
Al-m7 ·027134

SA 0347;:>
Ill'!! . 04~9/~

CFLAG 0061'1
CNA 1 (,07;:>')
CON }:'·<:·l'ol

Dl:Ct\ 1071'
I) I SC C(1U()1

DIVK 110£,0
nil x Il t l9?

~W<4 0992',
F R E (lL () 1 ? 1 5
'-leA 03976

HOLD I 02319
1-124 0906H

H"12.~ 01'>050

K 12217
L.C A\<,!' ()q 04 8

' .. ;/>. XS 0:':< 7 ·'7
:'1(:, oq~·· P:3

I;'l) 1)37:~4

PC 'jUl·: 07681'
P~J.I ()Ag(lO

j.)\':; x Of~'~> t'l",

.~C '':'·1 (}~.; u::; :::
!-(' I;, /\~) 1 0 (i:; 1 t'.

'·'U\JTT 0"6 0 (.

I<T1"T 0;·'71, (l

SFt= P(~66;">

!jTART Otl7J1·
TAu2;L 03039
TI:C 12;?(lQ

TH~~UA 0424 /1

v.'r-i 12:i63
XA -()c:115
XSEC!'l 123;> q

ZfW 01624

Z~'(J 10ell2

ZI3 11':134
Z II.HC 13829
Z A2 16<,1'<:·6
7. DIV\) 13b44
1. H44 14523

Z PRINT 1376(,
l IolM 14044
Z R2 15294

Z STP 14940

"108

UNIV OF MISS TEST SCORING REVISED (Ur .. nS-R) NOVEMHER 18. 1966 PA('F.

LOCTN OP

00402
00001
00401

00406

P/l.

00000
00000

00005

Q

00408 37 \1727 00500
00420 46 00446 01200
00431 00005
00432 46 00446 01200
00443 oooo!:)
00444 42 00000 00000
00446
00446 16 00481 +1726
00458 46 00470 01200
00469 00005
00470 43 00482 12138
00482 46 00514 01200
00493 00005
00494 46 00514 01200
00505 00005
00506 49 00570 00000
00513
00514 15 0048+ 000'00
00526 11 00481 00091
00538 15 0048+ 00000
00550 12 00481 00091
00562 49 00482 00000
00569
00570 11 00481 00092
00582 14 00481 +1885
00594 47 00470 01100
00606 42 00000 00000
00608

00612 00005
00614 15 00675 00003
00626 49 0065C 00000
00633
00637 00005
00638 15 00675 00002
00650 16 00673 +2088
00662 26 00680 12088
00674 32 12088 00000
00685 00003
00682 00002
00686 11 00673 000+0
00698 45 00662 00673
q0710 32 11726 00000
00721 00002
00719 00000
00722 42 00000 00000

PG/LN LABEL MNEM OPERANDS AND REMARKS

00010 0

00020 0
00030 0
00040

UNIV OF MISS TEST SCORING kFVISLD
RICHARD DROSS
OCTORH< 6. 1 ')66

DURG (~OC'

(Uf':iTS-R)

DISC DS
AI::1EGIN OS

.1.,

.0
DISC=O FUI< NO [) ISC

00050
00060 0
00070 ~,

00080

SUBROUTINE TO READ A CARD AND CHECK FUR
MEJR-E: AND MBR-O CHECK STOPS

DS 5
00090 R EADCK RACf) X
00100 BE READA
00110 DC 5.01600.*
00120 8E READA
00130 DC 5.01700.0
00140 READHG 88
00150 DORG *-9
00160 READA T~M READL+11.X-1
00170 H~ *+12
00180 DC 5.01700.'~

00190 I<EADL bD ~'+12,A()UES

00200 HE READI
00210 DC 5,01600.*
00220 HE READI
00230 DC 5.01700.':'
00240 8 READ2
00250 DOHG *-4
00260 REA!)1 TOM REAI>L+l1.().6
00270 Mi :-.lFAI1L+l1.1.10
00280 TOM REAOL+ll.0.6
00290 S~ REAOL+ll.l.10
00300
00310

b ;<FADL+12
DCH,G ,:,-{~

00320 RFAIl2 AM r~EAI)L+ll.2.10

00330 CM RFADL+l1.X+AO*2-2
00340 BNP READL
00350 LiE

00360
00370
00380
00390

DOI,(' *-9
E,,:rJ (If' SUtlfUJUT INf,
SUBROUTINF TO SET FLAGS A~D CLEA~ FLAGS

DS 5
00400 CFLAG TDM SF+l.~

00410 h SFLAG+12
00420 DORG *-4
00430 OS 5
00440 SFLAG TDM SF+I.2
00450 TFf'i SFF+l1.AID
00460 SFF TF SF+6,AID
00470 SF SF AID

1 Frm DISC

00480 SIZI:: [)S

00490 NCARD [)S

3, ::!"
2 ,~::-J t ,

MAXIMUM NU~B~R OF aUESTrnNS
MAXIMUM NUMiER nF tARDS

00500
00510
00520
00530 LT
00540 LT5
00550

A~; SFF+ 11. 10olO
BNR SFF,SFF+11.11
SF X-I
DS 2,*"
DS • ':'-2"
tiS

LENGTH OF CONSTANTS r 03. 04 OR 05
LT= LT ,;, 5

Q

o

•

UNIV OF MISS TEST SCORING REVISED (UMTS-R I NOVl:"'I"t:H P" t.9b6

LOCTN OP

00724

00729
00735

P/L

00006
00006

Q

00736 32 00760 00000
00747 00005
00748 16 11889 00090
00760 26 11885 12081
00772 17 00408 eoooo
00784 17 00614 eoooo
00796 32 12086 00000
00807 00005
00808 14 12093 00090
00820 46 00760 01200

00832 14 11727 000T3
00844 47 02140 0120q

00856 14
00868 47
00880 25
00892 25
00904 25
00916 16
00928 49
00939

00940 16
00952 33
00963
00964 33
00975
00976 17
00988 32
00999
01000 26
01012 32
01023

00000
11729 0-t313
00940 01200
00939 11733
00938 11731
0934A 11735
09353 eoooo
00760 00000
00003

11889
0071'>0
00005
OB740
00005
00614
1 i 742
00005
12427
12:::;30
00005

OOOrO
00000

00000

90000
0·0000

11845
00000

01024 32 12336 00000
01035 00005
0103"6 11 12331 000e9
01048 11 12337 000e9
01060 11 12363 000e9
01072 11 12357 000e9
01084 32 1;>346 00000
01095 00005
01096 25 -t2300 11727
0~108 21 01107 00729
01120 14 01102 T2309
01132 47 01096 01200

PG/LN LABEL MNEM OPERANf>S ·AND REMAI~KS

00560
00570 CNA1
00580 CNA2

DORG "'_9
DC 6.10000c
DC .6.900018

00590 * END OF SUfiROUTINf'
00600 START SF REAU
00610 LTSTl DS 5.* ••
00620 TFM A71.00.10
00630 I~EA[) TF :X+80*2-2.ZERO
00640
00650 STAT
00660
00670 TABI
00680
00690
00700 *
00710
00712

HT": READCK
!:lTM CFLP,G
SF AID"E>
DS 5.* ••
C", AIO+5.0.610
~.lt' RFAI) •••

04 x.13.10
BNt:. ARNI

LT5Tl= LTOb*IOVO+l

TAlll:: TAt,\).

IF I-ILANK CAI,W I!. ~!I,AI).

SK lP nil: cAI~t)

0071.4 .;,

00716 *
00718 *
00720 .,-
00721

DISC VERSION RE:AU IN MUMI-lEr~ OF CIJPllS NICHll,:,U

ON $$020
WHICH SAYS 't'OU NfO£:U TWO (,XTRA COPIES ANII US!' I)~IV(· 0

0072?
O()723
00724
0072t.
00-/26
00727
0072e
0072<,1

IF DISC-l.I:i.O
CM X+2.1313 .. 8

I:lNE .;. +7?
TO NCOPV.X+.*?-~

TO
TD
Trll •

1.\

f'.,CQ>'Y-l.X+:i*2-2
DAD .x+st.·<!-?.
I)I)A.O
f-IEAI1

00730 t~cnpy DC

007:-15
00740
007S0
00760
00-170
007AO
00790
ooeoo
ooH10
001320
OOH30
001::,40

',. Hr· ADFk CARD
Tf'M A71.70.10
CF REAIl

T"'·.<lL OS
Cf-'

rA~ILl DS ~.* ••
8TM CFLAG
SF X+9~'2-3

TAH2 ~DS

TF
~;F

TAH2L [)S

1-111+3 0*2-2 .• X+b(";'~:-2
XCOlJR-l

00850 SF
00860 TMJ2Ll OS
00870 AM

X1'OT-l

XCOIJR.9'10
00880 AM XTOT,9,lO
00890 AM ~N.9.10

00900 AM E*TRA.9.10
OOSIO SF HG2-4
00920 TAI:l21 [)S t,,~, ••
00Y30 ALRL TO CAf-ID-l.X.2
00~40 A ALRL+l1.CNAl
00S50 CM ALRL+6.CARD-l+Q
00960 !:lNE ALRL

lAII1l.;: T/,1'o1 - LT + ,

TAIIIL1:: TAl·\) .. LT .. 1 + ,

TAHRL= TAHP- LT + 1

TAII;'Ll'" T i' - LT .. 1 + I

109

UNIV OF MISS TEST SCORING REVISED (UMTS-R) NUVEME-IER 18. 1966

LOCTN OP

01144 22

01156 15
01168 15
01180 43
01192 15
01203
01204 32
01215
01216 32

P/L Q

01107 00735

12308 OOOOS
12300 ooooe
01204 12301
12300 0000+
00005
12302 00000
00005
12305 00000

01227 00005
01228 23 12301 03724
01240 46 01468 01200
01252 22 00099 03724
01264 24 00099 12304
01276 46 01468 01300

01288 23 12301 03724
01300 24 00099 12304
01312 47 01468 01300
01324 26 12323 12329
01336 26 12565 11931
01348 43 01372 12343
01360 26 12565 12315
01372 26 12689 1318~

01384 14 12355 oooeo
01396 47 0142-0 01200
01408 26 12689 11929
01420 24 12301 00682
01432 46 01468 01100
01444 24 1230~ 00685
01456 47 01480 01100
01468 17 09368 &9985
01480 17 10882 &0000
01492 31 01023 00963
01504 31 0181+ 01215

01516 22 09403 09403
01528 11 09400+3561
01540220940312304
01552 31 0940e 13350
01564 11 09403 .~OOOI

01576 43 01552 09401

01588 26 13439 11931
01600 26 13459 119~1

01612 16 12207 oooel
01624 25 01642
01636 15 13439
01648 11 12207
01660 24 12207
01672 47 01624
01684 32 13430
01n95 00005

12207
00001
oooel
I? ~oO 1
01100
00000

01696 31 13460 13350

PG/LN LABEL MNEM OPERANDS AND REMARKS

00970

00980
00 <;-90
01000
01010
01020 FREQ
01030
01040 FRF.QL
01050

S

TOM
TDI.'
BD

TDM
OS
SF
DS
SF

ALRL+11.CNP.2

NMM-1.5tl1
CARD-1.0.11
~'+24 • CAf~D
CARD-1 .1 • 11
5.* ••
QUES~2

5,:::, ,

01060 FREClLl DS
BL~2

5.* ••
CARD,NO
ZRZ~12

99.NQ
99,OUES

01070 M
01080 8Z
01090 .,
01100 C
01110
01120 ':'
01130
01140
01150
01160
01170
01180
01190
01200
o 1;~ 10

01220
01230
01240
01250
01260
01;>..70
01280
01290 ZH2.
01300
01310
01320
01330
01340
01350
01360 ZRl"

01370
01380
C 1390 ':'
014:00
01410
01420
01430 ZRI)
014 4 0 Z HE
01450
01460
01470
01480

HNN ZRZ~12.,.

I'" CAF~D ,NO
C 99,(WES
bN ZRZ~12

TF XSAVE.XSECb
TF H8+18*2~2.ZIO

bO ~'+24,X"!AME

TF HR+18*2~~,N~~+4*2~~

TF HB+80*2~2,H44+4*2~2
cr·, HG2 .0, 1 ()
:-iNE ':'+24
TF HR+80*2~2.Z10-2

C CARO,NCARD
loP ZRZ~12

C ClUES,SIZE
1::~-IP ZRZ
hTr- ERRF ,F:Rk5

"'n·; ZRO. "
TR TAB2L,TAalL,611
TR FREUTL.FkE0L.b11

Z~~O ANS~ER TA~L~

AD~~./).llN

AL'lf-l ,/\NS-9+ I
ADr,j ,QUES

ADR ,ANSZ~I .6
ADN ,10001

SET UP CH~CK CONSTANTS
TF CKA,ZIO
TF CKH,Z10
TF , JoioiO
TC
TDr ..
Ar·.;

SF

zr~E+6.J

C¥.A, ,.

JoioiO
J,CAR()
ZR;)

CKA-9

FI~Ec;.:: Ff~EO

FREOL= FR~Q ~ LT + 1

FREOL1= FREa ~ LT + 1 + 1

NU~8ER UF CA~OS AND QUESTIO~~
D 0 ~'I 0 t, GR E f:

Z~:;!G TA~',l, T~';.f-"2. F,~~-=:O, Ai'·.C FPf.::Gi

01490 FR=OT DS 5,':'" FRI::C-T= FR,-,OT
01500 * ZERO CARD/OUESTIO~ CONSTA~T AND INITILIZ~
01510 TR C0N~l,ANSZ~1

110

0
_'·

I "

I

3

o

o

o

o

COMMON

New Orleans, Louisiana

"A Computer Plotting Language"

Dr. James R. Oliver
and

John McMahon

University of Southwestern Louisiana
Box 133, U.S.L.

Lafayette, Louisiana 70501

M-3.5
Monday

November 28, 1966
1:30 - 3:00 P.M.

Text 16

111

---- -~~~~~~--~-.,~~ .. ~'-"---"-'-----'--------------'-----"-

A COMPUTER PLOTTING LANGUAGE

James R. Oliver University of Southwestern Louisiana,
Lafayette, Louisiana

and
John G. McMahon. General Motors Proving GroundS,

Flint. Michigan .

Results described in graphical form· are often much easier to
interpret and provide a more meaningful description than information
which is merely aligned in the rows and columns of a printed report.
The architect would like to use the plotter in formulating his design
of a building, On the drawing board. he makes a sketch of his ideas
and if any alterations are to be made, he begins again to redraw the
portions he wishes to retain in his design. Using a plotter language,
one or two of the parameter cards can be changed and the complete
drawing with the changes can be made with a minimum'of time and
effort. By means of the plotter, the civil engineer is able,to view
the geometry of the construction of a new street or expressway and
how it will affect surrounding property. The dimensions of the parts
of an engine can be calculated by a computer and a drawing graphically
constructed with the plotter making it unnecessary for the mechanical
engineer to draw these parts by hand from generated data. The geog
rapher is capable of constructing a contour map from elevation data
points by means of the plotter. There are also many other disciplines
which could use the plotter as a. graphical device to great advantage.

At the present time, there are very.few automatic programming
languages available which make use of an x-y plotter on line with a
small computer. In the available lite~ature there were only two pro
grams designed to implement a language to make use of the plotter:
"IBM 1620-1627 Fortran Plotter Subroutines" and "1620 Numerical
Surface Techniques and Contour Map Plotting". The Fortran plotter
subroutines exist in several forms but all are referenced by a Fortran
CALL statement followed by a list of parameters. Experience has
shown that this method is inadequate for many purposes and is somewhat
difficult to learn, particularly for beginning programmers.

The Numerical Surface and Contour Map Program consists of
several programs which calculate approximations to values defining a
surface and prepare a display of the surface in the form of a map.
The input to this program must follow a rigid format. An understanding
of the program somewhat above that expected of a beginner is necessary
to utilize this system of programs effectively.

It is for these reasons that it would be desirable to construct
a plotter language which requires a minimum knowledge of computers and
computer languages. The EZPLOT language was written to allow the use
of the plotter as graphical output device with a minimum of restric
tions and programming effort.

There are forty-eight characters in the EZPLOT language. These

112

o

o

o

o

o

-2-

include 26 letters of the alphabet, the ten decimal digits, and twelve
special characters: blank [], period [•]. right parenthesis [)].
plus sign [+], dollar sign [$], asterisk [* 1, minus sign [-].
slash or solidus [/]. comma [,], left parenthesis [(], equal Sign
[=], and 'comercial at' sign [@].

Combinations of these characters are used to construct statements
in the EZPLOT language. There are three types of s·tatements: source
statements, comment statements and data statements. Source statements
define operations to be performed and are decomposed by the interpretive
processor and then executed. These statements are composed of from one
to five input records. Each input record consists of eighty columns on
a card or 80 type positions on the console typewriter. Blanks have no
meaning except in H format specification. to be discussed in a later
chapter,' and hence they are ignored. Every input record which is a part
of the source statement must have a 'commercial at' sign [@] in the
first position of the input record. The source statements themselves
must be located in columns 7-72, inclusive, of the source input record.
Positions 73-80 of the source input record are completely ignored by the
processor and may be used for card sequencing. program identification or
any other purpose the programmer wishes. It is necessary that the dollar
sign character [$] be the last character in the statement. The dollar
sign indicates to the interpreter that the end of a statement has been
reached. At this point, source statement decomposition is completed and
corresponding machine language commands are executed.

Comment statements may be used in documenting a program and are
defined by an asterisk [*] in the first position of the input record.
The comment itself may be located in one or more positions 2-80 of the
input record. As a result of the identifying asterisk, the comment will
not be processed as part of the program and will instead serve as sup
plementary information to persons reading the program. Comments may
also be placed after the dollar sign which denotes the ter.mination of a
source statement since processing does not continue beyond that point
on that input record.

Data statements consist of information on an input record which
is to be read by an input statement and utilized by the program to produce
the desired results. The data input record must not have a 'commercial
at' sign [@], an asterisk [* J, or a slash or solidus [/] in the
first position.

DEFINE STATEMENTS

DEFINE statements are necessary for indicating which options are
to be selected for orienting the plotting surface, or what physical
size of the plotting surface is to be used, and the mi:nimum and maximum
values to be plotted. DEFINE statements also accomplish certain special
assigning and converting.

113

-3-

DEFINE ORIENTATION STATEMENTS

The DEFINE ORIENTATION statement indicates to the interpretive
processor. in one of three systems. how a pair of coordinates is to be
oriented physically with respect to the plotter. This statement should
precede any plotting which is to take place in the program. It allows
the progrsmmer the freedom of specifying whether the first or the second
coordinate in a coordinate pair is to be plotted lengthwise in addition
to designating a positive and negative directions of each coordinate.
The plotting surface is rotated internally about the coordinates of the
current pen position should any plotting have taken place.

The argument. enclosed in parentheses, indicates that the top of
the plotter drum is to move toward the front when it is used in further
plotter operations. The three systems or conventions mentioned are
Cartesian coordinates (+X, -X, +Y, -Y), geographical direction (NORTH,
SOUTH, WEST. EAST), and position in the coordinate pair (+1, -1, +2, -2).
This statement must have a single argument from the set of 12 possible
arguments mentioned above. Otherwise, an error message will be typed
at which time the error may be corrected. A positive number in the first
position of a pair of coordinates in subsequent statements is considered
to be +X in the Cartesian system, NORTH in the ·geographical system, and
+1 in the coordinate position system. The others correspond to the di
rections in their respective systems. Thus:

+x is the same as NORTH is the same as +1;

-X is the same as SOUTH is the same as -1;

+y is the same as WEST is the same as +2;

-y is the same as EAST is the same as -2.

For example:

DEFINE ORIENTATION (+Y)

This statement indicates that a positive value in the second coordinate
position (+y) will be plotted by moving the top of the drum forward and
that a positive value in the first position (+X) will be plotted in a
direction which is to the right when one faces the plotter.

At the beginning of every program a DEFINE ORIENTATION (+X) is
automaticallY execut~d internally. The first statement of this type in
the program will perform re-orientation of coordinates. The orientation
is changed by either another DEFINE ORIENTATION statement or by initi
ating another program.

114

o

C

o

o

o

•

-4-

DEFINE PLOT AREA STATEMENT

The DEFINE PLOT AREA statement indicates to the interpretive
processor the actual physical plot size, and the minimum and maximum
values to be plotted in each direction. This statement should also
precede any statements which perform plotting operations. The primary
purpose of this statement is to permit the programmer to scale the
drawing to the desired size.

In a DEFINE PLOT AREA statement, there are six arguments en
closed in parentheses and separated by commas. This statement is of
the following form:

DEFINE PLOT AREA (XMIN, ~~. XSIZE, YMIN. YMAX. YSIZE).

XMIN, XMAX. XSIZE, YMIN, YMAX, and YSIZE are arithmetic expressions.
XMIN indicates the minimum value and XMAX indicates the maximum value
which will appear as the first coordinate of a pair of coordinates in
subsequent plotting operations. XSIZE specifies the physical distance
between XMIN and XMAX on the plotting surface in inches. YMIN indicates
the minimum value and YMAX indicates the maximum value which will appear
as the second of a pair of coordinates. YSIZE specifies the physical
distance between !MIN and YMAX in inches.

The value of XSIZE and YSIZE must be positive and less than or
equal to 999.99. The current physical pen position will be defined as
XMIN ana !MIN when this statement is encountered. For example:

DEFINE PLOT AREA (-3.0, 31.0. 6.4. 73.5, 76.5, 9.0).

The current pen position is defined as (-3.0, 73.5). There will be six
and four-tenths inches between the minimum and maximum values of the
first coordinate and nine inches between the minimum and maximum values
of tne second coordinate. Errors such as the wrong number of arguments,
a 'maximum value' less than its corresponding 'minimum value' or a
'size value' outside the allowable range, will be typed on the console
typewriter and the statement may be corrected at this time.

A DEFINE PLOT AREA (0.0, 99999.0, 999.99, 0.0. 99999.0. 999.99)
is automatically executed internally at the beginning of every program.
The plot area and the minimum and maximum plot values are changed by
either another DEFINE PLOT AREA statement or by initiating another
program.

DEFINE POINT STATEMENT

The purpose of the DEFINE POINT statement is to assign a pair of
coordinates to one hamel In this way, a single point may be referred to
by one name, called a point variable name, rather than by its two coor
dinates. This statement has three arguments enclosed in parentheses

115

-5-

and separated by commas. It takes the following form:

DEFINE POINT (NAME, XCOR. YCOR).

XCOR and YCOR are arithmetic expressions which define the location
of the point called NAME. NAME is a point variable name synonymous
with position (XCOR. YCOR) and may be used in place of a pair of
coordinates where coordinates are required or m~ appear in an arith
metic expression used to indicate one or both coordinates where
coordinates are required. NAME must not be used in .any other manner.
For example:

DEFINE POINT (PLACE. 3.0, 7.0).

This statement has defined PLACE as a point variable synonymous with
the coordinates (3.0, 7.0) and thus may be used instead of this pair.
As a further example. consider the following statement to follow the
DEFINE POINT statement expressed above:

DEFINE POINT (NEXTI. PLACE+4.3, PLACE+6.9).

This statement is synonymous with:

DEFINE POINT (NEXT1. 7.3. 13.9),

The following statement is invalid unless PLACE has been previously
specified as a simple variable:

x = PLACE+ 1. °
An appropriate error message will be typed on the console type

writer if any syntactical error occurs at which time the error may be
corrected. If a DEFINE ORIENTATION or DEFINE PLOT AREA statement
should occur later in the course of the program. the point variable
will be defined as if the same DEFINE POINT statement followed after
these statements.

DEFINE PEN POSITION STATEMENT

The purpose of the DEFINE PEN POSITION statement is to reassign
pen coordinates. This statement defines the present physical position
of the pen in terms of two coordinates. Thus this particular physical
point has reassigned values for its coordinates. This statement may
be in either of two forms:

DEFINE PEN POSITION (NAME)

or DEFINE PEN POSITION (XVL. YVL).

116

o

o

:f

~
I
I

I.
I

o

o

•

-6-

In the former statement, NAME is a point variable and has appeared as
the first argument in a DEFINE POINT statement. In the letter state
ment, XVL and YVL are arithmetic expressions. The argument(s) are
enclosed in parentheses and are separated by a comma if two arguments
are used.

DEFINE RADIANS STATEMENT

The DEFINE RADIANS statement converts degrees, minutes, and
seconds to radians which are units used in angle measurement. This
statement m~ have from two to four arguments enclosed in parentheses
and separated by commas. It is of the following form:

DEFINE RADIANS (RADN. DEGR, MIN, SEC).

DEGR. MIN, and SEC are arithmetic expressions denoting degrees, min
utes, and seconds. respectively, which are to be converted to radians.
It is not necessary for seconds or minutes to appear in which case it
will be assumed that they are zero. If minutes do not appear, seconds
also must not appear in the list. RADN is a variable which will con
tain the converted value. For exanp Ie :

DEFINE RADIANS (ANGLE. 37.0, 23.0, 15.0).

Thirty-seven degrees, twenty-three minutes and fifteen seconds are
equal to .65253497 radians. As a result of this statement the value
.65253497 is stored in the variable location called ANGLE. Any error
in syntax will be typed on the console typewriter and at this time
the error can be corrected.

P LOT-DRAW STATEMENTS

It is this series of statements which cause pl,:)tter pen movement
to produce plotted lines. There are six such statements defined by
the EZPLOT language. Addi tional command~ can be added to the system.
These statements may be written with the word PLOT or with the word
DRAW. In this and each case the result is the same. In this chapter,
these statements will be typed on the console typewriter should any
syntactical errors be encountered at which time they may be corrected.

PLOT POINT STATEMENT

This statement causes the pen to be lowered and moved in a
straight line to the position specified in the argument list. The
PLOT POINT statement is of the following form:

PLOT POINT (XC, YC).

117

XC 'and YC are arithmetic expressions separated by commas specifying the
terminal point of the line to be drawn. A point variable may replace
the coordinate pair. The purpose of this statement is to allow the pro
grammer to draw a straight line from the current position of the pen to a
specified point without specifying the initial point.

PLOT LINE STATEMENT

This statement causes the pen to be raised and moved to the first
position specified in the argument list. The pen then moves in a straight
line to the second point and from the second point to the third point
until the argument list has been exhausted. If there is a comma between two
pairs of coordinates, the pen will be in the' down position when drawing the
line between those two points. If, however, there is a period between two
pairs of coordinates. the pen will be in the up position when drawing the
line between the two points. A pair of coordinates may be replaced by a
previously defined point variable. A pair of coordinates must be enclosed
in parentheses and separated by a comma within the parentheses. Pairs of
coordinates must be separated by commas indicating a line is to be drawn
or by periods indicating a line is not to be drawn between the two points.
For example:

This statement indicates that a line is to be drawn between point (Xl,Yl)
and (X2.Y2) and between (X2,Y2) and (X3.Y3) and between (X4,Y4) and (X5,Y5).
Notice there will be no line drawn between point (X3,Y3) and (x4,Y4).

The programmer is allowed to draw several connected and/or discon
nected lines by means of a single statement. By constructing a compound
statement such as this. it becomes unnecessary to for.m many short, simple
statements. It is allowable to use PLOT LINES in place of PLOT LINE.
With the· same argument list. they yield the same result.

PLOT VECTOR STATEMENT

This statement causes the pen to be raised and moved to a point.

118

The pen is then moved at some angle from the plus X axis a specified distance.
The pair of coordinates must be enclosed in parentheses and separated by a
comma. The coordinate pair may be replaced by a point variable. The PLOT
VECTOR statement may appear in either of the following forms:

PLOT VECTOR (XVAL,YVAL). (RADN), (DIST)

or PLOT VECTOR (XVAL.YVAL). (RADN), (DIST).

XVAL and YVAL are arithmetic expressions indicating the coordinates of the

I

~

o

o

o

o

o

•

-8-

initial point of the line. A comma after the coordinates indicates the
pen is to move with the pen in the down position. A period after the
coordinates indicates the pen is to move with the pen in the up position
and that no line is to appear on the plotting surface as a result. RADN
is an arithmetic expression indicating the angle countercloskwise from the
plus X axis if RADN is positive and clockwise from the plus X axis if RADN
is negative. RADN is enclosed in parentheses and is followed by a comma.
DIST is an arithmetic expres~ion indicating the length of the line measured
in the units which are being plotted. If the distance is negative, the line
will be drawn at an angle of RADN-3.l4l59265 with a length of -DIST. DIST
is enclosed in parentheses.

119

If the scaling constants for X and Yare unequal, that is if XSIZE/
(XMAX-XMIN) is not equal to YSIZE/(YMAX-YMIN). As specified in the last
DEFINE PLOT AREA statement, then the number of units per inch in the Y
direction and X direction are different. By convention, the scaling constant
which yields the shortest line will be used in determining the length of the
line. For example, consider the following two statements as part of a pro
gram:

DEFINE PLOT AREA (0.0, 10.0, 30.0, 0.0, 5.0, 10.0)

PLOT VECTOR (1.0,3.5), (.78539816), (4.5).

The scaling constants are as follows:

XSCALE = XSIZE/(XMAX-XMIN) = 30.0/(10.0-0.0) = 3 inches
per X unit,

YSCALE = YSIZE/(YMAX-YMIN) = 10.0/(5.0-0.0) = 2 inches per
Y unit.

Since the scaling constants are unequal and the Y scaling constant yields
a shorter line than the X scaling constant, the former will be used in
determining the length of the resulting line. The two statements mentioned
produce a nine inch line drawn at an angle of .78539816 radians or fourty
five degrees with positive X axis from the point (1.0, 3.5).

PLOT CIRCLE STATEMENT

This statement causes a circle to be drawn. The PLOT CIRCLE state
ment takes the following form:

PLOT CIRCLE (XCNT.YCNT). (RADUS)

XCNT and YCNT are arithmetic expressions which define the center of the
circle and RADUS is an arithmetic expression defining the radius of the
circle. The pair of coordinates must be enclosed in parentheses and sep
arated bya comma. The coordinate pair may have a point variable substituted
in their place. If the radius is negative. it will be made positive before
plotting the circle.

wm ~

-9-

If the X and Y scaling constants are unequal, the same convention
applies to RADUS as to DIST in the PLOT VECTOR statement previously dis
cussed. The actual radius of the resulting circle will be deter-mined by
the smaller of the scaling constants. The following is an example of the
PLOT CIRCLE statement where the scaling constants are equal:

As a result of this statement, a circle with a radius of four units is
drawn with center at the point (7.5,5.5).

