Reference Manual

7070 Data Processing System

EM Reference Manual

7070 Data Processing System

MiNoR REvIsION [January, 1960]

This edition, Form A22-7003-1, is a minor revision of the
preceding edition but does not obsolete Form A24-7003-0. The
changes in this edition reflect the increased number of tape units
that can be attached to the system because of the addition of
two more channel controls.

© 1959 by International Business Machines Corporation

Page

1BM 7070 DATA PROCESSING SYSTEM 5
Units of the IBM 7070 7

1BM 7070 Instructions 10
Autocoder Mnemonics 13

18M 7070 Basic Fortran 14
Format of Operation-Code Text 16
OPERATIONS INVOLVING ACCUMULATORS 17
Logic CODES i 42
INDEX-WORD CODES 60
BLOCK TRANSMISSION 72
Channel Control 1,2, 3,and 4. 72
Process Channel Control 74
CORE-TO-CORE BLOCK TRANSMISSION 75
TABLE LOOKUP 83
MAGNETIC TAPE 89
1BM 729 Tape Units 91
Operating Principles 92
Features of 18M 7070 Tape Operations 95
Tape Operation Codes 98
DISK STORAGE 108
Disk Storage Operation Codes 112
UNIT RECORD 117
Card Input-Output Operation Codes 117

1BM 7500 Card Reader 120
Operating Keys and Signal Lights 121
7500 Card Reader Control Panel 122
7500 Card Reader Control-Panel Summary . . 146

BM 7550 Card Punch 149
Operating Keys and Signal Lights 150
Control Panel 151

7550 Card Punch Control-Panel Summary . .173

Contents

Page

1BM 7400 Printer 175
Print Unit 175
Operating Keys and Signal Lights 176
Control Panel 178
Tape-Controlled Carriage 195
Other Control Panel Hubs 201

1BM 7400 Control-Panel Summary 204
INQUIRY 208
Operation 208
Operation Code 212
AUTOMATIC PRIORITY PROCESSING 215
Priority Operation 218
Types of Priority 218
Unit-Record Priority 218
Inquiry Priority 218
Tape Priority 218
Disk Storage Priority 222
Priority Codes 223
FLOATING DECIMAL 229
PROGRAMMING SUMMARIES 243
Functional Chart of 7070 Operation Codes . .243

List of 1BM 7070 Instructions by Category . . .249

Core Storage and Register Addresses 252
Op Codes that Allow Accumulator Addresses 253
Op Codes that Use Field Definition 253
Store and Add-to-Storage Codes 254
Index of 7070 Operation Codes by
Autocoder Mnemonics 255
Clearing a Specified Portion of
Core Storage to Zeros 258
CONSOLEttt 260
Operating Panel 261
Console Typewriter 265
Operating Keyboard 266
INDEX i 271

1BM 7070 DATA PROCESSING SYSTEM

IBM 7070 Data Processing System

The 1BM 7070 is an electronic data processing system
that covers the range from medium-scale through large-
scale processors, by its own variety of configurations.
It can be a card system only, an intermediate tape sys-
tem, or a full-scale tape-disk system, depending on the
requirements of the user. Moreover, its processing and
storage capabilities can be increased as the requirements
increase.

Solid-State Design

The electronic circuits of the 1BM 7070 use transistors,
instead of vacuum tubes. Because of the smaller size of
transistors, (Figure 1), their use in a data processing
system results in three types of saving:

1. Space requ -ements are reduced.

2. Air-conditioning requirements are reduced due to

the lower heat output of transistors.
3. Power requirements are reduced.

NN

%,

2%,

_

_

.

D

V.

SIS IISIIIISIYy,,

\

/

W

7

i

g

\)

N
N
N
N
N

z

FIGURE 1.

dl

Tube

RELATIVE SIZES OF VACUUM TUBE AND

TRANSISTOR

Transistor

IBM 7070 Data Processing System

.
i

FIGURE 2. SMS CARD, FRONT SIDE, ACTUAL SIZE

Standard Modular System (SMS)

The circuitry of an 1BM 7070 is comprised of many
SMS cards. Each card can be easily inserted into the
system or removed from it. Figure 2 shows a typical
SMS card, and the various types of components that
can be put on a single card. The prongs are the means
of plugging the card into the system. Figure 3 shows the
reverse side of a card, which contains a printed circuit
connecting the componcnts on thc 1iont side wiill vue
another and with the prongs at the bottom. Each of the
16 contacts at the bottom is connected to one of the
prongs shown in Figure 2.

Functional Components

MAGNETIC-CORE STORAGE: The 1BM 7070 contains
magnetic-core storage in capacity of either 50,000
numerical digits or 99,900 digits, organized into
5000 or 9990 words of 10 digits each.

FIGURE 3.

SMS CARD, REVERSE SIDE, ACTUAL SIZE

MAGNETIC TAPE: A full-capacity 7070 can have up to
40 1BM 729 Magnetic Tape Units attached.

DISK STORAGE: A 7070 system can include as many as
four disk-storage units, making the available disk-
storage capacity 48 million numerical digits.

UNIT RECORD INPUT AND oUTPUT: Up to three card
readers can be used with a 7070, each with a
rated speed of 500 cards a minute. Output consists
of any combination of card punches or printers,
up to a total of 3. Cards are punched at a rated
speed of 250 a minute by each punch unit; the
rated speed of the printer is 150 lines a minute.

INQUEIRY: AS many &5 on manuai-inguily statious aic
available, for request of information and typed
reply.

PROCESSING: The programming unit of the 7070 con-
tains three accumulators, with registers.and cir-
cuitry to perform stored-program instructions, ad-
dressing data and instructions, all arithmetic func-
tions, and a wide variety of logic operations.

coNsoLE: The 7070 contains a console, for display,
typed output, and manual control of the system.

Reference Manual

This manual gives complete instructions in the use of
the operation codes; operation of the tape units, unit-
record machines, inquiry stations and console; control-
panel wiring of the unit-record machines; and descrip-
tions of special features such as block transmission and
automatic priority processing. Its purpose is to assist
in planning, programming, and testing 7070 programs;
and to aid in training sales representatives, systems per-
sonnel, planners, programmers, and test-center person-
nel, on the system. Although the manual is technical
in its approach, it is not an engineering or highly sci-
entific description of the 7070.

Units of the IBM 7070

A full-capacity 7070 system consists of a number of
separate units. This is a list of these units, in approxi-
mate type-number order, showing the maximum num-
ber of each unit available in a single 7070 system:

IBM Maximum number in

No. Name an 1BM 7070 system
729 Magnetic Tape Unit 40
7150 Console 1
7300 Disk-Storage Unit 4
7301 Magnetic-Core Storage 1
7500 Card Reader 3
7400 Printer
7550 Card Punch 3
7600 Input/Output Control 1
7601 Arithmetic and Program Control 1
7602 Core-Storage Control 1
7603 Input/Output Synchronizer 1
7604 Tape Control 1
- 7605 RAMAC® Control 1
7900 Inquiry Station 10

Figure 4 is a schematic representation of these com-
ponents. Note that the two largest units are the Arith-
metic and Program Control, 1BM 7601; and the 1BM
7301 Magnetic-Core Storage unit, with its 1BM 7602
Core-Storage Control. These units comprise the nerve
center of the system. The 7601 Arithmetic and Program
Control executes the stored-program instructions, bring-
ing each instruction from core storage for this purpose.
The stored program operates directly on data in core
storage only. It brings data to and from the cores by
means of instructions to read a card, to punch, print,
read tape, etc. Note that data transmitted to and from
the unit-record equipment, the inquiry stations and the

FIGURE 4. SCHEMATIC OF 7070 COMPONENTS

_-: 7603 7550 Punch
| 7500 » Input
Card Readers Output
l Riﬁfc Syne. 7400
I Control I Channels 1 and 2 Printer
I I Channels 3 and 4
: 7600
| l — ——— —_— — Input/Output
I l I —I Control
729 729 l
| Tape | | Tape
l Units Units I
’ 7604 I l 7604 |
I Tape I I Tape
Control Control I 7900 7900
9
I / l l 729 I Inquiry Inquiry
| Tape Station Station
I I Units l
7602 <—1
Core Storage Control 7601
Arithmetic'and
- Program Control 7150
7301 " Console
Magnetic Core Storage

IBM 7070 Data Processing System 7

console, goes to and from core storage through the
Arithmetic and Program Control.

IBM 729 TAPE UNITS: As many as 40 magnetic tape
units, in four groups of 6 each, can be used with
the system (see Magnetic Tape section).

1BM 7150 conNsOoLE: This unit provides manual control
of the operation, display of core-storage words, and
typed output under control of the stored program
(see Console section).

1BM 7300 DISK-STORAGE UNITS: As many as four disk
files can be used in a 7070 system (see Disk Stor-
age section).

1IBM 7500 CARD READER, 7400 PRINTER, AND 7550
CARD PUNCH: (See Unit-Record section).

1BM 7600 INPUT/OUTPUT CONTROL: This unit contains
a magnetic drum, revolving at a speed of 12,500
rpm. It is used as intermediate storage to synchro-
nize core storage with the unit-record equipment,
and the inquiry stations, as described in the sec-
tions on those units.

