
Systems Reference Library

IBM 7040/7044 Remote Computing System

Preliminary Specifications

This publication provides the information necessary to
plan for the use of the IBM 7040/7044 Remote Comput­
ing System. It contains a description of the system,
which provides up to 40 remotely located users with
concurrent access to a computer. This publication also
describes the Remote Computing System language,
which is similar to the FORTRAN language.

Two methods of using the Remote Computing Sys­
tem are mentioned. The first method, called "conversa­
tional processing," will become available first and is
described in detail. The second method, called "batch
processing," which will become available later, is de­
scribed briefly.

File No. 7040-25
Form C28-6800-0

Pref ace

This publication has been written for those users who
have a basic knowledge of FORTRA1' programming. It is
assumed that the reader is familiar with the General
Information Manual FORTRAN, Form F28-8074.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N. Y. 10020

© 1964 by International Business Machines Corporation

Part 1. General Information
Introduction to the IBM Remote Computing System.

The Approach
System Concepts

Computer and Terminals
Command Mode
Program Mode.

Source Language Debugging.
Diagnostic Structure
Value Manipulation
Debugging Statements .

Part 2. Equipment for Remote Computing
Computing Center Equipment
Terminal Equipment.

The User's Terminal Console.
Description of the IBM 1052 Printer-Keyboard.
Description of the IBM 1056 Card Reader
Description of the IBM 1057 Card Punch.

Initial Setup of the Terminal.
Terminal-Computer Connection.

Terminal Operating Procedures.
Procedures for Keyboard Input .
Procedures for Card Input .
Regaining Control .
End of Terminal Operation

5
5
5
6
6
6
6
6
6
7
7

8
8
8
8
8
9
9
9

10
10
11
11
12
12

Contents

Part 3. Programming for Remote Computing
Basic Information .

Entry Format
Status Indicators
Status Words
Comment Codes
Process Code CC

Language...........
Program Statements
Assignment Statements
Control Statements
Declarative Statements
Type Declaration Statements
Input/Output Statements.
Program Defining Statements
Operating Statements
Control Statements .
Modification Statements
Test Statements.
Display Statements .
Input/ Output
Program Called Services .

Part 4. Examples ...

Appendix: Comparison with Fortran Systems.

Index

13
13
13
13
14
14
14
15
15
16
16
17
18
19
23
24
25
26
27
27
28
29

30

37

39

Introduction to the IBM Remote
Computing System
The IBM 7040/7044 Remote Computing System is a
programming system designed to provide concurrent
computer access to a maximum of 40 remotely located
users. The programming language employed by the
user is upwardly compatible with most FORTRAN IV

processors and is augmented by a set of operating
statements. The user communicates with the system
either in a conversational manner in which his input is
processed one statement at a time, or in a batch manner
in which the unit of processing is an entire program.

The design of the Remote Computing System is
aimed at accommodating the following demands:

The remote user does not have access to experts for
programming assistance and advice. If he uses a prob­
lem-oriented language to express his problem, he re­
quires that the request for and display of debugging
data be consistent with this programming language.

Because the remote user operates the machine him­
self when processing his jobs, there is no machine oper­
ator to regulate the system or to perform console oper­
ations. The· lack of a machine operator requires that
the operating statements used to regulate the system
should be similar to the programming language of the
system. That is, the remote user should be able to regu­
late the system using statements that can be entered in
the same format as program statements. Similarly, the
lack of a machine operator requires that the remote
user be given access to many facilities available to the
machine operator in the form of console buttons, lights,
and switches. He also needs the ability to stop his ma­
chine at any time without loss of data, so that he can
perform such simple functions as changing printer
paper, placing more input cards in a reader, or discon­
tinuing a job.

The remote user is very sensitive to high input/out­
put volumes. He must be able to modify decks without
their complete retransmission, and he should have the
option to list and inspect output data selectively, rather
than be forced to transmit entire output files. Also in
this spirit, he desires to keep his various decks in ran­
dom storage where -they are quickly and conveniently
available for modification, processing, or review.

The remote user should be given the impression that
he is the only user an<l that he is in complete control of
the situation. More specifically, in a time-sharing en­
vironment, he should be totally secure from unwanted,

Part 1. General Information

possibly destructive, interaction by others. Finally, the
remote user must be able to begin his jobs any time
without waiting for other users and to continue using
the system as long as is necessary.

These demands are met in the following ways:
Output data is as problem oriented as the source

language. The source language is at least as easy to
learn as the FORTRAN language.

Diagnostic messages and logical analysis are definite
enough to allow program debugging to take place at
the same level as program construction.

The user has immediate and sustained access to the
computer.

The user has the ability to execute and alter pro­
grams, to change values, variables, and formulas, and
to request information selectively.

Each user will be assigned an identification code
that will be used by the Remote Computing System to
determine which programs in its library belong to
which user. Each time a user begins operating from a
terminal, he will enter his identification code to gain
access to his previously entered programs and to iden­
tify new programs about to be entered. The identifica­
tion code also prevents users from executing, changing,
or destroying other users' programs.

The print volume may be minimized, without loss of
quality, on demand of the user.

The Approach
The approach to satisfying these demands fuses the
old technique of interpretive execution with the rela­
tively new one of time sharing. Interpretive execution
retains all the information contained in the user's
source program and thereby makes symbolic debug­
ging possible. Time sharing allows immediate and sus­
tained access to a computer for a large number of
users. Together, these two techniques make the conver­
sational mode of operation by remote users a practical
reality.

Nevertheless, the service this system performs is not
a matter of cleverly getting something for nothing: it is
a justifiable trade-off. Execution time is greater, but
elapsed solution-time, i.e., the time it takes to apply the
computer to a problem and obtain usable results, is
significantly smaller. In short, this system converts
some of the raw power of the computer into condensed
solution-time and greater creative power for the users.

General Information 5

System Concepts
The language of the Remote Computing System com­
prises two kinds of statements: program statements
and operating statements. Program statements are up­
wardly compatible with FORTRAN 1v and are used to
construct the program. Operating statements allow the
user to regulate the Remote Computing System.

\Vhen a program is being tested, executed, con­
structed, or modified, it is said to be active for the ter­
minal being used. \Vhen a program is active, it. is lo­
cated in temporary storage, where it is known as the
active image of the program.

The Remote Computing System maintains a log of
operations that take place between the computer and
each terminal. The log contains such information as
the number of statements handled, the number and
types of errors detected, and the volume of output pro­
duced. The information in the log can be used for vari­
ous purposes. For example, the number of errors might
indicate that additional training might be helpful.
Similarly, if an individual terminal is always busy, it
might indicate the need for an additional terminal. If
the cost of the system is shared among terminals ac­
cording to usage, the information in the log can be
used for billing purposes.

Computer and Terminals
The Remote Computing System requires: (1) a com­
puting center equipped with a data processing system
having tape, drum, and disk storage, plus an exchange
device, and (2) up to 40 remote terminals.

The exchange device controls the flow of informa­
tion between the computer and the terminals. Charac­
ters typed at the terminals are formed into statements
within the exchange device and then are sent to the
computer one statement at a time. The computer re­
turns an answer to the exchange device which in turn
sends it to the proper terminal. An exchange device al~
lows each terminal to send or receive data independent
of all other terminals.

Programs are permanently stored in disk storage.
When the user indicates that a program he has con­
structed is to be saved, the Remote Computing System
places it in disk storage. Thereafter, the program will
be available to the user whenever needed.

Files sent from a terminal for batch processing are
placed on an auxiliary disk storage device by the ex­
change device, in addition to those generated when
operating in the batch manner. \Vhen the computer is
available for batch processing, the computer operator
will indicate to a subsystem under the System Monitor
that files on the auxiliary disk storage device are to be
processed. Under control of the subsystem, the files

6

will be transferred from disk storage to tape, which is
then used as the system input unit (s.s1N1) for normal
processing under the System Monitor. The result of
this processing, which is contained on the system out­
put unit (s.sou1), can be handled in either of the fol­
lowing ways: (1) it can be transferred to disk storage
for subsequent transmission to a terminal, or (2) it can
be printed on an off-line printer and mailed t~ the ter­
minal. Additional information regarding batch process­
ing will appear in a subsequent publication.

Command Mode
When no program is active at a given terminal, that
terminal is in the command mode· and conversely
when a user enters a COMMAND stat~men;, he will de~
stroy the active image of his program. Since no pro­
gram can be active at the terminal and statements can­
not be retained, they must be processed immediately.
Consequently, the user may employ only the general
operating statements, the program defining statements,
or a limited form of the arithmetic-assignment state­
ment. This latter provision allows the terminal to be
used as a fast, versatile symbolic calculator. In this
mode, the user enters a statement of the form X=e
where e is any expression consisting of constants and
built-in functions, and the system immediately evalu­
ates the expression and prints the result at the user's
terminal.

Program Mode
\Vhen a program is active at a given terminal (see
"Program Defining Statements"), that terminal is in the
program mode. In this mode, the user enters program
statements that make up the substance of his program,
and he operates on the program (i.e., modifies, tests,
executes, and debugs it) by using operating statements
(see "Language").

\Vhile the terminal is in the program mode, the user
can also enter single statements that are executed im­
mediately but are not retained in storage (see "Process
Code cc").

Source Language Debugging
Debugging information is requested by the user and
displayed by the system in a form consistent with the
source programming language.

Diagnostic Structure
Errors committed by the user may be classified in two
broad categories: syntactic and semantic.

Syntactic Errors

Syntactic errors are considered the responsibility of
the system and are further categorized as follows:

Composition: Typographical errors, violations of
specified forms of statements and misuse of variable
names (e.g., incorrect punctuation, mixed-mode ex­
pressions, undeclared arrays, etc.).

Consistency: Statements that are correctly composed
but conflict with other statements (e.g., conflicting de­
claratives, illegal statement ending a Do range, failure
to follow each transfer statement with a numbered
statement, etc.).

Completeness: Programs that are incomplete (e.g.,
transfers to nonexistent statement numbers, improper
DO nesting, illegal transfer into the range of a DO loop,
etc.).

Errors of composition and consistency are detected
as soon as the user enters the offending statement. He
may immediately substitute a correct ·statement.

Errors of completeness are discovered when the user
signifies that his program is complete (by entering the
END statement). Some errors (e.g., invalid subscript
value, reference to an undefined variable, arithmetic
spills, etc.) can, of course, be detected only during exe­
cution. In this case, after a display of the error condi­
tion and its location, execution is interrupted and the
terminal reverts to READY status. The user then has the
option of either immediately correcting his error or
proceeding with the rest of his program.

For all syntactic errors, the diagnostic message is
specific (in that the variable in error is named, or the
column where the error occurred is specified) and often
tutorial in suggesting the procedure for obtaining cor­
rect results.

Semantic Errors

Semantic errors are concerned with the meaning or

intent of the programmer and are definitely his re­
sponsibility. However, he is provided with an exten­
sive set of debugging aids for manipulating and
referencing a program when in search of errors in
logic and analysis.

Value Manipulation
Some types of program statements are also useful for
manipulating the values of a user's program. When
the terminal is in the program mode, the user may
insert special characters, called "process codes," into
the first two columns so that these statements can be
used as commands. For example, cc preceding a state­
ment has the following effect: the statement is immedi­
ately executed with all the effects of normal execution
but no new variable names are created; the statemen~
is then discarded and does not become a part of the
program. Thus, the user may insert values into param­
eters at any time? thereby creating completely new
testing situations without having to build their pres­
ence into the logic of the program or attempting to
anticipate the debugging operations required.

Debugging Statements
The operating statements (see "Language") provide a
wide and flexible variety of methods for manipulat­
ing the program itself. The user may:

1. Insert or delete statements.
2. Execute selectivity.
3. Print changes of values as the change occurs and

transfer control as the transfer occurs.
4. Obtain a static printout of all cross-reference

relationships among names and labels, and dynamic
exposure of impartial or imperfect execution.

General Infom1ation 7

Part 2. Equipment for Remote Computing

The equipment required for use with the Remote Com­
puting System is divided into two groups. The bulk
of the equipment is located at a computing center; the
remainder is located at each terminal. The equipment
at the terminal will be described in detail because the
user of the Remote Computing System operates from
a terminal.

Computing Center Equipment
The computing center requires the following equip­
ment:

1. An IBM 7040/7044 Data Processing System with
32K words of core storage.

2. An IBM 1301 Disk Storage Unit to be used for
permanently retaining users' programs.

3. An IBM 7320 Drum Storage Unit to be used for
temporary storage of users' programs.

4. Six magnetic tape units to be used for maintain­
ing normal computer capability and for logging sys­
tem transactions.

5. An IBM 77 40 Communication Control System to
be used for sending and receiving data.

6. Two IBM 1311 Disk Storage Drives, one Model
5 and one Model 2, connected to the IBM 77 40 for use
during batch processing.

The computing center also requires a communica­
tions device for connecting terminals to the computer.

Terminal Equipment
In addition to a communications device for connecting
the terminal to the computer, each terminal consists
of an IBM 1050 Data Communications System terminal

READER
START
LINE

ALTN
CODIN

Figure 1. IBM 1052 Keyboard

8

equipped with an IBM 1051 Control Unit and an IBM

1052 Printer-Keyboard.
Optional devices that may be installed as part of a

terminal are the IBM 1056 Card Reader with pack feed
and the IBM 1057 Card Punch.

The User's Terminal Console
In use, the 1050 terminal console appears to be a self­
sufficient "FORTRAN machine." The user is completely
unaware of any assembly system or the internal or­
ganization of the central computer. The language is
upwardly compatible with most versions of FORTRAN IV

and is augmented by a set of operating, testing, and
debugging statements. The basic unit of input to the
Remote Computing System is a single statement; for
conventional processors, the basic unit of input is an
entire program. Since the user receives a reply from the
system after he enters each statement, the mode of
processing is called "conversational." The conventional
mode of processing is called ''batch."

Description of the IBM 1052 Printer-Keyboard
The printer portion of the 1052 Printer-Keyboard con­
sists of a platen that controls the paper, a print ele­
ment, and a carrier that positions the print element.
Continuous-form paper is fed into the platen and
printing is done by a ball-shaped print element that is
moved horizontally to the desired position on the line.
The carrier is the mechanism that moves the print
element horizontally.

The switch panel portion of the 1052 Printer-Key­
board contains lights, switches, and an indicator that
shows the position of the print element.