PLOT ARC STATEMENT

This statement causes an arc of a circle to be drawn. The PLOT
ARC statement takes the following form:

PLOT ARC (XCNT,XeNT), (XARC,YARC), (RADN)

XCNT and YCNT are arithmetic expressions defining the coordinates of the
center of the circle of which the arc is a part. XARC and YARC are arith
metic expressions indicating the coordinates of the point on the arc where
plotting is to begin. The two pairs of coordinates must be enclosed in
parentheses and separated within the parentheses by commas. A point vari
able may be substituted for either of the coordinate pairs. A comma follows
each pair of coordinates. RADN is an arithmetic expression which specifies
the size of the arc in radians and must be enclosed in parentheses. If the
value of RADN is positive. the arc will be drawn counterclockwise from the
point indicated by the second pair of coordinates. If the value of RADN
is negative. the arc will be drawn clockwise from that point. If the value
of RADN is greater than 6.2831853 or less than -6.28319531, which indicates
an arc greater than a circle. only one circle will be drawn.

The following is an example of the PLOT ARC statement:

This statement produces a semicircle concave in the negative Y direction
with center at (7.0. 5.0) and radius of two and one-half units. This
statement allows the programmer to draw any segment of a circle desired.

PLOT CHARACTER STATEMENT

The PLOT CHARACTER statement causes the plotting of characters
from the set defined by the language in Chapter I. This statement
provides a means of labeling the drawing with alphameric information.
The statement appears in the following form:

PLOT CHARACTER (XC,YC), (SIZE), (ORNT). List.

120

c

o

o

o

-10-

XC and YC are arithmetic expressions indicating where the lower left
hand corner of the first character is to be plotted. SIZE is an arith
metic expression indicating the height of the characters to be plotted.
The value of SIZE must be greater than or equal to 0.1 and less than
or equal to 9.9. If SIZE is less than 0.1 or greater than 9.9. the
characters will be drawn with a vertical size of 0.1 inch and 9.9
inches, respectively. ORNT must be an integer constant of +1. -1. +2,
or -2. The characters will be drawn parallel to the X axis in the
positive X direction if the constant is +1 and in the negative X direc
tion if the constant is -1. If the constant is +2. the characters will
be drawn parallel to the Y axis in the positive Y direction and if the
constant is -2, the characters will be drawn in the negative Y direc
tion.

The list which follows the orientation constant specifies format
information and variables to be alphamerically plotted. This list
follows the same rules as the format/variable list discussed in Chap
ter IV with the added restriction that the solidus is not allowed as a
format specification. The following is a part of a program:

DEFINE RADIANS (TRAJ, 41.0. 25.0)

PLOT CHARACTER (150.0, -120.0). (.4), (+1).
(18HTRAJECTORY ANGLE = .F8.5). TRAJ.

This last statement causes the following information to be plotted
alphamerically in the positive X direction beginning at the point
(150.0. -120.0) in characters four-tenths of'an inch in height:

TRAJECTORY ANGLE = .72286.

PROCEDURE. CALL AND REPEAT STATEMENTS

PROCEDURE STATEMENT

The PROCEDURE and corresponding END OF PROCEDURE statements define
a subprogram which will be stored on disk and will be available for calling
by future programs, The PROCEDURE statement is of the following form:

PROCEDURE NAME (VAR1. VAR2. VAR3 •••• , VARN).

NAME is the unique name by which the main calling program refers to this
subprogram, This name must consist of from one to five alphabetic and/or
numeric characters of which the first must be alphabetic. VAH1, VAR2.
VAR3 t '" • VARN are variable names which will have values assigned to
them at the time the procedure is called by the main program and may be
used accordingly in the subprogram itself.

121

~--~-."" ... "'-....... ---------.--~'

-11-

The END OF PROCEDURE defines the terminal.point of the procedure
and generates the necessary instructions to return control to the calling
program. This statement may appear with or without the' ?rocedure name
as follows:

END OF PROCEDURE

or END OF PROCEDURE NAME

If the name is included it must be the same as in the PROCEDURE statement.

The following is an example of a subprogram which calculates the
volume and surface area of a cylinder when the radius and length of the
cylinder are given:

PROCEDURE CYLIN (RADUS, LONG, VOL, SURAR)

VOL = LONG*3.14l5927*RADUS**2

SURAR = LONG*3.l4l5927*2.*RADUS + 2.*3.l415927*RADU8**2

END OF PROCEDURE CYLIN

RADUS and LONG correspond to the radius and length of the cylinder,
respectively. and are supplied to the subprogram by a CALL statement
in the main program. VOL and SURAR correspond to the volume and
surface area of the cylinder, respectively, which are calculated by
the subprogram and returned to the main program through the CALL
statement. In this way. frequently used computations may be formu
lated once by a PROCEDURE and then used by any future programs which
require such formulas through the use of a CALL statement in the main
program.

CALL STATEMENT

The CALL statement is the method in which the programmer calls a
subprogram in the main program. provided that this subprogram has already
been processed as a procedure. The CALL statement is of the following
form:

CALL NAME (EXPRl. EXPR2. EXPR3 ••••• EXPRN).

NAME is the name of the desired PROCEDURE and must therefore conform to
the same roles as the NAME in the PROCEDURE statement. EXPRl. EXPR2,
EXPR3 ••••• EXPRN are arithmetic expressions the value of which will be
assigned to the corresponding variables in the PROCEDURE list. If
variables appear in the CALL list, they must agree in mode with the
corresponding variable in the PROCEDURE list and these values will be
returned to the main calling program. A subprogram must not contain

122

c

-12-

4C) a CALL statement itself.

o

A variable in the main program and a variable in the subprogram
which have the same variable name are treated as different entities
unless they are defined to be the same by the CALL and PROCEDURE state
ments.

The following segment of a program calls the subprogram which
calculates the volume and surface area of a cylinder defined in the
preceding section:

READ. (2FIO.4). R. L

CALL CYLIN (R t L. V. S)

PRINT. (4FlO.4), R. L. V. S.

These statements read the va.lue of the radius and length of a cylinder.
call the subprogram to perform the volume and surface area calculations,
and print the value of the radius. length, volume, and surface area of
the cylinder.

REPEAT STATEMENT

The REPEAT and corresponding END OF REPEAT statements define the
limits on a series of statements which are to be executed repetitively,
called a REPEAT sequence. A REPEAT sequence may be completely contained
within another REPEAT sequence up to five levels. This arrangement of
REPEAT sequences is called nesting. The innermost REPEAT and END OF
REPEAT statements define the beginning and end of the same REPEAT sequence,
and so on working outward to the outermost REPEAT sequence. This may be
thought of in terms of a last-in-first-out push-down list in which suc
ceeding REPEAT statements cause the list to be pushed down with the current
REPEAT statement placed at the top of the list. An END OF REPEAT effects
a match or correspondence between itself and the REPEAT which is at the
top of the push-down list which, in turn. defines a REPEAT sequence.

Within each REPEAT sequence there must be an IF statement defining
the conditions on which control of the program will be transferred to a
statement outside of the loop. Otherwise. there is no way to exit from
the loop to execute statements which follow and thus the same REPEAT
sequence will be performed indefinitely to the exclusion of the remainder
of the program. The following is an example of the proper use of REPEAT
sequences:

SUM = 0.0
@A = a
REPEAT
@A = @A + 1
@B = a
REPEAT
@B = @B + 1
SUM = SUM + VALUE (@At@B)

nIH ,I'll

123

-13-

IF (@B.LE. 10), THEN CONTINUE, ELSE GO TO 15
END OF REPEAT

15 IF (@A .LE. 10). THEN CONTINUE. ELSE GO TO 25
END OF REPEAT

25 PRINT, (E14.8). TOTAL.

VALUE (@A. @B) defines a member of an arr~ which is to be discussed in
the following chapter. This portion of a program sums the values in a
ten by ten array called VALUE and stores the results in SUM which in turn
is printed out. In this example, the second subscript varies more rapidly
than the first subscript.

ARRAY. DELETE, AND END OF PROGRAM STATEMENTS

ARRAY STATEMENT

The ARRAY statement defines many variables by the same name. The
different variables are distinguished from each other by a number which
follows the variable in parentheses. The array may be integer or real
and may be of one, two or three dimensions. One or more arrays separated
by commas may be defined in each ARRAY statement. The ARRAY statement
may take any of the following forms:

ARRAY NAMl (Cl, C2, C3)

or ARRAY NAM2 (C4. C5)

or ARRAY NAM3 (c6)

NAM1. NAM2, and NAM3 are arrays which have three, two, and one dimensions,
respectively. Cl. C2, C3, c4, C5, and c6 are integer constants indicating
the size of each dimension. When these array variables or subscripted
variables are used in other than an ARRAY statement, Cl, C2, C3, C4, C5,
and c6 may be either integer or variables. Consider the following examples:

ONE is an array of one dimension with seven elements. TWO is a five by
five array of two dimensions. THREE is a two by two by two array of three
dimensions.

DELETE STATEMENT

The DELETE statement causes the variable names which follow in a
list, whether they be simple, subscripted, or point variables, to be elim
inated from the program list of variable names and makes this storage area

1*
II

124

o

o

o

-14-

available for new variables to be defined by the program. An array is
deleted by using the array name without dimensioning information in the
list of variables to be deleted. Single elements of an array can not be
deleted. For example:

DELETE YES. NO, MAYBE.

This statement causes the simple variables, arrays, and/or point variables
with the names YES. NO, and MAYBE to be removed from the program list of
variable names,

END OF PROGRAM STATEMENT

This statement indicates to the interpretive processor that this
is the end of this program. The processor then initialized itself in
preparation for another program which may follow.

SUMMARY

With the ability to orient the plotting surface and to reference a
p'air of coordinates by one nane. EZPLOT, allows a greater number of options
that are not presently available in Fortran subroutines. Some of the
other advantages of EZPLOT are its capability of drawing a line given a
point, the angle, and the length of the line and plotting a circle or an

125

arc of a circle 'in an efficient manner by use lof specilized routines.
Drawing a circle in Fortran involves using one of the library subroutines
which themselves require a relatively long time to execute. The Fortran
programmer must sacrifice speed to obtain accuracy or must be satisfied with
a 'circle' with straight sides which are quite evident to insure speed.
The circle and arc drawing routines in EZPLOT make use of certain relation
ships and approximating procedures which improve the appearance and minimize
the time required in drawing a circle or arc. Also the form of EZPLOT state
ments is more meaningful to the programmer with its English-like structure
as opposed to the cumbersome CALL PLOT statement :in Fortran.

At the University of Southwestern Louisiana, the Computing Center
Staff are interested in making the plotter available to as many areas of
study as possible. A subset of EZPLOT is being implemented to help fill
this interest. This subset is being written for &1 IBM 1620 computer.
Model I. with indirect addressing. hardware divide I' and having the move
flag. transfer numeric strip and fill instructions. The additional hard
ware requirements are 40,000 core positions, a 1311 disk drive, a 1622 card
reader/punch unit or equivalent and a 1626/1627 plotter.

The implemented language consists of READ an.d ACCEPT statements explained
in this chapter, DEFINE and PLOT-DRAW statements as explained earlier with
a varia.tion of PLOT CHARACTER which is explained itl this chapter. No
arithmetic is defined in the implemented language 'except where coordinates

126
-15-

are required. In this case. the only arithmetic allowed is a point variable c:l)
plus or minus a constant or variable, where the point variable has appeared
as the first argument of a DEFINE POINT statement. If the letter 'T' is
found in column six subsequent source statements are read from the typewriter
or read from the card reader if the letter 'C' is found. All source state-
ments must have a 'commercial at' sign [@] in the first position of each
input,record and may occupy up to five cards with a dollar sign as the ter-
minal character in each statement.

The READ and ACCEPT statements cause data to be read by the card reader
and typewriter. respectively. These statements are of the following form:

READ, VAH1. VAR2. VAR3 •••• ,VARN

ACCEPT, VAH1, VAR2. VAR3, ••• ,VARN.

These statements cause the variables VARl. VAR2, VAR3, ••• ,VARN to have
assigned to them the numeric values present on the input record. The vari
able names in this list may consist of from one to five alphabetic and/or
numeric characters of which the first must be alphabetic. A variable name
may be split between two source input records. A single READ or ACCEPT
statement reads a single data input record.

The data input record which is a maximum of eighty positions in length,
consists of numeric data with each pair of items separated by one or more
blanks. This numeric data may have a preceding plus or minus sign and a dec-
imal point. If there is no sign explicitly indicated. the number is assumed Q[:t
to be positive. The decimal point is assumed to be immediately to the right ..
of the last digit if it is not included.

The PLOT CHARACTER statement causes a string of characters to be
plotted and is of the following form:

PLOT CHARACTER (XC.YC). (ORNT) $.

xc, YC t SIZE. and ORNT have the same function as in the PLOT CHARACTER
discussed earlier. The dollar sign [$] indicates the end of source state
ment. On succeeding source input records, the contents of positions seven
through seventy-two inclusive are plotted until a record mark [~]
(0, 2, 8 punch on card) is encountered. These are defined as source/data
records and must have a 'commercial at' sign in position one. The PLOT
CHARACTER statement and its associated source/data records must not occupy
more than five source input records. For example:

PLOT CHARACTER (2. o. -7. 0). (. 4), (+ 1) $

VELOCITY IN FEET/SECOND. ,

This causes the second input record to be plotted excluding the record mark
with the lower left-hand corner of the letter V to be plotted at position
(2.0. -7.0) on the graph. The characters will be four-tenths of an inch in
height and will be plotted parallel to the X axis in the positive X direction. o

o

o

o

.... Mb.... r_

-16-

Finally the END statement with the word 'END' beginning in column
seven signifies the end of the program and deletes all of the variable
names in the symbol table. As a result. subsequent programs are unable
to use information which has been stored by a previous program.

127

· ...•. . .. _ ... -..•....... -_ .. _.. ',:,,;,::~:;;.;::.~;;,~~';';;;;:;"~.';.:.;,,;;; .•. ;.:;; .. ::' -.. -

Name of Prime Committee:

Subject: Relocatable Data-Conversion Subroutines for 1620 SPS II

Speaker's Name: W. N. Tuttle

Representing: General Radio Comp'any

Mailing Address and Phone Number: 22 Baker Avenue, West Concord,
Massachusetts 01781 369-4400

Day and Time of Speech and Session Number: Monday, November 28, 1966,
3:30-5:00 p.m., Session M-4.8

Number of Pages of·Text: 5. No graphics

128

o

o

o

o

RELOCATABLE DATA-CONVERSION SUBROUTINES FOR 1620 SPS II

W. N. Tuttle

General Radio Company, West Concord, Massachusetts

ABSTRACT

Much of the programming time with SPS is
usually taken up with handling input and output data
conversion problems. A set of three general-purpose
subroutines is described to reduce this labor, and
make possible shorter programs. These are IFL, to
convert from integer to floating-point, AFL, to con
vert from an alphameric input field to floating-point,
and FLA, to convert from floating-point to an alpha
meric output field. FLA gives unbiased rounding and
can, as an option, change the number of decimal
places, as required, to fit a wide range of output
values into a field of given width. Only a single
macro instruction in the mainline program is re
quired for each job. Each subroutine is loaded
automatically when its macro is used in a program.
IFL uses 859 core positions, AFL 1371, and FLA 1977.
Indirect addressing is the only required special
feature. The subroutines can be used only with the
fixed-length subroutine set and will not work without
modification in Monitor SPS II-D.

, Introduction

Data conversion and the handling of input and output data
are taken for granted in Fortran programming. This is an important
reason for the popularity of Fortran and similar compilers. Pro
grammers are frequently willing to put up with the serious limita
tions of these compilers rather than go through the chores of data
conversion which are required when BPS is used.

Examples of the limitations are the restriction of
integer computations in non-monitor Fortran to numbers of four
digits or less, the unavailability of proper rounding procedures,
and the inflexibility of the output formats.

InSPS even quite complicated mathematics is not diffi
cult to write, and the programs are usually better and run faster
than those in Fortran. The input, output, and data-conversion
problems, however, take a disproportionate amount of effort and
keep many programmers from profiting from the very great filexibility
and efficiency of SPS.

129

The present paper describes three relocatable subroutines
which have been written to handle some of the most frequent and
most bothersome data-conversion problems. The first, AFL, is for
alphameric to floating-point conversion, the second, 1FL; is for
integer to floating-point conversion, and the third, FLA, is for
floating-point to alphameric conversion and for automatically
shifting the decimal point in any of several ways to accommodate
as wide a range of values as possible in an output space of fixed
width. The latter subroutine was described a year ago at the
New York meeting. l

All three of these subroutines also solve the problem of
rounding to the number of significant figures retained at any stage
of the process. Rounding is not difficult when a fixed number of
decimal places is retained, as in many output specifications, but
it requires careful programming if it is to work in all the situa
tions that can arise in general data-conversion problems. Proper
rounding can significantly reduce truncation errors. The procedures
give unbiased rounding, which is rounding in such a way that there
is no tendency for the rounding process to increase or decrease the
average of a series of values. Rounding is discussed in detail in
the earlier paper and will not be considered further here.

AFL Subroutine, Alphameric to Floating-Point Conversion

The first problem in a program is usually to get data
into the computer, and AFL, alphameric to float, is for alphameric
read-in. If a number is punched in a card and read into the com
puter, what appears in core will be the alphamerically coded version
of the number. This must be converted to the standard floating
point form. Thus if -12.073 is punched in the card,

20717203707773
will be read into the input area of core. It is desired to store
the floating-point equivalent

1207300002

at some other specified address. The conversi''''·. is a bothersome
job even when the input format is made as simple as possible. But
restricting the format complicates the problem of punching data
cards and makes it hard to cover wide ranges of the input variables.
It is hoped that AFL will fill the need for a subroutine that will
take care of this job with a minimum of restrictions on the way the
data cards are punched.

1 W.N. Tuttle, itA Relocatable SPS Subroutine for Editing and Rounding
Output Data for Scientific Tables and Similar Applications",
Proceedings of Common Joint Eastern Midwestern Region, October 6, 7,
8 1965, pp. 535-540.

-2-

130

{Ii;
\', _I

\

o

t

o

o

o

'W!

The AFL subroutine has this "free format" and since it
is relocatable, it doesn't clutter up the source program. The
macro, AFL, causes the subroutine to be loaded automatically, and
the necessary information is given by four operands. Three things
must be specified because of the nature of the job. These are the
address of the input area, its alphameric width, and the address
where the floating-point equivalent is to be generated. A fourth
operand, which may be omitted, is for the user's convenience. It
makes it possible in the conversion process to multiply the number
by any desired power of 10. This, for example, would permit data
to be read in parts per million without complicating the card
punching.

The form of the macro ins~ruction is

AFL FLOT,FLD,W,PWR

This says to take the alphameric-coded number from FLD, which has
width W, multiply by ten to the power PWR, convert to floating
point and store at address FLOT. The PWR operand can be omitted
if the third comma appears. Note that the order of the operands
corresponds to that used in most of the regular instructions. The
input data is at the address given by the second operand and the
result of the operation is transmitted to the address given by the
first operand.

The input format is free in that the width of the input
area is specified but the program will accept anything that makes
sense within this space. Obvious errors are rejected, and numbers
in exponential form are not accepted. The number can start and
end anywhere within the area, the decimal point can be used or not
as desired, and leading or following zeros make no difficulty.
The program rejects numbers with blank spaces between characters,
except that the sign does not have to be adjacent to the first
character. It rejects two decimal points or two signs.

AFL as well as IFL and FLA, the two other subroutines of
the group, is handled just like any other relocatable subroutine of
the regular set. A library card is inserted in the SPS II processor
deck and the subroutine, with header and trailer cards, is added
to the fixed-length subroutine set. AFL uses indirect addressing
but requires no other special features. It uses 1371 core positions.

IFL Subroutine, Integer to Floating-Poin·t Conversion

This subroutine forms at a specified address the floating
point equivalent of an integer at another address. It leaves the
integer intact at its original location so that it is available for
further use if desired. IFL can also be used for handling data
read in numerically, provided that the proper flags are either
read in or added in the program to make the input numeric field
a proper integer field. This subroutine, like AFL, can multiply
the number by a desired power of ten, and it rounds to 8 digits
if the integer field exceeds this length.

.. 3-

131

,/

This subroutine requires only three operands, as it is
not necessary to specify the width of the integer field. The sub
routine checks for the location of the flag that defines the start
of the field. 'The instruction, therefore, appears as

IFL FLO,FLD,PWR

Here the integer field at FLD is reproduced at FLO in its floating
point equivalent after multiplying by 10 to the power PWR. As with
AFL, the PWR operand can be omitted if the last comma is retained.

IFL is particularly useful when part of a computation is
done in integers and the rest in floating point. For example, an
integer in the product area can be rounded, converted and trans
ferred in a single operation.

IFL uses indirect addressing and requires 859 core storage
positions.

FLA Subroutine, Floating-Point to Alphameric Conversion

This subroutine, described in detail in the earlier
paper, is for the conversion and editing of output data so that
mathematical tables, tables of scientific data, etc.) can be
printed in final form directly from the card output without addi
tional editorial effort.

One function performed by FLA is to fit the number to the
specified column width by decimal-point shifting so that the maxi
mum range of a quantity can be accommodated without resorting to
exponential format, Several options are available in this part
of the process including that of omitting the decimal point and
rounding to the nearest integer. The type of output is controlled
by a code operand.

In all the output options unbiased rounding is used
whenever the number of significant figures retained is less than
eight. Biased rounding or "up-rounding" is available as an option
for applications such as accounting, where it is traditional.
This option is also controlled by the code operand.

The macro instruction for FLA has five operands and is
similar to that for AFL in that the first three operands are the
address to which the converted number is to be transmitted, the
address of the number to be converted, and the width of the alpha
meric field. The fourth and fifth operands are the nominal or
uncorrected number of decimal places and the code specifying the
type of conversion. Thus

FLA A,B,C,D,E

means that the floating-point number at B is to be converted and
transmitted to the alphameric area A. The alphameric width at A
is C, and the type of conversion is controlled by the code operand
E.

-4-

132

o

o

C)

o

In normal use of the subroutine, the code operand E
is omitted, giving automatic right shift of the decimal point to
accommodate large numbers and automatic left .hiftso that as many
significant figures as possible can be retained in an output area
of given width.

Automatic right decimal-point shift is illustrated by
the following table, where the width C is six and the normal
number of decimal places D is two:

12.35
123.46
1234.6
12346.

Note that two decimal places are kept until the width is exceeded.

For smaller numbers within the same width, the automatic
left decimal-point shift would give

12.35
1.23

.12
.012

.0012
.00012

Either or both shifts can be omitted if desired. A 1
in the tens position of the code operand causes omission of the
left shift, a 1 in the hundreds position causes omission of the
right shift. Omission of the left shift might be specified in
the example above if figures beyond the second decimal place
were not of interest.

The code operand can also, by a 1 in the thousands
position, call for conventional up-rounding instead of unbiased
rounding. Thus the operand 1010 calls for up-rounding with
omission of the left shift.

Omission of the decimal point and rounding to the nearest
integer is available as an additional option. This is called for
by making the D operand, which specifies the number of decimal
places, equal to -1.

A final feature of the subroutine, always in effect, is
that an additional position in the output area is made available
for positive numbers because no space is required for the sign.

AFLrequires indirect addressing and uses 1977 core
positions.

-5-

133

A SYSTEM OF REMOTE TIME SHARING 1TIE IBM 1620/1710
COMPUTER SYSTEM BY USE OF THE IBM 1710 SYSTEM AND
REMOTE TELETYPE CONSOLES.

by

Donald Box
Assistant Professor
Electrical Engineering
Tennessee Technological University
Cookeville, Tennessee

and

Hugh B. Kerr
Director
The D. W. tvlattson Computer Center
Tennessee Technological University
Cookeville, Tennessee

Phone Area 615 526-9521 Ex. 325

Monday, November 28, 3:30 - 5:00 p. m.
M-4.8

Text - 12

Graphics - 2

134

((" ~
.. J

o

o

o

SUBJECT ••• A SYSTEM OF REMOTE TIME SHARING THE IBM 1620/1710
COMPUTER SYSTEM BY USE OF THE IBM 1710 SYSTEM AND REMOTE
TtLETYPE CONSOLES.

135

DESCRIPTION •••••• IN JANUARY 1966. A REQUEST WAS MADE Of THE D W
MATTSON COMPUTER CENTER AT TENNESSEE T~CHNOLOGICAL UNIVERSITY BY
THE ELECTRICAL ENGINEERING DEPARTMENT TO PROVIDE THE NECESSARY
HARDWARE AND SOFT-WARE TO PERMIT THE IBM 1710-1620 SYSTEM
TO BE USED ON A PRIORITY INTERRUPT BASIS. THE INTERRUPT AND
INPUT BEING MADE FROM REMOTe TELETYPE TERMINALS. DUE TO
ECONOMIC CONSIDERATIONS, IT WAS IMPERATIVE THAT THIS BE DONE
WITHOUT THE OUTLAY OF MONEY FOR THE MORE ELABORATE INTERFACE
HARDWARE AVAILABLE FROM IBM (AND OTHER MANUFACTURERS) TO HANDLE
THE NECESSARY DATA TRANSMISSIONS.

THE EQUIPMENT ALREADY ON HAND WAS AS fOLLOWS ••••••

LA.) IBM 162 0 MO D I
(1) INDIRECT ADDRESSING
(2) FLOATING POINT HARDWARE
(3) ADDITIONAL INSTRUCTIONS
(4) BASIC INTERRUPT
(5) 1710 INSTRUCTIONS

(S) IBM 1710 CONTROL SYSTEM WITH 1711 AD CONvERTER AND
1712 MULTIPLEXER AND TERMINAL UNIT

(1) 1 0 CON T ACT 0 P-E RAT E S (N 0 N - LA T CHI N G)
(2) 4 GROUPS OF CONTACT SENSE
(3) BASIC INTERRUPT
(4) REAL TIME CLOCK
(5) OTHER FEATURES IMMATERIAL TO THIS APPLICATION

(e) IBM 1311 DISK MODULE

(D) IBM 1623 WITH 20 K STORAGE
(GIVING A TOTAL OF 40 K COMPUTING SYSTEM)

(El IBM 1622 CARD READ PUNCH

SINCE A GREAT DEAL OF DIFFICULTY HAD BEEN ENCOUNTERED
IN IMPLEMENTING THE IBM 1710 FORTRAN EXECUTIVE SYSTEM. AND
FURTHURMORE SINCE THE 1710 EXECUTIVE DID NOT PERMIT MONITOR
COMPILATIONS, ETC •• IT WAS DECIDED TO LOOK ELSEWHERE FOR AN
INTERRUPT EXECUTIVE SYSTEM. INFORMATION FROM IBM WAS
OBTAINED CONCERNING AN INTERRUPT EXECUTIVE SYSTEM wRITTEN BY
MR. EARL SPRAKER (THEN OF THE IBM ATLANTA OfFICE) FOR THE
GEORGIA STATE HIGHWAY DEPARTMENT TO FACILITATE THE AUTOMATIC
POLLING OF TRAFFIC OVER THE STATE OF GEORGIA.

WITH THE COOPERATION OF THE GEORGIA STATE HIGHWAY DEPART
MENT, SOURCE DECKS WERE OBTAINED FOR THIS EXECUTIVE SYSTEM
THE NECESSARY DELETIONS AND ADDITIONS MADE TO RECOGNIZE A
REMOTE USER INTERRUPT(OR MANUAL ENTRY INTERRUPT FROM THE COM
PUTER CENTER), SAVE THE TOP 20 K OF CORE. BRING IN A ••• BOOT
STRAP ••• (OR ANALYZER) PROGRAM AND BRANCH TO THIS PROGRAM.
THE ••• BOOT STRAP ••• PROGRAM SAVES THE BOTTOM 20 K OF CORE. ANA-

-1-

, __ """""""'~~"""""""~~=-~=' '""",,".',,,""" ",=,,,,,,,,,~"=.,,,,u,=,, .• ,,,",,,,,,,,,,,,.,,,,,,,,,,_ .. = .. u,,,,=,, .. ,,_= .. ".""""''' ... --=''''''~=,~,"," ''.'"''"'"_"_''''''''''''''''.''''

136
LYlES THE TYPE OF INTERRUPT, DETERMINES THE PROGRAM (ONE OF
SEVERAL IN THE EXECUTIVE LIBRARY) BRINGS IN THE PROGRAM AND
BRANCHES TO IT. UPON CONCLUSION OF THE USER CALLED INTERRUPT
PROGRAM, THE BOTTOM 20 K IS RESTORED, A BRANCH BACK INTO THE EXE- ~
CUTIVE PROGRAM IS EFFECTED, THE TOP 20 K IS RESTORED AND THE
PROGRAM WHICH HAD BEEN INTERRUPTED IS RESUMED.

AS CAN BE SEEN BY THE ABOVE DESCRIPTION, ANY KIND OF
OPERATION UNDER THE MONITOR 1 (VERSION 2) CAN BE OPERATING
AS A ••• BACKGROUND ••• PROGRAM, PERMITTING INTERRUPT AT ANY
TIME BY A REMOTE USER.

LIMITATIONS IMPOSED ON INTERRUPT PROGRAMS •••••••

(1) THE PROGRAM MUST OCCUpy NO HIGHER CORE ADDRESS THAN 34999.
THIS IS NECESSARY BECAUSE OF THE BOOTSTRAP PROGRAM
WHICH MUST RESIDE HERE UNTIL A BRANCH TO THE INTERRUPT
PROGRAM IS EFFECTED. AFT~R THE INTERRUPT PROGRAM IS
LOADED, 35000 THROUGH 39999 IS AVAILABLE FOR USE BY THE
INTERRUPT PROGRAM, OVERLAYING THE NOW USELESS BOOT STRAP
PROGRAM.

(2) ALL INTERRUPT PROGRAMS MUST TERMINATE BY RESTORING THE
BOTTOM 20 K OF CORE (NATURALLY, WITHOUT OVERLAYING THE STILL
NEEDED INSTRUCTIONS IN THE INTERRUPT PROGRAM) AND THEN
BRANCHING TO LOCATION 1044 IN THE EXECUTIVE PROGRAM, WHICH
THEN RETURNS THINGS TO NORMAL BEFORE RETURNING TO THE
BACKGROUND PROGRAM. THIS IS DONE, IN THE CASE OF A
FORTRAN PROGRAM, BY UTILIZING THE ••• BACK ••• ROUTINE.