IBM 7602 CORE-STORAGE CONTROL: Data brought to or
from core storage is addressed by this unit. The
stored program sends the address to the 7602,
which then causes the designated data to be read
to or from core storage.

IBM 7603 INPUT/OUTPUT SYNCHRONIZER: This unit,
between the unit-record equipment and the syn-
chronizer drum, contains timing and translating
circuitry.

G

SRR

FIGURE 5. MAGNETIC-CORE STORAGE

BIT CODE
0 1 2 3 -]
aLIL
LI
3 I D D . ALPHA SIGN
1
0o
. =
w
S
« L
>
=
o]
a 6 D l MINUS SIGN
0RO |
))
(UL U|E
A010I0 IR s sen
(U {B{U|0
FIGURE 6. TWO-OUT-OF-FIVE FIXED-COUNT CODE

1BM 7604 TAPE CONTROL: Data to be written on tape
is brought from core storage to this unit and
thence to the tape unit. Data read from tape goes
to this unit and thence to core storage. Data to and
from the disk-storage units also comes through this
unit. The unit contains the two tape/RAMAC chan-
nel controls, described under Block Transmission.

IBM 7605 RAMAC CONTROL: This unit contains timing,
translating, and addressing circuity for all disk-
storage operations. It controls data transmission
between the disk-storage units and the 7604 Tape
Control.

IBM 7301 Magnetic-Core Storage (Figure 5)

Core storage is best described as the working storage
area of the 7070. It contains the stored program and
all data that the stored program uses in its operations.

Data read from any of the input-output or storage units
—the card readers, printers, punches, tape units, disk-
storage units, inquiry stations, and the console—is
brought to core storage. Similarly, any data brought to
any of those units is brought from core storage.

CAPACITY: Model 1 of the 1BM 7301 contains 5000

words of storage; Model 2 contains 9990 words.
A word consists of 10 numerical digits and a sign,
which can be plus, minus, or alpha. Because alpha
coding requires two digits for each character, each
alphabetic word contains five characters.

ADDRESSING: Each word in core storage is addressable.

The addresses are 0000-4999 for a Model 1 unit,
and 0000-9989 for a Model 2 unit.

BIT-CODE STRUCTURE: Each digit in core storage is

represented by a combination of two bits out of a
possible five. The total number of possible com-
binations is ten—one for each numerical digit. As
shown in Figure 6, the bit positions are designated
0,1, 2, 3, and 6. The digits 1 to 9 are each com-
posed of two bits, the sum of which equals that
number. Zero is designated by the 1-2 combination.
A 9 code in the sign position denotes plus; a 6,
minus; and a 3, alpha. Only the 0, 3, and 6 bits are
used in the sign positions.

ALPHA CODING: An alphamerical word in core storage

contains five characters, each represented by two
digits. Figure 7 shows all the alphabetic, numeri-
cal and special characters included in this coding.
Shown with these alphamerical codes are the mag-
netic-tape BCD code, the punched-card code, and
core-storage coding for numerical words (digits
0-9). The characters are in two-digit-code se-
quence.

NOTES:

1.

Cannot be read into the IBM 7500 Card Reader, nor are they trans-
lated on output to the 7550 Card Punch, 7400 Printer, 7900 Inquiry
Station, or the Console typewriter.

. Cannot be read by the 7500 Card Reader unless they are wired as
the units position of numeric words. Similarly on punching or printing,
these codes (60, 70) are invalid.

. This code cannot be wired to read or punch by the 7070 unit record
equipment.

. Generated by the 7070 controls on write operations, and not trans-
lated on read operations. This card code (11-7-8) cannot be entered
through the 7500 Card Reader.

. The tape segment mark is generally a single-character Tape record.

This character is not translated and placed in 7070 storage if the

CAB8421 configuration appears as the first character of a tape record.

In this case the End of Segment condition is signalled to the 7070 via

a final status word condition code.

It is possible to read the TSM as a character within a tape record

(other than the first and to write the TSM from 7070 storage as part

of a record.
. The tape mark is handled in the same fashion as the tape segment

mark.

Core Storage

Core Storage

2-Digit Magnetic 1-Digit
Card Alphamerical Tape Numerical
Character Code Code BCD Code Code Notes
Blank 00 CA
. 12.3-8 15 CBAS821
Dtor) 12-4.8 16 BAB84
12-5.8 17 CBA841]
12-6-8 18 CBA842 1
oM £ 12.7-8 19 BA8421 1
&or + 12 20 BA
$ 11-3-8 25 B821
* 11-4-8 26 CB84
11-5-8 27 B841 1
11-6-8 28 B842 1
- n 30 cB
/ 0.1 3 Al
, 0-3-8 35 A821
% or (0-4-8 36 CA84
0-5-8 37 A841 1
0-68 38 A842 1
SM 0.7-8 39 CA8421 1,5
for= 3-8 45 c821
@ or! 4-8 46 84
58 47 c841 1
68 48 C842 1
™ 7-8 49 8421 1,6
6 12-0 60 BAS2 2
A 1241 61 CBA1
B 122 62 CBA2
C 12:3 63 BA21
D 12-4 64 CBA4
E 12:5 65 BA41
F 12:6 66 BA42
G 12.7 67 CBA421
H 12-8 68 CBA8
| 12.9 69 BAS1
0 11-0 70 CB82 2
J 111 7 Bl
K 112 72 B2
L 113 73 CB21
M 11-4 74 B4
N 15 75 cB41
o 116 76 CB42
P 1.7 77 B421
Q 11-8 78 BS
R 19 79 CB8l
RM £ 0-2:8 80 CA82 3
S 0-2 82 A2
T 0-3 83 CA21
u 0-4 84 Ad
v 0-5 85 CA41
w 0-6 86 CA42
X 0-7 87 A421
Y 0-8 88 A8
z 0-9 89 CA81
0 0 90 82 0
1 1 9 cl 1
2 2 92 c2 2
3 3 93 21 3
4 4 94 C4 4
5 5 95 | 5
6 6 96 42 6
7 7 97 C4 7
8 8 98 cs 8
9 9 99 81 9
Delta A 11.7.8 C88421 4
FIGURE 7. 7070 CODING SYSTEM

VALIDITY CHECKING: Every digit that is moved to and
from storage is tested to assure that it has two
bits, neither more nor less. This is called fixed
count checking.

PARALLEL TRANSMISSION: A feature of the 7070 is par-
allel transmission of data to and from core stor-
age. An entire word, including sign, is moved all
at once, instead of one bit or one digit at a time.
A channel for parallel transmission consists of 53
lines, one for each bit in each of the ten digits (50),
and the sign (3). This enables a word in core
storage to be moved in 6 microseconds (6 mil-
lionths of a second). The channels in Figure 4
represent parallel transmission.

Information on tape, disk, and the synchronizer
drum is stored serially,—each character read or
written before the next character. Thus, transmis-
sion of data to and from these units is serial, as
indicated by the lines in the figure.

IBM 7601 Arithmetic and
Program Control

The programming feature of the 7070 is contained in
the 7601 Arithmetic and Program Control Unit. Figure
8 is a simplified schematic of the programming unit.
The unit contains three accumulators, the auxiliary reg-
ister, the arithmetic register, the program register, the
instruction counter, the adder, and the synchronizer
register. Each of the registers and accumulators has a
capacity of one word—10 digits and the sign. The in-
struction counter has a capacity of 4 digits. All' arith-
metic operations actually take place in the adder. There
are several other special registers, and of course, much
more circuitry than is shown. Figure 8 is a general,
functional representation of data flow. The registers
shown in the figure are referred to throughout the text,
in the Data Flow and Registers Affected sections under
each operation code.

The three accumulators, the program register, and
the instruction counter have addresses:

9991 Accumulator 1
9992 Accumulator 2
9993 Accumulator 3
9995 Program register
9999 Instruction counter

The accumulators can be addressed by certain stored-
program instructions, but the instruction counter and
program register, 9995 and 9999, can be addressed
from the console only.

10

The three busses in the figure are channels for paral-
lel transmissions of data: a 10-digit word with sign, is
moved all at once in a maximum of six microseconds,
over these busses. The information bus moves data be-
tween core storage and the program register, instruction
counter, arithmetic register, auxiliary register, and the
tape channels. The arithmetic bus connects the three
accumulators with the auxiliary register, arithmetic reg-
ister, and synchronizer register. The address bus brings
addresses to the 7602 Core Storage Control from the
instruction counter and program register.

IBM 7070 Instruction

The program is normally sequential: each program step
is located in a word with an address one higher than
the last instruction. The address of each instruction is
obtained by means of the instruction counter. Thus,
each program step need not contain the location of the
next step. This sequence can be broken by the program
whenever it is desired to obtain the next program step
from a word other than the one in the next sequential
location. This is done by changing the contents of the
instruction counter, either directly, or as the result of
a logical decision.

Instruction Format

Each instruction in a 7070 program consists of 10 digits
and the sign. The sign can be plus or minus, but not
alpha. The digit positions are numbered 0 1 234 5 6
7 8 9 from left to right, or high-order to low-order. The
general format of a 7070 instruction is:

o1 23 45 6789

S01 Operation code (S indicates sign)
23 Indexing word

45 Control

6789 Address

OPERATION CODE

The operation code (the sign and positions 0-1) de-
notes the operation to take place. For example: +24,
add to accumulator 2, adds the contents of the word
specified by the address portion of the instruction to
the amount already in accumulator 2, with the result
in the accumulator after the operation is completed.