D

D

D

D

D
D

The keyboard portion of the 1052 Printer-Keyboard
(see Figure 1) consists of character keys and control
keys. Control keys are located at both sides of the
keyboard. The character keys, located between the
groups of control keys, are arranged like those on a
typewriter. In addition to the normal function of the
keys, some of the keys in the top row have other func­
tions (marked directly above the key). When one of
these functions is required, the key marked AL TN

CODING must be held down while the key for the de­
sired function is pressed.

Description of the IBM 1056 Card Reader
The Remote Computing System allows for the use of
an IBM 1056 Card Reader equipped with the 80-
column Pack Feed feature and the extended char­
acter set.

All cards to be read by the 1056 must have an upper­
left corner cut and must be fed into the 1056 face
down with the column 1 edge first. If a card is fed in­
correctly, EJECT can be pressed to cause the card to
pass through the 1056 without being read.

Description of the IBM 1057 Card Punch
The IBM 1057 Card Punch is prepared for operation
with the Remote Computing System as follows:

1. Place a quantity of blank cards into the feed
hopper.

2. Set the Main-Line switch to ON.
3. Set AUTO FEED to ON.
4. Set AUTO SKIP, AUTO DUP to the oH position.
5. Set AUTO PUNCH, KEY PUNCH to AUTO PUNCH.
6. Press the Feed key twice.
Note that a program card containing the letter A in

all columns must be mounted on the program drum,
and the star wheels lowered to read the card.

Initial Setup of the Terminal
To use the Remote Computing System, it is necessary
to set up the terminal and then connect it to the com­
puter at the computing center. The setup procedures
are given in detail below and are summarized in the
upper half of Figure 2.

I: Set the Line Control switch on the CE panel to
the ON position. The CE panel is located inside the rear
of the IBM 1051 Control Unit.

2. Set the Main-Line switch to the POWER ON posi­
tion. This turns on the Power light on the 1052 switch
panel.

3. Set the switches on the 1052 switch panel as
shown below. The positions of the switches are con­
sidered to be numbered from left to right. The switches
marked 0 are optional and may not be present on the
switch panel.

SWITCH

POSITION SWITCH NAME

1 SYSTEM (ATTEND-UNATTEND)
2 ° MASTER
3 PRINTER 1
4 ° PRINTER 2
5 KEYBOARD
6 ° RDR 1
7 ° RDR 2
8 ° PUNCH 1
9 ° PUNCH 2

10 STOP CODE
11 ° AUTO FILL
12 ° PUNCH
13 SYSTEM (PROG-DUP)
14 No switch is assigned to this position.
15 SYSTEM (DIAL DISC)
16 TEST
17 SGL CYCLE
18 RDR STP

SWITCH

SETTING

ATTEND
OFF
SEND RCV
RCV
SEND
OFF
OFF
OFF
OFF
OFF
OFF
NORM
DUP

In up position
OFF
OFF
OFF

4. Set the margin stops to provide a line length of
at least 85 characters. The first· twelve print positions
of each line are reserved for use by the Remote Com­
puting System. The information printed in these posi­
tions is explained in Part 3.

Print position 13 is the first one available to the user
and may be regarded as if it were the first column of
the FORTRAN coding form, Form X28-7327. Through­
out this publication, all entries to be made by the user
will be described using the column numbers of the
FORTRAN coding form. Whenever the Remote Comput­
ing System pauses for a response from the user, the
carrier will be positioned at column 1. The user will
find it convenient to set a tab stop at print position 19
so that, when a FORTRAN statement is to be entered, he
can press TAB to move to column 7.

To set the margin stops, use the space bar to posi­
tion the print element at the approximate center of
the line. Set the Main-Line switch to POWER OFF. Lift
the top cover and tilt the hinged switch panel toward
the keyboard. Position each margin stop individually
by pressing a blue margin-indicator toward the key­
board and sliding it to the desired position. Lower the
top cover and set the Main-Line switch to POWER ON.

To set the tab stop, set both the Printer 1 switch
and the Keyboard switch (on the 1052 switch panel in
positions 3 and 5) to the HOME position. (Clear any tab
stops that are set in the first 18 positions before pro­
ceeding. The method of clearing a tab stop is given
below.) Press RETURN and then press the space bar 18
times to move the carrier to column 7. Press down the
CLR-SET lever at the left side of the 1052 switch panel.
The tab stop is now set for column 7. Set the Printer
1 switch to SEND Rcv and the Keyboard switch to SEND.

Equipment for Remote Computing 9

SYSTEM MASTER

T
No<m I X Attend I x

~ " ~ - - - I Moste< I

STOP CODE AUIU FILL

:r I Off I x Off X
I

~·RINTER l PRINTER 2 KEYBOARD RDR 1 RDR 2

RCV I RCV I x =i-; Send I =-r-
~ ~ ;:i= ~ ~ RCV

/

x
Home/ Home/

~di A::dl /I Home I Home I

PUNCH SYSTEM SYSTEM TEST

=ix f f f Bksp I x c

I
x

t

Set the Line Control switch on the CE panel to ON.
Set the Main-Line switch to POWER ON.
Set the switches on the 1052 switch panel as shown above.

PUNCH 1 PUNCH 2

~ I RCV

~ ~
Home I Home I

SGL CYCLE RDR STP

~ 8i =r e

Setup Procedure
1.
2.
3.
4.
5.
6.
7.

Set the margin stops for maximum I ine length and set a tab stop at printing position 19.
Press DATA CHECK.
Press RESET LINE.
Connect the terminal to the computer.

Operating Instructions

Step Keyboard Operation
1 Wait for the system to type a I ine number

and a status word.
2 Wait for the Proceed Ii ght to go on.
3 Type one statement •
4 Hold down AL TN CODING and press EOB;

this will cause the Proceed light to be turned off.
5 Repeat steps 1 through 4 for each statement to be

entered.

Figure 2. Operating Procedures for Remote Computing

To clear a tab stop, press RETURN and then press TAB

to position the carrier at the tab stop to be cleared.
Lift up the CLR-SET lever on the 1052 control panel.
When clearing tab stops, the user must set the switches
on the 1052 control panel as explained above for set­
ting tab stops.

5. Press DATA CHECK.

6. Press RESET LINE (RESET on some models). The
Proceed light should now be off and the keyboard
should be locked (i.e., no typing can be done). If the
Proceed light is on, check the settings of the switches,
especially the Line Control switch.

10

Step Card Reader Operation
1 Wait for the system to type a I ine number

and a status word.
2 Wait for the Proceed light to go on.
3 Set Keyboard switch to OFF.
4 Set RDR 1 switch to SEND.

5 Press READER ST ART LI NE.
6 Insert a card into the reader until a click is heard.
7 Wait until the card is read and ejected.
8 Wait for the system to type a line number

and a status word.
9 Repeat steps 6 through 8 until all cards have

been read.
10 To return to keyboard operation, set RDR 1 switch

to OFF and Keyboard switch to SEND.

Terminal-Computer Connection
The final step in the initial setup of the terminal is its
connection to the computer by the use of a communica­
tions device. Instructions for using the device are pro­
vided by the communications company that installs it.

Terminal Operating Procedures
After the connection has been made, the Remote Com­
puting System will send a message to the terminal.
After the printing of this message, the Proceed light

will be turned on and the keyboard will be unlocked.
The Remote Computing System is nqw ready to accept
the first entry from either the keyboard or the card
reader. The operating instructions for both units are
given below and are summarized in the lower half
of Figure 2.

During terminal operation, input may be entered
from the keyboard, from the card reader, or from both.
The user may alternate between the input units, as
required, by following the operating instructions given
under "Procedures for Keyboard Input" and "Proce­
dures for Card Input."

Procedures for Keyboard Input
The character keys are used to type the letters, num­
bers, and special characters that make up the key­
board input. The line feed and carrier return functions
are provided by the Remote Computing System; there­
fore, the user must not press LINE FEED or RETURN. The
functions of other keys are:

KEY NAME

SHIFT

TAB

BACK
SPACE

FUNCTION

This key must be held down while pressing
the appropriate keys to type the following
characters:

=O)(+'
No other characters should be entered while
SHIFT is held down. The shift lock key
should not be used. (See "Keyboard Time-
Out" for an additional use of SHIFT.)
This key moves the carrier to the next tab
stop. Normally, for the Remote Computing
System, a tab stop is set for column 7 only.
This key backspaces the carrier. The user
can correct errors by typing the correct char­
acters over the wrong ones. As each character
is backspaced over, it is deleted; therefore, if
correct characters are backspaced over to
reach an incorrect one, they have to be re­
typed after the correction has been made.
For example, to change FOEMA T to FOR­
MAT after typing the T, backspace 4 times
and type RMAT.

Some of the keyboard functions require that the
user press two keys at the same time.

KEY NAME

ALTN
CODING

EOB

CANCEL

FUNCTION

This key must be held down while a key that
has an alternate coding function is pressed.
(For example, EOB is obtained by holding
down ALTN CODING and pressing 5.)
This key indicates the end of a line of input
information. It must be pressed (while ALTN
CODING is held down) at the end of every
line to return control to the Remote Comput­
ing System.
This key deletes the entire line currently
being entered. The AL TN CODING key
must be held down when CANCEL is
pressed; immediately after pressing CAN­
CEL, press EOB (and AL TN CODING).

The Remote Computing System does not use the
alternate coding function of any other keys.

The procedure for entering information from the
keyboard is:

I. The Remote Computing System will print a line
number and a status word (e.g., READY); printing will
stop with the carrier at column I.

2. Wait for the Proceed light to be turned on, indi­
cating that the system is ready to accept input infor­
mation.

3. Type one line of input (e.g., a single statement,
with or without a statement number).

4. Hold down ALTN CODING and press EOB to indi­
cate the end of an entry and to return control to the
Remote Computing System. The Proceed light will be
turned off when this operation occurs.

5. Return to step 1 to continue operating. To switch
to card input, follow the procedure given under "In­
structions for Card Input."

Keyboard Time-Out

Keyboards are equipped with a "time-out" feature,
which causes the keyboard to lock if more than 15
seconds elapse between the sending of characters. If
a time-out occurs during the typing of a line, any in­
formation typed on that line up to that point will be
discarded. To avoid this loss of information, the user
may press and release SHIFT before the 15-second limit
has been reached; this action may be repeated as neces­
sary to prevent a time-out. By pressing SHIFT, the user
can prevent a time-out without affecting the input
information.

Procedures for Card Input
The procedure for entering information from the card
reader is:

I. The Remote Computing System will print a line
number and a status word (e.g., READY) and the carrier
will stop at column I.

2. Wait for the Proceed light to be turned on, indi­
cating that the system is ready to accept input infor­
mation.

3. Set the Keyboard switch to OFF.

4. Set the RDR 1 switch to SEND.

5. Press READER START LINE.

6. Insert a card into the card reader until a click
is heard. The card (with an upper-left corner cut) must
be inserted into the card reader face down with the
column 1 edge first.

7. The card will be read and ejected.
8. Wait until the Remote Computing System prints

a line number and a status word. If there is an error
in the card, the keyboard may be used to correct the
error before the next card is read; skip to step 10.

Equipment for Remote Computing 11

9. Repeat steps 6 through 8 until all cards have
been read.

10. To return to keyboard operation, set the RDR I

switch to OFF and the keyboard switch to SEND. Then
follow the procedures given under "Instructions for
Keyboard Input."

Regaining Control
The user can regain control whenever the Proceed
light is on. Whether or not the Proceed light is turned
on periodically is determined by the setting of the
Keyboard switch. If the switch is set to OFF, the Pro­
ceed light will not be turned on. If the Keyboard
switch is set to SEND, the Proceed light will be turned
on periodically for about 15 seconds.

To regain control, wait until the Proceed light is
turned on and then type the word HALT beginning in

12

column 7. Next, hold down AL TN CODING and press
EOB. A message will indicate that control has been re­
turned to the terminal.

If the user does not want to regain control, he can
avoid waiting 15 seconds by holding down ALTN CODING

and pressing EOB as soon as the Proceed light is turned
on.

End of Terminal Operation
The user should disconnect the terminal from the com­
puter after he has finished using the terminal or after
the computing center has indicated that the Remote
Computing System has been discontinued for the day.
The user may disconnect the terminal in either of the
following ways:

1. Press down on the SYSTEM (DIAL DISC) switch.
2. Set the Main-Line switch to POWER OFF.

Basic Information
This section describes the form in which statements
are entered and explains the information produced by
the Remote Computing System in response to these
statements.

Entry Format
The user enters statements by typing them on the
1052 Printer-Keyboard. There is no printed coding
form; however, the user may use a FORTRAN coding
form, Form X28-7327, for planning entries he must
make. Data printed by the system will be described
according to the print position(s) in which it appears;
data entered by the user will be described according
to the columns of the FORTRAN coding form. Print
positions 1 through 12 are reserved for the following
uses:

Print Positions 1 through 5

The Remote Computing System assigns a line number
to each statement entered; these numbers are printed
(by the system) in print positions 1 through 5. Num­
bers are assigned starting with 101 and increased by 1
up to a maximum of 999. The tenths position allows
the user to insert additional statements where neces­
sary. With line numbers, the user can refer to a point
in a program at which he may add or delete state­
ments, begin execution, start or end a testing oper­
ation, etc.

The Remote Computing System prints line numbers
to identify data for the user. For example, when a pro­
gram is being executed, output data is accompanied
by the line number of the output statement that pro­
duced the data. The results of some test statements
are the line numbers of the statements that are in­
volved with the test being made. For example, when
checking branching statements, the Remote Comput­
ing System will print the line numbers of the state­
ment from where a branch originated and the ones to
which it transferred.

The Remote Computing System keeps track of the
line numbers assigned and deleted, and prints the next
available line number when ready to accept another
statement. Therefore, \Vhenever the user executes a
statement, a program, or part of a program, he need
not remember the line number of the last entry, be-

Part 3. Programming for Remote Computing

cause the system will return to the proper point after
the action requested by the user has been completed.

Print Position 6

The Remote Computing System prints a status indi­
cator in print position 6. There are three indicators
which are described under "Status Indicators."

Print Positions 7 through 11

The Remote Computing System prints a status word
in these positions. Various status words inform the
user of the action taken by the system, the kind of
output produced, etc. They are described under
''Status Words."

Print Position 12

This print position will always be blank. This is the
last position reserved for use by the Remote Comput­
ing System.