(3) THE USER MUST TAKE CARE NOT TO DESTROY THE WORK CYLINDER (;1
AREA OF DISK WHICH MAY CONTAIN INFORMATION IN USE BY THE
BACKGROUND PROGRAM. THIS MEANS THAT LOCAL PROGRAMS MAY
NOT BE USED (INASMUCH AS THEY ARE STORED IN CORE IMAGE
AT LOAD TIME IN THE SCRATCH AREA OF DISK). IT ALSO MEANS
THAT THE ••• DEFINE DISK, SEEK, FETCH, ETC ••••• MAY NOT
BE USED INASMUCH AS THEY INFER USE OF THE WORK CYLINDERS.

(4) THE PROGRAM CALLED BY THE USER MUST, OF COURSE, BE ONE
STORED IN THE EXECUTIVE LIBRARY. THIS ELIMINATES THE
POSSIBILITY OF FORTRAN OR SPS COMPILATIONS BEING DONE
ON THE INTERRUPT BASIS FROM REMOTE TERMINALS.

MISCELLANEOUS PROBLEMS AND SOLUTIONS

(1) SLACK TAPE PROBLEM

INASMUCH AS THE REMOTE USER PUNCHES HIS INFORMATION
DIRECTLY INTO PAPER TAPE (THE TAPE PUNCH BEING IN THE
COMPUTER CENTER) AND THEN READS THE TAPE ON INTERRUPT BASIS,
THE LENGTH OF SLACK TAPE CONTINUALLY BUILDS UP UNLESS
ADEQUATE PROVISION IS MADE TO TAKE OUT THE SLACK. THIS
IS ACCOMPLISHED IN THE ••• BACK ••• PROGRAM BY FIRST TURN
ING OFF THE TAPE PUNCH MOTOR, THEN READING TAPE UNTIL THE
TAPE IS PULLED TIGHT, AT WHICH TIME THE PUNCH MOTOR IS
RE-STARTED BEFORE RETURNING TO THE BACKGROUND PROGRAM
THROUGH THE EXECUTIVE. OF COURSE, THIS CALLS FOR A ~

-2-

o

o

o

(2)

137
CONSIDERABLE AMOUNT OF VALUABLE COMPUTER TIME TO BE
WASTED, BUT IS UNAVOIDABLE IN THE PRESENT PHYSICAL SETU?
AT TTU. THE SEEMINGLY OBVIOUS SOLUTION WOULD BE TO PUNCH
THE TAPE REMOTELY, INTERRUPT THE PROGRAM AND CALL FOR
THE TAPE TO BE READ DIRECTLY FROM THE REMOTE STATION.
HOWEVER, THIS WOULD CALL FOR MULTIPLE ••• HARD LINES •••
TO BE INSTALLED BETWEEN THE REMOTE STATION AND THE CPU
WHICH IS, TO US, IMPRACTICAL.

PROBLEM OF MORE THAN ONE REMOTE STATION ATTEMPTING USE
THE INTERRUPT LINE AT ONE TIME.

WITH THE PRESENT TTU SETUP, IT IS QUITE POSSIBLE FOR
SOMEONE TO ATTEMPT INPUT FROM HIS REMOTE STATION AT THE
SAME TIME ANOTHER PERSON IS IN THE PROCESS OF PUNCHING
TAPE. WE MINIMIZE THIS PROBABILITY BY INSTALLING A SWITCH
BOX AT EACH REMOTE STATION WITH REMOTE USER STATUS
LIGHTS. THIS ••• BLACK BOX ••• CONSISTS OF THREE SWITCHES
AND TWO LIGHTS AS FOLLOWS •••••

READY LIGHT ••• A LIGHT THAT INDICATES TO THE USER WHEN
THE INTERRUPT LINE IS NOT BUSY AND READY FOR USE.

BUSY LIGHT ••• A LIGHT THAT IS ON WHEN ANY USERS ••• ON •••
SWITCH IS ON.

ACTIVATE SWITCH ••• TURNS ON THE TELETYPE AND ALLOWS THE
USER TO MONITOR ALL MESSAGES ON THE INTERRUPT LINE.
THE ••• READY ••• IS TURNED ON.

ON SWITCH ••• TURNS OFF ALL ••• READY ••• LIGHTS ON THE
LINE AND TURNS ON ALL ••• BUSY ••• LIGHTS INFORMING
ALL STATIONS ON THE LINE THAT THE INTERRUPT LINE
IS IN USE.

INTERRUPT SWITCH ••• THIS IS A MOMENTARY CONTACT SWITCH THAT
CREATES THE PROCESS INTERRUPT TO PLACE THE CPU IN
INTERRUPT MODE, CAUSING THE USERS TAPE TO BE READ
AND HIS PROGRAM EXECUTED.

RULES FOR INPUT

AS IN ALL COMPUTER WORK, THE RESULTS ARE ONLY AS GOOD AS
THE INFORMATION FED TO THE SYSTEM. IN THE EVENT MISTAKES ARE
MADE IN INPUT, PROVISION IS MADE IN THE INTERRUPT SYSTEM TO OUTPUT
AN ERROR MESSAGE, IN CODE FORM, TO THE USER. THE ESTABLISHED
ERROR CODES ARE IDENTIFIED LATER IN THIS DOCUMENTATION. IN THE
EVENT THAT AN ERROR IS ENCOUNTERED, THE ERROR CODE IS OUTPUTTED
ON THE USER TELETYPE CONSOLE, HIS JOB IS ABANDONED, AND CONTROL IS
TRANSFERRED BACK TO THE EXECUTIVE PROGRAM WHICH THEN RETURNS TO
THE JOB BEING DONi IN THE COMPUTiR CENTER.

THE USER INPUT TO THE INTERRUPT PROGRAM WILL, OF COURSE, BE
VARIABLE. DEPENDENT UPON HIS DATA REQUIREMENTS. THE BEGINNING

-3-

OF HIS INPUT MUST. HOWEVER. STRICTLY CONFORM TO THE FOLLOW
ING FORMAT •••••••

1ST CHARACTER - UPPER CASE SHIFT
2ND CHARACTER - 5/8 SYMBOL
3.4.5.6 CHARACTERS - DIM NUMBER OF THE PROGRAM HE

WISHES TO CALL
••••••••
••••••••
••••••••
(INCLUDE ALL ••• CALL ALPHA ••• CHARACT~RS THAT YOU

CHOOSE TO CALL AS INPUT, AND ALL VARIABLES THAT
YOU WISH TO INTRODUCE BY THE ••• CALL READ ••••
ROUTINE. BE SURE TO INCLUDE AS MUCH INPUT AS YOU
INTEND TO CALL FROM THE PROGRAM)

A NUMERIC INPUT
ALL NUMERIC INPUT MUST BE FLOATING POINT NUMBERS,

SUCH AS THE FOLLOWING EXAMPLES ••••••

• 000165$
125.32$
126$
3$
.1635$

138

o

THE DECIMAL POINT, IF NOT INCLUDED. WILL BE ASSUMED TO BE AT
THE RIGHT OF THE LAST DIGIT OF THE NUMBER. EACH NUMBER MUST BE
FOLLOWED BY A $ (DOLLAR SIGN). THE INPUT OF EACH NUMBER
WILL BE CALLED BY THE FOLLOWING FORTRAN' STATEMENT ••••• «:;

CALL READ(X)

WHERE •••• X •••• MUST ALWAYS BE THE SYMBOLIC NAME OF A
FLOATING POINT NUMBER. ONLY ONE VARIABLE MAY BE READ BY ONE
CALL READ STATEMENT. THE NUMBERS, WHEN READ FROM TAPE. WILL
BE STORED AS 8 DIGIT MANTISSA FLOATING POINT NUMBERS AND
STORED IN THE APPROPRIATE MEMORY lOCATION.

B NUMERIC OUTPUT

C

ALL OUTPUT WILL BE STANDARD E14.8 OUTPUT AND, THEREFORE. MUST
BE A FLOATING POINT NUMBER. THE OUTPUT OF EACH NUMBER WIll
BE CALLED BY THE fOLLOWING FORTRAN STATEMENT ••••••

CALL WRITE(X)

WHERE ••• X ••• IS THE SYMBOLIC LOCATION OF THE FLOATING POINT
NUMBER TO BE OUTPUTTED.

IF YOU NEED CARRIAGE RETURNS OR LINEFEEDS ON THE
TELETYPE, YOU MUST CALL FOR THEM BY USE OF THE ••• ALPHA •••
ROUTINE OR THE ••• FORM ••• ROUTINE. MAKE SURE THAT ALL
INPUT HAS BEEN MADE BEFORE ATTEMPTING ANY OUTPUT WHATSOEVER.

ALPHAMERIC INPUT/OUTPUT
IN ORDER TO PERMIT A VARIATION (FROM ONE PROGRAM EXECUTION

TO ANOTHER) OF PROBLEM IDENTIFICATION OR OUTPUT IDENTIFICATION,

-4-

o

o

•

1~9
AN INPUTlqUTPUT STATEME~T 15 PROVIDED AS FOLLOWS •••••••

. ,

CALL ALPHA(J,K)

WHERE J = 1 IF THE STATEMENT IS TO HE USED TO
READ ALPHAMERIC INPUT, OR

2 IF THE STATEMENT IS TO BE USED TO
~ ..·.MAKE AN ALPHAMERIC OUTPUT

K .~ A LOCATOR NUMBER tOR IDENTIFICATION
NUMBER FOR THIS A~PHAMERIC INFORMATION)

AS AN EXAMPLE OF THE USE OF THIS ROUTINE, LET US SUPPOSE THAT
YOU WISHED TO READ IN FROM TELETYPE TAPE, SOME ALPHAMERIC INFOR
MATION. YOU WOULD USE THE FORTRAN INSTRUCTION •••

CALL ALPHA(l,lOO)
THIS WOULD CALL FOR ALPHAMERIC INFORMATION PUNCHED INTO TAPE
AND TERMINATED BY AN UPPER CASE SYMBOL FOLLOWED BY A DOLLAR
SIGN TO READ INTO MEMORY AND ~TORED UNDER THE IDENTIFICATION
NUMBER 100.

LATER ON IN THE PROGRAM, YOU WOULD WISH TO OUTPUT THIS
INFORMATION ON YOUR TELETYPE CONSOLE. YOU WOULD DO THIS BY USE
OF THE FOLLOWING FORTRAN STATEMENT ••••••••

CALL ALPHA(2,100)
THE PREVIOUSLY READ ALPHAMERIC INFORMATION WOULD THEN BE
PRINTED OUT ON YOUR TELETYPE CONSOLE. ALL CARRIAGE RETURNS,
LINEFEEDS, BELLS, ETC, THAT YOU NEED ON THIS OUTPUT WOULD, OF
COURSE, HAVE BEEN ENTERED AS CHARACTERS IN THE STORED ALPHA
MERIC INFORMATION. A MAXIMUM OF 100 ALPHAMERIC CHARACTERS ARE
ALLOWED IN ANY FORTRAN PROGRAM. THE ••• CALL ALPHA ••• CAN BE USED
ANY NUMBER OF TIMES AS LONG AS THE TOTAL CHARACTER COUNT
DOES NOT EXCEED 100.

THE NUMBERS J AND K MAY BE EITHER SYMBOLIC OR ACTUAL, BUT
IN EITHER CASE, MUST BE FIXED POINT NUMBERS OR VARIABLES.

REMINDER - THERE ARE NO AUTOMATIC LINEFEED OR CARRIAGE RETURNS
PROVIDED BY THE ••• ALPHA ••• ROUTINE. THEREFORE, IF THEY
ARE NEEDED, THEY MUST BE PROVIDED IN THE CHARACTERS THEM
SELVES.

REMINDER - DO NOT ATTEMPT ANY OUTPUT UNTIL ALL INPUT HAS BEEN
FINISHED.

D ALPHAMERIC OUTPUT OF STORED STATEMENTS
MANY TIMES, IT WILL BE USEFUL TO IDENTIFY ALPHAMERICALLY
CERTAIN OUTPUT WITHOUT THE TIME CONSUMING USE OF THE •••
ALPHA •••• READ ROUTINE. TO SUPPLY THIS NEED, THE •••• FORM
•••• SUBPROGRAM HAS BEEN DEVISED. THIS ROUTINE IS
CALLED By THE FOLLOWING FORTRAN STATEMENT ••••

CALL FORMCNl,A,B,(,D)

WHERE Nl IS THE NUMBER OF FLOATING POINT ARGU
MENTS TO BE CONVERTED TO ALPHAMERIC OUTPUT
(MAXIMUM VALUE OF 4)

A,B,C,D (A MAXIMUM OF 4) ARE FLOATING POINT

-5-

ARGUMENTS CONSISTING OF ALPHAMERIC PAIRS OF
DIGITS TO BE OUTPUTTED.

140

AS AN EXAMPLE, LET US SUPPOSE THE STATEMENT ••• ROOTS 0"
ARE REAL ••• IS TO BE OUTPUTTED ON TELETYPE TAPE. THIS
MAY BE ACCOMPLISHED BY THE FOLLOWING FORTRAN STATEMENTS •••••

A=.59565663 (ROOT)
B=.62004159 (S AR)
C=.45005945 (E RE)
0=.41530000 (AL)
CALL FORM(4,A,B,C,D)

ANY CARRIAGE RETURNS, LINE FEED, BELLS, ETC MUST BE
PROGRAMMED BY THE USER.

E CORRECTING TELETYPE ERRORS

IN THE EVENT THAT YOU MAKE A MISTAKE AND RECOGNIZE THE
MISTAKE IMMEDIATELY, YOU MAY ERASE THE FAULTY CHARACTER BY
FOLLOWING IT IMMEDIATELY BY THE FOLLOWING •••

UPPER CASE
1/4 SYMBOL
PROPER CHARACTER, ETC

THIS WILL CAUSE THE FAULTY CHARACTER TO BE ERASED AND REPLACED
BY THE PROPER CHARACTER. IN THE CASE OF DATA ENTRY, THIS MUST,
OF COURSE, BE DONE BEFORE THE INCLUSION OF A DOLLAR SIGN.

F GENERAL INSTRUCTIONS FOR WRITING INTERRUPT PROGRAMS

THE USER PROGRAMS MAY BE WRITTEN IN FORTRAN, SPS OR
MACHINE LANGUAGE. ANY PROGRAM WRITTEN TO BE USED ON INTERRUPT
BASIS SHOULD FOLLOW THE GUIDE LINES OUTLINED BELOW ••••

1 SINCE I/O OPERATIONS ARE INHERENTLY SLOW ON TELETYPE,
YOU SHOULD LIMIT YOUR INPUT AND OUTPUT TO THE
MINIMUM. YOU MAY CALL THE ••• READ ••• AND •••
WRITE ••• ROUTINE AS MANY TIMES AS YOU DESIRE BUT
YOU MAY STORE AND CALL WITH THE ALPHA" ROUTINE A LIMIT
100 CHARACTERS

2 SINCE YOU ARE INTERRUPTING ANOTHER PROGRAM EXECUTING,
YOUR INTERRUPT PROGRAM SHOULD BE REASONABLY SHORT
IN EXECUTION. A REASONABLE MAXIMUM TIME FOR AN
INTERRUPT PROGRAM TO REQUIRE MIGHT BE CONSIDERED
TO BE 4 MINUTES, ALTHOUGH MOST INTERRUPT PROGRAMS
WOULD, HOPEFULLY, BE OF SHORTER DURATION.

3 YOUR PROGRAM MAY BE NO LONGER THAN 35,000 DIGITS IN SIZE

4 SINCE THE INTERRUPT EXECUTIVE IS BRINGING IN YOUR PROGRAM
IN CORE IMAGE FORM (TO SAVE TIME) YOU MAY NOT USE •••
LOCAL ••• PROGRAMS (THE LOCAL PROGRAMS ARE NOT STORED IN

-6-

o

o

o

o

5

14l
THE DISC SCRATCH AREA).

YOU MUST ALWAYS, REPEAT ALWAYS, TERMINATE YOUR INTERRUPT
PROGRAM WITH THE FORTRAN INSTRUCTION •••

CALL BACK

WHICH WILL RETURN CONTROL TO THE INTERRUPT EXECUTIVE
PROGRAM AND ALLOW RESUMPTION OF THE WORK THAT WAS INTERRUPT
ED.

ERROR MESSAGES

ER 1 THE EXECUTIVE PROGRAM HAS READ IN 400 CHARACTERS IN AN
ATTEMPT TO FIND YOUR DIM ENTRY ~UMBER. IT MAY BE THAT YOU
HAVE NOT ENTERED AN UPPER CASE SYMBOL IMMEDIATELY
FOLLOWED BY THE 5/8 SYMBOL. IT 'MAY ALSO BE THAT TOO MUCH
SLACK TAPE HAS BEEN ACCUMULATED BETWEEN THE TAPE READER
AND THE TAPE PUNCH. IN EITHER EVENT, THE EXECUTIVE PRO-
GRAM RINGS THE BELL 24 TIMES (TO GET THE ATTENTION OF THE
COMPUTER CENTER PERSONNEL), TYPES OUT THE MESSAGE ••• ER1 ••
AND ABANDONS YOUR JOB (IT ALSO TYPES OUT A MESSAGE ON
THE COMPUTER CONSOLE TYPEWRITER TELLING THE COMPUTER CENTER
PERSONNEL TO TAKE THE SLACK OUT OF TH~ TAPE). IT WILL DO
YOU NO GOOD TO RE~INTRODUCE YOUR DATA UNTIL THIS DIFFICULTY
IS CORRECTED.

ER 2 TOO MANY CHARACTERS HAVE BEEN READ IN THE ••• READ •••
ROUTINE

ER 5 BAD DIM ENTRY NUMBER (THERE IS NO PROGRAM STORED USING
THIS DIM ENTRY NUMBER)

ER 6 TWO POSSIBILITIES EXIST ••• (1) NO SUCH ALPHAMERIC FORMAT
NUMBER IS STORED AS THAT CALLED FOR IN THE ••• CALL ALPHA ••
ROUTINE, OR (2) TOO MANY ARGUMENTS ARE CALLED FOR IN THE
••• CALL FORM ••• ROUTINE(A MAXIMUM OF 4 ARGUMENTS ARE
ALLOWED).

ER 7 MORE THAN 100 ALPHAMERIC CHARACTERS OF STORAGE ATTEMPTED
IN CALL ALPHA STATEMENT.

ER 8 TWO POSSIBILITIES EXIST ••• (1) WRONG CODE FOR ALPHA
INPUT OR OUTPUT (SOMETHING OTHER THAN A 1 OR 2) OR
(2) YOU HAVE USED AN INVALID CHARACTER IN THE
••• CALL FORM ••• ROUTINE.

ER 9 YOU HAVE TRIED A CALL ALPHA OUTPUT WITH NO ALPHA INPUT.

ACCEPTABLE ALPHAMERIC CODES FOR CALL FORM ROUTINE

THE CHARACTERS THAT WILL BE PRINTED OUT ON THE TELETYPE TYPE
WRITER WILLt OF COURSE, DEPEND UPON WHETHER THE TYPEWRITER IS IN

-7-

142
UPPER OR LOWER CASE SHIFT. THE CODES FOR UPPER AND LOWER CASE SHIFT
AS FOLLOWS •••••••••••••••••••

37
38

UPPER CASE SHIFT
LOWER CASE SHIFT

DO NOT FORGET THAT IT IS UP TO THE USER TO SPECIFY ALL CARRIAGE
RETURNS AND LINEFEEDS ON THE TELETYPE. THESE TWO FUNCTIONS MAY BE
PERFORMED WHILE IN EITHER UPPER OR LOWER CASE SHIFT AND ARE AS
FOLLOWS •••••••••••••

36 TELETYPE CARRIAGE RETURN
35 TELETYPE LINE FEED

YOU MUST REMEMBER THAT THE TELETYPE TYPEWRITER STAYS IN THE UPPER
OR LOWER CASE SHIFT, ONCE PLACED THERE AND THE USER MUST PROGRAM ANY
AND ALL SHIFT CHANGES. THE ONE EXCEPTION TO THIS IS THE SPACE (00)
WHICH USUALLY (DEPENDING UPON WHAT TYPE TELETYPE YOU HAvE) CAUSES THE
TELETYPE TO DROP INTO LOWER CASE SHIFT AND TO STAY THERE UNTIL
UPPER CASE SHIFT IS PULSED. FOLLOWING ARE THE ACCEPTABLE CHAR
ACTERS THAT MAY BE USED IN THE ••• CALL FORM ••• SUB PROGRAM •••••••

UPPER CASE SHIFT

03
04
20
21
23
24
70
71
72
73
74
75
76
77
78
79
00

DECIMAL POINT C.)
CLOSED PARENTHESES
MINUS SIGN
SLASH I
COMMA (,)
OPEN PARENTHESES
ZERO 0
NUMBER 1
NUMBER 2
NUMBER 3
NU~"BER 4
NUMBER 5
NUMBER 6
NUMBER 7
NUMBER 8
NUMBER 9
SPACE

SAMPLE PROGRAM

-8-

LOWER CASE SHIFT

41
42
43
44
45
46
47
48
49
51
52
53
54
55
56
57
58
59
62
63
64
65
66
67
68
69

A
B
C
D
E
F
G
H
I (LETTER I, NOT ONE)
J
K
L
M
N
o (LETTER 0)
P
Q
R
S
T
U
V
W
X
Y
Z
SPACE

o

C

o

C

o

•

PROGRAM TO SOLVE THE ROOTS OF A QUADRATIC
8 PAUSE
1 CALL READ(A)

CALL READ(B)
CALL READ(C)

50 CALL ALPHA(l,lOO)
60 CALL ALPHA(2,100)

P=.36353865
Q=.41536445
R=.38005646
5=.38006737
E=.71000000
F=.72000000
RAD=B*B-4.*A*C
IF(RAD)10,20,20

20 X=(-B+SQRT(RAD»/(2.*A)
Xl=(-B-SQRT(RAD»/(2.*A)
GO TO 30

10 X=999
Xl=999
OUTPUT9*S TO SHOW ROOT IMAGINARY

30 CALL FORM(4,P,Q,R,S)
CAL L FOR ~·1 (1 , E)
CALL WRITE(X)
CALL FORM(4,P,Q,R,S)
CALL FORMCl,F)
CALL WRITE(X1)
CALL BACK
END

NOTE 1 -- THE ••• PAUSE ••• IS NECESSA.RYAS THE FIRST INSTRUCTION
IN THE FORTRAN PROGRAM. ~HEN ASSEMBLED BY THE COMPUTER
CENTER PERSONNEL, IT IS ALTERED TO A •••• NO OPERATION ••••
CODE.

NOTE 2 -- STATEMENT NUMBER 50 IS USED TO ALLOW ANY PROBLEM IDENTI
FICATION, DATE, ETC. TO BE ENTERED FROM TAPE AND LATER
OUTPUTTED BY STATEMENT NUMBER 60. THE IDENTIFICATION
NUf>.1BER OF THIS· STATEMENT IS ••• 100

PART II

HARDWARE DESCRIPTION - THE FOLLOWING TELETYPE EQUIPMENT WAS OBTAINED
FROM SURPLUS OUTLETS

MODEL 14 TRANSMITTER DISTRIBUTOR (TO)
MODEL 14 TYPING REPERFORATOR (PUNCH)
MODEL 15 PAGE PRINTER (MOD 15)
REC-30 LOCAL LOOP POWER SUPPLY

TO COMPLETE THE INTERFACE WITH THE 1710 COMPUTER, THE FOLLOWING
HARDWARE WAS DESIGNED AND CONSTRUCTED By THE ELECTRICAL ENGIN-

-9-

EERING DEPARTMENT

SET OF LATCHING RELAYS AND POWER SUPPLY FOR SAME
USER STATUS INDICATOR AND INTERRUPT GENERATOR
MODIFICATIONS OF THE TD

BRIEF DESCRIPTION OF OPERATING METHOD OF THE TELETYPE SYSTEM

144

THE TELETYPE MACHINES NORMALLY AVAILABLE FROM SURPLUS OUTLETS
ARE 5-LEVEL MACHINES. THIS MEANS THAT FIVE PULSES ARE REQUIRED
FOR EACH CHARACTER. SINCE THE MACHINE IS A 60 WORD PER MINUTE
MACHINE, 163 MILLISECONDS ARE REQUIRED PER CHARACTER, THUS A
MAXIMUM RATE OF ABOUT 6 CHARACTERS PER SECOND. THE COMPUTER
IS REQUIRED TO GENERATE OR RECOGNIZE FIVE PIECES OF INFORMATION
FOR EACH CHARACTER (ACTUALLY SEVEN SINCE THERE IS A START AND
A STOP PULSE FOR SYNCHRONIZING EACH CHARACTER).

METHOD OF GETTING DATA INTO THE COMPUTER (SEE FIGURE 1)

THE 1710 AVAILABLE IN THE COMPUTER CENTER HAS HIGH SPEED
CONTACT SENSE (HSCS) WHEREIN THE COMPUTER SCANS A BLOCK OF 20
CONTACTS AND PLACES A 7-DIGIT NUMBER IN CORE DEPENDING UPON THE
CLOSED AND OPEN CONFIGURATION OF THE 20 CONTACTS.(*) THE REMOTE
TELETYPE PUNCHES A PAPER TAPE IN THE COMPUTER CENTER AND THIS
TAPE IS FED TO THE READER PART OF THE TD. THE READER CONTACTS
ARE WIRED TO FIVE OF THE HSCS TERMINALS, THUS FOR EVERY
TELETYPE CHARACTER SCANNED, A PARTICULAR NUMBER WILL BE STORED IN
CORE OF THE COMPUTER. IT IS THEN NECESSARY TO HAVE A DICTIONARY
(STORED IN CORE) TO TRANSLATE THESE NUMBERS INTO THE PROPER

o

CHARACTER. (};

METHOD OF GETTING DATA FROM THE COMPUTER (SEE FIGURE 1)

FIVE CONTACT OPERATES (CO) IN THE COMPUTER ARE WIRED TO THE
FIVE OUTPUT SEGMENTS OF THE TO. ANOTHER DICTIONARY (STORED
IN CORE) IS REQUIRED TO DETERMINE THE PROPER CONTACT CONFIG
URATION FOR EACH CHARACTER WHICH IS TO BE OUTPUTTED. THESE
CONTACTS ARE OPERATED AND LATCHED. THE TD THEN TRANSMITS THE
PROPER CODE TO THE REMOTE STATION. SINCE THE MINIMUM TIME PER
CONTACT FOR THE CO FUNCTION IS 50 MILLISECONDS, THE MAXIMUM
OUTPUT RATE IS ABOUT THREE CHARACTERS PER SECOND. THE TELETYPE
MACHINE IS CAPABLE OF ABOUT TWICE THIS SPEED SO THE SYSTEM
IS NOT VERY EFFICIENT. HOWEVER, IF THE OUTPUT MESSAGES ARE
NOT TOO LONG, THE SYSTEM IS USABLE.

MISCELLANEOUS PROBLEMS AND SOLUTIONS

(1) TIMING

SEVERAL TIMING PROBLEMS EXIST IN THIS SYSTEM. PERHAPS THE
MORE CRITICAL ARE CONCERNED WITH INPUT AND OUTPUT. IN THE
READ ROUTINE, IT IS NECESSDRY FOR THE COMPUTER TO CAUSE THE
HSCS TERMINALS TO BE SET UP BY THE TO. WHILE THIS IS BEING
DONE(163 MS) THE COMPUTER MUST WAIT. ONCE THE TERMINALS
ARE SET UP, THE COMPUTER MUST SCAN THE TERMINALS, TRANSLATE 0'"
INTO A RECOGNIZABLE CHARACTER, INITIATE THE BEGINNING OF

-10-

(2)

(3)

145
ANOTHER SET-UP AND AGAIN WAIT. THIS IS ACCOMPLISHED IN THE
FOLLOWING MANNER. A CO IS USED TO TELL THE TD TO ADVANCE
TO THE NEXT CHARACTER. WHEN THE SET-UP IS FINISHED, THE
TO OPERATES A PROCESS BRANCH INDICATOR (PBI) WHICH TELLS
THE COMPUT~R TO NOW SCAN THE HSCS TERMINALS. ONCE THE CHAR
ACTER IS IN CORE AND TRANSLATED, THE CO IS AGAIN OPERATED
FOR THE NEXT CHARACTER.(*) USING THIS PROCEDURE, THE SYSTEM
WILL OPERATE AT NEARLY MAXIMUM TELETYPE SPEED.

IN THE WRITE ROUTINE, THE COMPUTER MUST OPERATE
CONTACT OPERATES FOR EACH CHARACTER, WHICH ARE THEN EXTER
NALLY LATCHED. WHEN ALL SEGMENTS FOR THE CHARACTER ARE
SET UP, ONE MORE CO IS OPERATED TO TELL THE TD TO SEND
THIS CHARACTER. WHILE THE CHARACTER IS BEING SENT (163 MS)
THE COMPUTER MUST WAIT. AT THE END OF THE CHARACTER, THE
SAME PBI IS USED TO TELL THE COMPUTER TO ASSEMBLE THE NEXT
CHARACTER. BECAUSE OF THE LONG CO TIME, THE MAXIMUM RATE
IS ABOUT 3 CHARACTERS PER SECOND.

LATCHES

SINCE THE CONTACT OPERATES ON THE 1710 AVAILABLE WERE
NON-LATCHING TYPES, EXTERNAL RELAY LATCHES WERE REQUIRED.
SINCE THE SPEED OF OPERATION AND RELIABILITY OF THESE
RELAYS HAD TO BE HIGH, RATHER EXPENSIVE MINIATURE SEALED
CAN RELAYS WERE USED.

TELETYPE TO MODIFICATIONS

THE TO WAS MODIFIED IN ORDER TO SEPARATE THE READER FUNCT
IONS FROM THE OUTPUT FUNCTIONS. THIS REQUIRED THE CONNEC
TION OF A SEVEN WIRE LEAD TO THE OUTPUT SEGMENTS, SLIGHT
MECHANICAL CHANGES IN THE RELEASE MECHANISM AND THE ADDITION
OF A MICRO-SWITCH TO SENSE THE END OF A CHARACTER TRANSMISS
ION.

(4) USER STATUS INDICATOR AND INTERRUPT GENERATOR

IT WAS NECESSARY TO CONSTRUCT A SERIES OF SIGNAL LIGHTS
TO LET THE REMOTE STATIONS KNOW WHEN THE SYSTEM WAS
AVAILABLE AND TO KNOW WHEN THE SYSTEM WAS BUSY. INCOR
PORATED IN THIS FUNCTION IS THE INTERRUPT BUTTON. THIS
IS SIMPLY A RELAY, REMOTE OPERATED, WHICH ACTIVATES THE
PROPER INTERRUPT TERMINALS IN THE COMPUTER.