Thus, 200 different operation codes are possible, 100
with a plus sign and 100 with a minus sign. Some of

7600

Synchronizer 7150

Console

Typewriter

7601
Arithmetic and
Program Control

' v

Synchronizer
Register

s [o[1]2]3[4]5]s]7[8]o

Arithmetic Bus

—

Arithmetic Register

Auxiliary Register

-
s [o[1]2]3}4}s|e|7|slo s [of1]2}3]4{s]e|7{slo
B Adder ' -
Information Bus
9999

Instruction

Counter 9991 Accumulator 1

| {] s [o]1]2]3]45|6{7|s}o

7301
Magnetic Core
Storage
999: P'rt:grum 9992 Accumulator 2
egister
op |iw]|cL|Addr s |of1{2]3]4]s[e|7]s|o
= o] 1]2]a] afs|6|7]s]s
7602
Core Storage Address Bus
Control 9993 Accumulator 3
s [o]1]2{3}4]5]¢|7]s]s
FIGURE 8. IBM 7601 DATA-FLOW SCHEMATIC

the operation codes, moreover, have multiple functions.
They are called augmented codes; the operation code is
augmented by some of the other digit positions in the
instruction. An example of this is +69, Card Control.
This code is used for all card input and punched /printed

output, and the console typewriter. Positions 4 and 5
are used to define the operation further. Position 4
denotes the synchronizer, thus specifying the particular
input or output unit involved. Position 5 defines the
operation: read a card, punch/print, etc.

IBM 7070 Data Processing System 11

INDEXING WORD

Positions 2 and 3 of an instruction specify the indexing
word to be used. Magnetic-core storage contains 99
index words, each of which contains a 10-digit number
with sign. They are stored in locations 0001-0099. The
IW portion of a program step determines which of these
99 words is to be used (00 means no indexing). Posi-
tions 2-5 and the sign of the designated indexing word
are added algebraically to the address portion of the
instruction, positions 6-9, considered plus, and this new
address is used for the operation. The other six posi-
tions of index words are available to the programmer
as storage; positions 6-9 are often used for constants,
decrements, and limits. Index words not needed in the
program can be used as normal core-storage words. If
the indexing word is minus, the address in the instruc-
tion is reduced by the value in the indexing portion. If
the indexing portion has a greater value and is minus,
the 10’s complement of the difference is obtained. For
example, if positions 6-9 of an instruction contain 1875
and are indexed by the value of —2000, the resultant
address is 9875, rather than 0125. (9875 is the 10’s
complement of 0125; 0125 + 9875 = 10,000).

Every instruction in the 7070 indexable, even if po-
sitions 6-9 are not used, or if they are used as a 4-digit
factor rather than an address.

An indexing word can be plus or minus, but not
alpha. An alpha indexing word specified in positions
2-3 of the instruction causes an error stop, whether
positions 6-9 are used as an address, or not.

Any time there is a value other than 00 in the IW
portion (positions 2-3) of an instruction, time is taken
for indexing. This is true even if positions 6-9 are not
used in the operation; indexing takes place at the be-
ginning of each instruction, before the operation code
itself has been interpreted.

For most operation codes, indexing adds 36 micro-
seconds. There are 16 operations for which indexing
adds only 24 microseconds:

—01 No operation ‘ NOP
—03 Sense mode for sign change SMSC
—03 Halt mode for sign change HMSC

—03 Branch if sign change BSC

—10, —20, —30 Branch if minus in accumulatcr #

BM1l, BM2, BM3

+11, +21, 431 Branch if Overflow in Accumulator #
BV1, BV2, BV3
+40 Branch if low BL
—40 Branch if high BH
+41 Branch if field overflow BFV
+41 Sense mode for field overflow SMFV
+41 Halt mode for field overflow HMFV
—41 Branch if equal BE

CONTROL

FIELD DEFINITION: In many of the instructions a por-
tion of a word can be processed as easily as a full

12

word. Positions 4 and 5 of an instruction deter-
mine the part of a word to be used. The digit in
position 4 denotes the starting position, the high-
order position of the field. The digit in position 5
specifies the low-order position. This is called field
definition. The digit in position 4 of an instruction
can never be higher than the digit in position 5, if
field definition is used (—field definition does not
extend over word boundaries). A single position
is defined by the same digit in positions 4 and 5.
For example, 99 in those positions of the instruc-
tion denotes the units position of the data word.

The field definition feature means that several
fields, with like sign, can be stored in a single
word, with no inconvenience to the programmer in
processing an individual field. Whenever a portion
of a word is used this way, its sign is the sign of
the word.

OTHER THAN FIELD DEFINITION: With most of the aug-
mented codes, the CL portion of an instruction
does the augmenting—denoting the specific opera-
tion of the several that are defined by the operation
code.

In the operation codes that specifically operate
on index words, the CL portion denotes the index
word to be operated on. (Positions 2-3 refer to
the indexing word, and is used to modify the ad-
dress, just as in other codes.)

ADDRESS

The address portion of an instruction, positions 6-9,
usually refers to the storage locaton of the data (this
data is sometimes called the operand). In an accumu-
lator addition operation, for example, it is the address
of the amount to be added; in a store operation, the lo-
cation in which the data is to be stored. Another use
of positions 6-9 is in branch operations, in which case
the address portion contains what may be the location
of the next instruction. An example of this is +30,
Branch if Zero in Accumulator 3. If there is a non-zero
number in accumulator 3 (regardless of sign), the ad-
dress of the next instruction is the next sequential loca-
tion. If the accumulator is entirely zero, the contents of
the address portion of the instruction are moved to the
instruction counter, and the next instruction comes
from that location.

In some operations, the address portion of a program
step contains the actual number to be processed, rather
than a storage location. The 4-digit number in positions
6-9 of the instruction is used as a factor in the opera-
tion. This number is always considered plus, for these
operations.

With some of the augmented codes, the address por-
tion does the augmenting. Positions 6-9 of every in-
struction can be modified by indexing, regardless of
whether they represent an address, a 4-digit factor, are
part of the operation itself, or are not used at all.

EFFECTIVE ADDRESS: As many as eight positions of a
program instruction may be used to define the spe-
cific digit positions of specific core-storage to be
used by the instruction. Positions 6-9 contain an
address. Positions 2-3 contain an indexing-word
designation, or 00. Positions 4-5 define the digit
positions of that word that are to be used (09 in
these positions denotes a full word). The digit
positions thus defined are sometimes referred to
as the effective address of the instruction.

Indicators

The 18BM 7070 contains 10 indicators, each of which is
turned on automatically by a condition that arises dur-
ing the stored program. They are:

Accumulator 1 overflow

Accumulator 2 overflow

Accumulator 3 overflow

Floating-decimal overflow

Floating-demical underflow

Sign change

Field overflow

High (compare)

Equal (compare)

Low (compare)

The indicators can be tested at any time by the pro-
gram. With the exception of the compare indicators,
each indicator is automatically turned oFF by the op-
eration that tests it, if it was oN. Throughout this text,
the name of each indicator is in italics.

Autocoder Mnemonics

Each operation has a mnemonic representation. For
example, the operation code +22, Store Accumulator 2,
is written as sT2; the programmer doesn’t need to
know that the operation code is +22. Each augmented
code has a mnemonic representation for each of the
several operations it performs. The +69 Card-Control
code has 8 different mnemonics. These mnemonic rep-
resentations are used for Autocoder programming.

IBM 7070 Basic Autocoder

The 7070 Basic Autocoder is a programming system
developed to simplify the preparation of programs for
the 1BM 7070 Data Processing System. The major ad-
vantages of such a programming system are:

1. Operation codes are written in an easily remem-
bered mnemonic form, rather than in the numerical
language of the machine.

2. Every command is given a unique mnemonic repre-
sentation, even though machine-language codes are
the same.

3. Data to be processed is referred to symbolically,
using names or other meaningful designations.

4. Instructions are not assigned core-storage locations
by the programmer; thus the addition and deletion
of instructions entail no re-assignment of addresses.

5. Each routine in a program can be written inde-
pendently of the others with no loss of efficiency in
the final program.

Writing a program in Basic Autocoder language re-
lieves the programmer of most of the tedious clerical
tasks. These tasks are turned over to the 7070 and the
Basic Autocoder Processor. The processor takes the
program in Autocoder language, translates the mne-
monic codes into the machine-language codes, assigns
core-storage addresses to the instructions and to the
symbolic data references, and assembles a finished ma-
chine language program.

Also, the processor performs the added function of
checking for certain common coding errors, and notes
these by means of messages while continuing the trans-
lation process.

The 1M 7070 Basic Autocoder can assemble pro-
grams for use with any configuration of the 7070 sys-
tem. The processor requires only a minimum of equip-
ment: 5000 words of core storage, one card reader,
and one card punch. The addition of a printer makes it
possible to obtain a direct listing of the assembled pro-
gram.

Basic Autocoder is described completely in the 7070
Data Processing System Bulletin (Basic Autocoder Pro-
gramming, Form J28-6021).