Columns 1 through 72

Column 1, which corresponds to print position 13, is
the first position available to the user for entering
statements. Although any alphabetic character in col­
umn 1 will cause the line to be treated as a comment,
the user should observe the conventions explained
under "Comment Codes."

Columns 1 through 5 may be used for statement
numbers, which must be within the range of 1 and 999.
The user need number only those statements that are
to be referred to in his program.

Column 6 must always be blank.
Columns 7 through 72 may be used for any of the

statements listed under "Language." As explained in
Part 2, it is convenient to have a tab stop set for col­
umn 7.

Status Indicators
Immediately preceding a status word, the Remote
Computing System prints one of the following status
indicators:

+
The + sign indicates that the system is in program

mu<le and is awaiting a response from the terminal.
The - sign indicates that the system is in command
mode and is awaiting a response from the terminal.

Programming for Remote Computing 13

The = sign indicates that the system is in automatic
status: that is, it has been executing a program, and
one of five conditions has occurred. These conditions
are:

1. An error has occurred during program execution,
and an error message has been typed. For example:

126. =ERROR VARIABLE MAY NOT BE USED UN­
TIL SET.

2. A response to a debugging statement has oc­
curred and has been typed. For example:

293. = INDEX SAM 103. + 195. - 196.

3. A request for data by an input statement has oc­
curred and the system is waiting for the data to be
typed in or read in. For example:

456. = 123.

4. A response to an output statement has occurred
and the data output has been typed. For example:

322. = 0122 x y
5. A programmed pause, stop, or end of execution

has occurred. For example, if the statement STOP 77
was executed and its line number was 592.0, the fol­
lowing would be printed:

592. = S77

Status Words
Print positions 7 through 11 are reserved for status
words, which are printed by the system. These words
either indicate something about the status of the sys­
tem or indicate that the system is making response to,
or diagnosis of, a statement that has been entered.

The majority of status words are responses to pro­
gram debugging statements and are described under
the corresponding debugging statement. The remain­
ing status words, described below, are READY, ERROR,

and CANCL.

Status Word READY: This status word indicates
that the Remote Computing System is waiting for a
statement entry from the terminal.

Status Word ERROR: This status word indicates
that the Remote Computing System has detected an
error. The various types of errors that can occur are
described in Part 1 under "Source Language Debug­
ging."

Status Word GANGL: This status word indicates
that the Remote Computing System has deleted some
information. The status word CANCL will be printed
when:

1. The user has pressed the Cancel key (followed by
EOB) at the terminal. This action causes the Remote
Computing System to cancel the statement just en­
tered at the terminal. After CANCL has been printed,
the user may enter a new statement in response to the
READY message on the next line.

14

2. The user has allowed too much time to elapse
between the typing of characters (see "Keyboard
Time-Out" in Part 2). The Remote Computing System
will cancel the part of a statement that has been en­
tered. After CANCL has been printed, the user may
enter a statement in response to the READY message on
the next line.

Comment Codes
Various types of comments can be entered from a ter­
minal when it is in the program mode. Each type of
comment is identified by a different comment code.
The user types the desired comment code in columns
1 and 2, and then types the comment in the remaining
positions of the line. The three comment codes are ch,
CV, and CF.

Comment Code Cb

This code indicates that the remainder of the line is
a comment. If a program is active for the terminal
when this comment code is entered, the comment will
be retained as part of the active program. (The b indi­
cates a blank.)

Comment Code CV

This code indicates that the remainder of the line is a
comment. The Remote Computing System does not
retain comments identified with this comment code.
Comment Code cv can be used to print comments that
are useful during program construction, but that need
not be part of the active program.

Comment Code CF

This code is used to keep programs for the Remote
Computing System compatible with source programs
for other FORTRAN processors. The Remote Computing
System will process statements beginning with com­
ment code CF as though the CF were not there. Other
FORTRAN processors will regard those statements as
comments.

The Remote Computing System will automatically
supply process code CF for all program statements that
are not valid FORTRAN 1v statements.

Process Code CC
When the terminal is in the program mode, the user
can execute a single statement that he does not want
included in the active program. By typing process code
cc in columns 1 and 2 and an arithmetic assignment
statement or an output statement in columns 7 through
72, the user indicates to the system that the statement
is to be executed immediately, but not retained as part

of the program. After the statement has been executed,
the results are printed at the terminal.

Process code cc is useful when testing and debug­
ging programs. The values of variables within a pro­
gram can be assigned as required. To assign a value,
the name of the variable must appear to the left of
the equal sign in an assignment statement that follows
process code cc. All values necessary to test a program
can be assigned by this method. The expression may
include constants, reserved functions (e.g., cos, ATAN),

and other variables in the program. However, if var­
iables are included, they must have values that were
assigned either during program execution or during
the execution of assignment statements of previous cc
entries.

Similarly, process code cc can be used to display
selectively the values of variables in a program. The
user can display variables by listing their names in an
output statement following process code cc. For ex­
ample:

CC PRINT 5, TEMP, VOL, PRES

Language
The language of the Remote Computing System com­
prises two types of statements: program statements
and operating statements. Program statements, which
are upwardly compatible with FORTRAN 1v (see Appen­
dix), are used to form the user's program. Operating
statements allow the user to communicate with the
Remote Computing System. Operating statements in­
clude modification, test, display, and output state­
ments.

The statements that are available for use in con­
structing a program are described under "Program
Statements." Statements that are available for chang­
ing, testing, and executing programs are described
under "Operating Statements."

Program Statements

The user's program is made up of program statements.
When entered from a terminal, these statements are
always retained in storage as part of the active pro­
gram.

If the user has a statement in his program that refers
to an executable program statement within the pro­
gram, he should assign a statement number to the
statement referred to. Numbers 1 through 999 may be
used as statement numbers, with no two statements
having the same number. The statements acceptable to
the Remote Computing System are described below.
The description gives the general form of each state­
ment, its purpose, and one or more examples of its use.

The following table gives the meanings of the sym­
bols used to identify the variables in the general forms
of the statements:

SYMBOL

a
c
d

e
f
i
k
m

n
p
u
v
x
y
z

Array name
Constant

TYPE OF VARIABLE

Identifier (constant, simple variable, array name, or
function name)
Arithmetic expression
Function name
Simple integer variable (unsigned)
Simple integer constant (unsigned)
Simple integer variable (unsigned)
or simple integer constant (unsigned)
Statement number
Parameter
Name (program or subprogram)
Variable (simple or subscripted)
Simple variable
Subscripted variable
Name (array name, function name, or simple variable)

Constants

When used in computations, a constant is any number
that does not change from one execution of the pro­
gram to the next. It appears in its actual numerical
form in the statement. For example, in the following
statement, 3 is a constant since it appears in actual
numerical form:

J=3°K

Two types of constants may be written: integer con­
stants and real constants (characterized by being writ­
ten with a decimal point). The rules for writing each
of these constants are given below.

Integer Constants

An integer constant is written without a decimal point,
using the decimal digits 0,1, ... ,9. A preceding + or -
sign is optional. An unsigned integer constant is as­
sumed to be positive.

Real Constants

A real constant is written with a decimal point, using
the decimal digits 0,1, ... ,9. A preceding + or - sign is
optional. An unsigned real constant is assumed to be
positive.

An integer exponent preceded by an E may follow
a real constant. The exponent may have a preceding
+ or - sign. An unsigned exponent is assumed to be
positive.

Variables

A variable is a symbolic representation (name) that
will assume a value. This value may change either for
different executions of the program or at different
stages within the program. For example, in the follow­
ing statement, both I and K are variables:

K=3°I

Programming for Remote Computing 15

The value of I will be assigned by a preceding state­
ment and may change from time to time, and the value
of K will vary whenever this computation is performed
with a new value of I.

As with constants, a variable may be integer or real,
depending on whether the value which it will repre­
sent is to be integer or real, respectively.

In order to distinguish between variables which will
derive their value from an integer as opposed to those
which will derive their value from a real number, the
rules for naming each type of variable are different.

Integer Variables

An integer variable consists of a series of not more
than six alphameric characters (except special char­
acters), of which the first is I, J, K, L, M, or N.

Real Variables

A real variable consists of a series of not more than six
alphameric characters (except special characters), of
which the first is alphabetic but not one of the integer
indicators, i.e., I, J, K, L, M, or N.

Subscripts

An array is a group of quantities. It is often advan­
tageous to be able to refer to this group by one name
and to refer to each individual quantity in this group
in terms of its place in the group.

For example, assume the following is an array named
NEXT:

15
12
18
42
19

Suppose it is desired to refer to the second quantity
in the group; in ordinary mathematical notation this
would be NEXT2. In FORTRAN this would be:

NEXT (2)

The quantity "2" is called a subscript. Thus:
NEXT (2) has the value 12
NEXT (4) has the value 42

Similarly, ordinary mathematical notation might use
NEXT1 to represent any element of the set NEXT. In a
program statement, this is written as NEXT (1) where 1
equals 1, 2, 3, 4, or 5.

The array could be two dimensional; for example,
the array named MAX:

COLUMN 1 COLUMN 2 COLUMN3
Rowl 82 4 7
Row2 12 13 14
Row3 91 1 31
Row4 24 16 10
Row5 2 8 2

Suppose it is desired to refer to the number in row
2, column 3; this would be:

16

MAX(2, 3)

"2" and "3" are the subscripts. Thus:
MAX(2, 3) has the value 14
MAX(4, 1) has the value 24

Similarly, ordinary mathematical notations might
use MAX1, j to represent any element of the set MAX.

In a program statement, this is written as MAX(I, J)
where 1 equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3. In
this system, the above notation may be extended to
three-dimensional arrays.

form of Subscripts

A subscript must be in one of the following forms only,
where I represents an unsigned non-subscripted in­
teger variable, and Kl and K2 an unsigned integer
constant:

I
K
I+Kl or I-Kl
Kl 0 I
Kl 0 I+K2 or Kl 0 I-K2

Subscripted Variables

A subscripted variable is either an integer or real var­
iable, followed by parentheses enclosing one, two, or
three subscripts separated by commas.

Assignment Statements

I General Form

These statements assign a value to a specified vari­
able; i.e., the value of an expression, e, is determined
and assigned to a variable, v. The = symbol in an
assignment statement signifies the replacement or as­
signment of a value to a variable, rather than mathe­
matical equality. Therefore, such statements as V=V+ 1
are acceptable assignment statements.

When there is a difference in mode between the var­
iable to the left of the equal sign and the expression
to the right of the equal sign, the following conven­
tions apply:

1. If the expression is in the real mode, its result is
truncated (not rounded) to the largest integer it con­
tains and then converted to an integer value before it
replaces the correct value of the integer variable.

2. If the expression is in the integer mode, the result
is converted to a real value before it replaces the cur­
rent value of the real variable.

Control Statements

Statements are executed in the order in which they ap­
pear in the program. Control statements may be used
to cause a conditional or unconditional change in the
sequence of execution.

A control statement must not refer to itself. The next
executable statement following a Go TO or IF statement
must be numbered.

Unconditional GO TO Statement

I General Form

GO TO n

EXAMPLE:

GO TO 3

This statement causes the program to transfer control
to statement n.

Computed GO TO Statement

I ::~ ~:: n,), i

EXAMPLE:

GO TO (30, 42, 50, 9),J

This statement causes transfer of control to the first,
second, etc., statement number in the list ni, n2, ... np,
depending on whether the value of i is I, 2, ... , p, re­
spectively. The value of i must be equal to or greater
than I and equal to or less than p.

IF Statement I General Form

EXAMPLES:

IF (X-Y) 10, 5, 3
IF (I-3) 2, 7, 4

This statement causes transfer of control to state­
ment ni, n2, or n3, depending on whether e is less than,
equal to, or greater than zero, respectively.

DO Statement

General Form

DO n i = mi, m2, ma
mi must be equal to or less than m2.
ma is optional but, if stated, ms must be equal to or

greater than l; if ma is not stated, it is assumed to be
equal to 1.

EXAMPLES:

DO 25 J=l, M, 2
DO 35 J=l, 10

This statement is a command to execute repeat~dly
the statements that follow, up to and including state­
ment n, which must not be a no, IF, GO TO, STOP, or
RETURN statement; a CONTINUE statement is usually
used to satisfy this limitation. The "range of a no" com­
prises all statements between the no statement and
statement n inclusive.

The first time the statements are executed, i is equal
to m1. For each succeeding execution, i is increased by
m3. After the statements have been executed with i

equal to the highest value that does not exceed m2,
control passes to the· statement following statement n.
The values of i, mi, m2, and m3 must not be redefined
(i.e., receive a new value) by any statement within the
range of a no. Similarly, subroutines called from within
the range of a no must not change the values of i, mi,
m2, and m3, because such subroutines are considered
to be within the range of the no.

The use of a oo within the range of another oo is
called "nesting." When a oo statement appears within
the range of another DO, the range of the inner DO must
be completely contained within the range of the outer
no. The nesting of DO statements must not exceed a
depth of eight levels.

No transfer into the range of any oo from a point
outside its range is allowed. However, transfers caused
by RETURN statements in subprograms are permitted.

CONTINUE Statement

I General Form
CONTINUE

EXAMPLE:

CONTINUE

This statement is a dummy statement that causes no
action. It is most frequently used as the last statement
in the range of a DO.·

PAUSE Statement

General Form

PAUSE d
d is an optional 1-digit through 5-digit octal number, the

last two digits of which are to be printed at the termi­
nal when the statement is executed.

EXAMPLE:

PAUSE 3

This statement causes a halt in the execution of the
program. Execution can be resumed with the next exe­
cutable statement.

STOP Statement

General Form

STOP d
d is an optional I-digit through .5-digit octal number, the

last two digits of which are to be printed at the termi­
nal when the statement is executed.

EXAMPLE:

STOP 77777

This statement causes the program to halt. Execu­
tion cannot be resumed. The next executable statement
must be numbered.

Declarative Statements

These statements provide for the allocation of storage

Programming for Remote Computing 17

for arrays and for the sharing of storage locations be­
tween programs or within a program. Declarative
statements are not executable. They must precede the
first executable program statement. However, FORMAT

statements may appear anywhere in a program. Except
for FORMAT statements, declarative statements must
not have statement numbers. Constants, program
names, function names, and subroutine names must not
appear in declarative statements. Except when used in
EQUIVALENCE statements, a variable name must not ap­
pear in more than one declarative statement of the
same type.