(5) TELETYPE MACHINE
LITTLE MODIFICATION IS NECESSARY. THE KEYBOARD CONTACTS
AND THE RECEIvING SELECTOR MAGNETS ARE CONNECTEb IN SERIES.
ALL REMOTE STATIONS AS WELL AS A MONITOR PRINTER IN THE
COMPUTER CENTER AND THE PAPER TAPE PUNCH ARE CONNECTED THEN
IN SERIES WITH A LOCAL LOOP POWER SUPPbY(60 MA. OF CURRENT).
WHICH REMOTE STATION OPERATES DEPENDS UPON WHETHER THE MOTOR
ON THE REMOTE IS RUNNING OR NOT. THE MOTOR ON-OFF IS
CONTROLLED BY THE USER STATUS INDICATOR UNIT.

• DESCRIPTION OF MEMORY DATA REGISTER METHOD OF OUTPUT

-11-

I

; .

I

146

(6) SPEED OF. OUTPUT
AS PREVIOUSLY STATED, THE MA~IMUM OUTPUT S~EED IS ABOUT

. 3 CHARACTERS PER SECOND. THE TELETYPE IS CAPABLE OF
OPERATING AT TWICE THIS SPEED. THE S~EED PROBLEM THUS
~ECOMES ONE OF SPEEDI~G UP THE CONTACT OPERATE FUNCTION.
SINCE THIS IS NOT VERY FEASIBLE, ANOTHER APPROACH HAS BEEN
UNDERTAKEN. OBSERVATION OF THE 1710 CONSOLE PANEL SHOWS
THAT ALL OUTPUT DATA FLOWS THROUGH THE MDR (MEMORY DATA
REGISTER). THIS DATA CAN BE OUTPUTTED BY MAKING A HIGH
IMPEDANCE CONNECTION TO THE PANEL LAMPS. THE PROCESS
IS AS FOLLOWS ••••••• (SEE FIGURE 2)
USE A TRANSMIT RECORD CODE ••• 31 XXXXX XXXXX
TO MOVE DATA FROM LOCATION XXXXX TO ITSELF. IN THE PROCESS
THIS DATA GOES T~ROUGH THE MDR. AMPLIFy THE INFORMATION
PULSES FROM THE PANEL LAMPS OF MDR AND USE TO SET ELECTRONIC
LATCHES (RELAYS ARE TOO SLOW). THESE LATCHES, AS BEFORE,
SET UP THE CONTACT SEGMENTS OF THE TO. AS SOON ASA
RECORD MARK APPEARS IN MDR, INITIATE THE SPIN OF THE TO.
LET THE COMPUTER WAIT FOR A PBI AS BEFORE. WHEN THE PBI
APPEARS, SEARCH FOR THE NEXT RECORD, RESET ALL LATCHES,
FLUSH THIS NEW RECORD THROUGH MDR, ETC. USING THIS
PROCESS, MAX I MUM TELETYPE SPEED CAN BE REACHED. S·l NCE IT
TAKES THE COMPUTER ONLY A FEW HUNDRED MICRO SECONDS TO
SET UP ALL THE LATCHES, THE SPIN ARMON THE TO NEVER
STOPS. WE HAVE TESTED THIS METHOD AND FOUND IT WORKS,
AND ARE NOW IN THE PROCESS OF BUILDING THE ELECTRONIC
AMPLIFIERS, GATES, LATCHES, ETC.

* REF. IBM 1710 CONTROL SYSTEM MANUAL
FILE NO. 1710-01
FORM NO. A26-5709-0

-12-

q . ' ..•. 0'-',

:..."" c·....".··"

to
...::t
r-i

o

HSCS

CPU &
~- -~-- -, --

1712

CO

I'

-

-...

. --,

--

INDICATOR
r &

INTERRUPT

MODIFIED

TD -

RELAY

LATCHES
) II'

PWR.

61G. 1. •

I

/-\

s:
<

s:
o
::0

,," "--~

oJo1o 0(010
I

148

Q

o

o

o

1620 APPLICATIONS

GENERAL CARD TO PRINTER PROGRAM

Mrs. Janet Allen
Pioneer Hi-Bred Corn Company

1206 Mulberry street
Des Moines, Iowa

Monday, 3:30-5:00 P.M.
Session M-4.8

8 pages
3 exhibits

INDEX

GENERAL CARD TO PRINTER PROGRAM

I. Introduction

II. Control Cards

III. Printer Tape

IV. Operating Instructions

V. Error Messages

Exhibits:

A - General Card to Printer Control Cards
B - Test 1 - Control Cards

Test 2 - Control Cards
C - Cards to load program on Disk

1

150

()

o

C)

0"",
I /

GENERAL CARD TO PRINTER PROGRAM

I • INTRODUCTION

II.

The General Card to Printer Program is designed to handle
the transition from a 1620 with card reader/punch only to a
1620-1443 System. Through control cards to the program, the
user specifies the input and output fields. If the input cards
are of different formats, the user may specify a card code field
with which to identify each card. Headings to be printed at
the top of the page may be specified. In addition, the user
may specify any input field(s) to be printed on one line at
the bottom or top, or both, of each page. Other options in
clude merging two cards into one output line, and ability to
restore page or space a maximum of three lines on a specified
field, a non-blank, or a change in a field.

Switches control single or double spacing and allow a
straight card to printer, without formats.

This program requires a 20K Modell with 1443 printer,
144 printer positions, indirect addressing, and numeric strip
and fill instructions.

CONTROL CARDS

See Exhibit A format. All numbers are to be right-justified
in the fields, unless otherwise specified. See Exhibit B for
examples of the control cards. All specified card codes must
be punched the same number of columns as specified in the control
'card CDCODE. If more columns are punched in the card code field
(columns 8 - 17) the data cards 1-lith that card code will not be
recognized.

A. CARD CODE

This specifies the field with which to identify input cards.
Columns 20-21 contain the first column of the field, and columns
22-23 the number of columns (maximum 10). A maximum of ten dif
ferent card codes may be specified.

If this card is omitted, the program assumes all cards to
be the same format. All card code fields in the other control
cards must then be blank.

B. RESTORE PAGE AND SPACE

The control cards for these are identical format, with one
additional ,field in the SPACE card.

To compute the maximum number of each-control card, the
following must be noted: each table for RESTOR and SPACE allo1'ls
12 fields. Each control card, however, for a different card code
requires an extra field. Therefore, 6 RESTOR cards, Hll refer
ring to different card codes, would fill the table.

2

151

The card code field (columns 8 - 17) specifies the card code
to which the control card refers, or is blank if all input cards
are the same format. There may be more than one fOT any card
code, but all RESTOR or SPACE cards for that card code must be
together.

Columns 20-21, and 22-23 indicate the beginning and size
of the field. A maximum of ten columns may be specified. If
column 25 contains a "c", any change in the field will cause
lines to be 'spaced (for SPACE) or the page to be restored (for
RESTOR) . .

An "fll in column 25 requires a field to be specified, be-
ginning in 'column 31. This field must contain any flags that

the data card has. When this field is found, the lines are
spaced or the page ,restored. The" (8)" in column 31 indicates
that any non-blrulk in the specified field will cause spacing
or page restoring.

,A blank in column 26 causes the line to be printed before
lines are spaced on the page restored. A non-blank causes the
spacing or page restoring to occur before printing.

Column 27, on the SPACE card, specifies the number of lines
to be spaced. If it is blank, one line will be spaced. A maxi
mum of 3 lines may be specified.

C. MERGE

There may be a maximum of 10 of these control cards. This
causes the two input cards whose card codes are specified (col
umns 8 - 17 and 25 - 34) to be printed on the same line. The
program expects the cards to be in the same order as on the con
trol card. See Section V for possible error conditions.

D. HEADINGS

A maximum of eight heading lines may be specified. The
user need not specify all - a line will be skipped for each
line not specified until either the last specified header line
or the channel 9 punch on the printer tape is reached. If the
specified header lines go beyond the channel 9 punch, one line
will be skipped before tte first line of data.

The header field, beginning in column 31, may be continued
on the next HEADER card. Columns 22 - 24 on the first card con
tain the total number of columns of the header field. If this
exceeds 50, the next HEADER card is assumed to contain the con
tinuation, beginning in column 31. Any header field may con
tain a record mark to terminate printing of that line. The
character count in columns 22 - 24, however, still controls the
number of columns read in.

3

152

c

)C' \ ,
I '

"

o

E. TOP

This control card allows the user to specify information to
be picked up from an input card or cards and printed on the first
line of a page. This appears before the headings. The I/O fields
on these control cards are the same as those of the FORMAT card
(Section II H.). There may be a maximum of three different card
codes, and a maximum total of seven I/O fields (see Section II G.)
All information specified by all TOP control cards will appear in
one line at the top of the page. All TOP cards specifying the
same card code must be together. In order for the top line on
the first page of printed data to contain the proper information,
this information must be in the first input card. The program
initially skips to the bottom of the page. It then reads a card,
stores any of its data to be printed, restores the page, prints
the top line and headings, then continues printing and reading
cards. Whatever data for the top line not contained in the first
card will thus not be printed on the first page.

F •. BOTTOM

This control card is the same as TOP except that the speci
fied'data will appear in the last line of the page.

G. FORMAT

This card defines the input to output (I/O) format of the
card whose card code is specified in columns 8 - 17. If there
are no card codes, this field must be a blank. All FORMAT cards
for the same card code mU'st be together. 'If/iji i9 d~sired to
shor,ten ~he ~.utP9-t ~ine ,.columns ?5 -. 27 ~$1,y. /io~.tail ~p.~ ,ou,tput
position for' a ;r'ecord mark. 'If .ther~ is·mov'e t,han.'one FORMAT
card .f'C)r ~he ~e .~ard"code, ~he r~c~rq.> 'mark p6s~tion m~st be
specified on, the first card,.or it w~11 be ignored.

Beginning in column 31, the 1/0 fields, described below,
specify the format. These fields must be separated by commas.
There may be any number of each, FORMAT card, but each field must
be complete - it may not be continued on the next card.

The table in the program contains 106 1/0 fields. To compute
the number that may be specified, the follo'W'ing must be noted:

a). Each card code requires one more I/O field. Therefore,
if there are two different card codes specified by FOR
MAT cards, 104 I/O fields are left.

Each 1/0 field must be the following format and in this order:

I - - N - - 0 - - A S D -
1"_--,,r---.--...-.1
must be present opt.ional

These must be present:

4

153

I - - defines the first column of data on the input card for this
field. May be 1 or 2 digits.

N - - is the number of columns of this data field. May be 1 or 2
digits.

o - - is the last (rightmost) print position. May be 1, 2 or 3
digits.

If the number is negative, the minus sign will appear to
the right of this position.

These are optional specifications. If none is present, the pro
gram assumes the field to be numeric with no decimal and will re
move leading zeroes and check for negative. The options Sand D
are meaningful only if A is not present.

A. Indicates this field is alphanumeric. The field will
then be reproduced in the output line just as it appears
on the card.

S. Causes the output field to be blank if the input field
is blank or zero.

D. Indicates that a decimal point is to be printed. There
must be one digit, 0 - 9. Zero causes a decimal point
to be printed to the right of the number. This specifi
cation must be last in the I/O field.

III .. PRINTER TAPE

This is intended to be the same tape to be used with the
Monitor, with one additional punch in channel 9.

A. Channel 12 - end of page

B. Channel 1 - beginning of page. Thi.s will be the first
header line.

C. Channel 9 - first line of data. This punch controls
the number of header lines. If a header line is speci
fied past this punch (farther down the page), the speci
fied line will be printed and one line skipped before
the data is printed.

IV. OPERATING INSTRUCTIONS

A. SWITCHES

1. Switch 1 - ON - double space
OFF - single space

5

154

c

o

o

2. Switch 2 - ON - straight print (no format)
OFF - FORMAT control cards control printout

3. Switches 3 and 4 not used.

B. DISK

The program is in two parts, both stored on disk. Both use
the first 120 sectors of the work cylinders.

To load, see Exhibit C. PRT2 must be loaded with DIM num
ber 400, unless the first part PRINT is changed. PRINT links
with PRT2 through DIM number 400.

C. CARD DECK

1. Switc~ 2 OFF

The first cards must be the control cards, in any order,
followed by a 9's card (9's in columns 1 - 6)

The card deck is:

f t= JOB 5
1= f XEQ PRINT
control cards
9's card
data cards

End of Job Card (~ f F F)
2. Switch 2 on - the card deck is the JOB and XEQ cards and

the set of input cards followed by the End of Job card.

3. It may be desired to have a straight print, but also
have the option of any of the other control cards, ex
cept FORMAT, and BarTOM.

This may be done in the following way:

a) Turn off switch 2
b) Read control cards and 9's card
c) Turn on switch 2
d) Read data cards

Any FORMAT cards read in will b~ ignored. Note that,
if switch 2 is OFF, FORMAT cards must have been read in
to get any output.

D. Check printer tape (see Section III) and load cards. When
program reads END OF JOB card, it will return to Monitor.

6

155

v. ERROR MESSAGES

Error messages appear on the typewriter.

A. Control Card Errors

Unless otherwise specified, the control card is typed'
after the error message and is ignored.

1. The following are typed when the maximum of the
specified control cards have already been read.

a. MAX RESTORE CARDS
b • MAX SPACE CARDS

2. MAX CC

Maximum number of different card codes have been read.

3. I/O FORMTS TABLE FULL

Maximum number of I/O formats has been reached for
TOP, BOTTOM, or FORMAT. The line typed after this
message is only those formats not processed.

4 . HEADER LTNE EXCEEDS MAX

A header line greater than 8 has been specified.

5 • ERROR IN Ilo 6FORMAT

Although the entire card is typed, only the I/O fiel~
in error is ignored.

6. ILLEGAL CONTROL CARD

Control card code is not recognized by the program.

7 . COLUMN SIZE EXCEEDS MAX

Columns specified on CDCODE, RESTOR, SPACE, or HEADER
exceed the maximum, either number of columns or input
column number; output column nuraber specified in a
HEADER card exceeds 144; or a header line as specified
would exceed 144.

8 . MAX SPACING IS 3.

The number of lines specified in a SPACE card is more
than 3. Three lines will be spaced.

7

156

o

c

o

Q

o

o

B. ERRORS IN PROCESSING DATA CARDS

1. cc - NOT MERGED

This indicates that the second card specified on the
MERGE is missing. Two cards with the first specified
card code have been read. The first is typed and ig
nored.

8

157

EXHIBIT A

GENERAL CARD TO PRINTER CONTROL CARDS

CONTROL 1 - 6 - 8 - 17 20 - 21 - 22 - 23

FIRST INPUT NUMBER OF
CARDS CODE CARD CODE COL. NUMBER COLUMNS

CARD CODE OF I
I

CDCODE XX
!

XX 1.
I INPUT (max - 10)

2. RESTORE PAGE I RESTOR X •••• X I XX XX
(Max = 10)

3. SPACE SPACEb I X 0 0 •• X XX XX
(b=blank) (max = 10)

4. MERGE MERGEb X. o •• X

5. HEADINGS HEADER I Line # = XX XXX
(Col. 22-24)

6. TOP OR TOPbbb X •• 0 oX
BOTTOM BOTTOM

7. I/O FORMATS FORMAT X 0 0 •• X I

o e>

25 ' 26 27 31

"c" or blank Field - (8)
"Fit print (non-blank)

first

"ct' of I blank- Field - (8)
11Ft! print # (non-blank)

first spaces

Col. 25 - 34 = Second Card Code

Output Col. # (col. 25 - 27)

I
Output col. #
for record mark

Field

Field

Field

/ 0',-

f-J
V1
ex>

COCODE
fjGE

. 'TOR
RESTOR
SPACE
SPACE
BOTTOH
80TTO{vl
TOP
FORt~A T
FORI'.:lAT
FORf'/IAT
FORfAAT
FORMAT
FORfvjAT
FORfvlA T
TOP

COCODE
HEADER
HEADER
HEADER
FORfVIA
FORMAl
FORfvlAT
~. RfvlAT
"RMAT
FORfvlAT
FORMAT
FORMAT

o

XX
XX
XX
XX
XX
6P
XX
XX
XX
6P
6P
6P
6P
6P
6P
XX

XX
6P
6P
6P
6P
6P
6P
6P

EXHIBIT

0102

1803 Cl
0303 F
0303 F22
0704 F

0102
01050001
03092001

B

6P

510
505

I31\l303
13N3015A
I3N305A,I15N7010A

159

I3N303A, 17N8011A, I15f\19021A, 124N9032A
130N2072,I32N3075, I35N2079,I37N3082
163N20118
13N3035,I6N3039Dl,I9N3043,I12N3047, I15N2051
I17N3054,I21NI058,I22N3061Dl,I25N2065, 140N2086S

I42N3089,I45N3093D2, 148N3097D~
I51N30101D2,I54N30105D2,I57N30109D2,I60N30113D2
13N305A,I15N7010A

CODE VARIETY MALE PED FEM PED
AVG HOS AGE AHH CM AHD CM CHD CM GM CM LM eM DP
L eM BOY BW LEL EW HU BS SG LOC
131\1303A, I7N8011A, 115N9021A, I24f\J9032A
I 3 N 3 0 3 , I 6 N 3 070 1, I 9 N 3 0 1 2, I 1 21\j 3 0 16, I 1 5 ~.J 20 1 9
117N3023, I20N2026, I22N3030Dl, 125[\)2034S
130N2037S, 132N3041, I35N2044, 137N3048
I40N2051, 145N3059D2, I48N3064DO
151j\J3069D2, 154N3074D2, I57N3079D2, 160N3084D2
I63N2088
I42N3055SD2

---~---~-----"""'''--',-~~~~~~~~-----------

160

EXHIBIT C o
(CARDS TO LOAD PROORAM ON DISK)

*DLOADPRINT 0240202402 CM

*DLOADPRT2 0400 0240202402 CM

o

L.

r·'

The General Format Conversion Program

by

Robert B. Balder

Presented orally at the joint Eastern-Western COMMON meeting
November 28-30, 1966, New Orleans, Louisiana.

The General Format Conversion Progra~ ,

The incompatibility of data between card oriented programming
systems has long been a bottleneck in incorporating external
data into existing systems. This is in a large part caused
by the necessity to reformat the card input into a standard
format acceptable to the operational system. Up until now,
this usually required a separate program to do the required
formating. To all but the most inexperienced trainee this
type of program is as best an inefficient use of programming
resources, a tedious coding task to the programmer, and an
uninspiring chore to the creative thinker. The task becomes
more overwhelming when large numbers of this type of program
have to be written.

System Description

In an attempt to minimize the programming !time and computer
debugging time required by a large number of reformating
programs, the "General Format Conversion" (GFC) system of .
programs has been developed. These programs are written in
SPS II-D for a 40K IBM 1620 (mod I) with two disk drives
under the control of Monitor with the automatic divide and
indirect address special features.

The system works in the following manner: control cards are
completed and keypunched. These control cards are the
elements of a "conversion library" which is defined as all
control records necessary to completely transform the cards
of one format into another. The conversion library is stored
on a disk pack that has been pre-initialized for this system.
As many as ninty-nine conversion libraries may be stored on
anyone disk pack.

Once a conversion library is stored, it can be called by
another program of the system which reads in the cards in
the original format, makes the transformations defined in
the conversion library, and punches the reformated cards.
The processing time varies with the number of conversions
but is not much slower then the Input/Output speeds.

162

o

•

o

•

Statement of the Problem

In order to understand the operation of the system, it is
necessary to understand the various control cards and their
function. In order to accomplish this objective, the
problems encountered in doing any reformating of cards will
be stated and the general way by which GFC control cards
solve each particular problem will be explained. To begin
with, one definition is necessary. In defining a field on
a card, there are at least two elements necessary: 1) the
number of characters, and 2) the card column (cc) of the
"rightmost" or "low order" character. This is the definition
of field used throughout the system.

Input Selection

All cards containing information concerning one particular
item under observation must be read in at one time. This is
probably more than one and possibly can be a variable number
of cards. Therefore, there must be some key used to recognize
all cards referring to a particular item. This may be a
sample number, a date, a location code, a person's name, and
so forth, or a combination of fields. In the GFC this is
referred to as the "family identification" and can consist
of one, two, or three fields and cannot exceed a total of
twenty-five characters. The defining of the family
identification is done by the FAMILY ID control card which
completely defines each field by giving the number of
characters and the card column of the low order position of
the fields as they must appear on all cards in the family.

i F A 1M I! L Y I D , F L D I C H A R S - X X -

1 2 3 4 I 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 i 24
~=::=~==~~~=::=~-==~*===*==*=~==;::=~~~=-+-_1---'---'-_.L.-_-L __ __ ~. __ ..- " ""'I.--~- -"-"-~--~"-~" .----r-,
We - i X X - , F L D 2 C H A R is - x X - e C - i

[S."~~6 27 28 29 30 31 32 33 34_ 35 36 37 38 39 40 .41 42 43 44 45 46 47 4~

I X X - , F L D 3 CHI A R S - xl X I - C C - X I X T -l
;'!9J 50 51 52 53 54 55 56 57 58 59 i 60 61 6~ L63 T M-r-65! 66"~ ,-68 69 70 i 71 1 72 \

-I I 1 o--oJ
73\74 75 76 \77 78 79:801

If a family consists of more than one card, it is probable
that these cards are themselves not of the same format
although they all contain data referencing the same event
and rightfully belong to the family. Therefore, there
must be some manner of distinguishing the different cards
within the family. This is called the "card identification".
In the GFC there is provision for one field of up to five
characters in length to serve this purpose. This is defined
in the system by the "CARD ID" control card which contains
the length of the field (the card column of the rightmost
character), and the number of different card types possible
at input (maximum of 25).

C A R D I I D I , C H A R S - X - C C - X X -
1 2 3 4 5 6J1!8 9 10 11 12 13 14 15 16 11 18 19 20 21 22

--

U MI B IE R 0 F P 0 S S I B L E
24 25 !26l-~1 28 29 30 31 32 33 34 35 36 31 38 39 40

I -1 C 0 D E S -I X X -
42 43 44 45 46 471~~~_~

\ 2 i 0 10
18: 19! 80

_____ _--1 __ ~

Following the CARD ID card comes one HCODE" control card
for each of the various card types. This card contains the
card type code (up to five characters), and the minimum and
maximum family requirements as to the number of the card
type required within each family (if any). That is, if
there must be at least one of a particular type of card in
each family, the "MINIMUM" is coded "01". If a particular
card type is not necessary, then the "MINIMUM" is coded "00".
Similarly, if there should not be more than five of a
particular type within a family, the "MAXIMUM" is coded "Osta.
If there is a card where there must be one and only one of
a particular card type, then both the "MINIMUM" and "MAXIMUM"
are coded 01. These requirements are checked during the
execution of the conversion library, and if they are not met
appropriate messages are typed on the console and the card
family is ignored.

--:.-r--- -_ ... -._.

C 0 D E X X X M I N I M U M i - XIX - J

1 2 3 .. 5 6 1 : 8 9 10 11 12 13 14 15 16 11 18 19J
.. _ ... -

N U M B E R R E Q u I R E D - X X -
! 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

---- -

w IE-TI>!-M A X I M U M N U M B E R A 1. L 0

39 40 41 42 43 « 45 46 47 48 49 50 51 52 53 54 55 56 57 58 \59 \ 60\61

-T-~
-- ~T 12 X X X X

62 63 64:65 66 67 68\ 6917~!:1 72 i 73 74 75 76 77! 78 79 80
1 ___

164

o

Q

o

o

If there is to be onlY,one card per family and this card
will always be the same type, then the FAMILY ID and CARD
ID cards need not be present.

B lank Fie Ids

Another problem encountered in reformating is what to do with
blank fields. In a particular system it may be necessary for
all columns of the cards to be coded. In these cases, there
is usually some special character substituted for "not
applicable" or "unknown". We allow for this in the GFC by
using a "padding" character. This can be any single characte~,
either numeric, alphameric, or special that will be substituted
in each column of the output field if the input field is blank.
If a padding character is not specified by a PADDING CHARACTER
control card, then a blank character is used.

AiD D\l P N G C H A R A. C T E R X X -I

1 21 3 4,1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

4 i 0 1 0

: 78179180

Types of Conversions
"

All fields are defined by the two parameters:, length, and
card column of the low order character. By including the
card identification code (i.e., card type), the field is
completely defined within a family of cards. If there is
only one type of card per family, this third parameter is
not necessary. Since all fields are handled in alphameric
mode, one character "fields" are permissible.

The basic for the general reformating of cards is that all
conversions fall clearly into three broad categories and a
specific control card is provided for each category.l
The s;mplest of these categories is the "field to field"
conversion. The field as it appears in 'the input is
transferred directly to the output. To this conversion,
the code "I" has been assigned. Th~ nl,lmber'of characters
in the field is coded, the card type within ,the family
from which the data is to come, if any, is coded, the card
column of the input is coded, and the card column of the
output is also coded. In this case, we do "not need the

l' Appendix 1 contains the coding instructions for all
contro 1 cards.

W IT

length of field in the output because it is the same as
the input since we are transferring the entire field as
it appears. As in all conversions, we do not need the
card type of the output since only one card is constructed
and punched at a time.

The second basir category is used if the reporting codes
between the two systems differ. An example of this is if
one system uses the reporting code "M" meaning "male" and
"F" meaning "female", and the system for which the output is
intended uses "1" and "2" for the same purpose. This type
of conversion is accomplished by a table look up and is
called the "field to tablE:: to field" conversion. This is
given the conversion code "2". As a description of the input
field, we have the number of characters, the card type, and
the card column of the rightmost character. To describe
the output, ther~ is the card column of the low order
character and the number of characters, which, in this case,
is required since it may differ from that of the input.
There is one additional item required by this conversion
category, and that is the number of "entries" in the table
(a maximum of 999).

Immediately following a conversion of this type comes the
table, one entry per card. These cards contain first the
code as it might appear in the input immediately followed
by a comma and the corresponding code as it appears in the
output. In the execution of this conversion, if a code is
not found in the table, a message is typed on the console
and the operator has the option of either padding the
output field with tne padding character previously defined
or correcting the card and reentering it through the card
reader.

The tnird and sort of a catch all type of conversion, is the
Hfie1d to subroutine to field". In this case, information
cannot be transferred directly or through a table look up,
but instead, must be processed through some mathematical
function or data manipulation subroutine. This type of
conversion is given the code "3" .. In the control card,
both input and output fields are defined by the number of
characters and the card column of the rightmost position.
Also, as in the other types of conversions, the input card
type is also specified if necessary. There is one other
bit of information on this card, the entry point which will
be discussed later.

166

~
~""):)

o

o

•

Repetition of Conversion Control Record

A conversion library is defined above as "all control records
necessary to completely transform the cards of one system to
another". Notice that "cards" is plural. The variability
of the input has been shown. The GFC can also produce
different card types at one pass of th~ data and also can
produce a variable number of each card type.

Although all cards of a family are read and stored prior
to the start of the actual conversion t only ·one output
card is produced at a time. However t any number of output
cards can be produced per family. All conversion control
cards necessary to produce one output card are together
called an "entry" in .the conversion library and must contain
as the last record the "PUNCH" control card. Besides giving
the program the command to proceed with the punch routine,
this record contains two other bits of information:
1) whether or not the card type just punched is to be
repeated t and 2) whether or not the card type just punched
is the last of the different card types to be produced in
each family.

Card Selection Within Family

In repeating an entry in a conversion library there must be
some way of obtaining data from different cards within the
family on each pass through the entry or else the same output
card would be produced over and over again. There are two
ways one might want to consider a particular field for the
output: 1) taken from the same card of the family on each
pass through the entry in the conversion library, or 2) taken
from a different card although off the same card: type on each
pass through the entry in the conversion library. For this
second case, an index counting the number of passes through
the entry is used. Each field is considered individually
since it may be desirable to produce certain fields on
output cards containing some information that is to be
the same on all cases (i.e., family identification t date,
and so forth), and other fields containing differing
information •

Another problem solved at the same time as the one above
is that of to "pad" or not to "pad". If a blank field is
encountered somewhere in the input family, it may be of
minor importance, therefore, little is lost if the "padding"
character defined by the "PADDING CHARACTER" control card
is substituted in the output field. 2 However, it may be
of such major importance that if it does not appear, it is
not desirable to punch the card at all. In this case, the
program proceeds either to the next conversion entry or
begins to read the next card family. It is the last feature
that is the mechanism for getting out of the loop. If there
are N cards of input card type X and N cards of output card
type Yare to be produced, where each pass through the
entry in the conversion library producing card type Y is
to get data from a different card type X, on the N + 1 pass
through the entry card type X will not be found. Therefore,
the field is not found and the program does not punch the
N + 1 type Y card and proceeds to the next entry. If there
is no next entry, the next input family is read in; all
indices are initialized and the process begins anew. 3

Other Methods of Placing Data in the Output

Besides these three basic types of conversions, there are
two other ways of placing information into the output card
that cannot really be called "conversions" in the strictest
sense of the word. One of these solves the problem of
placing a constant field in the output that does not appear
anywhere in the input. This is done by the "innnediate to
field" conversion control card in the following manner:
the output field is defined in the same way as in the
other conversions. No input field description is necessary.
After the output field description comes the exact constant
as it is to appear in the output. There is a limit of 48
characters, which can be alphameric, numeric, or special,
per control Aard of this type.

2 If no "PADDING CHARACTER" control card is used, a
"blank" is substituted.

3 Appendix 2 contains the possible conversion control
codes.

168

o

o

•

Also, it is possible to store the status of particular
counters directly into the output. There are three
counters that can be used. Counter one contains the
number of cards in the family, counter two the number
of cards of C' particular card type which is specified
in the control card, and counter three is the value of
the "index" which is being used for card selection.
This conversion is coded "02".

The Usage of Subroutines

It is the ability of the user to easily incorporate
subroutines into the GFC system that has made this
system the versatile tool it has proven to be.

Basically, subroutines are written in SPS. They are entered
through an unconditional branch instruction rather than a
branch and transmit or a branch and transmit immediate.
Therefore, the address registers are free to be used by
the subroutine themself. Data enters the subroutine in
alphameric form by the use of an indirect address established
by the program. The results of the subroutine are stored
immediately prior to the first executable instruction in
alphameric form for a flag over the zone position of the
leftmost character. Exit from the subroutine is made by
an unconditional branch back to a specific instruction in
the main program.