IBM 7070 Autocoder

The full 1BM 7070 Autocoder is an important tool for
writing programs. It contains powerful macro-instruc-
tions, extensive control operations over processing, re-
assembly, multifile procedures, and many output options.

On one hand, Autocoder includes low-level state-
ments that are very much like the 7070 machine lan-
guage; on the other hand, it includes high-level state-
ments, called macro-instructions, which bear mno
resemblance to machine language. The low-level state-
ments offer more flexibility and control over each detail
of the coding. The high-level statements provide a more

IBM 7070 Data Processing System 13

FORM X28-6417-2
IBM PRINTED IN U.S.A,
Program 7070 AUTOCODER CODING SHEET Identification g
Programmed by Page No.Li_]| of
Date 12
Line Label peration| OPERAND Basic Aufoeoder-—»' Autocoder ——»|
3 5|6 15]16 20j21 25 30 35 45 50 55 60! 65 70 73|
o, 444 Lo S R R S T U U A S S PR S S S ST L R A R R L
0\2 Lol 1 1 1 1.1 1l L U DU T B i IS TR WY SN S SN SN S S N S I U W N SN U T N W W I B IR 1 1 FER I S WA U SN T S L
03 X L)) L L L 4)
04 . . L S S S N S S S S SR N SR
0|5| [t J IS S NS T S B F S 1 1 WD WD U WU TN TSN U WU S WU S S § TS WO A N Y S NOU S N W T T S W W W S | D T T I S 14 & 1 1
06‘ 1 n il L1 1 1 1 i il L IR U S S S SR N NS N S | A 1 1 1 I VIS TR T WS SO Y SRS T S B 1
°|7; F R 4t 11 TR B | I T T 1 1 T S T T | |- — 1 | DR T T S N U S N U T T T N T T |) N WY RS S N USVUS U U N U S SR S ¥
08, L N L L L s L L Ly X T L)
OAQI B RS WS SN I RN DU S W't 1 L1 E U D W S WUON B N | i 1 il 11 I T WY NN RS SN W TN DU T R S 1.l) N N T S V00 N TR T N N O S 1
]Ao 1 - 1 11 U S WD W U WAUOW NN WY W VO B S § L 1 N T T S S U WA T NN TUUON TR WO M { 11 1 F I T WS WU N B 1 b1 a1
Lt L e N X R L L L N o L X L) N L
[R I R T S S A S S R R S SR
I|3| P T T T S S BT 1.0 a1 N T S S [NN DRUNS S NN T S N | R B | 1 U I U NN S0 N W TR N U S N S S W'Y [FEEED SN NS U S R S N U S U S 't
I|4l 1l I T T Y G i1 11 N TR OO T ORI AN NS SO SOy TN Y DU RN SN W W | 1 N N TN NN RS T N S B 1l 1.1 11 1 U N T T W B I T S S B T
15, U S R NS S S| IR R P E S RS R S W L Lo La 6 PRI N S SR RS BRI
||6| L1 [UOD T WO S S B § Ll 11) T S B B I T T N N TS VU B | L T S — TR T S | § S T N T SN N B | U T S SR S N | L34 n
|J7L 1 N N N S | § D I - U S S T U N RS S W N | I L § I S S [W W S - NS T N TS SR N B 1 TS N S R N 1 L1 1 VR "
'8 | T P S R R S R L e R BT S SR
ngx 1 11 4 1 1 L il 1 I - 1 1 Y I W -1 Y N T IS Wt L I - i S ENE T S S 111 T TS W S B T | I
zloA P IS W S N TS B) 1} 11 N OSSN N VRN TR TR NN SN N (NS SR TN NS S T S N | S I T Y RN T N U0) S T U WO S S | B WS NS N T VN WU SO S NN N U S —
zlll L T LA T S S 1 11 WU TS TN TN SN TN Y SN WA S S WO VR N S N S— 1 § N Y U Y TR WEVSIOY AU Wvon EEVU IO SN W SN W N S W' 11 T 1 111) 1
2421 IS S W S W O S | | N RS NS W TN WO D VRS WS D T SV IS N TN S | I S W N (NS NN SO0 Oy U S W T S W | I NSNS N TR U S G N N SN N S 1
23, TR S ST IS TV I NS B SO Loy Lol gy N R T N R S ST WS WU T S S A W WA S N P SO SR R W S S S SN S
2.4. L TR TR TR T S L4 1 U T S I S S | T T SN S N T T N S | 11 I TS TN W T T | I T T T T § Y IS N TN N S U Y IS VO B N NS
215. i | I T | Lol 11 S S S T NS TN TN T Y SN N T N S | L Y S WY U V00 N U NS I TN I S S W N B 1 S N U S TS T N N Sy U SO T |
PR YRS W SR Y WS N S B | 111 DN T W [N U S TN T T S N N S N S B B N TN RN U N N U N N TS TR S U TS TR SO T N 1 N S S U N T N T T T G S |
L PR S S S WS R B 114 TARTURN T NS T YT S S T AN N (T S B S S N P NS ST TN DO WA N S SN TS N T S WA N A T T S T S S WA WO SN NN S SO SR
L1 F— I W S N S ' G OSSN - | I SN W T W T N SO 1S O SN TS W N 1 i1 T SR T T R S IS T N O TV S S | S N U B N N W T SR S N 1
A B R R E S G A R R SR N R S S S S T BT M
L Lo e L L C L Ly Lt Lo 1 . 1 ST TN NS TS ST L L " N G U N
FIGURE 9. AUTOCODER CODING SHEET

convenient way to state a problem. They usually pro-
duce a number of machine-language instructions.

In addition to the macro statements provided by the
IBM 7070 Autocoder, the user may add his own macro-
instructions. Thus the language can be extended.

BM 7070 Autocoder is described in the 7070 Data
Processing System Bulletin (IBM 7070 Autocoder,
Form J28-6032).

7070 Autocoder Coding Sheet

Source language programs are written on the I1BM
7070 Autocoder Coding Sheet, Form X24-6417 (Figure
9). This form is used for both Basic Autocoder and full
Autocoder, and its use is illustrated in the bulletins
mentioned. The sheet indicates the column numbers of
the Autocoder load card (Figure 10), punched from
each line of the sheet.

14

IBM 7070 Basic Fortran

The Fortran language is a concise, convenient means
of stating the steps to be carried out by the 1BM 7070
Data Processing System in solving many types of prob-
lems, particularly in scientific and technical fields.
As the language is simple, and the 7070, with the For-
tran compiler program and the basic Autocoder assem-
bly program, performs most of the clerical work,
Fortran affords a significant reduction in the time re-
quired to write programs. '

Virtually any numerical procedure can be expressed
in the Fortran language. Arithmetic formulas are stated
in a language closely resembling that of mathematics.
Iterative processes can be easily governed by control
statements and arithmetic statements. Input and output
are simply handled by appropriate statements.

The basic 7070 Fortran system described here is de-
signed for use with the basic 1BM 7070 Data Processing
System. The basic Fortran language is acceptable to the
Fortran program produced for the expanded 1BM 7070
Data Processing System.

GENERAL DESCRIPTION: The function of the basic
Fortran system for the 1BM 7070 is to convert a
source program written in Fortran language into
7070 machine language. The system consists of
two major parts:

1. The compiler, basic Fortran, which translates
the Fortran language statements (source program)
into basic Autocoder (symbolic) language.

2. The assembler, basic Autocoder, which con-
verts the symbolic statements produced by the
compiler into a machine language program (the
object program).

The operation of the compiler and the assem-
bler are automatic so that the programmer need
use only the 7070 Fortran language. Debugging
programs can be done using the Fortran source
program. Accordingly, knowledge of the machine
language or basic Autocoder is not required.

MACHINE REQUIREMENTS: Basic Fortran requires a
system that consists of the 1BM 7070, one 1BM
7500 Card Reader, and one 1BM 7550 Card
Punch.

WRITING THE SOURCE PROGRAM: The Fortran lan-
guage, which is used to write source programs for
the basic Fortran system, is a language the struc-

ture of which closely resembles the language of
mathematics. This is best described by an example
of an arithmetic statement in the Fortran language.
Consider the algebraic formula for one of the two
roots of a quadratic equation:

ROOT = [—B + YV B? — 4AC)/2A

The Fortran language statement that creates a
machine language program for this calculation is:

ROOT =
(—B+SQRTF(B**2—-4.0¥*A*C))/(2.0*A)

In this example the symbols denote the follow-
ing:
1. The meaning of the entire statement is: evalu-
ate the expression on the right side of the equal

sign and make this the value of the variable on the
left.

2. The symbol * denotes multiplication.

3. The symbol ** denotes exponentiation; e. g.,
A**3 means A3

4. SQRTF (arg.) is a subroutine that computes the
square root of the argument enclosed in paren-
theses.

In addition to arithmetic statements, the basic
Fortran system includes other statements to specify
divisions, transfers, and input/output functions.
Full description of basic Autocoder is found in
the BM 7070 Data Processing System Bulletin,
Basic Fortran, Form J28-6037.