DIMENSION Statement

I General Form
DIMENSION y,, y,, ... , y,

Each subscripted variable has 1, 2, or 3 subscripts
that give the maximum size of each dimension of the
array being specified. The maximum size of each array
is 3000.

EXAMPLES:

DIMENSION A(lO), B(5, 5, 5)
DIMENSION J(12, 3), E(5)

This statement, if used, must be the first declarative
statement in a program. It provides the information
necessary to allocate storage for arrays in the program.
The name of each array must appear in a DIMENSION

statement before appearing in any other statement.

COMMON Statement

EXAMPLES:

EQUIV ALEN CE (F (3), E)
EQUIVALENCE (J (3), I, A, D)

This statement causes all of the variables specified
to be assigned to the same location in storage. An ac­
tual storage area is reserved only for the first variable,
v1; variables v2 through Vp overlay the area reserved
for V1 (they do not have individual storage areas). A
variable may appear in more than one EQUIVALENCE

statement only if it appears as v1 in each of them.

Type Declaration Statements

These statements provide the means to define the mode
of a variable or function name, normally defined by the
first letter of the name. The name of a variable must
not appear in more than one type declaration state­
ment. The name of a function subprogram may appear
in an EXTERNAL and an INTEGER statement or in an
EXTERNAL and a REAL statement. Constants and re­
served names must not appear in type declaration
statements.

INTEGER Statement

I General Form

EXAMPLE:

INTEGER RESULT, DETER, GAMMA

This statement specifies that the listed names are in­
teger variables.

I
General Form I REAL Statement

COMMON v1, v2, ... , Vp r-1-G-en_e_r-al-F--orm------------------

If the variable is the name of an array, it must not REAL z1, z2, ... , Zp

include dimension information. '-------------------------'

EXAMPLES:

COMMON A, B, C, D, E
COMMON X, ANGLE, MATA, MATB

This statement causes the variables to be assigned to
consecutive storage locations within a common storage
area. Programs and subprograms can share the com­
mon storage area.

EQUIVALENCE Statement

General Form

EQUIVALENCE (v1, v2, ... , Vp)

18

p must be equal to or greater than 2.
All variables must be enclosed in one set of parentheses.
If v1 is an array name, it may have a single subscript that

specifies the relative position within the array of the
variable being made equivalent to v2 through Vp.

If V1 is a simple variable, it must not have a subscript;
V2 through Vp must never have subscripts.

EXAMPLE:

REAL MASS, MATRIX, MILNE

This statement specifies that the listed names are
real variables.

EXTERNAL Statement

EXAMPLE:

EXTERNAL PLOT, POLAR, BAR

This statement specifies that the listed names are
nonreserved subprogram names. All nonreserved sub­
program names used as arguments in a program must
appear in an EXTER..l'\l'AL statement within that program.
Variable names and reserved names; e.g., SIN, must not
appear in an EXTERNAL statement.

Input/Output Statements

These statements provide for the transmission of data
between core storage and the terminal. To simplify the
description of formats, references will be made to a
printed line; however, the information also applies to
card and tape records.

Most of the input/output statements include a pa­
rameter(m) that, in conventional FORTRAN systems,
specifies the input or output unit to be used for a state­
ment. The Remote Computing System does not use the
m; it is included for compatibility with conventional
FORTRAN processors. When an input statement is exe­
cuted, the system expects the input data to be entered
from the keyboard. When an output statement is exe­
cuted, the system prints the output data on the printer.
However, the user may designate a different input
and/or output unit by using a SELECT statement (see
SELECT Statement"). Regardless of which input/output
units are selected, all input and output will be moni­
tored on the printer.

If a program is compiled using a conventional FOR­

TRAN processor at a later time, the m will specify the
input or output unit to be used by the statement.

FORMAT Statement

General Form

nFORMA T (specifications)
specifications are as explained below.

EXAMPLES:

24 FORMAT (I2/(El2.4, Fl0.4))
22 FORMAT (IlO)
26 FORMAT (El5.6, Fl0.6/5Il0)

This statement describes the type of conversion and
the format to be used in the transmission of data. Each
FORMAT statement must have a statement number.

Conversion of Numeric Data: The following table
shows the three types of conversion for numeric data:

INTERNAL

CONVERSION

CODE EXTERNAL

Floating Point E Floating Point
(with exponent)

Floating Point F Floating Point
(without exponent)

Integer I Integer

Numbers printed by E-type conversion are printed
as a decimal fraction times a power of 10. These num­
bers are normalized; that is, their first significant digit
is to the right of the decimal point. For example:

23.3.3 may be printed as 0.2333E 03
. 003 may be printed as 0.30E-02
17.4 may be printed as 0.174E 02

Numbers printed by F-type conversion are printed
in a "normal" fashion; that is, they appear as output in
a meaningful decimal notation without an exponent.
Typical output might be:

12.3
-17.2
289.1

-0.726
1.318
0.009

102.
-968.

721.

Numbers printed by I-type conversion are printed as
integers. Typical output might be:

12
-17
2342

These basic numeric field specifications are given in
the forms:

Iw Ew.d Fw.d
I, E, and F represent the types of conversion,
w represents the total number of print positions for the

converted data, and
d represents the number of decimal places to the right of

the decimal point.

The decimal point between the w and d portions of
the specifications is required punctuation.

I-Conversion: The specification Iw may be used to
print a number that exists in the computer as an inte­
ger quantity; w print positions are reserved for the
number. It is printed in this w-space field right-justified
(that is, the units position is at the extreme right). If
the number converted is greater than w digits, the left­
most digits are lost; no rounding occurs. If the number
has less than w digits, the leftmost spaces are filled in
with blanks. If the quantity is negative, the space pre­
ceding the leftmost digit will contain a minus sign if
sufficient spaces have been reserved.

The following examples show how each of the inter­
nal quantities is printed according to the specifica­
tion 13:

INTERNAL PRINTED

721 721
-721 721 0

-12 -12
9 bb9

8114 114 0

0 bbO
-5 b-5

0 Inaccurate due to insufficient specification
(bis used here to indicate blanks)

F-Conversion: For F-type conversion, w is the total
number of print positions reserved, and d is the num­
ber of places to the right of the decimal point (the frac­
tional portion). The fractional portion is truncated
from the right if insufficient spaces are reserved; zeros
are filled in from the right if excessive spaces are re­
served. Within the remainder of the field, the integer
portion is handled in much the same fashion as num­
bers converted by I-type conversion .

A space for the decimal point and a space for the
sign must be included in the count, w. (For output,
space for at least one digit preceding the decimal point
should be reserved.)

The following example shows how each of the inter-

Programming for Remote Computing 19

nal quantities is printed according to the specifica­
tion F5.2:

INTERNAL PRINTED

12.17 12.17
-41.16 41.16 *

-.2 -0.20
7.3542 b7.35 **

-1. -1.00
9.03 b9.03

187.64 87.64 *
* Inaccurate due to insufficient specification

** Last two digits of accuracy lost due to insufficient specification
(b is used here to indicate blanks)

E-Conversion: For E-type conversion, w is the total
number of print positions reserved. The fractional por­
tion is indicated by d; w includes the field d, plus two
spaces for a sign and the decimal point, plus four
spaces for the exponent, plus space for the integer por­
tion. (For output, space for at least one digit preceding
the decimal point should be reserved.) The exponent
is the power of 10 times which the number must be
raised to obtain its true value. The exponent is written
with an E followed by a space for a minus sign if the
exponent is negative or a plus or blank if the field is
positive, and two spaces for the exponent.

The following example shows how each of the inter­
nal quantities is printed according to the specifica­
tion El0.3:

INTERNAL

238.
-.002

.00000000004
-21.0057

PRINTED

0.238Eb03
-0.200E-02

0.400E-10
-0.210Eb02*

* Last three digits of accuracy lost due to insufficient specification
(bis used here to indicate blanks)

It is evident from the above examples that the user
must know the data in order to specify a satisfactory
format. Insufficient format specifications can result in
inaccurate output. In general, specifications should
provide for the largest quantities to be transmitted and
the greatest accuracy desired.

Additional Rules for Specifying Format:
1. Field width may be specified greater than re­

quired in order to provide spacing. Thus, if a number
to be converted by I-type conversion is not expected
to exceed five spaces including a sign, a specification of
110 will reserve a minimum of five leading blanks.

2. A specification may be repeated as many times as
desired (within the limits of the output device) by pre­
ceding the specification with an unsigned integer con­
stant. Thus, (2Fl0.4) is equivalent to (Fl0.4, Fl0.4).

3. Succeeding specifications may be written in a
single FORMAT statement by separating them with
commas. Thus, (12, El0.2) might be used to convert
two separate quantities, the first integer and the sec­
ond floating point.

4. The specifications in a FORMAT statement must

20

correspond in type with an item in the input/output
statement; integer quantities require integer conver­
sion, and real quantities require floating-point con­
version.

Thus, the following statements are compatible:

PRINT 2, A, B, I
2 FORMAT (2F6. 4, 110)

5. Successive items in the input/output list are trans­
mitted by successive corresponding specifications in
the FORMAT statement until all items in the list are
transmitted. If there are more items in the list than
there are specifications, control transfers to the first
specification after the preceding left parenthesis of the
FORMAT statement.

For example, suppose the following statements are
written into a program:

PRINT 10, A, B, C, D, E, F, G
10 FORMAT (Fl0.3, El2.4, Fl2.2)

The following table shows the variable transmitted
and the specification by which it is converted:

VARIABLE TRANSMITTED

A
B
c
D
E
F
G

SPECIFICATION

Fl0.3
El2.4
Fl2.2
Fl0.3
El2.4
Fl2.2
Fl0.3

6. Quantities are transmitted to consecutive print
positions, starting in print position 19. Quantities trans­
mitted in excess of the print positions will be lost.

7. A limited parenthetical expression is permitted in
order to enable repetition of data fields according to
certain format specifications within a longer FORMAT

statement specification. Thus, FORMAT (2(F10.6, El0.2),
14) is equivalent to FORMAT (Fl0.6, El0.2, Fl0.6, El0.2,
14). An additional level of parentheses is not permitted.
Thus, FORMAT (2(3(16, El0.2))) is not valid.

Multi-Line Format: To deal with a block of more
than one line of print, a FORMAT specification may have
several different one-line formats, separated by a slash
(!) to indicate the beginning of a new line.

The following statement provides for more than one
line:

2 FORMAT (3F9.2, 2Fl0.4/8El4.5)

This statement specifies a multi-line block of print in
which lines 1, 3, 5, ... have format (3F9.2, 2Fl0.4), and
lines 2, 4, 6, ... have format (8El4.5).

If a multi-line format is desired such that the first n
lines will be printed according to a special format and
all remaining lines according to another format, the
last line specification should be enclosed in a second
pair of parentheses; for example:

5 FORMAT (12, 3El2.4/2Fl0.3, 3F9.4/(10Fl2.4))

If there are data items remaining to be transmitted
after the format specification has been completely
"used," the format repeats from the last left parenthesis.

Unit Record: The discussion so far has been con­
cerned only with printed output. At this point the dis­
cussion will be extended to all input/output by intro­
ducing the concept of unit record. This supplies to
those aspects of input/output already discussed as well
as those yet to be discussed. Except where noted, all
references to printed line also apply to other input/
output records.

A unit record may be:

1. A printed line with a maximum of 114 characters.
2. A punched card with a maximum of 72 characters.

(Although the standard 80-column card is used, the
last 8 columns are reserved for identifying information
and are not usually processed by the Remote Comput­
ing System.)

3. A BCD tape record with a maximum of 133 charac­
ters. The use of tape records will be discussed below.

For example, a specification may be written for read­
ing data from cards. Such a specification, used in con­
junction with a READ statement, instructs the computer
regarding the appearance of data in the external me­
dium so that the data may properly be converted and
assigned as the values of the variables listed in the
input list.

Blank Fields: Blank characters may be provided in
an output record, or characters of an input record may
be skipped, by means of the specification wX where w
is the number of blanks to be provided or characters to
be skipped. 'Vhen the specification is used with an
input record, w characters are considered to be blank
regardless of what they actually are, and are skipped
over.

For example, if a card has six IO-column fields for in­
tegers, and it is not desired to read the second quantity,
then the following statement may be used along with
the appropriate READ statement:

21 FORMAT (110, lOX, 4110)

Alphameric Fields: There are two specifications
available for input/output of alphameric information.
The specification wH is used for alphameric data that
is not going to be processed by the object program; the
specification Aw is used for alphameric data that is to
be operated upon by the program.

Information handled with the A specification is given
a variable or array name so that it can be referred to
by this name for processing and/ or modification. In­
formation handled with the H specification is not given
a name and may not be referred to or manipulated in
any way.

H-Conversion: The specification wH is followed in

the FORMAT statement by w alphameric characters. For
example:

24HbTHISbISbALPHAMERICbDATA

Note that blanks are considered alphameric charac­
ters and must be included as part of the count w. This
is the only case (except for column 6) where blanks are
not ignored in program statements.

The effect of wH depends on whether it is used with
input or output.

1. Input: The w characters are extracted from the
input record and replace the w characters included
with the specification.

2. Output: The w characters following the specifica­
tion (or the characters that replaced them as a result of
input operations) are written as part of the output
record.

For example, suppose that the following statements
are executed:

PRINT 2
2 FORMAT (20HTIME/QUANTITYbREPORT)

These statements would cause the following output
to be printed:

TIME/QUANTITY REPORT

On the other hand, suppose the following statements
are executed:

READ 1, I
1 FORMAT (3HYES, I5)

Assume that the following data card is read by these
statements:

ND 238

II
11
111•11111attUAM••»•••n•••••n•••n•••••n•••~aaM••••••M••
111111111 r 111

222221222222222iz2222222222222222222222222222222222222

333333133333333333393333333333333333331331331333113111'

'''''''''''''''''''''''''''~''''''''''''''''''''''''''
515555555555555555555555551555555555555555555555515511 I

1111111111111111111111111111•1111111111111111111111111

11

11'

11'
111•11111•ttuuwn•»•••nnuua•n•••n•••••»•••~aaMo•~•••tt•••

Next, suppose that the following statement is exe­
·cuted:

PRINT 1, I

This would cause the following printed output:

bNObb238
(b is used here to indicate blanks)

A-Conversion: The specification Aw causes w char­
acters to be read into, or written from, a variable or
array name. The name must be constructed in the same

Programming for Remote Computing 21

manner as an integer or floating-point variable name.
For example, suppose that the following statements are
executed:

PRINT 15, A, B, C, D, E, F
FORMAT (3HXY=, F8.3, A5/)

Those statements might produce the following lines:

XY =h-93.210bbbbb
XY=9999.9990VFLW
XY=bb28.768bbbbb

This example assumes that there are steps in the
source program that read the BCD word "ovFLo," store
this data in the word to be printed in the format A5
when overflow occurs, and store blanks in the word
when overflow does not occur.