It is possible to have any number of subroutines. Each
subroutine should be written and debugged independently
of the conversion program and other subroutines.

If subroutines are to be used, an additional input control
record is necessary and is inserted after the "CARD
IDENTIFICATION CODE" control cards and prior t6 the
"PADDING CHARACTER" contro 1 card. There are two elements
of information on this card: 1) the number of entry
pOints into the subroutine package (an entry point is the
address of the first executable instruction in a subroutine,
therefore,the number of entry points is the number of
individual subroutines in a subroutine package), and 2)

. __ ..••.. _.--_ ... _--_ .. _--, .-~-

The Disk Identification Map (DIM) Entry number of where
the subroutines are to be loaded on the Monitor disk.

S U B R .0 U T I N E E N T R Y P 0 I N T S
1 2 3· 4 5 6 .7 ! 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 :

._--- ..

-r--'
I - X X - D I M E N T R Y N U M B E R -

,24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
. -- -- ------ . - .-

X X X X - 3 0

45 46 47 48 49 i,78 79
L.....

--------- -

When all subroutines are debugged, they are stacked together
and assembled as a package, and then stored in object form
on the Monitor disk using the DIM entry number sp~cified
by the "SUBROUTINE" control card. During the final assembly
of the subroutine package, it is best to obtain a listing
of the package. This is necessary to ascertain the addresses
of ,the entry points which are required for execution of the
library. In the execution of the program that actually
makes the conversion of format, there is only one type of
control card necessary, and then only if subroutines are
used. This is the "SUBROUTINE'E~"TRY POINT" card. There is
one of these cards for every individual subroutine in the
package. There are two fields' on this card, the entry
point number, which are sequential beginning with one, and
the address of the 'first executable instruction of the
subroutine, which is deTprmined from the program listing.

Conclusion

This system has been used by the U.S. Public Health Service,
Division of Radiological Health, for only a short period of
time. However, it has proven itself to be a versatile and
useful tool in cutting programming resource requirements
necessary for incorporating external data into existing
programming systems. The flaw uncovered so far is that
the fields used to define the family identification and
card identification must. be uniform in all cards. But if
these fields are not in a consistant location in all cards,
then each card type has to be converted separately if
possible. This is not a major problem.

0
80

110

(}

o

o

o

o

A person with a fair knowledge of the system can usually
code and debug ·an average conversion library in three to
six hours, depending upon the number of transformations
and the proficiency of the person doing the coding.
Compared to writing and debugging each conversion program
separately, this system saves both time and programming
costs.

171

172

c

Appendix 1

GFC Control Card Coding Instructions

o

o

o

I

.1

o
~, i
!"I

Family Identification Card

If there is a family identification which has only one
field, code A below, if two fields code A and B below,
if three fields code A, B, and C below. In any event,
code 100 in cc 78-80.

A. F AIM
1 IlL y I D , F L D 1 C H A R S

1 2 3 41 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

- C C - -
22 23 24 25 26 27 28 29 30

Code the number of characters in the first family
identification field in cc 22-23. Code the card
column of the units position of the first family
identification field in cc 28-29.

B. F L D 2 C H A R S - - C C , -
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

.-

Code the number of characters in the second family
identification field in cc 43-44. Code the card
columns of the units position of the second family
identification field in cc 49-50.

C. , F L D :3 C H A R S - J - C C -
52 53 54 55 56 57 58 59 60 61 62 63 64165

I
66 67 68 69

._,. -
11 0,0

74 75 76 77 78179 180 t ! .

49

70 71

Code the number of characters in the third family
identification field in cc 64-65. Code the card column
of the units position of the third family identification
field in cc 70-71.

173

-
21

- -
72 73

Card Identification Card

If the cards within a family carry an identification,
then this card should be coded. Only one field is
allowed for card identification and it may not be more
than 5 characters in length. If this card is coded,
then code cards must also be included (see code card).
The number of codes may not exceed 25. Format:

C A R D I D I, C H A R S - - C C -
l' 2 3 4 5 6 718 9 10 11 12 13 14 15 16 17 18 19 20

N U M B E R 0 F P 0 S S I B L E
1

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
" ,- --

C 0 D E S - - -
42 43 44 45 46 47 48 49 50 51

n_ •• .. ---.....

21

Code the number of character$ in the card identification
(a number from 1 to 5) in cc 15. Code the card column
of the units position of the card identification in
cc 20-21. Code the number of possible codes for the
card identification in cc 48-49. Code 200 'in cc 78-80.

174

c

-
22

c

o

o

o

Code Card

If there is a card identification card, then there must
be code cards equal in number to the number coded in
cc 48-49 of the card identification card. _ Format:

:M I N I M U M N U M B E R R E -Q u I R
'12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

-- r·-,----- --- -_ .. -

\- - M A X I M U M N U M B E R

;35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

'A L L 0 W E D - - ! -

; 54 55 S6 57 58 59 60 61 62 63 64:65

E

33

Code the card type in cc 6-10, right justified. Code the
minimum number of cards required of this card type for
each family in cc 36-37. Code the maximum number of cards
of this type allowed for each family in cc 62~63. Code a
sequence number in cc 79 and 80, beginning with 01 for
the first card type code.

175

nl
34\

--...... _ .. __ .. _-------- ~---~~.

Subroutine Card

If subroutines are to be used in the conversion process,
they should all be written as one program; stored on the
disk under some dim entry number. The subroutines card
should be used only if there are subroutines. There will
be a number of entry points into the subroutine set.
The actual entry point address will be given when the
conversion library is effected (P17.03). Format:

S U B R 0 U TIl N E E N T R Y P 0 I
1 2 3 4 5 6 718 9 10 11 12 13 14 15 16 17 18 19 20

- - D I M E N" T R Y N U M B E R
24 2S 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

N

21
r-

-
«

T S
22 23

--

45 46 47
-I

48 491

.--,
; 3 0, QJ

78! 79 !801
! :...J

Code the number of entry points in cc 25-26. Code the
dim entry number of the subroutine set in cc 45-48.

176

c'

c

o

o

o

•

Padding Character Card

When blank fields in the input cards are detected and
in some cases when cards are missing, the field in the
output will be printed. If this card is not included,
the padding character is assumed to be a blank.
However, by including this card any legitimate
character may be used as a padding character. Format:

P Ain nIl N G C H A R A C T E R - -
1 213 41 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-
21

41010
78179/80

Code the padding character to be used in cc 19.

177

178

c

Conversion Descriptions

o

• $ rtrri:t

o

o

o

Field to Field Conversion Card

This card is used when a field somewhere in the input
is to be transferred directly without change to some
location in the output card. Format:

C 0 N V E R s I I 0 N - 1 - C H A R S -

I

- i
1 2 3 4 5 6 7 i8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23!

'----~ -_.-

F R olM C A R D T Y P 3~ 3~ 39 401iiLJJjJ -24 25 26127 28 29 30 31 32 33 34 35 36 -'---- -_.-

C C - - T 0 C C - -
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Code a 2, 4, 6, or 8 in cc 12 according to the rules
described in the abstract. Code the number of characters
in the input field in cc 21-22. Code the card type
containing the input field, if applicable, in cc 39-43,
right justified. Code the card column of the units
position of the input field in cc 48-49. Code the card
column of the units position of the output field in
cc 57-58.

179

Field through Table to Field - FTTTF

This card is used when a field somewhere in the input
is to be looked up in a table and the corresponding
table entry is to be transferred to some location in
the output. Format:

C 0 N V E R sir 0 N - 2 - C H A R S -
1 2 3 4 5 6 7 ! 8 9 10 11 12 13 14 15 16 17 18 19 20

-- - --

:F R 0 M C A R D T Y P E -
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

------ ----- --- _.-

--
C C - - T 0 C C - -

45 46 47 48 49 50 51 52 53 54 55 S6 57 58 59

C H A R S I - - E N T R r E s -
60 61 62 63 64:65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

. - - - -_." ... ------ .- .

21
.. -
-
44

-
80

Code a 2, 4, 6, or 8 in cc 12 according to the rules
described in the abstract. Code the number of characters
in the input field in cc 21-22. Code the card type
containing the input field, if applicable, in cc 39-43,
right justified. Code the card column of the units
position of the input field in cc 48-49. Code the card
column of the units position of the output field in
cc 57-58. Code the number of characters in the output
field in cc 66-67. Code the number of table entries
there are in cc 77-79.

180

-

22 23

(1;

o

o

o

o

Table Entry Cards

If a "Field through table to field" conversion card is
used, it must be followed by table entry cards.
The number of table entry cards that must be coded is
equal to the number coded in cc 77-79 of the FTTTF card •.
Each table entry card contains the field to be looked
up and the corresponding field to be placed in the output
area.

Code the field being looked up beginning in cc 1.
The length of this field should correspond to the
number coded in cc 21-22 of the FTTTF card.

Code a comma (,) in the card column immediately
following the field being looked up.

Beginning in the card column after the comma, code
the corresponding field to be placed in the output
area. The length of this field should correspond
to the number coded in cc 66-67 of the FTTTF card.

181

Field through Subroutine to Field Card

This card is used when a field somewhere in the input
is to be used by a user written subroutine to determine
a field to be transferred to some location in the
output. Format:

C O!N VJE R S ION - 3 - C H A R S - -

~1~_2+1_3~.~.~~J_5~6~7~8~_9~10~11~·_12~1_3~1~4_1_5~1_6~1_7~1_8~19~20~2.~1_22~2~

C C - - T 0 C C - -
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

~--

C H A IR 81-1 - E NIT R P T - - ---
60 61 62i63 641 651 66 61 68 69 70171 72 73 74 75 76 77 78 79 1 80

-.,--i-----i----L

Code a 2, 4, 6, or 8 in cc 12 according to the rules
described in the abstract. Code the number of characters
in the input field in cc 21-22. Code the card type
containing the input field, if applicable, in cc 39-43,
right justified. Code the card column of the units
position of the input field in cc 48-49. Code the card
column of the units position of the output field in
cc 57-58. Code the number of card columns in the output
field in cc 66-67. Code the number of the subroutine
entry point to be used in entering the subroutine in
cc 77-78.

182

c

o

moo,

o

o

•

Immediate Entry to Field

This card is used when a certain constant of information
is to be placed directly into the output card regardless
of the input. Format:

C 0 N V E RlslI 0 N - 0 1 - C H A R S -
1 2 3 4 5 612J 8 9 10 11 12 13 14 15 16 17 18 19 20

- T 01 Ic c - --
251~~_! 27 28 29 30 31 22 23 24 32

_00.

Code the number of characters to be transmitted to the
output in cc 21-22. Code the card column of the units
position in the output area where the characters are
to be transferred in cc 30-31. Beginning in cc 33 code
the characters to be transmitted to the output.
The number of characters should correspond to the
number coded in cc 30-31.

21

183

I

!II
I

,----~-.--.".,,', .. -~-~------

Counters to Field Card

This card is used when: 1) the number of cards in the
family, or 2) the number of cards of a particular card
type, or 3) the sequency number of a card within a
particular card type is to be transferred to some
location in the output card. Format:

C 0 N V E R S I 0 N - 0 2 - F R 0 M C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Y PiE - - C 0 U N T E R -
6 27128 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

-..

- T 0 C C - -
45 46 47 48 49 50 51 52 53 54

A
21

44

Code the card type if 2 or 3 is coded in cc 44. Code 1,
2, or 3 in cc 44:

1 means count of cards in family

2 means count of cards of a particular type

3 means sequency within a particular type

Code the card column of the units position of the
counter field in the output in cc 52-53. All counters
are 2 characters in length. Although, the leading
character may be overlaid by another conversion.

R

22

184

()

D
23

".""'"
(V

o

] tit. '"lifE zt t m-= ·tt

o

o

o

Punch the Output Card

This conve+sion card is used when all fields in an output
card are developed and it is to be punched. All output
developed by conversion entries from the beginning of the
conversion section or from the previous punch output card
is punched. Format:

c 0 N V E R slI 0 N - 0 3 - R E P E A T

1 2 3 4 5 6 7 i 8 9 10 11 12 13 14 15 16 17 18 19 20

L Als T E N T R Y - -
~~ti~.~ 27 28 29 30 31 32 33 34 35 36

If the development of a particular output card is
identical, except each time the next card in sequence
within each card type is to be used in all conversions
beginning with 6 or 8, then code I in cc 22 of this
card. If the development is not to be repeated, code
o in cc 22. If there are no more conversions for this
family, code I in cc 35, if not the last code O.

-
21

185

- J
22 23 ;

Subroutine Entry Point

If surboutines are required for any of th~ conversions
to be performed by this library, Subroutine Entry
Point card(s) must be used. One of these cards must
be completed for each subroutine used. Format:

S U B R 0 U Til N E E N T R Y P 0 I
1 2 3 4 5 6 7 18 9 10 11 12 13 14 15 16 17 18 19 20

- A D D R E S S - - -
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Description:

In cc 24-25 code the entry point number. These numbers
are to be sequential beginning with 01. The address of
the entry point is coded in cc 35-39. This is the
address of the first executable instruction.

186

o

N T -
21 22 23

o
I~
III
III

.. tr **

187

o

Appendix 2

o GFC Codes for Various Conversion Types

•

Independent Non-Indexing
No Padding

FIELD TO FIELD 21

FIELD TO TABLE TO
22 FmLD

-
FIE LD TO SUBR TO

23 FIELD

FIE LD IMMEDIATE TO
01 FIELD

CARD COUNTER
02 IMMEDIATE TO FIELD

PUNCH OUTPUT CARD 03

o {)

CONVERSION CODES

Non-Indexing Indexing
Padding No Padding

41 61

42 62

43 63

Indexing
Padding

81

82

83

I

I

o

J-'
0:>
0:>

o

SYSTEM DIR5~8TOR

o

• Vernon T. Boyer
IBM Corporation
Dept. 237
Bldg. 062

189

11-22-66

SYSTEM DIRECTOR

The SysterrJ. Director forms the operating center of the TSX system.

It has the responsibility of directin9 interrupt servicing, loading user core

loads, directing time .. sharin9, servicing the interval tiulers and servicing

error conditions. The System Director 1s core resident and is storage

protected to ensure tha.t it is not accidentally altered. When the conlputer

is operating under control of the SystenJ. Director controlls passed to it by

TSX calls, interrupts and errors. The Systern Director 1s th3.t portion of

TSX (other than I/O) that must be in core at all times in order to respond

to the real time world. Basically, the System Director 1s lIlade up of five
+wo

control programs andlLdata areas.

Control Progranls

-Prograul Sequence Control (PSC) - controls the sequencing and initiates

the loading and execution of user-specified process core loads.

- Master Interrupt Control (lVIIC) - automatically determines the type of

each interrupt as it is recognized and transfers control to the' proper

interrupt servicing routine.

-Interval Tirner Control (ITC) - provides a programmed real-time

clock, a tilner for TSC, nine programmed interval t1.t:ners, and control

of two rnachine-intervaJ. timers.

190

c

o

o

o

•

-2-

-'I'1me-Sharin<;J Control (TSC) - controls the ulne-sharing of variable

core between process and nonprocess core loads.

-Error Alert Control (EAC) - provides the following functions whenever

an error occurs:

1) optionally saves core for future reference

2) optionally branches to a user's program for further error

analysis

3) prints an error message

4) executes a specified recovery procedure

Core Layout of the System Director is as follows:

ICLT Address

Disk Save Area Addresses

Error Work Level

Queue Table

ICLT

Work Areas

.MIC

PSC

TSO

ITC

EAC

191

---. - -.. -_.-.. _ .. __ ._--_.-.. _-_. __ ._ -.. _._.-.- ._ .. ,-,.,-_ _"... ""'".-.~'~'---'~" -' '-' ----,-,-.,,-., .. -.. -.-.----..... -,,----~,--."".,-.--,.,",.--, ... ",,""-~~---'

-3-.

ICLT ComnlWlication Table. The ICLT Communications Table contains

the address of toe ICLT entry for each interrupt level defined ir~ tne

system. Since tile .i.V.u:c program does not reside in a fixed area of

core, these addresse~ are made available by means of this table to

varioLls .routines and subroutines Which are sent to the user in object

format.

Save Area Table. The Save Area Table contains the word counts and

sector addresses of the various save areas on disk. It also contains the

disk address of the Error Disk Program (EDP) called by EAC. These

disk addresses are obtained frotu FLET by the Skeleton Builder when

the System Skeleton is built.

EAC Work Area. This work area 1s used by EAC when proce$lSing

errors.

Priority Word Count

QUEUE TABLE

Sector
Addr.

,Word
Priority Cowlt

Sector
Addr

192

o

0'

o

0,

o

-4-

Queue Table. The Queue Table is a table of 3-word entries, one for

each unique call to the QUEUE subroutine. A unique entry is one in

which the sector address and/or the priority are different from any

other in the queue. Each entry appears as follows:

Word

1

2

3

Contents

Priority

Word count of the core load

Disk address of the core load

The size of the Queue Table is defined by the user. Entries are removed

fronl tne Queue Table by the UNQ and VIAQ subroutines.

Interrupt Core Load Table (ICLT)

IN SKELETON

IN MAINLINE

RECORD

RECORDED
VJORD COUNT OR

START ADDR

SECTOR ADDR

Interrupt Core Load Table (ICLT). The interrupt Core Load Table

contains an entry for each interrupt level assigned by the user. The

size of the entry for each level is determined by the user. The format

of an ICLT entry is as follows:

193

.--~~~~~~~-------------~--~--.~---~- .

Word

1

2

3

4

5-6

-5-

Contents

In-core-w1th-Skeleton indicator word. A bit 1s

set on in this word corresponding to each PISW

b1t which is serviced by an interrupt servicing

routine included in the Skeleton.

In-coro-with-mainline indicator word. This word

is filled in by tne PSC progra.zn as each core load

is loaded. It 1s obtained from word 2 of the 1ST

entry for the sarrie interrupt level.

Record lndicator word. This word is filled in by

the PSC program as each core load 1s loaded. It

is 0 btained fr~}~·"~ord 3 of tne 1ST entry for the

same interrupt level.

Recorded indicator word. A bit is set on in thls

word by lv.lIe whenever an interrupt 1s recorded.

The bit set on corresponds to.a bit in the Record

indicator word (word 3).

If the program is not in-cora-with Skeleton, these

two words contain the word count and sector address

.f the proQram servicin9 the interrupt assoc~ated

with the first PISVl bit on this level. It the program

194

o

o

'i_It Tip

o

I'

I:

Word

'1-8

n-n+l

-4 TO 40
MIe

-6-

Contents

is in-core-with Skeleton, word 5 equals the starting

address of the pro9ram in cire. Word 6 is unused.

Same as above for the second PISW bit.

Same as above for the last PISW bit on this level.

LEYEL WORK ARM

41
FAC

QZSAV

TVSAV

57

FORTRAN ERROR

58
REENTRANT
SUBROUTINE

WORK AREA

Work Areas. Each interrupt level specified by the user has a work area.

The area is 104 words in length (subject to adjustment by the user).

In addition to the areas for user-assi<JIled interrupt levels, there is

a work area for a process core load. The space in the work area for

lV1IC is not subj ect to adj ustment. The contents of a work area are as

follows:

Word Contents

-4-40 Save locations for Accumulator, Extension, index

registers, Status; constants, work area interrupt

processing before entry to MIC.

195

--'---'-'--"---"---

Word

41-57

58-99

Contents

Save locations for FORTRAN FAC, and error

indicators; save locations used by TVSA V and

QZSAV.

Available words for use by other reentrant coded

programs and subroutines.

NlASTER INTERRUPT CONTROL PROGRAM

The master interrupt control (MIC) program controls the servicing

of interrupts. An interrupt may occur at any time but it will not be recognized

by MIC unless the interrupt 1s on a level that is not masked and is of a higher

priority than the present level of machine operation. The user-specified

assl<Jnment for interrupt levels determines the priority of a particular

interrupt. The user-assigned interrupts can be delayed from beinQ recognized

by masking the level to which they are assigned. The servicing of process

196

and programmeci subroutines can also be delayed by recording their occurrence.

Basically, there are two types of interrupts: internal and external.

Internal interrupts are those associated with any input/output device, interval

timer, trace, or error condition. Internal interrupts, except trace, are

serviced by IBM-provided subroutines as soon as they are recognized.

Programmed interrupts are treated the same as external interrupts.

c

0'

~

II

1ft! 7 1mm __ r

o

o

•

-8-

Interrupt Servicing

In the servicing of interrupts the following applies:

1. Only one ILSW bit is serviced per entry to a level.

2. Pro9rammed interrupts a.re serviced whenever a "no bit"

condition occurs in an ILSW or whenever an exit from either

3.

4.

an I/O servicing routine or a process interrupt servicing routine

occurs.

All bits on in a PISW are serviced before exiting from a level and

before servicing of a programmed interrupt.

Interrupts on levels that are serviced by out-of-core interrupt

core loads are serviced in the Inasked mode so that they cannot

be interrupted by another interrupt serviced by an out-af-core

routine. Only one level of exchange is maintained.

EXTERNAL INTERRUPTS

197

External interrupts are those associated with the process and proqrammed

interrupt features. They are serviced or recorded by one of four type s

of user-written routines: (1) Skeleton interrupt routine, (2) Mainline

interrupt routine, (3) Interrupt core load, or (4) Mainline core load •

·9·

The different types of routines are provided to permit flexibility in the

use of core storage, and in the response time requir-ements of a specific

interrupt (i. e., the time required to enter an interrupt routine after the

interrupt is recognized).

Interrupt routines are assigned to the skeleton area by control cards

when the system. skeleton is 1m tially assembled. They are normally used to

198

service process interrupts that require immediate response, have high priority,

or that occur frequently.

Skeleton interrupt routines are required only if the user considers it

necessary for the routine to always be in core storage.

External interrupts not serviced by skeleton interrupt routines can be

serviced by routines included as part of a rnainline core load. The response

tirile of a nlainline interrupt routine approaches that of a Skeleton interrupt

routine only if the rnainline core load containing the interrupt routine is in

core when the interrupt occurs.

A mainline core load is required for the servicing of each external

interrupt that lllight be recorded!!!S! serviced at a later time.

Interrupt core loads are required for those interrupts that meet either

of the following condi t1ons.

c

()

o
.. 10-

1. User specifies the interrupt servicing routine to be out of core.

2. User specifies the interrupt servicin9 routine to be in core as

part of a ulainline core load.

If a time- sharing operation in in progress when an interrupt occurs, the

interrupt (if not recorded) is serviced with the skeleton interrupt routine, if

it exists, or with th~ interrupt core load. Even if the mainline that called

for time-sharing has an interrupt routine for ~e interrupt that occurred, the

interrupt core load associated with that interrupt is brought in (to core)

for the servicing.

When recognized, external interrupts may either be recorded or serviced,

as specified by the user. If recognition is recorded, it can be serviced later

C) or cleared.

•

If not recorded, external process interrupts are serviced as soon as

one of tile following condi tiona becomes true.

1. The servicing routine is located within the system skeleton,

the interrupt level is not masked, and an interrupt of higher

priori ty is no t being serviced.

2. No other external1nterrupt is being serviced, and the servicing

routine is in core as part of the core load.

3. No other external interrupt 1s being serviced, the servicing

routine is out of core, and no I/O operation 1s in progress unless

199

_:aClu,.eM':

... --~.--~.-.... -....•. -------~-.. ----.-.---.. """--.~----

-11-

its associated interrupt routine and I/O area are in the skeleton.

This requires an exchange operation (an operation wherein a

specified portion of the variable area of core is saved and the

interrupt core load is read in for execution). Following execution

of the interrupt core load, the original operating program is

restored.

200

,r"""',
"_JlI)

The option of recording or servicing any external interrupt rnay be different

from one mainline core load to the next. The designation is made by control

cards when tile core load is bein(j forlned.

Progrd.rrlnled Interrupt - CALL LEVEL

This .sbternent causes an interrupt (by prograulrning) on any assignable

interrupt level (0-23). The format is:

CALL LEVEL (I)

where

I is an intager conGt.a.nt (0-23) that specifi8s tle interrupt level desired.

This \!all, which can be used only in proces~ (mainline or lntclrrl.lpt)

programs, causes a pseudo 1LSW bit to be set on the level specified.

ProqranHned interrupts are tr~atGd the same as process int8rruptc in

tb.at tney cm be recorded or serviced, in-core or out-of-core, etc.

()

o

o

•

-.12-

The programmed interrupt servicing routines must follow the rules of process

interrupt servicing routines. There can be only one programmed-interrupt

routine per assignable interrupt level.

The programmed interrupt is recognized immediately when called from

a lower level. When the servicing routine exits to MIe, program operation

at the calling level is resumed with the statement following the CALL LEVEL

statement.

A programmed interrupt called from a higher level is reco<JIl1zed aftar

201

the calling program 1s completed and after any intervening interrupts are

service. If a levells called and any ILSW bit 1s on when the level is recognized,

the programmed interrupt 1s recognized after the first ILSW blt that is on

1s serviced.

Interrupt Exit-CALL INTEX

All interrupt routines serviced on an interrupt level must return control

to ~C. The CALL INTEX statement, which has no parameters, is normally

used for this purpose. It ~ be used as the last logical statement in skeleton

interrupt routines, mainline interrupt routines, and it can be used in interrupt

core loads •

202

-13-

RECORDED INTERRUPT SERVICING

External interrupts whose occurrences are recorded are serviced with

nlainline core loads. The mainline core load performing the servicing

is the same as any other lr.Lainline core load, except it 1s queued for execution

by a CALL QIFONstatement. Since it is a queued core lo~, it should have a

CALL VIAQ as the last logical statement. (It could, of course, be the first

core load of a special series and, as such, would end with CALL CHAIN to

get the next core load of a sequence, but a CALL VIAQ eventually must be

executed.)

COMBINATION CORE LOAD

In the descriptions 9i ven thus far there is only one nlajor difference

between an interrupt core load and a mainline core load used for servicing

recorded interrupts. That difference is in the last logical statement, which

must be CALL INTEX for an interrupt core load and CALL VIAQ for the

mainline core load.

If an external interrupt is serviced immediately some times and recorded

ether Urnes, it requires two core loads that might be the same in all respects,

e:Kcept for their last logical statement. To elirninate this situation, a

combination exit statenlent, CALL DPART, is provided.

o

o

•

-14-

Departur&- CALL DPART

The CALL DPART statement causes the level of operation to be tested

and

1. If the present level is an interrupt level, a CALL INTEX is

executed.

2. Otherwise, a CALL VIAQ is executed.

Thus, CALL DPART eliminates duplication of core loads. An interrupt

that 1s sometimes recorded and sometimes serviced, when it occurs, can

be serviced under either condition with the same core load. The core load

operates from an interrupt level when servicing is specified; it is queued

and operates from the mainline level when the interrupt is specified as

recorded.

INTERRUPT ASSIGNMENT RESTRICTIONS

The following interrupt assignment restrictions must be observed for

proper operation of the TSX system.

1. All I/O device interrupts Ulust be assigned to a higher priority

interrupt level than external interrupts unless the external

interrupt 1s serviced by a skeleton interrupt routine.

2. If external interrupts and I/O devices are both assigned to the

same level, the external interrupts must be serviced by -skeleton

interrupt routines .

203

;,

·-......... " ~ .. ---...... -.- --- ~-

-15-

3. A skeleton interrupt routine cannot use an I/O device whose

1nterrup~ is assigned to the same or a lower priority level,

except for disk, 1053 printer, and 1443 printer; however,

the 1053 test function cannot be used.

4. ILSW bits must be assigned continuously beginning with position o.

5. FORTRAN READ and WRITE statements (except for disk) can
.

be used only on interrupt levels lower than the 1816.

PISW ASSIGNMENT RESTRICTIONS

PISW (Process Interrupt Status Word) groups can be assigned to interrupt

levels either as a single group per level or in multiple groups per level.

The following rules and restrictions must be observed for proper operation

of the TSX system.

Qne Group Per Level

Normal usage of process interrupts requires that only one group of

process interrupts be assigned to each interrupt level. Process interrupts

assigned in this way can each be serviced with separate interrupt routines.

The servicin9 routines rnust reside in the skeleton area only if their

associated interrupt level is the same as or higher than any I/O device

interrupt level.

~-"-----

204

o

", 0·\·"

o

-16-

When only one PIBW is cormected to a level, the correlation of the

interrupt level nurnber to the PISW group number is as follows.

In terrupt Level

o

1

2

3

22

23

PISW Group

1

3

4

23

24

The !Vue program does the lLSW and PISW sensing and transfers control

to the proper interrupt servicing routine.

Multiple Groups Per Level

205

In special cases it is desirable to have more than one PISW group asslQIled

to an interrupt level and tills is possible with the TSX system; however, the

follovling restrictions must be observed. The interrupt servicing routine

must:

-17-

1. Reside in the skeleton area.

2. Sense all non standard PISW s assigned to the level.

3. Upon completion, exit to lv.IIC via the I/O exit (ESC I gO).

When assigned in this way there is no correlation restriction between

the interrupt level number and PISW group nunlber.

Combination PISW Assignnlents

It 1s possible to combine the two assi~nment methods and have some

interrupt levels with only one PISW each and some levels with more than one

PISW. The sanle rules and restrictions for each type as outlined above still

apply. For example, to have to groups of four PIW s each assigned to

interrupt levels 4 and 5 one valid combination 1s:

Interrupt Level PISW Groul?

0 1

1 2

2 3

3 4

4 one group of four PIB"Ns

5 one group of four PISVJ s

6 7

'1 8

206

(Continued)

:! I,

i
:!

"

t
",,",: :'1

"!

• I

0>

o

•

1M

-18-

JAterrupt Level PISW Group (Cont'd)

17

18

19

23

18

Not assl9Jl8.ble; usage assumed
on levels 4 and 5.

Any combination can be used for the PISW assignments on levels 4 and 5.

The user written routines used to service the interrupts must be coded as

an I/O RPQ subroutine.

PROGRAM SEg,UENCE CONTROL PROGRAM

Program sequence control (PSC) is a control program that handles the

flow of control from one mainline core load to the next. PSC functions are

initiated by execution of PSC CALL statements in the user's program. The

specific ftmct10ns of PBC are:

1. Execute the next sequential mainline core load. The new core

load overlays the one tha.t contained the call.

2. Save the mainline core load in progress (on disk) and load a

special core load for execution.

3. Restore the core load that was saved in item 2 and continues

execution from where it left off (the statement following the

CALL SPECL).

207

4. Queue mainline/core loads associated with interrupts whose

occurrence has been recorded.

5. Execute the hiqhest priority mainline core load listed in the

core load queue.