1
1
page| LINE LABEL 0PERATION [S=OFERAND 7070 BASIC AUTORODER Ll AUTOCODER — > oewTiricaTion
- T 7
H | !
PAGE | LINE LABEL OPERATION |,, OPERAND AUTOCODER } ss| IDENTIFICATION
21 OPERAND BASIC AUTOCODER 4.] ASSE“BLED INSTRUCTION l LOCATION

0 00000000000llllllllIl0IlDnIlOIlnIlll000000000000000000000000000000'00000000000000000000
1 581!910|l121314|516171ll!2ﬂ212223242526212!293u3132333‘3535371839404]4243“454647404950515253545556515!596018162535‘558657“6970717273747575777!79”
1 IBRRRRRERRR R R R R AR R R RS R R R R R R R R R R R R R R R R R AR R R R R R R R R ERERERRE BRI
2 2222222222222222 OPERAND — AUTOCODER 22222

3 33&33333333333333333333

1
4 4444444444444444 OPERAND-BASIC AUTOCODER J>44444444444444444444

5 55‘55555555555555555555
6 66666656666666666866666666666386666666666666566866666866!66663655656666666666

IBM 7070 AUTOCODER INPUT CARD !

OPERAND —AUTOCODER
PAGE| LINE LABEL OPERATION e IDENTIFICATION
OPERAND— BASIC AUTOCODER bt ILOCAHOI]#
BASIC AUTOCODER OUTPUT
9999999999999999999999999599899 9 99999999999999999599999999999999999999999999999
1234568788101M12BUIBBINBRANRBABBABAN 1 343536 37 38 .39 404142 43 44 4546 4748 49,50 51 5253 54 55 5 57 58 59 60 6162 6 64 65 66 67 6869 7071 1213 T4 75 75 77 718 79 80
1BM

FIGURE 10. AUTOCODER LOAD CARD

IBM 7070 Data Processing System 15

Format of Operation-Code Text

The text discusses each operation code as an entity.
For augmented codes, the Autocoder symbols are in the
Instruction Format section.

The eight sub-paragraphs of the text describe the
various aspects of the operation code, in this sequence:

MACHINE DESCRIPTION: A functional description of
what the operation code accomplishes, what its
purpose is, etc. If the programmer is familiar with
the general format of instructions in the 7070, this
paragraph can teach him how to use this operation
code.

INSTRUCTION FORMAT: A breakdown of the 10 digits
and sign of the instruction, showing the function
of each group of digit positions.

EXAMPLE: A machine-language example of an instruc-
tion using this operation code.

16

DATA FLOW: A brief, general description of the actual
operation taking place, using the schematic of the
programming unit (Figure 8).

REGISTERS AFFECTED: A list of the registers used by
the operation. This includes all accumulators, reg-
isters, the instruction counter, and storage loca-
tions that are used.

TIMING: The duration of the instruction. If the instruc-
tion involves the use of an input/output or storage
unit, the duration of the operation of that unit is
also given.

COMMENTS: Any miscellaneous data that might be
helpful to the programmer — things that should
be kept in mind concerning this operation code.

AUTOCODER EXAMPLE: An example of how this instruc-
tion might be written symbolically, showing the
Autocoder instruction and ‘the machine-language
instruction assembled from it. In each example,
the top line of the Autocoder Coding Sheet is used,
to show the column headings.

Operations Involving Accumulators

Included in this section are all the operations that in-
volve the use of one or more of the accumulators, with
the exception of Branch on Accumulator contents or
sign, and the floating-decimal instructions (table look-
up and disk-storage operations use accumulator 3).

Figure 11 is a categorized list of the codes in this
section, with the operation codes, names, and Auto-
coder mnemonics.

Zero Accumulator # and Add

+13, +23, +33 ZA1, ZA2, ZA3

MACHINE DESCRIPTION: The accumulator specified by
the high-order digit of the operation code is set to
zero. The field-defined portion of the word ad-
dressed by positions 6-9 (indexable) is brought to
the accumulator, to the low-order portion if less
than ten digits are defined. The sign of the accu-
mulator is made the same as that of the data word.

INSTRUCTION FORMAT: S O 1 23 45 6789

S Always +.

0 Designates the accumulator: 1 for accumu-

B lator 1, 2 for accumulator 2, 3 for accu-
mulator 3.

1 Always 3.

23 Indexing word.
45 Field definition.
Address of data word (indexable).

EXAMPLES: To move all of word 0500 to accumula-
tor 1:

S01 23 45 6789

+13 00 09 0500

After this operation is completed, the contents of
word 0500 and accumulator 1 are identical.

To zero accumulator 2 and then add positions
3-5 of word 1645:

S01 23 45 6789

+23 00 35 1645

Contents of word 1645: —81345 60193. Contents
of accumulator 2: —00000 00456, regardless of
contents prior to instruction.

DATA FLOW: The entire contents of the data word, in-
cluding sign, are moved in parallel .to the arith-
metic register. If a full word is field-defined (09 in
positions 4-5), the contents of the arithmetic reg-
ister are moved, in parallel, to the designated ac-
cumulator. If less than a full word is field-defined,
the field in the arithmetic register is moved, one
digit at a time starting with the low-order digit,
through the adder, back to the low-order portion
of the arithmetic register. The contents of the
arithmetic register, including sign, are then sent,
in paralle], to the accumulator, with zeros inserted
for all the high-order positions to the left of the
field-defined digits.

REGISTERS AFFECTED: Arithmetic register, adder, and
specified accumulator.

Operations Involving Accumulators 17

CATEGORIES

OP CODES

NAMES

MNEMONICS

Reset accumulator

+13, +23, +33

Zero accumulator # and add

ZA1, ZA2, ZA3

—13, —23, —33 Zero accumulator # and subtract ZS1, 282, ZS3
Addition and subtraction +14, +24, +34 Add to accumulator # Al, A2, A3
—14, —24, —34 Subtract from accumulator # S1, S2, S3
Multiplication +53 Multiply M
Division —53 Divide D
Absolute Value +16 Zero accumulator 1 and add absolute ZAA
—-16 Zero accumulator 1 and subtract absolute ZSA
+17 Add absolute to accumulator 1 AA
—-17 Subtract absolute from accumulator 1 SA
Store -11, —21, =31 Zero storage and store accumulator # ZST1, ZST2, ZS13
+12, +22, +32 Store accumulator # ST1, ST2, ST3
—12, —22, —32 Store digits from accumulator # and ignore sign STD1, STD2, STD3

Add to storage

+18, +28, +38
—18, —28, —38
+19, +29, +39

Add to storage from accumulator #
Subtract accumulator # from storage
Add to absolute storage from accumulator #

AST, AS2, AS3
§S1, $82, $83
AAS1, AAS2, AAS3

Shift +50 Shift control:
Shift right accumulator # SR1, SR2, SR3
Shift right and round accumulator # SRR1, SRR2, SRR3
Shift left accumulator # SL1, S12, SL3
Shift left and count accumulator # SLC1, SLC2, SLC3
—51 Coupled shift control:
Shift right coupled SR
Shift right and round coupled SRR
Shift left coupled SL
Shift left and count coupled SLC
Shift right from point accumulator # SRS
Shift left from point accumulator # SLS
FIGURE 11. ACCUMULATOR OPERATION CODES
TIMING: The duration of this code depends on the 1, for example, the instruction has the effect of

number of digits in the field. A full word takes
only 36 microseconds, however, because the digits
do not have to be shifted in the arithmetic register
(Figure 12).

Number of

Digit Positions 1 21 3| 4| 5 6| 7| 8| 9|10
Microseconds 36| 48| 48| 48| 60| 60| 60| 72| 72 36
FIGURE 12. TIMING — ZERO ACCUMULATOR # AND

ADD

COMMENTS: Although these codes involve accumula-

18

tors, they are not really arithmetic operations;
there is no addition or subtraction of two values.
The accumulator always takes the sign of the data
word; plus, minus or alpha, regardless of the size
of the field defined.

Accumulator addresses (9991, 9992, or 9993)
can be used, in which cases the addressed accumu-
lator is treated as a core-storage word. 1f the same
accumulator is used, as in zal from accumulator

moving the field to the low-order portion and re-
setting the other positions. For example, if accu-
mulator 1 has —54557 98643, and this instruction
is given: '

S01 23 45 6789

+13 00 03 9991

The result in the accumulator is —00000 05455.
If field definition were 69 instead of 03, the result
would be —00000 08643.

AUTOCODER EXAMPLES (Figures 13 and 14): The sec-

ond example given for this code would be written
symbolically as shown in Figure 13.

The assembly program produces code 23 from
the za2 operation. Field definition (3, 5) specifies
positions 3-5 of an area previously defined as
GEORGE. If GEORGE is a complete word, as in this
example, field definition in the assembled instruc-
tion is the same (35). If GEORGE had been defined
as the six low-order positions of a word, field defi-
nition would be 79. The address of that word is
placed in positions 6-9 of the assembled instruction.

Line Label peration OPERAND Basic Autocoder —>| Autocoder

3 __sle 15)16 20/21 25 30 35 40 a5 50 55 60 65 70 7
ot e _|zA2 leromeE(3,5) it . . | e
FIGURE 13.

Line Label peration OPERAND Basic Autocoder ——-»1 Autocoder

3 5{6 15)i6 20[21 25 30 35 40 45 50 55 60 65 20 7
oL IPETE | 2R3 5‘.0./‘2(.7‘{”.‘/‘)_.1-.X.2.‘£ P S S R S T S SO TR S T]7;. N

FIGURE 14.