PRINT Statement

General Form

PRINT n, list
n is the statement number of a FORMAT statement.
list specifies the quantities to be transmitted.

EXAMPLES:
PRINT 12, A, I, J (3)
PRINT 2, (A(I), I=l, 10,2)

This statement causes the items in the list to be
written on the currently selected output unit in the
format specified by statement n. The number of char­
acters specified in the FORMAT statement must not ex­
ceed 114 per line.

PUNCH Statement

General Form

PUNCH n, list
n is the statement number of a FORMAT statement.
list specifies the quantities to be transmitted.

EXAMPLES:
PUNCH 10, A, I, J (3)
PUNCH 12, (A(I), I=l, 10, 3)

This statement causes the items in the list to be writ­
ten on the currently selected output unit in the format
specified by statement n. The FORMAT statement must
not specify more than 80 characters per record.

READ(m) Statement

General Form

READ(m) list
m is the number of an input unit.
list specifies the quantities to be transmitted.

EXAMPLES:
READ (24) X, Y, Z
READ (16) NUM, TEMP, MASS
An example of data to be read is: 12=98.6/215

This statement causes numeric data to be read from
the currently selected input unit and to be assigned as
the values of the variables. Because there is no FORMAT

22

statement, each value read must be separated from the
next value by one of the following characters:

+ - I =
All non-numeric characters, except the following, are

deleted (not entered into storage):

+ - . E

If the program is compiled using a regular FORTRAN
processor at a later time, the READ(m) statement will
read data in binary form.

READ(m, n) Statement

General Form

READ(m,n) list
mis the number of an input unit.
n is the statement number of a FORMAT statement.
list specifies the quantities to be transmitted.

EXAMPLES:
READ (24,3) K, A(J)
READ (J ,8) JOBNO, X, Y

This statement causes data to be read from the cur­
rently selected input unit and to be assigned as the
values of the variables in the list. The FORMAT state­
ment must not specify more than 114 characters per
record.

If the program is compiled using a regular FORTRAN
processor at a later time, the input will be read in BCD

form.

READ n Statement

General Form

READ n, list
n is the statement number of a FORMAT statement.
list specifies the quantities to be transmitted.

EXAMPLES:
READ 4, A, B, C, D
READ 7, (I(J), J=l, 12)

This statement causes data to be read from the cur­
rently selected input unit and to be assigned as the
values of the variables in the list.

WRITE(m) Statement

General Form

WRITE (m) list
mis the number of an output unit.
list specifies the variables to be transmitted.

EXAMPLE:
WRITE (10) X, Y, MASS, TEMP

This statement causes the values of the listed vari­
ables to be written on the currently selected output
unit. Because there is no FORMAT statement, the values
will be listed, using a specification of El5.8 for real
values and Ill for integer values. These specifications
can be changed as explained under "EDIT Statement."

If the program is compiled using a regular FORTRAN
processor at a later time, the WRITE(m) statement will
write data in binary form.

WRITE(m, n) Statement

General Form

WRITE(m, n) list
m is the number of an output unit.
n is the number of a FORMAT statement.
list specifies the qiiantities to be transmitted.

EXAMPLES:
WRITE (24,5) K, A (L)
WRITE (J,3) JOBNO, ANS, X

This statement causes the values of the items in the
list to be written on the currently selected output unit.
The FORMAT statement must not specify more than 114
characters per record.

If the program is compiled using a regular FORTRAN
processor at a later time, the output will be written in
BCD form.

Program Defining Statements

Program defining statements identify the type of pro­
gram or subprogram and indicate the statements that
are contained in it. Every program must start with a
PROGRAM, FUNCTION, or SUBROUTINE statement and must
physically end with an END statement.

Main Programs

Every main program must begin with a PROGRAM state­
ment and end with an END statement.

PROGRAM Statement

General Form

PROGRAM name
name is a I-character through 6-character name, the first

character of which is alphabetic (none may be a special
character).

EXAMPLES:
PROGRAM STRESS
PROGRAM FARADB

This statement identifies the first statement in a main
program and assigns the name to it.

END Statement I General Fonn

END

EXAMPLE:
END

This statement indicates the end of every program
or subprogram and can never appear elsewhere in a
program.

After an END statement has been entered, the Remote
Computing System will print diagnostic messages to
indicate errors that are not apparent until the program
has been completed, e.g., references to statement num­
bers that do not exist.

functions and Subroutines

The statements pertaining to functions and subroutines
are given below. Additional information is contained
in the general information manual FORTRAN, Form
C28-8074.

To allow for error checking, the Remote Computing
System requires that FUNCTION and SUBROUTINE state­
ments appear as declarative information within the
program that calls them. The mode, order, and number
of arguments stated as declarative information must
agree with the definitions of the FUNCTION and SUB­
ROUTINE statements.

FUNCTION Statement

General Form

FUNCTION name (p1, p2, ... , pp)
name is the name of a function; from one through eight

arguments may be used.

EXAMPLES:
FUNCTION ARCSIN (RADIAN)
FUNCTION ROOT (B, A, C)

This statement is used at the beginning of a single­
valued FUNCTION subprogram to define its name and
arguments. The name of the function must appear at
least once as an element of an executable statement
within the subprogram; however, the values of the ar­
guments must not be changed within the subprogram.

Normally, the initial letter of a function name deter­
mines the type of the function. If desired, the user may
explicitly specify the type of the function by beginning
the FUNCTION statement with the appropriate word,
i.e., REAL FUNCTION or INTEGER FUNCTION.

SUBROUTINE Statement

General Form

SUBROUTINE name (p1, p2, ... , pp)
name is the name of a subroutine; from zero through

eight arguments may be used.

EXAMPLES:
SUBROUTINE MATMPY (A, N, M, B, L, C)
SUBROUTINE QDRTIC (B, A, C, ROTTI, ROTT2)

This statement is used at the beginning of a SUB­
ROUTINE subprogram to define its name and arguments.
The name of the subroutine must not appear within the
subprogram.

Reserved Functions

Reserved function names must not be used as the
names of variables nor as the names of other functions.

Programming for Remote Computing 23

Because the first letter of the names of reserved func­
tions determines their types, the names of reserved
functions must not appear in REAL, INTEGER, or EX­

TERXAL statements.
The table below lists the available reserved func­

tions. In the table, I denotes an integer expression and
X. denotes a real expression. The first letter of the name
specifies the type of the function.

NAME

ATAN(X)

ATAN2(Xl, X2)
EXP(X)

SIN(X)
COS(X)

TANH(X)

ALOG(X)

ALOGlO(X)

SQRT(X)

ARSIN(X)
ARCOS(X)

ABS(X)
LABS(I)

AINT(X)
INT(X)

AMOD(Xl, X2)

MOD(ll, 12)

AMAXO(ll, 12)
AMAXl(Xl, X2)
MAXO(ll, 12)
MAXl(Xl, X2)

AMINO(ll, 12)
AMINl(Xl, X2)
MINO(ll, 12)
MINl(Xl, X2)

FLOAT(!)

IFIX(X)

SIGN(Xl, X2)
ISIGN(ll, 12)

DIM(Xl, X2)
IDIM(ll, 12)

DEFINITION

Compute the principal arctan value of the
real argument X in radians.
Compute A TAN(Xl/X2).
Compute ex for a real argument X (whose
absolute value must be less than 88).

Compute the sine or cosine of a real argu­
ment X in radians (whose absolute value
must be less than 236).

Compute the tangent of the real argument
X in radians.

Compute the natural logarithm for a positive
nonzero real argument X.
Compute the common logarithm of X.

Compute the square root of a real argument
X greater than zero.

Compute the arcsine of a real argument X.
Compute the arccosine of a real argument X.

Absolute value of the argument.

Tnmcate, sign of the argument times the
largest integer less than or equal to the abso­
lute value of the argument.

Remaindering. For example:

AMOD(Xl, X2) = Xl - AINT (Xl/X2)
0 X2

MOD(ll, 12) = 11 - INT(ll/12) 0 12

Choose the larger value of the pair of argu­
ments.

Choose the smaller value of the pair of argu­
ments.

Convert from integer to real.

Same as INT.

Sign of the second argument times the abso­
lute value of the first argument.

Positive difference. For example:
DIM(Xl, X2) = Xl - AMINl(Xl, X2)
IDIM(Il, 12) = 11 - MINO(ll, 12)

RETURN Statement I General Form
RETURN

EXAMPLE:

RETURN

This statement, which can appear only in subpro­
grams, is used to return control from a subprogram to

24

the main program that called it. Each subprogram must
contain at least one RITTURN statement. The next exe­
cuted statement following a RETURN statement must be
numbered.

CALL Statement

General Form

CALL name (e1, e2, ... , ep)
name is the name of a Subroutine subprogram, which can!

appear only in CALL or EXTERNAL statements. From
zero through eight arguments may be used. Each argu­
ment must be an expression, a function, o_r a subprogram.

EXAMPLES:

CALL MATMPY (X, 5, 10, Y, 7, 2)
CALL QDRTIC (P 0 9.732, Q/4.536, R-5 002.0, Xl, X2)

This statement is used to call Subroutine subpro­
grams. The CALL transfers control to the subprogram
and makes the arguments available to it.

Operating Statements
The operating statements allow the user to control,
modify, test, and display programs.

Figure 3 shows all of the acceptable forms of each
operating statement. The purpose of each statement is
given later. The following table gives the meanings of
the symbols used to identify the arguments in the oper­
ating statements:

SYMBOL TYPE OF ARGUMENT

c Constant
g Line number
h Line number or statement number
m Input or output unit number
n Statement number
u Name of a program
v Variable (simple or subscripted)

The portion of an operating statement that is shown
in capital letters is called the statement operator. Be­
fore describing the individual operating statements,
general information that applies to the different forms
of statements will be given. Information that applies to
specific operating statements will be included with the
description of that statement.

Statement Operator with No Argument

vVhen no argument follows the statement operator, the
function of the statement operator is initiated imme­
diately and is in effect over the entire range of the pro­
gram. A statement operator that ends with an X cancels
the operation of the corresponding operating state­
ment. For example:

OPERATING STATEMENT

TRAP
TRAPX
SNAP
SNAPX

DESCRIPTION

Initiates a TRAP
Cancels the TRAP
Initiates a SNAP
Cancels the SNAP

ALTER (h) INDEX (n) SNAPX (v)

ALTER (h1, h2) INDEX (v) SNAPX (h 1, h
2
)

ALTER X LIST START
AUDIT LIST (h) START 0
CHECK LIST (h 1, h2) START (h)
CLEAR LOAD STEP
COMMAND NUMBER STE PX
COPY NUMBER (g) TRACE
COPY (h) NUMBER (g, c) TRACE (h)
COPY (h l , h2) PDUMP TRACE (v)
DELETE (v) PURGE (u) TRACE (h 1 , h2)
EDIT (s) QDUMP TRAC EX
EDIT (s1, 52) RESET TRACEX (h)
EXIT SAVE TRACEX (v)

GUARD SAVE (u) TRAC EX (h l , h2)
GUARD (h) SELECT (m) TRAIL
GUARD (h1, h2) SNAP TRAILX
GU AR DX SNAP (h) TRAP
GUARDX (h) SNAP (v) TRAP (h)
GUARDX (h1, h2) SNAP (h1, h2) TRAP (h 1 , h2)
HALT SNAPX TRAPX
INDEX SNAPX (h) TRAPX (h)

TRAPX (h1, h2)

Figure 3. Acceptable Forms of Operating Statements

Statement Operator with One Argument

One argument is enclosed in parentheses following the
statement operator.

When the argument is a line number or a statement
number, the function of the statement operator will be
in effect for that portion of the program beginning
with that number and continuing to the end of the
program.

When the argument is the name of a variable, the
function of the statement operator will be in effect for
that variable.

A statement operator that ends with an X cancels
the operation of the corresponding operating state­
ment as specified by the argument. For example:

OPERATING STATEMENT

SNAP(l 76., 276.)

SNAPX(212.)
SNAPX

DESCRIPTION

Initiates a SNAP from line 176
through line 276
Cancels SNAP above line 212
Cancels SNAP for entire program

Statement Operator with Two Arguments

Two arguments separated by a comma are enclosed in
parentheses following the statement operator.

When a pair of line numbers or statement numbers
is used, it specifies the range over which the func­
tion of the statement operator will be in effect. The
first argument specifies the start of the range and the
second argument specifies the end of the range. Both
arguments may specify the same line or statement if
the user wants to refer to only one statement.

A statement operator that ends with an X cancels
the operation of the corresponding operating state-

ment as specified by the arguments. The arguments
need not be identical to the range specified at the time
the operating statement was put into effect. For ex­
ample:

OPERA TING STATEMENT

TRACE(l23., 456.)

TRACEX(234., 278.)

TRACEX(425.)

TRACEX

Control Statements

LOAD Statement

DESCRIPTION

Initiates tracing between lines
123 and 456
Cancels tracing between lines
234 and 278 (tracing continues
123-233 and 279-456)
Cancels tracing above line 425
(tracing continues 123-233 and
279-424)
Cancels all tracing

The LOAD statement can be used only in the command
mode; an error will be indicated if it is used in the pro­
gram mode. The LOAD statement causes the terminal to
enter the program mode and specifies that a program,
subroutine, or function is to be placed in active status.
Note that the argument of a LOAD statement must not
be placed in parentheses. The argument may be the
name of any program, subroutine, or function in the
user's library.

ST ART Statement

The START statement initiates execution of the program.
To begin executing a program from the beginning, the
user may type START 0. To resume execution from the
next statement to be executed after the last termina­
tion of execution, the user may type START. To begin
execution at any statement, the user may specify a line
or statement number in parentheses following START.

HALT Statement

The HALT statement interrupts program execution.
When HALT is specified, execution is interrupted and
the terminal reverts to ready status. The system prints
a message informing the terminal of the line number
at which execution has been halted.