6. Insert mainline core load entries into or delete them from the

core load queue.

For PSC to perform the above functions, a CALL statement must be

executed for each one. The specific CALL statements and their parameters

are described below.

FWlctionally, the CALL statements are divided into two groups: those

for direct sequence, in whfch one mainline core load calls another, and

those for queuing, in which eit.O.er the highest priority mainline core load

named in the queue is called or the core load queue is modified by inserting

or deleting an entry.

208

The CALL statements froln both groups provide the user with the flexibUity

or implementing his unique scheduling requirements. Unless otherwise

stated, the results are, unpredictable if these CALL statements are used

1!l a nonprocess program or if they are used incorrectly in process ,core loads.

o

o

o

•

-20-

PIRECT SEQUENCE STA TElv.IENTS

The direct sequence statements are used to

-CALL the next mainline core load to be executed.

~Save the present mainline core load (on disk) and CALL a special

mainline core load for execution.

- Restore and continue execution of the saved mainline core load.

Normal Call - CALL CHAIN (NAME)

This call terminates execution of the mainline core load and transfers

control to PSC, which loads the nanled mainline core load into core storage

for operation. This is the last logical statement in a mainline core load;

it calls the next rnain11ne core load into operation.

NAME is the name of the mainline core load being called.

Special Call - CALL SPECL (NAME)

This call suspends execution of the current mainline core load and transfers

control to PSC, which

1. Saves the return address (1. e., the address of the instruction

following the CALL SPECL statement).

2. Stores the current mainline core load on disk.

209

3. Loads and transfers control to the new (special) mainline core load .

-21-

NOTE: Only one ma1nl1ne core load can be saved. Thus, if CALL SPECL

1s used in a core load that was called by a CALL SPECL, the mainline core

load saved originally is lost.

Saturn Saved Mainline ... CALLBACK

This statement is nor mally used as the last logical statement in a special

mainline core load.. When executed, it terminates the core load and transfers

control to PSC which restores the last previously saved core load. Execution

of the saved core load commences with the statement that follows the CALL

SPECL statement.

QUEtqNGSTATEMENTS

The queuing statements are used to

-Insert entries into or delete entries from the core load queue table.

-Execute the highest priority mainline core load specified in the queue.

These functions are performed by subroutines, which can be located

with either the call1nq program or the system skeleton.

lB!!ert Into Q;ueue .. CALL QUEUE

This statement is used to place a mainline core load name and priority

in the queue. If the same name and priority are already queued, they will

210

not be placed in the queue a second time; however, the same name with a

different priority can be inserted 1Dto the queue", The format of the statement is:

c

o

o

o

CALL QUEUE (NAME, P, E)

where

NAME is the name of a mainline core load that is to be entered into the queue.

P is the integer expression, that specifies the execution priority for the core

load. One (1) is the highest priority number. The allowable range of

P is from 1 to 32'16'7.

E is an error parameter used to specify the action to be taken when the

queue is full.

E = O. Ignore call after printing an error message.

E = 1 throug-h 32'166. Replace the lowest priority entry in the queue with

the name and priority in thIs call, 1f the priority of the queue entry is

loser (numerically larger) than E. If there is no queue entry with 'a

lower priority, the restart core load specified for this core load 1s

executed.

E = 3276'1. Execute restart core load.

Different core loads can be assigned the same priority number, if

211

desired. When two or nlOre queue entries have been assigned the same priority,

these entries have a priority among themselves on a first-in-first ... out basis.

212'
-23-

Delete From the ~ueue - CALL UNQ (NAME, P)

This statement is used to delete a mainline core load entry from the

queue. If the name and priority parameters do not match a queue entry,

the statment has no effect. The CALL UNQ statement can be used in any

program.

Execute Highest Priority Core wad - CALL VlAQ

This ~ta.tement is used as the last logical statement in a mainline core

load. It terminates the present core load and causes execution of the highest

priority core load named in the queue.

When the CALL VlAQ statement 1s executed and there are entries in

the queue, the highest priority entry is removed, and used" to call the core

load it references.

U there are no entries in the queue, the process 1s considered to be in

an idle condition (i. e., the process does not require any action at this tilne).

Since variable core is not being utilized by process core loads, control is

transferred to time-sharing control (TSC) for execution of nonprocess core

loads. The time-Sharing operation will continue for the period of time

specified at assembly time or until terminated by an interrupt (see CALL ENDTS

statement in the Time-Sharing Control Program section). A CALL VIAQ

operation is autonlatically performed when the time-sharing ttule is ternkinated.

c

Q

•

Therefore, if an interrupt progTam has placed a name in the queue, the

named core load will then be automatically executed. (This is not true if

time-sharing was initiated by a CALL SHARE statement.)

The CALL VIAQ statement can be used only in mainline core loads.

Queue Core Load If Indicator is ON - CALL QIFON

This statement is used to place a mainline core load name and priority

in the queue table if its associated recorded interrupt indicator is on.

Recorded interrupts are those that do not require service when they occur

and can be recorded for servicing at a later time.

213

When an interrupt that is to be recorded is recognized by WllC, the interrupt

1s reset and a programmed indicator 1s set. It is the programmed indicators

(set by :MIC> that the QlFON subroutine interroga.tes. The QIFON subroutine

than automatically clears the interrogated indicator. The statement format 1s:

CAL~ QlFON (NAME, P, L, I, E)

where

NAME is the name of a mainline core load.

P is the execution priority to be assigned to the mainline core load named.

L is the interrupt priority level or lndicatr (see L and I Combinations).

I is the PISW bit position indicator or CALL COUNT indicators (see L and I

Combinations) .

214

E is an error parameter used to specify the action to be taken when the queue

is full.

E ::: O. Ignore call after printing an error message.

E::: 1 through 32766. Replace the lowest priority entry in the queue

with this call if the priority of the queue entry is lower than E.

Restart if there is no entry lower than E.

E ::: 32 767. Execute restart core load.

L and I Combinations. The combination of L and I are

k 1.

0-23 0-15

0-23 -n

-n 0-31

Reference

Process interrupts

Programmed interrupts (see C.L~LL LEVEL)

Subproqram nurnber of CALL COUNT statement (see

Programmed Timers).

(-n means any minus nUlllber)

The CALL QlFON statement can be used in any process program.

Clear Recorded Interrupts - CALL CLEAR

The CALL CLEAR statement is used to clear the recorded interrupt

indicators. In thi.s way, specific interrupts or all external interrupts can

be removed from their recorded status. The format of the statement 1s

CALL CLEAR (M,L, I, L, I. 0 ••)

o

o

o

•

-26-

where

M is an integer constant that specifies the number of parameters to follow.

If M equals 0, all indicators specifying recorded status are .

cleared.

L and I are the same as for the Call QIFON statement.

215

-2'7-

IIIylE-§H.ARING CONTROL PROGRAM

The time-sharing control (TSC) program controls the amount of time

allowed for nonprocess program operations.

Time-sharing can be initiated in two ways:

1. Execution of a CALL SHARE statement in a procesS mainline

program.

2. Execution of a CALL VIAQ statement when the core load queue

table 1s empty. This causes the VIAQ subroutine to execute

a CALL SHARE statement.

216

The first method can be utilized when time-sharing is desired at specific

tirnes and for different durations. When time- sharing is initiated in this way,

the process core load is saved and the non-process monitor (or an unfinished

program is read into core and executed. When the specified amount of time

has elapsed, the nonprocess program is saved (if not completed) and the

process core load is restored. The maximum time for a time-sharing

operation initiated 1n this manner is set by each CALL SHARE statement.

Operation of the process core load is resumed with the statement following

CALL SHARE.

The second method permits time-sharing when the computer is not being

utilized for the process. The maximum time for a time-sharing operation

initiated in this manner 1s specified in a control card by the user when the

o

o

o

o

o

-28-

system is loaded, and re,mains constant~ At the completion of the specified

time, another CALL \llA~ is a~~.)lnatically executeci by the systern. If, in

the interim a core load has been queued, it is then executed; howe\ter,

another time-sharing operation w~ll be initiate,d if n~~:ng has been entered

into the queue.

Normally the CALL VIAQ method is used, bu~1n special cases, the

CALL SHARE method is also desirable.

All interrupts that occur during the time- sharing operation are handled

217

by MIC the sanle as if a process mainline program were in operation. After

the interrupt is serviced (or recorded) control is returned to the nonprocess

program unless a CALL ENDTS statement is executed in the interrupt routine.

If the nonprocess program is not completed before time runs out, it

is saved and continued when the next time-sharing operation is executed.

The following statement is used to initiate time- sharing operations

for a specified time interval.

CALL SHARE (I)

where

I is an integer expression that specifies the nuulber of tirne intervals allowed

for nonprocess program operation.

CALLENDTS

218

-29-

This call can be used only in an interrupt routine, and it sets the time

sharing clock to indicate zero time. The first timer C interrupt that occurs

that checks the programmed timers after control is returned to the nonprocess

program causes the time-sharing operation to be ternJ.inated and control is

then returned to the process mainline program.

If time-sharing is not in effect, the CALL ENDTS statement has

no effect.

Two additional fWlctions performed by TSX are CALL UNK and CALL

EXIT when called from nonprQcess programs.

INTERVAL TIMER COJ!{iOL PROGRAM

The interval. timer coat.rol (ITC) program provides for FORTRAN

language control of four types of timers:

1. Two machine interval timers (A and B).

2. Nine programmed interval tinlers.

3. A programmed real-time clock.

4. A timer for time-sharing control.

The ITC also performs three additional functions.

1. Resets the operation monitor during time-sharing.

2. Tests for no response from 1053 prlnters.

3. Performs enc1 of time-sharing.

o

o

o

•

-30-

The third machine interval timer (C) is used for items 2, 3, and 4.

Machine Interval Timers

The two machine interval timers should be used to measure relatively short

time intervals. They are controlled by the following statement.

CALL TIMER (NAlIIE, I, INT)

where

219

NAME is the name of the user's subprogram to be executed when the specified

time elapses (NAME rnust also appear in an EXTERNAL statelnent;

I is an integer expression, whose value rnust be:

1-for machine interval till1er A. (word 4)

2-formachine interval tinler B. (word 5)

!NT is a positive integer expression that specifies the number of intervals

counted before the user t s subprogram is executed.

The subprogram specified in a CALL TIMER statement must be in core

storage when the interrupt generated by the tinler is recognized. The

interrupt occurs when the time sp~cified has elapsed, but is is recognized

only when the level of operation is lower than the tilner interrupt level and

the tilIler level is Wllllasked. The tilner s are stopped and re set to zero

when tile specified time has elapsed and the interrupt is recognized (zero

is a not-busy condition) .

It 1s the user's responsibility to ensure that the subprograrn NAME is

in core when the tin'ler interrupt is reco<JDized. This can be accomplished

in two ways:

1. NAME skeleton subroutine.

2. NAME is a mainline only routine, allintel"rupt levels with out-of

core interrupts must be "masked, and the core load exit is not

allowed while the timer 1s buay.

The subprogram name is automatically loaded with the calling core load

(unless previously loaded with the system skeleton). Also, the subprogram

must return control to the ITC program (RETURN statement or assembler

language equivalent). The program is executed at the interrupt level to

which the interval timers are assigned and carmot be recorded.

It is not recommended that periodic prograrns (programs initiated by

internal. timers) be executed on the Urner level. If this 1s allowed to happen,

some timer interrupts rnay be missed during execution of lengthy programs.

The CALL LEVEL statement (see Prograullned Interrupt) is designed to

handle this Situation, and in this case, should be used to create-an interrupt

220

-at a lower level of machine operation. The periodic proqrarn is then executed

at the programmed interrupt level.

o

o

o

o

Exarnple: Asswne nlachine interval timer A is wired for the .125 rns time

base.

CALL TIMER (SCAN1, 1, 35)

When this staternent is executed, ITC initializes timer A (sets it to -35)

to count 35 interv;3.1s and return control to the st1.tenlent following the CALL

TII\;iER statement. When 35 intervals (L e., ~5 x . 125 illS, or 4. 3'75 nls)

221

have elapsed, an interrupt occurs and control is transferred to the subprogram

nanled SCAN1.

Clock and PrograInmed Tirners

The programrned real-time clock and the nine programmed interval

timers are updated by the third interval timer (C).

The time interval used for updating the clock (termed the interrupt time

base) is the product of the wired-in tinle base interval and a number chosen

by the user at system generation time. For example, assume interval timer

C is wired for an 8-ms tirne base, and the clock is to be updated every second.

The number necessary to accomplish this 1s 125 (8 ms x 125 = 1000 ms, or

1 second), and when the ITC program is assembled, the number -125

would be specified by the user. The third timer would then cause an interrupt

every second. A rninus number nlust be specified because the interval timer

is incremented and causes an interrupt when it reaches a zero.

.••... _---_•...• _ _._-

-33-

Sumnlary. Interrupt tinle base = wired-in Ulne base x assigned number.

The interrupt tirne base is used specifically for the programmed real

time clock and as a primary base for me programmed timer sand tirne-

sharing clock. It is also used as the reset interval for the operation

monitor during tilne-sharing operations.

Clock

The programnled real-tL.ne clock maintained by the interval time

control prograill l'lecords tilne to tile llearest thousandths of an hours. Clock

accuracy depends on tne assigned interrupt tilne base previously described.

The clock is reset on a 24-hour basis (i. e., it is incremented froIn 00:000

to 23:999 and then goes to 00:000).

To set tne clock at a desired tirne, the following staternent is used.

CALL SETCL (D

where

I is an integer expression that specifies the desired time setting. The time

setting U1USt be expressed in hours and thousandths of hours (1. e. ,

00000 wough 23g9~).

To read the prOQrammed real-tiLne clock, tne following statement

is used.

CALL CLOCK(D

222

c

o

o
\ • ...-_0

•

-34-

where

I is an integer variable wnere tne time is to be stored.

Programmed Timers

The nine programmed timers should be used to specify long time periods.

In particular, they can be used for periodic program eXecution or to initiate

execution of a program at sorne later tinle.

If the called program is in the sk~leton when tlle specified time elapses,

the progran1 is executed. The called prograrn Inust return control to the

ITC program (RETURN statenlent or assembler language).

The program is executed on the same level that the interval timers are on.

If the called program is not in t.be skeleton when the specified time

elapses, it must be in the same form as a mainline core load. Out-of-core

pro9rams are handled as recorded interrupts, 1. e., the program will not

be placed in the queue until requested by a CALL QIFON statement, and will

not be executed until a CALL VIAQ finds that the queued program is the

hi9hest priority in the queue.

To provide the user with large time intervals, a larger time base

can be specified for the programmed tirners. The programmed timer base

for the programmed timers is a user-assigned multiple of the interrupt time

223

base used for the programmed real-time clock. For example, if the interrupt

time base is one second, and the user wants the programmed timers to

operate at 15 second intervals, then 15 is specified when the ITC program

is assembled.

224

SUmmary. Programmed timer base==interrupt time base (previously assigned)

x assi9Ued number.

The progranlmed timer base is used specifically for the programmed

timers and the time"sharing clock. This base is the smallest interval of

time that can be specified for the programmed tilners or for nonprocess

program operation (i. e., time-sharing, see Time-Sharing Control Program).

The programmed interval timers are controlled by the following

statement ..

CALL COUNT (IN, I, INB)

where

IN is an integer constant or integer variable that specifies the number (0

through 31) of the program to be executed or recorded when the

specified time elapses. These numbers are assigned by the user when

the skeleton executive is prepared.

I is an integer expression that specifies the number (1 through 9) of the

programmed interval tinler.

o
.--~.(

o

-36- 225

o INB is an integer expression that specifies the nUlnber of intervals to be

o

cOWlted before the called program can be executed (rnultiple of programmed

timer base). Program nwnbers are used in place of names to provide

the recorded interrupt option.

ERROR ALERT CONTROL PROGRA1:Vl

When an internal error occurs, or when an I/O subroutine detects an

I/O error or invalid interrupt condition, or when a system subroutine detects

an invalid call or system failure, the EAC program is called to process the

error and select a recovery procedure.

The EAC program is cornprised of four logical segments:

-EAC In-core

-Error Disk Program (EDP)

- Error Decision Subroutines

-EAC Exit

The Error Alert Control (EAC) prograrn receives control from

1. Any input/output- subroutine when the subroutine cannot correct

an error or interrupt condition

2. The queue subroutine when the core load queue table would over-

flow

226
-37-

3. The master interrupt control program when an internal machine

error occurs (i. e. I invalid operation codelparity, or storaqe

protect violation)

4. Other control pro grams

Upon entry (EAC is entered at word 120), EAC receives the error

identification.and other pertinent data. From this information, the core and

disk portions of EAC will perform the following operations:

1. Optionally, dump core storage to disk (not performed for internal

machine errors).

2. a. If in. a nonprocess program terminate the program if the

error cannot be operator corrected.

b. If in a process program branch to the user-written error 7'

subroutine tnat is with the core load (this step is bypassed

for internal machine errors or if an error subroutine is

not included).

3. Update error counters rnaintained on disk.

4. Execute a subroutine (IBNI writt8u) for the device 9r error

condition, print an error message on the EAC printers, and

set up possible recovery action.

a. If in a nonprocess program returns control to the monitor

supervisor progralll if recovery is not possible.

o

o

o

o

;-38-

b. If in an interrupt routine terminate the program, service any

other interrupts, and perform the action specified by the user

or the device error subroutine.

c. If in a mainline core load perform the action specified by the

user or the device error subroutine.

When the EAC program is initially assembled, the option of the core

dump in item 1 can be selected.

Also, when assembling the skeleton programs, a back-up unit of the

sarne type can be specified for 1053, 1816, and 1443 printers. Backup

for the EAC printer is· achieved by defining multiple EAe printers at TASK

assembly time (if the EAC printer is defined as a 1053). When an output

error occurs, or if the unit is not ready (interrupt response not received),

EAC will logically disconnect the unit in error and substitute the back-up

227

unit. When backup is initiated because of a hardware malfunction, the message

in progress on the failing unit is not continued on the backup device. When

the error condition is corrected, the unit can be restored to its original

status by using the C. E. interrupt routine.

Error Subroutine

A user-written error subroutine can be optionally included with each

process core load. The purpose of this subroutine is to allow the user to

have control before EAC overlays the variable area with the disk portion of EAC.

-39 ..

For example, there may be special data or other information that the user

wants to save. Output, such as special core dumps, messages, or contact

operate functions, can also be executed. The error subroutine cannot be

written in FORTRAN language.

§YSTEM DIRECTOR ERROR ALERT CONTROL

The Error Alert Control (EAC) section is entered whep. an error occurs

or when a condition arises that requires an operator's intervention. A message

is printed on the EAC printer and EAC then takes one of four exits. Each

error is analyzed in order to decide which exits may be taken for that error.

Where more than one exit exists for a given error, the user can specify

the desired exit in the user's error subroutine. ,

Error Exits

1. Continue at the point of interrupt - When an I/O d~vice finishes

its operation an interrupt is generated. This interrupt causes

control to be transferred to the I/O interrupt routine when

then determines the error condition and branches to EAC.

This exit option then returns control to the point in the prograrn

at which the interrupt occurred (1. e., EAC do~s not return to

the I/O interrupt routine).

... - .. ~~-.~--.---.-- •.... -... _ ... _--_ ... _- . ' ... --.---~---- - ... --~--.-..... _--'----

o

o

o·

--•

229
-40-

2. Return to the routine which detected the error.

3. Restart - EAC or the user's error subroutine has decided that

the. present core load carmot be continued. The core load specified

as the restart core load when the present core load was loaded

to disk is given control when the mainline level is reached.

4. Reload - When an error occurs which indicates that a part of the

skeleton may have been destroyed. EAC reloads the skeleton

into core and transfers control to the core load specified on

the cold start card.

5. Cold start. User must reload the skeleton using cold start cards.

Not- Ready

A not-ready condition is processed by EAC in one of three w:.ys. ""'he

method is dependent upon the type of device.

The first method of processing the not-ready consists of printing the

message and returning to the I/O routine which again senses the device.

If the device is still not-ready, another entry to EAC is made to print the

message and return. EAC keeps COWlt of the consecutive not-ready for a

device and, on the fourth attempt, terminates the core load by causing a

restart.

-41-

The second method concerns the 1053 and 1443 printers. When the

fourth not-ready check has been made, EAC attempts to logically replace

the not-ready unit with its backup Wlit and return to t~e I/O routine. If

there is no backup unit specified, an indicator is set so that all future calls

to that printe.r will be ignored. If the printer is a 1443, EAC exits through

restart (return to the I/O routine user exit option).

The third method concerns the card read punch unit. After the message

1s printed and control is returned to the I/O routine, the I/O routine waits

in an unmasked mode until the Wlit is made ready.

SYSTElVl DIRECTOR ASSEMBLY REQUIREMENTS

230 '.

The Sy~tem Directornlust be assembled and stored before the TSX system

skeletOn can be built. The user rnust fill out the supplied EQU cards for

system director in order for it to be tailored to his specifications.

Systern Director EQUATE Cards

NilOO to Ni123

Meaning

Labels NILOO thru NIL23 define PISW 1 thru 24, respectively. XX equals

1 plus the highest numbered PISW bit assigned to a process interrupt. XX
•

equals 0 if no process interrupts are assigned to a level.

o

if,
,.''''fI •.. ..(

--o

.. 42-
231

o
For exarnple, level02 has process interrupts wired so that when sensed,

using IOCe for PISWs, the following bit configurJ.tion wot1ld appear in the

A-register if all bits were on.
\ o 1 2 3 4 5 6 '7 8 9 10 11 12 13 14 15

000 0 1 1 1 0 000 0 0 000

In this exarnple NIL02· would be equated to '1 (ri<jhtlIlost but assigned plus

one). Note that although process interrupts are assigned in groups of L~, the

highest bit position actually used (+1) determines XX.

UseOo to Use23

Labels USEOa tiu"ough USE23 define the level work areas. If a label is equated

o to zero, no work area is included for that level. If it is equated to one, a

•

work area is included on that level. For exarriple, if NULEV is equated to

five, UBEOO, USEOl, USE02, USE03, and USE04 must be equated to one and

USE05 through USE23 are equated to zero.

Use 014 is used to org out the XIots for level 14-23 if it is set to zero.

Nroo to NB23

Labels NBOO through NB23 are equated to the rightmost bit plus one that is

assigned to an ILSW for a level. For exarnple, if level 02 has a proc~ss interrupt

group 1 and two input/output devices assigned the following bits would appear

in the A-register if all bits were on (when sensed by the IOee for ILSW) .

.:.,:;.

'232

... 43;..
\t,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

In this example, NE02 wouid be equated to 3. If there are no bits on a level"

the label must be equated to· zero.

NULEV EQU 1. throuqh 24

NUQUE EQU XXX

NITP1 EQU 1 to 16

NITP2 EQU 1 to 16

NLWSl EQU 1 to 14

NLWS2 EQU 1 to 10

VCORE EQU XXXXX

CEASE EQU xxxx:x

Number.of interrupt levels to be compiled
in the systeul director. This value is
1+ the highest numbered 'interrupt leyel
used. If levels 0-9 are, used, the NULEV
isequat8d to 10.

This label defines the number of entries
to be allowed in the QUEUE table. This
nwnber should be large enoUgfi so that
the QUEUE table will not overflow under
nor mal conditions. Three words are-
required for. each entry point ..

Number of CALL COUNT subroutines 0-15.

Number of CALL COUNT subroutines 16-31.

Number of levels for the programmed
interrupts 0-13.

Number of levels for the programme}!
interrupts 14-23.

The starting address of variable core~;
This address must be even.

The number of times the time clock is:
updated before the programmed timers .
are. updated.

0

0

233
-44-

0
TBASE EQU -xxxxx The neqat1ve number put in timer C (word

6) to be counted down for the time clock
base. For example, if the clock is to be
updated each second when the hardware
base is 8 'mil.l.1seconds, TBASE would
be equated to -125.

OPMOl ~QU Oor 1 This label is equated to zero if the user
is to reset the operations monitor, or
equated to one if the operations monitor
is to be reset by ITC when time- sharing
is in proqress.

TIMES EQU o or 1 This la.bel is equated to zero if time-
sharing is not to be used or to one if it
1s to be used.

TIME 1 EQU /XXXX Labels TIMEl and TIME2 are a hexadecimal
equivalent of a double precision number
which specifies the time in milliseconds
that is calculated by the equation TBASE

0
'1lME2 EQU /XXXX * HARDWARE BASE for timer C.

TIMEl is 10000 except when the calculated
time exceeds 65, 535 milliseconds, in which
case two words are required.

For example, if TBASE is -125 and the
hardware base is 8 milliseconds, label
TIMEl NOulf.\ be equated to 10000 and
TIME2 would be equated to IOSE8.

ITCUS EQU o or 1 If this label is equated to zero, the ITC
proQram wUl not be included in the system
director. It it 1s equated to one, the
ITO program wUl be in~luded in the
system director.

BQU This label is equated to the number of
times the pro~ammed clock is to be
updated before time-sharing is terminated .

•

DUMP 1 EQU

IeLLl EQU

ICLL2 EQU

o or 1

/xxxx

/xxxx

-45-

If a zero 1s specified, the routine which
dumps core to disk will not be Included.
If a one is specified, the routine will
be included.

These labels are used to define out of
core interrupt levels. For example,
if the nwnber of levels 1s 12, and the
user has out of core. interrupts on levels
9, 10, and 11, then ICLLl is equated to
(OOFF and ICLL2 1s equated to /FFFF.

gore size of the Sxstem Director

The core size of the system director may be computed using the

following for mula:

Syste.m director:::; 1116 for :WilC, PSC, EAC constants,

and work areas

+ 276 (ITC is included)

+ 95 (EAC dump is required)

+ 111 X number of interrupt

+ 3X nwnber of queue entries

+ 2X number of process interrupts (NILOO through NIL23)

+ 2X number of program interrupts on levels 0 through 13

(NLWS1)

+ 2X number of program interrupts on levels 14-23 (NLWS2)

234

o

o

•

-46-

+ 2X number of 'count routines 0-15 (NIPT1)

+ 2X number of count routines 16l-31 (NIPT2)

+ 271 (TSC 1s included)

+ 64 (if more than 14 levels are used)

+ 7 (if more than 14 levels are used and ITC 1s included)

+ 6 (if more than 14 levels are used and TSC is included)

Users Responsibilities

The user is responsible for defining his configuration correcUy via. the

EQU cards supplied and using his tailored system to do the particular job

required by him.

235

-----~-- ,-----~------- , .. _, .. ,-,.'. __ ... -_

1800 PAPERS

Hybrid Computer Simulates Steel Processes

by

E. L. Keener
Applied Research Laboratory

United States Steel Corporation

Address

Applied Research Laboratory MS44
United States Steel Corporation

Monroeville, Pennsylvania

Phone: 372-1212

Tuesday 8: 30 - 10: OOam

Session T-l.3

Text Pages 6

Graphics Pages 10

o

o

O·
/

•

Hybrid Computer Simulates Steel Processes

by

E. L. Keener
Applied Research Laboratory

United States Steel Corporation

Abstract

237

The Applied Research Laboratory of the U. S. Steel Corporation

has used a hybrid computer to simulate and to model various processes

involved in iron- and steelmaking. The hybrid computer can be an

important tool for engineers, operators, and mathematicians to examine

w.ays to improve production and reduce operating costs of existing

industrial processes, and to evaluate new processes. This paper demon-

strates and illustrates several hybrid computer simulations of steel

processes.

Introduction

What is a hybrid computer and how can it be used? These

two questions have been asked many times. A hybrid computer can be

considered as a universal pilot plant or as a tool to solve problems.

A hybrid computer consists of a general-purpose analog

computer linked to a general-purpose digital computer. Figure 1 is a

line drawing of the hybrid computer system used by U. S. Steel.

Component Operation

Without a detailed discussion of either the digital or

the analog computer, it will suffice to say that the forte of the

digital computer is the solution of algebraic equations and the forte

of the analog computer is the solution of differential equation.

With the hybrid computer, it is possible to partition the problem

238

and fit parts onto either the analog or the digital computer. Thus the best features

of each machine may be used.

The complement of computer equipment is listed in Figure 2. The analog-to

digital converter (Ane) may read and convert up to ten analog voltages into four

digi tal decimal numbers. The ADC is a 10-volt solid·-state converter capable of 6000

conversions per second. A solid state multiplexer selects the desired analog voltage

channel. Upon command all ten channels are read sequentially in less than 500 micro

seconds. It was felt that time skew in the 500 microseconds could be neglected for

the first problems, and therefore track and store amplifiers were not provided in

the interface equipment. However, this time skew can be a source of error in hybrid

computing, and therefore considerable care must be exercised in programming hybrid

problems. Because the converted number is normalized and has a maximum value of

0.9999, normalized scaling should be used on the analog computer. The normalized

scaling makes it easier to scale between computers and eliminates a source of confusion

when transferring data back and forth.

The digital-to-analog converter (DAC) converts and transfers digital data

from the digital computer back to the analog computer. The DAC selects the proper

connection on a voltage divider to give the desired transformation ratio across the

divider. The DAC is a potentiometer and correction for the potentiometer loading

is made in the digital program. The value is corrected for a 1 megohm load on the

potentiometer. This restriction has not caused any problems to date. The execution

of a DAC operation, including the loading calculation correction, requires 30 milli-

seconds. This link places some restrictions on operating speed and for some problems

it is necessary to slow the analog computer.

The contact sense (CS) gives the digital computer the ability to determine

the status of on/Off conditions of as many as 25 switches. A CS provides a means of

o

changing the digital computer program when an outside event occurs to change the ~

on/Off condition of one of its 25 switchesw

-2-

o

o

•

239

The contact operate (LCO) enables the digital computer to control on/off

condi tiona in the analog computer. The computer opens and closes the awi tches on

cQ1IIIW1d. Currently LCO 0, 1, 2, and 3 are used for mode control of the analog

~qmputer,. This provides digital operation of the four mode-control buttons on the

ana~og computer so that the analog mode control is automated by the digital computer.

TheCS and LCO provide logic elements for use in simulation studies.

The ihterrupt-process branch indicators (PBI) are for program interrogation

of conditions in the analog computer or process area if the computer is connected

to a process. Each process branch indicator refl~cts the on/off condition of a

contact in the process area---if the contact is closed; its associated indicator 1s

on; when the contact opens, the indicator is turned off. Thus as the contacts;in

the analog computer or process open and close, their respective indicators in c'ore

storage are turned off and on.