To reset accumulator 3 and add position 4 of
saM, indexed, (instruction PETE; Figure 14):

In the example, assume that saM has been de-
fined as a complete word and its location is 1789.
Instruction PETE is assembled as:

S01 23 45 6789

+33 24 44 1789

The number in positions 2-5 of IW 24 is added
algebraically to the 4-digit number in 1789, each
time this instruction is executed.

Zero Accumulator # and Subtract

—13, —23, —33 ZS1, 252, ZS3

MACHINE DESCRIPTION: The field-defined portion of the
word addressed by positions 6-9 (indexable) is
brought to the accumulator specified by position
0, to the low-order portion if less than 10 digits
are defined.

If the operand is + or —, the accumulator gets
the opposite sign; if the operand is alpha, the
accumulator gets an alpha sign.

INSTRUCTION FORMAT: Same as zA#, except for the
sign.

EXAMPLES: To move all of word 0500 to accumulator
1 and change the sign:

S01 23 45 6789

—13 00 09 0500

Contents of 0500: 454380 02004. Contents
of accumulator 1 after the operation: —54380
02004, regardless of previous contents.

To move the three high-order positions of word
1762 to accumulator 3, and change the sign:

S01 23 45 6789

—33 00 02 1762

Contents of 1762: —06000 00000. Contents of
accumulator 3 after the operation: +00000 00060

DATA FLOW: This is the same as for Zero Accumulator
and Add, with this addition: After the high-
order digit of the field is brought from the adder
to the arithmetic register, the sign in the arithmetic
register is tested. If it is 9 (+), it is made 6 (—),
if it is 6, it is made 9. If it is 3 (a), it is retained
as 3.

REGISTERS AFFECTED: Same as Zero Accumulator #
and Add.

TIMING: Same as Zero Accumulator # and Add

CcoMMENTS: The sign of an accumulator can be changed
by using this operation code with its own accumu-
lator. The instruction:

SO01 23 45 6789

—-23 00 09 9992

changes the sign of accumulator 2 from + to —
or vice-versa. There is no change if the sign is
alpha.

Whenever the sign of the operand is alpha, zs#
and za# produce the same result.

AUTOCODER EXAMPLE (Figure 15): Assume that JOE
has been defined as positions 0-5 of word 1551.
Because no indexing or field definition is specified
in the operand, the assembled instruction is:

S01 23 45 6789

-23 00 05 1551

25

OPERAND

40

Autocoder
70

Basic Autocoder —>‘
a5 50 55 60 65

Line Label peroﬁoril»
3 s’s 15)i6 20[21
[P 2352 WOE ., .

.........

1

P ENP ST SR TN ST NN W S S R T Y

FIGURE 15.

Operations Involving Accumulators 19

Add to Accumulator #

+14, +24, +34

Al, A2, A3

MACHINE DESCRIPTION: The field-defined portion of

the word addressed by positions 6-9 (indexable)
is added to the amount in the accumulator, to the
low-order portion if less than 10 digits are defined.
The signs of both factors are taken into account.
The result is in the accumulator after the opera-
tion.

INSTRUCTION FORMAT: S O 1 23 45 6789

Always +

Ol »n

Designates the accumulator: 1 for accu-

mulator 1, 2 for accumulator 2, 3 for ac-
cumulator 3.
1 Always 4

23 Indexing word
45 Field definition
6789 Address of data word (indexable)

EXAMPLES: To add the four low-order positions of

word 0540 to accumulator 2:

SO1 23 45 6789

+24 00 69 EAB
To add all of word 1781 to accumulator 3:
S01 23 45 6789
+34 00 09 1781

DATA FLOW: The entire contents of the data word, in-

20

cluding sign, are moved, in parallel, to the arith-
metic register. The entire contents of the accumu-
lator are moved in parallel to the auxiliary register.
The units position of the field in the arithmetic
register (indicated by the digit in position 5 of
the instruction) is brought to the adder; the units
position of the number in the auxiliary register is
brought to the adder at the same time. The result
goes from the adder to the units position of the
arithmetic register; a carry 1, if any, is retained in
the adder. If the operation is an actual subtraction
(obtaining the difference in the two numbers), the
digit from the arithmetic register is converted to
its 10’s complement as it enters the adder: a 1
becomes a 9, a 2 becomes an 8, etc; a 0 remains
as a 0. (For all digits after the lowest-order non-
zero digit, the 9’s complement is used.) This is
called complement add. Actual addition (obtain-
ing the sum of two numbers, both plus or both
minus) is called true add.

In the same way, the 10’s digits of the two
numbers are brought to the adder, and are added

together, along with a carry 1, if any, from the
addition of the units digits. The process continues
until all the digits of the defined field in the arith-
metic register, and all the significant digits in the
auxiliary register have been added, and the com-
plete result is in the arithmetic register. This takes
as many add cycles as there are field-defined digits
in the arithmetic register or significant digits in
the auxiliary register, whichever is greater. If the
result (in a complement-add operation) must be
recomplemented, the result in the arithmetic reg-
ister is brought through the adder and converted
to its 10’s complement (recomplement is de-
scribed functionally in the Timing section). For all
cases in which recomplementing is required, the
sign of the result is changed from plus to minus,
or vice-versa.

In either true add or complement add, if the
original accumulator sign is alpha, it is not
changed. If the storage-word sign is alpha, the re-
sult is made alpha.

The contents of the arithmetic register are sent
to the accumulator, with zeros inserted for the
high-order positions to the left of the result.

REGISTERS AFFECTED: The accumulator, arithmetic reg-

ister, and auxiliary register.

TIMING: The duration of this instruction depends on

the number of significant digits in the result, and
on whether the operation is a true add or com-
plement add. If the result is the sum of the two
numbers, the operation is called true add. If the
result is the difference of the two numbers, causing
the digits in one of the factors to be complemented
before entering the adder, the operation is called
complement add. 1f a complement-add operation
causes the accumulator to change its sign (because
the original accumulator value was smaller in ab-
solute value than the data from storage), a re-
complement automatically takes place at the con-
clusion of the operation. For example:

Accumulator 2 contains the value +123
The storage word value is —127
The operation is: +24, add

to accumulator 2

The adder adds: 123
(10’s complement of 127) 873
996

This is complement-add. The value 996 is the
10’s complement of the correct answer, —004. At
the end of the operation, the 996 is recomple-
mented to —004.

Let’s look at a complement-add operation that
does not need recomplementing:

Accumulator 2 contains the value: —456
The storage-word value is: +421
The operation is: +24, add
to accumulator 2
The adder adds: 456
(10’s complement of 421) 579
—(1) 035

Note that the result does not need recomplement-
ing if the accumuluator value is greater than that
of the field-defined storage word. Note also that
the carry 1 is not needed to obtain the correct re-
sult of +35, whereas a carry in a true-add opera-
tion is part of the total (4305 added to +759
is +1 064). Complement-add without recomple-
ment thus takes less time than true-add with carry,
which in turn takes less time than complement-add
with recomplement.

Figure 16 indicates the duration in microseconds
of accumulator addition/subtraction operations, as
determined by field size.

Number of

Digit Positions 1 21 3] 4{ 5| 6| 7} 8} 9| 10
True Add to

Accumulator 48 | 48 | 48 | 60 | 60 | 60} 72| 72| 72| 72

Complement
Add to Acc. 36|48 | 48 148 160 | 60| 60| 72| 72| 72

If Recomplement 60| 60)|72 |84 184]|96/108]108/120[132

FIGURE 16. TIMING — ADD TO ACCUMULATOR #

COMMENTS: An add operation obtains either the sum
or the difference of the two factors, depending on
the signs: the sum if the signs are the same, the
difference if they are different. Three factors in-
fluence the value and sign of the result in an add
instruction:

1. The sign of the storage word (+ or —)

2. The sign of the accumulator, prior to the op-
eration (+ or —)
3. The operation (add or subtract)

Figure 17 is a chart showing the signs and val-
ues of the results of these combinations.

If either factor has an alpha sign, its value is
considered plus in an arithmetic operation. Re-

ORIGINAL
SUM OF SIGN OF VALUE OF SIGN OF
ACCUMULATOR | DATA WORD | OPERATION RESULT RESULT
+ + Add Sum +
+ - Add Difference |Sign of
Greater
Value
- + Add Difference [Sign of
Greater
Value
- - Add Sum -
FIGURE 17. ADD TO ACCUMULATOR # — PLUS AND

MINUS FACTORS

gardless of the value of the result, the sign of the
result is alpha if either factor is alpha (Figure 18).

Any time the contents of an accumulator are
brought to zero (by adding an amount equal to
it but opposite in sign if neither sign is alpha), the
sign is not changed. If a +7 from storage is added
to a —7 in an accumulator, the result in the accu-
mulator is —O.