RESET Statement

The RESET statement cancels the effect of executing the
active program or part of the active program. The Re­
mote Computing System considers a variable "set" if a
value has been assigned to it; a variable is considered
"used" if it has been referred to in an executed state­
ment. Similarly, the Remote Computing System con­
siders a statement "used" if it has been executed. The
RESET statement causes the Remote Computing System
to regard all statements as "not used" and all variables
as "not set" and "not used."

Programming for Remote Computing 25

CLEAR Statement

The CLEAR statement cancels the effect of all previous
test and display statements, and also causes the Re­
mote Computing System to regard all statements as
"not used" and all variables as "not set" and "not used."
Specifying the CLEAR statement is equivalent to speci­
fying TR.\CEX, TIL-'\PX, etc., and RESET. Note that the
CLEAR statement cancels the effect of test and display
statements that have appeared in the operand of exe­
cuted CALL statements.

SA VE Statement

The SAVE statement places the currently active pro­
gram, subroutine, or function into the user's library. If
the name of the currently active program, subroutine,
or function is the same as a name already in the library,
it cannot be entered into the library with that name.
(Unless, of course, the program, subroutine, or func­
tion is first removed from the library as explained
under "PURGE Statement.") The user can place the cur­
rently active program, subroutine, or function into the
library by assigning a new name to it. The new name
of the program, subroutine, or function to be added to
the library is specified in parentheses following SAVE.

After the SAVE statement has been executed, the pro­
gram, subroutine, or function added to the library is
retained as the currently active program at the ter­
minal.

PURGE Statement

The PURGE statement removes the named program, sub­
routine, or function from the user's library. \Vhen the
PURGE statement is specified, the named program, sub­
routine, or function is no longer available to the termi­
nal and may not be the argument of a CALL or LOAD

statement.

EXIT Statement

When the EXIT statement is specified, the active pro­
gram image is destroyed. Hence, if active programs
are to be recalled later, the EXIT statement must be pre­
ceded by a SA VE statement.

Further procedures for terminating active status are
contained under "End of Terminal Operation." The
EXIT statement may be specified in both command and
program modes.

COMMAND Statement

The COMMAND statement places the terminal in the
command mode. When the COMMAND statement is spec­
ified, the active program image is destroyed. Hence, if
active programs are to be recalled later, the COMMAND

statement must be preceded by a SAVE statement.

26

Modification Statements

The language includes modification statements that
provide a means for changing the program. These
statements are not retained as part of the program and
are not compatible with FORTRAN IV. The user employs
these statements to add, change, and delete program
statements. Figure 3 shows the acceptable forms of the
statements.

ALTER Statement

The ALTER statement permits the user to add, change,
or delete program statements. If one argument appears
after ALTER, statements may be inserted after the state­
ment designated by the argument. The line number of
the statement at the specified argument is increased by
0.1 to provide for the first insertion. After each state­
ment is inserted, the line number is increased by 0.1.

If two arguments appear after ALTER, the statements
from the first argument through the second argument
will be deleted from the program. The user may then
insert statements using line numbers beginning with
the line number of the statement located at the first
argument. The line numbers will be increased by 0.1
as explained above.

Status Word ALTER: After the ALTER statement has
been specified, the system will print the status word
ALTER at the terminal. The user may then type a state­
ment he wishes to insert or may specify another ALTER

location.

DELETE Statement

The DELETE statement specifies a variable that is to be
deleted from the program. The argument that appears
after DELETE may be the name of any variable specified
in the program. All statements referring to the variable
named must be adjusted by the user to reflect the dele­
tion of the variable from the program.

NUMBER Statement

The NUMBER statement renumbers (sequentially by
line number) all statements in the program currently
active at the terminal. The statements will be renum­
bered beginning with line number 101.; the line num­
bers will be incremented by 1.

If one argument appears after NUMBER, renumbering
will begin with the line number designated by the ar­
gument. The line number specified by the argument
will be assigned to the first statement in the program.

If two arguments appear after NUMBER, renumbering
will begin with the line number designated by the first
argument. Subsequent line numbers will be incre­
mented by the value designated by the second argu­
ment, which may be any number between 0.1 and 9.

The user can obtain a listing of the renumbered pro­
gram or part of the renumbered program by using a
LIST statement (see "LIST Statement").

Test Statements

The language includes statements that enable the user
to test a program while it is being composed and after
it has been completed. Test statements provide infor­
mation concerning the changes in value of variables,
the execution of transfers, etc. Most of the test state­
ments can also be included as part of a program
through the use of a CALL statement. Figure 3 shows
the acceptable forms of the statements.

SNAP Statement

The SNAP statement causes the printing of the value of
the leftmost variables in arithmetic assignment state­
ments whenever the value of the variables changes
during execution.

Status Word SNAP: During execution, when a mes­
sage is to be printed in response to a SNAP statement or
to the SNAP facility of a TRACE statement, the message
will be preceded by the status word SNAP.

TRAP Statement

The TRAP statement causes the printing of the line
numbers of the origin and destination of every transfer
of control that takes place during program execution.

Status Word TRAP: During execution, when a mes­
sage is to be printed in response to a TRAP statement or
to the TRAP facility of the TRACE statement, the message
will be preceded by the status word TRAP.

TRACE Statement

The TRACE statement causes the printing of the line
number of each statement executed in a program. Spec­
ifying the TRACE statement is equivalent to specifying
both a SNAP and a TRAP statement.

Status Word TRACE: When a statement that falls
within the range of a TRACE statement is executed, the
line number of the statement executed and the status
word TRACE will be printed at the terminal. Whenever
a transfer of control takes place during execution
within the range of a TRACE statement, a message pre­
ceded by the status word TRAP will be printed at the
terminal. Whenever the value of the leftmost variable
in an arithmetic assignment statement changes during
execution and the statement containing the variable is
within the range of a TRACE statement, a message pre­
ceded by the status word SNAP will be printed at the
terminal.

TRAIL Statement

The TRAIL statement causes a message to be printed at
the terminai whenever a transfer of control takes place
to a function, a subroutine, a program in the user's
library, or a program supplied by the system.

GUARD Statement

The GUARD statement causes a halt in program execu­
tion and causes control to return to the terminal. A
message will be printed before the execution of state­
ments that are "guarded." The message will indicate
that the execution of the program is in a "guarded"
region and will return control to the terminal. The
status word READY will then be printed at the terminal.
If the user types START, one more statement will be
executed and control will again be returned to the
terminal.

Status Word GUARD: Before a statement within a
region specified by a GUARD statement is executed, a
message will be printed at the terminal. The message
will be preceded by the status word GUARD.

STEP Statement

The STEP statement permits the user to interrupt exe­
cution after the printing of every line of output from a
program. When a STEP statement has been specified,
the Proceed light will go on at the terminal after each
line of output is printed. The user may then interrupt
execution.

Display Statements

The language includes display statements that permit
the user to obtain information about a program at any
stage of its composition or execution. The information
printed through the use of display statements enables
the user to analyze the progress of his program. This
information includes, for example, listings of state­
ments, defined variables, unused variables, and unexe­
cuted statements. When composing a program, the
user is able to detect errors and omissions from the in­
formation produced by the display statements. When
executing a program, the user can employ display
statements to observe the operation of the program by
monitoring the effect of execution on one or more vari­
ables and/or statements.

A display statement can produce a great amount of
information. At times, the user does not need all the
information; for example, an error may be apparent
after only a few lines have been printed. Therefore, the
display statements are designed to permit the user to
interrupt them at any time during their execution. Fig­
ure 3 shows the acceptable forms of the statement.

LIST Statement

The LIST statement causes a listing of program state­
ments retained by the system to be printed at the ter­
minal.

Status Word LIST: Each statement printed at the
terminal as a result of a LIST statement will contain the
status word LIST.

Programming for Remote Computing 27

COPY Statement

The COPY statement causes a listing of program state­
ments to be typed at the terminal. The COPY statement
produces the same type of listing as does the LIST state­
ment, except that line numbers and status words are
not included as part of the listing. The COPY statement
is also useful, when specified after a SELECT statement
(see "sELECT Statement"), for producing a FORTRAN

compatible source program deck.

INDEX Statement

The INDEX statement produces a listing of the variable
names and statement numbers specified in a program.
If no argument appears after INDEX or if the argument
is zero, the following will be printed at the terminal:

1. A numerical listing of all statement numbers ap­
pearing in a program. The listing indicates, by line
number, those statements that are identified by or ref­
erenced by statement numbers. A minus sign preced­
ing a line number signifies that the statement number
is referred to in a statement; a plus sign preceding a line
number indicates that the statement number is used to
identify the statement. If a statement number has not
been both used as an identification and referred to
elsewhere in the program, it will be Hagged.

2. An alphabetical listing of all the variables in a
program. The listing indicates, by line number, those
statements in which a particular variable has been
specified. A minus sign preceding a line number sig­
nifies that the.variable has been referred to in the state­
ment; a plus sign preceding a line number indicates
that the variable is defined by that statement; a blank
(no sign) indicates that the variable was declared by
that statement. If a statement has not been both de­
fined and referred to, it will be Hagged.

If the argument following INDEX is a statement num­
ber, a listing like the one in item I above will be pro­
duced for that statement number. If the argument fol­
lowing INDEX is the name of a variable, a listing like the
one described in item 2 above will be produced for
that variable.

Status Word INDEX: For every statement number
or variable name, each initial line of output resulting
from an INDEX statement will contain the status word
INDEX.

CHECK Statement

The CHECK statement produces a listing of every state­
ment number and variable name that would have been
Hagged because of an INDEX statement. The CHECK

statement may be specified before or during program
execution. The listing contains variables and statement
numbers in the same order and format as described in
the INDEX statement.

28

Status \Vord CHECK: For every statement number
or variable name, each initial line of output resulting
from a CHECK statement will contain the status word
CHECK.

AUDIT Statement

The AUDIT statement produces a numerical listing of
all statement regions that have not been executed and
an alphabetical listing of the names of all variables that
have not had values assigned or used in a program.

Status Word AUDIT: Each line of output resulting
from an AUDIT statement will contain the status word
AUDIT.

PDUMP Statement

The PDUMP statement produces an alphabetical listing
of the names of all variables, with the current value of
each variable or an indication that the variable has not
yet been assigned a value.

Status Word PDUMP: Every line of output resulting
from a PDUMP statement will contain the status word
PDUMP.

QDUMP Statement

The QDUMP statement produces an alphabetical listing
of the names of all variables with the current values of
those variables that have changed in value since the
last execution of a PDUMP or QDUMP statement. The
QDUMP statement may be specified during or upon com­
pletion of program execution.

Status Word QDUMP: Every line of output resulting
from a QDUMP statement will contain the status word
QDUMP.

Input/Output

The language contains statements that allow the user
to specify input/output units and to specify the format
of the output typed at the terminal.

SELECT Statement

The SELECT statement specifies the input or output unit
to be used. The unit to be used is specified by the argu­
ment. All information sent to an output unit will also
be printed on the printer.

EDIT Statement

The EDIT statement specifies the format of output for
all real and integer variables that are not under control
of a FORMAT statement.

Initially, each terminal is set to the standard real for­
mat of El5.8 and the standard integer format of Ill.
These formats are used for the output of all variables
not under control of a FORMAT statement. The formats
specified in the EDIT statement override the standard
formats for the terminal. If one argument appears after

EDIT, it may be either a real or an integer format speci­
fication. If two arguments appear~ one argument must
be a real format specification and the other an integer
format specification. The EDIT statement may be speci­
fied in both command and program modes.

Program Called Services

The operating statements listed below function as sys­
tem subroutines and may be used as the operand of a
CALL statement, which is retained as part of the active
program. Any acceptable form (see Figure 3) of the
following statements can be used:

AUDIT
CLEAR
COPY
LIST
PD UMP
QDUMP
RESET
SNAP
SNAPX

STEP
STE PX
TRACE
TRACEX
TRAIL
TRAILX
TRAP
TRAPX

The user may cancel the effect of a statement by
using a statement operator that ends with an X. For
example:

PROGRAM STATEMENT

CALL TRAP(234., 456.)
DESCRIPTION

Initiates trapping between lines
234 and 456

CALL TRAPX(400.) Cancels trapping above line 400
(trapping continues 234-399)

CALL TRAPX Cancels all trapping

The user may also cancel the effect of the statement
by interrupting program execution and typing a state­
ment operator that ends with an X. For example:

STATEMENT DESCRIPTION

CALL TRACE (345., 567.) Initiates tracing between lines
345 and 567

HALT
TRACEX(345., 500.)

Halts program execution
Cancels tracing between lines 345
and 500 (tracing continues 501-567)

START Resumes program execution
HALT Halts program execution
TRACEX Cancels all tracing
START Resumes program execution

Note, however, that operating statements used as ar­
guments of CALL statements work like any other pro­
gram retainable statement. That is, if program control
returns to a CALL statement containing an operating
statement as its operands, the effect of the operating
statement will be reinitiated.

Programming for Remote Computing 29

Part 4. Examples

To illustrate the use of the Remote Computing System,
examples from an experimental system are given below.
These examples are intended only to show how remote
computing could be implemented; they are not in­
tended to show how the IBM 7040/7044 Remote Com­
puting System operates. The experimental system from
which these examples were taken has statement oper­
ators, statement formats, and messages that differ from
those in the Remote Computing System. For example,
UNLOAD, TRACE, and DUMP in the experimental system
correspond to SAVE, SNAP, and PDUMP in the Remote
Computing System. The reader should allow for such
differences as he follows the explanations of the ex­
amples.

The examples in this section are divided into two
groups: (1) The first group contains a program that
illustrates many of the features available in the experi­
mental system when used for composing a program;
(2) The second group contains several examples of the
execution of statements, consisting entirely of constants
and FORTRAN functions, in the command mode. Figures
4 and 5 illustrate the formation of a program; Figure 6
illustrates the use of the command mode.

Figure 4 shows the final, correct version of the pro­
gram. Figµre 4B shows the correct output produced as
a result of execution (see START statement, Figure 4A,
line 128).

Figure 5 depicts a preliminary attempt to create and
test this program. (All references that follow are to
Figure 5.)