Process branch indicators can be assigned to signals in the 'process'tha.'t

are not as critical as those requiring the interrupt feature but which must be

frequently interrogated by the computer program. These indicators can be indivi

dually 'scheduled for interrogation by the program at timed intervals.

The interrupt (INT) is a hardware interrupt (in contrast to a PBI, which

is a program or software interrupt) that is immediately recognized and serviced by

the computer when the associated contact closes. The clock (RTC) is also a hardware

interrupt with minimum inte.rrupt time of 0.001 hour. The PBI and INT are usable for

alarms and program jumps, and the clock interrupt is useful for timing so that logging

~ay be done at regular intervals. The INT has the highest priority of the interrupts.

The main hybrid subroutines and their execution times are listed in

Figure 3 .

-3-

---. ---.---.. -.'-.-------~-----

2·40

Simulations

Ammonia Reactor

Figure 4 lists some typical hybrid computer problems that U. S. Steel has

considered. The examp,le of an N-Stage ammonia reactor, referred to earlier, is an

excellent problem of a general type that may be time-divided between analog compute,

transfer data, digital compute, transfer data, and return to analog compute. See

Figure 5.

Figure 6 shows the general layout and flow sheet for an N-stage ammonia

reactor. Reaction rate equations may be written for each reactor. The rate of

reaction is a function of bed temperature, gas flow, ammonia concentration, and

catalyst condition. This nonlinear differential equation is programmed on the analog

computer. The mixing of the gas between each reactor bed is defined by linear alge

braic equations. These equations are programmed for the digital computer. Division

of the problem between computers is clear cut.

By using time sharing, only one reactor bed needs to be programmed on the

analog computer. The initial conditions and parameters of the model are changed for

each bed.

The digital computer in effect "leap frogs" the analog program from reactor

to reactor. Upon starting, the digital computer sets the DAC corresponding to Tl ,

Ql' Z and L for bed one. This operation initiates the analog circuit to simulate

-the first reactor bed. The digital computer then puts the analog computer into the

rCmode, delays 1.5 seconds, and then puts the analog computer into the operate mode.

'The analog computer monitors time, which is equivalent to distance along the reactor,

and when the given particle reaches the end of the bed, the analog is switched into

the hold mode. At this time the digital computer reads and stores the analog volt

ages. The digital takes the output gas conditions from bed one and mixes them with

the by-pass gas to get inlet conditions for bed two.. The analog computer is re

initiated corresponding to these inlet conditions at bed two or, is prepared to solve

-4-

o

c

o

o

•

241

for bed two. The above cycle is repeated tor each bed. Final conversion values

are stored and compared with previous runs. Parameters are varied and the cycle

repeated. Best operating may be determined from all the runs. However, with opti

mizing techniques, such as steepest descend or dynamic programming, the best operating

conditions may be found directly.

Fluidized Bed Reactor

A 2-stage reactor is used to reduce finely divided iron ore. The ore is

partially reduced with a hydrogen-rich fluidizing gas. Residence time and tempera

ture are controlling factors in the operation and must be maintained within close

limits. Both the incoming ore and the reducing gas are preheated to a temperature

in excess of bed operating temperature. The sensible heat of the solid and gas

streams supplies the endothermic heat required for reduction in each stage of the

fluid-bed and the radiation losses from the reactor.

The mathematical model of the fluid-bed reducer is characterized by a set.

of simultaneous algebraic and differential equations. These equations are based on

analysis of heat transfer, mass transfer, and kinetic relationships. In deriving

these equations, special effort is directed toward the utilization of physical

parameters that are readily measured and controlled. The simulation is accomplished

by programming the equations on the hybrid computer.

Evaluation of the mathematical model, conducted by comparing computer simu

lation data with experimental pilot-plant data, was based on available steady-state

information; the simulation results provide good correlationvith the pilot-plant

data. Ultimately the model vill be used to predict the dynamic and steady-state

response characteristics of a commerCial" fiuidized bed reactor. It is antiCipated

that it will provide a means for specifying process parameters, hardware-design

parameters, operating, guide lines" and instrumentation requirements for future

cOJIIJlercial fluidized bed,facilities.

-5-

242

Rolling Model

A mathematical model of the cold-rolling process was developed and programmed

for the analog computer. See Figure 7. Later, when the elastic entry and elastic

o

exit zones were added to-the model, the up-dated model was reprogrammed for the hybrid

computer. With the rolling model, studies of problems associated with the cold-reduction

of steel strip can be conducted using the hybrid computer.

The rolling process is defined by nonlinear, differential equations with

split boundaries. The differential equations are solved by the analog computer.

Boundary conditions are checked, compared and reset by the digital computer; 'thus rapid

iterations to the convergent solution are possible with the hybrid computer. After

the correct solution is found, the time scale of the problem is changed and graphical

records of the solution are made on an X-Y recorder. The digital computer then steps

to the next set of parameters and proceeds to the next solution. Approximately four

hours of hybrid computer time are equivalent to 200 hours of analog time.

Magnetic Taconite Processing

Taconite proceSSing consists of four main steps: 1) mining, 2) crushing,

3) concentrating, and 4) agglomerating. See ,Figure 8. The simulation on the hybrid

computer is for the crushing and concentrating. Figures 9 and 10 are the crusher

and concentrator flow sheets. The simulation is divided so that the crusher is

simulated by the digital computer and the concentrator is programmed on the analog

computer, the combination operating together t~form a hybrid simulation. The digital

simulation bf the crusher determines the ore characteristics leaving the crushing for

various train schedules. Effects on the concentrator of any changes in ore characteris

tics are readily determined from the simulation. Sensitivity and control study are

possible with the simulation. Eventually the digital computer may be programmed to

check out control algorithms for the actual plant.