ORIGINAL VALUE
SIGN OF SIGN OF OF SIGN OF
ACCUMULATOR | DATA WORD | OPERATION RESULT RESULT
+ Alpha Add Sum Alpha
- Alpha Add Difference | Alpha
Alpha + Add Sum Alpha
Alpha - Add Difference | Alpha
Alpha Alpha Add Sum Alpha
FIGURE 18. ADD TO ACCUMULATOR # — ALPHA

FACTORS

AUTOCODER EXAMPLE (Figure 19): Assume that ALPHA
has been defined as the five high-order positions of
word 0660. The assembled instruction is:

S01 23 45 6789
+14 74 04 0660

Subtract from Accumulator #

—14, —24, —34 $1, 52, S3

MACHINE DESCRIPTION: The field-defined portion of the
word addressed by positions 6-9 (indexable) is
subtracted from the amount in the accumulator,
from the low-order portion if less than 10 digits
are field-defined. The signs of both factors are
taken into account. The result is in the accumula-
tor after the operation. .

INSTRUCTION FORMAT: Same as A#, except for the sign.

OPERAND

La ne Label $pemh 4
_20j21 30 3%
A ‘....,.14/4 AI.LPJMAA-.X.Z

Basic Autocoder ——‘ Autocoder ——J
s 50 55 60 65 70 7;_!

P TR Y YA N U DR T SR R U S SR S UY S ST SN SO SO ST WO S S S

FIGURE 19.

Operations Involving Accumulators 21

EXAMPLES: To subtract the five high-order positions of
word 0881 from the amount in accumulator 3:

SO1 23 45 6789
—34 00 04 0881

To subtract the units position of word 2320
from the amount already in accumulator 1:

SO01 23 45 6789

—14 00 99 2320
DATA FLOW: Same as for A#
REGISTERS AFFECTED: Same as for a#
TIMING: Same as for A#

COMMENTS: A subtract operation obtains the difference
of the two factors if the signs are the same, and
the sum of the factors if the signs are different.
As with the add operation codes, the result is in-
fluenced by the sign of the storage word and the
sign of the accumulator, as well as by the subtract
instruction (Figure 20).

ORIGINAL| SIGN OF VALUE
SIGN OF DATA OF
ACCUM. | WORD | OPER. RESULT SIGN OF RESULT
+ + Subtract| Difference| + if acc. value greater
— if storage value greater
+ - Subtract| Sum +
- + Subtract| Sum -
- - Subtract| Difference| + if storage value greater
— if acc. valve greater
FIGURE 20. SUBTRACT FROM ACCUMULATOR # —_

PLUS AND MINUS FACTORS

If either factor is alpha, its value is considered
plus in determining true or complement add. It
makes the sign of the result alpha in all cases (Fig-

Any time the contents of an accumulator are
brought to zero (if neither factor is alpha), the
sign is not changed. If a +7 in storage is sub-
tracted from -+7 in an accumulator, the result in
the accumulator is +0.

An accumulator can be brought to zero by a
subtract instruction, with the address of that ac-
cumulator, regardless of its sign. For example, to
bring accumulator 1 to zero:

SO1 23 45 6789
—14 00 09 9991

The sign of the accumulator is un?hanged.

AUTOCODER EXAMPLE (Figure 22): Assume that BETA
has been defined as positions 5-9 of word 3778.

The assembled instruction is:

0L 23 45 6789
-24 00 59 3778

Multiply
+53 M

MACHINE DESCRIPTION: The arithmetic unit can multi-
ply a 10-digit number by a 10-digit number to
produce a 20-digit product. Either factor can be
plus or minus, and the sign of the product con-
forms to the rules of algebra: plus times plus equals
plus, plus times minus equals minus, and minus
times minus equals plus. If either sign is alpha,
the sign of the product is alpha.

The multiplicand must be placed in accumulator
3 in a previous instruction. The multiply operation
multiplies this number by the field-defined portion

ure 21). of the word addressed by positions 6-9 (indexable).
The product is developed in accumulators 1 and

ORIGINAL VALUE 2, but is not affected by the previous contents of
SIGN OF SIGN OF OF [SIGNOF either accumulator; they are automatically reset

ACCUMULATOR DATA WORD OPERATION RESULT RESULT before the mu]tlply Operation beginS.

+ Alpha Subtract | Difference | Alpha At the completion of the operation, the low-
- Alpha Subtract | Sum Alpha order portion of the product is in accumulator 2,
Alpha + Subtract | Difference | Alpha with the units position in the units position of the
Alpha - Subtract Sum Alpha) s 10 digi] h
Alpha Alpha Subtract | Difference | Alpha accymulator (if 'thc.: product is 10 digits or less, t e
entire product is in accumulator 2). The rqultl-

FIGURE 21. SUBTRACT FROM ACCUMULATOR # — plicand is in accumulator 3 at completion of the

ALPHA FACTORS operation.

Line Label rperoﬂon OPERAND Basic Autocoder ——>1 Autocoder ——p»!
13 5[6 15)16 202} 25 30 35 45 50 55 60 65 70 79
o v |S2 . IBETA L N
FIGURE 22.

22

INSTRUCTION FORMAT: SO01 23 45 6789

S01 +53

23 Indexing word

45 Field definition of the multiplier

6789 Core-storage address of the multiplier

EXAMPLES: To multiply the 10-digit number in word

1230 by the 10-digit number in word 1735:
SO1 23 45 6789

+33 00 09 1230 (multiplicand to acc. 3)

+53 00 09 1735 (20-digit product, de-
veloped in acc. 1 and
2)

To multiply positions 0-6 of word 3310 by po-
sitions 3-9 of word 3316:

01 23 45 6789
+33 00 06 3310 (multiplicand to acc. 3)
+53 00 39 3316 (14-digit product, 10

low-order positions in

acc. 2, 4 high-order
positions in acc. 1)

DATA FLOW: Multiplication is accomplished by the

quadrupler method. At the start of the operation,
the multiplier is brought from core storage to accu-
mulator 2, to the low-order portion if less than
10 digits are field-defined. Then, factors of 1, 2,
and 4 times the value of the multiplicand in accu-
mulator 3 are developed and stored in 3 registers
(M = value of multiplicand):

M in the arithmetic register
2M in accumulator 3
4M in the auxiliary register

If M is a 10-digit number, 2M and 4M may be-
come 11-digit numbers. Accumulator 3 and the
auxiliary register each have an extra position, used
in multiply operations, to take care of this possi-
bility.

In the multiply operations, these factors are
added together as determined by each multiplier
digit, as follows:

Multiplier-digit value Partial product developed

M
2M

2M + M

4M

AM 4+ M
4M + 2M
M4 2M + M
4M + 4M

4M + 4M + M

O 00 NN R W RN

The multiplier digits are used in right-to-left
(low-order to high-order) sequence. The M values
are added as previously listed, for the units digit of
the multiplier (in the units position of accumulator
2), to accumulator 1. Accumulators 1 and 2 are
shifted one position to the right, dropping off the
multiplier units digit and shifting the units position
of the partial product from accumulator 1 to the
high-order position of accumulator 2.

The process repeats for the 10’s digit of the
multiplier (now in the units position of accumu-
lator 2). The M values of the multiplicand are
added according to this digit, and this total is
added to the partial product in accumulator 1.
Another right-shift takes place, and the process
repeats for each multiplier digit. If a multiplier
digit is zero, there is a shift, but no adding of an
M value. At the conclusion of the multiply opera-
tion, M is returned to accumulator 3.

REGISTERS AFFECTED: All accumulators, the arithmetic

register, the auxiliary register, and the adder. (Ac-
cumulator 3 contains the multiplicand before and
after the operation.)

TIMING: The duration of a multiply operation depends

on the values of the multiplier digits as well as the
number of them. The quadrupler method requires
1, 2, or 3 additions of the multiplicand multiples
to obtain each partial product, depending on the
value of the multiplier digit.

The formula in timing a multiply operation is
as follows: Total number of microseconds = 48
[(number of 1’s, 2’s, and 4’s in the multiplier) +2
(number of 3’s, 5’s, 6’s, and 8’s in the multiplier)
+3 (number of 7’s and 9’s in the multiplier) +
4 (number of zeros in the multiplier) + 4 (number
of zero groups in the multiplier)] + 180. If the
total is not a multiple of 12, use next highest mul-
tiple of 12.

A zero group is a zero or two-or-more adjacent
zeros. For timing purposes, the multiplier is con-
sidered a 10-digit number. Therefore, if field defi-
nition specifies a multiplier of less than 10 digits,
the high-order zeros constitute a zero group.

COMMENTS: A number is multiplied by itself, if accu-

mulator 3 is the address of the multiply instruc-
tion. If the value N is in word 0504, these two
instructions obtain N2:

SO1 23 45 6789
ZA3 +33 00 09 0504
M +53 00 09 9993

If this instruction is next, N3 is obtained:
M +53 00 09 9992

Operations Involving Accumulators 23

Line Label peration OPERAND Basic Autocoder —»1 Autocoder

3 sle 15)i6 20[21 25 30 35 40 a5 50 55 60 65 70 75
[T N ZA2 RATE. . .\ i " - R

0,2 . IDEDOCTIONS L L L . ; T
FIGURE 23.

Instructions

Repeating this instruction obtains N*, etc. If
the contents of accumulator 2 are stored in accu-
mulator 3 after each multiplication, the values ob-
tained are N2, N+, N¥, etc., as long as the product
values do not exceed 10 digit positions in size.

Polynomial nesting is the term given to adding
variables to increasing powers of a constant:

a + bx +cx2 + dx3 -+ ext*

This can be performed efficiently on the 7070,
because of the fact that the multiplicand (x) needs
to be brought to accumulator 3 only once. Each
product is the multiplier to obtain the next prod-
uct.