Input to the system may be from the keyboard or
card reader at the remote terminals. At line 106 a mis­
punched card causes printing of an error message. The
user now suspends automatic input, substitutes a cor­
rect statement via the keyboard and then resumes auto-

30

matic input. Of course, the substitution could have
been made later by an ALTER statement (see below).

At lines 119 and 120, the user initiates intermediate
execution and verifies his FORMAT statements before
going further. In this manner, any statement, sequence
of statements, DO loop, etc., may be debugged as the
program is entered. Similarly, sections may be tested
independently of the remainder of the program.

Execution of the entire program at line 140 discloses
a number of bugs. Inspection of line 137 discloses the
use of Kasa subscript. K could be printed selectively,
but the user decides to dump all variables (see line
141) . After DUMP starts, he interrupts it to change the
format of the display and then dumps again (see line
143). In the event that the dump showing K-51 is not
a sufficient clue to the error, the user establishes a
TRACE on K and a TRAP on the entire program, and
starts again (see lines 144-146) . This produces, to­
gether with his programmed output lines, a dynamic
listing of control and data flow, before ending with
the same error message as on line 137.

At line 147, the statements in error are corrected,
but a statement number is inadvertently omitted.
When the user ends the ALTER status, a message is
printed pointing out that the DO at line 128 refers to a
nonexistent label. This error is corrected and a subse­
quent running of the program (line 151) shows that
the subscript is now behaving properly.

However, there are other changes to be made. The
NUMBER at line 152 yields a clean, renumbered listing
of the current state of the program. Line 231 shows a
complete INDEX, and line 232, the results of a CHECK

statement. All of these will be helpful in reorganizing
and documenting the final, correct version of the
program.

101 -READY c
l 0 l -READY c
l 01 -READY
102 +READY
l 03 +READY
1 04 +READY
105 +READY
106 +READY
107 +READY 101
108 +READY
109 +READY 102
110 +READY
111 +READY
112 +READY
113 +READY 103
114 +READY
115 +READY
116 +READY
117 +READY
118 +READY
119 +READY
120 +READY
121 +READY
122 +READY
123 +READY
124 +READY
125 +READY
126 +READY
127 +READY
128 +READY

2

1

3

4

COMMAND
THIS IS A SAMPLE PROGRAM.

PROGRAM SAMPLE
DIMENSION ZPLOT(52), TABLE(500)
x = 0
y = l.
I = l
READ 101, DELX,CHAR,ZPLOT

FORMAT(F7.4,53Al)
PRINT 102

FORMAT(5XlHX7XlHY)
TABLE(!)= X
TABLE(I+l) = Y
PRINT 103, X, Y

FORMAT(2XF7.4,F8.5)
IF(X-1.)5,3,3
I = I + 2
X = X + DELX
DEL Y = X * Y * DELX
Y = Y + DEL Y
GOTO 2
DO 4 J = l, I, 2
X = TABLE(J)
K= l • + ((TABLE (J + l) -TABLE (2)) I (TABLE (I+ l) -TABLE (2 l l * 5 0,)
ZPLOT(K) = CHAR
PRINT 101, X, ZPLOT
ZPLOT (Kl = ZPLOT (K+ 1)
STOP 77
END
START 0

Figure 4A. Sample Program: Final Form

l 06 =I l 01
108 =0102
112 =O l 03
112 =Ol 03
112 = 01 03
112 =0103
112 =0103
112 = 0103
112 =0103
l 12 = 0 l 03
112 =0103
112 =0103
112 =0103
112 =O 103
112 =Ol 03
112 =Ol 03
112 =O l 03
l 12 =O l 03
112 =0103
124 =0101
124 =0101
124 =0101
124 = 0 l 0 l
124 =0101
1 24 = 0 l 0 l
124 =0101
124 =0101
124 =01 01
124 =0101
124 =0101
124 =0101
124 =0101
124 =0101
124 =0101
124 =0101
1 24 = 0101
126 =S77
129 +READY

00.0625*
x

o.
0.0625
0.1250
0.1875
0.2500
0.3125
0.3750
0.4375
0.5000
0.5625
0.6250
0.6875
0.7500
0.8125
0.8750
0.9375
1. 0000

o.
0.0625*
o. 1250*
0.1875 *
0.2500
0.3125
0.3750
0.4375
0.5000
0.5625
0.6250
0.6875
0.7500
0.8125
0.8750
0.9375
1. 0000

y
1. 00000
1.00391
1. 01175
l. 02361
1.03960
1. 05990
1.08475
1.11441
1. 14923
l. 18963
1.23610
1. 28922
1.34965
l .41819
1.49574
1. 58339
1. 68235

UNLOAD

Figure 4B. Sample Program: Final Execution

Examples 31

101 -READY
l 01 -READY
102 +READY
103 +READY
104 +READY
105 +REACY
106 +READY
106 +ERROR
107 +READY
108 +READY
109 +REllDV
11 0 +READY
111 +READY
112 +READY
113 +READY
114 +READY
115 +READY
116 +READY
117 +READY
118 +READY
119 +READY
110 =I l 01
112 =0102
114 =ERROR
120 +READY
115 =O l 03
116=CYCLE
121 +READY
122 +READY
123 +READY
124 +READY
125 +READY
126 +READY
127 +READY
128 +READY
129 +READY
130 +READY
130 +ERROR
130 +ERROR
131 +READY
132 +READY
133 +READY
134 +READY
135 +READY
136 +READY
137 +READY
138 +READY
139 +READY

COMMAND
C THIS IS A SAMPLE PROGRAM

PROGRAM SAMPLE
DIMENSION ZPLOT (511. TABLE(500l
DELX = .2
x 0
y = i.

2 = 1
04200. STATEMENT NOT IN LANGUAGE.
CV TYPOGRAPHICAL ERRORS MAY BE CORRECTED IMMEDIATELY
CV BY SUBSTITUTING A CORRECT STATEMENT VIA KEYBOARD.

I = 1
READ 101, CHAR, ZPLOT

101 FORMAT(52A1)
PRINT 102

102 FORMAT(5XlHX5X1HYl
GOTO 2

l
103

CV

PRINT 103, X , Y
FORMAT(2XF5.2,F8.5)
ANY STATEMENT OR SEQUENCE OF STATEMENTS MAY BE
VERIFIED BY IMMEDIATE EXECUTION AFTER ENTRY. CV

START 0

x y
TRANSFER POINT N DOES NOT EXIST

START 1
0. 1 • 00000

END OF PROGRAM ENCOUNTERED DURING EXECUTION
I = I + 2
X = X + DELX
DEL Y = X*Y*DELX
Y = Y + DEL Y

2 TABLE!Il = X
TABLE(I+ll = Y
IF(X - l.)l,l,3

3 DO 4 J = l , I , 2
X = TABLE (J)
K=l+((TABLE(J+l l-TABLE(2))/(TABLEII+l)-TABLE(2))*50.)

ARITHMETIC DECOMPOSITION ERROR!S)
MIXED MODE

CV STATEMENTS IN ERROR AT TIME OF ENTRY ARE NOT ACCEPTED.
CV SUBSTITUTION MAY BE MADE WITHOUT RE-ENTERING PROGRAM.

K=l .+(!TABLE(J+l)-TABLE(2))/(TABLE(I+l)-TABLE(2))*50.)
ZPLOT(K) = CHAR
PRINT 104, X , ZPLOT

104 FORMAT!F5.2,51All
4 ZPLOT(Kl = ZPLOT(K~ll

STOP 77
END

Figure 5A. Sample Program: Creating and Testing

32

140 +READY
1i0 =I 101
112=0102
115=0103
115 =0103
115 =0103
115=0103
115 = 0103
115 =0103
135 =01 04
135 =0104
135 = 01 04
135 = 0104
135 = 0104
135 =0104
135 =0104
137 =ERROR
141 +READY

142 +READY
143 +READY

ERROR

x
o.
0.20
0.40
0.60
a.so
1. 00

o.
0.20 *
Q.40
Q.60
a.so
l. 00
l. 20

START 0

y

1. 00000
l. 04000
l. 12320
l.2579S
l .45926
l. 75111

*

*

VALUE OF SUBSCRIPT IS ZERO, NEGATIVE, OR EXCEEDS DIMENSION
DUMP
CHAR=-0.141915SlE-OS
DELX= 0.20000000E-OO
DELY= 0.42026726E-00

EDIT(FS.5)
DUMP

ILLEGAL CHARACTER IN TEXT
DUMP
CHAR=-0. 00000
DELX= 0. 20000
DEL Y= 0. 42027
I= 13
J= 13
K= 51
X= l. 20000
Y= 2.l713S
TABLE(lJ= O.
TABLE(2J= 1.00000
TABLE(3)= 0.20000
TABLE(4)= 1.04000
TABLE(5)= 0.40000
TABLE(6)= 1.12320
TABLE(7J= 0.60000
TABLE(S)= 1.2579S
TABLE(9)= O.SOOOO
TABLE(lO)= l.45926
TABLE(lll= 1.00000
TABLE(l2J= 1.75111
TABLE(l3J= l.20000
TABLEC14)= 2.1713S
TABLE(500)= O.
ZPLOT(ll=-6.09524
ZPLOT(2)=-6.09524
ZPLOT(3)=-6.09524
ZPLOT(4)=-6.09524
ZPLOT(5)=-6.09524

DUMP ALWAYS MAY BE INTERRUPTED.

Figure 5B. Sample Program: Creating and Testing (Continued)

Examples 33

144 +READY TRACE K
145 +READY TRAP 101./138.
146 +READY START 0
110 =I 1 01
1 l 2 = 0 1 02 x y
114 =TRAP TRANSFER TO 2 (125)
127 =TRAP TRANSFER TO 1 (115)
115 - ("\, ~'2

- VI U-.J
n 1. 00000

1 27 =TRAP TRANSFER TO 1 (11 5)
115 = 0103 0.20 1.04000
127 =TRAP TRANSFER TO 1 (11 5)
115 = 0103 0.40 1.12320
1 27 = TKAP TRANSFER TO 1 (11 s)
115 = 01 03 0.60 1.25798
127 =TRAP TRANSFER TO 1 (115)
115 = 01 03 0.80 1.45926
1 27 =TRAP TRANSFER TO 1 (115)
115 = 01 03 1. 00 l. 75111
127 =TRAP TRANSFER TO 3 (128)

133 =TRACE K= 1
135 = 0104 0.
133 =TRACE K= 2
135 = 0104 0.20
133 =TRACE K= 6
135 = 01 04 0.40
133 =TRACE K= 12
135 = 0104 0.60
133 =TRACE K= 20
135 = 0104 0.80
133 =TRACE K= 33
135 = 0104 1. 00
133 =TRACE K= 51
135 = 0104 1. 20
137 =ERROR VALUE OF SUBSCRIPT IS ZERO, NEGATIVE, OR EXCEEDS

Figure 5C. Sample Program: Creating and Testing (Continued)

147 +READY
137 +ALTER
137l+ALTER
llOl+ALTER
11 02+AL TER
1102+ERROR
1 Lt3 +RE 11r:w
137 +ALTER
137l+ALTER
149 +READY
150 +READY
151 +READY
110 =I 1 01
112 =0102
1 1 5 = 01 03
1 1 5 = 01 03
115 =0103
115 =0103
1 1 5 = 01 03
115 =0103
135 =0104
1 35 = 01 04
135 =0104
135 =0104
135 = 0104
135 = 0104
l 35 = 01 04
138 =S77
152 +READY

ALTER 137,/137,
ZPLOT(Kl = BLANK
ALTER 110.
BLANK = ZPLOT (1)
ALTER*

DO 128.0 REFERENCES UNDEFINED LABEL 4
lll__TER 137.1137.

4 ZPLOT(Kl = BLANK
ALTER*

TRACE* K
TRAP* 101./138.

START 0

x
o.
0.20
0.40
0.60
0.80
1. 00

o.
0.20 *
0.40
0.60
0.80
1. 00
l. 20

y
1.00000
1. 04000
1. 12320
1.25798
1. 45926
1. 75111

Figure 5D. Sample Program: Creating and Testing (Continued)

34

DIMENSION

NUMBER 201.
201 CF PROGRAM SAMPLE
202 DIMENSION ZPLOT(51) 1 TABLE(500)
203 DELX=.2
204 X=O
205 Y= l.
206 I=l
207 READ 101,CHAR,ZPLOT
208 BLANK=ZPLOT(l)
209 101 FORMAT(52All
210 PRINT 102
211 102 FORMAT(5XlHX5XlHYl
212 GO TO 2
213 1 PRINT 103,X,Y
214 103 FORMAT(2XF5.2,F8.5)
215 I=I+2
216 X=X+DELX
217 DELY=X*Y*DELX
2 1 8 Y= Y +DEL Y
219 2 TABLE(Il=X
220 TABLE(I+ll=Y
221 IF(X-1.)1 7 1,3
222 3 DO 4 J=l,I,2
223 X=TABLE(J)
224 K=l.+(TABLE(J+ll-TABLE(2))/(TABLE(I+ll-TABLE(2))*50.
225 ZPLOT(K)=CHAR
226 PRINT 104,X,ZPLOT
227 104 FORMAT(F5.2,51All
228 4 ZPLOT(K)=BLANK
229 STOP 77
230 END

Figure 5E. Sample Program: Creating and Testing (Continued)

231 +READY INDEX
1 +213. -221.
2 +219. -212.
3 +222. -221.
4 +228. -222.
5 +207.

101 +209. -207.
102 +211. -210.
103 +214. -213.
104 +227. -226.

BLANK +208. -228.
CHAR +207. -225.
DELX +203. -216. -217.
DELY +217. -218.

+206. +215. -21 5. -219, -220.
-222. -224.

J +222. -223. -224.
K +224. -225. -228.

*SAMPLE 201.
TABLE 202. +219. +220. -223. -224.
x +204. -213. +216. -216. -217.

-219. -221. +223. -226.
y +205. -213. -217. +218. -218.

-220.
ZPLOT 202. +207. -208. +225. -226.

+228.
232 +READY CHECK

5 +207.
*SAMPLE 201.

233 +-READY

Figure 5F. Sample Pr-0gram: Creating and Testing (Continued)

Examples 35

101 -READY
101
101 -READY
lQl -ERR(1R

101 -READY
101
101 -READY
101 -ERROR
101 -ERROR
101 -REA.DY
101
1 01
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101

-READY

-READY

-READY

-READY

-READY

-READY
-ERROR
-READY

-READY

-READY

-READY

- READY

-READY

-READY
-READY

Y= 2. S 0 6 S ;> 1 0. * * (1 0. + 1 •) *EXP F (- 1 0.)
Y= O. l l 379489E 08
HENRY=2.E-9*50.*(LOGF(2.*50,/10.)-1.0+10./50.