-6-

~~~~~- ---~--~~--.. -.,.-.. -.---.. -----

0" 



ANALOG 
COMPUTER 

PACE 
231R 

r-- --- ...... - - - - .-.- ----, 
I : 
I r------, I 
I 1 I 
I I· I I 
I : ~ ADO I ~ I 
I I I I 
I I I DIGITAL 

t-----I-~ '-.. COMPUTER I 
I I - CONTROL -- I I 

~ I 1· - I IBM I 

I 1620 

I I I 
~! I DAO I;. I 

I ii I LINKAGE I : I L _______ J 

IBM 1710 

I 
I 

L~ ___ -----------~ 

u.s. STEEL HYBRID COMPUTER SYSTEM 

FIGURE I 



ANALOG DIGITAL 

200 AMPLIFIERS 1820 MODE 2 

500 POTENTIOMETERS 80 K 

40 SERVO MULTIPLIERS DISK 

9 QUARTER-SQUARE CARD READER 

MUL TIPLIERS CARD PUNCH 

18 LIMITERS 
TYPEWRITER 

20 COMPARATORS 

10 DIGIT AL DIODE 
FUNCTION GENERATORS 

I I/O DESK (ADIOS) 

LINKAGE 

'0. ADC (ANALOG-DIGITAL CONVERTERS) 

10 DAC (DIGITAL-ANALOG CONVERTERS) 

25 CS (CON'TACT SENSE) 

28 Leo (LATCHING CONTACT OPERATE) 

4 PBI (PROCESS BRANCH INDICATORS) 

4 INT (HARDWARE INTERRUPTS) 

CLOCK (TIMED IN.TERRUPT) 

COMPLEMENT OF EQUIPMENT 

I u..~j _________ F_IG_U_R_E_2 ________ --' 



ROUTINES 

CALL HYRAI 

IF HYIC§ 

CALL HYNRPT 

CALL HYSTPT 

CALL HYSLCtD 

CALL HYSRTC 

CALL HYRTC 

CALL HYPTST 

CALL HYIC 

CALL HYHcpLD 

CALL HYf>PRT 

OPERATING TIME 

IS MILLI SECONDS. 

15 MILLISECONDS 

15 MILLI SECONDS 

30 MILLISECONDS/CHANNEL 

IS MILLISECONDS ICHANNEL 

HYBRID FORTRAN CALLS 

FIGURE 3 



I. AMMONIA REACTOR 

2. HEAT FLOW 

A.BLAST FURNACE STOVE 

B. INGOT COOLING a SOLIDIFICATION 

3. MODEL - ROLLING MILL 

4. FLUIDIZED BED REACTOR 

5. PROCESS OR· SIGNAL IDENTIFICATION 

(FOURIER TRANSFORM) 

6. TANK TRUCK SIMULATION 

(ROAD PROFILE GENERATOR) 

7. CRUSHING PLANT SIMULATION 

8. TRANSPORT DELAY SIMULATION 

9. FUNCTION GENERATION 

HYBRID PROBLEMS 

FIGURE 4 

246 



READ 
INPUT 
DATA 

SET 
DAC 

ANALOG 
COMPUTE 

READ 
ADC 

DIGITAL 
COMPUTE 

PUNCH 

EXIT 

FIGURE 5 

247 



T. 

Z. 

AMMONIA REACTOR 

..... - .... 1i" 
t----....-i 

~_ .... Z., 
Q • 

N-I 
----... TCN- Of 

QN-t ZCN-O' 

. w- POUNDS GAS FLOW I HR 

.T- TEMPERATURE 

.Q- % GAS FLOW 

z- ~ AMMONIA 

FIND OPERATING CONDITIONS FOR MAXIMUM ZN' 

FIGURE 6 

248 

N 



1&1 
a: 
::» 
en 
en 
III 
0:: 
a. 

ROLLING MILL 

EXIT ENTRY 

FIGURE 7 

249 



._-----" --~--

250 

r~----------------~----~---I 
I 
I 
I • 
I 

CRUSHER 

I----~--~~--~~~~~--

MINING PIT 
I 
I 
I 

r----------..J 
CONCENTRATOR FEED STORAGE 

f t 

HAULAGE 

'i' 

ORE BLENDING YARD 

;i', 
DASHED LINE INDICATES \ 

I THE SYSTEM INCLUDED '~J'" I () ( ) ( 2 ( ) I N THE 81MULAT ION I 
L ___ ~ _____________________________________ ~ 

CONCENTRATOR 

AGGLOMERATOR 

PRODUCT 

FIG.8 TACONITE PROCESSING 

AGGLOMERATOR 
STORAGE 



OVERSIZE 

ROD· MILL FEED 

FIG. 9 

CAR DUMP 

I st - STAGE 
CRUSHER 

3 rd-STAGE (6) 
CRUSHERS 

UNDERSIZE 

BIN 2 

4 th - STAGE (6) 
CRUSHERS 

UNDERSIZE 

CRUSHER 

251 

ORE BLENDING 
YARD 



--------- ----- ----------_ .. - ---.-~~ .. ~~~ .. ~~----, 

I'ItIIClUlHlD 
Oil. CONVEYOR 

ROI MILL 

SCREEN ___ 
(I' REQUIRED) 

'ILTER 

CYCLONES 

t.____ 1.-- ...... -- -

DESLIMING 
HYDROSEPARATOR, 

-

252 

.., 
I 
I ,_ 
I 
I 
I 
I 
I 
I 
I 
I FINISHERS I I I 

L_i_.J 
I __ J . -.s---11 --..i. ------------.TAILS ....111(-- - - -

CONCENTRATE 

TYPICAL CONCENTRATOR FLOW SHEET 

FIGURE 10 



254 

The present 1130 Commercial Subroutine Package had its origins in 
the FORCOM package which was created for the 1620 system at an IBM 
branch office in Detroit, Michigan~ in the summer of 1961. The 
original 1620 FORCOM package consisted of subroutines which provided 
a basic character handling capability for use with 1620 FORTRAN. In 
subsequent years the package was expanded to operate with later versions 
of the FORTRAN compiler and to operate under control of the 1620 Disk 
Monitor system. 

In the fall of 1965, it was decided to adopt as many as possible of the 
1620 routines for \lse on the 1130 to provide a basic commercial data 
proces sing capability. This work resulted in the announcement of 
FORCOM- 1130, a type III program which became part of the 1130 pro
gram library in March of 1966. This program was subsequently up
graded to a type II programming announcement and re-named "The 
1130 Commercial Subroutine' Package" in August of 1966. The type III 
1130 FORCOM package was subsequently withdrawn on October 18, at 
which time 390 users had requested this package. The 1130 Commercial 
Subroutine Package had already accumulated 198 registered users by the 
first week in October. 

The present 1130 Commercial Subroutine Package includes eight sub
routines to provide alphabetic compare, editing, zone punch manipula
tion, stacker select and related operations useful in commercial applica
tions. The present package is independent of input/output considerations, 
and all of the subroutines except the stacker select subroutine are written 
in FORTRAN to permit easy modification. The eight subroutines 
currently in the package are: 

MOVE 

EDIT 
GET 

PUT 

NCOMP 

NZONE 

FILL 

STACK 

To move a variable length, alphameric 
data field 
To edit a data field for subsequent printing 
To extract and float a data field from an 
input area 
To unfloat and place a data field in an output 
area 
To compare two variable length, alpha
meric data fields and branch on high, low 
or equal 
To test or to modify a zone punch on a 
single card column 
To fill a variable length data field with a 
single specified character 
To cause the next card to be selected to the 
alternate stacker- on the 1442 card read 
punch • 

.... 1'-' 

• 

o 

• 



o 

o 

E'"} 
'V 

1130 PROdRAMS 

1130 Commercial Subroutine Package 

R. K. Louden 
IBM 

Monterey and Cottle Roads 
San Jose, California 

Telephone: 227-7100, Ext. 2075 

November 29, 1966 

~-~-----~--------~--------------------.-.--.-----

253 

-------------_._--_.--



o 

o 

The 1130 Commercial Subroutine Package is designed to run upon 
an IBM 1130 system with B192 words of core storage, with card 
input and output and with or without disk storage. 

All of the character manipulation performed in this package is 
based upon the concept that the bit pattern used to represent a 
single character in Al format is the same bit pattern used to 
represent some specific binary integer. This binary integer, 
written as a decimal number, can be considered to be the decimal 
equivalent of the character code in Al format. For example, the 
decimal equivalent of the letter A is - 16064, the decim.al equivalent 
of the digit 0 is - 4032, and the decimal equivalent of a dollar sign is 
23360. The concept of a decimal equivalent for each character makes 
it possible to manipulate characters as though they, were integer 
variables within FOR TRAN programs. 

255 

One facility which is required in commercial applications is the ability 
to read unformatted records. FORTRAN does not provide this ability; 
in FORTRAN it is neces sary to specify a format statement which 
requires a knowledge of the format of the record to be read. In the 
commercial subroutine package, this problem is avoided by reading 
all i~put records in Al format. For example, an BO column card would 
ordiDarily be read by a format of BOAI. Each character from each card 
column occupies a separate core storage word, and FOR TRAN subroutires 
using the decimal equivalents of the characters can be used to extract 
data fields from the card and convert the data fields to floating point 
numbers as required for floating point calculations. This technique 
makes it possible to read a card, test one or more card columns to 
determine the format of the card, and only then proceed to pick up 
those data fields from the card which are required for subsequent 
processing. The GET subroutine is used to pick up and float data fields 
from character strings in Al format; the PUT subroutine is used to 
unfloat and place calculated results inside character strings. 

The concept of a decimal equivalent for any character in Al format makes 
it easy to write a subroutine to compare character strings and branch on 
some predetermined collating sequence. As it turns out, the decimal 
equivalent for the letter A is the lowest number (- 16064) of any decimal 
equivalent in the 1130 character set. Since the decimal equivalent codes 
are in a sequence, a subroutine containing aFaR TRAN IF statement can 
be used to compare one character string against another, one character 
at a time, and branch if a high or low condition occurs. This is the 
function of the NCOMP subroutine. 



256 

Another facility needed for commercial applications is the ability to 0 
both sense and rnanipulate zone punches. It has long been a comm.on 
practice in commercial applications to identify negative data fields 
by an 11 overpunch on the low order digit; this convention is followed, 
in the commercial subroutine package. The manipulation of zone 
punches is based upon the fact that the zone of a character may be 
altered without affecting the other punche s which constitute the 
character by simply adding a multiple of 4096 to the decimal equivalent 
code of the character. For example, the a.ddition of 4096 to the decimal 
equivalent code for the letter A produces the decimal equivalent code for 
the letter J. The letter A, of course, is represented on a punched card 
by a 12 zoned 1 punch, and the letter J is represented by an 11 zoned 
1 punch. Through similar manipulations the NZONE su1;>routine is able 
to identify which of five classes of zone punches appear on any character 
and to change the zone of any character to any specified zoning. 

Certain editing functions are also required to present commercial 
results in an acceptable format upon the printed page. For example, 
it may be desirable to suppress leading zeros in calculated results. If 
checks are to be written, it is frequently desirable to replace any lead
ing zeros with asterisks to prevent additional high order digits from 
being written upon the check after the check is printed. This technique 
is known as asterisk check protection. A similar effect may be obtained 
through the use of a floating dollar sign which is positioned immediately C, 
to the left of the high order non- zero digit in the result field. It may 
also be desirable to merge strings of calculated numbers with arbitrary 
strings of characters, perhaps to produce social security numbers, 
alphameric inventory part numbers and similar results. All of these 
capabilities are provided by the EDIT subroutine. 

The EDIT subroutine uses a mask field which contains special characters 
to be merged in with the field to be edited. The special characters are 
used to indicate the suppression of leading zeros, asterisk check protec
tion, floating dollar sign and other special characters to be merged with 
the data field. The EDIT subroutine also makes it possible to indicate 
a negative field by a minus sign to the right of the low 0 rder digit, or 
to indicate a credit field by the letters CR to the right of the low order 
digit. Although the logic of the EDIT subroutine is complex, the sub
routine operates quite simply by identifying the decimal equivalents of the 
characters involved and manipulating the characters accordingly. 

Two minor subroutines, MOVE and FILL, are also provided to permit the 
easy transmission of character strings from one array to another. 
Finally, a stacker select subroutine, STACK, is provided to select a 
card into the alternate stacker on the 1442 card read punch. The STACK 
subroutine is written in assembly language because it refers to a hard- 0, 
ware function which cannot be described in FOR TRAN. 



o 

o 

o 

257 

Character strings to be manipulated by these subroutines are always stored in 
memory as singly dimensioned arrays in AI format. Control statements specify ing 
one word intege"s and extended precision should be used with these programs to 
minimize the amount of memory devoted to the character arrays, while at the 
same time maximizing the precision to be obtained from the floating point 
calculations. 

A further convention in zone punch manipulation is required to conform to the 
1130 character set. Since a 12 zoned 0 is not a valid character in the 1130 
character set, this combination is converted to a zero by the NZONEsubroutine. 
Similarly, an II zoned 0 is replace by this subroutine with the character code 
for a minus sign. 

It seems surprising to many people that subroutines can be written in FORTRAN to 
create floating point numbers from character strings and vice versa, as is done by 
the GET and PUT subroutines in the commercial subroutine package. These sub
routines are made possible by the fact that there exists a simple equation relating 
each binary digit to its decimal equivalent code in AI format. The equation is: 

Binary digit = (decimal equivalent code + 4032)/256 

The GET subroutine uses the above equation to convert decimal equivalent codes 
for integers into binary integers, and then collects these binary integers times 
suitable powers of ten into floating point variables. The PUT subroutine essentially 
performs the same operation in reverse. 

The 1130 commercial subroutine package does not pretend to provide a complete 
commercial programming, language for the 1130. Many requests have been received 
to expand the capabilities of this package to provide additional functions. These 
requests have fallen primarily into the categories of extended precision arithmetic, 
overlapped input/output and the ability to manipulate packed A2 format as well as 
the unpacked AI format currently utilized by the package. The feasibility of pro
viding these additional capabilities to the package is currently being evaluated, 
but there is no commitment at this time to provide these extensions. 

In the area of extended precision arithmetic, a study is currently underwuy to deter
mine the practicality of providing variabf.e length add, subtract, multiply and divide 
subroutines to operate directly upon strings of decimal integers in AI format. These 
subroutines would theoretically possess the ability to perform arithmetic computations 
on fields of any specified lengths while being completely free from floating point 
round-off errors which remain a significant problem in commercial operations 
involving large dollar amounts which must be accurate to the penny. An obvious 
problem with this approach Ii es in the long execution 



-----------~--~ .• ~ .... -~-.'''., ... ,,"' "-~~~-

times which may result from multiply and divide operations upon long 
character string s. 

To provide overlapped input/output operation, we are currently 
investigating the feasibility of calling the overlapped input/output sub
routines available for 1130 assembly language programs directly from 
FOR TRAN programs. If feasible, this capability would make available 
overlapped input and output operations at the FOR TRAN level. 

The ability to manipulate packed characters in A2 format could con
ceivably be provided by subroutines to convert between Al and A2 
format at high speed. The ability to store data in A2 format is 
desirable since it reduces considerably the amount of disk storage 
required to maintain data files in, for example, inventory control 
applications. 

258 

Although work to determine the feasibility of extending the power of the 
1130 comm.ercial subroutine package is proceedi~g along the lines 
described above, it must be emphasized that this work represents a 
feasibility 'study on the part of the author and does not, at this time, 
represent any commitment whatsoever upon the part of the IBM Corpora
tion to provide these extended capabilities. 

A detailed description of the calling sequences and functions of the 
present 1130 commercial subroutine package may be obtained from the 
1130 Comm.ercial Subroutine Package Program Reference Manual 
(IBM Publication No. Il30-SE-25X). 

R. K. Louden 

o 

o 

o 



o 

• 

University Education Papers 
Computer Requirements for the Undergraduate College 

Robert C. Bushnell 
Oberlin College 

Oberlin, Ohio 44074 
Tuesday, Nov. 29, 1966 - 8:30 A.M. 

Five Pages 
Session T-l.6 

Phone: (216) 774-1221, ext.3l60 

259 



COMPUTER REQUIREMENTS FOR THE UNDERGRADUATE COLLEGE 
Robert C. Bushnell, Oberlin College 

There is little doubt that practice and experience in the use of 
digital computers and a knowledge of digital computer applications and 
methods in his field of major interest is a necessity for the under
graduate student:fn engineering or technology and physical or social 
science. Given the trend of present research it will not be many years 
before the same statement can be made of students in languages, history, 
art and music. Therefore the educational institution which would furnish 
adequate preparation to its students must necessarily include computation 
in its program. Most educators recognize this but not being computer men, 
do not understand that all computers are not equal, and that having one 
is not synonymous with using one. 

In particular I believe there is insufficient awareness among educators, 
and perhaps even among same computer people, of the advantages, in an 
actual use sense, of more-than-minimum core, line printers, disk storage 
and monitor or operating systems. This paper will report the experience 
of Oberlin College in two academic years, one in which we possessed only 
a 20K 1620 and a 1622, and the second in which this equipment was aug
mented by a 1311, a 1443 and a 1623 with additional 20 K storage. 

On December 1, 1965 Oberlin began uoe of the basic 1620 computer with 
card read-punch. Series of lectures on both SPS and Fortran had been 
presented and a considerable number of library programs obtained. Use 
built quickly: five hours the first week, 7 the next, 11 the third, 14 
the next (skipping Christmas vacation), 17 the fifth, then 25, 29 hours 
per week. Then the build-up stopped, hours per week for subsequent 
weeks are 17, 23, 11, 19, 25, 15, 17, etc.; a plateau clearly had been 
reached. An-average over the 21 weeks of the academic year for which 
time use was recorded shows that the computer was used 19 hours per week. 
The cost of the computer for that five month period was, (@ $1,868) 
$9,340, or the cost per hour $23.35, 

On September 7, 1965, the college added the additional equipment men
tioned: additional core storage, 1443 and 1311. During that academic 
year, from September 7 through June 2, 3,623 hours were logged. If we de
d~t immediately the 785 hours logged against the computer center it-
sel , which includes all the hands-on experience for the lecture courses 
offered by the center itself, and if we deduct the 167 hours logged for 
non-academic purposes, we still are left with 2,671 hours run on academic 
application oriented work, or approximately 297 hours per month of academ
ically oriented work. 1620 machine rental for this period was $4,560 per 
month, yielding a cost of $15.35 per productive hour. I emphasize that 
this conservative calculation has charged no burden to any non-academic 
purpose or administrative purpose. In other words, adding equipment had 

260 

o 

o 



o 

o 

• 

-2-

the effect of reducing the per hour charge. In marginal, or incremental 
terms, the. change was even more striking. For an additional outlay of 
$2,225 per month, Oberlin College obtained an academic user increase of 
215.3 hours per month at a marginal or incremental cost of only $10.35 
per hour. 

This citing of incremental cost is not pedantry but the kernel of the 
problem in computing in the private undergraduate college and a cause of 
deep concern to some of us who believe that the private undergraduate 
college has a unique and necessary place in the total pattern of educa
tion in the United States. For low average computer costs per hour of 
time used can only be attained for a high total cost, a cost which is 
beyond the capability of most such institutions. Oberlin is probably 
in the best financial position of any of these institutions and yet it 
is only with difficulty that we have been able to finance such a program. 
In such circumstances it is both natural and proper that we turn to gov
ernmental sources on the grounds that investment in higher education has 
a demonstrable effect on the level of future national output. Unfortunate
ly, there are few programs applicable to such institutions. In 1965, 
Oberlin applied to the National Science Foundation for funds under the 
Undergraduate Instructional Scientific Equipment program and was fortunate 
enough to receive $40,000, nevertheless a fraction of what we requested. 
When we reapplied in 1966 for further funds, our request was disallowed. 
Privately, we were informed that $40,000 was much larger than any similar 
grants, and that total funds were limited. However, we somehow gained 
the impression that many members of the panel felt that our proposal was 
too ambitious and not necessary for an institution involved primarily 'in 
undergraduate instruction. It is one of the purposes of this paper to try 
to correct that attitude. 

Before doing so, however, I would like to point out the differences in 
situation between the universities and the colleges and try to maintain 
that it would be proper and economically effective for NSF to allocate 
more of its total computer funds to undergraduate use. Presently, NSF 
will allocate millions of dollars to major institutions' for computing, 
but as we have found, only $40,000 to an undergraduate college. As a 
case in point, Princeton University has an accelerator and a plasma physics 
lab and a graduate school of engineering. Research is intensive and 
heavily supported by NASA, AEA, DOD and other governmental agencies. Com
puting is a requirement of such work; total usage is high; hourly cost of 
computing is consequently low, and the burden on the unversity for the 
support of undergraduate computing on the 7094, 7044 and soon, the 360/67 
is nominal and bearable. Princeton undergraduates emerge from their 
undergraduate education with good experience in computing. Oberlin, on 
the other hand, has almost no such contracts, the college Illust bear the 
entire cost of providing computing in the academic program except, as it 



262 

-3-

is directly aided by NSF or other grants. The undergraduate popu~.ation 0 
of the two institlltions are approximately equal, yet Oberlin annually 
produces more entrants to graduate schools than does Princeton, and in 
historical terms only 10 institutions of any nature vr size whatsoever 
have in absolute total terms produced more graduates who later have at-
tained the Ph.D. degree in science than has Oberlin. 

Oberlin trustees do not wish this situation to change. We believe that 
should we not invest heavily in computing facilities this situation will 
change. In point of fact, the awareness that the lack of sufficient 
computing facilities was impairing our ability to attract faculty and 
students alike in the physical sciences was the greatest single incen
tive in our present program of computing. In five years, ·the same will 
definitely be true for the social sciences and I don't think .1 am going 
too far out on a limb to say that five years after that the same also 
will be true of philological and historical studies. (The Chairman of 
the Theory Department in the Oberlin Conservatory of(Mus~c believes the 
same will be true in his department in two years.) Oberlin fortunately 
will have sufficient computing facilities, but what about other not so' 
fortunate institutions of equal intellectual merit? It certainly seems 
to me that the case must be made for governmental support for adequate 
as distinct from minimal computing facilities for undergraduate colleges. 
Probably most institutions can scrape up $100,000 or so. Another $100,000 
to these institutions from NSF or similar sources could work toward an 
adequate facility. For only a million dollars 10 of these institutions 
each with at least an enrollment of 2,500 students could be given proper 
computational training and support in their undergraduate curricula. ~ 
Surely this is as important a use of seed money as a grant of a million 
to a major institution. 

What then do we mean by an adequate facility for a computing center? 
The answer can only be given in terms of user service. If the library 
had only one chained copy of each book and students had to wait in line 
to use that copy, though that book be the most valuable in the world 
students would find other ways to accomplish their purpose. Too many 
computing centers are in fact like that library which would never be. 
I would define "adequate user service" as service that would allow each 
user to obtain the output of his compilation or debugging run in under 
10 minutes. I would define "an adequate computing facility"as one 
which provided such user with work space and technical advice such that, 
under normal circumstances, he is able to work persistently and con
tinuously on his program. For as we in computing know, programming is 
20% inspiration and 80% debugging. You and I probably have our per
centaees down to about 50-50; that's What makes us expert, but to the 
tyro, the most alarming thing is that the automatic electronic computer 
seems to do maddeningly little automatically. Thus, if we are to in
itiate the casual user, we must make the experience as pleasant as pos
sible, lest we do him the disservice of making him reject computing. 

.. -----.-.• --~--.---.-----

o 



o 

o 

o 

-4-

After all, most students should not be interesLed in the computer per 
se but in the computer, as a tool, and a tool to be useful must be 
~able. If this seems utopi~and I hope it does not, let me point 
out that this is the way things will be in research and industry in
side of five years to the extent that it is not already, and that as 
educators we must be a great deal more interested in the future with 
which our students will function than in the present in which we exist. 
Second, more practically, it is not utopian because we have done it at 
Oberlin. 

What does it take to make an adequate computer center -- I would identify 
three ingredients: (1) adequate hardware, (2) fast turn-around software, 
and (3) user interest. For hardware, we defined adequate as a 40K 1620 
with 1622, 1311, and 1443. The 1311 is required for the operation of 
Monitor I, a good job-stream processor. The 1443 is required to provide 
unbound machine-man communications. Finally, if Fortran is to be the 
principal user language because of its ease of use, then one must allow 
for its sloppy use of storage by providing storage sufficient that the 
user does not have to concern himself continuously with running out of 
core. 

For software, three needs were seen. First we determined that the 
Fortran II compiler was too slow to provide the required turn-around. 
Therefore, we implemented the Forgo compiler for 1620 disk as developed 
by the University of Wisconsin (1620.2.0.043) and modified by us for 
use with the 1443 printer. This compiler allows us to process the 
typical learner's job in about 20 seconds. Our second major software 
implementation was the provision for an interrupt system. Our goal 
here was simultaneously to provide service both to users with long jobs 
and to tyro users (or experienced user writing a new program) who needed 
repeated submissions of a compilation or short test. What we developed 
was a sense switch 2 test in the monitor printer output routine. Every 
user whose program may run over 10 minutes is required to use a 200 core 
position subprogram in his program which furnishes the proper linkages 
so that when switch two is turned up, his program, all core, all work 
cylinders on disk, etc. is stored away elsewhere on the disk and the 
next, supposedly short job, is read in. At the conclusion of the short 
jobs, execution of a standard job called RESTORE resumes operation of 
the interrupted program. By such means, we retain our ability to service 
short jobs on call while still devoting all otherwise unused time to the 
processing of long jobs. 

Our third major software project was to provide a printer plotting routine 
with the same parameters as the UMPLOT routine for the 7094. This is a 
self scaling set of programs which makes user plotting in Fortran foolishly 
simple. 

Last and most important, the third ingredient, users, were dumped at oar 
door by the Mathematics Department, which made Fortran programming a two
week item in the Introductory Calculus menu. 



-5-

I would be lying and belying hard work if I asserted that from that 
point on the computer ran itself, but I can say that with these 
facilities we had all we could do just to keep up with the users -
there was no need to sell computing, just to service the demand. 
Twenty students working a total of 170 hours per week and the director 
were the total staff in that first year of Monitor operation. In that 
space these students found t~e to operate, answer user questions, and 
still provide over 100 canned programs and disk stored subprograms 
complete with published user instructions. 

To those educat.o~ who assert that d computer is a computer and that 
their institution has one, the moral of the foregoing should be obvious. 
All computers are not alike; a machine capable of receiving the software 
support necessary to insure easy user access and quick turn-around is 
the ~ gua ~ of a successful computer center and the justification 
of a computer as a tool, not as a toy. 

264 



o 

o 

• 

COMMON 

New Orleans, Louisiana 

University Education Papers 

Library Circulation 

Guy George Jr. 
University of Southwestern Louisiana 

Box 382 U.S.L. 
Lafayette, Louisiana 70501 

CE47321 Ext 274 

Tl.6 
Tuesday 

November 29, 1966 
8:30-10:00 A.M. 

Text 4 
Graphics 2 

265 



LIBCIR 

A Library Circulation Program 

The University of Southwestern Louisiana's library installed an 
IBM 357 to accelerate the process of circulation. In this process, 
each borrower has a plastic ID card with a borrower number punched on 
it. Each book has a master card with information such as call number 
etc. A borrower selects his book from open shelves and presents the 
book with his ID card to the circulation desk. The ID card and the 
master card are placed in the IBM 357 which causes a charge card and a 
return card to be punched on an IBM 026. The library retains the charge 
card while the return card and master card are placed in the book. When 
a book is returned, the return card is removed and the book is 
placed on the shelves. 

The processing of these charge cards and return cards can solve 
three basic problems of library circulation: 

1. Update the outstanding file 
2. Purge the outstanding file 
3. Check file for overdue books 

In solving these problems, the library can be supplied with an accurate 
list of books which are outstanding on a daily basis or more frequently 
if necessary. Also, overdue notices can be given to the library manage
ment to be handled as they desire. 

LIBCIR is an interpretive system written for the IBM 1620 to 
solve the three basic problems of library circulation. The hardware 
must include the following: 40K memory, automatic divide, indirect 
addressing, card read, card punch, disc drive, and a on-line printer. 
One disc pack is necessary for maintaining the file and for storing 
the programs which make up the interpretive system. 

Before discussing the programs which make up the interpretive system, 
it is necessary to explain the method of storage for charge card images. 
The charge card and return card are identical, and contain a combination 
of the date, the information from the ID card, and the information 
from the master card. These cards have the following format: 

col 1-6 Due Date 
col 7 Blank 
col 8-13 Item 
col 14-25 Class 
col 26-33 Cutter 
col 34-35 Year 
col 36-38 Volume 
col 39-40 Copy 
col 41-43 Purchase Number 
col 44-53 Borrower Number 

1 

--- ----------- --------------------------------------------

266 

c 

0 



o 
The files for listing purposes are to be in collating sequence for 
columns 14 to 33 which makes up the call number for the book. These 
columns contain a mixture of alpha, numeric, and special characters. 
Each image is assigned one disc sector which includes the information 
from the charge card in a packed form along with a counter for the number 
of times the book has been overdue. This requires a total of 85 digits 
per sector. The other positions are left vaccant for possible 
additional information. 

The disc is divided into two distinct portions. Cylinders 0 to 
97 are reserved for the charge card file. Cylinders 98 and 99 are 
used for storing the programs, and a table of reference information about 
the contents of cylinders 0 to 97. The system is designed with expansion 
in mind. There is ample room on cylinders 98 and 99 to include many 
more routines. 

The book images are maintained in the desired order at all times. 
A cylinder will be utilized at a minimum 25% of its storage capacity. 
The total number of books is divided by 50 and if this does not require 
more than 98 cylinders, this minimum capacity is utilized. If, however, 
more than 98 cylinders are required, the efficiency of storage is 
increased and the number of images per cylinder is redetermined. There 
is a maximum storage allowed of 190 images per cylinder. With the idea 
of non maximum utilization of storage, the file can be maintained in 
order at all times. As long as there are vaccant sectors within a 
cylinder, another charge card can simply be inserted in the file in the 
correct location. This method was chosen to avoid having to preform 
a sort other than for the first day of operation. 

With the file open for ready insertion of additional books or 
easy purging, certain amounts of directional information must be supplied. 
The first sector of each cylinder 0 to 97 (if being utilized at all) 
contains the following information: 

1. The last sector in the cylinder being used 
2. The double digit alpha code fot the first 20 

locations of the call number for the first image 
stored on the cylinder 

3. The double digit alpha code for the first 20 
locations of the call number for the last image 
stored on the cylinder 

To further index the images stored in cylinders 0 to 97, a 
reference table is maintained by each program and stored in the first 
8 sectors of cylinder 98. This table consists of 100 entries. Entries 
o to 97 will be composed of two fields. The first is a six digit 
field which can have one of three values: 

1. 999999 if the cylinder was not required for the 
storage of the images 

2. aOOOOO if the cylinder was used but all of its 
images have been deleted through processing 

3. XXXXXX where the X's represent the first 6 digits 
of the double.digit coding for the call number 
of the first image on a cylinder 

2 



_ ... _--_.-----_._-------

The second field is two digits and ranges from 50 to 97 and indicates 
the cylinder number .for the six digit field mentioned above. With 
this table the programs can quickly locate the cylinder for an entry. 
Entry 98 is a field of 8 nines and acts as a buffer to initial 
searches. Entry 99 is a five digit field which is the cu~rent number 
of images being stored. 

With the method of storing images in mind, the interpretive system 
will be discussed briefly. The heart of any interpretive system will 
be a supervisory program to direct the calling of the correct stored 
programs. LIBCIR's supervisor accepts the following control cards: 

$EDIT CHARGE (must include the date) 
$EDIT DISCHARGE 
$LOAD INITIAL 
$CHARGE 
$DISCHARGE 
$LIST 
$DISTRIBUTE 
$OVERDUE 
$END OF JOB 

(must include the date) 
(must include the date) 

(must include the date) 

If the date is necessary, it is punched in columns 17 to 24 as .<x-xx-xx 
(month, day, and year). The s~pervisory program has a list of acceptable 
control cards and the disc. 'control fields which indicate where the 
desired routine can be found. 

EDIT CHARGE This routine will check all data which is about to be 
added-ro-the file to see if it contains the correct date and the correct 
types of information. 

EDIT DISCHARGE All discharge cards are verified for the correct 
types-or-information. The dates are not checked. 

LOAD INITIAL This program is 'designed to set up the original 
layou~ the file storage. The charge cards for the first day are read 
and written onto disc. A tag is built from the first 20 digits of the 
call number and a sector address for the st0:Ded image. This tag is 
sorted into order before the next card _is processed. A binary search 
and insertion sort is employed to conserve time. With the sorted tag 
file, 50 images are written per cylinder; the first sector of each 
cylinder is created; and the table entry is made for each cylinder. 
This prepares the file for all future processing. 

CHARGE The charge cards are processed for a regular day. Once 

268 

a card is read, the table is scanned to determine which cylinder the image 
might be placed on. The first sector of this cylinder is checked to see 
if it can in fact be placed on this cylinder. If not it checks the 
previous cylinders until the image can be stored. Once the correct 
cylinder is located, it is read and a scan is made for the correct 
location for inserting an image. An opening is made by writing the entries 
before the insertion on disc, then the new entry is written, and then 
the entries following the insertion are written onto diRC. The first 
sector of the cylinder is updated, and the table entry is updated. 

3 

! , C·-"'" 

o 



o 

o 

• 

DISCHARGE This works in the same fashion as the CHARGE, only the 
cards read are return card$. When the entry is located, the entry is 
deleted through one transmitt record. The first .sector is updated as 
well as the table entry for the cylinder involved. This routine will 
automatically call for the LIST routine to produce the list of books 
left after the purge. It will also automatically cause the books to 
be redistributed evenly for all cylinders. This is done by.a call 
placed for the DISTRIBUTE routine. 

LIST If a copy of the file is desired, this program will produce 
a listing of the outstabding file. This is the routine which is called 
by DISCHARGE to give a list for the day. Since it exists as an option, 
it is possible to obtain a list at any time. 

DISTRIBUTE This routine is used to distribute the books evenly to 
the cylinders needed, to prepare all first sectors, and to produce a 
revised table. Once the CHARGE and DISCHARGE options have been 
completed, there will not be a evenly distributed set of images. 
Since the routines will function faster with an even distribution, the 
DISTRIBUTE can be used to produce the rearrangement of the images. 

In operation, it writes all images as far back on the disc as 
possible. Once this has been done, the number of books per cylinder is 
determined by using the last entry in the table. The images are then 
placed in the cylinders as desired. The first sectors are adjusted, 
and a revised table is produced. 

This program is automatically called after DISCHARGE's list. 
If CHARGE should not be able to add an image to a cylinder that should 
contain the image, a message is given to distribute and begin with 
a new CHARGE. 

OVERDUE A list is produced of all books which are past due 
according to the date given on the control card. Any books with more 
than two overdue notices will be indicated by an asterisk. As the 
list is made, a card is also punched for each overdue book. This card 
is used on the collator to select the borrower's address card. This 
matching can be used to produce the overdue notice. 

END OF JOB This will simply type out a message which indicates, 
the end of the job. 

As each option is processed, the control card is typed on the 
console typewriter. For any options which have data cards (charge or 
return), the last card should have 80 nines punched in it. Thi's signals 
to the program that there are no more cards to process. The supervismry 
program can be easily modified to include mo,re options. 

Although this by no means solves all problems involved with library 
circulation, it does solve the three basic problems with a small 
computing system. It also suggests a very useful method of file storage 
and processing which might be applied to other types of inventories . 

4 

269 



221·0079 
P,inted in U.S.A. 

- ----.-----.-----"--~ ...... ---........ ~-"-~' ....... " ................. ~ .... .... 

Each bor
rower has 
plastic 10 
c r 

Return 
Card 

Book 
to 

Borrower 

CIRCULATION CONTROL 

Borrower 
presents 10 
book at des 

Pull Return 
Card 

Book 
to 

Stacks 

270 

o 

Charge Card 

1) Update Outstanding File 
2) Purge Outstanding File 
3) Check fi Ie for overdues. 

Overdue 
Notices 

Oai y ist 0 

outstanding 
charges - ca II 

U S L LIBRARY 

5 

seq., wi 
borrower II 

I~ 



o 

o 

~. 

i t~3G6r ~08539~~?'';;-...... ~~,~,;, ~ 1713--.. "':T':;~j:.~ - ... ~ oat6'6(Hl309~ 

DUE DATE I ITEM I CLASS 'I CUTTER YR IVOL CY PSN BORROWERNOl. 

MO, DA, YR 11. 'ltflt .. "',, ','Il!"rlil'l'ii:", Ill., 
ii\ "C ." II "J ~II!I :JI'i 0 

J. ". ro ro 
u v 

d E ~ 1', <t it 
0 of- z I ~'E: ",. tI) 

~ ~I ... - w 
!::! <3: "'C 4) ~ U) II:J 

:.t: :i til 'tJ <{ LL ~l.§ il !I: ... u u 1':1 ~ 0 
, E . III 

Z to >- ..J .-
0 III ;,) 

:.c: 41 ..J t- o 
IrJ 

,.0 u; Z ..J 
Z .. 

>- CI. ;l no: 2, ... Q 
~ "" .~ -c t: LU W 

> t- .... 
:1 0 .!! V) 2= V) ,~ 

!i !I:> .~ eJ 
~. 

~ z W I1J 

":l ~ Ci w :: '+0 
0 ",. ... ..,.. 

2= ::;) II:J 
~ II:J :> J: ..J (> ..t: ij Z :, ;,1 ..,.. u I-
g,~ 0 ::> ::> !~ c <: ",. 

0 ~ ~ C~~ 'I 0 ";1 • ... (,) :)' III 

~ 
.. , .. ! ..2 

i Ui ,- 0. .!-!! 

I E Q)-o 

tille -g g, 
'iP- E 0 

0-0 E 
~O~-t 

I I I 

UNIVERSITY LIBRARIES I 
UNIVER5JlllJ'f .= SOUTHWESTERN LO'lSIANA I 

<CU=",.-O 

U.~·~O~ ~ 
~ ~ --------------------------------------~ -Q)~.a I ~ Q) 0').- Q) 

W > ~ ~ ~ 
~ E.fiIe .~ I ------.0..--------•. ...---
A"Q)A"IIIE I 

I I 

I 
''''',.- (!) 

:E '0 "':-0 .-= 
CI~ 0 I 
o~u~ 

Q Q.~f 

II 

",FAYETTE, LOUISIANA I 

, 

... -

\.. 

LEWIS :&1005 

I 
I 

~
"EORGE GUY HAV;',R() ~R 

. NAME r 

520..35 6'5 10 il;? (d;":'-~' 
STUDENT YEAR DATE OF BIRTH .... .;.) 
NUMBER '. "','. 1 

._Lo\, ~« 
f ' 

I .
• ,~;.' . THE UNIVERSITY OF ., 

~ SOUTHWESTERN LOUISIANA (\ -~-
STUOENT IDENTIFICATION '.' ' >.,.. ...... 

I e NOT VALID l,J~SS SIGNE~,<' "~-:ji '\ 
.' ;!..... ~" ... 1 

. ,~";" ,~-./ .C: ·,·,~·/';/c.~7>,~~ . I 

SPR -r'SI,1M] SIGNMURE /./ ·,.Il~i-: -' ---~:'T:3 
~;_S'_TY_VA.!:.'_O_"_TI~N ,.----1,_,_'_., _~_' "_"_" _!;,_6_§.!l._'~Uj_'~ 

271 

I 
) 



UNIVERSITI EDUCATION PAPERS 

tty. S. L. STUDENT SCHEDULING" 

Jack D. Testerman-U.S. L. 
Earl K. Turner, Jr. -Shell Oil Co. 

BOx 133 u. s. L. 
Lafayette, La. 70501 

Phone: 318 CE-4-7349 

Speech: Tuesday, November 29,· 1966 

Session Number: T-1.6 

Pages of Text: 3 

272 



o 

o 

u. S. L. STUDENT SCHEDULING 
BY THE IBM 1620 COMPUTER 

Earl K. Turner, Jr. 
Jack D. Testerman 

There is a tremendous amount of clerical work involved with 
the' scheduling of students, most of which is on the shoulders. of the 
registrar's office. The accompanying headaches tend to increase as the 
enrollment of the school increases, making it increasingly difficult to 

, run an orderlY and accurate registration. The old method of scheduling -
by hand while the students are en masse - often needs to be revised or 
replaced. 

In general, any registration process must include three kinds 
of activity, namely: 

l.Creating a semester.class schedule 
2. Advising students about their academic programs 
3. Ass,igning students to sections of courses. 

The phase of scheduling that calls for the most work - much of it 
clerical - is student assignment. So this is obvious candidate for 
machineprocessing. 

273 

There have been several experiments in the area of student 
scheduling systems in the past few years, but on the whole,'very few of 
these could be termed an ideal system. Nearly all of these systems in
volve the student requesting particular course sections and the computer 
program either accepting his choices, thereby acting as a tallyer, or 
rejecting his schedule requests because of the unavailability of one or 
more of his requested sections. There has also been the problem of 
controlling the number of drop-and-adds that 'will occur in any computerized 
system. 

Of course an ideal system depends on the needs of the school -
just how much of the system is desired to be automated, and the quantity 
of machines and personnel at hand. 

Any registration system should have two main goals. First, to 
register students. accurat~ly, and secondly, to make registration for the 
student as simple and speedy as possible. In keeping with these aims, 
an IBM 1620 computer program was written at the University of Southwestern 
Louisiana (U. S. L.) which would accomplish these goals. 



The U. S. L. procedure consists of the follo~ing: 

1. .An early registration period requ1r.ing the student to 
turn in a schedule request card at least one month in 
advance of the semester in which he wishes ·to enroll. 

2. Requires·an advising system for the student 
3. Schedules the student's classes by computer 
4. Mails the schedule to the student 
5. Distributes schedules to the deans and department heads 
6. Takes care of any absolutely necessary changes at the 

end of the registration period 
7. Sends preliminary class rolls out to the professors before 

classes begin, and sends corrected ones after drop and 
add changes are completed. 

The IBM 1620 Program 

In order for any system to work efficiently, one must have the 
proper tools on hand. For this system, including the programs there 
are, of course, certain necessary pieces of equipment. 

Equipment necessary: 

1. IBM 1620, 40K digits of memeory, with disk and indirect 
addressing 

2. IBM 1622 card read/punch un! t 
3. A keypunch 
4. An off-line printer, i.e. IBM 407 
5. A card collator 
6. A card sorter 
7 • A card interpreter 
8. A schedule decollator and burster 

Features include: 

1. A student check, so as not to allow duplication of 
scheduling 

2. Student time exclusions 
3. A section request option 
4. A lunch hour built into the system 
5. Scheduling done on the basis of 30 minute time intervals 
6. Sc~eduable time extending from 7:30 a.m. to 9:30 p.m. 
7. A maximum of 15 classes allowed per student 
8. An av~rage scheduling time of 10 seconds per student 
9. Ability to handle up to 6900 class sections 

10. Maximum. of 99 sections per course 
11. Ability to set maximum number of students per section as 

high as needed 

274 

12 • Maximum. of 99 different curricula codes (department numbers) 
for university use 

c 

c 

o 



o 

o 

• 

13. Section balancing ~eature 
14. Notifies the student if it is unable to schedule a 

particular class 
15. A one-pass program - it registers the student and produces 

the class cards directly (these are l:ls ted as the student's 
schedule) • 

Differences of the U. S. L. System from Other Systems 

Uhiqueness - We have a big problem for small computers. Most 
computerized scheduling systems just use the computer as a tallying 
devicej that is, the computer program either accepts or rejects the 
students' sectioned request. This program is built to assign sections 
of the requested classes when they are availablej hence, it is 'a section
ing program. It will also schedule classes with pre-a~signed section 
numbers as other scheduling programs do. 

Some Disadvantages 

1. The procedure demands precision of all aspects of the 
,scheduling of students. At times, this is a difficult 
rule to follow. 

2. There is no instant communication with the student. If 
the student has some difficulty with his schedule, cor
rection time is limited. After receiving his schedule 
by mail, the student must see his advisor, make some 
provision for a change, then bring the requested change to 
the Office of the Registrar. 

Advantages of the System 

Some of the advantages of the U. S. L. computerized scheduling 
system are the following: 

1. The symplicity of registration afforded the s~udent 
2. Allowing the administration to know the number of students 

enrolling very early so that any extra faculty required 
could be obtained in plenty of time. Also, estimates can 
be given other facilities such as the University Bookstore 
for purposes of predicting the number of books they will 
need in any courses 

3. Not tieing up all of the faculty and offices in a great 
whirlwind session of one weekj rather, spreading this over 
a much greater period of time where personnel who can be 
trained for this can handle it on a continuing basis 

4. The centralized location of all results 
5. The instant tabulation of numbers 
6. An increase in speed with quite a bit less manpower for 

registration • 

275 



_~~~~~~ • _~_~~_._ •• u .~~. _~ ______________ --------------

FOR TRAN LANGUAGE TIMINGS ON THE 1620 MODELS I AND II, 
AND THE 

360 MODELS 30, 40, 44, and 50 

by 

Robert L. Shutt 
Sacramento Peak Observatory, AFCRL, Sunspot, New Mexico 

(High Altitude Observatory Solar Project at Sacramento Peak) 

--~---- -_ .. _---_._-_ .. __ . - ---.. ~-~--

276 

o 

GI 



0" , . 

10 

o 

1. Introduction 

Mr. Champagne, Mr. Session Chairman, fellow members of COMMON, 
and guests at this meeting: 

This paper presents the results of a series of Fortran language tests 
of the internal speeds of the IBM 1620 Models I and II, and the IBM 360 
Models 30, 40, 44, and 50. I had intended this material for informal 
presentation in a discussion group, but at Mr. Champagne's suggestion, 
I have worked it into a paper. I was a little reluctant because when we 
made the first timing tests of this series, we had no idea that we were 
going to use the same programs to test all these machines. The programs 
were made up rather hastily and the tests conc;lucted in a less than rigorous 
fashion. However, after several years, we more or less discovered that 
we had run the same programs on a number of IBM machines, and we used 
the results in the selection of our next computer. I believe these results 
are of general interest, especially to anyone who, like us, is going from 
a 1620 to a 360 system and wants to know what increase in internal speed 
he is buying. 

II. The Computing Environments at the Sacramento Peak Observatory 

The tests were performed for the Sacramento Peak Observatory of the 
Air Force Cambridge Research Laboratories. My employer is the 
National Center for Atmospheric Research, which provides certain re
search services, including data reduction, for the Air Force at the 
Sacramento Peak Observatory. Sacramento Peak Observatory is a solar 
observatory, devoted entirely to the study of the sun. Weare located on 
a mountaintop in southern New Mexico at an altitude of 9200 feet. We have 
about a dozen telescopes, a variety of electronic instrumentation and 
data reduction equipment, a resident staff of six Ph. D. Astronomers, 
several visiting scientists and about 40 people providing a variety of 
support services. 

We became "computerized" four years ago with a basic 1620 Model I, 
and we are now just outgrowing our 1620 Model 11.11311 disk system. We 
operate on an open shop basis and use the computer as a research tool 
for the study of the sun. Our computer work is all scientific, involving 
computer solutions of mathematical models, computation of astronomical 
coordinates, the filtering, smoothing, and massaging of data, and cor
relational and othe r statistical studies of solar data. 

We are currently pretty firmly in the IBM fold. We like their equipment 
and supporting services, and, in any case, not very many manufacturers 
will come way' out into the boondocks to do busines s with us. We are 
fifty miles from our IBM representative, and he is a hundred miles from 
the B ranch Office. 

III. Description of the Tests 

In 1963 we decided to upgr.ade our basic 1620 Model I computer. We 
were c.onsider-ing the Model II, floating point hardware, 1311 disk drive, 
extra memory, and other optional goodies. Since nearly all our work is 
done using Fortran, we were interested in Fortran language tests of . 

277 



--~ .--~-~.~ ....... ~ ... - ... '" ..... -..... --_ ... _._ •.. ------_ .. - .. _---_ .. -

278 

internal speeds, transfer rates (from the disk), and systems throughput. 
We made up a seven-part Fortran coded test package which we have run 0 
on at least four different 1620 systems. When we' became interested in 
the 360 systems last year, we tried to make a similar evalu.ation. However, 
at that time such features as the 3211 disk were not supported in BPS 
Fortran and the I/O configuration varied. So we were able to meaning-
fully measure only. internal speeds for Fortran operations. - This is still 
very useful. At our installations, we do a lot of statistical work, such as 
cros s -correlation of data, where the executi on time goes as the square, 
or highe r power, of the numb e r of data points. We collect very long 
data strings, and it is no problem at all to use all the computing power a 
given machine has. We wanted to be able to tell our staff that with the 
Model N 360, you will be able to cross -correlate two data strings of so 
many data points in this many minuL.es. or you can invert a given size 
matrix in so many minutes. Our staff us es this type of information in 
plan.ning the research projects to be conducted six months or a year from 
now. 

A second use of this information was the evaluation of competitive bids 
on our new computer system in terms of "bangs per buck. " 

The tests which 'we made on all the systems are the following: 

a. The time to do Fortran coded arithmetic driven by a "DO" loop. 
The arithmetic operations tested are: A + B, A >:c B, and sine (C) where 

A = 3. IB25E + OB 
B = 5. 8362.E + 03 
C = .85 

b. A synthetic program with a mix of Fortran instructions. At the 
time I wrote this program, I had never heard of a Gibson mix, but my 
intent was. the same as the intent of Mr. Gibson, or whoever designed 
his mix; that is, to measure the time a given machine requires to per
form a "typical" scientific program. In our case, we used floating 
point variables. I point this out because some machines look much 
better, comparatively, doing fixed point arithmetic than they do doing 
floating point arithmetic, as you are aware. 

IV. Results and Comments 

The results are presented in Tables I and II. Table I gives the numbers 
of operations per second for A + B, A ):c B, and sine (Cl. It also gives 
the time to perform 10 iterations of the synthetic program. Table II lists 
some parameters of the systems tested. 

Comments 
1. The timings were made using the second hand of a wrist watch. I 

only claim accuracy to about 5% for these results. Since the tests were 
made over a period of about three years, and since my filing and notation 
system is atrocious, there may be some mistakes in these numbers or 
systems parameters, but I donrt think there are many. 

2. The tests on the 360/44 were performed by an operator in New 
York City with decks mailed there. The rest were performed by me 
on a "hands on" basis. 

G 

o 



o 

o 

o 

3. It is interesting to note that a 1620 Model II with all optional hard
ware is nearly a factor of 10 faster than a basic 1620 ModelL 

4. the 360/40 is roughly 3 times as fast as the 360/30, and the 360/50 
again 3 times as fast as the 360/40. 

5. It is instructive to look at speed ratios for A + B, and for the 
synthetic program. 

for A + B 360/30 = 5 360/40 = 17 360/50 = 53 
1620 II 1620 II 1620II 

for the 360/30 = 8 360/40 = 2.5 360/50 = 90 
synthetic 1620 II 1620 II 1620 II 
program 

I interpret this to mean that the 360 system has a more efficient logi
cal design in that less "overhead" of data handling and transfer is paid 
in the execution of a program than is the case in the 1620. 

6. The tests really measure a hardware-software system and not 
just CPU speeds. I have tacitly as sumed the various Fortran compiler 
produces equally efficient object code. 

279 

As a result of these tests and a competitive evaluation, which considered 
other factors than internal speeds, we have ordered a 360/44 for installation 
next spring. The speed performance of this machine is tremendous. We 
are getting a speed improvement of better than 100 for a cost increase of 
something like 25%. The trade-off is inferior software support. For 
example, we will not get PLI, RPG, SPOOL, etc. And we will have to do 
a good deal of systems work to tailor the system to our needs. But we 
still feel we are getting a bargain. We believe, from some informal 
estimates, that the 44 is about 1/2 as fast as a 7090, and we know from 
a separate test that it is about 1/10 as fast as the CDC 6600. This makes 
the 44 a, very fast machine but still well within the reach of a small to 
medium sized scientific installation like ours. 

Thank you for your attention. 

V. Acknowledgement 

My special thanks to Mr. Frank Bird of the IB M EI Paso branch office 
for arranging test time on most of these machines and for assistance in 
solving the proglems of running programs on new machines with unfamiliar 
software systems. 



==-~ 

r~ 
~ 

<) o 
o 
<0 
C\I TABLE I. INTERNAL SPEEDS FOR THE IBM 1620 MODELS 'I AND II, AND THE IBM 360 MODELS 30, 40, 50, and 44 

Arithmetic Operations (number/sec) 

A+B 

A*B 

Sine (C) 

8 A := 3.1825 x 10
3 

B = 5.8362 x 10 
C := 0.85 

Synthetic Program (time for 10 
iterations) 

1620 1620 
Model I Model II 

57 910 

42 345 

3.5 34 

1,130 sec 125 sec 

360 360 360 360 
Model 30 Model 40 Model 50 Model 44 

-

3000 9100 23,600 38,000 

1760 5900 18;200 29,000 

250 910 2,860 3,800 

15.5 sec 5 sec 1.4 sec 1.0 sec 



r-t 
co 
C\I 

t... 

Systems 

1620 Model I 

1620 Model II 

360 Model 30 

360 Model 40 

360 Model 50 

360 Model 44 

G 

Floating 
Hardware 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Memory 
Cycle Time 

20 microsecs 
per 1 digit 

10 microsecs 
per 2 digits 

2 microsecs 
'per 1 byte 

2.5 microsecs 
per 2 bytes 

2 microsecs 
per 4 bytes 

1 microsec 
per 4 bytes 

TABLE II. SYSTEMS PARAMETERS 

Significant Digits In Significant Digits Software Other 
Floating Word Mantissa In Fixed Word System 

.' 
Features 

8 5 Fortran with 
format 

Index registel 
8 5 Fortran II-D indirect ad-

dressing 

7.2 4.5 BPS 16K For-
tran IV 

7.2 4.5 BPS 16K For-
tran IV 

7.2 4.5 BPS 16K For-
tran IV 

High speed 
7.2 4.5 BPS 16K For- general 

tran IV registers 

o • 



--- --.---.. ---.... _., ·"·''''~I_.~ 

.....r,-' 
282 

245 Marquette Avenue . 'J! 
Minneapolis, Minnesota 55401'_ .. ; 
612/338~8541 

International Business ~lachines Corporation 

January 4, 1967 

-
Mr. Champagne 
University of Southwestern Louisiana 
La Fayette, Louisiana 

Dear Mr. Champagne: 

The pre sentation on "1620 - 360 Simulation II covered the following: 

1. Organization of the 1620 Simulator as it is received from IBM. 

2. Generation of the 1620 Simulator. 

3. /360 core utilization of the 1620 Simulator. 
a. 1620 Simulation - no disk 
b. 1620 Simulation - disk 

1. Core resident disk simulation 
2. Disk resident disk simulation. 

4. Simulated 1311 disk records on the 2311. 

5. Simulated sector arrangement. 

6. 1620 Simulator Program Logic. 

The session concluded with a discussion of topics 'of general interest to 1620 
Simulator users, such as timings, 2311 formattings, and comparisons with the 
162 0 Emulator. 

Sincerely I 

/41 ;:~£r~-
H. P. Klysen 
Field Systems Center 

HPK:mj 

c 

0_ 