Result in
Accumulator #2

Zero-add x to Acc. #3

Multiply by e ex

Add d to Acc. #2 d - ex

Multiply x by contents of Acc. #2 dx 4 €x2

Add ¢ to Acc. #2 ¢ + dx 4 ex2
Multiply x by contents of Acc. #2 cx + dx2 + ex3

Add b to Acc. #2 b 4 cx + dx2 4 ex3
Multiply x by contents of Acc. #2 bx 4 cx2 4 dx3 4- ex#

Add a to Acc. #2

a + bx 4 cx2 + dx3 4 ex¢

AUTOCODER EXAMPLE (Figure 23): Assume that RATE

has been defined as positions 0-4 of word 2468,
and DEDUCTIONS as positions 8 and 9 of the same
word. The assembled instructions are:

So1 23 45 6789

+33 00 04 2468
+53 00 89 2468

Divide

—53

D

MACHINE DESCRIPTION: A 20-digit dividend is divided

24

by a 10-digit divisor, to obtain a 10-digit quotient
and a 10-digit remainder, with full sign control.
Prior to the divide instruction, the dividend must
be in accumulators 1 and 2, with the high-order
portion in accumulator 1. The sign of accumulator
1 determines the sign of the dividend, in all cases.
The divisor is the field-defined portion of the word
addressed by positions 6-9 (indexable).

The absolute value of the divisor must be great-
er than the absolute value of the portion of the
dividend in accumulator 1, at the start of the divide
operation.

At the conclusion of the divide operation, the
quotient is in accumulator 2, the remainder is in
accumulator 1, and the divisor is in accumulator 3.

INSTRUCTION FORMAT: SO01 23 45 6789

S01 -53

23 Indexing word

45 Field definition of divisor
6789 Address of divisor (indexable)

EXAMPLES: To divide a 20-digit number, in words 1656

and 1657 (high-order portion of dividend in 1656),
by positions 5-9 of word 1707:

SO1 23 45 6789
+13 00 09 1656
+23 00 09 1657
=53 00 59 1707

To divide a 12-digit number by a 4-digit num-
ber; the 10 low-order positions of the dividend are
in word 2400, indexed by positions 2-5 of IW 62.
The two high-order dividend digits are in positions
8-9 of the next word, 2401 indexed by IW 62;
and the divisor is in positions 4-7 of that same
word:

SO1 23 45 6789
+23 62 09 2400
+13 62 89 2401
=53 62 47 2401

DATA FLOW: At the start of the divide operation, the

divisor is reset-added into accumulator 3, to the
low-order portion if less than 10 digits are field-
defined (it is brought via the arithmetic register
and the adder).

Tae signs of accumulators 1 and 3 are com-
pared. If they are the same, accumulator 2, which
will contain the quotient when the operation is
completed, is given a plus sign. If they are differ-
ent, accumulator 2 gets a minus sign. If either sign
is alpha, accumulator 2 gets an alpha sign.

The high-order digit of accumulator 2 is joined
with the 10 digits in accumulator 1, to form an
11-digit number; the digit from accumulator 2 is
the units digit of this number. Accumulator 1 is
able to contain 11 digits for this operation. The
divisor in accumulator 3 is subtracted from this

11-digit number. (As the digits of the 11-digit
number go to the adder for this operation, the 10
low-order digits go to the synchronizer register;
they will be needed later.) A test is made to de-
termine whether this subtraction brought the 11-
digit number below zero. If it has not, a 1 is in-
serted into a special one-digit register, called the
quotient register. The operation repeats — the di-
visor is again subtracted from the 11-digit number,
and a 1 is added to the quotient register — until
the below-zero condition is reached. (Each time,
the 10 low-order digits of the 11-digit number are
moved to the synchronizer register as they are
brought to the adder for the subtract operation.)
When the below-zero condition is reached, the cor-
rect high-order digit of the quotient is now in the
one-digit register. This digit is moved to the high-
order position of accumulator 2 (this position was
vacated when the 11-digit number was formed).

Accumulator 2 is shifted one position to the left,
moving the quotient digit around to the units posi-
tion. The next 11-digit dividend consists of the
10-digit number in the synchronizer register; and
the digit that was originally second high-order in
accumulator 2, as the units digit. This number is
brought to the adder along with the divisor, and
the first subtraction operation toward obtaining the
next quotient digit takes place. The result of this
first subtraction goes to accumulator 1.

The operation continues until 10 quotient digits
are developed. The synchronizer register contains
the remainder, and this is moved to accumulator 1.

REGISTERS AFFECTED: All three accumulators, the arith-

metic register, the adder, and the special quotient
register.

TIMING: Division timing is determined by the sum of

the quotient digits. For example, the sum of the
digits in a quotient of 51326 is: 5+ 1+3 +
24+6=17.

The formula for timing a division operation is as
follows:

Total number of microseconds = 192 + 48 (10
+ sum of the quotient digits).

COMMENTS: A divide operation always divides the en-

tire contents of accumulator 3 into the entire con-
tents of accumulators 1 and 2. For this reason,
accumulators 1 and 2 must each be programmed
to contain part of the dividend, or all zeros, prior

to the divide instruction. Note that the sign of ac-
cumulator 2 in a divide operation is ignored; the
sign of accumulator 1 is considered the sign of the
entire 20-digit dividend. If the dividend is 10 digits
or less, and goes entirely in accumulator 2 for the
divide operation, accumulator 1 must be set to zero
and given the correct sign.

Decimal-point alignment is often the determin-
ing factor in positioning the dividend in accumu-
lators 1 and 2. The dividend can be positioned
correctly by use of this formula, in which D rep-
resents the number of digit positions to the right
of the decimal:

D in the divisor

+ D desired in the quotient

= D in the dividend

If the quotient is to be half-adjusted, the divi-
dend should have one additional position to the
right of the decimal. For example, total hours are
divided into total miles, to obtain velocity:

The hours value has two decimal places: hh.hh
It is desired to obtain velocity to three
places: VV.VVV

The miles are to two places: mmm.mm
D in divisor h =2
D desired in quotient V =3
+ 1 for half-adjusting =1

total D needed for dividend M = 6

The dividend itself has only two positions to the
right of the decimal. Therefore, it should be posi-
tioned: mmm.mmOQOO0.

The greater the dividend can be made in relation
to the value of the divisor, the more exact the quo-
tient will be. For example, the 10-digit number
00000 22000 divided by 00000 00007, is 00000
03142. The 10-digit number 22000 00000 divided
by 00000 00007, is 03142 85714. Keep in mind,
however, that the absolute value of that portion of
the dividend in accumulator 1 must be less than
the absolute value of the divisor. (Accumulator 1
cannot be used for the divisor, because of this
rule; accumulator 2 or 3 can, however.)

The sign of the quotient is determined by the
signs of the divisor and dividend. If they are the
same, the quotient is plus; if they are different, the

Operations Involving Accumulators 25

quotient is minus. The remainder always has the
same sign as the dividend (Figure 24).

If the and the the and the
divisor is: dividend is: quotient is: remainder is:
+ + + -+
¥ — — —
- + - +
— — + -
FIGURE 24. DIVIDE — PLUS AND MINUS FACTORS

If either the divisor or dividend is alphabetic,
the quotient is alphabetic (Figure 25).

If the and the the and the
divisor is: dividend is: quotient is: remainder is:
+ Alpha Alpha Alpha
- Alpha Alpha Alpha
Alpha + Alpha +
Alpha - Alpha -
Alpha Alpha Alpha Alpha
FIGURE 25. DIVIDE — ALPHA FACTORS
AUTOCODER EXAMPLE (Figure 26):
MON: Positions 6-9 of word 2101
TUES: Word 2102 ‘
WED: Positions 0-5 of word 1789
The assembled instructions are:
S01 23 45 6789
+13 00 69 2101
+23 00 09 2102
—53 00 05 1789
Zero Accumulator 1 and Add Absolute
+16 ZAA

MACHINE DESCRIPTION: The field-defined portion of the
storage word addressed by positions 6-9 (index-
able) is brought to accumulator 1, to the low-order

portion if less than 10 digits are field-defined. Re-
gardless of the storage-word sign, 4+, —, or alpha,
the accumulator becomes plus.

INSTRUCTION FORMAT: SO1 23 45 6789

S01 +16
23 Indexing word
45 Field definition
6789 Address of data word
EXAMPLES: To move the four high-order positions of
word 1689 to accumulator 1, and give it a plus
sign:
SOl 23 45 6789
+16 00 03 1689

Contents of word 1689: —34517 78400. Contents
of accumulator 1 after operation: +00000 03451,
regardless of previous contents.

DATA FLOW: Same as for zero accumulator # and add,
with this exception: After the high-order digit of
the field is brought from the adder to the arith-
metic register, the sign in the arithmetic register is
setto 9 (+).

REGISTERS AFFECTED: The arithmetic register, the
adder, and accumulator 1.

TIMING: Same as zA#.

CoMMENTS: This instruction can be used with accumu-
lator 1 only. Thus, the number 1 is not needed in
the Autocoder mnemonic.

The value in accumulator 1 can be guaranteed
to have a plus value, regardless of its previo