() 4 l 1 7 • PAR ENT HES ES ~! 0 T I t\J BA L .t. t\J C E •

HENRY =2.E-9*50.*(LOGF(2.*50./10.)-l .+10./50.)
HENRY= 0.15025850E-06
ROOTl= (-25.+SQRTF(25.**2-4.*l .*2.))/(2.*1 l

ARITHMETIC DECOMPOSITION ERROR!Sl
MIXED MODE

ROOTl= (-25.+SQRTF(25.**2-4.*l .*2.))/(2.*1.)
ROOT1=-0.80257654E-Ol
HENRY= 2. E-9*"i0.* (IOGF (2.*50, /1 O.)-1, O+ 1 Q, /50.)
HENRY= 0.15025850E-06
VAL=l,/COSF(50.)+LOGF(ABSF!SINF(50./2,)/COSF(50./2,)))
VAL=-0.97714996E 00
AREA=2.*10.*5,*SINF(3,1416/10.l
AREA= 0.30901768E 02
ARC=2.*SQRTF(4,**2+1.3333*2•**2)
ARC= O. 92375753E 01
ARC= 2. * (4 • * 4 • + 4 • * 2 , i:- 2. I 3, l 'H 0. 5
ARC= 0.92376041E 01

04117.
S=-COSF(40.)** (20.+l,)/20./1,)
PARENTHESES NOT IN BALANCE,
G=0.5*LOGF((l.+SINF(45.))/(1.-SINF!45,)))
G= 0.12594177E 01

c

S=SINF(45.l
S= 0.85090352E 00
G= 0 • 5 * L 0 G F ((1 • + • 7 0 7 1 l I (1 • - • 7 0 7 1 l l
G= 0.88135999E 00
E=20.*ATANF(20./4,)-4./2,*LOGF(4.**2+20.**2l
E= 0.15406644E 02
Q= (2. I (3. 1416*1 0. l l ** 0. 5* SI NF (1 0.)
Q=-0.13726357E-OO
Q= 0 • 7 9 7 8 I S QR T F (1 0 •) * S I NF (1 0 • l
Q=-0.13724918E-OO

Figure 6. Examples of Command Mode Operation

36

Appendix: Comparison with FORTRAN Systems

Serious attention has been paid to maintain consistency
between the Remote Computing System and other
FORTRAN processors. Programs written in the language
described in this publication are acceptable without
change to conventional FORTRAN IV processors. Con­
versely, FORTRAN IV programs are acceptable to the
Remote Computing System with the limitations given
below. The chart at the end of this appendix compares
FORTRAN statements for other systems with those used
in the Remote Computing System.

The following limitations apply to FORTRAN IV pro­
grams to make them acceptable to the Remote Com­
puting System:

1. The user's program must be written with state­
ments from the subset defined for the system.

2. As is the case for all one-pass translators, all de­
clarative statements must precede the executable
statements. Of course, FORMAT statements and com­
ment statements may appear anywhere in the program.

3. As in most compilers, the sequence of machine
instructions produced for arithmetic expressions may
differ from those produced by other compilers; there­
fore, slight discrepancies caused by variations in trun­
cations may occur.

4. Similarly, some minor differences in the internal
representation of program constants, caused by differ­
ent conversion routines, may also create slight differ­
ences in numerical results.

5. Individual source programs are limited to about
400 statements. However, the user can overcome this
limitation by dividing oversized programs into smaller
subprograms.

6. Limitations regarding program statements are:
a. No arithmetic function statements.
b. No logical, complex, or double-precision vari­

ables.
c. Number of constants, variables, arrays, and

functions must be less than 190.
d. No continuation cards.
e. No magnetic tape input or output. However,

the 1052 will be used for statements that re­
quire tape units.

f. Real constants up to eight digits, with magni­
tude within range of 10-:i1-1 to 10:38 or zero.

g. Integer constants up to ten digits.
h. Array names must appear in a DIMENSION

statement before appearing in any other state­
ment.

i. Maximum size of input/output record is 114
characters, except card records, which are
limited to 80 characters.

j. Arrays cannot be arguments of functions and
subroutines, but must he passed through
COMMON.

k. Statement numbers must not exceed three
digits in length.

1. Restrictions on use of EQUIV ALEN CE.

m. Library function names are reserved.
n. Declarative statements must precede first ex­

ecutable statement.
o. Reserved functions must not appear in an

EXTERNAL statement.
p. A program or subprogram must contain a

FUNCTION or SUBROUTINE statement for each
function or subroutine which the program or
subprogram calls.

Appendix 37

.--------- - --,-·-·--Statements in the
Remote Computing

System Statements for performing similar functions in FORTRAN for other systems
1------

EXTERNAL u1,u2 1 ... ,up x z ...,,. ...,,.
0 c,,;~ " " 0

INTEGER Z] 1 z2 1 ••• ,zp x 0 0 °' ~ OV> u~ t:" 0

REAL z1,z2 1 ••• zp x ~ u..Z 0 -o Ci ~
x 0 0 o-:1: N lO V> " "

...,,.
°' PROGRAM name lO lO c,,; '° 0 <1: 0 0 0 0 u '° '°I- ~ " a:l" " " "

ACCEPT n,List x
ACCEPT TAPE n,Llst x x x x x
ASSIGN i TO n x x x x
BACKSPACE i x x x x x

CALL name (e1 ,e2, ••• ,ep) x CALL NAME (a1 ,a2, ••. ,an) x x x
COMMON v1,v2 1 ••• ,vp x COMMON (a1 ,a2, ••• ,an) x x x
CONTINUE x CONTINUE x x x x x x x x x
DIMENSION Yl ,y2, •• ·Yp x DIMENSION V] 1 v2 1 ••• ,vn x x x x x x x x x
DO n i•m] 1 m2 1 m3 x DO n i=m] ,m2,m3 x x x x x x x x x
END 1 END(l1,l2 1 l3,l4,l5) 1 l 2 2 2 2 2

END FILE i x x x x x
EQUIVALENCE (vl ,v2, ••• ,vp} x EQUIVALENCE (a,b,c, •..) ,(d,e,f, •.•) , ••• x x x x x
FORMAT (specifications} x FORMAT (s1 1 s2, •.. ,sn) x x x x x x

FREQUENCY n(i, j, ...) ,m(k, 1, ••.) , .•• 3 x x
FUNCTION name (pJ,p2, ..• ,pp) x FUNCTION Name (a1 1 a2 1 ••• ,an) x x x
GO TO n x GO TOn x x x x x x x x x

GO TO n, (n] 1 n2, •.• ,nm) x x x x
GO TO (nJ 1 n2 1 ... ,np),i x GO TO (n] 1 n2 1 ••• ,nm), i x x x x x x x x x

IF ACCUMULATOR OVERFLOW nJ ,n2 x x x x x
IF DIVIDE CHECK ni ,n2 x x x x x
IF QUOTIENT OVERFLOW nl 1 n2 x x x x x

IF (e) n1 1 n2 1 n3 x IF (a) nl 1 n2 1 n3 x x x x x x x x x
IF (SENSE LIGHT i) ni 1 n2 x x x x
IF (SENSE SWITCH i) ni ,n

2 x x x x x
PAUSE d x PAUSE n 4 5 5 4 5 5 5 5 5
PRINT n, list x PRINT n, List x x x x x x
PUNCH n, list x PUNCH n, List 6 6 6 x x x x x x

PUNCH TAPE n, List x
READ n, list x READ n, List 6 6 6 x x x x x x

READ DRUM i, j, List 3 x x
READ (m,n) list x READ INPUT TAPE i, n, List x x x x x
READ (m) I ist 7 READ TAPE i, List x x x x x
RETURN x RETURN x x x

REWIND i x x x x x
SENSE LIGHT i x x x x

STOP d x STOP n 4 4 5 4 x x x x x
SUBROUTINE name(p1,p2t ••. ,pp) X SUBROUTINE Name (a1 1 a2, ••. ,an} x x x

TYPE n, List x x x
WRITE DRUM i,j, List 3 x x

WRITE (m,n) list x WRITE OUTPUT TAPE i,n, List x x x x x
WRITE (m) list 7 WRITE TAPE i, List x x x x x

1. Ii are not permitted.
2. Ii are optional and may be ignored.
3. May be included but will be ignored.
4. Then is not permitted.
5. Then is optional and may be ignored.
6. Then is optional and is ignored.
7. The m is optional.

38

1052 Printer-Keyboard .
1056 Card Reader.
1057 Card Punch

A-Conversion .
Active Image of Program.
Active Program .
Alphameric Fields .
ALTER Statement ..
AL TN CODING Key.
Assignment Statements .
AUDIT Statement.
Automatic Status ...

BACKSPACE Key
Batch
Blank Fields
CALL Statement .
Called Services.
CANCEL Key ..
Card Input ..
Card Punch ...
Card Reader.
CE Panel
Character Set, Extended
CHECK Statement .
CLEAR Statement .
Codes, Comment and Process .
C0~1MAND Statement .
Command ~lode .
Comment Codes
COMMON Statement
Comparison with FORTRAN.
Completeness, Errors of .
Composition, Errors of
Computed GO TO
Computer and Terminals
Computing Center Equipment
Connection, Terminal-Computer
Consistency, Errors of.
Console, User's Terminal .
Constants
CONTINUE Statement.
Control Statements .

CLEAR
COMMAND
Computed GO TO.
CONTINUE
DO
EXIT
HALT.
IF
Language .
LOAD.
Operating ...
PAUSE
PURGE
RESET
SAVE
START
STOP
Unconditional GO TO

Conversational .
Conversion of Numeric Data
COPY Statement .

8
9
9

21
6
6

21
26
11
16
28
14

11
5

21
24
29
11
11

9
9
9
9

28
26
14
26

6
14
18
37

7
7

17
6
8

10
7
8

15
17
16
26
26
17
17
17
26
25
17
16
25
25
17
26
25
26
25
17
17
5

19
28

Debugging, Source Language
Debugging Statements ..
Declarative Statements .

COMMON.
DIMENSION
EQUIV ALEN CE

DELETE Statement
Design Aims
Diagnostic Structure .
Display Statements .

AUDIT
CHECK
COPY.
INDEX
LIST
PDUMP
QDUMP

DO Statement .

E-Conversion .
EDIT Statement
END Statement
End of Terminal Operation
Entry Format
EOB Key.
Equipment
EQUIV ALEN CE Statement.
Errors
Examples
EXIT Statement
Extended Character Set .
EXTERNAL Statement .

F-Conversion
Form of Subscripts
FORMAT Statement
Format

Alphameric Fields .
Blank Fields.
Entry
Multi-Line
Numeric Data .
Unit Record .

FUNCTION Statement
Functions .

GO TO Statements
GUARD Statement

H-Conversion
HALT Statement .

I-Conversion
Identification Code .
IF Statement .
Image of Program, Active
INDEX Statement
Indicators, Status
Input

Card
Keyboard
Language Statements
Operating Statements

INTEGER Statement .
Integer Constants
Integer Variables
Initial Setup of Terminal

Index

6
7

17
18
18
18
26
5
6

27
28
28
28
28
27
28
28
17

20
28
23
12
13
11
8

18
7

30
26

9
18

19
16
19
rn
21
21
13
20
19
21
23
23

17
27

21
25

19
5

17
6

28
13
11
11
11
19
28
18
15
16

9

Index 39

Ke) l1oard Input
Keyboard Time-Out
Keys

Line Number
LIST Statement
LOAD Statement
Log of Operations

:\Iain Programs
:\Iargin Stops .
'.\lode, Command and Program.
:\Iodification Statements .

ALTER
DELETE
NU:\1BER

Multi-Line Format.

NU:\IBER Statement
Number, Line.
Numeric Data

Operating Procedures, Terminal.
Operating Statements
Operator, Statement .
Output Statements

Language.
Operating

Pack Feed Feature
PA USE Statement
PDUMP Statement
PRINT Statement
Printer-Keyboard
Procedures, Terminal Operating
Process Code CC
PROGRAM Statement .
Program

Called Services
Defining Statements
:\lode
Statements

PUNCH Statement
PURGE Statement

QDU:\IP

READ Statements .
REAL Statement
Real Constants
Real Variables .
Regaining Control
Reserved Functions
RESET Statement.
RETURN Statement

SA VE Statement .
SELECT Statement
Semantic Errors
SHIFT Key.
SNAP Statement
Source Language Debugging
ST ART Statement
Statement Operator
Statements .

40

Assignment
Control, Language
Control, Operating .

11
11
11

13
27
25

6

23
9
6

26
26
26
26
20

26
13
19

10
24
24
19
19
28

9
17
28
22

8
10
14
23
29
29
23

6
15
22
26

28

22
18
15
16
12
23
25
24

26
28

7
11
27

6
25
24
16
16
16
25

Debugging
Declarative
Program
Program Defining .
Test
Type Declaration

Status, Automatic
Status Indicators .
Status \Vords ..

ALTER
AUDIT
CAN CL
CHECK
ERROR
GUARD.
INDEX
LIST
PD UMP
QDUMP
READY
SNAP
TRACE
TRAP

STEP Statement .
SUBROUTINE Statement.
Subroutines
Subscripted Variables .
Subscripts, Form of.
Switch Panel.
Syntactic Errors
System Concepts .

TAB Key
TAB Stops .
Terminal

Connection
Console
Equipment
Initial Setup
Operating Procedures

Terminals and Computer
Test Statements

GUARD
SNAP
STEP
TRACE
TRAIL
TRAP

Time-out, keyboard.
TRACE Statement
TRAIL Statement .
TRAP Statement .
Type Declaration Statements

EXTERNAL
INTEGER
REAL

Unconditional GO TO .
Unit Record Format .
User's Terminal Console

Value Manipulation
Variables

Subscripted

\Vords, Status .
WRITE Statements .

7
17
15
23
27
18
14
13
14
26
28
14
28
14
27
28
27
28
28
14
27
27
27
27
23
23
16
16
9
7
6

11
9
8

10
8
8
9

10
6

27
27
27
27
27
27
27
11
27
27
27
18
18
18
18

17
21

8

7
15
16

14
22,23

(28-6800-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

